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Abstract

We consider regularized support vector machines (SVMs) and show that they are precisely equiva-
lent to a new robust optimization formulation. We show that this equivalence of robust optimization
and regularization has implications for both algorithms, and analysis. In terms of algorithms, the
equivalence suggests more general SVM-like algorithms for classification that explicitly build in
protection to noise, and at the same time control overfitting. On the analysis front, the equiva-
lence of robustness and regularization provides a robust optimization interpretation for the success
of regularized SVMs. We use this new robustness interpretation of SVMs to give a new proof of
consistency of (kernelized) SVMs, thus establishing robustness as the reason regularized SVMs
generalize well.

Keywords: robustness, regularization, generalization, kernel, support vector machine

1. Introduction

Support Vector Machines (SVMs for short) originated in Boser et al. (1992) and can be traced back
to as early as Vapnik and Lerner (1963) and Vapnik and Chervonenkis (1974). They continue to be
one of the most successful algorithms for classification. SVMs address the classification problem by
finding the hyperplane in the feature space that achieves maximum sample margin when the training
samples are separable, which leads to minimizing the norm of the classifier. When the samples are
not separable, a penalty term that approximates the total training error is considered (Bennett and
Mangasarian, 1992; Cortes and Vapnik, 1995). It is well known that minimizing the training error
itself can lead to poor classification performance for new unlabeled data; that is, such an approach

*. Also at the Department of Electrical Engineering, Technion, Israel.

(©2009 Huan Xu, Constantine Caramanis and Shie Mannor.
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may have poor generalization error because of, essentially, overfitting (Vapnik and Chervonenkis,
1991). A variety of modifications have been proposed to handle this, one of the most popular
methods being that of minimizing a combination of the training-error and a regularization term. The
latter is typically chosen as a norm of the classifier. The resulting regularized classifier performs
better on new data. This phenomenon is often interpreted from a statistical learning theory view:
the regularization term restricts the complexity of the classifier, hence the deviation of the testing
error and the training error is controlled (see Smola et al., 1998; Evgeniou et al., 2000; Bartlett and
Mendelson, 2002; Koltchinskii and Panchenko, 2002; Bartlett et al., 2005, and references therein).

In this paper we consider a different setup, assuming that the training data are generated by
the true underlying distribution, but some non-i.i.d. (potentially adversarial) disturbance is then
added to the samples we observe. We follow a robust optimization (see El Ghaoui and Lebret,
1997; Ben-Tal and Nemirovski, 1999; Bertsimas and Sim, 2004, and references therein) approach,
that is, minimizing the worst possible empirical error under such disturbances. The use of robust
optimization in classification is not new (e.g., Shivaswamy et al., 2006; Bhattacharyya et al., 2004b;
Lanckriet et al., 2003), in which box-type uncertainty sets were considered. Moreover, there has
not been an explicit connection to the regularized classifier, although at a high-level it is known that
regularization and robust optimization are related (e.g., El Ghaoui and Lebret, 1997; Anthony and
Bartlett, 1999). The main contribution in this paper is solving the robust classification problem for
a class of non-box-typed uncertainty sets, and providing a linkage between robust classification and
the standard regularization scheme of SVMs. In particular, our contributions include the following:

e We solve the robust SVM formulation for a class of non-box-type uncertainty sets. This per-
mits finer control of the adversarial disturbance, restricting it to satisfy aggregate constraints
across data points, therefore reducing the possibility of highly correlated disturbance.

e We show that the standard regularized SVM classifier is a special case of our robust clas-
sification, thus explicitly relating robustness and regularization. This provides an alternative
explanation to the success of regularization, and also suggests new physically motivated ways
to construct regularization terms.

e We relate our robust formulation to several probabilistic formulations. We consider a chance-
constrained classifier (that is, a classifier with probabilistic constraints on misclassification)
and show that our robust formulation can approximate it far less conservatively than previous
robust formulations could possibly do. We also consider a Bayesian setup, and show that this
can be used to provide a principled means of selecting the regularization coefficient without
cross-validation.

e We show that the robustness perspective, stemming from a non-i.i.d. analysis, can be useful
in the standard learning (i.i.d.) setup, by using it to prove consistency for standard SVM
classification, without using VC-dimension or stability arguments. This result implies that
generalization ability is a direct result of robustness to local disturbances; it therefore suggests
a new justification for good performance, and consequently allows us to construct learning
algorithms that generalize well by robustifying non-consistent algorithms.
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ROBUSTNESS AND REGULARIZATION OF SVMS

1.1 Robustness and Regularization

We comment here on the explicit equivalence of robustness and regularization. We briefly explain
how this observation is different from previous work and why it is interesting. Previous works on
robust classification (e.g., Lanckriet et al., 2003; Bhattacharyya et al., 2004a,b; Shivaswamy et al.,
2006; Trafalis and Gilbert, 2007) consider robustifying regularized classifications.! That is, they
propose modifications to standard regularized classifications so that the new formulations are robust
to input uncertainty. Furthermore, box-type uncertainty —a setup where the joint uncertainty is the
Cartesian product of uncertainty in each input (see Section 2 for detailed formulation)—is consid-
ered, which leads to penalty terms on each constraint of the resulting formulation. The objective
of these works was not to relate robustness and the standard regularization term that appears in the
objective function. Indeed, research on classifier regularization mainly considers its effect on bound-
ing the complexity of the function class (e.g., Smola et al., 1998; Evgeniou et al., 2000; Bartlett and
Mendelson, 2002; Koltchinskii and Panchenko, 2002; Bartlett et al., 2005). Thus, although certain
equivalence relationships between robustness and regularization have been established for problems
other than classification (El Ghaoui and Lebret, 1997; Ben-Tal and Nemirovski, 1999; Bishop, 1995;
Xu et al., 2009), the explicit equivalence between robustness and regularization in the SVM setup
is novel.

The connection of robustness and regularization in the SVM context is important for the follow-
ing reasons. First, it gives an alternative and potentially powerful explanation of the generalization
ability of the regularization term. In the standard machine learning view, the regularization term
bounds the complexity of the class of classifiers. The robust view of regularization regards the test-
ing samples as a perturbed copy of the training samples. Therefore, when the total perturbation is
given or bounded, the regularization term bounds the gap between the classification errors of the
SVM on these two sets of samples. In contrast to the standard PAC approach, this bound depends
neither on how rich the class of candidate classifiers is, nor on an assumption that all samples are
picked in an i.i.d. manner.

Second, this connection suggests novel approaches to designing good classification algorithms,
in particular, designing the regularization term. In the PAC structural-risk minimization approach,
regularization is chosen to minimize a bound on the generalization error based on the training error
and a complexity term. This approach is known to often be too pessimistic (Kearns et al., 1997),
especially for problems with more structure. The robust approach offers another avenue. Since
both noise and robustness are physical processes, a close investigation of the application and noise
characteristics at hand, can provide insights into how to properly robustify, and therefore regularize
the classifier. For example, it is known that normalizing the samples so that the variance among all
features is roughly the same (a process commonly used to eliminate the scaling freedom of individ-
ual features) often leads to good generalization performance. From the robustness perspective, this
has the interpretation that the noise is anisotropic (ellipsoidal) rather than spherical, and hence an
appropriate robustification must be designed to fit this anisotropy.

We also show that using the robust optimization viewpoint, we obtain some probabilistic results
that go beyond the PAC setup. In Section 3 we bound the probability that a noisy training sample is
correctly labeled. Such a bound considers the behavior of corrupted samples and is hence different
from the known PAC bounds. This is helpful when the training samples and the testing samples are

1. Lanckriet et al. (2003) is perhaps the only exception, where a regularization term is added to the covariance estimation
rather than to the objective function.
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drawn from different distributions, or some adversary manipulates the samples to prevent them from
being correctly labeled (e.g., spam senders change their patterns from time to time to avoid being
labeled and filtered). Finally, this connection of robustification and regularization also provides us
with new proof techniques as well (see Section 5).

We need to point out that there are several different definitions of robustness in the literature. In
this paper, as well as the aforementioned robust classification papers, robustness is mainly under-
stood from a Robust Optimization (RO) perspective, where a min-max optimization is performed
over all possible disturbances. An alternative interpretation of robustness stems from the rich lit-
erature on robust statistics (e.g., Huber, 1981; Hampel et al., 1986; Rousseeuw and Leroy, 1987;
Maronna et al., 2006), which studies how an estimator or algorithm behaves under a small pertur-
bation of the statistics model. For example, the influence function approach, proposed in Hampel
(1974) and Hampel et al. (1986), measures the impact of an infinitesimal amount of contamination
of the original distribution on the quantity of interest. Based on this notion of robustness, Christ-
mann and Steinwart (2004) showed that many kernel classification algorithms, including SVM, are
robust in the sense of having a finite Influence Function. A similar result for regression algorithms
is shown in Christmann and Steinwart (2007) for smooth loss functions, and in Christmann and Van
Messem (2008) for non-smooth loss functions where a relaxed version of the Influence Function is
applied. In the machine learning literature, another widely used notion closely related to robustness
is the stability, where an algorithm is required to be robust (in the sense that the output function does
not change significantly) under a specific perturbation: deleting one sample from the training set. It
is now well known that a stable algorithm such as SVM has desirable generalization properties, and
is statistically consistent under mild technical conditions; see for example Bousquet and Elisseeff
(2002), Kutin and Niyogi (2002), Poggio et al. (2004) and Mukherjee et al. (2006) for details. One
main difference between RO and other robustness notions is that the former is constructive rather
than analytical. That is, in contrast to robust statistics or the stability approach that measures the
robustness of a given algorithm, RO can robustify an algorithm: it converts a given algorithm to
a robust one. For example, as we show in this paper, the RO version of a naive empirical-error
minimization is the well known SVM. As a constructive process, the RO approach also leads to
additional flexibility in algorithm design, especially when the nature of the perturbation is known
or can be well estimated.

1.2 Structure of the Paper

This paper is organized as follows. In Section 2 we investigate the correlated disturbance case, and
show the equivalence between the robust classification and the regularization process. We develop
the connections to probabilistic formulations in Section 3. The kernelized version is investigated
in Section 4. Finally, in Section 5, we consider the standard statistical learning setup where all
samples are i.i.d. draws and provide a novel proof of consistency of SVM based on robustness
analysis. The analysis shows that duplicate copies of iid draws tend to be “similar” to each other
in the sense that with high probability the total difference is small, and hence robustification that
aims to control performance loss for small perturbations can help mitigate overfitting even though
no explicit perturbation exists.
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1.3 Notation

Capital letters are used to denote matrices, and boldface letters are used to denote column vectors.
For a given norm || - ||, we use || - |* to denote its dual norm, that is, ||z/|* £ sup{z"x|||x|| < 1}. For
a vector x and a positive semi-definite matrix C of the same dimension, ||x||¢ denotes vVxTCx. We
use O to denote disturbance affecting the samples. We use superscript r to denote the true value
for an uncertain variable, so that §; is the true (but unknown) noise of the i sample. The set of
non-negative scalars is denoted by R™. The set of integers from 1 to 7 is denoted by [1 : n].

2. Robust Classification and Regularization

We consider the standard binary classification problem, where we are given a finite number of
training samples {x;,y;}7, C R" x {—1,+1}, and must find a linear classifier, specified by the
function 2% (x) = sgn((w, X) +b). For the standard regularized classifier, the parameters (w,b) are
obtained by solving the following convex optimization problem:

where r(w,b) is a regularization term. This is equivalent to

m
r‘rlel? {r(w, b) + l; max [1 —y;((w,x;) +b),0] } :
Previous robust classification work (Shivaswamy et al., 2006; Bhattacharyya et al., 2004a,b; Bhat-
tacharyya, 2004; Trafalis and Gilbert, 2007) considers the classification problem where the input
are subject to (unknown) disturbances & = (3y,...,9,,) and essentially solves the following min-
max problem:

m
min max {r(w7 b)+ 2 max [1 —y;((w, x; —8;) +b),0] } : (1)
wb € Abox =1

for a box-type uncertainty set AG,. That is, let A; denote the projection of Af,, onto the §; com-
ponent, then AL, = Aj X --- X A}, (note that A; need not be a “box”). Effectively, this allows
simultaneous worst-case disturbances across many samples, and leads to overly conservative solu-
tions. The goal of this paper is to obtain a robust formulation where the disturbances {9;} may be
meaningfully taken to be correlated, that is, to solve for a non-box-type A:

min max {r(w,b) + ﬁ max [1 —y;((w,x; — &) +b),0] } . ()
Wb Fen =1

We briefly explain here the four reasons that motivate this “robust to perturbation” setup and in par-
ticular the min-max form of (1) and (2). First, it can explicitly incorporate prior problem knowledge
of local invariance (e.g., Teo et al., 2008). For example, in vision tasks, a desirable classifier should
provide a consistent answer if an input image slightly changes. Second, there are situations where
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some adversarial opponents (e.g., spam senders) will manipulate the testing samples to avoid being
correctly classified, and the robustness toward such manipulation should be taken into consideration
in the training process (e.g., Globerson and Roweis, 2006). Or alternatively, the training samples
and the testing samples can be obtained from different processes and hence the standard i.i.d. as-
sumption is violated (e.g., Bi and Zhang, 2004). For example in real-time applications, the newly
generated samples are often less accurate due to time constraints. Finally, formulations based on
chance-constraints (e.g., Bhattacharyya et al., 2004b; Shivaswamy et al., 2006) are mathematically
equivalent to such a min-max formulation.
We define explicitly the correlated disturbance (or uncertainty) which we study below.

Definition 1 A set Ay C R” is called an Atomic Uncertainty Set if

(1) 0¢c Ap;

(II)  For any wo € R" : sup [wg 8] = sup [—wg &'] < +.
NS d'eng

We use “sup” here because the maximal value is not necessary attained since Ay may not be a
closed set. The second condition of Atomic Uncertainty set basically says that the uncertainty set is
bounded and symmetric. In particular, all norm balls and ellipsoids centered at the origin are atomic
uncertainty sets, while an arbitrary polytope might not be an atomic uncertainty set.

Definition 2 Let Ap be an atomic uncertainty set. A set N. C R"*™ is called a Sublinear Aggregated
Uncertainty Set of N\p, if
N CNCAT,

where: N~ & U?\&*; N~ 2 {81, ,8m) |8 € AG; Sz = 0}.
t=1

NJré{(O(]é],-.-,O(mam)|201i:1; OLiZO, 6,‘6%71':1’...77”}'
=1

The Sublinear Aggregated Uncertainty definition models the case where the disturbances on each
sample are treated identically, but their aggregate behavior across multiple samples is controlled.
Some interesting examples include

(1) {(61,---,6m>\§uaius(s};
(2) {1+, 0m) Tt e [1:m]; ||&]] <c; 8 =0,Vi#t};

3) {(al,--~,6m>|§ NEDE

All these examples have the same atomic uncertainty set Ay = {6! |8]| < c}. Figure 1 provides an
illustration of a sublinear aggregated uncertainty set for n = 1 and m = 2, that is, the training set
consists of two univariate samples.

The following theorem is the main result of this section, which reveals that standard norm reg-
ularized SVM is the solution of a (non-regularized) robust optimization. It is a special case of
Proposition 4 by taking Ap as the dual-norm ball {|||8|* < ¢} for an arbitrary norm || - || and
r(w,b) =0.
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Figure 1: Illustration of a Sublinear Aggregated Uncertainty Set A/.

Theorem 3 Let T = {(61, Q) S 0] < c}. Suppose that the training sample {X;,y;}!",

are non-separable. Then the following two optimization problems on (wW,b) are equivalent’

m

min : (617?}1,2?)6‘2:21 max |1 —y;((w,x; —8;) +b),0],

m 3)
min: c||w| + E max [1 — y;((w, x;) +b),0].
=1

Proposition 4 Assume {x;,y;}"", are non-separable, r(-) : R""! — R is an arbitrary function, N\
is a Sublinear Aggregated Uncertainty set with corresponding atomic uncertainty set Ny. Then the
following min-max problem

m

min  sup r(w,b)+ Y max |1 —y;({w,x; — ;) +5b),0 4
TP 30 L1000+ e[t 0,0} @

is equivalent to the following optimization problem on w,b,&:

min: r(w,b)+ sup (w' )+ 2 &
SeN) i=1

st.: E>1—[yi((w,x;)+b)], i=1,....m;
£ >0, i=1,....m.

&)

Furthermore, the minimization of Problem (5) is attainable when r(-,-) is lower semi-continuous.

Proof Define:

v(w,b) & sup(w'd)+ i max |1 —y;({(w,x;) +b),0].
deN) =1

2. The optimization equivalence for the linear case was observed independently by Bertsimas and Fertis (2008).
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Recall that AL~ C A\’ C Nt by definition. Hence, fixing any (W,b) € R"*!, the following inequalities
hold:

sup Emax [1—yi((W,x; — &) +b), 0]
(O1, dm) e~ &
< sup Y max [1—yi((W,x;—8;) +b), 0]
(O1,+ dm)eN 1

< sup Em