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Abstract

We consider regularized support vector machines (SVMs) and show that they are precisely equiva-
lent to a new robust optimization formulation. We show that this equivalence of robust optimization
and regularization has implications for both algorithms, and analysis. In terms of algorithms, the
equivalence suggests more general SVM-like algorithms for classification that explicitly build in
protection to noise, and at the same time control overfitting. On the analysis front, the equiva-
lence of robustness and regularization provides a robust optimization interpretation for the success
of regularized SVMs. We use this new robustness interpretation of SVMs to give a new proof of
consistency of (kernelized) SVMs, thus establishing robustness as the reason regularized SVMs
generalize well.

Keywords: robustness, regularization, generalization, kernel, support vector machine

1. Introduction

Support Vector Machines (SVMs for short) originated in Boser et al. (1992) and can be traced back
to as early as Vapnik and Lerner (1963) and Vapnik and Chervonenkis (1974). They continue to be
one of the most successful algorithms for classification. SVMs address the classification problem by
finding the hyperplane in the feature space that achieves maximum sample margin when the training
samples are separable, which leads to minimizing the norm of the classifier. When the samples are
not separable, a penalty term that approximates the total training error is considered (Bennett and
Mangasarian, 1992; Cortes and Vapnik, 1995). It is well known that minimizing the training error
itself can lead to poor classification performance for new unlabeled data; that is, such an approach

*. Also at the Department of Electrical Engineering, Technion, Israel.

(©2009 Huan Xu, Constantine Caramanis and Shie Mannor.
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may have poor generalization error because of, essentially, overfitting (Vapnik and Chervonenkis,
1991). A variety of modifications have been proposed to handle this, one of the most popular
methods being that of minimizing a combination of the training-error and a regularization term. The
latter is typically chosen as a norm of the classifier. The resulting regularized classifier performs
better on new data. This phenomenon is often interpreted from a statistical learning theory view:
the regularization term restricts the complexity of the classifier, hence the deviation of the testing
error and the training error is controlled (see Smola et al., 1998; Evgeniou et al., 2000; Bartlett and
Mendelson, 2002; Koltchinskii and Panchenko, 2002; Bartlett et al., 2005, and references therein).

In this paper we consider a different setup, assuming that the training data are generated by
the true underlying distribution, but some non-i.i.d. (potentially adversarial) disturbance is then
added to the samples we observe. We follow a robust optimization (see El Ghaoui and Lebret,
1997; Ben-Tal and Nemirovski, 1999; Bertsimas and Sim, 2004, and references therein) approach,
that is, minimizing the worst possible empirical error under such disturbances. The use of robust
optimization in classification is not new (e.g., Shivaswamy et al., 2006; Bhattacharyya et al., 2004b;
Lanckriet et al., 2003), in which box-type uncertainty sets were considered. Moreover, there has
not been an explicit connection to the regularized classifier, although at a high-level it is known that
regularization and robust optimization are related (e.g., El Ghaoui and Lebret, 1997; Anthony and
Bartlett, 1999). The main contribution in this paper is solving the robust classification problem for
a class of non-box-typed uncertainty sets, and providing a linkage between robust classification and
the standard regularization scheme of SVMs. In particular, our contributions include the following:

e We solve the robust SVM formulation for a class of non-box-type uncertainty sets. This per-
mits finer control of the adversarial disturbance, restricting it to satisfy aggregate constraints
across data points, therefore reducing the possibility of highly correlated disturbance.

e We show that the standard regularized SVM classifier is a special case of our robust clas-
sification, thus explicitly relating robustness and regularization. This provides an alternative
explanation to the success of regularization, and also suggests new physically motivated ways
to construct regularization terms.

e We relate our robust formulation to several probabilistic formulations. We consider a chance-
constrained classifier (that is, a classifier with probabilistic constraints on misclassification)
and show that our robust formulation can approximate it far less conservatively than previous
robust formulations could possibly do. We also consider a Bayesian setup, and show that this
can be used to provide a principled means of selecting the regularization coefficient without
cross-validation.

e We show that the robustness perspective, stemming from a non-i.i.d. analysis, can be useful
in the standard learning (i.i.d.) setup, by using it to prove consistency for standard SVM
classification, without using VC-dimension or stability arguments. This result implies that
generalization ability is a direct result of robustness to local disturbances; it therefore suggests
a new justification for good performance, and consequently allows us to construct learning
algorithms that generalize well by robustifying non-consistent algorithms.
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ROBUSTNESS AND REGULARIZATION OF SVMS

1.1 Robustness and Regularization

We comment here on the explicit equivalence of robustness and regularization. We briefly explain
how this observation is different from previous work and why it is interesting. Previous works on
robust classification (e.g., Lanckriet et al., 2003; Bhattacharyya et al., 2004a,b; Shivaswamy et al.,
2006; Trafalis and Gilbert, 2007) consider robustifying regularized classifications.! That is, they
propose modifications to standard regularized classifications so that the new formulations are robust
to input uncertainty. Furthermore, box-type uncertainty —a setup where the joint uncertainty is the
Cartesian product of uncertainty in each input (see Section 2 for detailed formulation)—is consid-
ered, which leads to penalty terms on each constraint of the resulting formulation. The objective
of these works was not to relate robustness and the standard regularization term that appears in the
objective function. Indeed, research on classifier regularization mainly considers its effect on bound-
ing the complexity of the function class (e.g., Smola et al., 1998; Evgeniou et al., 2000; Bartlett and
Mendelson, 2002; Koltchinskii and Panchenko, 2002; Bartlett et al., 2005). Thus, although certain
equivalence relationships between robustness and regularization have been established for problems
other than classification (El Ghaoui and Lebret, 1997; Ben-Tal and Nemirovski, 1999; Bishop, 1995;
Xu et al., 2009), the explicit equivalence between robustness and regularization in the SVM setup
is novel.

The connection of robustness and regularization in the SVM context is important for the follow-
ing reasons. First, it gives an alternative and potentially powerful explanation of the generalization
ability of the regularization term. In the standard machine learning view, the regularization term
bounds the complexity of the class of classifiers. The robust view of regularization regards the test-
ing samples as a perturbed copy of the training samples. Therefore, when the total perturbation is
given or bounded, the regularization term bounds the gap between the classification errors of the
SVM on these two sets of samples. In contrast to the standard PAC approach, this bound depends
neither on how rich the class of candidate classifiers is, nor on an assumption that all samples are
picked in an i.i.d. manner.

Second, this connection suggests novel approaches to designing good classification algorithms,
in particular, designing the regularization term. In the PAC structural-risk minimization approach,
regularization is chosen to minimize a bound on the generalization error based on the training error
and a complexity term. This approach is known to often be too pessimistic (Kearns et al., 1997),
especially for problems with more structure. The robust approach offers another avenue. Since
both noise and robustness are physical processes, a close investigation of the application and noise
characteristics at hand, can provide insights into how to properly robustify, and therefore regularize
the classifier. For example, it is known that normalizing the samples so that the variance among all
features is roughly the same (a process commonly used to eliminate the scaling freedom of individ-
ual features) often leads to good generalization performance. From the robustness perspective, this
has the interpretation that the noise is anisotropic (ellipsoidal) rather than spherical, and hence an
appropriate robustification must be designed to fit this anisotropy.

We also show that using the robust optimization viewpoint, we obtain some probabilistic results
that go beyond the PAC setup. In Section 3 we bound the probability that a noisy training sample is
correctly labeled. Such a bound considers the behavior of corrupted samples and is hence different
from the known PAC bounds. This is helpful when the training samples and the testing samples are

1. Lanckriet et al. (2003) is perhaps the only exception, where a regularization term is added to the covariance estimation
rather than to the objective function.

1487



XU, CARAMANIS AND MANNOR

drawn from different distributions, or some adversary manipulates the samples to prevent them from
being correctly labeled (e.g., spam senders change their patterns from time to time to avoid being
labeled and filtered). Finally, this connection of robustification and regularization also provides us
with new proof techniques as well (see Section 5).

We need to point out that there are several different definitions of robustness in the literature. In
this paper, as well as the aforementioned robust classification papers, robustness is mainly under-
stood from a Robust Optimization (RO) perspective, where a min-max optimization is performed
over all possible disturbances. An alternative interpretation of robustness stems from the rich lit-
erature on robust statistics (e.g., Huber, 1981; Hampel et al., 1986; Rousseeuw and Leroy, 1987;
Maronna et al., 2006), which studies how an estimator or algorithm behaves under a small pertur-
bation of the statistics model. For example, the influence function approach, proposed in Hampel
(1974) and Hampel et al. (1986), measures the impact of an infinitesimal amount of contamination
of the original distribution on the quantity of interest. Based on this notion of robustness, Christ-
mann and Steinwart (2004) showed that many kernel classification algorithms, including SVM, are
robust in the sense of having a finite Influence Function. A similar result for regression algorithms
is shown in Christmann and Steinwart (2007) for smooth loss functions, and in Christmann and Van
Messem (2008) for non-smooth loss functions where a relaxed version of the Influence Function is
applied. In the machine learning literature, another widely used notion closely related to robustness
is the stability, where an algorithm is required to be robust (in the sense that the output function does
not change significantly) under a specific perturbation: deleting one sample from the training set. It
is now well known that a stable algorithm such as SVM has desirable generalization properties, and
is statistically consistent under mild technical conditions; see for example Bousquet and Elisseeff
(2002), Kutin and Niyogi (2002), Poggio et al. (2004) and Mukherjee et al. (2006) for details. One
main difference between RO and other robustness notions is that the former is constructive rather
than analytical. That is, in contrast to robust statistics or the stability approach that measures the
robustness of a given algorithm, RO can robustify an algorithm: it converts a given algorithm to
a robust one. For example, as we show in this paper, the RO version of a naive empirical-error
minimization is the well known SVM. As a constructive process, the RO approach also leads to
additional flexibility in algorithm design, especially when the nature of the perturbation is known
or can be well estimated.

1.2 Structure of the Paper

This paper is organized as follows. In Section 2 we investigate the correlated disturbance case, and
show the equivalence between the robust classification and the regularization process. We develop
the connections to probabilistic formulations in Section 3. The kernelized version is investigated
in Section 4. Finally, in Section 5, we consider the standard statistical learning setup where all
samples are i.i.d. draws and provide a novel proof of consistency of SVM based on robustness
analysis. The analysis shows that duplicate copies of iid draws tend to be “similar” to each other
in the sense that with high probability the total difference is small, and hence robustification that
aims to control performance loss for small perturbations can help mitigate overfitting even though
no explicit perturbation exists.
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1.3 Notation

Capital letters are used to denote matrices, and boldface letters are used to denote column vectors.
For a given norm || - ||, we use || - |* to denote its dual norm, that is, ||z/|* £ sup{z"x|||x|| < 1}. For
a vector x and a positive semi-definite matrix C of the same dimension, ||x||¢ denotes vVxTCx. We
use O to denote disturbance affecting the samples. We use superscript r to denote the true value
for an uncertain variable, so that §; is the true (but unknown) noise of the i sample. The set of
non-negative scalars is denoted by R™. The set of integers from 1 to 7 is denoted by [1 : n].

2. Robust Classification and Regularization

We consider the standard binary classification problem, where we are given a finite number of
training samples {x;,y;}7, C R" x {—1,+1}, and must find a linear classifier, specified by the
function 2% (x) = sgn((w, X) +b). For the standard regularized classifier, the parameters (w,b) are
obtained by solving the following convex optimization problem:

where r(w,b) is a regularization term. This is equivalent to

m
r‘rlel? {r(w, b) + l; max [1 —y;((w,x;) +b),0] } :
Previous robust classification work (Shivaswamy et al., 2006; Bhattacharyya et al., 2004a,b; Bhat-
tacharyya, 2004; Trafalis and Gilbert, 2007) considers the classification problem where the input
are subject to (unknown) disturbances & = (3y,...,9,,) and essentially solves the following min-
max problem:

m
min max {r(w7 b)+ 2 max [1 —y;((w, x; —8;) +b),0] } : (1)
wb € Abox =1

for a box-type uncertainty set AG,. That is, let A; denote the projection of Af,, onto the §; com-
ponent, then AL, = Aj X --- X A}, (note that A; need not be a “box”). Effectively, this allows
simultaneous worst-case disturbances across many samples, and leads to overly conservative solu-
tions. The goal of this paper is to obtain a robust formulation where the disturbances {9;} may be
meaningfully taken to be correlated, that is, to solve for a non-box-type A:

min max {r(w,b) + ﬁ max [1 —y;((w,x; — &) +b),0] } . ()
Wb Fen =1

We briefly explain here the four reasons that motivate this “robust to perturbation” setup and in par-
ticular the min-max form of (1) and (2). First, it can explicitly incorporate prior problem knowledge
of local invariance (e.g., Teo et al., 2008). For example, in vision tasks, a desirable classifier should
provide a consistent answer if an input image slightly changes. Second, there are situations where
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some adversarial opponents (e.g., spam senders) will manipulate the testing samples to avoid being
correctly classified, and the robustness toward such manipulation should be taken into consideration
in the training process (e.g., Globerson and Roweis, 2006). Or alternatively, the training samples
and the testing samples can be obtained from different processes and hence the standard i.i.d. as-
sumption is violated (e.g., Bi and Zhang, 2004). For example in real-time applications, the newly
generated samples are often less accurate due to time constraints. Finally, formulations based on
chance-constraints (e.g., Bhattacharyya et al., 2004b; Shivaswamy et al., 2006) are mathematically
equivalent to such a min-max formulation.
We define explicitly the correlated disturbance (or uncertainty) which we study below.

Definition 1 A set Ay C R” is called an Atomic Uncertainty Set if

(1) 0¢c Ap;

(II)  For any wo € R" : sup [wg 8] = sup [—wg &'] < +.
NS d'eng

We use “sup” here because the maximal value is not necessary attained since Ay may not be a
closed set. The second condition of Atomic Uncertainty set basically says that the uncertainty set is
bounded and symmetric. In particular, all norm balls and ellipsoids centered at the origin are atomic
uncertainty sets, while an arbitrary polytope might not be an atomic uncertainty set.

Definition 2 Let Ap be an atomic uncertainty set. A set N. C R"*™ is called a Sublinear Aggregated
Uncertainty Set of N\p, if
N CNCAT,

where: N~ & U?\&*; N~ 2 {81, ,8m) |8 € AG; Sz = 0}.
t=1

NJré{(O(]é],-.-,O(mam)|201i:1; OLiZO, 6,‘6%71':1’...77”}'
=1

The Sublinear Aggregated Uncertainty definition models the case where the disturbances on each
sample are treated identically, but their aggregate behavior across multiple samples is controlled.
Some interesting examples include

(1) {(61,---,6m>\§uaius(s};
(2) {1+, 0m) Tt e [1:m]; ||&]] <c; 8 =0,Vi#t};

3) {(al,--~,6m>|§ NEDE

All these examples have the same atomic uncertainty set Ay = {6! |8]| < c}. Figure 1 provides an
illustration of a sublinear aggregated uncertainty set for n = 1 and m = 2, that is, the training set
consists of two univariate samples.

The following theorem is the main result of this section, which reveals that standard norm reg-
ularized SVM is the solution of a (non-regularized) robust optimization. It is a special case of
Proposition 4 by taking Ap as the dual-norm ball {|||8|* < ¢} for an arbitrary norm || - || and
r(w,b) =0.
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Figure 1: Illustration of a Sublinear Aggregated Uncertainty Set A/.

Theorem 3 Let T = {(61, Q) S 0] < c}. Suppose that the training sample {X;,y;}!",

are non-separable. Then the following two optimization problems on (wW,b) are equivalent’

m

min : (617?}1,2?)6‘2:21 max |1 —y;((w,x; —8;) +b),0],

m 3)
min: c||w| + E max [1 — y;((w, x;) +b),0].
=1

Proposition 4 Assume {x;,y;}"", are non-separable, r(-) : R""! — R is an arbitrary function, N\
is a Sublinear Aggregated Uncertainty set with corresponding atomic uncertainty set Ny. Then the
following min-max problem

m

min  sup r(w,b)+ Y max |1 —y;({w,x; — ;) +5b),0 4
TP 30 L1000+ e[t 0,0} @

is equivalent to the following optimization problem on w,b,&:

min: r(w,b)+ sup (w' )+ 2 &
SeN) i=1

st.: E>1—[yi((w,x;)+b)], i=1,....m;
£ >0, i=1,....m.

&)

Furthermore, the minimization of Problem (5) is attainable when r(-,-) is lower semi-continuous.

Proof Define:

v(w,b) & sup(w'd)+ i max |1 —y;({(w,x;) +b),0].
deN) =1

2. The optimization equivalence for the linear case was observed independently by Bertsimas and Fertis (2008).
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Recall that AL~ C A\’ C Nt by definition. Hence, fixing any (W,b) € R"*!, the following inequalities
hold:

sup Emax [1—yi((W,x; — &) +b), 0]
(O1, dm) e~ &
< sup Y max [1—yi((W,x;—8;) +b), 0]
(O1,+ dm)eN 1

< sup Emax[1—y,-(<\7v,xl~—6,-)+13),0].
(81, dm)ENT =1

To prove the theorem, we first show that v(W, b) is no larger than the leftmost expression and then
show v(W, D) is no smaller than the rightmost expression.

Step 1: We prove that

v(w,b) < sup N max [1—yi((W,x — &) +b), 0]. (6)
(81, ,0m) EN I=1

Since the samples {x;, y;}/", are not separable, there exists ¢ € [1 : m] such that

Hence,
m ~
sup Emax [1—yi((W,x; — &) +b),0]
(01, ,0m)EN, =1
= Zmax [1—i((W,x;) +b), 0] + sup max [1 —y,((W,x, — &) +b),0]
i#t €N
= ;max [1 _yi(<‘,’\vaxi> +2)7 0] + max [1 —yz(<VAV7Xt> +i]) + sup (yl‘,’\VTét)a 0]
i#t €N
= 3 o 100+ 5),0] a1 (080-+5),] = s (575,
i#t N
= sup (W'9)+ E max [1 —y;((W,x;) +5),0] = v(W,b).
deNy =1

The third equality holds because of Inequality (7) and sups cqy (y:W'8;) being non-negative (recall
0 € Ap). Since A;” C A, Inequality (6) follows.

Step 2: Next we prove that

ap Sl w80 +5,.0] <v(0.) o
(517"' 76»1)€N+ =1
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Notice that by the definition of A’ we have
mn ~
sup Emax [1—yi((W,x; —8;) +b),0]
(81, ,0m)ENT =1

m
= sup Y max [1—yi({(#,x; —c;0;) +b), 0] 9)
S cx,-:l;(x,-ZO;«S,-E%izl
m
= sup Emax[ sup (1 —yi((W,x; —;0;) +b)),0].
i ai=1;0;20;/=] Sieng

Now, for any i € [1 : m], the following holds,

max [ sup (1 —yi({(W, x; — Gi8i> ‘HA’))v O]
8,‘6%
—=max [1 —yi({(W,x;) +B) + oy sup (WTSi)a 0]
5,-6%
<max [1 - y;((W,x;) +5), 0] +a; sup (w'8).
S,E%

Therefore, Equation (9) is upper bounded by

m m
2 max [1 —y;((W,x;) +5),0] +  sup a; sup (W'o;)
f| Y=l =021 §eng

= sup (W'd)+ E max [1 —y;((W,x;) +b),0] = v(W,b),
deNg =1

hence Inequality (8) holds.
Step 3: Combining the two steps and adding r(w,b) on both sides leads to: V(w,b) € R"*!,

sup E max [1 — y;((w,X; —8;) +b),0]| +r(w,b) = v(W,b) +r(w,b).
(01,,0m)ENI=1

Taking the infimum on both sides establishes the equivalence of Problem (4) and Problem (5).
Observe that supscqg w ' 8 is a supremum over a class of affine functions, and hence is lower semi-
continuous. Therefore v(-,-) is also lower semi-continuous. Thus the minimum can be achieved for
Problem (5), and Problem (4) by equivalence, when r(-) is lower semi-continuous. [ ]

Before concluding this section we briefly comment on the meaning of Theorem 3 and Propo-
sition 4. On one hand, they explain the widely known fact that the regularized classifier tends
to be more robust (see for example, Christmann and Steinwart, 2004, 2007; Christmann and Van
Messem, 2008; Trafalis and Gilbert, 2007). On the other hand, this observation also suggests that
the appropriate way to regularize should come from a disturbance-robustness perspective. The
above equivalence implies that standard regularization essentially assumes that the disturbance is
spherical; if this is not true, robustness may yield a better regularization-like algorithm. To find a
more effective regularization term, a closer investigation of the data variation is desirable, partic-
ularly if some a-priori knowledge of the data-variation is known. For example, consider an image
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classification problem. Suppose it is known that these pictures are taken under significantly varying
background light. Therefore, for a given sample (picture), the perturbation on each feature (pixel) is
large. However, the perturbations across different features are almost identical since they are under
the same background light. This can be represented by the following Atomic uncertainty set

1 n
26 = {3lI3l <1, 13- (5 Y a2 < ea},
t=1

where ¢y < c;. By Proposition 4, this leads to the following regularization term
f(w) = max:w'd
s.t.[[8]2 < ¢
(= 2118 < o
Notice this is a second order cone programming which has a dual form
min : ¢ivy +cava
s.t.uy+ (I — %IIT)uz =w
lilla <wvi, i=1,2.

Substituting it to (5), the resulting classification problem is a second order cone program, which can
be efficiently solved (Boyd and Vandenberghe, 2004).

3. Probabilistic Interpretations

Although Problem (4) is formulated without any probabilistic assumptions, in this section, we
briefly explain two approaches to construct the uncertainty set and equivalently tune the regular-
ization parameter ¢ based on probabilistic information.

The first approach is to use Problem (4) to approximate an upper bound for a chance-constrained
classifier. Suppose the disturbance (8},---9),) follows a joint probability measure y. Then the
chance-constrained classifier is given by the following minimization problem given a confidence
level n € [0, 1],

min : )

w.b,l
n

S.t.: pt{Zmax[1—y,~(<w,xi—6f>+b),0} §l}21—n. (10)
1=1

The formulations in Shivaswamy et al. (2006), Lanckriet et al. (2003) and Bhattacharyya et al.
(2004a) assume uncorrelated noise and require all constraints to be satisfied with high probability
simultaneously. They find a vector [E;,---,E,]" where each &; is the -quantile of the hinge-loss
for sample x}. In contrast, our formulation above minimizes the m-quantile of the average (or
equivalently the sum of) empirical error. When controlling this average quantity is of more interest,
the box-type noise formulation will be overly conservative.

Problem (10) is generally intractable. However, we can approximate it as follows. Let

¢ 2 inf{alu( S8/ <o) > 1-m).
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Notice that ¢* is easily simulated given y. Then for any (w,b), with probability no less than 1 —m,
the following holds,

2max [1—yi((w,x; —8]) +b),0]

m
< 5 max ,; max [1 — y;((w, x; — ;) +b),0].
Thus (10) is upper bounded by (3) with ¢ = ¢*. This gives an additional probabilistic robustness
property of the standard regularized classifier. Notice that following a similar approach but with
the constraint-wise robust setup, that is, the box uncertainty set, would lead to considerably more
pessimistic approximations of the chance constraint.

The second approach considers a Bayesian setup. Suppose the total disturbance ¢ = 7 | ||87(*
follows a prior distribution p(-). This can model for example the case that the training sample set is
a mixture of several data sets where the disturbance magnitude of each set is known. Such a setup
leads to the following classifier which minimizes the Bayesian (robust) error:

rivl,il?: /{ErgachCi_lmax[l—yi(<W,Xi—6,-)+b),0}}dp(c). an

By Theorem 3, the Bayes classifier (11) is equivalent to

min ; /{CHWH —i—limax [1—yi((w,x;) +b),0] }dp(c),

which can be further simplified as

m
min c||wl| +l; max [1 —y;((w, x;) +b),0],
where ¢ = [ cdp(c). This thus provides us a justifiable parameter tuning method different from cross
validation: simply using the expected value of ¢". We note that it is the equivalence of Theorem 3
that makes this possible, since it is difficult to imagine a setting where one would have a prior on
regularization coefficients.

4. Kernelization

The previous results can be easily generalized to the kernelized setting, which we discuss in detail
in this section. In particular, similar to the linear classification case, we give a new interpretation of
the standard kernelized SVM as the min-max empirical hinge-loss solution, where the disturbance
is assumed to lie in the feature space. We then relate this to the (more intuitively appealing) setup
where the disturbance lies in the sample space. We use this relationship in Section 5 to prove a
consistency result for kernelized SVMs.

The kernelized SVM formulation considers a linear classifier in the feature space 4, a Hilbert
space containing the range of some feature mapping ®(-). The standard formulation is as follows,

min:  r(w,b)+ E Ei
=

w,b

st &> [1—yi((w,@(x))) +b)],
g >0.
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It has been proved in Scholkopf and Smola (2002) that if we take f((w,w)) for some increasing
function f(-) as the regularization term r(w, b), then the optimal solution has a representation w* =
S a;P(x;), which can further be solved without knowing explicitly the feature mapping, but by
evaluating a kernel function k(x,x’) = (®(x), ®(x')) only. This is the well-known “kernel trick”.

The definitions of Atomic Uncertainty Set and Sublinear Aggregated Uncertainty Set in the fea-
ture space are identical to Definition 1 and 2, with R” replaced by #. The following theorem is a
feature-space counterpart of Proposition 4. The proof follows from a similar argument to Proposi-
tion 4, that is, for any fixed (w,b) the worst-case empirical error equals the empirical error plus a
penalty term supscqp (<w, 6)) , and hence the details are omitted.

Theorem 5 Assume {®(X;),y;}!", are not linearly separable, r(-) : H x R — R is an arbitrary
function, N. C H™ is a Sublinear Aggregated Uncertainty set with corresponding atomic uncer-
tainty set No C H . Then the following min-max problem

W,b (51 [ ,6m)€N

min  sup {r(w,b)—i— imax [1—yi((w,@(x;) — &) +b), 0]}

is equivalent to

min: r(w,b)+ sup ((w,d))+ i &,
deN =1

stor E>1—yi((w, ®(x))+0b), i=1,---,m;
EiZOa lzlv7m

(12)

Furthermore, the minimization of Problem (12) is attainable when r(-,-) is lower semi-continuous.

For some widely used feature mappings (e.g., RKHS of a Gaussian kernel), {®(x;),y;}", are
always separable. In this case, the worst-case empirical error may not be equal to the empirical error
plus a penalty term supgcqy, ((w, 8)). However, it is easy to show that for any (w,b), the latter is an
upper bound of the former.

The next corollary is the feature-space counterpart of Theorem 3, where || - || 5 stands for the
RKHS norm, that is, for z € #, ||z|| ;s = \/ (2, z). Noticing that the RKHS norm is self dual, we
find that the proof is identical to that of Theorem 3, and hence omit it.

Corollary 6 Let T, = {(61, Q)| S 18] 4 < c}. If {®(x;),yi}!", are non-separable, then the
following two optimization problems on (w,b) are equivalent
m

in: l_i ,(I) i—él. +b’0,
o (&,Ta%errj{;max[ yi((w, ®(x;) — 8;) +b),0]

min : c||WHﬂ+§max [1—yi((w, ®(x;)) +b),0]. (13)
=1

Equation (13) is a variant form of the standard SVM that has a squared RKHS norm regularization
term, and it can be shown that the two formulations are equivalent up to changing of tradeoff param-
eter ¢, since both the empirical hinge-loss and the RKHS norm are convex. Therefore, Corollary 6
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essentially means that the standard kernelized SVM is implicitly a robust classifier (without regu-
larization) with disturbance in the feature-space, and the sum of the magnitude of the disturbance is
bounded.

Disturbance in the feature-space is less intuitive than disturbance in the sample space, and the
next lemma relates these two different notions.

Lemma 7 Suppose there exists X CR", p > 0, and a continuous non-decreasing function f : RT —
R satisfying f(0) = 0, such that

k(x, %) +k(x',x') = 2k(x,X') < f(|[x=X|)3), V%X €X,|x—x[2<p
then
[O&+3) — @) |lar < 1/FIB]E), VId]2<p, %X+ X.

In the appendix, we prove a result that provides a tighter relationship between disturbance in the
feature space and disturbance in the sample space, for RBF kernels.
Proof Expanding the RKHS norm yields

P& +8) —D(R) |5

=/ (DX +0)— (fi) D(X+90) — P(X))

=/ (®(X+9), 8)) + (P(R), @(])) —2(P(X+9), (X))
:\/k(§<+6,§(+6) k(X %) —2k(X+9, %)
g\/f(Hﬁ—Fa—ﬁH%): £1813),

where the inequality follows from the assumption. |

+
+

Lemma 7 essentially says that under certain conditions, robustness in the feature space is a stronger
requirement that robustness in the sample space. Therefore, a classifier that achieves robustness
in the feature space (the SVM for example) also achieves robustness in the sample space. Notice
that the condition of Lemma 7 is rather weak. In particular, it holds for any continuous (-, -) and
bounded X.

In the next section we consider a more foundational property of robustness in the sample space:
we show that a classifier that is robust in the sample space is asymptotically consistent. As a conse-
quence of this result for linear classifiers, the above results imply the consistency for a broad class
of kernelized SVMs.

5. Consistency of Regularization

In this section we explore a fundamental connection between learning and robustness, by using
robustness properties to re-prove the statistical consistency of the linear classifier, and then the
kernelized SVM. Indeed, our proof mirrors the consistency proof found in Steinwart (2005), with
the key difference that we replace metric entropy, VC-dimension, and stability conditions used there,
with a robustness condition.

Thus far we have considered the setup where the training-samples are corrupted by certain set-
inclusive disturbances. We now turn to the standard statistical learning setup, by assuming that all
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training samples and testing samples are generated i.i.d. according to a (unknown) probability P,
that is, there does not exist explicit disturbance.

Let X C R” be bounded, and suppose the training samples (x;,y;) , are generated i.i.d. accord-
ing to an unknown distribution P supported by X x {—1, +1}. The next theorem shows that our
robust classifier setup and equivalently regularized SVM asymptotically minimizes an upper-bound
of the expected classification error and hinge loss.

Theorem 8 Denote K = max,cx ||x||2. Then there exists a random sequence {y, .} such that:
1. ¥e >0, limy,—oYm,e = 0 almost surely, and the convergence is uniform in IP;

2. the following bounds on the Bayes loss and the hinge loss hold uniformly for all (w,b):

1 m
B xy) b (Lytsan(wx+5) < Ve €[ Wlla 4 — % max [1 = yi((w, x;) +b),0];
=1
E (xy)~p(max(1—y((w, x) +b),0)) <

1 m
Yme(L+K[IWllo+[b]) +ellwl2+ — 3 max [1 = yi((w, xi) +5),0].
=1

Proof We briefly explain the basic idea of the proof before going to the technical details. We con-
sider the testing sample set as a perturbed copy of the training sample set, and measure the magni-
tude of the perturbation. For testing samples that have “small” perturbations, c|w|,+
% S max [1 —yi({w, x;) + b),O] upper-bounds their total loss by Theorem 3. Therefore, we only
need to show that the ratio of testing samples having “large” perturbations diminishes to prove the
theorem.

Now we present the detailed proof. Given a ¢ > 0, we call a testing sample (x’,y’) and a training
sample (x,y) a sample pair if y =1y and ||x —x'||2 < c¢. We say a set of training samples and a set of
testing samples form / pairings if there exist / sample pairs with no data reused. Given m training
samples and m testing samples, we use M, . to denote the largest number of pairings. To prove this
theorem, we need to establish the following lemma.

Lemma 9 Givenac >0, M, ./m — 1 almost surely as m — +oo, uniformly w.r.t. P.

Proof We make a partition of X x {—1, +1} = UtT; | X¢ such that X; either has the form [a;, 01 +
c/y/n) x [ap,00+c/\/n)- - X [0, 0, +c/y/n) X {+1} or [0y, 01 +c¢//n) X [02,00+c/\/n) - X
[0, ot + ¢ /+/n) x {—1} (recall n is the dimension of X). That is, each partition is the Cartesian
product of a rectangular cell in X and a singleton in {—1, +1}. Notice that if a training sample and
a testing sample fall into X;, they can form a pairing.

Let N'" and N'¢ be the number of training samples and testing samples falling in the " set, re-

spectively. Thus, (N{",---,N7’) and (N{¢,-- -, Ni¥) are multinomially distributed random vectors fol-
lowing a same distribution. Notice that for a multinomially distributed random vector (Ny, - -, Ni)

with parameter m and (py,- - -, px), the following holds (Bretegnolle-Huber-Carol inequality, see for
example Proposition A6.6 of van der Vaart and Wellner, 2000). For any A > 0,

P(i N —mpy) > 2\/M) < Dexp(—212).
=1
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Hence we have

T.

S

o

[N = NEe| > 4/ < 27 exp(~222),

~

=1

1 & ' te T, —m\?
- T > ) < 2! ki
— P<m,21 }N, N; } _k) < 2% exp( g ),
—m\?
. IP’(Mm_,c/m <1- x) <2 exp(—). (14)

Observe that S| 27! exp(%}‘z) < 4+, hence by the Borel-Cantelli Lemma (see, for example,
Durrett, 2004), with probability one the event {M,, ./m < 1 —A} only occurs finitely often as m — .
That is, liminf,, M, ./m > 1 —\ almost surely. Since A can be arbitrarily close to zero, My, ./m — 1
almost surely. Observe that this convergence is uniform in IP, since 7, only depends on X . |

Now we proceed to prove the theorem. Given m training samples and m testing samples with M,
sample pairs, we notice that for these paired samples, both the total testing error and the total testing
hinge-loss is upper bounded by

1= i s A — O ,
<al,...,am‘)‘é%€gx...x%;ma’<[ yi((W, x; — &) +b),0]

m
<em|[wlla+ 3 max [1 - yi((w, %)) +b). 0],
=1

where Ay = {8|||8]| < c¢}. Hence the total classification error of the m testing samples can be upper
bounded by

m
(m— My, ) +cml|wl2+ E max [1 — y;((w, x;) +b), 0],
=1
and since

max (1 —y((w,x))) < max {1+ b+ /(3 (w,w) } = 14 [b] + KW,

xeX

the accumulated hinge-loss of the total m testing samples is upper bounded by
m
(m — Mye) (1+K|[Wl2+ [b]) +cml|wl]2 + Y max [1 - yi((w, x;) +b), 0].
=1
Therefore, the average testing error is upper bounded by
1 n
1 =My /m+clw|2+— 2 max [1 —yi({w,x;) +b), 0],
m =1
and the average hinge loss is upper bounded by

1 m
(1= e fm) (14 Kl + 1)+ clwilo+ - 3 max [1 = i, x3) +5),0].
=1
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Let Y. = 1 — M, ./m. The proof follows since M,,./m — 1 almost surely for any ¢ > 0. Notice
by Inequality (14) we have

P(vm,c > x) < exp (—mxz/s +(T.+ l)logZ), (15)

that is, the convergence is uniform in P.

We have shown that the average testing error is upper bounded. The final step is to show that
this implies that in fact the random variable given by the conditional expectation (conditioned on the
training sample) of the error is bounded almost surely as in the statement of the theorem. To make
things precise, consider a fixed m, and let w; € Q; and w, € €2, generate the m training samples
and m testing samples, respectively, and for shorthand let 7™ denote the random variable of the first
m training samples. Let us denote the probability measures for the training by p; and the testing
samples by p,. By independence, the joint measure is given by the product of these two. We rely
on this property in what follows. Now fix a A and a ¢ > 0. In our new notation, Equation (15) now
reads:

//l{Ym,c((Dlawz)Zk}dpz(wz)dpl(wl) = P(’Ym,c‘(whmZ)Z}\)
Q) JQy
< exp(—mk2/8+(7}+l)log2).

We now bound Py, (E, [Ym.c(w1,w2)|Z7™] > L), and then use Borel-Cantelli to show that this event
can happen only finitely often. We have:

Py, (sz [Ym-,c(ml ) ('02) ’ Tm] > )‘)
= [ [ el dpa(n) > 1} dpi (@)
Q @
< / 1{[ Ve (01,02)1(Yme(@1,02) <A)dp2(w2) +
Q @
/Q Yme (01, 02)1(ymc(wr,@2) > A)dps(w2)] > 27\}6191((01)
2
< / [ [ M0o1,00) < ) dpa(n) +
Q Q
[ 1mc(o1,02) > 2)dpa(@2)] = 20 dpi (01)
2
< [ P [ 10me(on00) > R dpa(on)] = 24 dpi(01)
Q @
- / 1 [ 10me(o1,02) > 1) dpa() > 1 }dpi ().
Q @
Here, the first equality holds because training and testing samples are independent, and hence the

joint measure is the product of p; and p,. The second inequality holds because y,, (w1, ;) < 1
everywhere. Further notice that

//I{Ym,c(wl,(ﬂz)Zk}dpz(wz)dpl(wl)
o Jo,

2/91 m{/gzl(ym(wl,mz) > ) dp(@) > 1} dpi ().
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Thus we have
P(Eos (o1, 02)) > 1) < P(Ye(01,02) = 1) /< exp (—mh2/8+ (T, + 1)log2) /1.

For any A and ¢, summing up the right hand side over m = 1 to = is finite, hence the theorem follows
from the Borel-Cantelli lemma. |

Remark 10 We note that M,,/m converges to 1 almost surely even if X is not bounded. Indeed, to
see this, fix ¢ > 0, and let X C X be a bounded set such that P(X’) > 1 — . Then, with probability
one,

#(unpaired samples inX") /m — 0,

by Lemma 9. In addition,
max (#(training samples not in X”), #(testing samples not in X')) /m — .
Notice that

M,, > m — #(unpaired samples in X”)
— max (#(training samples not in X"), #(testing samples not in X")).
Hence

lim M,,/m>1—¢,

m—oo

almost surely. Since ¢ is arbitrary, we have M,,/m — 1 almost surely.

Next, we prove an analog of Theorem 8 for the kernelized case, and then show that these two
imply statistical consistency of linear and kernelized SVMs. Again, let X C R” be bounded, and
suppose the training samples (x;,y;):- , are generated i.i.d. according to an unknown distribution P
supported on X x {—1, +1}.

Theorem 11 Denote K = maxxexk(x,X).  Suppose there exists p > 0 and a continuous
non-decreasing function f : R* — R satisfying f(0) =0, such that:

k(x,x) +k(x'X') = 2k(x,x) < f(Ix=X']3), Vxx €X [x—x|2<p.
Then there exists a random sequence {Ym.} such that:
1. Ye >0, limy,—oYm,e = 0 almost surely, and the convergence is uniform in IP;

2. the following bounds on the Bayes loss and the hinge loss hold uniformly for all (w,b) €
H xR

1 m
Ep (Ly£sgn((w, d(x))+5)) < Ym,e +C||W]| 57+ . E max [1 —yi((w, ®(x;)) + b),o] ,
=1
E(x )~ (max(1 —y({w, ®(x)) +b),0)) <

1 m
Ve (1 KWl + b)) ¢ Wil + — > max [1 = yi((w, (xi)) +b),0].
=1
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Proof As in the proof of Theorem 8, we generate a set of m testing samples and m training samples,
and then lower-bound the number of samples that can form a sample pair in the feature-space; that
is, a pair consisting of a training sample (x,y) and a testing sample (x’,y") such that y =y’ and
|®(x) — ®(x')||4y < c. In contrast to the finite-dimensional sample space, the feature space may
be infinite dimensional, and thus our decomposition may have an infinite number of “bricks.” In
this case, our multinomial random variable argument used in the proof of Lemma 9 breaks down.
Nevertheless, we are able to lower bound the number of sample pairs in the feature space by the
number of sample pairs in the sample space.

Define f~!(a) £ max{p > 0|f(B) < a}. Since f(-) is continuous, f~!(c) > 0 for any o0 > 0.
Now notice that by Lemma 7, if a testing sample x and a training sample x’ belong to a “brick”
with length of each side min(p/+/n, f~'(c?)/+/n) in the sample space (see the proof of Lemma 9),
|®(x) — ®(X')||4r < c. Hence the number of sample pairs in the feature space is lower bounded
by the number of pairs of samples that fall in the same brick in the sample space. We can cover
X with finitely many (denoted as 7.) such bricks since f~!(c?) > 0. Then, a similar argument
as in Lemma 9 shows that the ratio of samples that form pairs in a brick converges to 1 as m
increases. Further notice that for M paired samples, the total testing error and hinge-loss are both
upper-bounded by

M
cM||W|| 5+ zmax [1 —yi({w, ®(x;)) —i—b),O].

The rest of the proof is identical to Theorem 8. In particular, Inequality (15) still holds. |

Note that the condition in Theorem 11 is satisfied by most commonly used kernels, for example,
homogeneous polynominal kernels and Gaussian radial basis functions. This condition requires
that the feature mapping is “smooth” and hence preserves “locality” of the disturbance, that is,
small disturbance in the sample space guarantees the corresponding disturbance in the feature space
is also small. It is easy to construct non-smooth kernel functions which do not generalize well. For
example, consider the following kernel:

1 x=x;

k(x,x) :{ 0 x#¥X.

A standard RKHS regularized SVM using this kernel leads to a decision function

O“ik(X7Xi) +b)7

\%ZE

sign(
=1

which equals sign(b) and provides no meaningful prediction if the testing sample x is not one of the
training samples. Hence as m increases, the testing error remains as large as 50% regardless of the
tradeoff parameter used in the algorithm, while the training error can be made arbitrarily small by
fine-tuning the parameter.

5.1 Convergence to Bayes Risk

Next we relate the results of Theorem 8 and Theorem 11 to the standard consistency notion, that is,
convergence to the Bayes Risk (Steinwart, 2005). The key point of interest in our proof is the use of
a robustness condition in place of a VC-dimension or stability condition used in Steinwart (2005).
The proof in Steinwart (2005) has 4 main steps. They show: (i) there always exists a minimizer to
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the expected regularized (kernel) hinge loss; (ii) the expected regularized hinge loss of the minimizer
converges to the expected hinge loss as the regularizer goes to zero; (iii) if a sequence of functions
asymptotically have optimal expected hinge loss, then they also have optimal expected loss; and (iv)
the expected hinge loss of the minimizer of the regularized training hinge loss concentrates around
the empirical regularized hinge loss. In Steinwart (2005), this final step, (iv), is accomplished using
concentration inequalities derived from VC-dimension considerations, and stability considerations.

Instead, we use our robustness-based results of Theorem 8 and Theorem 11 to replace these
approaches (Lemmas 3.21 and 3.22 in Steinwart 2005) in proving step (iv), and thus to establish the
main result.

Recall that a classifier is a rule that assigns to every training set 7 = {x;,y;}/" | a measurable
function fr. The risk of a measurable function f : X — R is defined as

Re(f) = P({x,y: signf(x) # y}).
The smallest achievable risk
Rp £ inf{Rp(f)|f : X — Rmeasurable}

is called the Bayes Risk of P. A classifier is said to be strongly uniformly consistent if for all
distributions P on X x [—1,+1], the following holds almost surely.

lim e (fr) = K.

Without loss of generality, we only consider the kernel version. Recall a definition from Stein-
wart (2005).

Definition 12 Ler C(X) be the set of all continuous functions defined on a compact metric space
X. Consider the mapping I : H — C(X) defined by Iw = (w, ®(-)). If I has a dense image, we call
the kernel universal.

Roughly speaking, if a kernel is universal, then the corresponding RKHS is rich enough to satisfy
the condition of step (ii) above.

Theorem 13 [f a kernel satisfies the condition of Theorem 11, and is universal, then the Kernel
SVM with c | O sufficiently slowly is strongly uniformly consistent.

Proof We first introduce some notation, largely following Steinwart (2005). For some probability
measure y and (w,b) € H xR,

Ry (W,0)) = Ex )y { max(0, 1 = y((w, ®(x)) +b)) },
is the expected hinge-loss under probability y, and
RL (W, 0)) £ cl|Wll g7 + Eix )y { max(0,1 = y((w, (x)) +5)) }

is the regularized expected hinge-loss. Hence R p(-) and R{ (-) are the expected hinge-loss and
regularized expected hinge-loss under the generating probability P. If x is the empirical distribution
of m samples, we write Ry () and R{ () respectively. Notice Rj ,(-) is the objective function of
the SVM. Denote its solution by f,, ., that is, the classifier we get by running SVM with m samples
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and parameter c. Further denote by fp . € # x R the minimizer of RZP(-). The existence of such a
minimizer is proved in Lemma 3.1 of Steinwart (2005) (step (i)). Let

Rep £  min EX,pr{max (1 —yf(x), 0) },

fmeasurable

that is, the smallest achievable hinge-loss for all measurable functions.
The main content of our proof is to use Theorems 8 and 11 to prove step (iv) in Steinwart (2005).
In particular, we show: if ¢ | 0 “slowly”, we have with probability one

1im Ry e(fone) = Rep. (16)

To prove Equation (16), denote by w(f) and b(f) as the weight part and offset part of any classifier
/- Next, we bound the magnitude of f;, ¢ by using R ,,(fnc) < R{,,(0,0) < 1, which leads to

[W(fme)llsr <1/
and
1b(fine)| <2+ K[[W(fine)llsr <2+K/c.

From Theorem 11 (note that the bound holds uniformly for all (w,b)), we have

RL,]P’(fm,c) Ym7c[l +KHW(fm,c) |2 + ’b” +R2,m(fm7c)

Ym,e[3+2K/c] +R2,m (finc)

Yme[3+2K/c] +R27m (fIP’,c)

Rep +Yme[3+2K /] + {RL u(fo.c) = Ry p(foe) } +{RLp(foe) — Rep )

= Rep+¥mel3+2K/c]+{Rim(foc) —RLp(foe) } + {Rip(foc) — Rep}-

ININ TN

The last inequality holds because f, . minimizes R} ,,.
It is known (Steinwart, 2005, Proposition 3.2) (step (ii)) that if the kernel used is rich enough,
that is, universal, then

lim RS p( i) = R

For fixed ¢ > 0, we have
lim Ry n(fb.c) = RLp(fpc),

almost surely due to the strong law of large numbers (notice that fp . is a fixed classifier), and
Ym.c[3+ 2K /c] — 0 almost surely. Notice that neither convergence rate depends on IP. Therefore, if
¢ | 0 sufficiently slowly,> we have almost surely

nlflrlo RLp(fne) < Rep-

Now, for any m and ¢, we have Ry p(finc) > R p by definition. This implies that Equation (16)
holds almost surely, thus giving us step (iv).

Finally, Proposition 3.3. of Steinwart (2005) shows step (iii), namely, approximating hinge loss
is sufficient to guarantee approximation of the Bayes loss. Thus Equation (16) implies that the risk

3. For example, we can take {c(m)} be the smallest number satisfying ¢(m) > m~'/3 and Tem) < m'/8 /log2 — 1. In-
equality (15) thus leads to 37| P(Yy ¢(m)/c(m) > m!/*) < 400 which implies uniform convergence of Ym,e(m)/ ().
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of function f, . converges to Bayes risk. |

Before concluding this section, we remark that although we focus in this paper the hinge-loss
function and the RKHS norm regularizer, the robustness approach to establish consistency can be
generalized to other regularization schemes and loss functions. Indeed, throughout the proof we
only require that the regularized loss ( that is, the training loss plus the regularization penalty) is an
upper bound of the minimax error with respect to certain set-inclusive uncertainty. This is a property
satisfied by many classification algorithms even though an exact equivalence relationship similar to
the one presented in this paper may not exist. This suggests using the robustness view to derive
sharp sample complexity bounds for a broad class of algorithms (e.g., Steinwart and Christmann,
2008).

6. Concluding Remarks

This work considers the relationship between robust and regularized SVM classification. In partic-
ular, we prove that the standard norm-regularized SVM classifier is in fact the solution to a robust
classification setup, and thus known results about regularized classifiers extend to robust classifiers.
To the best of our knowledge, this is the first explicit such link between regularization and robustness
in pattern classification. The interpretation of this link is that norm-based regularization essentially
builds in a robustness to sample noise whose probability level sets are symmetric unit balls with
respect to the dual of the regularizing norm. It would be interesting to understand the performance
gains possible when the noise does not have such characteristics, and the robust setup is used in
place of regularization with appropriately defined uncertainty set.

Based on the robustness interpretation of the regularization term, we re-proved the consistency
of SVMs without direct appeal to notions of metric entropy, VC-dimension, or stability. Our proof
suggests that the ability to handle disturbance is crucial for an algorithm to achieve good general-
ization ability. In particular, for “smooth” feature mappings, the robustness to disturbance in the
observation space is guaranteed and hence SVMs achieve consistency. On the other-hand, certain
“non-smooth” feature mappings fail to be consistent simply because for such kernels the robustness
in the feature-space (guaranteed by the regularization process) does not imply robustness in the
observation space.
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Appendix A.

In this appendix we show that for RBF kernels, it is possible to relate robustness in the feature space
and robustness in the sample space more directly.
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Theorem 14 Suppose the Kernel function has the form k(x,X') = f(||x —x/||), with f : RT - R a
decreasing function. Denote by H the RKHS space of k(-,-) and ®(-) the corresponding feature
mapping. Then we have for any x € R", w € H and ¢ > 0,

sup (w, ®(x—9)) = sup (W, D(x) +dy).
18] <e 1801 2r</2£(0) =21 ()

Proof We show that the left-hand-side is not larger than the right-hand-side, and vice versa.
First we show

sup (w, ®(x —9)) < sup (w, D(x) — ). (17)
I8l 180 15r</2/(0)~27(c)
We notice that for any ||| < ¢, we have
(w, <I)(x d))
—(w, D(x) + (®(x ) ~ ©(x)) )

=(w, d(x )) (w, q’(X—ﬁ)— (x))
<(W, D(x)) + (Wl - | P(x = 8) — P(x) | 5
<(W, ®(x)) + [[wll5v/2£(0) = 2f(c)
= sup (W, D(x) —dy).
186115 <+/2F(0)—2f(c)

Taking the supremum over 0 establishes Inequality (17).
Next, we show the opposite inequality,

)

sup (w, ®(x—9)) > sup (W, D(x) — ). (18)
3] <e 136 L2 < /27 (0)=2f(c)

If f(c) = f(0), then Inequality 18 holds trivially, hence we only consider the case that f(c) < f(0).
Notice that the inner product is a continuous function in %, hence for any € > 0, there exists a 6&)
such that

(w, (x) —8y) > sup (W, D(x) —8g) —&; (18]l < v/2£(0) —2£(c).
I86lls< /2 0)-27(c)

Recall that the RKHS space is the completion of the feature mapping, thus there exists a sequence
of {x/} € R" such that
X;) — @(x) — &, (19)

which is equivalent to

This leads to

hm\/Zf FIx:—x||)
= lim [|®(x}) — @ (x)]|5¢

=[18yllsr < V/2£(0) = 2f(c).
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Since f is decreasing, we conclude that ||x} —x|| < ¢ holds except for a finite number of i. By (19)
we have
(w, (x})) — (W, D(x) — &) > sup (w, &(x) —d) —¢,
18l 5r<+/2/(0)=2f(c)

which means

sup (w, ®(x—9)) > sup (w, D(x) — ) —&.

loll<e 196 L5 </27(0)—2f(c)
Since ¢ is arbitrary, we establish Inequality (18).

Combining Inequality (17) and Inequality (18) proves the theorem. |
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Abstract

In the machine learning community, the Bayesian scoring criterion is widely used for model selec-
tion problems. One of the fundamental theoretical properties justifying the usage of the Bayesian
scoring criterion is its consistency. In this paper we refine this property for the case of binomial
Bayesian network models. As a by-product of our derivations we establish strong consistency and
obtain the law of iterated logarithm for the Bayesian scoring criterion.

Keywords: Bayesian networks, consistency, scoring criterion, model selection, BIC

1. Introduction

Bayesian networks are graphical structures which characterize probabilistic relationships among
variables of interest and serve as a ground model for doing probabilistic inference in large systems
of interdependent components. A basic element of a Bayesian network is a directed acyclic graph
(DAG) which is bound to an underlying joint probability distribution by the Markov condition. The
absence of certain arcs (edges) in a DAG encodes conditional independences in this distribution.
DAG’s not only provide a starting point for implementation of inference and parameter learning
algorithms, but they also, due to their graphical nature, offer an intuitive picture of the relationships
among the variables. It happens too often that researchers have only a random sample from a prob-
ability distribution and face a problem of choosing the appropriate DAG between a large number
of competing structures. This, effectively, constitutes the model selection problem in the space of
Bayesian networks. The methodology which is concerned with solving such task is called Bayesian
structure learning.

Suppose that the data consists of # i.i.d. random vectors X, ..., X, with each X; having the un-
known probability distribution P. We define a probability space €2 with measure Pr for infinite i.i.d.
sequences X1,X>, ... having distribution P. There are many structures which can form a Bayesian
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network with the distribution P (see Section 2 for formal definitions and examples), however not all
of them are optimal for future analysis. Indeed, since the presence of an arc (edge) does not neces-
sarily guarantee direct dependency between corresponding variables, a complete DAG constitutes a
Bayesian network with any probability distribution, yet provides no information about conditional
independences in P. It is natural to seek structures which not only form a Bayesian network with P,
but also entail only conditional independences in this distribution. These DAGs are called faithful to
P or else perfect maps of P. Unfortunately, it turns out that not all probability distributions have an
associated faithful structure. In this case it is desirable to identify a structure which satisfies certain
“optimality” properties with respect to P. Roughly speaking, we want to include only those edges
that are necessary for describing P.

A scoring criterion for DAGs is a function that assigns a value to each DAG under consideration
based on the data. Suppose M is the set of all DAGs of a fixed size. Under the Bayesian approach
to structure learning, the DAG m is chosen from M such that m maximizes the posterior probability
given the observed data D:

pl)p(Dimw)  pmhe) fo, p(DI @ p)p(Olm p)dO,
Pl D) = D) Sew P) Ja, PO, O ) p(Onlmpa®,

where ©,, denotes the set of parameters of the conditional distributions of each “node given its
parents” for all the nodes of the DAG m, 2, denotes the domain of these parameters, and  de-
notes the system of parameter priors. The quantity P(D|m, ) is called the marginal likelihood,
Bayesian scoring criterion or else Score of the graph m. We denote it as scoreg(D|m). Assuming
Smem p(mpp) =1 for all m € M, the Bayesian scoring criterion provides a measure of posterior
certainty of the graph m under the prior system 1).

It is quite interesting to see if the Bayesian scoring criterion is consistent, that is, as the size of
data D approaches infinity, the criterion is maximized at the DAG which forms a Bayesian network
with P and has smallest dimension. Based on the fundamental results of Haughton (1988) and
Geiger et al. (2001), the consistency of Bayesian scoring criterion has been established for the
class of multinomial Bayesian networks. Chickering (2002) provides a detailed sketch of the proof.
Further, for the same model class, if P admits a faithful DAG representation m, then m has the
smallest dimension among all DAGs which form a Bayesian network with P (see, for example,
Neapolitan, 2004, Corollary 8.1) . Therefore, due to consistency of the Bayesian scoring criterion,
we can conclude that if P admits a faithful DAG representation m then, in the limit, the Bayesian
scoring criterion will be maximized at m. This last result is naturally expected: as more information
becomes available, a scoring criterion should recognize the properties of the underlying distribution
P with increasing precision.

Although the consistency property provides insight into the limiting properties of the posterior
distribution over the graph space, it is interesting to know at what rate (as a function of sample size)
the graph(s) with the smallest dimension become favored by the Bayesian scoring criterion. In this
article we address this question for the case of binomial Bayesian network models. We also show
that in addition to being consistent for these models, the Bayesian scoring criterion is also strongly
consistent (see Definition 4). Our proofs are mostly self-contained, relying mainly on well-known
limit theorems of classical probability. At one point we require the input of Haughton (1988) and
Geiger et al. (2001) mentioned in the preceding paragraph (but note that their results only deal with
consistency, not strong consistency).
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It may be possible to re-derive our results using the machinery of VC classes (Vapnik, 1998)
or empirical process theory (e.g., van der Vaart and Wellner, 1996), but to our knowledge this has
not yet been done. However, one point of our paper is to show that the results are amenable to
fairly transparent and accessible proofs, and do not require the overhead of these well-developed
theoretical frameworks. That being said, we note that our method assumes that the networks have
fixed finite size, and other approaches may be better suited to handling the situation in which the
network size gets large.

The rest of the paper is organized as follows. Background and notation appear in Section 2,
with some illustrative examples. Our results are presented in Section 3. Section 4 contains some
discussion. Proofs appear in the Appendix.

2. Background

A directed graph is a pair (V,E), where V = {1,...,N} is a finite set whose elements are called
nodes (or vertices), and E is a set of ordered pairs of distinct components of V. Elements of E
are called edges (or arcs). If (ij,iy) € E we say that there is an edge from i; to i,. Given a set of
nodes {i1,i2,...,ix} where k > 2 and (ir,i,+1) € E for 1 <r <k—1, we call a sequence of edges
((i1,22),- .-, (ik—1,ix)) a path from i; to ix . A path from a node to itself is called a directed cycle.
Additionally, a directed graph is called a directed acyclic graph (DAG) if it contains no directed
cycles. Given a DAG m = (V,E), a node i; is called a parent of i; if there is an edge from i to i;.
We write Pa(i) to denote the set of parents of a node i. A node i, is called a descendant of i; if there
is a path from i to i, and i; is called a nondescendant of i; if i, is not a descendant of i;.

Suppose m = (V,E) is a DAG, and X = {E,...,Ey} is a random vector that follows a joint
probability distribution P. For each i, let & correspond to the i ™ node of V. For A C V, let &4
denote the collection of variables {&; : i € A}. (In the literature, sometimes this collection is written
simply as A. We will occasionally following this convention, but in mathematical expressions about
probabilities we usually prefer to distinguish clearly between the set of variables A and their values
€a.) In particular, Ep,(;) describes the states of the parents of node i. We say that (m,P) satisfies
the Markov condition if each component of X is conditionally independent of the set of all its
nondescendants given the set of all its parents. Finally, if (m,P) satisfies the Markov condition,
then we say that (m, P) is a Bayesian network, and that m forms a Bayesian network with P. See
Neapolitan (2004) for more details.

The independence constraints encoded in a Bayesian network allow for a simplification of the
joint probability distribution P which is captured by the factorization theorem (Neapolitan, 2004,
Theorem 1.4):

Theorem 1 If (m, P) satisfies the Markov condition, then P is equal to the product of its conditional
distributions of all nodes given the values of their parents, whenever these conditional distributions
exist:

N
P(E1,....En) = . P (EilEpa)) -

1=

Consider the following example (also see Neapolitan, 2004, Example 2.9). Rewrite the vari-
ables (&1,&,,83,84) = (U,Y,Z,W). Suppose we have a Bayesian network (m,P) where m is
shown in Figure 1 and the distribution P satisfies the conditions presented in Table 1 for some
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P(uy) =a P(yilur) =1—(b+c) | P(zily1) =e P(wilz1)=¢
P(uz) =1—a | P(y2u1) =c P(z2ly1)=1—e | P(w2|z1)=1—¢
P(y3lu1) =b P(zi|y2) =e P(wi|z2) = h
P(y1|u2)=1—(b—|—d) P(zz|y2):1—e P(W2|Zz):1—]’l
P(ys2|luz) =d P(zily3) = f
P(y3luz) =b P(z2ly3) =1-f
Table 1: Constraints on distribution P
U Y Z w
O O O O

Figure 1: The DAG m for our first example.

0<a,b,c,...,g,h < 1. Note that, due to Theorem 1, the equations in Table 1 fully determine P
as a function of a,b,c,...,g,h. Further, since (m, P) satisfies the Markov condition, each node is
conditionally independent of the set of all its nondescendants given its parents. For example, we
see that Z and U are conditionally independent given Y (written Z LL U |Y). Do these conditional
independences entail any other conditional independences, that is, are there any other conditional
independences which P must satisfy other than the one based on a node’s parents? The answer is
positive. For example, if (m, P) satisfies the Markov condition, then

P(wlu,y) =Y P(wlz,u,y)P(zlu,y) = ¥ P(wlz,y)P(z]y) = P(wly)

and hence W LL U |Y. Explicitly, the notion of “entailed conditional independence” is given in the
following definition:

Definition 2 Let m = (V,E) be a DAG where V is a set of random variables, and let A,B,C C V.
We say that, based on Markov condition, m entails conditional independence A 11 B|C ifA LL B|C
holds for every P € P,,, where Py, is the set of all probability distributions P such that (m, P) satisfies
the Markov condition.

We say that there is a direct dependency between variables A and B in P if A and B are not condi-
tionally independent given any subset of V. Based on the Markov condition, the absence of an edge
between A and B implies that there is no direct dependency between A and B. However, the Markov
condition is not sufficient to guarantee that the presence of an edge means direct dependency. In
general, given a Bayesian network (m,P), we would want an edge in m to mean there is a direct
dependency. In this case the DAG would become what it is naturally expected to be—a graphi-
cal representation of the structure of relationships between variables. The faithfulness condition as
defined below indeed reflects this.

Definition 3 We say that a Bayesian network (m,P) satisfies the faithfulness condition if, based
on the Markov condition, m entails all and only the conditional independences in P. When (m, P)
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&3

O O O

Figure 2: A second example of a DAG.

satisfies the faithfulness condition, we say that m and P are faithful to each other and we say m is a
perfect map of P.

It is easy to see that the Bayesian network (m, P), where m is shown in Figure 1 and P satisfies
the constraints in Table 1, does not satisfy the faithfulness condition. Indeed, Table 1 implies that
U 11 Z, but this independence is not entailed by m based on the Markov condition. As shown in
Example 2.10 of Neapolitan (2004), the distribution P of this example has no perfect map. However,
it is not hard to see that the DAG of Figure 1 is “optimal” in the sense that no DAG with fewer edges
forms a Bayesian network with P.

In this paper we concentrate on Bayesian networks over a set of variables X = {&,...,Ey} ~ P
where each variable takes values from the set {1,2}. Let m be a DAG with nodes 1,...,N. The
probability distributions in P, can be parameterized according to the conditional distributions of
Theorem 1 as follows. For each node i, let [Pa(i)| be the number of parents of i and let g;(m) =
2/Pa()l be the number of possible states of the set of variables Epa(i)- Consider a fixed list of the g;(m)
possible states of Epy(;). For j € {1,...,q;(m)}, we shall write “Ep,(;) = j” to mean that the parents
of node i are in the states given by the j” item in the list. For k= 1,2 and j = 1,...,q;(m), we write
0ijx = P(Ei = k|Epy(;) = j). Observe that 0;;, = 1 — 0;;;. We shall write ©,, to denote the vector of
all 6;;1’s for m:

On = (01 :i=1,...,N, j=1,....qi(m)) € [0,1]*,

where k, = S¥ | gi(m). Then each @, in [0, 1]* determines a probability measure P = Pg,, such
that (m, P) is Bayesian network; and conversely, if (m, P) is a Bayesian network, then P = Pg,, for
some O, € [0, 1]%.

To illustrate this notation, consider the DAG m in Figure 2. Here, Pa(1) = 0 = Pa(3), Pa(2) =
{1,3}, and Pa(4) = {3}, and so g (m) = 2° = q3(m), g2(m) = 2%, and g4(m) = 2'. We could fix
the list of possible states of Epa(4) to be “1,2”, and the list for Epa(z) to be “(1,1), (1,2), (2,1),(2,2)”
(with the understanding that the ordering is (€;,&3)). For the latter list, we have for example

0231 = P(E2=1|Epyr) =3) = P(E2=1](E1,&) = (2,1)).
Since Pa(3) = 0, P(Epy3) = 1) = 1, and 631 is simply P(E3 = 1). We can write

Om = (0111,0211,0221,0231,0241,0311,0411,0421),
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andk, = 1+4+1+2 = 8.

Let D =D, = {Xi,...,X,} be fully observed data of size n generated according to Pr, and let
Nijx be the number of cases in the database D such that node i takes value k while its parent set Ep, ;)
takes the values corresponding to j.

A probabilistic model M for a random vector X = (§j,...,Ey) is a set of possible joint proba-
bility distributions of its components. If the probability distribution P is a member of a model M,
we say P is included in M. Let m be a DAG (V,E). A Bayesian network model is a pair (m,F)
where F is a set of possible parameter vectors ©,,: each ©,, in F determines conditional probability
distributions for m, such that the joint probability distribution Pg, of X (given by the product of
these conditional distributions) satisfies the Markov condition with m. (E.g., for the DAG m of Fig-
ure 2, the most general choice of F is [0, 1]%, but F could also be a subset of [0, 1].) For simplicity,
we shall usually omit F when referring to a Bayesian network model (m,F). In a given class of
models, if 9, includes the probability distribution P, and if there exists no /M, (in the class) such
that M, includes P and M has smaller dimension than MM,, then M, is called a parameter optimal
map of P. (E.g. the DAG of Figure 1 is a parameter optimal map of the distribution P of Table 1.)
For the Bayesian network models we shall work with in this paper, the dimension of a model m
is ky = S| gi(m). A detailed discussion of probabilistic model selection in the case of Bayesian
networks could be found in Neapolitan (2004).

In order to proceed further we would also need a formal definition of consistency. In this defini-
tion we assume that the dimensions of the probabilistic models are well-defined. For a more detailed
discussion of the definition of consistency see, for example, Neapolitan (2004), Griinwald (2007)
and Lahiri (2001).

Definition 4 Let D, be a set of values (data) of a set of n mutually independent random vectors
X1,...,Xy, each with probability distribution P. Furthermore, let score be a scoring criterion
over some class of models for the random variables that constitute each vector. We say score is
consistent for the class of models if the following two properties hold:

1. If M includes P and M, does not, then

lim Pr(score(D,,M,) > score(D,,M,)) = 1.

n—o

2. If My and M, both include P and M, has smaller dimension than M, then

lim Pr(score(D,, M) > score(D,,M)) = 1.

n—oo
Additionally, we say that the scoring criterion is strongly consistent if, in both cases 1 and 2, it
selects the appropriate model almost surely:

Pr(3N :¥n>N score(D,, M) > score(D,,M)) = 1.

As an example, let m; be the DAG of Figure 2, let m; be the DAG obtained from m; by adding
an arc from node 3 to node 4, and let mo be the DAG obtained from m; by removing the arc from
node 2 to node 4. For i =0,1,2, let M; be the probabilistic model consisting of all probability
distributions with which m; forms a Bayesian network. Let P be a probability distribution in H
such the components of ©,, are eight distinct numbers in (0,1). Then My does not contain P
(since &4 is not independent of {&;,&,,E3}), while M| and M, both contain P, and M, has smaller
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dimension that M. If score is consistent, then in a situation with lots of data, score will be
very likely to rank M over either My or M, . However, consider an infinite stream of data X;,X>, . ..
sampled independently from P. Suppose that after each new observation, we ask score to choose
among My, M; and M,. Consistency says that the expected proportion of score’s correct choices
tends to 1 as n tends to infinity. But strong consistency says more: if score is strongly consistent,
then with probability one it will make the correct choice for all but finitely many values of n.

3. Results

In this paper we consider the case of binomial Bayesian networks with independent Beta (o1, ;j2)
priors for the parameters 6;;; (note that 0;;, = 1 —0;;1), where ;1,072 > 0. We choose the beta
family as it is the conjugate prior for the Binomial distribution. According to (1), the value of the
Bayesian scoring criterion can be calculated as follows:

p(Dm) = [ p(Dilm.©u)p(©yIm)de

N gim) +a, 1 N: 1 1
Niji+0uj1— (1 _e ) ij2t0ijo— —del
H D / ijl Beta(ocijl,(xijz) Y

:ﬁ[ H Beta ij1 +0ij1, Nijp + 0ijp)

Beta((x,-j] ,O(,'jz)

_ N g Niji +aiji F<Nij2+aij2)_ T(0uiji + otij) )
H H F 1J1+NLJ2+al]1+alj2) r(aiﬂ)r(aiﬂ)’

which coincides with the well-known formula by Cooper and Herskovits (1992).

Throughout this paper we produce several asymptotic expansions “in probability” and “almost
surely”, always with respect to our probability measure Pr on Q. We derive several properties of
the marginal likelihood (2). We shall show that, for any model m,

log p(Dy|m) = nC,, +O(y/nloglogn) as., 3)

where C,, is a constant independent of n. We strengthen this result by showing how to obtain a
positive constant G, such that

log p(Dy|m) — nC log p(Dy|m) — nC
lim sup (8PP Z1Cn _ g liming 8PP ZnCn @

n—oe v/2nloglogn n—o 2nloglogn

We note that “in probability” versions of the above statements also follow from our methods (as
in the proofs of Corollaries 12 and 10):

log p(Dp|m) = nCp,+ 0,(\/n), (5)

log p(D,|m) — nC,y, L
Vvn

= N(0,0).
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Additionally, we will be using the approximation of the Bayesian scoring criterion via maximum
log-likelihood:

N fIi(m)A . R 1
log p(D,|m) = log (H 0 (1— Bijl)N”ﬂ> — Sknlogn+0,(1), (6)

where @,- i1 is the MLE of 6;;; and k,, = Ef;l gi(m) is the dimension of the model m. This is the
efficient approximation of Bayesian score commonly known as BIC which was first derived in
Schwarz (1978) for the case of linear exponential families. In Haughton (1988) his result was
made more specific and extended to the case of curved exponential families —the type of model that
includes Bayesian networks, as is shown in Geiger et al. (2001).

In this work, we attempt to get insight into the rate of convergence of the Bayes factor comparing
two models m; and my. Our result strengthens the well known property of consistency of the
Bayesian scoring criterion (e.g., see Chickering, 2002) and is expressed as the following theorem.

Theorem S In the case of a binomial Bayesian network class, for the Bayesian scoring criterion
based on independent beta priors, the following two properties hold:

1. If my includes P and m; does not, then there exists a positive constant C(P,my,my) such that

scoreg(D,|m;)
= C(P O(+/nlogl 5.
gscoreB(Dn|ml) ( ,m1,m2)n—|— (m) a.s

and
scorep(Dy|my)

scorep(Dy|m)

= C(Pmi,my)n+O0,(/n).

2. If my and my both include P and dimm; > dimm, where dimmy, = Efvzl qi(my), k=1,2, then

scoreg(Dy|m;) dimm; —dimmy
= 1 O(logl S.
scores(Dyjm1) 5 ogn+ O(loglogn) a.s
and (Dulm2) g g
scorepl\Dy,|m) 1mm; — dimmip
= 1 0,(1).
scoreg(D,|m;) 2 ogn-+0,(1)

In particular, the Bayesian scoring criterion is strongly consistent.

It follows from the consistency property of the Bayesian scoring criterion that if P admits a
faithful DAG representation, then the limit of the probability that a consistent scoring criterion
chooses a model faithful to P, as the size of data approaches infinity, equals 1. Our result in Theorem
5 strengthens this claim as follows:

Corollary 6 If (my,P) satisfies the faithfulness condition and (my, P) does not, then with probabil-

. scoreg(Dy|m) , , . , .
ity 1, Scores(Dym) approaches infinity at exponential rate in n when my does not include P, and

approaches infinity at polynomial rate in n when my includes P.

The first result of Theorem 5 is optimal in the following sense:
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Theorem 7 If m; includes P and m does not, then there exist Cy,, m, > 0 and Oy, m, > 0 such that:

scoreg(Dy|my)

limsu log scoreg(Dy|m) _ncml,mz _ .
n~>oop O'mhm2 2n10g10gn S
scoreg(Dy|my)
liminf m = 1Cny my _ .
n—oo Omi,m, 2n]0g logn .S.
and also
scorep(D,|my)
g ———— =t = —nCy,
scoreg(D,|m;) 1y ,m2 g N(070m17m2)'

Vn

The constants C,,, ,,, and Oy, m, from the above theorem could be defined as follows.

Definition 8 Consider a single observation X = (§1,...,Ex) from P. Define

log®;jx if & =k and Epy;) = J
¢ijk(X) :{ O0gYijk ifg an EP() J

0 otherwise
and define
N gi(m) 2
T(X,m) = S ()
=1 j=1 k=1

Then define Cy,, s, and Oy, m, respectively to be the mean and the standard deviation of T(X,m;) —
©(X,my). Also define

qi(m) ) P
Ci’m: H [6?}111(1—6;]1)1—9::/1} (PO j)‘
7=

Observe that we have

N
T(X,m) = E log ei»EPa(i)sEi .
=1
We shall show (see Lemma 13) that ©(X,m) = log P(X), and (see proof of Lemma 9) that

Ci7m2

. 7
Com (N

N
Conyymy = E log
=1

Observe that for any 7, the constant C; ,, depends only on the conditional probabilities P(E;[Epa;))
of the model m; therefore, if models m; and m, have the same set of parents of the " node, then
Cim, = Cim, and the i term in (7) is zero.

The quantities defined above will be extensively used throughout the Appendix.

1519



SLOBODIANIK, ZAPOROZHETS AND MADRAS

4. Conclusion

In this paper we proved the strong consistency property of the Bayesian scoring criterion for the
case of binomial Bayesian network models. We obtained asymptotic expansions for the logarithm
of Bayesian score as well as the logarithm of the Bayes factor comparing two models. These results
are important extensions of the consistency property of the Bayesian scoring criterion, providing
insight into the rates at which the Bayes factor favors correct models. The asymptotic properties are
found to be independent of the particular choice of beta parameter priors.

The methods we used are different from the mainstream. One typical way to investigate the
properties of Bayesian score is to use BIC approximation and hence reduce the problem to investi-
gation of the maximum log-likelihood term. In this paper we use expression (9) where the first term
is the log-likelihood evaluated at the true parameter.

If we use the results of Theorem 5 in the approximation of Bayes scoring criterion by BIC (6),
we can see that given two models m and my, if both of them include the generating distribution P
then their maximum log-likelihoods are within O(loglogn) of each other, and if one of the models
does not include P then the maximum log-likelihoods differ by a leading order of C(P,m;,my)n.
These are the rates obtained by Qian and Field (2002, Theorems 2 and 3) for the case of model
selection in logistic regression. This observation advocates for the existence of a unified approach
for a very general class of models which can describe the rates at which Bayesian scoring criterion
and its approximations favor correct model choices.

Acknowledgments

We would like to thank Hélene Massam, Yuehua Wu, Guoqi Qian, Chris Field, and the referees for
their constructive and valuable comments and suggestions. A part of this work was done during the
stay of the second author at the Institute of Mathematical Stochastics, University of Gottingen. He
is thankful to M. Denker for his hospitality during this visit. This work was supported in part by
a Discovery Grant from NSERC Canada (NM), Russian Foundation for Basic Research (DZ)(09-
01-91331-NNIO-a, 09-01-00107-a), Russian Science Support Foundation (DZ) and Grant of the
President of the Russian Federation (DZ)(NSh-638.2008.1).

Appendix A.

In this section we provide proofs for the basic facts in this paper and for Theorems 5 and 7. Note
that part 1 of Theorem 5 follows directly from Theorem 7. In our derivations we first assume that
the parameter prior of every node follows a flat Bera(1,1) distribution. At the end, we shall show
how the results can be extended to the case of general beta priors.

We will start from the expression for the marginal likelihood (2). Noticing that Beta(x+ 1,y +
1)=[(x+y+1) (X;“y ] ~! we obtain the expression for the Bayesian scoring criterion via binomial
coefficients:

p(Dn|m) = [H H (Niji +Nijp + 1)< JIN--I JZ)] . 8)
=1 j= ij

J
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Let P(k,n,8) = (})8(1—8)"*. Substituting (}) = % into (8) with 0 taken as 0;;; we obtain

an expression for log p(D,|m), which will be the fundamental core of our proof:

log p(Dp|m) =

(m)
E |:10g< l]lfl 61’]1) ljz) —IOgP( l]])Nlj]+Nlj27el_]l) 10g( z]1+N112+1)] )

HMz

The rest of the Appendix is organized as follows. In Lemma 9 we derive the law of iterated log-
arithm for the first term of (9) by using the function t(X,m) introduced in Definition 8. Lemma 11
states asymptotic expansions of each of three terms in (9) hence providing us with an opportunity to
get an expansion for p(D,|m). Asymptotic expressions (3), (4) and (5) are immediate consequences
of this lemma. Lemma 13 establishes a fundamental result regarding the log-likelihood evaluated at
the true parameter value. It is followed by the proofs of Theorems 5 and 7.

Lemma 9 Recall the notation of Section 2 and Definition 8. For model m, let T (m) = T,(m) =

SV 12 log ( ; ]'{1 (1—6;j1) '12> Then the following laws of the iterated logarithm hold almost

surely:

T (m) —nzfy:l logCi n T (m) —ngﬁvzllogc,-_m

li =1 liminf — = -1 10
1£;ILS£p omy/2nloglogn ’ py omy/2nloglogn ’ (10)
T -T —nC T -T —nC
limsup[ (ml) (mZ)] n mi,ny — 1’ hmlnf[ (ml) (mz)] n mi,nmy — _1 (11)
00 Om, myV/2nloglogn n—0o Om, myV/2nloglogn

Proof It is not difficult to see that T'(m) = ¥, t(X,,m) and

gi(m) 2
E( ( E E EPa —.] el]klogel]k - Elogclm

uMz

By the law of the iterated logarithm applied to 7'(m) we conclude that

fmsup 70 =1 3X 1 08Ci
n—oo Omy/2nloglogn

=1,

where 0y, is the standard deviation of t©(X,m). Further, applying the law of the iterated loga-
rithm to 7'(m;) — T (m2), we obtain the equalities (11) where Oy, ,, is the standard deviation of
T(X,my) —t(X,my). [

Corollary 10 The following expressions hold.:
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T(m)—T(ma) = nCpm +O(\/nloglogn) as., (12)

N N
>3 tog (63 (1-05)%2) = 1Y logCiun+0p(V). (a3
. =1

=1

Il

A
~

Il

—

T(m) = T(m)] ~nCpy
Vn
Proof Obviously, (12) is a direct consequence of (11). Applying the central limit theorem to 7' (m)

and T'(m;) — T (my) in the proof of Lemma 9 instead of the law of the iterated logarithm we obtain
(13) and (14). [ |

N(0,0m, m,)- 14)

Lemma 11 The following asymptotic expansions hold:

5§ log (Bz’{l (1— 6,-j1)N"-"2> = n % logCim 4 O(y/nloglogn) as.,
=1 4 =1
Niji +Nip+1 = n[P(Epys) =Jj) +o(1)] as., (15)
log P(Njj1,Niji +Nij2,0ij1) = —% logn+ O(loglogn) as., (16)
log P(Njj1,Niji +Nij2,0ij1) = —%logn+0p(l). a7

Proof The first expression follows from (10). Further, note, that each of the variables N; j; is a sum
of i.i.d. Bernoulli variables. Based on the law of the iterated logarithm for the number of successes
in n Bernoulli trials, as n — o

Nijt = n0;jxP(Epy(;y = j) +O(+/nloglogn) as., (18)

which immediately implies (15). Additionally, using the central limit theorem instead of the law of
the iterated logarithm we obtain:

Nijk = nB;xP(Epagi) = Jj) + Op(V/n). (19)

Next, we will be using the following version of Local De Moivre-Laplace theorem (see for example
p- 46 of Chow and Teicher 1978):

k—np

If n — o and k = k, — o are such that xkn*é — 0, where x;, = =k then
np(1-=p
1 _ (lcﬂz]7)2 +0(1)
P(k,n,p) = ———e¢ 20D . (20)
2nnp(1 —p)
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According to the law of the iterated logarithm, x; = % = O(+y/loglogn) a.s., for the case
np(1—p
where k is the number of successes in n i.i.d. Bernoulli trials of probability p. Notice that any

such x; satisfies the condition xkn*é — 0. Therefore we can use (20) to approximate the binomial
probability in (9), specifically:

IOgP(NijlaNijl +Nij256ij1)

(Niji — (Niji +Nij2)6ij1)?
2(Niji +Nij2)6ij1 (1 —8jj1)

Z—log\/2W(Nij1+Nij2)9ij1(1—9ij1)— +o(1) as. (21)

The first term in this expansion can be simplified based on (15):

1
—log \/2n(Nij1 +Nij2)Biji (1 - 01) = —3logn+0(1)  as. 22)
Applying (18) to the second term we conclude that as n — oc:
(Niji — (Niji +Nij2)0ij1)?

_ = O(loglogn a.s. (23)
2(Nij1 + Nij2)0ij1 (1 —0;j1) (toglogn)

Now, (21) could be simplified further based on (22) and (23) to obtain (16). Finally, we can prove
(17) analogously to (16) by using (19) instead of (18). Therefore the proof of the lemma is com-
plete. |

Now it is easy to derive the expansions announced in Sect. 3.
Corollary 12 Properties (3), (4) and (5) of the marginal likelihood P(D,|m) hold.

Proof Using (10), (15) and (16) in (9) and denoting C f Eﬁvzl logC; ,, we get (4). Further, (3) is a
direct consequence of (4). Finally, (5) can be proved by substituting (15), (13) and (16) into (9). W

Lemma 13 Suppose the probability distribution P is a member of the model m. Let T(m) =
SV 12 log( l]’fl (1— Gijl)Niﬂ) for model m. Then T (m) = log P(D,).

Proof Since P is a member of the model m, we know that (m, P) satisfies the Markov condition.
Therefore, by the factorization theorem (Theorem 1), we obtain

N qi(m

'Jl 1/2
H H el]l lfl
1=

and the result follows. [ |
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Next, we will prove Theorems 5 and 7. Note that part 1 of Theorem 5 directly follows from
Theorem 7.

Geiger et al. (2001) showed that each of the competing Bayesian network models m could be
represented as a C* connected manifold of dimension S, g;(m) embedded in V. In order to keep
the notation simple we will be denoting this manifold as m. Every probability distribution for a finite
sample space belongs to an exponential family. Therefore, there exists a set of T;, i = 1,2,..., i.i.d.
observations from an underlying distribution Py, belonging to a full exponential family in standard
form with densities f(C,0) = exp(20 — b(0)) with respect to a finite measure on R, with 6 € ©
the natural parameter space, such that

N q:
log (H H 01 (1070 ) = nq):zg@(m —b(9)), (24)

where Y, = (1/n) 31, G.

Theorem 2.3 of Haughton (1988) provides an expansion of the logarithm of the Bayesian scoring
criterion via maximum log-likelihood and, together with (24), guarantees (6). It follows from (3),
(6) and (24) that

n sup (Y,0—0b(¢)) =Cun+0,(y/nloglogn). (25)

oemNO

Suppose m; includes P and m; does not. In this case, Haughton (1988, p.346) guarantees that
as n — oo, we have

Pr ( sup (Y,0—0b(9))+e< sup (Y,,q)—b(q)))) —1
oem;NO oemNO
for some € > 0, and by (25) we obtain C,,, < Cy,,. Hence, SV log % > 0. Now, the result of
im|
Theorem 7 can be obtained by using (15), (11) and (16) in (9), and by using (15), (14) and (16) in
).

Now, suppose both m; and m; include the true distribution P and k,,, < k,,,. For part 2 of
Theorem 5, direct application of Lemma 13, (16) and (15) provides the “almost surely” result,
while Lemma 13, (17) and (15) prove the “in probability” result.

Finally, we shall show that the results of Theorems 5 and 7 hold for the case of general beta
priors. It is not difficult to see that Stirling’s approximation implies

li bfar(z+a)

- 26
%S T(z+b) (26)

Denote as 1, the flat Bera(1,1) system of priors and denote as y, the system which, for each
parameter 6;;;, assumes the distribution Bera(oji1,a;j2), where a;ji,042 > 0. It follows from (2)
and (26) that:
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p(m|D,p7) _ N_dilm) Beta(Niji + ji, Nijp + tija) 1
p(m|D, 1) =T = Bem(Nijl +1LNip+1)  Beta(oiji, i)
_ N ailm Niji + 01 )T (Nijp + aijp)T(Niji + Nijp +2) ' 1
H H L(Niji + 1)I(Nij2 + 1)T(Nij1 + Nijp +0iji +aijp)  Beta(aji,aj2)
ij1—1ijp—1
N gi(m) NSI" st’z 1

11;[ JIJ (Ni]l —I—N,jz)al/l*aiﬂ*z Beta(ot,'j],(l,'jz) '

Therefore, using (18) we can conclude that there exists a constant ¢ > 0 such that:

D

o pmiD.)
n= p(m|D, 1)

which implies that the results of Theorems 5 and 7 extend to the case of general beta parameter

priors.

a.s.,
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Abstract

‘We propose the recursive autonomy identification (RAI) algorithm for constraint-based (CB) Bayes-
ian network structure learning. The RAI algorithm learns the structure by sequential application of
conditional independence (CI) tests, edge direction and structure decomposition into autonomous
sub-structures. The sequence of operations is performed recursively for each autonomous sub-
structure while simultaneously increasing the order of the CI test. While other CB algorithms
d-separate structures and then direct the resulted undirected graph, the RAI algorithm combines the
two processes from the outset and along the procedure. By this means and due to structure decom-
position, learning a structure using RAI requires a smaller number of CI tests of high orders. This
reduces the complexity and run-time of the algorithm and increases the accuracy by diminishing the
curse-of-dimensionality. When the RAI algorithm learned structures from databases representing
synthetic problems, known networks and natural problems, it demonstrated superiority with respect
to computational complexity, run-time, structural correctness and classification accuracy over the
PC, Three Phase Dependency Analysis, Optimal Reinsertion, greedy search, Greedy Equivalence
Search, Sparse Candidate, and Max-Min Hill-Climbing algorithms.

Keywords: Bayesian networks, constraint-based structure learning

1. Introduction

A Bayesian network (BN) is a graphical model that efficiently encodes the joint probability distri-
bution for a set of variables (Heckerman, 1995; Pearl, 1988). The BN consists of a structure and
a set of parameters. The structure is a directed acyclic graph (DAG) that is composed of nodes
representing domain variables and edges connecting these nodes. An edge manifests dependence
between the nodes connected by the edge, while the absence of an edge demonstrates independence
between the nodes. The parameters of a BN are conditional probabilities (densities) that quantify
the graph edges. Once the BN structure has been learned, the parameters are usually estimated (in
the case of discrete variables) using the relative frequencies of all combinations of variable states as
exemplified in the data. Learning the structure from data by considering all possible structures ex-

*. This work was done while the author was at the Department of Electrical and Computer Engineering, Ben-Gurion
University of the Negev, Israel.

(©2009 Raanan Yehezkel and Boaz Lerner.
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haustively is not feasible in most domains, regardless of the size of the data (Chickering et al., 2004),
since the number of possible structures grows exponentially with the number of nodes (Cooper and
Herskovits, 1992). Hence, structure learning requires either sub-optimal heuristic search algorithms
or algorithms that are optimal under certain assumptions.

One approach to structure learning—known as search-and-score (S&S) (Chickering, 2002;
Cooper and Herskovits, 1992; Heckerman, 1995; Heckerman et al., 1995)—combines a strategy
for searching through the space of possible structures with a scoring function measuring the fitness
of each structure to the data. The structure achieving the highest score is then selected. Algorithms
of this approach may also require node ordering, in which a parent node precedes a child node
so as to narrow the search space (Cooper and Herskovits, 1992). In a second approach—known
as constraint-based (CB) (Cheng et al., 1997; Pearl, 2000; Spirtes et al., 2000)—each structure
edge is learned if meeting a constraint usually derived from comparing the value of a statistical
or information-theory-based test of conditional independence (CI) to a threshold. Meeting such
constraints enables the formation of an undirected graph, which is then further directed based on
orientation rules (Pearl, 2000; Spirtes et al., 2000). That is, generally in the S&S approach we learn
structures, whereas in the CB approach we learn edges composing a structure.

Search-and-score algorithms allow the incorporation of user knowledge through the use of prior
probabilities over the structures and parameters (Heckerman et al., 1995). By considering several
models altogether, the S&S approach may enhance inference and account better for model uncer-
tainty (Heckerman et al., 1999). However, S&S algorithms are heuristic and usually have no proof
of correctness (Cheng et al., 1997) (for a counter-example see Chickering, 2002, providing an S&S
algorithm that identifies the optimal graph in the limit of a large sample and has a proof of correct-
ness). As mentioned above, S&S algorithms may sometimes depend on node ordering (Cooper and
Herskovits, 1992). Recently, it was shown that when applied to classification, a structure having a
higher score does not necessarily provide a higher classification accuracy (Friedman et al., 1997;
Grossman and Domingos, 2004; Kontkanen et al., 1999).

Algorithms of the CB approach are generally asymptotically correct (Cheng et al., 1997; Spirtes
et al., 2000). They are relatively quick and have a well-defined stopping criterion (Dash and
Druzdzel, 2003). However, they depend on the threshold selected for CI testing (Dash and Druzdzel,
1999) and may be unreliable in performing CI tests using large condition sets and a limited data size
(Cooper and Herskovits, 1992; Heckerman et al., 1999; Spirtes et al., 2000). They can also be un-
stable in the sense that a CI test error may lead to a sequence of errors resulting in an erroneous
graph (Dash and Druzdzel, 1999; Heckerman et al., 1999; Spirtes et al., 2000). Additional infor-
mation on the above two approaches, their advantages and disadvantages, may be found in Cheng
et al. (1997), Cooper and Herskovits (1992), Dash and Druzdzel (1999), Dash and Druzdzel (2003),
Heckerman (1995), Heckerman et al. (1995), Heckerman et al. (1999), Pearl (2000) and Spirtes
et al. (2000). We note that Cowell (2001) showed that for complete data, a given node ordering
and using cross-entropy methods for checking CI and maximizing logarithmic scores to evaluate
structures, the two approaches are equivalent. In addition, hybrid algorithms have been suggested in
which a CB algorithm is employed to create an initial ordering (Singh and Valtorta, 1995), to obtain
a starting graph (Spirtes and Meek, 1995; Tsamardinos et al., 2006a) or to narrow the search space
(Dash and Druzdzel, 1999) for an S&S algorithm.

Most CB algorithms, such as Inductive Causation (IC) (Pearl, 2000), PC (Spirtes et al., 2000)
and Three Phase Dependency Analysis (TPDA) (Cheng et al., 1997), construct a DAG in two con-
secutive stages. The first stage is learning associations between variables for constructing an undi-

1528



BAYESIAN NETWORK STRUCTURE LEARNING BY RECURSIVE AUTONOMY IDENTIFICATION

rected structure. This requires a number of CI tests growing exponentially with the number of nodes.
This complexity is reduced in the PC algorithm to polynomial complexity by fixing the maximal
number of parents a node can have and in the TPDA algorithm by measuring the strengths of the
independences computed while CI testing along with making a strong assumption about the under-
lying graph (Cheng et al., 1997). The TPDA algorithm does not take direct steps to restrict the size
of the condition set employed in CI testing in order to mitigate the curse-of-dimensionality.

In the second stage, most CB algorithms direct edges by employing orientation rules in two con-
secutive steps: finding and directing V-structures and directing additional edges inductively (Pearl,
2000). Edge direction (orientation) is unstable. This means that small errors in the input to the
stage (i.e., CI testing) yield large errors in the output (Spirtes et al., 2000). Errors in CI testing are
usually the result of large condition sets. These sets, selected based on previous CI test results, are
more likely to be incorrect due to their size, and they also lead, for a small sample size, to poorer
estimation of dependences due to the curse-of-dimensionality. Thus, we usually start learning using
CI tests of low order (i.e., using small condition sets), which are the most reliable tests (Spirtes
et al., 2000). We further note that the division of learning in CB algorithms into two consecutive
stages is mainly for simplicity, since no directionality constraints have to be propagated during the
first stage. However, errors in CI testing is a main reason for the instability of CB algorithms, which
we set out to tackle in this research.

We propose the recursive autonomy identification (RAI) algorithm, which is a CB model that
learns the structure of a BN by sequential application of CI tests, edge direction and structure de-
composition into autonomous sub-structures that comply with the Markov property (i.e., the sub-
structure includes all its nodes’ parents). This sequence of operations is performed recursively for
each autonomous sub-structure. In each recursive call of the algorithm, the order of the CI test
is increased similarly to the PC algorithm (Spirtes et al., 2000). By performing CI tests of low
order (i.e., tests employing small conditions sets) before those of high order, the RAI algorithm
performs more reliable tests first, and thereby obviates the need to perform less reliable tests later.
By directing edges while testing conditional independence, the RAI algorithm can consider parent-
child relations so as to rule out nodes from condition sets and thereby to avoid unnecessary CI
tests and to perform tests using smaller condition sets. CI tests using small condition sets are faster
to implement and more accurate than those using large sets. By decomposing the graph into au-
tonomous sub-structures, further elimination of both the number of CI tests and size of condition
sets is obtained. Graph decomposition also aids in subsequent iterations to direct additional edges.
By recursively repeating both mechanisms for autonomies decomposed from the graph, further re-
duction of computational complexity, database queries and structural errors in subsequent iterations
is achieved. Overall, the RAI algorithm learns faster a more precise structure.

Tested using synthetic databases, nineteen known networks, and nineteen UCI databases, RAI
showed in this study superiority with respect to structural correctness, complexity, run-time and
classification accuracy over PC, Three Phase Dependency Analysis, Optimal Reinsertion, a greedy
hill-climbing search algorithm with a Tabu list, Greedy Equivalence Search, Sparse Candidate, naive
Bayesian, and Max-Min Hill-Climbing algorithms.

After providing some preliminaries and definitions in Section 2, we introduce the RAI algo-
rithm and prove its correctness in Section 3. Section 4 presents experimental evaluation of the RAI
algorithm with respect to structural correctness, complexity, run-time and classification accuracy in
comparison to CB, S&S and hybrid structure learning algorithms. Section 5 concludes the paper
with a discussion.
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2. Preliminaries

A BN B(G,0) is a model for representing the joint probability distribution for a set of variables
X ={X;...X,}. The structure G(V,E) is a DAG composed of V, a set of nodes representing the
domain variables X, and E, a set of directed edges connecting the nodes. A directed edge X; — X;
connects a child node X; to its parent node X;. We denote Pa(X, G) as the set of parents of node X in
a graph G. The set of parameters © holds local conditional probabilities over X, P(X;|Pa(X;, G))Vi
that quantify the graph edges. The joint probability distribution for X represented by a BN that
is assumed to encode this distribution! is (Cooper and Herskovits, 1992; Heckerman, 1995; Pearl,
1988)

n
PX,...X,) = | | P(Xi|Pa(X;, G)). (1

=
Though there is no theoretical restriction on the functional form of the conditional probability dis-
tributions in Equation 1, we restrict ourselves in this study to discrete variables. This implies joint
distributions which are unrestricted discrete distributions and conditional probability distributions
which are independent multinomials for each variable and each parent configuration (Chickering,

2002).

We also make use of the term partially directed graph, that is, a graph that may have both
directed and undirected edges and has at most one edge between any pair of nodes (Meek, 1995).
We use this term while learning a graph starting from a complete undirected graph and removing
and directing edges until uncovering a graph representing a family of Markov equivalent structures
(pattern) of the true underlying BN? (Pearl, 2000; Spirtes et al., 2000). Pa,(X,G),Adj(X,G) and
Ch(X, G) are, respectively, the sets of potential parents, adjacent nodes® and children of node X in
a partially directed graph G, Pa,(X,G) =Adj(X, G)\Ch(X, G).

We indicate that X and Y are independent conditioned on a set of nodes S (i.e., the condition
set) using X 1L Y| S, and make use of the notion of d-separation (Pearl, 1988). Thereafter, we
define d-separation resolution with the aim to evaluate d-separation for different sizes of condition
sets, d-separation resolution of a graph, an exogenous cause to a graph and an autonomous sub-
structure. We concentrate in this section only on terms and definitions that are directly relevant to
the RAI concept and algorithm, where other more general terms and definitions relevant to BNs can
be found in Heckerman (1995), Pearl (1988), Pearl (2000), and Spirtes et al. (2000).

Definition 1 — d-separation resolution: The resolution of a d-separation relation between a pair of
non-adjacent nodes in a graph is the size of the smallest condition set that d-separates the two nodes.

Examples of d-separation resolutions of 0, 1 and 2 between nodes X and Y are given in Figure 1.

Definition 2 — d-separation resolution of a graph: The d-separation resolution of a graph is the
highest d-separation resolution in the graph.

The d-separation relations encoded by the example graph in Figure 2a and relevant to the de-
termination of the d-separation resolution of this graph are: 1) X; 1L X, |0; 2) X; 1L X4 |{X3}; 3)
X; L Xs5[{X3}; 4) X1 1L X6 [{Xz}; 5) Xo L Xa [{X3}; 6) Xo 1L X5[{X3}; 7) Xo 1L X6 |{Xs}; 8)
X3 1L X6 |{X4,X5} and 9) X4 1L X5|{X3}. Due to relation 8, exemplifying d-separation resolution

1. Throughout the paper, we assume faithfulness of the probability distribution to a DAG (Spirtes et al., 2000).

2. Two BNs are Markov equivalent if and only if they have the same sets of adjacencies and V-structures (Verma and
Pearl, 1990).

3. Two nodes in a graph that are connected by an edge are adjacent.
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@%@

(a) (b) (©)

Figure 1: Examples of d-separation resolutions of (a) 0, (b) 1 and (c) 2 between nodes X and Y.

of 2, the d-separation resolution of the graph is 2. Eliminating relation 8 by adding the edge X3 — X,
we form a graph having a d-separation resolution of 1 (Figure 2b). By further adding edges to the
graph, eliminating relations of resolution 1, we form a graph having a d-separation resolution of 0
(Figure 2c) that encodes only relation 1.

@#@ @’3’@

() (b) (©)

Figure 2: Examples of graph d-separation resolutions of (a) 2, (b) 1 and (c) 0.

Definition 3 — exogenous cause: A node Y in G(V,E) is an exogenous cause to G'(V',E’), where
V CVandE CE,ifY ¢V andVX € V'Y € Pa(X,G) or Y ¢ Adj(X, G) (Pearl, 2000).

Definition 4 — autonomous sub-structure: In a DAG G(V,E), a sub-structure GA(VA,E*) such
that VA C V and E* C E is said to be autonomous in G given a set Ve, C V of exogenous causes to
GAif VX € VA, Pa(X,G) C {VAUV,,}. If V, is empty, we say the sub-structure is (completely)

autonomous”*.

We define sub-structure autonomy in the sense that the sub-structure holds the Markov property
for its nodes. Given a structure G, any two non-adjacent nodes in an autonomous sub-structure
GA in G are d-separated given nodes either included in the sub-structure G* or exogenous causes
to G*. Figure 3 depicts a structure G containing a sub-structure G*. Since nodes X; and X, are
exogenous causes to G* (i.e., they are either parents of nodes in G or not adjacent to them; see
Definition 3), gA is said to be autonomous in G given nodes X; and Xj.

Proposition 1: If GA(VA E*) is an autonomous sub-structure in a DAG G(V,E) given a set
Ver C V of exogenous causes to gA and X 1L Y'|S, where XY € VA, S C V, then 35’ such that
S ' C{VAUVe}and X 1LY |S'.

4.1f G is a partially directed graph, then Pa,(X, G) replaces Pa(X, G).
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Figure 3: An example of an autonomous sub-structure.

Proof: The proof is based on Lemma 1.
Lemma 1: If in a DAG, X and Y are non-adjacent and X is not a descendant of Y 2 then X and Y
are d-separated given Pa(Y') (Pearl, 1988; Spirtes et al., 2000).

If in a DAG G(V,E), X 1L Y|S for some set S, where X and Y are non-adjacent, and if X is
not a descendant of Y, then, according to Lemma 1, X and Y are d-separated given Pa(Y). Since X
and Y are contained in the sub-structure G* (V2 E®), which is autonomous given the set of nodes
Vex, then, following the definition of an autonomous sub-structure, all parents of the nodes in VA
and specifically Pa(Y)—are members in set {VAUV,,}. Then, 38’ such that §' € {VAUV,,} and
X 1L Y |S', which proves Proposition 1. [ |

3. Recursive Autonomy Identification

Starting from a complete undirected graph and proceeding from low to high graph d-separation res-
olution, the RAI algorithm uncovers the correct pattern® of a structure by performing the following
sequence of operations: (1) test of CI between nodes, followed by the removal of edges related
to independences, (2) edge direction according to orientation rules, and (3) graph decomposition
into autonomous sub-structures. For each autonomous sub-structure, the RAI algorithm is applied
recursively, while increasing the order of CI testing.

CI testing of order n between nodes X and Y is performed by thresholding the value of a criterion
that measures the dependence between the nodes conditioned on a set of n nodes (i.e., the condition
set) from the parents of X or Y. The set is determined by the Markov property (Pearl, 2000), for
example, if X is directed into Y, then only Y’s parents are included in the set. Commonly, this
criterion is the %2 goodness of fit test (Spirtes et al., 2000) or conditional mutual information (CMI)
(Cheng et al., 1997).

5.If X is a descendant of Y, we change the roles of X and Y and replace Pa(Y) with Pa(X).
6. In the absence of a topological node ordering, uncovering the correct pattern is the ultimate goal of BN structure

learning algorithms, since a pattern represents the same set of probabilities as that of the true structure (Spirtes et al.,
2000).
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Directing edges is conducted according to orientation rules (Pearl, 2000; Spirtes et al., 2000).
Given an undirected graph and a set of independences, both being the result of CI testing, the
following two steps are performed consecutively. First, intransitive triplets of nodes (V-structures)
are identified, and the corresponding edges are directed. An intransitive triplet X — Z <Y is defined
if 1) X and Y are non-adjacent neighbors of Z, and 2) Z is not in the condition set that separated X
and Y. In the second step, also known as the inductive stage, edges are continually directed until
no more edges can be directed, while assuring that no new V-structures and no directed cycles are
created.

Decomposition into separated, smaller, autonomous sub-structures reveals the structure hierar-
chy. Decomposition also decreases the number and length of paths between nodes that are Cl-tested,
thereby diminishing, respectively, the number of CI tests and the sizes of condition sets used in these
tests. Both reduce computational complexity. Moreover, due to decomposition, additional edges can
be directed, which reduces the complexity of CI testing of the subsequent iterations. Following de-
composition, the RAI algorithm identifies ancestor and descendant sub-structures; the former are
autonomous, and the latter are autonomous given nodes of the former.

3.1 The RAI Algorithm

Similarly to other algorithms of structure learning (Cheng et al., 1997; Cooper and Herskovits, 1992;
Heckerman, 1995), the RAI algorithm’ assumes that all the independences entailed from the given
data can be encoded by a DAG. Similarly to other CB algorithms of structure learning (Cheng et al.,
1997; Spirtes et al., 2000), the RAI algorithm assumes that the data sample size is large enough for
reliable CI tests.

An iteration of the RAI algorithm starts with knowledge produced in the previous iteration and
the current d-separation resolution, n. Previous knowledge includes G, a structure having a d-
separation resolution of n— 1, and G, , a set of structures each having possible exogenous causes to
Gistarr- Another input is the graph Gay, which contains Ggart, G and edges connecting them. Note
that G, may also contain other nodes and edges, which may not be required for the learning task
(e.g., edges directed from nodes in Gy into nodes that are not in Gyare OF G, ), and these will be
ignored by the RAI. In the first iteration, n = 0, G,, = 0, Gstart(V,E) is the complete undirected
graph and the d-separation resolution is not defined, since there are no pairs of d-separated nodes.
Since G, is empty, Gai = Gitart-

Given a structure Gy having d-separation resolution n — 1, the RAI algorithm seeks indepen-
dences between adjacent nodes conditioned on sets of size n and removes the edges corresponding
to these independences. The resulting structure has a d-separation resolution of n. After applying
orientation rules so as to direct the remaining edges, a partial topological order is obtained in which
parent nodes precede their descendants. Childless nodes have the lowest topological order. This
order is partial, since not all the edges can be directed; thus, edges that cannot be directed connect
nodes of equal topological order. Using this partial topological ordering, the algorithm decomposes
the structure into ancestor and descendent autonomous sub-structures so as to reduce the complexity
of the successive stages.

First, descendant sub-structures are established containing the lowest topological order nodes. A
descendant sub-structure may be composed of a single childless node or several adjacent childless

7. The RAI algorithm and a preliminary experimental evaluation of the algorithm were introduced in Yehezkel and
Lerner (2005).
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nodes. We will further refer to a single descendent sub-structure, although such a sub-structure
may consist of several non-connected sub-structures. Second, all edges pointing towards nodes of
the descendant sub-structure are temporarily removed (together with the descendant sub-structure
itself), and the remaining clusters of connected nodes are identified as ancestor sub-structures. The
descendent sub-structure is autonomous, given nodes of higher topological order composing the
ancestor sub-structures. To consider smaller numbers of parents (and thereby smaller condition set
sizes) when CI testing nodes of the descendant sub-structure, the algorithm first learns ancestor
sub-structures, then the connections between ancestor and descendant sub-structures, and finally
the descendant sub-structure itself. Each ancestor or descendent sub-structure is further learned
by recursive calls to the algorithm. Figures 4, 5 and 6 show, respectively, the RAI algorithm, a
manifesting example and the algorithm execution order for this example.

The RAI algorithm is composed of four stages (denoted in Figure 4 as Stages A, B, C and
D) and an exit condition checked before the execution of any of the stages. The purpose of the
exit condition is to assure that a CI test of a required order can indeed be performed, that is, the
number of potential parents required to perform the test is adequate. The purpose of Stage Al is
to thin the link between G, and G, the latter having d-separation resolution of n — 1. This is
achieved by removing edges corresponding to independences between nodes in G, and nodes in
Gstart conditioned on sets of size n of nodes that are either exogenous to, or within, Giarr. Similarly,
in Stage B1, the algorithm tests for CI of order n between nodes in Ggare given sets of size n of nodes
that are either exogenous to, or within, Gy, and removes edges corresponding to independences.
The edges removed in Stages Al and B1 could not have been removed in previous applications of
these stages using condition sets of lower orders. When testing independence between X and Y,
conditioned on the potential parents of node X, those nodes in the condition set that are exogenous
to Gitart are X'’s parents whereas those nodes that are in Gyt are either its parents or adjacents.

In Stages A2 and B2, the algorithm directs every edge from the remaining edges that can be
directed. In Stage B3, the algorithm groups in a descendant sub-structure all the nodes having the
lowest topological order in the derived partially directed structure, and following the temporary re-
moval of these nodes, it defines in Stage B4 separate ancestor sub-structures. Due to the topological
order, every edge from a node X in an ancestor sub-structure to a node Z in the descendant sub-
structure is directed as X — Z. In addition, there is no edge connecting one ancestor sub-structure
to another ancestor sub-structure.

Thus, every ancestor sub-structure contains all the potential parents of its nodes, that is, it is au-
tonomous (or if some potential parents are exogenous, then the sub-structure is autonomous given
the set of exogenous nodes). The descendant sub-structure is, by definition, autonomous given
nodes of ancestor sub-structures. Proposition 1 showed that we can identify all the conditional in-
dependences between nodes of an autonomous sub-structure. Hence, every ancestor and descendant
sub-structure can be processed independently in Stages C and D, respectively, so as to identify con-
ditional independences of increasing orders in each recursive call of the algorithm. Stage C is a
recursive call for the RAI algorithm for learning each ancestor sub-structure with order n+ 1. Sim-
ilarly, Stage D is a recursive call for the RAI algorithm for learning the descendant sub-structure
with order n -+ 1, while assuming that the ancestor sub-structures have been fully learned (having
d-separation resolution of n+1).

Figure 5 and Figure 6, respectively, show diagrammatically the stages in learning an example
graph and the execution order of the algorithm for this example. Figure 5a shows the true structure
that we wish to uncover. Initially, Gsar is the complete undirected graph (Figure 5b), n =0, G, is
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Main function: gout =RAI [na gstart(vstartyEstart)a gex(VeXaEex)a gall]

Exit condition

If all nodes in Gitare have fewer than n+ 1 potential parents, set Gour = Gan and exit.

A. Thinning the link between G_, and G« and directing Gt

1. For every node Y in G and its parent X in G, if 3§ C {Pa,(Y, Gsart) U
Pa(Y,G,.)\X} and |S| = n such that X 1L Y| S, then remove the edge between
X and Y from Gyj.

2. Direct the edges in Gyt Using orientation rules.
B. Thinning, directing and decomposing Giart

1. For every node Y and its potential parent X both in G, if 3 C {Pa(Y, G CX) U
Pa, (Y, Gsart)\X } and |S| = n such that X 1l Y |S, then remove the edge between
X and Y from Gy and Giart.-

2. Direct the edges in Gyt USing orientation rules.

3. Group the nodes having the lowest topological order into a descendant sub-
structure Gp.

4. Remove Gp from Giiare temporarily and define the resulting unconnected structures
as ancestor sub-structures Ga,, ..., Ga, .
C. Ancestor sub-structure decomposition
Fori=1tok,call RAI[n+1,Ga,, G\, Ganl]-

D. Descendant sub-structure decomposition

1. Define G, ={Ga,---; GA,, Gox } @s the exogenous set to Gp.
2. CallRAI[n+1, Gp, Gexpy Gan)-
3. Set Gout = Gan and exit.

Figure 4: The RAI algorithm.
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(2 () @

Figure 5: Learning an example structure. a) The true structure to learn, b) initial (complete) struc-
ture and structures learned by the RAI algorithm in Stages (see Figure 4) ¢) B1, d) B2,
e) B3 and B4, f) C, g) D and Al, h) D and A2 and i) D, B1 and B2 (i.e., the resulting
structure).
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[ RAI[0,G({ X1 ... X7}), {}, Ga]

|
6\3 2\1

{ RAI[L, G({ X3, X4, X5}), {}, Ganll } {RAI[lag({Xl})’{}agall]}

12 7
5 /4

RAI[2, G({ X3, X4, X5}), {}, Gatl]

{ RAI[17 g({X27 X67 X7})7 {g({Xl})’ g({X37 X4’ X5})}7 gall] }

1/ f10 RAI2,G({ X2, X6}), {G({X1}), G({ X3, X4, X5}) }, Garl]

RAI[Z g({X7})7 {g({X27 XG})? g({Xl})7 g({X37 X47 XS})}v gall]

Figure 6: The execution order of the RAI algorithm for the example structure of Figure 5. Recursive
calls of Stages C and D are marked with double and single arrows, respectively. The
numbers annotating the arrows indicate the order of calls and returns of the algorithm.
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empty and G = Gitart, SO Stage A is skipped. In Stage B1, any pair of nodes in Gart is CI tested
given an empty condition set (i.e., checking marginal independence), which yields the removal of the
edges between node X; and nodes X3, X4 and X5 (Figure 5¢). The edge directions inferred in Stage
B2 are shown in Figure 5d. The nodes having the lowest topological order (X», Xg, X7) are grouped
into a descendant sub-structure Gp (Stage B3), while the remaining nodes form two unconnected
ancestor sub-structures, Ga, and Ga, (Stage B4)(Figure 5¢). Note that after decomposition, every
edge between a node, X;, in an ancestor sub-structure, and a node, X, in a descendant sub-structure
is a directed edge X; — X;. The set of all edges from an ancestor sub-structure to the descendant
sub-structure is illustrated in Figure 5e by a wide arrow connecting the sub-structures. In Stage C,
the algorithm is called recursively for each of the ancestor sub-structures with n = 1, Gsart = Ga,
(i=1,2) and G, = 0. Since sub-structure G, contains a single node, the exit condition for this
structure is satisfied. While calling Gt = Ga,, Stage A is skipped, and in Stage B1 the algorithm
identifies that X4 1L X5 | X3, thus removing the edge X4 — Xs5. No orientations are identified (e.g., X3
cannot be a collider, since it separated X4 and Xs), so the three nodes have equal topological order
and they are grouped to form a descendant sub-structure. The recursive call for this sub-structure
with n = 2 is returned immediately, since the exit condition is satisfied (Figure 5f). Moving to
Stage D, the RAI is called with n = 1, Gyarr = Gp and G, = {Ga,, Ga,}. Then, in Stage Al
relations X 1L {Xs,X7} | X2, Xa 1L {Xe,X7} | Xz and {X3,X5} 1L {Xz,Xe,X7} | X4 are identified, and
the corresponding edges are removed (Figure 5g). In Stage A2, X and X7 cannot collide at X,
(since X and X7 are adjacent), and X, and Xg (X7) cannot collide at X7 (Xg) (since X> and X5 (X7)
are adjacent); hence, no additional V-structures are formed. Based on the inductive step and since
X is directed at X, X, should be directed at X4 and at X7. X¢ (X7) cannot be directed at X7 (Xg),
because no new V-structures are allowed (Figure 5h). Stage B1 of the algorithm identifies the
relation X, 1l X7|Xe and removes the edge X, — X7. In Stage B2, X¢ cannot be a collider of X,
and X5, since it has separated them. In the inductive step, X is directed at X7, Xs — X7 (Figure 5i).
In Stages B3 and B4, X7 and {X,,X¢} are identified as a descendant sub-structure and an ancestor
sub-structure, respectively. Further recursive calls (8 and 10 in Figure 6) are returned immediately,
and the resulting partially directed structure (Figure 5i) represents a family of Markov equivalent
structures (pattern) of the true structure (Figure 5a).

3.2 Minimality, Stability and Complexity

After describing the RAI algorithm (Section 3.1) and before proving its correctness (Section 3.3), we
analyze in Section 3.2 three essential aspects of the algorithm —minimality, stability and complexity.

3.2.1 MINIMALITY

A structure recovered by the RAI algorithm in iteration m has a higher d-separation resolution and
entails fewer dependences and thus is simpler and preferred® to a structure recovered in iteration
m — k where 0 < k < m. By increasing the resolution, the RAI algorithm, similarly to the PC
algorithm, moves from a complete undirected graph having maximal dependence relations between
variables to structures having less (or equal) dependences than previous structures, ending in a
structure having no edges between conditionally independent nodes, that is, a minimal structure.

8. We refer here to structures learned during algorithm execution and do not consider the empty graph that naturally has
the lowest d-separation resolution (i.e., 0). This graph, having all nodes marginally independent of each other, will
be found by the RAI algorithm immediately after the first iteration for graph resolution 0.
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3.2.2 STABILITY

Similarly to Spirtes et al. (2000), we use the notion of stability informally to measure the number of
errors in the output of a stage of the algorithm due to errors in the input to this stage. Similarly to the
PC algorithm, the main sources of errors of the RAI algorithm are Cl-testing and the identification
of V-structures. Removal of an edge due to an erroneous CI test may lead to failure in correctly
removing other edges, which are not in the true graph and also cause to orientation errors. Failure
to remove an edge due to an erroneous CI test may prevent, or wrongly cause, orientation of edges.
Missing or wrongly identifying a V-structure affect the orientation of other edges in the graph during
the inductive stage and subsequent stages.

Many CI test errors (i.e., deciding that (in)dependence exists where it does not) in CB algo-
rithms are the result of unnecessary large condition sets given a limited database size (Spirtes et al.,
2000). Large condition sets are more likely to be inaccurate, since they are more likely to include
unnecessary and erroneous nodes (erroneous due to errors in earlier stages of the algorithm). These
sets may also cause poorer estimation of the criterion that measures dependence (e.g., CMI or %?)
due to the curse-of-dimensionality, as typically there are only too few instances representing some
of the combinations of node states. Either way, these condition sets are responsible for many wrong
decisions about whether dependence between two nodes exists or not. Consequently, these errors
cause structural inaccuracies and hence also poor inference ability.

Although Cl-testing in the PC algorithm is more stable than V-structure identification (Spirtes
et al., 2000), it is difficult to say whether this is also the case in the RAI algorithm. Being recursive,
the RAI algorithm might be more unstable. However, CI test errors are practically less likely to
occur, since by alternating between CI testing and edge direction the algorithm uses knowledge
about parent-child relations before CI testing of higher orders. This knowledge permits avoiding
some of the tests and decreases the size of conditions sets of some other tests (see Lemma 1). In
addition, graph decomposition promotes decisions about well-founded orders of node presentation
for subsequent CI tests, contrary to the common arbitrary order of presentation (see, e.g., the PC
algorithm). Both mechanisms enhance stability and provide some means of error correction, as will
be demonstrated shortly.

Let us now extensively describe examples that support our claim regarding the enhanced sta-
bility of the RAI algorithm. Suppose that following CI tests of some order both the PC and RAI
algorithms identify a triplet of nodes in which two non-adjacent nodes, X and Y, are adjacent to a
third node, Z, that is, X — Z — Y. In the immediate edge direction stage, the RAI algorithm identifies
this triplet as a V-structure, X — Z < Y. Now, suppose that due to an unreliable CI test of a higher
order the PC algorithm removes X — Z and the RAI algorithm removes X — Z. Eventually, both
algorithms fail to identify the V-structure, but the RAI algorithm has an advantage over the PC algo-
rithm in that the other arm of the V-structure is directed, Z < Y. This contributes to the possibility to
direct further edges during the inductive stage and subsequent recursive calls for the algorithm. The
directed arm would also contribute to fewer CI tests and tests with smaller condition sets during CI
testing with higher orders (e.g., if we later have to test independence between Y and another node,
then we know that Z should not be included in the condition set, even though it is adjacent to Y). In
addition, the direction of this edge also contributes to enhanced inference capability.

Now, suppose another example in which after removing all edges due to reliable CI tests using
condition set sizes lower than or equal to n, the algorithm identifies the V-structure X — Z < Y
(Figure 7a). However, let assume that one of the V-structure arms, say X — Z, is correctly removed
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on a subsequent iteration using a larger condition set size (say n+ 1 without limiting the generality).
We may be concerned that assuming a V-structure for the lower graph resolution, the RAI algorithm
wrongly directs the second arm Z — Y as Z < Y. However, we demonstrate that the edge direction
Z Y remains valid even if there should be no edge X — Z in the true graph. Suppose that X — Z
was correctly removed conditioned on variable W, which is independent of Y given any condition
set with a size smaller than or equal to n. Then, the possible underlying graphs are shown in Figures
7b-7d. The graph in Figure 7d is not possible, since it yields that X and Y are dependent given all
condition sets of sizes smaller than or equal to n. In Figure 7b and Figure 7c, Z is a collider between
W and Y, and thus the edge direction Z < Y remains valid. A different graph,X - W «—Z-Y (i.e.,
W is a collider), is not possible, since it means that X Ll Z|S, |S| < n,W ¢ S and then X — Z should
have been removed in a previous order (using condition set size of n or lower) and X — Z «— Y
should not have been identified in the first place. Now, suppose that W and Y are dependant. In this
case, the possible graphs are those shown in Figures 7e-7h. Similarly to the case in which W and Y
are independent, W cannot be a collider of X and Z (X — W « Z) in this case as well. The graphs
shown in Figures 7e-7g cannot be the underlying graphs since they entail dependency between
X and Y given a condition set of size lower than or equal to n. The graph shown in Figure 7h
exemplifies a V-structure X — W «— Y. Since we assume that X and Z are independent given W
(and thus X — Z was removed), a V-structure X — W « Z is not allowed. Since the edge X — W
is already directed, the edge between W and Z must be directed as W — Z. In this case, to avoid
the cycleY — W — Z — Y, the edge between Y and Z must be directed as in the true graph, that is,
Y —-Z.

Finally for the stability subsection, we note that the contribution of graph decomposition to
structure learning using the RAI algorithm is threefold. First is the identification in early stages,
using low-order, reliable CI tests, of the graph hierarchy, exemplifying the backbone of causal rela-
tions in the graph. For example, Figure Se shows that learning our example graph (Figure 5a) from
the complete graph (Figure 5b) demonstrates, immediately after the first iteration, that the graph is
composed of three sub-structures—{X; }, {X», X6, X7} and {X3,X4,Xs}, where {X;} — {X7,X¢,X7}
and {X3,X4, X5} — {X2,X6,X7}. This rough (low-resolution) partition of the graph is helpful in visu-
alizing the problem and representing the current knowledge from the outset and along the learning.
The second contribution of graph decomposition is the possibility to implement learning using a
parallel processor for each sub-structure independently. This advantage may be further extended in
the recursive calls for the algorithm.

Third is the contribution of graph decomposition to improved performance. Aiming at a low
number of CI tests, decomposition provides a sound guideline for deciding on an educated order
in which the edges should be CI tested. Based on this order, some tests can be considered redun-
dant and thus be avoided. Several methods for selecting the right order for the PC algorithm were
presented in Spirtes et al. (2000), but these methods are heuristic. Decomposition into ancestor and
descendent sub-structures is followed by three levels of learning (Figure 4), that is, removing and di-
recting edges 1) of ancestor sub-structures, 2) between ancestor and descendent sub-structures, and
3) of the descendent sub-structure. The second level has the greatest influence on further learning.
The removal of edges between ancestor and descendent sub-structures and the sequential direction
of edges in the descendant sub-structure assure that, first, fewer potential parents are considered,
while learning the descendent sub-structure and second, more edges can be directed in this lat-
ter sub-structure. Moreover, these directed edges and the derived parent-child relations prevent an
arbitrary selection order of nodes for CI testing and thereby enable employing smaller and more
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Figure 7: Graphs used to exemplify the stability of the RAI algorithm (see text).

accurate condition sets. Take, for example, CI testing for the redundant edge between X, and X5
in our example graph (Figure 5i) if the RAI algorithm did not use decomposition. Graph decom-
position for n = 0 (Figure 5e) enables the identification of two ancestor sub-structures, G, and
Ga,, as well as a descendent sub-structure Gp that are each learned recursively. During Stage D
(Figure 4) and while thinning the links between the ancestor sub-structures and Gp (in Stage Al
of the recursion for n = 1), we identify the relations X; 1l {Xe,X7}|X2, X4 1L {X6,X7}| X, and
{X3,X5} 1L {X2,X6,X7}| X4 and remove the 10 corresponding edges (Figure 5g). The decision to
test and remove these edges first was enabled by the decomposition of the graph to Ga,, Ga, and
Gp. In Stage A2 (Figure 5h), we direct the edge X — X¢ (as X; L Xg| X, and thus X, cannot be
a collider between X; and Xg) and edge X, — X7 (as X; L X7|X; and thus X, cannot be a collider
between X; and X7), and in Stage B (Figure 5i) we direct the edge X¢ — X7. The direction of these
edges could not be assured without removing first the above edges, since the (redundant) edges
pointing onto X and X7 would have allowed wrong edge direction, that is, X — X, and X7 — Xj.
If we had been using the RAI algorithm with no decomposition (Figure 5d) (or the PC algorithm)
and had decided to check the independence between X, and X7, first, we would have had to consider
condition sets containing the nodes X;, X3, X4, X5 or X¢ (up to 10 CI tests whether we start from
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X; or X7). Instead, we perform in Stage B1 only one test, X, LI X7 | Xs. These benefits are the result
of graph decomposition.

3.2.3 COMPLEXITY

CI tests are the major contributors to the (run-time) complexity of CB algorithms (Cheng and
Greiner, 1999). In the worst case, the RAI algorithm will neither direct any edges nor decom-
pose the structure and will thus identify the entire structure as a descendant sub-structure, calling
Stages D and B1 iteratively while skipping all other stages. Then, the execution of the algorithm
will be similar to that of the PC algorithm, and thus the complexity will be bounded by that of the
PC algorithm. Given the maximal number of possible parents k and the number of nodes n, the
number of CI tests is bounded by (Spirtes et al., 2000)

k 2 k-1
(B0 %
=0 :
which leads to complexity of O(n¥).

This bound is loose even in the worst case (Spirtes et al., 2000) especially in real-world ap-
plications requiring graphs having V-structures. This means that in most cases some edges are
directed and the structure is decomposed; hence, the number of CI tests is much smaller than that
of the worst case. For example, by decomposing our example graph (Figure 5) into descendent
and ancestor sub-structures in the first application of Stage B4 (Figure 5e), we avoid checking
Xo AL X7]{X1,X3,X4,Xs}. This is because {X;, X3, X4, Xs} are neither Xs’s nor X7’s parents and thus
are not included in the (autonomous) descendent sub-structure. By checking only Xs Ll X7 |{X>},
the RAI algorithm saves CI tests that are performed by the PC algorithm. We will further elaborate
on the RAI algorithm complexity in our forthcoming study.

3.3 Proof of Correctness

We prove the correctness of the RAI algorithm using Proposition 2. We show that only conditional
independences (of all orders) entailed by the true underlying graph are identified by the RAI al-
gorithm and that all V-structures are correctly identified. We then note on the correctness of edge
direction.

Proposition 2: If the input data to the RAI algorithm are faithful to a DAG, Gy, having any
d-separation resolution, then the algorithm yields the correct pattern for Girye.

Proof: We use mathematical induction to prove the proposition, where in each induction step, m,
we prove that the RAI algorithm finds (a) all conditional independences of order m and lower, (b)
no false conditional independences, (c) only correct V-structures and (d) all V-structures, that is, no
V-structures are missing.

Base step (m = 0): If the input data to the RAI algorithm was generated from a distribution faithful
to a DAG, Gire, having d-separation resolution 0, then the algorithm yields the correct pattern for
Gtrue-

Given that the true underlying DAG has a d-separation resolution of 0, the data entail only
marginal independences. In the beginning of learning, Gyt is a complete graph and m = 0. Since
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there are no exogenous causes, Stage A is skipped. In Stage B, the algorithm tests for independence
between every pair of nodes with an empty condition set, that is, X Ll ¥ | @ (marginal independence),
removes the redundant edges and directs the remaining edges as possible. In the resulting structure,
all the edges between independent nodes have been removed and no false conditional independences
are entailed. Thus, all the identified V-structures are correct, as discussed in Section 3.2.2 on stabil-
ity, and there are no missing V-structures, since the RAI algorithm has tested independence for all
pair of nodes (edges). At the end of Stage B2 (edge direction), the resulting structure and Gir,e have
the same set of V-structures and the same set of edges. Thus, the correct pattern for Gy is identi-
fied. Since the data entail only independences of zero order, further recursive calls with m > 1 will
not find independences with condition sets of size m, and thus no edges will be removed, leaving
the graph unchanged.

Inductive step (m+ 1): Suppose that at induction step m, the RAI algorithm discovers all condi-
tional independences of order m and lower, no false conditional independences are entailed, all
V-structures are correct, and no V-structures are missing. Then, if the input data to the RAI al-
gorithm was generated from a distribution faithful to a DAG, Gy, having d-separation resolution
m+ 1, then the RAI algorithm would yield the correct pattern for that graph.

In step m, the RAI algorithm discovers all conditional independences of order m and lower.
Given input data faithful to a DAG, Giye, having d-separation resolution m + 1, there exists at
least one pair of nodes, say {X,Y}, in the true graph, that has a d-separation resolution of m + 1.0
Since the RAI, by the recursive call m+1 (i.e., calling RAI[m + 1, Gart, Gy Gan)), has identified
only conditional independences of order m and lower, an edge, Exy = (X —Y), exists in the input
graph, Ggre. The smallest condition set required to identify the independence between X and Y is
Sxy (X 1L Y |Sxy), such that |Sxy| > m+ 1. Thus, |Pa,(X)\Y| > m+1 or |[Pa,(Y)\X| >m+1,
meaning that either node X or node Y has at least m 4 2 potential parents. Such an edge exists
in at least one of the autonomous sub-structures decomposed from the graph yielded at the end of
iteration m. When calling, in Stage C or Stage D, the algorithm recursively for this sub-structure
with m’ = m+ 1, the exit condition is not satisfied because either node X or node Y has at least m’ + 1
parents. Since Step m assured that the sub-structure is autonomous, it contains all the necessary node
parents. Note that decomposition into ancestor, Ga , and descendant, Gp, sub-structures occurs after
identification of all nodes having the lowest topological order, such that every edge from a node
X in Ga to anode Y in Gp is directed, X — Y. In the case that the sub-structure is an ancestor
sub-structure, Sxy contains nodes of the sub-structure and its exogenous causes. In the case that the
sub-structure is a descendant sub-structure, Sxy contains nodes from the ancestor sub-structures and
the descendant sub-structure. Therefore, based on Proposition 1, the RAI algorithm tests all edges
using condition sets of sizes m’ and removes Exy (and all similar edges) in either Stage A or Stage
B, yielding a structure with d-separation resolution of m’ and thereby yields the correct pattern for
the true underlying graph of d-separation resolution m + 1.

Spirtes (2001)—when introducing the anytime fast casual inference (AFCI) algorithm —proved
the correctness of edge direction of AFCI. The AFCI algorithm can be interrupted at any stage
(resolution), and the resultant graph at this stage is correct with probability one in the large sample

9. If the d-separation resolution of {X,Y} is m’ > m+ 1, then the RAI algorithm will not modify the graph until step '
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limit, although possibly less informative!® than if had been allowed to continue uninterrupted.'!
Recall that interrupting learning means that we avoid CI tests of higher orders. This renders the
resultant graph more reliable. We use this proof here for proving the correctness of edge direction
in the RAI algorithm. Completing CI testing with a specific graph resolution z in the RAI algorithm
and interrupting the AFCI at any stage of CI testing are analogous. Furthermore, Spirtes (2001)
proves that interrupting the algorithm at any stage is also possible during edge direction, that is,
once an edge is directed, the algorithm never changes that direction. In Section 3.2.2, we showed
that even if a directed edge of a V-structure is removed, the direction of the remaining edge is still
correct. Since directing edges by the AFCI algorithm after interruption yields a correct (although
less informative) graph (Spirtes, 2001), also the direction of edges by the RAI algorithm yields
a correct graph. Having (real) parents in a condition set used for CI testing, instead of potential
parents, which are the result of edge direction for resolutions lower than n, is a virtue, as was
confirmed in Section 3.1. All that is required that all parents, either real or potential, be included
within the corresponding condition set, and this is indeed guaranteed by the autonomy of each sub-
structure, as was proved above. |

4. Experiments and Results

We compare the RAI algorithm with other state-of-the-art algorithms with respect to structural cor-
rectness, computational complexity, run-time and classification accuracy when the learned structure
is used in classification. The algorithms learned structures from databases representing synthetic
problems, real decision support systems and natural classification problems. We present the experi-
mental evaluation in four sections. In Section 4.1, the complexity of the RAI algorithm is measured
by the number of CI tests required for learning synthetically generated structures in comparison to
the complexity of the PC algorithm (Spirtes et al., 2000).

The order of presentation of nodes is not an input to the PC algorithm. Nevertheless, CI testing
of orders higher than 0, and therefore also edge directing, which depends on CI testing, may be
sensitive to that order. This may cause learning different graphs whenever the order is changed.
Dash and Druzdzel (1999) turned this vice of the PC algorithm into a virtue by employing the
partially directed graphs formed by using different orderings for the PC algorithm as the search
space from which the structure having the highest value of the K2 metric (Cooper and Herskovits,
1992) is selected. For the RAI algorithm, sensitivity to the order of presentation of nodes is expected
to be reduced compared to the PC algorithm, since the RAI algorithm, due to edge direction and
graph decomposition, decides on the order of performing most of the CI tests and does not use an
arbitrary order (Section 3.2.2). Nevertheless, to account for the possible sensitivity of the RAI and
PC algorithms to this order, we preliminarily employed 100 different permutations'? of the order for
each of ten Alarm network (Beinlich et al., 1989) databases. Since the results of these experiments

10. Less informative in the sense that it answers “can’t tell” for a larger number of questions; that is, identifying, for
example, “o” edge endpoint (placing no restriction on the relation between the pair of nodes making the edge) instead
of “—” endpoint.

11. The AFCI algorithm is also correct if hidden and selection variables exist. A selection variable models the possibility
of an observable variable having some missing data. We focus here on the case where neither hidden nor selection
variables exist.

12. Dash and Druzdzel (1999) examined the relationships between the number of order permutations and the numbers of
variables and instances. We fixed the number of order permutations at 100.
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had showed that the difference in performance for different permutations is slight, we further limited
the experiments with the PC and RAI algorithms to a single permutation.

In Section 4.2, we present our methodology of selecting a threshold for RAI CI testing. We
propose selecting a threshold for which the learned structure has a maximum of a likelihood-based
score value.

In Section 4.3, we use the Alarm network (Beinlich et al., 1989), which is a widely accepted
benchmark for structure learning, to evaluate the structural correctness of graphs learned by the
RAI algorithm. The correctness of the structure recovered by RAI is compared to those of struc-
tures learned using other algorithms—PC, TPDA (Cheng et al., 1997), GES (Chickering, 2002;
Meek, 1997), SC (Friedman et al., 1999) and MMHC (Tsamardinos et al., 2006a). The PC and
TPDA algorithms are the most popular CB algorithms (Cheng et al., 2002; Kennett et al., 2001;
Marengoni et al., 1999; Spirtes et al., 2000); GES and SC are state-of-the-art S&S algorithms
(Tsamardinos et al., 2006a); and MMHC is a hybrid algorithm that has recently been developed and
showed superiority, with respect to different criteria, over all the (non-RAI) algorithms examined
here (Tsamardinos et al., 2006a). In addition to correctness, the complexity of the RAI algorithm,
as measured through the enumeration of CI tests and log operations, is compared to those of the
other CB algorithms (PC and TPDA) for the Alarm network.

In Section 4.4, we extend the examination of RAI in structure learning to known networks other
than the Alarm. Although the Alarm is a popular benchmark network, many algorithms perform
well for this network. Hence, it is important to examine RAI performance on other networks for
which the true graph is known. In the comparison of RAI to other algorithms, we included all
the algorithms of Section 4.3, as well as the Optimal Reinsertion (OR) (Moore and Wong, 2003)
algorithm and a greedy hill-climbing search algorithm with a Tabu list (GS) (Friedman et al., 1999).
We compared algorithm performances with respect to structural correctness, run-time, number of
statistical calls and the combination of correctness and run-time.

In Section 4.5, the complexity and run-time of the RAI algorithm are compared to those of the
PC algorithm using nineteen natural databases. In addition, the classification accuracy of the RAI
algorithm for these databases is compared to those of the PC, TPDA, GES, MMHC, SC and naive
Bayesian classifier (NBC) algorithms. No structure learning is required for NBC and all the domain
variables are used. This classifier is included in the study as a reference to a simple, yet accurate,
classifier. Because we are interested in this section in classification, and a likelihood-based score
does not reflect the importance of the class variable in structures used for classification (Friedman
et al., 1997; Kontkanen et al., 1999; Grossman and Domingos, 2004; Yang and Chang, 2002), we
prefer here the classification accuracy score in evaluating structure performance.

In the implementations of all sections, except Section 4.4, we were aided by the Bayes net
toolbox (BNT) (Murphy, 2001), BNT structure learning package (Leray and Frangois, 2004) and
PowerConstructor software (Cheng, 1998) and evaluated all algorithms ourselves. In Section 4 4,
we downloaded and used the results reported in Tsamardinos et al. (2006a) for the non-RAI al-
gorithms and used the Causal Explorer algorithm library (Aliferis et al., 2003) (http://www.dsl-
lab.org/causal_explorer/index.html). The Causal Explorer algorithm library makes use of meth-
ods and values of parameters for each algorithm as suggested by the authors of each algorithm
(Tsamardinos et al., 2006a). For example, BDeu score (Heckerman et al., 1995) with equivalent
sample size 10 for GS, GES, OR and MMHC; X2 p-values at the standard 5% for the MMHC'’s
and PC’s statistical thresholds; threshold of 1% for the TPDA mutual information test; the Bayesian
scoring heuristic, equivalent sample size of 10 and maximum allowed sizes for the candidate parent
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set of 5 and 10 for SC; and maximum number of parents allowed of 5, 10 and 20 and maximum
allowed run time, which is one and two times the time used by MMHC on the corresponding data
set, for OR. The only parameter that requires optimization in the RAI algorithm (similar to the other
CB algorithms - PC and TPDA) is the CI testing threshold. We use no prior knowledge to find this
threshold but a training set for each database (see Section 4.2 for details). Note, however that we do
not account for the time required for selecting the threshold when reporting the execution time.

4.1 Experimentation with Synthetic Data

The complexity of the RAI algorithm was evaluated in comparison to that of the PC algorithm by
the number of CI tests required to learn synthetically generated structures. Since the true graph
is known for these structures, we could assume that all CI tests were correct and compare the
numbers of CI tests required by the algorithms to learn the true independence relationships. In
one experiment, all 29,281 possible structures having 5 nodes were learned using the PC and RAI
algorithms. The average number of CI tests employed by each algorithm is shown in Figure 8a for
increasing orders (condition set sizes). Figure 8b depicts the average percentages of CI tests saved
by the RAI algorithm compared to the PC algorithm for increasing orders. These percentages were
calculated for each graph independently and then averaged. It is seen that the advantage of the RAI
algorithm over the PC algorithm is more prominent for high orders.
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Figure 8: Measured for increasing orders, the (a) average number of CI tests required by the RAI
and PC algorithms for learning all possible structures having five nodes and (b) average
over all structures of the reduction percentage in CI tests achieved by the RAI algorithm
compared to the PC algorithm.

In another experiment, we learned graphs of sizes (numbers of nodes) between 6 and 15. We
selected from a large number of randomly generated graphs 3,000 graphs that were restricted by a
maximal fan-in value of 3; that is, every node in such a graph has 3 parents at most and at least
one node in the graph has 3 parents. This renders a practical learning task. Thus, the structures
can theoretically be learned by employing CI tests of order 3 and below and should not use tests
of orders higher than 3. In such a case, the most demanding test, having the highest impact on
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Figure 9: Average number of CI tests required by the PC and RAI algorithms for increasing graph
sizes and orders of (a) 3 and (b) 4.

computational time, is of order 3. Figure 9a shows the average numbers of CI tests performed for
this order by the PC and RAI algorithms for graphs with increasing sizes. Moreover, because the
maximal fan-in is 3, all CI tests of order 4 are a priori redundant, so we can further check how well
each algorithm avoids these unnecessary tests. Figure 9b depicts the average numbers of CI tests
performed by the two algorithms for order 4 and graphs with increasing sizes. Both Figure 9a and
Figure 9b show that the number of CI tests employed by the RAI algorithm increases more slowly
with the graph size compared to that of the PC algorithm and that this advantage is much more
significant for the redundant (and more costly) CI tests of order 4.

We further expanded the examination of the algorithms in CI testing for different graph sizes
and CI test orders. Figure 10 shows the average number and percentage of CI tests saved using the
RAI algorithm compared to the PC algorithm for different condition set sizes and graph sizes. The
number of CI tests having an empty condition set employed by each of the algorithms is equal and
is therefore omitted from the comparison. The figure shows that the percentage of CI tests saved
using the RAI algorithm increases with both graph and condition set sizes. For example, the saving
in CI tests when using the RAI algorithm instead of the PC algorithm for learning a graph having
15 nodes and using condition sets of size 4 is above 70% (Figure 10b). In Section 4.4, we will
demonstrate the RAI quality of requiring relatively fewer tests of high orders than of low orders for
graphs of larger sizes for real, rather than synthetic, data.

4.2 Selecting the Threshold for RAI CI Testing

CI testing for the RAI algorithm can be based on the ? test as for the PC algorithm or the conditional
mutual information (CMI) as for the TPDA algorithm. The CMI between nodes X and Y conditioned
on a set of nodes Z (i.e., the condition set), is:

R N Nz P(xi,yjlzk)
CMI X, Y Z 1 2
=222 [ (ir3js2) 108 et S p )| @
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Figure 10: (a) Average number and (b) percentage of CI tests saved by using the RAI algorithm
compared to the PC algorithm for graph sizes of 6,9, 12 or 15 (gray shades) and orders
between 1 and 4.

where x; and y; represent, respectively, states of X and Y, z; represents a combination of states of
all variables in Z, and Nx, Ny and Nz are the numbers of states of X, Y and Z, respectively.

In both CI testing methods, the value of interest (either x> or CMI) is compared to a threshold.
For example, CMI values that are higher or lower than the threshold indicate, respectively, condi-
tional dependence or independence between X and Y given Z. However, the optimal threshold is
unknown beforehand. Moreover, the optimal threshold is problem and data-driven, that is, it de-
pends, on the one hand, on the database and its size and, on the other hand, on the variables and the
numbers of their states. Thus, it is not possible to set a “default” threshold value that will accurately
determine conditional (in)dependence while using any database or problem.

To find an optimal threshold for a database, we propose to score structures learned using differ-
ent thresholds by a likelihood-based criterion evaluated using the training (actually validation) set
and to select the threshold leading to the structure achieving the highest score. Such a score may
be BDeu (Heckerman et al., 1995), although other scores (Heckerman et al., 1995) may also be ap-
propriate. Note that BDeu scores equally statistically indistinguishable structures. Figure 11 shows
BDeu values for structures learned by RAI for the Alarm network using different CMI threshold
values. The maximum BDeu value was achieved at a threshold value of 4e-3 that was selected as
the threshold for RAI CI testing for the Alarm network.

To assess the threshold selected using the suggested method, we employed the Alarm network
and computed the errors between structures learned using different thresholds and the pattern that
corresponds to the true known graph. Following Spirtes et al. (2000) and Tsamardinos et al. (2006a),
we define five types of structural errors to evaluate structural correctness. An extra edge (commis-
sion; EE) error is due to an edge learned by the algorithm although it does not exist in the true graph.
A missing edge (omission; ME) error is due to an edge missed by the algorithm although exists in
the true graph. An extra direction (ED) error is due to edge direction that appears in the learned
graph but not in the true graph, whereas a missing direction (MD) error is due to edge direction that
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Figure 11: BDeu values averaged over ten validation sets consisting of 10,000 samples each drawn
from the Alarm network for increasing CMI thresholds used in CI testing for the RAI
algorithm.

appears in the true graph but not in the learned graph. Finally, a reversed direction (RD) error is due
to edge direction in the learned graph that is opposite to the edge direction in the true graph.

Figure 12a shows the sensitivity of the five structural errors to the CMI threshold. Each point
on the graph is the average error over ten validation databases containing 10,000 randomly sampled
instances each. Figure 12a demonstrates that the MD, RD and ED errors are relatively constant in
the examined range of thresholds and the ME error increases monotonically. The EE error is the
highest error among the five error types, and it has a minimum at a threshold value of 3e-3.

In Figure 12b, we cast the three directional errors using the total directional error (DE), DE =
ED + MD + RD, and plot this error together with the ME and EE errors. The impact of each error
for increasing thresholds is now clearer; the contribution of the DE error is almost constant, that of
the ME error increases with the threshold but is less than DE, and that of the EE error dominants for
every threshold.

Tsamardinos et al. (2006a) suggested assessing the quality of a learned structure using the
structural Hamming distance (SHD) metric, which is the sum of the five above errors. We plot
in Figure 12c this error for the experiment with the Alarm network. Comparison of the threshold
responsible for the minimum of the SHD error (2.5e-3) to that selected according to BDeu (4e-3 in
Figure 11) shows only a small difference, especially as the maximum values of BDeu are obtained
between thresholds of 2.5e-3 and 4e-3. This result motivates using the BDeu score, as measured on
a validation set, as a criterion for finding good thresholds for RAI CI testing. Thresholds that are
smaller than this range lead to too many pairs of variables that are wrongly identified as dependent
and thus the edges between them are not removed, contributing to high EE errors (see, for exam-
ple, Figure 12b). In addition, for thresholds higher than 3e-3, more edges are wrongly removed,
contributing to high ME errors.
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Figure 12: Structural errors of the RAI algorithm learning the Alarm network for different CMI
thresholds as averaged over ten validation sets of 10,000 samples each. (a) Five types
(ME, EE, MD, ED and RD) of structural errors, (b) EE, ME and DE errors, and (¢) SHD
error (mean and std).

4.3 Learning the Alarm Network

For evaluating the correctness of learned BN structures, we used the Alarm network, which is widely
accepted as a benchmark for structure learning algorithms, since the true graph for this problem is
known. The RAI algorithm was compared to the PC, TPDA, GES, SC and MMHC algorithms using
ten databases containing 10,000 random instances each sampled from the network.

Structural correctness can be measured using different scores. However, some of the scores
suggested in the literature are not always accurate or related to the true structure. For example,
Tsamardinos et al. (2006a), who examined the BDeu score (Heckerman et al., 1995) and KL diver-
gence (Kullback and Leibler, 1951) in evaluating learned networks, noted that it is not known in
practice to what degree the assumptions (e.g., a Dirichlet distribution of the hyperparameters) in the
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Extra Missing  Reversed || Directional | Extra | Missing
Direction Direction Direction Error Edge | Edge SHD
(ED) (MD) (RD) (DE) (EE) | (ME)
SC 1 9.5 4.6 15.1 4.7 45 243
MMHC 0.8 33 5.7 9.8 26 0.7 13.1
GES 0.1 0.6 1.2 19 2.7 0.8 54
TPDA 0 42 0 42 24 29 95
PC 0 0 0.8 0.8 25 10 43
RAI 0 0 03 0.3 1.8 14 3.5

Table 1: Structural errors of several algorithms as averaged over 10 databases each containing
10,000 randomly generated instances of the Alarm network. The total directional error
is the sum of three different directional errors, DE=ED+MD+RD, and the SHD error is
DE+EE+ME. Bold font emphasizes the smallest error over all algorithms for each type of
structural error.

basis of the BDeu score hold. Moreover, usually such a score is used in both learning and evaluation
of a structure; hence the score favors algorithms that use it in learning. Tsamardinos et al. (2006a)
also mentioned that both scores do not rely on the true structure. Thus, they suggested the SHD
metric, which is directly related to structural correctness, since it is the sum of the five errors of
Section 4.2. Nevertheless, since SHD can be measured only when the true graph is known, scores
such as BDeu and KL divergence are of great value in practical situations, for example, in classi-
fication problems like those examined in Section 4.5 in which the true graph is not known. These
scores are also beneficial in the determination of algorithm parameters. For example, in Section 4.2
we measured BDeu scores of structures learned using different thresholds in order to select a good
threshold for RAI CI testing.

Although SHD sums all five structural errors, we were first interested in examining the contri-
bution of each individual error to the total error. Table 1 summarizes the five structural errors for
each algorithm as averaged over 10 databases of 10,000 instances each sampled from the Alarm
network. These databases are different from those validation databases used for threshold setting.
The table also shows the total directional error, DE, which is the sum of the three directional errors.
Table 1 demonstrates that the lowest EE and DE errors are achieved by the RAI algorithm and the
lowest ME error is accomplished by the MMHC algorithm. Computing SHD shows the advantage
of the RAI (3.5) algorithm over the PC (4.3), TPDA (9.5), GES (5.4), MMHC (13.1) and the SC
(24.3) algorithms. Further, we propose such a table as Table 1 as a useful tool for the identification
of the sources of structural errors of a given structure learning algorithm.

Note that the SHD error weighs each of the five error types equally. We believe that a score
that weighs the five types based on their relative significance to structure learning will be a more
accurate method to evaluate structural correctness; however, deriving such a score is a topic for
future research.

Complexity was evaluated for each of the CB algorithms by measuring the number of CI tests
employed for each order (condition set size) and the total number of log operations. The latter
criterion is proportional to the total number of multiplications, divisions and logarithm evaluations
that is required for calculating the CMI (Equation 2) during CI testing. Figure 13 depicts the average
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Figure 13: Average percentage (number) of CI tests reduced by using RAI compared to using (a) PC
and (b) TPDA, as a function of the condition set size when learning the Alarm network.

percentage (and number) of CI tests reduced by using the RAI algorithm compared to using the PC
or TPDA algorithms for increasing sizes of the condition sets. The RAI algorithm reduces the
number of CI tests of orders 1 and above required by the PC algorithm and those of orders 2 and
above required by the TPDA algorithm. Moreover, the RAI algorithm completely avoids the use of
CI tests of orders 4 and above and almost completely avoids CI tests of order 3 compared to both
the PC and TPDA algorithms. However, the RAI algorithm performs more CI tests of order 1 than
the TPDA algorithm.

Figure 14 summarizes the total numbers of CI tests and log operations over different condition
set sizes required by each algorithm. The RAI algorithm requires 46% less CI tests than the PC
algorithm and 14% more CI tests (of order 1) than the TPDA algorithm. However, the RATI algorithm
significantly reduces the number of log operations required by the other two algorithms. The PC or
TPDA algorithms require, respectively, an additional 612% or 367% of the number of log operations
required by the RAI algorithm. The reason for this substantial advantage of the RAI algorithm over
both the PC and TPDA algorithms is the saving in CI tests of high orders (see Figure 13). These
tests make use of large condition sets and thus are very expensive computationally.

4.4 Learning Known Networks

In addition to the state-of-art algorithms that were compared in Section 4.3, we include in this
section the OR and GS algorithms. We compare the performance of the RAI algorithm to these
algorithms by learning the structures of known networks employed in real decision support systems
from a wide range of applications. We use known networks described in Tsamardinos et al. (2006a),
which include the Alarm (Beinlich et al., 1989), Barley (Kristensen and Rasmussen, 2002), Child
(Cowell et al., 1999), Hailfinder (Jensen and Jensen, 1996), Insurance (Binder et al., 1997), Mildew
(Jensen and Jensen, 1996) and Munin (Andreassen et al., 1989) networks. All these networks may
be downloaded from the Causal Explorer webpage. The Pigs, Link and Gene networks, which were
also evaluated in Tsamardinos et al. (2006a), are omitted from our experiment due to memory and
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Figure 14: Cumulative numbers of (a) CI tests and (b) log operations required by PC, TPDA, and
RALI for learning the Alarm network. Different gray shades represent different sizes of
condition sets. Percentages on tops of the bars are with reference to the RAI algorithm.

run-time limitations of the platform used in our experiment. These limitations are in the computation
of the BDeu scoring function (part of the BNT toolbox) that is used for selecting a threshold for the
RAI CI tests (Section 4.2).

The Casual Explorer webpage also contains larger networks that were created by tiling net-
works, such as the Alarm, Hailfinder, Child and Insurance, 3, 5 and 10 times. In the tiling method
developed by Tsamardinos et al. (2006b), several copies (here 3, 5 and 10) of the same BN are
tiled until reaching a network having a desired number of variables (e.g., Alarm5 has 5 x 37 = 185
variables). The method maintains the structural and probabilistic properties of the original network
but allows the evaluation of the learning algorithm as the number of variables increases without
increasing the complexity of the network. Overall, we downloaded and used nineteen networks, the
most important details of which are shown in Table 2. Further motivation for using these networks
and tiling is given in Tsamardinos et al. (2006a).

Throughout this experiment, we used for each network the same training and test sets as used in
Tsamardinos et al. (2006a), so we could compare the performance of the RAI to all the algorithms
reported in Tsamardinos et al. (2006a). The data in the Causal Explorer webpage are given for each
network using five training sets and five test sets with 500, 1000 and 5,000 samples each. We picked
and downloaded the data sets with the smallest sample size (500), which we believe challenge the
algorithms the most. All the reported results for a network and a learning algorithm in this sub-
section are averages over five experiments in which a different training set was used for training the
learning algorithm and a different test set was used for testing this algorithm.

The RAI algorithm was run by us. CMI thresholds for CI testing corresponded to the maximum
BDeu values were obtained in five runs using five validation sets independent of the training and
test sets, and performances were averaged over the five validation sets. We note that the thresholds
selected according to the maximum BDeu values (Section 4.2) also led to the lowest SHD errors.
The OR algorithm was examined with a maximum number of parents allowed for a node (k) of
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] # H Network #nodes #edges Max fan-in Max fan-out
1 || Alarm 37 46 4 5
2 || Alarm 3 111 149 4 5
3 || Alarm 5 185 265 4 6
4 || Alarm 10 370 570 4 7
5 || Barley 48 84 4 5
6 || Child 20 25 2 7
7 || Child 3 60 79 3 7
8 || Child 5 100 126 2 7
9 || Child 10 200 257 2 7
10 || Hailfinder 56 66 4 16
11 || Hailfinder 3 168 283 5 18
12 || Hailfinder 5 280 458 5 18
13 || Hailfinder 10 560 1017 5 20
14 || Insurance 27 52 3 7
15 || Insurance 3 81 163 4 7
16 || Insurance 5 135 281 5 8
17 || Insurance 10 270 556 5 8
18 || Mildew 35 46 3 3
19 || Munin 189 282 3 15

Table 2: Nineteen networks with known structures that are used for the evaluation of the structure
learning algorithms. The number that is attached to the network name (3, 5 or 10) indicates
the number of tiles of this network. The # symbol on the first column represents the
network ID for further use in the subsequent tables.

5, 10 and 20 and allowed run-time that is one and two times the time used by MMHC on the cor-
responding data set (OR1 and OR2, respectively). The SC algorithm was evaluated with £ =5 and
k = 10 as recommended by its authors. Motivation for using these parameter values and parameter
values used by the remaining algorithms are given in Tsamardinos et al. (2006a).

Following Tsamardinos et al. (2006a), we normalized all SHD results with the SHD results of
the MMHC algorithm. For each network and algorithm, we report on the average ratio over the
five runs. The normalized SHDs are presented in Table 3. A ratio smaller (larger) than 1 indicates
that the algorithm learns a more (less) accurate structure than that learned using the MMHC algo-
rithm. In addition, we average the ratios over all nineteen databases similarly to Tsamardinos et al.
(2006a). Based on these averaged ratios, Tsamardinos et al. (2006a) found the MMHC algorithm
to be superior to the PC, TPDA, GES, OR and SC algorithms with respect to SHD. Table 3 shows
that the RAI algorithm is the only algorithm that achieves an average ratio that is smaller than 1,
which means it learns structures that on average are more accurate than those learned by MMHC,
and thus also more accurate than those learned by all other algorithms. Note the difference in SHD
values for Alarm between Table 3 (as measured in Tsamardinos et al., 2006a, on databases of 500
samples) and Table 1 (as measured by us on databases of 10,000 samples).
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MMHC OR1 ORI OR1 OR2 OR2 OR2 SC SC GS PC TPDA GES RAI
k=5 k=10 k=20 k=5 k=10 k=20 k=5 k=10

1.00 123 139 167 105 1.02 140 163 166 202 366 234 123
1.00 185 195 196 178 1.77 1.80 157 157 226 249 394 1.26
1.00 159 161 163 148 1.63 1.69 132 135 210 235 3.10 1.02
1.00 146 152 153 149 152 157 118 2.09 2.72 0.87
1.00 103 105 108 098 097 099 1.15 1.16 1234 144 092 0.67

1.00 138 130 115 125 1.24 115 148 156 079 326 7.18 0.79 1.60
1.00 099 1.06 103 087 086 101 095 097 094 295 503 120 122
1.00 145 174 169 089 1.10 099 088 093 1.5 371 682 248 159

O e S S G GGy W G S S S
CPXUIAUNARWN—=O PRI B LN~

1.00 212 140 181 142 144 145 108 112 1.19 349 596 1.33
1.00 101 099 103 099 099 101 096 099 264 236 1.14 041
1.00 133 134 134 127 126 128 1.10 101 392 301 0.71
1.00 140 141 142 130 1.30 128 1.12 101 520 326 0.76
1.00 133 133 134 134 129 133  1.10 1.02 2.99 0.74
1.00 104 093 08 095 079 076 133 117 120 326 254 101 0.76
1.00 108 1.06 125 104 1.14 1.1I5 126 133 157 409 3.04 0.98
1.00 125 124 .12 113 1.15 1.17 124 125 159 422 286 091
1.00 130 129 1.31 1.19 113 124 118 124 155 2.87 0.88
1.00 109 1.11 110 110 1.12 107 104 091 783 208 0.87 0.63
1.00 109 1.16 106 1.17 0.95 1.30 1.29 0.44

avg.  1.00 132 131 133 1.19 121 124 119 129 136 436 341 120 095

Table 3: Algorithm SHD errors normalized with respect to the MMHC SHD error for the nineteen
networks detailed in Table 2. Average (avg.) for an algorithm is over all networks. Blank
cells represent jobs that Tsamardinos et al. (2006a) reported that refused to run or did not
complete their computations within two days running time.

Next, we compared the run-times of the algorithms in learning the nineteen networks. We note
that the run-time of a structure learning algorithm depends, besides on its implementation, on the
number of statistical calls (Tsamardinos et al., 2006a) it performs (e.g., CI tests in CB algorithms).
For CB algorithms it also depends on the orders of the CI tests and the number of states of each
variable that is included in the condition set. The run-time for each algorithm learning each network
is presented in Table 4. Following Tsamardinos et al. (2006a), we normalized all run-time results
with the run-time results of the MMHC algorithm and report on the average ratio for each algorithm
and network over five runs. The run-time ratios for all algorithms except that for the RAI were taken
from the Causal Explorer webpage. The ratio for the RAI was computed after running both the RAI
and MMHC algorithms on our platform using the same data sets. According to Tsamardinos et al.
(2006a), MMHC is the fastest algorithm among all algorithms (except RAI). Table 4 shows that
RAI was the only algorithm that achieved an average ratio smaller than 1, which means it is the
new fastest algorithm. The RAI average run-time was between 2.1 (for MMHC) and 2387 (for
GES) times shorter than those of all other algorithms. Perhaps part of the inferiority of GES with
respect to run-time can be related (Tsamardinos et al., 2006a) to many optimizations suggested in
Chickering (2002) that were not implemented in Tetrad 4.3.1 that was used by Tsamardinos et al.
(2006a) affecting their, and thus also our, results.

Accounting for both error and time, we plot in Figure 15 the SHD and run-time for all nineteen
networks normalized with respect to either the MMHC algorithm (Figure 15a) or the RAI algorithm

1555



YEHEZKEL AND LERNER

10
a
I
%)
2
= 10' ® :
()
£
>
o]
o©
$ 10°
=
g o
(:}:) o RAl
» e Other algorithms
10 : :
107 10° 10° 10*
Runtime divided by the MMHC runtime
(a)
(% °
[ )
Z 10' ]
o
o LRI
'-vi o Yoo o0 °
i) W %
5 So @es ol .
&
:-g 0 » : o e® o °
© 10 —-o g
2 Ut L
n o SR
o ®
10° 10° 10°
Runtime divided by the RAI runtime
(b)

Figure 15: Normalized SHD vs. normalized run-time for all algorithms learning all networks. (a)
Normalization is with respect to the MMHC algorithm (thus MMHC results are at (1,1))
and (b) normalization is with respect to the RAI algorithm (thus RAI results are at (1,1)).
The points in the graph correspond to 19 networks (average performance over 5 runs)
and 14 — 1 = 13 algorithms.
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MMHC OR1 OR1 OR1 OR2 OR2 OR2 SC SC GS PC TPDA GES RAI
k=5 k=10 k=20 k=5 k=10 k=20 k=5 k=10

1.00 1.14  1.00 107 224 222 233 175 1693 217 187 3.74 0.69
1.00 162 1.65 164 251 253 263 715 971 816 1.15 1275 0.52
1.00 121 132 133 235 241 248 601 654 980 9264 9.11 0.59
1.00 138 1.61 143 287 293 277 13.85 71.15 41.81 0.65
1.00 126 124 121 229 242 236 7.36 274 8928 4.10 2195 020

1.00 161 161 153 239 234 325 064 671 105 082 656 31.12 0.25
1.00 115 1.14 106 212 210 218 366 864 244 102 1027 921 036
1.00 112 1.14 1.13 210 2.19 229 416 831 576 105 1419 3738 050

O e S e G GGy W G S Sy
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1.00 134 105 132 220 228 245 997 1108 1210 136 2299 0.67
1.00 120 122 121 231 229 228 158 104 142 931 2690 0.17
1.00 .13 1.15 1.14 215 221 227 488 496 932 3239 0.65
1.00 .11 1.15 117 224 227 219  7.39 1001 23.14 3922 0.58
1.00 1.18 1.19 1.15 294 261 274 1377 29.84 99.00 0.85
1.00 102 103 103 209 206 205 126 1536 102 362 10.19 7806 0.24
1.00 109 1.13 1.18 225 238 221 296 850 363 5950 18.87 0.36
1.00 149 148 154 297 295 296 515 788 363 1733 8.67 0.48
1.00 1.19 1.2 120 230 235 240 1073 1395 2234 32.00 0.64
100 246 243 255 368 346 368 61.04 523 176 9.67 3437 0.75
1.00 105 107 108 2.09 0.24 0.40 0.27 0.01

avg. 1.00 130 130 131 243 245 253 861 1033 1039 30.75 2027 1146 048

Table 4: Algorithm run-times normalized with respect to the MMHC run-time for the nineteen
networks detailed in Table 2. Average (avg.) for an algorithm is over all networks. Blank
cells represent jobs that Tsamardinos et al. (2006a) reported that refused to run or did not
complete their computations within two days running time.

(Figure 15b). Figure 15 demonstrates that the advantage of RAI over all other algorithms is evident
for both the SHD error and the run-time.

It is common to consider the statistical calls performed by an algorithm of structure learning as
the major criterion of computational complexity (efficiency) and a major contributor to the algorithm
run-rime. In CB algorithms (e.g., PC, TPDA and RAI), the statistical calls are due to CI tests, and in
S&S algorithms (e.g., GS, GES, SC, OR) the calls are due to the computation of the score. Hybrid
algorithms (e.g., MMHC) have both types of calls. In Table 5, we compare the numbers of calls for
statistical tests performed by the RAI algorithm and computed by us to those of the MMHC, GS, PC
and TPDA, as computed in Tsamardinos et al. (2006a), and downloaded from the Causal Explorer
webpage. We find that for all networks the RAI algorithm performs fewer calls for statistical tests
than all other algorithms. On average over all networks, the RAI algorithm performs only 53% of
the calls for statistical tests performed by the MMHC algorithm, which is the algorithm that required
the fewest calls of all algorithms examined in Tsamardinos et al. (2006a). Figure 16 demonstrates
this advantage of RAI over MMHC graphically using a scatter plot. All points below the x = y line
represent data sets for which the numbers of calls for statistical tests of MMHC are larger than those
of RAL

Evaluating the statistical significance of the results in Tables 3-5 using Wilcoxon signed-ranks
test (Demsar, 2006) with a confidence level of 0.05, we find the SHD errors of RAI and MMHC to
be not significantly different from each other; however, the RAI run-times and numbers of statistical
calls are significantly shorter than those of the MMHC algorithm.
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7 MMHC __ GS PC TPDA __ RAI
I 1.00 242 9.95 1.94 0381
2 1.00 378 251 334 0.57
3 1.00 444 149922 3.02 0.67
4 1.00 5.12 2.64 0.75
5 1.00 196  2995.87 1.58 0.34
6 1.00 132 361 2.92 021
7 1.00 2.49 461 2.97 0.39
8 1.00 325 4.40 3.17 0.51
9 1.00 391 543 3.13 0.64
10 1.00 1.75 36.54 1.93 0.30
11 1.00 2.57 340.44 1.83 0.72
12 1.00 307 103386 1.87 0.67
13 1.00 3.40 1.85 0.77
14 1.00 1.32 40.57 2.97 0.27
15 1.00 235 108245 271 0.39
16 1.00 312 514351 297 0.49
17 1.00 4.25 3.20 0.63
18 1.00 338 10.78 3.49 0.59
19 1.00 1.75 091 0.30

ave. 1.00 293 814.25 255 0.53

Table 5: Number of statistical calls performed by each algorithm normalized by the number of
statistical calls performed by the MMHC algorithm for the nineteen networks detailed
in Table 2. Average (avg.) for an algorithm is over all networks. Blank cells represent
jobs that Tsamardinos et al. (2006a) reported that refused to run or did not complete their
computations within two days running time.

In continuation to Section 4.1, we further analyzed the complexity of RAI (as measured by
the numbers of CI tests performed) according to the CI test orders and the graph size. However,
here we used real rather than synthetic data. We examined the numbers of tests as performed for
different orders for the Child, Insurance, Alarm and Hailfinder networks and their tiled networks.
Using the tiled networks (Tsamardinos et al., 2006b), we could examine the impact of graph size
on the number of tests. Figure 17 shows the cumulative percentage of CI tests for a specific order
out of the total number of CI tests performed for each network. The figure demonstrates that the
percentages of CI tests performed decrease with the CI test order and become small for orders higher
than the max fan-in of the network (see Table 2). These percentages also decrease with the numbers
of nodes in the network (validated on the tiled networks). This is due to a faster increase of the
number of low-order CI tests compared with the number of high-order CI tests as the graph size
increases for all networks except for Hailfinder. For Hailefinder (Figure 17d), the threshold for the
network was different from those of the tiled networks. This led to an increase in the percentage of
high-order CI tests and a decrease in CI tests of order 0 when comparing the Hailfinder network to
its tiled versions. For all the tiled Alarm networks (Figure 17c), CI tests of order 0 nearly sufficed
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Figure 16: Number of statistical calls performed by the RAI algorithm vs. the number of statistical
calls performed by the MMHC algorithm for all networks and data sets examined in this
sub-section (5 data sets x 19 networks = 95 points).

for learning the network. Overall, the results support our preliminary results with synthetic data
and “perfect” CI tests (Section 4.1). Thus, we can conclude that as the graph size increases, the
RAI algorithm requires relatively fewer CI tests of high orders, especially of orders higher than the
max fan-in, than tests of low orders. This result enhances the attractiveness in applying the RAI
algorithm also to large problems.

4.5 Structure Learning for General BN Classifiers

Classification is one of the most fundamental tasks in machine learning (ML), and a classifier is
primarily expected to achieve high classification accuracy. The Bayesian network classifier (BNC)
is usually not considered as an accurate classifier compared to state-of-the-art ML classifiers, such
as the neural network (NN) and support vector machine (SVM). However, the BNC has important
advantages over the NN and SVM models. The BNC enhances model interpretability by exhibiting
dependences, independences and causal relations between variables. It also allows the incorporation
of prior knowledge during model learning so as to select a better model or to improve the estimation
of its data-driven parameters. Moreover, the BNC naturally performs feature selection as part of
model construction and permits the inclusion of hidden nodes that increase model representability
and predictability. In addition, the BN has a natural way of dealing with missing inputs by marginal-
izing hidden variables. Finally, compared to NN and SVM, BNC can model very large, multi-class
problems with different types of variables. These advantages are important in real-world classifica-
tion problems, since they provide many insights into the problem at hand that are beyond the pure
classification decisions provided by NN and SVM.
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Figure 17: Cumulative percentages of CI tests out of the total numbers of tests for increasing orders
as performed by the RAI algorithm for the (a) Child, (b) Insurance, (c) Alarm, and (d)
Hailfinder networks including their tiled networks.

We evaluated the RAI complexity, run-time and accuracy when applied to learning a general
BN classifier (Cheng and Greiner, 1999; Friedman et al., 1997) in comparison to other algorithms
of structure learning using nineteen databases of the UCI Repository (Newman et al., 1998) and
Kohavi and John (1997). These databases are detailed in Table 6 with respect to the numbers
of variables, classes and instances in each database. All databases were analyzed using a CV5
experiment, except large databases (e.g., “chess”, “nursery” and “shuttle”), which were analyzed
using the holdout methodology and the common division to training and test sets (Newman et al.,
1998; Friedman et al., 1997; Cheng et al., 1997) as detailed in Table 6. Continuous variables were
discretized using the MLC++ library (Kohavi et al., 1994) and instances with missing values were

removed, as is commonly done.
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# # # Test # training # test

Database ) . . .
variables classes instances methodology instances instances

australian 14 2 690 CV5 552 138
breast 9 2 683 CV5 544 136
car 6 4 1728 CV5 1380 345
chess 36 2 3196 holdout 2130 1066
cleve 11 2 296 CV5 236 59
cme 9 3 1473 CV5 1176 294
corral 2 128 CV5 100 25
crx 15 2 653 CV5 520 130
flare C 9 1389 CV5 1108 277
iris 4 3 150 CV5 120 30
led7 7 10 3200 CV5 2560 640
mofn 3-7-10 10 2 1324 holdout 300 1024
nursery 8 5 12960 holdout 8640 4320
shuttle (s) 8 7 5800 holdout 3866 1934
tic-tac-toe 9 2 958 CV5 764 191
vehicle 18 4 846 CV5 676 169
vote 16 3 435 CV5 348 87
wine 13 3 178 CV5 140 35
Z00 16 7 101 CV5 80 20

Table 6: Databases of the UCI repository (Newman et al., 1998) and of Kohavi and John (1997)
used for evaluating the accuracy of a classifier learned using the RAI algorithm.

Generally for this sub-section, CI tests for RAI and PC were carried out using the % test (Spirtes
et al., 2000) and those for TPDA using the CMI independence test (Equation 2). However, CI tests
for RAI and PC for the “corral”, “nursery” and “vehicle” databases were carried out using the
CMI independence test. In the case of the large “nursery” database, the need to use the CMI test
was due to a Matlab memory limitation in the completion of the > test using the BNT structure
learning package (Leray and Francois, 2004). In the case of the “corral” and “vehicle” databases,
the smallness of the database, together with either the large numbers of classes, variables or states
for each variable, led to low frequencies of instances for many combinations of variable states. In
this case, the implementation of the ? test assumes variable dependence (Spirtes et al., 2000) that
prevents the CB (PC, TPDA and RAI) algorithms from removing edges regardless of the order of
the CI test, leading to erroneous decisions. Another test of independence, which is reported to be
more reliable and robust, especially for small databases or large numbers of variables (Dash and
Druzdzel, 2003), may constitute another solution in these cases.

Thresholds for the CI tests of the CB algorithms and parameter values for all other algorithms
were chosen for each algorithm and database so as to maximize the classification accuracy on a
validation set selected from the training set or based on the recommendation of the algorithm authors
or of Tsamardinos et al. (2006a). Although using a validation set decreases the size of the training
set, it also eliminates the chance of selecting a threshold or a parameter that causes the model to
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overfit the training set at the expense of the test set. If several thresholds/parameters were found
suitable for an algorithm, the threshold/parameter chosen was that leading to the fewest CI tests (in
the case of CB algorithms). For GES and GS there are no parameters to set (except the equivalent
sample size for the BDeu), and for MMHC we used the selections used by the authors in all their
experiments.

Finally, parameter learning was performed by maximum likelihood estimation. Since we were
interested in structure learning, no attempt was made to study estimation methods other than this
simple and most popular generative method (Cooper and Herskovits, 1992; Heckerman, 1995; Yang
and Chang, 2002). Nevertheless, we note that discriminative models for parameter learning have
recently been suggested (Pernkopf and Bilmes, 2005; Roos et al., 2005). These models show an
improvement over generative models when estimating the classification accuracy (Pernkopf and
Bilmes, 2005). We expect that any improvement in classification accuracy gained by using param-
eter learning other than maximum likelihood estimation will be shared by classifiers induced using
any algorithm of structure learning; however, the exact degree of improvement in each case should
be further evaluated.

Complexity of the RAI algorithm was measured by the number of CI tests employed for each
size of the condition set and the cumulative run-time of the CI tests. These two criteria of complexity
were also measured for the PC algorithm, since both the RAI and PC algorithms use the same
implementation of CI testing. Table 7 shows the average number and percentage of CI tests reduced
by the RAI algorithm compared to the PC algorithm for different CI test orders and each database.
An empty entry in the table means that no CI tests of this order are required. A 100% cut in CI tests
for a specific order means that RAI does not need any of the CI tests employed by the PC algorithm
for this order (e.g., orders 2 and above for the “led7” database). It can be seen that for almost all
databases examined, the RAI algorithm avoids most of the CI tests of orders two and above that
are required by the PC algorithm (e.g., the “chess” database). Table 7 also shows the reduction in
the CI test run-time due to the RAI algorithm in comparison to the PC algorithm for all nineteen
databases examined; except for the “australian” database, the cut is measured in tens of percentages
for all databases and for six databases this cut is higher than 70%. Run-time differences between
algorithms may be the result of different implementations. However, since in our case the run-time
is almost entirely based on the number and order of CI tests and RAI has reduced most of the PC CI
tests, especially those of high orders that are expensive in run-time, we consider the above run-time
reduction results to be significant.

Classification accuracy using a BNC has recently been explored extensively in the literature
(Friedman et al., 1997; Grossman and Domingos, 2004; Kontkanen et al., 1999; Pernkopf and
Bilmes, 2005; Roos et al., 2005). By restricting the general inference task of BN to inference
performed on the class variable, we turn a BN into a BNC. First, we use the training data to learn
the structure and then transform the pattern outputted by the algorithm into a DAG (Dor and Tarsi,
1992). Thereafter, we identify the class node Markov blanket and remove from the graph all the
nodes that are not part of this blanket. Now, we could estimate the probabilities comprising the
class node posterior probability, P(C|X), where X is the set of the Markov blanket variables. Dur-
ing the test, we inferred the state ¢ of the class node C for each test instantiation, X = x, using
the estimated posterior probability. The class ¢ selected was the one that maximized the posterior
probability, meaning that ¢ = argmax, P(C = ¢|X = x). By comparing the class maximizing the
posterior probability and the true class, we could compute the classification accuracy.
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Database CI test order Run-time
0 1 2 3 4 cut (%)
australian 0(0) 3.8 (344 6.05
breast 0(0) | 1072 (54.8) 35 (99.1) 71.87
car 0(0) 16 (100) 112 (100) 32 (100) 91.10
chess 0@) | 2263 (76.3) | 2516 (89) 581 (94) 249 (100) 80.65
cleve 00 | 124 (63) 39.60
cmce 00 | 102 (10.9) 8 (32.5) 14.22
corral 0() | 224  (100) 26 (100) 3.6 (100) 87.94
crx 0(0) 8.8 (49.6) 25.25
flare C 0(0) 16 (39.6) 3 (100) 20.38
iris 0(0) 2 (40) 19.10
led7 00) | 462 (45.7) 105 (100) 140 (100) 105 (100) 91.74
mofn 3-7-10 | 0 (0) 17 (100) 4 (100) 67.70
nursery 0(0) 20 (100) 30 (100) 20 (100) 5 (100) 89.70
shuttle (s) 0(0) 14 ©.7) 958 (438) | 1176 (49.3) 83.6 (56.0) 38.94
tic-tac-toe 0) | 532 (27.1) | 56.6 (48.6) 1.8 (51.4) 36.52
vehicle 00 | -124 (-29) | 326 (204) 58 (-14.0) 34 27.4) 13.15
vote 0@0) | 242 (219 | 172 (98.1) 6.4 (100) 1 (100) 46.06
wine 00) | 258 (41.0) | 442 (67.6) 40.6 (82.4) 19 (96.7) 29.11
700 0(0) 82 (27.8) | 3658 (29.6) | 10334 (27.7) | 1928.6 (25.6) 13.63

Table 7: Average number (and percentage) of CI tests reduced by the RAI algorithm compared to
the PC algorithm for different databases and CI test orders and the cut (%) in the total CI
test run-time.

In Table 8 we compared the classification accuracy due to the RAI algorithm to those due to
the PC, TPDA, GES, MMHC, SC and NBC algorithms. We note the overall advantage of the RAI
algorithm, especially for large databases. Since the reliability of the CI tests increased with the
sample size, it seems that RAI benefits from this increase more than the other algorithms and excels
in classifying large databases. RAI, when compared to the other structure learning algorithms,
yielded the best classifiers on six (“flare C”, “nursery”, “led7”, “mofn”, “tic-tac-toe” and “vehicle”)
of the ten largest databases and among the best classifiers on the remaining four (“shuttle”, “chess”,
“car” and “cmc”) large databases. The other CB algorithms—PC and TPDA —also showed here,
and in Tsamardinos et al. (2006a), better results on the large databases. However, the CB algorithms

are less accurate on very small databases (e.g., “wine” and “z00”).

Overall, RAI was the best algorithm on 7 databases compared to 5,2, 5,4, 5 and 5 databases for
the PC, TPDA, GES, MMHC, SC and NBC algorithms, respectively. RAI was the worst classifier
on only a single database, whereas the PC, TPDA, GES, MMHC, SC and NBC algorithms were
the worst classifiers on 2, 4, 6, 2, 2 and 7 databases, respectively. We believe that the poor results
of the GES and MMHC algorithms on the “nursery” database may be attributed to the fact that
these algorithms find the class node C as a child of many other variables, making the estimation of
P(C|X) unreliable due to the curse-of-dimensionality. The structures learned by the other algorithms
required a smaller number of such connections and thereby reduced the curse.
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Database PC TPDA GES MMHC SC NBC RAI
australian 855 (0.5) | 855 (0.5) | 835 (2.1) | 86.2 (1.5) | 855 (1.2) | 859 (34) 855 (0.5)
breast 955 (20) | 944 (27) | 96.8 (1.1) | 972 (1.2) | 965 (0.8) | 97.5 (0.8) 96.5 (1.6)
car 843 (2.6) | 845 (0.6) | 815 (23) | 902 (20) | 938 (1.1) | 84.7 (1.3) 929 (1.1)
chess 93.1 90.1 97.0 94.1 925 87.1 935

cleve 76.7 (72) | 72.0 (10.7) | 794 (5.7) | 82.1 (45) | 835 (5.7) | 835 (5.2) 814 (54)
cmc 509 (23) | 464 (2.1) | 463 (1.5) | 48,6 (26) | 497 (25) | 51.3 (1.3) 51.1 (32)
corral 100 () | 882 (64) | 100 (0) 100 (0) 100 (©0) | 8.2 (7.3) 100 (0)
crx 864 (2.6) | 86.7 (34) | 822 (64) | 86.7 (1.7) | 86.7 (34) | 862 (2.8) 864 (2.6)
flare C 843 (25) | 843 (24) | 843 (25) | 843 (25) | 843 (25) | 77.7 (3.) 843 (25)
iris 96.0 (4.3) | 933 (24) | 96.0 (43) | 940 (3.6) | 92.7 (15) | 940 (4.3) 933 (24)
led7 733 (1.8) | 729 (1.5) | 729 (15) | 729 (15) | 729 (1.5) | 729 (1.5) 73.6 (1.6)
mofn 3-7-10 | 814 90.8 79.8 90.5 919 89.8 93.2
nursery 72.0 64.7 333 293 30.3 66.0 72.0

shuttle (s) 984 96.3 99.5 992 99.2 98.8 992
tic-tac-toe 747 (14) | 722 (3.8) | 699 (2.8) | 71.1 (42) | 704 4.7) | 69.6 (3.1) 75.6 (1.9)
vehicle 639 (33) | 656 (2.8) | 64.1 (11.2) | 693 (1.5) | 648 (9.1) | 62.0 (4.0) 702 (2.8)
vote 959 (1.5) | 954 (2.1) | 947 (28) | 956 (22) | 93.1 (22) | 906 (3.3) 954 (1.6)
wine 854 (7.8) | 978 (30) | 983 (25) | 983 (2.5) | 983 (2.5) | 989 (1.5) 87.1 (5.9
200 89.0 (8.8) | 96.1 (22) | 960 (23) | 93.1 (45) | 959 (69) | 96.3 (3.8) 89.0 (8.79)
average 83.5 83.0 81.9 833 833 83.1 853
std 12.7 13.8 184 184 184 133 123

Table 8: Mean (and standard deviation for CV5 experiments) of the classification accuracy of the
RALI algorithm in comparison to those of the PC, TPDA, GES, MMHC, SC and NBC
algorithms. Bold and ifalic fonts represent, respectively, the best and worst classifiers for
a database.

In addition, we averaged the classification accuracies of the algorithms over the nineteen
databases. Averaging accuracies over databases has no meaning in itself except that the average ac-
curacies over many different problems of different algorithms may infer about the relative expected
success of the algorithms in other classification problems. It is interesting to note that although the
different algorithms in our study showed different degrees of success on various databases, most
of the algorithms (i.e., PC, TPDA, MMHC, SC and NBC) achieved almost the same average accu-
racy (83.0%-83.5%). The GES average accuracy was a little inferior (81.9%) to that of the above
algorithms, and the average accuracy of the RAI (85.3%) was superior to that of all algorithms.
Concerning the standard deviation of the classification accuracy, RAI outperformed all classifiers
implying to the robustness of the RAlI-based classifier.

Superiority of one algorithm over another algorithm for each database was evaluated with a
statistical significance test (Dietterich, 1998). We used a single-sided t-test to evaluate whether the
mean difference between any pair of algorithms as measured on the five folds of the CV5 test was
greater than zero. Table 9 summarizes the statistical significance results, measured at a significance
level of 0.05, for any two classifiers and each database examined using cross validation. The number
in each cell of Table 9 describes—for the corresponding algorithm and database —the number of
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Databse PC TPDA GES MMHC SC NBC RAI

australian 1 1 0 1 0 1 1
breast 0 0 0 2 0 3 0
car 1 1 0 4 6 1 5
cleve 0 0 0 1 3 3 2
cme 4 0 0 1 2 2 3
corral 2 0 2 2 2 0 2
crx 0 0 0 0 0 0 0
flare C 1 1 1 1 1 0 1
iris 1 0 1 0 0 0 0
led7 0 0 0 0 0 0 5
tic-tac-toe 3 2 0 0 0 0 5
vehicle 0 1 0 3 0 0 3
vote 2 2 1 3 0 0 1
wine 0 2 2 2 2 2 0
Z00 0 0 0 0 2 0 0
total 15 10 7 20 18 12 28
average 1.00 067 047 1.33 120 08 1.87

Table 9: Statistical significance using a t-test for the classification accuracy results of Table 8. For
a given database, each cell indicates the number of algorithms found to be inferior at a
significance level of 0.05 to the algorithm above the cell.

algorithms that are inferior to that algorithm for that databases. A “0” value indicates that the
algorithm is either inferior to all the other algorithms or not significantly superior to any of them.
For example, for the “car” database the PC, TPDA, GES, MMHC, SC, NBC and RAI algorithms
were significantly superior to 1, 1, 0, 4, 6, 1 and 5 other algorithms, respectively. In total, the
superiority of the RAI algorithm over the other algorithms was statistically significant 28 times,
with an average of 1.87 algorithms per database. The second and third best algorithms were the
MMHC and SC algorithms, with a total of 20 and 18 times of statistically significant superiority
and averages of 1.33 and 1.2 per database, respectively. The least successful classifier, according to
Tables 8 and 9, was the one that is learned using GES. We believe that this inferiority arises from
the assumptions on the type of probabilities and their parameters made by the GES algorithm when
computing the BDeu score (Heckerman et al., 1995), assumptions that probably do not hold for the
examined databases.

Although this methodology of statistical tests between pairs of classifiers is the most popular
in the machine learning community, there are other methodologies that evaluate statistical signifi-
cance between several classifiers on several databases simultaneously. For example, DemSar (2006),
recently suggested using Friedman test (Friedman, 1940) and some post-hoc tests for such an eval-
uation.
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5. Discussion

The performance of a CB algorithm in BN structure learning depends on the number of conditional
independence tests and the sizes of condition sets involved in these tests. The larger the condition
set, the greater the number of CI tests of high orders that have to be performed and the smaller their
accuracies.

We propose the CB RAI algorithm that learns a BN structure by performing the following se-
quence of operations: 1) test of CI between nodes and removal of edges related to independences, 2)
edge direction employing orientation rules, and 3) structure decomposition into smaller autonomous
sub-structures. This sequence of operations is performed recursively for each sub-structure, along
with increasing the order of the CI tests. Thereby, the RAI algorithm deals with less potential par-
ents for the nodes on a tested edge and thus uses smaller condition sets that enable the performance
of fewer CI tests of higher orders. This reduces the algorithm run-time and increases its accuracy.

By introducing orientation rules through edge direction in early stages of the algorithm and
following CI tests of lower orders, the graph “backbone” is established using the most reliable
CI tests. Relying on this “backbone” and its directed edges in later stages obviates the need for
unnecessary CI tests and enables RAI to be less complex and sensitive to errors.

In this study, we proved the correctness of the RAI algorithm. In addition, we demonstrated
empirically, using synthetically generated networks, samples of nineteen known structures, and
nineteen natural databases used in classification problems, the advantage of the RAI algorithm over
state-of-the-art structure learning algorithms, such as PC, TPDA, GS, GES, OR, SC and MMHC,
with respect to structural correctness, number of statistical calls, run-time and classification accu-
racy. We note that no attempt was made to optimize the parameters of the other algorithms and the
effect of such optimization was not evaluated. This is due to the fact that some of the algorithms
have more than one parameter to optimize and besides, no optimization methods were proposed by
the algorithm inventors. We propose such an optimization method for the RAI algorithm that uses
only the training (validation) data.

We plan to extend our study in several directions. One is the comparison of RAI-based clas-
sifiers to non-BN classifiers, such as the neural network and support vector machine. Second is
the incorporation of different types of prior knowledge (e.g., related to classification) into structure
learning. We also intend to study error correction during learning and to allow the inclusion of
hidden variables to improve representation and facilitate learning with the RAI algorithm.
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Abstract

Beam search is commonly used to help maintain tractability in large search spaces at the expense
of completeness and optimality. Here we study supervised learning of linear ranking functions for
controlling beam search. The goal is to learn ranking functions that allow for beam search to per-
form nearly as well as unconstrained search, and hence gain computational efficiency without seri-
ously sacrificing optimality. In this paper, we develop theoretical aspects of this learning problem
and investigate the application of this framework to learning in the context of automated planning.
We first study the computational complexity of the learning problem, showing that even for expo-
nentially large search spaces the general consistency problem is in NP. We also identify tractable
and intractable subclasses of the learning problem, giving insight into the problem structure. Next,
we analyze the convergence of recently proposed and modified online learning algorithms, where
we introduce several notions of problem margin that imply convergence for the various algorithms.
Finally, we present empirical results in automated planning, where ranking functions are learned
to guide beam search in a number of benchmark planning domains. The results show that our ap-
proach is often able to outperform an existing state-of-the-art planning heuristic as well as a recent
approach to learning such heuristics.

Keywords: beam search, speedup learning, automated planning, structured classification

1. Introduction

Throughout artificial intelligence and computer science, heuristic search is a fundamental approach
to solving complex problems. Unfortunately, when the heuristic is not accurate enough, memory and
time constraints make pure heuristic search impractical. One common way to attempt to maintain
tractability of heuristic search is through a pruning technique known as beam search. At each search
step, beam search maintains a “beam” of the heuristically best b nodes, pruning all other nodes from
the search queue. Due to this pruning, beam search is not guaranteed to be complete nor optimal.
However, if the heuristic is good enough to keep a good solution path in the beam, then the solution
will be found quickly.

(©2009 Yuehua Xu, Alan Fern and Sungwook Yoon.
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The goal of this paper is to study the problem of learning heuristics, or ranking functions, that
allow beam search to quickly find solutions, without seriously sacrificing optimality compared to
unconstrained search. We consider this problem for the case of linear ranking functions, where each
search node v is associated with a feature vector f(v) and nodes are ranked according to w- f(v)
where w is a weight vector. Each instance in our training set corresponds to a search space that is
labeled by a set of target solutions, each solution being a (satisficing) path from the initial node to
a goal node. Given a training set, our learning objective is to select a weight vector w such that a
beam search of a specified beam width always maintains one of the target paths in the beam until
finally reaching a goal node. Such a w effectively represents a ranking function that allows beam
search to efficiently solve all of the training instances, and ideally new search problems for which
the training set is representative.

Recent work (Daumé I1I and Marcu, 2005) has considered the problem of learning beam search
ranking functions in the context of structured classification. Structured classification is the problem
of learning a mapping from structured inputs (e.g., sentences) to structured outputs (e.g., syntactic
parses) and there has been much recent work that extends traditional classification algorithms to this
setting including conditional random fields (Lafferty et al., 2001), the generalized Perceptron algo-
rithm (Collins, 2002), and margin optimization (Taskar et al., 2003). The approach of Daumé III
and Marcu (2005) differs from prior approaches in that it explicitly views structured classification
as a search problem, where given an input x, the problem of labeling x by a structured output y is
treated as searching through an exponentially large set of candidate outputs. For example, in part-
of-speech tagging where x is a sequence of words and y is a sequence of word tags, each node in the
search space is a pair (x,)’) where y' is a partial labeling of the words in x. Learning corresponds
to inducing a ranking function that quickly guides the search to the search node (x,y*) where y* is
the desired output. This framework, known as learning as search optimization (LaSO), has demon-
strated highly competitive performance on a number of structured classification problems.

This paper builds on the LaSO framework and makes two key contributions. First, we analyze
the learning problem theoretically, in terms of its computational complexity and the convergence
properties of various learning algorithms. Secondly, this paper provides an empirical evaluation
in the context of automated planning, a problem that is qualitatively very different from structured
classification.

Our complexity analysis considers a number of subclasses of the general beam-search learning
problem. First, we provide an upper bound on the complexity of the general problem by showing
that even for exponentially large search spaces, which are the norm, the consistency problem (i.e.,
finding a w that solves all training instances) remains in NP. Next, we identify several core tractable
and intractable subclasses of the beam-search learning problem. Interestingly, some of these sub-
classes resemble more traditional “learning to rank” problems (Agarwal and Roth, 2005) with clear
analogies to applications.

Our convergence analysis studies convergence properties of perceptron-style online learning
algorithms. In prior work, Daumé III and Marcu (2005) proposed a notion of linear separability for
this learning problem and proved convergence of the algorithm for linearly separable data. However,
here we show that result to be inaccurate for subtle reasons and give a counter example. We then
propose new notions of problem margin and show that convergence can be guaranteed for revised
versions of the algorithm given positive margins. For the case where training data is ambiguous,
that is, where many good solutions to a search problem are not included in the target solution set, we
also give sufficient conditions on the minimum beam width to guarantee convergence. This result
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also provides a formal characterization of the intuition that the learning problem should become
easier as the beam width increases, by showing that the mistake bound decreases with increasing
beam width.

While the LaSO framework has been empirically evaluated in structured classification, with
impressive results, its utility in other types of search problems has not been demonstrated. Here
we consider the application of a LaSO-style algorithm to automated planning, which is a problem
that is qualitatively very different compared to structured classification. The planning problems we
consider are most naturally viewed as goal-finding problems, where we must search for a short path
to a goal node in an exponentially large graph. Rather, structured classification is most naturally
viewed as an optimization problem, where we must search for a structured object that optimizes an
objective function. While the two problem classes are related they differ in significant ways. For
example, the search problems studied in structured classification typically have a single or small
number of solution paths, whereas in automated planning there are often a large number of equally
good solutions, which can contribute to ambiguous training data. Furthermore, the size of the search
spaces encountered in automated planning are usually much larger than in structured classification,
because of the larger depths and branching factors. These differences raise the empirical question
of whether a LaSO-style approach will be effective in automated planning.

To evaluate this question we incorporated a LaSO-style learning mechanism into a forward state-
space search planner in order to learn domain-specific heuristics, or ranking functions, from training
examples. For a given planning domain, the training examples given to our learner include solution
plans to a set of planning problems from the domain. The learned ranking function for a domain
can then be used to guide beam search in order to solve new test problems from the same domain.
We evaluate this approach on a number of benchmark planning domains and show that our learned
ranking functions are often able to outperform both a state-of-the-art domain-independent planning
heuristic and the heuristics learned by another recently proposed learning mechanism based on
linear regression.

The remainder of this paper proceeds as follows. In Section 2, we introduce our formal setup
of the beam-search learning problem and then, in Section 3, study the computational complexity
of this learning problem. In Section 4, we describe two online learning mechanisms followed by
their convergence analysis. In Section 5, we apply the learning problem to automated planning and
present the experimental results. Finally Section 6 concludes and suggests future directions.

2. Problem Setup

In this section, we first describe two different beam search paradigms: breadth-first beam search
and best-first beam search. We then introduce the learning problems that we study in these two
paradigms, followed by an illustrative example from automated planning. Finally, we describe how
our formulation, which was motivated by automated planning, relates to structured classification.

2.1 Beam Search

We first define breadth-first and best-first beam search, the two paradigms considered in this work.
A search space is a tuple (I,s(-), f(-), <), where [ is the initial search node, s is a successor function
from search nodes to finite sets of search nodes, f is a feature function from search nodes to m-
dimensional real-valued vectors, and < is a total preference ordering on search nodes. We think of
f as defining properties of search nodes that are useful for evaluating their relative goodness and <

1573



XU, FERN AND YOON

as defining a canonical ordering on nodes, for example, lexicographic. In this work, we use f to
define a linear ranking function w- f(v) on nodes where w is an m-dimensional weight vector, and
nodes with larger values are considered to be higher ranked, or more preferred. Since a given w may
assign two nodes the same rank, we use < to break ties such that v is ranked higher than V' given
w-f(v') =w- f(v) and v/ < v, arriving at a total rank ordering on search nodes. We denote this total
rank ordering as r(v,v|w, <), or just r(v/,v) when w and < are clear from context, indicating that v
is ranked higher than v'.

Given a search space S = (I,s(+), f(-), <), a weight vector w, and a beam width b, breadth-first
beam search simply conducts breadth-first search, but at each search depth keeps only the b highest
ranked nodes according to r. More formally, breadth-first beam search generates a unique beam
trajectory (By,Bi,...) as follows,

e By = {I} is the initial beam;

e Cj;1 =BreadthExpand(B;,s(-)) = U,ep, s(v) is the depth j+ 1 candidate set of the depth j
beam;

e B, is the unique set of b highest ranked nodes in C; according to the total ordering r.

Note that for any j, |C;| < cb and |Bj| < b, where ¢ is the maximum number of children of any
search node.

Best-first beam search is almost identical to breadth-first beam search except that we replace the
function BreadthExpand with BestExpand(B;,s(-)) = B;Us(v*) —v*, where v* is the unique high-
est ranking node in B;. Thus, instead of expanding all nodes in the beam at each search step, best-
first search is more conservative and only expands the single best node. Note that unlike breadth-first
search this can result in beams that contain search nodes from different depths of the search space
relative to I.

2.2 Learning Problems

Our learning problems provide training sets of pairs {(S;, P;) }, where the S; = (I, s;(+), fi(+), <;) are
search spaces constrained such that each f; has the same dimension. As described in more detail
below, the P; encode sets of target search paths that describe desirable search paths through the
corresponding search spaces. Roughly speaking the learning goal is to learn a ranking function that
can produce a beam trajectory of a specified width for each search space that contains at least one
of the corresponding target paths in the training data. For example, in the context of automated
planning, the S; would correspond to planning problems from a particular domain, encoding the
state space and available actions, and the P; would encode optimal or satisficing plans for those
problems. A successfully learned ranking function would be able to quickly find at least one of the
target solution plans for each training problem and ideally new target problems.

We represent each set of target search paths as a sequence P; = (Pio,Pi1,...,P;q) of sets of
search nodes where P; ; contains target nodes at depth j and P;g = {I;}. Tt is useful to think about
P, 4 as encoding the goal nodes of the i'th search space. We will refer to the maximum size ¢ of any
target node set P; ; as the target width of P;, which will be referred to in our complexity analysis.
The generality of this representation for target paths allows for pathological targets where certain
nodes do not lead to the goal. In order to arrive at convergence results, we rule out such possibilities
by assuming that the training set is dead-end free. That is, for all i and j < d each v € P; ; has at
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least one child node V' € P, ;1. Note that in almost all real problems this property will be naturally
satisfied. For our complexity analysis, we will not need to assume any special properties of the
target search paths P;.

Intuitively, for a dead-end free training set, each P; represents a layered directed graph with at
least one path from each target node to a goal node in P, 4. Thus, the training set specifies not only a
set of goals for each search space but also gives possible solution paths to the goals. For simplicity,
we assume that all target solution paths have depth d, but all results easily generalize to non-uniform
depths.

For breadth-first beam search we specify a learning problem by giving a training set and a beam
width ({(S;,P;)},b). The objective is to find a weight vector w that generates a beam trajectory
containing at least one of the target paths for each training instance. More formally, we are interested
in the consistency problem:

Definition 1 (Breadth-First Consistency) Given the input ({(S;,P;)},b) where b is a positive in-
teger and P; = (P, P; 1, ... 7P,-,d), the breadth-first consistency problem asks us to decide whether
there exists a weight vector w such that for each S;, the corresponding beam trajectory (Bio,Bi 1, ...,
Bi ), produced using w with a beam width of b, satisfies B; jN\ P, j # 0 for each j?

A weight vector that demonstrates a “yes” answer is guaranteed to allow a breath-first beam search
of width b to uncover at least one goal node (i.e., a node in P; ;) within d beam expansions for all
training instances.

Unlike the case of breadth-first beam search, the length of the beam trajectory required by best-
first beam search to reach a goal node can be greater than the depth d of the target paths. This is
because best-first beam search, does not necessarily increase the maximum depth of search nodes in
the beam at each search step. Thus, in addition to specifying a beam width for the learning problem,
we also specify a maximum number of search steps, or horizon, /4. The objective is to find a weight
vector that allows a best-first beam search to find a goal node within % search steps, while always
keeping some node from the target paths in the beam.

Definition 2 (Best-First Consistency) Given the input ({(S;,P:)},b,h), where b and h are positive
integers and P; = (Piy,...,P; ), the best-first consistency problem asks us to decide whether there
is a weight vector w that produces for each S; a beam trajectory (B;y,...,Bix) of beam width b,
such that k < h, Bix NP, 4 # 0 (i.e., Bix contains a goal node), and each B, ; for j < k contains at
least one node in\J; P, ;?

Again, a weight vector that demonstrates a “yes” answer is guaranteed to allow a best-first beam
search of width b to find a goal node in % search steps for all training instances.

2.2.1 EXAMPLE FROM AUTOMATED PLANNING.

Figure 1, shows a pictorial example of a single training example from an automated planning prob-
lem. The planning domain in this example is Blocksworld where individual problems involve trans-
forming an initial configuration of blocks to a goal configuration using simple actions such as pick-
ing up, putting down, and stacking the various blocks. The figure shows a search space S; where
each node corresponds to a configuration of blocks and the arcs indicate when it is possible to take an
action that transitions from one configuration to another. The figure depicts, via highlighted nodes,
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two target paths. The label P; would encode these target paths by a sequence P, = (Pig,Pi1,...,Pi4)
where P; ; contains the set of all highlighted target nodes at depth j. A solution weight vector, for
this training example, would be required to keep at least one of the highlighted paths in the beam
until uncovering the goal node.

pickup(D)

=
‘\Bg

stack(C, A),

stack(B, D)

tack(C, D) stack(B, A)

Figure 1: An example from automated planning.

2.2.2 EXAMPLE FROM STRUCTURED CLASSIFICATION

Daumé III and Marcu (2005) considered learning ranking functions to control beam search in the
context of structured classification. Structured classification involves learning a function that maps
structured inputs x to structured outputs y. As an example, consider part-of-speech tagging where
the inputs correspond to English sentences and the correct output for a sentence is the sequence of
part-of-speech tags for the words in the sentence. Figure 2 shows how Daumé III and Marcu (2005)
formulated a single instance of part-of-speech tagging as a search problem. Each search node is a
pair (x,y") where x is the input sentence and y' is a partial labeling of the words in x by part-of-
speech tags. The arcs in this space correspond to search steps that label words in the sentence in
a left-to-right order by extending y’ in all possible ways by one element. The leaves, or terminal
nodes, of this space correspond to all possible complete labelings of x. Given a ranking function
and a beam width, Daumé III and Marcu (2005) return a predicted output for x by conducting a
beam search until a terminal node becomes the highest ranked node in the beam, and then return
the output component of that terminal node. This approach to making predictions suggests that the
learning objective should require that we learn a ranking function such that the goal terminal node,
is the first terminal node to become highest ranked in the beam. In the figure, there is a single goal
terminal node (x,y) where y is the correct labeling of x and there is a unique target path to this goal.

From the above example, we see that there is a difference between the learning objective used
by Daumé III and Marcu (2005) for structured classification and the learning objective under our
formulation, which was motivated by automated planning. In particular, our formulation does not
force the goal node to be the highest ranked node in the final beam, but rather only requires that
a goal node appear somewhere in the final beam. While these formulations appear quite different,
it turns out that they are polynomially reducible to one another, which we prove in Appendix A.
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= (The cat ran)

X ((the cat ran),(- - -))
y = (article noun verb) )

the cat ran), (article - - (the cat ran), (verb - -)
the cat ran), (article verb - the cat ran), (article noun -
the cat ran), (article noun verb) (the cat ran), (article noun noun)

Goal Node (X, y)

'l S

Terminal Node (x, y’)

Figure 2: An example from structured classification.

Thus, all of the results in this paper apply equally well to the structured-classification formulation
of Daumé III and Marcu (2005).

3. Computational Complexity

In this section, we study the computational complexity of the above consistency problems. We first
focus on breadth-first beam search, and then give the corresponding best-first results at the end of
this section. It is important to note that the size of the search spaces will typically be exponential in
the encoding size of the learning problem. For example, in automated planning, standard languages
such as PDDL (McDermott, 1998) are used to compactly encode planning problems that are po-
tentially exponentially large, in terms of the number of states, with respect to the PDDL encoding
size. Throughout this section we measure complexity in terms of the problem encoding size, not the
potentially exponentially larger search space size. All discussions in this section apply to general
search spaces and are not tied to a particular language for describing search space such as PDDL.

Our complexity analysis will consider various sub-classes of the breadth-first consistency prob-
lem, where the sub-classes will be defined by placing constraints on the following problem param-
eters: n - the number of training instances, d - the depth of target solution paths, ¢ - the maximum
number of children of any search node, ¢ - the maximum target width of any P; as defined in Section
2.2, and b - the beam width. Figure 3 gives a pictorial depiction of these key problem parame-
ters. Throughout the complexity analysis we will restrict our attention to problem classes where the
maximum number of children ¢ and beam width b are polynomial in the problem size, which are
necessary conditions to ensure that each beam search step requires only polynomial time and space.
We will also assume that all feature functions can be evaluated in polynomial time in the problem
size.

Note that restricting the number of children ¢ may rule out the use of certain search space encod-
ings for some problems. For example, in a multi-agent planning scenario, there are an exponential
number of joint actions to consider from each state, and thus an exponential number of children.
However, here it is possible to re-encode the search space by increasing the depth of the search tree,
so that each joint action is encoded by a sequence of steps where each agent selects an action in
turn followed by all of them executing the selected actions. The resulting search space has only a
polynomial number of children and thus satisfies our assumption, though the required search depth
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has increased. This form of re-encoding from a search space with exponentially many children to
one with polynomially many children can be done whenever the actions in the original space have
a compact, factored encoding, which is typically the case in practice.

N

n

Figure 3: The key problem parameters: n - the number of training instances, d - the depth of target
solution paths, b - the beam width. Not depicted in the figure are: ¢ - maximum number
of children of any node, ¢ - the maximum target width of any example.

3.1 Hardness Upper Bounds

We first show an upper bound on the complexity of breadth-first consistency by proving that the
general problem is in NP even for exponentially large search spaces.

Observe that given a weight vector w and beam width b, we can easily generate a unique depth
d beam trajectory for each training instance. Our upper bound is based on considering the inverse
problem of checking whether a set of hypothesized beam trajectories, one for each training instance,
could have been generated by some weight vector. The algorithm TestTrajectories in Figure 4
efficiently carries out this check. The main idea is to observe that for any search space S it is
possible to efficiently check whether there is a weight vector that starting with a beam B could
generate a beam B’ after one step of breadth-first beam search. This can be done by constructing an
appropriate set of linear constraints on the weight vector w that are required to generate B’ from B.
In particular, we first generate the set of candidate nodes C from B by unioning all children of nodes
in B. Clearly we must have B’ C C in order for there to be a solution weight vector. If this is the
case then we create a linear constraint for each pair of nodes (u,v) such that u € B and v e C — B/,
which forces u to be preferred to v:

wef(u) >w-f(v)

where w = (w,wa,...,wy,) are the constraint variables and f(-) = (fi(:), f2(*),..., fm(:)) is the
vector of feature functions. Note that if u is more preferred than v in the total preference ordering,
then we only need to require that w- f(u) > w- f(v). The overall algorithm TestTrajectories simply
creates this set of constraints for each consecutive pair of beams in each beam trajectory and then
tests to see whether there is a w that satisfies all of the constraints.

Lemma 3 Given a set of search spaces {S;} and a corresponding set of width b beam trajectories

{(Bio,...,Bia)}, the algorithm TestTrajectories (Figure 4) decides in polynomial time whether there
exists a weight vector w that can generate (B, ...,B;q) in S; for all i.
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Proof It is straightforward to show that w satisfies the constraints generated by TestTrajectories
iff for each i, j, r(v/,v| <;,w) leads beam search to generate B; jy1 from B; ;. The linear program
contains m variables and at most ndch® constraints. Since we are assuming that the maximum
number of children of a node v is polynomial in the size of the learning problem, the size of the
linear program is also polynomial and thus can be solved in polynomial time (Khachiyan, 1979). &

This lemma shows that sets of beam trajectories can be used as efficiently-checkable certificates for
breadth-first consistency, which leads to an upper bound on the problem’s complexity.

Theorem 4 Breadth-first consistency is in NP.

Proof Given a learning problem ({(S;, P;)},b) our certificates correspond to sets of beam trajec-
tories {(Bio,...,Biq)} each of size at most O(ndb) which is polynomial in the problem size. The
certificate can then be checked in polynomial time to see if for each i, (B;o,...,Biq) contains a
target solution path encoded in P; as required by Definition 1. If it is consistent then according to
Lemma 3 we can efficiently decide whether there is a w that can generate {(B;,...,Biq)}. [

This result suggests an enumeration-based decision procedure for breadth-first consistency as
given in Figure 4. In that procedure, the function Enumerate creates a list of all possible combi-
nations of beam trajectories for the training data. Thus, each element of this list is a list of beam
trajectories, one for each training example, where a beam trajectory is simply a sequence of sets of
nodes that are selected from the given search space. For each enumerated combination of beam tra-
jectories, the function IsConsistent checks whether the beam trajectory for each example contains
a target path for that example and if so TestTrajectories will be called to determine whether there
exists a weight vector that could produce those trajectories. The following gives us the worst case
complexity of this algorithm in terms of the key problem parameters.

Theorem 5 The procedure ExhaustiveAlgorithm (Figure 4) decides breadth-first consistency and
returns a solution weight vector if there is a solution in time O ((t + poly(m)) (cb)?").

Proof We first bound the number of certificates. Breadth-first beam search expands nodes in the
current beam, resulting in at most cb nodes, from which b nodes are selected for the next beam. Enu-
merating these possible choices over d levels and n trajectories, one for each training instance, we
can bound the number of certificates by O ((cb)bd”). For each certificate the enumeration process
checks consistency with the target paths {P;} in time O(tbdn) and then calls TestTrajectories which
runs in time poly(m,ndcb?). The total time complexity then is O ((tbdn + poly(m,ndcb?*)) (cb)?")
= O ((t + poly(m)) (cb)?). [ |

Not surprisingly the complexity is exponential in the beam width b, target path depth d, and
number of training instances n. However, it is polynomial in the maximum number of children ¢
and the maximum target width z. Thus, breadth-first consistency can be solved in polynomial time
for any problem class where b, d, and n are constants. Of course, for most problems these constants
would be too large for this result to be of practical interest. This leads to the question of whether we
can do better than the exhaustive algorithm for restricted problem classes. For at least one problem
class we can.
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ExhaustiveAlgorithm ({(S;,P,) },b)
I' = Enumerate({(S;, P,) },b)
// enumerates all possible sets of beam trajectories
for each {(Bjy...,Big)} €T
if IsConsistent({P;},{(Bio...,Bi4)}) then
w= TestTrajectories({S;},{(Bio,...,Biq)})
if w # false then
return w
return false

TestTrajectories({S;},{(Bio,-..,Bia)})
1 Si = (Ii,si(), fi(+), <i)
construct a linear programming problem LP as below
the variables are w = {w,wa,..., Wy}
for (i,j) € {1,...,n} x{1,...,d}
C; j =BreadthExpand(B,; ;_1,s;(-))
if B,‘J - C,"j then
foreachu € B; jandveC;;—B,;;
if v <; u then
add a constraint w- fi(u) > w- f;(v)
else add a constraint w - fij(u) > w- f;(v)
else return false
w = LPSolver(LP)
if LP is solved then
return w
return false

Figure 4: The exhaustive algorithm for breadth-first consistency.

Theorem 6 The class of breadth-first consistency problems where b =1 and t = 1 is solvable in
polynomial time.

Proof Given a learning problem ({(S;,P;)},b) where P, = (P,p,...,Pi4), t = 1 implies that each
P; ; contains exactly one node. Since the beam width b = 1, then the only way that a beam trajec-
tory (Bio,...,Biq) can satisfy the condition B; ;N P; ; # 0 for any i, j, is for B; ; = P, ;. Thus there
is exactly one beam trajectory for each training example, equal to the target trajectory, and using
Lemma 3 we can check for a solution weight vector for these trajectories in polynomial time. W

This problem class, as depicted in Figure 5, corresponds to the case where each training instance
is labeled by exactly a single solution path and we are asked to find a w that leads a greedy hill-
climbing search, or reactive policy, to follow those paths. This is a common learning setting, for
example, when attempting to learn reactive control policies based on demonstrations of target poli-
cies, perhaps from an expert, as in Khardon (1999).
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&N N

Figure 5: A tractable class of breadth-first consistency, where b =1and r = 1.

3.2 Hardness Lower Bounds

Unfortunately, outside of the above problem classes it appears that breadth-first consistency is com-
putationally hard even under strict restrictions. In particular, the following three results show that
if any one of b, d, or n are not bounded then the consistency problem is hard even when the other
problem parameters are small constants.

First, we show that the problem class where n =d =¢ = 1 but b > 1 is NP-complete. That is, a
single training instance involving a depth one search space is sufficient for hardness. This problem
class, resembles more traditional ranking problems and has a nice analogy in the application domain
of web-page ranking, where the depth 1 leaves of our search space correspond to possibly relevant
web-pages for a particular query. One of those pages is marked as a target page, for example, the
page that a user eventually went to. The learning problem is then to find a weight vector that will
cause for the target page to be ranked among the top b pages. Our result shows that this problem is
NP-complete and hence will be exponential in b unless P = NP.

Theorem 7 The class of breadth-first consistency problems wheren=1,d=1,t=1,andb > 1 is
NP-complete.

Proof Our reduction is from the Minimum Disagreement problem for linear binary classifiers,
which was proven to be NP-complete by Hoffgen et al. (1995). The input to this problem is a train-
ingset T = {x],-- X} ,x -+ ,x, } of positive and negative m-dimensional vectors and a positive
integer k. A weight vector w classifies a vector as positive iff w-x > 0 and otherwise as negative.
The Minimum Disagreement problem is to decide whether there exists a weight vector that commits
no more than k misclassification.

Given a Minimum Disagreement problem we construct an instance ((S1, P;),b) of the breadth-
first consistency problem as follows. Assume without loss of generality S; = (I,s(-), f(+),<).
Let s(I) = {q0,91,"** yqr,+r, }. For each i € {1,---,ri}, define f(q;) = —x; € R™. For each
i€{l,---,rn}define f(gir,) =x; €R". Define f(qo) =0€R", Py = ({I},{qo}) and b=k + 1.
Define the total ordering < to be a total ordering in which g; < go foreveryi=1,...,r; and go < g;
forevery i =r; +1,...,r; +ry.We claim that there exists a linear classifier with at most £ misclas-
sifications if and only if there exists a solution to the corresponding consistency problem.

First, suppose there exists a linear classifier w-x > 0 with at most k misclassifications. Using
the weight vector w, we have

e w-f(q0) =0;

1581



XU, FERN AND YOON

e fori=1,---,r:
ifw-x">0,w-flqg)=w
iftw-x <0,w-f(qg;))=w-(—x) >0;

o fori=r;+1,...,r1+r:
ifw-x; >0,w-f(gi) =w-x; >0;

Fori=1,---,r; 4+, the node g; in the consistency problem is ranked lower than ¢gq if and only
if its corresponding example in the Minimum Disagreement problem is labeled correctly, is ranked
higher than g if and only if its corresponding example in the Minimum Disagreement problem is
labeled incorrectly. Therefore, there are at most k nodes which are ranked higher than go. With
beam width b = k+ 1, the beam B; | is guaranteed to contain node gy, indicating that w is a solution
to the consistency problem.

On the other hand, suppose there exists a solution w to the consistency problem. There are at
most b — 1 = k nodes that are ranked higher than gg. That is, at least ; + , — k nodes are ranked
lower than go. For i =1,...,r;, ¢; is ranked lower than g if and only if w- f(g;) < w- f(qo).
For i =r;+1,...,r1 +r2, g; is ranked lower than g if and only if w- f(g;) < w- f(qo). Since
w- f(qo) =0, we have

o fori=1,---,r:
w-flgi) <0=w-(—x) <0=w-x>0;

o fori=ri+1,...,r1+r:
w-f(qi) <0=>w-x; <0=w-x; <O0.

Therefore, using the linear classifier w-x > 0, at least r; +r, — k nodes are labeled correctly, that is,
it makes at most k£ misclassifications.

Since the time required to construct the instance ((S;,P;),b) from Tk is polynomial in the size
of T, k, we conclude that the consistency problem is NP-Complete even restricted ton =1,d =1
andt = 1. |

The next result shows that if we do not bound the number of training instances n, then the prob-
lem remains hard even when the target path depth and beam width are equal to one. Interestingly,
this subclass of breadth-first consistency corresponds to the multi-label learning problem as defined
in Jin and Ghahramani (2002). In multi-label learning each training instance can be viewed as a bag
of m-dimensional vectors, some of which are labeled as positive, which in our context correspond to
the target nodes. The learning goal is to find a w that for each bag, ranks one of the positive vectors
as best.

Theorem 8 The class of breadth-first consistency problems where d =1, b=1,¢c=6,t =3, and
n > 1is NP-complete.

Proof The proof is by reduction from 3-SAT (Garey and Johnson, 1979), which is the following.

“Given a set U of boolean variables, a collection Q of clauses over U such that each clause
q € QO has |q| = 3, decide whether there a satisfying truth assignment for C.”

1582



LEARNING LINEAR RANKING FUNCTIONS FOR BEAM SEARCH WITH APPLICATION TO PLANNING

Let U = {u1,...,um}, Q={q11Vq12V qi3,--.,qn1 V g2 V qn3} be an instance of the 3-SAT
problem. Here, ¢;; = u or —u for some u € U. We construct from U, Q an instance ({(S;,P;)},b)
of the breadth-first consistency problem as follows. For each clause g;; V g V g3, let s;(I;) =
{pi1, - ,pie} . Pi= ({Li},{pi1,pi2,pi3}).b=1,and the total ordering <; is defined so that p; ; <;
pik for j=1,2,3 and k =4,5,6. Let ¢, € {0,1}" denote a vector of zeros except a 1 in the
K'th component. For each i =1,...,n, j = 1,2,3, if g;j = uy for some k then f;(p; ;) = ex and
fi(pi,j+3) = —ex/2, otherwise if g;; = —uy for some k then fi(p; ;) = —ex and fi(p; j+3) = ex/2.
We claim that there exists a satisfying truth assignment if and only if there exists a solution to the
corresponding consistency problem.

First, suppose that there exists a satisfying truth assignment. Let w = (wy,---,wy,), Where
wr = 1 if uy is true, and wy = —1 if u; is false in the truth assignment. For each i =1,...,n,
j=1,...,3, we have:

e if g;; is true, then
w- fi(pij) = Land w- fi(pi ji3) = —1/2;

e if g;; is false, then
w- fi(pij) = —1and w- fi(pij43) = 1/2.

Note that for each clause g;; V gi» V gi3, at least one of the literals is true. Thus, for every set of
nodes {pi 1, pi2, pi3}, at least one of the nodes will have the highest rank value equal to 1, resulting
in B;; = {v} where v € {p;1,pi2,pi3}. By the definition, the weight vector w is a solution to the
consistency problem.

On the other hand, suppose that there exists a solution w = (wy,...,wy,) to the consistency
problem. Assume the beam trajectory for each i is ({;},{v;}). Then v; = p; j for some j € {1,2,3},
and for this i and j, g;; = uy or —uy for some k. Let u; be true if ¢;; = uy and be false if g;; = —uy.
As long as there is no contradiction in this assignment, this is a satisfying truth assignment because
at least one of {¢;1,¢i2,qi3} is true for every i, that is, every clause is true.

Now we will prove that there is no contradiction in this assignment, that is, any variable is
assigned either true or false, but not both. Note that for any node v € {p; 1, pi2,pi3}, there always
exists anode V' € {p;4,...,pie} such that:

o w-fi(v)<0&w-f;(v)>0;
e w-fi(v) >0 w-fi(V)<O0;
e w-fi(v)=0=w-fi(y/)=0.

Then because of the total ordering <; we defined, the node v; = p; ; appearing in the beam trajectory,
must has w- f;(v;) > 0. Assume without loss of generality that g; j = u, then uy is assigned to be true.
Although —u; might appear in other clauses, for example, g; y = —u, its corresponding node py
can never appear in the beam trajectory because w- fiy (py 1) =w-(—ex) = —w-ex = —w- fi(pi ;) <0.
Therefore, u; will never be assigned false. A similar proof can be given for the case of g;; = —u.
Since the time required to construct the instance ({(S;, P;)},b) from U, Q is polynomial in the
size of U, Q, we conclude that the consistency problem is NP-Complete for the case of d =1,b=1,
c=6andr=23.
|
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Finally, we show that when the depth d is unbounded the consistency problem remains hard even
when b =n=1.

Theorem 9 The class of breadth-first consistency problems wheren=1,b=1,c=6,t =3, and
d > 1is NP-complete.

Proof Assume x = ({(S;,P,)|i=1,...,n},b), where S; = (I;,s;(-), fi(-), <i) and P, = ({L;},P; 1), is
an instance of the consistency problem withd =1,b =1, c =6 and t = 3. We can construct an
instance y of the consistency problem withn=1,b=1,c=6,andt = 3. Lety = ((S1,P;),b) where
S1=(,50),f(-),<),and Py = ({l1 }, P11, P21, .., Pr1). We define 5(-), f(+), < as below.

o 5(I) =si1(h), f(Ii) = fi(hh);

e foreachi=1,...,n—1
W e si(l), f(v) = fi(v) and 5(v) = siv1 (lir1);
Vv,V €si(L), <(v,V) =<; (vV');

o Wesy(ly), f(v) = fulv);
V() € salln), <(v,V') =<u (nV).

Obviously, a weight vector w is a solution for the instance x if and only if w is a solution for the
constructed instance y. |
b n d c t Complexity

poly | >1 | >1 | poly | >1 NP
K K K |poly | >1 P
1 >11| >1| poly 1 P

poly 1 1 | poly 1 | NP-Complete
1 >1 1 6 3 | NP-Complete
1 1 >1 6 3 | NP-Complete

Figure 6: Complexity results for breadth-first consistency. Each row corresponds to a sub-class of
the problem and indicates the computational complexity. K indicates a constant value and
“poly” indicates that the quantity must be polynomially related to the problem size.

Figure 6 summarizes our main complexity results from this section for breadth-first consistency.
For best-first beam search, most of these results can be carried over. Recall that for best-first con-
sistency the problem specifies a search horizon /4 in addition to a beam width. Using a similar
approach as above we can show that best-first consistency is in NP assuming that 4 is polynomial
in the problem size, which is a reasonable assumption. Similarly, one can extend the polynomial
time result for fixed b, n, and d. The remaining results in the table can be directly transferred to
best-first search, since in each case either » = 1 or d = 1 and best-first beam search is equivalent to
breadth-first beam search in either of these cases.

1584



LEARNING LINEAR RANKING FUNCTIONS FOR BEAM SEARCH WITH APPLICATION TO PLANNING

4. Convergence of Online Updates

In the previous section, we identified a limited set of tractable problem classes and saw that even
very restricted classes remain NP-hard. We also saw that some of these hard classes had interesting
application relevance. Thus, it is desirable to consider efficient learning mechanisms that work well
in practice. Below we describe two such algorithms based on online perceptron updates.

4.1 Online Perceptron Updates

Figure 7 gives the LaSO-BR algorithm for learning ranking functions for breadth-first beam search.
It resembles the learning as search optimization (LaSO) algorithm for best-first search by Daumé I11
and Marcu (2005). LaSO-BR iterates through all training instances (S;, P;) and for each one con-
ducts a beam search of the specified width. After generating the depth j beam for the ith training
instance, if at least one of the target nodes in P; ; are in the beam then no weight update occurs.
Rather, if none of the target nodes in P; ; are in the beam then a search error is flagged and weights
are updated according to the following perceptron-style rule,

<EV*EP[2_/OC f(V*) EVGB f(V) >
w=w+a- -
|P,jNC| b
where 0 < a < 1 is a learning rate parameter, B is the current beam and C is the candidate set from
which B was generated (i.e., the beam expansion of the previous beam). For simplicity of notation,
here we assume that f is a feature function for all training instances. Intuitively this weight update
moves the weights in the direction of the average feature function of target nodes that appear in C,
and away from the average feature function of non-target nodes in the beam. This has the effect of
increasing the rank of target nodes in C and decreasing the rank of non-targets in the beam. Ideally,
this will cause at least one of the target nodes to become preferred enough to remain on the beam
next time through the search. Note that the use of averages over target and non-target nodes is
important so as to account for the different sizes of these sets of nodes. After each weight update,
the beam is reset to contain only the set of target nodes in C and the beam search then continues.
Importantly, on each iteration, the processing of each training instance is guaranteed to terminate in
d search steps.

Figure 8 gives the LaSO-BST algorithm for learning in best-first beam search, which is a slight
modification of the original LaSO algorithm. The main difference compared to the original LaSO
is in the weight update equation, a change that appears necessary for our convergence analysis. The
algorithm is similar to LaSO-BR except that a best-first beam search is conducted, which means that
termination for each training instance is not guaranteed to be within d steps. Rather, the number of
search steps for a single training instance remains unbounded without further assumptions, which
we will address later in this section. In particular, there is no bound on the number of search
steps between weight updates for a given training example. This difference between LaSO-BR and
LaSO-BST was of great practical importance in our automated planning application. In particular,
LaSO-BST typically did not produce useful learning results due to the fact that the number of search
steps between weight updates was extremely large. Note that in the case of structured classification,
Daumé III and Marcu (2005) did not experience this difficulty due to the bounded-depth nature of
their search spaces.
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LaSO-BR ({(S:,P)},b)
w0
repeat until w is unchanged or a large number of iterations
for every i
Update-BR(S;, P;,b,w)
return w

Update-BR (S;, P;,b,w)
/1'S; = <Ii,Si('),f('), <,'> and P, = (P,'yo, ... ,Pin)
B — {I;} // initial beam
for j=1,...,d
C < BreadthExpand(B, s;(-))
for everyve C
H(v) < w- f(v) // compute heuristic value of v
Order C according to H and the total ordering <;
B « the first b nodes in C
if BN P, j = () then

viep; ; f(V*) Vv
wewta- (2 LA B )>
B<—P,-.J-ﬂC

return

Figure 7: The LaSO-BR online algorithm for breadth-first beam search.

4.2 Previous Result and Counter Example

Adjusting to our terminology, Daumé III and Marcu (2005) defined a training set to be linear separa-
ble iff there is a weight vector that solves the corresponding consistency problem. Also for linearly
separable data they defined a notion of margin of a weight vector, which we refer to here as the
search margin. The formal definition of search margin is given below.

Definition 10 (Search Margin) The search margin of a weight vector w for a linearly separable
training set is defined as y = miny(, ), (w- f(v*) —w- f(v)), where the set {(v*,v)} contains any
pair where v* is a target node and v is a non-target node that was compared during the beam search
guided by w.

Daumé III and Marcu (2005) state that the existence of a w with positive search margin, which
implies linear separability, implies convergence of the original LaSO algorithm after a finite number
of weight updates. On further investigation, we have found that a positive search margin is not suf-
ficient to guarantee convergence for LaSO, LaSO-BR, or LaSO-BST. Intuitively, the key difficulty
is that our learning problem contains hidden state in the form of the desired beam trajectory. Given
the beam trajectory of a consistent weight vector one can compute the weights, and likewise given
consistent weights one can compute the beam trajectory. However, we are given neither to begin
with and our approach can be viewed as an online EM-style algorithm, which alternates between
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LaSO-BST ({(S;,P,)},b)
w0
repeat until w is unchanged or a large number of iterations
for every i
Update-BST(S;, P, b,w)
return w

Update-BST (S;, P;,b,w)
/1S, = <I,-,s,-(-),f(-), <i> and P, = (Pl'_’(), ... ,P,"d)
B «— {I;} // initial beam
P=PoUP,U...UPy
while BNP, ;=0
C «— BestExpand(B, s;(-))
for everyve C
H(v) < w- f(v) // compute heuristic value of v
Order C according to H and the total ordering <;
B «— the first b nodes in C
if BN P = () then

wWe—w-+a- Ev*e‘;;%cg"(v*) _ Evel;)f(ﬂ)
B—PNnC
return

Figure 8: Online algorithm for best-first beam search.

updating weights given the current beam and recomputing the beam given the updated weights.
Just as traditional EM is quite prone to local minima, so are the LaSO algorithms in general, and
in particular even when there is a positive search margin as demonstrated in the following counter
example. Note that the standard Perceptron algorithm for classification learning does not run into
this problem since there is no hidden state involved.

Counter Example 1 We give a training set for which the existence of a weight vector with pos-
itive search margin does not guarantee convergence to a solution weight vector for LaSO-BR
or LaSO-BST. Consider a problem that consists of a single training instance with search space
shown in Figure 9, preference ordering C < B < F < E < D < H < G, and single target path
P=({A},{B}.{E}).

First we will consider using breadth-first beam search with a beam width of b = 2. Using the
weight vector w = [y,y] the resulting beam trajectory will be (note that higher values of w- f(v) are
better):

{A},{B,C},{E.F}.

The search margin of w, which is only sensitive to pairs of target and non-target nodes that were
compared during the search, is equal to,

Y=w-f(B)—w-f(C)=w-f(E)—w-f(F)
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>

Q f(A) =D
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FB)=(D f(C)—(O,l)/ YDHO’O)
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FEY=LD fF)=0DH f(G)=0D) fH)=1D

Figure 9: Counter example for convergence under positive search margin.

which is positive. We now show that the existence of w does not imply convergence under perceptron
updates.

Consider simulating LaSO-BR starting from w' = 0. The first search step gives the beam {D,B}
according to the given preference ordering. Since B is on the target path we continue expanding to
the next level where we get the new beam {G,H }. None of the nodes are on the target path so we
update the weights as follows:

w' = W f(E) - 0.5[f(G)+ f(H)]
w +[1,1] = [1,1]

/
w.

This shows that w' does not change and we have converged to the weight vector w = 0, which is not
a solution to the problem.

For the case of best-first beam search, the performance is similar. Given the weight vector
w = [y,Y], the resulting beam search with beam width 2 will generate the beam sequence,

{A}{B,C} {E,C}

which is consistent with the target trajectory. From this we can see that w has a positive search
margin of:
Y=w-f(B)=w-f(C)=w-f(E)—w-f(C).

However, if we follow the perceptron algorithm when started with the weight vector w = 0 we can
again show that the algorithm does not converge to a solution weight vector. In particular, the first
search step gives the beam {D,B} and since B is on the target path, we do not update the weights
and generate a new beam {G,H } by expanding the node D. At this point there are no target nodes
in the beam and the weights are updated as follows

w' = w4 f(B)-0.5[f(G)+ f(H)]
= w+[1,1]-[1,1]
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showing that the algorithm has converged to w' = 0, which is not a solution to the problem.

Thus, we have shown that a positive search margin does not guarantee convergence for either
LaSO-BR or LaSO-BST. This counter example also applies to the original LaSO algorithm, which
is quite similar to LaSO-BST.

4.3 Convergence Under Stronger Notions of Margin

Given that linear separability, or equivalently a positive search margin, is not sufficient to guarantee
convergence we consider a stronger notion of margin, the level margin, which measures by how
much the target nodes are ranked above (or below) other non-target nodes at the same search level.

Definition 11 (Level Margin) The level margin of a weight vector w for a training set is defined as
y = ming (e (W f(v*) —w- f(v)), where the set {(v*,v)} contains any pair such that v* is a target
node at some depth j and v can be reached in j search steps from the initial search node—that is,
v* and v are at the same level.

For breadth-first beam search, a positive level margin for w implies a positive search margin, but not
necessarily vice versa, showing that level margin is a strictly stronger notion of separability. The
following result shows that a positive level margin is sufficient to guarantee convergence of LaSO-
BR. Throughout we will let R be a constant such that for all training instances, for all nodes v and
Vo |If(v) = £(V)]] < R. The proof of this result follows similar lines as the Perceptron convergence
proof for standard classification problems Rosenblatt (1962).

Theorem 12 Given a dead-end free training set such that there exists a weight vector w with level
marginy > 0 and ||w|| = 1, LaSO-BR will converge with a consistent weight vector after making no
more than (R /y)* weight updates.

Proof First note that the dead-end free property of the training data can be used to show that unless
the current weight vector is a solution it will eventually trigger a “meaningful” weight update (one
where the candidate set contains target nodes).

Let wk be the weights before the k'th mistake is made. Then w' = 0. Suppose the k’th mis