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41 Markov Properties for Linear Causal Models with Correlated Errors
(Special Topic on Causality)

Changsung Kang, Jin Tian

71 An Analysis of Convex Relaxations for MAP Estimation of Discrete MRFs
M. Pawan Kumar, Vladimir Kolmogorov, Philip H.S. Torr

107 Refinement of Reproducing Kernels
Yuesheng Xu, Haizhang Zhang

141 Subgroup Analysis via Recursive Partitioning
Xiaogang Su, Chih-Ling Tsai, Hansheng Wang, David M. Nickerson, Bogong
Li

159 Python Environment for Bayesian Learning: Inferring the Structure of
Bayesian Networks from Knowledge and Data (Machine Learning Open

Source Software Paper)

Abhik Shah, Peter Woolf

163 On The Power of Membership Queries in Agnostic Learning
Vitaly Feldman

183 Using Local Dependencies within Batches to Improve Large Margin Clas-
sifiers
Volkan Vural, Glenn Fung, Balaji Krishnapuram, Jennifer G. Dy, Bharat Rao

207 Distance Metric Learning for Large Margin Nearest Neighbor Classifi-
cation
Kilian Q. Weinberger, Lawrence K. Saul

245 Data-driven Calibration of Penalties for Least-Squares Regression
Sylvain Arlot, Pascal Massart

281 Analysis of Perceptron-Based Active Learning
Sanjoy Dasgupta, Adam Tauman Kalai, Claire Monteleoni

301 Improving the Reliability of Causal Discovery from Small Data Sets Us-
ing Argumentation (Special Topic on Causality)

Facundo Bromberg, Dimitris Margaritis

341 Low-Rank Kernel Learning with Bregman Matrix Divergences
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Abstract
We consider regularized support vector machines (SVMs) and show that they are precisely equiva-
lent to a new robust optimization formulation. We show that this equivalence of robust optimization
and regularization has implications for both algorithms, and analysis. In terms of algorithms, the
equivalence suggests more general SVM-like algorithms for classification that explicitly build in
protection to noise, and at the same time control overfitting. On the analysis front, the equiva-
lence of robustness and regularization provides a robust optimization interpretation for the success
of regularized SVMs. We use this new robustness interpretation of SVMs to give a new proof of
consistency of (kernelized) SVMs, thus establishing robustness as the reason regularized SVMs
generalize well.
Keywords: robustness, regularization, generalization, kernel, support vector machine

1. Introduction

Support Vector Machines (SVMs for short) originated in Boser et al. (1992) and can be traced back
to as early as Vapnik and Lerner (1963) and Vapnik and Chervonenkis (1974). They continue to be
one of the most successful algorithms for classification. SVMs address the classification problem by
finding the hyperplane in the feature space that achieves maximum sample margin when the training
samples are separable, which leads to minimizing the norm of the classifier. When the samples are
not separable, a penalty term that approximates the total training error is considered (Bennett and
Mangasarian, 1992; Cortes and Vapnik, 1995). It is well known that minimizing the training error
itself can lead to poor classification performance for new unlabeled data; that is, such an approach

∗. Also at the Department of Electrical Engineering, Technion, Israel.

c©2009 Huan Xu, Constantine Caramanis and Shie Mannor.
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may have poor generalization error because of, essentially, overfitting (Vapnik and Chervonenkis,
1991). A variety of modifications have been proposed to handle this, one of the most popular
methods being that of minimizing a combination of the training-error and a regularization term. The
latter is typically chosen as a norm of the classifier. The resulting regularized classifier performs
better on new data. This phenomenon is often interpreted from a statistical learning theory view:
the regularization term restricts the complexity of the classifier, hence the deviation of the testing
error and the training error is controlled (see Smola et al., 1998; Evgeniou et al., 2000; Bartlett and
Mendelson, 2002; Koltchinskii and Panchenko, 2002; Bartlett et al., 2005, and references therein).

In this paper we consider a different setup, assuming that the training data are generated by
the true underlying distribution, but some non-i.i.d. (potentially adversarial) disturbance is then
added to the samples we observe. We follow a robust optimization (see El Ghaoui and Lebret,
1997; Ben-Tal and Nemirovski, 1999; Bertsimas and Sim, 2004, and references therein) approach,
that is, minimizing the worst possible empirical error under such disturbances. The use of robust
optimization in classification is not new (e.g., Shivaswamy et al., 2006; Bhattacharyya et al., 2004b;
Lanckriet et al., 2003), in which box-type uncertainty sets were considered. Moreover, there has
not been an explicit connection to the regularized classifier, although at a high-level it is known that
regularization and robust optimization are related (e.g., El Ghaoui and Lebret, 1997; Anthony and
Bartlett, 1999). The main contribution in this paper is solving the robust classification problem for
a class of non-box-typed uncertainty sets, and providing a linkage between robust classification and
the standard regularization scheme of SVMs. In particular, our contributions include the following:

• We solve the robust SVM formulation for a class of non-box-type uncertainty sets. This per-
mits finer control of the adversarial disturbance, restricting it to satisfy aggregate constraints
across data points, therefore reducing the possibility of highly correlated disturbance.

• We show that the standard regularized SVM classifier is a special case of our robust clas-
sification, thus explicitly relating robustness and regularization. This provides an alternative
explanation to the success of regularization, and also suggests new physically motivated ways
to construct regularization terms.

• We relate our robust formulation to several probabilistic formulations. We consider a chance-
constrained classifier (that is, a classifier with probabilistic constraints on misclassification)
and show that our robust formulation can approximate it far less conservatively than previous
robust formulations could possibly do. We also consider a Bayesian setup, and show that this
can be used to provide a principled means of selecting the regularization coefficient without
cross-validation.

• We show that the robustness perspective, stemming from a non-i.i.d. analysis, can be useful
in the standard learning (i.i.d.) setup, by using it to prove consistency for standard SVM
classification, without using VC-dimension or stability arguments. This result implies that
generalization ability is a direct result of robustness to local disturbances; it therefore suggests
a new justification for good performance, and consequently allows us to construct learning
algorithms that generalize well by robustifying non-consistent algorithms.
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ROBUSTNESS AND REGULARIZATION OF SVMS

1.1 Robustness and Regularization

We comment here on the explicit equivalence of robustness and regularization. We briefly explain
how this observation is different from previous work and why it is interesting. Previous works on
robust classification (e.g., Lanckriet et al., 2003; Bhattacharyya et al., 2004a,b; Shivaswamy et al.,
2006; Trafalis and Gilbert, 2007) consider robustifying regularized classifications.1 That is, they
propose modifications to standard regularized classifications so that the new formulations are robust
to input uncertainty. Furthermore, box-type uncertainty—a setup where the joint uncertainty is the
Cartesian product of uncertainty in each input (see Section 2 for detailed formulation)—is consid-
ered, which leads to penalty terms on each constraint of the resulting formulation. The objective
of these works was not to relate robustness and the standard regularization term that appears in the
objective function. Indeed, research on classifier regularization mainly considers its effect on bound-
ing the complexity of the function class (e.g., Smola et al., 1998; Evgeniou et al., 2000; Bartlett and
Mendelson, 2002; Koltchinskii and Panchenko, 2002; Bartlett et al., 2005). Thus, although certain
equivalence relationships between robustness and regularization have been established for problems
other than classification (El Ghaoui and Lebret, 1997; Ben-Tal and Nemirovski, 1999; Bishop, 1995;
Xu et al., 2009), the explicit equivalence between robustness and regularization in the SVM setup
is novel.

The connection of robustness and regularization in the SVM context is important for the follow-
ing reasons. First, it gives an alternative and potentially powerful explanation of the generalization
ability of the regularization term. In the standard machine learning view, the regularization term
bounds the complexity of the class of classifiers. The robust view of regularization regards the test-
ing samples as a perturbed copy of the training samples. Therefore, when the total perturbation is
given or bounded, the regularization term bounds the gap between the classification errors of the
SVM on these two sets of samples. In contrast to the standard PAC approach, this bound depends
neither on how rich the class of candidate classifiers is, nor on an assumption that all samples are
picked in an i.i.d. manner.

Second, this connection suggests novel approaches to designing good classification algorithms,
in particular, designing the regularization term. In the PAC structural-risk minimization approach,
regularization is chosen to minimize a bound on the generalization error based on the training error
and a complexity term. This approach is known to often be too pessimistic (Kearns et al., 1997),
especially for problems with more structure. The robust approach offers another avenue. Since
both noise and robustness are physical processes, a close investigation of the application and noise
characteristics at hand, can provide insights into how to properly robustify, and therefore regularize
the classifier. For example, it is known that normalizing the samples so that the variance among all
features is roughly the same (a process commonly used to eliminate the scaling freedom of individ-
ual features) often leads to good generalization performance. From the robustness perspective, this
has the interpretation that the noise is anisotropic (ellipsoidal) rather than spherical, and hence an
appropriate robustification must be designed to fit this anisotropy.

We also show that using the robust optimization viewpoint, we obtain some probabilistic results
that go beyond the PAC setup. In Section 3 we bound the probability that a noisy training sample is
correctly labeled. Such a bound considers the behavior of corrupted samples and is hence different
from the known PAC bounds. This is helpful when the training samples and the testing samples are

1. Lanckriet et al. (2003) is perhaps the only exception, where a regularization term is added to the covariance estimation
rather than to the objective function.
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drawn from different distributions, or some adversary manipulates the samples to prevent them from
being correctly labeled (e.g., spam senders change their patterns from time to time to avoid being
labeled and filtered). Finally, this connection of robustification and regularization also provides us
with new proof techniques as well (see Section 5).

We need to point out that there are several different definitions of robustness in the literature. In
this paper, as well as the aforementioned robust classification papers, robustness is mainly under-
stood from a Robust Optimization (RO) perspective, where a min-max optimization is performed
over all possible disturbances. An alternative interpretation of robustness stems from the rich lit-
erature on robust statistics (e.g., Huber, 1981; Hampel et al., 1986; Rousseeuw and Leroy, 1987;
Maronna et al., 2006), which studies how an estimator or algorithm behaves under a small pertur-
bation of the statistics model. For example, the influence function approach, proposed in Hampel
(1974) and Hampel et al. (1986), measures the impact of an infinitesimal amount of contamination
of the original distribution on the quantity of interest. Based on this notion of robustness, Christ-
mann and Steinwart (2004) showed that many kernel classification algorithms, including SVM, are
robust in the sense of having a finite Influence Function. A similar result for regression algorithms
is shown in Christmann and Steinwart (2007) for smooth loss functions, and in Christmann and Van
Messem (2008) for non-smooth loss functions where a relaxed version of the Influence Function is
applied. In the machine learning literature, another widely used notion closely related to robustness
is the stability, where an algorithm is required to be robust (in the sense that the output function does
not change significantly) under a specific perturbation: deleting one sample from the training set. It
is now well known that a stable algorithm such as SVM has desirable generalization properties, and
is statistically consistent under mild technical conditions; see for example Bousquet and Elisseeff
(2002), Kutin and Niyogi (2002), Poggio et al. (2004) and Mukherjee et al. (2006) for details. One
main difference between RO and other robustness notions is that the former is constructive rather
than analytical. That is, in contrast to robust statistics or the stability approach that measures the
robustness of a given algorithm, RO can robustify an algorithm: it converts a given algorithm to
a robust one. For example, as we show in this paper, the RO version of a naive empirical-error
minimization is the well known SVM. As a constructive process, the RO approach also leads to
additional flexibility in algorithm design, especially when the nature of the perturbation is known
or can be well estimated.

1.2 Structure of the Paper

This paper is organized as follows. In Section 2 we investigate the correlated disturbance case, and
show the equivalence between the robust classification and the regularization process. We develop
the connections to probabilistic formulations in Section 3. The kernelized version is investigated
in Section 4. Finally, in Section 5, we consider the standard statistical learning setup where all
samples are i.i.d. draws and provide a novel proof of consistency of SVM based on robustness
analysis. The analysis shows that duplicate copies of iid draws tend to be “similar” to each other
in the sense that with high probability the total difference is small, and hence robustification that
aims to control performance loss for small perturbations can help mitigate overfitting even though
no explicit perturbation exists.
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1.3 Notation

Capital letters are used to denote matrices, and boldface letters are used to denote column vectors.
For a given norm ‖ ·‖, we use ‖ ·‖∗ to denote its dual norm, that is, ‖z‖∗ ! sup{z$x|‖x‖ ≤ 1}. For
a vector x and a positive semi-definite matrix C of the same dimension, ‖x‖C denotes

√
x$Cx. We

use ! to denote disturbance affecting the samples. We use superscript r to denote the true value
for an uncertain variable, so that !ri is the true (but unknown) noise of the ith sample. The set of
non-negative scalars is denoted by R+. The set of integers from 1 to n is denoted by [1 : n].

2. Robust Classification and Regularization

We consider the standard binary classification problem, where we are given a finite number of
training samples {xi,yi}mi=1 ⊆ Rn× {−1,+1}, and must find a linear classifier, specified by the
function hw,b(x) = sgn(〈w, x〉+b). For the standard regularized classifier, the parameters (w,b) are
obtained by solving the following convex optimization problem:

min
w,b,"

: r(w,b)+
m

#
i=1

"i

s.t. : "i ≥
[

1− yi(〈w,xi〉+b)]
"i ≥ 0,

where r(w,b) is a regularization term. This is equivalent to

min
w,b

{

r(w,b)+
m

#
i=1
max

[

1− yi(〈w,xi〉+b),0
]

}

.

Previous robust classification work (Shivaswamy et al., 2006; Bhattacharyya et al., 2004a,b; Bhat-
tacharyya, 2004; Trafalis and Gilbert, 2007) considers the classification problem where the input
are subject to (unknown) disturbances !! = (!1, . . . ,!m) and essentially solves the following min-
max problem:

min
w,b

max
!!∈Nbox

{

r(w,b)+
m

#
i=1
max

[

1− yi(〈w, xi−!i〉+b),0
]

}

, (1)

for a box-type uncertainty set Nbox. That is, let Ni denote the projection of Nbox onto the !i com-
ponent, then Nbox = N1× · · ·×Nm (note that Ni need not be a “box”). Effectively, this allows
simultaneous worst-case disturbances across many samples, and leads to overly conservative solu-
tions. The goal of this paper is to obtain a robust formulation where the disturbances {!i} may be
meaningfully taken to be correlated, that is, to solve for a non-box-type N :

min
w,b
max
!!∈N

{

r(w,b)+
m

#
i=1
max

[

1− yi(〈w,xi−!i〉+b),0
]

}

. (2)

We briefly explain here the four reasons that motivate this “robust to perturbation” setup and in par-
ticular the min-max form of (1) and (2). First, it can explicitly incorporate prior problem knowledge
of local invariance (e.g., Teo et al., 2008). For example, in vision tasks, a desirable classifier should
provide a consistent answer if an input image slightly changes. Second, there are situations where
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some adversarial opponents (e.g., spam senders) will manipulate the testing samples to avoid being
correctly classified, and the robustness toward such manipulation should be taken into consideration
in the training process (e.g., Globerson and Roweis, 2006). Or alternatively, the training samples
and the testing samples can be obtained from different processes and hence the standard i.i.d. as-
sumption is violated (e.g., Bi and Zhang, 2004). For example in real-time applications, the newly
generated samples are often less accurate due to time constraints. Finally, formulations based on
chance-constraints (e.g., Bhattacharyya et al., 2004b; Shivaswamy et al., 2006) are mathematically
equivalent to such a min-max formulation.

We define explicitly the correlated disturbance (or uncertainty) which we study below.

Definition 1 A set N0 ⊆ Rn is called an Atomic Uncertainty Set if

(I) 0 ∈N0;
(II) For any w0 ∈ R

n : sup
!∈N0

[w$
0 !] = sup

!′∈N0
[−w$

0 !
′] < +$.

We use “sup” here because the maximal value is not necessary attained since N0 may not be a
closed set. The second condition of Atomic Uncertainty set basically says that the uncertainty set is
bounded and symmetric. In particular, all norm balls and ellipsoids centered at the origin are atomic
uncertainty sets, while an arbitrary polytope might not be an atomic uncertainty set.

Definition 2 LetN0 be an atomic uncertainty set. A setN ⊆Rn×m is called a Sublinear Aggregated
Uncertainty Set of N0, if

N − ⊆N ⊆N +,

where: N − !

m
[

t=1
N −
t ; N −

t ! {(!1, · · · ,!m)|!t ∈N0; !i/=t = 0}.

N + ! {(%1!1, · · · ,%m!m)|
m

#
i=1

%i = 1; %i ≥ 0, !i ∈N0, i= 1, · · · ,m}.

The Sublinear Aggregated Uncertainty definition models the case where the disturbances on each
sample are treated identically, but their aggregate behavior across multiple samples is controlled.
Some interesting examples include

(1) {(!1, · · · ,!m)|
m

#
i=1

‖!i‖ ≤ c};

(2) {(!1, · · · ,!m)|∃t ∈ [1 : m]; ‖!t‖ ≤ c; !i = 0,∀i /= t};

(3) {(!1, · · · ,!m)|
m

#
i=1

√

c‖!i‖ ≤ c}.

All these examples have the same atomic uncertainty set N0 =
{

!
∣

∣‖!‖ ≤ c
}

. Figure 1 provides an
illustration of a sublinear aggregated uncertainty set for n = 1 and m = 2, that is, the training set
consists of two univariate samples.

The following theorem is the main result of this section, which reveals that standard norm reg-
ularized SVM is the solution of a (non-regularized) robust optimization. It is a special case of
Proposition 4 by taking N0 as the dual-norm ball {!|‖!‖∗ ≤ c} for an arbitrary norm ‖ · ‖ and
r(w,b) ≡ 0.
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a. N − b. N + c. N d. Box uncertainty

Figure 1: Illustration of a Sublinear Aggregated Uncertainty Set N .

Theorem 3 Let T !
{

(!1, · · ·!m)|#m
i=1 ‖!i‖∗ ≤ c

}

. Suppose that the training sample {xi,yi}mi=1
are non-separable. Then the following two optimization problems on (w,b) are equivalent2

min : max
(!1,··· ,!m)∈T

m

#
i=1
max

[

1− yi
(

〈w, xi−!i〉+b
)

,0
]

,

min : c‖w‖+
m

#
i=1
max

[

1− yi
(

〈w, xi〉+b
)

,0
]

.

(3)

Proposition 4 Assume {xi,yi}mi=1 are non-separable, r(·) : Rn+1 → R is an arbitrary function, N
is a Sublinear Aggregated Uncertainty set with corresponding atomic uncertainty set N0. Then the
following min-max problem

min
w,b

sup
(!1,··· ,!m)∈N

{

r(w,b)+
m

#
i=1
max

[

1− yi(〈w,xi−!i〉+b), 0
]

}

(4)

is equivalent to the following optimization problem on w,b,":

min : r(w,b)+ sup
!∈N0

(w$!)+
m

#
i=1

"i,

s.t. : "i ≥ 1− [yi(〈w, xi〉+b)], i= 1, . . . ,m;
"i ≥ 0, i= 1, . . . ,m.

(5)

Furthermore, the minimization of Problem (5) is attainable when r(·, ·) is lower semi-continuous.

Proof Define:

v(w,b) ! sup
!∈N0

(w$!)+
m

#
i=1
max

[

1− yi(〈w,xi〉+b), 0
]

.

2. The optimization equivalence for the linear case was observed independently by Bertsimas and Fertis (2008).
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Recall thatN − ⊆N ⊆N+ by definition. Hence, fixing any (ŵ, b̂)∈Rn+1, the following inequalities
hold:

sup
(!1,··· ,!m)∈N −

m

#
i=1
max

[

1− yi(〈ŵ,xi−!i〉+ b̂), 0
]

≤ sup
(!1,··· ,!m)∈N

m

#
i=1
max

[

1− yi(〈ŵ,xi−!i〉+ b̂), 0
]

≤ sup
(!1,··· ,!m)∈N +

m

#
i=1
max

[

1− yi(〈ŵ,xi−!i〉+ b̂), 0
]

.

To prove the theorem, we first show that v(ŵ, b̂) is no larger than the leftmost expression and then
show v(ŵ, b̂) is no smaller than the rightmost expression.
Step 1: We prove that

v(ŵ, b̂) ≤ sup
(!1,··· ,!m)∈N −

m

#
i=1
max

[

1− yi(〈ŵ,xi−!i〉+ b̂), 0
]

. (6)

Since the samples {xi, yi}mi=1 are not separable, there exists t ∈ [1 : m] such that

yt(〈ŵ,xt〉+ b̂) < 0. (7)

Hence,

sup
(!1,··· ,!m)∈N −

t

m

#
i=1
max

[

1− yi(〈ŵ,xi−!i〉+ b̂), 0
]

=#
i/=t
max

[

1− yi(〈ŵ,xi〉+ b̂), 0
]

+ sup
!t∈N0

max
[

1− yt(〈ŵ,xt−!t〉+ b̂), 0
]

=#
i/=t
max

[

1− yi(〈ŵ,xi〉+ b̂), 0
]

+max
[

1− yt(〈ŵ,xt〉+ b̂)+ sup
!t∈N0

(ytŵ$!t), 0
]

=#
i/=t
max

[

1− yi(〈ŵ,xi〉+ b̂), 0
]

+max
[

1− yt(〈ŵ,xt〉+ b̂), 0
]

+ sup
!t∈N0

(ytŵ$!t)

= sup
!∈N0

(ŵ$!)+
m

#
i=1
max

[

1− yi(〈ŵ,xi〉+ b̂),0
]

= v(ŵ, b̂).

The third equality holds because of Inequality (7) and sup!t∈N0(ytŵ
$!t) being non-negative (recall

0 ∈N0). Since N −
t ⊆N −, Inequality (6) follows.

Step 2: Next we prove that

sup
(!1,··· ,!m)∈N +

m

#
i=1
max

[

1− yi(〈ŵ,xi−!i〉+ b̂), 0
]

≤ v(ŵ, b̂). (8)
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Notice that by the definition of N + we have

sup
(!1,··· ,!m)∈N +

m

#
i=1
max

[

1− yi(〈ŵ,xi−!i〉+ b̂), 0
]

= sup
#mi=1%i=1;%i≥0; !̂i∈N0

m

#
i=1
max

[

1− yi(〈ŵ,xi−%i!̂i〉+ b̂), 0
]

= sup
#mi=1%i=1;%i≥0;

m

#
i=1
max

[

sup
!̂i∈N0

(

1− yi(〈ŵ,xi−%i!̂i〉+ b̂)
)

, 0
]

.

(9)

Now, for any i ∈ [1 : m], the following holds,

max
[

sup
!̂i∈N0

(

1− yi(〈ŵ, xi−%i!̂i〉+ b̂)
)

, 0
]

=max
[

1− yi(〈ŵ,xi〉+ b̂)+%i sup
!̂i∈N0

(ŵ$!̂i), 0
]

≤max
[

1− yi(〈ŵ,xi〉+ b̂), 0
]

+%i sup
!̂i∈N0

(ŵ$!̂i).

Therefore, Equation (9) is upper bounded by
m

#
i=1
max

[

1− yi(〈ŵ,xi〉+ b̂), 0
]

+ sup
#mi=1%i=1;%i≥0;

m

#
i=1

%i sup
!̂i∈N0

(ŵ$!̂i)

= sup
!∈N0

(ŵ$!)+
m

#
i=1
max

[

1− yi(〈ŵ,xi〉+ b̂),0
]

= v(ŵ, b̂),

hence Inequality (8) holds.
Step 3: Combining the two steps and adding r(w,b) on both sides leads to: ∀(w,b) ∈ Rn+1,

sup
(!1,··· ,!m)∈N

m

#
i=1
max

[

1− yi(〈w,xi−!i〉+b), 0
]

+ r(w,b) = v(w,b)+ r(w,b).

Taking the infimum on both sides establishes the equivalence of Problem (4) and Problem (5).
Observe that sup!∈N0w

$! is a supremum over a class of affine functions, and hence is lower semi-
continuous. Therefore v(·, ·) is also lower semi-continuous. Thus the minimum can be achieved for
Problem (5), and Problem (4) by equivalence, when r(·) is lower semi-continuous.

Before concluding this section we briefly comment on the meaning of Theorem 3 and Propo-
sition 4. On one hand, they explain the widely known fact that the regularized classifier tends
to be more robust (see for example, Christmann and Steinwart, 2004, 2007; Christmann and Van
Messem, 2008; Trafalis and Gilbert, 2007). On the other hand, this observation also suggests that
the appropriate way to regularize should come from a disturbance-robustness perspective. The
above equivalence implies that standard regularization essentially assumes that the disturbance is
spherical; if this is not true, robustness may yield a better regularization-like algorithm. To find a
more effective regularization term, a closer investigation of the data variation is desirable, partic-
ularly if some a-priori knowledge of the data-variation is known. For example, consider an image
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classification problem. Suppose it is known that these pictures are taken under significantly varying
background light. Therefore, for a given sample (picture), the perturbation on each feature (pixel) is
large. However, the perturbations across different features are almost identical since they are under
the same background light. This can be represented by the following Atomic uncertainty set

N0 = {!|‖!‖2 ≤ c1, ‖!− (
1
n

n

#
t=1

!t)1‖2 ≤ c2},

where c2 4 c1. By Proposition 4, this leads to the following regularization term

f (w) = max :w$!

s.t.‖!‖2 ≤ c1

‖(I−
1
n
11$)!‖2 ≤ c2.

Notice this is a second order cone programming which has a dual form

min : c1v1+ c2v2

s.t. u1+(I−
1
n
11$)u2 = w

‖ui‖2 ≤ vi, i= 1,2.

Substituting it to (5), the resulting classification problem is a second order cone program, which can
be efficiently solved (Boyd and Vandenberghe, 2004).

3. Probabilistic Interpretations

Although Problem (4) is formulated without any probabilistic assumptions, in this section, we
briefly explain two approaches to construct the uncertainty set and equivalently tune the regular-
ization parameter c based on probabilistic information.

The first approach is to use Problem (4) to approximate an upper bound for a chance-constrained
classifier. Suppose the disturbance (!r1, · · ·!

r
m) follows a joint probability measure µ. Then the

chance-constrained classifier is given by the following minimization problem given a confidence
level & ∈ [0, 1],

min
w,b,l

: l

s.t. : µ
{ m

#
i=1
max

[

1− yi(〈w, xi−!ri 〉+b),0
]

≤ l
}

≥ 1−&. (10)

The formulations in Shivaswamy et al. (2006), Lanckriet et al. (2003) and Bhattacharyya et al.
(2004a) assume uncorrelated noise and require all constraints to be satisfied with high probability
simultaneously. They find a vector ["1, · · · ,"m]$ where each "i is the &-quantile of the hinge-loss
for sample xri . In contrast, our formulation above minimizes the &-quantile of the average (or
equivalently the sum of) empirical error. When controlling this average quantity is of more interest,
the box-type noise formulation will be overly conservative.

Problem (10) is generally intractable. However, we can approximate it as follows. Let

c∗ ! inf{%|µ(#
i
‖!i‖∗ ≤ %) ≥ 1−&}.
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Notice that c∗ is easily simulated given µ. Then for any (w,b), with probability no less than 1−&,
the following holds,

m

#
i=1
max

[

1− yi(〈w, xi−!ri 〉+b),0
]

≤ max
#i ‖!i‖∗≤c∗

m

#
i=1
max

[

1− yi(〈w, xi−!i〉+b),0
]

.

Thus (10) is upper bounded by (3) with c = c∗. This gives an additional probabilistic robustness
property of the standard regularized classifier. Notice that following a similar approach but with
the constraint-wise robust setup, that is, the box uncertainty set, would lead to considerably more
pessimistic approximations of the chance constraint.

The second approach considers a Bayesian setup. Suppose the total disturbance cr !#m
i=1 ‖!

r
i‖∗

follows a prior distribution '(·). This can model for example the case that the training sample set is
a mixture of several data sets where the disturbance magnitude of each set is known. Such a setup
leads to the following classifier which minimizes the Bayesian (robust) error:

min
w,b

:
Z

{

max
#‖!i‖∗≤c

m

#
i=1
max

[

1− yi
(

〈w, xi−!i〉+b
)

,0
]

}

d'(c). (11)

By Theorem 3, the Bayes classifier (11) is equivalent to

min
w,b

:
Z

{

c‖w‖+
m

#
i=1
max

[

1− yi
(

〈w, xi〉+b
)

,0
]

}

d'(c),

which can be further simplified as

min
w,b

: c‖w‖+
m

#
i=1
max

[

1− yi
(

〈w, xi〉+b
)

,0
]

,

where c!
R

cd'(c). This thus provides us a justifiable parameter tuning method different from cross
validation: simply using the expected value of cr. We note that it is the equivalence of Theorem 3
that makes this possible, since it is difficult to imagine a setting where one would have a prior on
regularization coefficients.

4. Kernelization

The previous results can be easily generalized to the kernelized setting, which we discuss in detail
in this section. In particular, similar to the linear classification case, we give a new interpretation of
the standard kernelized SVM as the min-max empirical hinge-loss solution, where the disturbance
is assumed to lie in the feature space. We then relate this to the (more intuitively appealing) setup
where the disturbance lies in the sample space. We use this relationship in Section 5 to prove a
consistency result for kernelized SVMs.

The kernelized SVM formulation considers a linear classifier in the feature space H , a Hilbert
space containing the range of some feature mapping ((·). The standard formulation is as follows,

min
w,b

: r(w,b)+
m

#
i=1

"i

s.t. : "i ≥
[

1− yi(〈w,((xi)〉+b)],
"i ≥ 0 .
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It has been proved in Schölkopf and Smola (2002) that if we take f (〈w,w〉) for some increasing
function f (·) as the regularization term r(w,b), then the optimal solution has a representation w∗ =
#m
i=1%i((xi), which can further be solved without knowing explicitly the feature mapping, but by
evaluating a kernel function k(x,x′) ! 〈((x),((x′)〉 only. This is the well-known “kernel trick”.

The definitions of Atomic Uncertainty Set and Sublinear Aggregated Uncertainty Set in the fea-
ture space are identical to Definition 1 and 2, with Rn replaced by H . The following theorem is a
feature-space counterpart of Proposition 4. The proof follows from a similar argument to Proposi-
tion 4, that is, for any fixed (w,b) the worst-case empirical error equals the empirical error plus a
penalty term sup!∈N0

(

〈w, !〉
)

, and hence the details are omitted.

Theorem 5 Assume {((xi),yi}mi=1 are not linearly separable, r(·) : H ×R → R is an arbitrary
function, N ⊆ H m is a Sublinear Aggregated Uncertainty set with corresponding atomic uncer-
tainty set N0 ⊆H . Then the following min-max problem

min
w,b

sup
(!1,··· ,!m)∈N

{

r(w,b)+
m

#
i=1
max

[

1− yi(〈w,((xi)−!i〉+b), 0
]

}

is equivalent to

min : r(w,b)+ sup
!∈N0

(〈w, !〉)+
m

#
i=1

"i,

s.t. : "i ≥ 1− yi
(

〈w,((xi)〉+b
)

, i= 1, · · · ,m;
"i ≥ 0, i= 1, · · · ,m.

(12)

Furthermore, the minimization of Problem (12) is attainable when r(·, ·) is lower semi-continuous.

For some widely used feature mappings (e.g., RKHS of a Gaussian kernel), {((xi),yi}mi=1 are
always separable. In this case, the worst-case empirical error may not be equal to the empirical error
plus a penalty term sup!∈N0

(

〈w, !〉
)

. However, it is easy to show that for any (w,b), the latter is an
upper bound of the former.

The next corollary is the feature-space counterpart of Theorem 3, where ‖ · ‖H stands for the
RKHS norm, that is, for z ∈ H , ‖z‖H =

√

〈z, z〉. Noticing that the RKHS norm is self dual, we
find that the proof is identical to that of Theorem 3, and hence omit it.

Corollary 6 Let TH !
{

(!1, · · ·!m)|#m
i=1 ‖!i‖H ≤ c

}

. If {((xi),yi}mi=1 are non-separable, then the
following two optimization problems on (w,b) are equivalent

min : max
(!1,··· ,!m)∈TH

m

#
i=1
max

[

1− yi
(

〈w,((xi)−!i〉+b
)

,0
]

,

min : c‖w‖H +
m

#
i=1
max

[

1− yi
(

〈w,((xi)〉+b
)

,0
]

. (13)

Equation (13) is a variant form of the standard SVM that has a squared RKHS norm regularization
term, and it can be shown that the two formulations are equivalent up to changing of tradeoff param-
eter c, since both the empirical hinge-loss and the RKHS norm are convex. Therefore, Corollary 6
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essentially means that the standard kernelized SVM is implicitly a robust classifier (without regu-
larization) with disturbance in the feature-space, and the sum of the magnitude of the disturbance is
bounded.

Disturbance in the feature-space is less intuitive than disturbance in the sample space, and the
next lemma relates these two different notions.

Lemma 7 Suppose there exists X ⊆Rn, '> 0, and a continuous non-decreasing function f :R+ →
R+ satisfying f (0) = 0, such that

k(x,x)+ k(x′,x′)−2k(x,x′) ≤ f (‖x−x′‖22), ∀x,x′ ∈ X ,‖x−x′‖2 ≤ '

then
‖((x̂+!)−((x̂)‖H ≤

√

f (‖!‖22), ∀‖!‖2 ≤ ', x̂, x̂+! ∈ X .

In the appendix, we prove a result that provides a tighter relationship between disturbance in the
feature space and disturbance in the sample space, for RBF kernels.
Proof Expanding the RKHS norm yields

‖((x̂+!)−((x̂)‖H
=

√

〈((x̂+!)−((x̂),((x̂+!)−((x̂)〉

=
√

〈((x̂+!),((x̂+!)〉+ 〈((x̂),((x̂)〉−2〈((x̂+!),((x̂)〉

=
√

k
(

x̂+!, x̂+!
)

+ k
(

x̂, x̂
)

−2k
(

x̂+!, x̂
)

≤
√

f (‖x̂+!− x̂‖22) =
√

f (‖!‖22),

where the inequality follows from the assumption.

Lemma 7 essentially says that under certain conditions, robustness in the feature space is a stronger
requirement that robustness in the sample space. Therefore, a classifier that achieves robustness
in the feature space (the SVM for example) also achieves robustness in the sample space. Notice
that the condition of Lemma 7 is rather weak. In particular, it holds for any continuous k(·, ·) and
bounded X .

In the next section we consider a more foundational property of robustness in the sample space:
we show that a classifier that is robust in the sample space is asymptotically consistent. As a conse-
quence of this result for linear classifiers, the above results imply the consistency for a broad class
of kernelized SVMs.

5. Consistency of Regularization

In this section we explore a fundamental connection between learning and robustness, by using
robustness properties to re-prove the statistical consistency of the linear classifier, and then the
kernelized SVM. Indeed, our proof mirrors the consistency proof found in Steinwart (2005), with
the key difference that we replace metric entropy, VC-dimension, and stability conditions used there,
with a robustness condition.

Thus far we have considered the setup where the training-samples are corrupted by certain set-
inclusive disturbances. We now turn to the standard statistical learning setup, by assuming that all
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training samples and testing samples are generated i.i.d. according to a (unknown) probability P,
that is, there does not exist explicit disturbance.

Let X ⊆ Rn be bounded, and suppose the training samples (xi,yi)$i=1 are generated i.i.d. accord-
ing to an unknown distribution P supported by X × {−1, +1}. The next theorem shows that our
robust classifier setup and equivalently regularized SVM asymptotically minimizes an upper-bound
of the expected classification error and hinge loss.

Theorem 8 Denote K !maxx∈X ‖x‖2. Then there exists a random sequence {)m,c} such that:

1. ∀c> 0, limm→$ )m,c = 0 almost surely, and the convergence is uniform in P;

2. the following bounds on the Bayes loss and the hinge loss hold uniformly for all (w,b):

E(x,y)∼P(1y/=sgn(〈w,x〉+b)) ≤ )m,c+ c‖w‖2+
1
m

m

#
i=1
max

[

1− yi(〈w, xi〉+b),0
]

;

E(x,y)∼P

(

max(1− y(〈w, x〉+b), 0)
)

≤

)m,c(1+K‖w‖2+ |b|)+ c‖w‖2+
1
m

m

#
i=1
max

[

1− yi(〈w, xi〉+b),0
]

.

Proof We briefly explain the basic idea of the proof before going to the technical details. We con-
sider the testing sample set as a perturbed copy of the training sample set, and measure the magni-
tude of the perturbation. For testing samples that have “small” perturbations, c‖w‖2+
1
m #

m
i=1max

[

1− yi(〈w, xi〉+b),0
]

upper-bounds their total loss by Theorem 3. Therefore, we only
need to show that the ratio of testing samples having “large” perturbations diminishes to prove the
theorem.

Now we present the detailed proof. Given a c> 0, we call a testing sample (x′,y′) and a training
sample (x,y) a sample pair if y= y′ and ‖x−x′‖2 ≤ c. We say a set of training samples and a set of
testing samples form l pairings if there exist l sample pairs with no data reused. Given m training
samples and m testing samples, we useMm,c to denote the largest number of pairings. To prove this
theorem, we need to establish the following lemma.

Lemma 9 Given a c> 0, Mm,c/m→ 1 almost surely as m→ +$, uniformly w.r.t. P.

Proof We make a partition of X × {−1, +1} =
STc
t=1Xt such that Xt either has the form [%1,%1+

c/
√
n)× [%2,%2+ c/

√
n) · · ·× [%n,%n+ c/

√
n)×{+1} or [%1,%1+ c/

√
n)× [%2,%2+ c/

√
n) · · ·×

[%n,%n + c/
√
n)× {−1} (recall n is the dimension of X ). That is, each partition is the Cartesian

product of a rectangular cell in X and a singleton in {−1, +1}. Notice that if a training sample and
a testing sample fall into Xt , they can form a pairing.

Let Ntrt and Ntet be the number of training samples and testing samples falling in the tth set, re-
spectively. Thus, (Ntr1 , · · · ,NtrTc) and (Nte1 , · · · ,NteTc) are multinomially distributed random vectors fol-
lowing a same distribution. Notice that for a multinomially distributed random vector (N1, · · · ,Nk)
with parameter m and (p1, · · · , pk), the following holds (Bretegnolle-Huber-Carol inequality, see for
example Proposition A6.6 of van der Vaart and Wellner, 2000). For any *> 0,

P

( k

#
i=1

∣

∣Ni−mpi
∣

∣) ≥ 2
√
m*

)

≤ 2k exp(−2*2).
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Hence we have

P

( Tc
#
t=1

∣

∣Ntrt −Ntet
∣

∣ ≥ 4
√
m*

)

≤ 2Tc+1 exp(−2*2),

=⇒ P

( 1
m

Tc
#
t=1

∣

∣Ntrt −Ntet
∣

∣ ≥ *
)

≤ 2Tc+1 exp(
−m*2

8
),

=⇒ P

(

Mm,c/m≤ 1−*
)

≤ 2Tc+1 exp(
−m*2

8
). (14)

Observe that #$
m=1 2Tc+1 exp(−m*

2

8 ) < +$, hence by the Borel-Cantelli Lemma (see, for example,
Durrett, 2004), with probability one the event {Mm,c/m≤ 1−*} only occurs finitely often asm→$.
That is, liminfmMm,c/m≥ 1−* almost surely. Since * can be arbitrarily close to zero,Mm,c/m→ 1
almost surely. Observe that this convergence is uniform in P, since Tc only depends on X .

Now we proceed to prove the theorem. Given m training samples and m testing samples with Mm,c
sample pairs, we notice that for these paired samples, both the total testing error and the total testing
hinge-loss is upper bounded by

max
(!1,··· ,!m)∈N0×···×N0

m

#
i=1
max

[

1− yi
(

〈w, xi−!i〉+b
)

,0
]

≤cm‖w‖2+
m

#
i=1
max

[

1− yi(〈w, xi〉+b), 0],

where N0 = {! |‖!‖ ≤ c}. Hence the total classification error of the m testing samples can be upper
bounded by

(m−Mm,c)+ cm‖w‖2+
m

#
i=1
max

[

1− yi(〈w, xi〉+b), 0],

and since

max
x∈X

(1− y(〈w,x〉)) ≤max
x∈X

{

1+ |b|+
√

〈x,x〉 · 〈w,w〉
}

= 1+ |b|+K‖w‖2,

the accumulated hinge-loss of the total m testing samples is upper bounded by

(m−Mm,c)(1+K‖w‖2+ |b|)+ cm‖w‖2+
m

#
i=1
max

[

1− yi(〈w, xi〉+b), 0].

Therefore, the average testing error is upper bounded by

1−Mm,c/m+ c‖w‖2+
1
m

n

#
i=1
max

[

1− yi(〈w, xi〉+b), 0],

and the average hinge loss is upper bounded by

(1−Mm,c/m)(1+K‖w‖2+ |b|)+ c‖w‖2+
1
m

m

#
i=1
max

[

1− yi(〈w, xi〉+b),0
]

.
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Let )m,c = 1−Mm,c/m. The proof follows since Mm,c/m→ 1 almost surely for any c > 0. Notice
by Inequality (14) we have

P

(

)m,c ≥ *
)

≤ exp
(

−m*2/8+(Tc+1) log2
)

, (15)

that is, the convergence is uniform in P.
We have shown that the average testing error is upper bounded. The final step is to show that

this implies that in fact the random variable given by the conditional expectation (conditioned on the
training sample) of the error is bounded almost surely as in the statement of the theorem. To make
things precise, consider a fixed m, and let +1 ∈ ,1 and +2 ∈ ,2 generate the m training samples
and m testing samples, respectively, and for shorthand let T m denote the random variable of the first
m training samples. Let us denote the probability measures for the training by '1 and the testing
samples by '2. By independence, the joint measure is given by the product of these two. We rely
on this property in what follows. Now fix a * and a c> 0. In our new notation, Equation (15) now
reads:

Z

,1

Z

,2
1
{

)m,c(+1,+2) ≥ *
}

d'2(+2)d'1(+1) = P

(

)m,c(+1,+2) ≥ *
)

≤ exp
(

−m*2/8+(Tc+1) log2
)

.

We now bound P+1(E+2 [)m,c(+1,+2) |T m] > *), and then use Borel-Cantelli to show that this event
can happen only finitely often. We have:

P+1(E+2 [)m,c(+1,+2) |T m] > *)

=
Z

,1
1
{

Z

,2
)m,c(+1,+2)d'2(+2) > *

}

d'1(+1)

≤
Z

,1
1
{

[

Z

,2
)m,c(+1,+2)1()m,c(+1,+2) ≤ *)d'2(+2)+

Z

,2
)m,c(+1,+2)1()m,c(+1,+2) > *)d'2(+2)

]

≥ 2*
}

d'1(+1)

≤
Z

,1
1
{

[

Z

,2
*1(*(+1,+2) ≤ *)d'2(+2)+

Z

,2
1()m,c(+1,+2) > *)d'2(+2)

]

≥ 2*
}

d'1(+1)

≤
Z

,1
1
{

[

*+
Z

,2
1()m,c(+1,+2) > *)d'2(+2)

]

≥ 2*
}

d'1(+1)

=
Z

,1
1
{

Z

,2
1()m,c(+1,+2) > *)d'2(+2) ≥ *

}

d'1(+1).

Here, the first equality holds because training and testing samples are independent, and hence the
joint measure is the product of '1 and '2. The second inequality holds because )m,c(+1,+2) ≤ 1
everywhere. Further notice that

Z

,1

Z

,2
1
{

)m,c(+1,+2) ≥ *
}

d'2(+2)d'1(+1)

≥
Z

,1
*1

{

Z

,2
1
(

)m,c(+1,+2) ≥ *
)

d'(+2) > *
}

d'1(+1).
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Thus we have

P(E+2()m,c(+1,+2)) > *) ≤ P

(

)m,c(+1,+2) ≥ *
)

/*≤ exp
(

−m*2/8+(Tc+1) log2
)

/*.

For any * and c, summing up the right hand side overm= 1 to $ is finite, hence the theorem follows
from the Borel-Cantelli lemma.

Remark 10 We note that Mm/m converges to 1 almost surely even if X is not bounded. Indeed, to
see this, fix -> 0, and let X ′ ⊆ X be a bounded set such that P(X ′) > 1− -. Then, with probability
one,

#(unpaired samples inX ′)/m→ 0,

by Lemma 9. In addition,

max
(

#(training samples not in X ′), #(testing samples not in X ′)
)

/m→ -.

Notice that

Mm ≥ m−#(unpaired samples in X ′)

−max
(

#(training samples not in X ′), #(testing samples not in X ′)
)

.

Hence
lim
m→$

Mm/m≥ 1− -,

almost surely. Since - is arbitrary, we haveMm/m→ 1 almost surely.

Next, we prove an analog of Theorem 8 for the kernelized case, and then show that these two
imply statistical consistency of linear and kernelized SVMs. Again, let X ⊆ Rn be bounded, and
suppose the training samples (xi,yi)$i=1 are generated i.i.d. according to an unknown distribution P

supported on X ×{−1, +1}.

Theorem 11 Denote K ! maxx∈X k(x,x). Suppose there exists ' > 0 and a continuous
non-decreasing function f : R+ → R+ satisfying f (0) = 0, such that:

k(x,x)+ k(x′,x′)−2k(x,x′) ≤ f (‖x−x′‖22), ∀x,x′ ∈ X ,‖x−x′‖2 ≤ '.

Then there exists a random sequence {)m,c} such that:

1. ∀c> 0, limm→$ )m,c = 0 almost surely, and the convergence is uniform in P;

2. the following bounds on the Bayes loss and the hinge loss hold uniformly for all (w,b) ∈
H ×R

EP(1y/=sgn(〈w,((x)〉+b)) ≤ )m,c+ c‖w‖H +
1
m

m

#
i=1
max

[

1− yi(〈w,((xi)〉+b),0
]

,

E(x,y)∼P

(

max(1− y(〈w,((x)〉+b), 0)
)

≤

)m,c(1+K‖w‖H + |b|)+ c‖w‖H +
1
m

m

#
i=1
max

[

1− yi(〈w,((xi)〉+b),0
]

.
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Proof As in the proof of Theorem 8, we generate a set of m testing samples and m training samples,
and then lower-bound the number of samples that can form a sample pair in the feature-space; that
is, a pair consisting of a training sample (x,y) and a testing sample (x′,y′) such that y = y′ and
‖((x)−((x′)‖H ≤ c. In contrast to the finite-dimensional sample space, the feature space may
be infinite dimensional, and thus our decomposition may have an infinite number of “bricks.” In
this case, our multinomial random variable argument used in the proof of Lemma 9 breaks down.
Nevertheless, we are able to lower bound the number of sample pairs in the feature space by the
number of sample pairs in the sample space.

Define f−1(%) ! max{. ≥ 0| f (.) ≤ %}. Since f (·) is continuous, f−1(%) > 0 for any % > 0.
Now notice that by Lemma 7, if a testing sample x and a training sample x′ belong to a “brick”
with length of each side min('/

√
n, f−1(c2)/

√
n) in the sample space (see the proof of Lemma 9),

‖((x)−((x′)‖H ≤ c. Hence the number of sample pairs in the feature space is lower bounded
by the number of pairs of samples that fall in the same brick in the sample space. We can cover
X with finitely many (denoted as Tc) such bricks since f−1(c2) > 0. Then, a similar argument
as in Lemma 9 shows that the ratio of samples that form pairs in a brick converges to 1 as m
increases. Further notice that for M paired samples, the total testing error and hinge-loss are both
upper-bounded by

cM‖w‖H +
M

#
i=1
max

[

1− yi(〈w,((xi)〉+b),0
]

.

The rest of the proof is identical to Theorem 8. In particular, Inequality (15) still holds.

Note that the condition in Theorem 11 is satisfied by most commonly used kernels, for example,
homogeneous polynominal kernels and Gaussian radial basis functions. This condition requires
that the feature mapping is “smooth” and hence preserves “locality” of the disturbance, that is,
small disturbance in the sample space guarantees the corresponding disturbance in the feature space
is also small. It is easy to construct non-smooth kernel functions which do not generalize well. For
example, consider the following kernel:

k(x,x′) =

{

1 x= x′;
0 x /= x′.

A standard RKHS regularized SVM using this kernel leads to a decision function

sign(
m

#
i=1

%ik(x,xi)+b),

which equals sign(b) and provides no meaningful prediction if the testing sample x is not one of the
training samples. Hence as m increases, the testing error remains as large as 50% regardless of the
tradeoff parameter used in the algorithm, while the training error can be made arbitrarily small by
fine-tuning the parameter.

5.1 Convergence to Bayes Risk

Next we relate the results of Theorem 8 and Theorem 11 to the standard consistency notion, that is,
convergence to the Bayes Risk (Steinwart, 2005). The key point of interest in our proof is the use of
a robustness condition in place of a VC-dimension or stability condition used in Steinwart (2005).
The proof in Steinwart (2005) has 4 main steps. They show: (i) there always exists a minimizer to
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the expected regularized (kernel) hinge loss; (ii) the expected regularized hinge loss of the minimizer
converges to the expected hinge loss as the regularizer goes to zero; (iii) if a sequence of functions
asymptotically have optimal expected hinge loss, then they also have optimal expected loss; and (iv)
the expected hinge loss of the minimizer of the regularized training hinge loss concentrates around
the empirical regularized hinge loss. In Steinwart (2005), this final step, (iv), is accomplished using
concentration inequalities derived from VC-dimension considerations, and stability considerations.

Instead, we use our robustness-based results of Theorem 8 and Theorem 11 to replace these
approaches (Lemmas 3.21 and 3.22 in Steinwart 2005) in proving step (iv), and thus to establish the
main result.

Recall that a classifier is a rule that assigns to every training set T = {xi,yi}mi=1 a measurable
function fT . The risk of a measurable function f : X → R is defined as

RP( f ) ! P({x,y : sign f (x) /= y}).

The smallest achievable risk

RP ! inf{RP( f )| f : X → Rmeasurable}

is called the Bayes Risk of P. A classifier is said to be strongly uniformly consistent if for all
distributions P on X × [−1,+1], the following holds almost surely.

lim
m→$

RP( fT ) = RP.

Without loss of generality, we only consider the kernel version. Recall a definition from Stein-
wart (2005).

Definition 12 Let C(X ) be the set of all continuous functions defined on a compact metric space
X . Consider the mapping I :H →C(X ) defined by Iw! 〈w,((·)〉. If I has a dense image, we call
the kernel universal.

Roughly speaking, if a kernel is universal, then the corresponding RKHS is rich enough to satisfy
the condition of step (ii) above.

Theorem 13 If a kernel satisfies the condition of Theorem 11, and is universal, then the Kernel
SVM with c ↓ 0 sufficiently slowly is strongly uniformly consistent.

Proof We first introduce some notation, largely following Steinwart (2005). For some probability
measure µ and (w,b) ∈H ×R,

RL,µ((w,b)) ! E(x,y)∼µ
{

max(0,1− y(〈w,((x)〉+b))
}

,

is the expected hinge-loss under probability µ, and

RcL,µ((w,b)) ! c‖w‖H +E(x,y)∼µ
{

max(0,1− y(〈w,((x)〉+b))
}

is the regularized expected hinge-loss. Hence RL,P(·) and RcL,P(·) are the expected hinge-loss and
regularized expected hinge-loss under the generating probability P. If µ is the empirical distribution
of m samples, we write RL,m(·) and RcL,m(·) respectively. Notice RcL,m(·) is the objective function of
the SVM. Denote its solution by fm,c, that is, the classifier we get by running SVM with m samples
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and parameter c. Further denote by fP,c ∈H ×R the minimizer of RcL,P(·). The existence of such a
minimizer is proved in Lemma 3.1 of Steinwart (2005) (step (i)). Let

RL,P ! min
f measurable

Ex,y∼P

{

max
(

1− y f (x), 0
)

}

,

that is, the smallest achievable hinge-loss for all measurable functions.
The main content of our proof is to use Theorems 8 and 11 to prove step (iv) in Steinwart (2005).

In particular, we show: if c ↓ 0 “slowly”, we have with probability one

lim
m→$

RL,P( fm,c) = RL,P. (16)

To prove Equation (16), denote by w( f ) and b( f ) as the weight part and offset part of any classifier
f . Next, we bound the magnitude of fm,c by using RcL,m( fm,c) ≤ RcL,m(0,0) ≤ 1, which leads to

‖w( fm,c)‖H ≤ 1/c

and
|b( fm,c)|≤ 2+K‖w( fm,c)‖H ≤ 2+K/c.

From Theorem 11 (note that the bound holds uniformly for all (w,b)), we have

RL,P( fm,c) ≤ )m,c[1+K‖w( fm,c)‖H + |b|]+RcL,m( fm,c)

≤ )m,c[3+2K/c]+RcL,m( fm,c)

≤ )m,c[3+2K/c]+RcL,m( fP,c)

= RL,P + )m,c[3+2K/c]+
{

RcL,m( fP,c)−RcL,P( fP,c)
}

+
{

RcL,P( fP,c)−RL,P
}

= RL,P + )m,c[3+2K/c]+
{

RL,m( fP,c)−RL,P( fP,c)
}

+
{

RcL,P( fP,c)−RL,P
}

.

The last inequality holds because fm,c minimizes RcL,m.
It is known (Steinwart, 2005, Proposition 3.2) (step (ii)) that if the kernel used is rich enough,

that is, universal, then
lim
c→0

RcL,P( fP,c) = RL,P.

For fixed c> 0, we have
lim
m→$

RL,m( fP,c) = RL,P( fP,c),

almost surely due to the strong law of large numbers (notice that fP,c is a fixed classifier), and
)m,c[3+2K/c] → 0 almost surely. Notice that neither convergence rate depends on P. Therefore, if
c ↓ 0 sufficiently slowly,3 we have almost surely

lim
m→$

RL,P( fm,c) ≤ RL,P.

Now, for any m and c, we have RL,P( fm,c) ≥ RL,P by definition. This implies that Equation (16)
holds almost surely, thus giving us step (iv).

Finally, Proposition 3.3. of Steinwart (2005) shows step (iii), namely, approximating hinge loss
is sufficient to guarantee approximation of the Bayes loss. Thus Equation (16) implies that the risk

3. For example, we can take {c(m)} be the smallest number satisfying c(m) ≥ m−1/8 and Tc(m) ≤ m1/8/ log2−1. In-
equality (15) thus leads to #$m=1P()m,c(m)/c(m)≥m1/4)≤+$ which implies uniform convergence of )m,c(m)/c(m).
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of function fm,c converges to Bayes risk.

Before concluding this section, we remark that although we focus in this paper the hinge-loss
function and the RKHS norm regularizer, the robustness approach to establish consistency can be
generalized to other regularization schemes and loss functions. Indeed, throughout the proof we
only require that the regularized loss ( that is, the training loss plus the regularization penalty) is an
upper bound of the minimax error with respect to certain set-inclusive uncertainty. This is a property
satisfied by many classification algorithms even though an exact equivalence relationship similar to
the one presented in this paper may not exist. This suggests using the robustness view to derive
sharp sample complexity bounds for a broad class of algorithms (e.g., Steinwart and Christmann,
2008).

6. Concluding Remarks

This work considers the relationship between robust and regularized SVM classification. In partic-
ular, we prove that the standard norm-regularized SVM classifier is in fact the solution to a robust
classification setup, and thus known results about regularized classifiers extend to robust classifiers.
To the best of our knowledge, this is the first explicit such link between regularization and robustness
in pattern classification. The interpretation of this link is that norm-based regularization essentially
builds in a robustness to sample noise whose probability level sets are symmetric unit balls with
respect to the dual of the regularizing norm. It would be interesting to understand the performance
gains possible when the noise does not have such characteristics, and the robust setup is used in
place of regularization with appropriately defined uncertainty set.

Based on the robustness interpretation of the regularization term, we re-proved the consistency
of SVMs without direct appeal to notions of metric entropy, VC-dimension, or stability. Our proof
suggests that the ability to handle disturbance is crucial for an algorithm to achieve good general-
ization ability. In particular, for “smooth” feature mappings, the robustness to disturbance in the
observation space is guaranteed and hence SVMs achieve consistency. On the other-hand, certain
“non-smooth” feature mappings fail to be consistent simply because for such kernels the robustness
in the feature-space (guaranteed by the regularization process) does not imply robustness in the
observation space.
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Appendix A.

In this appendix we show that for RBF kernels, it is possible to relate robustness in the feature space
and robustness in the sample space more directly.
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Theorem 14 Suppose the Kernel function has the form k(x,x′) = f (‖x− x′‖), with f : R+ → R a
decreasing function. Denote by H the RKHS space of k(·, ·) and ((·) the corresponding feature
mapping. Then we have for any x ∈ Rn, w ∈H and c> 0,

sup
‖!‖≤c

〈w,((x−!)〉 = sup
‖!/‖H≤

√
2 f (0)−2 f (c)

〈w,((x)+!/〉.

Proof We show that the left-hand-side is not larger than the right-hand-side, and vice versa.
First we show

sup
‖!‖≤c

〈w,((x−!)〉 ≤ sup
‖!/‖H≤

√
2 f (0)−2 f (c)

〈w,((x)−!/〉. (17)

We notice that for any ‖!‖ ≤ c, we have

〈w,((x−!)〉

=
〈

w,((x)+
(

((x−!)−((x)
)

〉

=〈w,((x)〉+ 〈w,((x−!)−((x)〉
≤〈w,((x)〉+‖w‖H ·‖((x−!)−((x)‖H
≤〈w,((x)〉+‖w‖H

√

2 f (0)−2 f (c)
= sup

‖!/‖H≤
√
2 f (0)−2 f (c)

〈w,((x)−!/〉.

Taking the supremum over ! establishes Inequality (17).
Next, we show the opposite inequality,

sup
‖!‖≤c

〈w,((x−!)〉 ≥ sup
‖!/‖H≤

√
2 f (0)−2 f (c)

〈w,((x)−!/〉. (18)

If f (c) = f (0), then Inequality 18 holds trivially, hence we only consider the case that f (c) < f (0).
Notice that the inner product is a continuous function in H , hence for any - > 0, there exists a !′/
such that

〈w,((x)−!′/〉 > sup
‖!/‖H≤

√
2 f (0)−2 f (c)

〈w,((x)−!/〉− -; ‖!′/‖H <
√

2 f (0)−2 f (c).

Recall that the RKHS space is the completion of the feature mapping, thus there exists a sequence
of {x′i} ∈ Rn such that

((x′i) →((x)−!′/, (19)

which is equivalent to
(

((x′i)−((x)
)

→−!′/.

This leads to

lim
i→$

√

2 f (0)−2 f (‖x′i−x‖)

= lim
i→$

‖((x′i)−((x)‖H

=‖!′/‖H <
√

2 f (0)−2 f (c).
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Since f is decreasing, we conclude that ‖x′i−x‖ ≤ c holds except for a finite number of i. By (19)
we have

〈w,((x′i)〉 → 〈w,((x)−!′/〉 > sup
‖!/‖H≤

√
2 f (0)−2 f (c)

〈w,((x)−!/〉− -,

which means
sup
‖!‖≤c

〈w,((x−!)〉 ≥ sup
‖!/‖H≤

√
2 f (0)−2 f (c)

〈w,((x)−!/〉− -.

Since - is arbitrary, we establish Inequality (18).
Combining Inequality (17) and Inequality (18) proves the theorem.
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Abstract
In the machine learning community, the Bayesian scoring criterion is widely used for model selec-
tion problems. One of the fundamental theoretical properties justifying the usage of the Bayesian
scoring criterion is its consistency. In this paper we refine this property for the case of binomial
Bayesian network models. As a by-product of our derivations we establish strong consistency and
obtain the law of iterated logarithm for the Bayesian scoring criterion.
Keywords: Bayesian networks, consistency, scoring criterion, model selection, BIC

1. Introduction

Bayesian networks are graphical structures which characterize probabilistic relationships among
variables of interest and serve as a ground model for doing probabilistic inference in large systems
of interdependent components. A basic element of a Bayesian network is a directed acyclic graph
(DAG) which is bound to an underlying joint probability distribution by the Markov condition. The
absence of certain arcs (edges) in a DAG encodes conditional independences in this distribution.
DAG’s not only provide a starting point for implementation of inference and parameter learning
algorithms, but they also, due to their graphical nature, offer an intuitive picture of the relationships
among the variables. It happens too often that researchers have only a random sample from a prob-
ability distribution and face a problem of choosing the appropriate DAG between a large number
of competing structures. This, effectively, constitutes the model selection problem in the space of
Bayesian networks. The methodology which is concerned with solving such task is called Bayesian
structure learning.

Suppose that the data consists of n i.i.d. random vectors X1, . . . ,Xn with each Xi having the un-
known probability distribution P. We define a probability space ! with measure Pr for infinite i.i.d.
sequences X1,X2, . . . having distribution P. There are many structures which can form a Bayesian
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network with the distribution P (see Section 2 for formal definitions and examples), however not all
of them are optimal for future analysis. Indeed, since the presence of an arc (edge) does not neces-
sarily guarantee direct dependency between corresponding variables, a complete DAG constitutes a
Bayesian network with any probability distribution, yet provides no information about conditional
independences in P. It is natural to seek structures which not only form a Bayesian network with P,
but also entail only conditional independences in this distribution. These DAGs are called faithful to
P or else perfect maps of P. Unfortunately, it turns out that not all probability distributions have an
associated faithful structure. In this case it is desirable to identify a structure which satisfies certain
“optimality” properties with respect to P. Roughly speaking, we want to include only those edges
that are necessary for describing P.

A scoring criterion for DAGs is a function that assigns a value to each DAG under consideration
based on the data. Suppose M is the set of all DAGs of a fixed size. Under the Bayesian approach
to structure learning, the DAG m is chosen fromM such that m maximizes the posterior probability
given the observed data D:

p(m|D,") =
p(m|")p(D|m,")

p(D|")
=

p(m|")
R

!m
p(D|m,#m,")p(#m|m,")d#m

$m∈M p(m|")
R

!m
p(D|m,#m,")p(#m|m,")d#m

, (1)

where #m denotes the set of parameters of the conditional distributions of each “node given its
parents” for all the nodes of the DAG m, !m denotes the domain of these parameters, and " de-
notes the system of parameter priors. The quantity P(D|m,") is called the marginal likelihood,
Bayesian scoring criterion or else Score of the graph m. We denote it as scoreB(D|m). Assuming
$m∈M p(m|") = 1 for all m ∈ M, the Bayesian scoring criterion provides a measure of posterior
certainty of the graph m under the prior system ".

It is quite interesting to see if the Bayesian scoring criterion is consistent, that is, as the size of
data D approaches infinity, the criterion is maximized at the DAG which forms a Bayesian network
with P and has smallest dimension. Based on the fundamental results of Haughton (1988) and
Geiger et al. (2001), the consistency of Bayesian scoring criterion has been established for the
class of multinomial Bayesian networks. Chickering (2002) provides a detailed sketch of the proof.
Further, for the same model class, if P admits a faithful DAG representation m, then m has the
smallest dimension among all DAGs which form a Bayesian network with P (see, for example,
Neapolitan, 2004, Corollary 8.1) . Therefore, due to consistency of the Bayesian scoring criterion,
we can conclude that if P admits a faithful DAG representation m then, in the limit, the Bayesian
scoring criterion will be maximized at m. This last result is naturally expected: as more information
becomes available, a scoring criterion should recognize the properties of the underlying distribution
P with increasing precision.

Although the consistency property provides insight into the limiting properties of the posterior
distribution over the graph space, it is interesting to know at what rate (as a function of sample size)
the graph(s) with the smallest dimension become favored by the Bayesian scoring criterion. In this
article we address this question for the case of binomial Bayesian network models. We also show
that in addition to being consistent for these models, the Bayesian scoring criterion is also strongly
consistent (see Definition 4). Our proofs are mostly self-contained, relying mainly on well-known
limit theorems of classical probability. At one point we require the input of Haughton (1988) and
Geiger et al. (2001) mentioned in the preceding paragraph (but note that their results only deal with
consistency, not strong consistency).
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It may be possible to re-derive our results using the machinery of VC classes (Vapnik, 1998)
or empirical process theory (e.g., van der Vaart and Wellner, 1996), but to our knowledge this has
not yet been done. However, one point of our paper is to show that the results are amenable to
fairly transparent and accessible proofs, and do not require the overhead of these well-developed
theoretical frameworks. That being said, we note that our method assumes that the networks have
fixed finite size, and other approaches may be better suited to handling the situation in which the
network size gets large.

The rest of the paper is organized as follows. Background and notation appear in Section 2,
with some illustrative examples. Our results are presented in Section 3. Section 4 contains some
discussion. Proofs appear in the Appendix.

2. Background

A directed graph is a pair (V,E), where V = {1, . . . ,N} is a finite set whose elements are called
nodes (or vertices), and E is a set of ordered pairs of distinct components of V . Elements of E
are called edges (or arcs). If (i1, i2) ∈ E we say that there is an edge from i1 to i2. Given a set of
nodes {i1, i2, . . . , ik} where k ≥ 2 and (ir, ir+1) ∈ E for 1 ≤ r ≤ k− 1, we call a sequence of edges
((i1, i2), . . . ,(ik−1, ik)) a path from i1 to ik . A path from a node to itself is called a directed cycle.
Additionally, a directed graph is called a directed acyclic graph (DAG) if it contains no directed
cycles. Given a DAG m = (V,E), a node i2 is called a parent of i1 if there is an edge from i2 to i1.
We write Pa(i) to denote the set of parents of a node i. A node i2 is called a descendant of i1 if there
is a path from i1 to i2, and i2 is called a nondescendant of i1 if i2 is not a descendant of i1.

Suppose m = (V,E) is a DAG, and X = {%1, . . . ,%N} is a random vector that follows a joint
probability distribution P. For each i, let %i correspond to the i th node of V . For A ⊂ V , let %A
denote the collection of variables {%i : i ∈ A}. (In the literature, sometimes this collection is written
simply as A. We will occasionally following this convention, but in mathematical expressions about
probabilities we usually prefer to distinguish clearly between the set of variables A and their values
%A.) In particular, %Pa(i) describes the states of the parents of node i. We say that (m,P) satisfies
the Markov condition if each component of X is conditionally independent of the set of all its
nondescendants given the set of all its parents. Finally, if (m,P) satisfies the Markov condition,
then we say that (m,P) is a Bayesian network, and that m forms a Bayesian network with P. See
Neapolitan (2004) for more details.

The independence constraints encoded in a Bayesian network allow for a simplification of the
joint probability distribution P which is captured by the factorization theorem (Neapolitan, 2004,
Theorem 1.4):

Theorem 1 If (m,P) satisfies the Markov condition, then P is equal to the product of its conditional
distributions of all nodes given the values of their parents, whenever these conditional distributions
exist:

P(%1, . . . ,%N) =
N

&
i=1

P
(

%i|%Pa(i)
)

.

Consider the following example (also see Neapolitan, 2004, Example 2.9). Rewrite the vari-
ables (%1,%2,%3,%4) = (U,Y,Z,W ). Suppose we have a Bayesian network (m,P) where m is
shown in Figure 1 and the distribution P satisfies the conditions presented in Table 1 for some
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P(u1) = a P(y1|u1) = 1− (b+ c) P(z1|y1) = e P(w1|z1) = g
P(u2) = 1−a P(y2|u1) = c P(z2|y1) = 1− e P(w2|z1) = 1−g

P(y3|u1) = b P(z1|y2) = e P(w1|z2) = h
P(y1|u2) = 1− (b+d) P(z2|y2) = 1− e P(w2|z2) = 1−h
P(y2|u2) = d P(z1|y3) = f
P(y3|u2) = b P(z2|y3) = 1− f

Table 1: Constraints on distribution P

! ! !!
U

!
Y

!
Z

!
W

Figure 1: The DAG m for our first example.

0 ≤ a,b,c, . . . ,g,h ≤ 1. Note that, due to Theorem 1, the equations in Table 1 fully determine P
as a function of a,b,c, . . . ,g,h. Further, since (m,P) satisfies the Markov condition, each node is
conditionally independent of the set of all its nondescendants given its parents. For example, we
see that Z and U are conditionally independent given Y (written Z ⊥⊥U |Y ). Do these conditional
independences entail any other conditional independences, that is, are there any other conditional
independences which P must satisfy other than the one based on a node’s parents? The answer is
positive. For example, if (m,P) satisfies the Markov condition, then

P(w|u,y) =$
u
P(w|z,u,y)P(z|u,y) =$

u
P(w|z,y)P(z|y) = P(w|y)

and henceW ⊥⊥U |Y . Explicitly, the notion of “entailed conditional independence” is given in the
following definition:

Definition 2 Let m = (V,E) be a DAG where V is a set of random variables, and let A,B,C ⊂ V.
We say that, based on Markov condition, m entails conditional independence A⊥⊥ B |C if A⊥⊥ B |C
holds for every P∈ Pm, where Pm is the set of all probability distributions P such that (m,P) satisfies
the Markov condition.

We say that there is a direct dependency between variables A and B in P if A and B are not condi-
tionally independent given any subset of V . Based on the Markov condition, the absence of an edge
between A and B implies that there is no direct dependency between A and B. However, the Markov
condition is not sufficient to guarantee that the presence of an edge means direct dependency. In
general, given a Bayesian network (m,P), we would want an edge in m to mean there is a direct
dependency. In this case the DAG would become what it is naturally expected to be—a graphi-
cal representation of the structure of relationships between variables. The faithfulness condition as
defined below indeed reflects this.

Definition 3 We say that a Bayesian network (m,P) satisfies the faithfulness condition if, based
on the Markov condition, m entails all and only the conditional independences in P. When (m,P)
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! !
"

!
%1

!
%2

!%3

!
%4

Figure 2: A second example of a DAG.

satisfies the faithfulness condition, we say that m and P are faithful to each other and we say m is a
perfect map of P.

It is easy to see that the Bayesian network (m,P), where m is shown in Figure 1 and P satisfies
the constraints in Table 1, does not satisfy the faithfulness condition. Indeed, Table 1 implies that
U ⊥⊥ Z, but this independence is not entailed by m based on the Markov condition. As shown in
Example 2.10 of Neapolitan (2004), the distribution P of this example has no perfect map. However,
it is not hard to see that the DAG of Figure 1 is “optimal” in the sense that no DAG with fewer edges
forms a Bayesian network with P.

In this paper we concentrate on Bayesian networks over a set of variables X = {%1, . . . ,%N}∼ P
where each variable takes values from the set {1,2}. Let m be a DAG with nodes 1, . . . ,N. The
probability distributions in Pm can be parameterized according to the conditional distributions of
Theorem 1 as follows. For each node i, let |Pa(i)| be the number of parents of i and let qi(m) =
2|Pa(i)| be the number of possible states of the set of variables %Pa(i). Consider a fixed list of the qi(m)
possible states of %Pa(i). For j ∈ {1, . . . ,qi(m)}, we shall write “%Pa(i) = j” to mean that the parents
of node i are in the states given by the jth item in the list. For k= 1,2 and j= 1, . . . ,qi(m), we write
'i jk = P(%i = k |%Pa(i) = j). Observe that 'i j2 = 1−'i j1. We shall write #m to denote the vector of
all 'i j1’s for m:

#m =
(

'i j1 : i= 1, . . . ,N, j = 1, . . . ,qi(m)
)

∈ [0,1]km ,

where km = $N
i=1 qi(m). Then each #m in [0,1]km determines a probability measure P = P#m such

that (m,P) is Bayesian network; and conversely, if (m,P) is a Bayesian network, then P = P#m for
some #m ∈ [0,1]km .

To illustrate this notation, consider the DAG m in Figure 2. Here, Pa(1) = /0 = Pa(3), Pa(2) =
{1,3}, and Pa(4) = {3}, and so q1(m) = 20 = q3(m), q2(m) = 22, and q4(m) = 21. We could fix
the list of possible states of %Pa(4) to be “1,2”, and the list for %Pa(2) to be “(1,1), (1,2), (2,1), (2,2)”
(with the understanding that the ordering is (%1,%3)). For the latter list, we have for example

'231 = P
(

%2 = 1 |%Pa(2) = 3
)

= P(%2 = 1 |(%1,%3) = (2,1)) .

Since Pa(3) = /0, P(%Pa(3) = 1) = 1, and '311 is simply P(%3 = 1). We can write

#m = ('111,'211,'221,'231,'241,'311,'411,'421),

1515



SLOBODIANIK, ZAPOROZHETS AND MADRAS

and km = 1+4+1+2 = 8.
Let D = Dn = {X1, ...,Xn} be fully observed data of size n generated according to Pr, and let

Ni jk be the number of cases in the database D such that node i takes value k while its parent set %Pa(i)
takes the values corresponding to j.

A probabilistic modelM for a random vector X = (%1, . . . ,%N) is a set of possible joint proba-
bility distributions of its components. If the probability distribution P is a member of a modelM ,
we say P is included in M . Let m be a DAG (V,E). A Bayesian network model is a pair (m,F)
where F is a set of possible parameter vectors #m: each #m in F determines conditional probability
distributions for m, such that the joint probability distribution P#m of X (given by the product of
these conditional distributions) satisfies the Markov condition with m. (E.g., for the DAG m of Fig-
ure 2, the most general choice of F is [0,1]8, but F could also be a subset of [0,1]8.) For simplicity,
we shall usually omit F when referring to a Bayesian network model (m,F). In a given class of
models, if M2 includes the probability distribution P, and if there exists no M1 (in the class) such
thatM1 includes P andM1 has smaller dimension thanM2, thenM2 is called a parameter optimal
map of P. (E.g. the DAG of Figure 1 is a parameter optimal map of the distribution P of Table 1.)
For the Bayesian network models we shall work with in this paper, the dimension of a model m
is km = $N

i=1 qi(m). A detailed discussion of probabilistic model selection in the case of Bayesian
networks could be found in Neapolitan (2004).

In order to proceed further we would also need a formal definition of consistency. In this defini-
tion we assume that the dimensions of the probabilistic models are well-defined. For a more detailed
discussion of the definition of consistency see, for example, Neapolitan (2004), Grünwald (2007)
and Lahiri (2001).

Definition 4 Let Dn be a set of values (data) of a set of n mutually independent random vectors
X1, . . . ,Xn, each with probability distribution P. Furthermore, let score be a scoring criterion
over some class of models for the random variables that constitute each vector. We say score is
consistent for the class of models if the following two properties hold:
1. IfM1 includes P andM2 does not, then

lim
n→(

Pr(score(Dn,M1) > score(Dn,M2)) = 1.

2. IfM1 andM2 both include P andM1 has smaller dimension thanM2, then

lim
n→(

Pr(score(Dn,M1) > score(Dn,M2)) = 1.

Additionally, we say that the scoring criterion is strongly consistent if, in both cases 1 and 2, it
selects the appropriate model almost surely:

Pr(∃N : ∀n≥ N score(Dn,M1) > score(Dn,M2)) = 1.

As an example, let m1 be the DAG of Figure 2, let m2 be the DAG obtained from m1 by adding
an arc from node 3 to node 4, and let m0 be the DAG obtained from m1 by removing the arc from
node 2 to node 4. For i = 0,1,2, let Mi be the probabilistic model consisting of all probability
distributions with which mi forms a Bayesian network. Let P be a probability distribution in M1
such the components of #m1 are eight distinct numbers in (0,1). Then M0 does not contain P
(since %4 is not independent of {%1,%2,%3}), whileM1 andM2 both contain P, andM1 has smaller
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dimension that M2. If score is consistent, then in a situation with lots of data, score will be
very likely to rankM1 over eitherM0 orM2. However, consider an infinite stream of data X1,X2, . . .
sampled independently from P. Suppose that after each new observation, we ask score to choose
amongM0,M1 andM2. Consistency says that the expected proportion of score’s correct choices
tends to 1 as n tends to infinity. But strong consistency says more: if score is strongly consistent,
then with probability one it will make the correct choice for all but finitely many values of n.

3. Results

In this paper we consider the case of binomial Bayesian networks with independent Beta()i j1,)i j2)
priors for the parameters 'i j1 (note that 'i j2 = 1− 'i j1), where )i j1,)i j2 > 0. We choose the beta
family as it is the conjugate prior for the Binomial distribution. According to (1), the value of the
Bayesian scoring criterion can be calculated as follows:

p(Dn|m) =
Z

!m
p(Dn|m,#m)p(#m|m)d#m

=
N

&
i=1

qi(m)

&
j=1

Z 1

0
'
Ni j1+)i j1−1
i j1 (1−'i j1)

Ni j2+)i j2−1 1
Beta()i j1,)i j2)

d'i j1

=
N

&
i=1

qi(m)

&
j=1

Beta(Ni j1+)i j1,Ni j2+)i j2)
Beta()i j1,)i j2)

=
N

&
i=1

qi(m)

&
j=1

*(Ni j1+)i j1)*(Ni j2+)i j2)
*(Ni j1+Ni j2+)i j1+)i j2)

·
*()i j1+)i j2)
*()i j1)*()i j2)

, (2)

which coincides with the well-known formula by Cooper and Herskovits (1992).
Throughout this paper we produce several asymptotic expansions “in probability” and “almost

surely”, always with respect to our probability measure Pr on !. We derive several properties of
the marginal likelihood (2). We shall show that, for any model m,

log p(Dn|m) = nCm+O(
√

n log logn) a.s., (3)

where Cm is a constant independent of n. We strengthen this result by showing how to obtain a
positive constant +m such that

limsup
n→(

log p(Dn|m)−nCm√
2nloglogn

= +m and liminf
n→(

log p(Dn|m)−nCm√
2nloglogn

= −+m a.s. (4)

We note that “in probability” versions of the above statements also follow from our methods (as
in the proofs of Corollaries 12 and 10):

log p(Dn|m) = nCm+Op(
√
n), (5)

log p(Dn|m)−nCm√
n

D→ N(0,+m).
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Additionally, we will be using the approximation of the Bayesian scoring criterion via maximum
log-likelihood:

log p(Dn|m) = log

(

N

&
i=1

qi(m)

&
j=1

'̂
Ni j1
i j1 (1− '̂i j1)

Ni j2

)

−
1
2
km logn+Op(1), (6)

where '̂i j1 is the MLE of 'i j1 and km = $N
i=1 qi(m) is the dimension of the model m. This is the

efficient approximation of Bayesian score commonly known as BIC which was first derived in
Schwarz (1978) for the case of linear exponential families. In Haughton (1988) his result was
made more specific and extended to the case of curved exponential families—the type of model that
includes Bayesian networks, as is shown in Geiger et al. (2001).

In this work, we attempt to get insight into the rate of convergence of the Bayes factor comparing
two models m1 and m2. Our result strengthens the well known property of consistency of the
Bayesian scoring criterion (e.g., see Chickering, 2002) and is expressed as the following theorem.

Theorem 5 In the case of a binomial Bayesian network class, for the Bayesian scoring criterion
based on independent beta priors, the following two properties hold:

1. If m2 includes P and m1 does not, then there exists a positive constant C(P,m1,m2) such that

log
scoreB(Dn|m2)
scoreB(Dn|m1)

= C(P,m1,m2)n+O(
√

n log logn) a.s.

and
log

scoreB(Dn|m2)
scoreB(Dn|m1)

= C(P,m1,m2)n+Op(
√
n).

2. If m1 and m2 both include P and dimm1 > dimm2 where dimmk =$N
i=1 qi(mk), k= 1,2, then

log
scoreB(Dn|m2)
scoreB(Dn|m1)

=
dimm1−dimm2

2
logn+O(log logn) a.s.

and
log

scoreB(Dn|m2)
scoreB(Dn|m1)

=
dimm1−dimm2

2
logn+Op(1).

In particular, the Bayesian scoring criterion is strongly consistent.

It follows from the consistency property of the Bayesian scoring criterion that if P admits a
faithful DAG representation, then the limit of the probability that a consistent scoring criterion
chooses a model faithful to P, as the size of data approaches infinity, equals 1. Our result in Theorem
5 strengthens this claim as follows:

Corollary 6 If (m1,P) satisfies the faithfulness condition and (m2,P) does not, then with probabil-
ity 1, scoreB(Dn|m1)

scoreB(Dn|m2) approaches infinity at exponential rate in n when m2 does not include P, and
approaches infinity at polynomial rate in n when m2 includes P.

The first result of Theorem 5 is optimal in the following sense:
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Theorem 7 If m2 includes P and m1 does not, then there exist Cm1,m2 > 0 and +m1,m2 > 0 such that:

limsup
n→(

log scoreB(Dn|m2)scoreB(Dn|m1) −nCm1,m2
+m1,m2

√
2n log logn

= 1 a.s.,

liminf
n→(

log scoreB(Dn|m2)scoreB(Dn|m1) −nCm1,m2
+m1,m2

√
2n log logn

= −1 a.s.

and also

log scoreB(Dn|m2)scoreB(Dn|m1) −nCm1,m2√
n

D→ N(0,+m1,m2).

The constantsCm1,m2 and +m1,m2 from the above theorem could be defined as follows.

Definition 8 Consider a single observation X = (%1, . . . ,%N) from P. Define

,i jk(X) =

{

log'i jk if %i = k and %Pa(i) = j
0 otherwise

and define

-(X ,m) =
N

$
i=1

qi(m)

$
j=1

2

$
k=1

,i jk(X) .

Then define Cm1,m2 and +m1,m2 respectively to be the mean and the standard deviation of -(X ,m1)−
-(X ,m2). Also define

Ci,m =
qi(m)

&
j=1

[

'
'i j1
i j1 (1−'i j1)

1−'i j1
]P(%Pa(i)= j)

.

Observe that we have

-(X ,m) =
N

$
i=1
log'i,%Pa(i),%i .

We shall show (see Lemma 13) that -(X ,m) = logP(X), and (see proof of Lemma 9) that

Cm1,m2 =
N

$
i=1
log

Ci,m2
Ci,m1

. (7)

Observe that for any i, the constantCi,m depends only on the conditional probabilities P(%i|%Pa(i))
of the model m; therefore, if models m1 and m2 have the same set of parents of the ith node, then
Ci,m1 =Ci,m2 and the ith term in (7) is zero.

The quantities defined above will be extensively used throughout the Appendix.
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4. Conclusion

In this paper we proved the strong consistency property of the Bayesian scoring criterion for the
case of binomial Bayesian network models. We obtained asymptotic expansions for the logarithm
of Bayesian score as well as the logarithm of the Bayes factor comparing two models. These results
are important extensions of the consistency property of the Bayesian scoring criterion, providing
insight into the rates at which the Bayes factor favors correct models. The asymptotic properties are
found to be independent of the particular choice of beta parameter priors.

The methods we used are different from the mainstream. One typical way to investigate the
properties of Bayesian score is to use BIC approximation and hence reduce the problem to investi-
gation of the maximum log-likelihood term. In this paper we use expression (9) where the first term
is the log-likelihood evaluated at the true parameter.

If we use the results of Theorem 5 in the approximation of Bayes scoring criterion by BIC (6),
we can see that given two models m1 and m2, if both of them include the generating distribution P
then their maximum log-likelihoods are within O(log logn) of each other, and if one of the models
does not include P then the maximum log-likelihoods differ by a leading order of C(P,m1,m2)n.
These are the rates obtained by Qian and Field (2002, Theorems 2 and 3) for the case of model
selection in logistic regression. This observation advocates for the existence of a unified approach
for a very general class of models which can describe the rates at which Bayesian scoring criterion
and its approximations favor correct model choices.
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Appendix A.

In this section we provide proofs for the basic facts in this paper and for Theorems 5 and 7. Note
that part 1 of Theorem 5 follows directly from Theorem 7. In our derivations we first assume that
the parameter prior of every node follows a flat Beta(1,1) distribution. At the end, we shall show
how the results can be extended to the case of general beta priors.

We will start from the expression for the marginal likelihood (2). Noticing that Beta(x+1,y+

1) =
[

(x+ y+1)
(x+y

x
)]−1 we obtain the expression for the Bayesian scoring criterion via binomial

coefficients:

p(Dn|m) =

[

N

&
i=1

qi(m)

&
j=1

(Ni j1+Ni j2+1)
(

Ni j1+Ni j2
Ni j1

)

]−1

. (8)
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Let P(k,n,') =
(n
k
)

'k(1−')n−k. Substituting
(n
k
)

= P(k,n,')
'k(1−')n−k into (8) with ' taken as 'i j1 we obtain

an expression for log p(Dn|m), which will be the fundamental core of our proof:

log p(Dn|m) =

N

$
i=1

qi(m)

$
j=1

[

log
(

'
Ni j1
i j1 (1−'i j1)

Ni j2
)

− logP(Ni j1,Ni j1+Ni j2,'i j1)− log(Ni j1+Ni j2+1)
]

. (9)

The rest of the Appendix is organized as follows. In Lemma 9 we derive the law of iterated log-
arithm for the first term of (9) by using the function -(X ,m) introduced in Definition 8. Lemma 11
states asymptotic expansions of each of three terms in (9) hence providing us with an opportunity to
get an expansion for p(Dn|m). Asymptotic expressions (3), (4) and (5) are immediate consequences
of this lemma. Lemma 13 establishes a fundamental result regarding the log-likelihood evaluated at
the true parameter value. It is followed by the proofs of Theorems 5 and 7.

Lemma 9 Recall the notation of Section 2 and Definition 8. For model m, let T (m) = Tn(m) =

$N
i=1$

qi(m)
j=1 log

(

'
Ni j1
i j1 (1−'i j1)Ni j2

)

. Then the following laws of the iterated logarithm hold almost
surely:

limsup
n→(

T (m)−n$N
i=1 logCi,m

+m
√
2n log logn

= 1, liminf
n→(

T (m)−n$N
i=1 logCi,m

+m
√
2n log logn

= −1, (10)

limsup
n→(

[T (m1)−T (m2)]−nCm1,m2
+m1,m2

√
2n log logn

= 1, liminf
n→(

[T (m1)−T (m2)]−nCm1,m2
+m1,m2

√
2n log logn

= −1. (11)

Proof It is not difficult to see that T (m) = $n
r=1 -(Xr,m) and

E(-(X ,m)) =
N

$
i=1

qi(m)

$
j=1

2

$
k=1

P
(

%Pa(i) = j
)

'i jk log'i jk =
N

$
i=1
logCi,m .

By the law of the iterated logarithm applied to T (m) we conclude that

limsup
n→(

T (m)−n$N
i=1 logCi,m

+m
√
2n log logn

= 1,

where +m is the standard deviation of -(X ,m). Further, applying the law of the iterated loga-
rithm to T (m1)− T (m2), we obtain the equalities (11) where +m1,m2 is the standard deviation of
-(X ,m1)− -(X ,m2).

Corollary 10 The following expressions hold:
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T (m1)−T (m2) = nCm1,m2 +O(
√

n log logn) a.s., (12)

N

$
i=1

qi(m)

$
j=1

log
(

'
Ni j1
i j1 (1−'i j1)

Ni j2
)

= n
N

$
i=1
logCi,m+Op(

√
n), (13)

[T (m1)−T (m2)]−nCm1,m2√
n

D→ N(0,+m1,m2). (14)

Proof Obviously, (12) is a direct consequence of (11). Applying the central limit theorem to T (m)
and T (m1)−T (m2) in the proof of Lemma 9 instead of the law of the iterated logarithm we obtain
(13) and (14).

Lemma 11 The following asymptotic expansions hold:

N

$
i=1

qi(m)

$
j=1

log
(

'
Ni j1
i j1 (1−'i j1)

Ni j2
)

= n
N

$
i=1
logCi,m+O(

√

n log logn) a.s.,

Ni j1+Ni j2+1 = n
[

P
(

%Pa(i) = j
)

+o(1)
]

a.s., (15)

logP(Ni j1,Ni j1+Ni j2,'i j1) = −
1
2
logn+O(log logn) a.s., (16)

logP(Ni j1,Ni j1+Ni j2,'i j1) = −
1
2
logn+Op(1). (17)

Proof The first expression follows from (10). Further, note, that each of the variables Ni jk is a sum
of i.i.d. Bernoulli variables. Based on the law of the iterated logarithm for the number of successes
in n Bernoulli trials, as n→ (

Ni jk = n'i jkP(%Pa(i) = j)+O(
√

nloglogn) a.s., (18)

which immediately implies (15). Additionally, using the central limit theorem instead of the law of
the iterated logarithm we obtain:

Ni jk = n'i jkP(%Pa(i) = j)+Op(
√
n). (19)

Next, we will be using the following version of Local De Moivre-Laplace theorem (see for example
p. 46 of Chow and Teicher 1978):

If n→ ( and k = kn → ( are such that xkn−
1
6 → 0, where xk = k−np√

np(1−p)
, then

P(k,n, p) =
1

√

2.np(1− p)
e−

(k−np)2
2np(1−p) +o(1). (20)

1522



STRONG LIMIT THEOREMS FOR BAYESIAN SCORING CRITERION

According to the law of the iterated logarithm, xk = k−np√
np(1−p)

= O(
√
loglogn) a.s., for the case

where k is the number of successes in n i.i.d. Bernoulli trials of probability p. Notice that any
such xk satisfies the condition xkn−

1
6 → 0. Therefore we can use (20) to approximate the binomial

probability in (9), specifically:

logP(Ni j1,Ni j1+Ni j2,'i j1)

= − log
√

2.(Ni j1+Ni j2)'i j1(1−'i j1)−
(Ni j1− (Ni j1+Ni j2)'i j1)2

2(Ni j1+Ni j2)'i j1(1−'i j1)
+o(1) a.s. (21)

The first term in this expansion can be simplified based on (15):

− log
√

2.(Ni j1+Ni j2)'i j1(1−'i j1) = −
1
2
logn+O(1) a.s. (22)

Applying (18) to the second term we conclude that as n→ (:

−
(Ni j1− (Ni j1+Ni j2)'i j1)2

2(Ni j1+Ni j2)'i j1(1−'i j1)
= O(log logn) a.s. (23)

Now, (21) could be simplified further based on (22) and (23) to obtain (16). Finally, we can prove
(17) analogously to (16) by using (19) instead of (18). Therefore the proof of the lemma is com-
plete.

Now it is easy to derive the expansions announced in Sect. 3.

Corollary 12 Properties (3), (4) and (5) of the marginal likelihood P(Dn|m) hold.

Proof Using (10), (15) and (16) in (9) and denotingCm
de f
= $N

i=1 logCi,m we get (4). Further, (3) is a
direct consequence of (4). Finally, (5) can be proved by substituting (15), (13) and (16) into (9).

Lemma 13 Suppose the probability distribution P is a member of the model m. Let T (m) =

$N
i=1$

qi(m)
j=1 log

(

'
Ni j1
i j1 (1−'i j1)Ni j2

)

for model m. Then T (m) = logP(Dn).

Proof Since P is a member of the model m, we know that (m,P) satisfies the Markov condition.
Therefore, by the factorization theorem (Theorem 1), we obtain

P(Dn) =
N

&
i=1

qi(m)

&
j=1

'
Ni j1
i j1 (1−'i j1)

Ni j2

and the result follows.
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Next, we will prove Theorems 5 and 7. Note that part 1 of Theorem 5 directly follows from
Theorem 7.

Geiger et al. (2001) showed that each of the competing Bayesian network models m could be
represented as aC( connected manifold of dimension $N

i=1 qi(m) embedded in R N . In order to keep
the notation simple we will be denoting this manifold asm. Every probability distribution for a finite
sample space belongs to an exponential family. Therefore, there exists a set of /i, i= 1,2, . . . , i.i.d.
observations from an underlying distribution P'0 belonging to a full exponential family in standard
form with densities f (/,') = exp(/'− b(')) with respect to a finite measure on R N , with ' ∈ #
the natural parameter space, such that

log

(

N

&
i=1

qi(m)

&
j=1

'̂
Ni j1
i j1 (1− '̂i j1)

Ni j2

)

= n sup
,∈m∩#

(Yn,−b(,)), (24)

where Yn = (1/n)$n
i=1 /i.

Theorem 2.3 of Haughton (1988) provides an expansion of the logarithm of the Bayesian scoring
criterion via maximum log-likelihood and, together with (24), guarantees (6). It follows from (3),
(6) and (24) that

n sup
,∈m∩#

(Yn,−b(,)) =Cmn+Op(
√

n log logn). (25)

Suppose m2 includes P and m1 does not. In this case, Haughton (1988, p.346) guarantees that
as n→ (, we have

Pr

(

sup
,∈m1∩#

(Yn,−b(,))+ 0< sup
,∈m2∩#

(Yn,−b(,))

)

→ 1

for some 0 > 0, and by (25) we obtain Cm1 < Cm2 . Hence, $N
i=1 log

Ci,m2
Ci,m1

> 0. Now, the result of
Theorem 7 can be obtained by using (15), (11) and (16) in (9), and by using (15), (14) and (16) in
(9).

Now, suppose both m1 and m2 include the true distribution P and km2 < km1 . For part 2 of
Theorem 5, direct application of Lemma 13, (16) and (15) provides the “almost surely” result,
while Lemma 13, (17) and (15) prove the “in probability” result.

Finally, we shall show that the results of Theorems 5 and 7 hold for the case of general beta
priors. It is not difficult to see that Stirling’s approximation implies

lim
z→(

zb−a
*(z+a)
*(z+b)

= 1. (26)

Denote as "1 the flat Beta(1,1) system of priors and denote as "2 the system which, for each
parameter 'i j1, assumes the distribution Beta()i j1,)i j2), where )i j1,)i j2 > 0. It follows from (2)
and (26) that:
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p(m|D,"2)
p(m|D,"1)

=
N

&
i=1

qi(m)

&
j=1

Beta(Ni j1+)i j1,Ni j2+)i j2)
Beta(Ni j1+1,Ni j2+1)

·
1

Beta()i j1,)i j2)

=
N

&
i=1

qi(m)

&
j=1

*(Ni j1+)i j1)*(Ni j2+)i j2)*(Ni j1+Ni j2+2)
*(Ni j1+1)*(Ni j2+1)*(Ni j1+Ni j2+)i j1+)i j2)

·
1

Beta()i j1,)i j2)

∼
N

&
i=1

qi(m)

&
j=1

N)i j1−1
i j1 N)i j2−1

i j2

(Ni j1+Ni j2))i j1+)i j2−2
·

1
Beta()i j1,)i j2)

.

Therefore, using (18) we can conclude that there exists a constant c> 0 such that:

lim
n→(

p(m|D,"2)
p(m|D,"1)

= c a.s.,

which implies that the results of Theorems 5 and 7 extend to the case of general beta parameter
priors.
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Abstract
We propose the recursive autonomy identification (RAI) algorithm for constraint-based (CB) Bayes-
ian network structure learning. The RAI algorithm learns the structure by sequential application of
conditional independence (CI) tests, edge direction and structure decomposition into autonomous
sub-structures. The sequence of operations is performed recursively for each autonomous sub-
structure while simultaneously increasing the order of the CI test. While other CB algorithms
d-separate structures and then direct the resulted undirected graph, the RAI algorithm combines the
two processes from the outset and along the procedure. By this means and due to structure decom-
position, learning a structure using RAI requires a smaller number of CI tests of high orders. This
reduces the complexity and run-time of the algorithm and increases the accuracy by diminishing the
curse-of-dimensionality. When the RAI algorithm learned structures from databases representing
synthetic problems, known networks and natural problems, it demonstrated superiority with respect
to computational complexity, run-time, structural correctness and classification accuracy over the
PC, Three Phase Dependency Analysis, Optimal Reinsertion, greedy search, Greedy Equivalence
Search, Sparse Candidate, and Max-Min Hill-Climbing algorithms.
Keywords: Bayesian networks, constraint-based structure learning

1. Introduction

A Bayesian network (BN) is a graphical model that efficiently encodes the joint probability distri-
bution for a set of variables (Heckerman, 1995; Pearl, 1988). The BN consists of a structure and
a set of parameters. The structure is a directed acyclic graph (DAG) that is composed of nodes
representing domain variables and edges connecting these nodes. An edge manifests dependence
between the nodes connected by the edge, while the absence of an edge demonstrates independence
between the nodes. The parameters of a BN are conditional probabilities (densities) that quantify
the graph edges. Once the BN structure has been learned, the parameters are usually estimated (in
the case of discrete variables) using the relative frequencies of all combinations of variable states as
exemplified in the data. Learning the structure from data by considering all possible structures ex-

∗. This work was done while the author was at the Department of Electrical and Computer Engineering, Ben-Gurion
University of the Negev, Israel.

c©2009 Raanan Yehezkel and Boaz Lerner.
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haustively is not feasible in most domains, regardless of the size of the data (Chickering et al., 2004),
since the number of possible structures grows exponentially with the number of nodes (Cooper and
Herskovits, 1992). Hence, structure learning requires either sub-optimal heuristic search algorithms
or algorithms that are optimal under certain assumptions.

One approach to structure learning—known as search-and-score (S&S) (Chickering, 2002;
Cooper and Herskovits, 1992; Heckerman, 1995; Heckerman et al., 1995)—combines a strategy
for searching through the space of possible structures with a scoring function measuring the fitness
of each structure to the data. The structure achieving the highest score is then selected. Algorithms
of this approach may also require node ordering, in which a parent node precedes a child node
so as to narrow the search space (Cooper and Herskovits, 1992). In a second approach—known
as constraint-based (CB) (Cheng et al., 1997; Pearl, 2000; Spirtes et al., 2000)—each structure
edge is learned if meeting a constraint usually derived from comparing the value of a statistical
or information-theory-based test of conditional independence (CI) to a threshold. Meeting such
constraints enables the formation of an undirected graph, which is then further directed based on
orientation rules (Pearl, 2000; Spirtes et al., 2000). That is, generally in the S&S approach we learn
structures, whereas in the CB approach we learn edges composing a structure.

Search-and-score algorithms allow the incorporation of user knowledge through the use of prior
probabilities over the structures and parameters (Heckerman et al., 1995). By considering several
models altogether, the S&S approach may enhance inference and account better for model uncer-
tainty (Heckerman et al., 1999). However, S&S algorithms are heuristic and usually have no proof
of correctness (Cheng et al., 1997) (for a counter-example see Chickering, 2002, providing an S&S
algorithm that identifies the optimal graph in the limit of a large sample and has a proof of correct-
ness). As mentioned above, S&S algorithms may sometimes depend on node ordering (Cooper and
Herskovits, 1992). Recently, it was shown that when applied to classification, a structure having a
higher score does not necessarily provide a higher classification accuracy (Friedman et al., 1997;
Grossman and Domingos, 2004; Kontkanen et al., 1999).

Algorithms of the CB approach are generally asymptotically correct (Cheng et al., 1997; Spirtes
et al., 2000). They are relatively quick and have a well-defined stopping criterion (Dash and
Druzdzel, 2003). However, they depend on the threshold selected for CI testing (Dash and Druzdzel,
1999) and may be unreliable in performing CI tests using large condition sets and a limited data size
(Cooper and Herskovits, 1992; Heckerman et al., 1999; Spirtes et al., 2000). They can also be un-
stable in the sense that a CI test error may lead to a sequence of errors resulting in an erroneous
graph (Dash and Druzdzel, 1999; Heckerman et al., 1999; Spirtes et al., 2000). Additional infor-
mation on the above two approaches, their advantages and disadvantages, may be found in Cheng
et al. (1997), Cooper and Herskovits (1992), Dash and Druzdzel (1999), Dash and Druzdzel (2003),
Heckerman (1995), Heckerman et al. (1995), Heckerman et al. (1999), Pearl (2000) and Spirtes
et al. (2000). We note that Cowell (2001) showed that for complete data, a given node ordering
and using cross-entropy methods for checking CI and maximizing logarithmic scores to evaluate
structures, the two approaches are equivalent. In addition, hybrid algorithms have been suggested in
which a CB algorithm is employed to create an initial ordering (Singh and Valtorta, 1995), to obtain
a starting graph (Spirtes and Meek, 1995; Tsamardinos et al., 2006a) or to narrow the search space
(Dash and Druzdzel, 1999) for an S&S algorithm.

Most CB algorithms, such as Inductive Causation (IC) (Pearl, 2000), PC (Spirtes et al., 2000)
and Three Phase Dependency Analysis (TPDA) (Cheng et al., 1997), construct a DAG in two con-
secutive stages. The first stage is learning associations between variables for constructing an undi-
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rected structure. This requires a number of CI tests growing exponentially with the number of nodes.
This complexity is reduced in the PC algorithm to polynomial complexity by fixing the maximal
number of parents a node can have and in the TPDA algorithm by measuring the strengths of the
independences computed while CI testing along with making a strong assumption about the under-
lying graph (Cheng et al., 1997). The TPDA algorithm does not take direct steps to restrict the size
of the condition set employed in CI testing in order to mitigate the curse-of-dimensionality.

In the second stage, most CB algorithms direct edges by employing orientation rules in two con-
secutive steps: finding and directing V-structures and directing additional edges inductively (Pearl,
2000). Edge direction (orientation) is unstable. This means that small errors in the input to the
stage (i.e., CI testing) yield large errors in the output (Spirtes et al., 2000). Errors in CI testing are
usually the result of large condition sets. These sets, selected based on previous CI test results, are
more likely to be incorrect due to their size, and they also lead, for a small sample size, to poorer
estimation of dependences due to the curse-of-dimensionality. Thus, we usually start learning using
CI tests of low order (i.e., using small condition sets), which are the most reliable tests (Spirtes
et al., 2000). We further note that the division of learning in CB algorithms into two consecutive
stages is mainly for simplicity, since no directionality constraints have to be propagated during the
first stage. However, errors in CI testing is a main reason for the instability of CB algorithms, which
we set out to tackle in this research.

We propose the recursive autonomy identification (RAI) algorithm, which is a CB model that
learns the structure of a BN by sequential application of CI tests, edge direction and structure de-
composition into autonomous sub-structures that comply with the Markov property (i.e., the sub-
structure includes all its nodes’ parents). This sequence of operations is performed recursively for
each autonomous sub-structure. In each recursive call of the algorithm, the order of the CI test
is increased similarly to the PC algorithm (Spirtes et al., 2000). By performing CI tests of low
order (i.e., tests employing small conditions sets) before those of high order, the RAI algorithm
performs more reliable tests first, and thereby obviates the need to perform less reliable tests later.
By directing edges while testing conditional independence, the RAI algorithm can consider parent-
child relations so as to rule out nodes from condition sets and thereby to avoid unnecessary CI
tests and to perform tests using smaller condition sets. CI tests using small condition sets are faster
to implement and more accurate than those using large sets. By decomposing the graph into au-
tonomous sub-structures, further elimination of both the number of CI tests and size of condition
sets is obtained. Graph decomposition also aids in subsequent iterations to direct additional edges.
By recursively repeating both mechanisms for autonomies decomposed from the graph, further re-
duction of computational complexity, database queries and structural errors in subsequent iterations
is achieved. Overall, the RAI algorithm learns faster a more precise structure.

Tested using synthetic databases, nineteen known networks, and nineteen UCI databases, RAI
showed in this study superiority with respect to structural correctness, complexity, run-time and
classification accuracy over PC, Three Phase Dependency Analysis, Optimal Reinsertion, a greedy
hill-climbing search algorithmwith a Tabu list, Greedy Equivalence Search, Sparse Candidate, naive
Bayesian, and Max-Min Hill-Climbing algorithms.

After providing some preliminaries and definitions in Section 2, we introduce the RAI algo-
rithm and prove its correctness in Section 3. Section 4 presents experimental evaluation of the RAI
algorithm with respect to structural correctness, complexity, run-time and classification accuracy in
comparison to CB, S&S and hybrid structure learning algorithms. Section 5 concludes the paper
with a discussion.
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2. Preliminaries

A BN B(G ,!) is a model for representing the joint probability distribution for a set of variables
X = {X1 . . .Xn}. The structure G(V,E) is a DAG composed of V, a set of nodes representing the
domain variables X, and E, a set of directed edges connecting the nodes. A directed edge Xi → Xj
connects a child node Xj to its parent node Xi. We denote Pa(X ,G) as the set of parents of node X in
a graph G . The set of parameters ! holds local conditional probabilities over X, P(Xi|Pa(Xi,G))∀i
that quantify the graph edges. The joint probability distribution for X represented by a BN that
is assumed to encode this distribution1 is (Cooper and Herskovits, 1992; Heckerman, 1995; Pearl,
1988)

P(X1 . . .Xn) =
n

"
i=1

P(Xi|Pa(Xi,G)). (1)

Though there is no theoretical restriction on the functional form of the conditional probability dis-
tributions in Equation 1, we restrict ourselves in this study to discrete variables. This implies joint
distributions which are unrestricted discrete distributions and conditional probability distributions
which are independent multinomials for each variable and each parent configuration (Chickering,
2002).

We also make use of the term partially directed graph, that is, a graph that may have both
directed and undirected edges and has at most one edge between any pair of nodes (Meek, 1995).
We use this term while learning a graph starting from a complete undirected graph and removing
and directing edges until uncovering a graph representing a family of Markov equivalent structures
(pattern) of the true underlying BN2 (Pearl, 2000; Spirtes et al., 2000). Pap(X ,G), Adj(X ,G) and
Ch(X ,G) are, respectively, the sets of potential parents, adjacent nodes3 and children of node X in
a partially directed graph G , Pap(X ,G) = Adj(X ,G)\Ch(X ,G).

We indicate that X and Y are independent conditioned on a set of nodes S (i.e., the condition
set) using X ⊥⊥ Y |S, and make use of the notion of d-separation (Pearl, 1988). Thereafter, we
define d-separation resolution with the aim to evaluate d-separation for different sizes of condition
sets, d-separation resolution of a graph, an exogenous cause to a graph and an autonomous sub-
structure. We concentrate in this section only on terms and definitions that are directly relevant to
the RAI concept and algorithm, where other more general terms and definitions relevant to BNs can
be found in Heckerman (1995), Pearl (1988), Pearl (2000), and Spirtes et al. (2000).

Definition 1 – d-separation resolution: The resolution of a d-separation relation between a pair of
non-adjacent nodes in a graph is the size of the smallest condition set that d-separates the two nodes.

Examples of d-separation resolutions of 0, 1 and 2 between nodes X and Y are given in Figure 1.

Definition 2 – d-separation resolution of a graph: The d-separation resolution of a graph is the
highest d-separation resolution in the graph.

The d-separation relations encoded by the example graph in Figure 2a and relevant to the de-
termination of the d-separation resolution of this graph are: 1) X1 ⊥⊥ X2 | /0; 2) X1 ⊥⊥ X4 |{X3}; 3)
X1 ⊥⊥ X5 |{X3}; 4) X1 ⊥⊥ X6 |{X3}; 5) X2 ⊥⊥ X4 |{X3}; 6) X2 ⊥⊥ X5 |{X3}; 7) X2 ⊥⊥ X6 |{X3}; 8)
X3 ⊥⊥ X6 |{X4,X5} and 9) X4 ⊥⊥ X5 |{X3}. Due to relation 8, exemplifying d-separation resolution

1. Throughout the paper, we assume faithfulness of the probability distribution to a DAG (Spirtes et al., 2000).
2. Two BNs are Markov equivalent if and only if they have the same sets of adjacencies and V-structures (Verma and
Pearl, 1990).

3. Two nodes in a graph that are connected by an edge are adjacent.
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Figure 1: Examples of d-separation resolutions of (a) 0, (b) 1 and (c) 2 between nodes X and Y .

of 2, the d-separation resolution of the graph is 2. Eliminating relation 8 by adding the edge X3→X6,
we form a graph having a d-separation resolution of 1 (Figure 2b). By further adding edges to the
graph, eliminating relations of resolution 1, we form a graph having a d-separation resolution of 0
(Figure 2c) that encodes only relation 1.

X X

X

X X

X

X X

X

X X

X

X X

X

X X

X

(a) (b) (c)

Figure 2: Examples of graph d-separation resolutions of (a) 2, (b) 1 and (c) 0.

Definition 3 – exogenous cause: A node Y in G(V,E) is an exogenous cause to G ′(V′,E′), where
V′ ⊂ V and E′ ⊂ E, if Y /∈ V′ and ∀X ∈ V′, Y ∈ Pa(X ,G) or Y /∈ Adj(X ,G) (Pearl, 2000).

Definition 4 – autonomous sub-structure: In a DAG G(V,E), a sub-structure GA(VA,EA) such
that VA ⊂ V and EA ⊂ E is said to be autonomous in G given a set Vex ⊂ V of exogenous causes to
GA if ∀X ∈ VA, Pa(X ,G) ⊂ {VA∪Vex}. If Vex is empty, we say the sub-structure is (completely)
autonomous4.

We define sub-structure autonomy in the sense that the sub-structure holds the Markov property
for its nodes. Given a structure G , any two non-adjacent nodes in an autonomous sub-structure
GA in G are d-separated given nodes either included in the sub-structure GA or exogenous causes
to GA. Figure 3 depicts a structure G containing a sub-structure GA. Since nodes X1 and X2 are
exogenous causes to GA (i.e., they are either parents of nodes in GA or not adjacent to them; see
Definition 3), GA is said to be autonomous in G given nodes X1 and X2.

Proposition 1: If GA(VA,EA) is an autonomous sub-structure in a DAG G(V,E) given a set
Vex ⊂ V of exogenous causes to GA and X ⊥⊥ Y |S, where X ,Y ∈ VA, S ⊂ V, then ∃S′ such that
S′ ⊂ {VA∪Vex} and X ⊥⊥ Y |S′.

4. If G is a partially directed graph, then Pap(X ,G) replaces Pa(X ,G).
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Figure 3: An example of an autonomous sub-structure.

Proof: The proof is based on Lemma 1.
Lemma 1: If in a DAG, X and Y are non-adjacent and X is not a descendant of Y ,5 then X and Y
are d-separated given Pa(Y ) (Pearl, 1988; Spirtes et al., 2000).

If in a DAG G(V,E), X ⊥⊥ Y |S for some set S, where X and Y are non-adjacent, and if X is
not a descendant of Y , then, according to Lemma 1, X and Y are d-separated given Pa(Y ). Since X
and Y are contained in the sub-structure GA(VA,EA), which is autonomous given the set of nodes
Vex, then, following the definition of an autonomous sub-structure, all parents of the nodes in VA—
and specifically Pa(Y )—are members in set {VA∪Vex}. Then, ∃S′ such that S′ ⊂ {VA∪Vex} and
X ⊥⊥ Y |S′, which proves Proposition 1.

3. Recursive Autonomy Identification

Starting from a complete undirected graph and proceeding from low to high graph d-separation res-
olution, the RAI algorithm uncovers the correct pattern6 of a structure by performing the following
sequence of operations: (1) test of CI between nodes, followed by the removal of edges related
to independences, (2) edge direction according to orientation rules, and (3) graph decomposition
into autonomous sub-structures. For each autonomous sub-structure, the RAI algorithm is applied
recursively, while increasing the order of CI testing.
CI testing of order n between nodes X andY is performed by thresholding the value of a criterion

that measures the dependence between the nodes conditioned on a set of n nodes (i.e., the condition
set) from the parents of X or Y . The set is determined by the Markov property (Pearl, 2000), for
example, if X is directed into Y , then only Y ’s parents are included in the set. Commonly, this
criterion is the #2 goodness of fit test (Spirtes et al., 2000) or conditional mutual information (CMI)
(Cheng et al., 1997).

5. If X is a descendant of Y , we change the roles of X and Y and replace Pa(Y ) with Pa(X).
6. In the absence of a topological node ordering, uncovering the correct pattern is the ultimate goal of BN structure
learning algorithms, since a pattern represents the same set of probabilities as that of the true structure (Spirtes et al.,
2000).
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Directing edges is conducted according to orientation rules (Pearl, 2000; Spirtes et al., 2000).
Given an undirected graph and a set of independences, both being the result of CI testing, the
following two steps are performed consecutively. First, intransitive triplets of nodes (V-structures)
are identified, and the corresponding edges are directed. An intransitive triplet X→ Z←Y is defined
if 1) X and Y are non-adjacent neighbors of Z, and 2) Z is not in the condition set that separated X
and Y . In the second step, also known as the inductive stage, edges are continually directed until
no more edges can be directed, while assuring that no new V-structures and no directed cycles are
created.
Decomposition into separated, smaller, autonomous sub-structures reveals the structure hierar-

chy. Decomposition also decreases the number and length of paths between nodes that are CI-tested,
thereby diminishing, respectively, the number of CI tests and the sizes of condition sets used in these
tests. Both reduce computational complexity. Moreover, due to decomposition, additional edges can
be directed, which reduces the complexity of CI testing of the subsequent iterations. Following de-
composition, the RAI algorithm identifies ancestor and descendant sub-structures; the former are
autonomous, and the latter are autonomous given nodes of the former.

3.1 The RAI Algorithm

Similarly to other algorithms of structure learning (Cheng et al., 1997; Cooper and Herskovits, 1992;
Heckerman, 1995), the RAI algorithm7 assumes that all the independences entailed from the given
data can be encoded by a DAG. Similarly to other CB algorithms of structure learning (Cheng et al.,
1997; Spirtes et al., 2000), the RAI algorithm assumes that the data sample size is large enough for
reliable CI tests.

An iteration of the RAI algorithm starts with knowledge produced in the previous iteration and
the current d-separation resolution, n. Previous knowledge includes Gstart, a structure having a d-
separation resolution of n−1, and G ex, a set of structures each having possible exogenous causes to
Gstart. Another input is the graph Gall, which contains Gstart, G ex and edges connecting them. Note
that Gall may also contain other nodes and edges, which may not be required for the learning task
(e.g., edges directed from nodes in Gstart into nodes that are not in Gstart or G ex), and these will be
ignored by the RAI. In the first iteration, n = 0, G ex = /0, Gstart(V,E) is the complete undirected
graph and the d-separation resolution is not defined, since there are no pairs of d-separated nodes.
Since G ex is empty, Gall = Gstart.

Given a structure Gstart having d-separation resolution n−1, the RAI algorithm seeks indepen-
dences between adjacent nodes conditioned on sets of size n and removes the edges corresponding
to these independences. The resulting structure has a d-separation resolution of n. After applying
orientation rules so as to direct the remaining edges, a partial topological order is obtained in which
parent nodes precede their descendants. Childless nodes have the lowest topological order. This
order is partial, since not all the edges can be directed; thus, edges that cannot be directed connect
nodes of equal topological order. Using this partial topological ordering, the algorithm decomposes
the structure into ancestor and descendent autonomous sub-structures so as to reduce the complexity
of the successive stages.

First, descendant sub-structures are established containing the lowest topological order nodes. A
descendant sub-structure may be composed of a single childless node or several adjacent childless

7. The RAI algorithm and a preliminary experimental evaluation of the algorithm were introduced in Yehezkel and
Lerner (2005).
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nodes. We will further refer to a single descendent sub-structure, although such a sub-structure
may consist of several non-connected sub-structures. Second, all edges pointing towards nodes of
the descendant sub-structure are temporarily removed (together with the descendant sub-structure
itself), and the remaining clusters of connected nodes are identified as ancestor sub-structures. The
descendent sub-structure is autonomous, given nodes of higher topological order composing the
ancestor sub-structures. To consider smaller numbers of parents (and thereby smaller condition set
sizes) when CI testing nodes of the descendant sub-structure, the algorithm first learns ancestor
sub-structures, then the connections between ancestor and descendant sub-structures, and finally
the descendant sub-structure itself. Each ancestor or descendent sub-structure is further learned
by recursive calls to the algorithm. Figures 4, 5 and 6 show, respectively, the RAI algorithm, a
manifesting example and the algorithm execution order for this example.

The RAI algorithm is composed of four stages (denoted in Figure 4 as Stages A, B, C and
D) and an exit condition checked before the execution of any of the stages. The purpose of the
exit condition is to assure that a CI test of a required order can indeed be performed, that is, the
number of potential parents required to perform the test is adequate. The purpose of Stage A1 is
to thin the link between G ex and Gstart, the latter having d-separation resolution of n− 1. This is
achieved by removing edges corresponding to independences between nodes in G ex and nodes in
Gstart conditioned on sets of size n of nodes that are either exogenous to, or within, Gstart. Similarly,
in Stage B1, the algorithm tests for CI of order n between nodes in Gstart given sets of size n of nodes
that are either exogenous to, or within, Gstart, and removes edges corresponding to independences.
The edges removed in Stages A1 and B1 could not have been removed in previous applications of
these stages using condition sets of lower orders. When testing independence between X and Y ,
conditioned on the potential parents of node X , those nodes in the condition set that are exogenous
to Gstart are X’s parents whereas those nodes that are in Gstart are either its parents or adjacents.

In Stages A2 and B2, the algorithm directs every edge from the remaining edges that can be
directed. In Stage B3, the algorithm groups in a descendant sub-structure all the nodes having the
lowest topological order in the derived partially directed structure, and following the temporary re-
moval of these nodes, it defines in Stage B4 separate ancestor sub-structures. Due to the topological
order, every edge from a node X in an ancestor sub-structure to a node Z in the descendant sub-
structure is directed as X → Z. In addition, there is no edge connecting one ancestor sub-structure
to another ancestor sub-structure.

Thus, every ancestor sub-structure contains all the potential parents of its nodes, that is, it is au-
tonomous (or if some potential parents are exogenous, then the sub-structure is autonomous given
the set of exogenous nodes). The descendant sub-structure is, by definition, autonomous given
nodes of ancestor sub-structures. Proposition 1 showed that we can identify all the conditional in-
dependences between nodes of an autonomous sub-structure. Hence, every ancestor and descendant
sub-structure can be processed independently in Stages C and D, respectively, so as to identify con-
ditional independences of increasing orders in each recursive call of the algorithm. Stage C is a
recursive call for the RAI algorithm for learning each ancestor sub-structure with order n+1. Sim-
ilarly, Stage D is a recursive call for the RAI algorithm for learning the descendant sub-structure
with order n+ 1, while assuming that the ancestor sub-structures have been fully learned (having
d-separation resolution of n+1).

Figure 5 and Figure 6, respectively, show diagrammatically the stages in learning an example
graph and the execution order of the algorithm for this example. Figure 5a shows the true structure
that we wish to uncover. Initially, Gstart is the complete undirected graph (Figure 5b), n= 0, G ex is
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Main function: Gout = RAI[n,Gstart(Vstart,Estart),G ex(Vex,Eex),Gall]

Exit condition

If all nodes in Gstart have fewer than n+1 potential parents, set Gout =Gall and exit.

A. Thinning the link between G ex and Gstart and directing Gstart

1. For every node Y in Gstart and its parent X in G ex, if ∃S ⊂ {Pap(Y,Gstart) ∪
Pa(Y,G ex)\X} and |S| = n such that X ⊥⊥ Y |S, then remove the edge between
X and Y from Gall.

2. Direct the edges in Gstart using orientation rules.

B. Thinning, directing and decomposing Gstart

1. For every node Y and its potential parent X both in Gstart, if ∃S ⊂ {Pa(Y,G ex)∪
Pap(Y,Gstart)\X} and |S| = n such that X ⊥⊥ Y |S, then remove the edge between
X and Y from Gall and Gstart.

2. Direct the edges in Gstart using orientation rules.
3. Group the nodes having the lowest topological order into a descendant sub-
structure GD.

4. Remove GD from Gstart temporarily and define the resulting unconnected structures
as ancestor sub-structures GA1 , . . . ,GAk .

C. Ancestor sub-structure decomposition
For i= 1 to k, call RAI[n+1,GAi ,G ex,Gall].

D. Descendant sub-structure decomposition

1. Define G exD = {GA1 , . . . ,GAk ,G ex} as the exogenous set to GD.
2. Call RAI[n+1,GD,G exD ,Gall].
3. Set Gout = Gall and exit.

Figure 4: The RAI algorithm.
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Figure 5: Learning an example structure. a) The true structure to learn, b) initial (complete) struc-
ture and structures learned by the RAI algorithm in Stages (see Figure 4) c) B1, d) B2,
e) B3 and B4, f) C, g) D and A1, h) D and A2 and i) D, B1 and B2 (i.e., the resulting
structure).
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RAI[2;G(fX ;X g); fG(fX g);G(fX ;X ;X g)g;G ]

RAI[2;G(fX g);fG(fX ;X g);G(fX g);G(fX ;X ;X g)g;G ]

45
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89

1011

12

12
36

Figure 6: The execution order of the RAI algorithm for the example structure of Figure 5. Recursive
calls of Stages C and D are marked with double and single arrows, respectively. The
numbers annotating the arrows indicate the order of calls and returns of the algorithm.
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empty and Gall = Gstart, so Stage A is skipped. In Stage B1, any pair of nodes in Gstart is CI tested
given an empty condition set (i.e., checking marginal independence), which yields the removal of the
edges between node X1 and nodes X3, X4 and X5 (Figure 5c). The edge directions inferred in Stage
B2 are shown in Figure 5d. The nodes having the lowest topological order (X2, X6, X7) are grouped
into a descendant sub-structure GD (Stage B3), while the remaining nodes form two unconnected
ancestor sub-structures, GA1 and GA2 (Stage B4)(Figure 5e). Note that after decomposition, every
edge between a node, Xi, in an ancestor sub-structure, and a node, Xj, in a descendant sub-structure
is a directed edge Xi → Xj. The set of all edges from an ancestor sub-structure to the descendant
sub-structure is illustrated in Figure 5e by a wide arrow connecting the sub-structures. In Stage C,
the algorithm is called recursively for each of the ancestor sub-structures with n = 1, Gstart = GAi
(i = 1,2) and G ex = /0. Since sub-structure GA1 contains a single node, the exit condition for this
structure is satisfied. While calling Gstart = GA2, Stage A is skipped, and in Stage B1 the algorithm
identifies that X4 ⊥⊥ X5 |X3, thus removing the edge X4 – X5. No orientations are identified (e.g., X3
cannot be a collider, since it separated X4 and X5), so the three nodes have equal topological order
and they are grouped to form a descendant sub-structure. The recursive call for this sub-structure
with n = 2 is returned immediately, since the exit condition is satisfied (Figure 5f). Moving to
Stage D, the RAI is called with n = 1, Gstart = GD and G ex = {GA1 ,GA2}. Then, in Stage A1
relations X1 ⊥⊥ {X6,X7}|X2, X4 ⊥⊥ {X6,X7}|X2 and {X3,X5}⊥⊥ {X2,X6,X7}|X4 are identified, and
the corresponding edges are removed (Figure 5g). In Stage A2, X6 and X7 cannot collide at X2
(since X6 and X7 are adjacent), and X2 and X6 (X7) cannot collide at X7 (X6) (since X2 and X6 (X7)
are adjacent); hence, no additional V-structures are formed. Based on the inductive step and since
X1 is directed at X2, X2 should be directed at X6 and at X7. X6 (X7) cannot be directed at X7 (X6),
because no new V-structures are allowed (Figure 5h). Stage B1 of the algorithm identifies the
relation X2 ⊥⊥ X7 |X6 and removes the edge X2 → X7. In Stage B2, X6 cannot be a collider of X2
and X7, since it has separated them. In the inductive step, X6 is directed at X7, X6 → X7 (Figure 5i).
In Stages B3 and B4, X7 and {X2,X6} are identified as a descendant sub-structure and an ancestor
sub-structure, respectively. Further recursive calls (8 and 10 in Figure 6) are returned immediately,
and the resulting partially directed structure (Figure 5i) represents a family of Markov equivalent
structures (pattern) of the true structure (Figure 5a).

3.2 Minimality, Stability and Complexity

After describing the RAI algorithm (Section 3.1) and before proving its correctness (Section 3.3), we
analyze in Section 3.2 three essential aspects of the algorithm—minimality, stability and complexity.

3.2.1 MINIMALITY

A structure recovered by the RAI algorithm in iteration m has a higher d-separation resolution and
entails fewer dependences and thus is simpler and preferred8 to a structure recovered in iteration
m− k where 0 < k ≤ m. By increasing the resolution, the RAI algorithm, similarly to the PC
algorithm, moves from a complete undirected graph having maximal dependence relations between
variables to structures having less (or equal) dependences than previous structures, ending in a
structure having no edges between conditionally independent nodes, that is, a minimal structure.

8. We refer here to structures learned during algorithm execution and do not consider the empty graph that naturally has
the lowest d-separation resolution (i.e., 0). This graph, having all nodes marginally independent of each other, will
be found by the RAI algorithm immediately after the first iteration for graph resolution 0.
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3.2.2 STABILITY

Similarly to Spirtes et al. (2000), we use the notion of stability informally to measure the number of
errors in the output of a stage of the algorithm due to errors in the input to this stage. Similarly to the
PC algorithm, the main sources of errors of the RAI algorithm are CI-testing and the identification
of V-structures. Removal of an edge due to an erroneous CI test may lead to failure in correctly
removing other edges, which are not in the true graph and also cause to orientation errors. Failure
to remove an edge due to an erroneous CI test may prevent, or wrongly cause, orientation of edges.
Missing or wrongly identifying a V-structure affect the orientation of other edges in the graph during
the inductive stage and subsequent stages.

Many CI test errors (i.e., deciding that (in)dependence exists where it does not) in CB algo-
rithms are the result of unnecessary large condition sets given a limited database size (Spirtes et al.,
2000). Large condition sets are more likely to be inaccurate, since they are more likely to include
unnecessary and erroneous nodes (erroneous due to errors in earlier stages of the algorithm). These
sets may also cause poorer estimation of the criterion that measures dependence (e.g., CMI or #2)
due to the curse-of-dimensionality, as typically there are only too few instances representing some
of the combinations of node states. Either way, these condition sets are responsible for many wrong
decisions about whether dependence between two nodes exists or not. Consequently, these errors
cause structural inaccuracies and hence also poor inference ability.

Although CI-testing in the PC algorithm is more stable than V-structure identification (Spirtes
et al., 2000), it is difficult to say whether this is also the case in the RAI algorithm. Being recursive,
the RAI algorithm might be more unstable. However, CI test errors are practically less likely to
occur, since by alternating between CI testing and edge direction the algorithm uses knowledge
about parent-child relations before CI testing of higher orders. This knowledge permits avoiding
some of the tests and decreases the size of conditions sets of some other tests (see Lemma 1). In
addition, graph decomposition promotes decisions about well-founded orders of node presentation
for subsequent CI tests, contrary to the common arbitrary order of presentation (see, e.g., the PC
algorithm). Both mechanisms enhance stability and provide some means of error correction, as will
be demonstrated shortly.

Let us now extensively describe examples that support our claim regarding the enhanced sta-
bility of the RAI algorithm. Suppose that following CI tests of some order both the PC and RAI
algorithms identify a triplet of nodes in which two non-adjacent nodes, X and Y , are adjacent to a
third node, Z, that is, X – Z – Y . In the immediate edge direction stage, the RAI algorithm identifies
this triplet as a V-structure, X → Z← Y . Now, suppose that due to an unreliable CI test of a higher
order the PC algorithm removes X – Z and the RAI algorithm removes X → Z. Eventually, both
algorithms fail to identify the V-structure, but the RAI algorithm has an advantage over the PC algo-
rithm in that the other arm of the V-structure is directed, Z←Y . This contributes to the possibility to
direct further edges during the inductive stage and subsequent recursive calls for the algorithm. The
directed arm would also contribute to fewer CI tests and tests with smaller condition sets during CI
testing with higher orders (e.g., if we later have to test independence between Y and another node,
then we know that Z should not be included in the condition set, even though it is adjacent to Y ). In
addition, the direction of this edge also contributes to enhanced inference capability.

Now, suppose another example in which after removing all edges due to reliable CI tests using
condition set sizes lower than or equal to n, the algorithm identifies the V-structure X → Z ← Y
(Figure 7a). However, let assume that one of the V-structure arms, say X → Z, is correctly removed
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on a subsequent iteration using a larger condition set size (say n+1 without limiting the generality).
We may be concerned that assuming a V-structure for the lower graph resolution, the RAI algorithm
wrongly directs the second arm Z – Y as Z ← Y . However, we demonstrate that the edge direction
Z ← Y remains valid even if there should be no edge X – Z in the true graph. Suppose that X → Z
was correctly removed conditioned on variableW , which is independent of Y given any condition
set with a size smaller than or equal to n. Then, the possible underlying graphs are shown in Figures
7b-7d. The graph in Figure 7d is not possible, since it yields that X and Y are dependent given all
condition sets of sizes smaller than or equal to n. In Figure 7b and Figure 7c, Z is a collider between
W and Y , and thus the edge direction Z←Y remains valid. A different graph, X →W ← Z – Y (i.e.,
W is a collider), is not possible, since it means that X ⊥⊥ Z |S, |S|≤ n,W /∈ S and then X – Z should
have been removed in a previous order (using condition set size of n or lower) and X → Z ← Y
should not have been identified in the first place. Now, suppose thatW and Y are dependant. In this
case, the possible graphs are those shown in Figures 7e-7h. Similarly to the case in whichW and Y
are independent,W cannot be a collider of X and Z (X →W ← Z) in this case as well. The graphs
shown in Figures 7e-7g cannot be the underlying graphs since they entail dependency between
X and Y given a condition set of size lower than or equal to n. The graph shown in Figure 7h
exemplifies a V-structure X →W ← Y . Since we assume that X and Z are independent given W
(and thus X – Z was removed), a V-structure X →W ← Z is not allowed. Since the edge X →W
is already directed, the edge between W and Z must be directed as W → Z. In this case, to avoid
the cycle Y →W → Z→Y , the edge between Y and Z must be directed as in the true graph, that is,
Y → Z.

Finally for the stability subsection, we note that the contribution of graph decomposition to
structure learning using the RAI algorithm is threefold. First is the identification in early stages,
using low-order, reliable CI tests, of the graph hierarchy, exemplifying the backbone of causal rela-
tions in the graph. For example, Figure 5e shows that learning our example graph (Figure 5a) from
the complete graph (Figure 5b) demonstrates, immediately after the first iteration, that the graph is
composed of three sub-structures—{X1}, {X2,X6,X7} and {X3,X4,X5}, where {X1}→ {X2,X6,X7}
and {X3,X4,X5}→ {X2,X6,X7}. This rough (low-resolution) partition of the graph is helpful in visu-
alizing the problem and representing the current knowledge from the outset and along the learning.
The second contribution of graph decomposition is the possibility to implement learning using a
parallel processor for each sub-structure independently. This advantage may be further extended in
the recursive calls for the algorithm.

Third is the contribution of graph decomposition to improved performance. Aiming at a low
number of CI tests, decomposition provides a sound guideline for deciding on an educated order
in which the edges should be CI tested. Based on this order, some tests can be considered redun-
dant and thus be avoided. Several methods for selecting the right order for the PC algorithm were
presented in Spirtes et al. (2000), but these methods are heuristic. Decomposition into ancestor and
descendent sub-structures is followed by three levels of learning (Figure 4), that is, removing and di-
recting edges 1) of ancestor sub-structures, 2) between ancestor and descendent sub-structures, and
3) of the descendent sub-structure. The second level has the greatest influence on further learning.
The removal of edges between ancestor and descendent sub-structures and the sequential direction
of edges in the descendant sub-structure assure that, first, fewer potential parents are considered,
while learning the descendent sub-structure and second, more edges can be directed in this lat-
ter sub-structure. Moreover, these directed edges and the derived parent-child relations prevent an
arbitrary selection order of nodes for CI testing and thereby enable employing smaller and more
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Figure 7: Graphs used to exemplify the stability of the RAI algorithm (see text).

accurate condition sets. Take, for example, CI testing for the redundant edge between X2 and X7
in our example graph (Figure 5i) if the RAI algorithm did not use decomposition. Graph decom-
position for n = 0 (Figure 5e) enables the identification of two ancestor sub-structures, GA1 and
GA2, as well as a descendent sub-structure GD that are each learned recursively. During Stage D
(Figure 4) and while thinning the links between the ancestor sub-structures and GD (in Stage A1
of the recursion for n = 1), we identify the relations X1 ⊥⊥ {X6,X7}|X2, X4 ⊥⊥ {X6,X7}|X2 and
{X3,X5} ⊥⊥ {X2,X6,X7}|X4 and remove the 10 corresponding edges (Figure 5g). The decision to
test and remove these edges first was enabled by the decomposition of the graph to GA1, GA2 and
GD. In Stage A2 (Figure 5h), we direct the edge X2 → X6 (as X1 ⊥⊥ X6 |X2 and thus X2 cannot be
a collider between X1 and X6) and edge X2 → X7 (as X1 ⊥⊥ X7 |X2 and thus X2 cannot be a collider
between X1 and X7), and in Stage B (Figure 5i) we direct the edge X6 → X7. The direction of these
edges could not be assured without removing first the above edges, since the (redundant) edges
pointing onto X6 and X7 would have allowed wrong edge direction, that is, X6 → X2 and X7 → X2.
If we had been using the RAI algorithm with no decomposition (Figure 5d) (or the PC algorithm)
and had decided to check the independence between X2 and X7, first, we would have had to consider
condition sets containing the nodes X1, X3, X4, X5 or X6 (up to 10 CI tests whether we start from
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X2 or X7). Instead, we perform in Stage B1 only one test, X2 ⊥⊥ X7 |X6. These benefits are the result
of graph decomposition.

3.2.3 COMPLEXITY

CI tests are the major contributors to the (run-time) complexity of CB algorithms (Cheng and
Greiner, 1999). In the worst case, the RAI algorithm will neither direct any edges nor decom-
pose the structure and will thus identify the entire structure as a descendant sub-structure, calling
Stages D and B1 iteratively while skipping all other stages. Then, the execution of the algorithm
will be similar to that of the PC algorithm, and thus the complexity will be bounded by that of the
PC algorithm. Given the maximal number of possible parents k and the number of nodes n, the
number of CI tests is bounded by (Spirtes et al., 2000)

2
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2

)

·
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n2(n−1)k−1

(k−1)!
,

which leads to complexity of O(nk).
This bound is loose even in the worst case (Spirtes et al., 2000) especially in real-world ap-

plications requiring graphs having V-structures. This means that in most cases some edges are
directed and the structure is decomposed; hence, the number of CI tests is much smaller than that
of the worst case. For example, by decomposing our example graph (Figure 5) into descendent
and ancestor sub-structures in the first application of Stage B4 (Figure 5e), we avoid checking
X6 ⊥⊥ X7 |{X1,X3,X4,X5}. This is because {X1,X3,X4,X5} are neither X6’s nor X7’s parents and thus
are not included in the (autonomous) descendent sub-structure. By checking only X6 ⊥⊥ X7 |{X2},
the RAI algorithm saves CI tests that are performed by the PC algorithm. We will further elaborate
on the RAI algorithm complexity in our forthcoming study.

3.3 Proof of Correctness

We prove the correctness of the RAI algorithm using Proposition 2. We show that only conditional
independences (of all orders) entailed by the true underlying graph are identified by the RAI al-
gorithm and that all V-structures are correctly identified. We then note on the correctness of edge
direction.

Proposition 2: If the input data to the RAI algorithm are faithful to a DAG, Gtrue, having any
d-separation resolution, then the algorithm yields the correct pattern for Gtrue.

Proof: We use mathematical induction to prove the proposition, where in each induction step, m,
we prove that the RAI algorithm finds (a) all conditional independences of order m and lower, (b)
no false conditional independences, (c) only correct V-structures and (d) all V-structures, that is, no
V-structures are missing.

Base step (m= 0): If the input data to the RAI algorithm was generated from a distribution faithful
to a DAG, Gtrue, having d-separation resolution 0, then the algorithm yields the correct pattern for
Gtrue.

Given that the true underlying DAG has a d-separation resolution of 0, the data entail only
marginal independences. In the beginning of learning, Gstart is a complete graph and m = 0. Since
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there are no exogenous causes, Stage A is skipped. In Stage B, the algorithm tests for independence
between every pair of nodes with an empty condition set, that is, X ⊥⊥Y | /0 (marginal independence),
removes the redundant edges and directs the remaining edges as possible. In the resulting structure,
all the edges between independent nodes have been removed and no false conditional independences
are entailed. Thus, all the identified V-structures are correct, as discussed in Section 3.2.2 on stabil-
ity, and there are no missing V-structures, since the RAI algorithm has tested independence for all
pair of nodes (edges). At the end of Stage B2 (edge direction), the resulting structure and Gtrue have
the same set of V-structures and the same set of edges. Thus, the correct pattern for Gtrue is identi-
fied. Since the data entail only independences of zero order, further recursive calls with m≥ 1 will
not find independences with condition sets of size m, and thus no edges will be removed, leaving
the graph unchanged.

Inductive step (m+1): Suppose that at induction step m, the RAI algorithm discovers all condi-
tional independences of order m and lower, no false conditional independences are entailed, all
V-structures are correct, and no V-structures are missing. Then, if the input data to the RAI al-
gorithm was generated from a distribution faithful to a DAG, Gtrue, having d-separation resolution
m+1, then the RAI algorithm would yield the correct pattern for that graph.

In step m, the RAI algorithm discovers all conditional independences of order m and lower.
Given input data faithful to a DAG, Gtrue, having d-separation resolution m+ 1, there exists at
least one pair of nodes, say {X ,Y}, in the true graph, that has a d-separation resolution of m+ 1.9
Since the RAI, by the recursive call m+ 1 (i.e., calling RAI[m+ 1,Gstart,G ex,Gall]), has identified
only conditional independences of order m and lower, an edge, EXY = (X – Y ), exists in the input
graph, Gstart. The smallest condition set required to identify the independence between X and Y is
SXY (X ⊥⊥ Y |SXY ), such that |SXY | ≥ m+ 1. Thus, |Pap(X)\Y | ≥ m+ 1 or |Pap(Y )\X | ≥ m+ 1,
meaning that either node X or node Y has at least m+ 2 potential parents. Such an edge exists
in at least one of the autonomous sub-structures decomposed from the graph yielded at the end of
iteration m. When calling, in Stage C or Stage D, the algorithm recursively for this sub-structure
withm′ =m+1, the exit condition is not satisfied because either node X or nodeY has at leastm′+1
parents. Since Stepm assured that the sub-structure is autonomous, it contains all the necessary node
parents. Note that decomposition into ancestor, GA, and descendant, GD, sub-structures occurs after
identification of all nodes having the lowest topological order, such that every edge from a node
X in GA to a node Y in GD is directed, X → Y . In the case that the sub-structure is an ancestor
sub-structure, SXY contains nodes of the sub-structure and its exogenous causes. In the case that the
sub-structure is a descendant sub-structure, SXY contains nodes from the ancestor sub-structures and
the descendant sub-structure. Therefore, based on Proposition 1, the RAI algorithm tests all edges
using condition sets of sizes m′ and removes EXY (and all similar edges) in either Stage A or Stage
B, yielding a structure with d-separation resolution of m′ and thereby yields the correct pattern for
the true underlying graph of d-separation resolution m+1.

Spirtes (2001)—when introducing the anytime fast casual inference (AFCI) algorithm—proved
the correctness of edge direction of AFCI. The AFCI algorithm can be interrupted at any stage
(resolution), and the resultant graph at this stage is correct with probability one in the large sample

9. If the d-separation resolution of {X ,Y} is m′ >m+1, then the RAI algorithm will not modify the graph until step m′.
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limit, although possibly less informative10 than if had been allowed to continue uninterrupted.11
Recall that interrupting learning means that we avoid CI tests of higher orders. This renders the
resultant graph more reliable. We use this proof here for proving the correctness of edge direction
in the RAI algorithm. Completing CI testing with a specific graph resolution n in the RAI algorithm
and interrupting the AFCI at any stage of CI testing are analogous. Furthermore, Spirtes (2001)
proves that interrupting the algorithm at any stage is also possible during edge direction, that is,
once an edge is directed, the algorithm never changes that direction. In Section 3.2.2, we showed
that even if a directed edge of a V-structure is removed, the direction of the remaining edge is still
correct. Since directing edges by the AFCI algorithm after interruption yields a correct (although
less informative) graph (Spirtes, 2001), also the direction of edges by the RAI algorithm yields
a correct graph. Having (real) parents in a condition set used for CI testing, instead of potential
parents, which are the result of edge direction for resolutions lower than n, is a virtue, as was
confirmed in Section 3.1. All that is required that all parents, either real or potential, be included
within the corresponding condition set, and this is indeed guaranteed by the autonomy of each sub-
structure, as was proved above.

4. Experiments and Results

We compare the RAI algorithm with other state-of-the-art algorithms with respect to structural cor-
rectness, computational complexity, run-time and classification accuracy when the learned structure
is used in classification. The algorithms learned structures from databases representing synthetic
problems, real decision support systems and natural classification problems. We present the experi-
mental evaluation in four sections. In Section 4.1, the complexity of the RAI algorithm is measured
by the number of CI tests required for learning synthetically generated structures in comparison to
the complexity of the PC algorithm (Spirtes et al., 2000).

The order of presentation of nodes is not an input to the PC algorithm. Nevertheless, CI testing
of orders higher than 0, and therefore also edge directing, which depends on CI testing, may be
sensitive to that order. This may cause learning different graphs whenever the order is changed.
Dash and Druzdzel (1999) turned this vice of the PC algorithm into a virtue by employing the
partially directed graphs formed by using different orderings for the PC algorithm as the search
space from which the structure having the highest value of the K2 metric (Cooper and Herskovits,
1992) is selected. For the RAI algorithm, sensitivity to the order of presentation of nodes is expected
to be reduced compared to the PC algorithm, since the RAI algorithm, due to edge direction and
graph decomposition, decides on the order of performing most of the CI tests and does not use an
arbitrary order (Section 3.2.2). Nevertheless, to account for the possible sensitivity of the RAI and
PC algorithms to this order, we preliminarily employed 100 different permutations12 of the order for
each of ten Alarm network (Beinlich et al., 1989) databases. Since the results of these experiments

10. Less informative in the sense that it answers “can’t tell” for a larger number of questions; that is, identifying, for
example, “◦” edge endpoint (placing no restriction on the relation between the pair of nodes making the edge) instead
of “→” endpoint.

11. The AFCI algorithm is also correct if hidden and selection variables exist. A selection variable models the possibility
of an observable variable having some missing data. We focus here on the case where neither hidden nor selection
variables exist.

12. Dash and Druzdzel (1999) examined the relationships between the number of order permutations and the numbers of
variables and instances. We fixed the number of order permutations at 100.
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had showed that the difference in performance for different permutations is slight, we further limited
the experiments with the PC and RAI algorithms to a single permutation.

In Section 4.2, we present our methodology of selecting a threshold for RAI CI testing. We
propose selecting a threshold for which the learned structure has a maximum of a likelihood-based
score value.

In Section 4.3, we use the Alarm network (Beinlich et al., 1989), which is a widely accepted
benchmark for structure learning, to evaluate the structural correctness of graphs learned by the
RAI algorithm. The correctness of the structure recovered by RAI is compared to those of struc-
tures learned using other algorithms—PC, TPDA (Cheng et al., 1997), GES (Chickering, 2002;
Meek, 1997), SC (Friedman et al., 1999) and MMHC (Tsamardinos et al., 2006a). The PC and
TPDA algorithms are the most popular CB algorithms (Cheng et al., 2002; Kennett et al., 2001;
Marengoni et al., 1999; Spirtes et al., 2000); GES and SC are state-of-the-art S&S algorithms
(Tsamardinos et al., 2006a); and MMHC is a hybrid algorithm that has recently been developed and
showed superiority, with respect to different criteria, over all the (non-RAI) algorithms examined
here (Tsamardinos et al., 2006a). In addition to correctness, the complexity of the RAI algorithm,
as measured through the enumeration of CI tests and log operations, is compared to those of the
other CB algorithms (PC and TPDA) for the Alarm network.

In Section 4.4, we extend the examination of RAI in structure learning to known networks other
than the Alarm. Although the Alarm is a popular benchmark network, many algorithms perform
well for this network. Hence, it is important to examine RAI performance on other networks for
which the true graph is known. In the comparison of RAI to other algorithms, we included all
the algorithms of Section 4.3, as well as the Optimal Reinsertion (OR) (Moore and Wong, 2003)
algorithm and a greedy hill-climbing search algorithm with a Tabu list (GS) (Friedman et al., 1999).
We compared algorithm performances with respect to structural correctness, run-time, number of
statistical calls and the combination of correctness and run-time.

In Section 4.5, the complexity and run-time of the RAI algorithm are compared to those of the
PC algorithm using nineteen natural databases. In addition, the classification accuracy of the RAI
algorithm for these databases is compared to those of the PC, TPDA, GES, MMHC, SC and naive
Bayesian classifier (NBC) algorithms. No structure learning is required for NBC and all the domain
variables are used. This classifier is included in the study as a reference to a simple, yet accurate,
classifier. Because we are interested in this section in classification, and a likelihood-based score
does not reflect the importance of the class variable in structures used for classification (Friedman
et al., 1997; Kontkanen et al., 1999; Grossman and Domingos, 2004; Yang and Chang, 2002), we
prefer here the classification accuracy score in evaluating structure performance.

In the implementations of all sections, except Section 4.4, we were aided by the Bayes net
toolbox (BNT) (Murphy, 2001), BNT structure learning package (Leray and François, 2004) and
PowerConstructor software (Cheng, 1998) and evaluated all algorithms ourselves. In Section 4.4,
we downloaded and used the results reported in Tsamardinos et al. (2006a) for the non-RAI al-
gorithms and used the Causal Explorer algorithm library (Aliferis et al., 2003) (http://www.dsl-
lab.org/causal explorer/index.html). The Causal Explorer algorithm library makes use of meth-
ods and values of parameters for each algorithm as suggested by the authors of each algorithm
(Tsamardinos et al., 2006a). For example, BDeu score (Heckerman et al., 1995) with equivalent
sample size 10 for GS, GES, OR and MMHC; #2 p-values at the standard 5% for the MMHC’s
and PC’s statistical thresholds; threshold of 1% for the TPDA mutual information test; the Bayesian
scoring heuristic, equivalent sample size of 10 and maximum allowed sizes for the candidate parent
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set of 5 and 10 for SC; and maximum number of parents allowed of 5, 10 and 20 and maximum
allowed run time, which is one and two times the time used by MMHC on the corresponding data
set, for OR. The only parameter that requires optimization in the RAI algorithm (similar to the other
CB algorithms - PC and TPDA) is the CI testing threshold. We use no prior knowledge to find this
threshold but a training set for each database (see Section 4.2 for details). Note, however that we do
not account for the time required for selecting the threshold when reporting the execution time.

4.1 Experimentation with Synthetic Data

The complexity of the RAI algorithm was evaluated in comparison to that of the PC algorithm by
the number of CI tests required to learn synthetically generated structures. Since the true graph
is known for these structures, we could assume that all CI tests were correct and compare the
numbers of CI tests required by the algorithms to learn the true independence relationships. In
one experiment, all 29,281 possible structures having 5 nodes were learned using the PC and RAI
algorithms. The average number of CI tests employed by each algorithm is shown in Figure 8a for
increasing orders (condition set sizes). Figure 8b depicts the average percentages of CI tests saved
by the RAI algorithm compared to the PC algorithm for increasing orders. These percentages were
calculated for each graph independently and then averaged. It is seen that the advantage of the RAI
algorithm over the PC algorithm is more prominent for high orders.
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Figure 8: Measured for increasing orders, the (a) average number of CI tests required by the RAI
and PC algorithms for learning all possible structures having five nodes and (b) average
over all structures of the reduction percentage in CI tests achieved by the RAI algorithm
compared to the PC algorithm.

In another experiment, we learned graphs of sizes (numbers of nodes) between 6 and 15. We
selected from a large number of randomly generated graphs 3,000 graphs that were restricted by a
maximal fan-in value of 3; that is, every node in such a graph has 3 parents at most and at least
one node in the graph has 3 parents. This renders a practical learning task. Thus, the structures
can theoretically be learned by employing CI tests of order 3 and below and should not use tests
of orders higher than 3. In such a case, the most demanding test, having the highest impact on
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Figure 9: Average number of CI tests required by the PC and RAI algorithms for increasing graph
sizes and orders of (a) 3 and (b) 4.

computational time, is of order 3. Figure 9a shows the average numbers of CI tests performed for
this order by the PC and RAI algorithms for graphs with increasing sizes. Moreover, because the
maximal fan-in is 3, all CI tests of order 4 are a priori redundant, so we can further check how well
each algorithm avoids these unnecessary tests. Figure 9b depicts the average numbers of CI tests
performed by the two algorithms for order 4 and graphs with increasing sizes. Both Figure 9a and
Figure 9b show that the number of CI tests employed by the RAI algorithm increases more slowly
with the graph size compared to that of the PC algorithm and that this advantage is much more
significant for the redundant (and more costly) CI tests of order 4.

We further expanded the examination of the algorithms in CI testing for different graph sizes
and CI test orders. Figure 10 shows the average number and percentage of CI tests saved using the
RAI algorithm compared to the PC algorithm for different condition set sizes and graph sizes. The
number of CI tests having an empty condition set employed by each of the algorithms is equal and
is therefore omitted from the comparison. The figure shows that the percentage of CI tests saved
using the RAI algorithm increases with both graph and condition set sizes. For example, the saving
in CI tests when using the RAI algorithm instead of the PC algorithm for learning a graph having
15 nodes and using condition sets of size 4 is above 70% (Figure 10b). In Section 4.4, we will
demonstrate the RAI quality of requiring relatively fewer tests of high orders than of low orders for
graphs of larger sizes for real, rather than synthetic, data.

4.2 Selecting the Threshold for RAI CI Testing

CI testing for the RAI algorithm can be based on the #2 test as for the PC algorithm or the conditional
mutual information (CMI) as for the TPDA algorithm. The CMI between nodes X andY conditioned
on a set of nodes Z (i.e., the condition set), is:

CMI(X ,Y |Z) =
NX
$
i=1

NY
$
j=1

NZ
$
k=1

[

P(xi,y j,zk) · log
P(xi,y j|zk)

P(xi|zk) ·P(y j|zk)

]

, (2)
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Figure 10: (a) Average number and (b) percentage of CI tests saved by using the RAI algorithm
compared to the PC algorithm for graph sizes of 6, 9, 12 or 15 (gray shades) and orders
between 1 and 4.

where xi and y j represent, respectively, states of X and Y , zk represents a combination of states of
all variables in Z, and NX , NY and NZ are the numbers of states of X , Y and Z, respectively.

In both CI testing methods, the value of interest (either #2 or CMI) is compared to a threshold.
For example, CMI values that are higher or lower than the threshold indicate, respectively, condi-
tional dependence or independence between X and Y given Z. However, the optimal threshold is
unknown beforehand. Moreover, the optimal threshold is problem and data-driven, that is, it de-
pends, on the one hand, on the database and its size and, on the other hand, on the variables and the
numbers of their states. Thus, it is not possible to set a “default” threshold value that will accurately
determine conditional (in)dependence while using any database or problem.

To find an optimal threshold for a database, we propose to score structures learned using differ-
ent thresholds by a likelihood-based criterion evaluated using the training (actually validation) set
and to select the threshold leading to the structure achieving the highest score. Such a score may
be BDeu (Heckerman et al., 1995), although other scores (Heckerman et al., 1995) may also be ap-
propriate. Note that BDeu scores equally statistically indistinguishable structures. Figure 11 shows
BDeu values for structures learned by RAI for the Alarm network using different CMI threshold
values. The maximum BDeu value was achieved at a threshold value of 4e-3 that was selected as
the threshold for RAI CI testing for the Alarm network.

To assess the threshold selected using the suggested method, we employed the Alarm network
and computed the errors between structures learned using different thresholds and the pattern that
corresponds to the true known graph. Following Spirtes et al. (2000) and Tsamardinos et al. (2006a),
we define five types of structural errors to evaluate structural correctness. An extra edge (commis-
sion; EE) error is due to an edge learned by the algorithm although it does not exist in the true graph.
A missing edge (omission; ME) error is due to an edge missed by the algorithm although exists in
the true graph. An extra direction (ED) error is due to edge direction that appears in the learned
graph but not in the true graph, whereas a missing direction (MD) error is due to edge direction that
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Figure 11: BDeu values averaged over ten validation sets consisting of 10,000 samples each drawn
from the Alarm network for increasing CMI thresholds used in CI testing for the RAI
algorithm.

appears in the true graph but not in the learned graph. Finally, a reversed direction (RD) error is due
to edge direction in the learned graph that is opposite to the edge direction in the true graph.

Figure 12a shows the sensitivity of the five structural errors to the CMI threshold. Each point
on the graph is the average error over ten validation databases containing 10,000 randomly sampled
instances each. Figure 12a demonstrates that the MD, RD and ED errors are relatively constant in
the examined range of thresholds and the ME error increases monotonically. The EE error is the
highest error among the five error types, and it has a minimum at a threshold value of 3e-3.

In Figure 12b, we cast the three directional errors using the total directional error (DE), DE =
ED + MD + RD, and plot this error together with the ME and EE errors. The impact of each error
for increasing thresholds is now clearer; the contribution of the DE error is almost constant, that of
the ME error increases with the threshold but is less than DE, and that of the EE error dominants for
every threshold.

Tsamardinos et al. (2006a) suggested assessing the quality of a learned structure using the
structural Hamming distance (SHD) metric, which is the sum of the five above errors. We plot
in Figure 12c this error for the experiment with the Alarm network. Comparison of the threshold
responsible for the minimum of the SHD error (2.5e-3) to that selected according to BDeu (4e-3 in
Figure 11) shows only a small difference, especially as the maximum values of BDeu are obtained
between thresholds of 2.5e-3 and 4e-3. This result motivates using the BDeu score, as measured on
a validation set, as a criterion for finding good thresholds for RAI CI testing. Thresholds that are
smaller than this range lead to too many pairs of variables that are wrongly identified as dependent
and thus the edges between them are not removed, contributing to high EE errors (see, for exam-
ple, Figure 12b). In addition, for thresholds higher than 3e-3, more edges are wrongly removed,
contributing to high ME errors.
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Figure 12: Structural errors of the RAI algorithm learning the Alarm network for different CMI
thresholds as averaged over ten validation sets of 10,000 samples each. (a) Five types
(ME, EE, MD, ED and RD) of structural errors, (b) EE, ME and DE errors, and (c) SHD
error (mean and std).

4.3 Learning the Alarm Network

For evaluating the correctness of learned BN structures, we used the Alarm network, which is widely
accepted as a benchmark for structure learning algorithms, since the true graph for this problem is
known. The RAI algorithm was compared to the PC, TPDA, GES, SC and MMHC algorithms using
ten databases containing 10,000 random instances each sampled from the network.
Structural correctness can be measured using different scores. However, some of the scores

suggested in the literature are not always accurate or related to the true structure. For example,
Tsamardinos et al. (2006a), who examined the BDeu score (Heckerman et al., 1995) and KL diver-
gence (Kullback and Leibler, 1951) in evaluating learned networks, noted that it is not known in
practice to what degree the assumptions (e.g., a Dirichlet distribution of the hyperparameters) in the
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Extra Missing Reversed Directional Extra Missing
Direction Direction Direction Error Edge Edge SHD
(ED) (MD) (RD) (DE) (EE) (ME)

SC 1 9.5 4.6 15.1 4.7 4.5 24.3
MMHC 0.8 3.3 5.7 9.8 2.6 0.7 13.1
GES 0.1 0.6 1.2 1.9 2.7 0.8 5.4
TPDA 0 4.2 0 4.2 2.4 2.9 9.5
PC 0 0 0.8 0.8 2.5 1.0 4.3
RAI 0 0 0.3 0.3 1.8 1.4 3.5

Table 1: Structural errors of several algorithms as averaged over 10 databases each containing
10,000 randomly generated instances of the Alarm network. The total directional error
is the sum of three different directional errors, DE=ED+MD+RD, and the SHD error is
DE+EE+ME. Bold font emphasizes the smallest error over all algorithms for each type of
structural error.

basis of the BDeu score hold. Moreover, usually such a score is used in both learning and evaluation
of a structure; hence the score favors algorithms that use it in learning. Tsamardinos et al. (2006a)
also mentioned that both scores do not rely on the true structure. Thus, they suggested the SHD
metric, which is directly related to structural correctness, since it is the sum of the five errors of
Section 4.2. Nevertheless, since SHD can be measured only when the true graph is known, scores
such as BDeu and KL divergence are of great value in practical situations, for example, in classi-
fication problems like those examined in Section 4.5 in which the true graph is not known. These
scores are also beneficial in the determination of algorithm parameters. For example, in Section 4.2
we measured BDeu scores of structures learned using different thresholds in order to select a good
threshold for RAI CI testing.

Although SHD sums all five structural errors, we were first interested in examining the contri-
bution of each individual error to the total error. Table 1 summarizes the five structural errors for
each algorithm as averaged over 10 databases of 10,000 instances each sampled from the Alarm
network. These databases are different from those validation databases used for threshold setting.
The table also shows the total directional error, DE, which is the sum of the three directional errors.
Table 1 demonstrates that the lowest EE and DE errors are achieved by the RAI algorithm and the
lowest ME error is accomplished by the MMHC algorithm. Computing SHD shows the advantage
of the RAI (3.5) algorithm over the PC (4.3), TPDA (9.5), GES (5.4), MMHC (13.1) and the SC
(24.3) algorithms. Further, we propose such a table as Table 1 as a useful tool for the identification
of the sources of structural errors of a given structure learning algorithm.

Note that the SHD error weighs each of the five error types equally. We believe that a score
that weighs the five types based on their relative significance to structure learning will be a more
accurate method to evaluate structural correctness; however, deriving such a score is a topic for
future research.
Complexity was evaluated for each of the CB algorithms by measuring the number of CI tests

employed for each order (condition set size) and the total number of log operations. The latter
criterion is proportional to the total number of multiplications, divisions and logarithm evaluations
that is required for calculating the CMI (Equation 2) during CI testing. Figure 13 depicts the average
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Figure 13: Average percentage (number) of CI tests reduced by using RAI compared to using (a) PC
and (b) TPDA, as a function of the condition set size when learning the Alarm network.

percentage (and number) of CI tests reduced by using the RAI algorithm compared to using the PC
or TPDA algorithms for increasing sizes of the condition sets. The RAI algorithm reduces the
number of CI tests of orders 1 and above required by the PC algorithm and those of orders 2 and
above required by the TPDA algorithm. Moreover, the RAI algorithm completely avoids the use of
CI tests of orders 4 and above and almost completely avoids CI tests of order 3 compared to both
the PC and TPDA algorithms. However, the RAI algorithm performs more CI tests of order 1 than
the TPDA algorithm.

Figure 14 summarizes the total numbers of CI tests and log operations over different condition
set sizes required by each algorithm. The RAI algorithm requires 46% less CI tests than the PC
algorithm and 14%more CI tests (of order 1) than the TPDA algorithm. However, the RAI algorithm
significantly reduces the number of log operations required by the other two algorithms. The PC or
TPDA algorithms require, respectively, an additional 612% or 367% of the number of log operations
required by the RAI algorithm. The reason for this substantial advantage of the RAI algorithm over
both the PC and TPDA algorithms is the saving in CI tests of high orders (see Figure 13). These
tests make use of large condition sets and thus are very expensive computationally.

4.4 Learning Known Networks

In addition to the state-of-art algorithms that were compared in Section 4.3, we include in this
section the OR and GS algorithms. We compare the performance of the RAI algorithm to these
algorithms by learning the structures of known networks employed in real decision support systems
from a wide range of applications. We use known networks described in Tsamardinos et al. (2006a),
which include the Alarm (Beinlich et al., 1989), Barley (Kristensen and Rasmussen, 2002), Child
(Cowell et al., 1999), Hailfinder (Jensen and Jensen, 1996), Insurance (Binder et al., 1997), Mildew
(Jensen and Jensen, 1996) and Munin (Andreassen et al., 1989) networks. All these networks may
be downloaded from the Causal Explorer webpage. The Pigs, Link and Gene networks, which were
also evaluated in Tsamardinos et al. (2006a), are omitted from our experiment due to memory and
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Figure 14: Cumulative numbers of (a) CI tests and (b) log operations required by PC, TPDA, and
RAI for learning the Alarm network. Different gray shades represent different sizes of
condition sets. Percentages on tops of the bars are with reference to the RAI algorithm.

run-time limitations of the platform used in our experiment. These limitations are in the computation
of the BDeu scoring function (part of the BNT toolbox) that is used for selecting a threshold for the
RAI CI tests (Section 4.2).

The Casual Explorer webpage also contains larger networks that were created by tiling net-
works, such as the Alarm, Hailfinder, Child and Insurance, 3, 5 and 10 times. In the tiling method
developed by Tsamardinos et al. (2006b), several copies (here 3, 5 and 10) of the same BN are
tiled until reaching a network having a desired number of variables (e.g., Alarm5 has 5×37= 185
variables). The method maintains the structural and probabilistic properties of the original network
but allows the evaluation of the learning algorithm as the number of variables increases without
increasing the complexity of the network. Overall, we downloaded and used nineteen networks, the
most important details of which are shown in Table 2. Further motivation for using these networks
and tiling is given in Tsamardinos et al. (2006a).

Throughout this experiment, we used for each network the same training and test sets as used in
Tsamardinos et al. (2006a), so we could compare the performance of the RAI to all the algorithms
reported in Tsamardinos et al. (2006a). The data in the Causal Explorer webpage are given for each
network using five training sets and five test sets with 500, 1000 and 5,000 samples each. We picked
and downloaded the data sets with the smallest sample size (500), which we believe challenge the
algorithms the most. All the reported results for a network and a learning algorithm in this sub-
section are averages over five experiments in which a different training set was used for training the
learning algorithm and a different test set was used for testing this algorithm.

The RAI algorithm was run by us. CMI thresholds for CI testing corresponded to the maximum
BDeu values were obtained in five runs using five validation sets independent of the training and
test sets, and performances were averaged over the five validation sets. We note that the thresholds
selected according to the maximum BDeu values (Section 4.2) also led to the lowest SHD errors.
The OR algorithm was examined with a maximum number of parents allowed for a node (k) of
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# Network # nodes # edges Max fan-in Max fan-out
1 Alarm 37 46 4 5
2 Alarm 3 111 149 4 5
3 Alarm 5 185 265 4 6
4 Alarm 10 370 570 4 7
5 Barley 48 84 4 5
6 Child 20 25 2 7
7 Child 3 60 79 3 7
8 Child 5 100 126 2 7
9 Child 10 200 257 2 7
10 Hailfinder 56 66 4 16
11 Hailfinder 3 168 283 5 18
12 Hailfinder 5 280 458 5 18
13 Hailfinder 10 560 1017 5 20
14 Insurance 27 52 3 7
15 Insurance 3 81 163 4 7
16 Insurance 5 135 281 5 8
17 Insurance 10 270 556 5 8
18 Mildew 35 46 3 3
19 Munin 189 282 3 15

Table 2: Nineteen networks with known structures that are used for the evaluation of the structure
learning algorithms. The number that is attached to the network name (3, 5 or 10) indicates
the number of tiles of this network. The # symbol on the first column represents the
network ID for further use in the subsequent tables.

5, 10 and 20 and allowed run-time that is one and two times the time used by MMHC on the cor-
responding data set (OR1 and OR2, respectively). The SC algorithm was evaluated with k = 5 and
k = 10 as recommended by its authors. Motivation for using these parameter values and parameter
values used by the remaining algorithms are given in Tsamardinos et al. (2006a).

Following Tsamardinos et al. (2006a), we normalized all SHD results with the SHD results of
the MMHC algorithm. For each network and algorithm, we report on the average ratio over the
five runs. The normalized SHDs are presented in Table 3. A ratio smaller (larger) than 1 indicates
that the algorithm learns a more (less) accurate structure than that learned using the MMHC algo-
rithm. In addition, we average the ratios over all nineteen databases similarly to Tsamardinos et al.
(2006a). Based on these averaged ratios, Tsamardinos et al. (2006a) found the MMHC algorithm
to be superior to the PC, TPDA, GES, OR and SC algorithms with respect to SHD. Table 3 shows
that the RAI algorithm is the only algorithm that achieves an average ratio that is smaller than 1,
which means it learns structures that on average are more accurate than those learned by MMHC,
and thus also more accurate than those learned by all other algorithms. Note the difference in SHD
values for Alarm between Table 3 (as measured in Tsamardinos et al., 2006a, on databases of 500
samples) and Table 1 (as measured by us on databases of 10,000 samples).
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MMHC OR1 OR1 OR1 OR2 OR2 OR2 SC SC GS PC TPDA GES RAI
# k = 5 k = 10 k = 20 k = 5 k = 10 k = 20 k = 5 k = 10
1 1.00 1.23 1.39 1.67 1.05 1.02 1.40 1.63 1.66 2.02 3.66 2.34 1.23
2 1.00 1.85 1.95 1.96 1.78 1.77 1.80 1.57 1.57 2.26 2.49 3.94 1.26
3 1.00 1.59 1.61 1.63 1.48 1.63 1.69 1.32 1.35 2.10 2.35 3.10 1.02
4 1.00 1.46 1.52 1.53 1.49 1.52 1.57 1.18 2.09 2.72 0.87
5 1.00 1.03 1.05 1.08 0.98 0.97 0.99 1.15 1.16 12.34 1.44 0.92 0.67
6 1.00 1.38 1.30 1.15 1.25 1.24 1.15 1.48 1.56 0.79 3.26 7.18 0.79 1.60
7 1.00 0.99 1.06 1.03 0.87 0.86 1.01 0.95 0.97 0.94 2.95 5.03 1.20 1.22
8 1.00 1.45 1.74 1.69 0.89 1.10 0.99 0.88 0.93 1.15 3.71 6.82 2.48 1.59
9 1.00 2.12 1.40 1.81 1.42 1.44 1.45 1.08 1.12 1.19 3.49 5.96 1.33
10 1.00 1.01 0.99 1.03 0.99 0.99 1.01 0.96 0.99 2.64 2.36 1.14 0.41
11 1.00 1.33 1.34 1.34 1.27 1.26 1.28 1.10 1.01 3.92 3.01 0.71
12 1.00 1.40 1.41 1.42 1.30 1.30 1.28 1.12 1.01 5.20 3.26 0.76
13 1.00 1.33 1.33 1.34 1.34 1.29 1.33 1.10 1.02 2.99 0.74
14 1.00 1.04 0.93 0.85 0.95 0.79 0.76 1.33 1.17 1.20 3.26 2.54 1.01 0.76
15 1.00 1.08 1.06 1.25 1.04 1.14 1.15 1.26 1.33 1.57 4.09 3.04 0.98
16 1.00 1.25 1.24 1.12 1.13 1.15 1.17 1.24 1.25 1.59 4.22 2.86 0.91
17 1.00 1.30 1.29 1.31 1.19 1.13 1.24 1.18 1.24 1.55 2.87 0.88
18 1.00 1.09 1.11 1.10 1.10 1.12 1.07 1.04 0.91 7.83 2.08 0.87 0.63
19 1.00 1.09 1.16 1.06 1.17 0.95 1.30 1.29 0.44
avg. 1.00 1.32 1.31 1.33 1.19 1.21 1.24 1.19 1.29 1.36 4.36 3.41 1.20 0.95

Table 3: Algorithm SHD errors normalized with respect to the MMHC SHD error for the nineteen
networks detailed in Table 2. Average (avg.) for an algorithm is over all networks. Blank
cells represent jobs that Tsamardinos et al. (2006a) reported that refused to run or did not
complete their computations within two days running time.

Next, we compared the run-times of the algorithms in learning the nineteen networks. We note
that the run-time of a structure learning algorithm depends, besides on its implementation, on the
number of statistical calls (Tsamardinos et al., 2006a) it performs (e.g., CI tests in CB algorithms).
For CB algorithms it also depends on the orders of the CI tests and the number of states of each
variable that is included in the condition set. The run-time for each algorithm learning each network
is presented in Table 4. Following Tsamardinos et al. (2006a), we normalized all run-time results
with the run-time results of the MMHC algorithm and report on the average ratio for each algorithm
and network over five runs. The run-time ratios for all algorithms except that for the RAI were taken
from the Causal Explorer webpage. The ratio for the RAI was computed after running both the RAI
and MMHC algorithms on our platform using the same data sets. According to Tsamardinos et al.
(2006a), MMHC is the fastest algorithm among all algorithms (except RAI). Table 4 shows that
RAI was the only algorithm that achieved an average ratio smaller than 1, which means it is the
new fastest algorithm. The RAI average run-time was between 2.1 (for MMHC) and 2387 (for
GES) times shorter than those of all other algorithms. Perhaps part of the inferiority of GES with
respect to run-time can be related (Tsamardinos et al., 2006a) to many optimizations suggested in
Chickering (2002) that were not implemented in Tetrad 4.3.1 that was used by Tsamardinos et al.
(2006a) affecting their, and thus also our, results.

Accounting for both error and time, we plot in Figure 15 the SHD and run-time for all nineteen
networks normalized with respect to either the MMHC algorithm (Figure 15a) or the RAI algorithm
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Figure 15: Normalized SHD vs. normalized run-time for all algorithms learning all networks. (a)
Normalization is with respect to the MMHC algorithm (thus MMHC results are at (1,1))
and (b) normalization is with respect to the RAI algorithm (thus RAI results are at (1,1)).
The points in the graph correspond to 19 networks (average performance over 5 runs)
and 14−1= 13 algorithms.
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MMHC OR1 OR1 OR1 OR2 OR2 OR2 SC SC GS PC TPDA GES RAI
# k = 5 k = 10 k = 20 k = 5 k = 10 k = 20 k = 5 k = 10
1 1.00 1.14 1.00 1.07 2.24 2.22 2.33 1.75 16.93 2.17 1.87 3.74 0.69
2 1.00 1.62 1.65 1.64 2.51 2.53 2.63 7.15 9.71 8.16 1.15 12.75 0.52
3 1.00 1.21 1.32 1.33 2.35 2.41 2.48 6.01 6.54 9.80 92.64 9.11 0.59
4 1.00 1.38 1.61 1.43 2.87 2.93 2.77 13.85 71.15 41.81 0.65
5 1.00 1.26 1.24 1.21 2.29 2.42 2.36 7.36 2.74 89.28 4.10 219.5 0.20
6 1.00 1.61 1.61 1.53 2.39 2.34 3.25 0.64 6.71 1.05 0.82 6.56 31.12 0.25
7 1.00 1.15 1.14 1.06 2.12 2.10 2.18 3.66 8.64 2.44 1.02 10.27 921 0.36
8 1.00 1.12 1.14 1.13 2.10 2.19 2.29 4.16 8.31 5.76 1.05 14.19 3738 0.50
9 1.00 1.34 1.05 1.32 2.20 2.28 2.45 9.97 11.08 12.10 1.36 22.99 0.67
10 1.00 1.20 1.22 1.21 2.31 2.29 2.28 1.58 1.04 1.42 9.31 2690 0.17
11 1.00 1.13 1.15 1.14 2.15 2.21 2.27 4.88 4.96 9.32 32.39 0.65
12 1.00 1.11 1.15 1.17 2.24 2.27 2.19 7.39 10.01 23.14 39.22 0.58
13 1.00 1.18 1.19 1.15 2.94 2.61 2.74 13.77 29.84 99.00 0.85
14 1.00 1.02 1.03 1.03 2.09 2.06 2.05 1.26 15.36 1.02 3.62 10.19 78.06 0.24
15 1.00 1.09 1.13 1.18 2.25 2.38 2.21 2.96 8.50 3.63 59.50 18.87 0.36
16 1.00 1.49 1.48 1.54 2.97 2.95 2.96 5.15 7.88 3.63 173.3 8.67 0.48
17 1.00 1.19 1.12 1.20 2.30 2.35 2.40 10.73 13.95 22.34 32.00 0.64
18 1.00 2.46 2.43 2.55 3.68 3.46 3.68 61.04 5.23 1.76 9.67 343.7 0.75
19 1.00 1.05 1.07 1.08 2.09 0.24 0.40 0.27 0.01
avg. 1.00 1.30 1.30 1.31 2.43 2.45 2.53 8.61 10.33 10.39 30.75 20.27 1146 0.48

Table 4: Algorithm run-times normalized with respect to the MMHC run-time for the nineteen
networks detailed in Table 2. Average (avg.) for an algorithm is over all networks. Blank
cells represent jobs that Tsamardinos et al. (2006a) reported that refused to run or did not
complete their computations within two days running time.

(Figure 15b). Figure 15 demonstrates that the advantage of RAI over all other algorithms is evident
for both the SHD error and the run-time.

It is common to consider the statistical calls performed by an algorithm of structure learning as
the major criterion of computational complexity (efficiency) and a major contributor to the algorithm
run-rime. In CB algorithms (e.g., PC, TPDA and RAI), the statistical calls are due to CI tests, and in
S&S algorithms (e.g., GS, GES, SC, OR) the calls are due to the computation of the score. Hybrid
algorithms (e.g., MMHC) have both types of calls. In Table 5, we compare the numbers of calls for
statistical tests performed by the RAI algorithm and computed by us to those of the MMHC, GS, PC
and TPDA, as computed in Tsamardinos et al. (2006a), and downloaded from the Causal Explorer
webpage. We find that for all networks the RAI algorithm performs fewer calls for statistical tests
than all other algorithms. On average over all networks, the RAI algorithm performs only 53% of
the calls for statistical tests performed by the MMHC algorithm, which is the algorithm that required
the fewest calls of all algorithms examined in Tsamardinos et al. (2006a). Figure 16 demonstrates
this advantage of RAI over MMHC graphically using a scatter plot. All points below the x= y line
represent data sets for which the numbers of calls for statistical tests of MMHC are larger than those
of RAI.

Evaluating the statistical significance of the results in Tables 3-5 using Wilcoxon signed-ranks
test (Demšar, 2006) with a confidence level of 0.05, we find the SHD errors of RAI and MMHC to
be not significantly different from each other; however, the RAI run-times and numbers of statistical
calls are significantly shorter than those of the MMHC algorithm.
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# MMHC GS PC TPDA RAI
1 1.00 2.42 9.95 1.94 0.81
2 1.00 3.78 2.51 3.34 0.57
3 1.00 4.44 1499.22 3.02 0.67
4 1.00 5.12 2.64 0.75
5 1.00 1.96 2995.87 1.58 0.34
6 1.00 1.32 3.61 2.92 0.21
7 1.00 2.49 4.61 2.97 0.39
8 1.00 3.25 4.40 3.17 0.51
9 1.00 3.91 5.43 3.13 0.64
10 1.00 1.75 36.54 1.93 0.30
11 1.00 2.57 340.44 1.83 0.72
12 1.00 3.07 1033.86 1.87 0.67
13 1.00 3.40 1.85 0.77
14 1.00 1.32 40.57 2.97 0.27
15 1.00 2.35 1082.45 2.71 0.39
16 1.00 3.12 5143.51 2.97 0.49
17 1.00 4.25 3.20 0.63
18 1.00 3.38 10.78 3.49 0.59
19 1.00 1.75 0.91 0.30
avg. 1.00 2.93 814.25 2.55 0.53

Table 5: Number of statistical calls performed by each algorithm normalized by the number of
statistical calls performed by the MMHC algorithm for the nineteen networks detailed
in Table 2. Average (avg.) for an algorithm is over all networks. Blank cells represent
jobs that Tsamardinos et al. (2006a) reported that refused to run or did not complete their
computations within two days running time.

In continuation to Section 4.1, we further analyzed the complexity of RAI (as measured by
the numbers of CI tests performed) according to the CI test orders and the graph size. However,
here we used real rather than synthetic data. We examined the numbers of tests as performed for
different orders for the Child, Insurance, Alarm and Hailfinder networks and their tiled networks.
Using the tiled networks (Tsamardinos et al., 2006b), we could examine the impact of graph size
on the number of tests. Figure 17 shows the cumulative percentage of CI tests for a specific order
out of the total number of CI tests performed for each network. The figure demonstrates that the
percentages of CI tests performed decrease with the CI test order and become small for orders higher
than the max fan-in of the network (see Table 2). These percentages also decrease with the numbers
of nodes in the network (validated on the tiled networks). This is due to a faster increase of the
number of low-order CI tests compared with the number of high-order CI tests as the graph size
increases for all networks except for Hailfinder. For Hailefinder (Figure 17d), the threshold for the
network was different from those of the tiled networks. This led to an increase in the percentage of
high-order CI tests and a decrease in CI tests of order 0 when comparing the Hailfinder network to
its tiled versions. For all the tiled Alarm networks (Figure 17c), CI tests of order 0 nearly sufficed
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Figure 16: Number of statistical calls performed by the RAI algorithm vs. the number of statistical
calls performed by the MMHC algorithm for all networks and data sets examined in this
sub-section (5 data sets × 19 networks = 95 points).

for learning the network. Overall, the results support our preliminary results with synthetic data
and “perfect” CI tests (Section 4.1). Thus, we can conclude that as the graph size increases, the
RAI algorithm requires relatively fewer CI tests of high orders, especially of orders higher than the
max fan-in, than tests of low orders. This result enhances the attractiveness in applying the RAI
algorithm also to large problems.

4.5 Structure Learning for General BN Classifiers

Classification is one of the most fundamental tasks in machine learning (ML), and a classifier is
primarily expected to achieve high classification accuracy. The Bayesian network classifier (BNC)
is usually not considered as an accurate classifier compared to state-of-the-art ML classifiers, such
as the neural network (NN) and support vector machine (SVM). However, the BNC has important
advantages over the NN and SVM models. The BNC enhances model interpretability by exhibiting
dependences, independences and causal relations between variables. It also allows the incorporation
of prior knowledge during model learning so as to select a better model or to improve the estimation
of its data-driven parameters. Moreover, the BNC naturally performs feature selection as part of
model construction and permits the inclusion of hidden nodes that increase model representability
and predictability. In addition, the BN has a natural way of dealing with missing inputs by marginal-
izing hidden variables. Finally, compared to NN and SVM, BNC can model very large, multi-class
problems with different types of variables. These advantages are important in real-world classifica-
tion problems, since they provide many insights into the problem at hand that are beyond the pure
classification decisions provided by NN and SVM.
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Figure 17: Cumulative percentages of CI tests out of the total numbers of tests for increasing orders
as performed by the RAI algorithm for the (a) Child, (b) Insurance, (c) Alarm, and (d)
Hailfinder networks including their tiled networks.

We evaluated the RAI complexity, run-time and accuracy when applied to learning a general
BN classifier (Cheng and Greiner, 1999; Friedman et al., 1997) in comparison to other algorithms
of structure learning using nineteen databases of the UCI Repository (Newman et al., 1998) and
Kohavi and John (1997). These databases are detailed in Table 6 with respect to the numbers
of variables, classes and instances in each database. All databases were analyzed using a CV5
experiment, except large databases (e.g., “chess”, “nursery” and “shuttle”), which were analyzed
using the holdout methodology and the common division to training and test sets (Newman et al.,
1998; Friedman et al., 1997; Cheng et al., 1997) as detailed in Table 6. Continuous variables were
discretized using the MLC++ library (Kohavi et al., 1994) and instances with missing values were
removed, as is commonly done.
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# # # Test # training # testDatabase variables classes instances methodology instances instances
australian 14 2 690 CV5 552 138
breast 9 2 683 CV5 544 136
car 6 4 1728 CV5 1380 345
chess 36 2 3196 holdout 2130 1066
cleve 11 2 296 CV5 236 59
cmc 9 3 1473 CV5 1176 294
corral 6 2 128 CV5 100 25
crx 15 2 653 CV5 520 130
flare C 10 9 1389 CV5 1108 277
iris 4 3 150 CV5 120 30
led7 7 10 3200 CV5 2560 640
mofn 3-7-10 10 2 1324 holdout 300 1024
nursery 8 5 12960 holdout 8640 4320
shuttle (s) 8 7 5800 holdout 3866 1934
tic-tac-toe 9 2 958 CV5 764 191
vehicle 18 4 846 CV5 676 169
vote 16 3 435 CV5 348 87
wine 13 3 178 CV5 140 35
zoo 16 7 101 CV5 80 20

Table 6: Databases of the UCI repository (Newman et al., 1998) and of Kohavi and John (1997)
used for evaluating the accuracy of a classifier learned using the RAI algorithm.

Generally for this sub-section, CI tests for RAI and PC were carried out using the #2 test (Spirtes
et al., 2000) and those for TPDA using the CMI independence test (Equation 2). However, CI tests
for RAI and PC for the “corral”, “nursery” and “vehicle” databases were carried out using the
CMI independence test. In the case of the large “nursery” database, the need to use the CMI test
was due to a Matlab memory limitation in the completion of the #2 test using the BNT structure
learning package (Leray and François, 2004). In the case of the “corral” and “vehicle” databases,
the smallness of the database, together with either the large numbers of classes, variables or states
for each variable, led to low frequencies of instances for many combinations of variable states. In
this case, the implementation of the #2 test assumes variable dependence (Spirtes et al., 2000) that
prevents the CB (PC, TPDA and RAI) algorithms from removing edges regardless of the order of
the CI test, leading to erroneous decisions. Another test of independence, which is reported to be
more reliable and robust, especially for small databases or large numbers of variables (Dash and
Druzdzel, 2003), may constitute another solution in these cases.

Thresholds for the CI tests of the CB algorithms and parameter values for all other algorithms
were chosen for each algorithm and database so as to maximize the classification accuracy on a
validation set selected from the training set or based on the recommendation of the algorithm authors
or of Tsamardinos et al. (2006a). Although using a validation set decreases the size of the training
set, it also eliminates the chance of selecting a threshold or a parameter that causes the model to
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overfit the training set at the expense of the test set. If several thresholds/parameters were found
suitable for an algorithm, the threshold/parameter chosen was that leading to the fewest CI tests (in
the case of CB algorithms). For GES and GS there are no parameters to set (except the equivalent
sample size for the BDeu), and for MMHC we used the selections used by the authors in all their
experiments.

Finally, parameter learning was performed by maximum likelihood estimation. Since we were
interested in structure learning, no attempt was made to study estimation methods other than this
simple and most popular generative method (Cooper and Herskovits, 1992; Heckerman, 1995; Yang
and Chang, 2002). Nevertheless, we note that discriminative models for parameter learning have
recently been suggested (Pernkopf and Bilmes, 2005; Roos et al., 2005). These models show an
improvement over generative models when estimating the classification accuracy (Pernkopf and
Bilmes, 2005). We expect that any improvement in classification accuracy gained by using param-
eter learning other than maximum likelihood estimation will be shared by classifiers induced using
any algorithm of structure learning; however, the exact degree of improvement in each case should
be further evaluated.

Complexity of the RAI algorithm was measured by the number of CI tests employed for each
size of the condition set and the cumulative run-time of the CI tests. These two criteria of complexity
were also measured for the PC algorithm, since both the RAI and PC algorithms use the same
implementation of CI testing. Table 7 shows the average number and percentage of CI tests reduced
by the RAI algorithm compared to the PC algorithm for different CI test orders and each database.
An empty entry in the table means that no CI tests of this order are required. A 100% cut in CI tests
for a specific order means that RAI does not need any of the CI tests employed by the PC algorithm
for this order (e.g., orders 2 and above for the “led7” database). It can be seen that for almost all
databases examined, the RAI algorithm avoids most of the CI tests of orders two and above that
are required by the PC algorithm (e.g., the “chess” database). Table 7 also shows the reduction in
the CI test run-time due to the RAI algorithm in comparison to the PC algorithm for all nineteen
databases examined; except for the “australian” database, the cut is measured in tens of percentages
for all databases and for six databases this cut is higher than 70%. Run-time differences between
algorithms may be the result of different implementations. However, since in our case the run-time
is almost entirely based on the number and order of CI tests and RAI has reduced most of the PC CI
tests, especially those of high orders that are expensive in run-time, we consider the above run-time
reduction results to be significant.

Classification accuracy using a BNC has recently been explored extensively in the literature
(Friedman et al., 1997; Grossman and Domingos, 2004; Kontkanen et al., 1999; Pernkopf and
Bilmes, 2005; Roos et al., 2005). By restricting the general inference task of BN to inference
performed on the class variable, we turn a BN into a BNC. First, we use the training data to learn
the structure and then transform the pattern outputted by the algorithm into a DAG (Dor and Tarsi,
1992). Thereafter, we identify the class node Markov blanket and remove from the graph all the
nodes that are not part of this blanket. Now, we could estimate the probabilities comprising the
class node posterior probability, P(C|X), where X is the set of the Markov blanket variables. Dur-
ing the test, we inferred the state c of the class node C for each test instantiation, X = x, using
the estimated posterior probability. The class ĉ selected was the one that maximized the posterior
probability, meaning that ĉ = argmaxc P(C = c|X = x). By comparing the class maximizing the
posterior probability and the true class, we could compute the classification accuracy.

1562



BAYESIAN NETWORK STRUCTURE LEARNING BY RECURSIVE AUTONOMY IDENTIFICATION

CI test order Run-timeDatabase 0 1 2 3 4 cut (%)

australian 0 (0) 3.8 (34.4) 6.05
breast 0 (0) 107.2 (54.8) 35 (99.1) 71.87
car 0 (0) 16 (100) 11.2 (100) 3.2 (100) 91.10
chess 0 (0) 2263 (76.3) 2516 (89) 581 (94) 249 (100) 80.65
cleve 0 (0) 12.4 (63) 39.60
cmc 0 (0) 10.2 (10.9) 8 (32.5) 14.22
corral 0 (0) 22.4 (100) 26 (100) 3.6 (100) 87.94
crx 0 (0) 8.8 (49.6) 25.25
flare C 0 (0) 16 (39.6) 3 (100) 20.38
iris 0 (0) 2 (40) 19.10
led7 0 (0) 46.2 (45.7) 105 (100) 140 (100) 105 (100) 91.74
mofn 3-7-10 0 (0) 17 (100) 4 (100) 67.70
nursery 0 (0) 20 (100) 30 (100) 20 (100) 5 (100) 89.70
shuttle (s) 0 (0) 1.4 (0.7) 95.8 (43.8) 117.6 (49.3) 83.6 (56.0) 38.94
tic-tac-toe 0 (0) 53.2 (27.1) 56.6 (48.6) 1.8 (51.4) 36.52
vehicle 0 (0) -12.4 (-2.9) 32.6 (20.4) -5.8 (-14.0) 3.4 (27.4) 13.15
vote 0 (0) 24.2 (21.9) 17.2 (98.1) 6.4 (100) 1 (100) 46.06
wine 0 (0) 25.8 (41.0) 44.2 (67.6) 40.6 (82.4) 19 (96.7) 29.11
zoo 0 (0) 82 (27.8) 365.8 (29.6) 1033.4 (27.7) 1928.6 (25.6) 13.63

Table 7: Average number (and percentage) of CI tests reduced by the RAI algorithm compared to
the PC algorithm for different databases and CI test orders and the cut (%) in the total CI
test run-time.

In Table 8 we compared the classification accuracy due to the RAI algorithm to those due to
the PC, TPDA, GES, MMHC, SC and NBC algorithms. We note the overall advantage of the RAI
algorithm, especially for large databases. Since the reliability of the CI tests increased with the
sample size, it seems that RAI benefits from this increase more than the other algorithms and excels
in classifying large databases. RAI, when compared to the other structure learning algorithms,
yielded the best classifiers on six (“flare C”, “nursery”, “led7”, “mofn”, “tic-tac-toe” and “vehicle”)
of the ten largest databases and among the best classifiers on the remaining four (“shuttle”, “chess”,
“car” and “cmc”) large databases. The other CB algorithms—PC and TPDA—also showed here,
and in Tsamardinos et al. (2006a), better results on the large databases. However, the CB algorithms
are less accurate on very small databases (e.g., “wine” and “zoo”).

Overall, RAI was the best algorithm on 7 databases compared to 5, 2, 5, 4, 5 and 5 databases for
the PC, TPDA, GES, MMHC, SC and NBC algorithms, respectively. RAI was the worst classifier
on only a single database, whereas the PC, TPDA, GES, MMHC, SC and NBC algorithms were
the worst classifiers on 2, 4, 6, 2, 2 and 7 databases, respectively. We believe that the poor results
of the GES and MMHC algorithms on the “nursery” database may be attributed to the fact that
these algorithms find the class node C as a child of many other variables, making the estimation of
P(C|X) unreliable due to the curse-of-dimensionality. The structures learned by the other algorithms
required a smaller number of such connections and thereby reduced the curse.
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Database PC TPDA GES MMHC SC NBC RAI

australian 85.5 (0.5) 85.5 (0.5) 83.5 (2.1) 86.2 (1.5) 85.5 (1.2) 85.9 (3.4) 85.5 (0.5)
breast 95.5 (2.0) 94.4 (2.7) 96.8 (1.1) 97.2 (1.2) 96.5 (0.8) 97.5 (0.8) 96.5 (1.6)
car 84.3 (2.6) 84.5 (0.6) 81.5 (2.3) 90.2 (2.0) 93.8 (1.1) 84.7 (1.3) 92.9 (1.1)
chess 93.1 90.1 97.0 94.1 92.5 87.1 93.5
cleve 76.7 (7.2) 72.0 (10.7) 79.4 (5.7) 82.1 (4.5) 83.5 (5.7) 83.5 (5.2) 81.4 (5.4)
cmc 50.9 (2.3) 46.4 (2.1) 46.3 (1.5) 48.6 (2.6) 49.7 (2.5) 51.3 (1.3) 51.1 (3.2)
corral 100 (0) 88.2 (6.4) 100 (0) 100 (0) 100 (0) 85.2 (7.3) 100 (0)
crx 86.4 (2.6) 86.7 (3.4) 82.2 (6.4) 86.7 (1.7) 86.7 (3.4) 86.2 (2.8) 86.4 (2.6)
flare C 84.3 (2.5) 84.3 (2.4) 84.3 (2.5) 84.3 (2.5) 84.3 (2.5) 77.7 (3.1) 84.3 (2.5)
iris 96.0 (4.3) 93.3 (2.4) 96.0 (4.3) 94.0 (3.6) 92.7 (1.5) 94.0 (4.3) 93.3 (2.4)
led7 73.3 (1.8) 72.9 (1.5) 72.9 (1.5) 72.9 (1.5) 72.9 (1.5) 72.9 (1.5) 73.6 (1.6)
mofn 3-7-10 81.4 90.8 79.8 90.5 91.9 89.8 93.2
nursery 72.0 64.7 33.3 29.3 30.3 66.0 72.0
shuttle (s) 98.4 96.3 99.5 99.2 99.2 98.8 99.2
tic-tac-toe 74.7 (1.4) 72.2 (3.8) 69.9 (2.8) 71.1 (4.2) 70.4 (4.7) 69.6 (3.1) 75.6 (1.9)
vehicle 63.9 (3.3) 65.6 (2.8) 64.1 (11.2) 69.3 (1.5) 64.8 (9.1) 62.0 (4.0) 70.2 (2.8)
vote 95.9 (1.5) 95.4 (2.1) 94.7 (2.8) 95.6 (2.2) 93.1 (2.2) 90.6 (3.3) 95.4 (1.6)
wine 85.4 (7.8) 97.8 (3.0) 98.3 (2.5) 98.3 (2.5) 98.3 (2.5) 98.9 (1.5) 87.1 (5.9)
zoo 89.0 (8.8) 96.1 (2.2) 96.0 (2.3) 93.1 (4.5) 95.9 (6.9) 96.3 (3.8) 89.0 (8.79)

average 83.5 83.0 81.9 83.3 83.3 83.1 85.3
std 12.7 13.8 18.4 18.4 18.4 13.3 12.3

Table 8: Mean (and standard deviation for CV5 experiments) of the classification accuracy of the
RAI algorithm in comparison to those of the PC, TPDA, GES, MMHC, SC and NBC
algorithms. Bold and italic fonts represent, respectively, the best and worst classifiers for
a database.

In addition, we averaged the classification accuracies of the algorithms over the nineteen
databases. Averaging accuracies over databases has no meaning in itself except that the average ac-
curacies over many different problems of different algorithms may infer about the relative expected
success of the algorithms in other classification problems. It is interesting to note that although the
different algorithms in our study showed different degrees of success on various databases, most
of the algorithms (i.e., PC, TPDA, MMHC, SC and NBC) achieved almost the same average accu-
racy (83.0%-83.5%). The GES average accuracy was a little inferior (81.9%) to that of the above
algorithms, and the average accuracy of the RAI (85.3%) was superior to that of all algorithms.
Concerning the standard deviation of the classification accuracy, RAI outperformed all classifiers
implying to the robustness of the RAI-based classifier.

Superiority of one algorithm over another algorithm for each database was evaluated with a
statistical significance test (Dietterich, 1998). We used a single-sided t-test to evaluate whether the
mean difference between any pair of algorithms as measured on the five folds of the CV5 test was
greater than zero. Table 9 summarizes the statistical significance results, measured at a significance
level of 0.05, for any two classifiers and each database examined using cross validation. The number
in each cell of Table 9 describes—for the corresponding algorithm and database—the number of
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Databse PC TPDA GES MMHC SC NBC RAI

australian 1 1 0 1 0 1 1
breast 0 0 0 2 0 3 0
car 1 1 0 4 6 1 5
cleve 0 0 0 1 3 3 2
cmc 4 0 0 1 2 2 3
corral 2 0 2 2 2 0 2
crx 0 0 0 0 0 0 0
flare C 1 1 1 1 1 0 1
iris 1 0 1 0 0 0 0
led7 0 0 0 0 0 0 5
tic-tac-toe 3 2 0 0 0 0 5
vehicle 0 1 0 3 0 0 3
vote 2 2 1 3 0 0 1
wine 0 2 2 2 2 2 0
zoo 0 0 0 0 2 0 0

total 15 10 7 20 18 12 28
average 1.00 0.67 0.47 1.33 1.20 0.8 1.87

Table 9: Statistical significance using a t-test for the classification accuracy results of Table 8. For
a given database, each cell indicates the number of algorithms found to be inferior at a
significance level of 0.05 to the algorithm above the cell.

algorithms that are inferior to that algorithm for that databases. A “0” value indicates that the
algorithm is either inferior to all the other algorithms or not significantly superior to any of them.
For example, for the “car” database the PC, TPDA, GES, MMHC, SC, NBC and RAI algorithms
were significantly superior to 1, 1, 0, 4, 6, 1 and 5 other algorithms, respectively. In total, the
superiority of the RAI algorithm over the other algorithms was statistically significant 28 times,
with an average of 1.87 algorithms per database. The second and third best algorithms were the
MMHC and SC algorithms, with a total of 20 and 18 times of statistically significant superiority
and averages of 1.33 and 1.2 per database, respectively. The least successful classifier, according to
Tables 8 and 9, was the one that is learned using GES. We believe that this inferiority arises from
the assumptions on the type of probabilities and their parameters made by the GES algorithm when
computing the BDeu score (Heckerman et al., 1995), assumptions that probably do not hold for the
examined databases.

Although this methodology of statistical tests between pairs of classifiers is the most popular
in the machine learning community, there are other methodologies that evaluate statistical signifi-
cance between several classifiers on several databases simultaneously. For example, Demšar (2006),
recently suggested using Friedman test (Friedman, 1940) and some post-hoc tests for such an eval-
uation.
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5. Discussion

The performance of a CB algorithm in BN structure learning depends on the number of conditional
independence tests and the sizes of condition sets involved in these tests. The larger the condition
set, the greater the number of CI tests of high orders that have to be performed and the smaller their
accuracies.

We propose the CB RAI algorithm that learns a BN structure by performing the following se-
quence of operations: 1) test of CI between nodes and removal of edges related to independences, 2)
edge direction employing orientation rules, and 3) structure decomposition into smaller autonomous
sub-structures. This sequence of operations is performed recursively for each sub-structure, along
with increasing the order of the CI tests. Thereby, the RAI algorithm deals with less potential par-
ents for the nodes on a tested edge and thus uses smaller condition sets that enable the performance
of fewer CI tests of higher orders. This reduces the algorithm run-time and increases its accuracy.

By introducing orientation rules through edge direction in early stages of the algorithm and
following CI tests of lower orders, the graph “backbone” is established using the most reliable
CI tests. Relying on this “backbone” and its directed edges in later stages obviates the need for
unnecessary CI tests and enables RAI to be less complex and sensitive to errors.

In this study, we proved the correctness of the RAI algorithm. In addition, we demonstrated
empirically, using synthetically generated networks, samples of nineteen known structures, and
nineteen natural databases used in classification problems, the advantage of the RAI algorithm over
state-of-the-art structure learning algorithms, such as PC, TPDA, GS, GES, OR, SC and MMHC,
with respect to structural correctness, number of statistical calls, run-time and classification accu-
racy. We note that no attempt was made to optimize the parameters of the other algorithms and the
effect of such optimization was not evaluated. This is due to the fact that some of the algorithms
have more than one parameter to optimize and besides, no optimization methods were proposed by
the algorithm inventors. We propose such an optimization method for the RAI algorithm that uses
only the training (validation) data.

We plan to extend our study in several directions. One is the comparison of RAI-based clas-
sifiers to non-BN classifiers, such as the neural network and support vector machine. Second is
the incorporation of different types of prior knowledge (e.g., related to classification) into structure
learning. We also intend to study error correction during learning and to allow the inclusion of
hidden variables to improve representation and facilitate learning with the RAI algorithm.
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Abstract
Beam search is commonly used to help maintain tractability in large search spaces at the expense
of completeness and optimality. Here we study supervised learning of linear ranking functions for
controlling beam search. The goal is to learn ranking functions that allow for beam search to per-
form nearly as well as unconstrained search, and hence gain computational efficiency without seri-
ously sacrificing optimality. In this paper, we develop theoretical aspects of this learning problem
and investigate the application of this framework to learning in the context of automated planning.
We first study the computational complexity of the learning problem, showing that even for expo-
nentially large search spaces the general consistency problem is in NP. We also identify tractable
and intractable subclasses of the learning problem, giving insight into the problem structure. Next,
we analyze the convergence of recently proposed and modified online learning algorithms, where
we introduce several notions of problem margin that imply convergence for the various algorithms.
Finally, we present empirical results in automated planning, where ranking functions are learned
to guide beam search in a number of benchmark planning domains. The results show that our ap-
proach is often able to outperform an existing state-of-the-art planning heuristic as well as a recent
approach to learning such heuristics.
Keywords: beam search, speedup learning, automated planning, structured classification

1. Introduction

Throughout artificial intelligence and computer science, heuristic search is a fundamental approach
to solving complex problems. Unfortunately, when the heuristic is not accurate enough, memory and
time constraints make pure heuristic search impractical. One common way to attempt to maintain
tractability of heuristic search is through a pruning technique known as beam search. At each search
step, beam search maintains a “beam” of the heuristically best b nodes, pruning all other nodes from
the search queue. Due to this pruning, beam search is not guaranteed to be complete nor optimal.
However, if the heuristic is good enough to keep a good solution path in the beam, then the solution
will be found quickly.

c©2009 Yuehua Xu, Alan Fern and Sungwook Yoon.
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The goal of this paper is to study the problem of learning heuristics, or ranking functions, that
allow beam search to quickly find solutions, without seriously sacrificing optimality compared to
unconstrained search. We consider this problem for the case of linear ranking functions, where each
search node v is associated with a feature vector f (v) and nodes are ranked according to w · f (v)
where w is a weight vector. Each instance in our training set corresponds to a search space that is
labeled by a set of target solutions, each solution being a (satisficing) path from the initial node to
a goal node. Given a training set, our learning objective is to select a weight vector w such that a
beam search of a specified beam width always maintains one of the target paths in the beam until
finally reaching a goal node. Such a w effectively represents a ranking function that allows beam
search to efficiently solve all of the training instances, and ideally new search problems for which
the training set is representative.

Recent work (Daumé III and Marcu, 2005) has considered the problem of learning beam search
ranking functions in the context of structured classification. Structured classification is the problem
of learning a mapping from structured inputs (e.g., sentences) to structured outputs (e.g., syntactic
parses) and there has been much recent work that extends traditional classification algorithms to this
setting including conditional random fields (Lafferty et al., 2001), the generalized Perceptron algo-
rithm (Collins, 2002), and margin optimization (Taskar et al., 2003). The approach of Daumé III
and Marcu (2005) differs from prior approaches in that it explicitly views structured classification
as a search problem, where given an input x, the problem of labeling x by a structured output y is
treated as searching through an exponentially large set of candidate outputs. For example, in part-
of-speech tagging where x is a sequence of words and y is a sequence of word tags, each node in the
search space is a pair (x,y′) where y′ is a partial labeling of the words in x. Learning corresponds
to inducing a ranking function that quickly guides the search to the search node (x,y∗) where y∗ is
the desired output. This framework, known as learning as search optimization (LaSO), has demon-
strated highly competitive performance on a number of structured classification problems.

This paper builds on the LaSO framework and makes two key contributions. First, we analyze
the learning problem theoretically, in terms of its computational complexity and the convergence
properties of various learning algorithms. Secondly, this paper provides an empirical evaluation
in the context of automated planning, a problem that is qualitatively very different from structured
classification.

Our complexity analysis considers a number of subclasses of the general beam-search learning
problem. First, we provide an upper bound on the complexity of the general problem by showing
that even for exponentially large search spaces, which are the norm, the consistency problem (i.e.,
finding a w that solves all training instances) remains in NP. Next, we identify several core tractable
and intractable subclasses of the beam-search learning problem. Interestingly, some of these sub-
classes resemble more traditional “learning to rank” problems (Agarwal and Roth, 2005) with clear
analogies to applications.

Our convergence analysis studies convergence properties of perceptron-style online learning
algorithms. In prior work, Daumé III and Marcu (2005) proposed a notion of linear separability for
this learning problem and proved convergence of the algorithm for linearly separable data. However,
here we show that result to be inaccurate for subtle reasons and give a counter example. We then
propose new notions of problem margin and show that convergence can be guaranteed for revised
versions of the algorithm given positive margins. For the case where training data is ambiguous,
that is, where many good solutions to a search problem are not included in the target solution set, we
also give sufficient conditions on the minimum beam width to guarantee convergence. This result
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also provides a formal characterization of the intuition that the learning problem should become
easier as the beam width increases, by showing that the mistake bound decreases with increasing
beam width.

While the LaSO framework has been empirically evaluated in structured classification, with
impressive results, its utility in other types of search problems has not been demonstrated. Here
we consider the application of a LaSO-style algorithm to automated planning, which is a problem
that is qualitatively very different compared to structured classification. The planning problems we
consider are most naturally viewed as goal-finding problems, where we must search for a short path
to a goal node in an exponentially large graph. Rather, structured classification is most naturally
viewed as an optimization problem, where we must search for a structured object that optimizes an
objective function. While the two problem classes are related they differ in significant ways. For
example, the search problems studied in structured classification typically have a single or small
number of solution paths, whereas in automated planning there are often a large number of equally
good solutions, which can contribute to ambiguous training data. Furthermore, the size of the search
spaces encountered in automated planning are usually much larger than in structured classification,
because of the larger depths and branching factors. These differences raise the empirical question
of whether a LaSO-style approach will be effective in automated planning.

To evaluate this question we incorporated a LaSO-style learning mechanism into a forward state-
space search planner in order to learn domain-specific heuristics, or ranking functions, from training
examples. For a given planning domain, the training examples given to our learner include solution
plans to a set of planning problems from the domain. The learned ranking function for a domain
can then be used to guide beam search in order to solve new test problems from the same domain.
We evaluate this approach on a number of benchmark planning domains and show that our learned
ranking functions are often able to outperform both a state-of-the-art domain-independent planning
heuristic and the heuristics learned by another recently proposed learning mechanism based on
linear regression.

The remainder of this paper proceeds as follows. In Section 2, we introduce our formal setup
of the beam-search learning problem and then, in Section 3, study the computational complexity
of this learning problem. In Section 4, we describe two online learning mechanisms followed by
their convergence analysis. In Section 5, we apply the learning problem to automated planning and
present the experimental results. Finally Section 6 concludes and suggests future directions.

2. Problem Setup

In this section, we first describe two different beam search paradigms: breadth-first beam search
and best-first beam search. We then introduce the learning problems that we study in these two
paradigms, followed by an illustrative example from automated planning. Finally, we describe how
our formulation, which was motivated by automated planning, relates to structured classification.

2.1 Beam Search

We first define breadth-first and best-first beam search, the two paradigms considered in this work.
A search space is a tuple 〈I,s(·), f (·),<〉, where I is the initial search node, s is a successor function
from search nodes to finite sets of search nodes, f is a feature function from search nodes to m-
dimensional real-valued vectors, and < is a total preference ordering on search nodes. We think of
f as defining properties of search nodes that are useful for evaluating their relative goodness and <
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as defining a canonical ordering on nodes, for example, lexicographic. In this work, we use f to
define a linear ranking function w · f (v) on nodes where w is an m-dimensional weight vector, and
nodes with larger values are considered to be higher ranked, or more preferred. Since a given wmay
assign two nodes the same rank, we use < to break ties such that v is ranked higher than v′ given
w · f (v′) = w · f (v) and v′ < v, arriving at a total rank ordering on search nodes. We denote this total
rank ordering as r(v′,v|w,<), or just r(v′,v) when w and < are clear from context, indicating that v
is ranked higher than v′.

Given a search space S = 〈I,s(·), f (·),<〉, a weight vector w, and a beam width b, breadth-first
beam search simply conducts breadth-first search, but at each search depth keeps only the b highest
ranked nodes according to r. More formally, breadth-first beam search generates a unique beam
trajectory (B0,B1, . . .) as follows,

• B0 = {I} is the initial beam;

• Cj+1 = BreadthExpand(Bj,s(·)) =
S

v∈Bj s(v) is the depth j+1 candidate set of the depth j
beam;

• Bj+1 is the unique set of b highest ranked nodes inCj+1 according to the total ordering r.

Note that for any j, |Cj| ≤ cb and |Bj| ≤ b, where c is the maximum number of children of any
search node.

Best-first beam search is almost identical to breadth-first beam search except that we replace the
function BreadthExpandwith BestExpand(Bj,s(·)) =Bj∪s(v∗)−v∗, where v∗ is the unique high-
est ranking node in Bj. Thus, instead of expanding all nodes in the beam at each search step, best-
first search is more conservative and only expands the single best node. Note that unlike breadth-first
search this can result in beams that contain search nodes from different depths of the search space
relative to I.

2.2 Learning Problems

Our learning problems provide training sets of pairs {〈Si,Pi〉}, where the Si = 〈Ii,si(·), fi(·),<i〉 are
search spaces constrained such that each fi has the same dimension. As described in more detail
below, the Pi encode sets of target search paths that describe desirable search paths through the
corresponding search spaces. Roughly speaking the learning goal is to learn a ranking function that
can produce a beam trajectory of a specified width for each search space that contains at least one
of the corresponding target paths in the training data. For example, in the context of automated
planning, the Si would correspond to planning problems from a particular domain, encoding the
state space and available actions, and the Pi would encode optimal or satisficing plans for those
problems. A successfully learned ranking function would be able to quickly find at least one of the
target solution plans for each training problem and ideally new target problems.

We represent each set of target search paths as a sequence Pi = (Pi,0,Pi,1, . . . ,Pi,d) of sets of
search nodes where Pi, j contains target nodes at depth j and Pi,0 = {Ii}. It is useful to think about
Pi,d as encoding the goal nodes of the i′th search space. We will refer to the maximum size t of any
target node set Pi, j as the target width of Pi, which will be referred to in our complexity analysis.
The generality of this representation for target paths allows for pathological targets where certain
nodes do not lead to the goal. In order to arrive at convergence results, we rule out such possibilities
by assuming that the training set is dead-end free. That is, for all i and j < d each v ∈ Pi, j has at
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least one child node v′ ∈ Pi, j+1. Note that in almost all real problems this property will be naturally
satisfied. For our complexity analysis, we will not need to assume any special properties of the
target search paths Pi.

Intuitively, for a dead-end free training set, each Pi represents a layered directed graph with at
least one path from each target node to a goal node in Pi,d . Thus, the training set specifies not only a
set of goals for each search space but also gives possible solution paths to the goals. For simplicity,
we assume that all target solution paths have depth d, but all results easily generalize to non-uniform
depths.

For breadth-first beam search we specify a learning problem by giving a training set and a beam
width 〈{〈Si,Pi〉},b〉. The objective is to find a weight vector w that generates a beam trajectory
containing at least one of the target paths for each training instance. More formally, we are interested
in the consistency problem:

Definition 1 (Breadth-First Consistency) Given the input 〈{〈Si,Pi〉},b〉 where b is a positive in-
teger and Pi = (Pi,0,Pi,1, . . . ,Pi,d), the breadth-first consistency problem asks us to decide whether
there exists a weight vector w such that for each Si, the corresponding beam trajectory (Bi,0,Bi,1, . . . ,
Bi,d), produced using w with a beam width of b, satisfies Bi, j ∩Pi, j += /0 for each j?

A weight vector that demonstrates a “yes” answer is guaranteed to allow a breath-first beam search
of width b to uncover at least one goal node (i.e., a node in Pi,d) within d beam expansions for all
training instances.

Unlike the case of breadth-first beam search, the length of the beam trajectory required by best-
first beam search to reach a goal node can be greater than the depth d of the target paths. This is
because best-first beam search, does not necessarily increase the maximum depth of search nodes in
the beam at each search step. Thus, in addition to specifying a beam width for the learning problem,
we also specify a maximum number of search steps, or horizon, h. The objective is to find a weight
vector that allows a best-first beam search to find a goal node within h search steps, while always
keeping some node from the target paths in the beam.

Definition 2 (Best-First Consistency) Given the input 〈{〈Si,Pi〉},b,h〉, where b and h are positive
integers and Pi = (Pi,0, . . . ,Pi,d), the best-first consistency problem asks us to decide whether there
is a weight vector w that produces for each Si a beam trajectory (Bi,0, . . . ,Bi,k) of beam width b,
such that k ≤ h, Bi,k ∩Pi,d += /0 (i.e., Bi,k contains a goal node), and each Bi, j for j < k contains at
least one node in

S

j Pi, j?

Again, a weight vector that demonstrates a “yes” answer is guaranteed to allow a best-first beam
search of width b to find a goal node in h search steps for all training instances.

2.2.1 EXAMPLE FROM AUTOMATED PLANNING.

Figure 1, shows a pictorial example of a single training example from an automated planning prob-
lem. The planning domain in this example is Blocksworld where individual problems involve trans-
forming an initial configuration of blocks to a goal configuration using simple actions such as pick-
ing up, putting down, and stacking the various blocks. The figure shows a search space Si where
each node corresponds to a configuration of blocks and the arcs indicate when it is possible to take an
action that transitions from one configuration to another. The figure depicts, via highlighted nodes,
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two target paths. The label Pi would encode these target paths by a sequence Pi = (Pi,0,Pi,1, . . . ,Pi,4)
where Pi, j contains the set of all highlighted target nodes at depth j. A solution weight vector, for
this training example, would be required to keep at least one of the highlighted paths in the beam
until uncovering the goal node.
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Figure 1: An example from automated planning.

2.2.2 EXAMPLE FROM STRUCTURED CLASSIFICATION

Daumé III and Marcu (2005) considered learning ranking functions to control beam search in the
context of structured classification. Structured classification involves learning a function that maps
structured inputs x to structured outputs y. As an example, consider part-of-speech tagging where
the inputs correspond to English sentences and the correct output for a sentence is the sequence of
part-of-speech tags for the words in the sentence. Figure 2 shows how Daumé III and Marcu (2005)
formulated a single instance of part-of-speech tagging as a search problem. Each search node is a
pair (x,y′) where x is the input sentence and y′ is a partial labeling of the words in x by part-of-
speech tags. The arcs in this space correspond to search steps that label words in the sentence in
a left-to-right order by extending y′ in all possible ways by one element. The leaves, or terminal
nodes, of this space correspond to all possible complete labelings of x. Given a ranking function
and a beam width, Daumé III and Marcu (2005) return a predicted output for x by conducting a
beam search until a terminal node becomes the highest ranked node in the beam, and then return
the output component of that terminal node. This approach to making predictions suggests that the
learning objective should require that we learn a ranking function such that the goal terminal node,
is the first terminal node to become highest ranked in the beam. In the figure, there is a single goal
terminal node (x,y) where y is the correct labeling of x and there is a unique target path to this goal.

From the above example, we see that there is a difference between the learning objective used
by Daumé III and Marcu (2005) for structured classification and the learning objective under our
formulation, which was motivated by automated planning. In particular, our formulation does not
force the goal node to be the highest ranked node in the final beam, but rather only requires that
a goal node appear somewhere in the final beam. While these formulations appear quite different,
it turns out that they are polynomially reducible to one another, which we prove in Appendix A.
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((the cat ran),(- - -))

((the cat ran), (verb - -))((the cat ran), (article - -))

((the cat ran), (article verb -)) ((the cat ran), (article noun -))

((the cat ran), (article noun verb)) ((the cat ran), (article noun noun))

…

…

…

Goal Node (x, y)

x = (The cat ran)
y = (article  noun  verb)

Terminal Node (x, y’)

Figure 2: An example from structured classification.

Thus, all of the results in this paper apply equally well to the structured-classification formulation
of Daumé III and Marcu (2005).

3. Computational Complexity

In this section, we study the computational complexity of the above consistency problems. We first
focus on breadth-first beam search, and then give the corresponding best-first results at the end of
this section. It is important to note that the size of the search spaces will typically be exponential in
the encoding size of the learning problem. For example, in automated planning, standard languages
such as PDDL (McDermott, 1998) are used to compactly encode planning problems that are po-
tentially exponentially large, in terms of the number of states, with respect to the PDDL encoding
size. Throughout this section we measure complexity in terms of the problem encoding size, not the
potentially exponentially larger search space size. All discussions in this section apply to general
search spaces and are not tied to a particular language for describing search space such as PDDL.

Our complexity analysis will consider various sub-classes of the breadth-first consistency prob-
lem, where the sub-classes will be defined by placing constraints on the following problem param-
eters: n - the number of training instances, d - the depth of target solution paths, c - the maximum
number of children of any search node, t - the maximum target width of any Pi as defined in Section
2.2, and b - the beam width. Figure 3 gives a pictorial depiction of these key problem parame-
ters. Throughout the complexity analysis we will restrict our attention to problem classes where the
maximum number of children c and beam width b are polynomial in the problem size, which are
necessary conditions to ensure that each beam search step requires only polynomial time and space.
We will also assume that all feature functions can be evaluated in polynomial time in the problem
size.

Note that restricting the number of children cmay rule out the use of certain search space encod-
ings for some problems. For example, in a multi-agent planning scenario, there are an exponential
number of joint actions to consider from each state, and thus an exponential number of children.
However, here it is possible to re-encode the search space by increasing the depth of the search tree,
so that each joint action is encoded by a sequence of steps where each agent selects an action in
turn followed by all of them executing the selected actions. The resulting search space has only a
polynomial number of children and thus satisfies our assumption, though the required search depth
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has increased. This form of re-encoding from a search space with exponentially many children to
one with polynomially many children can be done whenever the actions in the original space have
a compact, factored encoding, which is typically the case in practice.

. . . .

b
n

d

Figure 3: The key problem parameters: n - the number of training instances, d - the depth of target
solution paths, b - the beam width. Not depicted in the figure are: c - maximum number
of children of any node, t - the maximum target width of any example.

3.1 Hardness Upper Bounds

We first show an upper bound on the complexity of breadth-first consistency by proving that the
general problem is in NP even for exponentially large search spaces.

Observe that given a weight vector w and beam width b, we can easily generate a unique depth
d beam trajectory for each training instance. Our upper bound is based on considering the inverse
problem of checking whether a set of hypothesized beam trajectories, one for each training instance,
could have been generated by some weight vector. The algorithm TestTrajectories in Figure 4
efficiently carries out this check. The main idea is to observe that for any search space S it is
possible to efficiently check whether there is a weight vector that starting with a beam B could
generate a beam B′ after one step of breadth-first beam search. This can be done by constructing an
appropriate set of linear constraints on the weight vector w that are required to generate B′ from B.
In particular, we first generate the set of candidate nodesC from B by unioning all children of nodes
in B. Clearly we must have B′ ⊆ C in order for there to be a solution weight vector. If this is the
case then we create a linear constraint for each pair of nodes (u,v) such that u ∈ B′ and v ∈C−B′,
which forces u to be preferred to v:

w · f (u) > w · f (v)

where w = (w1,w2, . . . ,wm) are the constraint variables and f (·) = ( f1(·), f2(·), . . . , fm(·)) is the
vector of feature functions. Note that if u is more preferred than v in the total preference ordering,
then we only need to require that w · f (u) ≥ w · f (v). The overall algorithm TestTrajectories simply
creates this set of constraints for each consecutive pair of beams in each beam trajectory and then
tests to see whether there is a w that satisfies all of the constraints.

Lemma 3 Given a set of search spaces {Si} and a corresponding set of width b beam trajectories
{(Bi,0, . . . ,Bi,d)}, the algorithm TestTrajectories (Figure 4) decides in polynomial time whether there
exists a weight vector w that can generate (Bi,0, . . . ,Bi,d) in Si for all i.
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Proof It is straightforward to show that w satisfies the constraints generated by TestTrajectories
iff for each i, j, r(v′,v| <i,w) leads beam search to generate Bi, j+1 from Bi, j. The linear program
contains m variables and at most ndcb2 constraints. Since we are assuming that the maximum
number of children of a node v is polynomial in the size of the learning problem, the size of the
linear program is also polynomial and thus can be solved in polynomial time (Khachiyan, 1979).

This lemma shows that sets of beam trajectories can be used as efficiently-checkable certificates for
breadth-first consistency, which leads to an upper bound on the problem’s complexity.

Theorem 4 Breadth-first consistency is in NP.

Proof Given a learning problem 〈{〈Si,Pi〉},b〉 our certificates correspond to sets of beam trajec-
tories {(Bi,0, . . . ,Bi,d)} each of size at most O(ndb) which is polynomial in the problem size. The
certificate can then be checked in polynomial time to see if for each i, (Bi,0, . . . ,Bi,d) contains a
target solution path encoded in Pi as required by Definition 1. If it is consistent then according to
Lemma 3 we can efficiently decide whether there is a w that can generate {(Bi,0, . . . ,Bi,d)}.

This result suggests an enumeration-based decision procedure for breadth-first consistency as
given in Figure 4. In that procedure, the function Enumerate creates a list of all possible combi-
nations of beam trajectories for the training data. Thus, each element of this list is a list of beam
trajectories, one for each training example, where a beam trajectory is simply a sequence of sets of
nodes that are selected from the given search space. For each enumerated combination of beam tra-
jectories, the function IsConsistent checks whether the beam trajectory for each example contains
a target path for that example and if so TestTrajectories will be called to determine whether there
exists a weight vector that could produce those trajectories. The following gives us the worst case
complexity of this algorithm in terms of the key problem parameters.

Theorem 5 The procedure ExhaustiveAlgorithm (Figure 4) decides breadth-first consistency and
returns a solution weight vector if there is a solution in time O

(

(t+poly(m))(cb)bdn
)

.

Proof We first bound the number of certificates. Breadth-first beam search expands nodes in the
current beam, resulting in at most cb nodes, from which b nodes are selected for the next beam. Enu-
merating these possible choices over d levels and n trajectories, one for each training instance, we
can bound the number of certificates by O

(

(cb)bdn
)

. For each certificate the enumeration process
checks consistency with the target paths {Pi} in time O(tbdn) and then calls TestTrajectories which
runs in time poly(m,ndcb2). The total time complexity then is O

((

tbdn+poly(m,ndcb2)
)

(cb)bdn
)

= O
(

(t+poly(m))(cb)bdn
)

.

Not surprisingly the complexity is exponential in the beam width b, target path depth d, and
number of training instances n. However, it is polynomial in the maximum number of children c
and the maximum target width t. Thus, breadth-first consistency can be solved in polynomial time
for any problem class where b, d, and n are constants. Of course, for most problems these constants
would be too large for this result to be of practical interest. This leads to the question of whether we
can do better than the exhaustive algorithm for restricted problem classes. For at least one problem
class we can.
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ExhaustiveAlgorithm ({〈Si,Pi〉},b)
! = Enumerate({〈Si,Pi〉},b)
// enumerates all possible sets of beam trajectories
for each {(Bi,0 . . . ,Bi,d)} ∈ !
if IsConsistent({Pi},{(Bi,0 . . . ,Bi,d)}) then

w= TestTrajectories({Si},{(Bi,0, . . . ,Bi,d)})
if w += false then
return w

return false

TestTrajectories({Si},{(Bi,0, . . . ,Bi,d)})
// Si = 〈Ii,si(·), fi(·),<i〉
construct a linear programming problem LP as below
the variables are w= {w1,w2, . . . ,wm}
for (i, j) ∈ {1, . . . ,n}×{1, . . . ,d}

Ci, j =BreadthExpand(Bi, j−1,si(·))
if Bi, j ⊆Ci, j then
for each u ∈ Bi, j and v ∈Ci, j−Bi, j
if v<i u then
add a constraint w · fi(u) ≥ w · fi(v)

else add a constraint w · fi(u) > w · fi(v)
else return false

w = LPSolver(LP)
if LP is solved then
return w

return false

Figure 4: The exhaustive algorithm for breadth-first consistency.

Theorem 6 The class of breadth-first consistency problems where b = 1 and t = 1 is solvable in
polynomial time.

Proof Given a learning problem 〈{〈Si,Pi〉},b〉 where Pi = (Pi,0, . . . ,Pi,d), t = 1 implies that each
Pi, j contains exactly one node. Since the beam width b = 1, then the only way that a beam trajec-
tory (Bi,0, . . . ,Bi,d) can satisfy the condition Bi, j ∩Pi, j += /0 for any i, j, is for Bi, j = Pi, j. Thus there
is exactly one beam trajectory for each training example, equal to the target trajectory, and using
Lemma 3 we can check for a solution weight vector for these trajectories in polynomial time.

This problem class, as depicted in Figure 5, corresponds to the case where each training instance
is labeled by exactly a single solution path and we are asked to find a w that leads a greedy hill-
climbing search, or reactive policy, to follow those paths. This is a common learning setting, for
example, when attempting to learn reactive control policies based on demonstrations of target poli-
cies, perhaps from an expert, as in Khardon (1999).
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. . .

Figure 5: A tractable class of breadth-first consistency, where b= 1 and t = 1.

3.2 Hardness Lower Bounds

Unfortunately, outside of the above problem classes it appears that breadth-first consistency is com-
putationally hard even under strict restrictions. In particular, the following three results show that
if any one of b, d, or n are not bounded then the consistency problem is hard even when the other
problem parameters are small constants.

First, we show that the problem class where n= d = t = 1 but b≥ 1 is NP-complete. That is, a
single training instance involving a depth one search space is sufficient for hardness. This problem
class, resembles more traditional ranking problems and has a nice analogy in the application domain
of web-page ranking, where the depth 1 leaves of our search space correspond to possibly relevant
web-pages for a particular query. One of those pages is marked as a target page, for example, the
page that a user eventually went to. The learning problem is then to find a weight vector that will
cause for the target page to be ranked among the top b pages. Our result shows that this problem is
NP-complete and hence will be exponential in b unless P= NP.

Theorem 7 The class of breadth-first consistency problems where n= 1, d = 1, t = 1, and b≥ 1 is
NP-complete.

Proof Our reduction is from the Minimum Disagreement problem for linear binary classifiers,
which was proven to be NP-complete by Hoffgen et al. (1995). The input to this problem is a train-
ing set T = {x+1 , · · · ,x+r1 ,x

−
1 , · · · ,x−r2} of positive and negative m-dimensional vectors and a positive

integer k. A weight vector w classifies a vector as positive iff w · x ≥ 0 and otherwise as negative.
The Minimum Disagreement problem is to decide whether there exists a weight vector that commits
no more than k misclassification.

Given a Minimum Disagreement problem we construct an instance 〈〈S1,P1〉,b〉 of the breadth-
first consistency problem as follows. Assume without loss of generality S1 = 〈I,s(·), f (·),<〉.
Let s(I) = {q0,q1, · · · ,qr1+r2}. For each i ∈ {1, · · · ,r1}, define f (qi) = −x+i ∈ Rm. For each
i ∈ {1, · · · ,r2},define f (qi+r1) = x−i ∈ Rm. Define f (q0) = 0 ∈ Rm, P1 = ({I},{q0}) and b= k+1.
Define the total ordering < to be a total ordering in which qi < q0 for every i= 1, . . . ,r1 and q0 < qi
for every i= r1+1, . . . ,r1+ r2.We claim that there exists a linear classifier with at most k misclas-
sifications if and only if there exists a solution to the corresponding consistency problem.

First, suppose there exists a linear classifier w · x ≥ 0 with at most k misclassifications. Using
the weight vector w, we have

• w · f (q0) = 0;
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• for i= 1, · · · ,r1 :
if w · x+i ≥ 0, w · f (qi) = w · (−x+i ) ≤ 0;
if w · x+i < 0, w · f (qi) = w · (−x+i ) > 0;

• for i= r1+1, . . . ,r1+ r2:
if w · x−i ≥ 0, w · f (qi) = w · x−i ≥ 0;
if w · x−i < 0, w · f (qi) = w · x−i < 0.

For i = 1, · · · ,r1+ r2, the node qi in the consistency problem is ranked lower than q0 if and only
if its corresponding example in the Minimum Disagreement problem is labeled correctly, is ranked
higher than q0 if and only if its corresponding example in the Minimum Disagreement problem is
labeled incorrectly. Therefore, there are at most k nodes which are ranked higher than q0. With
beam width b= k+1, the beam Bi,1 is guaranteed to contain node q0, indicating that w is a solution
to the consistency problem.

On the other hand, suppose there exists a solution w to the consistency problem. There are at
most b− 1 = k nodes that are ranked higher than q0. That is, at least r1+ r2− k nodes are ranked
lower than q0. For i = 1, . . . ,r1, qi is ranked lower than q0 if and only if w · f (qi) ≤ w · f (q0).
For i = r1 + 1, . . . ,r1 + r2, qi is ranked lower than q0 if and only if w · f (qi) < w · f (q0). Since
w · f (q0) = 0, we have

• for i= 1, · · · ,r1 :
w · f (qi) ≤ 0⇒ w · (−x+i ) ≤ 0⇒ w · x+i ≥ 0;

• for i= r1+1, . . . ,r1+ r2 :
w · f (qi) < 0⇒ w · x−i < 0⇒ w · x−i < 0.

Therefore, using the linear classifier w ·x≥ 0, at least r1+ r2−k nodes are labeled correctly, that is,
it makes at most k misclassifications.

Since the time required to construct the instance 〈〈S1,P1〉,b〉 from T,k is polynomial in the size
of T,k, we conclude that the consistency problem is NP-Complete even restricted to n = 1, d = 1
and t = 1.

The next result shows that if we do not bound the number of training instances n, then the prob-
lem remains hard even when the target path depth and beam width are equal to one. Interestingly,
this subclass of breadth-first consistency corresponds to the multi-label learning problem as defined
in Jin and Ghahramani (2002). In multi-label learning each training instance can be viewed as a bag
of m-dimensional vectors, some of which are labeled as positive, which in our context correspond to
the target nodes. The learning goal is to find a w that for each bag, ranks one of the positive vectors
as best.

Theorem 8 The class of breadth-first consistency problems where d = 1, b = 1, c = 6, t = 3, and
n≥ 1 is NP-complete.

Proof The proof is by reduction from 3-SAT (Garey and Johnson, 1979), which is the following.
“Given a set U of boolean variables, a collection Q of clauses over U such that each clause

q ∈ Q has |q| = 3, decide whether there a satisfying truth assignment for C.”
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Let U = {u1, . . . ,um}, Q = {q11 ∨ q12 ∨ q13, . . . ,qn1 ∨ qn2 ∨ qn3} be an instance of the 3-SAT
problem. Here, qi j = u or ¬u for some u ∈U . We construct from U,Q an instance 〈{〈Si,Pi〉},b〉
of the breadth-first consistency problem as follows. For each clause qi1 ∨ qi2 ∨ qi3, let si(Ii) =
{pi,1, · · · , pi,6} , Pi = ({Ii},{pi,1, pi,2, pi,3}), b= 1, and the total ordering<i is defined so that pi, j <i
pi,k for j = 1,2,3 and k = 4,5,6. Let ek ∈ {0,1}m denote a vector of zeros except a 1 in the
k′th component. For each i = 1, . . . ,n, j = 1,2,3, if qi j = uk for some k then fi(pi, j) = ek and
fi(pi, j+3) = −ek/2, otherwise if qi j = ¬uk for some k then fi(pi, j) = −ek and fi(pi, j+3) = ek/2.
We claim that there exists a satisfying truth assignment if and only if there exists a solution to the
corresponding consistency problem.

First, suppose that there exists a satisfying truth assignment. Let w = (w1, · · · ,wm), where
wk = 1 if uk is true, and wk = −1 if uk is false in the truth assignment. For each i = 1, . . . ,n,
j = 1, . . . ,3, we have:

• if qi j is true, then
w · fi(pi, j) = 1 and w · fi(pi, j+3) = −1/2;

• if qi j is false, then
w · fi(pi, j) = −1 and w · fi(pi, j+3) = 1/2.

Note that for each clause qi1 ∨ qi2 ∨ qi3, at least one of the literals is true. Thus, for every set of
nodes {pi,1, pi,2, pi,3}, at least one of the nodes will have the highest rank value equal to 1, resulting
in Bi,1 = {v} where v ∈ {pi,1, pi,2, pi,3}. By the definition, the weight vector w is a solution to the
consistency problem.

On the other hand, suppose that there exists a solution w = (w1, . . . ,wm) to the consistency
problem. Assume the beam trajectory for each i is ({Ii},{vi}). Then vi = pi, j for some j ∈ {1,2,3},
and for this i and j, qi j = uk or ¬uk for some k. Let uk be true if qi j = uk and be false if qi j = ¬uk.
As long as there is no contradiction in this assignment, this is a satisfying truth assignment because
at least one of {qi1,qi2,qi3} is true for every i, that is, every clause is true.

Now we will prove that there is no contradiction in this assignment, that is, any variable is
assigned either true or false, but not both. Note that for any node v ∈ {pi,1, pi,2, pi,3}, there always
exists a node v′ ∈ {pi,4, . . . , pi,6} such that:

• w · fi(v) < 0⇔ w · fi(v′) > 0;

• w · fi(v) > 0⇔ w · fi(v′) < 0;

• w · fi(v) = 0⇔ w · fi(v′) = 0.

Then because of the total ordering<i we defined, the node vi = pi, j appearing in the beam trajectory,
must has w · fi(vi) > 0. Assume without loss of generality that qi j = uk, then uk is assigned to be true.
Although ¬uk might appear in other clauses, for example, qi′ j′ = ¬uk, its corresponding node pi′, j′
can never appear in the beam trajectory becausew · fi′(pi′, j′)=w ·(−ek) =−w ·ek =−w · fi(pi, j) < 0.
Therefore, uk will never be assigned false. A similar proof can be given for the case of qi j = ¬uk.

Since the time required to construct the instance 〈{〈Si,Pi〉},b〉 from U,Q is polynomial in the
size ofU,Q, we conclude that the consistency problem is NP-Complete for the case of d = 1, b= 1,
c= 6 and t = 3.
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Finally, we show that when the depth d is unbounded the consistency problem remains hard even
when b= n= 1.

Theorem 9 The class of breadth-first consistency problems where n = 1, b = 1, c = 6, t = 3, and
d ≥ 1 is NP-complete.

Proof Assume x = 〈{〈Si,Pi〉|i= 1, . . . ,n},b〉, where Si = 〈Ii,si(·), fi(·),<i〉 and Pi = ({Ii},Pi,1), is
an instance of the consistency problem with d = 1, b = 1, c = 6 and t = 3. We can construct an
instance y of the consistency problem with n= 1, b= 1, c= 6, and t = 3. Let y= 〈〈S̄1, P̄1〉,b〉where
S̄1 = 〈I1, s̄(·), f̄ (·), <̄〉, and P̄1 = ({I1},P1,1,P2,1, . . . ,Pt,1). We define s̄(·), f̄ (·), <̄ as below.

• s̄(I1) = s1(I1), f̄ (I1) = f1(I1);

• for each i= 1, . . . ,n−1
∀v ∈ si(Ii), f̄ (v) = fi(v) and s̄(v) = si+1(Ii+1);
∀(v,v′) ∈ si(Ii), <̄(v,v′) =<i (v,v′);

• ∀v ∈ sn(In), f̄ (v) = fn(v);
∀(v,v′) ∈ sn(In), <̄(v,v′) =<n (v,v′).

Obviously, a weight vector w is a solution for the instance x if and only if w is a solution for the
constructed instance y.

b n d c t Complexity
poly ≥ 1 ≥ 1 poly ≥ 1 NP
K K K poly ≥ 1 P
1 ≥ 1 ≥ 1 poly 1 P
poly 1 1 poly 1 NP-Complete
1 ≥ 1 1 6 3 NP-Complete
1 1 ≥ 1 6 3 NP-Complete

Figure 6: Complexity results for breadth-first consistency. Each row corresponds to a sub-class of
the problem and indicates the computational complexity. K indicates a constant value and
“poly” indicates that the quantity must be polynomially related to the problem size.

Figure 6 summarizes our main complexity results from this section for breadth-first consistency.
For best-first beam search, most of these results can be carried over. Recall that for best-first con-
sistency the problem specifies a search horizon h in addition to a beam width. Using a similar
approach as above we can show that best-first consistency is in NP assuming that h is polynomial
in the problem size, which is a reasonable assumption. Similarly, one can extend the polynomial
time result for fixed b, n, and d. The remaining results in the table can be directly transferred to
best-first search, since in each case either b= 1 or d = 1 and best-first beam search is equivalent to
breadth-first beam search in either of these cases.
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4. Convergence of Online Updates

In the previous section, we identified a limited set of tractable problem classes and saw that even
very restricted classes remain NP-hard. We also saw that some of these hard classes had interesting
application relevance. Thus, it is desirable to consider efficient learning mechanisms that work well
in practice. Below we describe two such algorithms based on online perceptron updates.

4.1 Online Perceptron Updates

Figure 7 gives the LaSO-BR algorithm for learning ranking functions for breadth-first beam search.
It resembles the learning as search optimization (LaSO) algorithm for best-first search by Daumé III
and Marcu (2005). LaSO-BR iterates through all training instances 〈Si,Pi〉 and for each one con-
ducts a beam search of the specified width. After generating the depth j beam for the ith training
instance, if at least one of the target nodes in Pi, j are in the beam then no weight update occurs.
Rather, if none of the target nodes in Pi, j are in the beam then a search error is flagged and weights
are updated according to the following perceptron-style rule,

w= w+" ·
(

#v∗∈Pi, j∩C f (v
∗)

|Pi, j ∩C|
− #v∈B f (v)

b

)

where 0< "≤ 1 is a learning rate parameter, B is the current beam and C is the candidate set from
which B was generated (i.e., the beam expansion of the previous beam). For simplicity of notation,
here we assume that f is a feature function for all training instances. Intuitively this weight update
moves the weights in the direction of the average feature function of target nodes that appear in C,
and away from the average feature function of non-target nodes in the beam. This has the effect of
increasing the rank of target nodes inC and decreasing the rank of non-targets in the beam. Ideally,
this will cause at least one of the target nodes to become preferred enough to remain on the beam
next time through the search. Note that the use of averages over target and non-target nodes is
important so as to account for the different sizes of these sets of nodes. After each weight update,
the beam is reset to contain only the set of target nodes in C and the beam search then continues.
Importantly, on each iteration, the processing of each training instance is guaranteed to terminate in
d search steps.

Figure 8 gives the LaSO-BST algorithm for learning in best-first beam search, which is a slight
modification of the original LaSO algorithm. The main difference compared to the original LaSO
is in the weight update equation, a change that appears necessary for our convergence analysis. The
algorithm is similar to LaSO-BR except that a best-first beam search is conducted, which means that
termination for each training instance is not guaranteed to be within d steps. Rather, the number of
search steps for a single training instance remains unbounded without further assumptions, which
we will address later in this section. In particular, there is no bound on the number of search
steps between weight updates for a given training example. This difference between LaSO-BR and
LaSO-BST was of great practical importance in our automated planning application. In particular,
LaSO-BST typically did not produce useful learning results due to the fact that the number of search
steps between weight updates was extremely large. Note that in the case of structured classification,
Daumé III and Marcu (2005) did not experience this difficulty due to the bounded-depth nature of
their search spaces.
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LaSO-BR ({〈Si,Pi〉},b)
w← 0
repeat until w is unchanged or a large number of iterations
for every i
Update-BR(Si,Pi,b,w)

return w

Update-BR (Si,Pi,b,w)
// Si = 〈Ii,si(·), f (·),<i〉 and Pi = (Pi,0, . . . ,Pi,d)
B← {Ii} // initial beam
for j = 1, . . . ,d

C← BreadthExpand(B,si(·))
for every v ∈C

H(v) ← w · f (v) // compute heuristic value of v
OrderC according to H and the total ordering <i
B← the first b nodes inC
if B∩Pi, j = /0 then

w← w+" ·
(

#v∗∈Pi, j∩C f (v
∗)

|Pi, j∩C| − #v∈B f (v)
b

)

B← Pi, j ∩C
return

Figure 7: The LaSO-BR online algorithm for breadth-first beam search.

4.2 Previous Result and Counter Example

Adjusting to our terminology, Daumé III and Marcu (2005) defined a training set to be linear separa-
ble iff there is a weight vector that solves the corresponding consistency problem. Also for linearly
separable data they defined a notion of margin of a weight vector, which we refer to here as the
search margin. The formal definition of search margin is given below.

Definition 10 (Search Margin) The search margin of a weight vector w for a linearly separable
training set is defined as $ = min{(v∗,v)}(w · f (v∗)−w · f (v)), where the set {(v∗,v)} contains any
pair where v∗ is a target node and v is a non-target node that was compared during the beam search
guided by w.

Daumé III and Marcu (2005) state that the existence of a w with positive search margin, which
implies linear separability, implies convergence of the original LaSO algorithm after a finite number
of weight updates. On further investigation, we have found that a positive search margin is not suf-
ficient to guarantee convergence for LaSO, LaSO-BR, or LaSO-BST. Intuitively, the key difficulty
is that our learning problem contains hidden state in the form of the desired beam trajectory. Given
the beam trajectory of a consistent weight vector one can compute the weights, and likewise given
consistent weights one can compute the beam trajectory. However, we are given neither to begin
with and our approach can be viewed as an online EM-style algorithm, which alternates between
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LaSO-BST ({〈Si,Pi〉},b)
w← 0
repeat until w is unchanged or a large number of iterations
for every i
Update-BST(Si,Pi,b,w)

return w

Update-BST (Si,Pi,b,w)
// Si = 〈Ii,si(·), f (·),<i〉 and Pi = (Pi,0, . . . ,Pi,d)
B← {Ii} // initial beam
P̄= Pi,0∪Pi,2∪ . . .∪Pi,d
while B∩Pi,d = /0

C← BestExpand(B,si(·))
for every v ∈C

H(v) ← w · f (v) // compute heuristic value of v
OrderC according to H and the total ordering <i
B← the first b nodes inC
if B∩ P̄= /0 then

w← w+" ·
(

#v∗∈P̄∩C f (v∗)
|P̄∩C| − #v∈B f (v)

b

)

B← P̄∩C
return

Figure 8: Online algorithm for best-first beam search.

updating weights given the current beam and recomputing the beam given the updated weights.
Just as traditional EM is quite prone to local minima, so are the LaSO algorithms in general, and
in particular even when there is a positive search margin as demonstrated in the following counter
example. Note that the standard Perceptron algorithm for classification learning does not run into
this problem since there is no hidden state involved.

Counter Example 1 We give a training set for which the existence of a weight vector with pos-
itive search margin does not guarantee convergence to a solution weight vector for LaSO-BR
or LaSO-BST. Consider a problem that consists of a single training instance with search space
shown in Figure 9, preference ordering C < B < F < E < D < H < G, and single target path
P= ({A},{B},{E}).

First we will consider using breadth-first beam search with a beam width of b = 2. Using the
weight vector w= [$,$] the resulting beam trajectory will be (note that higher values of w · f (v) are
better):

{A},{B,C},{E,F}.

The search margin of w, which is only sensitive to pairs of target and non-target nodes that were
compared during the search, is equal to,

$= w · f (B)−w · f (C) = w · f (E)−w · f (F)
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Figure 9: Counter example for convergence under positive search margin.

which is positive. We now show that the existence of w does not imply convergence under perceptron
updates.

Consider simulating LaSO-BR starting from w′ = 0. The first search step gives the beam {D,B}
according to the given preference ordering. Since B is on the target path we continue expanding to
the next level where we get the new beam {G,H}. None of the nodes are on the target path so we
update the weights as follows:

w′ = w′ + f (E)−0.5[ f (G)+ f (H)]

= w′ +[1,1]− [1,1]
= w′.

This shows that w′ does not change and we have converged to the weight vector w′ = 0, which is not
a solution to the problem.

For the case of best-first beam search, the performance is similar. Given the weight vector
w= [$,$], the resulting beam search with beam width 2 will generate the beam sequence,

{A},{B,C},{E,C}

which is consistent with the target trajectory. From this we can see that w has a positive search
margin of:

$= w · f (B)−w · f (C) = w · f (E)−w · f (C).

However, if we follow the perceptron algorithm when started with the weight vector w′ = 0 we can
again show that the algorithm does not converge to a solution weight vector. In particular, the first
search step gives the beam {D,B} and since B is on the target path, we do not update the weights
and generate a new beam {G,H} by expanding the node D. At this point there are no target nodes
in the beam and the weights are updated as follows

w′ = w′ + f (B)−0.5[ f (G)+ f (H)]

= w′ +[1,1]− [1,1]
= w′
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showing that the algorithm has converged to w′ = 0, which is not a solution to the problem.
Thus, we have shown that a positive search margin does not guarantee convergence for either

LaSO-BR or LaSO-BST. This counter example also applies to the original LaSO algorithm, which
is quite similar to LaSO-BST.

4.3 Convergence Under Stronger Notions of Margin

Given that linear separability, or equivalently a positive search margin, is not sufficient to guarantee
convergence we consider a stronger notion of margin, the level margin, which measures by how
much the target nodes are ranked above (or below) other non-target nodes at the same search level.

Definition 11 (Level Margin) The level margin of a weight vector w for a training set is defined as
$=min{(v∗,v)}(w · f (v∗)−w · f (v)), where the set {(v∗,v)} contains any pair such that v∗ is a target
node at some depth j and v can be reached in j search steps from the initial search node—that is,
v∗ and v are at the same level.

For breadth-first beam search, a positive level margin for w implies a positive search margin, but not
necessarily vice versa, showing that level margin is a strictly stronger notion of separability. The
following result shows that a positive level margin is sufficient to guarantee convergence of LaSO-
BR. Throughout we will let R be a constant such that for all training instances, for all nodes v and
v′, ‖ f (v)− f (v′)‖ ≤ R. The proof of this result follows similar lines as the Perceptron convergence
proof for standard classification problems Rosenblatt (1962).

Theorem 12 Given a dead-end free training set such that there exists a weight vector w with level
margin $> 0 and ‖w‖ = 1, LaSO-BR will converge with a consistent weight vector after making no
more than (R/$)2 weight updates.

Proof First note that the dead-end free property of the training data can be used to show that unless
the current weight vector is a solution it will eventually trigger a “meaningful” weight update (one
where the candidate set contains target nodes).

Let wk be the weights before the k′th mistake is made. Then w1 = 0. Suppose the k′th mistake
is made for the training data 〈Si,Pi〉, when B∩Pi, j = /0. Here, Pi, j is the j′th element of Pi, B is the
beam generated at depth j for Si and C is the candidate set from which B is selected. Note that C is
generated by expanding all nodes in the previous beam and at least one of them is in Pi, j−1. With
the dead-end free property, we are guaranteed thatC′ = Pi, j∩C += /0. The occurrence of the mistake
indicates that, ∀v∗ ∈ Pi, j ∩C,v ∈ B, wk · f (v∗) ≤ wk · f (v), which lets us derive an upper bound for
‖wk+1‖2.

‖wk+1‖2 = ‖wk + #v∗∈C′ f (v∗)
|C′|

− #v∈B f (v)
b

‖2

= ‖wk‖2+‖#v∗∈C′ f (v∗)
|C′|

− #v∈B f (v)
b

‖2

+2wk · (#v∗∈C′ f (v∗)
|C′|

− #v∈B f (v)
b

)

≤ ‖wk‖2+‖#v∗∈C′ f (v∗)
|C′|

− #v∈B f (v)
b

‖2

≤ ‖wk‖2+R2
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where the first equality follows from the definition of the perceptron-update rule, the first inequality
follows because wk ·( f (v∗)− f (v)) < 0 for all v∗ ∈C′,v∈ B, and the second inequality follows from
the definition of R. Using this upper-bound we get by induction that

‖wk+1‖2 ≤ kR2.

Suppose there is a weight vector w such that ||w|| = 1 and w has a positive level margin, then
we can derive a lower bound for w ·wk+1.

w ·wk+1 = w ·wk +w · (#v∗∈C′ f (v∗)
|C′|

− #v∈B f (v)
b

)

= w ·wk + #v∗∈C′ w · f (v∗)
|C′|

− #v∈Bw · f (v)
b

≥ w ·wk + $.

This inequality follows from the definition of the level margin $ of the weight vector w.
By induction, we get that w ·wk+1 ≥ k$. Combining this result with the above upper bound on

‖wk+1‖ and the fact that ‖w‖ = 1 we get that

1≥
w ·wk+1

‖w‖‖wk+1‖
≥
√
k
$
R
⇒ k ≤

R2

$2
.

Without the dead-end free property, LaSO-BR might generate a candidate set that contains no
target nodes, which would allow for a mistake that does not result in a weight update. However, for
a dead-end free training set, it is guaranteed that the weights will be updated if and only if a mistake
is made. Thus, the mistake bound is equal to the bound on the weight updates.

Note that for the example search space in Figure 9 there is no weight vector with a positive
level margin since the final layer contains target and non-target nodes with identical weight vectors.
Thus, the non-convergence of LaSO-BR on that example is consistent with the above result. Unlike
LaSO-BR, LaSO-BST and LaSO do not have such a guarantee since their beams can contain nodes
from multiple levels. This is demonstrated by the following counter example.

Counter Example 2 We give a training set for which the existence of a w with positive level margin
does not guarantee convergence for LaSO-BST. Consider a single training example with the search
space in Figure 10, single target path P= ({A},{B},{E}), and preference ordering C < B < E <
F < G< D.

Given the weight vector w = [2$,$], the level margin of w is equal to $. However, starting with
w′ = 0 and running LaSO-BST the first search step gives the beam {D,B}. Since B is on the target
path, we get the new beam {G,F} by expanding the node D. This beam does not contain a target
node, which triggers the following weight update:

w′ = w′ + f (B)− [ f (F)+ f (G)]/2
= w′ +[1,0]− [1,0]
= w′.

Since w′ does not change the algorithm has converged to w′ = 0, which is not a solution to this
problem. This shows that a positive level margin is not sufficient to guarantee the convergence of
LaSO-BST. The same can be shown for the original LaSO.
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Figure 10: Counter example to convergence under positive level margin.

In order to guarantee convergence of LaSO-BST, we require an even stronger notion of margin,
global margin, which measures the rank difference between any target node and any non-target
node, regardless of search space level.

Definition 13 (Global Margin) The global margin of a weight vector w for a training set is defined
as $= min{(v∗,v)}(w · f (v∗)−w · f (v)), where the set {(v∗,v)} contains any pair such that v∗ is any
target node and v is any non-target node in the search space.

Note that if w has a positive global margin then it has a positive level margin. The converse is
not necessarily true. The global margin is similar to the common definitions of margin used to
characterize the convergence of linear perceptron classifiers (Novikoff, 1962).

To ensure convergence of LaSO-BST we also assume that the search spaces are all finite trees.
This avoids the possibility of infinite best-first beam trajectories that never terminate at a goal node.
Tree structures are quite common in practice and it is often easy to transform a finite search space
into a tree. The structured classification experiments of Daumé III and Marcu (2005) and our own
automated experiments both involve tree structured spaces.

Theorem 14 Given a dead-end free training set of finite tree search spaces such that there exists a
weight vector w with global margin $> 0 and ‖w‖ = 1, LaSO-BST will converge with a consistent
weight vector after making no more than (R/$)2 weight updates.

The proof is similar to that of Theorem 12 except that the derivation of the lower bound makes use
of the global margin and we must verify that the restriction to finite tree search spaces guarantees
that each iteration of LaSO-BST will terminate with a goal node being reached. We were unable to
show convergence for the original LaSO algorithm even under the assumptions of this theorem.

In summary, this section has introduced three different notions of margin: search margin, level
margin, and global margin. Both algorithms converge for a positive global margin, which implies a
positive search margin and a positive level margin. For LaSO-BR, but not LaSO-BST, convergence
is guaranteed for a positive level margin, which implies a positive search margin. This shows that
LaSO-BR converges under a strictly weaker notion of margin than LaSO-BST due to the fact that
the ranking decisions of breadth-first search are restricted to nodes at the same level of the search
space, as opposed to best-first search. This suggests that it may often be easier to define effective
feature spaces for the breadth-first paradigm. Finally, a positive search margin corresponds exactly
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to linear separability, but is not enough to guarantee convergence for either algorithm. This is in
contrast to results for linear classifier learning, where linear separability implies convergence of
perceptron updates.

4.4 Convergence for Ambiguous Training Data

Here we study convergence for linearly inseparable training data. Inseparability is often the result
of training-data ambiguity, in the sense that many “good” solution paths are not included as tar-
get paths. For example, this is common in automated planning where there can be many (nearly)
optimal solutions, many of which are inherently identical (e.g., differing in the orderings of un-
related actions). It is usually impractical to include all solutions in the training data, which can
make it infeasible to learn a ranking function that strictly prefers the target paths over the inherently
identical paths not included as targets. In these situations, the above notions of margin will all be
negative. Here we consider the notion of beam margin that allows for some amount of ambiguity,
or inseparability.

For each instance 〈Si,Pi〉, where Si = 〈Ii,si(·), f (·),<i〉 and Pi = (Pi,1,Pi,2, . . . ,Pi,di), let Di j be
the set of nodes that can be reached in j search steps from Ii. That is, Di j is the set of all possible
non-target nodes that could be in beam Bi, j. A beam margin is a triple (b′,%1,%2) where b′ is a
non-negative integer, and %1,%2 ≥ 0.

Definition 15 (Beam Margin) A weight vector w has beam margin (b′,%1,%2) on a training set
{〈Si,Pi〉}, if for each i, j there is a set D′

i j ⊆ Di j such that |D′
i j|≤ b′ and

∀v∗ ∈ Pi, j,v ∈ Di j−D′
i j, w · f (v∗)−w · f (v) ≥ %1 and,

∀v∗ ∈ Pi, j,v ∈ D′
i j, %1 > w · f (v∗)−w · f (v) ≥−%2.

Aweight vector w has beam margin (b′,%1,%2) if at each search depth it ranks the target nodes better
than most other non-target nodes (those in Di j−D′

i j) by a margin of at least %1, and ranks at most b′
non-target nodes (those inD′

i j) better than the target nodes by a margin no greater than %2. Whenever
this condition is satisfied we are guaranteed that a beam search of width b > b′ guided by w will
solve all of the training problems. The case where b′ = 0 corresponds to the level margin, where
the data is separable. By allowing b′ > 0 we can consider cases where there is no “dominating”
weight vector that ranks all targets better than all non-targets at the same level. The following result
shows that for a large enough beam width, which is dependent on the beam margin, LaSO-BR will
converge to a consistent solution.

Theorem 16 Given a dead-end free training set, if there exists a weight vector w with beam margin
(b′,%1,%2) and ‖w‖ = 1, then for any beam width b > (1+%2/%1)b′ = b∗, LaSO-BR will converge
with a consistent weight vector after making no more than (R/%1)

2 (1−b∗b−1
)−2 weight updates.

Proof Let wk be the weights before the k′th mistake is made, so that w1 = 0. Suppose that the k′th
mistake is made when B∩Pi, j = /0 where B is the beam generated at depth j for the ith training
instance. We can derive the upper bound of ‖wk+1‖2 ≤ kR2 as in the proof of Theorem 12.

Next we derive a lower bound on w ·wk+1. Denote by B′ ⊆ B the set of nodes in the beam such
that %1 > w · ( f (v∗)− f (v)) ≥−%2 and letC′ = Pi, j ∩C. By the definition of beam margin, we have
|B′| < b′.
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w ·wk+1 = w ·wk +w · (#v∗∈C′ f (v∗)
|C′|

− #v∈B f (v)
b

)

= w ·wk +w · #
v∈B−B′

#v∗∈C′ f (v∗)
|C′| − f (v)

b

+w · #
v∈B′

#v∗∈C′ f (v∗)
|C′| − f (v)

b

≥ w ·wk +
(b−b′)%1

b
−
b′%2
b

.

By induction, we get that w ·wk+1 ≥ k (b−b′)%1−b′%2
b . Combining this result with the above upper

bound on ‖wk+1‖ and the fact that ‖w‖= 1 we get that 1≥ w·wk+1
‖w‖‖wk+1‖ ≥

√
k (b−b′)%1−b′%2

bR . The mistake
bound follows by noting that b> b∗ and algebra.

Similar to Theorem 12, the dead-end free property of the training set guarantees that the mistake
bound is equal to the bound on the weight updates.

Note that when there is a positive level margin (i.e., b′ = 0), the mistake bound here reduces to
(R/%1)

2, which does not depend on the beam width and matches the result for separable data. This
is also the behavior when b>> b∗.

An interesting aspect of this result is that the mistake bound depends on the beam width. Rather,
all of our previous convergence results were independent of the beam width and held even for beam
width b = 1. Thus, those previous results did not provide any formalization of the intuition that
the learning problem will often become easier as the beam width increases, or equivalently as the
amount of search increases. Indeed, in the extreme case of exhaustive search, no learning is needed
at all, whereas for b= 1 the ranking function has little room for error.

To get a sense for the dependence on the beam width consider two extreme cases. As noted
above, for very large beam widths such that b >> b∗, the bound becomes (R/%1)

2. On the other
extreme, if we assume %1 = %2 and we use the smallest possible beam width allowed by the theorem
b = 2b′ + 1, then the bound becomes ((2b′ +1)R/%1)

2, which is a factor of (2b′ + 1)2 larger than
when b >> b′. This shows that as we increase b (i.e., the amount of search), the mistake bound
decreases, suggesting that learning becomes easier, agreeing with intuition.

It is also possible to define an analog to the beam margin for best first beam search. However,
in order to guarantee convergence, the conditions on ambiguity would be relative to the global state
space, rather than local to each level of the search space.

5. Application to Automated Planning

In this section, we present an empirical evaluation of beam-search learning in the context of auto-
mated planning. We first give related background, followed by the technical details regarding our
application to automated planning. Then, we present the experimental results.
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5.1 Background

Here we give background related to automated planning, the problem of learning to plan, and prior
related work in the area of learning to plan.

5.1.1 AUTOMATED PLANNING

Planning is a subfield of artificial intelligence that studies algorithms for selecting sequences of
actions in order to achieve goals. In this work, we consider planning domains and planning prob-
lems described using the STRIPS fragment of the planning domain description language (PDDL)
(McDermott, 1998), which we now outline.

A planning domain D defines a set of possible actions A and a set of world statesW in terms
of a set of predicate symbols P, action types Y , and constants C. A state fact is the application
of a predicate to the appropriate number of constants, with a state being a set of state facts. Each
action a ∈ A consists of: 1) an action name, which is an action type applied to the appropriate
number of constants, 2) a set of precondition state facts Pre(a), 3) two sets of state facts Add(a)
and Del(a) representing the add and delete effects respectively. An action a is applicable to a world
state & iff Pre(a) ⊆ &, and the application of an (applicable) action a to & results in the new state
&′ = (&\Del(a))∪Add(a). That is, the application of an action adds the facts in the add list to the
state and deletes facts in the delete list.

Given a planning domain, a planning problem is a tuple (&,A,g), where A ⊆ A is a set of
actions, & ∈ W is the initial state, and g is a set of state facts representing the goal. A solution
plan for a planning problem is a sequence of actions 〈a1, . . . ,al〉, where the sequential application
of the sequence starting in state & leads to a goal state &′ where g⊆ &′. In this paper, we will view
planning problems as directed graphs where the vertices represent states and the edges represent
possible state transitions. Planning then reduces to graph search for a path from the initial state to
goal.

Figure 1 shows an example of the search space corresponding to a problem from the Blocksworld
planning domain. Here, the initial state is described by the facts

&0 = {clear(A),clear(B),clear(C),clear(D),ontable(A),

ontable(B),ontable(C),ontable(D),armempty}.

An example action from the domain is pickup(A) with the following definition:

Pre(pickup(A)) = {clear(A),ontable(A),armempty}
Add(pickup(A)) = {holding(A)}
Del(pickup(A)) = {clear(A),ontable(A),armempty}.

Note that the precondition of this action is satisfied in &0 and hence can be applied from &0, which
would result in the new state

&1 = {holding(A),clear(B),clear(C),clear(D),ontable(B),ontable(C),ontable(D)}.

If the goal of the planning problem is g = {on(C,D),on(B,A),clear(C),clear(B)}, then one solu-
tion for the problem, as shown in Figure 1, is the action sequence 〈pickup(B),stack(B,A), pickup(C),
stack(C,D)〉.

1594



LEARNING LINEAR RANKING FUNCTIONS FOR BEAM SEARCH WITH APPLICATION TO PLANNING

There has been much recent progress in automated planning. One of the most successful ap-
proaches, and the one most relevant to this paper, is to solve planning problems using forward
state-space search guided by powerful domain-independent planning heuristics. A number of recent
state-of-the-art planners have followed this approach including HSP (Bonet and Geffner, 1999), FF
(Hoffmann and Nebel, 2001), and AltAlt (Nguyen et al., 2002) to name just a few.

5.1.2 LEARNING TO PLAN

It is common for planning systems to be asked to solve many problems from a particular domain.
For example, the bi-annual international planning competition is organized around a number of
planning domains and includes many problems of varying difficulty from each domain. Given that
problems from the same domain share significant structure, it is natural to attempt to learn from past
experience in a domain in order to solve future problems from the same domain more efficiently.
However, most state-of-the-art planning systems do not have any such learning capability and rather
solve each problem from the domain as if it were the first problem ever encountered by the planner.
The goal of our work is to develop the capability for a planner to learn domain-specific knowledge
in order to improve performance in a target domain of interest.

More specifically, we focus on developing learning capabilities within the simple, but highly
successful, framework of heuristic state-space search planning. Our goal is to learn heuristics, or
ranking functions, that can quickly solve problems using beam search with a small beam width.
Given a representative training set of problems from a planning domain, our approach first solves
the problems using potentially expensive search (e.g., using a large beam width), guided by an
existing heuristic. These solutions are then used to learn a heuristic that can guide a small width
beam search to the same solutions. The hope is that the learned heuristic will then generalize and
allow for the quick solution of new problems that could not be practically solved before learning.

5.1.3 PRIOR WORK

There has been a long history of work on learning-to-plan, originating at least back to the original
STRIPS planner (Fikes et al., 1972), which learned triangle tables or macros that could later be
exploited by the planner. For a collection and survey of work on learning in AI planning see Minton
(1993) and Zimmerman and Kambhampati (2003).

A number of learning-to-plan systems have been based on the explanation-based learning (EBL)
paradigm, for example, Minton et al. (1989) among many others. EBL is a deductive learning
approach, in the sense that the learned knowledge is provably correct. Despite the relatively large
effort invested in EBL research, the best approaches typically did not consistently lead to significant
gains, and even hurt performance in many cases. A primary way that EBL can hurt performance is
by learning too many, overly specific control rules, which results in the planner spending too much
time simply evaluating the rules at the cost of reducing the number of search nodes considered. This
problem is commonly referred to as the EBL utility problem (Minton, 1988).

Partly in response to the difficulties associated with EBL-based approaches, there have been a
number of systems based on inductive learning, sometimes combined with EBL. The inductive ap-
proach involves applying statistical learning mechanisms in order to find common patterns that can
distinguish between good and bad search decisions. Unlike EBL, the learned control knowledge
typical does not have guarantees of correctness, however, the knowledge is typically more gen-
eral and hence more effective in practice. Some representative examples of such systems include
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learning for partial-order planning (Estlin and Mooney, 1996), learning for planning as satisfiabil-
ity (Huang et al., 2000), and learning for the Prodigy means-ends framework (Aler et al., 2002).
While these systems typically showed better scalability than their EBL counterparts, the evaluations
were typically conducted on only a small number of planning domains and/or small number of test
problems. There is no empirical evidence that such systems are robust enough to compete against
state-of-the-art non-learning planners across a wide range of domains.

More recently there have been several learning-to-plan systems based on the idea of learning re-
active policies for planning domains (Khardon, 1999; Martin and Geffner, 2000; Yoon et al., 2002).
These approaches use statistical learning techniques to learn policies, or functions, that map any
state-goal pair from a given domain to an appropriate action. Given a good reactive policy for a do-
main, problems can be solved quickly, without search, by iterative application of the policy. Despite
its simplicity, this approach has demonstrated considerable success. However, these approaches
have still not demonstrated the robustness necessary to outperform state-of-the-art non-learning
planners across a wide range of domains.

More closely related is work by La Rosa et al. (2007), which uses a case-based reasoning ap-
proach to obtained an improved heuristic for forward state-space search. It is likely that our weight
learning approach could be combined with their system to harness the benefits of both approaches.
The most closely related approach to our work is based on extending forward state-space search
planners by learning improved heuristics (Yoon et al., 2006), an approach which is among the state-
of-the-art among learning-based planners. That work focused on improving the relaxed plan length
heuristic used by the state-of-the-art planner FF (Hoffmann and Nebel, 2001). Note that FF con-
sists of two stages: an incomplete local search and a complete best first search. In particular, Yoon
et al. (2006) applied linear regression to learn an approximation of the difference between FF’s
heuristic and the observed distances-to-goal of states in the training plans. The primary contribu-
tion of the work was to define a generic knowledge representation for features and a features-search
procedure that allowed learning of good regression functions across a range of planning domains.
While the approach showed promising results, the learning mechanism has a number of potential
shortcomings. Most importantly, the mechanism does not consider the actual search performance
of the heuristic during learning. That is, learning is based purely on approximating the observed
distances-to-goal in the training data. Even if the learned heuristic performs poorly on the training
data when used for search, the learner makes no attempt to correct the heuristic in response.

A primary motivation for this paper is to develop a heuristic learning mechanism that is more
tightly integrated with the search process. Our LaSO-style algorithms for learning beam-search
ranking functions do exactly that. Our learning approach can be viewed as error-driven in the sense
that it directly attempts to correct errors as they arise in the search process, rather than attempting to
precisely model the distance-to-goal. In many areas of machine learning, such error-driven methods
have been observed to outperform their traditional passive counterparts. The experimental results
presented here agree with that observation in a number of planning domains.

5.2 Experimental Setup

We present experiments in eight STRIPS domains: Blocksworld, Pipesworld, Pipesworld-with-
tankage, PSR, Philosopher, DriverLog, Depots and FreeCell. All of these domains with the excep-
tion of Blocksworld were taken from the 3rd and 4th international planning competitions (IPC3 and
IPC4). With only two exceptions, this is the same set of domains used to evaluate the approach of
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Yoon et al. (2006), which is the only prior work that we are aware of for learning heuristics to im-
prove forward state-space search in automated planning. The difference between our set of domains
and theirs is that we include Blocksworld, while they did not, and we do not include the Optical
Telegraph domain, while they did. Our reason for not showing results for Optical Telegraph is that
none of the systems we evaluated were able to solve any of the problems.1

5.2.1 DOMAIN PROBLEM SETS

For each domain we needed to create a set of training problems and testing problems on which the
learned heuristics would be trained and evaluated. In Blocksworld, all problems were generated us-
ing the BWSTATES generator (Slaney and Thiébaux, 2001), which produces random Blocksworld
problems. Thirty problems with 10 or 20 blocks were used as training data, and 30 problems with
20, 30, or 40 blocks were used for testing. For DriverLog, Depots and FreeCell, the first 20 prob-
lems are taken from IPC3 and we generated 30 more problems of varying difficulty to arrive at a
set of 50 problems, roughly ordered by difficulty. For each domain, we used the first 15 problems
for training and the remaining 35 for testing. The other four domains are all taken from IPC4. Each
domain includes 50 or 48 problems, roughly ordered by difficulty. In each case, we used the first 15
problems for training and the remaining problems for testing.

5.2.2 SEARCH SPACE DEFINITION

We now describe the mapping between the planning problem described in Section 5.1.1 and the
general search spaces described in Section 2, which were the basis for describing our algorithms.
Recall that a general search space is a tuple 〈I,s(·), f (·),<〉 giving the initial state, successor func-
tion, feature function, and preference ordering respectively. In the context of planning each search
node is a state-goal pair (&,g), where & can be thought of as the current world state, g is the current
goal, and both are represented as sets of facts. Note that it is important that nodes contain both state
and goal information, rather than just state information, since the evaluation/ranking of a search
node depends on how good & is with respect to the particular goal g. The initial search node I is
equal to (&0,g), where &0 is the initial state of the planning problem and g is the problem’s goal.
The successor function s maps a search node (&,g) to the set of all nodes of the form (&′,g) where
&′ is a state that can be reached from & via the application of some action whose preconditions are
satisfied in &. Note that according to this definition all nodes in a search space contain the same
goal component. The feature function f ((&,g)) = ( f1((&,g)), . . . , fm((&,g))) can be any function
over world states and goals. The particular functions we use in this work are describe later in this
section. Finally, the preference ordering < is simply the default ordering used by the planner FF,
which is the planner our implementation is based on.

5.2.3 TRAINING DATA GENERATION

The LaSO-style algorithms learn from target solution paths, which requires that we generate solu-
tion plans for all of the training problems. To do this, for each training problem, we selected the
shortest plan out of those found by running the planner FF and beam search with various large beam

1. The results in Yoon et al. (2006) indicated that their linear regression learning method was effective in Optical
Telescope. Our implementation of linear regression, however, was unable to solve any of the problems. After
investigating this difference, we found that it is due to a subtle difference in the way that ties are broken during
forward state-space search, indicating that the linear regression method was not particularly robust in this domain.
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widths guided by FF’s relaxed-plan heuristic. The resulting plans are totally ordered sequences of
actions and one could simply label each training problem by its corresponding sequence of actions.
However, in many cases, it is possible to produce equivalent plans by permuting the order of certain
actions in the totally ordered plans. That is, there are usually many other equivalent totally ordered
plans. Thus, including only the single plan found via the above approach in the training data results
in significant ambiguity in the sense described in Section 4.4.

In order to help reduce the ambiguity it is desirable to try to include as many equivalent plans
as possible as part of the target plan set for a particular problem. To do this, instead of using just
a single totally ordered solution plan in the training data for each problem, we transform each such
totally ordered plan into a partial-order plan, which contains the same set of actions but only in-
cludes action-ordering constraints that appear to be necessary. Finding minimal partial-order plans
from total-order plans is an NP-hard problem and hence we use the heuristic algorithm described
in Veloso et al. (1991). For each training problem, the resulting partial-order plan provides an im-
plicit representation for a potentially exponentially large set of solution trajectories. By using these
partial-order plans as the labels for our training problems we can significantly reduce the ambiguity
in the training data. In preliminary experiments, the performance of our learning algorithms im-
proved in a number of domains when using training data that included the partial-order plans rather
than the original total-order plans.

5.2.4 HEURISTIC REPRESENTATION AND DOMAIN FEATURES

We consider learning heuristic functions that are represented as weighted linear combinations of
features, that is, H(v) = 'iwi · fi(v)where v is a search node, fi is a feature of search nodes, and wi is
the weight of feature fi. One of the challenges with this representation is to define a generic feature
space from which features can be selected for each domain. This space must be rich enough to
capture important properties of a wide range of planning domains, but also be amenable to searching
for those properties. For this purpose we will draw on prior work Yoon et al. (2008) that defined
such a feature space using a first-order language.

Each feature in the above space is defined by a taxonomic class expression, which represents a
set of constants/objects in the planning domain. For example, a simple taxonomic class expression
for the Blocksworld planning domain is clear, which represents the set of blocks that are currently
clear, that is, the set of blocks x such that clear(x) ∈ & where the current search node is v= (&,g).
The respective feature value represented by a class expression is equals to the cardinality of the class
expression when evaluated at a search node. For example, if we let f1 be the feature represented
by the class expression clear then f1((&,g)) is simply the number of clear blocks in &. So in the
example states from Section 5.1.1, f1(v0) = f1((&0,g)) = 4 and f1(v1) = f1((&1,g)) = 3. A more
complex example for this problem is clear∩gclear, which represents the set of blocks that are clear
in both the current state and the goal, that is, the set containing any block x such that clear(x) ∈ &
and clear(x) ∈ g. If f2 represents the feature corresponding to this expression then in the example
states from 5.1.1 we get that f2(v0) = 2 and f2(v1) = 2.

Since our work in this paper is focused on weight learning, we refer to Yoon et al. (2008) for the
full definition of the taxonomic feature language. Here we simply use a set of taxonomic features
that have been automatically learned in prior work (Yoon et al., 2008) and tune their weights. In
our experiments, this prior work gave us 15 features in Blocksworld, 35 features in Pipesworld, 11
features in Pipesworld-with-tankage, 54 features in PSR, 19 features in Philosopher, 22 features in
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DriverLog, 3 features in Depot and 3 features in FreeCell. In all cases, we include FF’s relaxed-
plan-length heuristic as an additional feature.

5.3 Experimental Results

For each domain, we use LaSO-BR to learn weights with a learning rate of 0.01 for beam widths 1,
10, 50, and 100 and we will denote LaSO-BR run with beam width b by LaSO-BRb. The maximum
number of LaSO-BR iterations was set to 5000. In the evaluation procedure, we set a time cut-off of
30 CPU minutes per problem and considered a problem to be unsolved if a solution was not found
within the cut-off.

In preliminary work, we also tried to apply LaSO-BST to our problems. However, this turned
out to be an impractical approach due to the large potential search depths of these problems. In par-
ticular, we found that in many cases LaSO-BST would become stuck processing training examples,
in the sense that it would neither update the weights nor make progress with respect to following
the target trajectories. This typically occurred because LaSO-BST would maintain an early target
node in the beam and thus not trigger a weight update, but at the same time would not progress to
include deeper nodes on the target trajectories and instead explore paths off the target trajectories.
To help remedy this behavior, we experimented with a variant of LaSO-BST that forces progress
along the target trajectories after a specified number of search steps. For the Blocksworld planning
domain and preliminary experiments in the other domains, we found that the results tended to im-
prove compared to the original LaSO-BST, but still were not competitive with LaSO-BR. Thus for
the experiments reported below we focus on LaSO-BR.

Note that the experiments in Daumé III and Marcu (2005) for structured classification produced
good results using an algorithm very similar to LaSO-BST. There, however, the search spaces have
small maximum depths (e.g., the length of a sentence), which apparently helped to avoid the prob-
lem we experienced here.

5.3.1 TRAINING TIME

Figure 11 gives the average training time required by LaSO-BR per iteration in each of our domains
for four different beam widths. Note that Pipesworld was the only domain for which LaSO-BR
converged to a consistent weight vector using a learning beam width 100. For all other training
sets LaSO-BR never converged and thus terminated after 5000 iterations. The training time varies
widely across the domains and depends on various factors including: number of features, number
of actions, number of state predicates, and the number and length of target trajectories per training
example. As expected the training times increase with the training beam width across the domains.
It is difficult, however, to predict the relative times between different domains due to the complicated
interactions among the above factors. Note that while these training times can be significant in many
domains, the cost of training needs to only be paid once and then it is amortorized over all future
problems. Furthermore, as we can observe later in the experimental results, a small beam width of
10 typically performs as well as larger widths.

5.3.2 DESCRIPTION OF TABLES

Before presenting our results we will first provide an overview of the information contained in our
results tables. Figure 12 compares the performance of LaSO-BR10 to three other algorithms,
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Domain b= 1 b= 10 b= 50 b= 100
Blocksworld 3 15 66 128
Pipesworld 1 4 13 24

Pipesworld-with-tankage 3 17 76 149
PSR 53 127 403 690

Philosopher 3 24 121 260
DriverLog 1 5 22 44
Depots 5 32 160 320
FreeCell 10 68 315 654

Figure 11: The average training time required by LaSO-BR per iteration for all training instances
(seconds).

• LEN : beam search using FF’s relaxed plan length heuristic

• U : beam search using a heuristic with uniform weights for all features

• LR : beam search using the heuristic learned from linear regression following the approach in
Yoon et al. (2006).

We selected LaSO-BR10 here because its performance is on par or better than other training beam
widths. Note that in practice one could select the best beam width to use via cross-validation with a
validation set of problems.

There is one table for each of our domains and each column in the tables is labeled by the
algorithm used to generate the results. The rows correspond to the beam width used to generate
the results on the testing problems, with the last row corresponding to using full best-first search
(BFS) with an infinite beam width, which is the native search procedure used by FF. The columns
are divided into three sets. The first four data columns labeled “Problems solved” give the number
of problems solved using the testing beam width corresponding to the row, where a problem is
considered solved if a solution is found within 30 minutes. The second set of columns labeled
“Median plan length” gives the median length of solutions to the planning problems that were
solved. The last 4 columns labeled “Median runtime ” give the median runtime of each solver on
the problems it solved. So, for example, the table shows that the heuristic learned via LaSO-BR10
solves 26 Blocksworld test problems with a median solution length of 139 and a median runtime
of 58.8 seconds using a testing beam width of 50, and solved 19 problems with a median solution
length of 142 and a median runtime of 20.9 seconds using BFS.

Figure 13 is similar in structure to Figure 12 but compares the performance of heuristics learned
using LaSO-BR with a variety of training beam widths and evaluated using a variety of testing beam
widths. Only the number of problems solved and the median length of solutions that are found are
considered here. For example, the upper left-most data point gives the number of problems solved
using a learning beam width of 1 and a testing beam width of 1, while the first entry in the last
column gives the median plan length of solved problems when learning with beam width 100 and
testing with beam width 1.
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Blocksworld
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 13 0 11 24 3318 - 938 499 12.3 - 3.4 4.5
10 22 0 19 24 449 - 120 293 15.9 - 9.9 25.1
50 20 0 19 26 228 - 64 139 37.5 - 10.4 58.8
100 19 0 20 24 110 - 67 144 52.0 - 42.8 110.3
500 17 0 23 17 80 - 74 96 74.2 - 379.1 133.2
BFS 5 0 13 19 80 - 76 142 3.7 - 18.0 20.9

Pipesworld
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 11 13 8 16 114 651 2476 2853 0.6 3.2 21.7 17.8
10 17 17 21 23 112 360 194 222 15.6 13.2 10.2 15.8
50 18 19 21 26 34 167 89 80 9.4 42.8 25.5 27.8
100 18 16 21 24 32 39 60 62 19.7 12.0 23.3 39.3
500 21 18 21 25 30 33 31 53 62.9 58.3 101.8 95.1
BFS 15 7 7 15 44 54 42 54 35.5 1.1 3.1 1.3

Pipesworld-with-tankage
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 6 4 2 7 119 416 1678 291 8.0 18.2 92.1 8.4
10 6 8 9 8 68 603 399 117 70.2 256.5 125.6 33.4
50 6 5 6 11 61 111 94 122 358.4 281.4 186.1 116.3
100 5 4 5 8 54 105 43 55 482.4 279.4 255.5 190.6
500 5 6 4 10 42 97 41 76 938.5 586.1 210.7 492.0
BFS 5 3 2 3 59 60 126 100 431.2 17.1 935.7 22.0

PSR
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 0 0 0 0 - - - - - - - -
10 1 20 13 13 516 157 151 193 840.1 367.9 186.6 492.4
50 13 17 16 10 99 109 99 97 685.3 658.2 890.4 802.4
100 13 15 13 6 103 89 89 85 999.4 1121.9 1215.0 643.1
500 4 4 2 1 55 59 48 39 1035.6 1157.6 689.1 423.9
BFS 13 0 21 21 89 - 131 141 686.7 - 290.8 526.0

Philosopher
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 0 33 33 33 - 363 363 363 - 12.5 18.1 13.3
10 0 33 33 11 - 363 363 1154 - 121.3 171.0 101.3
50 0 6 23 13 - 215 308 1579 - 77.6 387.4 825.1
100 0 16 18 6 - 292 281 1076 - 489.0 507.6 911.1
500 0 7 7 2 - 220 220 745 - 792.3 844.6 1280.7
BFS 0 33 33 0 - 363 363 - - 9.5 329.8 -

DriverLog
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 0 0 0 8 - - - 6801 - - - 364.2
10 3 0 0 12 789 - - 1439 967.8 - - 781.3
50 4 8 0 12 108 177 - 541 1199.3 457.6 - 998.5
100 1 11 0 11 98 147 - 275 1398.9 737.9 - 1131.6
500 0 3 0 1 - 86 - 94 - 1780.2 - 1237.1
BFS 6 2 0 1 162 181 - 138 1249.7 555.5 - 125.4

Depots
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 1 1 2 3 462 790 411 790 3.9 6.5 3.8 6.7
10 4 1 4 6 195 28 981 3295 38.7 2.4 93.1 594.8
50 3 4 5 6 25 511 51 467 22.4 912.8 17.3 156.0
100 4 7 3 7 232 157 26 207 554.9 669.4 45.6 189.9
500 5 4 6 11 38 62 39 53 274.2 351.2 422.7 477.8
BFS 2 2 3 2 46 48 33 48 292.4 809.3 14.2 386.8

FreeCell
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 5 7 4 9 96 120 146 123 12.2 21.5 13.8 14.0
10 20 22 19 21 82 117 243 89 99.7 165.2 305.2 91.9
50 23 24 12 19 65 73 102 66 456.2 503.4 619.0 367.9
100 20 18 7 21 65 63 70 65 723.5 720.9 673.4 796.1
500 3 3 2 4 53 55 59 55 1400.0 1418.8 1518.5 1431.8
BFS 23 20 12 20 78 87 111 97 102.1 77.9 238.4 92.3

Figure 12: Experimental results for different planners. For each domain, we show the number of
solved problems, the median plan length and median runtime of the solved problems. A
dash in the table indicates that the planner was unable to solve any of the problems.
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5.3.3 PERFORMANCE ACROSS TESTING BEAM WIDTHS

From Figure 12, in general, for all algorithms (learning and non-learning) we see that as the testing
beam width begins to increase the number of solved problems and runtime increase and solution
lengths improve. However, at some point as the beam width continues to increase the number
of solved problems typically decreases. This behavior is typical for beam search, since as the
testing beam width increases there is a greater chance of not pruning a solution trajectory, but the
computational time and memory demands increase. Thus, for a fixed time cut-off we expect a
decrease in performance as the beam width becomes large.

The median runtime typically increases as the test beam width increases, because more search
nodes need to be evaluated. However, it is not always the case. The number of search nodes that
are going to be evaluated also depends on the plan length. For example, while using LEN in the
Depots planning domain, the median runtime of beam width 50 is smaller than that of beam width
10, because the median plan length improves from 195 to 25. Also note that it is not necessarily true
that the plan lengths are strictly non-increasing with testing beam width. With large testing beam
widths the number of candidates for the next beam increases, making it more likely for the heuristic
to get confused by “bad” states. This is also one possible reason why performance tends to decrease
with larger testing beam widths.

5.3.4 LASO-BR10 VERSUS NO LEARNING

From Figure 12, we see that compared to LEN, the heuristic learned by LaSO-BR10 tends to signif-
icantly improve the performance of beam search, especially for small beam widths. For example, in
Blocksworld with beam width 1, LaSO-BR10 solves almost twice as many problems as LEN. The
median plan length has also been reduced significantly for beam width 1. As the beam width in-
creases the gap between LaSO-BR10 and LEN decreases but LaSO-BR10 still solves more problems
with comparable solution quality. In Pipesworld, LaSO-BR10 has the best performance gap with
beam width 50, solving 8 more problems than LEN. As the beam width increases, again the perfor-
mance gap decreases, but LaSO-BR10 consistently solves more problems than LEN. In this domain,
the median plan lengths of LEN tend to be better, though a direct comparison of these lengths is
not exactly fair since LaSO-BR10 solves more problems, which are often the harder problems that
result in longer plans. The trends with respect to number of solved problems are similar in other
domains, with the exception of PSR and FreeCell. In PSR, LEN solves slightly more problems than
LaSO-BR10 at large beam widths. In FreeCell, LaSO-BR10 is better than LEN for most case except
for beam width 50.

These results show that LaSO-BR10 is able to learn heuristics that significantly improve on
the state-of-the-art heuristic LEN when using beam search. In general, the best performance was
achieved for small beam widths close to those used for training, which is beneficial in terms of
time and memory efficiency. Note that in practice one could use a validation set of problems in
order to select the best combination of training beam width and testing beam width for a given
domain. This is particularly natural in our current setting where our goal is to perform well relative
to problems drawn from a given problem generator, in which case we can easily draw both training
and evaluation problem sets.
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5.3.5 COMPARING LASO-BR10 WITH LINEAR REGRESSION

To compare with prior passive heuristic learning work we learned weights using linear regression
following the approach of Yoon et al. (2006). To our knowledge this is the only previous system that
addresses the heuristic learning problem in the context of forward state-space search in automated
planning. In these experiments we used the linear regression tool available under Weka. The results
for the resulting learned linear-regression heuristics are shown in the columns labeled LR in Figure
12.

For Blocksworld, LR solves fewer problems than LaSO-BR10 with beam widths smaller than
500 but solves more problems than LaSO-BR10 with beam width 500. The median plan length
tends to favor LR except for the smallest beam width b= 1. For Pipesworld, DriverLog and Depots,
LaSO-BR10 always solves more problems than LR, with plan length again favoring LR to varying
degrees. In Pipesworld-with-tankage, LaSO-BR10 is better than LR for most case except for beam
width 10, solving one less problem. In PSR and Philosopher, LR outperforms LaSO-BR10 but
LaSO-BR10 achieves a comparable performance with small beam widths. In FreeCell, LaSO-BR10
always solves more problems than LR with improved plan length.

These results indicate that error-driven learning can significantly improve over prior passive
learning (here regression) in a number of domains. Indeed, there appears to be utility in integrating
the learning process directly in the search procedure. However, the results also indicate that in some
cases our current error-driven training method can fail to converge to a good solution in cases where
regression happens to work well.

5.3.6 EFFECTS OF LEARNING BEAM WIDTH

Figure 13 compares the performance of LaSO-BR with different learning beam widths. For most
domains, the performance doesn’t change much as the learning beam width changes. Even with
learning beam width 1, LaSO-BR can often achieve performance on par with larger learning beam
widths. For example, in Blocksworld, LaSO-BR1 results in the best performance at most testing
beam widths except for beam width 500. For the other domains, LaSO-BR10 typically is close to the
performance of the best learning beamwidth. In a number of cases we see that LaSO-BR10 performs
significantly better than LaSO-BR100, which suggests that learning with smaller beam widths can
have some practical advantages. One reason for this might be due to the additional ambiguity
in the weight updates when using larger beam widths. In particular, the weight update equations
involve averages of all target and non-target nodes in the beams. The effect of this averaging is to
effectively mix the feature vectors of large numbers of search nodes together. In many cases there
will be a wide variety of non-target nodes in the beam, and this mixing can increase the difficulty of
uncovering key patterns, which we conjecture might increase the requirements on training iterations
and examples. In cases where the features are rich enough to support successful beam search with
small width, it is then likely that learning with smaller widths will be better given a fixed number of
iterations and examples. Note that the feature space we have used in this work has been previously
demonstrated (Fern et al., 2006) to be particularly well suited to Blocksworld, which is perhaps one
reason that b= 1 performed so well in that domain.

Finally note that contrary to what we originally expected it is not typically the case that the best
performance for a particular testing beam width is achieved when learning with that same beam
width. Rather the relationship between learning and testing beam widths is quite variable. Note
that for most domains LaSO-BR never converged to a consistent weight vector in our experiments,
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indicating that either the features were not powerful enough for consistency or the learning beam
widths and/or number of iterations needed to be increased. In such cases, there is no clear technical
reason to expect the best testing beam width to match the learning beam width. Thus, in general,
we suggest the use of validation sets to select the best pair of learning and testing beam widths for
a particular domain. Note that the lack of relationship between learning and test beam width is in
contrast to that observed in Daumé III and Marcu (2005) for structured classification, where there
appeared to be a small advantage to training and testing using the same width.

5.3.7 BEST FIRST SEARCH RESULTS

While our heuristic was learned for the purpose of controlling beam search we conducted one more
experiment in each domain where we used the heuristics to guide Best First Search (BFS). We
include these results primarily because BFS was the search procedure used to evaluate LR in Yoon
et al. (2006) and is the native search strategy used by FF.2 These results are shown in the bottom
row of each table in Figure 12 and 13.

In Blocksworld, Pipesworld, PSR, LaSO-BR10 was as good or better than the other three al-
gorithms. Especially in Blocksworld, LaSO-BR10 solves 19 problems while LEN only solves 5
problems. In Philosopher, neither LEN nor LaSO-BR10 solves any problem. LEN is the best in
Pipesworld-with-tankage, DriverLog and FreeCell, and LRworks best in Depots. But for Pipesworld-
with-tankage, Depots and FreeCell, the performance of LaSO-BR10 is very close to the best planner.

These results indicate that the advantage of error-driven learning over regression is not just
restricted to beam search, but appears to extend to other search approaches. That is, by learning
in the context of beam search it is possible to extract problem solving information that is useful in
other contexts.

5.3.8 PLAN LENGTH

LaSO-BR can significantly improve success rate at small beam widths, which is one of our main
goals. However, the plan lengths at small widths are quite suboptimal, which is typical of beam
search. Ideally we would like to obtain these success rates without paying a price in plan length.
We are currently investigating ways to improve LaSO-BR in this direction. However, we note that
typically one of the primary difficulties of automated planning is to simply find a path to the goal.
After finding such a path, if it is significantly sub-optimal, incomplete plan analysis or plan rewriting
rules can be used to significantly prune the plan, for example, see Ambite et al. (2000). Thus, despite
the long plan lengths, the improved success rate of LaSO-BR at small beam widths could provide a
good starting point for a fast plan length optimization.

6. Summary and Future Work

This paper presented a detailed study of the problem of learning ranking functions for beam search
with an application to automated planning. On the theoretical side we first studied the computational
complexity of this learning problem, highlighting the main dimensions of complexity by identifying
core tractable and intractable subclasses. Next, we studied the convergence of recent online learning
algorithms for this problem. The results clarified convergence issues, correcting and extending

2. FF actually uses two search strategies. In the first state it uses an incomplete strategy called enforced hill climbing.
If that initial search does not find a solution then a best-first search is conducted.
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Blocksworld
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 27 24 18 13 840 499 92 314
10 27 24 20 19 206 293 96 150
50 27 26 23 24 180 139 72 82
100 25 24 23 23 236 144 72 86
500 23 17 19 24 122 96 62 77
BFS 21 19 18 17 116 142 73 124

Pipesworld
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 16 16 21 15 1803 2853 1403 6958
10 25 23 23 21 227 222 179 270
50 25 26 25 22 74 80 119 75
100 27 24 23 22 146 62 104 47
500 23 25 20 21 60 53 61 37
BFS 14 15 13 8 59 54 103 42

Pipesworld-with-tankage
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 5 7 2 7 55 291 197 300
10 8 8 8 10 103 117 68 77
50 9 11 8 9 48 122 37 42
100 8 8 10 10 53 55 122 55
500 9 10 5 10 30 76 39 96
BFS 6 3 4 6 48 100 70 63

PSR
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 0 0 0 0 - - - -
10 12 13 3 14 182 193 550 205
50 6 10 16 17 75 97 126 129
100 3 6 10 13 82 85 113 86
500 2 1 4 4 61 39 58 64
BFS 19 21 3 25 164 141 170 142

Philosopher
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 6 33 33 0 589 363 363 -
10 19 11 1 1 319 1154 451 1618
50 13 13 2 2 297 1579 1023 855
100 9 6 5 1 253 1076 255 1250
500 4 2 2 0 226 745 253 -
BFS 0 0 0 0 - - - -

DriverLog
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 0 8 0 3 - 6801 - 4329
10 5 12 2 7 1227 1439 1061 435
50 0 12 1 1 - 541 129 136
100 0 11 0 1 - 275 - 98
500 0 1 0 0 - 94 - -
BFS 1 1 0 2 154 138 - 332

Depots
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 4 3 2 2 1526 790 588 588
10 5 6 7 6 3259 3295 2042 715
50 2 6 7 3 517 467 707 392
100 4 7 6 5 43 207 147 54
500 6 11 11 5 47 53 53 38
BFS 4 2 2 2 106 48 48 48

FreeCell
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 7 9 5 5 132 123 125 133
10 23 21 23 19 89 89 85 71
50 25 19 24 24 69 66 68 68
100 24 21 22 28 68 65 65 72
500 19 4 21 19 61 55 62 61
BFS 23 20 27 25 104 97 104 104

Figure 13: Experimental results for various learning beam widths. For each domain, we show the
number of solved problems and the median plan length of the solved problems. A dash
in the table indicates that the planner was unable to solve any of the problems.
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previous results. This included an analysis of convergence given ambiguous training data, giving a
result that highlights the trade-off between the amount of allowed search and the difficulty of the
resulting learning problem. Our experiments in the domain of automated planning showed that the
approach has benefits compared to existing learning and non-learning state-space search planners.
These results complement the positive empirical results in structured classification (Daumé III and
Marcu, 2005) showing the general utility of the method.

In future work, we plan to extend the algorithms described here to allow for feature induction
and more robust parameter estimation. We are also interested in studying learning in the context
of search for other search strategies such as best-first and k-best-first search. In our initial inves-
tigations, we have found that the LaSO-style approach for these strategies has great difficulty in
automated planning due to the very large depths of the search spaces, which makes it difficult to
“assign credit” to search errors. This suggests that a key aspect of future work is to understand
general credit-assignment mechanisms in the context of error-driven learning for search. Another
important direction is to consider the application of these methods to new problem domains, in
particular we are interested in more complex planning domains that include concurrency, durative
actions, and uncertainty. It will also be interesting to consider learning beam-search heuristics for
other search-based formulations of planning such as partial-order planning where the search is con-
ducted directly in the space of partial-order plans.
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Appendix A. Relation to Structured Classification

This Appendix assumes that the reader is familiar with the material in Section 3. The learning
framework introduced in Section 2.2 is motivated by automated planning, with the objective of
finding a goal node. It is important to note that the learning objective does not place a constraint on
the rank of a goal node in the final beam compared to non-goal nodes, but rather only requires that
there exists some goal node in the final beam. This is a natural formulation for automated planning
where when solving test problems it is easy to test each beam to determine whether a goal node has
been uncovered and to return a solution trajectory if one has. Thus, the exact ordering of the goal
node in the final beam is not important with respect to finding solutions to planning problems.

In contrast, as described in the example at the end of Section 2.2, the formulation of structured
classification as a search problem appears to require that we do pay attention to the rank of the goal
nodes in the final beam. In particular, the formulation of Daumé III and Marcu (2005) requires the
goal node to not only be contained in the final beam, but to be ranked higher than any other terminal
node in the beam.

Since our formulation of the beam-search learning problem does not constrain the ranking of
goal nodes relative to other nodes, it is not immediately clear how our formulation relates to struc-
tured classification. It turns out that these two formulations are polynomially equivalent, meaning
that there is a polynomial reduction from each problem to the other. Thus, it is possible to compile
away the explicit requirement that goal nodes have the highest rank in the final beam.
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Below we adapt the definitions of the learning problems in Section 2.2 for structured classi-
fication. First, we introduce the notion of terminal node, which can be thought of as a possible
solution to be returned by a structured classification algorithm, for example, a full parse tree for
a sentence. We will denote the set of all terminal nodes as T and will assume a polynomial time
test for determining whether a node is in this set. Note that some terminal nodes correspond to
target solutions and others do not. When using beam search for structured classification the search
is halted whenever a terminal node becomes highest ranked in the beam and the path leading to
that terminal node is returned as the solution. Thus, successful learning must ensure both that no
non-target terminal node ever becomes ranked first in any beam and also that eventually a target
terminal node does become ranked first. This motivation leads to the following definitions for the
breadth-first and best-first structured classification problems. Below, given the context of a weight
vector w, we will denote the highest ranked node relative to w in a beam B by B(1).

Definition 17 (Breadth-First Structured Classification) Given the input 〈{〈Si,Pi〉},b〉, where b
is a positive integer and Pi = (Pi,0, . . . ,Pi,d), the breadth-first structured classification problem asks
us to decide whether there is a weight vector w such that for each Si, the corresponding beam
trajectory (Bi,0, . . . ,Bi,d), produced using w with a beam width of b, satisfies Bi, j ∩Pi, j += /0 for each
j, B(1)

i,d ∈ Pi,d, and B
(1)
i, j /∈ T for j < d?

Definition 18 (Best-First Structured Classification) Given the input 〈{〈Si,Pi〉},b〉, where b is a
positive integer and Pi = (Pi,0, . . . ,Pi,d), the best-first structured classification problem asks us to
decide whether there is a weight vector w that produces for each Si a beam trajectory (Bi,0, . . . ,Bi,k)
of beam width b, such that k≤ h, each Bi, j for j< k contains at least one node in

S

j Pi, j, B
(1)
i,k ∈ Pi,d,

and B(1)
i, j /∈ T for j < k?

We prove that these problems are polynomially equivalent to breadth-first and best-first consis-
tency by showing that they are NP-complete. Since Section 3 proves that the consistency problems
are also NP-complete we immediately get equivalence.

Theorem 19 Breadth-first structured classification is NP-complete.

Proof We can prove that the problem is in NP, following the structure of the proof of Theorem 4.
Each certificate corresponds to a set of beam trajectories and has a size that is polynomial in the
problem size. The certificate can be checked in polynomial time to see if for each i, it satisfies the
conditions defined in Definition 17. From Lemma 3 in Section 3 we can then use the algorithm
TestTrajectories in Figure 4 to decide whether there is a weight vector that generates the certificate
in polynomial time. To show hardness we reduce from breadth-first consistency for the class of
problems where b= 1, d = 1, c= 6, t = 3, and n≥ 1, which from Figure 6 is NP-complete. Since
for this class the search spaces have depth 1 and the beam width is 1 it is easy to see that for any
problem in this class, a weight vector is a solution to the consistency problem if and only if it is a
solution to the structured classification problem. This shows that breadth-first structured classifica-
tion is NP-hard and thus NP-complete.

Using an almost identical proof we can prove the same result for best-first structured classifica-
tion.

Theorem 20 Best-first structured classification is NP-complete.
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Abstract
Inference in Bayesian statistics involves the evaluation of marginal likelihood integrals. We present
algebraic algorithms for computing such integrals exactly for discrete data of small sample size.
Our methods apply to both uniform priors and Dirichlet priors. The underlying statistical models
are mixtures of independent distributions, or, in geometric language, secant varieties of Segre-
Veronese varieties.

Keywords: marginal likelihood, exact integration, mixture of independence model, computational
algebra

1. Introduction

Evaluation of marginal likelihood integrals is central to Bayesian statistics. It is generally assumed
that these integrals cannot be evaluated exactly, except in trivial cases, and a wide range of numerical
techniques (e.g., MCMC) have been developed to obtain asymptotics and numerical approximations
(Chickering and Heckerman, 1997). The aim of this paper is to show that exact integration is
more feasible than is surmised in the literature. We examine marginal likelihood integrals for a
class of mixture models for discrete data. Bayesian inference for these models arises in many
contexts, including machine learning and computational biology. Recent work in these fields has
made a connection to singularities in algebraic geometry (Drton, 2009; Geiger and Rusakov, 2005;
Watanabe, 2001; Watanabe and Yamazaki, 2003, 2004). Our study augments these developments
by providing tools for symbolic integration when the sample size is small.

The numerical value of the integral we have in mind is a rational number, and exact evalua-
tion means computing that rational number rather than a floating point approximation. For a first
example consider the integral

Z

!
"

i, j∈{A,C,G,T}

(

#$(1)
i $(2)

j + %&(1)
i &(2)

j
)Ui jd#d%d$d&, (1)
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where! is the 13-dimensional polytope '1×'3×'3×'3×'3. The factors are probability simplices,

'1 = {(#,%) ∈ R2≥0 : #+ %= 1},
'3 = {($(k)

A
,$(k)

C
,$(k)

G
,$(k)

T
) ∈ R4≥0 : (i$

(k)
i = 1}, k = 1,2,

'3 = {(&(k)
A

,&(k)
C

,&(k)
G

,&(k)
T

) ∈ R4≥0 : (i&
(k)
i = 1}, k = 1,2.

and we integrate with respect to Lebesgue probability measure on !. If we take the exponents Ui j
to be the entries of the particular contingency table

U =







4 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4







, (2)

then the exact value of the integral (1) is the rational number

571 ·773426813 ·17682039596993 ·625015426432626533
231 ·320 ·512 ·711 ·118 ·137 ·175 ·195 ·235 ·293 ·313 ·373 ·413 ·432

. (3)

The table (2) is taken from Example 1.3 of Pachter and Sturmfels (2005), where the integrand

"
i, j∈{A,C,G,T}

(

#$(1)
i $(2)

j + %&(1)
i &(2)

j
)Ui j (4)

was studied using the EM algorithm, and the problem of validating its global maximum over ! was
raised. See Feinberg et al. (2007, §4.2) and Sturmfels (2008, §3) for further discussions. That opti-
mization problem, which was widely known as the 100 Swiss Francs problem, has in the meantime
been solved by Gao et al. (2008).

The main difficulty in performing computations such as (1) = (3) lies in the fact that the expan-
sion of the integrand has many terms. A first naive upper bound on the number of monomials in the
expansion of (4) would be

"
i, j∈{A,C,G,T}

(Ui j +1) = 312 ·54 = 332,150,625.

However, the true number of monomials is only 3,892,097, and we obtain the rational number (3)
by summing the values of the corresponding integrals

Z

!
#a1%a2($(1))u($(2))v(&(1))w(&(2))xd#d%d$d& =

a1!a2!
(a1+a2+1)!

·
3!"i ui!

((i ui+3)!
·
3!"i vi!

((i vi+3)!
·
3!"i wi!

((i wi+3)!
·
3!"i xi!

((i xi+3)!
.

The geometric idea behind our approach is that the Newton polytope of (4) is a zonotope and we are
summing over its lattice points. Definitions for these geometric objects are given in Section 3.

This paper is organized as follows. In Section 2 we describe the class of algebraic statistical
models to which our method applies, and we specify the problem. In Section 3 we examine the
Newton zonotopes of mixture models, and we derive formulas for marginal likelihood evaluation
using tools from geometric combinatorics. Our algorithms and their implementations are described
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in detail in Section 4. Section 5 is concerned with applications in Bayesian statistics. We show how
Dirichlet priors can be incorporated into our approach, we discuss the evaluation of Bayes factors,
we compare our setup with that of Chickering and Heckerman (1997), and we illustrate the scope
of our methods by computing an integral arising from a data set of Evans et al. (1989).

A preliminary draft version of the present article was published as Section 5.2 of the Oberwol-
fach lecture notes (Drton et al., 2009). We refer to that volume for further information on the use of
computational algebra in Bayesian statistics.

2. Independence Models and their Mixtures

We consider a collection of discrete random variables

X (1)
1 , X (1)

2 , . . . , X (1)
s1 ,

X (2)
1 , X (2)

2 , . . . , X (2)
s2 ,

...
... . . . ...

X (k)
1 , X (k)

2 , . . . , X (k)
sk ,

where X (i)
1 , . . . ,X (i)

si are identically distributed with values in {0,1, . . . , ti}. The independence model
M for these variables is a toric model (Pachter and Sturmfels, 2005, §1.2) represented by an integer
d×n-matrix A with

d = t1+ t2+ · · ·+ tk + k and n =
k

"
i=1

(ti+1)si . (5)

The columns of the matrix A are indexed by elements v of the state space

{0,1, . . . , t1}s1 ×{0,1, . . . , t2}s2 × · · ·×{0,1, . . . , tk}sk . (6)

The rows of the matrix A are indexed by the model parameters, which are the d coordinates of the
points )= ()(1),)(2), . . . ,)(k)) in the polytope

P = 't1 ×'t2 × · · ·×'tk , (7)

and the modelM is the subset of the simplex 'n−1 given parametrically by

pv = Prob
(

X (i)
j = v(i)j for all i, j

)

=
k

"
i=1

si
"
j=1

)(i)
v(i)j

. (8)

This is a monomial in d unknowns. The matrix A is defined by taking its column av to be the
exponent vector of this monomial.

In algebraic geometry, the modelM is known as Segre-Veronese variety

Pt1 ×Pt2 × · · ·×Ptk ↪→ Pn−1, (9)

where the embedding is given by the line bundle O(s1,s2, . . . ,sk). The manifold M is the toric
variety of the polytope P. Both objects have dimension d− k, and they are identified with each
other via the moment map (Fulton, 1993, §4).
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Example 1 Consider three binary random variables where the last two random variables are iden-
tically distributed. In our notation, this corresponds to k= 2, s1 = 1, s2 = 2 and t1 = t2 = 1. We find
that d = 4,n= 8, and

A =








p000 p001 p010 p011 p100 p101 p110 p111
)(1)
0 1 1 1 1 0 0 0 0
)(1)
1 0 0 0 0 1 1 1 1
)(2)
0 2 1 1 0 2 1 1 0
)(2)
1 0 1 1 2 0 1 1 2








.

The columns of this matrix represent the monomials in the parametrization (8). The modelM lies
in the 5-dimensional subsimplex of '7 given by p001 = p010 and p101 = p110, and it consists of all
rank one matrices (

p000 p001 p100 p101
p010 p011 p110 p111

)

.

In algebraic geometry, the surfaceM is called a rational normal scroll.

The matrix A has repeated columns whenever si ≥ 2 for some i. It is sometimes convenient to
represent the modelM by the matrix Ãwhich is obtained from A by removing repeated columns. We
label the columns of Ã by elements v= (v(1), . . . ,v(k)) of (6) whose components v(i) ∈ {0,1, . . . , ti}si
are weakly increasing. Hence Ã is a d× ñ-matrix with

ñ =
k

"
i=1

(
si+ ti
si

)

. (10)

The modelM and its mixtures are subsets of a subsimplex 'ñ−1 of 'n−1.
We now introduce marginal likelihood integrals. All our domains of integration in this paper

are polytopes that are products of standard probability simplices. On each such polytope we fix the
standard Lebesgue probability measure. In other words, our discussion of Bayesian inference refers
to the uniform prior on each parameter space. Naturally, other prior distributions, such as Dirichlet
priors, are of interest, and our methods are extended to these in Section 5. In what follows, we
simply work with uniform priors.

We identify the state space (6) with the set {1, . . . ,n}. A data vector U = (U1, . . . ,Un) is thus
an element of Nn. The sample size of these data is U1+U2+ · · ·+Un = N. If the sample size N is
fixed then the probability of observing these data is

LU()) =
N!

U1!U2! · · ·Un!
· p1())U1 · p2())U2 · · · · · pn())Un .

This expression is a function on the polytope P which is known as the likelihood function of the data
U with respect to the independence modelM . The marginal likelihood of the data U with respect
to the modelM equals

Z

P
LU())d).

The value of this integral is a rational number which we now compute explicitly. The data U will
enter this calculation by way of the sufficient statistic b = A ·U , which is a vector in Nd . The
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coordinates of this vector are denoted b(i)
j for i = 1, . . . ,k and j = 0, . . . , tk. Thus b

(i)
j is the total

number of times the value j is attained by one of the random variables X (i)
1 , . . . ,X (i)

si in the i-th
group. Clearly, the sufficient statistics satisfy

b(i)
0 +b(i)

1 + · · ·+b(i)
ti = si ·N for all i= 1,2, . . . ,k. (11)

The likelihood function LU()) is the constant N!
U1!···Un! times the monomial

)b =
k

"
i=1

ti
"
j=0

()(i)
j )b

(i)
j .

The logarithm of this function is concave on the polytope P, and its maximum value is attained at
the point )̂ with coordinates )̂(i)

j = b(i)
j /(si ·N).

Lemma 1 The integral of the monomial )b over the polytope P equals
Z

P
)bd) =

k

"
i=1

ti!b
(i)
0 !b

(i)
1 ! · · · b

(i)
ti !

(siN+ ti)!
.

The product of this number with the multinomial coefficient N!/(U1! · · ·Un!) equals the marginal
likelihood of the data U for the independence modelM .

Proof Since P is the product of simplices (7), this follows from the formula
Z

't
)b00 )

b1
1 · · ·)btt d) =

t! ·b0! ·b1! · · · bt!
(b0+b1+ · · ·+bt + t)!

(12)

for the integral of a monomial over the standard probability simplex 't .

Our objective is to compute marginal likelihood integrals for the mixture model M (2). The
natural parameter space of this model is the polytope

! = '1 × P × P.

Let av ∈Nd be the column vector of A indexed by the state v, which is either in (6) or in {1,2, . . . ,n}.
The parametrization (8) can be written simply as pv = )av . The mixture model M (2) is defined to
be the subset of 'n−1 with the parametric representation

pv = *0 ·)
av + *1 ·&

av for (*,),&) ∈ !. (13)

The likelihood function of a data vectorU ∈ Nn for the modelM (2) equals

LU(*,),&) =
N!

U1!U2! · · ·Un!
p1(*,),&)U1 · · · pn(*,),&)Un . (14)

The marginal likelihood of the dataU with respect to the modelM (2) equals
Z

!
LU(*,),&)d*d)d& =

N!
U1! · · ·Un!

Z

!
"
v

(*0)
av +*1&

av)Uvd*d)d&. (15)

The following proposition shows that we can evaluate this integral exactly.
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Proposition 2 The marginal likelihood (15) is a rational number.

Proof The likelihood function LU is a Q≥0-linear combination of monomials *a)b&c. The integral
(15) is the same Q≥0-linear combination of the numbers

Z

!
*a)b&cd*d)d& =

(
Z

'1
*ad*

)

·
(

Z

P
)bd)

)

·
(

Z

P
&cd&

)

.

Each of the three factors is an easy-to-evaluate rational number, by (12).

Example 2 The integral (1) expresses the marginal likelihood of a 4×4-table of counts U = (Ui j)
with respect to the mixture modelM (2). Specifically, the marginal likelihood of the data (2) equals
the normalizing constant 40! · (2!)−12 · (4!)−4 times the number (3). The modelM (2) consists of all
non-negative 4× 4-matrices of rank ≤ 2 whose entries sum to one. Here the parametrization (13)
is not identifiable because dim(M (2)) = 11 but dim(!) = 13. In this example, k = 2, s1=s2=1,
t1=t2=3, d = 8, n= 16.

In algebraic geometry, the modelM (2) is known as the first secant variety of the Segre-Veronese
variety (9). We could also consider the higher secant varietiesM (l), which correspond to mixtures of
l independent distributions, and much of our analysis can be extended to that case, but for simplicity
we restrict ourselves to l = 2. The varietyM (2) is embedded in the projective space Pñ−1 with ñ as
in (10). Note that ñ can be much smaller than n. If this is the case, it is convenient to aggregate states
whose probabilities are identical and represent the data by a vector Ũ ∈ Nñ. Here is an example.

Example 3 Let k=1, s1=4 and t1=1, so M is the independence model for four identically dis-
tributed binary random variables. Then d = 2 and n = 16. The corresponding integer matrix and
its row and column labels are

A =

(
p0000 p0001 p0010 p0100 p1000 p0011 · · · p1110 p1111

)0 4 3 3 3 3 2 · · · 1 0
)1 0 1 1 1 1 2 · · · 3 4

)

.

However, this matrix has only ñ= 5 distinct columns, and we instead use

Ã =

(
p0 p1 p2 p3 p4

)0 4 3 2 1 0
)1 0 1 2 3 4

)

.

The mixture modelM (2) is the subset of '4 given by the parametrization

pi =

(
4
i

)

·
(

*0 ·)
4−i
0 ·)i1 + *1 ·&

4−i
0 ·&i1

)

for i= 0,1,2,3,4.

In algebraic geometry, this threefold is the secant variety of the rational normal curve in P4. This
is the cubic hypersurface with the implicit equation

det





12p0 3p1 2p2
3p1 2p2 3p3
2p2 3p3 12p4



 = 0.
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In Hoşten et al. (2005, Example 9), the likelihood function (14) was studied for the data

Ũ = (Ũ0,Ũ1,Ũ2,Ũ3,Ũ4) = (51,18,73,25,75).

It has three local maxima (modulo swapping ) and &) whose coordinates are algebraic numbers of
degree 12. Using the methods to be described in the next two sections, we computed the exact value
of the marginal likelihood for the data Ũ with respect to M (2). The rational number (15) is found
to be the ratio of two relatively prime integers having 530 digits and 552 digits, and its numerical
value is approximately 0.7788716338838678611335742 ·10−22.

3. Summation over a Zonotope

Our starting point is the observation that the Newton polytope of the likelihood function (14) is
a zonotope. Recall that the Newton polytope of a polynomial is the convex hull of all exponent
vectors appearing in the expansion of that polynomial, and a polytope is a zonotope if it is the image
of a standard cube under a linear map. See Cox et al. (2005, §7) and Ziegler (1995, §7) for further
discussions. We are here considering the zonotope

ZA(U) =
n

(
v=1

Uv · [0,av],

where [0,av] represents the line segment between the origin and the point av ∈ Rd , and the sum is
a Minkowski sum of line segments. We write ZA = ZA(1,1, . . . ,1) for the basic zonotope spanned
by the vectors av. Hence ZA(U) is obtained by stretching ZA along those vectors by factors Uv
respectively. Assuming that the countsUv are all positive, we have

dim(ZA(U)) = dim(ZA) = rank(A) = d− k+1. (16)

The zonotope ZA is related to the polytope P = conv(A) in (7) as follows. The dimension d− k =
t1+ · · ·+ tk of P is one less than dim(ZA), and P appears as the vertex figure of the zonotope ZA at
the distinguished vertex 0.

Remark 3 For higher mixturesM (l), the Newton polytope of the likelihood function is isomorphic
to the Minkowski sum of (l−1)-dimensional simplices in R(l−1)d. Only when l = 2, this Minkowski
sum is a zonotope.

The marginal likelihood (15) we wish to compute is the integral
Z

!

n

"
v=1

(*0)av +*1&av)Uvd*d)d& (17)

times the constant N!/(U1! · · ·Un!). Our approach to this computation is to sum over the lattice
points in the zonotope ZA(U). If the matrix A has repeated columns, we may replace A with the
reduced matrix Ã andU with the corresponding reduced data vector Ũ . If one desires the marginal
likelihood for the reduced data vector Ũ instead of the original data vector U , the integral remains
the same while the normalizing constant becomes

N!
Ũ1! · · ·Ũñ!

·+Ũ11 · · ·+Ũññ ,
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where +i is the number of columns in A equal to the i-th column of Ã. In what follows we ignore the
normalizing constant and focus on computing the integral (17) with respect to the original matrix A.

For a vector b ∈ Rd
≥0 we let |b| denote its L1-norm (d

t=1 bt . Recall from (8) that all columns of
the d×n-matrix A have the same coordinate sum

a := |av| = s1+ s2+ · · ·+ sk, for all v= 1,2, . . . ,n,

and from (11) that we may denote the entries of a vector b ∈ Rd by b(i)
j for i = 1, . . . ,k and j =

0, . . . , tk. Also, let L denote the image of the linear map A : Zn → Zd . Thus L is a sublattice of rank
d− k+1 in Zd . We abbreviate ZL

A (U) := ZA(U)∩L. Now, using the binomial theorem, we have

(*0)
av +*1&

av)Uv =
Uv
(
xv=0

(
Uv
xv

)

*xv0 *
Uv−xv
1 )xv·av&(Uv−xv)·av .

Therefore, in the expansion of the integrand in (17), the exponents of ) are of the form of b =
(v xvav ∈ ZL

A (U), 0≤ xv ≤Uv. The other exponents may be expressed in terms of b. This gives us

n

"
v=1

(*0)
av +*1&

av)Uv = (
b∈ZL

A (U)
c=AU−b

,A(b,U) ·*|b|/a0 ·*|c|/a1 ·)b ·&c. (18)

Writing D(U) = {(x1, . . . ,xn) ∈ Zn : 0≤ xv ≤Uv,v= 1, . . . ,n}, the coefficient in (18) equals

,A(b,U) = (
Ax=b
x∈D(U)

n

"
v=1

(
Uv
xv

)

. (19)

Thus, by formulas (12) and (18), the integral (17) evaluates to

(
b∈ZL

A (U)
c=AU−b

,A(b,U) ·
(|b|/a)!(|c|/a)!

(|U |+1)!
·
k

"
i=1

(

ti!b
(i)
0 ! · · · b

(i)
ti !

(|b(i)|+ ti)!
ti!c

(i)
0 ! · · · c

(i)
ti !

(|c(i)|+ ti)!

)

. (20)

We summarize the result of this derivation in the following theorem.

Theorem 4 The marginal likelihood of the data U in the mixture model M (2) is equal to the sum
(20) times the normalizing constant N!/(U1! · · ·Un!).

Each individual summand in the formula (20) is a ratio of factorials and hence can be evaluated
symbolically. The challenge in turning Theorem 4 into a practical algorithm lies in the fact that both
of the sums (19) and (20) are over very large sets. We shall discuss these challenges and present
techniques from both computer science and mathematics for addressing them.

We first turn our attention to the coefficients ,A(b,U) of the expansion (18). These quantities
are written as an explicit sum in (19). The first useful observation is that these coefficients are also
the coefficients of the expansion

"
v

()av +1)Uv = (
b∈ZL

A (U)

,A(b,U) ·)b, (21)
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which comes from substituting *i = 1 and & j = 1 in (18). When the cardinality of ZL
A (U) is suffi-

ciently small, the quantity ,A(b,U) can be computed quickly by expanding (21) using a computer
algebra system. We used MAPLE for this and all other symbolic computations in this project.

If the expansion (21) is not feasible, then it is tempting to compute the individual ,A(b,U) via
the sum-product formula (19). This method requires summation over the set {x ∈ D(U) : Ax= b},
which is the set of lattice points in an (n− d+ k− 1)-dimensional polytope. Even if this loop can
be implemented, performing the sum in (19) symbolically requires the evaluation of many large
binomials, causing the process to be rather inefficient.

An alternative is offered by the following recurrence formula:

,A(b,U) =
Un
(
xn=0

(
Un
xn

)

,A\an(b− xnan,U \Un). (22)

This is equivalent to writing the integrand in (17) as
(
n−1

"
v=1

(*0)
av +*1&

av)Uv

)

(*0)
an +*1&

an)Un .

More generally, for each 0< i< n, we have the recurrence

,A(b,U) = (
b′∈ZL

A′ (U
′)

,A′(b′,U ′) ·,A\A′(b−b′,U \U ′),

where A′ andU ′ consist of the first i columns and entries of A andU respectively. This corresponds
to the factorization

(
i

"
v=1

(*0)av +*1&av)Uv
)(

n

"
v=i+1

(*0)av +*1&av)Uv
)

.

This formula gives flexibility in designing algorithms with different payoffs in time and space com-
plexity, to be discussed in Section 4.

The next result records useful facts about the quantities ,A(b,U).

Proposition 5 Suppose b ∈ ZL
A(U) and c= AU −b. Then, the following quantities are all equal to

,A(b,U):
(1) #

{

z ∈ {0,1}N : AUz= b
}

, where AU is the extended matrix

AU := (a1, . . . ,a1
︸ ︷︷ ︸

U1

,a2, . . . ,a2
︸ ︷︷ ︸

U2

, . . . ,an, . . . ,an
︸ ︷︷ ︸

Un

),

(2) ,A(c,U),
(3)

(
Ax=b

l j≤x j≤u j

n

"
v=1

(
Uv
xv

)

,

where u j =min {Uj}∪{bm/a jm}nm=1 and l j =Uj−min {Uj}∪{cm/a jm}nm=1 .
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Proof (1) This follows directly from (21).
(2) For each z ∈ {0,1}N satisfying AUz= b, note that z̄= (1,1, . . . ,1)− z satisfies AUz̄= c, and vice
versa. The conclusion thus follows from (1).
(3) We require Ax= b and x ∈ D(U). If x j > u j = bm/a jm then a jmx j > bm, which implies Ax += b.
The lower bound is derived by a similar argument.

One aspect of our approach is the decision, for any given model A and data set U , whether or
not to attempt the expansion (21) using computer algebra. This decision depends on the cardinality
of the set ZL

A (U). In what follows, we compute the number exactly when A is unimodular. When A
is not unimodular, we obtain useful lower and upper bounds.

Let S be any subset of the columns of A. We call S independent if its elements are linearly
independent in Rd . With S we associate the integer

index(S) := [RS∩L : ZS].

This is the index of the abelian group generated by S inside the possibly larger abelian group of all
lattice points in L = ZA that lie in the span of S. The following formula is due to R. Stanley and
appears in Stanley (1991, Theorem 2.2):

Proposition 6 The number of lattice points in the zonotope ZA(U) equals

#ZL
A (U) = (

S⊆A indep.
index(S) ·"

av∈S
Uv. (23)

In fact, the number of monomials in (18) equals #MA(U), whereMA(U) is the set {b ∈ ZL
A (U) :

,A(b,U) += 0}, and this set can be different from ZL
A (U). For that number we have the following

bounds. The proof, which uses the methods in Stanley (1991, §2), will be omitted here.

Theorem 7 The number #MA(U) of monomials in the expansion (18) of the likelihood function to
be integrated satisfies the two inequalities

(
S⊆A indep.

"
v∈S

Uv ≤ #MA(U) ≤ (
S⊆A indep.

index(S) ·"
v∈S

Uv. (24)

By definition, the matrix A is unimodular if index(S) = 1 for all independent subsets S of the
columns of A. In this case, the upper bound coincides with the lower bound, and soMA(U) = ZL

A (U).
This happens in the classical case of two-dimensional contingency tables (k = 2 and s1 = s2 = 1).
In general, #ZL

A (U)/#MA(U) tends to 1 when all coordinates of U tend to infinity. This is why we
believe that for computational purposes, #ZL

A (U) is a good approximation of #MA(U).

Remark 8 There exist integer matrices A for which #MA(U) does not agree with the upper bound in
Theorem 7. However, we conjecture that #MA(U) = #ZL

A (U) holds for matrices A of Segre-Veronese
type as in (8) and strictly positive data vectors U.

Example 4 Consider the 100 Swiss Francs example in Section 1. Here A is unimodular and it has
16145 independent subsets S. The corresponding sum of 16145 squarefree monomials in (23) gives
the number of terms in the expansion of (4). For the data U in (2) this sum evaluates to 3,892,097.
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Example 5 We consider the matrix and data from Example 3.

Ã =

(

0 1 2 3 4
4 3 2 1 0

)

Ũ =
(

51,18,73,25,75
)

By Theorem 7, the lower bound is 22,273 and the upper bound is 48,646. Here the number #MÃ(Ũ)
of monomials agrees with the latter.

We next present a formula for index(S)when S is any linearly independent subset of the columns
of the matrix A. After relabeling we may assume that S= {a1, . . . ,ak} consists of the first k columns
of A. Let H =VA denote the row Hermite normal form of A. Here V ∈ SLd(Z) and H satisfies

Hi j = 0 for i> j and 0≤ Hi j < Hj j for i< j.

Hermite normal form is a built-in function in computer algebra systems. For instance, in MAPLE
the command is ihermite. Using the invertible matrix V , we may replace A with H, so that RS
becomes Rk and ZS is the image over Z of the upper left k× k-submatrix of H. We seek the index
of that lattice in the possibly larger lattice ZA∩Zk. To this end we compute the column Hermite
normal form H ′ = HV ′. Here V ′ ∈ SLn(Z) and H ′ satisfies

H ′
i j = 0 if i> j or j > d and 0≤ Hi j < Hii for i< j.

The lattice ZA∩Zk is spanned by the first k columns of H ′, and this implies

index(S) =
H11H22 · · · Hkk
H ′
11H ′

22 · · · H ′
kk

.

4. Algorithms

In this section we discuss algorithms for computing the integral (17) exactly, and we discuss their
advantages and limitations. In particular, we examine four main techniques which represent the
formulas (20), (21), (16) and (22) respectively. The practical performance of the various algorithms
is compared by computing the integral in Example 3.

A MAPLE library which implements our algorithms is made available at

http://math.berkeley.edu/˜shaowei/integrals.html.

The input for our MAPLE code consists of parameter vectors s = (s1, . . . ,sk) and t = (t1, . . . , tk) as
well as a data vectorU ∈ Nn. This input uniquely specifies the d×n-matrix A. Here d and n are as
in (5). The output features the matrices A and Ã, the marginal likelihood integrals forM andM (2),
as well as the bounds in (24).

We tacitly assume that A has been replaced with the reduced matrix Ã. Thus from now on
we assume that A has no repeated columns. This requires some care concerning the normalizing
constants. All columns of the matrix A have the same coordinate sum a, and the convex hull of
the columns is the polytope P = 't1 ×'t2 × · · ·×'tk . Our domain of integration is the following
polytope of dimension 2d−2k+1:

! = '1×P×P.
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We seek to compute the rational number
Z

!

n

"
v=1

(*0)av +*1&av)Uvd*d)d&, (25)

where integration is with respect to Lebesgue probability measure. Our MAPLE code outputs this
integral multiplied with the statistically correct normalizing constant. That constant will be ignored
in what follows. In our complexity analysis, we fix A while allowing the data U to vary. The
complexities will be given in terms of the sample size N =U1+ · · ·+Un.

4.1 Ignorance is Costly

Given an integration problem such as (25), a first attempt is to use the symbolic integration capabili-
ties of a computer algebra package such as MAPLE. We refer to this method as ignorant integration:

U := [51, 18, 73, 25, 75]:
f := (s*tˆ4 +(1-s)*pˆ4 )ˆU[1] *

(s*tˆ3*(1-t) +(1-s)*pˆ3*(1-p) )ˆU[2] *
(s*tˆ2*(1-t)ˆ2+(1-s)*pˆ2*(1-p)ˆ2)ˆU[3] *
(s*t *(1-t)ˆ3+(1-s)*p *(1-p)ˆ3)ˆU[4] *
(s *(1-t)ˆ4+(1-s) *(1-p)ˆ4)ˆU[5]:

II := int(int(int(f,p=0..1),t=0..1),s=0..1);

In the case of mixture models, recognizing the integral as the sum of integrals of monomials over
a polytope allows us to avoid the expensive integration step above by using (20). To demonstrate
the power of using (20), we implemented a simple algorithm that computes each ,A(b,U) using
the naive expansion in (19). We computed the integral in Example 3 with a small data vector
U = (2,2,2,2,2), which is the rational number

66364720654753
59057383987217015339940000

,

and summarize the run-times and memory usages of the two algorithms in the table below. All
experiments reported in this section are done in MAPLE.

Time(seconds) Memory(bytes)
Ignorant Integration 16.331 155,947,120
Naive Expansion 0.007 458,668

For the remaining comparisons in this section, we no longer consider the ignorant integration algo-
rithm because it is computationally too expensive.

4.2 Symbolic Expansion of the Integrand

While ignorant use of a computer algebra system is unsuitable for computing our integrals, we can
still exploit its powerful polynomial expansion capabilities to find the coefficients of (21). A major
advantage is that it is very easy to write code for this method. We compare the performance of
this symbolic expansion algorithm against that of the naive expansion algorithm. The table below
concerns computing the coefficients ,A(b,U) for the original data U = (51,18,73,25,75). The
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column “Extract” refers to the time taken to extract the coefficients ,A(b,U) from the expansion of
the polynomial, while the column “Sum” shows the time taken to evaluate (20) after all the needed
values of ,A(b,U) had been computed and extracted.

Time(seconds) Memory
,A(b,U) Extract Sum Total (bytes)

Naive Expansion 2764.35 - 31.19 2795.54 10,287,268
Symbolic Expansion 28.73 962.86 29.44 1021.03 66,965,528

4.3 Storage and Evaluation of ,A(b,U)

Symbolic expansion is fast for computing ,A(b,U), but it has two drawbacks: high memory usage
and the long time it takes to extract the values of ,A(b,U). One solution is to create specialized data
structures and algorithms for expanding (21), rather using than those offered by MAPLE.

First, we tackle the problem of storing the coefficients ,A(b,U) for b ∈ ZL
A (U) ⊂ Rd as they are

being computed. One naive method is to use a d-dimensional array ,[·]. However, noting that A
is not row rank full, we can use a d0-dimensional array to store ,A(b,U), where d0 = rank(A) =
d− k+1. Furthermore, by Proposition 5(2), the expanded integrand is a symmetric polynomial, so
only half the coefficients need to be stored. We will leave out the implementation details so as not
to complicate our discussions. In our algorithms, we will assume that the coefficients are stored in
a d0-dimensional array ,[·], and the entry that represents ,A(b,U) will be referred to as ,[b].

Next, we discuss how ,A(b,U) can be computed. One could use the naive expansion (19), but
this involves evaluating many binomials coefficients and products, so the algorithm is inefficient for
data vectors with large coordinates. A more efficient solution uses the recurrence formula (22):

Algorithm 1 (RECURRENCE(A,U))
Input: The matrix A and the vector U.
Output: The coefficients ,A(b,U).
Step 1: Create a d0-dimensional array , of zeros.
Step 2: For each x ∈ {0,1, . . . ,U1} set

,[xa1] :=
(
U1
x

)

.

Step 3: Create a new d0-dimensional array ,′.
Step 4: For each 2≤ j ≤ n do

1. Set all the entries of ,′ to 0.
2. For each x ∈ {0,1, . . . ,Uj} do

For each non-zero entry ,[b] in , do
Increment ,′[b+ xa j] by

(Uj
x
)

,[b].
3. Replace , with ,′.

Step 5: Output the array ,.

The space complexity of this algorithm is O(Nd0) and its time complexity is O(Nd0+1). By compar-
ison, the naive expansion algorithm has space complexity O(Nd) and time complexity O(Nn+1).

We now turn our attention to computing the integral (25). One major issue is the lack of memory
to store all the terms of the expansion of the integrand. We overcome this problem by writing
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the integrand as a product of smaller factors which can be expanded separately. In particular, we
partition the columns of A into submatrices A[1], . . . ,A[m] and letU [1], . . . ,U [m] be the corresponding
partition ofU . Thus the integrand becomes

m

"
j=1
"
v

(*0)
a[ j]
v +*1&

a[ j]
v )U

[ j]
v ,

where a[ j]
v is the vth column in A[ j]. The resulting algorithm for evaluating the integral is as follows:

Algorithm 2 (Fast Integral)
Input: The matrices A[1], . . . ,A[m], vectors U [1], . . . ,U [m] and the vector t.
Output: The value of the integral (25) in exact rational arithmetic.
Step 1: For 1≤ j ≤ m, compute ,[ j] := RECURRENCE(A[ j],U [ j]).
Step 2: Set I := 0.
Step 3: For each non-zero entry ,[1][b[1]] in ,[1] do

...
For each non-zero entry ,[m][b[m]] in ,[m] do

Set b := b[1] + · · ·+b[m], c := AU−b, , :="m
j=1,

[ j][b[ j]].
Increment I by

, · (|b|/a)!(|c|/a)!
(|U |+1)! · "k

i=1
ti!b

(i)
0 !···b

(i)
ti !

(|b(i)|+ti)!
ti!c

(i)
0 !···c

(i)
ti !

(|c(i)|+ti)!
.

Step 4: Output the sum I.

The algorithm can be sped up by precomputing the factorials used in the product in Step 3. The space
and time complexity of this algorithm is O(NS) and O(NT ) respectively, where S = maxi rankA[i]

and T = (i rankA[i]. From this, we see that the splitting of the integrand should be chosen wisely to
achieve a good pay-off between the two complexities.

In the table below, we compare the naive expansion algorithm and the fast integral algorithm
for the data U = (51,18,73,25,75). We also compare the effect of splitting the integrand into two
factors, as denoted by m = 1 and m = 2. For m = 1, the fast integral algorithm takes significantly
less time than naive expansion, and requires only about 1.5 times more memory.

Time(minutes) Memory(bytes)
Naive Expansion 43.67 9,173,360

Fast Integral (m=1) 1.76 13,497,944
Fast Integral (m=2) 139.47 6,355,828

4.4 Limitations and Applications

While our algorithms are optimized for exact evaluation of integrals for mixtures of independence
models, they may not be practical for applications involving large sample sizes. To demonstrate
their limitations, we vary the sample sizes in Example 3 and compare the computation times. The
data vectorsU are generated by scalingU = (51,18,73,25,75) according to the sample size N and
rounding off the entries. Here, N is varied from 110 to 300 by increments of 10. Figure 1 shows a
logarithmic plot of the results. The times taken for N = 110 and N = 300 are 3.3 and 98.2 seconds
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Figure 1: Comparison of computation time against sample size.

respectively. Computation times for larger samples may be extrapolated from the graph. Indeed, a
sample size of 5000 could take more than 13 days.

For other models, such as the 100 Swiss Francs example in Section 1 and that of the schizophrenic
patients in Example 9, the limitations are even more apparent. In the table below, for each example
we list the sample size, computation time, rank of the corresponding A-matrix and the number of
terms in the expansion of the integrand. Despite having smaller sample sizes, the computations
for the latter two examples take a lot more time. This may be attributed to the higher ranks of the
A-matrices and the larger number of terms that need to be summed up in our algorithm.

Size Time Rank #Terms
Coin Toss 242 45 sec 2 48,646

100 Swiss Francs 40 15 hrs 7 3,892,097
Schizophrenic Patients 132 16 days 5 34,177,836

Despite their high complexities, we believe our algorithms are important because they provide
a gold standard with which approximation methods such as those studied in Chickering and Heck-
erman (1997) can be compared. Below, we use our exact methods to ascertain the accuracy of
asymptotic formula derived in Watanabe (2001) and Watanabe and Yamazaki (2003, 2004) using
desingularization methods from algebraic geometry.

Example 6 Consider the model from Example 3. Choose data vectorsU = (U0,U1,U2,U3,U4) with
Ui = Nqi where N is a multiple of 16 and

qi =
1
16

(
4
i

)

, i= 0,1, . . . ,4.

Let IN(U) be the integral (25). Define

FN(U) = N
4

(
i=0

qi logqi− log IN(U).
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According to Watanabe and Yamazaki (2004), for large N we have the asymptotics

EU [FN(U)] =
3
4
logN+O(1) (26)

where the expectation EU is taken over all U with sample size N under the distribution defined by
q= (q0,q1,q2,q3,q4). Thus, we should expect

F16+N−FN ≈
3
4
log(16+N)−

3
4
logN =: g(N).

We compute F16+N−FN using our exact methods and list the results below.

N F16+N−FN g(N)
16 0.21027043 0.225772497
32 0.12553837 0.132068444
48 0.08977938 0.093704053
64 0.06993586 0.072682510
80 0.05729553 0.059385934
96 0.04853292 0.050210092
112 0.04209916 0.043493960

Clearly, the table supports our conclusion. The coefficient 3/4 of logN in the formula (26) is known
as the real log-canonical threshold of the statistical model. The example suggests that our method
could be developed into a numerical technique for computing the real log-canonical threshold.

5. Back to Bayesian Statistics

In this section we discuss how the exact integration approach presented here interfaces with issues in
Bayesian statistics. The first concerns the rather restrictive assumption that our marginal likelihood
integral be evaluated with respect to the uniform distribution (Lesbegue measure) on the parameter
space !. It is standard practice to compute such integrals with respect to Dirichlet priors, and we
shall now explain how our algorithms can be extended to Dirichlet priors. That extension is also
available as a feature in our MAPLE implementation.

Recall that theDirichlet distribution Dir(+) is a continuous probability distribution parametrized
by a vector + = (+0,+1, . . . ,+m) of positive reals. It is the multivariate generalization of the beta
distribution and is conjugate prior (in the Bayesian sense) to the multinomial distribution. This
means that the probability distribution function of Dir(+) specifies the belief that the probability of
the ith among m+1 events equals )i given that it has been observed +i−1 times. More precisely,
the probability density function f ();+) of Dir(+) is supported on the m-dimensional simplex

'm =
{

()0, . . . ,)m) ∈ Rm
≥0 : )0+ · · ·+)m = 1

}

,

and it equals

f ()0, . . . ,)m;+0, . . . ,+m) =
1

B(+)
·)+0−10 )+1−11 · · ·)+m−1m =:

)+−1

B(+)
.

Here the normalizing constant is the multinomial beta function

B(+) =
m!-(+0)-(+1) · · ·-(+m)

-(+0++1+ · · ·++m)
.
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Note that, if the +i are all integers, then this is the rational number

B(+) =
m!(+0−1)!(+1−1)! · · ·(+m−1)!

(+0+ · · ·++m−1)!
.

Thus the identity (12) is the special case of the identity
R

'm f ();+)d) = 1 for the density of the
Dirichlet distribution when all +i = bi+1 are integers.

We now return to the marginal likelihood for mixtures of independence models. To compute
this quantity with respect to Dirichlet priors means the following. We fix positive real numbers
+0,+1, and .

(i)
j and /(i)j for i = 1, . . . ,k and j = 0, . . . , ti. These specify Dirichlet distributions on

'1, P and P. Namely, the Dirichlet distribution on P given by the .
(i)
j is the product probability

measure given by taking the Dirichlet distribution with parameters (.(i)
0 ,.(i)

1 , . . . ,.(i)
ti ) on the i-th

factor 'ti in the product (7) and similarly for the /
(i)
j . The resulting product probability distribution

on ! = '1 × P × P is called the Dirichlet distribution with parameters (+,.,/). Its probability
density function is the product of the respective densities:

f (*,),&;+,.,/) =
*+−1

B(+)
·
k

"
i=1

()(i)).
(i)−1

B(.(i))
·
k

"
i=1

(&(i))/
(i)−1

B(/(i))
. (27)

By the marginal likelihood with Dirichlet priors we mean the integral
Z

!
LU(*,),&) f (*,),&;+,.,/)d*d)d&. (28)

This is a modification of (15) and it depends not just on the dataU and the modelM (2) but also on
the choice of Dirichlet parameters (+,.,/). When the coordinates of these parameters are arbitrary
positive reals but not integers, then the value of the integral (28) is no longer a rational number.
Nonetheless, it can be computed exactly as follows. We abbreviate the product of gamma functions
in the denominator of the density (27) as follows:

B(+,.,/) := B(+) ·
k

"
i=1

B(.(i)) ·
k

"
i=1

B(/(i)).

Instead of the integrand (18) we now need to integrate

(
b∈ZL

A (U)
c=AU−b

,A(b,U)

B(+,.,/)
·*|b|/a++0−10 ·*|c|/a++1−11 ·)b+.−1 ·&c+/−1

with respect to Lebesgue probability measure on !. Doing this term by term, as before, we obtain
the following modification of Theorem 4.

Corollary 9 The marginal likelihood of the data U in the mixture model M (2) with respect to
Dirichlet priors with parameters (+,.,/) equals

N!
U1!···Un!·B(+,.,/) ·(b∈ZL

A (U)
c=AU−b

,A(b,U) -(|b|/a++0)-(|c|/a++1)
-(|U |+|+|)

·"k
i=1

( ti!-(b(i)
0 +.(i)

0 )···-(b(i)
ti +.(i)

ti )

-(|b(i)|+|.(i)|)

ti!-(c(i)0 +/(i)0 )···-(c(i)ti +/(i)ti )

-(|c(i)|+|/(i)|)

)

.

1627



LIN, STURMFELS AND XU

A well-known experimental study (Chickering and Heckerman, 1997) compares different meth-
ods for computing numerical approximations of marginal likelihood integrals. The model consid-
ered in the study is the naive-Bayes model, which, in the language of algebraic geometry, corre-
sponds to arbitrary secant varieties of Segre varieties. In this paper we considered the first secant
variety of arbitrary Segre-Veronese varieties. In what follows we restrict our discussion to the in-
tersection of both classes of models, namely, to the first secant variety of Segre varieties. For the
remainder of this section we fix

s1 = s2 = · · · = sk = 1

but we allow t1, t2, . . . , tk to be arbitrary positive integers. Thus in the model of Chickering and
Heckerman (1997, Equation 1), we fix rC = 2, and the n there corresponds to our k.

To keep things as simple as possible, we shall fix the uniform distribution as in Sections 1–4
above. Thus, in the notation of Chickering and Heckerman (1997, §2), all Dirichlet hyperparameters
+i jk are set to 1. This implies that, for any data U ∈ Nn and any of our models, the problem
of finding the maximum a posteriori (MAP) configuration is equivalent to finding the maximum
likelihood (ML) configuration. To be precise, the MAP configuration is the point (*̂, )̂, &̂) in !
which maximizes the likelihood function LU(*,),&) in (14). This maximum may not be unique,
and there will typically be many local maxima. Chickering and Heckerman (1997, §3.2) used the
expectation maximization (EM) algorithm (Pachter and Sturmfels, 2005, §1.3) to approximate the
MAP configuration numerically

The Laplace approximation and the BIC score (Chickering and Heckerman, 1997, §3.1) are
predicated on the idea that the MAP configuration can be found with high accuracy and that the
data U were actually drawn from the corresponding distribution p(*̂, )̂, &̂). Let H(*,),&) denote
the Hessian matrix of the log-likelihood function logL(*,),&). Then the Laplace approximation
(Chickering and Heckerman, 1997, Equation 15) states that the logarithm of the marginal likelihood
can be approximated by

logL(*̂, )̂, &̂) −
1
2
log|detH(*̂, )̂, &̂)| +

2d−2k+1
2

log(2#). (29)

The Bayesian information criterion (BIC) suggests the coarser approximation

logL(*̂, )̂, &̂) −
2d−2k+1

2
log(N), (30)

where N =U1+ · · ·+Un is the sample size.
In algebraic statistics, we do not content ourselves with the output of the EM algorithm but,

to the extent possible, we seek to actually solve the likelihood equations (Hoşten et al., 2005) and
compute all local maxima of the likelihood function. We consider it a difficult problem to reliably
find (*̂, )̂, &̂), and we are concerned about the accuracy of any approximation like (29) or (30).

Example 7 Consider the 100 Swiss Francs table (2) discussed in the Introduction. Here k = 2,
s1 = s2 = 1, t1 = t2 = 3, the matrix A is unimodular, and (9) is the Segre embedding P3×P3 ↪→ P15.
The parameter space ! is 13-dimensional, but the model M (2) is 11-dimensional, so the given
parametrization is not identifiable (Feinberg et al., 2007). This means that the Hessian matrix H is
singular, and hence the Laplace approximation (29) is not defined.
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Example 8 We compute (29) and (30) for the model and data in Example 3. According to Hoşten
et al. (2005, Example 9), the likelihood function p510 p181 p732 p253 p754 has three local maxima (p̂0, p̂1, p̂2, p̂3, p̂4)
in the model M (2), and these translate into six local maxima (*̂, )̂, &̂) in the parameter space !,
which is the 3-cube. The two global maxima are

(0.3367691969,0.0287713237,0.6536073424),
(0.6632308031,0.6536073424,0.0287713237).

Both of these points in ! give the same point in the model:

(p̂0, p̂1, p̂2, p̂3, p̂4) = (0.12104,0.25662,0.20556,0.10758,0.30920).

The likelihood function evaluates to 0.1395471101×10−18 at this point. The following table com-
pares the various approximations. Here, “Actual” refers to the base-10 logarithm of the marginal
likelihood in Example 3.

BIC -22.43100220
Laplace -22.39666281
Actual -22.10853411

The method for computing the marginal likelihood which was found to be most accurate in the
experimental study is the candidate method (Chickering and Heckerman, 1997, §3.4). This is a
Monte-Carlo method which involves running a Gibbs sampler. The basic idea is that one wishes
to compute a large sum, such as (20) by sampling among the terms rather than listing all terms. In
the candidate method one uses not the sum (20) over the lattice points in the zonotope but the more
naive sum over all 2N hidden data that would result in the observed data represented by U . The
value of the sum is the number of terms, 2N , times the average of the summands, each of which is
easy to compute. A comparison of the results of the candidate method with our exact computations,
as well as a more accurate version of Gibbs sampling which is adapted for (20), will be the subject
of a future study.

One of the applications of marginal likelihood integrals lies in model selection. An important
concept in that field is that of Bayes factors. Given data and two competing models, the Bayes
factor is the ratio of the marginal likelihood integral of the first model over the marginal likelihood
integral of the second model. In our context it makes sense to form that ratio for the independence
modelM and its mixtureM (2). To be precise, given any independence model, specified by positive
integers s1, . . . ,sk, t1, . . . , tk and a corresponding data vectorU ∈ Nn, the Bayes factor is the ratio of
the marginal likelihood in Lemma 1 and the marginal likelihood in Theorem 4. Both quantities are
rational numbers and hence so is their ratio.

Corollary 10 The Bayes factor which discriminates between the independence model M and the
mixture model M (2) is a rational number. It can be computed exactly using Algorithm 2 (and our
MAPLE-implementation).

Example 9 We conclude by applying our method to a data set taken from the Bayesian statistics
literature. Evans, Gilula, and Guttman (1989, §3) analyzed the association between length of hos-
pital stay (in years Y ) of 132 schizophrenic patients and the frequency with which they are visited
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by relatives. Their data set is the following 3×3 contingency table:

U =

2≤Y<10 10≤Y<20 20≤Y Totals
Visited regularly 43 16 3 62
Visited rarely 6 11 10 27
Visited never 9 18 16 43

Totals 58 45 29 132

They present estimated posterior means and variances for these data, where “each estimate requires
a 9-dimensional integration” (Evans et al., 1989, p. 561). Computing their integrals is essentially
equivalent to ours, for k= 2,s1 = s2 = 1, t1 = t2 = 2 and N = 132. The authors emphasize that “the
dimensionality of the integral does present a problem” (Evans et al., 1989, p. 562), and they point
out that “all posterior moments can be calculated in closed form .... however, even for modest N
these expressions are far to complicated to be useful” (Evans et al., 1989, p. 559).

We differ on that conclusion. In our view, the closed form expressions in Section 3 are quite
useful for modest sample size N. Using Algorithm 2, we computed the integral (25). It is the
rational number with numerator

278019488531063389120643600324989329103876140805
285242839582092569357265886675322845874097528033
99493069713103633199906939405711180837568853737

and denominator

12288402873591935400678094796599848745442833177572204
50448819979286456995185542195946815073112429169997801
33503900169921912167352239204153786645029153951176422
43298328046163472261962028461650432024356339706541132
34375318471880274818667657423749120000000000000000.

To obtain the marginal likelihood for the data U above, that rational number (of moderate size) still
needs to be multiplied with the normalizing constant

132!
43! ·16! ·3! ·6! ·11! ·10! ·9! ·18! ·16!

.
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Abstract
The reinforcement learning paradigm is a popular way to address problems that have only limited
environmental feedback, rather than correctly labeled examples, as is common in other machine
learning contexts. While significant progress has been made to improve learning in a single task,
the idea of transfer learning has only recently been applied to reinforcement learning tasks. The
core idea of transfer is that experience gained in learning to perform one task can help improve
learning performance in a related, but different, task. In this article we present a framework that
classifies transfer learning methods in terms of their capabilities and goals, and then use it to survey
the existing literature, as well as to suggest future directions for transfer learning work.
Keywords: transfer learning, reinforcement learning, multi-task learning

1. Transfer Learning Objectives

In reinforcement learning (RL) (Sutton and Barto, 1998) problems, leaning agents take sequential
actions with the goal of maximizing a reward signal, which may be time-delayed. For example,
an agent could learn to play a game by being told whether it wins or loses, but is never given the
“correct” action at any given point in time. The RL framework has gained popularity as learning
methods have been developed that are capable of handling increasingly complex problems. How-
ever, when RL agents begin learning tabula rasa, mastering difficult tasks is often slow or infeasible,
and thus a significant amount of current RL research focuses on improving the speed of learning
by exploiting domain expertise with varying amounts of human-provided knowledge. Common ap-
proaches include deconstructing the task into a hierarchy of subtasks (cf., Dietterich, 2000); learning
with higher-level, temporally abstract, actions (e.g., options, Sutton et al. 1999) rather than simple
one-step actions; and efficiently abstracting over the state space (e.g., via function approximation)
so that the agent may generalize its experience more efficiently.

The insight behind transfer learning (TL) is that generalization may occur not only within tasks,
but also across tasks. This insight is not new; transfer has long been studied in the psychological
literature (cf., Thorndike and Woodworth, 1901; Skinner, 1953). More relevant are a number of

∗. The first author wrote the majority of this article while a graduate student at the University of Texas at Austin.

c©2009 Matthew E. Taylor and Peter Stone.
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Figure 1: This article focuses on transfer between reinforcement learning tasks.

approaches that transfer between machine learning tasks (Caruana, 1995; Thrun, 1996), for planning
tasks (Fern et al., 2004; Ilghami et al., 2005), and in the context of cognitive architectures (Laird
et al., 1986; Choi et al., 2007). However, TL for RL tasks has only recently been gaining attention
in the artificial intelligence community. Others have written surveys for reinforcement learning
(Kaelbling et al., 1996), and for transfer across machine learning tasks (Thrun and Pratt, 1998),
which we will not attempt to duplicate; this article instead focuses on transfer between RL tasks (see
Figure 1) to provide an overview of a new, growing area of research.

Transfer learning in RL is an important topic to address at this time for three reasons. First, in
recent years RL techniques have achieved notable successes in difficult tasks which other machine
learning techniques are either unable or ill-equipped to address (e.g., TDGammon Tesauro 1994,
job shop scheduling Zhang and Dietterich 1995, elevator control Crites and Barto 1996, helicopter
control Ng et al. 2004, marble maze control Bentivegna et al. 2004, Robot Soccer Keepaway Stone
et al. 2005, and quadruped locomotion Saggar et al. 2007 and Kolter et al. 2008). Second, classical
machine learning techniques such as rule induction and classification are sufficiently mature that
they may now easily be leveraged to assist with TL. Third, promising initial results show that not
only are such transfer methods possible, but they can be very effective at speeding up learning.
The 2005 DARPA Transfer Learning program (DARPA, 2005) helped increase interest in transfer
learning. There have also been some recent workshops providing exposure for RL techniques that
use transfer. The 2005 NIPS workshop, “Inductive Transfer: 10 Years Later,” (Silver et al., 2005)
had few RL-related transfer papers, the 2006 ICML workshop, “Structural Knowledge Transfer for
Machine Learning,” (Banerjee et al., 2006) had many, and the 2008 AAAI workshop, “Transfer
Learning for Complex Tasks,” (Taylor et al., 2008a) focused on RL.

1.1 Paper Overview

The goals of this survey are to introduce the reader to the transfer learning problem in RL domains,
to organize and discuss current transfer methods, and to enumerate important open questions in
RL transfer. In transfer, knowledge from one or more source task(s) is used to learn one or more
target task(s) faster than if transfer was not used. The literature surveyed is structured primarily
by grouping methods according to how they allow source and target tasks to differ. We further
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distinguish methods according to five different dimensions (see Section 2.2). Some of the questions
that distinguish transfer methods include:

• What are the goals of the transfer method? By what metric(s) will success be measured? Sec-
tion 2 examines commonly used metrics, as well as different settings where transfer learning
can improve learning.

• What assumptions, if any, are made regarding the similarity between the tasks? Section 3.2.1
enumerates common differences, such as changes to the space in which agents operate, al-
lowing the agents to have different goals, or letting agents have different sets of actions.

• How does a transfer method identify what information can/should be transferable? Sec-
tion 3.2.2 enumerates possibilities ranging from assuming all previously seen tasks are di-
rectly useful to autonomously learning which source task(s) are useful for learning in the
current target task.

• What information is transferred between tasks? Section 3.2.3 discusses possibilities ranging
from very low-level information (such as direct control knowledge) to high-level information
(such as rules regarding how a particular domain functions).

The following section presents a discussion about how to best evaluate transfer in RL. There are
many different situations in which transfer can be useful and these different situations may entail
different metrics. This discussion will prepare the reader to better understand how transfer may be
used. Section 3.1 will briefly discuss reinforcement learning and the notation used in the article.
Section 3.2 enumerates the ways in which transfer methods can differ, providing a skeleton for the
structure of this survey. Sections 3.3 and 3.4 provide additional high-level categorization of TL
methods and Section 3.5 discusses related learning paradigms which are explicitly not discussed in
this survey.

The bulk of the remainder of the article (Sections 4–8) discuss contemporary TL methods, ar-
ranged by the goals of, and methods employed by, the designers. Lastly, Section 9 discusses current
open questions in transfer and concludes.

2. Evaluating Transfer Learning Methods

Transfer techniques assume varying degrees of autonomy and make many different assumptions. To
be fully autonomous, an RL transfer agent would have to perform all of the following steps:

1. Given a target task, select an appropriate source task or set of tasks from which to transfer.

2. Learn how the source task(s) and target task are related.

3. Effectively transfer knowledge from the source task(s) to the target task.

While the mechanisms used for these steps will necessarily be interdependent, TL research has
focused on each independently, and no TL methods are currently capable of robustly accomplishing
all three goals.

A key challenge in TL research is to define evaluation metrics, precisely because there are many
possible measurement options and algorithms may focus on any of the three steps above. This
section focuses on how to best evaluate TL algorithms so that the reader may better understand the
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different goals of transfer and the situations where transfer may be beneficial.1 For instance, it is not
always clear how to treat learning in the source task: whether to charge it to the TL algorithm or to
consider it as a “sunk cost.” On the one hand, a possible goal of transfer is to reduce the overall time
required to learn a complex task. In this scenario, a total time scenario, which explicitly includes
the time needed to learn the source task or tasks, would be most appropriate. On the other hand,
a second reasonable goal of transfer is to effectively reuse past knowledge in a novel task. In this
case, a target task time scenario, which only accounts for the time spent learning in the target task,
is reasonable.

The total time scenario may be more appropriate when an agent is explicitly guided by a human.
Suppose that a user wants an agent to learn to perform a task, but recognizes that the agent may be
able to learn a sequence of tasks faster than if it directly tackled the difficult task. The human can
construct a series of tasks for the agent, suggesting to the agent how the tasks are related. Thus
the agent’s TL method will easily accomplish steps 1 and 2 above, but it must efficiently transfer
knowledge between tasks (step 3). To successfully transfer in this setting, the agent would have to
learn the entire sequence of tasks faster than if it had spent its time learning the final target task
directly (see the total time scenario in Figure 2).

The target task time scenario is more appropriate for a fully autonomous learner. A fully au-
tonomous agent must be able to perform steps 1–3 on its own. However, metrics for this scenario do
not need to take into account the cost of learning source tasks. The target task time scenario empha-
sizes the agent’s ability to use knowledge from one or more previously learned source tasks without
being charged for the time spent learning them (see the target task time scenario in Figure 2). In
this survey we will see that the majority of existing transfer algorithms assume a human-guided sce-
nario, but disregard time spent training in the source task. When discussing individual TL methods,
we will specifically call attention to the methods that do account for the total training time and do
not treat the time spent learning a source task as a sunk cost.

Many metrics to measure the benefits of transfer are possible (shown in Figure 3, replicated
from our past transfer learning work, Taylor and Stone 2007b):

1. Jumpstart: The initial performance of an agent in a target task may be improved by transfer
from a source task.

2. Asymptotic Performance: The final learned performance of an agent in the target task may be
improved via transfer.

3. Total Reward: The total reward accumulated by an agent (i.e., the area under the learning
curve) may be improved if it uses transfer, compared to learning without transfer.

4. Transfer Ratio: The ratio of the total reward accumulated by the transfer learner and the total
reward accumulated by the non-transfer learner.

5. Time to Threshold: The learning time needed by the agent to achieve a pre-specified perfor-
mance level may be reduced via knowledge transfer.

Metrics 1–4 are most appropriate in the fully autonomous scenario as they do not charge the agent
for time spent learning any source tasks. To measure the total time, the metric must account for time

1. Evaluation is particularly important because there are very few theoretical results supporting TL for RL methods,
as discussed further in Section 9.3. Instead, practitioners rely on empirical methods to evaluate the efficacy of their
methods.
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Figure 2: Successful TL methods may be able to reduce the total training time (left). In some
scenarios, it is more appropriate to treat the source task time as a sunk cost and test
whether the method can effectively reuse past knowledge to reduce the target task time
(right).

spent learning one or more source tasks, which is natural when using metric 5. Other metrics have
been proposed in the literature, but we choose to focus on these five because they are sufficient to
describe the methods surveyed in this article.

For this article, we may think of learning time as a surrogate for sample complexity. Sample
complexity (or data complexity) in RL refers to the amount of data required by an algorithm to
learn. It is strongly correlated with learning time because RL agents only gain data by collecting it
through repeated interactions with an environment.

2.1 Empirical Transfer Comparisons

The previous section enumerated five possible TL metrics, and while others are possible, these
represent the methods most commonly used. However, each metric has drawbacks and none are
sufficient to fully describe the benefits of any transfer method. Rather than attempting to create a
total order ranking of different methods, which may indeed by impossible, we instead suggest that a
multi-dimensional evaluation with multiple metrics is most useful. Specifically, some methods may
“win” on a set of metrics relative to other methods, but “lose” on a different set. As the field better
understands why different methods achieve different levels of success on different metrics, it should
become easier to map TL methods appropriately to TL problems. Although the machine learning
community has defined standard metrics (such as precision vs. recall curves for classification and
mean squared error for regression), RL has no such standard. Empirically comparing two RL algo-
rithms is a current topic of debate within the community, although there is some process towards
standardizing comparisons (Whiteson et al., 2008). Theoretical comparisons are also not clear-cut,
as samples to convergence, asymptotic performance, and the computational complexity are all valid
axes along which to evaluate RL algorithms.
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Figure 3: Many different metrics for measuring TL are possible. This graph show benefits to the
jumpstart, asymptotic performance, time to threshold, and total reward (the area under
the learning curve).

The first proposed transfer measure considers the agent’s initial performance in a target task and
answers the question, “can transfer be used so that the initial performance is increased relative to
the performance of an initial (random) policy?” While such an initial jumpstart is appealing, such
a metric fails to capture the behavior of learning in the target task and instead only focuses on the
performance before learning occurs.

Asymptotic performance, the second proposed metric, compares the final performance of learn-
ers in the target task both with and without transfer. However, it may be difficult to tell when the
learner has indeed converged (particularly in tasks with infinite state spaces) or convergence may
take prohibitively long. In many settings the number of samples required to learn is most critical,
not the performance of a learner with an infinite number of samples. Further, it is possible for differ-
ent learning algorithms to converge to the same asymptotic performance but require very different
numbers of samples to reach the same performance.

A third possible measure is that of the total reward accumulated during training. Improving
initial performance and achieving a faster learning rate will help agents accumulate more on-line
reward. RL methods are often not guaranteed to converge with function approximation and even
when they do, learners may converge to different, sub-optimal performance levels. If enough sam-
ples are provided to agents (or, equivalently, learners are provided sufficient training time), a learn-
ing method which achieves a high performance relatively quickly will have less total reward than a
learning method which learns very slowly but eventually plateaus at a slightly higher performance
level. This metric is most appropriate for tasks that have a well-defined duration.
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A fourth measure of transfer efficacy is that of the ratio of areas defined by two learning curves.
Consider two learning curves in the target task where one uses transfer and one does not. Assuming
that the transfer learner accrues more reward, the area under the transfer leaning curve will be greater
than the area under the non-transfer learning curve. The ratio

r =
area under curve with transfer - area under curve without transfer

area under curve without transfer

gives a metric that quantifies improvement from TL. This metric is most appropriate if the same
final performance is achieved, or there is a predetermined time for the task. Otherwise the ratio will
directly depend on how long the agents act in the target task.

While such a metric may be appealing as a candidate for inter-task comparisons, we note that
the transfer ratio is not scale invariant. For instance, if the area under the transfer curve were 1000
units and the area under the non-transfer curve were 500, the transfer ratio would be 1.0. If all
rewards were multiplied by a constant, this ratio would not change. But if an offset were added
(e.g., each agent is given an extra +1 at the end of each episode, regardless of the final state), the
ratio would change. The evaluation of a TL algorithm with the transfer ratio is therefore closely
related to the reward structure of the target task being tested. Lastly, we note that although none of
the papers surveyed in this article use such a metric, we hope that it will be used more often in the
future.

The final metric, Time to Threshold, suffers from having to specify a (potentially arbitrary) per-
formance agents must achieve. While there have been some suggestions how to pick such thresholds
appropriately (Taylor et al., 2007a), the relative benefit of TL methods will clearly depend on the
exact threshold chosen, which will necessarily be domain- and learning method-dependent. While
choosing a range of thresholds to compare over may produce more representative measures (cf.,
Taylor et al., 2007b), this leads to having to generating a time vs. threshold curve rather than pro-
ducing a single real valued number that evaluates a transfer algorithm’s efficacy.

A further level of analysis that could be combined with any of the above methods would be to
calculate a ratio comparing the performance of a TL algorithm with that of a human learner. For
instance, a set of human subjects could learn a given target task with and without having first trained
on a source task. By averaging over their performances, different human transfer metrics could be
calculated and compared to that of a TL algorithm. However, there are many ways to manipulate
such a meta-metric. For instance, if a target task is chosen that humans are relatively proficient
at, transfer will provide them very little benefit. If that same target task is difficult for a machine
learning algorithm, it will be relatively easy to show that the TL algorithm is quite effective relative
to human transfer, even if the agent’s absolute performance is extremely poor.

A major drawback of all the metrics discussed is that none are appropriate for inter-domain com-
parisons. The vast majority of papers in this survey compare learning with and without transfer—
their authors often do not attempt to directly compare different transfer methods. Developing fair
metrics that apply across multiple problem domains would facilitate better comparisons of methods.
Such inter-domain metrics may be infeasible in practice, in which case standardizing on a set of test
domains would assist in comparing different TL methods (as discussed further in Section 9). In
the absence of either a set of inter-domain metrics or a standard benchmark suite of domains, we
limit our comparisons of different TL methods in this survey to their applicability, assumptions, and
algorithmic differences. When discussing different methods, we may opine on the method’s relative
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performance, but we remind the reader that such commentary is largely based on intuition rather
than empirical data.

2.2 Dimensions of Comparison

In addition to differing on evaluation metrics, we categorize TL algorithms along five dimensions,
which we use as the main organizing framework for our survey of the literature:

I Task difference assumptions: What assumptions does the TL method make about how the
source and target are allowed to differ? Examples of things that can differ between the source
and target tasks include different system dynamics (i.e., the target task becomes harder to
solve is some incremental way), or different sets of possible actions at some states. Such
assumptions define the types of source and target tasks that the method can transfer between.
Allowing transfer to occur between less similar source and target tasks gives more flexibility
to a human designer in the human-guided scenario. In the fully autonomous scenario, more
flexible methods are more likely to be able to successfully apply past knowledge to novel
target tasks.

II Source task selection: In the simplest case, the agent assumes that a human has performed
source task selection (the human-guided scenario), and transfers from one or more selected
tasks. More complex methods allow the agent to select a source task or set of source tasks.
Such a selection mechanism may additionally be designed to guard against negative transfer,
where transfer hurts the learner’s performance. The more robust the selection mechanism,
the more likely it is that transfer will be able to provide a benefit. While no definitive answer
to this problem exists, successful techniques will likely have to account for specific target
task characteristics. For instance, Carroll and Seppi (2005) motivate the need for general task
similarity metrics to enable robust transfer, propose three different metrics, and then proceed
to demonstrate that none is always “best,” just as there is never a “best” inductive bias in a
learning algorithm.

III Task Mappings: Many methods require a mapping to transfer effectively: in addition to know-
ing that a source task and target task are related, they need to know how they are related.
Inter-task mappings (discussed in detail later in Section 3.4) are a way to define how two
tasks are related. If a human is in the loop, the method may assume that such task mappings
are provided; if the agent is expected to transfer autonomously, such mappings have to be
learned. Different methods use a variety of techniques to enable transfer, both on-line (while
learning the target task) and offline (after learning the source task but before learning the tar-
get task). Such learning methods attempt to minimize the number of samples needed and/or
the computational complexity of the learning method, while still learning a mapping to enable
effective transfer.

IV Transferred Knowledge: What type of information is transferred between the source and
target tasks? This information can range from very low-level information about a specific
task (i.e., the expected outcome when performing an action in a particular location) to general
heuristics that attempt to guide learning. Different types of knowledge may transfer better or
worse depending on task similarity. For instance, low-level information may transfer across
closely related tasks, while high-level concepts may transfer across pairs of less similar tasks.
The mechanism that transfers knowledge from one task to another is closely related to what
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is being transferred, how the task mappings are defined (III), and what assumptions about the
two tasks are made (I).

V Allowed Learners: Does the TL method place restrictions on what RL algorithm is used,
such as applying only to temporal difference methods? Different learning algorithms have
different biases. Ideally an experimenter or agent would select the RL algorithm to use based
on characteristics of the task, not on the TL algorithm. Some TL methods require that the
source and target tasks be learned with the same method, other allow a class of methods to be
used in both tasks, but the most flexible methods decouple the agents’ learning algorithms in
the two tasks.

An alternate TL framework may be found in the related work section of Lazaric (2008), a
recent PhD thesis on TL in RL tasks. Lazaric compares TL methods in terms of the type of benefit
(jumpstart, total reward, and asymptotic performance), the allowed differences between source and
target (different goal states, different transition functions but the same reward function, and different
state and action spaces) and the type of transferred knowledge (experience or structural knowledge).
Our article is more detailed both in the number of approaches considered, the depth of description
about each approach, and also uses a different organizational structure. In particular, we specify
which of the methods improve which of five TL metrics, we note which of the methods account
for source task training time rather than treating it as a sunk cost, and we differentiate methods
according to five dimensions above.

3. Transfer for Reinforcement Learning

In this section we first give a brief overview of notation. We then summarize the methods discussed
in this survey using the five dimensions previously discussed, as well as enumerating the possible at-
tributes for these dimensions. Lastly, learning paradigms with goals similar to transfer are discussed
in Section 3.5.

3.1 Reinforcement Learning Background

RL problems are typically framed in terms ofMarkov decision processes (MDPs) (Puterman, 1994).
For the purposes of this article,MDP and task are used interchangeably. In an MDP, there is some set
of possible perceptions of the current state of the world, s ∈ S, and a learning agent has one or more
initial starting states, sinitial . The reward function, R : S $→ R, maps each state of the environment
to a single number which is the instantaneous reward achieved for reaching the state. If the task is
episodic, the agent begins at a start state and executes actions in the environment until it reaches
a terminal state (one or more of the states in s f inal , which may be referred to as a goal state), at
which point the agent is returned to a start state. An agent in an episodic task typically attempts to
maximize the average reward per episode. In non-episodic tasks, the agent attempts to maximize
the total reward, which may be discounted. By using a discount factor, !, the agent can weigh
immediate rewards more heavily than future rewards, allowing it to maximize a non-infinite sum of
rewards.
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An agent knows its current state in the environment, s∈ S.2 TL methods are particularly relevant
in MDPs that have a large or continuous state, as these are the problems which are slow to learn
tabula rasa and for which transfer may provide substantial benefits. Such tasks typically factor
the state using state variables (or features), so that s = 〈x1,x2, . . . ,xn〉 (see Figure 4). The agent’s
observed state may be different from the true state if there is perceptual noise. The set A describes
the actions available to the agent, although not every action may be possible in every state.3 The
transition function, T : S×A $→ S, takes a state and an action and returns the state of the environment
after the action is performed. Transitions may be non-deterministic, making the transition function
a probability distribution function. A learner senses the current state, s, and typically knows A and
what state variables comprise S; however, it is generally not given R or T .

A policy, " : S $→ A, fully defines how a learner interacts with the environment by mapping
perceived environmental states to actions. The success of an agent is determined by how well it
maximizes the total reward it receives in the long run while acting under some policy ". An optimal
policy, "∗, is a policy which does maximize the expectation of this value. Any reasonable learning
algorithm attempts to modify " over time so that the agent’s performance approaches that of "∗ in
the limit.

There are many possible approaches to learning such a policy (depicted as a black box in Fig-
ure 4), including:

• Temporal difference (TD) methods, such as Q-learning (Sutton, 1988; Watkins, 1989) and
Sarsa (Rummery and Niranjan, 1994; Singh and Sutton, 1996), learn by backing up experi-
enced rewards through time. An estimated action-value function, Q : S×A $→ R is learned,
where Q(s,a) is the expected return found when executing action a from state s, and greedily
following the current policy thereafter. The current best policy is generated from Q by sim-
ply selecting the action that has the highest value for the current state. Exploration, when the
agent chooses an action to learn more about the environment, must be balanced with exploita-
tion, when the agent selects what it believes to be the best action. One simple approach that
balances the two is #-greedy action selection: the agent selects an random action with chance
#, and the current best action is selected with probability 1− # (where # is in [0,1]).

• Policy search methods, such as policy iteration (dynamic programming), policy gradient
(Williams, 1992; Baxter and Bartlett, 2001), and direct policy search (Ng and Jordan, 2000),
are in some sense simpler than TD methods because they directly modify a policy over time
to increase the expected long-term reward by using search or other optimization techniques.

• Dynamic programming (Bellman, 1957) approaches assume that a full model of the environ-
ment is known (i.e., S, A, T , and R are provided to the agent and are correct). No interaction
with the environment is necessary, but the agent must iteratively compute approximations for
the true value or action-value function, improving them over time.

• Model-based or Model-learning methods (Moore and Atkeson, 1993; Kearns and Singh,
1998) attempt to estimate the true model of the environment (i.e., T and R) by interacting

2. If the agent only receives observations and does not know the true state, the agent may treat approximate its true state
as the observation (cf., Stone et al., 2005), or it may learn using the Partially Observable Markov Decision Process
(POMDP) (cf., Kaelbling et al., 1998) problem formulation, which is beyond the scope of this survey.

3. Although possible in principle, we are aware of no TL methods currently address MDPs with continuous actions.
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Figure 4: An agent interacts with an environment by sequentially selecting an action in an observed
state, with the objective of maximizing an environmental reward signal.

with the environment over time. Instance based methods (Ormoneit and Sen, 2002) save
observed interactions with the environment and leverage the instance directly to predict the
model. Bayesian RL (Dearden et al., 1999) approaches use a mathematical model to explic-
itly represent uncertainty in the components of the model, updating expectations over time.
The learned model is then typically used to help the agent decide how to efficiently explore or
plan trajectories so that it can accrue higher rewards. While very successful in small tasks, few
such methods handle continuous state spaces (cf., Jong and Stone, 2007), and they generally
have trouble scaling to tasks with many state variables due to the “curse of dimensionality.”

• Relational reinforcement learning (RRL) (Dzeroski et al., 2001) uses a different learning
algorithm as well as a different state representation. RRL may be appropriate if the state
of an MDP can be described in a relational or first-order language. Such methods work by
reasoning over individual objects (e.g., a single block in a Blocksworld task) and thus may be
robust to changes in numbers of objects in a task.

• Batch learning methods (e.g., Least Squares Policy Iteration (Lagoudakis and Parr, 2003)
and Fitted-Q Iteration (Ernst et al., 2005) are offline and do not attempt to learn as the agent
interacts with the environment. Batch methods are designed to be more sample efficient, as
they can store a number of interactions with the environment and use the data multiple times
for learning. Additionally, such methods allow a clear separation of the learning mechanism
from the exploration mechanism (which much decide whether to attempt to gather more data
about the environment or exploit the current best policy).

In tasks with small, discrete state spaces, Q and " can be fully represented in a table. As the
state space grows, using a table becomes impractical, or impossible if the state space is continuous.
In such cases, RL learning methods use function approximators, such as artificial neural networks,
which rely on concise, parameterized functions and use supervised learning methods to set these
parameters. Function approximation is used in large or continuous tasks to better generalize experi-
ence. Parameters and biases in the approximator are used to abstract the state space so that observed
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data can influence a region of state space, rather than just a single state, and can substantially in-
crease the speed of learning.

Some work in RL (Dean and Givan, 1997; Li et al., 2006; Mahadevan and Maggioni, 2007)
has experimented with more systematic approaches to state abstractions (also called structural ab-
straction). Temporal abstractions have also been successfully used to increase the speed of learning.
These macro-actions or options (Sutton et al., 1999) may allow the agent to leverage the sequence
of actions to learn its task with less data. Lastly, hierarchical methods, such as MAXQ (Dietterich,
2000), allow learners exploit a task that is decomposed into different sub-tasks. The decomposition
typically enables an agent to learn each subtask relatively quickly and then combine them, resulting
in an overall learning speed improvement (compared to methods that do not leverage such a sub-task
hierarchy).

3.2 Transfer Approaches

Having provided a brief overview of the RL notation used in this survey, we now enumerate possible
approaches for transfer between RL tasks. This section lists attributes of methods used in the TL
literature for each of the five dimensions discussed in Section 2.2, and summarizes the surveyed
works in Table 1. The first two groups of methods apply to tasks which have the same state variables
and actions. (Section 4 discusses the TL methods in the first block, and Section 5 discusses the
multi-task methods in the second block.) Groups three and four consider methods that transfer
between tasks with different state variables and actions. (Section 6 discusses methods that use a
representation that does not change when the underlying MDP changes, while Section 7 presents
methods that must explicitly account for such changes.) The last group of methods (discussed
in Section 8) learns a mapping between tasks like those used by methods in the fourth group of
methods. Table 2 concisely enumerates the possible values for the attributes, as well as providing a
key to Table 1.

In this section the mountain car task (Moore, 1991; Singh and Sutton, 1996), a standard RL
benchmark, will serve as a running example. In mountain car, an under-powered car moves along
a curve and attempts to reach a goal state at the top of the right “mountain” by selecting between
three actions on every timestep: {Forward, Neutral, Backward}, where Forward accelerates the
car in the positive x direction and Backward accelerates the car in the negative x direction. The
agent’s state is described by two state variables: the horizontal position, x, and velocity, ẋ. The
agent receives a reward of −1 on each time step. If the agent reaches the goal state the episode ends
and the agent is reset to the start state (often the bottom of the hill, with zero velocity).

3.2.1 ALLOWED TASK DIFFERENCES

TL methods can transfer between MDPs that have different transition functions (denoted by t in
Table 1), state spaces (s), start states (si), goal states (s f ), state variables (v), reward functions (r),
and/or action sets (a). For two of the methods, the agent’s representation of the world (the agent-
space, describing physical sensors and actuators) remains the same, while the true state variables
and actions (the problem-space, describing the task’s state variables and macro-actions) can change
(p in Table 1, discussed further in Section 6). There is also a branch of work that focuses on transfer
between tasks which are composed of some number of objects that may change between the source
and the target task, such as when learning with RRL (# in Table 1). When summarizing the allowed
task differences, we will concentrate on the most salient features. For instance, when the source task
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and target task are allowed to have different state variables and actions, the state space of the two
tasks is different because the states are described differently, and the transition function and reward
function must also change, but we only indicate “a” and “v.”

These differences in the example mountain car task could be exhibited as:

• t: using a more powerful car motor or changing the surface friction of the hill

• s: changing the range of the state variables

• si: changing where the car starts each episode

• s f : changing the goal state of the car

• v: describing the agent’s state only by its velocity

• r: rather than a reward of −1 on every step, the reward could be a function of the distance
from the goal state

• a: disabling the Neutral action

• p: the agent could describe the state by using extra state variables, such as the velocity on the
previous timestep, but the agent only directly measures its current position and velocity

• #: the agent may need to control two cars simultaneously on the hill

3.2.2 SOURCE TASK SELECTION

The simplest method for selecting a source task for a given target task is to assume that only a single
source task has been learned and that a human has picked it, assuring that the agent should use it for
transfer (h in Table 1). Some TL algorithms allow the agent to learn multiple source tasks and then
use them all for transfer (all). More sophisticated algorithms build a library of seen tasks and use
only the most relevant for transfer (lib). Some methods are able to automatically modify a single
source task so that the knowledge it gains from the modified task will likely be more useful in the
target task (mod). However, none of the existing TL algorithms for RL can guarantee that the source
tasks will be useful; a current open question is how to robustly avoid attempting to transfer from an
irrelevant task.

3.2.3 TRANSFERRED KNOWLEDGE

The type of knowledge transferred can be primarily characterized by its specificity. Low-level
knowledge, such as 〈 s, a, r, s′ 〉 instances (I in Table 1), an action-value function (Q), a policy
("), a full task model (model), or prior distributions (pri), could all be directly leveraged by the TL
algorithm to initialize a learner in the target task. Higher level knowledge, such as what action to
use in some situations (A: a subset of the full set of actions), partial policies or options ("p), rules
or advice (rule), important features for learning (fea), proto-value functions (pvf: a type of learned
feature), shaping rewards (R), or subtask definitions (sub) may not be directly used by the algorithm
to fully define an initial policy, but such information may help guide the agent during learning in
the target task.
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3.2.4 TASK MAPPINGS

The majority of TL algorithms in this survey assume that no explicit task mappings are necessary
because the source and target task have the same state variables and actions. In addition to having
the same labels, the state variables and actions need to have the same semantic meanings in both
tasks. For instance, consider again the mountain car domain. Suppose that the source task had
the actions A = {Forward, Neutral, Backward}. If the target task had the actions A = {Right,
Neutral, Left}, a TL method would need some kind of mapping because the actions had different
labels. Furthermore, suppose that the target task had the same actions as the source (A = {Forward,
Neutral, Backward}) but the car was facing the opposite direction, so that Forward accelerated
the car in the negative x direction and Backward accelerated the car in the positive x direction. If
the source and target task actions have different semantic meanings, there will also need to be some
kind of inter-task mapping to enable transfer.

Methods that do not use a task mapping are marked as “N/A” in Table 1. TL methods which aim
to transfer between tasks with different state variables or actions typically rely on a task mapping to
define how the tasks are related (as defined in Section 3.4). Methods that use mappings and assume
that they are human-supplied mappings are marked as “sup” in Table 1. A few algorithms leverage
experience gained in the source task and target task (exp) or a high-level description of the MDPs
in order to learn task mappings.

Methods using description-level knowledge differ primarily in what assumptions they make
about what will be provided. One method assumes a qualitative understanding of the transition
function (T), which would correspond to knowledge like “taking the action Neutral tends to have a
positive influence on the velocity in the positive x direction.” Two methods assume knowledge of
one mapping (Ma: the “action mapping”) to learn a second mapping (the “state variable mapping”
in Section 3.4). Three methods assume that the state variables are “grouped” together to describe
objects (svg). An example of the state variable grouping can be demonstrated in a mountain car
task with multiple cars: if the agent knew which position state variables referred to the same car
as certain velocity state variables, it would know something about the grouping of state variables.
These different assumptions are discussed in detail in Section 8.

3.2.5 ALLOWED LEARNERS

The type of knowledge transferred directly affects the type of learner that is applicable (as dis-
cussed in Section 3.1). For instance, a TL method that transfers an action-value function would
likely require that the target task agent use a temporal difference method to exploit the transferred
knowledge. The majority of methods in the literature use a standard form of temporal difference
learning (TD in Table 1), such as Sarsa. Other methods include Bayesian learning (B), hierarchical
approaches (H), model-based learning (MB), direct policy search (PS), and relational reinforcement
learning (RRL). Some TL methods focus on batch learning (Batch), rather than on-line learning.
Two methods use case based reasoning (CBR) (Aamodt and Plaza, 1994) to help match previously
learned instances with new instances, and one uses linear programming (LP) to calculate a value
function from a given model (as part of a dynamic programming routine).

3.3 Multi-Task Learning

Closely related to TL algorithms, and discussed in Section 5, are multi-task learning (MTL) algo-
rithms. The primary distinction between MTL and TL is that multi-task learning methods assume
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Allowed Source Task Transferred Allowed TL
Citation Task Task Mappings Knowledge Learners Metrics

Differences Selection
Same state variables and actions: Section 4

Selfridge et al. (1985) t h N/A Q TD tt†
Asada et al. (1994) si h N/A Q TD tt

Singh (1992) r all N/A Q TD ap, tr
Atkeson and Santamaria (1997) r all N/A model MB ap, j, tr

Asadi and Huber (2007) r h N/A "p H tt
Andre and Russell (2002) r, s h N/A "p H tr

Ravindran and Barto (2003b) s, t h N/A "p TD tr
Ferguson and Mahadevan (2006) r, s h N/A pvf Batch tt

Sherstov and Stone (2005) s f , t mod N/A A TD tr
Madden and Howley (2004) s, t all N/A rule TD tt, tr

Lazaric (2008) s, t lib N/A I Batch j, tr
Multi-Task learning: Section 5

Mehta et al. (2008) r lib N/A "p H tr
Perkins and Precup (1999) t all N/A "p TD tt
Foster and Dayan (2004) s f all N/A sub TD, H j, tr

Fernandez and Veloso (2006) si, s f lib N/A " TD tr
Tanaka and Yamamura (2003) t all N/A Q TD j, tr

Sunmola and Wyatt (2006) t all N/A pri B j, tr
Wilson et al. (2007) r, s f all N/A pri B j, tr
Walsh et al. (2006) r, s all N/A fea any tt

Lazaric (2008)! r all N/A fea Batch ap, tr
Different state variables and actions – no explicit task mappings: Section 6

Konidaris and Barto (2006) p h N/A R TD j, tr
Konidaris and Barto (2007) p h N/A "p TD j, tr
Banerjee and Stone (2007) a, v h N/A fea TD ap, j, tr

Guestrin et al. (2003) # h N/A Q LP j
Croonenborghs et al. (2007) # h N/A "p RRL ap, j, tr

Ramon et al. (2007) # h N/A Q RRL ap, j, tt†, tr
Sharma et al. (2007) # h N/A Q TD, CBR j, tr

Different state variables and actions – inter-task mappings used: Section 7
Taylor et al. (2007a) a, v h sup Q TD tt†
Taylor et al. (2007b) a, v h sup " PS tt†
Taylor et al. (2008b) a, v h sup I MB ap, tr
Torrey et al. (2005) a, r, v h sup rule TD j, trTorrey et al. (2006)
Torrey et al. (2007) a, r, v h sup "p TD j, tr

Taylor and Stone (2007b) a, r, v h sup rule any/TD j, tt†, tr
Learning inter-task mappings: Section 8

Kuhlmann and Stone (2007) a, v h T Q TD j, tr
Liu and Stone (2006) a, v h T N/A all N/A

Soni and Singh (2006) a, v h Ma, svg, exp N/A all ap, j, tr
Talvitie and Singh (2007) a, v h Ma, svg, exp N/A all j

Taylor et al. (2007b)! a, v h svg, exp N/A all tt†
Taylor et al. (2008c) a, v h exp N/A all j, tr

Table 1: This table lists all the TL methods discussed in this survey and classifies each in terms of
the five transfer dimensions (the key for abbreviations is in Table 2). Two entries, marked
with a !, are repeated due to multiple contributions. Metrics that account for source task
learning time, rather than ignoring it, are marked with a †.
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Allowed Task Differences Transferred Knowledge
a action set may differ A an action set
p problem-space may differ fea task features

(agent-space must be identical) I experience instances
r reward function may differ model task model
si the start state may change " policies
s f goal state may move "p partial policies (e.g., options)
t transition function may differ pri distribution priors
v state variables may differ pvf proto-value function
# number of objects in state may differ Q action-value function

R shaping reward
rule rules or advice
sub subtask definitions

Source Task Selection
all all previously seen tasks are used Allowed Learners
h one source task is used (human selected) B Bayesian learner

lib tasks are organized into a library Batch batch learner
and one or more may be used CBR case based reasoning

mod a human provides a source task that H hierarchical value-function learner
the agent automatically modifies LP linear programming

MB model based learner
Task Mappings PS policy search learner

exp agent learns the mappings from experience RRL relational reinforcement learning
Ma the method must be provided with an TD temporal difference learner

action mapping (learns state variable mapping)
N/A no mapping is used TL Metrics
sup a human supplies the task mappings ap asymptotic performance increased
svg method is provided groupings of state variables j jumpstart demonstrated
T higher-level knowledge is provided tr total reward increased

about transfer functions to learn mapping tt task learning time reduced

Table 2: This key provides a reference to the abbreviations in Table 1.

all problems experienced by the agent are drawn from the same distribution, while TL methods may
allow for arbitrary source and target tasks. For example, a MTL task could be to learn a series of
mountain car tasks, each of which had a transition function that was drawn from a fixed distribution
of functions that specified a range of surface frictions. Because of this assumption, MTL methods
generally do not need task mappings (dimension III in Section 2.2). MTL algorithms may be used
to transfer knowledge between learners, similar to TL algorithms, or they can attempt to learn how
to act on the entire class of problems.

When discussing supervised multitask learning (cf., Caruana, 1995, 1997), data from multiple
tasks can be considered simultaneously. In an RL setting, rather than trying to learn multiple prob-
lems simultaneously (i.e., acting in multiple MDPs), agents tackle a sequence of tasks which are
more closely related than in TL settings. It is possible that RL agents could learn multiple tasks
simultaneously in a multiagent setting (Stone and Veloso, 2000), but this has not yet been explored
in the literature. For the purposes of this survey, we will assume, as in other transfer settings, that
tasks are learned in a sequential order.
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Sutton et al. (2007) motivate this approach to transfer by suggesting that a single large task
may be most appropriately tackled as a sequential series of subtasks. If the learner can track which
subtask it is currently in, it may be able to transfer knowledge between the different subtasks, which
are all presumably related because they are part of the same overall task. Such a setting may provide
a well-grounded way of selecting a distribution of tasks to train over, either in the context of transfer
or for multi-task learning. Note also that the additional assumptions in an MTL setting may be
leveraged to allow a more rigorous theoretical analysis than in TL (cf., Kalmár and Szepesvári,
1999).

3.4 Inter-Task Mappings

Transfer methods that assume the source and target tasks use the same state variables and actions, as
is the case in MTL, typically do not need an explicit mapping between task. In order to enable TL
methods to transfer between tasks that do have such differences, the agent must know how the tasks
are related. This section provides a brief overview of inter-task mappings (Taylor et al., 2007a), one
formulation of task mappings. Task mappings like these are used by transfer methods discussed in
Section 7.

To transfer effectively, when an agent is presented with a target task that has a set of actions
(A′), it must know how those actions are related to the action set in the source task (A). (For the sake
of exposition we focus on actions, but an analogous argument holds for state variables.) If the TL
method knows that the two action sets are identical, no action mapping is necessary. However, if
this is not the case, the agent needs to be told, or learn, how the two tasks are related. For instance,
if the agent learns to act in a source task with the actions Forward and Backward, but the target task
uses the actions Right and Left, the correspondence between these action sets may not be obvious.
Even if the action labels were the same, if the actions had different semantic meanings, the default
correspondence may be incorrect. Furthermore, if the cardinality of A and A′ are not equal, there
are actions without exact equivalences.

One option is to define an action mapping ($A) such that actions in the two tasks are mapped so
that their effects are “similar,” where similarity depends on the transfer and reward functions in the
two MDPs.4 Figure 5 depicts an action mapping as well as a state-variable mapping ($X ) between
two tasks. A second option is to define a partial mapping (Taylor et al., 2007b), such that any novel
actions in the target task are ignored. Consider adding an action in a mountain car target task, pull
hand brake, which did not have an analog in the source task. The partial mapping could map
Forward to Forward, and Backward to Backward, but not map pull hand brake to any source
task action. Because inter-task mappings are not functions, they are typically assumed to be easily
invertible (i.e., mapping source task actions into target task actions, rather than target task actions
to source task actions).

It is possible that mappings between states, rather than between state variables, could be used for
transfer, although no work has currently explored this formulation.5 Another possible extension is
to link the mappings rather than making them independent. For instance, the action mapping could
depend on the state that the agent is in, or the state variable mapping could depend on the action

4. An inter-task mapping often maps multiple entities in the target task to single entities in the source task because the
target task is more complex than the source, but the mappings may be one-to-many, one-to-one, or many-to-many.

5. However, there are many possibilities for using this approach for transfer learning, such as through bisimulation (see
Section 9).
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Figure 5: $A and $X are independent mappings that describe similarities between two MDPs. These
mappings describe how actions in the target task are similar to actions in the source task
and how state variables in the target task are similar to state variables in the source task,
respectively.

selected. Though these extensions may be necessary based on the demands of particular MDPs,
current methods have functioned well in a variety of tasks without such enhancements.

For a given pair of tasks, there could be many ways to formulate inter-task mappings. Much of
the current TL work assumes that a human has provided a (correct) mapping to the learner. Work
that attempts to learn a mapping that can be effectively used for transfer is discussed in Section 8.

3.5 Related Paradigms

In this survey, we consider transfer learning algorithms that use one or more source tasks to better
learn in a different, but related, target task. There is a wide range of methods designed to improve
the learning speed of RL methods. This section discusses four alternate classes of techniques for
speeding up learning and differentiates them from transfer. While some TL algorithms may rea-
sonably fit into one or more of the following categories, we believe that enumerating the types of
methods not surveyed in this article will help clarify our subject of interest.

3.5.1 LIFELONG LEARNING

Thrun (1996) suggested the notion of lifelong learning where an agent may experience a sequence
of tasks. Others (cf., Sutton et al., 2007) later extended this idea to the RL setting, suggesting
than an agent interacting with the world for an extended period of time will necessarily have to
perform in a sequence of tasks. Alternately, the agent may discover a series of spatially, rather
than temporally, separated sub-tasks. Transfer would be a key component of any such system, but
the lifelong learning framework is more demanding than that of transfer. First, transfer algorithms
may reasonably focus on transfer between a single pair of related tasks, rather than attempting to
account for any future task that an agent could encounter. Second, transfer algorithms are typically
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told when a new task has begun, whereas in lifelong learning, agents may be reasonably expected
to automatically identify new sub-tasks within the global MDP (i.e., the real world).

3.5.2 IMITATION LEARNING

The primary motivations for imitation methods are to allow agents to learn by watching another
agent with similar abilities (Price and Boutilier, 2003; Syed and Schapier, 2007) or a human (Abbeel
and Ng, 2005; Kolter et al., 2008) perform a task. Such algorithms attempt to learn a policy by
observing an outside actor, potentially improving upon the inferred policy. In contrast, our definition
of transfer learning focuses on agents successfully reusing internal knowledge on novel problems.

3.5.3 HUMAN ADVICE

There is a growing body of work integrating human advice into RL learners. For instance, a human
may provide action suggestions to the agent (cf., Maclin and Shavlik, 1996; Maclin et al., 2005)
or guide the agent through on-line feedback (cf., Knox and Stone, 2008). Leveraging humans’
background and task-specific knowledge can significantly improve agents’ learning ability, but it
relies on a human being tightly integrated into the learning loop, providing feedback in an on-line
manner. This survey instead concentrates on transfer methods in which a human is not continuously
available and agents must learn autonomously.

3.5.4 SHAPING

Reward shaping (Colombetti and Dorigo, 1993; Mataric, 1994) in an RL context typically refers to
allowing agent to train on an artificial reward signal rather than R. For instance, in the mountain
car task, the agent could be given a higher reward as it gets closer to the goal state, rather then
receiving −1 at every state except the goal. However, if the human can compute such a reward,
s/he would probably already know the goal location, knowledge that the agent typically does not
have. Additionally, the constructed reward function must be a potential function. If it is not, the
optimal policy for the new MDP could be different from that of the original (Ng et al., 1999). A
second definition of shaping follows Skinner’s research (Skinner, 1953) where the reward function
is modified over time in order to direct the behavior of the learner. This method, as well as the
approach of using a static artificial reward, are ways of injecting human knowledge into the task
definition to improve learning efficacy.

Erez and Smart (2008) have argued for a third definition of shaping as any supervised, iterative,
process to assist learning. This includes modifying the dynamics of the task over time, modifying the
internal learning parameters over time, increasing the actions available to the agent, and extending
the agent’s policy time horizon (e.g., as done in value iteration). All of these methods rely on a
human to intelligently assist the agent in its learning task and may leverage transfer-like methods
to successfully reuse knowledge between slightly different tasks. When discussing transfer, we will
emphasize how knowledge is successfully reused rather than how a human may modify tasks to
achieve the desired agent behavior improve agent learning performance.

3.5.5 REPRESENTATION TRANSFER

Transfer learning problems are typically framed as leveraging knowledge learned on a source task
to improve learning on a related, but different, target task. Taylor and Stone (2007a) examine the
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Allowed Source Task Transferred Allowed TL
Citation Task Task Mappings Knowledge Learners Metrics

Differences Selection
Same state variables and actions: Section 4

Selfridge et al. (1985) t h N/A Q TD tt†
Asada et al. (1994) si h N/A Q TD tt

Singh (1992) r all N/A Q TD ap, tr
Atkeson and Santamaria (1997) r all N/A model MB ap, j, tr

Asadi and Huber (2007) r h N/A "p H tt
Andre and Russell (2002) r, s h N/A "p H tr

Ravindran and Barto (2003b) s, t h N/A "p TD tr
Ferguson and Mahadevan (2006) r, s h N/A pvf Batch tt

Sherstov and Stone (2005) s f , t mod N/A A TD tr
Madden and Howley (2004) s, t all N/A rule TD tt, tr

Lazaric (2008) s, t lib N/A I Batch j, tr

Table 3: This table reproduces the first group of methods from Table 1.

complimentary task of transferring knowledge between agents with different internal representa-
tions (i.e., the function approximator or learning algorithm) of the same task. Allowing for such
shifts in representation gives additional flexibility to an agent designer; past experience may be
transferred rather than discarded if a new representation is desired. A more important benefit is
that changing representations partway through learning can allow agents to achieve better perfor-
mance in less time. Selecting a representation is often key for solving a problem (cf., the mutilated
checkerboard problem McCarthy 1964 where humans’ internal representations of a problem dras-
tically changes the problem’s solvability) and different representations may make transfer more or
less difficult. However, representation selection is a difficult problem in RL in general and discus-
sions of representation selection (or its applications to transfer efficacy) are beyond the scope of this
article.

4. Transfer Methods for Fixed State Variables and Actions

To begin our survey of TL methods, we examine the first group of methods in Table 1, reproduced
in Table 3. These techniques may be used for transfer when the source and target tasks use the same
state variables and when agents in both tasks have the same set of actions (see Figure 6).

In one of the earliest TL works for RL, Selfridge et al. (1985) demonstrated that it was faster
to learn to balance a pole on a cart by changing the task’s transition function, T , over time. The
learner was first trained on a long and light pole. Once it successfully learned to balance the pole
the task was made harder: the pole was shortened and made heavier. The total time spent training
on a sequence of tasks and reusing the learned function approximator was faster than training on the
hardest task directly.6

Similarly, the idea of learning from easy missions (Asada et al., 1994) also relies on a human
constructing a set of tasks for the learner. In this work, the task (for example, a maze) is made
incrementally harder not by changing the dynamics of the task, but by moving the agent’s initial

6. As discussed in Section 3.5.3, we classify this work as transfer rather than as a “human advice” method; while the
human may assist the agent in task selection, s/he does not provide direct on-line feedback while the agent learns.
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Figure 6: Methods in Section 4 are able to transfer between tasks that have different state spaces,
different transition functions, and different reward functions, but only if the source and
target tasks have the same actions and state variables. Dashed circles indicate the MDP
components which may differ between the source task and target task.

state, sinitial , further and further from the goal state. The agent incrementally learns how to navigate
to the exit faster than if it had tried to learn how to navigate the full maze directly. This method
relies on having a known goal state from which a human can construct a series of source tasks of
increasing difficulty.

Selfridge et al. (1985) and Asada et al. (1994) provide useful methods for improving learning,
which follow from Skinner’s animal training work. While they require a human to be in the loop, and
to understand the task well enough to provide the appropriate guidance to the learner, these methods
are relatively easy ways to leverage human knowledge. Additionally, they may be combined with
many of the transfer methods that follow.

Rather than change a task over time, one could consider breaking down a task into a series
of smaller tasks. This approach can be considered a type of transfer in that a single large target
task can be treated as a series of simpler source tasks. Singh (1992) uses a technique he labels
compositional learning to discover how to separate temporally sequential subtasks in a monolithic
task. Each subtask has distinct beginning and termination conditions, and each subtask will be
significantly easier to learn in isolation than in the context of the full task. Only the reward function,
R, is allowed to change between the different subtasks and none of the other MDP components
may vary, but the total reward can be increased. If subtasks in a problem are recognizable by state
features, such subtasks may be automatically identified via vision algorithms (Drummond, 2002).
Again, breaking a task into smaller subtasks can improve both the total reward and the asymptotic
performance. This particular method is only directly applicable to tasks in which features clearly
define subtasks due to limitations in the vision algorithm used. For instance, in a 2D navigation
task each room may be a subtask and the steep value function gradient between impassable walls is
easily identifiable. However, if the value function gradient is not distinct between different subtasks,
or the subtask regions of state space are not polygonal, the algorithm will likely fail to automatically
identify subtasks.

In Atkeson and Santamaria (1997), transfer between tasks in which only the reward function
can differ are again considered. Their method successfully transfers a locally weighted regression
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model of the transition function, which is learned in a source task, by directly applying it to a target
task. Because their model enables planning over the transition function and does not account for the
reward function, they show significant improvement to the jumpstart and total reward, as well as the
asymptotic performance.

The next three methods transfer partial policies, or options, between different tasks. First, Asadi
and Huber (2007) have the agent identify states that “locally form a significantly stronger ‘attractor’
for state space trajectories” as subgoals in the source task (i.e., a doorway between rooms that is
visited relatively often compared to other parts of the state space). The agent then learns options to
reach these subgoals via a learned action-value function, termed the decision-level model. A second
action-value function, the evaluation-level model, includes all actions and the full state space. The
agent selects actions by only considering the decision-level model but uses discrepancies between
the two models to automatically increase the complexity of the decision-level model as needed.
The model is represented as a Hierarchical Bounded Parameter SMDP, constructed so that the
performance of an optimal policy in the simplified model will be within some fixed bound of the
performance of the optimal policy on the initial model. Experiments show that transferring both
the learned options and the decision-level representation allow the target task agent to learn faster
on a task with a different reward function. In the roughly 20,000 target task states, only 81 distinct
states are needed in the decision-level model, as most states do not need to be distinguished when
selecting from learned options.

Second, Andre and Russell (2002) transfer learned subroutines between tasks, which are similar
to options. The authors assume that the source and target tasks have a hierarchical structure, such as
in the taxi domain (Dietterich, 2000). On-line analysis can uncover similarities between two tasks
if there are only small differences in the state space (e.g., the state variables do not change) and
then directly copy over the subroutine, which functions as a partial policy, thereby increasing the
total reward in the target task. This method highlights the connection between state abstraction and
transfer; if similarities can be found between parts of the state space in the two tasks, it is likely that
good local controllers or local policies can be directly transferred.

Third, Ravindran and Barto (2003b) learn relativized options in a small, human selected source
task. When learning in the target task, the agent is provided these options and a set of possible
transformations it could apply to them so that they were relevant in the target task. For instance, if
the source task were a small grid navigation task, the target task could be a large grid composed of
rooms with similar shape to the source task and the transformations could be rotation and reflection
operators. The agent uses experience in the target and Bayesian parameter estimation to select
which transformations to use so that the target task’s total reward is increased. Learning time in the
source task is ignored, but is assumed to be small compared to the target task learning time.

Next, Ferguson and Mahadevan (2006) take a unique approach to transfer information about the
source task’s structure. Proto-value functions (PVFs) (Mahadevan and Maggioni, 2007) specify an
ortho-normal set of basis functions, without regard to R, which can be used to learn an action-value
function. After PVFs are learned in a small source task, they can be transferred to another discrete
MDP that has a different goal or small changes to the state space. The target task can be learned
faster and achieve higher total reward with the transferred PVFs than without. Additionally, the
PVF can be scaled to larger tasks. For example, the target maze could have twice the width and
height of the source maze: R, S, and T are all scaled by the same factor. In all cases only the target
task time is counted.
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The goal of learning PVFs is potentially very useful for RL in general and TL in particular.
It makes intuitive sense that high-level information about how to best learn in a domain, such as
appropriate features to reason over, may transfer well across tasks. There are few examples of meta-
learners where TL algorithms learn high level knowledge to assist the agent in learning, rather than
lower-level knowledge about how to act. However, we believe that there is ample room for such
methods, including methods to learn other domain-specific learning parameters, such as learning
rates, function approximator representations, an so on.

Instead of biasing the target task agent’s learning representation by transferring a set of basis
functions, Sherstov and Stone (2005) consider how to bias an agent by transferring an appropriate
action set. If tasks have large action sets, all actions could be considered when learning each task,
but learning would be much faster if only a subset of the actions needed to be evaluated. If a reduced
action set is selected such that using it could produce near-optimal behavior, learning would be much
faster with very little loss in final performance. The standard MDP formalism is modified so that the
agent reasons about outcomes and classes. Informally, rather than reasoning over the probability of
reaching a given state after an action, the learner reasons over the actions’ effect, or outcome. States
are grouped together in classes such that the probability of a given outcome from a given action will
be the same for any state in a class. The authors then use their formalism to bound the value lost by
using their abstraction of the MDP. If the source and target are very similar, the source task can be
learned with the full action set, the optimal action set can be found from the learned Q-values, and
learning the target with this smaller action set can speed up learning in the target task. The authors
also introduce random task perturbation (RTP) which creates a series of source tasks from a single
source task, thereby producing an action set which will perform well in target tasks that are less
similar to the source task. Transfer with and without RTP is experimentally compared to learning
without transfer. While direct action transfer can perform worse than learning without transfer, RTP
was able to handle misleading source task experience so that performance was improved relative to
no transfer in all target tasks and performance using the transferred actions approaches that of the
optimal target task action set. Performance was judged by the total reward accumulated in the target
task. Leffler et al. (2007) extends the work of Sherstov and Stone by applying the outcome/class
framework to learn a single task significantly faster, and provides empirical evidence of correctness
in both simulated and physical domains.

The idea of RTP is not only unique in this survey, but it is also potentially a very useful idea for
transfer in general. While a number of TL methods are able to learn from a set of source tasks, no
others attempt to automatically generate these source tasks. If the goal of an agent is perform as well
as possible in a novel target task, it makes sense that the agent would try to train on many source
tasks, even if they are artificial. How to best generate such source tasks so that they are most likely
to be useful for an arbitrary target task in the same domain is an important area of open research.

Similar to previously discussed work (Selfridge et al., 1985; Asada et al., 1994), Progressive
RL (Madden and Howley, 2004) is a method for transferring between a progression of tasks of in-
creasing difficulty, but is limited to discrete MDPs. After learning a source task, the agent performs
introspection where a symbolic learner extracts rules for acting based on learned Q-values from all
previously learned tasks. The RL algorithm and introspection use different state features. Thus the
two learning mechanisms learn in different state spaces, where the state features for the symbolic
learner are higher-level and contain information otherwise hidden from the agent. When the agent
acts in a novel task, the first time it reaches a novel state it initialize the Q-values of that state so that
the action suggested by the learned rule is preferred. Progressive RL allows agents to learn infor-
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mation in a set of tasks and then abstract the knowledge to a higher-level representation, allowing
the agent to achieve higher total reward and reach the goal state for the first time faster. Time spent
in the source task(s) is not counted.

Finally, Lazaric (2008) demonstrates that source task instances can be usefully transferred be-
tween tasks. After learning one or more source tasks, some experience is gathered in the target task,
which may have a different state space or transition function. Saved instances (that is, observed
〈s,a,r,s′〉 tuples) are compared to instances from the target task. Instances from the source tasks
that are most similar, as judged by their distance and alignment with target task data, are transferred.
A batch learning algorithm then uses both source instances and target instances to achieve a higher
reward and a jumpstart. Region transfer takes the idea one step further by looking at similarity with
the target task per-sample, rather than per task. Thus, if source tasks have different regions of the
state space which are more similar to the target, only those most similar regions can be transferred.
In these experiments, time spent training in the target task is not counted towards the TL algorithm.

Region transfer is the only method surveyed which explicitly reasons about task similarity in
different parts of the state space, and then selects source task(s) to transfer from. In domains where
target tasks have regions of the state space that are similar to one or more source tasks, and other
areas which are similar to other source tasks (or are similar to no source tasks), region transfer may
provide significant performance improvements. As such, this method provides a unique approach to
measuring, and exploiting, task similarity on-line. It is likely that this approach will inform future
transfer methods, and is one possible way of accomplishing step # 1 in Section 2: Given a target
task, select an appropriate source task from which to transfer, if one exists.

Taken together, these TL methods show that it is possible to efficiently transfer many different
types of information between tasks with a variety of differences. It is worth re-emphasizing that
many TL methods may be combined with other speedup methods, such as reward shaping, or with
other transfer methods. For instance, when transferring between maze tasks, basis functions could
be learned (Ferguson and Mahadevan, 2006) in the source task, a set of actions to transfer could
be selected after training on a set of additional generated source tasks (Sherstov and Stone, 2005),
and then parts of different source tasks could be leveraged to learn a target task (Lazaric, 2008). A
second example would be to start with a simple source task and change it over time by modifying
the transition function (Selfridge et al., 1985) and start state (Asada et al., 1994), while learning
options (Ravindran and Barto, 2003b), until a difficult target task is learned. By examining how the
source and target task differ and what base learning method is used, RL practitioners may select
one or more TL method to apply to their domain of interest. However, in the absence of theoretical
guarantees of transfer efficacy, any TL method has the potential to be harmful, as discussed further
in Section 9.2.

5. Multi-Task Learning Methods

This section discusses scenarios where the source tasks and target task have the same state variables
and actions. However, these methods (see Table 4, reproduced from Table 1) are explicitly MTL,
and all methods in this section are designed to use multiple source tasks (see Figure 7). Some
methods leverage all experienced source tasks when learning a novel target task and others are able
to choose a subset of previously experienced tasks. Which approach is most appropriate depends
on the assumptions about the task distribution: if tasks are expected to be similar enough that all
past experience is useful, there is no need to select a subset. On the other hand, if the distribution of

1656



TRANSFER LEARNING FOR REINFORCEMENT LEARNING DOMAINS: A SURVEY

Allowed Source Task Transferred Allowed TL
Citation Task Task Mappings Knowledge Learners Metrics

Differences Selection
Multi-Task learning: Section 5

Mehta et al. (2008) r lib N/A "p H tr
Perkins and Precup (1999) t all N/A "p TD tt
Foster and Dayan (2004) s f all N/A sub TD, H j, tr

Fernandez and Veloso (2006) si, s f lib N/A " TD tr
Tanaka and Yamamura (2003) t all N/A Q TD j, tr

Sunmola and Wyatt (2006) t all N/A pri B j, tr
Wilson et al. (2007) r, s f all N/A pri B j, tr
Walsh et al. (2006) r, s all N/A fea any tt

Lazaric (2008) r all N/A fea Batch ap, tr

Table 4: This table reproduces the group of MTL methods from Table 1.
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Figure 7: Multi-task learning methods assume tasks are chosen from a fixed distribution, use one
or more source tasks to help learn the current task, and assume that all the tasks have the
same actions and state variables. Dashed circles indicate the MDP components which
may differ between tasks.

tasks is multi-modal, it is likely that transferring from all tasks is sub-optimal. None of the methods
account for time spent learning in the source task(s) as the primary concern is effective learning on
the next task chosen at random from an unknown (but fixed) distribution of MDPs.

Variable-reward hierarchical reinforcement learning (Mehta et al., 2008) assumes that the learner
will train on a sequence of tasks which are identical except for different reward weights. The re-
ward weights define how much reward is assigned via a linear combination of reward features. The
authors provide the reward features to the agent for a given set of tasks. For instance, in a real-time
strategy domain different tasks could change the reward features, such as the benefit from collecting
units of gold or from damaging the enemy. However, it is unclear how many domains of interest
have reward features, which are provided to the agent at the start of each task. Using a hierarchical
RL method, subtask policies are learned. When a novel target task is encountered, the agent sets the
initial policy to that of the most similar source task, as determined by the dot product with previ-
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ously observed reward weight vectors. The agent then uses an #-greedy action selection method at
each level of the task hierarchy to decide whether to use the best known sub-task policy or explore.
Some sub-tasks, such as navigation, will never need to be relearned for different tasks because they
are unaffected by the reward weights, but any suboptimal sub-task policies will be improved. As the
agent experiences more tasks, the total reward in each new target task increases, relative to learning
the task without transfer.

A different problem formulation is posed by Perkins and Precup (1999) where the transition
function, T , may change after reaching the goal. Upon reaching the goal, the agent is returned to
the start state and is not told if, or how, the transition function has changed, but it knows that T is
drawn randomly from some fixed distribution. The agent is provided a set of hand-coded options
which assist in learning on this set of tasks. Over time, the agent learns an accurate action-value
function over these options. Thus, a single action-value function is learned over a set of tasks,
allowing the agent to more quickly reach the goal on tasks with novel transition functions.

Instead of transferring options, Foster and Dayan (2004) aim to identify sub-tasks in a source
task and use this information in a target task, a motivation similar to that of Singh (1992). Tasks
are allowed to differ in the placement of the goal state. As optimal value functions are learned
in source tasks, an expectation-maximization algorithm (Dempster et al., 1977) identifies different
“fragmentations,” or sub-tasks, across all learned tasks. Once learned, the fragmentations are used to
augment the state of the agent. Each sub-problem can be learned independently; when encountering
a new task, much of the learning is already complete because the majority of sub-problems are
unchanged. The fragmentations work with both a flat learner (i.e., TD) and an explicitly hierarchical
learner to improve the jumpstart and total reward.

Probabilistic policy reuse (Fernandez and Veloso, 2006) also considers a distribution of tasks in
which only the goal state differs, but is one of the most robust MTL methods in terms of appropriate
source task selection. Although the method allows a single goal state to differ between the tasks,
it requires that S, A, and T remain constant. If a newly learned policy is significantly different
from existing policies, it is added to a policy library. When the agent is placed in a novel task, on
every timestep, it can choose to: exploit a learned source task policy, exploit the current best policy
for the target task, or randomly explore. If the agent has multiple learned policies in its library,
it probabilistically selects between policies so that over time more useful policies will be selected
more often. While this method allows for probabilistic mixing of the policies, it may be possible
to treat the past policies as options which can be executed until some termination condition is met,
similar to a number of previously discussed methods. By comparing the relative benefits of mixing
past policies and treating them as options, it may be possible to better understand when each of the
two approaches is most useful.

The idea of constructing an explicit policy library is likely to be useful in future TL research,
particularly for agents that train on a number of source tasks that have large qualitative differences
(and thus very different learned behaviors). Although other methods also separately record infor-
mation from multiple source tasks (cf., Mehta et al., 2008; Lazaric, 2008), Fernandez and Veloso
explicitly reason about the library. In addition to reasoning over the amount of information stored,
as a function of number and type of source tasks, it will be useful to understand how many target
task samples are needed to select the most useful source task(s).

Unlike probabilistic policy reuse, which selectively transfers information from a single source
task, Tanaka and Yamamura (2003) gather statistics about all previous tasks and use this amalga-
mated knowledge to learn novel tasks faster. Specifically, the learner keeps track of the average

1658



TRANSFER LEARNING FOR REINFORCEMENT LEARNING DOMAINS: A SURVEY

and the deviation of the action value for each (s,a) pair observed in all tasks. When the agent
encounters a new task, it initializes the action-value function so that every (s,a) pair is set to the
current average for that pair, which provides a benefit relative to uninformed initialization. As the
agent learns the target task with Q-learning and prioritized sweeping,7 the agent uses the standard
deviation of states’ Q-values to set priorities on TD backups. If the current Q-value is far from the
average for that (s,a) pair, its value should be adjusted more quickly, since it is likely incorrect (and
thus should be corrected before affecting other Q-values). Additionally, another term accounting for
the variance within individual trials is added to the priority; Q-values that fluctuate often within a
particular trial are likely wrong. Experiments show that this method, when applied to sets of discrete
tasks with different transition functions, can provide significant improvement to jumpstart and total
reward.

The next two methods consider how priors can be effectively learned by a Bayesian MTL agent.
First, Sunmola and Wyatt (2006) introduce two methods that use instances from source tasks to set
priors in a Bayesian learner. Both methods constrain the probabilities of the target task’s transition
function by using previous instances as a type of prior. The first method uses the working prior to
generate possible models which are then tested against data in the target task. The second method
uses a probability perturbation method in conjunction with observed data to improve models gen-
erated by the prior. Initial experiments show that the jumpstart and total reward can be improved if
the agent has an accurate estimation of the prior distributions of the class from which the target is
drawn. Second, Wilson et al. (2007) consider learning in a hierarchical Bayesian RL setting. Setting
the prior for Bayesian models is often difficult, but in this work the prior may be transferred from
previously learned tasks, significantly increasing the learning rate. Additionally, the algorithm can
handle “classes” of MDPs, which have similar model parameters, and then recognize when a novel
class of MDP is introduced. The novel class may then be added to the hierarchy and a distinct prior
may be learned, rather than forcing the MDP to fit into an existing class. The location of the goal
state and the parameterized reward function may differ between the tasks. Learning on subsequent
tasks shows a clear performance improvement in total reward, and some improvement in jumpstart.

While Bayesian methods have been shown to be successful when transferring between classi-
fication tasks (Roy and Kaelbling, 2007), and in non-transfer RL (Dearden et al., 1999), only the
two methods above use it in RL transfer. The learner’s bias is important in all machine learning
settings. However, Bayesian learning makes such bias explicit. Being able to set the bias through
transfer from similar tasks may prove to be a very useful heuristic—we hope that additional transfer
methods will be developed to initialize Bayesian learners from past tasks.

Walsh et al. (2006) observe that “deciding what knowledge to transfer between environments
can be construed as determining the correct state abstraction scheme for a set of source [tasks] and
then applying this compaction to a target [task].” Their suggested framework solves a set of MDPs,
builds abstractions from the solutions, extracts relevant features, and then applies the feature-based
abstraction function to a novel target task. A simple experiment using tasks with different state
spaces and reward functions shows that the time to learn a target task is decreased by using MTL.
Building upon their five defined types of state abstractions (as defined in Li et al. 2006), they give
theoretical results showing that when the number of source tasks is large (relative to the differences

7. Prioritized sweeping (Moore and Atkeson, 1993) is an RL method that orders adjustments to the value function based
on their “urgency,” which can lead to faster convergence than when updating the value function in the order of visited
states.
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Allowed Source Task Transferred Allowed TL
Citation Task Task Mappings Knowledge Learners Metrics

Differences Selection
Different state variables and actions – no explicit task mappings: Section 6
Konidaris and Barto (2006) p h N/A R TD j, tr
Konidaris and Barto (2007) p h N/A "p TD j, tr
Banerjee and Stone (2007) a, v h N/A fea TD ap, j, tr

Guestrin et al. (2003) # h N/A Q LP j
Croonenborghs et al. (2007) # h N/A "p RRL ap, j, tr

Ramon et al. (2007) # h N/A Q RRL ap, j, tt†, tr
Sharma et al. (2007) # h N/A Q TD, CBR j, tr

Table 5: This table reproduces the third group of methods from Table 1.

between the different tasks), four of the five types of abstractions are guaranteed to produce the
optimal policy in a target task using Q-learning.

Similar to Walsh et al. (2006), Lazaric (2008) also discovers features to transfer. Rather than
learning tasks sequentially, as in all the papers above, one could consider learning different tasks
in parallel and using the shared information to learn the tasks better than if each were learned in
isolation. Specifically, Lazaric (2008) learns a set of tasks with different reward functions using
the batch method Fitted Q-iteration (Ernst et al., 2005). By leveraging a multi-task feature learning
algorithm (Argyrious et al., 2007), the problem can be formulated as a joint optimization problem
to find the best features and learning parameters across observed data in all tasks. Experiments
demonstrate that this method can improve the total reward and can help the agent to ignore irrel-
evant features (i.e., features which do not provide useful information). Furthermore, since it may
be possible to learn a superior representation, asymptotic performance may be improved as well,
relative to learning tasks in isolation.

The work in this section, as summarized in the second section of Table 1, explicitly assumes
that all MDPs an agent experiences are drawn from the same distribution. Different tasks in a single
distribution could, in principal, have different state variables and actions, and future work should
investigate when allowing such flexibility would be beneficial.

6. Transferring Task-Invariant Knowledge Between Tasks with Differing State
Variables and Actions

This section, unlike the previous two, discusses methods that allow the source task and target task to
have different state variables and actions (see Figure 8 and the methods in Table 5). These methods
formulate the problem so that no explicit mapping between the tasks is needed. Instead the agent
reasons over abstractions of the MDP that are invariant when the actions or state variables change.

For example, Konidaris and Barto (2006) have separated the standard RL problem into agent-
space and problem-space representations. The agent-space is determined by the agent’s capabil-
ities, which remain fixed (e.g., physical sensors and actuators), although such a space may be
non-Markovian.8 The problem-space, on the other hand, may change between source and target

8. A standard assumption is that a task is Markovian, meaning that the probability distribution over next states is in-
dependent of the agent’s state and action history. Thus, saving a history would not assist the agent when selecting
actions, and it can consider each state in isolation.
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Figure 8: Methods in Section 6 are able to transfer between tasks with different state spaces. Al-
though T , R, A, and the state variables may also technically change, the agent’s internal
representation is formulated so that they remain fixed between source and target tasks.
MDP components with a dashed circle may change between the source task and target
task.

problems and is assumed to be Markovian. The authors’ method learns a shaping reward on-line in
agent-space while learning a source task. If a later target task has a similar reward structure and ac-
tion set, the learned shaping reward will help the agent achieve a jumpstart and higher total reward.
For example, suppose that one of the agent’s sensors measures the distance between it and a partic-
ular important state (such as a beacon located near the goal state). The agent may learn a shaping
reward that assigns reward when the state variable describing its distance to the beacon is reduced,
even in the absence of an environmental reward. The authors assume that there are no novel actions
(i.e., actions which are not in the source task’s problem-space) but any new state variables can be
handled if they can be mapped from the novel problem-space into the familiar agent-space. Addi-
tionally, the authors acknowledge that the transfer must be between reward-linked tasks, where “the
reward function in each environment consistently allocates rewards to the same types of interactions
across environments.” Determining whether or not a sequence of tasks meet this criterion is left for
future work.

In later work (Konidaris and Barto, 2007), the authors assume knowledge of “pre-specified
salient events,” which make learning options tractable. While it may be possible to learn options
without requiring such events to be specified, the paper focuses on how to use such options rather
than option learning. Specifically, when the agent achieves one of these subgoals, such as unlock-
ing a door or moving through a doorway, it may learn an option to achieve the event again in the
future. As expected, problem-space options speed up learning a single task. More interesting, when
the agent trains on a series of tasks, options in both agent-space and problem-space significantly
increase the jumpstart and total reward in the target task (time spent learning the source task is dis-
counted). The authors suggest that agent-space options will likely be more portable than problem-
space options in cases where the source and target tasks are less similar—indeed, problem-space
options will only be portable when source and target tasks are very similar.

In our opinion, agent- and problem-space are ideas that should be further explored as they will
likely yield additional benefits. Particularly in the case of physical agents, it is intuitive that agent
sensors and actuators will be static, allowing information to be easily reused. Task-specific items,
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such as features and actions, may change, but should be faster to learn if the agent has already
learned something about its unchanging agent-space.

If transfer is applied to game trees, changes in actions and state variables may be less prob-
lematic. Banerjee and Stone (2007) are able to transfer between games by focusing on this more
abstract formulation. For instance, in experiments the learner identified the concept of a fork, a state
where the player could win on the subsequent turn regardless of what move the opponent took next.
After training in the source task, analyzing the source task data for such features, and then setting
the value for a given feature based on the source task data, such features of the game tree were used
in a variety of target tasks. This analysis focuses on the effects of actions on the game tree and thus
the actions and state variables describing the source and target game can differ without requiring
an inter-task mapping. Source task time is discounted, but jumpstart, total reward, and asymptotic
performance are all improved via transfer. Although the experiments in the paper use only temporal
difference learning, it is likely that this technique would work well with other types of learners.

Guestrin et al. (2003) examine a similar problem in the context of planning in what they term
a relational MDP. Rather than learning a standard value function, an agent-centered value function
for each class of agents is calculated in a source task, forcing all agents of a given class type to
all have the same value function. However, these class value functions are defined so that they are
independent of the number of agents in a task, allowing them to be directly used in a target task
which has additional (or fewer) agents. No further learning is done in the target task, but the trans-
ferred value functions perform better than a handcoded strategy provided by the authors, despite
having additional friendly and adversarial agents. However, the authors note that the technique will
not perform well in heterogeneous environments or domains with “strong and constant interactions
between many objects.”

Relational Reinforcement Learning may also be used for effective transfer. Rather than reason-
ing about states as input from an agent’s sensors, an RRL learner typically reasons about a state
in propositional form by constructing first-order rules. The learner can easily abstract over specific
object identities as well as the number of objects in the world; transfer between tasks with different
number of objects is simplified. For instance, Croonenborghs et al. (2007) first learn a source task
policy with RRL. The learned policy is used to create examples of state-action pairs, which are then
used to build a relational decision tree. This tree predicts, for a given state, which action would be
executed by the policy. Lastly, the trees are mined to produce relational options. These options are
directly used in the target task with the assumption that the tasks are similar enough that no trans-
lation of the relational options is necessary. The authors consider three pairs of source/target tasks
where relational options learned in the source directly apply to the target task (only the number of
objects in the tasks may change), and learning is significantly improved in terms of jumpstart, total
reward, and asymptotic performance.

Other work using RRL for transfer (Ramon et al., 2007) introduces the TGR algorithm, a rela-
tional decision tree algorithm. TGR incrementally builds a decision tree in which internal nodes use
first-order logic to analyze the current state and where the tree’s leaves contain action-values. The
algorithm uses four tree-restructuring operators to effectively use available memory and increase
sample efficacy. Both target task time and total time are reduced by first training on a simple source
task and then on a related target task. Jumpstart, total reward, and asymptotic performance also
appear to improve via transfer.

RRL is a particularly attractive formulation in the context of transfer learning. In RRL, agents
can typically act in tasks with additional objects without reformulating their, although additional
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training may be needed to achieve optimal (or even acceptable) performance levels. When it is
possible to frame a domain of interest as an RRL task, transfer between tasks with different numbers
of objects or agents will likely be relatively straightforward.

With motivation similar to that of RRL, some learning problems can be framed so that agents
choose between high-level actions that function regardless of the number of objects being reasoned
about. Sharma et al. (2007) combines case-based reasoning with RL in the CAse-Based Reinforce-
ment Learner (CARL), a multi-level architecture includes three modules: a planner, a controller,
and a learner. The tactical layer uses the learner to choose between high-level actions which are in-
dependent of the number of objects in the task. The cases are indexed by: high-level state variables
(again independent of the number of objects in the task), the actions available, the Q-values of the
actions, and the cumulative contribution of that case on previous timesteps. Similarity between the
current situation and past cases is determined by Euclidean distance. Because the state variables and
actions are defined so that the number of objects in the task can change, the source and target tasks
can have different numbers of objects (in the example domain, the authors use different numbers
of player and opponent troops in the source and target tasks). Time spent learning the source task
is not counted, but the target task performance is measured in terms of jumpstart, asymptotic gain
(a metric related to the improvement in average reward over learning), and overall gain (a metric
based on the total reward accrued).

In summary, methods surveyed in this section all allow transfer between tasks with different
state variables and actions, as well as transfer functions, state spaces, and reward functions. By
framing the task in an agent-centric space, limiting the domain to game trees, or using a learning
method that reasons about variable numbers of objects, knowledge can be transferred between tasks
with relative ease because problem representations do not change from the learner’s perspective.
In general, not all tasks may be formulated so that they conform to the assumptions made by TL
methods presented in this section.

7. Explicit Mappings to Transfer between Different Actions and State
Representations

This section of the survey focuses on a set of methods which are more flexible than those previously
discussed as they allow the state variables and available actions to differ between source and target
tasks (see Table 6 and Figure 9). All methods in this section use inter-task mappings, enabling
transfer between pairs of tasks that could not be addressed by methods in the previous section. Note
that because of changes in state variables and actions, R, S, and T , all technically change as well
(they are functions defined over actions and state variables). However, as we elaborate below, some
of the methods allow for significant changes in reward functions between the tasks, while most do
not.

In Taylor et al. (2007a), the authors assume that a mapping between the source and target tasks
is provided to the learner. The learner first trains in a source task using a value-function-learning
method. Before learning begins in the target task, every action-value for each state in the target
task is initialized via learned source task values. This work experimentally demonstrates that value-
function transfer can cause significant speedup by transferring between tasks that have different state
variables and actions. Additionally, different methods for performing the value-function transfer
are examined, different function approximators are successfully used, and multi-step transfer is
demonstrated (i.e., transfer from task A to task B to task C). This TL method demonstrates that when
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Allowed Source Task Transferred Allowed TL
Citation Task Task Mappings Knowledge Learners Metrics

Differences Selection
Different state variables and actions – inter-task mappings used: Section 7

Taylor et al. (2007a) a, v h sup Q TD tt†
Taylor et al. (2007b) a, v h sup " PS tt†
Taylor et al. (2008b) a, v h sup I MB ap, tr
Torrey et al. (2005) a, r, v h sup rule TD j, trTorrey et al. (2006)
Torrey et al. (2007) a, r, v h sup "p TD j, tr

Taylor and Stone (2007b) a, r, v h sup rule any/TD j, tt†, tr

Table 6: This table reproduces the fourth group of methods from Table 1.
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Figure 9: Methods in Section 7 focus on transferring between tasks with different state features,
action sets, and possible reward functions (which, in turn, causes the state space and
transition function to differ as well). As in previous figures, MDP components with a
dashed circle may change between the source task and target task.

faced with a difficult task, it may be faster overall to first train on an artificial source task or tasks
and then transfer the knowledge to the target task, rather than training on the target task directly.
The authors provide no theoretical guarantees about their method’s effectiveness, but hypothesize
conditions under which their TL method will and will not perform well, and provide examples of
when their method fails to reduce the training time via transfer.

In subsequent work, Taylor et al. (2007b) transfer entire policies between tasks with different
state variables and actions, rather than action-value functions. A set of policies is first learned via
a genetic algorithm in the source task and then transformed via inter-task mappings. Additionally,
partial inter-task mappings are introduced, which may be easier for a human to intuit in many
domains. Specifically, those actions and state variables in the target which have “very similar”
actions and state variables in the source task are mapped, while novel state variables and actions in
the target task are left unmapped. Policies are transformed using one of the inter-task mappings and
then used to seed the learning algorithm in the target task. As in the previous work, this TL method
can successfully reduce both the target task time and the total time.
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Later, Taylor et al. (2008b) again consider pairs of tasks where the actions differ, the state vari-
ables differ, and inter-task mappings are available to the learner. In this work, the authors allow
transfer between model-learning methods by transferring instances, which is similar in spirit to
Lazaric (2008). Fitted R-MAX (Jong and Stone, 2007), an instance-based model-learning method
capable of learning in continuous state spaces, is used as the base RL method, and source task
instances are transferred into the target task to better approximate the target task’s model. Exper-
iments in a simple continuous domain show that transfer can improve the jumpstart, total reward,
and asymptotic performance in the target task.

Another way to transfer is via learned advice or preferences. Torrey et al. (2005) automatically
extract such advice from a source task by identifying actions which have higher Q-values than other
available actions.9 Such advice is mapped via human-provided inter-task mappings to the target task
as preferences given to the target task learner. In this work, Q-values are learned via support vector
regression, and then Preference Knowledge Based Kernel Regression (KBKR) (Maclin et al., 2005)
adds the advice as soft constraints in the target, setting relative preferences for different actions in
different states. The advice is successfully leveraged by the target task learner and decreases the
target task learning time, even when the source task has different state variables and actions. Ad-
ditionally, the reward structure of the tasks may differ substantially: their experiments use a source
task whose reward is an unbounded score based on episode length, while the target task’s reward is
binary, depending on if the agents reached a goal state or not. Source task time is discounted and
the target task learning is improved slightly in terms of total reward and asymptotic performance.

Later work (Torrey et al., 2006) improves upon this method by using inductive logic program-
ming (ILP) to identify skills that are useful to the agent in a source task. A trace of the agent in the
source task is examined and both positive and negative examples are extracted. Positive and neg-
ative examples are identified by observing which action was executed, the resulting outcome, the
Q-value of the action, and the relative Q-value of other available actions. Skills are extracted using
the ILP engine Aleph (Srinivasan, 2001) by using the F1 score (the harmonic mean of precision and
recall). These skills are then mapped by a human into the target task, where they improve learning
via KBKR. Source task time is not counted towards the target task time, jumpstart may be improved,
and the total reward is improved. The source and target tasks again differ in terms of state variables,
actions, and reward structure. The authors also show how human-provided advice may be easily
incorporated in addition to advice generated in the source task. Finally, the authors experimentally
demonstrate that giving bad advice to the learner is only temporarily harmful and that the learner
can “unlearn” bad advice over time, which may be important for minimizing the impact of negative
transfer.

Torrey et al. (2007) further generalize their technique to transfer strategies, which may require
composing several skills together, and are defined as a finite-state machine (FSM). The structure
learning phase of their algorithm analyzes source task data to find sequences of actions that distin-
guish between successful and unsuccessful games (e.g., whether or not a goal was reached), and
composes the actions into a FSM. The second phase, ruleset learning, learns when each action in
the strategy should be taken based on state features, and when the FSM should transition to the
next state. Experience in the source task is again divided into positive and negative sequences for
Aleph. Once the strategies are re-mapped to the target task via a human-provided mapping, they are
used to demonstrate a strategy to the target task learner. Rather than explore randomly, the target

9. While this survey focuses on automatically learned knowledge in a source task, rather than human-provided knowl-
edge, Torrey et al. (2005) show that both kinds of knowledge can be effectively leveraged.
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task learner always executes the transferred strategies for the first 100 episodes and thus learns to
estimate the Q-values of the actions selected by the transferred strategies. After this demonstration
phase, the learner chooses from the MDP’s actions, not the high-level strategies, and can learn to
improve on the transferred strategies. Experiments demonstrate that strategy transfer significantly
improves the jumpstart and total reward in the target task when the source and target tasks have
different state variables and actions (source task time is again discounted).

Similar to strategy transfer, Taylor and Stone (2007b) learn rules with RIPPER (Cohen, 1995)
that summarize a learned source task policy. The rules are then transformed via handcoded inter-
task mappings so that they could apply to a target task with different state variables and actions.
The target task learner may then bootstrap learning by incorporating the rules as an extra action,
essentially adding an ever-present option “take the action suggested by the source task policy,”
resulting in an improved jumpstart and total reward. By using rules as an intermediary between
the two tasks, the authors argue that the source and target tasks can use different learning methods,
effectively de-coupling the two learners. Similarities with Torrey et al. (2007) include a significant
improvement in initial performance and no provision to automatically handle scale differences.10

The methods differ primarily in how advice is incorporated into the target learner and the choice of
rule learner.

Additionally, Taylor and Stone (2007b) demonstrated that inter-domain transfer is possible.
The two source tasks in this paper were discrete, fully observable, and one was deterministic. The
target task, however, had a continuous state space, was partially observable, and had stochastic
actions. Because the source tasks required orders of magnitude less time, the total time was roughly
equal to the target task time. Our past work has used the term “inter-domain transfer” for transfer
between qualitatively different domains, such as between a board game and a soccer simulation.
However, this term is not well defined, or even agreed upon in the community. For instance, Swarup
and Ray (2006) use the term “cross-domain transfer” to describe the reuse of a neural network
structure between classification tasks with different numbers of boolean inputs and a single output.
However, our hope is that researchers will continue improve transfer methods so that they may
usefully transfer from very dissimilar tasks, similar to the way that humans may transfer high level
ideas between very different domains.

This survey has discussed examples of of low- and high-level knowledge transfer. For instance,
learning general rules or advice may be seen as relatively high level, whereas transferring specific Q-
values or observed instances is quite task-specific. Our intuition is that higher-level knowledge may
be more useful when transferring between very dissimilar tasks. For instance, it is unlikely that Q-
values learned for a checkers game will transfer to chess, but the concept of a fork may transfer well.
This has not been definitely shown, however, nor is there a quantitative way to classify knowledge in
terms of low- or high-level. We hope that future work will confirm or disconfirm this hypothesis, as
well as generate guidelines as to when different types of transferred knowledge is most appropriate.

All methods in this section use some type of inter-task mapping to allow transfer between MDPs
with very different specifications. While these results show that transfer can provide a significant
benefit, they presuppose that the mappings are provided to the learner. The following section con-
siders methods that work to autonomously learn such inter-task mappings.

10. To our knowledge, there is currently no published method to automatically scale rule constants. Such scaling would
be necessary if, for instance, source task distances were measured in feet, but target task distances were measured in
meters.
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Allowed Source Task Transferred Allowed TL
Citation Task Task Mappings Knowledge Learners Metrics

Differences Selection
Learning inter-task mappings: Section 8
Kuhlmann and Stone (2007) a, v h T Q TD j, tr

Liu and Stone (2006) a, v h T N/A all N/A
Soni and Singh (2006) a, v h Ma, svg, exp N/A all ap, j, tr

Talvitie and Singh (2007) a, v h Ma, svg, exp N/A all j
Taylor et al. (2007b)! a, v h svg, exp N/A all tt†
Taylor et al. (2008c) a, v h exp N/A all j, tr

Table 7: This table reproduces the group of inter-task learning methods from Table 1.

8. Learning Task Mappings

The transfer algorithms considered thus far have assumed that a hand-coded mapping between tasks
was provided, or that no mapping was needed. In this section we consider the less-well explored
question of how a mapping between tasks can be learned, such that source task knowledge may
be exploited in a novel target task with different state variables and actions (see Figure 10 and
the final group in Table 1). Note that in this section, all but one of the methods have N/A for
transfer method—with the exception of Kuhlmann and Stone (2007), the papers covered in this
section introduce mapping-learning methods and then use existing methods to validate the mapping
efficacy.

One current challenge of TL research is to reduce the amount of information provided to the
learner about the relationship between the source and target tasks. If a human is directing the learner
through a series of tasks, the similarities (or analogies) between the tasks will likely be provided
by the human’s intuition. If transfer is to succeed in an autonomous setting, however, the learner
must first determine how (and whether) two tasks are related, and only then may the agent leverage
its past knowledge to learn in a target task. Learning task relationships is critical if agents are to
transfer without human input, either because the human is outside the loop, or because the human
is unable to provide similarities between tasks. Methods in this section differ primarily in what
information must be provided. At one end of the spectrum, Kuhlmann and Stone (2007) assume
that a complete description of R, S, and T are given, while at the other, Taylor et al. (2008c) learn
the mapping exclusively from experience gathered via environmental interactions.

Given a complete description of a game (i.e., the full model of the MDP), Kuhlmann and Stone
(2007) analyze the game to produce a rule graph, an abstract representation of a deterministic, full
information game. A learner first trains on a series of source task games, storing the rule graphs and
learned value functions. When a novel target task is presented to the learner, it first constructs the
target task’s rule graph and then attempts to find a source task that has an isomorphic rule graph.
The learner assumes that a transition function is provided and uses value-function-based learning to
estimate values for afterstates of games. Only state variables need to be mapped between source and
target tasks, and this is exactly the mapping found by graph matching. For each state in the target
task, initial Q-values are set by finding the value of the corresponding state in the source task. Three
types of transfer are considered: direct, which copies afterstate values over without modification;
inverse, which accounts for a reversed goal or switched roles; and average, with copies the average
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Figure 10: Section 8 presents methods to learn the relationship between tasks with different state
variables and actions. As in previous figures, MDP components with a dashed circle
may change between the source task and target task.

of a set of Q-values and can be used for boards with different sizes. Source task time is ignored but
jumpstart and total reward can both be improved in the target task.

The previous work assumes full knowledge of a transition function. A more general approach
could assume that the agent has only a qualitative understanding of the transition function. For
instance, qualitative dynamic Bayes networks (QDBNs) (Liu and Stone, 2006), summarize the ef-
fects of actions on state variables but are not precise (for instance, they could not be used as a
generative model for planning). If QDBNs are provided to an agent, a graph mapping technique
can automatically find a mapping between actions and state variables in two tasks with relatively
little computational cost. The authors show that mappings can be learned autonomously, effectively
enabling value function transfer between tasks with different state variables and actions. However,
it remains an open question as to whether or not QDBNs are learnable from experience, rather than
being hand-coded.

The next three methods assume knowledge about how state variables are used to describe objects
in a multi-player task. For instance, an agent may know that a pair of state variables describe
“distance to teammate” and “distance from teammate to marker,” but the agent is not told which
teammate the state variables describe. First, Soni and Singh (2006) supply an agent with a series of
possible state transformations and an inter-task action mapping. There is one such transformation,
X , for every possible mapping of target task variables to source task variables. After learning the
source task, the agent’s goal is to learn the correct transformation: in each target task state s, the
agent can randomly explore the target task actions, or it may choose to take the action "source(X(s)).
This method has a similar motivation to that of Fernandez and Veloso (2006), but here the authors
are learning to select between possible mappings rather than possible previous policies. Over time
the agent uses Q-learning to select the best state variable mapping as well as learn the action-
values for the target task. The jumpstart, total reward, and asymptotic performance are all slightly
improved when using this method, but its efficacy will be heavily dependent on the number of
possible mappings between any source and target task.

Second, AtEase (Talvitie and Singh, 2007) also generates a number of possible state variable
mappings. The action mapping is again assumed and the target task learner treats each of the
possible mappings as an arm on a multi-armed bandit (Bellman, 1956). The authors prove their
algorithm learns in time proportional to the number of possible mappings rather than the size of
the problem: “in time polynomial in T , [the algorithm] accomplishes an actual return close to the
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asymptotic return of the best expert that has mixing time at most T .” This approach focuses efficient
selection of a proposed state variable mappings and does not allow target task learning.

Third, these assumptions are relaxed slightly by Taylor et al. (2007b), who show that it is possi-
ble to learn both the action and state variable mapping simultaneously by leveraging a classification
technique, although it again relies on the pre-specified state variable groupings (i.e., knowing that
“distance to teammate” refers to a teammate, but not which teammate). Action and state variable
classifiers are trained using recorded source task data. For instance, the source task agent records
ssource, asource, s′source tuples as it interacts with the environment. An action classifier is trained so
thatC(ssource,ob ject ,s′source,ob ject) = asource for each object present in the source task. Later, the target
task agent again records starget , atarget , s′target tuples. Then the action classifier can again be used
for to classify tuples for every target task object: C(starget,ob ject ,s′target,ob ject) = asource, where such a
classification would indicate a mapping between atarget and asource. Relatively little data is needed
for accurate classification; the number of samples needed to learn in the target task far outweighs
the number of samples used by the mapping-leaning step. While the resulting mappings are not
always optimal for transfer, they do serve to effectively reduce target task training time as well as
the total training time.

The MASTER algorithm (Taylor et al., 2008c) was designed to further relax the knowledge re-
quirements of Taylor et al. (2007b): no state variable groupings are required. The key idea of
MASTER is to save experienced source task instances, build an approximate transition model from a
small set of experienced target task instances, and then test possible mappings offline by measuring
the prediction error of the target-task models on source task data. This approach is sample efficient
at the expense of high computational complexity, particularly as the number of state variables and
actions increase. The method uses an exhaustive search to find the inter-task mappings that minimize
the prediction error, but more sophisticated (e.g., heuristic) search methods could be incorporated.
Experiments show that the learned inter-task mappings can successfully improve jumpstart and total
reward. A set of experiments also shows how the algorithm can assist with source task selection by
selecting the source task which is best able to minimize the offline prediction error. The primary
contribution of MASTER is to demonstrate that autonomous transfer is possible, as the algorithm
can learn inter-task mappings autonomously, which may then be used by any of the TL methods
discussed in the previous section of this survey (Section 7).

In summary, this last section of the survey has discussed several methods able to learn inter-
task mappings with different amounts of data. Although all make some assumptions about the
amount of knowledge provided to the learner or the similarity between source and target tasks,
these approaches represent an important step towards achieving fully autonomous transfer.

The methods in the section have been loosely ordered in terms of increasing autonomy. By
learning inter-task mappings, these algorithms try to enable a TL agent to use past knowledge on a
novel task without human intervention, even if the state variables or actions change. However, the
question remains whether fully autonomous transfer would ever be useful in practice. Specifically,
if there are no restrictions on the type of target task that could be encountered, why would one
expect that past knowledge (a type of bias) would be useful when learning an encountered task, or
even on the majority of tasks that could be encountered? This question is directly tied to the ability
of TL algorithms to recognize when tasks are similar and when negative transfer may occur, both of
which are discussed in more detail in the following section.
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9. Open Questions

Although transfer learning in RL has made significant progress in recent years, there are still a num-
ber of open questions to be addressed. This section presents a selection of questions that we find
particularly important. Section 9.1 discusses ways in which methods in the survey could potentially
be extended and serves to highlight some of the methods most promising for future work. Sec-
tion 9.2 then discusses the problem of negative transfer, currently one of the most troubling open
questions. Lastly, Section 9.3 presents a set of possible research directions that the authors’ believe
will be most beneficial to the field of TL.

9.1 Potential Enhancements

One apparent gap in our taxonomy is a dearth of model-learning methods. Because model-learning
algorithms are often more sample efficient than model-free algorithms, it is likely that TL will have
a large impact on sample complexity when coupled with such efficient RL methods. Moreover,
when a full model of the environment is learned in a source task, it may be possible for the target
task learner to explicitly reason about how to refine or extend the model as it encounters disparities
between it and the target task.

As mentioned in Section 5, transfer is an appealing way to set priors in a Bayesian setting.
When in a MTL setting, it may be possible to accurately learn priors over a distribution of tasks,
enabling a learner to better avoid negative transfer. One of the main benefits of transfer learning
is the ability to bias learners so that they may find better solutions with less data; making these bi-
ases explicit through Bayesian priors may allow more efficient (and human-understandable) transfer
methods. While there will likely be difficulties associated with scaling up current methods to handle
complex tasks, possibly with a complex distribution hierarchy, it seems like Bayesian methods are
particularly appropriate for transfer.

The idea of automatically modifying source tasks (cf., RTP Sherstov and Stone 2005, and sug-
gested by Kuhlmann and Stone 2007) has not yet been widely adopted. However, such methods
have the potential to improving transfer efficacy in settings where the target task learning perfor-
mance is paramount. By developing methods that allow training on a sequence of automatically
generated variations, TL agents may be able to train autonomously and gain experience that is ex-
ploitable in a novel task. Such an approach would be particularly relevant in the multi-task learning
setting where the agent could leverage some assumptions about the distribution of the target task(s)
it will see in the future.

None of the transfer methods in this survey are able to explicitly take advantage of any knowl-
edge about changes in the reward function between tasks, and it may be particularly easy for humans
to identify qualitative changes in reward functions. For example, if it was known that the target task
rewards were twice that of the source task, it is possible that value-function methods may be able
to automatically modify the source task value function with this background knowledge to enhance
learning. As a second example, consider a pair of tasks where the goal state were moved from
one edge of the state space to the opposite edge. While the learned transition information could be
reused, the policy or value-function would need to be significantly altered to account for the new
reward function. It is possible that inter-task mappings could be extended to account for changes in
R between tasks, in addition to changes in A and in state variables.

Ideas from theory revision (Ginsberg, 1988) (also theory refinement) may help inform the au-
tomatic construction of inter-task mappings. For example, many methods initialize a target task
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agent to have Q-values similar to those in the source task agent. Transfer is likely to be suc-
cessful (Taylor et al., 2007a) if the target task Q-values are close enough to the optimal Q-values
that learning is improved, relative to not using transfer. There are also situations where a syn-
tactic change to the knowledge would produce better transfer. For instance, if the target task’s
reward function were the inverse of the source task function, direct transfer of Q-values would be
far from optimal. However, a TL algorithm that could recognize the inverse relationship may be
able to use the source task knowledge more appropriately (such as initializing its behavior so that
"target(starget) += "source($X(starget)).

Given a successful application of transfer, there are potentially two distinct benefits for the
agent. First, transfer may help improve the agent’s exploration so that it discovers higher-valued
states more quickly. Secondly, transfer can help bias the agent’s internal representation (e.g., its
function approximator) so that it may learn faster. It will be important for future work to better
distinguish between these two effects; decoupling the two contributions should allow for a better
understanding of TL’s benefits, as well as provide avenues for future improvements.

Of the thirty-four transfer methods discussed, only five (Tanaka and Yamamura, 2003; Sunmola
and Wyatt, 2006; Ferguson and Mahadevan, 2006; Lazaric, 2008; Wilson et al., 2007) attempt to
discover internal learning parameters (e.g., appropriate features or learning rate) so that future tasks
in the same domain may be learned more efficiently. It is likely that other “meta-learning” methods
could be useful. For instance, it may be possible to learn to use an appropriate function approxima-
tor, an advantageous learning rate, or even the most appropriate RL method. Although likely easier
to accomplish in a MTL setting, such meta-learning may also be possible in transfer, given suffi-
ciently strong assumptions about task similarity. Multiple heuristics regarding the best way to select
RL methods and learning parameter settings for a particular domain exist, but typically such settings
are chosen in an ad hoc manner. Transfer may be able to assist when setting such parameters, rather
than relying on human intuition.

Section 8 discussed methods that learned an inter-task mapping, with the motivation that such a
mapping could enable autonomous transfer. However, it is unclear if fully autonomous TL is real-
istic in an RL setting, or indeed is useful. In the majority of situations, a human will be somewhere
in the loop and full autonomy is not necessary. Instead, it could be that mappings may be learned to
supplement a human’s intuition regarding appropriate mappings, or that a set of learned mappings
could be proposed and then one selected by a human. It would be worthwhile to define realistic sce-
narios when fully autonomous transfer will be necessary, or to instead specify how (limited) human
interaction will be coupled with mapping-learning methods.

Lastly, we hope that the idea of task-invariant knowledge will be extended. Rather than learning
an appropriate representation across tasks, agent-space (Konidaris and Barto, 2007) and RRL tech-
niques attempt to discover knowledge about the agent or the agent’s actions which can be directly
reused in novel tasks. The better techniques can successfully compartmentalize knowledge, separat-
ing what will usefully transfer and what will not will not, the easier it will be to achieve successful
transfer without having to un-learn irrelevant biases.

9.2 Negative Transfer

The majority of TL work in the literature has concentrated on showing that a particular transfer
approach is plausible. None, to our knowledge, has a well-defined method for determining when an
approach will fail according to one or more metrics. While we can say that it is possible to improve
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Figure 11: This figure depicts a pair of tasks that are likely to result in negative transfer for TL
methods.

learning in a target task faster via transfer, we cannot currently decide if an arbitrary pair of tasks are
appropriate for a given transfer method. Therefore, transfer may produce incorrect learning biases
and result in negative transfer.

Methods such as MASTER (Taylor et al., 2008c), which can measure task similarity via model
prediction error, or region transfer (Lazaric, 2008), which examines the similarity of tasks at a local
level rather than at a per-task level, can help assist when deciding if the agent should transfer or
what the agent should transfer. However, neither method provides any theoretical guarantees about
its effectiveness.

As an example of why it is difficult to define a metric for task similarity, consider the pair of tasks
shown in Figure 11, which are extremely similar, but where direct transfer of a policy or action-value
function will be detrimental. The source task in Figure 11 (top) is deterministic and discrete. The
agent begins in state I and has one action available: East. Other states in the “hallway” have two
applicable actions: East and West, except for state A, which also has the actions North and South.
Once the agent executes North or South in state A, it will remain in state B or C (respectively) and
continue self-transitioning. No transition has a reward, except for the self-transition in state B.

Now consider the target task in Figure 11 (bottom), which is the same as the source task, except
that the self-transition from C′ is the only rewarded transition in the MDP. Q!(I′,East) in the target
task (the optimal action-value function, evaluated at the state I′) is the same as Q!(I, East) in the
source task. Indeed, the optimal policy in the target task differs at only a single state, A′, and the
optimal action-value functions differ only at states A′, B′, and C′.

One potential method for avoiding negative transfer is to leverage the ideas of bisimulation
(Milner, 1982). Ferns et al. (2006) point out that:
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In the context of MDPs, bisimulation can roughly be described as the largest equiva-
lence relation on the state space of an MDP that relates two states precisely when for
every action, they achieve the same immediate reward and have the same probability
of transitioning to classes of equivalent states. This means that bisimilar states lead to
essentially the same long-term behavior.

However, bisimulation may be too strict because states are either equivalent or not, and may be slow
to compute in practice. The work of Ferns et al. (2005, 2006) relaxes the idea of bisimulation to
that of a (pseudo)metric that can be computed much faster, and gives a similarity measure, rather
than a boolean. It is possible, although not yet shown, that bisimulation approximations can be used
to discover regions of state space that can be transferred from one task to another, or to determine
how similar two tasks are in toto. In addition to this, or perhaps because of it, there are currently no
methods for automatically constructing a source task given a target task.11

Homomorphisms (Ravindran and Barto, 2002) are a different abstraction that can define trans-
formations between MDPs based on transition and reward dynamics, similar in spirit to inter-task
mappings, and have been used successfully for transfer (Soni and Singh, 2006). However, discover-
ing homomorphisms is NP-hard (Ravindran and Barto, 2003a) and homomorphisms are generally
supplied to a learner by an oracle. While these two theoretical frameworks may be able to help avoid
negative transfer, or determine when two tasks are “transfer compatible,” significant work needs to
be done to determine if such approaches are feasible in practice, particularly if the agent is fully
autonomous (i.e., is not provided domain knowledge by a human) and is not provided a full model
of the MDP.

9.3 New Directions

As suggested above, TL in RL domains is one area of machine learning where the empirical work
has outpaced the theoretical. While there has been some work on the theory of transfer between
classification tasks (cf., Baxter, 2000; Ben-David and Borbely, 2008), such analyses do not directly
apply to RL settings. To our knowledge, there is only a single work analyzing the theoretical
properties of transfer in RL (Phillips, 2006), where the authors use the Kantorovich and full models
of two MDPs to calculate how well an optimal policy in one task will perform in a second task.
Unfortunately, this calculation of policy performance may require more computation than directly
learning in the target task. There is considerable room, and need for, more theoretical work in RL
(cf., Bowling and Veloso, 1999). For example:

1. Provides guarantees about whether a particular source task can improve learning in a target
task (given a particular type of knowledge transfer).

2. Correlates the amount of knowledge transferred (e.g., the number of samples) with the im-
provement in the source task.

3. Defines what an optimal inter-task mapping is, and demonstrates how transfer efficacy is
impacted by the inter-task mapping used.

11. We distinguish this idea from Sherstov and Stone’s 2005 approach. Their paper shows it is possible to construct
source task perturbations and then allow an agent to spend time learning the set of tasks to attempt to improve
learning on an (unknown) source task. Instead, it may be more effective to tailor a source task to a specific target
task, effectively enabling an agent to reduce the total number of environmental interactions needed to learn.
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The remainder of this section suggests other open areas.
Concept drift (Widmer and Kubat, 1996) in RL has not been directly addressed by any work

in this survey. The idea of concept drift is related to a non-stationary environment: at certain
points in time, the environment may change arbitrarily. As Ramon et al. (2007) note, “for transfer
learning, it is usually known when the context change takes place. For concept drift, this change is
usually unannounced.” Current on-line learning methods may be capable of handling such changes
by continually learning. However, it is likely that RL methods developed specifically to converge
to a policy and then re-start learning when the concept changes will achieve higher performance,
whether such drift is announced or unannounced.

Another question no work in this survey directly addresses is how to determine the optimal
amount of source task training to minimize the target task training time or total training time. If the
source task and target task were identical, the goal of reducing the target task training time would
be trivial (by maximizing the source task training time) and the goal of minimizing total training
time would be impossible. On the other hand, if the source task and target task were unrelated, it
would be impossible to reduce the target task training time through transfer and the total training
time would be minimized by not training in the source task at all. It is likely that a calculation or
heuristic for determining the optimal amount of source task training time will have to consider the
structure of the two tasks, their relationship, and what transfer method is used. This optimization
becomes even more difficult in the case of multi-step transfer, as there are two or more tasks that
can be trained for different amounts of time.

Transfer methods in this survey have used source task knowledge in many forms to better learn
in a target task. However, none explicitly account for scaling differences between the two tasks.
For instance, if a source task measured distance in meters and the target task measured distance in
inches, constants would have to be updated manually rather than learned.

Another question not addressed is how to best explore in a source task if the explicit purpose of
the agent is to speed up learning in a target task. One could imagine that a non-standard learning or
exploration strategy may produce better transfer results, relative to standard strategies. For instance,
it may be better to explore more of the source task’s state space than to learn an accurate action-value
function for only part of the state space. While no current TL algorithms take such an approach,
there has been some work on the question of learning a policy that is exploitable (without attempt
to maximize the on-line reward accrued while learning) in non-transfer contexts (Şimşek and Barto,
2006).

Similarly, instead of always transferring information from the end of learning in the source task,
an agent that knows its information will be used in a target task may decide to record information to
transfer partway through training in the source task. For instance Taylor et al. (2007b) showed that
transfer may be more effective when using policies trained for less time in the source task than when
using those trained for more time. Although others have also observed similar behavior Mihalkova
and Mooney (2008), the majority of work shows that increased performance in the source task is
correlated with increased target task performance. Understanding how and why this effect occurs
will help determine the most appropriate time to transfer information from one task to another.

We now present four possibilities for extending the current RL transfer work to different learning
settings in which transfer has not been successfully applied.

• First, although two of the papers (Banerjee and Stone, 2007; Kuhlmann and Stone, 2007)
in this survey have examined extensive games, none consider repeated normal form games
or stochastic games (Shapley, 1953). For instance, one could consider learning how to play
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against a set of opponents so that when a new opponent is introduced, the learner may quickly
adapt one of its previous strategies rather than completely re-learning a strategy. Another op-
tion would be for an agent to learn how to play one game and then transfer the knowledge
to a different stochastic game. Due to similarities between RL and these two game play-
ing settings, transfer methods described in this survey may be applied with relatively little
modification.

• A second possibility for extending transfer is into the realm of partially observable MDPs
(POMDPs). It may possible to learn a source POMDP and then use knowledge gained to
heuristically speed up planning in a target POMDP. Additionally, because it is typically as-
sumed that POMDP planners are given a complete and accurate model of a task, it may be
possible to analytically compare source and target tasks before learning in order to determine
if transfer would be beneficial, and if so, how best to use the past knowledge.

• Third, multi-agent MDP and POMDP learners may also be able to successfully exploit trans-
fer. None of the work surveyed in this article focuses on explicit multi-agent learning (i.e.,
learning over the joint action space, or in an (adaptive) adversarial setting, as in Stone and
Veloso 2000), but it is likely existing methods may be extended to the cooperative multi-
agent setting. For instance, when formulating a problem as an MMDP or DEC-MDP, the
agents must either reason over a joint action space or explicitly reason about how their ac-
tions affect others. It may be possible for agents to learn over a subset of actions first, and
then gradually add actions (or joint actions) over time, similar to transferring between tasks
with different action sets. The need for such speedups is particularly critical in distributed
POMDPs, as solving them optimally as been shown to be NEXP-Complete (Bernstein et al.,
2002). Transfer is one possible approach to making such problems more tractable, but to our
knowledge, no such methods have yet been proposed.

• Fourth, as mentioned in Section 3.3, MTL methods in RL consider a sequence of tasks that are
drawn sequentially from the same distribution. However, in supervised learning, multi-task
learning typically involves learning multiple tasks simultaneously. There may be contexts in
which an agent must learn multiple tasks concurrently, such as in hierarchical RL or when the
agent has multiple reward functions or goals. Fully specifying such a scenario, and extending
MTL methods to encompass this setting, could bring additional tools to RL researchers and
help move TL in RL closer to TL in classification.

Lastly, in order to better evaluate TL methods, it would be helpful to have a standard set of
domains and metrics. Ideally there would be a domain-independent metric for transfer learning, but
it is unclear that such a metric can exist (see Section 2). Furthermore, it is unclear what optimal
transfer would mean, but would likely depend on the scenario considered. Classification and re-
gression have long benefited from standard metrics, such as precision and recall, and it is likely that
progress in transfer will be likewise enhanced once standard metrics are agreed upon.

Standard test sets, such as the Machine Learning Repository at the University of California,
Irvine (Asuncion and Newman, 2007), have also assisted the growth and progress of supervised
learning, but there are currently no equivalents for RL. Furthermore, while there are some standard
data sets for for transfer learning in classification,12 none exist for transfer in RL. While there is

12. Found at http://multitask.cs.berkeley.edu.
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some work in the RL community to standardize on a common interface and set of benchmark tasks
(Tanner et al., 2008; Whiteson et al., 2008), no such standardization has been proposed for the
transfer learning in RL community. Even in the absence of such a framework, we suggest that it is
important for authors working in this area to:

• Clearly specify the setting: Is the source task learning time discounted? What assumptions
are made about the relationship between the source target and target task?

• Evaluate the algorithm with a number of metrics: No one metric captures all possible benefits
from transfer.

• Empirically or theoretically compare the performance of novel algorithms: To better evaluate
novel algorithms, existing algorithms should be compared using standard metrics on a single
task task.13

As discussed in Section 2.1, we do not think that TL for RL methods can be strictly ordered in
terms of efficacy, due to the many possible goals of transfer. However, by standardizing on reporting
methodology, TL algorithms can be more easily compared, making it easier to select an appropriate
method in a given experimental setting.

Our hope is that TL questions, such as those presented in this section, will be addressed in the
near future; our expectation is that transfer learning will become an increasingly powerful tool for
the machine learning community.
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Abstract
We consider the problem of classification using high dimensional features’ space. In a paper by
Bickel and Levina (2004), it is recommended to use naive-Bayes classifiers, that is, to treat the
features as if they are statistically independent.

Consider now a sparse setup, where only a few of the features are informative for classification.
Fan and Fan (2008), suggested a variable selection and classification method, called FAIR. The
FAIR method improves the design of naive-Bayes classifiers in sparse setups. The improvement is
due to reducing the noise in estimating the features’ means. This reduction is since that only the
means of a few selected variables should be estimated.

We also consider the design of naive Bayes classifiers. We show that a good alternative to
variable selection is estimation of the means through a certain non parametric empirical Bayes pro-
cedure. In sparse setups the empirical Bayes implicitly performs an efficient variable selection.
It also adapts very well to non sparse setups, and has the advantage of making use of the infor-
mation from many “weakly informative” variables, which variable selection type of classification
procedures give up on using.

We compare our method with FAIR and other classification methods in simulation for sparse
and non sparse setups, and in real data examples involving classification of normal versus malignant
tissues based on microarray data.
Keywords: non parametric empirical Bayes, high dimension, classification

1. Introduction

We consider the problem of finding a classifier for a response variableY ∈ {−1,1} based on a vector
(X1, ...,Xp) ∈ Rp of explanatory variables.

Suppose we have a ‘training set’ (or a sample) of n1 examples (Yi,Xi1, ...,Xip), i = 1, ...,n1, for
which Yi = −1, and additional n2 examples (Yi,Xi1, ...,Xip), i= n1+1, ...,n1+n2, for which Yi = 1.
We assume that the n1+n2 observations are independent. In what follows we assume for simplicity
that n1 = n2 ≡ n.

Our study is aimed to understand and suggest a good classification procedure in a high di-
mensional setup. Here, by high dimensionality we mean p $ n. There are many examples in
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contemporary statistical applications where p$ n. We mention that of microarray data where the
dimensionality is typically of thousands, while the sample size is of the order of dozens or hundreds.

In particular we focus on linear predictors for Y , which are of the form:

Ŷ = sign

(

p

!
j=1

a jXj +a0

)

,

where a0,a1, ...,ap are constants.
Suppose the distribution of the explanatory variables, conditional on Y = −1 and on Y = 1, is

G1 and G2 correspondingly, where Gi are multivariate normals i= 1,2. Assume that the covariance
matrices of Gi, i= 1,2 are the same. Then the optimal classifier is Fisher’s rule. However when the
common covariance matrix as well as the vectors of means under G1 and G2 are unknown, we can
not apply Fisher’s rule. When n$ p, the naive approach, of estimating the unknown quantities and
plug-in to Fisher’s rule, would work well. It is impractical when p$ n . A practical solution, called
‘naive Bayes’ is to neglect estimation of the off diagonal elements in the covariance matrix (or to
estimate them trivially) by setting those values to be 0. Then apply Fisher’s rule by plugging in the
estimated diagonal covariance matrix and the estimated vectors of means. Bickel and Levina (2004)
showed that in many cases, by this trivial estimation of the covariance matrix, one does not lose
too much in terms of classification error, relative to incorporating the true covariance matrix, and
suggested this practice. Note, the bottom line of this practice is to treat the explanatory variables as
if they are independent, or act “assuming” independence of the explanatory variables. We will also
refer in the sequel to Fisher’s rule as the Independence Rule, or IR.

It was pointed out independently by Fan and Fan (2008) and by Greenshtein et al. (2009), that
even in the independent case, when p$ n, estimating the vector of means underG1 and underG2 by
the corresponding sample averages, could lead to a very weak estimator, resulting in a corresponding
classifier with virtually no classification power (see Theorem 1 in Fan and Fan 2008, and Proposition
1 of Greenshtein et al. 2009). This is also in cases where there exists a good linear classifier.
In other words, often, attempting to estimate the 2p coordinates of the two mean vectors, by the
corresponding averages of n observations on each, is already “too much”, and leads to overfit. The
FAIR approach suggested by Fan and Fan (2008), and the conditional MLE approach suggested by
Greenshtein et al. (2009), are based on variable selection techniques followed by estimation of the
mean of the selected explanatory variables, while ignoring the others (i.e., setting the corresponding
coefficients of the linear classifier to be equal to zero). The FAIR method estimates the means of
the selected variables by the corresponding sample means (the MLE), while the conditional MLE
method estimates by the conditional MLE, conditional on the event that the variables were selected.

The above approaches are helpful especially in a high dimensional sparse setup, while the non
parametric Empirical Bayes approach that we will present is helpful also in non-sparse setups. Let
µ and " be the vectors of means under G1 and G2 correspondingly; here ‘sparse’ setup means that
the vector

#≡ µ− "

is sparse. A ‘sparse’ setup is such, that relatively few of the explanatory variables are informative
for the classification.
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1.1 On Types of Sparsity

The term sparse vector is only loosely defined in the literature, and we will keep some of the am-
biguity. However, by a sparse vector # we mean that most of its coordinates are exactly zero.
Throughout our study we consider only vectors # such that their l2 norm ||#||, is much smaller than
their dimension, say, ||#||= o(p). The last condition does not imply sparsity under our terminology.

We concentrate on configurations such that ||#||= o(p), since that as p→$, when letting ||#||=
O(p), any reasonable procedure would achieve asymptotically (virtually) zero misclassification rate.
We are interested in the cases when there is not enough signal to make nearly perfect classification,
that is, p$ ||#||. In our simulation, we achieve p$ ||#||, by considering the following three types
of configurations for vectors ||#||:

(a) Very few non-zero coordinates of a large/moderate magnitude (i.e., sparse vectors)

(b) Very few coordinates of a large magnitude, mixed with many very small coordinates (i.e.,
non-sparse vectors).

(c) Many coordinates of a very small magnitude (i.e., non-sparse vectors).

In sparse configurations, our EB procedure is comparable to the other procedures. Specifically, it is
better in moderately sparse setups, while in extremely sparse cases, it is inferior. Indeed, when there
are only a few relevant variables, naturally methods which are based on variable selection would do
well. In non-sparse configurations our EB procedure is clearly advantageous in simulations. This is
in line with the theoretical results in Brown and Greenshtein (2009), and in Jiang and Zhang (2007),
on optimality of non-parametric empirical Bayes in estimation of high dimensional not extremely
sparse normal mean vectors, coupled with the relation between estimation and classification as
explained in Section 2.

The above mentioned results, join a huge body of literature on Empirical Bayes starting with
Robbins (1951), see the surveys by Copas (1969) and by Zhang (2003). See also a recent paper
by Greenshtein and Rotov (2009) on efficiency of compound and empirical Bayes procedures with
respect to the class of permutation invariant procedures. A recent comprehensive study and per-
formance comparison, of various methods for estimating a vector of normal means under squared
error loss, was conducted by Brown (2008), the very good performance of non parametric empiri-
cal Bayes methods is demonstrated also there. Our approach is related to (and independent of) the
approach in Efron (2009), where EB estimation method is used to obtain good classifiers.

We will introduce and explain the virtues of our empirical Bayes classification method and
provide simulation evidence as well as real data evidence to its excellent performance. We will
compare the performance of our Empirical Bayes classifiers to that of FAIR (Fan and Fan, 2008),
conditional MLE (Greenshtein et al. , 2009), NSC (Tibshirani et al. , 2002), and plug in Fisher’s
rule.

The outline is the following. In the next section we introduce our formal setup and explain the
relation between estimating a vector of means under a squared loss and classification. In Section 3
we introduce a class of non-parametric empirical Bayes estimators of a vector of normal means and
define our classifier. In Section 4 we demonstrate the performance of our classifier on simulated as
well as real data.
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2. Preliminaries

Assume a multivariate normal distribution of the vector (X1, ...,Xp) conditional on the value of
Y . Specifically, we assume (Xj|Y = −1) ∼ N(µj,s2) and (Xj|Y = 1) ∼ N(" j,s2) independently,
j = 1, ..., p. We will assume that the variance s2 is known. Denote µ= (µ1, ...,µp), "= ("1, ...,"p).
In considering linear classifiers, when both p and n are large it is robust to assume normality of

(X1, ...,Xp) by the central limit theorem. Due to Lindberg’s CLT, large p implies that !a jXj will
be close to normal, when a j are comparable in size, even if the individual Xj are not normal. In
addition, large n implies that averages of independent Xi j, i = 1, ...,n (as in Zj, which is defined
in the sequel) are close to normal. The CLT arguments are problematic when the Xjs have heavy
tails. In Table 5 of Section 4 some simulations are carried to demonstrate the effect of heavy tailed
distributions.

When searching for values a ≡ (a1, ...,ap) that determine a ‘good’ linear classifier, we assume
w.l.o.g. that ‖a‖2 = !

p
j=1 a2j = 1. In this case the optimal choice of (a1, ...,ap) is the vector that

maximizes |!a jµj −!a j" j|. Note that the optimal choice of a1, ...,ap is the same regardless of
the misclassification loss (the value of a0 does depend on the loss). In order to see it, observe that
!a jXj ∼ N(!a jµj,s2) ≡ N(%1,s2) conditional on Y = −1 and !a jXj ∼ N(!a j" j,s2) ≡ N(%2,s2)
conditional on Y = 1; here %i, = 1,2 are implicitly defined. Hence, an optimal choice of a1, ...ap is
such that

V =V (a1, ...,an) ≡ |!
j
a jµj−!

j
a j" j| = |%1−%2| (1)

is maximized. This implies that the coordinates aoptj of the optimal choice satisfy:

aoptj =
# j

√

!#2j
, j = 1, ...p; (2)

recall # j = µj− " j.
Under a 0-1 loss, given any choice of (a1, ...,ap), the corresponding minmax choice of a0 is

a0 = −
%2+%1
2

.

This is also the Bayes solution assuming a prior &i = 0.5 for each class. The optimal choice of a0
for none-equal losses and priors is straightforward.

A formal argument showing that the optimal a1, ...,ap is the same regardless of the misclas-
sification loss may be obtained using the theory of comparison of experiments, implying that the
experiment that consists of the distributions N(%1,s2) and N(%2,s2), dominates the experiment that
consists of the distributions N(%′1,s2) and N(%′2,s2) if and only if |%1−%2|≥ |%′1−%′2|. See Lehmann
(1986, p. 86), for some basic theory on comparison of experiments and some additional references.

By the above discussion there is a natural order relation + between two classifiers determined
by a and a′. We say that a+ a′ if for the corresponding %i and %′i,

V = |%′1−%′2|≥ |%1−%2| =V ′ (3)

Note, here V ≡V (a1, ...,ap), is a function of (a1, ...,ap).
By (2), V (aopt1 , ...,aoptp ) = ||#||, consequently for the optimal choice aopt0 , the Bayes risk is:

'(−
||#||
2s

) (4)

where ' is the cumulative distribution of a standard normal distribution.
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2.1 Summary

The goal of finding the optimal classifier when # j, j = 1, ..., p are unknown, is not practical. How-
ever we want to find a classifier with a corresponding ‘large’ value of V.

Note, in statistical inference the choice of a j, j = 1, ..., p depends on the data. The dependence
on the data is through the vector

Z = (Z1, ...,Zp); here, for n= n1 = n2

Zj =
!n
i=1Xi j
n

− !2ni=n+1Xi j
n

, j = 1, ..., p, (5)

are independent normal random variables with EZj = # j and variance, denoted (2,

(2 =
2s2

n
. (6)

Thus, depending on the particular procedure the selected value of a j depends on Z1, ...,Zp, and
it is a random variable denoted â j, j = 1, ..., p.

Equation (3), motivates us to search for procedures with high value of

E(V ) = E|
p

!
j=1

â j# j|.

Thus we extend the definition of the order relation, to apply to two statistical procedures {â j}, j=
1, ..., p, and {â′j}, j = 1, ..., p.
Definition 1: We say that {â′j}, j = 1, ..., p, dominates {â j}, j = 1, ..., p, if for the correspond-

ing V ′ and V , E(V ′) ≥ E(V ).
Remark 1: Evaluating a procedure â j j= 1, ..., p, by its corresponding value E(V ), is simplistic,

for example, it ignores the effect of the standard deviation of V on the classification error. However,
in high dimensional setup one might hope that the standard deviation of V is small compare to
E(V ). Otherwise, one might perceive it as a convenient approximate evaluation. Note however,
that for two procedures with very accurate classification rate, ignoring the variability of V might be
significantly misleading even if E(V ) is large compare to the standard deviation of V , this is due to
the thin tail of the normal distribution.

2.2 On the Relation Between Estimating the Mean Under a Squared Loss and Classification

Since the optimal choice of a j, j = 1, ..., p, is aoptj =
# j

√

!#2j
, a natural way to proceed is to estimate

# j by a ‘good’ estimator #̂ j for # j, and then plug-in, that is, let â j =
#̂ j

√

!#̂2j
. A formal definition of

‘good’ in the above, depends on the loss function. In the sequel we will indicate why the squared
error loss function is especially appropriate.

First we state the obvious. In general, the fact that #̂ is a good estimator for # under a squared
error loss, does not indicate that T (#̂) is a good estimator for T (#) under (say) a squared loss. For
example in the case T (#) = !# j, plugging in the MLE for # will often be better than plugging in
the James-Stein estimator because of the bias of the J-S estimator which is accumulated. This is
although the J-S estimator dominates the MLE in estimating # under a squared error loss. Hence
good properties of the Empirical Bayes as an estimator for # under squared loss in high dimensions,
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do not automatically indicate that it should be plugged-in in order to obtain good estimators for aoptj ,
and thus provide good classifiers.

Consider the collection of all vectors (a1, ...,ap) with l2 norm 1. Define the function

L((a1, ...,ap)) =!(# j−a j)2

Then, one may check that on the surface of the p dimensional unit ball,

L(a) = −2×V (a)+C,

whereC = 1+!#2j , and V is defined in (1).
The last equation motivates the particular choice of a squared error loss when evaluating an

estimator #̂ j. This is because of the direct relation between minimizing E(L) to that of maximizing
E(V ). Maximizing V is crucial in obtaining a good classifier, as explained in the first part of this
section.

An estimator with particularly appealing properties, in estimation of a vector of means under a
squared loss in high dimensions, is the non-parametric empirical Bayes estimator, see Brown and
Greenshtein (2009). We describe it in the following section and then define our procedure.

For a given # the success in obtaining a good classifier has to do with two aspects. The larger is
the l2 norm of # the smaller is the misclassification rate of the Bayes procedure, as may be seen in
(4), and typically also the misclassification rate of our EB procedure. The more difficult is the task
of estimating # by our non parametric empirical Bayes method in terms of MSE, the less successful
is our classification method. As pointed by a referee, the difficulty/MSE in estimating # by EB is
invariant under translation, while (obviously) the l2 norm is not. When the vector # is identically
zero (i.e., no signal) the corresponding misclassification rate is 0.5. The corresponding rates for
various translations of the zero-vector may be found in Table 4.

3. Empirical Bayes Classification

In this section, we define our linear classifier for the cases of known homoscedastic variances and
unknown heteroscedastic variances.

3.1 Known Homoscedastic Variance

In the sequel we rescale Xj, so that Zj defined in (5) will have variance (2 = 1, j = 1, ..., p. This
is possible since s, the common standard deviation of Xj, is known see (6). When the variances are
unknown (and not assumed equal) we simply standardize the variables using the sample variance.
The extension of this subsection for the latter case and for non equal samples n1 and n2 is explicitly
given in the next subsection.

Under the non-parametric empirical Bayes approach for estimating a vector of means, we con-
sider the means #i = E(Zi), i = 1, ..., p, as realizations of i.i.d random variables M1, ...,Mp dis-
tributed G, where G is completely unknown. Still, we attempt to approximate the Bayes estimator
of the mean, denoted )G(z), by )̂(z). Then we estimate #i by #̂i = )̂(Zi).

More formally it is described in the following. Let Z ∼ N(M,1) whereM ∼G, G ∈G . We want
to emulate the Bayes procedure )G based on a sample Z1, ...,Zp, Zi ∼ N(Mi,1), i = 1, ..., p, where
Mi ∼ G and the Zi are independent conditional onM1, ...,Mp, i= 1, ..., p.
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Let g∗ be the mixture density

g∗(z) =
Z

*(z−#)dG(#).

Then from Brown (1971) equation (1.2.2), we have that the Bayes procedure, denoted )G, sat-
isfies

)G(z) = z+
g∗′(z)
g∗(z)

;

here g∗′(z) is the derivative of g∗(z). The estimator that we suggest for )G, is of the form

)̂h(z) = z+
ĝ∗′h (z)
ĝ∗h(z)

where ĝ∗′h (z) and ĝ∗h(z) are appropriate kernel estimators for the density g∗(z) and its derivative
g∗′(z). The subscript h denotes the bandwidth of the kernel estimator. We will use a normal kernel.

Let h> 0 be a bandwidth constant. Then define the kernel estimator

ĝ∗h(z) =
1
nh!*(

z−Zi
h

).

Its derivative is:

ĝ∗
′

h (z) =
1
nh!

Zi− z
h

×*(
z−Zi
h

).

In Brown and Greenshtein (2009), it is suggested to let the bandwidth converge slowly to zero as
p→ $, they suggested that h2 should approach zero ‘just faster’ than 1/ log(p). In the simulations
and real data analysis in this paper, we applied h = 0.3 ≈ 1/

√

log(p), which is in agreement with
that suggestion for the range of features’ dimensions p that we study. The choice h= 1/

√

log(p) is
also suggested in Brown and Greenshtein (2009) as a ‘default’ choice. A more careful choice could
involve, for example, cross validation. However, the results are not too sensitive to the choice.

3.2 The Empirical Bayes Classifier

We now define our Empirical Bayes classifier.
Let

#̂i = )̂h(Zi), i= 1, ..., p.
Let

âi =
#̂i

√

! j #̂
2
j

i= 1, ..., p.

In order to fully define our classifier, we should still define the parameter â0, given â1, ..., âp.
We do it for the case of 0-1 loss and equal prior probabilities for each class. An obvious way is the
following. Let %̂1 = 1

n !
n
i=1!

p
j=1 â jXi j, where the summation is over the n examples (Yi,Xi1, ...,Xip)

for which Yi = −1. Similarly define %̂2.
Let,

â0 = −
%̂2+ %̂1
2

.

where we assume w.l.o.g. that %̂1 < %̂2.
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3.3 Unknown Heteroscedastic Variances

Consider now the case where the standard deviation, denoted s j, of Xj are unknown j = 1, ..., p.
We now introduce a superscript k= 1,2 to denote quantities associated with the data corresponding
to Y = −1 and Y = 1. Denote by ŝkj the usual estimates of the standard deviation of Xkj . The
estimates are based on the corresponding Xki j, k = 1,2, i = 1, ...,nk, j = 1, ..., p. Denote X̄1j and X̄2j
the corresponding means.

Let

Ŝ j =

√

(ŝ1j)2

n1
+

(ŝ2j)2

n2
,

thus Ŝ j is our estimator for the standard deviation of X̄1j − X̄2j .
Let

Zj =
X̄1j − X̄2j
Ŝ j

;

note, we expect that the variance of Zj is approximately 1, j = 1, ..., p.
As before let #̂i be the empirical Bayes estimators of E(Zi), and let âi = #̂i

√

! j #̂
2
j
, i= 1, ..., p.

In the following we proceed in terms of the variables

Uj =
Xj
Ŝ j

j = 1, ..., p.

We will represent our linear classifiers as linear functions ofUj, j = 1, ..., p.
Let

%̂k =
1
nk

nk
!
i=1

p

!
j=1

â jUk
i j, k = 1,2.

Let

â0 = −
%̂2+ %̂1
2

.

Finally, our classifier is:

sign(
p

!
j=1

â jUj + â0).

4. Simulations and Data Analysis

In this section, we present numerical studies including simulations and application to three sets of
real data.

4.1 Simulations

The simulation study in this subsection is based on the procedure described in Section 3.1. We
present simulations for p= 105 and for p= 104, under various configurations in which " j = 0, j =
1, ..., p. We study sparse configurations where for l variables the corresponding mean is fixed # j =+,
while the remaining p− l variables have # j = 0, p $ l. We also study a non-sparse version of
the above where the remaining p− l variables have means # j which are randomly selected from
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N(0,0.12). The small variance of the normal distribution is in order to control the magnitude of
||#||; recall from the introduction, we want p$ ||#||. Thus a configuration is determined by (+, l),
the corresponding p, and whether the p− l coordinates, whose means are not equal to +, are set to
be equal to zero or, alternatively get their values randomly based on a N(0,0.12) distribution.

We consider the case where n = 25, and a rescale under which the variance of Zj is (2 = 1,
j = 1, ..., p. Thus, the variance of Xj is s2 = 25/2, and the same for the variance of !a jXj, when
!a2j = 1. The distribution Xj is normal throughout this section, except for the simulations reported
in Table 5. In Table 5 the effect of a heavy tailed distribution variables Xj is studied.

Table 1 shows the misclassification rates of the empirical Bayes, conditional MLE, FAIR, and
the plug in Fisher’s rule which is also termed IR (Independence Rule). The plug in Fisher’s refers
to plugging in Zj for # j, j = 1, ..., p, in Fisher’s rule. We see that the empirical Bayes approach
produces the best results for non-sparse and for moderately sparse configurations. The CMLE is
better for strongly sparse configurations. The version of FAIR we are using is described in Theorem
4 of Fan and Fan (2008). It performs similar to IR, since it selects too many variables. Fan and Fan
(2008) describe another version of FAIR in their equation (4.3), this other version screens variables
more aggressively and involves computation of eigenvalues of the empirical covariance matrix. That
more aggressive version might perform better in our simulation, yet it is motivated for cases where it
is not known that the covariance matrix is of the form (2I (which is used in most of our simulations).
In addition, computing eigenvalues for empirical covariance matrix with p= 105 is computationally
intensive. In the real data analysis, with unknown covariance matrix, the other version of FAIR is
used.

Each entry is based on simulated Z1, ...,Zp, and on calculating the exact theoretical misclassifi-
cation rate. Note, given the estimators â j j = 0,1, ..., p, for a given simulated realization, the the-
oretical misclassification error, under equal prior probability for each class, is 12'((−!

p
j=1 â jµj−

â0)/s)+ 1
2(1−'((−!

p
j=1 â j" j− â0))/s).

In order to demonstrate the effect of dependence and to compare the methods for correlated vari-
ables, we also consider correlated normal variables where the correlation of Xi and Xj, namely ,i j,
has the form of ,|i− j| known as AR(1) model. Here, the corresponding misclassification probabili-
ties are 12'((−!

p
j=1 â jµj− â0)/

√
â′Sâ)+ 1

2(1−'((−!
p
j=1 â j" j− â0))/

√
â′Sâ), for the appropriate

covariance matrix S.
Table 2 presents misclassification rates under different values of ,. The empirical Bayes still

achieves the lowest error rates for all those non-sparse configurations. The reported entries are
averages of the 100 error rates corresponding to 100 realizations and corresponding estimators â j
for the particular configuration (+, l) or (+1, l1,+2, l2) where (+1, l1,+2, l2) means that l1 and l2
coordinates in # are all valued +1 and +2 correspondingly, while the remaining entries are all zero.

In Table 3 we present simulation results under the following correlation structure which is much
heavier than that of AR(1). We consider correlations corr(Xi,Xj) = ,i j = -i- j for i 0= j which is
easily implemented by letting Xi = "i(or µi)+

√

1−-2i Wi +-iU where Wi’s 1 ≤ i ≤ p and U are
generated independently from N(0,s2). In our simulations, all -′

is are generated from U(−a,a)
where a= 0.3,0.5, 0.7 and 0.9 are considered. As a increases, variables are more correlated. Table
3 shows misclassification probabilities for configurations of (+, l) or (+1, l1,+2, l2) as in Table 2.

In general the effect of correlation (especially heavy positive correlation) on the EB classifi-
cation method is stronger than on the other methods. This is partially because the EB uses more
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p= 104
p− l +’s are 0 p− l +’s ∼ N(0,0.12)

(+, l) EB CMLE FAIR IR EB CMLE FAIR IR
(1.0, 2000) *0.0003 0.0091 0.0052 0.0052 *0.0000 0.0082 0.0049 0.0049
(1.0, 1000) *0.0396 0.1309 0.0906 0.0905 *0.0162 0.1182 0.0854 0.0852
(1.0, 500) *0.2006 0.3243 0.2475 0.2474 *0.1055 0.3139 0.2341 0.2339
(1.5, 300) *0.1172 0.1891 0.1805 0.1806 *0.0657 0.1771 0.1679 0.1680
(2.0, 200) *0.0521 0.0868 0.1413 0.1416 *0.0340 0.0813 0.1315 0.1318
(2.5, 100) *0.0529 0.0631 0.1985 0.1990 *0.0396 0.0632 0.1863 0.1867
(3.0, 50) 0.0641 *0.0604 0.2677 0.2682 *0.0518 0.0583 0.2532 0.2536
(3.5, 50) 0.0113 *0.0099 0.2019 0.2025 *0.0093 0.0095 0.1893 0.1898
(4.0, 40) 0.0042 *0.0033 0.1933 0.1939 0.0039 *0.0034 0.1807 0.1812

p= 105
p− l +’s are 0 p− l +’s ∼ N(0,0.12)

(+, l) EB CMLE FAIR IR EB CMLE FAIR IR
(1.0, 2000) *0.1444 0.2717 0.1896 0.1894 *0.0077 0.2364 0.1542 0.1539
(1.0, 1000) *0.3100 0.3952 0.3294 0.3293 *0.0367 0.3721 0.2792 0.2789
(1.0, 500) *0.4067 0.4552 0.4122 0.4121 *0.0702 0.4408 0.3567 0.3565
(1.5, 300) *0.3643 0.3868 0.3817 0.3818 *0.0628 0.3744 0.3278 0.3278
(2.0, 200) *0.3071 0.2865 0.3609 0.3611 *0.0522 0.2727 0.3080 0.3081
(2.5, 100) 0.3009 *0.2275 0.3901 0.3903 *0.0560 0.2261 0.3358 0.3359
(3.0, 50) 0.3006 *0.1887 0.4202 0.4204 *0.0597 0.1886 0.3649 0.3649
(3.5, 50) 0.1521 *0.0474 0.3927 0.3929 *0.0263 0.0507 0.3387 0.3388
(4.0, 40) 0.0792 *0.0162 0.3876 0.3879 *0.0121 0.0157 0.3339 0.3340

Table 1: Misclassification error rates by Empirical Bayes, conditional MLE (Greenshtein et al.
2009), FAIR (Fan and Fan 2008) and Fisher’s rule (i.e., without variable selection)) . Error
rate with * represents minimum error rate in the row for the corresponding configuration.

variables, so more correlations are in effect, relative to variable selection methods that screen vari-
ables and consequently their correlations do not effect.

In Table 4, we compare the above mentioned procedures in non sparse setups where there are
many small signals. In all the configurations there is ’enough overall signal’ to make virtually no
classification error if µ and " were known. In those configurations the optimal (unknown) linear
classifiers uses most (or all) of the variables. However, attempting to estimate the corresponding
means by FAIR or Fisher’s plug-in and the Conditional MLE methods yield poor classifiers, while
the non parametric empirical Bayes method yields classifiers with excellent performance in some
cases.

In Table 5, we present simulation studies for Xjs with a heavy tailed distribution. As before
n1 = n2 = 25. Under G1 the distribution of Xj is c× t(3) (i.e., t with 3 degrees of freedom), j =
1, ..., p where c is chosen so that the variance of Xj is s2 = 25/2. Under G2 the distribution of Xj is
# j+c×Xj, where Xj is distributed t(3), j = 1, ..., p. Thus, the corresponding Zj has variance 1 and
it is only approximately normal. We study the configurations (+, l) = (1,2000),(2.5,100),(3.5,50)
and (4,40), which were also studied in Table 1. The misclassification rates are obtained based on
test sets of size 1000, 500 from each Gi, i= 1,2. As seen in Table 5, the EB method and CMLE still
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(+, l) = (1,2000), p− l +∼ N(0,0.12)
p= 104 p= 105

, EB CMLE FAIR IR EB CMLE FAIR IR
0.3 *0.0014 0.0158 0.0131 0.0119 *0.0216 0.2532 0.1801 0.1777
0.5 *0.0082 0.0355 0.0315 0.0303 *0.0487 0.2723 0.2177 0.2175
0.7 *0.0391 0.0850 0.0798 0.0797 *0.1094 0.3149 0.2765 0.2781
0.9 *0.1679 0.2256 0.2166 0.2176 *0.2508 0.3888 0.3703 0.3721

(+1, l1,+2, l2) = (2.5,100,1,1000) and p− l1− l2, +′s∼ N(0,0.12)
p= 104 p= 105

, EB CMLE FAIR IR EB CMLE FAIR IR
0.3 *0.0051 0.0261 0.0295 0.0301 *0.0320 0.1904 0.2164 0.2175
0.5 *0.0182 0.0478 0.0553 0.0575 *0.0637 0.2071 0.2517 0.2546
0.7 *0.0609 0.1011 0.1161 0.1206 *0.1282 0.2511 0.3050 0.3092
0.9 *0.2022 0.2401 0.2544 0.2594 *0.2628 0.3434 0.3819 0.3902

(+1, l2,+2, l2) = (3.5,50,1,1000) and p− l1− l2 +′s∼ N(0,0.12)
p= 104 p= 105

, EB CMLE FAIR IR EB CMLE FAIR IR
0.3 *0.0030 0.0162 0.0297 0.0305 *0.0173 0.0647 0.2169 0.2183
0.5 *0.0125 0.0357 0.0564 0.0590 *0.0408 0.0879 0.2520 0.2552
0.7 *0.0501 0.0856 0.1165 0.1215 *0.0966 0.1410 0.3051 0.3095
0.9 *0.1825 0.2143 0.2554 0.2612 *0.2397 0.2748 0.3880 0.3913

Table 2: Dependent case I : Corr(Xi,Xj) = ,i j = ,|i− j| for , = 0.3,0.5 and 0.7. (+1, l1,+2, l2)
represents l1 and l2 coordinates in # are +1 and +2 respectively.

produce smaller error rates compared to FAIR and IR. However, compared to the results in Table
1, the EB method and CMLE have a worst performance which is caused by some sensitivity to the
heavy tailed distribution of the Xjs.
Summary: The most important advantage of the EB classifier, demonstrated in the above simula-
tions, is its ability to use the information provided by many small signals in order to improve the
classification. This is unlike variable-selection type of classifiers, that give up on using the informa-
tion from variables with small # j, in order to reduce the variability in estimation. This advantage is
not on the expanse of being a good classifier also under moderately sparse configurations.

4.2 Real Data Analysis

The following analysis of real date sets is based on the procedure described in Section 3.2. We con-
sider three real data sets and compare the empirical Bayes approach with nearest centroid shrunken
(henceforth NSC), and FAIR. The NSC was proposed by Tibshirani et al. (2002). The three data
sets were studied by Fan and Fan (2008), and all the misclassification rates, other than that of the
empirical Bayes method, are cited from that paper.

The first example is of a leukemia data set, which was previously analyzed in Golub et al.
(1999). The data set can be obtained in http://www.broad.mit.edu/cgi-bin/cancer/datasets.
cgi. There are p = 7129 genes and 72 samples generated from two classes, ALL (acute lympho-
cytic leukemia) and AML (acute mylogenous leukemia). Among the 72 samples, the training data
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(+, l) = (1,2000), p− l +∼ N(0,0.12)
p= 104 p= 105

a EB CMLE FAIR IR EB CMLE FAIR IR
0.3 *0.0326 0.1114 0.1138 0.1150 *0.2756 0.4160 0.4058 0.4075
0.5 *0.1415 0.2405 0.2468 0.2487 *0.3059 0.4426 0.4438 0.4453
0.7 *0.1947 0.3145 0.3243 0.3284 *0.4038 0.4582 0.4783 0.4795
0.9 *0.2370 0.3586 0.3889 0.3961 0.4868 *0.4583 0.4817 0.4837

(+1, l1,+2, l2) = (2.5,100,1,1000) and p− l1− l2, +′s∼ N(0,0.12)
p= 104 p= 105

a EB CMLE FAIR IR EB CMLE FAIR IR
0.3 *0.0585 0.1051 0.1577 0.1639 *0.2712 0.2757 0.4102 0.4127
0.5 *0.1940 0.2225 0.3099 0.3156 0.3532 *0.3123 0.4669 0.4682
0.7 *0.2468 0.2588 0.3684 0.3760 0.4181 *0.3402 0.4781 0.4795
0.9 *0.2803 0.2543 0.3997 0.4093 0.4765 *0.3418 0.4815 0.4828

(+1, l1,+2, l2) = (3.5,50,1,1000) and p− l1− l2 +′s∼ N(0,0.12)
p= 104 p= 105

a EB CMLE FAIR IR EB CMLE FAIR IR
0.3 0.0479 *0.0469 0.1672 0.1740 0.2656 *0.1481 0.4189 0.4215
0.5 0.1711 *0.1272 0.3064 0.3125 0.2883 *0.1617 0.4513 0.4646
0.7 0.1730 *0.1300 0.3540 0.3629 0.3890 *0.1801 0.4820 0.4835
0.9 0.2486 *0.1424 0.3756 0.3882 0.4794 *0.2167 0.4867 0.4882

Table 3: Dependent case II :Corr(Xi,Xj) = ,i j =-i- j for i 0= j where -i and - j are generated from
Uni f (−a,a) for a= 0.3,0.5, 0.7 and 0.9. (+1, l1,+2, l2) represents l1 and l2 coordinates in
# are +1 and +2 respectively.

set has 38 ( n1 = 27 in ALL and n2 = 11 in AML) and the test data set has 34 (20 in ALL and 14
in AML). Table 6 shows the results of the nearest shrunken centroid, FAIR, and empirical Bayes
methods.

The empirical Bayes approach misclassified 3 out of 34 test samples which is the same result as
NSC, but slightly worse than FAIR. Figure 1 shows histograms of ! j â jUj corresponding to the two
groups, under the training and under the test sets.

The second example is of lung cancer data which were previously analyzed by Gordon et
al. (2002) and analyzed using FAIR in Fan and Fan (2008). The data is available at http:
//www.chestsurg.org. There are p = 12533 genes and 181 samples coming from two classes,
MPM(malignant pleural mesothelioma) and ADCA(adenocarcinoma). The training sample set con-
sists of 32 samples(n1 = 16 from MPM and n2 = 16 from ADCA) and the test has 149 samples (15
from MPM and 134 from ADCA). As displayed in Table 7, the empirical Bayes method classified
all the training samples correctly and 148 out of 149 test samples correctly, which is a significant
improvement compared to NSC and FAIR. In Figure 2, we show histograms of ! â jUj under the
two groups, for the training and for the test sets.

The last example is of prostate cancer data studied by Singh et al. (2002), which is available
at http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. The training data set has 102
samples, n1 = 52 of which are prostate tumor samples and n2 = 50 of which are normal samples. An
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p= 104, p− l +’s are 0
(+, l) EB CMLE FAIR IR
(0.2, 104) *0.0066 0.4103 0.2900 0.2896
(0.1, 104) *0.1678 0.4831 0.4448 0.4447
(0.2, 5×103) *0.1546 0.4594 0.3905 0.3902
(0.1, 5×103) *0.3725 0.4931 0.4720 0.4719

p= 105, p− l +’s are 0
(+, l) EB CMLE FAIR IR
(0.2, 105) *0.0000 0.0947 0.0415 0.0411
(0.1, 105) *0.0004 0.4437 0.3301 0.3297
(0.2, 5×104) *0.0002 0.3314 0.1907 0.1902
(0.1, 5×104) *0.1181 0.4779 0.4128 0.4126

Table 4: Non-sparse case

p= 104
p− l +’s are 0 p− l +’s ∼ N(0,0.12)

(+, l) EB CMLE FAIR IR EB CMLE FAIR IR
(1.0, 2000) 0.0350 0.1855 0.0152 *0.0149 0.0267 0.2126 0.0084 *0.0081
(2.5, 100) 0.1888 *0.1639 0.2121 0.2123 *0.1576 0.1600 0.1959 0.1969
(3.5, 50) 0.0994 *0.0791 0.2111 0.2112 0.2045 *0.1967 0.2643 0.2650
(4.0 ,40) 0.0744 *0.0640 0.2050 0.2055 0.0714 *0.0681 0.1933 0.1939

p= 105
p− l +’s are 0 p− l +’s ∼ N(0,0.12)

(+, l) EB CMLE FAIR IR EB CMLE FAIR IR
(1.0, 2000) 0.4331 0.4385 0.2179 *0.2170 0.2667 0.4325 *0.1886 0.1897
(2.5, 100) 0.4335 0.4155 *0.4018 0.4018 *0.3115 0.3926 0.3518 0.3517
(3.5, 50) 0.3661 *0.3365 0.4027 0.4023 *0.2966 0.3560 0.3562 0.3562
(4.0 ,40) 0.3528 *0.3282 0.4017 0.4023 *0.2815 0.3202 0.3544 0.3542

Table 5: Heavy tail case.

Method Training error Test error
Nearest shrunken centroids 1/38 3/34

FAIR 1/38 1/34
E.B. 0/38 3/34

Table 6: Classification errors of Leukemia data set

Method Training error Test error
Nearest shrunken centroids 0/32 11/149

FAIR 0/32 7/149
E.B. 0/32 1/149

Table 7: Classification errors of Lung Cancer data set
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Figure 1: Histograms of ! j â jUj of ALL and AML for training and test sets of Leukemia data. Two
panels in the first columns are histograms for ALL and AML from training sets and two
in the second columns are for ALL and AML from test sets. Red vertical lines in all
histograms represent cut off value which is −â0 = (%̂ALL+ %̂AML)/2= −15.10
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Figure 2: Histograms of ! j â jUj of ADCA and MPM for training and test sets of lung cancer data.
Two panels in the first columns are histograms for ADCA and MPM from training sets
and two in the second columns are for ADCA and MPM from test sets. Red vertical lines
in all histograms represent cut off value which is −a0 = (%̂ADCA+ %̂MPM)/2= 27.54.
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Method Training error Test error
Nearest shrunken centroids 8/102 9/34

FAIR 10/102 9/34
E.B. 38/102 4/34

Table 8: Classification errors of Prostate Cancer data set
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Figure 3: Histograms of ! j â jUj of normal and tumor for training and test sets of prostate cancer
data. Two panels in the first columns are histograms for normal and tumor from training
sets and two in the second columns are for normal and tumor from test sets. Red verti-
cal lines in all histograms represent cut off value which is −a0 = (%̂normal + %̂tumor)/2 =
213.68.

independent test data set, from a different experiment, has 25 tumor and 9 normal samples. There
are p= 12600 genes.

As displayed in Table 8, for the prostate cancer data, the empirical Bayes approach has a very
large training error compared to NSC and FAIR, but the test error is smaller than both NSC and
FAIR. The pessimism of the misclassification error, reflected by our training set, may be attributed
to two facts. One is the difference in the proportion of tumor and normal samples in the training
versus the test set. The other reason is that the test set seems to be less noisy. It seems that the
empirical Bayes method succeed in estimating # j and hence deriving good coefficients â j from the
large training data although it is noisy; yet, the classification of the individual data points of the
noisy training set is still difficult, while the classification is easier for the test set data points. Figure
3 might be helpful in assessing it. In the histograms of ! j â jUj corresponding to the normal and
tumor groups from the training data, we may see that the two training sets look noisier.
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Figure 4: Histograms of â j, j= 1, ..., p, for the leukemia, lung cancer, and prostate cancer data sets.
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Figure 5: Histograms of the first 50 largest |â j| for the leukemia, lung cancer, and prostate cancer
data sets.

4.3 Number of Selected Variables

Figure 4 shows the histograms of â j, j = 1, ..., p for each data set. In Figure 5 we see three his-
tograms corresponding to the fifty largest |â j|, j = 1, ..., p, in each of the three data sets. Our
empirical Bayes method uses many variables for the classification. In fact, formally it uses all the
variables, since none of the â j is exactly 0. In comparison the FAIR uses 11, 31, and 2 variables
corresponding to the above three cases in the order they presented, while the NSC uses 21, 26, 6.

Obviously a method which is based on a few variables is easy to implement and to interpret.
Our suggested classifiers are meant only to produce good classification and thus use many variables
if necessary. Using many variables and somewhat complicated classifiers is in the spirit of data
mining approach. However, selecting a subset of variables following an empirical Bayes estimation
of the means, makes much sense, for producing simpler classifiers. It might even reduce noise and
will produce over all better classifiers.
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Abstract
We give an algorithm for the on-line learning of permutations. The algorithm maintains its un-
certainty about the target permutation as a doubly stochastic weight matrix, and makes predictions
using an efficient method for decomposing the weight matrix into a convex combination of per-
mutations. The weight matrix is updated by multiplying the current matrix entries by exponential
factors, and an iterative procedure is needed to restore double stochasticity. Even though the re-
sult of this procedure does not have a closed form, a new analysis approach allows us to prove an
optimal (up to small constant factors) bound on the regret of our algorithm. This regret bound is sig-
nificantly better than that of either Kalai and Vempala’s more efficient Follow the Perturbed Leader
algorithm or the computationally expensive method of explicitly representing each permutation as
an expert.
Keywords: permutation, ranking, on-line learning, Hedge algorithm, doubly stochastic matrix,
relative entropy projection, Sinkhorn balancing

1. Introduction

Finding a good permutation is a key aspect of many problems such as the ranking of search results
or matching workers to tasks. In this paper we present an efficient and effective on-line algorithm
for learning permutations in a model related to the on-line allocation model of learning with experts
(Freund and Schapire, 1997). In each trial, the algorithm probabilistically chooses a permutation
and then incurs a linear loss based on how appropriate the permutation was for that trial. The regret
is the total expected loss of the algorithm on the whole sequence of trials minus the total loss of the
best permutation chosen in hindsight for the whole sequence, and the goal is to find algorithms that
have provably small worst-case regret.

For example, one could consider a commuter airline which owns n airplanes of various sizes
and flies n routes.1 Each day the airline must match airplanes to routes. If too small an airplane
is assigned to a route then the airline will loose revenue and reputation due to unserved potential
passengers. On the other hand, if too large an airplane is used on a long route then the airline
could have larger than necessary fuel costs. If the number of passengers wanting each flight were
known ahead of time, then choosing an assignment is a weighted matching problem. In the on-line

∗. An earlier version of this paper appears in Proceedings of the Twentieth Annual Conference on Computational Learn-
ing Theory (COLT 2007), published by Springer as LNAI 4539.

†. Manfred K. Warmuth acknowledges the support of NSF grant IIS 0325363.
1. We assume that each route starts and ends at the airline’s home airport.

c©10 David P. Helmbold and Manfred K. Warmuth.
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allocation model, the airline first chooses a distribution over possible assignments of airplanes to
routes and then randomly selects an assignment from the distribution. The regret of the airline is the
earnings of the single best assignment for the whole sequence of passenger requests minus the total
expected earnings of the on-line assignments. When airplanes and routes are each numbered from 1
to n, then an assignment is equivalent to selecting a permutation. The randomness helps protect the
on-line algorithm from adversaries and allows one to prove good bounds on the algorithm’s regret
for arbitrary sequences of requests.

Since there are n! permutations on n elements, it is infeasible to simply treat each permutation
as an expert and apply one of the expert algorithms that uses exponential weights. Previous work
has exploited the combinatorial structure of other large sets of experts to create efficient algorithms
(see Helmbold and Schapire, 1997; Takimoto and Warmuth, 2003; Warmuth and Kuzmin, 2008, for
examples). Our solution is to make a simplifying assumption on the loss function which allows
the new algorithm, called PermELearn, to maintain a sufficient amount of information about the
distribution over n! permutations while using only n2 weights.

We represent a permutation of n elements as an n× n permutation matrix ! where !i, j = 1 if
the permutation maps element i to position j and !i, j = 0 otherwise. As the algorithm randomly
selects a permutation !̂ at the beginning of a trial, an adversary simultaneously selects an arbitrary
loss matrix L ∈ [0,1]n×n which specifies the loss of all permutations for the trial. Each entry Li, j of
the loss matrix gives the loss for mapping element i to j, and the loss of any whole permutation is
the sum of the losses of the permutation’s mappings, that is, the loss of permutation! is "i Li,!(i) =
"i, j!i, jLi, j. Note that the per-trial expected losses can be as large as n, as opposed to the common
assumption for the expert setting that the losses are bounded in [0,1]. In Section 3 we show how a
variety of intuitive loss motifs can be expressed in this matrix form.

This assumption that the loss has a linear matrix form ensures the expected loss of the algorithm
can be expressed as "i, jWi, jLi, j, where W = E(!̂). This expectation W is an n× n weight matrix
which is doubly stochastic, that is, it has non-negative entries and the property that every row and
column sums to 1. The algorithm’s uncertainty about which permutation is the target is summarized
by W ; each weight Wi, j is the probability that the algorithm predicts with a permutation mapping
element i to position j. It is worth emphasizing that theW matrix is only a summary of the distribu-
tion over permutations used by any algorithm (it doesn’t indicate which permutations have non-zero
probability, for example). However, this summary is sufficient to determine the algorithm’s expected
loss when the losses of permutations have the assumed loss matrix form.

Our PermELearn algorithm stores the weight matrixW and must convertW into an efficiently
sampled distribution over permutations in order to make predictions. By Birkhoff’s Theorem, ev-
ery doubly stochastic matrix can be expressed as the convex combination of at most n2− 2n+ 2
permutations (see, e.g., Bhatia, 1997). In Appendix A we show that a greedy matching-based al-
gorithm efficiently decomposes any doubly stochastic matrix into a convex combination of at most
n2−2n+2 permutations. Although the efficacy of this algorithm is implied by standard dimension-
ality arguments, we give a new combinatorial proof that provides independent insight as to why the
algorithm finds a convex combination matching Birkhoff’s bound. Our algorithm for learning per-
mutations predicts with a random !̂ sampled from the convex combination of permutations created
by decomposing weight matrix W . It has been applied recently for pricing combinatorial markets
when the outcomes are permutations of objects (Chen et al., 2008).

The PermELearn algorithm updates the entries of its weight matrix using exponential factors
commonly used for updating the weights of experts in on-line learning algorithms (Littlestone and
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Warmuth, 1994; Vovk, 1990; Freund and Schapire, 1997): each entryWi, j is multiplied by a factor
e−#Li, j . Here # is a positive learning rate that controls the “strength” of the update (When # = 0,
than all the factors are one and the update is vacuous). After this update, the weight matrix no longer
has the doubly stochastic property, and the weight matrix must be projected back into the space of
doubly stochastic matrices (called “Sinkhorn balancing”, see Section 4) before the next prediction
can be made.

In Theorem 4 we bound the expected loss of PermELearn over any sequence of trials by

n lnn+#Lbest
1− e−#

, (1)

where n is the number of elements being permuted, # is the learning rate, and Lbest is the loss of
the best permutation on the entire sequence. If an upper bound Lest ≥ Lbest is known, then # can
be tuned (as in Freund and Schapire, 1997) and the expected loss bound becomes

Lbest+
√
2Lestn lnn+n lnn, (2)

giving a bound of
√
2Lestn lnn+n lnn on the worst case expected regret of the tuned PermELearn

algorithm. We also prove a matching lower bound (Theorem 6) of$(
√
Lbestn lnn) for the expected

regret of any algorithm solving our permutation learning problem.
A simpler and more efficient algorithm than PermELearn maintains the sum of the loss matrices

on the the previous trials. Each trial it adds random perturbations to the cumulative loss matrix and
then predicts with the permutation having minimum perturbed loss. This “Follow the Perturbed
Leader” algorithm (Kalai and Vempala, 2005) has good regret bounds for many on-line learning
settings. However, the regret bound we can obtain for it in the permutation setting is about a factor
of n worse than the bound for PermELearn and the lower bound.

Although computationally expensive, one can also consider running the Hedge algorithm while
explicitly representing each of the n! permutations as an expert. If T is the sum of the loss matrices
over the past trials and F is the n× n matrix with entries Fi, j = e−#Ti, j , then the weight of each
permutation expert ! is proportional to the product %i Fi,!(i) and the normalization constant is
the permanent of the matrix F . Calculating the permanent is a known #P-complete problem and
sampling from this distribution over permutations is very inefficient (Jerrum et al., 2004). Moreover
since the loss range of a permutation is [0,n], the standard loss bound for the algorithm that uses
one expert per permutation must be scaled up by a factor of n, becoming

Lbest+n
√
2
Lest
n
ln(n!)+n ln(n!) ≈ Lbest+

√
2Lestn2 lnn+n2 lnn.

This expected loss bound is similar to our expected loss bound for PermELearn in Equation (2), ex-
cept that the n lnn terms are replaced by n2 lnn. Our method based on Sinkhorn balancing bypasses
the estimation of permanents and somehow PermELearn’s implicit representation and prediction
method exploit the structure of permutations and lets us obtain the improved bound. We also give a
matching lower bound that shows PermELearn has the optimum regret bound (up to a small constant
factor). It is an interesting open question whether the structure of permutations can be exploited to
prove bounds like (2) for the Hedge algorithm with one expert per permutation.

PermELearn’s weight updates belong to the Exponentiated Gradient family of updates (Kivinen
and Warmuth, 1997) since the components Li, j of the loss matrix that appear in the exponential
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factor are the derivatives of our linear loss with respect to the weights Wi, j. This family of up-
dates usually maintains a probability vector as its weight vector. In that case the normalization of
the weight vector is straightforward and is folded directly into the update formula. Our new algo-
rithm PermELearn for learning permutations maintains a doubly stochastic matrix with n2 weights.
The normalization alternately normalizes the rows and columns of the matrix until convergence
(Sinkhorn balancing). This may require an unbounded number of steps and the resulting matrix
does not have a closed form. Despite this fact, we are able to prove bounds for our algorithm.

We first show that our update minimizes a tradeoff between the loss and a relative entropy
between doubly stochastic matrices. This relative entropy becomes our measure of progress in the
analysis. Luckily, the un-normalized multiplicative update already makes enough progress (towards
the best permutation) to achieve the loss bound quoted above. Finally, we interpret the iterations
of Sinkhorn balancing as Bregman projections with respect to the same relative entropy and show
using the properties of Bregman projections that these projections can only increase the progress
and thus don’t hurt the analysis (Herbster and Warmuth, 2001).

Our new insight of splitting the update into an un-normalized step followed by a normalization
step also leads to a streamlined proof of the loss bound for the Hedge algorithm in the standard
expert setting that is interesting in its own right. Since the loss in the allocation setting is linear, the
bounds can be proven in many different ways, including potential based methods (see, e.g., Kivinen
and Warmuth, 1999; Gordon, 2006; Cesa-Bianchi and Lugosi, 2006). For the sake of completeness
we reprove our main loss bound for PermELearn using potential based methods in Appendix B. We
show how potential based proof methods can be extended to handle linear equality constraints that
don’t have a solution in closed form, paralleling a related extension to linear inequality constraints
in Kuzmin and Warmuth (2007). In this appendix we also discuss the relationship between the
projection and potential based proof methods. In particular, we show how the Bregman projection
step corresponds to plugging in suboptimal dual variables into the potential.

The remainder of the paper is organized as follows. We introduce our notation in the next
section. Section 3 presents the permutation learning model and gives several intuitive examples of
appropriate loss motifs. Section 4 gives the PermELearn algorithm and discusses its computational
requirements. One part of the algorithm is to decompose the current doubly stochastic matrix into
a small convex combination of permutations using a greedy algorithm. The bound on the number
of permutations needed to decompose the weight matrix is deferred to Appendix A. We then bound
PermELearn’s regret in Section 5 in a two-step analysis that uses a relative entropy as a measure
of progress. To exemplify the new techniques, we also analyze the basic Hedge algorithm with the
same methodology. The regret bounds for Hedge and PermELearn are re-proven in Appendix B
using potential based methods. In Section 6, we apply the “Follow the Perturbed Leader” algorithm
to learning permutations and show that the resulting regret bounds are not as good. In Section 7
we prove a lower bound on the regret when learning permutations that is within a small constant
factor of our regret bound on the tuned PermELearn algorithm. The concluding section describes
extensions and directions for further work.

2. Notation

All matrices will be n× n matrices. When A is a matrix, Ai, j denotes the entry of A in row i, and
column j. We use A•B to denote the dot product between matrices A and B, that is, "i, j Ai, jBi, j. We
use single superscripts (e.g., Ak) to identify matrices/permutations from a sequence.
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Permutations on n elements are frequently represented in two ways: as a bijective mapping of
the elements {1, . . . ,n} into the positions {1, . . . ,n} or as a permutation matrix which is an n× n
binary matrix with exactly one “1” in each row and each column. We use the notation ! (and !̂) to
represent a permutation in either format, using the context to indicate the appropriate representation.
Thus, for each i ∈ {1, . . . ,n}, we use !(i) to denote the position that the ith element is mapped to
by permutation !, and matrix element !i, j = 1 if !(i) = j and 0 otherwise.

If L is a matrix with n rows then the product !L permutes the rows of L:

!=





0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0



 L=





11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44



 !L=





21 22 23 24
41 42 43 44
31 32 33 34
11 12 13 14



 .

perm. (2,4,3,1) as matrix an arbitrary matrix permuting the rows

Convex combinations of permutations create doubly stochastic or balanced matrices: non-
negative matrices whose n rows and n columns each sum to one. Our algorithm maintains its
uncertainty about which permutation is best as a doubly stochastic weight matrix W and needs to
randomly select a permutation from some distribution whose expectation isW . By Birkhoff’s The-
orem (see, e.g., Bhatia, 1997), for every doubly stochastic matrixW there is a decomposition into
a convex combination of at most n2− 2n+ 2 permutation matrices. We show in Appendix A how
a decomposition of this size can be found effectively. This decomposition gives a distribution over
permutations whose expectation isW that now can be effectively sampled because its support is at
most n2−2n+2 permutations.

3. On-line Protocol

We are interested in learning permutations in a model related to the on-line allocation model of
learning with experts (Freund and Schapire, 1997). In that model there are N experts and at the
beginning of each trial the algorithm allocates a probability distribution w over the experts. The
algorithm picks expert i with probability wi and then receives a loss vector ! ∈ [0,1]N . Each expert
i incurs loss !i and the expected loss of the algorithm is w · !. Finally, the algorithm updates its
distribution w for the next trial.

In case of permutations we could have one expert per permutation and allocate a distribution
over the n! permutations. Explicitly tracking this distribution is computationally expensive, even
for moderate n. As discussed in the introduction, we assume that the losses in each trial can be
specified by a loss matrix L ∈ [0,1]n×n where the loss of each permutation ! has the linear form
"i Li,!(i) = ! •L. If the algorithm’s prediction !̂ is chosen probabilistically in each trial then the
algorithm’s expected loss is E[!̂ • L] =W • L, where W = E[!̂]. This expected prediction W is
an n× n doubly stochastic matrix and algorithms for learning permutations under the linear loss
assumption can be viewed as implicitly maintaining such a doubly stochastic weight matrix.

More precisely, the on-line algorithm follows the following protocol in each trial:

• The learner (probabilistically) chooses a permutation !̂, and letW = E(!̂).

• Nature simultaneously chooses a loss matrix L ∈ [0,1]n×n for the trial.

• At the end of the trial, the algorithm is given L. The loss of !̂ is !̂•L and the expected loss
of the algorithm isW •L.
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• Finally, the algorithm updates its distribution over permutations for the next trial, implicitly
updating matrixW .

Although our algorithm can handle arbitrary sequences of loss matrices L ∈ [0,1]n×n, nature
could be significantly more restricted. Many ranking applications have an associated loss motif M
and nature is constrained to choose (row) permutations of M as its loss matrix L. In effect, at each
trial nature chooses a “correct” permutation ! and uses the loss matrix L = !M. Note that the
permutation left-multiplies the loss motif, and thus permutes the rows of M. If nature chooses the
identity permutation then the loss matrix L is the motifM itself. WhenM is known to the algorithm,
it suffices to give the algorithm only the permutation ! at the end of the trial, rather than the loss
matrix L itself. Figure 1 gives examples of loss motifs.

The last loss in Figure 1 is related to a competitive List Update Problem where an algorithm
services requests to a list of n items. In the List Update Problem the cost of a request is the requested
item’s current position in the list. After each request, the requested item can be moved forward in
the list for free, and additional rearrangement can be done at a cost of one per transposition. The
goal is for the algorithm to be cost-competitive with the best static ordering of the elements in
hindsight. Note that the transposition cost for additional list rearrangement is not represented in
the permutation loss motif. Blum et al. (2003) give very efficient algorithms for the List Update
Problem that do not do additional rearranging of the list (and thus do not incur the cost neglect by
the loss motif). In our notation, their bound has the same form as ours (1) but with the n lnn factors
replaced by O(n). However, our lower bound (see Section 7) shows that the n lnn factors in (2) are
necessary in the general permutation setting.

Note that many compositions of loss motifs are possible. For example, given two motifs with
their associated losses, any convex combination of the motifs creates a new motif for the same
convex combination of the associated losses. Other component-wise combinations of two motifs
(such as product or max) can also produce interesting loss motifs, but the combination usually
cannot be distributed across the matrix dot-product calculation, and so cannot be expressed as a
simple linear function of the original losses.

4. PermELearn Algorithm

Our permutation learning algorithm uses exponenential weights and we call it PermELearn. It
maintains an n× n doubly stochastic weight matrixW as its main data structure, whereWi, j is the
probability that PermELearn predicts with a permutation mapping element i to position j. In the
absence of prior information it is natural to start with uniform weights, that is, the matrix with 1

n in
each entry.

In each trial PermELearn does two things:

1. Choose a permutation !̂ from some distribution such that E[!̂] =W .

2. Create a new doubly stochastic matrix W̃ for use in the next trial based on the current weight
matrixW and loss matrix L.

1710



LEARNING PERMUTATIONS

loss L(!̂,!) motif M

the number of elements i where !̂(i) (=!





0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0





1
n−1 "

n
i=1 |!̂(i)−!(i)|, how far the elements are

from their “correct” positions (the division by n−
1 ensures that the entries of M are in [0,1].)

1
3





0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0





1
n−1 "

n
i=1

|!̂(i)−!(i)|
!(i) , a position weighted version of

the above emphasizing the early positions in !
1
3





0 1 2 3

1/2 0 1/2 1

2/3 1/3 0 1/3

3/4 1/2 1/4 0





the number of elements mapped to the first half
by ! but the second half by !̂, or vice versa





0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0





the number of elements mapped to the first two
positions by ! that fail to appear in the top three
position of !̂





0 0 0 1 1

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0





the number of links traversed to find the first ele-
ment of ! in a list ordered by !̂

1
3





0 1 2 3

0 0 0 0

0 0 0 0

0 0 0 0





Figure 1: Loss motifs

Choosing a permutation is done by Algorithm 1. The algorithm greedily decomposes W into a
convex combination of at most n2−2n+2 permutations (see Theorem 7), and then randomly selects
one of these permutations for the prediction.2

Our decomposition algorithm uses a Temporary matrix A initialized to the weight matrix W .
Each iteration of Algorithm 1 finds a permutation ! where each Ai,!(i) > 0. This can be done by
finding a perfect matching on the n× n bipartite graph containing the edge i, j whenever Ai, j > 0.
We shall soon see that each matrix A is a constant times a doubly stochastic matrix, so the existence
of a suitable permutation ! follows from Birkhoff’s Theorem. Given such a permutation !, the
algorithm updates A to A−&! where & = mini Ai,!(i). The updated matrix A has non-negative
entries and has strictly more zeros than the original A. Since the update decreases each row and

2. The decomposition is usually not unique and the implementation may have a bias as to exactly which convex combi-
nation is chosen.
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Algorithm 1 PermELearn: Selecting a permutation
Require: a doubly stochastic n×n matrixW
A :=W ; q= 0;
repeat
q := q+1;
Find permutation !q such that Ai,!q(i) is positive for each i ∈ {1, . . . ,n}
&q :=mini Ai,!q(i)
A := A−&q!q

until All entries of A are zero {at end of loopW = "
q
k=1&k!

k}
Randomly select and return a !̂ ∈ {!1, . . . ,!q} using probabilities &1, . . . ,&q.

Algorithm 2 PermELearn: Weight Matrix Update
Require: learning rate #, loss matrix L, and doubly stochastic weight matrixW

CreateW ′ where eachW ′
i, j =Wi, je−#Li, j (3)

Create doubly stochastic W̃ by re-balancing the rows and columns of W ′ (Sinkhorn balancing)
and updateW to W̃ .

column sum by & and the original matrixW was doubly stochastic, each matrix A will have rows
and columns that sum to the same amount. In other words, each matrix A created during Algorithm 1
is a constant times a doubly stochastic matrix, and thus (by Birkhoff’s Theorem) is a constant times
a convex combination of permutations.

After at most n2− n iterations the algorithm arrives at a matrix A having exactly n non-zero
entries, so this A is a constant times a permutation matrix. Therefore, Algorithm 1 decomposes the
original doubly stochastic matrix into the convex combination of (at most) n2− n+ 1 permutation
matrices. The more refined arguments in Appendix A shows that the Algorithm 1 never uses more
than n2−2n+2 permutations, matching the bound given by Birkhoff’s Theorem.

Several improvements are possible. In particular, we need not compute each perfect matching
from scratch. If only z entries of A are zeroed by a permutation, then that permutation is still a
matching of size n− z in the graph for the updated matrix. Thus we need to find only z augmenting
paths to complete the perfect matching. The entire process thus requires finding O(n2) augmenting
paths at a cost of O(n2) each, for a total cost of O(n4) to decompose weight matrixW into a convex
combination of permutations.

4.1 Updating the Weights

In the second step, Algorithm 2 updates the weight matrix by multiplying each Wi, j entry by the
factor e−#Li, j . These factors destroy the row and column normalization, so the matrix must be re-
balanced to restore the doubly-stochastic property. There is no closed form for the normalization
step. The standard iterative re-balancing method for non-negative matrices is called Sinkhorn bal-
ancing. This method first normalizes each row of the matrix to sum to one, and then normalizes the
columns. Since normalizing the columns typically destroys the row normalization, the process must
be iterated until convergence (Sinkhorn, 1964).
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(
1
2

1
2

1
2 1

)
Sinkhorn balancing

=⇒





√
2

1+
√
2

1
1+

√
2

1
1+

√
2

√
2

1+
√
2





Figure 2: Example where Sinkhorn balancing requires infinitely many steps.

Normalizing the rows corresponds to pre-multiplying by a diagonal matrix. The product of these
diagonal matrices thus represents the combined effect of the multiple row normalization steps. Sim-
ilarly, the combined effect of the column normalization steps can be represented by post-multiplying
the matrix by a diagonal matrix. Therefore we get the well known fact that Sinkhorn balancing a
matrix A results in a doubly stochastic matrix RAC where R andC are diagonal matrices. Each entry
Ri,i is the positive multiplier applied to row i, and each entryCj, j is the positive multiplier of column
j needed to convert A into a doubly stochastic matrix.
In Figure 2 we give a rational matrix that balances to an irrational matrix. Since each row and

column balancing step creates rationals, Sinkhorn balancing produces irrationals only in the limit
(after infinitely many steps). Multiplying a weight matrix from the left and/or right by non-negative
diagonal matrices (e.g., row or column normalization) preserves the ratio of product weights be-
tween permutations. That is if A′ = RAC, then for any two permutations !1 and !2,

%i A′
i,!1(i)

%i A′
i,!2(i)

=
%i Ai,!1(i)Ri,iC!1(i),!1(i)
%i Ai,!2(i)Ri,iC!2(i),!2(i)

=
%i Ai,!1(i)
%i Ai,!2(i)

.

Therefore
(
1/2 1/2
1/2 1

)
must balance to a doubly stochastic matrix

( a 1−a
1−a a

)
such that the ratio of the

product weight between the two permutations (1,2) and (2,1) is preserved. This means 1/21/4 = a2
(1−a)2

and thus a=
√
2

1+
√
2 .

This example leads to another important observation: PermELearn’s predictions are different
than Hedge’s when each permutation is treated as an expert. If each permutation is explicitly repre-
sented as an expert, then the Hedge algorithm predicts permutation ! with probability proportional
to the product weight, %i e

−#"t Lti,!(i) . However, algorithm PermELearn predicts differently. With
the weight matrix in Figure 4.1, Hedge puts probability 2

3 on permutation (1,2) and probability 1
3

on permutation (2,1) while PermELearn puts probability
√
2

1+
√
2 ≈ 0.59 on permutation (1,2) and

probability
√
1

1+
√
2 ≈ 0.41 on permutation (2,1).

There has been much written on the balancing of matrices, and we briefly describe only a few
of the results here. Sinkhorn showed that this procedure converges and that the RAC balancing of
any matrix A into a doubly stochastic matrix is unique (up to canceling multiples of R and C) if it
exists3 (Sinkhorn, 1964).

A number of authors consider balancing a matrix A so that the row and column sums are 1± '.
Franklin and Lorenz (1989) show that O(length(A)/') Sinkhorn iterations suffice, where length(A)
is the bit-length of matrix A’s binary representation. Kalantari and Khachiyan (1996) show that

3. Some non-negative matrices, like



1 1 0
0 1 0
0 1 1



 , cannot be converted into doubly stochastic matrices because of their

pattern of zeros. The weight matrices we deal with have strictly positive entries, and thus can always be made doubly
stochastic with an RAC balancing.
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O(n4 ln n' ln
1

minAi, j ) operations suffice using an interior point method. Linial et al. (2000) give a
preprocessing step after which only O((n/')2) Sinkhorn iterations suffice. They also present a
strongly polynomial time iterative procedure requiring Õ(n7 log(1/')) iterations. Balakrishnan et al.
(2004) give an interior point method with complexity O(n6 log(n/')). Finally, Fürer (2004) shows
that if the row and column sums of A are 1± ' then every matrix entry changes by at most ±n'
when A is balanced to a doubly stochastic matrix.

4.2 Dealing with Approximate Balancing

With slight modifications, Algorithm PermELearn can handle the situation where its weight matrix
is imperfectly balanced (and thus not quite doubly stochastic). As before, letW be the fully balanced
doubly stochastic weight matrix, but we now assume that only an approximately balanced Ŵ is
available to predict from. In particular, we assume that each row and column of Ŵ sum to 1± ' for
some '< 1

3 . Let s≥ 1− ' be the smallest row or column sum in Ŵ .
We modify Algorithm 1 in two ways. First, A is initialized to 1

sŴ rather thanW . This ensures
every row and column in the initial A sums to at least one, to at most 1+ 3', and at least one row
or column sums to exactly 1. Second, the loop exits as soon as A has an all-zero row or column.
Since the smallest row or column sum starts at 1, is decreased by &k each iteration k, and ends at
zero, we have that "q

k=1&k = 1 and the modified Algorithm 1 still outputs a convex combination of
permutations C = "

q
k=1&k!

k. Furthermore, each entry Ci, j ≤ 1
sŴi, j. We now bound the additional

loss of this modified algorithm.

Lemma 1 If the weight matrix Ŵ is approximately balanced so each row and column sum is in 1±'
(for ' ≤ 1

3 ) then the modified Algorithm 1 has an expected loss C •L at most 3n3' greater than the
expected loss W •L of the original algorithm that uses the completely balanced doubly stochastic
matrix W.

Proof Let s be the smallest row or column sum in Ŵ . Since each row and column sum of 1sŴ
lies in [1,1+3'], each entry of 1sŴ is close to the corresponding entry of the fully balancedW . In
particular each 1

sŴi, j ≤Wi, j + 3n' (Fürer, 2004). This allows us to bound the expected loss when
predicting with the convex combination C in terms of the expected loss using a decomposition of
the perfectly balancedW :

C •L ≤
1
s
Ŵ •L

= "
i, j

Ŵi, j

s
Li, j

≤ "
i, j

(Wi, j +3n')Li, j

≤ W •L+3n3'.

Therefore the extra loss incurred by using a '-approximately balanced weight matrix at a particular
trial is at most 3n3', as desired.
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If in a sequence of T trials the matrices Ŵ are ' = 1/(3Tn3) balanced (so that each row and
column sum is 1± 1/(3Tn3)) then Lemma 1 implies that the total additional expected loss for
using approximate balancing is at most 1. The algorithm of Balakrishnan et al. (2004) '-balances a
matrix in O(n6 log(n/')) time (note that this dominates the time for the loss update and constructing
the convex combination). This balancing algorithm with ' = 1/(3Tn3) together with the modified
prediction algorithm give a method requiring O(Tn6 log(Tn)) total time over the T trials and having
a bound of

√
2Lestn lnn+n lnn+1 on the worst-case regret.

If the number of trials T is not known in advance then setting ' as a function of t can be helpful.
A natural choice is 't = 1/(3t2n3). In this case the total extra regret for not having perfect balancing
is bounded by "T

t=1 1/t2 ≤ 5/3 and the total computation time over the T trials is still bounded by
O(Tn6 log(Tn)).

One might be concerned about the effects of approximate balancing propagating between trials.
However this is not an issue. In the following section we show that the loss updates and balancing
can be arbitrarily interleaved. Therefore the modified algorithm can either keep a cumulative loss
matrix L≤t = "ti=1Li and create its next Ŵ by (approximately) balancing the matrix with entries
1
ne

−#L≤ti, j , or apply the multiplicative updates to the previous approximately balanced Ŵ .

5. Bounds for PermELearn

Our analysis of PermELearn follows the entropy-based analysis of the exponentiated gradient family
of algorithms (Kivinen and Warmuth, 1997). This style of analysis first shows a per-trial progress
bound using relative entropy to a comparator as a measure of progress, and then sums this invariant
over the trials to bound the expected total loss of the algorithm. We also show that PermELearn’s
weight update belongs to the exponentiated gradient family of updates (Kivinen andWarmuth, 1997)
since it is the solution to a minimization problem that trades of the loss (in this case a linear loss)
against a relative entropy regularization.

Recall that the expected loss of PermELearn on a trial is a linear function of its weight matrix
W . Therefore the gradient of the loss is independent of the current value of W . This property of
the loss greatly simplifies the analysis. Our analysis for this setting provides a good foundation for
learning permutation matrices and lays the groundwork for the future study of other permutation
loss functions.

We start our analysis with an attempt to mimic the standard analysis (Kivinen and Warmuth,
1997) for the exponentiated gradient family updates which multiply by exponential factors and re-
normalize. The per-trial invariant used to analyze the exponentiated gradient family bounds the
decrease in relative entropy from any (normalized) vector u to the algorithm’s weight vector by a
linear combination of the algorithm’s loss and the loss of u on the trial. In our case the weight
vectors are matrices and we use the following (un-normalized) relative entropy between matrices A
and B with non-negative entries:

((A,B) ="
i, j
Ai, j ln

Ai, j
Bi, j

+Bi, j−Ai, j .

Note that this is just the sum of the relative entropies between the corresponding rows (or equiva-
lently, between the corresponding columns):

((A,B) ="
i
((Ai,",Bi,") ="

j
((A", j,B", j)
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(here Ai," is the ith row of A and A", j is its jth column).
Unfortunately, the lack of a closed form for the matrix balancing procedure makes it difficult

to prove bounds on the loss of the algorithm. Our solution is to break PermELearn’s update (Algo-
rithm 2) into two steps, and use only the progress made to the intermediate un-balanced matrix in
our per-trial bound (8). After showing that balancing to a doubly stochastic matrix only increases
the progress, we can sum the per-trial bound to obtain our main theorem.

5.1 A Dead End

In each trial, PermELearn multiplies each entry of its weight matrix by an exponential factor and
then uses one additional factor per row and column to make the matrix doubly stochastic (Algo-
rithm 2 described in Section 4.1):

W̃i, j := ric jWi, je−#Li, j (4)

where the ri and c j factors are chosen so that all rows and columns of the matrix W̃ sum to one.
We now show that PermELearn’s update (4) gives the matrix A solving the following minimiza-

tion problem:
argmin

∀i : " j Ai, j = 1
∀ j : "i Ai, j = 1

(((A,W )+# (A•L)) . (5)

Since the linear constraints are feasible and the divergence is strictly convex, there always is a
unique solution, even though the solution does not have a closed form.

Lemma 2 PermELearn’s updated weight matrix W̃ (4) is the solution of (5).

Proof We form a Lagrangian for the optimization problem:

l(A,),*) = ((A,W )+# (A•L)+"
i
)i("

j
Ai, j−1)+"

j
* j("

i
Ai, j−1).

Setting the derivative with respect to Ai, j to 0 yields Ai, j =Wi, je−#Li, j e−)i e−* j . By enforcing the
row and column sum constraints we see that the factors ri = e−)i and c j = e−* j function as row and
column normalizers, respectively.

We now examine the progress ((U,W )−((U,W̃ ) towards an arbitrary stochastic matrix U .
Using Equation (4) and noting that all three matrices are doubly stochastic (so their entries sum to
n), we see that

((U,W )−((U,W̃ ) = −#U •L+"
i
lnri+"

j
lnc j.

Making this a useful invariant requires lower bounding the sums on the rhs by a constant times
W •L, the loss of the algorithm. Unfortunately we are stuck because the ri and c j normalization
factors don’t even have a closed form.
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5.2 Successful Analysis

Our successful analysis splits the update (4) into two steps:

W ′
i, j :=Wi, je−#Li, j and W̃i, j := ric jW ′

i, j, (6)

where (as before) ri and c j are chosen so that each row and column of the matrix W̃ sum to one.
Using the Lagrangian (as in the proof of Lemma 2), it is easy to see that theseW ′ and W̃ matrices
solve the following minimization problems:

W ′ = argmin
A

(((A,W )+# (A•L)) and W̃ := argmin
∀i : " j Ai, j = 1
∀ j : "i Ai, j = 1

((A,W ′). (7)

The second problem shows that the doubly stochastic matrix W̃ is the projection ofW ′ onto to the
linear row and column sum constraints. The strict convexity of the relative entropy between non-
negative matrices and the feasibility of the linear constraints ensure that the solutions for both steps
are unique.

We now lower bound the progress ((U,W )−((U,W ′) in the following lemma to get our per-
trial invariant.

Lemma 3 For any # > 0, any doubly stochastic matrices U and W and any trial with loss matrix
L ∈ [0,1]n×n

((U,W )−((U,W ′) ≥ (1− e−#)(W •L)−#(U •L),

where W ′ is the unbalanced intermediate matrix (6) constructed by PermELearn fromW.

Proof The proof manipulates the difference of relative entropies and uses the inequality e−#x ≤
1− (1− e−#)x, which holds for any # and any x ∈ [0,1]:

((U,W )−((U,W ′) = "
i, j

(
Ui, j ln

W ′
i, j

Wi, j
+Wi, j−W ′

i, j

)

= "
i, j

(
Ui, j ln(e−#Li, j)+Wi, j−Wi, je−#Li, j

)

≥ "
i, j

(
−#Li, jUi, j +Wi, j−Wi, j(1− (1− e−#)Li, j)

)

= −#(U •L)+(1− e−#)(W •L).

Relative entropy is a Bregman divergence, so the Generalized Pythagorean Theorem (Bregman,
1967) applies. Specialized to our setting, this theorem states that if S is a closed convex set contain-
ing some matrixU with non-negative entries,W ′ is any matrix with strictly positive entries, and W̃
is the relative entropy projection ofW ′ onto S then

((U,W ′) ≥ ((U,W̃ )+((W̃ ,W ′).
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Furthermore, this holds with equality when S is affine, which is the case here since S is the set
of matrices whose rows and columns each sum to 1. Rearranging and noting that ((A,B) is non-
negative yields Corollary 3 of Herbster and Warmuth (2001), which is the inequality we need:

((U,W ′)−((U,W̃ ) = ((W̃ ,W ′) ≥ 0.

Combining this with the inequality of Lemma 3 gives the critical per-trial invariant:

((U,W )−((U,W̃ ) ≥ (1− e−#)(W •L)−#(U •L). (8)

We now introduce some notation and bound the expected total loss by summing the above
inequality over a sequence of trials. When considering a sequence of trials, Lt is the loss matrix
at trial t, Wt−1 is PermELearn’s weight matrix W at the start of trial t (so W 0 is the initial weight
matrix) andWt is the updated weight matrix W̃ at the end of the trial.

Theorem 4 For any learning rate # > 0, any doubly stochastic matrices U and initial W 0, and
any sequence of T trials with loss matrices Lt ∈ [0,1]n×n (for 1 ≤ t ≤ T), the expected loss of
PermELearn is bounded by:

T

"
t=1

Wt−1 •Lt ≤
((U,W 0)−((U,WT )+#"T

t=1U •Lt

1− e−#
.

Proof Applying (8) to trial t gives:

((U,Wt−1)−((U,Wt) ≥ (1− e−#)(Wt−1 •Lt)−#(U •Lt).

By summing the above over all T trials we get:

((U,W 0)−((U,WT ) ≥ (1− e−#)
T

"
t=1

Wt−1 •Lt−#
T

"
t=1

U •Lt .

The bound then follows by solving for the total expected loss, "T
t=1Wt−1 •Lt , of the algorithm.

When the entries ofW 0 are all initialized to 1
n and U is a permutation then ((U,W 0) = n lnn.

Since each doubly stochastic matrix U is a convex combination of permutation matrices, at least
one minimizer of the total loss "T

t=1U •L will be a permutation matrix. If Lbest denotes the loss of
such a permutationU∗, then Theorem 4 implies that the total loss of the algorithm is bounded by

((U∗,W 0)+#Lbest
1− e−#

.

If upper bounds ((U∗,W 0) ≤ Dest ≤ n lnn and Lest ≥ Lbest are known, then by choosing # =

ln
(
1+

√
2Dest
Lest

)
, and the above bound becomes (Freund and Schapire, 1997):

Lbest+
√
2LestDest+((U∗,W 0). (9)

A natural choice for Dest is n lnn. In this case the tuned bound becomes

Lbest+
√
2Lestn lnn+n lnn.
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5.3 Approximate Balancing

The preceding analysis assumes that PermELearn’s weight matrix is perfectly balanced each itera-
tion. However, balancing techniques are only capably of approximately balancing the weight matrix
in finite time, so implementations of PermELearn must handle approximately balanced matrices. In
Section 4.2, we describe an implementation that uses an approximately balanced Ŵ t−1 at the start of
iteration t rather than the completely balancedWt−1 of the preceding analysis. Lemma 1 shows that
when this implementation of PermELearn uses an approximately balanced Ŵ t−1 where each row
and column sum is in 1± 't , then the expected loss on trial t is at mostWt−1 •Lt +3n3't . Summing
over all trials and using Theorem 4, this implementation’s total loss is at most

T

"
t=1

(
Wt−1 •Lt +3n3't

)
≤
((U,W 0)−((U,WT )+#"T

t=1U •Lt

1− e−#
+

T

"
t=1
3n3't .

As discussed in Section 4.2, setting 't = 1/(3n3t2) leads to an additional loss of less than 5/3
over the bound of Theorem 4 and its subsequent tunings while incurring a total running time (over
all T trials) in O(Tn6 log(Tn)). In fact, the additional loss for approximate balancing can be made
less than any positive c by setting 't = c/(5n3t2). Since the time to approximately balance depends
only logarithmically on 1/', the total time taken over T trials remains in O(Tn6 log(Tn)).

5.4 Split Analysis for the Hedge Algorithm

Perhaps the simplest case where the loss is linear in the parameter vector is the on-line allocation
setting of Freund and Schapire (1997). It is instructive to apply our method of splitting the update
in this simpler setting. There are N experts and the algorithm keeps a probability distribution w
over the experts. In each trial the algorithm picks expert i with probability wi and then gets a loss
vector ! ∈ [0,1]N . Each expert i incurs loss !i and the algorithm’s expected loss is w · !. Finally w is
updated to w̃ for the next trial.

The Hedge algorithm (Freund and Schapire, 1997) updates its weight vector to w̃i = wie−#!i

" j w je−#! j .
This update can be motivated by a tradeoff between the un-normalized relative entropy to the old
weight vector and expected loss in the last trial (Kivinen and Warmuth, 1999):

w̃ := argmin
"i ŵi=1

(((ŵ,w)+# ŵ · !) .

For vectors, the relative entropy is simply ((ŵ,w) := "i ŵi ln ŵiwi +wi− ŵi. As in the permutation
case, we can split this update (and motivation) into two steps: setting each w′

i = wie−#!i then w̃ =
w′/"i w′

i. These are the solutions to:

w′ := argmin
ŵ

(((ŵ,w)+# ŵ · !) and w̃ := argmin
"i ŵi=1

((ŵ,w′).
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The following lower bound has been shown on the progress towards any probability vector u serving
as a comparator:4

((u,w)−((u, w̃) = −# u · !− ln"
i
wie−#!i

≥ −# u · !− ln"
i
wi(1− (1− e−#)!i)

≥ −# u · !+w · ! (1− e−#) , (10)

where the first inequality uses e−#x ≤ 1−(1−e−#)x, for any x∈ [0,1], and the second uses− ln(1−
x) ≥ x, for x ∈ [0,1]. Surprisingly the same inequality already holds for the un-normalized update:5

((u,w)−((u,w′) = −# u · !+"
i
wi(1− e−#!i) ≥ w · ! (1− e−#)−# u · !.

Since the normalization is a projection w.r.t. a Bregman divergence onto a linear constraint satisfied
by the comparator u, ((u,w′)−((u, w̃)≥ 0 by the Generalized Pythagorean Theorem (Herbster and
Warmuth, 2001). The total progress for both steps is again Inequality (10).

With the key Inequality (10) in hand, it is easy to introduce trial dependent notation and sum
over trails (as done in the proof of Theorem 4, arriving at the familiar bound for Hedge (Freund and
Schapire, 1997): For any #> 0, any probability vectors w0 and u, and any loss vectors !t ∈ [0,1]n,

T

"
t=1

wt−1 • !t ≤
((u,w0)−((u,wT )+#"T

t=1 u• !t

1− e−#
. (11)

Note that the r.h.s. is actually constant in the comparator u (Kivinen and Warmuth, 1999), that is,
for all u,

((u,w0)−((u,wT )+#"T
t=1 u• !t

1− e−#
=

− ln"i w0i e−#!≤Ti

1− e#
.

The r.h.s. of the above equality is often used as a potential in proving bounds for expert algorithms.
We discuss this further in Appendix B.

5.5 When to Normalize?

Probably the most surprising aspect about the proof methodology is the flexibility about how and
when to project onto the constraints. Instead of projecting a nonnegative matrix onto all 2n con-
straints at once (as in optimization problem (7)), we could mimic the Sinkhorn balancing algorithm
by first projecting onto the row constraints and then the column constraints and alternating until
convergence. The Generalized Pythagorean Theorem shows that projecting onto any convex con-
straint that is satisfied by the comparator class of doubly stochastic matrices brings the weight matrix
closer to every doubly stochastic matrix.6 Therefore our bound on "t Wt−1 •Lt (Theorem 4) holds
if the exponential updates are interleaved with any sequence of projections to some subsets of the

4. This is essentially Lemma 5.2 of Littlestone and Warmuth (1994). The reformulation of this type of inequality with
relative entropies goes back to Kivinen and Warmuth (1999)

5. Note that if the algorithm does not normalize the weights then w is no longer a distribution. When "i wi < 1, the loss
w ·L amounts to incurring 0 loss with probability 1−"i wi, and predicting as expert i with probability wi.

6. There is a large body of work on finding a solution subject to constraints via iterated Bregman projections (see, e.g.,
Censor and Lent, 1981).
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constraints. However, if the normalization constraints are not enforced thenW is no longer a convex
combination of permutations. Furthermore, the exponential update factors only decrease the entries
of W and without any normalization all of the entries of W can get arbitrarily small. If this is al-
lowed to happen then the “loss”W •L can approach 0 for any loss matrix, violating the spirit of the
prediction model.

There is a direct argument that shows that the same final doubly stochastic matrix is reached
if we interleave the exponential updates with projections to any of the constraints as long as all 2n
constraints hold at the end. To see this we partition the class of matrices with positive entries into
equivalence classes. Call two such matrices A and B equivalent if there are diagonal matrices R and
C with positive diagonal entries such that B = RAC. Note that [RAC]i, j = Ri,iAi, jCj, j and therefore
B is just a rescaled version of A. Projecting onto any row and/or column sum constraints amounts
to pre- and/or post-multiplying the matrix by some positive diagonal matrices R andC. Therefore if
matrices A and B are equivalent then the projection of A (or B) onto a set of row and/or column sum
constraints results in another matrix equivalent to both A and B.

The importance of equivalent matrices is that they balance to the same doubly stochastic matrix.

Lemma 5 For any two equivalent matrices A and RAC, where the entries of A and the diagonal
entries of R and C are positive,

argmin
∀i : " j Âi, j = 1
∀ j : "i Âi, j = 1

((Â,A) = argmin
∀i : " j Âi, j = 1
∀ j : "i Âi, j = 1

((Â,RAC).

Proof The strict convexity of the relative entropy implies that both problems have a unique matrix
as their solution. We will now reason that the unique solutions for both problems are the same. By
using a Lagrangian (as in the proof of Lemma 2) we see that the solution of the left optimization
problem is a square matrix with ṙi Ai, j ċ j in position i, j. Similarly the solution of the problem on
the right has r̈i Ri,iAi, jCj, j c̈ j in position i, j. Here the factors ṙi, r̈i function as row normalizers and
ċ j, c̈ j as column normalizers. Given a solution matrix ṙi, ċ j to the left problem, then ṙi/Ri,i, ċ j/Cj, j
is a solution of the right problem of the same value. Also if r̈i, c̈ j is a solution of right problem, then
r̈iRi,i, c̈ jCj, j is a solution to the left problem of the same value.

This shows that both minimization problems have the same value and the matrix solutions for
both problems are the same and unique (even though the normalization factors ṙi, ċ j of say the left
problem are not necessarily unique). Note that its crucial for the above argument that the diagonal
entries of R,C are positive.

The analogous phenomenon is much simpler in the weighted majority case: Two non-negative
vectors a and b are equivalent if a = cb, where c is any nonnegative scalar, and again each equiva-
lence class has exactly one normalized weight vector.

PermELearn’s intermediate matrixW ′
i, j :=Wi, je−#Li, j can be writtenW ◦M where ◦ denotes the

Hadamard (entry-wise) Product and Mi, j = e−#Li, j . Note that the Hadamard product commutes
with matrix multiplication by diagonal matrices, if C is diagonal and P = (A ◦ B)C then Pi, j =
(Ai, jBi, j)Cj, j = (Ai, jCj, j)Bi, j so we also have P= (AC)◦B. Similarly, R(A◦B) = (RA)◦B when R
is diagonal.
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Hadamard products also preserve equivalence. For equivalent matrices A and B = RAC (for
diagonal R and C) the matrices A ◦M and B ◦M are equivalent (although they are not likely to be
equivalent to A and B) since B◦M = (RAC)◦M = R(A◦M)C.

This means that any two runs of PermELearn-like algorithms that have the same bag of loss
matrices and equivalent initial matrices end with equivalent final matrices even if they project onto
different subsets of the constraints at the end of the various trials.

In summary the proof method discussed so far uses a relative entropy as a measure of progress
and relies on Bregman projections as its fundamental tool. In Appendix B we re-derive the bound for
PermELearn using the value of the optimization problem (5) as a potential. This value is expressed
using the dual optimization problem and intuitively the application of the Generalized Pythagorean
Theorem now is replaced by plugging in a non-optimal choice for the dual variables. Both proof
techniques are useful.

5.6 Learning Mappings

We have an algorithm that has small regret against the best permutation. Permutations are a subset
of all mappings from {1, . . . ,n} to {1, . . . ,n}. We continue using ! for a permutation and introduce
+ to denote an arbitrary mapping from {1, . . . ,n} to {1, . . . ,n}. Mappings differ from permutations
in that the n dimensional vector (+(i))ni=1 can have repeats, that is,+(i)might equal+( j) for i (= j.
Again we alternately represent a mapping + as an n× n matrix where +i, j = 1 if +(i) = j and 0
otherwise. Note that such square7 mapping matrices have the special property that they have exactly
one 1 in each row. Again the loss is specified by a loss matrix L and the loss of mapping + is +•L.

It is straightforward to design an algorithmMapELearn for learning mappings with exponential
weights: Simply run n independent copies of the Hedge algorithm for each of the n rows of the
received loss matrices. That is, the r’th copy of Hedge always receives the r’th row of the loss
matrix L as its loss vector. Even though learning mappings is easy, it is nevertheless instructive to
discuss the differences with PermELearn.

Note that MapELearn’s combined weight matrix is now a convex combination of mappings,
that is, a “singly” stochastic matrix with the constraint that each row sums to one. Again, after the
exponential update (3), the constraints are typically not satisfied any more, but they can be easily
reestablished by simply normalizing each row. The row normalization only needs to be done once in
each trial: no iterative process is needed. Furthermore, no fancy decomposition algorithm is needed
in MapELearn: for (singly) stochastic weight matrix W , the prediction +(i) is simply a random
element chosen from the row distribution Wi,∗. This sampling procedure produces a mapping +
such thatW = E(+) and thus E(+•L) =W •L as needed.

We can use the same relative entropy between the single stochastic matrices, and the lower
bound on the progress for the exponential update given in Lemma 3 still holds. Also our main
bound (Theorem 4) is still true for MapELearn and we arrive at the same tuned bound for the total
loss of MapELearn:

Lbest+
√
2LestDest+((U∗,W 0),

where Lbest, Lest, and Dest are now the total loss of the best mapping, a known upper bound on
Lbest, and an upper bound on ((U∗,W 0), respectively. Recall that Lest and Dest are needed to tune
the # parameter.

7. In the case of mappings the restriction to square matrices is not essential.
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Our algorithm PermElearn for permutations may be seen as the above algorithm for mappings
while enforcing the column sum constraints in addition to the row constraints used in MapELearn.
Since PermELearn’s row balancing “messes up” the column sums and vice versa, an interactive
procedure (i.e., Sinkhorn Balancing) is needed to create to a matrix in which each row and col-
umn sums to one. The enforcement of the additional column sum constraints results in a doubly
stochastic matrix, an apparently necessary step to produce predictions that are permutations (and an
expected prediction equal to the doubly stochastic weight matrix).

When it is known that the comparator is a permutation, then the algorithm always benefits
from enforcing the additional column constraints. In general we should always make use of any
constraints that the comparator is known to satisfy (see, e.g., Warmuth and Vishwanathan, 2005, for
a discussion of this).

As discussed in Section 4.1, if A′ is a Sinkhorn-balanced version of a non-negative matrix A,
then

for any permutations !1 and !2,
%i Ai,!1(i)
%i Ai,!2(i)

=
%i A′

i,!1(i)

%i A′
i,!2(i)

. (12)

An analogous invariant holds for mappings: If A′ is a row-balanced version of a non-negative matrix
A, then

for any mappings +1 and +2,
%i Ai,+1(i)
%i Ai,+2(i)

=
%i A′

i,+1(i)

%i A′
i,+2(i)

.

However it is important to note that column balancing does not preserve the above invariant for
mappings. In fact, permutations are the subclass of mappings where invariant 12 holds.

There is another important difference between PermELearn and MapELearn. For MapELearn,
the probability of predicting mapping + with weight matrix W is always the product %iWi,+(i).
The analogous property does not hold for PermELearn. Consider the balanced 2×2 weight matrix
W on the right of Figure 2. This matrix decomposes into

√
2

1+
√
2 times the permutation (1,2) plus

1
1+

√
2 times the permutation (2,1). Thus the probability of predicting with permutation (1,2) is

√
2 times the probability of permutation (2,1) for the PermELearn algorithm. However, when the

probabilities are proportional to the intuitive product form %iWi,!(i), then the probability ratio for
these two permutations is 2. Notice that this intuitive product weight measure is the distribution
used by the Hedge algorithm that explicitly treats each permutation as a separate expert. Therefore
PermELearn is clearly different than a concise implementation of Hedge for permutations.

6. Follow the Perturbed Leader Algorithm

Perhaps the simplest on-line algorithm is the Follow the Leader (FL) algorithm: at each trial predict
with one of the best models on the data seen so far. Thus FL predicts at trial t with an expert in
argmini !<t

i or any permutation in argmin!!•L<t , where “< t” indicates that we sum over the past
trials, that is, !<t

i := "t−1q=1 !
q
i . The FL algorithm is clearly non-optimal; in the expert setting there

is a simple adversary strategy that forces FL to have loss at least n times larger than the loss of the
best expert in hindsight.

The expected total loss of tuned Hedge is one times the loss of the best expert plus lower order
terms. Hedge achieves this by randomly choosing experts. The probability wt−1i for choosing expert
i at trial t is proportional to e−#!<t

i . As the learning rate #→ ,, Hedge becomes FL (when there are
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no ties) and the same holds for PermELearn. Thus the exponential weights with moderate #may be
seen as a soft min calculation: the algorithm hedges its bets and does not put all its probability on
the expert with minimum loss so far.

The “Follow the Perturbed Leader” (FPL) algorithm of Kalai and Vempala (2005) is an alternate
on-line prediction algorithm that works in a very general setting. It adds random perturbations to the
total losses of the experts incurred so far and then predicts with the expert of minimum perturbed
loss. Their FPL∗ algorithm has bounds closely related to Hedge and other multiplicative weight
algorithms and in some cases Hedge can be simulated exactly (Kuzmin and Warmuth, 2005) by
judiciously choosing the distribution of perturbations. However, for the permutation problem the
bounds we were able to obtain for FPL∗ are weaker than the the bound we obtained bounds for Per-
mELearn that uses exponential weights despite the apparent similarity between our representations
and the general formulation of FPL∗.

The FPL setting uses an abstract k-dimensional decision space used to encode predictors as
well as a k-dimensional state space used to represent the losses of the predictors. At any trial, the
current loss of a particular predictor is the dot product between that predictor’s representation in the
decision space and the state-space vector for the trial. This general setting can explicitly represent
each permutation and its loss when k = n!. The FPL setting also easily handles the encodings of
permutations and losses used by PermELearn by representing each permutation matrix ! and loss
matrix L as n2-dimensional vectors.

The FPL∗ algorithm (Kalai and Vempala, 2005) takes a parameter ' and maintains a cumulative
loss matrixC (initiallyC is the zero matrix) At each trial, FPL∗:

1. Generates a random perturbation matrix P where each Pi, j is proportional to ±ri, j where ri, j
is drawn from the standard exponential distribution.

2. Predicts with a permutation ! minimizing !• (C+P).

3. After getting the loss matrix L, updatesC toC+L.

Note that FPL∗ is more computationally efficient than PermELearn. It takes only O(n3) time
to make its prediction (the time to compute a minimum weight bipartite matching) and only O(n2)
time to update C. Unfortunately the generic FPL∗ loss bounds are not as good as the bounds on
PermELearn. In particular, they show that the loss of FPL∗ on any sequence of trials is at most8

(1+ ')Lbest+
8n3(1+ lnn)

'

where ' is a parameter of the algorithm. When the loss of the best expert is known ahead of time, '
can be tuned and the bound becomes

Lbest+4
√
2Lbestn3(1+ lnn)+8n3(1+ lnn) .

Although FPL∗ gets the same Lbest leading term, the excess loss over the best permutation grows
as n3 lnn rather the n lnn growth of PermELearn’s bound. Of course, PermELearn pays for the
improved bound by requiring more computation.

8. The n3 terms in the bounds for FPL are n times the sum of the entries in the loss matrix. So if the application has a
loss motif whose entries sum to only n, then the n3 factors become n2.
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It is important to note that Kalai and Vempala also present a refined analysis of FPL∗ when
the perturbed leader changes only rarely. This analysis leads to bounds that are similar to the
bounds given by the entropic analysis of the Hedge algorithm (although the constant on the square-
root term is not quite as good). However, this refined analysis cannot be directly applied with the
efficient representations of permutations because the total perturbations associated with different
permutations are no longer independent exponentials. We leave the adaptation of the refined analysis
to the permutation case as an open problem.

7. Lower Bounds

In this section we prove lower bounds on the worst-case regret of any algorithm for our permutation
learning problem by reducing the expert allocation problem for n experts with loss range [0,n] to
the permutation learning problem. We then show in Appendix C a lower bound for this n expert
allocation problem that uses a known lower bound in the expert advice setting with losses in [0,1].

For the reduction we choose any set of n permutations {!1, . . . ,!n} that use disjoint positions,
that is, "n

i=1!
i is the n× n matrix of all ones. Using disjoint positions ensures that the losses of

these n permutations can be set independently. Each !i matrix in this set corresponds to the ith
expert in the n-expert allocation problem. To simulate an n-expert trial with loss vector ! ∈ [0,n]n
we use a loss matrix L s.t. !i •L= !i. This is done by setting all entries in {Lq,!i(q) : 1≤ q≤ n} to
!i/n ∈ [0,1], that is, L= "i!

i(!i/n). Now for any doubly stochastic matrixW ,

W •L="
i

!i •W
n

!i.

Note that the n dimensional vector with the components (!i •W )/n is a probability vector and
therefore any algorithm for the n-element permutation problem can be used as an algorithm for
the n-expert allocation problem with losses in the range [0,n]. Thus any lower bound for the latter
model is also a lower bound on the n-element permutation problem.

We first prove a lower bound for the case when at least one expert has loss zero for the entire
sequence of trials. If the algorithm allocates any weight to experts that have already incurred positive
loss, then the adversary can assign loss only to those experts and force the algorithm increase its
expected loss without reducing the number of experts of loss zero. Thus we can assume w.l.o.g.
that the algorithm allocates positive weight only to experts of zero loss. The algorithm minimizes
its expected loss and the adversary maximizes it. We get a lower bound by fixing the adversary:
This adversary assigns loss n to one of the experts which received the highest probability by the
algorithm and all other experts are assigned loss zero. Clearly the optimal allocation against such
an adversary uses the uniform distribution over those experts with zero loss. The number of experts
with loss zero is reduced by one in each trial. At trial t = 1, . . . ,n−1, n+1− t experts are left and
the expected loss is n

n+1−t . In the first n−1 trials the algorithm incurs expected loss

n

"
i=2

n
i
≈ n lnn.

When the loss of the best expert is large then the following theorem follows from Corollary 11:
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Theorem 6 There exists n0 such that for each dimension n≥ n0, there is a Tn where for any number
of trials T ≥ Tn the following holds for any algorithm A for learning permutations of n elements in
the allocation setting: there is a sequence S of T trials such that

Lbest(S) ≤ nT/2 and LA(S)−Lbest(S) ≥
√

(nT/2) n lnn.

These two lower bounds can be combined to the following lower bound on the expected regret
for our permutation learning problem:

max
(√

Lbestn lnn,n lnn
)
≥

√
Lbestn lnn+n lnn

2
.

This means that the tuned upper bound on the expected regret of PermELearn given after Theorem
4 cannot be improved by more than a small (2

√
2) constant factor.

8. Conclusions

We considered the problem of learning a permutation on-line, when the per-trial loss is specified by
a matrix L ∈ [0,1]n×n and the loss of a permutation matrix ! is the linear loss !•L. The standard
approach would treat each permutation as an expert. However this is computationally inefficient and
introduces an additional factor of n in the regret bounds (since the per-trial loss of a permutation
is [0,n] rather than [0,1]). We do not know if this factor of n is necessary for permutations, and
it remains open whether their special structure allows better regret bounds on the standard expert
algorithms when the experts are permutations.

We developed a new algorithm called PermELearn that uses a doubly stochastic matrix to main-
tain its uncertainty over the hidden permutation. PermELearn decomposes this doubly stochastic
matrix into a small mixture of permutation matrices and predicts with a random permutation from
this mixture. A similar decomposition was used by Warmuth and Kuzmin (2008) to learn as well as
the best fixed-size subset of experts.

PermELearn belongs to the Exponentiated Gradient family of updates and the analysis uses a
relative entropy as a measure of progress. The main technical insight is that the per-trial progress
bound already holds for the un-normalized update and that re-balancing the matrix only increases
the progress. Since the re-balancing step does not have a closed form, accounting for it in the
analysis would otherwise be problematic. We also showed that the update for the Hedge algorithm
can be split into an un-normalized update and a normalization. In this more basic setting the per
trial progress bound also holds for the un-normalized update.

Our analysis techniques rely on Bregman projection methods9 and the regret bounds hold not
only for permutations but also for mixtures of permutations. This means that if we have additional
convex constraints that are satisfied by the mixture that we compare against, then we can project
the algorithm’s weight matrix onto these constraints without hurting the analysis (Herbster and
Warmuth, 2001). With these kinds of side constraints we can enforce some relationships between
the parameters, such asWi, j ≥Wi,k (i is more likely mapped to j than k).

Our main contribution is showing how to apply the analysis techniques from the expert advice
setting to the problem of efficiently learning a permutation. This means that many of the tools from

9. Following Kuzmin and Warmuth (2007), we also showed in Appendix B that the regret bounds proven in this paper
can be reproduced with potential based methods.
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the expert setting are likely to carry over to permutations: lower bounding the weights when the
comparator is shifting (Herbster and Warmuth, 1998), long-term memory when shifting between a
small set of comparators (Bousquet and Warmuth, 2002), capping the weights from the top if the
goal is to be close to the best set of disjoint permutations of fixed size (Warmuth and Kuzmin, 2008),
adapting the updates to the multi-armed bandit setting when less feedback is provided (Auer et al.,
2002),10 and PAC Bayes analysis of the exponential updates (McAllester, 2003).

We also applied the “Follow the Perturbed Leader” techniques to our permutation problem. This
algorithm adds randomness to the total losses and then predicts with a minimum weighted matching
which costs O(n3) whereas our more complicated algorithm is at least O(n4) and has precision
issues. However the bounds currently provable for the FPL∗ algorithm of Kalai and Vempala (2005)
are much worse than for our PermELearn algorithm. The key open problem is whether we can have
the best of both worlds: add randomness to the loss matrix so that the expected minimum weighted
matching is the stochastic matrix produced by the PermELearn update (4). This would mean that we
could use the faster algorithm together with our tighter analysis. In the simpler weighted majority
setting this has been done already (Kuzmin and Warmuth, 2005; Kalai, 2005). However we do not
yet know how to simulate the PermELearn update this way.

Our on-line learning problem requires that the learner’s prediction to be an actual permutation.
This requirement makes sense for the linear loss we focus on in this paper, but may be less appro-
priate for on-line regression problems. Consider the case where on each trial the algorithm selects
a doubly stochastic matrix M while nature simultaneously picks a matrix X ∈ [0,1]n×n and a real
number y. The prediction is ŷ=M•X and the loss on the trial is (ŷ−y)2. With this convex quadratic
loss, it is generally better for the algorithm to hedge its bets between competing permutations and
select its doubly stochastic parameter matrix W as M instead of a random permutation matrix !
chosen s.t. E(!) =W . The Exponentiated Gradient algorithm can be applied to this type of non-
linear regression problem (see, e.g., Helmbold et al., 1999) and Sinkhorn Balancing can project the
parameter matrixW onto the row and column sum constraints.

We close with an open problem involving higher order loss functions. In this paper we consid-
ered linear losses specified by a square matrix L where Li, j gives the loss when entry (i, j) is used in
the permutation. Can one prove good regret bounds when the loss depends on how the permutation
assigns multiple elements? A pairwise loss could be represented with a four-dimensional matrix L
where Li, j,k,l is added to the loss only when the predicted permutation maps both i to j and k to l.
The recently developed Fourier analysis techniques for permutations (Kondor et al., 2007; Huang
et al., 2009) may be helpful in generalizing our techniques to this kind of higher order loss.
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Appendix A. Size of the Decomposition

Here we show that the iterative matching method of Algorithm 1 requires most n2−2n+2 permu-
tations to decompose an doubly stochastic matrix. This matches the bound provided by Birkhoff’s
Theorem. Note that the discussion in Section 4 shows why Algorithm 1 can always find a suitable
permutation.

Theorem 7 Algorithm 1 decomposes any doubly stochastic matrix into a convex combination of at
most n2−2n+2 permutations.

Proof Let W be a doubly stochastic matrix and let !1, . . . ,!! and &1, . . . ,&! be any sequence
of permutations and coefficients created by Algorithm 1 on input W . For 0 ≤ j ≤ !, define Mj =
W−"

j
i=1&i!i. By permuting rows and columns we can assume without loss of generality that!! is

the identity permutation. Let Gj (for 1≤ j≤ !) be the (undirected) graph on the n vertices {1, . . .n}
where the undirected edge {p,q} between nodes p (= q is present if and only if either Mj

p,q or Mj
q,p

is non-zero. Thus both G!−1 and G! are the empty graph and each Gj+1 has a (not necessarily strict)
subset of the edges in Gj. Note the natural correspondences between vertices in the graphs and rows
and columns in the matrices.

The proof is based in the following key invariant:

# of zero entries inMj ≥ j+ (# connected components in Gj)−1.

This holds for the initialM0. Furthermore, when the connected components of Gj and Gj+1 are the
same, the algorithm insures thatMj+1 has at least one more zero thanMj. We now analyze the case
when new connected components are created.

Let vertex set V be a connected component in Gj+1 that was split off a larger connected com-
ponent in Gj. We overload the notation, and use V also for the set of matrix rows and/or columns
associated with the vertices in the connected component.

Since V is a connected component of Gj+1 there are no edges going between V and the rest of
the graph, so ifMj+1 is viewed as a (conserved) flow, there is no flow either into or out of V :

"
r∈V
"
c(∈V

M j+1
r,c = "

r (∈V
"
c∈V

M j+1
r,c = 0.

Thus all entries of Mj in the sets {Mj
r,c > 0 : r ∈ V,c (∈ V} and {Mj

r,c > 0 : r (∈ V,c ∈ V} are set to
zero in Mj+1. Since V was part of a larger connected component in Gj, at least one of these sets
must be non-empty. We now show that both these sets of entries are non-empty.

Each row and column of Mj sum to 1−"
j
i=1&i. Therefore

(

1−
j

"
i=1

&i

)

|V | = "
r∈V

n

"
c=1

Mj
r,c = "

c∈V

n

"
r=1

Mj
r,c.

By splitting the inner sums we get:

"
r∈V
"
c∈V

M j
r,c+"

r∈V
"
c(∈V

M j
r,c = "

c∈V
"
r∈V

M j
r,c+"

c∈V
"
r (∈V

M j
r,c.
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By canceling the first sums and viewingMj as a flow in Gj we conclude that the total flow out of V
in Mj equals the total flow into V in Mj, that is,

"
r∈V
"
c(∈V

M j
r,c = "

c∈V
"
r (∈V

M j
r,c

and both sets {Mj
r,c > 0 : r ∈V,c (∈V} and {Mj

r,c > 0 : r (∈V,c ∈V} sum to the same positive total,
and thus are non-empty.

This establishes the following fact that we can use in the remainder of the proof: for each new
connected component V in Gj+1, some entryMj

r,c from a row r in V was set to zero.
Now let k j (and k j+1) be the number of connected components in graph Gj (and Gj+1 respec-

tively). Since the edges in Gj+1 are a subset of the edges in Gj, k j+1 ≥ k j. We already verified the
invariant when k j = k j+1, so we proceed assuming k j+1 > k j. In this case at most k j−1 components
of Gj survive when going to Gj+1, and at least k j+1− (k j−1) new connected components are cre-
ated. The vertex sets of the new connected components are disjoint, and in the rows corresponding
to each new connected component there is at least one non-zero entry in Mj that is zero in Mj+1.
Therefore, Mj+1 has at least k j+1− k j + 1 more zeros than Mj, verifying the invariant for the case
when k j+1 > k j.

Since G!−1 has n connected components, the invariant shows that the number of zeros in M!−1

is at least !−1+n−1. Furthermore, M! has n more zeros than M!−1, so M! has at least !+2n−2
zeros. Since M! has only n2 entries, n2 ≥ !+2n−2 and ! ≤ n2−2n+2 as desired.

The fact that Algorithm 1 uses at most n2−2n+2 permutations can also be established with a
dimensionality argument like that in Section 2.7 of Bazaraa et al. (1977).

Appendix B. Potential Based Bounds

Let us begin with the on-line allocation problem in the simpler expert setting. There are always two
ways to motivate on-line updates. One trades the divergence to the last weight vector against the
loss in the last trial, and the other trades the divergence to the initial weight vector against the loss
in all past trials (Azoury and Warmuth, 2001):

wt := argmin
"i wi=1

(
((w,wt−1)+# w · !t

)
, wt := argmin

"i wi=1

(
((w,w0)+# w · !≤t

)
.

By differentiating the Lagrangian for each optimization problem we obtain the solutions to both
minimization problems:

wti = wt−1i e−#!ti+-̃
t
, wti = w0i e−#!≤ti +-t ,

where the signs of the Lagrange multipliers -̃t and -t are unconstrained and their values are chosen
so that the equality constraints are satisfied. The left update can be unrolled to obtain

wti = w0i e
−#!≤ti +"tq=1 -̃

q
.

This means the Lagrangian multipliers for both problems are related by the equality "tq=1 -̃q = -t

and both problems have the same solution:11 wti =
w0i e

−#!≤ti

"nj=1w0j e
−#!≤tj

. We use the value of the right convex

11. The solutions can differ if the minimization is over linear inequality constraints (Kuzmin and Warmuth, 2007).
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optimization problem’s objective function as our potential vt . Its Lagrangian is

"
i

(
wi ln

wi
w0i

+w0i −wi+#wi!≤ti

)
+-

(

"
i
wi−1

)

and since there is no duality gap:12

vt := min
"i wi=1

(
((w,w0)+# w · !≤t

)
=max

-
"
i
w0i (1− e−#!≤ti −-)−-

︸ ︷︷ ︸
dual function .t(-)

.

Here - is the (unconstrained) dual variable for the primal equality constraint and the wi’s have been
optimized out. By differentiating we can optimize - in the dual problem and arrive at

vt = − ln"
i
w0i e−#!≤ti .

This form of the potential has been used extensively for analyzing expert algorithms (see, e.g.,
Kivinen and Warmuth, 1999; Cesa-Bianchi and Lugosi, 2006). One can easily show the following
key inequality (essentially Lemma 5.2 of Littlestone and Warmuth, 1994):

vt − vt−1 = − ln"
i
w0i e−#!≤ti + ln"

i
w0i e−#!<t

i

= − ln"
i
wt−1i e−#!ti

≥ − ln"
i
wt−1i (1− (1− e−#)!ti)

≥ (1− e−#) wt−1 · !t . (13)

Summing over all trials and using v0 = 0 gives the familiar bound:

T

"
t=1

wt−1 · !t ≤
vT

1− e−#
=

1
1− e−#

min
"i wi=1

(
((w,w0)+# w · !≤T

)
.

Note that by Kivinen and Warmuth (1999)

vt − vt−1 = − ln

(

"
i
wt−1i e−#!ti

)

= ((u,wt−1)−((u,wt)+# u · !t ,

and therefore the Inequality (13) is the same as Inequality (10). Since

T

"
t=1

(vt − vt−1) = vT = − ln

(

"
i
w0i e−#!≤ti

)

,

summing the bound (13) over t coincides with the bound (11).

12. There is no duality gap in this case because the primal problem is a feasible convex optimization problem subject to
linear constraints.
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We now reprove the key inequality (13) using the dual function .t(-). Note -t maximizes this
function, that is, vt = .t(-t), and the optimal primal solution is wti = w0i e−#!≤ti −-t . Now,

vt − vt−1 = .t(-t)−.t−1(-t−1)

≥ .t(-t−1)−.t−1(-t−1)

= "
i
w0i e−#!<t

i −-t−1

︸ ︷︷ ︸
wt−1i

(1− e−#!ti)

≥ "
i
wt−1i (1− (1− (1− e−#)!ti))

= (1− e−#) wt−1 · !t
where we used e−#!ti ≤ 1− (1− e−#)!ti to get the fourth line. Notice that in the first inequality
above we used .t(-t) ≥ .t(-t−1). This is true because -t maximizes .t(-) and the old choice -t−1
is non-optimal. The dual parameter -t−1 assures that wt−1 is normalized and .t(-t−1) is related to
plugging the intermediate unnormalized weights w′ t

i := w0i e−#!≤ti −-t−1 into the primal problem for
trial t. This means that the inequality .t(-t) ≥ .t(-t−1) corresponds to the Bregman projection of
the unnormalized update onto the equality constraint. The difference .t(-t−1)− .t−1(-t−1) in the
second line above is the progress in the value when going from wt−1 at the end of trial t − 1 to
the intermediate unnormalized update w′ t at trial t. Therefore this proof also does not exploit the
normalization.

The bound for the permutation problem follows the same outline. We use the value of the
following optimization problem as our potential:

vt+1 := min
∀i : " j Ai, j = 1
∀ j : "i Ai, j = 1

(
((A,W 0)+# (A•L≤t)

)

= max
&i,- j

"
i, j
W 0
i, j(1− e−#L

≤t
i, j−&i−- j)−"

i
&i−"

j
- j

︸ ︷︷ ︸
.t(&,-)

.

The &i and - j are the dual variables for the row and column constraints. Now we can’t optimize
out the dual variables in the dual function .t(&,-) does not have a maximum in closed form. Nev-
ertheless the above proof technique based on duality still works. Let &t and -t be the optimizers of
.t(&,-). Then the optimum primal solution (the parameter vector of PermELearn) becomes

Wt
i, j =W 0

i, je
−#L≤ti, j−&ti−-tj

and we can analyze the increase in value as before:

vt − vt−1 = .t(&t ,-t)−.t−1(&t−1,-t−1)

≥ .t(&t−1,-t−1)−.t−1(&t−1,-t−1)

= "
i, j
W 0
i, je

−#L<t
i, j−&

t−1
i −-t−1j

︸ ︷︷ ︸
Wt−1
i, j

(1− e−#L
t−1
i, j )

≥ "
i, j
Wt−1
i, j (1− (1− e−#)Lti, j)

= (1− e−#)Wt−1 •Lt .
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Summing over trials in the usual way gives the bound

T

"
t=1

Wt−1 •Lt ≤
vT

1− e−#
=

1
1− e−#

min
∀i : " j Ai, j = 1
∀ j : "i Ai, j = 1

(
((A,W 0)+# (A•L≤T )

)

which is the same as the bound of Theorem 4.

Appendix C. Lower Bounds for the Expert Advice Setting

We first modify a known lower bound from the expert advice setting with the absolute loss (Cesa-
Bianchi et al., 1997). We begin by describing that setting and show how it relates to the allocation
setting for experts.

In the expert advice setting there are n experts. Each trial t starts with nature selecting a pre-
diction xti in [0,1] for each expert i ∈ {1, . . . ,n}. The algorithm is given these predictions and then
produces its own prediction ŷt ∈ [0,1]. Finally, nature selects a label yt ∈ {0,1} for the trial. The
algorithm is charged loss |ŷt− yt | and expert i gets loss |xti− yt |.

Any algorithm in the allocation setting leads to an algorithm in the above expert advice setting:
keep the weight update unchanged, predict with the weighted average (i.e., ŷt =wt−1 ·xt) and define
the loss vector in !t ∈ [0,1]n in terms of the absolute loss:

|wt−1 ·xt︸ ︷︷ ︸
ŷt

−yt | = "
i
wt−1i |xti− yt |

︸ ︷︷ ︸
!ti

= wt−1 · !t ,

where the first equality holds because xti ∈ [0,1] and yt ∈ {0,1}. This means that any lower bound
on the regret in the above expert advice setting immediately leads to a lower bound on the expected
loss in the allocation setting for experts when the loss vectors lie in [0,1]n.

We now introduce some more notation and state the lower bound from the expert advice setting
that we build on. Let Sn,T be the set of all sequences of T trials with n experts in the expert advice
setting with the absolute loss. Let Vn,T be the minimum over algorithms of the worst case regret
over sequences in Sn,T .

Theorem 8 (Cesa-Bianchi et al., 1997, Theorem 4.5.2)

lim
n→,

lim
T→,

Vn,T√
(T/2) lnn

= 1.

This means that for all ' > 0 there exists n' such that for each n ≥ n', there is a T',n where for all
T ≥ T',n,

Vn,T ≥ (1− ')
√

(T/2) lnn.

By further expanding the definition of Vn,T we get the following version of the above lower bound
that avoids the use of limits:

Corollary 9 For all '> 0 there exists n' such that for each number of experts n≥ n', there is a T',n
where for any number of trials T ≥ T',n the following holds for any algorithm A in the expert advice
setting with the absolute loss: there is a sequence S of T trials with n experts such that

LA(S)−Lbest(S) ≥ (1− ')
√

(T/2) lnn.
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This lower bound on the regret depends on the number of trials T . We now use a reduction to bound
Lbest(S) by T/2. Define R(S−) as the transformation that takes a sequence S− of trials in Sn−1,T
and produces a sequence of trials in Sn,T by adding an extra expert whose predictions are simply
1 minus the predictions of the first expert. On each trial the absolute loss of the additional expert
on sequence R(S−) is 1 minus the loss of the first expert. Therefore either the first expert or the
additional expert will have loss at most T/2 on R(S−).

Theorem 10 For all '> 0 there exists n' such that for each number of experts n≥ n', there is a T',n
where for any number of trials T ≥ T',n the following holds for any algorithm A in the expert advice
setting with the absolute loss: there is a sequence S of T trials with n experts such that

Lbest(S) ≤ T/2 and LA(S)−Lbest(S) ≥ (1− ')
√

(T/2) lnn.

Proof We begin by showing that the regret on a transformed sequence in {R(S−) : S− ∈ Sn−1,T} is
at least (1− '/2)

√
(T/2) ln(n−1).

Note that for all R(S−), Lbest(R(S−)) ≤ T/2 and assume to the contrary that some algorithm A
has regret strictly less than (1−'/2)

√
(T/2) ln(n−1) on every sequence in {R(S−) : S− ∈ Sn−1,T}.

We then create an algorithm A− that runs transformation R(·) on-the-fly and predicts as A does on
the transformed sequence. Therefore A− on S− and A on R(S−) make the same predictions and
have the same total loss. On every sequence S− ∈ Sn−1,T we have Lbest(S

−) ≥ Lbest(R(S)) and
therefore

LA−(S−)−Lbest(S
−) ≤ LA−(S−)−Lbest(R(S−))

= LA(R(S−))−Lbest(R(S−))

< (1− '/2)
√

(T/2) ln(n−1).

Now if n− 1 is at least the n'/2 of Corollary 9 and T is at least the T'/2,n−1 of the same corollary,
then this contradicts that corollary.

This means that for any algorithm A and large enough n and T , there is a sequence S for which
the algorithm has regret at least (1− '/2)

√
(T/2) ln(n−1) and Lbest(S) ≤ T/2. By choosing the

lower bound on n large enough,

(1− '/2)
√

(T/2) ln(n−1) ≥ (1− ')
√

(T/2) lnn

and the theorem follows.

Note that the tuned upper bounds in the allocation setting (9) have an additional factor of
√
2. This is

due to the fact that in the allocation setting the algorithm predicts with the weighted average and this
is non-optimal. In the expert setting with the absolute loss, the upper bound (based on a different
prediction function) and the lower bound on the regret are asymptotically tight (See Theorem 8).
We are now ready to prove our lower bound for the allocation setting with experts when the losses
of the experts are in [0,n]n instead of [0,1]n.

Corollary 11 There exists n0 such that for each dimension n ≥ n0, there is a Tn where for any
number of trials T ≥ Tn the following holds for any algorithm A for allocation setting with n experts:
there is a sequence S of T trials with loss vectors in [0,n]n such that

Lbest(S) ≤ nT/2 and LA(S)−Lbest(S) ≥
√

(nT/2)n lnn.
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Proof Via the reduction we stated at the beginning of the section, the following lower bound for the
allocation setting with n experts immediately follows from the previous theorem: For any algorithm
in the allocation setting for n experts there is a sequence S̃ of T trials where the losses of the experts
lie in [0,1] such that

Lbest(S̃) ≤ T/2 and LA(S̃)−Lbest(S̃) ≥
√

(T/2) lnn.

Now we simply scale the loss vectors by the factor n, that is, the scaled sequences S have loss
vectors in the range [0,n]n and Lbest(S) ≤ nT/2. The lower bound becomes n

√
(T/2) lnn =√

(nT/2)n lnn.
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Abstract
The SGD-QN algorithm is a stochastic gradient descent algorithm that makes careful use of second-
order information and splits the parameter update into independently scheduled components. Thanks
to this design, SGD-QN iterates nearly as fast as a first-order stochastic gradient descent but requires
less iterations to achieve the same accuracy. This algorithm won the “Wild Track” of the first PAS-
CAL Large Scale Learning Challenge (Sonnenburg et al., 2008).
Keywords: support vector machine, stochastic gradient descent

1. Introduction

The last decades have seen a massive increase of data quantities. In various domains such as bi-
ology, networking, or information retrieval, fast classification methods able to scale on millions of
training instances are needed. Real-world applications demand learning algorithms with low time
and memory requirements. The first PASCAL Large Scale Learning Challenge (Sonnenburg et al.,
2008) was designed to identify which machine learning techniques best address these new concerns.
A generic evaluation framework and various data sets have been provided. Evaluations were carried
out on the basis of various performance curves such as training time versus test error, data set size
versus test error, and data set size versus training time.1

Our entry in this competition, named SGD-QN, is a carefully designed Stochastic Gradient
Descent (SGD) for linear Support Vector Machines (SVM).

Nonlinear models could in fact reach much better generalization performance on most of the
proposed data sets. Unfortunately, even in the Wild Track case, the evaluation criteria for the com-
petition reward good scaling properties and short training durations more than they punish subopti-
mal test errors. Nearly all the competitors chose to implement linear models in order to avoid the

∗. Also at NEC Laboratories America, Inc.
1. This material and its documentation can be found at http://largescale.first.fraunhofer.de/.

c©2009 Antoine Bordes, Léon Bottou and Patrick Gallinari.
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additional penalty implied by nonlinearities. Although SGD-QN can work on nonlinear models,2
we only report its performance in the context of linear SVMs.

Stochastic algorithms are known for their poor optimization performance. However, in the
large scale setup, when the bottleneck is the computing time rather than the number of training
examples, Bottou and Bousquet (2008) have shown that stochastic algorithms often yield the best
generalization performances in spite of being worst optimizers. SGD algorithms were therefore
a natural choice for the “Wild Track” of the competition which focuses on the relation between
training time and test performance.

SGD algorithms have been the object of a number of recent works. Bottou (2007) and Shalev-
Shwartz et al. (2007) demonstrate that the plain Stochastic Gradient Descent yields particularly
effective algorithms when the input patterns are very sparse, taking less than O (d) space and time
per iteration to optimize a system with d parameters. It can greatly outperform sophisticated batch
methods on large data sets but suffers from slow convergence rates especially on ill-conditioned
problems. Various remedies have been proposed: Stochastic Meta-Descent (Schraudolph, 1999)
heuristically determines a learning rate for each coefficient of the parameter vector. Although it can
solve some ill-conditioning issues, it does not help much for linear SVMs. Natural Gradient De-
scent (Amari et al., 2000) replaces the learning rate by the inverse of the Riemannian metric tensor.
This quasi-Newton stochastic method is statistically efficient but is penalized in practice by the cost
of storing and manipulating the metric tensor. Online BFGS (oBFGS) and Online Limited storage
BFGS (oLBFGS) (Schraudolph et al., 2007) are stochastic adaptations of the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) optimization algorithm. The limited storage version of this algorithm is a
quasi-Newton stochastic method whose cost by iteration is a small multiple of the cost of a standard
SGD iteration. Unfortunately this penalty is often bigger than the gains associated with the quasi-
Newton update. Online Dual Solvers for SVMs (Bordes et al., 2005; Hsieh et al., 2008) have also
shown good performance on large scale data sets. These solvers can be applied to both linear and
nonlinear SVMs. In the linear case, these dual algorithms are surprising close to SGD but do not
require fiddling with learning rates. Although this is often viewed as an advantage, we feel that this
aspect restricts the improvement opportunities.

The contributions of this paper are twofold:

1. We conduct an analysis of different factors, ranging from algorithmic refinements to imple-
mentation details, which can affect the learning speed of SGD algorithms.

2. We present a novel algorithm, denoted SGD-QN, that carefully exploits these speedup op-
portunities. We empirically validate its properties by benchmarking it against state-of-the-art
SGD solvers and by summarizing its results at the PASCAL Large Scale Learning Chal-
lenge (Sonnenburg et al., 2008).

The paper is organized as follows: Section 2 analyses the potential gains of quasi-Newton tech-
niques for SGD algorithms. Sections 3 and 4 discuss the sparsity and implementation issues. Finally
Section 5 presents the SGD-QN algorithm, and Section 6 reports experimental results.

2. Stochastic gradient works well in models with nonlinear parametrization. For SVMs with nonlinear kernels, we
would prefer dual methods, (e.g., Bordes et al., 2005), which can exploit the sparsity of the kernel expansion.

1738



SGD-QN

2. Analysis

This section describes our notations and summarizes theoretical results that are relevant to the design
of a fast variant of stochastic gradient algorithms.

2.1 SGD for Linear SVMs

Consider a binary classification problem with examples z = (x,y) ∈ Rd × {−1,+1}. The linear
SVM classifier is obtained by minimizing the primal cost function

Pn(w) =
!
2
‖w‖2 +

1
n

n

"
i=1

!(yiw'xi) =
1
n

n

"
i=1

(

!
2
‖w‖2 + !(yiw'xi)

)

, (1)

where the hyper-parameter !> 0 controls the strength of the regularization term. Although typical
SVMs use mildly non regular convex loss functions, we assume in this paper that the loss !(s)
is convex and twice differentiable with continuous derivatives (! ∈ C2[R]). This could be simply
achieved by smoothing the traditional loss functions in the vicinity of their non regular points.

Each iteration of the SGD algorithm consists of drawing a random training example (xt ,yt) and
computing a new value of the parameter wt as

wt+1 = wt −
1

t+ t0
Bgt(wt) where gt(wt) = !wt + !′(ytw'

txt)yt xt (2)

where the rescaling matrix B is positive definite. Since the SVM theory provides simple bounds
on the norm of the optimal parameter vector (Shalev-Shwartz et al., 2007), the positive constant
t0 is heuristically chosen to ensure that the first few updates do not produce a parameter with an
implausibly large norm.

• The traditional first-order SGD algorithm, with decreasing learning rate, is obtained by setting
B= !−1 I in the generic update (2) :

wt+1 = wt −
1

!(t+ t0)
gt(wt) . (3)

• The second-order SGD algorithm is obtained by setting B to the inverse of the Hessian Matrix
H= [P ′′

n (w∗
n) ] computed at the optimum w∗

n of the primal cost Pn(w) :

wt+1 = wt −
1

t+ t0
H−1 gt(wt) . (4)

Randomly picking examples could lead to expensive random accesses to the slow memory. In
practice, one simply performs sequential passes over the randomly shuffled training set.

2.2 What Matters Are the Constant Factors

Bottou and Bousquet (2008) characterize the asymptotic learning properties of stochastic gradient
algorithms in the large scale regime, that is, when the bottleneck is the computing time rather than
the number of training examples.

The first three columns of Table 2.2 report the time for a single iteration, the number of iterations
needed to reach a predefined accuracy #, and their product, the time needed to reach accuracy #.
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Stochastic Gradient Cost of one Iterations Time to reach Time to reach
Algorithm iteration to reach # accuracy # E ≤ c(Eapp + $)

1st Order SGD O(d) %&2
# +o

(

1
#

)

O

(

d%&2
#

)

O

(

d %&2
$

)

2nd Order SGD O
(

d2) %
# +o

(

1
#

)

O

(

d2%
#

)

O

(

d2 %
$

)

Table 1: Asymptotic results for stochastic gradient algorithms, reproduced from Bottou and
Bousquet (2008). Compare the second last column (time to optimize) with the last
column (time to reach the excess test error $). Legend: n number of examples; d pa-
rameter dimension; c positive constant that appears in the generalization bounds;
& condition number of the Hessian matrix H; % = tr

(

GH−1) with G the Fisher ma-
trix (see Theorem 1 for more details). The implicit proportionality coefficients in
notations O() and o() are of course independent of these quantities.

The excess test error E measures how much the test error is worse than the best possible error
for this problem. Bottou and Bousquet (2008) decompose the test error as the sum of three terms
E = Eapp +Eest +Eopt. The approximation error Eapp measures how closely the chosen family
of functions can approximate the optimal solution, the estimation error Eest measures the effect of
minimizing the empirical risk instead of the expected risk, the optimization error Eopt measures the
impact of the approximate optimization on the generalization performance.

The fourth column of Table 2.2 gives the time necessary to reduce the excess test error E below
a target that depends on $> 0. This is the important metric because the test error is the measure that
matters in machine learning.

Both the first-order and the second-order SGD require a time inversely proportional to $ to
reach the target test error. Only the constants differ. The second-order algorithm is insensitive to the
condition number & of the Hessian matrix but suffers from a penalty proportional to the dimension
d of the parameter vector. Therefore, algorithmic changes that exploit the second-order information
in SGD algorithms are unlikely to yield superlinear speedups. We can at best improve the constant
factors.

This property is not limited to SGD algorithms. To reach an excess error $, the most favorable
generalization bounds suggest that one needs a number of examples proportional to 1/$. Therefore,
the time complexity of any algorithm that processes a non vanishing fraction of these examples
cannot scale better than 1/$. In fact, Bottou and Bousquet (2008) obtain slightly worse scaling laws
for typical non-stochastic gradient algorithms.

2.3 Limited Storage Approximations of Second-Order SGD

Since the second-order SGD algorithm is penalized by the high cost of performing the update (2)
using a full rescaling matrix B=H−1, it is tempting to consider matrices that admit a sparse repre-
sentation and yet approximate the inverse Hessian well enough to reduce the negative impact of the
condition number &.

The following theorem describes how the convergence speed of the generic SGD algorithm (2)
is related to the spectrum of matrix HB.
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Theorem 1 Let E' denote the expectation with respect to the random selection of the examples
(xt ,yt) drawn independently from the training set at each iteration. Let w∗

n = argminwPn(w) be an
optimum of the primal cost. Define the Hessian matrix H = (2Pn(w∗

n)/(w2 and the Fisher matrix
G=Gt = E'

[

g′t(w∗
n)g′t(w∗

n)
'
]

. If the eigenvalues ofHB are in range !max ≥ !min > 1/2, and if the
SGD algorithm (2) converges to w∗

n, the following inequality holds:

tr(HBGB)

2!max −1
t−1 +o

(

t−1) ≤ E' [Pn(wt)−Pn(w∗
n)] ≤

tr(HBGB)

2!min −1
t−1 +o

(

t−1) .

The proof of the theorem is provided in the appendix. Note that the theorem assumes that
the generic SGD algorithm converges. Convergence in the first-order case holds under very mild
assumptions (e.g., Bottou, 1998). Convergence in the generic SGD case holds because it reduces to
the first-order case with a the change of variablew→B− 1

2 w. Convergence also holds under slightly
stronger assumptions when the rescaling matrix B changes over time (e.g., Driancourt, 1994).

The following two corollaries recover the maximal number of iterations listed in Table 2.2 with
%= tr

(

GH−1) and &= !−1‖H‖. Corollary 2 gives a very precise equality for the second-order
case because the lower bound and the upper bound of the theorem take identical values. Corollary 3
gives a much less refined bound in the first-order case.

Corollary 2 Assume B = H−1 as in the second-order SGD algorithm (4). Under the assumptions
of Theorem 1, we have

E' [Pn(wt)−Pn(w∗
n)] = tr

(

GH−1) t−1 +o
(

t−1) = % t−1 +o
(

t−1) .

Corollary 3 Assume B = !−1 I as in the first-order SGD algorithm (3). Under the assumptions of
Theorem 1, we have

E' [Pn(wt)−Pn(w∗
n)] ≤ !−2 tr

(

H2GH−1) t−1 +o
(

t−1) ≤ &2 % t−1 +o
(

t−1) .

An often rediscovered property of second order SGD provides an useful point of reference:

Theorem 4 (Fabian, 1973; Murata and Amari, 1999; Bottou and LeCun, 2005)
Let w∗ = argmin !

2‖w‖
2 +Ex,y [!(yw'x) ]. Given a sample of n independent examples (xi,yi) , define

w∗
n = argminwPn(w) and compute wn by applying the second-order SGD update (4) to each of the

n examples. If they converge, both nE
[

‖wn−w∗‖2] and nE
[

‖w∗
n−w∗‖2] converge to a same

positive constant K when n increases.

This result means that, asymptotically and on average, the parameter wn obtained after one pass
of second-order SGD is as close to the infinite training set solution w∗ as the true optimum of the
primal w∗

n. Therefore, when the training set is large enough, we can expect that a single pass of
second-order SGD (n iterations of (4)) optimizes the primal accurately enough to replicate the test
error of the actual SVM solution.

When we replace the full second-order rescaling matrix B = H−1 by a more computationally
acceptable approximation, Theorem 1 indicates that we lose a constant factor k on the required
number of iterations to reach that accuracy. In other words, we can expect to replicate the SVM test
error after k passes over the randomly reshuffled training set.

On the other hand, a well chosen approximation of the rescaling matrix can save a large constant
factor on the computation of the generic SGD update (2). The best training times are therefore
obtained by carefully trading the quality of the approximation for sparse representations.
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Frequency Loss

Special example:
n

skip

!skip
2

‖w‖2

Examples 1 to n: 1 !(yiw'xi)

Table 2: The regularization term in the primal cost can be viewed as an additional training example
with an arbitrarily chosen frequency and a specific loss function.

2.4 More Speedup Opportunities

We have argued that carefully designed quasi-Newton techniques can save a constant factor on the
training times. There are of course many other ways to save constant factors:

• Exploiting the sparsity of the patterns (see Section 3) can save a constant factor in the cost of
each first-order iteration. The benefits are more limited in the second-order case, because the
inverse Hessian matrix is usually not sparse.

• Implementation details (see Section 4) such as compiler technology or parallelization on a
predetermined number of processors can also reduce the learning time by constant factors.

Such opportunities are often dismissed as engineering tricks. However they should be consid-
ered on an equal footing with quasi-Newton techniques. Constant factors matter regardless of their
origin. The following two sections provide a detailed discussion of sparsity and implementation.

3. Scheduling Stochastic Updates to Exploit Sparsity

First-order SGD iterations can be made substantially faster when the patterns xt are sparse. The
first-order SGD update has the form

wt+1 = wt −)twt −*txt , (5)

where )t and *t are scalar coefficients. Subtracting *txt from the parameter vector involves solely
the nonzero coefficients of the pattern xt . On the other hand, subtracting )twt involves all d coeffi-
cients. A naive implementation of (5) would therefore spend most of the time processing this first
term. Shalev-Shwartz et al. (2007) circumvent this problem by representing the parameter wt as the
product stvt of a scalar and a vector. The update (5) can then be computed as st+1 = (1−)t)st and
vt+1 = vt −*xt/st+1 in time proportional to the number of nonzero coefficients in xt .

Although this simple approach works well for the first order SGD algorithm, it does not extend
nicely to quasi-Newton SGD algorithms. A more general method consists of treating the regular-
ization term in the primal cost (1) as an additional training example occurring with an arbitrarily
chosen frequency with a specific loss function.

Consider examples with the frequencies and losses listed in Table 2 and write the average loss:

1
n

skip
+n

[

n
skip

(

!skip
2

‖w‖2
)

+
n

"
i=1

!(yiw'xi)
]

=
skip

1+skip

[

!
2
‖w‖2 +

1
n

n

"
i=1

!(yiw'xi)
]

.
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SGD SVMSGD2

Require: !, w0, t0, T
1: t = 0
2: while t ≤ T do
3: wt+1 = wt − 1

!(t+t0) (!wt + !′(ytw'
txt)ytxt)

4:
5:
6:
7:
8:
9: t = t+1

10: end while
11: return wT

Require: !, w0, t0, T, skip
1: t = 0, count=skip
2: while t ≤ T do
3: wt+1 = wt − 1

!(t+t0) !
′(ytw'

txt)ytxt
4: count = count−1
5: if count ≤ 0 then
6: wt+1 = wt+1 −

skip
t+t0 wt+1

7: count=skip
8: end if
9: t = t+1

10: end while
11: return wT

Figure 1: Detailed pseudo-codes of the SGD and SVMSGD2 algorithms.

Minimizing this loss is of course equivalent to minimizing the primal cost (1) with its regularization
term. Applying the SGD algorithm to the examples defined in Table 2 separates the regularization
updates, which involve the special example, from the pattern updates, which involve the real ex-
amples. The parameter skip regulates the relative frequencies of these updates. The SVMSGD2
algorithm (Bottou, 2007) measures the average pattern sparsity and picks a frequency that ensures
that the amortized cost of the regularization update is proportional to the number of nonzero co-
efficients. Figure 1 compares the pseudo-codes of the naive first-order SGD and of the first-order
SVMSGD2. Both algorithms handle the real examples at each iteration (line 3) but SVMSGD2 only
performs a regularization update every skip iterations (line 6).

Assume s is the average proportion of nonzero coefficients in the patterns xi and set skip to
c/s where c is a predefined constant (we use c= 16 in our experiments). Each pattern update (line
3) requires sd operations. Each regularization update (line 6) requires d operations but occurs s/c
times less often. The average cost per iteration is therefore proportional to O (sd) instead of O (d).

4. Implementation

In the optimization literature, a superior algorithm implemented with a slow scripting language
usually beats careful implementations of inferior algorithms. This is because the superior algorithm
minimizes the training error with a higher order convergence.

This is no longer true in the case of large scale machine learning because we care about the
test error instead of the training error. As explained above, algorithm improvements do not improve
the order of the test error convergence. They can simply improve constant factors and therefore
compete evenly with implementation improvements. Time spent refining the implementation is time
well spent.

• There are lots of methods for representing sparse vectors with sharply different computing
requirement for sequential and random access. Our C++ implementation always uses a full
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Full Sparse

Random access to a single coefficient: +(1) +(s)
In-place addition into a full vector of dimension d′: +(d) +(s)
In-place addition into a sparse vector with s′ nonzeros: +(d+ s′) +(s+ s′)

Table 3: Costs of various operations on a vector of dimension d with s nonzero coefficients.

vector for representing the parameter w, but handles the patterns x using either a full vector
representation or a sparse representation as an ordered list of index/value pairs.

Each calculation can be achieved directly on the sparse representation or after a conversion
to the full representation (see Table 3). Inappropriate choices have outrageous costs. For
example, on a dense data set with 500 attributes, using sparse vectors increases the training
time by 50%; on the sparse RCV1 data set (see Table 4), using a sparse vector to represent
the parameter w increases the training time by more than 900%.

• Modern processors often sport specialized instructions to handle vectors and multiple cores.
Linear algebra libraries, such as BLAS, may or may not use them in ways that suit our purposes.
Compilation flags have nontrivial impacts on the learning times.

Such implementation improvements are often (but not always) orthogonal to the algorithmic im-
provements described above. The main issue consists of deciding how much development resources
are allocated to implementation and to algorithm design. This trade-off depends on the available
competencies.

5. SGD-QN: A Careful Diagonal Quasi-Newton SGD

As explained in Section 2, designing an efficient quasi-Newton SGD algorithm involves a careful
trade-off between the sparsity of the scaling matrix representation B and the quality of its approxi-
mation of the inverse Hessian H−1. The two obvious choices are diagonal approximations (Becker
and Le Cun, 1989) and low rank approximations (Schraudolph et al., 2007).

5.1 Diagonal Rescaling Matrices

Among numerous practical suggestions for running SGD algorithm in multilayer neural networks,
Le Cun et al. (1998) emphatically recommend to rescale each input space feature in order to improve
the condition number & of the Hessian matrix. In the case of a linear model, such preconditioning
is similar to using a constant diagonal scaling matrix.

Rescaling the input space defines transformed patterns Xt such that [Xt ]i = bi [xt ]i where the
notation [v]i represents the i-th coefficient of vector v. This transformation does not change the
classification if the parameter vectors are modified as [Wt ]i = [wt ]i /bi. The first-order SGD update
on these modified variable is then

∀i= 1 . . .d [Wt+1]i = [Wt ]i−,t
(

![Wt ]i + !′(ytW'
tXt)yt [Xt ]i,

)

= [Wt ]i−,t
(

![Wt ]i + !′(ytw'
txt)yt bi[xt ]i

)

.
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Multiplying by bi shows how the original parameter vector wt is affected:

∀i= 1 . . .d [wt+1]i = [wt ]i−,t
(

![wt ]i + !′(ytw'
txt)yt b2

i [xt ]i
)

.

We observe that rescaling the input is equivalent to multiplying the gradient by a fixed diagonal
matrix B whose elements are the squares of the coefficients bi.

Ideally we would like to make the productBH spectrally close the identity matrix. Unfortunately
we do not know the value of the Hessian matrix H at the optimum w∗

n. Instead we could consider
the current value of the Hessian Hwt = P ′′(wt) and compute the diagonal rescaling matrix B that
makes BHwt closest to the identity. This computation could be very costly because it involves the
full Hessian matrix. Becker and Le Cun (1989) approximate the optimal diagonal rescaling matrix
by inverting the diagonal coefficients of the Hessian. The method relies on the analytical derivation
of these diagonal coefficients for multilayer neural networks. This derivation does not extend to
arbitrary models. It certainly does not work in the case of traditional SVMs because the hinge loss
has zero curvature almost everywhere.

5.2 Low Rank Rescaling Matrices

The popular LBFGS optimization algorithm (Nocedal, 1980) maintains a low rank approximation
of the inverse Hessian by storing the k most recent rank-one BFGS updates instead of the full
inverse Hessian matrix. When the successive full gradients P ′

n(wt−1) and P ′
n(wt) are available,

standard rank one updates can be used to directly estimate the inverse Hessian matrix H−1. Using
this method with stochastic gradient is tricky because the full gradients P ′

n(wt−1) and P ′
n(wt) are

not readily available. Instead we only have access to the stochastic estimates gt−1(wt−1) and gt(wt)
which are too noisy to compute good rescaling matrices.

The oLBFGS algorithm (Schraudolph et al., 2007) compares instead the derivatives gt−1(wt−1)
and gt−1(wt) for the same example (xt−1,yt−1). This reduces the noise to an acceptable level at the
expense of the computation of the additional gradient vector gt−1(wt).

Compared to the first-order SGD, each iteration of the oLBFGS algorithm computes the addi-
tional quantity gt−1(wt) and updates the list of k rank one updates. The most expensive part however
remains the multiplication of the gradient gt(wt) by the low-rank estimate of the inverse Hessian.
With k= 10, each iteration of our oLBFGS implementation runs empirically 11 times slower than a
first-order SGD iteration.

5.3 SGD-QN

The SGD-QN algorithm estimates a diagonal rescaling matrix using a technique inspired by oLBFGS.
For any pair of parameters wt−1 and wt , a Taylor series of the gradient of the primal cost P provides
the secant equation:

wt −wt−1 ≈H−1
wt

(

P
′
n(wt)−P

′
n(wt−1)

)

. (6)

We would then like to replace the inverse Hessian matrix H−1
wt by a diagonal estimate B

wt −wt−1 ≈ B
(

P
′
n(wt)−P

′
n(wt−1)

)

.

Since we are designing a stochastic algorithm, we do not have access to the full gradient P ′
n. Fol-

lowing oLBFGS, we replace them by the local gradients gt−1(wt) and gt−1(wt−1) and obtain

wt −wt−1 ≈ B
(

gt−1(wt)−gt−1(wt−1)
)

.
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Since we chose to use a diagonal rescaling matrix B, we can write the term-by-term equality

[wt −wt−1]i ≈ Bii [gt−1(wt)−gt−1(wt−1)]i ,

where the notation [v]i still represents the i-th coefficient of vector v. This leads to computing Bii
as the average of the ratio [wt −wt−1]i/[gt−1(wt)−gt−1(wt−1)]i. An online estimation is easily
achieved during the course of learning by performing a leaky average of these ratios,

Bii ← Bii+
2
r

(

[wt −wt−1]i
[gt−1(wt)−gt−1(wt−1)]i

−Bii
)

∀i= 1 . . .d ,

and where the integer r is incremented whenever we update the matrix B.
The weights of the scaling matrix B are initialized to !−1 because this corresponds to the exact

setup of first-order SGD. Since the curvature of the primal cost (1) is always larger than !, the ratio
[gt−1(wt)−gt−1(wt−1)]i/[wt −wt−1]i is always larger than !. Therefore the coefficients Bii never
exceed their initial value !−1. Basically these scaling factors slow down the convergence along
some axes. The speedup does not occur because we follow the trajectory faster, but because we
follow a better trajectory.

Performing the weight update (2) with a diagonal rescaling matrix B consists in performing
term-by-term operations with a time complexity that is marginally greater than the complexity of
the first-order SGD (3) update. The computation of the additional gradient vector gt−1(wt) and the
reestimation of all the coefficients Bii essentially triples the computing time of a first-order SGD
iteration with non-sparse inputs (3), and is considerably slower than a first-order SGD iteration with
sparse inputs implemented as discussed in Section 3.

Fortunately this higher computational cost per iteration can be nearly avoided by scheduling
the reestimation of the rescaling matrix with the same frequency as the regularization updates. Sec-
tion 5.1 has shown that a diagonal rescaling matrix does little more than rescaling the input variables.
Since a fixed diagonal rescaling matrix already works quite well, there is little need to update its
coefficients very often.

Figure 2 compares the SVMSGD2 and SGD-QN algorithms. Whenever SVMSGD2 performs
a regularization update, we set the flag updateB to schedule a reestimation of the rescaling co-
efficients during the next iteration. This is appropriate because both operations have comparable
computing times. Therefore the rescaling matrix reestimation schedule can be regulated with the
same skip parameter as the regularization updates. In practice, we observe that each SGD-QN
iteration demands less than twice the time of a first-order SGD iteration.

Because SGD-QN reestimates the rescaling matrix after a pattern update, special care must
be taken when the ratio [wt −wt−1]i/[gt−1(wt)−gt−1(wt−1)]i has the form 0/0 because the corre-
sponding input coefficient [xt−1]i is zero. Since the secant Equation (6) is valid for any two values
of the parameter vector, one can compute the ratios with parameter vectors wt−1 and wt + $ and
derive the correct value by continuity when $→ 0. When [xt−1]i = 0, we can write

[(wt+$)−wt−1]i
[gt−1(wt+$)−gt−1(wt−1)]i

= [(wt+$)−wt−1]i

![(wt+$)−wt−1]i+
(

!′(yt−1(wt+$)'xt−1)−!′(yt−1w't−1xt−1)
)

yt−1 [xt−1]i

=

(

!+

(

!′(yt−1(wt+$)'xt−1)−!′(yt−1w't−1xt−1)
)

yt−1 [xt−1]i
[(wt+$)−wt−1]i

)−1

=
(

!+ 0
[$]i

)−1 $→0
−→ !−1 .
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SVMSGD2 SGD-QN

Require: !, w0, t0, T, skip
1: t = 0, count=skip
2:
3: while t ≤ T do
4: wt+1 = wt − 1

!(t+t0) !
′(ytw'

txt)ytxt
5:
6:
7:
8:
9:

10:
11: count = count−1
12: if count ≤ 0 then
13: wt+1 = wt+1−skip (t+ t0)−1wt+1
14: count=skip
15: end if
16: t = t+1
17: end while
18: return wT

Require: !, w0, t0, T, skip
1: t = 0, count=skip,
2: B= !−1 I ; updateB=false; r = 2
3: while t ≤ T do
4: wt+1 = wt − (t+ t0)−1!′(ytw'

txt)yt Bxt
5: if updateB=true then
6: pt = gt(wt+1)−gt(wt)
7: ∀i , Bii = Bii+ 2

r

(

[wt+1 −wt ]i [pt ]
−1
i −Bii

)

8: ∀i , Bii = max(Bii,10−2!−1)
9: r = r+1; updateB=false

10: end if
11: count = count−1
12: if count ≤ 0 then
13: wt+1 = wt+1−skip (t+ t0)−1!Bwt+1
14: count=skip; updateB=true
15: end if
16: t = t+1
17: end while
18: return wT

Figure 2: Detailed pseudo-codes of the SVMSGD2 and SGD-QN algorithms.

Data Set Train. Ex. Test. Ex. Features s ! t0 skip

ALPHA 100,000 50,000 500 1 10−5 106 16
DELTA 100,000 50,000 500 1 10−4 104 16
RCV1 781,265 23,149 47,152 0.0016 10−4 105 9,965

Table 4: Data sets and parameters used for experiments.

6. Experiments

We demonstrate the good scaling properties of SGD-QN in two ways: we present a detailed compar-
ison with other stochastic gradient methods, and we summarize the results obtained on the PASCAL
Large Scale Challenge.

Table 4 describes the three binary classification tasks we used for comparative experiments.
The Alpha and Delta tasks were defined for the PASCAL Large Scale Challenge (Sonnenburg et al.,
2008). We train with the first 100,000 examples and test with the last 50,000 examples of the official
training sets because the official testing sets are not available. Alpha and Delta are dense data sets
with relatively severe conditioning problems. The third task is the classification of RCV1 documents
belonging to class CCAT (Lewis et al., 2004). This task has become a standard benchmark for linear
SVMs on sparse data. Despite its larger size, the RCV1 task is much easier than the Alpha and Delta
tasks. All methods discussed in this paper perform well on RCV1.
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ALPHA RCV1

SGD 0.13 36.8
SVMSGD2 0.10 0.20

SGD-QN 0.21 0.37

Table 5: Time (sec.) for performing one pass over the training set.

The experiments reported in Section 6.4 use the hinge loss !(s) = max(0,1− s). All other ex-
periments use the squared hinge loss !(s) = 1

2(max(0,1− s))2. In practice, there is no need to make
the losses twice differentiable by smoothing their behavior near s= 0. Unlike most batch optimizer,
stochastic algorithms do not not aim directly for nondifferentiable points, but randomly hop around
them. The stochastic noise implicitly smoothes the loss.

The SGD, SVMSGD2, oLBFGS, and SGD-QN algorithms were implemented using the same
C++ code base.3 All experiments are carried out in single precision. We did not experience numer-
ical accuracy issues, probably because of the influence of the regularization term. Our implementa-
tion of oLBFGS maintains a rank 10 rescaling matrix. Setting the oLBFGS gain schedule is rather
delicate. We obtained fairly good results by replicating the gain schedule of the VieCRF package.4
We also propose a comparison with the online dual linear SVM solver (Hsieh et al., 2008) imple-
mented in the LibLinear package.5 We did not reimplement this algorithm because the LibLinear
implementation has proved as simple and as efficient as ours.

The t0 parameter is determined using an automatic procedure: since the size of the training
set does not affect results of Theorem 1, we simply pick a subset containing 10% of the training
examples, perform one SGD-QN pass over this subset with several values for t0, and pick the value
for which the primal cost decreases the most. These values are given in Table 4.

6.1 Sparsity Tricks

Table 5 illustrates the influence of the scheduling tricks described in Section 3. The table displays
the training times of SGD and SVMSGD2. The only difference between these two algorithms are the
scheduling tricks. SVMSGD2 trains 180 times faster than SGD on the sparse data set RCV1. This
table also demonstrates that iterations of the quasi-newton SGD-QN are not prohibitively expensive.

6.2 Quasi-Newton

Figure 3 shows how the primal cost Pn(w) of the Alpha data set evolves with the number of passes
(left) and the training time (right). Compared to the first-order SVMSGD2, both the oLBFGS and
SGD-QN algorithms dramatically decrease the number of passes required to achieve similar values
of the primal. Even if it uses a more precise approximation of the inverse Hessian, oLBFGS does
not perform better after a single pass than SGD-QN. Besides, running a single pass of oLBFGS is
much slower than running multiple passes of SVMSGD2 or SGD-QN. The benefits of its second-
order approximation are canceled by its greater time requirements per iteration. On the other hand,

3. Implementations and experiment scripts are available in the libsgdqn library on http://www.mloss.org.
4. This can be found at http://www.ofai.at/~jeremy.jancsary.
5. This can be found at http://www.csie.ntu.edu.tw/~cjlin/liblinear.
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Figure 3: Primal costs according to the number of epochs (left) and the training duration (right) on
the Alpha data set.

each SGD-QN iteration is only marginally slower than a SVMSGD2 iteration; the reduction of the
number of iterations is sufficient to offset this cost.

6.3 Training Speed

Figure 4 displays the test errors achieved on the Alpha, Delta and RCV1 data sets as a function of the
number of passes (left) and the training time (right). These results show again that both oLBFGS and
SGD-QN require less iterations than SVMSGD2 to achieve the same test error. However, oLBFGS
suffers from the relatively high complexity of its update process. The SGD-QN algorithm is com-
petitive with the dual solver LibLinear on the dense data sets Alpha and Delta; it runs significantly
faster on the sparse RCV1 data set.

According to Theorem 4, given a large enough training set, a perfect second-order SGD algo-
rithm would reach the batch test error after a single pass. One pass learning is attractive when we are
dealing with high volume streams of examples that cannot be stored and retrieved quickly. Figure 4
(left) shows that oLBFGS is a little bit closer to that ideal than SGD-QN and could become attractive
for problems where the example retrieval time is much greater than the computing time.

6.4 PASCAL Large Scale Challenge Results

The SGD-QN algorithm has been submitted to the “Wild Track” of the PASCAL Large Scale Chal-
lenge. Wild Track contributors were free to do anything leading to more efficient and more accurate
methods. Forty two methods have been submitted to this track. Table 6 shows the SGD-QN ranks
determined by the organizers of the challenge according to their evaluation criteria. The SGD-QN
algorithm always ranks among the top five submissions and ranks first in overall score (tie with
another Newton method).
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Figure 4: Test errors (in %) according to the number of epochs (left) and training duration (right).
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Data Set ! skip Passes Rank

Alpha 10−5 16 10 1st
Beta 10−4 16 15 3rd
Gamma 10−3 16 10 1st
Delta 10−3 16 10 1st
Epsilon 10−5 16 10 5th
Zeta 10−5 16 10 4th
OCR 10−5 16 10 2nd
Face 10−5 16 20 4th
DNA 10−3 64 10 2nd
Webspam 10−5 71,066 10 4th

Table 6: Parameters and final ranks obtained by SGD-QN in the “Wild Track” of the first PASCAL
Large Scale Learning Challenge. All competing algorithms were run by the organizers.
(Note: the competition results were obtained with a preliminary version of SGD-QN. In
particular the ! parameters listed above are different from the values used for all experi-
ments in this paper and listed in Table 4.)

7. Conclusion

The SGD-QN algorithm strikes a good compromise for large scale application because it has low
time and memory requirements per iteration and because it reaches competitive test errors after a
small number of iterations. We have shown how this performance is the result of a careful design
taking into account the theoretical knowledge about second-order SGD and a precise understanding
of its computational requirements.

Finally, although this contribution presents SGD-QN as a solver for linear SVMs, this algorithm
can be easily extended to nonlinear models for which we can analytically compute the gradients.
We plan to further investigate the performance of SGD-QN in this context.
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Appendix A. Proof of Theorem 1

Define vt = wt −w∗
n and observe that a second-order Taylor expansion of the primal gives

Pn(wt)−Pn(w∗
n) = v'tHvt +o

(

t−2) = tr
(

Hvtv't
)

+o
(

t−2) .

Let Et−1 representing the conditional expectation over the choice of the example at iteration t− 1
given all the choices made during the previous iterations. Since we assume that convergence takes
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place, we have

Et−1
[

gt−1(wt−1)gt−1(wt−1)
'
]

= Et−1
[

gt−1(w∗
n)gt−1(w∗

n)
'
]

+o(1) = G+o(1)

and Et−1 [gt−1(wt−1)] = P
′
n(wt−1) = Hvt−1 +o(vt−1) = I$Hvt−1

where notation I$ is a shorthand for I+o(1), that is, a matrix that converges to the identity.
Expressing Hvtv't using the generic SGD update (2) gives

Hvtv't = Hvt−1v't−1 −
Hvt−1 gt−1(wt−1)'B

t+ t0
−
HBgt−1(wt−1)v't−1

t+ t0

+
HBgt−1(wt−1)gt−1(wt−1)'B

(t+ t0)2

Et−1
[

Hvtv't
]

= Hvt−1v't−1 −
Hvt−1 v't−1HI$B

t+ t0
−
HBI$Hvt−1 v't−1

t+ t0
+
HBGB
(t+ t0)2 + o

(

t−2)

Et−1
[

tr
(

Hvtv't
)]

= tr
(

Hvt−1v't−1
)

−
2 tr

(

HBI$Hvt−1 v't−1
)

t+ t0
+
tr(HBGB)

(t+ t0)2 + o
(

t−2)

E'
[

tr
(

Hvtv't
)]

= E'
[

tr
(

Hvt−1v't−1
)]

−
2E'

[

tr
(

HBI$Hvt−1 v't−1
)]

t+ t0
+
tr(HBGB)

(t+ t0)2 + o
(

t−2) .

Let !max ≥ !min > 1/2 be the extreme eigenvalues of HB. Since, for any positive matrix X,
(

!min +o(1)
)

tr(X) ≤ tr(HBI$X) ≤
(

!max +o(1)
)

tr(X)

we can bracket E' [tr(Hvtv't )] between the expressions
(

1−
2!max
t

+o
(

1
t

))

E'
[

tr
(

Hvt−1 v't−1
)]

+
tr(HBGB)

(t+ t0)2 + o
(

t−2)

and
(

1−
2!min
t

+o
(

1
t

))

E'
[

tr
(

Hvt−1 v't−1
)]

+
tr(HBGB)

(t+ t0)2 + o
(

t−2)

By recursively applying this bracket, we obtain

u!max(t+ t0) ≤ E' [tr(Hvtv't )] ≤ u!min(t+ t0)

where the notation u!(t) represents a sequence of real satisfying the recursive relation

u!(t) =

(

1−
2!
t

+o
(

1
t

))

u!(t−1)+
tr(HBGB)

t2
+o

(

1
t2

)

.

From (Bottou and LeCun, 2005, Lemma 1), !> 1/2 implies t u!(t) −→ tr(HBGB)
2!−1 . Then

tr(HBGB)

2!max −1
t−1 +o

(

t−1) ≤ E'
[

tr
(

Hvtv't
)]

≤
tr(HBGB)

2!min −1
t−1 +o

(

t−1)

and

tr(HBGB)

2!max −1
t−1 +o

(

t−1) ≤ E' [Pn(wt)−Pn(w∗
n)] ≤

tr(HBGB)

2!min −1
t−1 +o

(

t−1) .
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Abstract

There are many excellent toolkits which provide support for developing machine learning soft-
ware in Python, R, Matlab, and similar environments. Dlib-ml is an open source library, targeted
at both engineers and research scientists, which aims to provide a similarly rich environment for
developing machine learning software in the C++ language. Towards this end, dlib-ml contains
an extensible linear algebra toolkit with built in BLAS support. It also houses implementations of
algorithms for performing inference in Bayesian networks and kernel-based methods for classifi-
cation, regression, clustering, anomaly detection, and feature ranking. To enable easy use of these
tools, the entire library has been developed with contract programming, which provides complete
and precise documentation as well as powerful debugging tools.

Keywords: kernel-methods, svm, rvm, kernel clustering, C++, Bayesian networks

1. Introduction

Dlib-ml is a cross platform open source software library written in the C++ programming language.
Its design is heavily influenced by ideas from design by contract and component-based software
engineering. This means it is first and foremost a collection of independent software components,
each accompanied by extensive documentation and thorough debugging modes. Moreover, the
library is intended to be useful in both research and real world commercial projects and has been
carefully designed to make it easy to integrate into a user’s C++ application.

There are a number of well known machine learning libraries. However, many of these libraries
focus on providing a good environment for doing research using languages other than C++. Two
examples of this kind of project are the Shogun (Sonnenburg et al., 2006) and Torch (Collobert
and Bengio, 2001) toolkits which, while they are implemented in C++, are not focused on provid-
ing support for developing machine learning software in that language. Instead they are primarily
intended to be used with languages like R, Python, Matlab, or Lua. Then there are toolkits such
as Shark (Igel et al., 2008) and dlib-ml which are explicitly targeted at users who wish to develop
software in C++. Given these considerations, dlib-ml attempts to help fill some of the gaps in tool
support not already filled by libraries such as Shark. It is hoped that these efforts will prove useful
for researchers and engineers who wish to develop machine learning software in this language.

c©2009 Davis E. King.
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Figure 1: Elements of dlib-ml. Arrows show dependencies between components.

2. Elements of the Library

The library is composed of the four distinct components shown in Figure 1. The linear algebra
component provides a set of core functionality while the other three implement various useful tools.
This paper addresses the two main components, linear algebra and machine learning tools.

2.1 Linear Algebra

The design of the linear algebra component of the library is based on the template expression tech-
niques popularized by Veldhuizen and Ponnambalam (1996) in the Blitz++ numerical software.
This technique allows an author to write simple Matlab-like expressions that, when compiled, ex-
ecute with speed comparable to hand-optimized C code. The dlib-ml implementation extends this
original design in a number of ways. Most notably, the library can use the BLAS when available,
meaning that the performance of code developed using dlib-ml can gain the speed of highly opti-
mized libraries such as ATLAS or the Intel MKL while still using a very simple syntax. Consider
the following example involving matrix multiplies, transposes, and scalar multiplications:

(1) result = 3*trans(A*B + trans(A)*2*B);
(2) result = 3*trans(B)*trans(A) + 6*trans(B)*A;

The result of expression (1) could be computed using only two calls to the matrix multiply routine
in BLAS but first it is necessary to reorder the terms into form (2) to fit the form expected by the
BLAS routines. Performing these transformations by hand is tedious and error prone. Dlib-ml
automatically performs these transformations on all expressions and invokes the appropriate BLAS
calls. This enables the user to write equations in the form most intuitive to them and leave these
details of software optimization to the library. This is a feature not found in the supporting tools of
other C++ machine learning libraries.

2.2 Machine Learning Tools

A major design goal of this portion of the library is to provide a highly modular and simple archi-
tecture for dealing with kernel algorithms. In particular, each algorithm is parameterized to allow a
user to supply either one of the predefined dlib-ml kernels, or a new user defined kernel. Moreover,
the implementations of the algorithms are totally separated from the data on which they operate.
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This makes the dlib-ml implementation generic enough to operate on any kind of data, be it column
vectors, images, or some other form of structured data. All that is necessary is an appropriate kernel.

This is a feature unique to dlib-ml. Many libraries allow arbitrary precomputed kernels and
some even allow user defined kernels but have interfaces which restrict them to operating on column
vectors. However, none allow the flexibility to operate directly on arbitrary objects, making it much
easier to apply custom kernels in the case where the kernels operate on objects other than fixed
length vectors.

The library provides implementations of popular algorithms such as RBF networks and support
vector machines for classification. It also includes algorithms not present in other major ML toolkits
such as relevance vector machines for classification and regression (Tipping and Faul, 2003). All of
these algorithms are implemented as generic trainer objects with a standard interface. This design
allows trainer objects to be used by a number of generic meta-algorithms that do tasks such as
performing cross validation, reducing the number of output support vectors (Suttorp and Igel, 2007),
or fitting a sigmoid to the output decision function to make decisions interpretable in probabilistic
terms (Platt, 1999). This generic trainer interface, along with the contract programming approach,
makes the library easily extensible by other developers.

Another good example of a generic kernel algorithm provided by the library is the kernel RLS
technique introduced by Engel et al. (2004). It is a kernelized version of the famous recursive least
squares filter, and functions as an excellent online regression method. With it, Engel introduced a
simple but very effective technique for producing sparse outputs from kernel learning algorithms.

Engel’s sparsification technique is also used by one of dlib-ml’s most versatile tools, the kcen-
troid object. It is a general utility for representing a weighted sum of sample points in a kernel
induced feature space. It can be used to easily kernelize any algorithm that requires only the ability
to perform vector addition, subtraction, scalar multiplication, and inner products.

The kcentroid object enables the library to provide a number of useful kernel-based machine
learning algorithms. The most straightforward of which is online anomaly detection, which simply
marks data samples as novel if their distance from the centroid of a previously observed body of data
is large (e.g., 3 standard deviations from the mean distance). A similarly simple but still powerful
application is in feature ranking, where features are considered good if their inclusion results in a
large distance between the centroids of different classes of data.

Another straightforward application of this technique is in kernelized cluster analysis. Using
the kcentroid it is easy to create sparse kernel clustering algorithms. To demonstrate this, the library
comes with a sparse kernel k-means algorithm.

Finally, dlib-ml contains two SVM solvers. One is essentially a reimplementation of LIB-
SVM (Chang and Lin, 2001) but with the generic parameterized kernel approach used in the rest
of the library. This solver has roughly the same CPU and memory utilization characteristics as
LIBSVM. The other SVM solver is a kernelized version of the Pegasos algorithm introduced by
Shalev-Shwartz et al. (2007). It is built using the kcentroid and thus produces sparse outputs.

3. Availability and Requirements

The library is released under the Boost Software License, allowing it to be incorporated into both
open-source and commercial software. It requires no additional libraries, does not need to be con-
figured or installed, and is frequently tested on MSWindows, Linux and MacOS X but should work
with any ISO C++ compliant compiler.
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Note that dlib-ml is a subset of a larger project named dlib hosted at http://dclib.sourceforge.net.
Dlib is a general purpose software development library containing a graphical application for creat-
ing Bayesian networks as well as tools for handling threads, network I/O, and numerous other tasks.
Dlib-ml is available from the dlib project’s download page on SourceForge.
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Abstract
Judea Pearl’s Causal Model is a rich framework that provides deep insight into the nature of causal
relations. As yet, however, the Pearl Causal Model (PCM) has had a lesser impact on economics or
econometrics than on other disciplines. This may be due in part to the fact that the PCM is not as
well suited to analyzing structures that exhibit features of central interest to economists and econo-
metricians: optimization, equilibrium, and learning. We offer the settable systems framework as
an extension of the PCM that permits causal discourse in systems embodying optimization, equi-
librium, and learning. Because these are common features of physical, natural, or social systems,
our framework may prove generally useful for machine learning. Important features distinguish-
ing the settable system framework from the PCM are its countable dimensionality and the use of
partitioning and partition-specific response functions to accommodate the behavior of optimizing
and interacting agents and to eliminate the requirement of a unique fixed point for the system.
Refinements of the PCM include the settable systems treatment of attributes, the causal role of ex-
ogenous variables, and the dual role of variables as causes and responses. A series of closely related
machine learning examples and examples from game theory and machine learning with feedback
demonstrates some limitations of the PCM and motivates the distinguishing features of settable
systems.
Keywords: causal models, game theory, machine learning, recursive estimation, simultaneous
equations

1. Introduction

Judea Pearl’s work on causality, especially as embodied in his landmark book Causality (Pearl,
2000), represents a rich framework in which to understand, analyze, and explain causal relations.
This framework has been adopted and applied in a broad array of disciplines, but so far it has had a
lesser impact in economics. This may be due in part to the fact that the Pearl causal model (PCM)
is not as explicit about or well suited to analyzing structures that exhibit features of central interest
to economists and econometricians: optimization, equilibrium, and learning. Here, we offer the
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settable systems framework as an extension of the PCM that permits causal discourse in systems
embodying these features.

Because optimization, equilibrium, and learning are features not only of economic systems, but
also of physical, natural, or social systems more generally, our extended framework may prove use-
ful elsewhere, especially in areas where empirical analysis, whether observational or experimental,
has a central role to play. In particular, settable systems offer a number of advantages relative to
the PCM for machine learning. To show this, we provide a detailed examination of the features and
limitations of the PCM relevant to machine learning. This examination provides key insight into the
PCM and helps to motivate features of the settable systems framework we propose.

Roughly speaking, a settable system is a mathematical framework describing an environment
in which multiple agents interact under uncertainty. In particular, the settable systems framework
is explicit about the principles underlying how agents make decisions, the equilibria (if any) result-
ing from agents’ decisions, and learning from repeated interactions. Because it is explicit about
agents’ decision making, the settable systems framework extends the PCM by providing a decision-
theoretic foundation for causal analysis (see, e.g., Heckerman and Shachter, 1995) in the spirit of
influence diagrams (Howard andMatheson, 1984). However, unlike influence diagrams, the settable
systems framework preserves the spirit of the PCM and its appealing features for empirical analysis,
including its use of response functions and the causal notions that these support.

As Koller and Milch (2003, pp. 189-190) note in motivating their study of multi-agent influence
diagrams (MAIDs), “influence diagrams [. . . ] have been investigated almost entirely in a single-
agent setting.” The settable systems framework also permits the study of multiple agent interactions.
Nevertheless, a number of settable systems features distinguishes them from MAIDs, as we discuss
in Section 6.4. Among other things, settable systems permit causal discourse in systems with multi-
agent interactions.

Some features of settable systems are entirely unavailable in the PCM. These include (1) ac-
commodating an infinite number of agents; and (2) the absence of a unique fixed point requirement.
Other features of settable systems rigorously formalize and refine or extend related PCM features,
thereby permitting a more explicit causal discourse. These features include (3) the notion of at-
tributes, (4) definitions of interventions and direct effects, (5) the dual role of variables as causes
and responses, and (6) the causal role of exogenous variables.

For instance, for a given system, the PCM’s common treatment of attributes and background
variables rules out a causal role for background variables. Specifically, this rules out structurally
exogenous causes, whether observed or unobserved. This also limits the role of attributes in char-
acterizing systems of interest. Because the status of a variable in the PCM is relative to the analysis
and is entirely up to the researcher, a background variable may be treated as an endogenous vari-
able in an alternative system if deemed sensible by the researcher, thereby permitting it to have
a causal role. Nevertheless, the PCM is silent about how to distinguish between attributes, back-
ground variables, and endogenous variables. In contrast, in settable systems one or more governing
principles, such as optimization or equilibrium, provide a formal and explicit way to distinguish be-
tween structurally exogenous and endogenous variables, permitting explicitly causal roles not only
for endogenous but also for exogenous variables. Attributes are unambiguously defined as constants
(numbers, sets, functions) associated with the system units that define fundamental aspects of the
decision problem represented by the settable system.

The Rubin treatment effect approach to causal inference (e.g., as formalized by Holland, 1986)
also relates to settable systems. We leave a careful study of the relations between these two ap-
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proaches to other work in order to keep a sharp and manageable focus for this paper. Thus, our
goal here is to compare and contrast our approach with the PCM, which, along with structural equa-
tion systems in econometrics, comprise the frameworks that primarily motivate settable systems.
Nevertheless, some brief discussion of the relation of settable systems to Rubin’s treatment effect
approach is clearly warranted. In our view, the main feature that distinguishes settable systems (and
the PCM) from the Rubin model is the explicit representation of the full causal structure. This has
significant implications for the selection of covariates and for providing primitive conditions that
deliver unconfoundedness conditions as consequences in settable systems, rather than introducing
these as maintained assumptions in the Rubin model. Explicit representation of the full causal struc-
ture also has important implications for the analysis of “simultaneous” systems and mutually causal
relations, which are typically suppressed in the Rubin approach. Finally, the allowance for a count-
able number of system units, the partitioning device of settable systems, and settable systems’ more
thorough exploitation of attributes also represent useful differences with Rubin’s model.

The plan of this paper is as follows. In Section 2, we give a succinct statement of the elements
of the PCM and of a generalization due to Halpern (2000) relevant for motivating and developing
our settable systems extension.

Section 3 contains a series of closely related machine learning examples in which we examine
the features and limitations of the PCM. These in turn help motivate features of the settable sys-
tems framework. Our examples involve least squares-based machine learning algorithms for simple
artificial neural networks useful for making predictions. We consider learning algorithms with and
without weight clamping and network structures with and without hidden units. Because learning
is based on principles of optimization (least squares), our discussion relates to decision problems
generally.

Our examples in Section 3 show that although the PCM applies to key aspects of machine
learning, it also fails to apply to important classes of problems. One source of these limitations
is the PCM’s unique fixed point requirement. Although Halpern’s (2000) generalization does not
impose this requirement, it has other limitations. We contrast these with settable systems, where
there is no fixed point requirement, but where fixed points may help determine system outcomes.
The feature of settable systems delivering this flexibility is partitioning, an analog of the submodel
and do operator devices of the PCM.

The examples of Section 3 do not involve randomness. We introduce randomness in Section 4,
using our machine learning examples to discuss heuristic aspects of stochastic settable systems. We
compare and contrast these with aspects of Pearl’s probabilistic causal model. An interesting feature
of stochastic settable systems is that attributes can determine the governing probability measure.
In contrast, attributes are random variables in the PCM. Straightforward notions of counterfactuals,
interventions, direct causes, direct effects, and total effects emerge naturally from stochastic settable
systems.

Section 5 integrates the features of settable systems motivated by our examples to provide a
rigorous formal definition of stochastic settable systems.

In Section 6 we use a series of examples from game theory to show how settable systems ap-
ply to groups of interacting and strategically competitive decision-making agents. Game theoretic
structures have broad empirical relevance; they also present interesting opportunities for distributed
and emergent computation of important quantities, such as prices. The decision-making agents may
be consumers, firms, or government entities; they may also be biological systems or artificial intel-
ligences, as in automated trading systems. Our demonstrations thus provide foundations for causal
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analysis of systems where optimization and equilibrium mechanisms both operate to determine sys-
tem outcomes. We relate our results to multi-agent influence diagrams (Koller and Milch, 2003) in
Section 6.4.

In Section 7 we close the loop by considering examples from a general class of machine learning
algorithms with feedback introduced by Kushner and Clark (1978) and extended by Chen andWhite
(1998). These systems contain not only learning methods involving possibly hidden states, such
as the Kalman filter (Kalman, 1960) and recurrent neural networks (e.g., Elman, 1990; Jordan,
1992; Kuan, Hornik, and White, 1994), but also systems of groups of strategically interacting and
learning decision makers, as shown by Chen and White (1998). These systems exhibit optimization,
equilibrium, and learning and map directly to settable systems, providing foundations for causal
analysis in such systems.

Section 8 contains a summary and a discussion of research relying on the foundations provided
here as well as discussion of directions for future work. An Appendix contains supplementary
material; specifically, we give a formal definition of nonstochastic settable systems.

In a recent review of Pearl’s book for economists and econometricians, Neuberg (2003) ex-
presses a variety of reservations and concerns. Nevertheless, Neuberg (2003, p. 685) recommends
that “econometricians should read Causality and start contributing to the cross-disciplinary discus-
sion of the subject that Pearl has begun. Hopefully mutual enlightenment will be the effect of our
reading and talking about the book among ourselves and with the Bayesian causal network thinkers.”
By examining aspects of what can and cannot be accommodated within Pearl’s framework, and by
proposing settable systems as an extension of this framework designed to accommodate features of
central interest to economists, namely optimization, equilibrium, and learning, we offer this paper
as part of this dialogue.

2. Pearl’s Causal Model

Pearl’s definition of a causal model (Pearl, 2000, Def. 7.1.1, p. 203) provides a formal statement of
the elements essential to causal reasoning. According to this definition, a causal model is a triple
M := (u,v, f ), where u := {u1, ...,um} is a collection of “background” variables determined outside
the model, v := {v1, ...,vn} is a collection of “endogenous” variables determined within the model,
and f := { f1, ..., fn} is a collection of “structural” functions that specify how each endogenous
variable is determined by the other variables of the model, so that vi = fi(v(i),u), i= 1, ...,n. Here
v(i) denotes the vector containing every element of v except vi. The integers m and n are finite. We
refer to the elements of u and v as system “units.”

Finally, the definition requires that f yields a unique fixed point for each u, so that there exists
a unique collection g := {g1, ...,gn} such that for each u,

vi = gi(u) = fi(g(i)(u),u), i= 1, ...,n.

The unique fixed point requirement is a crucial aspect of the PCM, as this ensures existence of
the potential response function (Pearl, 2000, Def. 7.1.4). This provides the foundation for discourse
about causal relations between endogenous variables; this discourse is not possible in the PCM
otherwise. A variant of the PCM analyzed by Halpern (2000) does not require a fixed point, but if
any exist, there may be multiple collections of functions g yielding a fixed point. We refer to such
a model as a Generalized Pearl Causal Model (GPCM). We note that GPCMs do not possess an
analog of the potential response function, due to the lack of a unique fixed point.
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In presenting the elements of the PCM, we have adapted Pearl’s original notation somewhat
to facilitate the discussion to follow, but all essential elements of the definition are present and
complete.

3. Machine Learning, the PCM, and Settable Systems

We now consider how machine learning can be viewed in the context of the PCM. We consider
machine learning examples that fundamentally involve optimization, a feature of a broad range of
physical, natural, and social systems.1 Specifically, optimization lies at the heart of most decision
problems, as these problems typically involve deciding which of a range of possible options deliv-
ers the best expected outcome given the available information. When machine learning is based on
optimization, it represents a prototypical decision problem. As we show, certain important aspects
of machine learning map directly to the PCM. This permits us to investigate which causal ques-
tions are meaningful for machine learning within the PCM, and it motivates the modifications and
refinements that lead to settable systems and the more extensive causal discourse possible there.

3.1 A Least-Squares Learning Example

Our first example considers predicting a random variable Y using a single random predictor X and
an artificial neural network. In particular, we study the causal consequences for the optimal network
weights of interventions to certain parameters of the joint distribution of the randomly generated X
and Y .

More specifically, the output of an artificial neural network having a simple linear architecture
is given by

f (X ;!,") = !+"X .

We suppose that Y and X are randomly generated according to a joint distribution F# indexed by
a vector of parameters # belonging to the parameter space $. We thus view # as a variable whose
values may range over $. For clarity, we suppose that # is not influenced by our prediction (e.g., a
weather forecast or an economic growth forecast).

We evaluate network performance in terms of expected squared prediction error loss,

L(!,",#) : = E#([Y − f (X ;!,")]2)

=
Z

[y− f (x;!,")]2dF#(x,y),

where E#(·) denotes expectation taken with respect to the distribution F#. Our goal is to obtain the
best possible predictions according to this criterion. Accordingly, we seek loss-minimizing network
weights, which solve the optimization problem

min
!,"

L(!,",#).

This makes it explicit that the governing principle in this example is optimization.
Under mild conditions, least squares-based machine learning algorithms converge to the optimal

weights as the size of the training data set grows. For clarity, we work for now with the optimal
network weights.

1. The great mathematician Leonhard Euler once wrote, “nothing at all takes place in the Universe in which some rule
of maximum or minimum does not appear” (as quoted in Marsden and Tromba, 2003).
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For our linear network, the first order conditions necessary for an optimum are

(%/%!)L(!,",#) = −2E#([Y −!−"X ]) = 0,
(%/%")L(!,",#) = −2E#(X [Y −!−"X ]) = 0.

Letting µX := E#(X), µY := E#(Y ), µXX := E#(X2), and µXY := E#(XY ), we can conveniently param-
eterize F# in terms of the moments # := (µX ,µY ,µXX ,µXY ). (This parameterization need not uniquely
determine F#; that is, there may be multiple distributions F# for a given #. Nevertheless, this # is the
only aspect of the distribution that matters here.) We can then express the first order conditions
equivalently as

µY −!−"µX = 0,
µXY −!µX −"µXX = 0.

Now consider how this system fits into Pearl’s causal model. Pearl’s model requires a system
of equations in which the left-hand side variables are structurally determined by the right-hand side
variables. The first order conditions are not in this form, but, provided µXX −µ2X > 0, they can be
transformed to this form by solving jointly for ! and " :

!∗ = µY − [µXX −µ2X ]−1(µXY −µXµY )µX ,

"∗ = [µXX −µ2X ]−1(µXY −µXµY ). (1)

We write (!∗,"∗) to distinguish optimized values from generic values (!,").
This representation demonstrates that the PCM applies directly to this machine learning prob-

lem. The equations in (1) form a system in which the background (or “structurally exogenous”)
variables u := (u1,u2,u3,u4) = (µX ,µY ,µXX ,µXY ) =: # determine the endogenous variables v :=
(v1,v2) = (!∗,"∗). The structural functions ( f1, f2) are defined by

f1(u) = u2− [u3−u21]
−1(u4−u1u2)u1,

f2(u) = [u3−u21]
−1(u4−u1u2).

We observe that by the conventions of the PCM, the background variables u do not have formal
status as causes, as we further discuss below.

In discussing the PCM, Pearl (2000, p. 203) notes that the background variables are often un-
observable, but this is not a formal requirement of the PCM. In our example, we may view the #
variables as either observable or unobservable, depending on the context. For example, suppose
we are given a linear least-squares learning machine as a black box: we know that it is a learning
machine, but we don’t know of what kind. To attempt to determine what is inside the black box,
we can conduct computer experiments in which we set # to various known values and observe the
resulting values of (!∗,"∗). In this case, # is observable.

Alternatively, we may have a least-squares learning machine that we apply to a variety of data
sets obeying the distribution F# for differing unknown values of #. In each case, # is unobservable,
but we can generate as much data as we want from F#.

Intermediate cases are also possible, in which some elements of # are known and others are not.
For example, in the multiple data set example, we could have knowledge of a subvector of #, for
example, we might know µX .
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3.2 Learning with Clamping

Next, we study the effects on one of the optimal network weights of interventions to the other
weight. For this, we consider the optimal network weights that arise when one or the other of the
network weights is clamped, that is, set to an arbitrary fixed value. Specifically, consider

min
!
L(!,",#) and min

"
L(!,",#).

Clamping is useful in “nested” or multi-stage optimization, as

min
!,"

L(!,",#) = min
"

[min
!
L(!,",#)] and

min
!,"

L(!,",#) = min
!

[min
"
L(!,",#)].

See, for example, Sergeyev and Grishagin (2001). Clamping is a central feature of a variety of
powerful machine learning algorithms, for example, the restricted Boltzmann machine (e.g., Ackley
et al., 1985; Hinton and Sejnowski, 1986; Hinton et al., 2006; Hinton and Salakhutdinov, 2006).
Learning in stages is particularly useful in cases involving complex optimizations, as in the EM
algorithm (Dempster, Laird, and Rubin, 1977).

The first order condition necessary for the "-clamped optimum min! L(!,",#) is

(%/%!)L(!,",#) = −2E#([Y −!−"X ]) = 0.

Equivalently, µY −!−"µX = 0. Solving for the optimal ! weight gives

!̃∗ = µY −"µX . (2)

We use the tilde notation to distinguish between the optimal weights with clamping and the jointly
optimal weights obtained above.

Similarly, the first order condition necessary for the !-clamped optimum min" L(!,",#) is

(%/%")L(!,",#) = −2E#(X [Y −!−"X ]) = 0.

Equivalently, µXY −!µX −"µXX = 0. Given µXX > 0, the optimal weight with clamping is

"̃∗ = µ−1XX(µXY −!µX). (3)

Writing Equations (2) and (3) as a system, we have

!̃∗ = µY −"µX "̃∗ = µ−1XX(µXY −!µX). (4)

This resembles a structural system in the form of the PCM, except that here !̃∗ and "̃∗ appear on the
left, instead of ! and ". This difference is significant; we address this shortly.

Nevertheless, suppose for the moment that we ignore this difference and modify the system
above to conform to the PCM by replacing !̃∗ and "̃∗ with ! and " :

!= µY −"µX "= µ−1XX(µXY −!µX). (5)
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We take u = # as above, but in keeping with our conforming modification, we now take (v1,v2) =
(!,"). The structural functions become

f̃1(u,v2) = u2− v2u1 f̃2(u,v1) = u−13 (u4− v1u1).

This system falls into the PCM, with consequent causal status for v, provided there is a unique fixed
point for each u.

Unfortunately, this fixed point requirement fails here. As is apparent from the equations in (5),
the only necessary restriction on u is that u3 = µXX > 0. This is the requirement that X is not equal
to 0 with probability one. Nevertheless, it is readily verified that even with this restriction, the fixed
point requirement fails for all u such that

u3−u21 = µXX −µ2X = 0.

This is the condition that X = µX with probability one, and µX can take any value, not just zero.
When this condition holds, there is an uncountable infinity of fixed point solutions to the equations
in (5). Stated another way, the solution to the system is set-valued in this circumstance.

Because of the lack of a fixed point, the PCM does not apply and therefore cannot provide causal
meaning for such a system. The inability of the PCM to apply to this simple example of machine
learning with clamping is an unfortunate limitation. Because Halpern’s (2000) GPCM does not
require a unique fixed point, it does apply here. Nevertheless, the lack of the potential response
function in the GPCM prevents the desired causal discourse.

3.3 Settable Systems and Learning with Clamping

We now consider how these issues can be addressed. Our intent is to encompass this example while
preserving the spirit of the PCM. This motivates and helps illustrate various features of our settable
systems framework.

3.3.1 SETTABLE VARIABLES

We begin by taking seriously the difference in roles between (!,") and (!̃∗, "̃∗) appearing in the
equations in (4). In the simplest sense, the difference is that (!̃∗, "̃∗) and (!,") appear on differ-
ent sides of the equal signs: (!,") appears on the right and (!̃∗, "̃∗) on the left. In the PCM, this
difference is fundamentally significant, in that causal relations are asymmetric, with structurally de-
termined (endogenous) variables on the left and all other variables on the right. In settable systems,
we formalize these dual roles by defining settable variables as mappings X with a dual aspect:

X1(0) : = !̃∗, X1(1) := !,

X2(0) : = "̃∗, X2(1) := ". (6)

We call the 0−1 argument of the settable variables X the “role indicator.” When this is 0, the value
of the variable is that determined by its structural equation. We call these values responses. In
contrast, when the role indicator is 1, the value is not determined by its structural equation, but is
instead set to one of its admissible values. We call these values settings. We require that a setting
has more than one admissible value. That is, settings are variable.

Formally distinguishing between responses and settings makes explicit the dual roles played by
variables in a causal system, entirely in the spirit of the PCM. Settable variables represent a formal
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implementation, alternative to that of the “do operator” in the PCM, of the “wiping out” operation
first proposed by Strotz and Wold (1960) and later used by Fisher (1970).

Once we make explicit the dual roles of the system variables, several benefits become appar-
ent. First, the equal sign no longer has to serve in an asymmetric manner. This makes possible
implicit representations of causal relations in settable systems that are either not possible in the
PCM, because the required closed-form expressions do not exist; or that are possible in the PCM
only under restrictions permitting application of the implicit function theorem. Such implicit repre-
sentations are often natural for responses satisfying first order conditions arising from optimization.
To illustrate, consider how explicit representation of the dual roles of system variables modifies
the learning with clamping system. The first order condition necessary for the "-clamped optimum
min! L(!,",#) is now

µY − !̃∗ −"µX = 0.

That for the !-clamped optimum min" L(!,",#) is now

µXY −!µX − "̃∗µXX = 0.

The structural system thus has the implicit representation

µY − !̃∗ −"µX = 0, (7)
µXY −!µX − "̃∗µXX = 0. (8)

3.3.2 SETTABLE SYSTEMS AND THE ROLE OF FIXED POINTS

A second benefit of making explicit the dual roles of the system variables is that unique fixed
points do not have a crucial role to play in settable systems. This enables us to dispense with the
unique fixed point requirement prohibiting the PCM from encompassing our learning with clamping
example. This is not to say that fixed points have no role to play. Instead, that role is removed from
the structural representation of the system and, to the extent relevant, operates according to the
governing principle, for example, optimization or equilibrium. We discuss this further below.

To illustrate, consider the learning with clamping system above where the dual roles of the
system variables are made explicit. Now there is no necessity of finding a fixed point for Equations
(7) and (8). Each equation stands on its own, representing its associated clamped optimum.

The simplest case is that for !̃∗. For every µX ,µY , and ", there is a unique solution,

!̃∗ = µY −"µX =: r̃1(",#).

We call r̃1 the response function for X1.
Next consider "̃∗. Provided µXX > 0, Equation (8) determines a unique value for "̃∗,

"̃∗ = µ−1XX(µXY −!µX).

But what happens when µXX = 0? This further implies µX = µXY = 0. Consequently, any value will
do for "̃∗, as any value of "̃∗ delivers the best possible prediction. To arrive at a unique value for "̃∗,
we can apply criteria supplemental to predictive optimality. For example, we may choose a value
that has the simplest representation. This reduces the viable choices to "̃∗ ∈ {0,1}, as either of
these requires only one bit to represent. Finally, by selecting "̃∗ ∈ {0}, so that we set "̃∗ = 0 when
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µXX = 0, we achieve a prediction, f (X ;!, "̃∗) = !, that requires the fewest operations to compute.
Formally, this gives

"̃∗ = 1{µXX>0}µ−1XX(µXY −!µX) =: r̃2(!,#),

where 1{µXX>0} is the indicator function taking the value one when µXX > 0, and zero otherwise. We
call r̃2 the response function for X2.

This example demonstrates that even when structural equations conforming to the PCM (i.e.,
Equation 5) do not have a fixed point, we can find unique response functions for each settable
variable of the analogous settable system. We do this by applying the governing principle for the
system (e.g., optimization), supplemented when necessary by further appropriate principles (e.g.,
parsimony of memory and computation).

Applying the settable variable representation in the equations in (6), we obtain a settable vari-
ables representation for our learning with clamping example:

X1(0) = r̃1(X2(1),#), X2(0) = r̃2(X1(1),#).

So far, the variable # has not been given status as a settable variable. Although it does not have
a dual aspect, it can be set to any of several admissible values (those in $), so it does have the aspect
of a setting. Accordingly, we can define X0(1) := #. To ensure that X0 is a well-defined settable
variable, we must also specify a value for X0(0). By convention, we simply put X0(0) := X0(1).
We call X0 fundamental settable variables. As these are determined outside the system, they are
structurally exogenous.

We can now give an explicit settable system representation for our present example, that is, a
representation solely in terms of settable variables:

X1(0) = r̃1(X2(1),X0(1)) X2(0) = r̃2(X1(1),X0(1)).

3.4 Causes and Effects: Settable Systems and the PCM

This section introduces causal notions appropriate to settable systems.

3.4.1 DIRECT CAUSALITY

We begin by considering our learning with clamping example, where

!̃∗ = r̃1(",#), "̃∗ = r̃2(!,#).

In particular, consider the equation "̃∗ = r̃2(!,#). In settable systems, settings are variable, that is,
they can take any of a range of admissible values. We view this as sufficient to endow them with
potential causal status. Thus, we call ! and # potential causes of "̃∗.

We say that a given element of (!,#) does not directly cause "̃∗ if r̃2(!,#) defines a function
constant in the given element for all admissible values of the other elements of (!,#). Otherwise,
that element is a direct cause of "̃∗. According to this definition, µY does not directly cause "̃∗,
whereas µX ,µXX ,µXY , and ! are direct causes of "̃∗.

3.4.2 INTERVENTIONS AND DIRECT EFFECTS IN SETTABLE SYSTEMS

In settable systems, an intervention to a settable variable is a pair of distinct admissible setting
values. In our clamped learning example, let !1 and !2 be different admissible values for !.
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Then !1 → !2 := (!1,!2) is an intervention to !, or, more formally, to X1. Similarly, (!1,#1) →
(!2,#2) := ((!1,#1),(!2,#2)) is an intervention to (!,#) (i.e., to (X1,X0)). The direct effect on a
given settable variable of a specified intervention is the response difference arising from the in-
tervention. In our clamped learning example, the direct effect on X2 of the intervention !1 → !2
is

&r̃2(!1,!2;#) : = r̃2(!2,#)− r̃2(!1,#)
= 1{µXX>0}µ−1XX(!1−!2)µX .

We emphasize that interventions are always well defined, as settings necessarily have more than
one admissible value. Indeed, a key reason that we require settings to be variable is precisely to
ensure that interventions to settable variables are always meaningful.

PCM notions related to the settable systems notion of intervention are the do operator and the
“effect of action” defined in definition 7.1.3 of Pearl (2000); these specify a submodel associated
with a given realization x for a given subset of the endogenous variables v.

3.4.3 EXOGENOUS AND ENDOGENOUS CAUSES

The notion of causality just defined contrasts in an interesting way with that formally given in the
PCM. We have just seen that # can serve in the settable system as a direct cause of "̃∗. Above, we
saw that # corresponds to background variables u in the PCM. In the PCM, the formal concept of
submodel and the do operator necessary to define causal relations are meaningful only for endoge-
nous variables v. None of these concepts are defined for u; that is, u is not subject to counterfactual
variation in the PCM.2 Consequently, u does not have formal causal status in the PCM as defined in
Pearl (2000, Chap. 7).

In the PCM, u thus has four explicit distinguishing features: it is (i) a vector of variables that
(ii) are determined outside the system, (iii) determine the endogenous variables, and (iv) are not
subject to counterfactual variation. An optional but common feature of u is: (v) it is unobservable.
As a result, background variables cannot act as causes in the PCM; in particular, for a given system,
the PCM formally rules out structurally exogenous unobserved causes.

In settable systems, we drop requirement (iv) for structurally exogenous variables. Thus, we
allow for observed structurally exogenous causes such as a treatment of interest in a controlled
experiment, which is typically directly set (and observed) by the researcher. We also allow for un-
observable structurally exogenous causes, ensuring a causal framework that is not relative to the
capabilities of the observer, as is appropriate to the macroscopic, non-quantum mechanical systems
that are the strict focus of our attention here. Unobserved common causes are particularly relevant
for the analysis of confounding, that is, the existence of hidden causal relations that may prevent the
identification of causal effects of interest (see Pearl, 2000, Chap. 3.3-3.5). Also, unobserved struc-
turally exogenous causes are central to errors-in-variables models where a structurally exogenous
cause of interest cannot be observed. Instead, one observes an version of this cause contaminated by
measurement error. These models are the subject of a vast literature in statistics and econometrics
(see, e.g., van Huffel and Lemmerling, 2002, and the references there).

Dropping (iv) in settable systems creates no difficulties in defining causal relations, as direct
causality is a property solely of the response function on its domain. Moreover, by requiring that
settings have more than one admissible value, we ensure that these domains contain at least two

2. We are grateful to two of the referees for emphasizing this.
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points, making possible the interventions supporting definitions of effects in settable systems. We
will return to this point shortly.

In the PCM, endogenous variables are usually observable, although this is not formally required.
Structurally endogenous settable variables X may also be observable or not.

Fortunately, the PCM treats a variable as a background variable or an endogenous variable rel-
ative to the analysis. If the effects of a variable are of interest, it can be converted to an endogenous
variable in an alternative PCM. Nevertheless, the PCM does not provide guidance on whether to
treat a variable as a background variable or an endogenous one. This decision is entirely left to the
researcher’s discretion. For example, the “disturbances” in the Markovian PCM “represent back-
ground variables that the investigator chooses not to include in the analysis” (Pearl, 2000, p. 68), but
the PCM does not specify how an investigator chooses to include variables in the analysis. Nor is it
clear that background variables are necessary to the analysis in the first place. For example, Dawid
(2002, p. 183) states that “when the additional variables are pure mathematical fictions, introduced
merely so as to reproduce the desired probabilistic structure of the domain variables, there seems
absolutely no good reason to include them in the model.”

Settable systems permit but do not require background variables. Further, and of particular
significance, in a settable system a governing principle such as optimization provides a formal
way to distinguish between fundamental settable variables (exogenous variables) and other settable
variables (endogenous variables). In particular, the decision problem determines if a variable is
exogenous or endogenous. For instance, in our clamped learning example, the optimal network
weights !̃∗ and "̃∗ minimize the loss function L(!,",#). On the other hand, although the elements
of # are variables, our learning example does not specify a decision problem that determines how
these are generated. This distinction endows the variables !̃∗ and "̃∗ with the status of endogenous
variables and the elements of # with the status of structurally exogenous variables.

Thus, carefully and explicitly specifying the decision problems and governing principles in
settable systems provides a systematic way to distinguish between exogenous and endogenous vari-
ables. This formalizes and extends the distinctions between the PCM endogenous and exogenous
variables.

The PCM has been fruitfully applied in the sciences (e.g., Shipley, 2000). Nevertheless, because
the PCM is agnostic concerning the status of variables, two researchers may employ two possibly
inconsistent PCMs to study the same scientific phenomena. To resolve such inconsistencies, one
may use the fact that under suitable assumptions, causal relations imply empirically testable condi-
tional independence relations among system variables (Pearl, 2000; Chalak andWhite, 2008b). This
yields procedures for falsifying causal structures that are inconsistent with data. Such procedures
at best identify a class of observationally equivalent causal models, so resolution of inconsistencies
by this means is not guaranteed. On the other hand, specifying the decision problems underlying
the phenomena of interest may, among other things, offer guidance as to which (if either) model is
more suitable to the analysis. The settable systems framework provides the foundation necessary
for this in the context of optimally interacting agents under uncertainty. We emphasize that agents
and their decision problems may be defined in such a way as to apply even to physical or biological
systems not usually thought of in these terms; any system involving optimizing (e.g., least energy,
maximum entropy) and/or equilibrium falls into this framework.
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3.5 Unclamped Learning and Settable Systems

Now consider how our original unclamped learning example is represented using settable systems.
We begin by recognizing that the solution to a given optimization problem need not be unique, but
is in general a set. When the solution depends on other variables, the solution is in general a cor-
respondence, not a function (see, e.g., Berge, 1963). Thus, we write the solution to the unclamped
learning problem as

(A∗(#),B∗(#)) := argmin
!,"

L(!,",#),

where A∗(#) and B∗(#) define correspondences.
Due to the linear network architecture, we can explicitly represent A∗(#) and B∗(#) as

A
∗(#) = {! : [µXX −µ2X ](!−µY )+(µXY −µXµY )µX = 0},

B
∗(#) = {" : [µXX −µ2X ]"− (µXY −µXµY ) = 0}.

When µXX −µ2X > 0, A∗(#) and B∗(#) each have a unique element, namely

!∗ = µY − [µXX −µ2X ]−1(µXY −µXµY )µX ,

"∗ = [µXX −µ2X ]−1(µXY −µXµY ).

When µXX − µ2X = 0, we can select a unique value from each of A∗(#) and B∗(#). Choosing the
simplest representation and the simplest computation of the prediction yields !∗ = µY and "∗ = 0.
We thus represent optimal weights using response functions r1 and r2 as

!∗ = r1(#) := µY −1{µXX−µ2X>0}[µXX −µ2X ]−1(µXY −µXµY )µX ,

"∗ = r2(#) := 1{µXX−µ2X>0}[µXX −µ2X ]−1(µXY −µXµY ).

These response functions do represent fixed points of the equations in (5). This illustrates the role
that fixed points can play in determining the response functions. Observe, however, that we do not
require a unique fixed point.

Applying the settable system definition of direct causality, we have that a given element of #,
say #i, does not directly cause !∗ (resp. "∗) if r1(#) (resp. r2(#)) defines a function constant in #i
for all admissible values of the other elements of #. Otherwise, that element is a direct cause of !∗

(resp. "∗). Here, each element of # directly causes both !∗ and "∗.
In this example, we have the settable system representation

X1(0) = r1(X0(1)), X2(0) = r2(X0(1)),

where X0(0) := X0(1) := #,X1(1) := !,X2(1) := " as before, but now X1(0) := !∗ and X2(0) := "∗.
Finally, we note that the system outputs of the clamped and unclamped systems are mutually

consistent, in the sense that if we plug the responses of the unclamped system into the response
functions (r̃1, r̃2) of the clamped system as settings, we obtain clamped responses that replicate the
responses of the unclamped system. That is, putting X c

1 (1) = X u
1 (0) and X c

2 (1) = X u
2 (0), where we

now employ the superscripts c and u to clearly distinguish clamped and unclamped system settable
variables, we have

X u
1 (0) = r̃1(X u

2 (0),X0(1)), X u
2 (0) = r̃2(X u

1 (0),X0(1)),

as some simple algebra will verify. This mutual consistency is ensured by the governing principle
of optimization.
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3.6 Partitioning in Settable Systems

In the PCM, the role of submodels (Pearl, 2000, Def. 7.1.2) is to specify which endogenous vari-
ables are subject to manipulation; the do operator specifies which values the manipulated variables
take. In settable systems, submodels and the do operator are absent. Nevertheless, settable systems
do have an analog of submodels, but instead of specifying which variables are to be manipulated, a
settable system specifies which system variables are free to respond to the others. In our learning
examples, settable systems specify which variables are unclamped. In our first example, both vari-
ables are unclamped. In the second example, the variables are considered one at a time, and each
variable is unclamped in turn.

3.6.1 PARTITIONING

A formal mathematical implementation of these specifications is achieved by partitioning. Partition-
ing operates on an index set I whose elements are in one-to-one correspondence to the structurally
endogenous (non-fundamental) settable variables. In our learning examples, there are two such
variables, so the index set can be chosen to be I = {1,2}.

Let I be any set with a countable number of elements. A partition ' is a collection of subsets
'1,'2, ... of I that are mutually exclusive ('a∩'b = ∅,a '= b) and exhaustive (∪b 'b = I ). Ex-
amples are the elementary partition, 'e := {'e

1, ...,'
e
n}, where 'e

1 := {1},'e
2 := {2}, ..., and the

global partition 'g := {'g
1}, where '

g
1 := I .

When I = {1,2}, these are the only two possible partitions: 'e = {'e
1,'

e
2}, where 'e

1 = {1}
and 'e

2 = {2}; and 'g = {'g
1}, where '

g
1 = {1,2}.

We interpret the partition elements as specifying which of the system variables are jointly free to
respond to the remaining variables of the system, according to the governing principle of the system
(e.g., optimization). In our machine learning examples with I = {1,2}, the element'e

1 = {1} of the
elementary partition 'e specifies that variable 1 (i.e., !̃∗) is free to respond to all other variables of
the system (i.e., (",#)), whereas 'e

2 = {2} specifies that variable 2 (i.e., "̃∗) is free to respond to all
other variables of the system (i.e., (!,#)). The element 'g

1 = {1,2} of the global partition specifies
that variables 1 and 2 (i.e., (!∗,"∗)) are jointly free to respond to all other variables of the system
(i.e., #).

In settable systems, response functions are partition specific. With 'e, we have

!̃∗ = r̃1(",#), "̃∗ = r̃2(!,#);

with 'g, we have
!∗ = r1(#), "∗ = r2(#)

for the response functions (r̃1, r̃2) and (r1,r2) defined above. This implies that the settable variables
and the resulting causal relations are partition specific.

We note that the distinction between the response functions (r̃1, r̃2) and (r1,r2) is not due to
additional constraints imposed on the optimization problem per se. Instead, the distinction follows
from whether learning occurs with or without clamping and hence on whether or not alpha and beta
respond jointly. Thus, different optimization problems yield different corresponding partitions and
response functions.

These partitioning concepts and principles extend to systems with any number of structurally
endogenous variables. We discuss further examples below.
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!!" !#" !!!" !!#" !!" !#" !!!" !!#"
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Figure 1: PCM Directed Acyclic Graphs

3.6.2 SETTABLE SYSTEM CAUSAL GRAPHS

Given the applicability of the PCM to the unclamped learning example, this system has an associated
PCM directed acyclic graph (DAG). The particular representation of this graph depends on whether
or not the background variables are observable or not. Figure 1(a) depicts the case of observable #
and Figure 1(b) that of unobservable #. The solid arrows in Figure 1(a) indicate that the background
variables are observable, whereas the dashed arrows in Figure 1(b) indicate that the background
variables are not observable.

In interpreting these graphs, note that the arrows, whether solid or dashed, represent the func-
tional relationships present. They do not, however, represent causal relations, as in the PCM these
are defined to hold only between endogenous variables, and no arrows link the endogenous variables
here. Pearl (2000) often uses the term “influence” to refer to situations involving functional depen-
dence, but not causal dependence. In this sense, the arrows in these DAGs represent “influences.”

In contrast, due to the lack of a fixed point, the PCM does not apply to the learning with clamping
example. Necessarily, the PCM cannot supply a causal graph.

In settable systems, partitions play a key role in constructing causal graphs that represent direct
causality relations. To see how, consider our clamped learning example. Here, µY (i.e., X0,2(1)) does
not directly cause "̃∗ (X2(0)), whereas µX ,µXX ,µXY , and ! (X0,1(1),X0,3(1),X0,4(1), and X1(1)) are
direct causes of "̃∗ (X2(0)). We can succinctly and unambiguously state these causal relations in
terms of settable variables by saying that X0,2 does not directly cause X2, whereas X0,1,X0,3,X0,4,
and X1 are direct causes of X2.

For each block 'b of a partition ' = {'b}, we construct a settable system causal graph by
letting nodes correspond to settable variables. If one settable variable directly causes another, we
draw an arrow from the node representing the cause to that representing the responding settable
variable. Note that in contrast to the DAGs for the PCM, we represent all direct causal links as solid
arrows, letting dashed nodes represent unobservable settable variables. The motivation for this is
that unobservability is a property of the settable variable (the node), not the links between nodes.

Figures 2(a) and 2(b) depict the causal graphs for our clamped learning example. There are two
causal graphs, as the clamped learning example expresses the elementary partition'e = {{1},{2}}.
For purposes of illustration, we depict the case in which # is unobserved.
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Figure 2: Block-specific Settable System Causal Graphs for the Elementary Partition

!$%&!$%'!$%(!$%)

!) !(

Figure 3: Settable System Superimposed Causal Graph for the Elementary Partition

For convenience, we may superimpose settable system causal graphs. Superimposing Fig-
ures 2(a) and 2(b) gives Figure 3. This is a cyclic graph. Nevertheless, this cyclicality does not
represent true simultaneity; it is instead an artifact of the superimposition.

The settable system causal graph for the global partition'g = {{1,2}} representing unclamped
learning is depicted in Figure 4. Observe that this reproduces the connectivity of Figure 1. Note
that in Figure 4, the nodes represent settable variables and the arrows represent direct causes. In
Figure 1, the nodes represent background or endogenous variables and the arrows represent non-
causal “influences.”

We emphasize that the causal graphs associated with settable systems are not necessary to the
analysis. Rather, they are sometimes helpful in succinctly representing and studying causal rela-
tions.

!$%&!$%'!$%(!$%)

!) !(

Figure 4: Settable System Causal Graph for the Global Partition
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3.7 Further Examples Motivating Settable System Features

We now introduce two further features of settable systems, countable dimension and attributes, using
examples involving machine learning algorithms and networks with hidden units. This provides
further interesting contrasts between settable systems and the PCM.

3.7.1 A MACHINE LEARNING ALGORITHM AND COUNTABLE DIMENSIONALITY

So far, we have restricted attention to the optimal network weights for linear least-squares machine
learning. Now consider the machine learning algorithm itself. For this, let

µ̂x,0 = µ̂y,0 = µ̂xx,0 = µ̂xy,0 = !̂0 = "̂0 = 0,

and perform the recursion

µ̂x,n = µ̂x,n−1+n−1(xn− µ̂x,n−1)
µ̂y,n = µ̂y,n−1+n−1(yn− µ̂y,n−1)
µ̂xx,n = µ̂xx,n−1+n−1(x2n− µ̂xx,n−1)
µ̂xy,n = µ̂xy,n−1+n−1(xnyn− µ̂xy,n−1) (9)
"̂n = 1{µ̂xx,n−µ̂2x,n>0}[µ̂xx,n− µ̂2x,n]

−1(µ̂xy,n− µ̂x,nµ̂y,n)

!̂n = µ̂y,n− "̂nµ̂x,n, n= 1,2, ....

Variables determined outside the system are the observed data sequences x := (x1,x2, ...) and y :=
(y1,y2, ...).Variables determined within the system are µ̂x := (µ̂x,0, µ̂x,1, ...), µ̂y := (µ̂y,0, µ̂y,1, ...), µ̂xx :=
(µ̂xx,0, µ̂xx,1, ...), µ̂xy := (µ̂xy,0, µ̂xy,1, ...), !̂= (!̂0, !̂1, ...), and "̂ := ("̂0, "̂1, ...).Under mild conditions,
!̂n converges to !∗ and "̂n converges to "∗.

We now ask whether this system falls into the PCM. The answer is no, because the PCM requires
the dimensions of the background and endogenous variables to be finite. Here these dimensions are
countably infinite. The PCM does not apply. (As a referee notes, however, a countably infinite
version of the PCM has recently been discussed by Eichler and Didelez, 2007).

In contrast, settable systems encompass this learning system by permitting the settable variables
to be of countably infinite dimension. The definitions of direct causality and the notion of partition-
ing operate identically in either the finite or the countably infinite case. Settable systems generally
accommodate any recursive learning algorithm involving data sequences of arbitrary length.

3.7.2 LEARNING WITH A HIDDEN UNIT NETWORK AND ATTRIBUTES

To motivate the next feature of settable systems, we return to considering the effect on an optimal
network weight of interventions to distributional parameters, #, and another network weight. Now,
however, we modify the prediction function to be that defined by

f (X ;!,") = ! (("X).

This is a single hidden layer feedforward network with a single hidden unit having the activation
function (. For concreteness, let ( be the standard normal density. This activation function often
appears in radial basis function networks. For clarity, we consider only a single input X , a single
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input-to-hidden weight ", and a single hidden-to-output weight !. This elementary structure suffices
to make our key points and keeps our notation simple.

Now the expected squared prediction error is

L(!,",#;() := E#([Y −! (("X)]2).

Here, # reverts to representing the general parameter indexing F#. The choice # := (µX ,µY ,µXX ,µXY )
considered above is no longer appropriate, due to the nonlinearity in network output induced by
(. Further, note the presence of the hidden unit activation function ( in the argument list of L. We
make this explicit, as ( certainly helps determine prediction performance, and it has a key role to
play in our subsequent discussion.

Now consider the clamped optimization problems corresponding to the elementary partition'e.
This yields solutions

Ã
∗(",#;() : = argmin

!∈A
L(!,",#;(),

B̃
∗(!,#;() : = argmin

"∈B

L(!,",#;().

We ensure the existence of compact-valued correspondences Ã∗(",#;() and B̃∗(!,#;() by (among
other things) taking A and B to be compact subsets of R. Elements !̃∗ of Ã∗(",#;() and "̃∗ of
B̃∗(!,#;() satisfy the necessary first order conditions

E#([(("X)]2)!̃∗ −E#((("X)Y ) = 0,
E#(D(("̃∗X)Y )−!E#[D(("̃∗X)(("̃∗X)] = 0,

whereD( denotes the first derivative of the ( function. We caution that although these relations nec-
essarily hold for elements of Ã∗(",#;() and B̃∗(!,#;(), not all (!,") values jointly satisfying these
implicit equations are members of Ã∗(",#;() and B̃∗(!,#;(). Some solutions to these equations
may be local minima, inflection points, or (local) maxima.

The PCM does not apply here, due (among other things) to the absence of a unique fixed point.
Nevertheless, settable systems do apply, using a principled selection of elements from Ã∗(",#;()
and B̃∗(!,#;(), respectively. We write these selections

!̃∗ = r̃1(",#;(), "̃∗ = r̃2(!,#;().

The feature distinguishing this example from our earlier examples is the appearance in the re-
sponse functions of the hidden unit activation function (. The key feature of ( is that it takes one
and only one value: ( is the standard normal density. It is therefore not a variable. Consequently,
it cannot be a setting, and it is distinct from any of the other objects we have previously examined.
We define an attribute to be any object specified a priori that helps determine responses but is not
variable. We associate attributes with the system units. Any attribute of the system itself is a system
attribute; we formally associate system attributes to each system unit. Here, ( is a system attribute.
Because a unit’s associated attributes are constant, they are not subject to counterfactual variation.
Nevertheless, attributes may differ across units.

One generally useful attribute is the attribute of identity. This is a label assigned to each unit
of a given system that can take only the assigned value, and whose value is shared by no other unit
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of the system. The identity attribute is required by settable systems, as the identity labels are those
explicitly used in the partitioning operation. The identity attribute is also a feature of the PCM, as
background and endogenous variables are distinct types of objects, and elements of each distinct
type have identifying subscripts.

When attributes beyond identity are present, they need not be distinct across units. For example,
the quantity n appearing in several of the response functions in the learning algorithm of Equation
(9) is an attribute shared by those units.

We emphasize that attributes are relative to the particular structural system, not somehow ab-
solute. Some objects may be taken as attributes solely for convenience. For example, one might
consider several different possible activation functions and attempt to learn the best one for a given
problem. In such systems, the hidden unit activation is no longer an attribute but is an endogenous
variable. In other cases, it may be more convenient to treat the activation function as hard-wired,
in which case the activation function is an attribute. Indeed, any hard-wired aspect of the system is
properly an attribute. Convenience may even dictate treating as attributes objects that are in prin-
ciple variable, but whose degree of variation is small relative to that of other system variables of
interest.

Other system aspects are more inherently attributes. Because of their fundamental role and
their invariance, such attributes are easily taken for granted and thus overlooked. Our least-squares
learning example is a case in point. Specifically, the loss function itself is properly viewed as an
attribute.

A useful way to appreciate this is to consider the loss functions

Lp(!,",#) :=
Z

|y− f (x;!,")|pdF#(x,y), p> 0.

In our examples so far, we always take p = 2, so L = L2. Different choices are possible, yielding
different loss functions. A leading example is the choice p = 1. Whereas p = 2 yields forecasts
that approximate the conditional mean of Y given X , p = 1 yields forecasts that approximate the
conditional median of Y given X .

Because p is a constant specified a priori and because p helps determine the optimal responses, p
is an attribute. When the forecaster’s goal is explicitly to provide a forecast based on the conditional
mean, it makes little sense to consider values of p other than 2, because no other value of p is
guaranteed to generally deliver an approximation to the conditional expectation. Put somewhat
differently, it may not make much sense to attempt to endogenize p and choose an “optimal” value
of p from some set of admissible values because the result of choosing different values for p is to
modify the very goal of the learning exercise. Nor can one escape from attributes by endogenizing
p; as long as there is some optimality criterion at work, this criterion is properly an attribute of the
system.

Another important example of inherent attributes is provided by the sets Si that specify the
admissible values taken by the settings Xi(1) and responses Xi(0). These are properly specified
a priori; they take one and only one value for each unit i; and they play a fundamental role in
determining system responses.

Because attributes in settable systems are fixed a priori for a given unit, they take values in
a (non-empty) degenerate set. Accordingly, attributes cannot be settings, and thus can never be
potential causes, much less direct causes. This formal distinction between attributes and potential
causes is unambiguous in settable systems.
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3.7.3 ATTRIBUTES IN THE PCM

In contrast, a somewhat ambiguous situation prevails in the PCM. Viewing attributes as a subset
of those objects having no causal status, Pearl (2000, p. 98) states that attributes can be treated
as elements of u, the background variables.3 This overlooks the key property we wish to assign
to attributes: for a given unit, they are fixed, not variable. Such objects thus cannot belong to u
if one takes the word “variable” at face value. In our view, assigning attributes to u misses the
opportunity to make an important distinction between invariant aspects of the system units on the
one hand and counterfactual variation admissible for the system unit values on the other. Among
other things, assigning attributes to u interferes with assigning natural causal roles to structurally
exogenous variables.

Further, just as for endogenous and exogenous variables, the PCM does not provide guidance
about how to select attributes. In contrast, settable systems clearly identify attributes as invariant
features of the system units that embody fundamental aspects of the decision problem represented
by the settable system.

Below, we will further distinguish attributes from variables when we discuss stochastic settable
systems.

3.8 A Comparative Review of PCM and Settable System Features

At this point, it is helpful to take stock of the features of settable systems that we have so far
introduced and contrast these with corresponding features of the PCM.

(1) Settable systems explicitly represent the dual roles of the variables of structural systems us-
ing settable variables. These dual roles are present but implicit in the PCM. Settable variables can
be responses, or they can be set to given values (settings). The explicit representation of these dual
roles in settable systems makes possible implicitly defined structural relations that may not be repre-
sentable in the PCM. Further, these implicit structural relations may involve correspondences rather
than functions. Principled selections from these correspondences yield unique response functions
in settable systems.

(2) In settable systems, all variables of the system, structurally exogenous or endogenous, have
causal status, in that they can be potential causes or direct causes. Further, no assumptions are
made as to the observability of system variables: structurally exogenous variables may be either
observable or unobservable; the same is true for structurally endogenous variables. In particular,
this permits settable systems to admit unobserved causes and results in causal relations that are not
relative to an observer. In contrast, the PCM admits causal status only for endogenous variables.
For the PCM, structurally exogenous unobserved causes are ruled out. Although the PCM does
permit treating background variables as endogenous variables in alternative systems, it is silent
as to how to distinguish between exogenous and endogenous variables. On the other hand, the
governing principles in settable systems provide a formal and explicit means for distinguishing
between endogenous and exogenous variables.

(3) Settable systems admit straightforward definitions of interventions and direct effects. These
notions, while present, are less direct in the formal PCM.

(4) In settable systems, partitioning permits specification of different mutually consistent ver-
sions of a given structural system in which different groups of variables are jointly free to respond to
the other variables of the system. In particular, system variables can respond either singly or jointly

3. This possibility is also suggested by two referees.

1778



SETTABLE SYSTEMS

to the other variables of the system, as illustrated by our examples of learning with or without clamp-
ing. Similar exercises are possible in the PCM using submodels and the do operator, but the PCM
requirement of a unique fixed point limits its applicability. Specifically, we saw that learning with
clamping falls outside the PCM. Halpern’s (2000) GPCM does apply to such systems, but causal
discourse is problematic, due to the absence of the potential response function. In settable systems,
fixed points are not required, and causal notions obtain without requiring the potential response
function. This permits settable systems to provide causal meaning in our examples of learning with
or without clamping.

(5) Settable systems can have a countable infinity of units, whereas the PCM requires a finite
number of units.

(6) In settable systems, attributes are a priori constants associated with the units that help deter-
mine responses. In the PCM, attributes are not necessarily linked to the system units. Further, they
are treated not as constants, but as background variables, resulting in potential ambiguity. The PCM
is silent as to how to distinguish between attributes and variables.

Some features of settable systems, such as relaxing the assumption of unique fixed points (point
4) and accommodating an infinity of agents (point 5), are entirely unavailable in the PCM. The
remaining settable systems features above rigorously formalize and extend or refine related PCM
features and thus permit more explicit causal inference.

4. Stochastic Settable Systems: Heuristics

In the PCM, randomness does not formally appear until definition 7.1.6 (probabilistic causal model).
Nevertheless, Pearl’s (2000) definitions 7.1.1 through 7.1.5 (causal model, submodel, effect of ac-
tion, potential response, and counterfactual) explicitly refer to “realizations” pa or x of endogenous
variables PA or X . These references make sense only if PA and X are interpreted as random vectors.
Although u is not explicitly called a realization, the language of definition 7.1.1 further suggests that
u is viewed as a realization of random background variables,U . This becomes explicit in definition
7.1.6, where PCM background variablesU become governed by a probability measure P. Random-
ness of endogenous variables is then induced by their dependence on U . In this sense, definitions
7.1.1 through 7.1.5 do not have fully defined content until definition 7.1.6 resolves the meaning
of U,V,PA, and X . Nevertheless, definitions 7.1.1 through 7.1.5 are perfectly meaningful, simply
viewing the referenced variables as real numbers.

The settable systems discussed so far are entirely non-stochastic: the settings and responses
defined in Section 3 are real numbers, not random variables. Nevertheless, we can connect causal
and stochastic structures in settable systems by viewing settings and responses as realizations of
random variables, in much the same spirit as the PCM. In this section we discuss some specifics of
this connection.

4.1 Introducing Randomness into Settable Systems

First, instead of only the background variables u representing realizations of random variables, in
settable systems all settings represent realizations of random variables governed by an underly-
ing probability measure. For example, in our hidden unit clamped learning example, (!,",#) are
realizations of random variables (A,B,C) governed by a probability measure P on an underlying
measurable space (),F ). The randomness of the responses is induced by their dependence on the
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settings. Thus, in the hidden unit clamped learning example, we have random responses

Ã∗ = r̃1(B,C;(), B̃∗ = r̃2(A,C;().

Second, the underlying probability measure for settable systems can depend on the attribute
vector, call it a, of the system. Whereas in the PCM attributes are “lumped together” with other
background variables, and may therefore be random, this is not permitted in settable systems. In
settable systems, attributes are specified a priori and take one and only one value, a. Because of its
a priori status, this value is non-random.

It follows that the probability measure governing the settable system can be indexed by a. This is
not an empty possibility; it has clear practical value. One context in which this practical value arises
is when attention focuses only on the units of some subsystem of a larger system. For example,
consider the least squares machine learning algorithm of the equations in (9), and focus attention on
the subsystem

B̂ = 1{M̂xx−M̂2
x>0}[M̂xx− M̂2

x ]
−1(M̂xy− M̂xM̂y),

Â = M̂y− B̂M̂x.

Note that we have modified the notation to reflect the fact that the settings M̂x,M̂y,M̂xx, and M̂xy
are now random variables. These generate realizations µ̂x,n, µ̂y,n, µ̂xx,n, and µ̂xy,n under a probability
measure Pn, which is that induced by the probability measure governing the random fundamental
settings {(X1,Y1), ...,(Xn,Yn)}. Note the explicit dependence of the probability measure Pn on the
attribute n. The fact that this probability measure can depend on attributes underscores their nature
as a priori constants in settable systems.

4.2 Some Formal Properties of Stochastic Settable Systems

Given attributes a, we let (),F ,Pa) denote the complete probability space on which the settings and
responses are defined. Here, ) is a set (the “universe”) whose elements * index possible outcomes
(“possibilities”); F is a +−field of measurable subsets of ) whose elements represent events; and
Pa is a probability measure (indexed by a) on the measurable space (),F ) that assigns a number
Pa(F) to each event F ∈ F . See, for example, White (2001, Chap. 3) for an introductory discussion
of measurable spaces and probability spaces.

We decompose * as * := (*r,*s), with *r ∈)r,*s ∈)s, so that )=)r×)s. As we discuss
next, this enables distinct components of * to underlie responses (*r) and settings (*s). This facili-
tates straightforward and rigorous definitions of counterfactuals and interventions. These notions in
turn support a definition of direct effect.

To motivate the foundations for defining counterfactuals, again consider the hidden unit clamped
learning example. Formally, the random settings (A,B,C) are measurable functions A : )s → R,
B :)s → R, andC :)s → Rm, m ∈ N. Letting *s belong to )s, we take the setting values to be the
realizations

! = A(*s) =: X1(*,1),
" = B(*s) =: X2(*,1),
# = C(*s) =: X0(*,1).
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Observe that the settings depend only on the *s component of *. We make this explicit in A(*s),
B(*s), and C(*s), but leave this implicit in writing X0(*,1), X1(*,1), and X2(*,1) for notational
convenience.

The responses are determined similarly:

Ã∗(*) = r̃1(B(*s),C(*s),*r;() = r̃1(X2(*,1),X0(*,1),*r;() =: X1(*,0),
B̃∗(*) = r̃2(A(*s),C(*s),*r;() = r̃2(X1(*,1),X0(*,1),*r;() =: X2(*,0).

Note that we now make explicit the possibility that the response functions may depend directly on
*r. This dependence was absent in all our previous examples but is often useful in applications, as
this dependence permits responses to embody an aspect of “pure” randomness. From now on, we
will include *r as an explicit argument of the response functions.

In the deterministic systems previously considered, we viewed the fundamental setting X0(1)
as a primitive object and adopted the convention that X0(0) := X0(1). Once settings and responses
depend on *, it becomes necessary to modify our conventions regarding the fundamental settable
variables X0, as X0 is no longer determined outside the system. The role of the system primitive
is now played by *, the primary setting. We represent this as the settable variable defined by
X∗(*,0) := X∗(*,1) := *. We now view X0(*,0) as a response to *s and we take X0(·,1) :=
X0(·,0).

In the current stochastic framework, the feature that distinguishes X0 from other settable vari-
ables is that the response X0(*,0) depends only on *s,whereas responses of other settable variables
can depend directly on other settings and on *r. Given the availability of X∗, there is no guarantee or
requirement that such a settable variable X0 exists. Nevertheless, such fundamental stochastic set-
table variables X0 are often an important and useful feature in applications, as our machine learning
examples demonstrate.

The definition of direct causality in stochastic settable systems is closely parallel to that in the
non-stochastic case. Specifically, consider the partition ' = {'b}, and suppose i belongs to the
partition element 'b. Let X(b)(*,1) denote setting values for the settable variables whose indexes
do not belong to 'b, together with the settings X0(*,1). Then the response Xi(*,0) is given by

Xi(*,0) := ri(X(b)(*,1),*r;a) = ri(z(b),*r;a),

where ri is the associated response function, a is the attribute vector, and for convenience we write
z(b) := X(b)(*s,1). Then we say that X j does not directly cause Xi if ri(z(b),*r;a) defines a function
constant in the element z j of (z(b),*r) for all values of the other elements of (z(b),*r). Otherwise,
we say that X j directly causes Xi. Thus, X∗ can directly cause Xi; for this, take z j = *r. If X0(*,0)
does not define a constant function of *s, we also say that X∗ directly causes X0. As always, direct
causality is relative to the specified partition.

4.3 Counterfactuals, Interventions, and Direct Effects

We now have the foundation necessary to specify “counterfactuals.” We begin by defining what
is meant by “factual.” Suppose for now that all setting and response values apart from *r are ob-
servable. Specifically, suppose we have realizations of setting values (",#) and response value
!̃∗ = r̃1(",#,*r;(), and that * is such that "= B(*s), #=C(*s), and !̃∗ = Ã∗(*), where

Ã∗(*) = r̃1(B(*s),C(*s),*r;().
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Then we say that (!̃∗,",#) are factual and that * = (*r,*s) is factual. Otherwise, we say that
(!̃∗,",#) and * are counterfactual. Specifically, if the realization (!̃∗,",#) does not obtain, then we
say that (!̃∗,",#) is counterfactual, whereas if we have the realizations (!̃∗,",#), but * is such that
" '= B(*s), # '=C(*s), or !̃∗ '= Ã∗(*) then we say that * is counterfactual.

There need not be a unique factual * since it is possible that multiple *’s yield the same real-
izations of random variables; this creates no logical or conceptual difficulties. Also, we need not
observe all settings and responses; an observable subset of these may be factual or counterfactual.
To the extent that a given * generates realizations compatible with factual observables, it may also
be viewed as factual to that degree. An * generating realizations incompatible with factual observ-
ables is necessarily counterfactual.

In non-stochastic settable systems, we defined an intervention to a settable variable as a pair
of distinct admissible setting values for that settable variable. For example, !1 → !2 := (!1,!2).
In stochastic settable systems, we express interventions similarly. Specifically, again consider the
partition '= {'b}, and suppose i belongs to the partition element 'b, so that

Xi(*,0) := ri(X(b)(*,1),*r;a) = ri(z(b),*r;a).

Then an intervention (z(b),1,*r,1)→ (z(b),2,*r,2) is a pair ((z(b),1,*r,1),(z(b),2,*r,2)) whose elements
are admissible and distinct.

Interventions necessarily involve counterfactuals: at most, only one setting can be factual; and
for an intervention to be well defined, the other setting value must be distinct. We note that the
notion of counterfactuals is helpful mainly for describing interventions. Although our definitions of
causality, interventions, or, as we see next, direct effects implicitly involve counterfactuals, they do
not formally require this notion.

The direct effect on Xi of the intervention (z(b),1,*r,1) → (z(b),2,*r,2) is the associated response
difference

ri(z(b),2,*r,2;a)− ri(z(b),1,*r,1;a).
Our definitions of interventions and direct effects permit ceteris paribus interventions and direct
effects. For these, only some finite number (e.g., one) of the settings differs between (z(b),1,*r,1)
and (z(b),2,*r,2); the other elements are “held constant.”

Under suitable conditions (specifically, that the settings X(b)(·,1) are an “onto” function), the
interventions (z(b),1,*r,1) → (z(b),2,*r,2) can be equivalently represented as a primary intervention

*1 → *2 := (*1,*2) = ((*r,1,*s,1),(*r,2,*s,2)).

That is, primary interventions are pairs (*1,*2) of elements of ). This representation is ensured
by specifying that *= (*r,*s), permitting *r and *s to be variation free (i.e., *r can vary without
inducing any necessary variation in *s, and vice versa).

Primary interventions yield a definition of total effect as a response difference. In our hidden
unit clamped learning example, the total effect on X1 of *1 → *2 is

&X1(*1,*2,0) : = X1(*2,0)−X1(*1,0)
= r̃1(B(*s,2),C(*s,2),*r,2;()− r̃1(B(*s,1),C(*s,1),*r,1;().

This is also the direct effect on X1 of (Z(1)(*s,1),*r,1)→ (Z(1)(*s,2),*r,2).We emphasize that these
effects are, as always, relative to the governing partition. The total effect above is relative to the
elementary partition, corresponding to clamped learning.

1782



SETTABLE SYSTEMS

4.4 Review of Stochastic Settable System Features

In stochastic settable systems, all settings are governed by the underlying probability measure,
whereas in the PCM, only the background variables are subject to random variation. Because of their
status as a priori constants, attributes can index the settable system probability measure. Stochastic
settable systems distinguish between primary settings and, when they exist, fundamental settable
variables. Responses may contain an element of pure randomness. The structure of stochastic set-
table systems also supports straightforward rigorous definitions of direct causes, counterfactuals,
interventions, direct effects, and total effects.

5. Stochastic Settable Systems: A Formal Definition

In Sections 3 and 4, we motivated the features of settable systems using a series of closely related
machine learning examples. Here we integrate these features to provide a rigorous formal definition
of a stochastic settable system S' := {(A,a),(),F ,Pa),(',X')}.

To give a concise definition, we first introduce some convenient notation. We write the positive
integers as N+; we also write N̄+ = N+ ∪{,}.When n= ,, we interpret i= 1, ...,n as i= 1,2, ....
We also write N := {0}∪N+, and N̄ = N∪ {,}. When m = 0, we interpret k = 1, ...,m as being
omitted; thus, when m= 0, terms like ×m

k=1A or ×m
k=1S0,k are ignored. The notation #' denotes the

number of elements (the cardinality) of the set '.

Definition 1 (Stochastic Settable System) Let n ∈ N̄+, and let the unit attribute space A be a non-
empty set. For each unit i= 1, ...,n, let a unit attribute ai be a fixed element of A, such that ai includes
a component of admissible settings Si, a multi-element Borel-measurable subset of R.

Let m ∈ N̄. For each k = 1, ...,m, let a fundamental unit attribute a0,k be a fixed element of A,
such that a0,k includes a component of admissible fundamental settings S0,k, a multi-element Borel-
measurable subset of R. Write a0 := (a0,1, ...,a0,m) and a := (a0,a1, ...,an) ∈ A := (×m

k=1A)×
(×n

i=1A), the joint attribute space.
Let ()r,Fr) and ()s,Fs) be measurable spaces such that )r and )s each contain at least two

elements, and let (),F ,Pa) be a complete probability space, where ) := )r×)s, F := Fr⊗Fs,
and Pa is a probability measure indexed by a ∈ A.

For each k = 1, ...,m, let a fundamental response Y0,k :)s → S0,k be a measurable function and
let the corresponding fundamental setting be Z0,k :=Y0,k. Write fundamental settings and responses
as Z0 := (Z0,1, ...,Z0,m) and Y0 = Z0.

Let'= {'b} be a partition of {1, ...,n}, with B := #'∈ N̄+, let !b := #'b, and let a determine
the multi-element Borel measurable set S'(b)(a) ⊂ × j/∈'bS j ×m

k=1S0,k, b = 1, ...,B. Suppose there
exist measurable functions called settings, Z'i : )s → Si, i = 1, . . . ,n, measurable functions called
responses, Y'i :)→ Si, i= 1, . . . ,n, and measurable functions called joint response functions,

r'[b]( · ;a) :×i∈'bSi×S
'
(b)(a)×)r → R

!b b= 1, ...,B,

such that
r'[b](Y

'
[b](*),Z'(b)(*s),*r;a) = 0, b= 1, ...,B,

for each * := (*r,*s)∈)r×)'
(b)(a),)

'
(b)(a) := {*s : Z'(b)(*s)∈ S'(b)(a)}, where Z

'
(b) is the vector

containing Z'j , j /∈'b and Y'[b] is the vector containing Y
'
i , i ∈'b. Write

X'
0 (*;0) : = Y0(*s), X'

0 (*;1) := Z0(*s),
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X'
i (*;0) : = Y'i (*), X'

i (*;1) := Z'i (*s), i= 1, ...,n,

so that the fundamental settable variables X'
0 and settable variables X'

i , i = 1, ...,n are mappings
such that:

X'
0 :)×{0,1}→×m

k=1S0,k and X'
i :)×{0,1}→ Si, i= 1, ...,n.

Finally, write
X' := (X'

0 ,X'
1 , , ...,X'

n ).

Then S' := {(A,a),(),F ,Pa),(',X')} is a stochastic settable system.

A stochastic settable system consists of units i = 1, ...,n with unit attributes ai belonging to
unit attribute space A. When m > 0, the system has optional fundamental units k = 1, ...,m with
fundamental unit attributes a0,k also belonging to A. The joint attributes a := (a0,1, ...,a0,m,a1, ...,an)
belong to the joint attribute space A. By construction, the unit attributes include the admissible
settings Si for each unit (S0,k for any fundamental units). Si must contain at least two values,
necessary to ensuring that interventions are well defined.

The probability space (),F ,Pa) embodies the stochastic structure of the system. By represent-
ing the primary settings as elements * := (*r,*s) of ) :=)r×)s, we provide explicit means for
variation-free interventions to primary setting values *r and the remaining setting values (via *s).
By “variation-free”, we mean that we can consider interventions (*1,*2) = ((*r,1,*s),(*r,2,*s))
in which only the *r component differs or interventions (*1,*2) = ((*r,*s,1),(*r,*s,2)) in which
only the *s component differs. Requiring that )r and )s each have at least two elements ensures
that interventions to *r and *s are well defined.

The probability measure Pa is indexed by the attributes a and governs the joint distribution of
the random settings and responses. Pa may be determined by nature, determined by a researcher,
or determined in part by nature and in part by a researcher. Pa can embody any probabilistically
meaningful dependence or independence for events involving *r and *s. Completeness of the
probability space is a technical requirement ensuring that the collection of events F contains every
subset of any event having Pa−probability zero.

We call the random variables Z'i (·) settings and realizations Z'i (*s) setting values. By suitably
choosing )s and Z'i , we also achieve variation-free interventions for the individual setting values.
Specifically, let )s := (×m

k=1S0,k)× (×n
i=1Si), so that )s has typical element *s := (z0,1, ...,z0,m,

z1, ...,zn). Further, let Z0,k(*s) = z0,k and Z'i (*s) = zi be the projection functions that select the
specified component of *s. By construction, these functions are surjective (onto). That is, the range
Z'i ()s) equals the co-domain Si, so that there is (at least) one *s corresponding to each admissible
value in Si. With a suitable choice of Fs (e.g., that generated by the measurable finite dimensional
product cylinders), these choices for Z0,k and Z'i are also measurable, as required. (White (2001,
Section 3.3) provides relevant background and discussion.) Thus, different values *s,1 and *s,2
can generate interventions referencing just a single settable variable, so that Z'i (*s,1) '= Z'i (*s,2),
but Z'j (*s,1) = Z'j (*s,2) for j '= i. Further, when surjectivity holds, it ensures that the primary
interventions (*s,1,*s,2) can represent every admissible intervention to the setting values.

When the system has fundamental units, these units have fundamental responses Y0,k; these are
random variables whose values Y0,k(*s) are determined solely by *s ∈ )s. By convention, funda-
mental settings Z0,k are random variables identical to Y0,k.When Y0,k is surjective, then so is Z0,k.
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Each element 'b of the partition '= {'b} identifies a group of (non-fundamental) units. The
joint response function r'[b] specifies how these identified units jointly and freely respond to given
jointly admissible setting values of all units not belonging to 'b.

The given values are setting values Z'j (*s) for j not belonging to 'b, including Z0(*s) and *r,
represented here by (Z'(b)(*s),*r). The values Z

'
(b)(*s) belong to the set of jointly admissible setting

values S'(b)(a), a subset of × j/∈'bS j ×m
k=1S0,k. In the absence of constraints, we have S'(b)(a) =

× j/∈'bS j ×m
k=1S0,k. Often, however, applications place joint restrictions on the admissible setting

values. For example, when the settings represent probabilities (as in the mixed strategy games
considered shortly), the constraint that probabilities add to one jointly restricts admissible setting
values. The constraints are encoded in a, and implemented by S'(b)(a).

The response values are Y'[b](*), the vector containing unit i’s response value Y'i (*) for each i
in 'b, satisfying

r'[b](Y
'
[b](*),Z'(b)(*s),*r;a) = 0. (10)

Note that we do not explicitly require that Y'[b](*) is the unique solution to the equations in (10). As
discussed in our machine learning examples, the governing principles of the system (e.g., optimiza-
tion and/or equilibrium) operate to deliver a selected system response satisfying these equations. By
including the governing principles (including appropriate selection operators) among the attributes
a, as is fully rigorous and proper, the presence of a in the response function can ensure a unique
response value. Note that the response function depends on the full system attribute vector a, not
just the attributes associated with the units of the given block b. This has been a common feature of
our examples. We call the random variables Y'i (·) responses.

Our expression for the responses is in implicit form, as is appropriate for solutions of optimiza-
tion problems. Nevertheless, it is often convenient to abuse notation somewhat and write response
values explicitly as

Y'[b](*) = r'[b](Z
'
(b)(*s),*r;a).

Because the partition is exhaustive, the collection of response functions r' := (r'[1], ...,r
'
[B]) pro-

vides a description of how each unit in the system responds when it is free to do so in the company
of other specified freely responding units. In given circumstances, it may be that only one of these
sets of responses is factual; the others are then counterfactual.

Settable variables X'
i : )× {0,1} → Si embody the dual aspects of settings and responses.

Responses X'
i ( · ,0) := Y'i are random variables taking values in Si in response to settings of

other settable variables of the system outside the block to which i belongs, say 'b. The settings
X'
i ( · ,1) := Z'i are random variables taking values in Si whose realized values determine the
realized responses of other settable variables. The optional fundamental settable variables X'

0 :
)×{0,1}→×m

k=1S0,k yield identical random responses and settings whose values drive responses
of other settable variables. We collect together all settable variables of the system by writing X' :=
(X'
0,1, ...,X

'
0,m,X'

1 , ...,X'
n ). Observe that X' actually depends on a through the response functions

r', so it would be formally correct and more explicit to write X'
a instead of X'.We forego this for

notational simplicity, but this dependence should not be overlooked.
Our notation for the stochastic settable system, S' := {(A,a),(),F ,Pa),(',X')}, references

each component of the system in a way that expresses the hierarchy of these components. At the
lowest level is the attribute structure, (A,a); next comes the stochastic structure, (),F ,Pa); resting
on these is the causal structure, (',X').
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6. Game Theory, Settable Systems, and the PCM

So far, our machine learning examples have shown how settable systems apply to decision problems
where optimization operates as a governing principle. We now discuss examples showing how set-
table systems apply to groups of interacting and strategically competitive decision-making agents.
In economics, these agents are usually viewed as consumers, firms, and/or government entities. Of
direct relevance to machine learning is that agents may also be artificial intelligences, as in auto-
mated trading systems. In addition to their empirical relevance (e.g., the analysis of FCC spectrum
auctions or U.S. Treasury Bill auctions), such environments present the opportunity for emergent
and distributed computation of otherwise difficult to compute quantities, like prices.

Game theory, the study of multi-agent decision problems, provides a rich formal framework
in which to understand and explain the behavior of interacting decision makers. Gibbons (1992)
provides an excellent introduction. By showing how the structures of game theory map to settable
systems, we establish the foundations for causal analysis of such systems. A central feature of such
structures is that their outcomes are determined by suitable equilibrium mechanisms, specifically
Nash equilibrium and its refinements. Among other things, these mechanisms play a key role in
ensuring the mutual consistency of various partitions relevant to the analysis of a given game.

6.1 Pure-Strategy Games and Pure-Strategy Nash Equilibria

The simplest games are static games of complete information (Gibbons, 1992, Chap. 1). In these
games, each of n players has: (i) a number of playable strategies (let player i have Ki playable
strategies, si,1, ...,si,Ki); and (ii) a utility (or “payoff”) function ui that describes the payoff -i to
that player when each player plays one of their given strategies. That is, -i = ui(s1, ...,sn), where
s j ∈ S j := {s j,1, ...,s j,Kj}, j = 1, ...,n. The players simultaneously choose their strategies; then each
receives the payoff specified by the collection of the jointly chosen strategies and the players’ payoff
functions. Such games are “static” because of the simultaneity of choice. They are “complete
information” games because the players’ possible strategies and payoff functions are known to all
players. (Thus, each player can assess the game from every other player’s viewpoint.) An n-player
static game of complete information is formally represented in “normal form” as G = {S1, ...,Sn;
u1, ...,un}.

These games map directly and explicitly to the settable system framework. Specifically, the
players correspond to units i = 1, ...,n. The unit attributes ai include the identity attribute i, the
strategies Si = Si available to player i, and the player’s utility function ui : S1× ...× Sn → R. When
a strategy for player i is set arbitrarily, we denote its value as zi ∈ Si; when player i chooses a strategy
(a response) we represent its value as yi ∈ Si. For concreteness and without loss of generality, we
take Si := {1, ...,Ki}. The players’ utility functions implicitly account for the possibility that strategy
1 for player i may represent a different action than that of strategy 1 for player j.

Each player seeks to maximize their payoff given the strategies of the others, so that

yi = rei (z(i);a) = argmax
zi∈Si

ui(z1, ...,zn).

In economics, this goal-seeking behavior is called “rationality;” an equally fitting (or perhaps supe-
rior) term is “intelligence.” Thus, game theory analyzes rational or intelligent agents.

Here, we write the responses rei using the superscript e to denote that these response are those
for the elementary partition, 'e := {'e

1, ...,'
e
n} with'e

i = {i}, as each response takes the strategies
of all other players as fixed.

1786



SETTABLE SYSTEMS

For convenience, we assume that for each player there is a unique utility-maximizing response,
but just as in our previous machine learning examples, we can generally make a principled selection
when the optimal decision is a set. Below, we discuss this further.

In game theory, rei is called a “best-response” function. In settable systems, we refer generically
to functions like rei as “response” functions, in part motivated by this usage. Because in game theory
the specific game G under consideration is almost always clear, there is usually no need to explicitly
reflect its elements in the players’ best response functions. The explicit appearance of players’ joint
attributes a (which characterize the game) in the response functions rei ( · ;a) emphasizes their role
in determining player responses.

Now consider the PCM representation of this game. In the PCM, the attributes become back-
ground variables u. The attributes ai = (i,Si,ui) do not map directly to PCM background variables,
as Si is a set and ui is a function; the PCM requires the background variables to be real numbers.
Nevertheless, some simple modifications deliver a conforming representation: we can replace Si
with the integers 1 through Ki and ui with the vector of values taken by -i = ui(s1, ...,sn) as the
strategies range over all possible values. We collect these values together across all players and
write them as u. Endogenous variables v= {s1, ...,sn} represent player strategies, and the structural
functions f = { f1, ..., fn} represent the best response for agent i as si = fi(s(i),u), i= 1, ...,n.

The final condition required by the PCM is that there exists a unique fixed point, defined by
functions gi such that si = s∗i := gi(u), i= 1, ...,n.When such a unique fixed point exists, it represents
a pure-strategy Nash equilibrium (Nash, 1950). By definition this satisfies

ui(s∗1, ...,s
∗
i , ...,s

∗
n) ≥ ui(s∗1, ...,si, ...,s

∗
n) f or all si ∈ Si, i= 1, ...,n.

Gibbons (1992, p. 8) provides further discussion of pure-strategy Nash equilibrium.
Just as we saw in Section 3, the PCM faces difficulties arising from its requirement of a unique

fixed point. A first difficulty for the PCM is that there are important games for which a pure-strategy
Nash equilibrium does not exist; the PCM therefore has nothing to say about such games. A leading
example of such games is known as matching pennies (Gibbons, 1992, p. 29). In this game, each of
two players has a penny that they can choose to display face up (heads) or face down (tails). If the
pennies match, player 2 gets both; otherwise player 1 gets both. This game applies to any situation
in which one player would like to outguess the other, as in poker (bluffing), baseball (pitcher vs.
hitter), and battle.

Given the interest attaching to such games, one would like to have an applicable causal model.
This need is met by the settable system framework. Because this framework imposes no fixed point
requirement, it applies regardless of the existence of a unique pure-strategy Nash equilibrium. For
games with no pure-strategy Nash equilibrium, the response functions rei (z(i);a) of the elementary
partition 'e := {{1}, ...,{n}} readily provide complete information about the best response for all
counterfactual strategy combinations of the other players.

If a unique pure-strategy Nash equilibrium exists, it has settable system representation

s∗i = rgi (a), i= 1, ...,n,

where rgi is the response function for the global partition, 'g := {{1, ...,n}}. An interesting fea-
ture of these response functions is that they depend only on the attributes a; no fundamental or
even primary settings appear. Observe also that the Nash equilibrium condition ensures the mutual
consistency of the elementary and global partitions.
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When there is no pure strategy Nash equilibrium, as in the matching pennies game, there need
not exist a valid settable system for the global partition. This provides an interesting example in
which we have a well-defined settable system for the elementary partition, but not for the global
partition. In contrast, the PCM does not apply at all.

Another difficulty for the PCM is that the unique fixed point requirement prevents it from apply-
ing to games with multiple pure-strategy Nash equilibria. An example is the game known as battle
of the sexes (Gibbons, 1992, p. 11). In this game, two players (Ralph and Alice) are trying to decide
on what to do on their next night out: attend a boxing match or attend an opera. Each would rather
spend the evening together than apart, but Ralph prefers boxing and Alice prefers the opera. With
the payoffs suitably arranged (symmetric), there is a unique best response for each player, given the
strategy of the other. Nevertheless, this game has two pure-strategy Nash equilibria: (i) both select
boxing; (ii) both select the opera. Thus, the PCM does not apply.

In contrast, the settable system framework does apply, as it does not impose a unique fixed
point requirement. The elementary partition describes each agent’s unique best response to a given
strategy of the other. Further, when multiple Nash equilibria exist, the global partition can yield a
well-defined settable system by selecting one of the possible equilibria. As Gibbons (1992, p. 12)
notes, “In some games with multiple Nash equilibria one equilibrium stands out as the compelling
solution to the game,” leading to the development of “conventions” that provide standard means for
selecting a unique equilibrium from the available possibilities.

An example is the classic coordination game, in which there are two pure-strategy Nash equi-
libria, but one yields greater payoffs to both players. The convention is to select the higher payoff
equilibrium. If such a convention exists, the global partition can specify the response functions rgi
to deliver this. In such cases, the global partition responses satisfy not only a fixed-point property,
but also embody equilibrium selection.

Interestingly, battle of the sexes is not a game with such a convention, as both equilibria seem
equally compelling. A more elaborate version of this game, involving incomplete information, does
possess a unique equilibrium, however (Gibbons, 1992, pp. 152-154).

6.2 Mixed-Strategy Games and Mixed-Strategy Nash Equilibria

As just suggested, one can modify the character of a game’s equilibrium set by elaborating the game.
Specifically, consider “mixed-strategy” static games of complete information. Instead of optimally
choosing a pure strategy, each player h now chooses a vector of probabilities ph := (ph,1, ..., ph,Kh)
(a mixed strategy) over their available pure strategies, say Sh := {1, ...,Kh}, so that ph, j is the prob-
ability that player h plays strategy j ∈ Sh. For example, the probability vector (1,0...,0) for player
h represents playing the pure strategy sh = 1.

Note that we have modified the notation for the player index from i to h. This enables us to
continue to index units using i.Here, the units i correspond to agent-decision pairs (h, j). The values
h and j become part of the unit attributes, ai.When referencing i, we may for convenience reference
the corresponding h, j, so, for example, we may write ai or ah, j, whichever is more convenient.

Each player h now behaves rationally or intelligently by choosing mixed-strategy probabilities
to maximize their expected payoff given other players’ strategies,

-̄h = .h(pn) := /
sn∈Sn

uh(sn)Pr(sn; pn),
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where for conciseness we now write sn := (s1, ...,sn), Sn := S1× ...× Sn, and pn := (p1, ..., pn).
(Maximizing expected payoff is not the only possibility, but we focus on this case for concreteness.)
The strategies are chosen independently, so that Pr(sn; pn), the probability that the agents jointly
choose the configuration of strategies sn, is given by Pr(sn; pn) =0n

h=1 ph,sh .
It is a famous theorem of Nash (1950) that if n is finite and if Kh is finite, h= 1, ...,n, then there

must exist at least one Nash equilibrium for G , possibly involving mixed strategies (e.g., Gibbons,
1992, p. 45).

We map mixed-strategy games to settable systems as follows. As mentioned above, units i are
agent-decision pairs (h, j), so that unit attributes ai include the agent and decision designators, h
and j. Because settings and responses are now probabilities, unit attributes also specify admissible
settings Sh, j as a subset of [0,1].We further discuss ah, j below.

For each agent h, there is a Kh×1 vector of settings and responses. We denote the probabilities
of the mixed strategy for agent h as zh, j, j = 1, ...,Kh, when these are set, and as yh, j, j = 1, ...,Kh,
when these constitute the agent’s best response. Let zh be the Kh×1 vector with elements zh, j, and
let yh be the Kh× 1 vector with elements yh, j. Given all other player’s mixed strategies z(h), agent
h’s best response is

yh = rah(z(h);a) = +h(argmax
zh∈Sh

.h(z1, ...,zn)),

where the maximization is taken over the simplex Sh := {z ∈ [0,1]Kh : /Kh
j=1 z j = 1}. The operator

+h performs a measurable selection, discussed below.
Several aspects of this representation are notable. First, we write the response function rah to

denote that it is the response function for the agent partition 'a := {'a
h, h= 1, ...,n}, where 'a

h =
{(h,1), ...,(h,Kh)}. In contrast, the elementary partition is 'e := {'e

h, j, j = 1, ...,Kh; h = 1, ...,n},
with 'e

h, j := {(h, j)}. The response functions reh, j for the elementary partition describe the best re-
sponse for agent h’s strategy j given not only all other agents’ strategies, but also all other strategies
for agent h. The elementary partition is usually not of particular interest; the agent partition and the
global partition are typically the main objects of interest in this context.

The superscript a in rah and elsewhere to denote the agent partition creates no confusion with the
joint attributes a, as the former is always a superscript, and the latter never is.

Next, we note that the unit attributes ah, j contain admissible values Sh, j ⊂ [0,1], so that 0 ≤
zh, j ≤ 1. This is not enough to fully specify the admissible values for the vector zh, however, as the
probabilities must add up to 1. This means that zh must belong to the simplex Sh. We enforce this
constraint by making Sh a component of each unit attribute ah, j, j = 1, ...,Kh. Just as an attribute
common to all system units is a system attribute, any attribute common to a given subset of units is
an attribute of that subset. Thus, Sh is an attribute of agent h; agent h is that subset of the units with
agent designator equal to h.

An interesting feature of mixed-strategy games is that the set argmaxzh∈Sh .h(z1, ...,zn) can eas-
ily fail to have a unique element. This set thus defines the player’s best-response correspondence,
rather than simply giving a best-response function. We obtain a best-response function by apply-
ing a measurable selection operator +h to the set of maximizers. The operator +h is an attribute,
specifically of agent h; thus, we include it as a component of the unit attributes ah, j, j = 1, ...,Kh.

By definition, the agent is indifferent between elements of the arg-max set; the choice of selec-
tion operator is not crucial. In fact, the selection may be random, implemented by letting +h depend
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on *r ∈)r, so that one has

yh = rah(z(h),*r;a) = +h(argmax
zh∈Sh

.h(z1, ...,zn),*r).

Now consider how this game maps to the PCM. Again, the attributes map to the background
variables u, although now the attributes are, among other things, sets with a continuum of values
and correspondences. Mapping these to a vector of real numbers is problematic, so we simply
view u as a general vector whose elements may be numbers, sets, functions, or correspondences.
The endogenous variables are most appropriately represented as Kh× 1 vectors ph such that v =
{p1, ..., pn}. The elements of f := { f1, ..., fn} are correspondingly vector-valued. These must satisfy
ph = fh(p(h),u) := +h(argmaxph∈Sh .h(p1, ..., pn)).

In order to apply the PCM, we require a unique fixed point. Even when a unique Nash equi-
librium exists, to obtain this as the fixed point requires choosing the selection operators +h so that
they specifically produce the Nash equilibrium response. In the usual situation, the properties of f
determine whether or not a fixed point exists. Here, however, knowledge of the unique fixed point
is required to properly specify +h, hence fh, an awkward reversal signaling that the PCM is not
well-suited to this application. Indeed, the selection cannot be random, a plausible response when
the player is indifferent between different strategies.

An interesting feature of this example is that when the PCM applies, it does so with vector-
valued units rather than the scalar-valued units formally treated by Pearl (2000) or Halpern (2000).
The PCM is thus necessarily silent about what happens when components of an agent’s strategy are
arbitrarily set. In contrast, settable systems apply to partitions both finer and coarser than the agent
partition. (The elements (sets of unit indexes) of a “coarser” partition are unions of the elements of
a “finer” partition. Thus, the agent partition is coarser than the elementary partition and finer than
the global partition.)

Unlike the case of pure-strategy games, there must always be at least one mixed-strategy Nash
equilibrium, so the PCM does not run into the difficulty that there may be no equilibrium. Neverthe-
less, mixed-strategy games can also have multiple Nash equilibria, so the PCM does not apply there.
For a given game, the GPCM does apply to the agent partition, but it does not incorporate equilib-
rium selection mechanisms. In contrast, the settable system framework permits causal analysis at
the level of the agent partition (as well as coarser or finer partitions); represents the unique Nash
equilibrium at the level of the global partition without requiring a selection operator when a unique
equilibrium exists; and otherwise represents the desired responses when a unique mixed-strategy
Nash equilibrium does not exist but conventions or other plausible selection mechanisms apply.

Static games of complete information are the beginning of a sequence of increasingly richer
games, including dynamic games of complete information, static games of incomplete information,
and dynamic games of incomplete information. Each of these games employs progressively stronger
equilibrium concepts that rule out implausible equilibria that would survive under equilibrium con-
cepts suitable for simpler games (Gibbons, 1992, p. 173). These implausible equilibria all satisfy
fixed-point (simple Nash equilibrium) requirements.

The unique fixed point requirement of the PCM thus acts to severely limit its applicability in
game theory, due to the many opportunities for multiple Nash equilibria. Although GPCMs for-
mally apply, they cannot support discourse about causal relations between endogenous variables,
due to the lack of an analog of the potential response function. In contrast, by exploiting attributes
and partitioning, settable systems permit implementation of whichever stronger and/or more re-
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fined equilibria criteria are natural for a given game, together with any natural equilibrium selection
mechanism.

6.3 Infinitely Repeated Dynamic Games

Dynamic games are played sequentially. For example, two players can repeatedly play prisoner’s
dilemma. In infinitely repeated games, play proceeds indefinitely. Clearly, infinite repetition cannot
be handled in a finite system, so the PCM cannot apply.

In infinitely repeated dynamic games of complete and perfect information (see Gibbons, 1992,
Section 2.3.B), players play a given static game in “stages” or periods t = 1,2, .... The period t
payoff to player h is -h,t = uh,t(!1,t , ...,!n,t), where uh,t is player h’s payoff function for period t,
whose arguments are the “actions” ! j,t at time t of all n players. (The strategies of static games
correspond to the actions of dynamic games.) Information is “complete,” as each player knows the
others’ possible actions and payoff functions. Information is “perfect,” as at every t, each player
knows the entire history of play up to that period.

Rational players act to maximize their average present discounted value of payoff,

-̄h = ūh(!1, ...,!n) := (1−1)
,

/
t=1

1t−1uh,t(!1,t , ...,!n,t),

where ! j := {! j,t} denotes player j’s countable sequence of actions, and 0 < 1 < 1 is a “discount
rate” (common across players, for simplicity) that converts payoffs -h,t in period t to a value in
period 1 as 1t−1-h,t . A player’s best response to any collective sequence of actions by the others is
a solution to the problem

max
sh∈Sh

ūh(!1, ...,!n) sub ject to !h,t = sh,t(!t−11 , ...,!t−1n ), t = 1,2, ...,

where Sh is player h’s set of all admissible sequences sh := {sh,t} of “strategy functions” sh,t .
These represent player h’s action in period t as a function only of the prior histories of player
actions, !t−11 , ...,!t−1n . (For t = 1, sh,t is a constant function.) Player h’s best responses are !∗

h,t =

s∗h,t(!
t−1
1 , ...,!∗t−1

h , ...,!t−1n ), t = 1,2, ..., where s∗h := {s∗h,t} is a sequence of best response strategy
functions. (These need not be unique, so s∗h,t may be a correspondence. The player is indifferent
among the different possibilities.)

Such games generally have multiple Nash equilibria. Many of these are implausible, however,
as they involve non-credible threats; and credibility is central to all dynamic games (see Gibbons,
1992, p. 55). Non-credible equilibria can be eliminated by retaining only “subgame perfect” Nash
equilibria. These are Nash equilibria that solve not only the game beginning at time 1, but also the
same game beginning at any time t > 1 (Gibbons, 1992, pp. 94-95). A celebrated result by James
Friedman (1971) ensures the existence of one or more subgame perfect Nash equilibria, provided 1
is close enough to one (see, e.g.. Gibbons, 1992, pp. 97-102). Significantly, such equilibria permit
tacit cooperation, yielding outcomes superior to what players can achieve in the static game played
at each stage.

We nowmap this game to settable systems. The units i now correspond to agent-time pairs (h, t).
As t = 1,2, ..., there is a countable infinity of units. Agent attributes include their admissible actions
and their payoff functions for each period. That is, ai (equivalently ah,t) includes the admissible
sequence of functions Sh, the utility function uh,t , and the discount factor 1. When player actions
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!h,t are set arbitrarily, the settable system represents them as zh,t . When players intelligently choose
their actions, they are denoted yh,t .

The agent partition 'a := {'a
h, h= 1, ...,n}, where 'a

h := {(h,1),(h,2), ...}, represents agents’
best responses recursively as

yh,t = +h,t(s∗h,t(z
t−1
1 , ...,yt−1h , ...,zt−1n ),*r), t = 1,2, ...;h= 1, ...,n,

where +h,t is a measurable selection operator; s∗h,t is the agent’s best response correspondence, which
depends on the action histories of other agents, zt−1(h) , and agent h’s history of prior best responses,
yt−1h ; and the realization*r determines random selections from the best response correspondence for
agent h in period t. Recursive substitution for the elements of the history yt−1h yields a representation
in terms of an agent-partition response function, rah,t , namely

yh,t = rah,t(z
t−1
(h) ,*r;a), t = 1,2, ...;h= 1, ...,n.

The global partition represents whatever selection of the collection of subgame perfect Nash
equilibria is natural or compelling. Equilibrium agent responses are given by the global-partition
response functions rgh,t as

yh,t = rgh,t(*r;a) t = 1,2, ...;h= 1, ...,n.

Notably, this example exploits each feature of stochastic settable systems, including countable
dimension, attributes, partitioning, and pure randomness.

6.4 Settable Systems and Multi-Agent Influence Diagrams

Causal models other than the PCM are available in the machine learning literature. We focus here
on the PCM because of its prevalence and to maintain a sharp focus for this paper.

A framework particularly related to the preceding discussion is that of Koller and Milch (2003)
(KM), who introduce multi-agent influence diagrams (MAIDs) to represent noncooperative games.
In particular, KM provide a graphical criterion for determining a notion of “strategic relevance.”
KM’s “relevance graphs” are related to causal graphs. By casting games in the settable system
framework, we can immediately construct causal graphs for games by applying the conventions of
Section 3.6.2.

The most immediate similarity between settable systems and MAIDs is that they are both ca-
pable of modeling environments in which multiple agents interact. In contrast, “influence diagrams
[. . . ] have been investigated almost entirely in a single-agent setting” (KM, 2003, p. 189-190).
Nevertheless, several features of settable systems distinguish them from MAIDs:

(i) A settable system is an explicit causal framework in which notions of partitioning, settings,
interventions, responses, and causality are formally defined. Furthermore, the interrelations between
these causal notions on the one hand and the notions of optimization, equilibrium, and learning on
the other are made precise. In contrast, there is no formal mention of causality in KM.

(ii)MAIDs build on the “chain rule for Bayesian Networks” (KM, definition 2.2, p. 186). This is
equivalent to assuming a set of (conditional) independence relations involving chance and decision
variables and is necessary for the applicability of the “s-reachability” graphical criterion. On the
other hand, settable systems permit but do not require any assumptions on the joint distribution of
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settings and responses. In particular, responses may admit an aspect of “pure randomness” due to
their direct dependence on the primary variable.

(iii) In KM, an agent’s utility is additive (KM, p. 189-190). Settable systems do not impose this
requirement.

(iv) The KM algorithm for finding Nash equilibria outputs one Nash equilibrium. It selects
an equilibrium arbitrarily if multiple equilibria are found. Further, the algorithm cannot produce
certain equilibria, such as a nonsubgame-perfect equilibrium (KM, p. 216). The settable system
framework can represent principled selections from all relevant Nash equilibria.

We emphasize that the results in KM are very helpful for representing and studying games. In
particular, under the MAID assumptions, the KM results permit an explicit representation of games
and can lead to computational savings.

7. Machine Learning, Optimization, and Equilibrium

A general learning algorithm introduced by Kushner and Clark (1978) (KC) has the form

2̂t+1 = 2̂t +3tMt(4̂t , 2̂t ,5t+1), (11)
4̂t+1 = Rt(4̂t , 2̂t+1,5t+1), t = 0,1,2, ..., (12)

where 2̂t and 4̂t are random vectors, 3t is a random scalar, Mt and Rt are known vector functions,
4̂t := (4̂0, ..., 4̂t), 2̂t+1 := (2̂0, ..., 2̂t+1), and 5t is an observable random vector. Initial values 4̂0
and 2̂0 are random vectors independent of {5t}. KC call this a Robbins and Monro (1951) (RM)
algorithm with feedback (RMF). Equation (11) is an RM procedure; Equation (12) supplies the
feedback. A main focus of interest is the convergence behavior of 2̂t as t → ,.

Chen and White (1998) analyze a version of RMF where each vector takes values in a real
separable infinite-dimensional Hilbert space. We call this an HRMF algorithm. Because of the
flexibility this affords, the HRMF supports nonparametric learning.

The RM procedure emerges when 4̂t has dimension zero, so 2̂t+1 = 2̂t + 3tMt(2̂t ,5t+1), t =
0,1,2, .... This contains recursive least squares (e.g., back-propagation), recursive maximum like-
lihood, and recursive method of moments procedures (e.g., Ljung and Soderstrom, 1983). The
estimated weights are 2̂t ; {5t} is the data sequence; 3t is the “learning rate,” for example, 3t = 1/t;
and Mt determines the learning method (least squares, maximum likelihood, etc.). By permitting
feedback, the RMF accommodates the evolution of internal, possibly hidden states 4̂t ; thus, Kalman
filter methods (Kalman, 1960) are a special case.

The RMF also describes learning in recurrent artificial neural networks (ANNs) (e.g., Elman,
1990; Jordan, 1992; Kuan, Hornik, and White, 1994). Here, the input sequence is {5t}; after t input
observations, network weights are 2̂t , and hidden unit activations are 4̂t . The learning function is
Mt , the learning rate is 3t , and Rt determines hidden unit activations. The allowed randomness of 3t
accommodates simulated annealing.

The RMF and HRMF contain systems with learning by one or more optimizing agents. When
there are multiple agents, the system can embody convergence to equilibrium. Specifically, Chen
and White (1998) provide conditions ensuring system convergence as t → , to Nash equilibria or
to “rational expectations” equilibria. As examples, Chen and White (1998) consider, among others,
a learning agent solving a stochastic dynamic programming problem and the game of fictitious play
with continuum strategies (an infinitely repeated dynamic game of incomplete information). The
applications of the (H)RMF are thus broad; further, the settable systems framework contains both.
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The units i are time-agent-generalized decision triples, (t,h, j). Specifically, at time t, agent
h has generalized decisions indexed by j. Generalized decisions are knowledge (or in Bayesian
frameworks, beliefs) denoted 2̂t,h,k, k = 1, ...,kh, or generalized actions, denoted 4̂t,h,!, ! = 1, ...,!h.
Generalized actions may be actions (as in Section 6.3) or states, as in the Kalman filtering and
recurrent ANN examples. We write 2̂t := (2̂′t,1, ..., 2̂

′
t,n)

′, where 2̂t,h := (2̂t,h,1, ..., 2̂t,h,kh)
′ takes values

in 6h, a subset of Rkh , and 4̂t := (4̂′t,1, ..., 4̂
′
t,n)

′, where 4̂t,h := (4̂t,h,1, ..., 4̂t,h,!h)
′ takes values in 7h, a

subset of R!h , h= 1, ...,n.
In addition to the time-agent-generalized decision indicators (t,h, j), attributes at,h, j include as

components the spaces 6h and 7h and the function 3t :)r →R. They can also include the functions
Mt,h,k or Rt,h,!, as appropriate. We writeMt := (M′

t,1, ...,M′
t,n)

′, withMt,h := (Mt,h,1, ...,Mt,h,kh)
′, and

Rt := (R′
t,1, ...,R′

t,n)
′, with Rt,h := (Rt,h,1, ...,Rt,h,!h)′. The functions Mt,h,k may be a consequence of

an underlying optimization principle, as in our machine learning examples of Section 3. The same
may be true of the functions Rt,h,!.

For the RMF, in Equations (11) and (12), n is finite, as are kh and !h. Because t takes a count-
able infinity of values, we require a countably infinite settable system. For the HRMF, n may be
countably infinite; similarly, kh and/or !h may be countably infinite.

Equations (11) and (12) form a recursive or acyclic system. In such systems, there is a natural
hierarchy of units, in which predecessor units drive successor units. The system evolves naturally
(i.e., without intervention) when the response values at a given level of the hierarchy act as setting
values for successors. Stochastic settable systems are sufficiently flexible to permit this. That is,
given recursivity, for every *r in )r, there exists *s in )s such that Zi(*s) = Yi(*r,*s) for all
i. When * = (*r,*s) has this property, we call * canonical, and we let )c ⊂ ) denote the set
of canonical primary settings *. Response and setting values for a given unit thus coincide on
)c, implementing the natural evolution. In the present example, Yt,h, j and Zt,h, j correspond to an
element of either 2̂t or 4̂t . Fundamental settings are 4̂0, 2̂0, and {5t}, corresponding to elements of
X0( · ,1) := X0( · ,0).

Substituting Equation (11) into Equation (12) yields response functions for the time partition,
't := {'t

1,'
t
2, ...}, where 't

b := {(b,h,k),k = 1, ...,kh;(b,h,!),! = 1, ...,!h;h= 1, ...,n}.
In the HRMF, agents’ generalized decisions take values in real separable infinite-dimensional

Hilbert spaces, so generalized decisions are not just vector-valued; their values may be suitably well-
behaved functions. First, consider how a countably dimensioned settable system accommodates
such objects when there is a single agent with a single action, a function, and a single knowledge
element, also a function. We represent such functions by a countable vector whose elements are
coefficients of terms in a suitable series representation, for example, a Fourier series. Further, this
same approach applies without exhausting the dimensionality of the settable system, even when
there is a countable infinity of agents, each having a countable infinity of knowledge elements and
actions, which are themselves elements of real separable infinite-dimensional Hilbert spaces.

8. Summary and Concluding Remarks

This paper introduces settable systems, an extension of Pearl’s (2000) causal model. Settable sys-
tems and the PCM share many common features. For example, in both frameworks the variables of
the system have a dual role (set or free), there are mechanisms for specifying which variables are set
or free (submodels and the do operator in the PCM, partitioning in settable systems), and attributes

1794



SETTABLE SYSTEMS

may be accommodated (as background variables in the PCM and as a priori constants in settable
systems).

The key difference between the PCM and settable systems is the way these common features
interrelate to one another. Although we point out a number of limitations of the PCM in motivating
settable systems, settable systems strictly build on the percepts of the PCM. Our intent is to show
how modest reconfiguration and refinement of the elements of the PCM considerably enhance its
explanatory power.

As we demonstrate, the PCM encounters obstacles when we attempt to apply it to certain ma-
chine learning examples. These limitations motivate particular features of settable systems. For
example, the unique fixed point requirement of the PCM is a significant limitation. Like Halpern’s
(2000) GPCM, settable systems do not require the existence of a unique fixed point. The structure
of settable systems nevertheless leads to natural notions of counterfactuals, interventions, direct
causes, direct effects, and total effects. In contrast, the absence of the potential response function in
the GPCM precludes causal discourse.

Another appealing feature of settable systems relative to the PCM is its ability to provide a
causal role for structurally exogenous variables. This capability arises because settable systems dis-
tinguish between attributes and fundamental settings. In contrast, the PCM lumps together attributes
and background variables, so neither can play a causal role. The PCM is silent on whether to treat
variables as exogenous or endogenous and on how to specify attributes. In settable systems, the gov-
erning principles (e.g., optimization and equilibrium) provide explicit guidance for distinguishing
exogenous variables and endogenous variables. Attributes are unambiguously defined as constants
(numbers, functions, sets, etc.) associated with system units that define fundamental aspects of the
decision problem represented by the settable system.

Our examples in game theory (Section 6) and machine learning with feedback (Section 7) fur-
ther show that settable systems apply directly to systems where learning and/or optimizing agents
interact in a process where outcomes satisfy or converge to appropriate equilibria. Settable systems
thus provide rigorous foundations for causal analysis in these empirically relevant and computation-
ally important systems.

These foundations are only a first step in analyzing phenomena conforming to settable systems.
A particularly important research area is the study of general primitive conditions ensuring the
identification of specific causal effects of interest under varying assumptions about the observability
of causes of interest and other ancillary causes and under particular patterns of causal relation.
In this context, identification means the equality of causally meaningful objects (e.g., expected
effects) with corresponding stochastically meaningful objects, that is, quantities expressible solely
as a functional of the joint distribution of observable random variables. When identification holds, it
becomes possible to estimate various causal effects from data. Recent work of White (2006), White
and Chalak (2007), Schennach et al. (2008), Chalak and White (2008a), and White and Kennedy
(2009) provides results for identification and estimation of causal effects under varying assumptions.

Key to ensuring identification of effects of interest in all of these studies are specific indepen-
dence or conditional independence conditions, for example, the conditional independence of causes
of interest from unobservable ancillary causes given other observable variables (covariates). Chalak
and White (2008b) provide primitive conditions on recursive settable system structures (in particu-
lar the response functions) that either ensure or rule out such independence or conditional indepen-
dence relations. In pursuing this goal, notions of indirect and total effects of non-primary causes
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emerge naturally and play key roles. These results also have direct implications for d-separation
and D-separation (e.g., Geiger, Verma, and Pearl, 1990; Pearl, 2000, pp. 16-17).

These studies by no means exhaust the opportunities for deeper understanding and application
of settable systems. For example, all of the studies of identification and estimation just mentioned
are for recursive structures. Obtaining analogous results for non-recursive structures is of particular
interest.

At the outset, we offered this paper as part of a cross-disciplinary dialog between the eco-
nomics/econometrics community and the machine learning community, with the hope that both
communities might gain thereby. For economists, the benefits are clear and precise notions of
causal effects that apply broadly to economic structures and, in particular, to the powerful struc-
tures of game theory. These causal notions draw heavily on concepts at the heart of the PCM, but
surmount a number of limitations that may have held back economists’ acceptance of the PCM.
For those in the machine learning community, one benefit is the extension of causal notions to sys-
tems fundamentally involving optimization, equilibrium, and learning, features common to a broad
range of application domains relevant to machine learning. We also hope that the machine learning
community, which has so far paid only limited attention to game theory, may begin to consider
the possibilities it offers for understanding empirical phenomena and for distributed and emergent
computation.
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Appendix A.

For completeness, we provide a formal definition of a non-stochastic settable system.

Definition 2 (Nonstochastic Settable System) Let n ∈ N̄+, and let A be a non-empty set. For each
i = 1, ...,n, let ai be a fixed element of A, such that ai includes a component Si, a multi-element
Borel-measurable subset of R.

Let m ∈ N̄. For each k = 1, ...,m, let a0,k be a fixed element of A, such that a0,k includes a
component S0,k, a multi-element Borel-measurable subset of R. Write a0 := (a0,1, ...,a0,m) and
a := (a0,a1, ...,an) ∈ A := (×m

k=1A)× (×n
i=1A).

For each k = 1, ...,m, let z0,k ∈ S0,k, and put y0,k := z0,k. Write z0 := (z0,1, ...,z0,m) and y0 := z0.
Let'= {'b} be a partition of {1, ...,n}, with B := #'∈ N̄+, let !b := #'b, and let a determine

the multi-element Borel measurable set S'(b)(a) ⊂ × j/∈'bS j ×m
k=1S0,k, b = 1, ...,B. Suppose there

exist measurable functions

r'[b]( · ;a) :×i∈'bSi×S
'
(b)(a) → R

!b b= 1, ...,B,
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and real vectors y'[b] ∈ ×i∈'bSi such that for each z'(b) ∈ S'(b)(a),

r'[b](y
'
[b],z

'
(b);a) = 0, b= 1, ...,B.

Write X'
0 (0) := y0, X'

0 (1) := z0, X'
i (0) := y'i , X'

i (1) := z'i , i= 1, ...,n, so that X'
0 : {0,1}→

×m
k=1S0,k and X

'
i : {0,1}→ Si, i= 1, ...,n. Finally, write

X' := (X'
0 ,X'

1 , , ...,X'
n ).

Then S' := {(A,a),(',X')} is a nonstochastic settable system.
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Abstract
We describe distributed algorithms for two widely-used topic models, namely the Latent Dirichlet
Allocation (LDA) model, and the Hierarchical Dirichet Process (HDP) model. In our distributed
algorithms the data is partitioned across separate processors and inference is done in a parallel,
distributed fashion. We propose two distributed algorithms for LDA. The first algorithm is a
straightforward mapping of LDA to a distributed processor setting. In this algorithm processors
concurrently perform Gibbs sampling over local data followed by a global update of topic counts.
The algorithm is simple to implement and can be viewed as an approximation to Gibbs-sampled
LDA. The second version is a model that uses a hierarchical Bayesian extension of LDA to di-
rectly account for distributed data. This model has a theoretical guarantee of convergence but is
more complex to implement than the first algorithm. Our distributed algorithm for HDP takes
the straightforward mapping approach, and merges newly-created topics either by matching or by
topic-id. Using five real-world text corpora we show that distributed learning works well in prac-
tice. For both LDA and HDP, we show that the converged test-data log probability for distributed
learning is indistinguishable from that obtained with single-processor learning. Our extensive ex-
perimental results include learning topic models for two multi-million document collections using
a 1024-processor parallel computer.
Keywords: topic models, latent Dirichlet allocation, hierarchical Dirichlet processes, distributed
parallel computation

1. Introduction

Very large data sets, such as collections of images or text documents, are becoming increasingly
common, with examples ranging from collections of online books at Google and Amazon, to the
large collection of images at Flickr. These data sets present major opportunities for machine learn-
ing, such as the ability to explore richer and more expressive models than previously possible, and
provide new and interesting domains for the application of learning algorithms.

However, the scale of these data sets also brings significant challenges for machine learning,
particularly in terms of computation time and memory requirements. For example, a text corpus
with one million documents, each containing one thousand words, will require approximately eight
GBytes of memory to store the billion words. Adding the memory required for parameters, which
usually exceeds memory for the data, creates a total memory requirement that exceeds that available

c©2009 David Newman, Arthur Asuncion, Padhraic Smyth and Max Welling.
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on a typical desktop computer. If one were to assume that a simple operation, such as computing
a probability vector over categories using Bayes rule, takes on the order of 10−6 seconds per word,
then a full pass through the billion words would take 1000 seconds. Thus, algorithms that make
multiple passes through the data, for example clustering and classification algorithms, will have run
times in days for this sized corpus. Furthermore, for small to moderate sized document sets where
memory is not an issue, it would be useful to have algorithms that could take advantage of desktop
multiprocessor/multicore technology to learn models in near real-time.

An obvious approach for addressing these time and memory issues is to distribute the learning
algorithm over multiple processors. In particular, with P processors, it is somewhat trivial to address
the memory issue by distributing 1

P of the total data to each processor. However, the computation
problem remains non-trivial for a fairly large class of learning algorithms, namely how to combine
local processing on each processor to arrive at a useful global solution.

In this general context we investigate distributed algorithms for two widely-used unsupervised
learning models: the Latent Dirichlet Allocation (LDA) model, and the Hierarchical Dirichet Pro-
cess (HDP) model. LDA and HDP models are arguably among the most successful recent learning
algorithms for analyzing discrete data such as bags of words from a collection of text documents.
However, they can take days to learn for large corpora, and thus, distributed learning would be
particularly useful.

The rest of the paper is organized as follows: In Section 2 we review the standard derivation
of LDA and HDP. Section 3 presents our two distributed algorithms for LDA and one distributed
algorithm for HDP. Empirical results are provided in Section 4. Scalability results are presented
in Section 5, and further analysis of distributed LDA is provided in Section 6. A comparison with
related models is given in Section 7. Finally, Section 8 concludes the paper.

2. Latent Dirichlet Allocation and Hierarchical Dirichlet Process Model

We start by reviewing the LDA and HDP models. Both LDA and HDP are generative probabilistic
models for discrete data such as bags of words from text documents—in this context these models
are often referred to as topic models. To illustrate the notation, we refer the reader to the graphical
models for LDA and HDP shown in Figure 1.

LDA models each of D documents in a collection as a mixture over K latent topics, with each
topic being a multinomial distribution over a vocabulary of W words. For document j, we first
draw a mixing proportion ! j from a Dirichlet with parameter ". For the ith word in the document,
a topic zi j = k is drawn with probability !k| j. Word xi j is then drawn from topic zi j, with xi j taking
on value w with probability #w|zi j . A Dirichlet prior with parameter $ is placed on the word-topic
distributions #k.

Thus, the generative process for LDA is given by

! j ∼D["], #k ∼D[$], zi j ∼ ! j, xi j ∼ #zi j . (1)

To avoid clutter we denote sampling from a Dirichlet ! j∼D["] as shorthand for [!1| j, . . . ,!K| j]∼
D[", . . . ,"], and likewise for #. In this paper, we use symmetric Dirichlet priors for simplicity, un-
less specified otherwise. The full joint distribution over all parameters and variables is

p(x,z,!,#|",$) =%
j

&(K")

&(")K
%k !

Nk j+"−1
k| j %

k

&(W$)
&($)W

%w #
Nwk+$−1
w|k , (2)
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Figure 1: Graphical models for LDA (left) and HDP (right). Observed variables (words) are shaded,
and hyperparameters are shown in squares.

Description
D Number of documents in collection
W Number of distinct words in vocabulary
N Total number of words in collection
K Number of topics
xi j ith observed word in document j
zi j Topic assigned to xi j
Nwk Count of word assigned to topic
Nk j Count of topic assigned in document
#k Probability of word given topic k
! j Probability of topic given document j

Table 1: Description of commonly used variables.

where Nwk j = #{i : xi j = w,zi j = k}, and we use the convention that missing indices are summed
out. Nk j = )wNwk j and Nwk = ) j Nwk j are the two primary count arrays used in computations,
representing the number of words assigned to topic k in document j, and the number of times word
w is assigned to topic k in the corpus, respectively. For ease of reading we list commonly used
variables in Table 1.

Given the observed words x= {xi j}, the task of Bayesian inference for LDA is to compute the
posterior distribution over the latent topic assignments z= {zi j}, the mixing proportions ! j, and the
topics #k. Approximate inference for LDA can be performed either using variational methods (Blei
et al., 2003) or Markov chain Monte Carlo methods (Griffiths and Steyvers, 2004). In this paper we
focus on Markov chain Monte Carlo algorithms for approximate inference. MCMC is widely used
as an inference method for a variety of topic models, for example Rosen-Zvi et al. (2004), Li and
McCallum (2006), and Chemudugunta et al. (2007) all use MCMC for inference. In the MCMC
context, the usual procedure is to integrate out the mixtures ! and topics # in (2)—a procedure called
collapsing—and just sample the latent variables z. Given the current state of all but one variable zi j,
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the conditional probability of zi j is

p(zi j = k|z¬i j,x,",$) *
N¬i j
wk +$

)wN
¬i j
wk +W$

(

N¬i j
k j +"

)

, (3)

where the superscript ¬i j means that the corresponding word is excluded in the counts.
HDP is a collection of Dirichlet Processes which share the same topic distributions and can be

viewed as the non-parametric extension of LDA. The advantage of HDP is that the number of topics
is determined by the data. The HDP model is obtained by taking the following model in the limit as
K goes to infinity. Let "k be top level Dirichlet variables sampled from a Dirichlet with parameter
'/K. The topic mixture for each document, ! j, is drawn from a Dirichlet with parameters ("k.
The word-topic distributions #k are drawn from a base Dirichlet distribution with parameter $. As
in LDA, zi j is sampled from ! j, and word xi j is sampled from the corresponding topic #zi j . The
generative process is given by

"k ∼D['/K], ! j ∼ D[("k], #k ∼ D[$], zi j ∼ ! j, xi j ∼ #zi j .

The posterior distribution is sampled using the direct assignment sampler for HDP described
in Teh et al. (2006). As was done for LDA, both ! and # are integrated out, and zi j is sampled from
the following conditional distribution:

p(zi j = k|z¬i j,x,",$,() *











N¬i j
wk +$

)wN
¬i j
wk +W$

(

N¬i j
k j +("k

)

, if k previously used

("new
W , if k is new.

(4)

The sampling scheme for "k is also detailed in Teh et al. (2006). Note that a small amount of
probability mass proportional to "new is reserved for the instantiation of new topics. While HDP is
defined to have infinitely many topics, the sampling algorithm only instantiates topics as needed.

2.1 Need for Distributed Algorithms

One could argue that it is trivial to distribute non-collapsed Gibbs sampling, because sampling
of zi j can happen independently given ! j and #k, and therefore can be done concurrently. In the
non-collapsed Gibbs sampler, one samples zi j given ! j and #k, and then samples ! j and #k given zi j.
Furthermore, if individual documents are not spread across different processors, one can marginalize
over just ! j, since ! j is processor-specific. In this partially collapsed scheme, the latent variables zi j
on each processor can be concurrently sampled, where the concurrency is over processors.

Unfortunately, the non-collapsed and partially collapsed Gibbs samplers exhibit slow conver-
gence due to the strong dependencies between the parameters and latent variables. Generally, we
expect faster mixing as more variables are collapsed (Liu et al., 1994; Casella and Robert, 1996).
Figure 2 shows, using one of the data sets used throughout our paper, that the log probability of
test data (measured as perplexity, which is defined in Section 4) of the non-collapsed and partially
collapsed samplers converges more slowly than the fully collapsed sampler.

The slow convergence of partially collapsed and non-collapsed Gibbs samplers motivates the
need to devise distributed algorithms for fully collapsed Gibbs samplers. In the following section
we introduce distributed topic modeling algorithms that take advantage of the benefits of collapsing
both ! and #.
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Figure 2: On the NIPS data set using K = 20 topics, the fully collapsed Gibbs sampler (solid line)
converges faster than the partially collapsed (circles) and non-collapsed (triangles) sam-
plers.

3. Distributed Algorithms for Topic Models

We introduce algorithms for LDA and HDP where the data, parameters, and computation are dis-
tributed over distinct processors. We distribute the D documents over P processors, with approx-
imately DP = D

P documents on each processor. Documents are randomly assigned to processors,
although as we will see later, the assignment of documents to processors—ranging from random to
highly non-random or adversarial—appears to have little influence on the results. This indifference
is somewhat understandable given that converged results from Gibbs sampling are independent of
sampling order.

We partition the words from the D documents into x= {x1, . . . ,xp, . . . ,xP} and the correspond-
ing topic assignments into z= {z1, . . . ,zp, . . . ,zP}, where processor p stores xp, the words from doc-
uments j = (p−1)DP+1, . . . , pDP, and zp, the corresponding topic assignments. Topic-document
counts Nk j are likewise distributed as Nk jp. The word-topic counts Nwk are also distributed, with
each processor keeping a separate local copy Nwkp.

3.1 Approximate Distributed Latent Dirichlet Allocation

The difficulty of distributing and parallelizing over Gibbs sampling updates (3) lies in the fact that
Gibbs sampling is a strictly sequential process. To asymptotically sample from the posterior distri-
bution, the update of any topic assignment zi j can not be performed concurrently with the update
of any other topic assignment zi′ j′ . But given the typically large number of word tokens compared
to the number of processors, to what extent will the update of one topic assignment zi j depend on
the update of any other topic assignment zi′ j′? Our hypothesis is that this dependence is weak, and
therefore we should be able to relax the requirement of sequential sampling of topic assignments
and still learn a useful model. One can see this weak dependence in the following common situation.
If two processors are concurrently sampling, but sampling different words in different documents
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Algorithm 1 AD-LDA
repeat
for each processor p in parallel do
Copy global counts: Nwkp ← Nwk
Sample zp locally: LDA-Gibbs-Iteration(xp, zp, Nk jp, Nwkp, ", $)

end for
Synchronize
Update global counts: Nwk ← Nwk +)p(Nwkp−Nwk)

until termination criterion satisfied

(i.e., wi j &= wi′ j′), then concurrent sampling will be very close to sequential sampling because the
only term affecting the order of operations is the total count of topics )wNwk in the denominator of
(3).

The pseudocode for our Approximate Distributed LDA (AD-LDA) algorithm is shown in Algo-
rithm 1. After distributing the data and parameters across processors, AD-LDA performs simultane-
ous LDA Gibbs sampling on each of the P processors. After processor p has swept through its local
data and updated topic assignments zp, the processor has modified count arrays Nk jp and Nwkp. The
topic-document counts Nk jp are distinct because of the document index, j, and will be consistent
with the topic assignments z. However, the word-topic counts Nwkp will in general be different on
each processor, and not globally consistent with z. To merge back to a single and consistent set
of word-topic counts, we perform a reduce operation on Nwkp across all processors to update the
global counts. After the synchronization and update operations, each processor has the same val-
ues in the Nwkp array which are consistent with the global vector of topic assignments z. Note that
Nwkp is not the result of P separate LDA models running on separate data. In particular, each word-
topic count array reflects all the counts, not just those local to that processor, so for every processor
)wk Nwkp = N, where N is the total number of words in the corpus. As in LDA, the algorithm can
terminate either after a fixed number of iterations, or based on some suitable MCMC convergence
metric.

We chose the name Approximate Distributed LDA because in this algorithm we are no longer
asymptotically sampling from the true posterior, but to an approximation of the true posterior.
Nonetheless, we will show in our experimental results that the approximation made by Approxi-
mate Distributed LDA works very well.

3.2 Hierarchical Distributed Latent Dirichlet Allocation

In AD-LDAwe constructed an algorithm where each processor is independently computing an LDA
model, but at the end of each sweep through a processor’s data, a consistent global array of topic
counts Nwk is reconstructed. This global array of topic counts could be thought of as a parent topic
distribution, from which each processor draws its own local topic distribution.

Using this intuition, we created a Bayesian model reflecting this structure, as shown in Fig-
ure 3. Our Hierarchical Distributed LDA model (HD-LDA) places a hierarchy over word-topic
distributions, with +k being the global or parent word-topic distribution and ,kp the local word-
topic distributions on each processor. The local word-topic distributions ,kp are drawn from +k
according to a Dirichlet distribution with a topic-dependent strength parameter $k, for each topic
k = 1 . . .K. The model on each processor is simply an LDA model. The generative process is given
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Figure 3: Graphical model for Hierarchical Distributed Latent Dirichlet Allocation.

by:

$k ∼ G [a,b], "p ∼ G [c,d], ! jp ∼D["p], +k ∼D['], ,kp ∼D[$k+k], (5)
zi jp ∼ ! jp, xi jp ∼ ,zi jp p.

From this generative process, we derive Gibbs sampling equations for HD-LDA. The derivation
is based on the Teh et al. (2006) sampling schemes for Hierarchical Dirichlet Processes. As was
done for LDA, we start by integrating out , and !. The collapsed distribution of zp and xp on
processor p is given by:

p(zp,xp|"p,$,+) =%
j

[

&(K"p)
&(Njp+K"p)%k

&(Nk jp+"p)
&("p)

]

%
k

[

&($k)
&(Nkp+$k)

%
w

&(Nwkp+$k+w|k)

&($k+w|k))

]

. (6)

From this we derive the conditional probability for sampling a topic assignment zi jp. Unlike
AD-LDA, the topic assignments on any processor are now conditionally independent of the topic
assignments on the other processors given +, thus allowing each processor to sample zp concur-
rently. The conditional probability of zi jp is

p(zi jp = k|z¬i jpp ,x,"p,$,+) = (N¬i jp
k jp +"p)

(N¬i jp
wkp +$k+w|k)

(N¬i jp
kp +$k)

.

The full derivation of the Gibbs sampling equations for HD-LDA is provided in Appendix A,
which lists the complete set of sampling equations for "p, $k, and +k.

The pseudocode for our Hierarchical Distributed LDA algorithm is given in Algorithm 2. Each
variable in this model is either local or global, depending on whether inference for the variable
is computed locally on a processor or globally, requiring information from all processors. Local
variables include ", !, ,, z, and x. Global variables include $ and +. Each processor uses Gibbs
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sampling to sample its local variables concurrently. After each sweep through the processor’s data,
the global variables are sampled. Note that, unlike AD-LDA, HD-LDA is performing strictly correct
sampling for its model.

HD-LDA can be viewed as a mixture model with P LDAmixture components with equal mixing
weights. In this view the data have been hard-assigned to their respective clusters (i.e., processors),
and the parameters of the clusters are generated from a shared prior distribution.

Algorithm 2 HD-LDA
repeat
for each processor p in parallel do
Sample zp locally: LDA-Gibbs-Iteration(xp, zp, Nk jp, Nwkp, "p, $k+k)
Sample "p locally

end for
Synchronize
Sample: $k, +k
Broadcast: $k, +k

until termination criterion satisfied

3.3 Approximate Distributed Hierarchical Dirichlet Processes

Our third distributed algorithm, Approximate Distributed HDP, takes the same approach as AD-
LDA. Processors concurrently run HDP for a single sweep through their local data. After all of
the processors sweep through their data, a synchronization and update step is performed to create a
single set of globally-consistent word-topic counts Nwk. We refer to the distributed version of HDP
as AD-HDP, and provide the pseudocode in Algorithm 3.

Unlike AD-LDA, which uses a fixed number of topics, individual processors in AD-HDP may
instantiate new topics during the sampling phase, according to the HDP sampling Equation (4).
During the synchronization and update step, instead of treating each processor’s new topics as dis-
tinct, we merge new topics that were instantiated on different processors. Merging new topics helps
limit unnecessary growth in the total number of topics and allows AD-HDP to produce more of a
global model.

Algorithm 3 AD-HDP
repeat
for each processor p in parallel do
Sample zp locally: HDP-Gibbs-Iteration(xp, zp, Nk jp, Nwkp, "kp, $, ', ()
Report Nwkp, "kp to master node

end for
Synchronize
Update global counts (and merge new topics): Nwk ← Nwk +)p(Nwkp−Nwk)
"k ← ()p"kp)/P
Sample: (, "k, '
Broadcast: Nwk, "k, ', (

until termination criterion satisfied
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Figure 4: The simplest method to merge new topics in AD-HDP is by integer topic label.

There are several ways to merge newly created topics on each processor. A simple way—
inspired by AD-LDA—is to merge new topics based on their integer topic label. A more compli-
cated way is to match new topics across processors based on topic similarity.

In the first merging scheme, new topics are merged based on their integer topic label. For exam-
ple, assume that we have three processors, and at the end of a sweep through the data, processor one
has 8 new topics, processor two has 6 new topics, and processor three has 7 new topics. Then dur-
ing synchronization, all these new topics would be aligned by topic label and their counts summed,
producing 8 new global topics, as shown in Figure 4.

While this merging of new topics by topic-id may seem suboptimal, it is computationally simple
and efficient. We will show in the next section that this merging generally works well in practice,
even when processors only have a small amount of data. We suggest that even if the merging by
topic-id is initially quite random, the subsequent dynamics align the topics in a sensible manner. We
will also show that AD-HDP ultimately learns models with similar perplexity to HDP, irrespective
of how new topics are merged.

We also investigate more complicated schemes for merging new topics in AD-HDP, beyond the
simple approach of merging by topic-id. Instead of aligning new topics based topic-id it is possible
to align new topics using a similarity metric such as symmetric Kullback-Leibler divergence. How-
ever, finding the optimal matching of topics in the case where P> 2 is NP-hard (Burkard and Çela,
1999). Thus, we consider approximate schemes: bipartite matching using a reference processor,
and greedy matching.

In the bipartite matching scheme, we select a reference processor and perform bipartite matching
between every processor’s new topics and the set of new topics of the reference processor. The
bipartite match is computed using the Hungarian algorithm, which runs in O(T 3), producing an
overall complexity of O(PT 3) where T is the maximum number of new topics on a processor. We
implemented this scheme but did not find any improvement over AD-HDP with merging by topic-id.

In the greedy matching scheme, new topics on each processor are sequentially compared to a
global set of new topics. This global set is initialized to the first processor’s set of new topics. If
a new topic is sufficiently different from every topic in the global set, the number of topics in the
global set is incremented; otherwise, the counts for that new topic are added to those from the closest
match in the global set. A threshold is used to determine whether a new topic is sufficiently different
from another topic. The worst case complexity of this algorithm is O(P2T 2)—this is the case where
every new topic is found to be different from every other new topic in the global set. Increasing this
threshold will make it more likely for new topics to merge with the topics already in the global set
(instead of incrementing the set), causing the expected running time of this merging algorithm to
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Algorithm 4 Greedy Matching of New Topics for AD-HDP
Initialize global set of new topics, G, to be processor 1’s set of new topics
for p = 2 to P do
for topic t in processor p’s set of new topics do
Initialize score array
for topic g in G do
score[g] = symmetric-KL-divergence(t,g)

end for
if min(score) < threshold then
Add t’s counts to the topic in G corresponding to min(score)

else
Augment G with the new topic t

end if
end for

end for

KOS NIPS WIKIPEDIA PUBMED NEWSGROUPS
Dtrain 3,000 1,500 2,051,929 8,200,000 19500
W 6,906 12,419 120,927 141,043 27,059
N 467,714 2,166,058 344,941,756 737,869,083 2,057,207
Dtest 430 184 - - 498

Table 2: Characteristics of data sets used in experiments.

be linear in the number of processors. The pseudocode of this greedy matching scheme is shown in
Algorithm 4. This algorithm is run after each iteration of AD-HDP to produce a global set of new
topics. We show in the next section that this greedy matching scheme significantly improves the
rate of convergence for AD-HDP.

4. Experiments

The purpose of our experiments is to investigate how our distributed topic model algorithms, AD-
LDA, HD-LDA and AD-HDP, perform when compared to their sequential counterparts, LDA and
HDP. We are interested in two aspects of performance: the quality of the model learned, measured
by log probability of test data; and the time taken to learn the model. Our primary data sets for these
experiments were KOS blog entries, from dailykos.com, and NIPS papers, from books.nips.cc.
We chose these relatively small data sets to allow us to perform a large number of experiments.
Both data sets were split into a training set and a test set. Size parameters for these data sets
are shown in Table 2. For each corpus, D is the number of documents, W is the vocabulary size
and N is the total number of words. Two larger data sets WIKIPEDIA, from en.wikipedia.org,
and PUBMED, from pubmed.gov were used for speedup experiments, described in Section 5. For
precision-recall experiments we used the NEWSGROUPS data set, taken from the UCI Machine
Learning Repository. All the data sets used in this paper can be downloaded from the UCI Machine
Learning Repository (Asuncion and Newman, 2007).
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Using the KOS and NIPS data sets, we computed test set perplexities for a range of topics K, and
for numbers of processors, P, ranging from 1 to 3000. The distributed algorithms were initialized by
first randomly assigning topics to words in z, then counting topics in documents, Nk jp, and words in
topics, Nwkp, for each processor. For each run of LDA, AD-LDA, and HD-LDA, a sample was taken
at 500 iterations of the Gibbs sampler, which is well after the typical burn-in period of the initial
200-300 iterations. For each run of HDP and AD-HDP, we allow the Gibbs sampler to run for 3000
iterations, to allow the number of topics to grow. In our perplexity experiments, multiple processors
were simulated in software by separating data, running sequentially through each processor, and
simulating the global synchronization and update steps. For the speedup experiments, computations
were run on 64 to 1024 processors on a 2000+ processor parallel supercomputer.

The following set of hyperparameters was used for the experiments, where hyperparameters are
shown as variables in squares in the graphical models in Figures 1 and 3. For AD-LDA we set "=
0.1 and $ = 0.01. For AD-HDP we set $ = 0.01, ( ∼Gamma(2,1) and ' ∼Gamma(10,1). While
( and ' could have also been fixed, resampling these hyperparameters allows for more robust topic
growth, as described by Teh et al. (2006). For LDA and AD-LDA we fixed the hyperparameters "
and $, but these priors could also be learned using sampling.

Selection of hyperparameters for HD-LDA was guided by our experience with AD-LDA. For
AD-LDA, )wNwkp ≈ N

K , but for HD-LDA )wNwkp ≈ N
PK , so we choose a and b to make the mode

of $k = (P−1)N
PK to simulate the inclusion of global counts in Nwkp as is done in AD-LDA. We set

'= 2/K, because it is important to scale ' by the number of topics to prevent oversmoothing when
the counts are spread thinly among many topics. Finally, we choose c and d to make the mode of
"p = 0.1, matching the value of " used in our LDA and AD-LDA experiments. Specifically, we set:
a= (P−1)N

PK , b= 1, c= 0.1∗10+1 and d = 0.1.
To systematically evaluate our distributed topic model algorithms, AD-LDA, HD-LDA and

AD-HDP, we measured performance using test set perplexity, which is computed as Perp(xtest) =
exp(− 1

Ntest log p(x
test)). For every test document, half the words at random are designated for fold-

in, and the remaining words are used as test. The document mixture ! j is learned using the fold-in
part, and log probability of the test words is computed using this mixture, ensuring that the test
words are not used in estimation of model parameters. For AD-LDA, the perplexity computation
exactly follows that of LDA, since a single set of topic counts Nwk are saved when a sample is taken.
In contrast, all P copies of Nwkp are required to compute perplexity for HD-LDA. Except where
stated, perplexities are computed for all algorithms using S = 10 samples from the posterior from
ten independent chains using

log p(xtest) =)
j,w
Ntestjw log

1
S)s )k

!sk| j#
s
w|k, !sk| j =

"+Ns
k j

K"+Ns
j
, #sw|k =

$+Ns
wk

W$+Ns
k
. (7)

This perplexity computation follows the standard practice of averaging over multiple chains when
making predictions with LDA models trained via Gibbs sampling, as discussed in Griffiths and
Steyvers (2004). Averaging over ten samples significantly reduces perplexity compared to using a
single sample from one chain. While we perform averaging over multiple samples to improve the
estimate of perplexity, we have also observed similar relative results across our algorithms when we
use a single sample to compute perplexity.

Analogous perplexity calculations are used for HD-LDA and AD-HDP. With HD-LDA we ad-
ditionally compute processor-specific responsibilities, since test documents do not belong to any
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particular processor, unlike the training documents. Each processor learns a document mixture ! jp
using the fold-in part for each test document. For each processor, the likelihood is calculated over
the words in the fold-in part in a manner analogous to (7), and these likelihoods are normalized to
form the responsibilities, rp. To compute perplexity, we compute the likelihood over the test words,
using a responsibility-weighted average of probabilities over all processors:

log p(xtest) =)
j,w
Ntestjw log)

p

rp
S )s )k

!sk| jp#
s
w|kp

where !sk| jp =
"p+Ns

k jp

K"p+Ns
jp

, #sw|kp =
$k+w|k +Ns

wkp

$k +Ns
kp

.

Computing perplexity in this manner prevents the possibility of seeing or using test words during
the training and fold-in phases.

4.1 Perplexity

The perplexity results for KOS and NIPS in Figure 5 clearly show that the model perplexity is
essentially the same for the distributed models AD-LDA and AD-HDP at P = 10 and P = 100 as
their single-processor versions at P= 1. The figures show the test set perplexity, versus number of
processors, P, for different numbers of topics K for the LDA-type models, and also for the HDP-
models which learn the number of topics. The P = 1 perplexity is computed by LDA (circles) and
HDP (triangles), and we use our distributed algorithms—AD-LDA (crosses), HD-LDA (squares),
and AD-HDP (stars)—to compute the P= 10 and P= 100 perplexities. The variability in perplexity
as a function of the number of topics is much greater than the variability due to the number of
processors. Note that there is essentially no perplexity difference between AD-LDA and HD-LDA.
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Figure 5: Test perplexity on KOS (left) and NIPS (right) data versus number of processors P. P= 1
corresponds to LDA and HDP. At P= 10 and P= 100 we show AD-LDA, HD-LDA and
AD-HDP.

Even in the limit of a large number of processors, the perplexity for the distributed algorithms
matches that for the sequential version. In fact, in the limiting case of just one document per
processor, P= 3000 for KOS and P= 1500 for NIPS, we see that the perplexities of AD-LDA are
generally no different to those of LDA, as shown in the rightmost point in each curve in Figure 6.
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Figure 6: AD-LDA test perplexity versus number of processors up to the limiting case of number
of processors equal to number of documents in collection. Left plot shows perplexity for
KOS and right plot shows perplexity for NIPS.

AD-HDP instantiates fewer topics but produces a similar perplexity to HDP. The average num-
ber of topics instantiated by HDP on KOS was 669 while the average number of topics instantiated
by AD-HDP was 490 (P = 10) and 471 (P = 100). For NIPS, HDP instantiated 687 topics while
AD-HDP instantiated 569 (P = 10) and 569 (P = 100) topics. AD-HDP instantiates fewer topics
because of the merging across processors of newly-created topics. The similar perplexity results for
AD-HDP compared to HDP, despite the fewer topics, is partly due to the relatively small probability
mass in many of the topics.

Despite no formal convergence guarantees, the approximate distributed algorithms, AD-LDA
and AD-HDP, converged to good solutions in every single experiment (of the more than one hun-
dred) we conducted using multiple real-world data sets. We also tested both our distributed LDA
algorithms with adversarial/non-random distributions of topics across processors using synthesized
data. One example of an adversarial distribution of documents is where each document only uses a
single topic, and these documents are distributed such that processor p only has documents that are
about topic p. In this case the distributed topic models have to learn the correct set of P topics, even
though each processor only sees local documents that pertain to just one of the topics. We ran mul-
tiple experiments, starting with 1000 documents that were hard-assigned to K = 10 topics (i.e., each
document is only about one topic), and distributing the 1000 documents over P = 10 processors,
where each processor contained documents belonging to the same topic (an analogy is one proces-
sor only having documents about sports, the next processor only having documents about arts, and
so on). The perplexity performance of AD-LDA and HD-LDA under these adversarial/non-random
distribution of documents was as good as the performance when the documents were distributed
randomly, and as good as the performance of single-processor LDA.

To demonstrate that the low perplexities obtained from the distributed algorithms with P =
100 processors are not just due to averaging effects, we split the NIPS corpus into one hundred
15-document collections, and ran LDA separately on each of these hundred collections. The test
perplexity at K = 40 computed by averaging 100-separate LDA models was 2117, significantly
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higher than the P = 100 test perplexity of 1575 for AD-LDA and HD-LDA. This shows that a
baseline approach of simple averaging of results from separate processors performs much worse
than the distributed coordinated learning algorithms that we propose in this paper.

4.2 Convergence

One could imagine that distributed algorithms, where each processor only sees its own local data,
may converge more slowly than single-processor algorithms where the data is global. Consequently,
we performed experiments to see whether our distributed algorithms were converging at the same
rate as their sequential counterparts. If the distributed algorithms were converging slower, the com-
putational gains of parallelization would be reduced. Our experiments consistently showed that the
convergence rate for the distributed LDA algorithms was just as fast as those for the single processor
case. As an example, Figure 7 shows test perplexity versus iteration of the Gibbs sampler for the
NIPS data at K = 20 topics. During burn-in, up to iteration 200, the distributed algorithms are ac-
tually converging slightly faster than single processor LDA. Note that one iteration of AD-LDA or
HD-LDA on a parallel multi-processor computer only takes a fraction (at best 1P ) of the wall-clock
time of one iteration of LDA on a single processor computer.
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Figure 7: Convergence of test perplexity versus iteration for the distributed algorithms AD-LDA
and HD-LDA using the NIPS data set and K = 20 topics.

We see slightly different convergence behavior in the non-parametric topic models. AD-HDP
converges more slowly than HDP, as shown in Figure 8, due to AD-HDP’s heavy averaging of new
topics resulting frommerging by topic-id (i.e., no matching). This slower convergence may partially
be a result of the lower number of topics instantiated. The number of new topics instantiated in one
pass of AD-HDP is limited to the maximum number of new topics instantiated on any one processor.
For example, in the right plot, after 500 iterations, HDP has instantiated 360 topics, whereas AD-
HDP has instantiated 210 (P = 100) and 250 (P = 10) topics. Correspondingly, at 500 iterations,
the perplexity of HDP is lower than the perplexity of AD-HDP. After three thousand iterations, AD-
HDP produces the same perplexity as HDP, which is reassuring because it indicates that AD-HDP
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is ultimately producing a model that has the same predictive ability as HDP. We observe a similar
result for the NIPS data set.

One way to accelerate the rate of convergence for AD-HDP is to match newly generated topics
by similarity instead of by topic-id. Figure 9 shows that performing the greedy matching scheme for
new topics as described in Algorithm 4 significantly improves the rate of convergence for AD-HDP.
In this experiment, we used a threshold of 2 for determining topic similarity. The number of topics
increases at a faster rate for AD-HDP with matching, since the greedy matching scheme is more
flexible in that the number of new topics at each iteration is not limited to the maximum number of
new topics instantiated on any one processor. The results show that the greedy matching scheme
enables AD-HDP P= 100 to converge almost as quickly as HDP. In practice, only a few new topics
are generated locally on each processor each iteration, and so the computational overhead of this
heuristic matching scheme is minimal relative to the time for Gibbs sampling.
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Figure 8: Results for HDP versus AD-HDPwith no matching. Left plot shows test perplexity versus
iteration for HDP and AD-HDP. Right plot shows number of topics versus iteration for
HDP and AD-HDP. Results are for the KOS data set.

To further check that the distributed algorithms were performing comparably to their single
processor counterparts, we ran experiments to investigate whether the results were sensitive to the
number of topics used in the models, in case the distributed algorithms’ performance worsens when
the number of topics becomes very large. Figure 10 shows the test perplexity computed on the
NIPS data set, as a function of the number of topics, for the LDA algorithms and a fixed number of
processors P= 10 (the results for the KOS data set were quite similar and therefore not shown). The
perplexities of the different algorithms closely track each other as number of topics, K, increases.
In fact, in some cases HD-LDA produces slightly lower perplexities than those of single processor
LDA. This lower perplexity may be due to the fact that in HD-LDA test perplexity is computed
using P sets of topic parameters, thus it has more parameters than AD-LDA to better fit the data.

4.3 Precision and Recall

In addition to our experiments measuring perplexity, we also performed precision/recall calculations
using the NEWSGROUPS data set, where each document’s corresponding newsgroup is the class
label. In this experiment we use LDA and AD-LDA to learn topic models on the training data. Once
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Figure 9: Results for HDP versus AD-HDP with greedy matching. Left plot shows test perplexity
versus iteration for HDP and AD-HDP. Right plot shows number of topics versus iteration
for HDP and AD-HDP. Results are for the KOS data set.
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Figure 10: Test perplexity versus number of topics using the NIPS data set (S=5).

the model is learned, each test document can be treated as a ”query”, where the goal is to retrieve
relevant documents from the training set. For each test document, the training documents are ranked
according to how probable the test document is under each training document’s mixture ! j and the
set of topics #. From this ranking, one can calculate mean average precision and area under the
ROC curve.

Figure 11 shows the mean average precision and the area under the ROC curve achieved by
LDA and AD-LDA, plotted versus iteration. LDA performs slightly better than AD-LDA for the
first 20 iterations, but AD-LDA catches up and converges to the same mean average precision and
area under the ROC curve as LDA. This again shows that our distributed/parallel version of LDA
produces a very similar result to the single-processor version.
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Figure 11: Precision/recall results: (left) Mean average precision for LDA/AD-LDA. (right) Area
under the ROC curve for LDA/AD-LDA.

5. Scalability

The primary motivation for developing distributed algorithms for LDA and HDP is to have highly
scalable algorithms, in terms of memory and computation time. Memory requirements depend on
both memory for data and memory for model parameters. The memory for the data scales with N,
the total number of words in the corpus. The memory for the parameters is linear in the number
of topics K, which is either fixed for the LDA models or learned for the HDP models. The per-
processor per-iteration time and space complexity of LDA and AD-LDA are shown in Table 3.
AD-LDA’s memory requirement scales well as collection sizes grow, because while corpus size (N
and D) can get arbitrarily large, which can be offset by increasing the number of processors, P,
the vocabulary size W will tend to asymptote, or at least grow more slowly. Similarly the time
complexity scales well since the leading order term NK is divided by P.

The communication cost of the reduce operation, denoted by C in the table, represents the time
taken to perform the global sum of the count difference )p(Nwkp−Nwk). This is executed in logP
stages and can be implemented efficiently in standard language/protocols such as MPI, the Message
Passing Interface. Because of the additional KW term, parallel efficiency will depend on N

PW , with
increasing efficiency as this ratio increases. Space and time complexity of HD-LDA are similar to
that of AD-LDA, but HD-LDA has bigger constants. For a given number of topics, K, we argue that
AD-HDP has similar time complexity as AD-LDA.

We performed large-scale speedup experiments with just AD-LDA instead of all three of our
distributed topic modeling algorithms because AD-LDA produces very similar results to HD-LDA,
but with significantly less computation. We expect that relative speedup performance for HD-LDA
and AD-HDP should follow that for AD-LDA.

LDA AD-LDA
Space N+K(D+W ) 1

P(N+KD)+KW
Time NK 1

PNK+KW +C

Table 3: Space and time complexity of LDA and AD-LDA.
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Figure 12: Parallel speedup results for 64 to 1024 processors on multi-million document data sets
WIKIPEDIA and PUBMED.

We used two multi-million document data sets, WIKIPEDIA and PUBMED, for speedup exper-
iments on a large-scale supercomputer. The supercomputer used was DataStar, a 15.6 TFlop teras-
cale machine at San Diego Supercomputer Center built from 265 IBM P655 8-way compute nodes.
We implemented a parallel version of AD-LDA using the Message Passing Interface protocol. We
ran AD-LDA on WIKIPEDIA using K = 1000 topics and PUBMED using K = 2000 topics dis-
tributed over P = 64,128,256,512 and 1024 processors. The speedup results, shown in Figure 12,
show relatively high parallel efficiency, with approximately 700 times speedup for WIKIPEDIA
and 800 times speedup for PUBMED when using P = 1024 processors, corresponding to parallel
efficiencies of approximately 0.7 and 0.8 respectively. This speedup is computed relative to the
time per iteration when using P = 64 processors (i.e., at P = 64 processors speedup=64), since it
is not possible, due to memory limitations, to run these models on a single processor. Multiple
runs were timed for both WIKIPEDIA and PUBMED, and the resulting variation in timing was less
than 1%, so error bars are not shown in the figure. We see slightly higher parallel efficiency for
PUBMED versus WIKIPEDIA because PUBMED has a larger amount of computation per unit data
communicated, N

PW .
This speedup dramatically reduces the learning time for large topic models. If we were to learn

a K = 2000 topic model for PUBMED using LDA on a single processor, it would require over 300
days instead of the 10 hours required to learn the same model using AD-LDA on 1024 processors. In
our speedup experiments on these large data sets, we did not directly investigate latency or commu-
nication bandwidth effects. Nevertheless, one could expect that if the communication time becomes
very long compared to the computation time, then it may be worth doing multiple Gibbs sampling
sweeps on a processor’s local data before performing the synchronization and global update step.
In Section 6 we further examine this question of frequency of synchronizations. The relative time
for communication versus computation also effects the weak scaling of parallelization, where the
problem size increases linearly with the number of processors. We expect that parallel efficiency
will be relatively constant for weak scaling since N

PW is constant.
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In addition to the large-scale speedup experiments run on the 1024-processor parallel super-
computer, we also performed small-scale speedup experiments for AD-HDP on an 8-node parallel
cluster running MPI. Using the NIPS data set we measured parallel efficiencies of 0.75 and 0.5 for
P = 4 and P = 8. The latter result on 8 processors means that the HDP model for NIPS can be
learned four times faster than on a single processor.

6. Analysis of Approximate Distributed LDA

Finally, we investigate the dynamics of AD-LDA learning using toy data to get further insight
into how AD-LDA is working. While we have shown experimental results showing that AD-LDA
produces models with similar perplexity and similar convergence rates to LDA, it is not obvious
why this algorithm works so well in practice. Our toy example hasW = 3 words and K = 2 topics.
We generated document collections according to the LDA generative process given by (1). We
chose a low dimension vocabulary,W , so that we could plot the evolution of the Gibbs sampler on a
two-dimensional word-topic simplex. We first generated data, then learned models using LDA and
AD-LDA.

The left plot of Figure 13 shows the L1 distance between the model’s estimate of a particular
topic-word distribution and the true distribution, as a function of Gibbs iteration, for both single-
processor LDA and AD-LDA with P = 2. LDA and AD-LDA have qualitatively the same three-
phase learning dynamics. The first four or so iterations (labeled initialize) correspond to somewhat
random movement close to the randomly initialized starting point. In the next phase (labeled burn-
in) both algorithms rapidly move in parameter space toward the posterior mode. And finally after
burn-in (labeled stationary) both are sampling around the mode. In the right plot we show the sim-
ilarity between AD-LDA and LDA samples taken from the equilibrium distribution—here plotted
on the two-dimensional planar simplex corresponding to the three-word topic distribution.
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Figure 13: (Left) L1 distance to the mode for LDA and for P= 2 AD-LDA. (Right) Closeup of 50
samples of # (projected onto the topic simplex) taken from the equilibrium distribution,
showing the similarity between LDA and P= 2 AD-LDA. Note the zoomed scale in this
figure.

The left plot of Figure 14 depicts the same trajectory shown in Figure 13 left, projected onto the
topic simplex. This plot shows the paths in parameter space of each model, and the same three-phase
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learning dynamics: taking a few small steps near the starting point, moving up to the true solution,
and then sampling near the posterior mode for the rest of the iterations. For each Gibbs iteration,
the parameters corresponding to each of the two individual processors, and those parameters after
merging, are shown for AD-LDA. One can see the alternating pattern of two separate (but close)
parameter estimates on each processor, followed by a merged estimate. We observed that after the
initial few iterations, the individual processor steps and the merge step each resulted in a move
closer to the mode. One might worry that the AD-LDA algorithm would get trapped close to the
initial starting point, for example, due to repeated label switching or oscillatory behavior of topic
labeling across processors. In practice we have consistently observed that the algorithm quickly
discards such configurations due to the stochastic nature of the moves and latches onto a consistent
and stable labeling that rapidly moves it toward the posterior mode. The figure clearly illustrates
that LDA and AD-LDA have qualitatively similar learning dynamics. The right plot in Figure 14
illustrates the same qualitative behavior as in the left plot, but now for P= 10 processors.

Interestingly, across a wide range of experiments, we observed that the variance in the AD-
LDA word-topic distribution samples is typically only about 70% of the variance in LDA topic
samples. Since the samplers are not the same it makes sense that the posterior variance differs
(i.e., is underestimated) by the parallel sampler. We expect less variance because AD-LDA ignores
fluctuations in the bulk of Nwk. Nonetheless, all of our experiments indicate that the posterior mode
and means found by the parallel sampler are essentially the same as those found by the sequential
sampler.
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Figure 14: (Left) Projection of topics onto simplex, showing convergence to mode for P = 2.
(Right) Same as left plot, but with P= 10.

Another insight can be gained by thinking of LDA as an approximation to stochastic descent in
the space of assignment variables z. On a single processor, one can view Gibbs sampling during
burn-in as a stochastic algorithm to move up the likelihood surface. With multiple processors, each
processor computes an upward direction in its own subspace, keeping all other directions fixed.
The global update step then recombines these directions by vector-addition, in the same way as one
would compute a gradient using finite differences. This is expected to be accurate as long as the
surface is locally convex or concave, but will break down at saddle-points. We conjecture AD-LDA
works reliably because saddle points are unstable and rare because the posterior is usually highly
peaked for LDA models and high-dimensional count data sets.
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Figure 15: Average L1 error in word-topic distribution versus P for AD-LDA.

While we see similar perplexities for AD-LDA compared to LDA, we could further ask if the
AD-LDA algorithm is producing any bias in its estimates of the model parameters. To test this, we
performed a series of experiments where we generated synthetic data sets according to the LDA
generative process, with known word-topic distributions #∗. We then learned LDA and AD-LDA
models from each of the simulated data sets. We computed the expected value of the AD-LDA top-
ics E(#) and compared this to two reference values, #ref one based on the true distribution, #ref = #∗,
the other based on multiple LDA samples, #ref = E[#LDA]. Figure 15 shows that AD-LDA is much
closer to the LDA topics E[#LDA] than either are to the true topics #∗, telling us that the sampling
variation in learning LDA models from finite data sets is much greater than the variation between
LDA and AD-LDA on the same data sets.

6.1 When Does AD-LDA Fail?

In all of our experiments thus far, we have seen that our distributed algorithms learn models with
equivalent predictive power as their non-distributed counterparts. However, when global synchro-
nizations are done less frequently (i.e., when the synchronization step is performed after multiple
Gibbs sampling sweeps through local data), the distributed algorithms may converge to suboptimal
solutions.

When the synchronization interval is increased dramatically, it is possible for AD-LDA to con-
verge to a suboptimal solution. This can happen because the topics (with the same integer label) on
each processor can drift far apart, so that topic k on one processor diverges from topic k on another
processor. In Figure 16, we show the results of an experiment on KOS where synchronizations only
occur once every 100 iterations. For P= 2 processors, AD-LDA performs significantly worse than
LDA. The P= 2 processor case is the worst case for AD-LDA, since one half of the total words on
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each processor have the freedom to drift. In contrast, when P= 100 processors, each processor can
only locally modify 1/100th of the topic assignments, and so the topics on each processor can not
drift far from the global set of topic counts at the previous iteration. Bipartite matching significantly
improves the perplexity in the P= 2 processor case, suggesting that the lack of communication has
indeed caused the topics to drift apart. Fortunately, topic drifting becomes less of a problem as
more processors are used, and can be eliminated by frequent synchronization. It is also important
to note that AD-LDA P = 2, where processors synchronize after every iteration, gives essentially
identical results as LDA. Our recommendation in practice is to perform the synchronization and
count updates after each iteration of the Gibbs sampler. As shown earlier in the paper, this leads
to performance that is essentially indistinguishable from LDA. Since most multi-processor comput-
ing hardware will tend to have communication bandwidth matched to processor speed (i.e., faster
and/or more processors usually come with a faster communication network), synchronizing after
each iteration of the Gibbs sampler will usually be the optimal strategy.
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Figure 16: Test perplexity versus iteration where synchronizations between processors only occur
every 100 iterations, KOS, K = 16.

7. Related Work

Approximate inference for topic models such as LDA and HDP can be carried out using a variety
of methods, the most common being variational methods and Markov chain Monte Carlo methods.
Previous efforts to parallelize these algorithms have focused on variational methods, which are often
straightforward to cast in a distributed framework. For example, Blei et al. (2002) and Nallapati
et al. (2007) describe distributed variational EM methods for LDA. In their distributed variational
approach, the computationally expensive E-step is easily parallelized because the document-specific
variational parameters are independent. Wolfe et al. (2008) investigate the parallelization of both
the E and M-steps of variational EM for LDA, under a variety of computer network topologies.
In these cases the distributed version of LDA produces identical results to the sequential version
of the algorithm. However, memory for variational inference in LDA scales as MK, where M is
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the number of distinct document-word pairs in the corpus. For typical English-language corpora,
the total number of words in the corpus is less than twice the number of distinct document-word
pairs (N < 2M), so M can be considered on the order of N. Since M is usually much larger than
the number of documents, D, this memory requirement of MK is not nearly as scalable as that the
memory requirement of N+DK for MCMC methods.

Parallelized versions of various machine learning algorithms have also been developed. Forman
and Zhang (2000) describe a parallel k-means algorithm, and W. Kowalczyk and N. Vlassis (2005)
describe an asynchronous parallel EM algorithm for Gaussian mixture learning. A parallel EM
algorithm for Probabilistic Latent Semantic Analysis, implemented using Google’s MapReduce
framework, was described in Das et al. (2007). A review of how to parallelize an array of standard
machine learning algorithms using MapReduce was presented by Chu et al. (2007). Rossini et al.
(2007) presents a framework for statisticians that allows for the parallel computing of independent
tasks within the R language.

While many of these EM algorithms are readily parallelizable, Gibbs sampling of dependent
variables (such as topic assignments) is fundamentally sequential and therefore difficult to paral-
lelize. One way to parallelize Gibbs sampling is to run multiple independent chains in parallel to
obtain multiple samples; however, this multiple-chain approach does not address the fact that the
burn-in within each chain may take a long time. Furthermore, for some applications, one is not in-
terested in multiple samples from independent chains. For example, if we wish to learn topics for a
very large document collection, one is usually satisfied with mean values of word-topic distributions
taken from a single chain.

One can parallelize a single MCMC chain by decomposing the variables into independent non-
interacting blocks that can be sampled concurrently (Kontoghiorghes, 2005). However, when the
variables are not independent, sampling variables in parallel is not possible. Brockwell (2006)
presents a general parallel MCMC algorithm based on pre-fetching, but it is not practical for learning
topic models because it discards most of its computations which makes it relatively inefficient. It
is possible to construct partially parallel Gibbs samplers, in which the samples are independently
accepted with some probability. In the limit as this probability goes to zero, this sampler will
approach the sequential Gibbs sampler, as explained in P. Ferrari et al. (1993). However, this method
is also not practical when learning topic models because it is computationally inefficient. Younes
(1998) shows the existence of exact parallel samplers that make use of periodic synchronous random
fields. However there is no known method for constructing such a sampler.

Our HD-LDA model is similar to the DCM-LDA model presented by Mimno and McCallum
(2007). There the authors perform topic modeling on a collection of books by learning a different
topic model for each book and then clustering these learned topics together to find global topics. In
this model, the concept of a book is directly analogous to our concept of a processor. DCM-LDA
uses Stochastic EM along with agglomerative clustering to learn topics, while our HD-LDA follows
a fully Bayesian approach for inference. HD-LDA also differs from other topic hierarchies found
in the literature. The Hierarchical Dirichlet Process model of Teh et al. (2006) places a deeper
hierarchical prior on the topic mixture, instead of on the word-topic distributions. The Pachinko
Allocation Model presented by Li and McCallum (2006) deals with a document-specific hierarchy
of topic-assignments. These types of hierarchies do not directly facilitate proper parallel Gibbs
sampling as is done in HD-LDA.
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8. Conclusions

We have proposed three different algorithms for distributing across multiple processors Gibbs sam-
pling for LDA and HDP. With our approximate distributed algorithm, AD-LDA, we sample from an
approximation to the posterior distribution by allowing different processors to concurrently sample
topic assignments on their local subsets of the data. Despite having no formal convergence guar-
antees, AD-LDA works very well empirically and is easy to implement. With our hierarchical dis-
tributed model, HD-LDA, we adapt the underlying LDA model to map to the distributed processor
architecture. This model is more complicated than AD-LDA, but it inherits the usual convergence
properties of Markov chain Monte Carlo. We discovered that careful selection of hyperparameters
was critical to making HD-LDA work well, but this selection was clearly informed by AD-LDA.
Our distributed algorithm AD-HDP followed the same approach as AD-LDA, but with an additional
step to merge newly instantiated topics.

Our proposed distributed algorithms learn LDA models with predictive performance that is no
different than single-processor LDA. On each processor they burn-in and converge at the same rate
as LDA, yielding significant speedups in practice. For HDP, our distributed algorithm eventually
produced the same perplexity as the single-processor version of HDP. Prior to reaching the con-
verged perplexity result, AD-HDP had higher perplexity than HDP since the merging of new topics
by label slows the rate of topic growth. We also discovered that matching new topics by similarity
significantly improves AD-HDP’s rate of convergence.

The space and time complexity of these distributed algorithms make them scalable to run very
large data sets, for example, collections with billions to trillions of words. Using two multi-million
document data sets, and running computations on a 1024-processor parallel supercomputer, we
showed how one can achieve a 700-800 times reduction in wall-clock time by using our distributed
approach.

There are several potentially interesting research directions that can be pursued using the algo-
rithms proposed here as a starting point. One research direction is to use more complex schemes that
allow data to adaptively move from one processor to another. The distributed schemes presented in
this paper can also be used to parallelize topic models that are based on or derived from LDA and
HDP, and beyond that a potentially larger class of graphical models.
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Appendix A.

The auxiliary variable method explained in Escobar and West (1995) and Teh et al. (2006) is used
to sample ", $, and +. To derive Gibbs sampling equations, we use the following expansions:

&(u)
&(u+n)

=
1

&(n)
B(u,n) =

1
&(n)

Z 1

0
tu−1(1− t)n−1 dt (8)

&(u+n)
&(u)

=
n

)
s=0

S(n,s)(u)s (S is Stirling number of first kind) (9)

The first expansion follows from the definition of the Beta function, and the second expansion
makes use of the Stirling number of the first kind to rewrite the factorial (see Abramowitz and
Stegun, 1964).

Now we derive the sampling equation for "p. Combining the collapsed distribution (6) with the
prior on "p (5) gives the posterior distribution for "p:1

P("p| ) *%
j

[
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&(Nk jp+"p)
&("p)
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"c−1p e−d"p .

Using the expansions (8,9) we introduce the auxiliary variables t and s:
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The joint distribution above allows us to create sampling equations for "p, t, and s:
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log(t j)
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,

P(t j|"p,s, ) * tK"p−1j (1− t j)Njp−1

=Beta [K"p,Njp],

P(sk jp|"p, t, ) *S(Nk jp,sk jp)"
sk jp
p

=Antoniak [Nk jp,"p].

The Antoniak distribution is the distribution of the number of occupied tables if Nk jp customers
are sent into a restaurant that follows the Chinese restaurant process with strength parameter "p.
Sampling from the Antoniak distribution is done by sampling Nk jp Bernoulli variables:

1. To avoid notational clutter, we denote conditioned-upon variables and parameters by a dash. These variables can be
inferred from context.
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slk jp ∼Bernoulli
[

"p
"p+ l−1

]

l = 1 . . .Nk jp,

sk jp =)
l
slk jp.

Using the same auxiliary variable techniques, we derive sampling equations for $ and +. These
variables are sampled jointly because they are dependent. The posterior distribution for $ and +
and the joint distribution with the auxiliary variables t and s are given by:
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Note that the set of variables (t and s) is unrelated to the set of auxiliary variables introduced for
"p. The sampling equations for $, +, t, and s are:
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Abstract
We introduce a new nonlinear model for classification, in which we model the joint distribution of
response variable, y, and covariates, x, non-parametrically using Dirichlet process mixtures. We
keep the relationship between y and x linear within each component of the mixture. The overall
relationship becomes nonlinear if the mixture contains more than one component, with different
regression coefficients. We use simulated data to compare the performance of this new approach
to alternative methods such as multinomial logit (MNL) models, decision trees, and support vector
machines. We also evaluate our approach on two classification problems: identifying the folding
class of protein sequences and detecting Parkinson’s disease. Our model can sometimes improve
predictive accuracy. Moreover, by grouping observations into sub-populations (i.e., mixture com-
ponents), our model can sometimes provide insight into hidden structure in the data.
Keywords: mixture models, Dirichlet process, classification

1. Introduction

In regression and classification models, estimation of parameters and interpretation of results are
easier if we assume that distributions have simple forms (e.g., normal) and that the relationship
between a response variable and covariates is linear. However, the performance of such a model
depends on the appropriateness of these assumptions. Poor performance may result from assum-
ing wrong distributions, or regarding relationships as linear when they are not. In this paper, we
introduce a new model based on a Dirichlet process mixture of simple distributions, which is more
flexible in capturing nonlinear relationships.

A Dirichlet process, D(G0,!), with baseline distribution G0 and scale parameter !, is a dis-
tribution over distributions. Ferguson (1973) introduced the Dirichlet process as a class of prior
distributions for which the support is large, and the posterior distribution is manageable analyti-
cally. Using the Polya urn scheme, Blackwell and MacQueen (1973) showed that the distributions
sampled from a Dirichlet process are discrete almost surely.

The idea of using a Dirichlet process as the prior for the mixing proportions of a simple dis-
tribution (e.g., Gaussian) was first introduced by Antoniak (1974). In this paper, we will describe
the Dirichlet process mixture model as a limit of a finite mixture model (see Neal, 2000, for further
description). Suppose exchangeable random values y1, ...,yn are drawn independently from some

c©2009 Babak Shahbaba and Radford Neal.
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unknown distribution. We can model the distribution of y as a mixture of simple distributions, with
probability or density function

P(y) =
C

"
c=1

pcF(y,#c).

Here, pc are the mixing proportions, and F(y,#) is the probability or density for y under a distribu-
tion, F(#), in some simple class with parameters #—for example, a normal in which #= (µ,$). We
first assume that the number of mixing components,C, is finite. In this case, a common prior for pc
is a symmetric Dirichlet distribution, with density function

P(p1, ..., pC) =
%(!)

%(!/C)C

C

&
c=1

p(!/C)−1
c ,

where pc ≥ 0 and " pc = 1. The parameters #c are independent under the prior, with distribution
G0. We can use mixture identifiers, ci, and represent this model as follows:

yi|ci,# ∼ F(#ci),

ci|p1, ..., pC ∼ Discrete(p1, ..., pC),

p1, ..., pC ∼ Dirichlet(!/C, ....,!/C),

#c ∼ G0.

(1)

By integrating over the Dirichlet prior, we can eliminate the mixing proportions, pc, and obtain the
following conditional distribution for ci:

P(ci = c|c1, ...,ci−1) =
nic+ !/C
i−1+ !

. (2)

Here, nic represents the number of data points previously (i.e., before the ith) assigned to component
c. As we can see, the above probability becomes higher as nic increases.

WhenC goes to infinity, the conditional probabilities (2) reach the following limits:

P(ci = c|c1, ...,ci−1) →
nic

i−1+ !
,

P(ci &= c j for all j < i|c1, ...,ci−1) →
!

i−1+ !
.

As a result, the conditional probability for 'i, where 'i = #ci , becomes

'i|'1, ...,'i−1 ∼
1

i−1+ ! "j<i
(' j +

!
i−1+ !

G0, (3)

where (' is a point mass distribution at '. Since the observations are assumed to be exchangeable,
we can regard any observation, i, as the last observation and write the conditional probability of 'i
given the other ' j for j &= i (written '−i) as follows:

'i|'−i ∼
1

n−1+ ! "j &=i
(' j +

!
n−1+ !

G0. (4)
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The above conditional probabilities are equivalent to the conditional probabilities for 'i according
to the Dirichlet process mixture model (as presented by Blackwell and MacQueen, 1973, using the
Polya urn scheme), which has the following form:

yi|'i ∼ F('i),

'i|G ∼ G, (5)
G ∼ D(G0,!).

That is, If we let 'i = #ci , the limit of model (1) as C → ) becomes equivalent to the Dirichlet
process mixture model (Ferguson, 1983; Neal, 2000). In model (5), G is the distribution over '’s,
and has a Dirichlet process prior, D . Phrased this way, each data point, i, has its own parameters,
'i, drawn independently from a distribution that is drawn from a Dirichlet process prior. But since
distributions drawn from a Dirichlet process are discrete (almost surely) as shown by Blackwell and
MacQueen (1973), the 'i for different data points may be the same.

The parameters of the Dirichlet process prior are G0, a distribution from which '’s are sampled,
and !, a positive scale parameter that controls the number of components of the mixture that will
be represented in the sample, such that a larger ! results in a larger number of components. To
illustrate the effect of ! on the number of mixture components in a sample of size 200, we generated
samples from four different Dirichlet process priors with ! = 0.1,1,5,10, and the same baseline
distribution G0 = N2(0,10I2) (where I2 is a 2× 2 identity matrix). For a given value of !, we first
sample 'i, where i = 1, ...,200, according to the conditional probabilities (3), and then we sample
yi|'i ∼ N2('i,0.2I2). The data generated according to these priors are shown in Figure 1. As we can
see, the (prior) expected number of components in a finite sample increases as ! becomes larger.

With a Dirichlet process prior, we can we find conditional distributions of the posterior distribu-
tion of model parameters by combining the conditional prior probability of (4) with the likelihood
F(yi,'i), obtaining

'i|'−i,yi ∼ "
j &=i
qi j(' j + riHi, (6)

where Hi is the posterior distribution of ' based on the prior G0 and the single data point yi, and the
values of the qi j and ri are defined as follows:

qi j = bF(yi,' j),

ri = b!
Z

F(yi,')dG0(').

Here, b is such that ri+" j &=i qi j = 1. These conditional posterior distributions are what are needed
when sampling the posterior using MCMC methods, as discussed further in Section 2.

Bush and MacEachern (1996), Escobar and West (1995), MacEachern and Müller (1998), and
Neal (2000) have used Dirichlet process mixture models for density estimation. Müller et al. (1996)
used this method for curve fitting. They model the joint distribution of data pairs (xi,yi) as a Dirich-
let process mixture of multivariate normals. The conditional distribution, P(y|x), and the expected
value, E(y|x), are estimated based on this distribution for a grid of x’s (with interpolation) to obtain
a nonparametric curve. The application of this approach (as presented by Müller et al., 1996) is
restricted to continuous variables. Moreover, this model is feasible only for problems with a small
number of covariates, p. For data with moderate to large dimensionality, estimation of the joint
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Figure 1: Data sets of size n = 200 generated according to four different Dirichlet process mix-
ture priors, each with the same baseline distribution, G0 = N2(0,10I2), but different scale
parameters, !. As ! increases, the expected number of components present in the sam-
ple becomes larger. (Note that, as can be seen above, when ! is large, many of these
components have substantial overlap.)

distribution is very difficult both statistically and computationally. This is mostly due to the diffi-
culties that arise when simulating from the posterior distribution of large full covariance matrices.
In this approach, if a mixture model has C components, the set of full covariance matrices have
Cp(p+ 1)/2 parameters. For large p, the computational burden of estimating these parameters
might be overwhelming. Estimating full covariance matrices can also cause statistical difficulties
since we need to assure that covariance matrices are positive semidefinite. Conjugate priors based
the inverse Wishart distribution satisfy this requirement, but they lack flexibility (Daniels and Kass,
1999). Flat priors may not be suitable either, since they can lead to improper posterior distributions,
and they can be unintentionally informative (Daniels and Kass, 1999). A common approach to ad-
dress these issues is to use decomposition methods in specifying priors for full covariance matrices
(see for example, Daniels and Kass, 1999; Cai and Dunson, 2006). Although this approach has
demonstrated some computational advantages over direct estimation of full covariance matrices, it
is not yet feasible for high-dimensional variables. For example, Cai and Dunson (2006) recommend
their approach only for problems with less than 20 covariates.
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We introduce a new nonlinear Bayesian model, which also nonparametrically estimates P(x,y),
the joint distribution of the response variable y and covariates x, using Dirichlet process mixtures.
Within each component, we assume the covariates are independent, and model the dependence
between y and x using a linear model. Therefore, unlike the method of Müller et al. (1996), our
approach can be used for modeling data with a large number of covariates, since the covariance
matrix for one mixture component is highly restricted. Using the Dirichlet process as the prior, our
method has a built-in mechanism to avoid overfitting since the complexity of the nonlinear model
is controlled. Moreover, this method can be used for categorical as well as continuous response
variables by using a generalized linear model instead of the linear model.

The idea of building a nonlinear model based on an ensemble of simple linear models has been
explored extensively in the field of machine learning. Jacobs et al. (1991) introduced a supervised
learning procedure for models that are comprised of several local models (experts) each handling a
subset of data. A gating network decides which expert should be used for a given data point. For
inferring the parameters of such models, Waterhouse et al. (1996) provided a Bayesian framework to
avoid over-fitting and noise level under-estimation problems associated with traditional maximum
likelihood inference. Rasmussen and Ghahramani (2002) generalized mixture of experts models by
using infinitely many nonlinear experts. In their approach, each expert is assumed to be a Gaussian
process regression model, and the gating network is based on an input-dependent adaptation of
Dirichlet process. Meeds and Osindero (2006) followed the same idea, but instead of assuming that
the covariates are fixed, they proposed a joint mixture of experts model over covariates and response
variable.

Our focus here is on classification models with a multi-category response, in which we have
observed data for n cases, (x1,y1),...,(xn,yn). Here, the class yi has J possible values, and the covari-
ates xi can in general be a vector of p covariates. We wish to classify future cases in which only the
covariates are observed. For binary (J = 2) classification problems, a simple logistic model can be
used, with class probabilities defined as follows (with the case subscript dropped from x and y):

P(y= 1|x,*,+) =
exp(*+ xT+)

1+ exp(*+ xT+)
.

When there are three or more classes, we can use a generalization known as the multinomial logit
(MNL) model (called “softmax” in the machine learning literature):

P(y= j|x,*,+) =
exp(* j + xT+ j)

"J
j′=1 exp(* j′ + xT+ j′)

.

MNL models are discriminative, since they model the conditional distribution P(y|x), but not
the distribution of covariates, P(x). In contrast, our dpMNL model is generative, since it estimates
the joint distribution of response and covariates, P(x,y). The joint distribution can be decompose
into the product of the marginal distribution P(x) and the conditional distribution P(y|x); that is,
P(x,y) = P(x)P(y|x).

Generative models have several advantages over discriminative models (see for example, Ulusoy
and Bishop, 2005). They provide a natural framework for handling missing data or partially labeled
data. They can also augment small quantities of expensive labeled data with large quantities of
cheap unlabeled data. This is especially useful in applications such as document labeling and image
analysis, where it may provide better predictions for new feature patterns not present in the data at
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Figure 2: An illustration of our model for a binary (black and white) classification problem with
two covariates. Here, the mixture has two components, which are shown with circles
and squares. In each component, an MNL model separates the two classes into “black”
or “white” with a linear decision boundary. The overall decision boundary, which is a
smooth function, is not shown in this figure.

the time of training. For example, the Latent Dirichlet Allocation (LDA) model proposed by Blei
et al. (2003) is a well-defined generative model that performs well in classifying documents with
previously unknown patterns.

While generative models are quite successful in many problems, they can be computationally in-
tensive. Moreover, finding a good (but not perfect) estimate for the joint distribution of all variables
(i.e., x and y) does not in general guarantee a good estimate of decision boundaries. By contrast,
discriminative models are often computationally fast and are preferred when the covariates are in
fact non-random (e.g., they are fixed by an experimental design).

Using a generative model in our proposed method provides an additional benefit. Modeling the
distribution of covariates jointly with y allows us to implicitly model the dependency of covariates
on each other through clustering (i.e., assigning data points to different components), which could
provide insight into hidden structure in the data. To illustrate this concept, consider Figure 2 where
the objective is to classify cases into black or white. To improve predictive accuracy, our model
has divided the data into two components, shown as squares and circles. These components are
distinguished primarily by the value of the second covariate, x2, which is usually positive for squares
and negative for circles. For cases in the squares group, the response variable strongly depends on
both x1 and x2 (the linear separator is almost diagonal), whereas, for cases in the circles group, the
model mainly depends on x1 alone (the linear model is almost vertical). Therefore, by grouping the
data into sub-populations (e.g., circles and squares in this example), our model not only improves
classification accuracy, but also discovers hidden structure in the data (i.e., by clustering covariate
observations). This concept is briefly discussed in Section 5, where we use our model to predict
Parkinson’s disease. A more detailed discussion on using our method to detect hidden structure in
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data is provided elsewhere (Shahbaba, 2009), where a Dirichlet process mixture of autoregressive
models us used to analyze time-series processes that are subject to regime changes, with no specific
economic theory about the structure of the model.

The next section describes our methodology. In Section 3, we illustrate our approach and evalu-
ate its performance on simulated data. In Section 4, we present the results of applying our model to
an actual classification problem, which attempts to identify the folding class of a protein sequence
based on the composition of its amino acids. Section 5 discusses another real classification prob-
lem, where the objective is to detect Parkinson’s disease. This example is provided to show how
our method can be used not only for improving prediction accuracy, but also for identifying hidden
structure in the data. Finally, Section 6 is devoted to discussion and future directions.

2. Methodology

We now describe our classification model, which we call dpMNL, in detail. We assume that for each
case we observe a vector of continuous covariates, x, of dimension p. The response variable, y, is
categorical, with J classes. To model the relationship between y and x, we non-parametrically model
the joint distribution of y and x, in the form P(x,y) = P(x)P(y|x), using a Dirichlet process mixture.
Within each component of the mixture, the relationship between y and x (i.e., P(y|x)) is expressed
using a linear function. The overall relationship becomes nonlinear if the mixture contains more
than one component. This way, while we relax the assumption of linearity, the flexibility of the
relationship is controlled.

Each component in the mixture model has parameters ' = (µ,$2,*,+). The distribution of
x within a component is multivariate normal, with mean vector µ and diagonal covariance, with
the vector $2 on the diagonal. The distribution of y given x within a component is given by a
multinomial logit (MNL) model—for j = 1, . . . ,J,

P(y= j|x,*,+) =
exp(* j + xT+ j)

"J
j′=1 exp(* j′ + xT+ j′)

.

The parameter * j is scalar, and + j is a vector of length p. Note that given x, the distribution of y does
not depend on µ and $. This representation of the MNL model is redundant, since one of the + j’s
(where j = 1, ...,J) can be set to zero without changing the set of relationships expressible with the
model, but removing this redundancy would make it difficult to specify a prior that treats all classes
symmetrically. In this parameterization, what matters is the difference between the parameters of
different classes.

In addition to the mixture view, which follows Equation (1) withC→), one can also view each
observation, i, as having its own parameter, 'i, drawn independently from a distribution drawn from
a Dirichlet process, as in Equation (5):

'i|G ∼ G, for i= 1, . . . ,n,
G ∼ D(G0,!).

Since G will be discrete, many groups of observations will have identical 'i, corresponding to
components in the mixture view.

Although the covariates in each component are assumed to be independent with normal priors,
this independence of covariates exists only locally (within a component). Their global (over all
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components) dependency is modeled by assigning data to different components (i.e., clustering).
The relationship between y and x within a component is captured using an MNL model. Therefore,
the relationship is linear locally, but nonlinear globally.

We could assume that y and x are independent within components, and capture the dependence
between the response and the covariates by clustering too. However, this may lead to poor per-
formance (e.g., when predicting the response for new observations) if the dependence of y on x is
difficult to capture using clustering alone. Alternatively, we could also assume that the covariates
are dependent within a component. For continuous response variables, this becomes equivalent to
the model proposed by Müller et al. (1996). If the covariates are in fact dependent, using full co-
variance matrices (as suggested by Müller et al., 1996) could result in a more parsimonious model
since the number of mixture component would be smaller. However, as we discussed above, this
approach may be practically infeasible for problems with a moderate to large number of covariates.
We believe that our method is an appropriate compromise between these two alternatives.

We define G0, which is a distribution over '= (µ,$2,*,+), as follows:

µl|µ0,$0 ∼ N(µ0,$20),
log($2l )|M$,V$ ∼ N(M$,V 2$ ),

* j|, ∼ N(0,,2),
+ jl|- ∼ N(0,-2).

The parameters of G0 may in turn depend on higher level hyperparameters. For example, we can
regard the variances of coefficients as hyperparameters with the following priors:

log(,2)|M,,V, ∼ N(M,,V 2, ),

log(-2)|M-,V- ∼ N(M-,V 2- ).

We use MCMC algorithms for posterior sampling. We could use Gibbs sampling if G0 is the
conjugate prior for the likelihood given by F . That is, we would repeatedly draw samples from
'i|'−i,yi (where i = 1, ...,n) using the conditional distribution (6). Neal (2000) presented several
algorithms for sampling from the posterior distribution of Dirichlet process mixtures when non-
conjugate priors are used. Throughout this paper, we use Gibbs sampling with auxiliary parameters
(Neal’s algorithm 8).

This algorithm uses aMarkov chain whose state consists of c1, ...,cn and #= (#c : c∈ {c1, ...,cn}),
so that 'i = #ci . In order to allow creation of new clusters, the algorithm temporarily supplements
the #c parameters of existing clusters with m (or m−1) additional parameter values drawn from the
prior, where m a postive integer that can be adjusted to give good performance. Each iteration of
the Markov chain simulation operates as follows:

• For i= 1, ...,n: Let k− be the number of distinct c j for j &= i and let h= k− +m. Label these
c j with values in {1, ...,k−}. If ci = c j for some j &= i, draw values independently from G0 for
those #c for which k− < c ≤ h. If ci &= c j for all j &= i, let ci have the label k− +1, and draw
values independently from G0 for those #c where k− + 1 < c ≤ h. Draw a new value for ci
from {1, ...,h} using the following probabilities:

P(ci = c|c−i,yi,#1, ...,#h) =















b
n−i,c

n−1+ !
F(yi,#c) for 1≤ c≤ k−,

b
!/m

n−1+ !
F(yi,#c) for k− < c≤ h,
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where n−i,c is the number of c j for j &= i that are equal to c, and b is the appropriate normalizing
constant. Change the state to contain only those #c that are now associated with at least to
one observation.

• For all c ∈ {c1, ...,cn} draw a new value from the distribution #c | {yi such that ci = c}, or
perform some update that leaves this distribution invariant.

Throughout this paper, we set m = 5. This algorithm resembles one proposed by MacEachern and
Müller (1998), with the difference that the auxiliary parameters exist only temporarily, which avoids
an inefficiency in MacEachern and Müller’s algorithm.

Samples simulated from the posterior distribution are used to estimate posterior predictive prob-
abilities. For a new case with covariates x′, the posterior predictive probability of the response
variable, y′, is estimated as follows:

P(y′ = j|x′) =
P(y′ = j,x′)

P(x′)
,

where

P(y′ = j,x′) =
1
S

S

"
s=1

P(y′ = j,x′|G0,'(s)),

P(x′) =
1
S

S

"
s=1

P(x′|G0,'(s)).

Here, S is the number of post-convergence samples from MCMC, and '(s) represents the set of
parameters obtained at iteration s. Alternatively, we could predict new cases using P(y′ = j,x′) =
1
S "

S
s=1P(y′ = j|x′,G0,'(s)). While this would be computationally faster, the above approach allows

us to learn from the covariates of test cases when predicting their response values. Note also that
the above predictive probabilities include the possibility that the test case is from a new cluster.

We use these posterior predictive probabilities to make predictions for test cases, by assigning
each test case to the class with the highest posterior predictive probability. This is the optimal strat-
egy for a simple 0/1 loss function. In general, we could use more problem-specific loss functions
and modify our prediction strategy accordingly.

Implementations for all our models were coded in MATLAB, and are available online at http:
//www.ics.uci.edu/˜babaks/codes.

3. Results for Simulated Data

In this section, we illustrate our dpMNL model using synthetic data, and compare it with other
models as follows:

• A simple MNL model, fitted by maximum likelihood or Bayesian methods.

• A Bayesian MNL model with quadratic terms (i.e., xlxk, where l = 1, ..., p and k = 1, ..., p),
referred to as qMNL.

• A decision tree model (Breiman et al., 1993) that uses 10-fold cross-validation for pruning,
as implemented by the MATLAB “treefit”, “treetest” (for cross-validation) and “treeprune”
functions.
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• Support Vector Machines (SVMs) (Vapnik, 1995), implemented with the MATLAB “svm-
train” and “svmclassify” functions from the Bioinformatics toolbox. Both a linear SVM
(LSVM) and a nonlinear SVM with radial basis function kernel (RBF-SVM) were tried.

When the number of classes in a classification problem was bigger than two, LSVM and RBF-SVM
used the all-vs-all scheme as suggested by Allwein et al. (2000), Fürnkranz (2002), and Hsu and
Lin (2002). In this scheme,

(J
2
)

binary classifiers are trained where each classifier separates a pair
of classes. The predicted class for each test case is decided by using a majority voting scheme
where the class with the highest number of votes among all binary classes wins. For RBF-SVM,
the scaling parameter, ., in the RBF kernel, k(x,x′) = exp(−||x− x′||/2.), was optimized based on
a validation set comprised of 20% of training samples.

The models are compared with respect to their accuracy rate and the F1 measure. Accuracy rate
is defined as the percentage of the times the correct class is predicted. F1 is a common measurement
in machine learning defined as:

F1 =
1
J

J

"
j=1

2Aj

2Aj +Bj +Cj
,

where Aj is the number of cases which are correctly assigned to class j, Bj is the number cases
incorrectly assigned to class j, and Cj is the number of cases which belong to the class j but are
assigned to other classes.

We do two tests. In the first test, we generate data according to the dpMNLmodel. Our objective
is to evaluate the performance of our model when the distribution of data is comprised of multiple
components. In the second test, we generate data using a smooth nonlinear function. Our goal is to
evaluate the robustness of our model when data actually come from a different model.

3.1 Simulation 1

The first test was on a synthetic four-way classification problem with five covariates. Data are
generated according to our dpMNL model, except the number of components was fixed at two. Two
hyperparameters defining G0 were given the following priors:

log(,2) ∼ N(0,0.12),
log(-2) ∼ N(0,22).

The prior for component parameters '= (µ,$2,*,+) defined by this G0 was

µl ∼ N(0,1),
log($2l ) ∼ N(0,22),

* j|, ∼ N(0,,2),
+ jl|- ∼ N(0,-2),

where l = 1, ...,5 and j = 1, ...,4. We randomly draw parameters '1 and '2 for two components as
described from this prior. For each component, we then generate 5000 data points by first drawing
xil ∼ N(µl,$l) and then sampling y using the following MNL model:

P(y= j|x,*,+) =
exp(* j + x+ j)

"J
j′=1 exp(* j′ + x+ j′)

.
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Model Accuracy (%) F1 (%)
Baseline 45.57 (1.47) 15.48 (1.77)
MNL (Maximum Likelihood) 77.30 (1.23) 66.65 (1.41)
MNL 78.39 (1.32) 66.52 (1.72)
qMNL 83.60 (0.99) 74.16 (1.30)
Tree (Cross Validation) 70.87 (1.40) 55.82 (1.69)
LSVM 78.61 (1.17) 67.03 (1.51)
RBF-SVM 79.09 (0.99) 63.65 (1.44)
dpMNL 89.21 (0.65) 81.00 (1.23)

Table 1: Simulation 1: the average performance of models based on 50 simulated data sets. The
Baseline model assigns test cases to the class with the highest frequency in the training
set. Standard errors of estimates (based on 50 repetitions) are provided in parentheses.

The overall sample size is 10000. We randomly split the data into a training set, with 100 data
points, and a test set, with 9900 data points. We use the training set to fit the models, and use the
independent test set to evaluate their performance. The regression parameters of the Bayesian MNL
model with Bayesian estimation and the qMNL model have the following priors:

* j|, ∼ N(0,,2),
+ jl|- ∼ N(0,-2),
log(,) ∼ N(0,12),
log(-) ∼ N(0,22).

The above procedure was repeated 50 times. Each time, new hyperparameters, ,2 and -2, and
new component parameters, '1 and '2, were sampled, and a new data set was created based on these
'’s.

We used Hamiltonian dynamics (Neal, 1993) for updating the regression parameters (the *’s
and +’s). For all other parameters, we used single-variable slice sampling (Neal, 2003) with the
“stepping out” procedure to find an interval around the current point, and then the “shrinkage”
procedure to sample from this interval. We also used slice sampling for updating the concentration
parameter !, We used log(!) ∼ N(−3,22) as the prior, which, encourages smaller values of !, and
hence a smaller number of components. Note that the likelihood for ! depends only on C, the
number of unique components (Neal, 2000; Escobar and West, 1995). For all models we ran 5000
MCMC iterations to sample from the posterior distributions. We discarded the initial 500 samples
and used the rest for prediction.

Our dpMNL model has the highest computational cost compared to all other methods. Simulat-
ing the Markov chain took about 0.15 seconds per iteration using a MATLAB implementation on an
UltraSPARC III machine (approximately 12.5 minutes for each simulated data set). Each MCMC
iteration for the Bayesian MNL model took about 0.1 second (approximately 8 minutes for each
data set). Training the RBF-SVM model (with optimization of the scale parameter) took approxi-
mately 1 second for each data set. Therefore, SVM models have a substantial advantage over our
approach in terms of computational cost.

1839



SHAHBABA AND NEAL

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x1

x 2

1
2

Figure 3: A random sample generated according to Simulation 2, with a3 = 0. The dotted line is
the optimal boundary function.

The average results (over 50 repetitions) are presented in Table 1. As we can see, our dpMNL
model provides better results compared to all other models. The improvements are statistically
significant (p-values < 0.001) for comparisons of accuracy rates using a paired t-test with n= 50.

3.2 Simulation 2

In the above simulation, since the data were generated according to the dpMNL model, it is not
surprising that this model had the best performance compared to other models. In fact, as we
increase the number of components, the amount of improvement using our model becomes more and
more substantial (results not shown). To evaluate the robustness of the dpMNLmodel, we performed
another test. This time, we generated xi1,xi2,xi3 (where i = 1, ...,10000) from the Uni f orm(0,5)
distribution, and generated a binary response variable, yi, according the following model:

P(y= 1|x) =
1

1+ exp[a1 sin(x1.041 +1.2)+ x1 cos(a2x2+0.7)+a3x3−2]
,

where a1, a2 and a3 are randomly sampled from N(1,0.52). The function used to generate y is a
smooth nonlinear function of covariates. The covariates are not clustered, so the generated data
do not conform with the assumptions of our model. Moreover, this function includes a completely
arbitrary set of constants to ensure the results are generalizable. Figure 3 shows a random sample
from this model except that a3 is fixed at zero (so x3 is ignored). In this figure, the dotted line is the
optimal decision boundary.

Table 2 shows the results for this simulation, which are averages over 50 data sets. For each data
set, we generated 10000 cases by sampling new values for a1, a2, and a3, new covariates, x, for each
case, and new values for the response variable, y, in each case. As before, models were trained on
100 cases, and tested on the remaining 9900. As before, the dpMNL model provides significantly
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Model Accuracy (%) F1 (%)
Baseline 61.96 (1.53) 37.99 (0.57)
MNL (Maximum Likelihood) 73.58 (0.96) 68.33 (1.17)
MNL 73.58 (0.97) 67.92 (1.41)
qMNL 75.60 (0.98) 70.12 (1.36)
Tree (Cross Validation) 73.47 (0.95) 66.94 (1.43)
LSVM Linear 73.09 (0.99) 64.95 (1.71)
RBF-SVM 76.06 (0.94) 68.46 (1.77)
dpMNL 77.80 (0.86) 73.13 (1.26)

Table 2: Simulation 2: the average performance of models based on 50 simulated data sets. The
Baseline model assigns test cases to the class with the highest frequency in the training
set. Standard errors of estimates (based on 50 repetitions) are provided in parentheses.

(all p-values are smaller than 0.001) better performance compared to all other models. This time,
however, the performances of qMNL and RBF-SVM are closer to the performance of the dpMNL
model.

4. Results on Real Classification Problems

In this section, we first apply our model the problem of predicting a protein’s 3D structure (i.e.,
folding class) based on its sequence. We then use our model to identify patients with Parkinson’s
disease (PD) based on their speech signals.

4.1 Protein Fold Classification

When predicting a protein’s 3D structure, it is common to presume that the number of possible
folds is fixed, and use a classification model to assign a protein to one of these folding classes.
There are more than 600 folding patterns identified in the SCOP (Structural Classification of Pro-
teins) database (Lo Conte et al., 2000). In this database, proteins are considered to have the same
folding class if they have the same major secondary structure in the same arrangement with the same
topological connections.

We apply our model to a protein fold recognition data set provided by Ding and Dubchak (2001).
The proteins in this data set are obtained from the PDB select database (Hobohm et al., 1992;
Hobohm and Sander, 1994) such that two proteins have no more than 35% of the sequence identity
for aligned subsequences larger than 80 residues. Originally, the resulting data set included 128
unique folds. However, Ding and Dubchak (2001) selected only the 27 most populated folds (311
proteins) for their analysis. They evaluated their models based on an independent sample (i.e., test
set) obtained from PDB-40D (Lo Conte et al., 2000). PDB-40D contains the SCOP sequences with
less than 40% identity with each other. Ding and Dubchak (2001) selected 383 representatives of
the same 27 folds in the training set with no more than 35% identity to the training sequences. The
training and test data sets are available online at http://crd.lbl.gov/˜cding/protein/.

The covariates in these data sets are the length of the protein sequence, and the percentage
composition of the 20 amino acids. While there might exist more informative covariates to pre-
dict protein folds, we use these so that we can compare the results of our model to that of Ding

1841



SHAHBABA AND NEAL

and Dubchak (2001), who trained several Support Vector Machines (SVM) with nonlinear kernel
functions.

We centered the covariates so they have mean zero, and used the following priors for the MNL
model and qMNL model (with no interactions, only xi and x2i as covariates):

* j|/ ∼ N(0,/2),
log(/2) ∼ N(0,22),
+ jl|0,$l ∼ N(0,02$2l ),
log(02) ∼ N(0,1),
log($2l ) ∼ N(−3,42).

Here, the hyperparameters for the variances of regression parameters are more elaborate than in the
previous section. One hyperparameter, $l , is used to control the variance of all coefficients, + jl
(where j = 1, ...,J), for covariate xl . If a covariate is irrelevant, its hyperparameter will tend to be
small, forcing the coefficients for that covariate to be near zero. This method, termed Automatic
Relevance Determination (ARD), has previously been applied to neural network models by Neal
(1996). We also used another hyperparameter, 0, to control the overall magnitude of all +’s. This
way, $l controls the relevance of covariate xl compared to other covariates, and 0 controls the overall
usefulness of all covariates in separating all classes. The standard deviation of + jl is therefore equal
to 0$l .

The above scheme was also used for the dpMNL model. Note that in this model, one $l controls
all + jlc, where j = 1, ...,J indexes classes, and c = 1, ...,C indexes the unique components in the
mixture. Therefore, the standard deviation of + jlc is 0$l-c. Here, -c is specific to each component
c, and controls the overall effect of coefficients in that component. That is, while $ and 0 are
global hyperparameters common between all components, -c is a local hyperparameter within a
component. Similarly, the standard deviation of intercepts, * jc in component c is /,c. We used
N(0,1) as the prior for -c and ,c.

We also needed to specify priors for µl and $l , the mean and standard deviation of covariate xl ,
where l = 1, ..., p. For these parameters, we used the following priors:

µlc|µ0,l,$0,l ∼ N(µ0,l,$20,l),

µ0,l ∼ N(0,52),
log($20,l) ∼ N(0,22),

log($2lc)|M$,l,V$,l ∼ N(M$,l,V 2$,l),

M$,l ∼ N(0,12),
log(V 2$,l) ∼ N(0,22).

These priors make use of higher level hyperparameters to provide flexibility. For example, if the
components are not different with respect to covariate xl , the corresponding variance, $20,l , becomes
small, forcing µlc close to their overall mean, µ0,l .

The MCMC chains for MNL, qMNL, and dpMNL ran for 10000 iterations. Simulating the
Markov chain took about 2.1 seconds per iteration (5.8 hours in total) for dpMNL and 0.5 seconds
per iteration (1.4 hours in total) for MNL using a MATLAB implementation on an UltraSPARC III
machine. Training the RBF-SVM model took about 2.5 minutes.
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Model Accuracy (%) F1 (%)
MNL 50.0 41.2
qMNL 50.5 42.1
SVM (Ding and Dubchak, 2001) 49.4 -
LSVM 50.5 47.3
RBF-SVM 53.1 49.5
dpMNL 58.6 53.0

Table 3: Performance of models based on protein fold classification data.

The results for MNL, qMNL, LSVM, RBF-SVM, and dpMNL are presented in Table 3, along
with the results for the best SVM model developed by Ding and Dubchak (2001) on the exact same
data set. As we can see, the nonlinear RBF-SVM model that we fit has better accuracy than the
linear models. Our dpMNL model provides an additional improvement over the RBF-SVM model.
This shows that there is in fact a nonlinear relationship between folding classes and the composition
of amino acids, and our nonlinear model could successfully identify this relationship.

4.2 Detecting Parkinson’s Disease

The above example shows that our method can potentially improve prediction accuracy, though
of course other classifiers, such as SVM and neural networks, may do better on some problems.
However, we believe the application of our method is not limited to simply improving prediction
accuracy—it can also be used to discover hidden structure in data by identifying subgroups (i.e.,
mixture components) in the population. This section provides an example to illustrate this concept.

Neurological disorders such as Parkinson’s disease (PD) have profound consequences for pa-
tients, their families, and society. Although there is no cure for PD at this time, it is possible to
alleviate its symptoms significantly, especially at the early stages of the disease (Singh et al., 2007).
Since approximately 90% of patients exhibit some form of vocal impairment (Ho et al., 1998), and
research has shown that vocal impairment could be one of the earliest indicators of onset of the
illness (Duffy, 2005), voice measurement has been proposed as a reliable tool to detect and monitor
PD (Sapir et al., 2007; Rahn et al., 2007; Little et al., 2008). For example, patients with PD com-
monly display a symptom known as dysphonia, which is an impairment in the normal production of
vocal sounds.

In a recent paper, Little et al. (2008) show that by detecting dysphonia, we could identify pa-
tients with PD. Their study used data on sustained vowel phonations from 31 subjects, of whom 23
were diagnosed with PD. The 22 covariates used include traditional variables, such as measures of
vocal fundamental frequency and measures of variation in amplitude of signals, as well as a novel
measurement referred to as pitch period entropy (PPE). See Little et al. (2008) for a detailed de-
scription of these variables. This data set is publicly available at UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/datasets/Parkinsons).

Little et al. (2008) use an SVM classifier with Gaussian radial basis kernel functions to identify
patients with PD, chosing the SVM penalty value and kernel bandwidth by an exhaustive search over
a range of values. They also perform an exhaustive search to select the optimal subset of features
(10 features were selected). Their best model provides a 91.4% (±4.4) accuracy rate based on a
bootstrap algorithm. This of course does not reflect the true prediction accuracy rate of the model
for future observations since the model is trained and evaluated on the same sample. Here, we use
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Model Accuracy (%) F1 (%)
MNL 85.6 (2.2) 79.1 (2.8)
qMNL 86.1 (1.5) 79.7 (2.1)
LSVM 87.2 (2.3) 80.6 (2.8)
RBF-SVM 87.2 (2.7) 79.9 (3.2)
dpMNL 87.7 (3.3) 82.6 (2.5)

Table 4: Performance of models based on detecting Parkinson’s disease. Standard errors of esti-
mates (based on 5 cross-validation folds) are provided in parentheses.

Group Frequency Age Average Male Proportion
1 107 66 (0.7) 0.86 (0.03)
2 12 72 (1.1) 0.83 (0.11)
3 36 63 (1.8) 0.08 (0.04)
4 40 65 (2.2) 0.40 (0.08)

Population 195 66 (0.7) 0.60 (0.03)

Table 5: The age average and male proportion for each cluster (i.e., mixture component) identified
by our model. Standard errors of estimates are provided in parentheses.

a 5-fold cross validation scheme instead in order to obtain a more accurate estimate of prediction
accuracy rate and avoid inflating model performance due to overfitting. As a result, our models
cannot be directly compared to that of Little et al. (2008).

We apply our dpMNL model to the same data set, along with MNL and qMNL (no interactions,
only xi and x2i as covariates). Although the observations from the same subject are not independent,
we assume they are, as done by Little et al. (2008). Instead of selecting an optimum subset of fea-
tures, we used PCA and chose the first 10 principal components. The MCMC algorithm for MNL,
qMNL, and dpMNL ran for 3000 iterations (the first 500 iterations were discarded). Simulating
the Markov chain took about 0.7 second per iteration (35 minutes per data set) for dpMNL and
0.1 second per iteration (5 minutes per data set) for MNL using a MATLAB implementation on an
UltraSPARC III machine. Training the RBF-SVM model took 38 seconds for each data set.

Using the dpMNL model, the most probable number of components in the posterior is four
(note that might change from one iteration to another). Table 4 shows the average and standard
errors (based on 5-fold cross validation) of the accuracy rate and the F1 measure for MNL, LSVM,
RBF-SVM, and dpMNL. (But note that the standard errors assume independence of cross-validation
folds, which is not really correct.)

While dpMNL provides slightly better results, the improvement is not statistically significant.
However, examining the clusters (i.e., mixture components) identified by dpMNL reveals some
information about the underlying structure in the data. Table 5 shows the average age of subjects
and male proportion for the four clusters (based on the most probable number of components in
the posterior) identified by our model. Note that age and gender are not available from the UCI
Machine Learning Repository, and they are not included in our model. They are, however, available
from Table 1 in Little et al. (2008). The first two groups include substantially higher percentages
of male subjects than female subjects. The average age in the second of these groups is higher
compared to the first group. Most of the subjects in the third group are female (only 8% are male).
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The fourth group also includes more female subjects than male subjects, but the disproportionality
is not as high as for the third group.

When identifying Parkinson’s disease by detecting dysphonia, it has been shown that gender
has a confounding effect (Cnockaert et al., 2008). By grouping the data into clusters, our model
has identified (to some extent) the heterogeneity of subjects due to age and gender, even though
these covariates were not available to the model. Moreover, by fitting a separate linear model to
each component (i.e., conditioning on mixture identifiers), our model approximates the confounding
effect of age and gender. For this example, we could have simply taken the age and gender of
subjects from Table 1 in Little et al. (2008) and included them in our model. In many situations,
however, not all the relevant factors are measured. This could result in unobservable changes in the
structure of data. We discuss this concept in more detail elsewhere (Shahbaba, 2009).

5. Discussion and Future Directions

We introduced a new nonlinear classification model, which uses Dirichlet process mixtures to model
the joint distribution of the response variable, y, and the covariates, x, non-parametrically. We com-
pared our model to several linear and nonlinear alternative methods using both simulated and real
data. We found that when the relationship between y and x is nonlinear, our approach provides sub-
stantial improvement over alternative methods. One advantage of this approach is that if the rela-
tionship is in fact linear, the model can easily reduce to a linear model by using only one component
in the mixture. This way, it avoids overfitting, which is a common challenge in many nonlinear
models.

We believe our model can provide more interpretable results. In many real problems, the iden-
tified components may correspond to a meaningful segmentation of data. Since the relationship
between y and x remains linear in each segment, the results of our model can be expressed as a set
of linear patterns for different data segments.

Hyperparameters such as . in RBF-SVM and ! in dpMNL can substantially influence the per-
formance of the models. Therefore, it is essential to choose these parameters appropriately. For
RBF-SVM, we optimized . using a validation set that includes 20% of the training data. Figure 4
(a) shows the effect of . on prediction accuracy for one data set. The value of . with the highest
accuracy rate based on the validation set was used to train the RBF-SVM model. The hyperparam-
eters in our dpMNL model are not fixed at some “optimum” values. Instead, we use hyperpriors
that reflect our opinion regarding the possible values of these parameters before observing the data,
with the posterior for these parameters reflecting both this prior opinion and the data. Hyperpriors
for regression parameters, +, facilitate their shrinkage towards zero if they are not relevant to the
classification task. The hyperprior for the scale parameter ! affects how many mixture components
are present in the data. Instead of setting ! to some constant number, we allow the model to decide
the appropriate value of !, using a hyperprior that encourages a small number of components, but
which is not very restrictive, and hence allows ! to become large in the posterior if required to fit
the data. Choosing unreasonably restrictive priors could have a negative effect on model perfor-
mance and MCMC convergence. Figure 4 (b) illustrates the negative effect of unreasonable priors
for !. For this data set, the correct number of components is two. We gradually increase µ!, where
log(!) ∼ N(µ!,2), in order to put higher probability on larger values of ! and lower probability on
smaller values. As we can see, setting µ! ≥ 4, which makes the hyperprior very restrictive, results in
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Figure 4: Effects of scale parameters when fitting a data set generated according to Simulation 1.
(a) The effect of . in the RBF-SVM model. (b) The effect of the prior on the scale
parameter, !∼ log-N(µ!,22), as µ! changes in the dpMNL model.

a substantial decline in accuracy rate (solid line) due to overfitting with a large number of mixture
components (dashed line).

The computational cost for our model is substantially higher compared to other methods such
as MNL and SVM. This could be a preventive factor in applying our model to some problems.
The computational cost of our model could be reduced by using more efficient methods, such as
the “split-merge” approach introduced by Jain and Neal (2007). This method uses a Metropolis-
Hastings procedure that resamples clusters of observations simultaneously rather than incrementally
assigning one observation at a time to mixture components. Alternatively, it might be possible to
reduce the computational cost by using a variational inference algorithm similar to the one proposed
by Blei and Jordan (2005). In this approach, the posterior distribution P is approximated by a
tractable variational distributionQ, whose free variational parameters are adjusted until a reasonable
approximation to P is achieved.

We expect our model to outperform other nonlinear models such as neural networks and SVM
(with nonlinear kernel functions) when the population is comprised of subgroups each with their
own distinct pattern of relationship between covariates and response variable. We also believe that
our model could perform well if the true function relating covariates to response variable contains
sharp changes.

The performance of our model could be negatively affected if the covariates are highly correlated
with each other. In such situations, the assumption of diagonal covariance matrix for x adopted
by our model could be very restrictive. To capture the interdependencies between covariates, our
model would attempt to increase the number of mixture components (i.e., clusters). This however
is not very efficient. To address this issue, we could use mixtures of factor analyzers, where the
covariance structure of high dimensional data is model using a small number of latent variables (see
for example, Rubin and Thayer, 2007; Ghahramani and Hinton, 1996).

In this paper, we considered only continuous covariates. Our approach can be easily extended
to situations where the covariate are categorical. For these problems, we need to replace the nor-
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mal distribution in the baseline, G0, with a more appropriate distribution. For example, when the
covariate x is binary, we can assume x∼ Bernoulli(µ), and specify an appropriate prior distribution
(e.g., Beta distribution) for µ. Alternatively, we can use a continuous latent variable, z, such that
µ= exp(z)/{1+ exp(z)}. This way, we can still model the distribution of z as a mixture of nor-
mals. For categorical covariates, we can either use a Dirichlet prior for the probabilities of the K
categories, or use K continuous latent variables, z1, ...,zK , and let the probability of category j be
exp(z j)/"K

j′ exp(z j′).
Throughout this paper, we assumed that the relationship between y and x is linear within each

component of the mixture. It is possible of course to relax this assumption in order to obtain more
flexibility. For example, we can include some nonlinear transformation of the original variables
(e.g., quadratic terms) in the model.

Our model can also be extended to problems where the response variable is not multinomial.
For example, we can use this approach for regression problems with continuous response, y, which
could be assumed normal within a component. We would model the mean of this normal distribution
as a linear function of covariates for cases that belong to that component. Other types of response
variables (i.e., with Poisson distribution) can be handled in a similar way.

In the protein fold prediction problem discussed in this paper, classes were regarded as a set of
unrelated entities. However, these classes are not completely unrelated, and can be grouped into
four major structural classes known as *, +, */+, and *++. Ding and Dubchak (2001) show the
corresponding hierarchical scheme (Table 1 in their paper). We have previously introduced a new
approach for modeling hierarchical classes (Shahbaba and Neal, 2006, 2007). In this approach, we
use a Bayesian form of the multinomial logit model, called corMNL, with a prior that introduces
correlations between the parameters for classes that are nearby in the hierarchy. Our dpMNL model
can be extend to classification problems where classes have a hierarchical structure (Shahbaba,
2007). For this purposse, we use a corMNL model, instead of MNL, to capture the relationship
between the covariates, x, and the response variable, y, within each component. The results is a
nonlinear model which takes the hierarchical structure of classes into account.

Finally, our approach provides a convenient framework for semi-supervised learning, in which
both labeled and unlabeled data are used in the learning process. In our approach, unlabeled data
can contribute to modeling the distribution of covariates, x, while only labeled data are used to
identify the dependence between y and x. This is a quite useful approach for problems where the
response variable is known for a limited number of cases, but a large amount of unlabeled data can
be generated. One such problem is classification of web documents.
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Abstract
The growth of information available to learning systems and the increasing complexity of learn-
ing tasks determine the need for devising algorithms that scale well with respect to all learning
parameters. In the context of supervised sequential learning, the Viterbi algorithm plays a funda-
mental role, by allowing the evaluation of the best (most probable) sequence of labels with a time
complexity linear in the number of time events, and quadratic in the number of labels.

In this paper we propose CarpeDiem, a novel algorithm allowing the evaluation of the best
possible sequence of labels with a sub-quadratic time complexity.1 We provide theoretical ground-
ing together with solid empirical results supporting two chief facts. CarpeDiem always finds the
optimal solution requiring, in most cases, only a small fraction of the time taken by the Viterbi
algorithm; meantime, CarpeDiem is never asymptotically worse than the Viterbi algorithm, thus
confirming it as a sound replacement.
Keywords: Viterbi algorithm, sequence labeling, conditional models, classifiers optimization,
exact inference

1. Introduction

In supervised learning systems, classifiers are learnt from sets of labeled examples and then used
to predict the “correct” labeling for new objects. According to how relations between objects are
exploited to build and evaluate the classifier, different categories of learning systems can be individ-
uated. When the learning system deals with examples as isolated individuals, thus disregarding any
relation among them, the system is said to work in a propositional setting. In this case classifiers
can optimize the assignment of labels individually. Instead, in the setting of supervised sequential
learning (SSL) the objects are assumed to be arranged in a sequence: relationships between previous
and subsequent objects exist, and are used to improve the classification accuracy. SSL classifiers are
then required to find the globally optimum sequence of labels, rather than the sequence of locally
optimal labels. For instance, in the optical character recognition task, the labelling “learning” is
probably better than “learn1ng”, even though the description of the sixth character taken in isola-
tion might suggest otherwise. A SSL classifier may deal with such ambiguities by exploiting the

1. The implementation of CarpeDiem and of several sequence learning algorithms can be downloaded at:
http://www.di.unito.it/˜esposito/Software/seqlearning.tar.gz
a working GUI (Mac OS X only) for experimenting with the software can be downloaded at:
http://www.di.unito.it/˜esposito/Software/SequenceLearningExperimenterBinaries.zip.

c©2009 Roberto Esposito and Daniele P. Radicioni.
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higher sequential correlation, in the English language, of the bigram in with respect to 1n. Concep-
tually, given a sequence of T observations and K possible labels, KT possible combinations of labels
are to be considered by SSL classifiers. Most systems deal with such complexity by assuming that
relations may span only over nearby objects and use the Viterbi algorithm (Viterbi, 1967) to find the
globally optimal sequence of labels in !(TK2) time.

In the last few years it has become increasingly important for supervised sequential learning
algorithms to handle problems with large state spaces (Dietterich et al., 2008). Unfortunately, even
the drastic reduction in complexity achieved by the Viterbi algorithm may be not sufficient in such
domains. For instance, this is the case of web-logs related tasks (Felzenszwalb et al., 2003), music
analysis (Radicioni and Esposito, 2007), and activity monitoring through body sensors (Siddiqi and
Moore, 2005), where the number of possible labels is so large that the classification time can grow
prohibitively high.

Some recent works propose techniques that under precise assumptions allow faster execution
time of classifiers based on hidden Markov models (HMMs) (Rabiner, 1989). One feature shared
by these approaches is the assumption that the transition matrix has a specific form allowing one
to rule out most transitions. Such approaches are highly valuable when the problem naturally fits
the assumption; vice versa they either lose the optimal solution or cannot be applied at all, when
it does not. Moreover, they assume the transition matrix to be known beforehand and fixed over
time. While this is a natural assumption in HMMs, recent algorithms based on the boolean features
framework (McCallum et al., 2000) allow for more general settings where the transition matrix is
itself a function of the observations around the object to be labelled. In such cases it is hard to figure
out how the aforementioned approaches apply.

In this paper we introduce CarpeDiem. It is a parameter-free algorithm, sporting best case
sub-quadratic complexity, devised as a replacement for the Viterbi algorithm. CarpeDiem avoids
considering a transition whenever local observations make it impossible for the transition to be part
of the optimal path. CarpeDiem preserves the optimality of the result, never being asymptotically
worse than the Viterbi algorithm. Moreover, CarpeDiem automatically adapts to the sequence being
evaluated, so that its complexity degrades to the Viterbi algorithm complexity in case the underlying
assumption is not met. Interestingly, in contrast with alternative approaches, the assumption made
by CarpeDiem needs not be “always” valid. On the contrary, the algorithm is able to take advantage
of the assumption even when it holds for small portions of the sequence. This implies that the worst
case complexity is hit only in the very unlikely situation where the assumption does not hold for
the entire sequence. Finally, CarpeDiem can be directly applied in any sequential learning system
based on the Viterbi algorithm, even in those where the transition matrix changes over time.

The present work is structured as follows: we briefly recall the Viterbi algorithm and state the
problem (Section 2). After surveying related work (Section 3), we illustrate CarpeDiem in full
detail, and an execution example on a toy problem is provided (Section 4). We then show how
CarpeDiem can be embodied in the voted perceptron algorithm (Section 5) and, in Section 6, we
report the experimental results and discuss the results as well as several related algorithms, and
elaborate on future directions of research. The soundness of the algorithm as well as its complexity
are formally proved in Appendices A and B, respectively.
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2. Preliminaries

The problem of finding the best sequence of labels is often represented as a search for the optimal
path in a layered and weighted graph (Figure 1).

Definition 1 Layered graph. A layered graph is a connected graph where vertices are partitioned
into a set of “layers” such that: i) edges connect only vertices in adjacent layers; ii) any vertex in
a given layer is connected to all vertices of the successive layer.

We adopt the convention of indicating the layer to which a vertex belongs as a subscript to the
vertex name, so that yt denotes a vertex in layer t. We associate to each vertex yt a weight S0

yt , and
to each edge (yt−1,yt) a weight S1

yt ,yt−1 (Figure 1). In the following we use the term “vertical” in
referring to “per node” properties. For instance, we will use the expressions “vertical weight” of
yt and “vertical information” to refer to S0

yt and to the information provided by evidence related to
vertices, respectively. Similarly, we use the term “horizontal” in referring to “per edge” properties.
For instance, we will use the expression “horizontal weight” in referring to the weight associated to
a given transition. The distinction between vertical and horizontal information is important in the
present work, the key idea in CarpeDiem is to exploit vertical information to avoid considering the
horizontal one.

Given a layered and weighted graph with T layers and K vertices per layer, a path is a sequence
of vertices y1,y2, . . . ,yt (1 ≤ t ≤ T ). The reward for a path is the sum of the vertical and horizontal
weights associated to the path:

reward(y1,y2, . . . ,yt) =

(
t−1

"
u=1

S0
yu +S1

yu+1,yu

)

+S0
yt .

We define #(yt) as the maximal reward associated to any path from any node in layer 1 to yt :

#(yt) = max
y1,y2,...,yt−1

reward(y1,y2, . . . ,yt−1,yt).

We consider the problem of picking the maximal path from the leftmost layer to the rightmost
layer. The naive solution considers all the KT possible paths, and returns the maximal one. The
Viterbi algorithm (Viterbi, 1967) solves the problem in !(TK2) time by exploiting a dynamic pro-
gramming strategy. The main idea stems from noticing that the reward of the best path to node yt
can be recursively computed as: i) the reward of the best path to the predecessor $(yt) on the optimal
path to yt ; ii) plus the reward for transition S1

yt ,$(yt); iii) plus the weight of node yt . In formulae:

#(yt) =

{

S0
yt if t = 1
#($(yt))+S1

yt ,$(yt) +S0
yt otherwise.

(1)

We will also make use of the equivalent formulation obtained by noticing that $(yt) is the best
predecessor for yt . That is, $(yt) is the vertex yt−1 (in layer t − 1) that maximizes the quantity
#(yt−1)+S1

yt ,yt−1 . Then:

#(yt) =

{

S0
yt if t = 1

maxyt−1

(

#(yt−1)+S1
yt ,yt−1 +S0

yt
)

otherwise.
(2)
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Figure 1: S0
yt and S0

yt−1 denote per vertex (vertical) weights. S1
yt ,yt−1 denotes per edge (horizontal)

weights.

The Viterbi algorithm proceeds from left to right storing the values of # into an array G as soon as
such values are computed. Assuming that ∀yt−1 : G(yt−1) = #(yt−1), then G(yt) is computed as:

G(yt) = max
yt−1

(

G(yt−1)+S1
yt ,yt−1 +S0

yt
)

.

The pseudo code for the algorithm is reported in Algorithm 1. Since the maximization at the line
marked with label number 1 (henceforth simply “line 1 ”) requires !(K) time, the time needed for
processing each layer is in the order of !(K2). The total time required by Viterbi is then !(K2T ).
The standard formulation of the Viterbi algorithm would also store the optimal path information
as it becomes available. Since this can be done using standard techniques (Cormen et al., 1990,
page 520) without affecting the complexity of the algorithm, we do not explicitly report that in the
pseudo-code.

Let us now consider how the above definitions instantiate in the context of a learning environ-
ment. The symbol S0

yt conveys information about label yt provided by observing the data at time t.
In hidden Markov models terminology, S0

yt corresponds to probability byt (xt) of observing symbol
xt in state yt (Rabiner, 1989, definition of b j(k) pag. 261, Eq. 8). More generally, S0

yt is a quantity
that depends on both the label yt predicted for time (layer) t and the observations at and around time
t. Likewise, in HMMs terminology, S1

y′,y corresponds to the probability ayy′ of transiting from state
y to state y′ (Rabiner, 1989, definition of ai j pag. 260, Eq. 7). More in general, S1

y′,y may depend
on both the labels (y′,y) and on the observations at and around the current layer. We note that since
S1
y′,y may vary over time (which motivates the notation S1

yt ,yt−1), the setup considered here is more
general than the one of HMMs, where the transition matrix does not depend on the time instant.
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begin
forall y1 do

G(y1) ← S0
y1 ;

end
for t = 2 to T do
forall yt do

1 G(yt) ← maxyt−1

(

G(yt−1)+S1
yt ,yt−1 +S0

yt
)

;
end

end
y∗T ← argmaxyT G(yT );
return y∗T ;

end

Algorithm 1: The Viterbi algorithm.

3. Related Work

As we illustrated in Section 1, in cases where hundreds or thousands of labels are to be handled, the
quadratic dependence on the number of labels is still a high burden that limits the applicability of
sequential learning techniques.

In other fields (e.g., telecommunications) there exist ad hoc solutions that allow one to tame the
complexity of the Viterbi algorithm by means of hardware implementations (Austin et al., 1990) or
methods for approximating the optimum path (Fano, 1963). For instance, in the research field of
speech recognition, the Viterbi algorithm is routinely applied to huge problems. This is a typical
case where approximate solutions really pay off: suboptimal paths could be tolerated (to some ex-
tent) and tight time constraints prevent exhaustive search. A popular approach in this field is the
Viterbi beam search (VBS) (Lowerre and Reddy, 1980; Spohrer et al., 1980; Bridle et al., 1982):
essentially, VBS performs a breadth-first suboptimal search in which only the most promising solu-
tions are retained at each step. Many improvements over this basic strategy have been proposed to
refine either the computational performance or the accuracy of the solution (e.g., Ney et al., 1992).
In most cases domain-based knowledge (such as language constraints) is used to restrict the search
efforts to some relevant regions of the search space (Ney et al., 1987). Also, in recent years, several
algorithms have been proposed that overcome the difficulties inherent in heuristic ranking strategies
by learning ranking functions specifically optimized for the problem at hand (Xu and Fern, 2007).

Although promising, the VBS approach does not come without difficulties. For instance, Collins
and Roark (2004) propose Viterbi beam search to improve the performances of the perceptron algo-
rithm on the particular problem of natural language parsing. Interestingly, the authors note how the
sub-optimality of the beam search can negatively affect the learning performances. The problem
arises when a sub-optimal sequence is used instead of the optimal one to update the weights of the
features (please refer to Section 5). In order to alleviate this issue, the authors stop the search—
during learning—as soon as the beam does not contain the optimal solution. In such case only the
partial sequence, up to when the stopping occurred, is used to update the weights. This prevents
from training the perceptron using “bad” predictions, but it still has the drawback of exploiting only
partially the training sequences. In such system, then, the sub-optimality of Viterbi beam search
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has two drawbacks: at learning time, it hinders the process of finding better classifiers (or at least it
slows the process down); at testing time, it yields sub-optimal classifications.

In recent years, despite a widespread usage of the Viterbi algorithm within the sequential learn-
ing field, only few works addressed the problem of reducing its time complexity and at the same
time retaining the optimal result. In Felzenszwalb et al. (2003), linear (and near linear) algorithms
are proposed to compute the optimal labels sequence. Their algorithms work under the assumption
that the reward for the transition between states number i and j is a “simple” function of |i− j|.2

In Siddiqi and Moore (2005) it is assumed that the transition matrix is well approximated by a
particular one where, for each vertex, the probability mass is concentrated on the k highest transi-
tions leaving it. Then, the weights associated to the other transitions are approximated by a constant,
and the optimal path is evaluated with !(kKT ) time complexity. Clearly, the smaller k, the faster
the algorithm.

Both techniques provide significant time savings with respect to the Viterbi algorithm. However,
they are both based on assumptions about the entries in the transition matrix that are not guaranteed
to hold in practice. More in particular, the assumption by Felzenszwalb et al. (2003) does not seem
to easily fit general cases. Also, the investigation needed to devise the correct parameter space may
require knowledge and efforts that are not always at disposal of the average practitioner. The as-
sumption underlying the work of Siddiqi and Moore (2005) is, in our opinion, simpler to be fulfilled
in practice. However, the extent to which it holds (which determines the magnitude of k) cannot
be easily forecasted. Again, the extra efforts needed to assess the applicability of the approach
may be detrimental to its application. Moreover, both approaches require homogeneous transition
matrices: that is, transition matrices that do not vary over time. This is a common assumption,
but unfortunately it cannot be guaranteed in some recently developed approaches, as those based
on the boolean feature framework (McCallum et al., 2000). CarpeDiem can be safely applied even
in this more complex scenario. In the experimentation, we successfully apply CarpeDiem in both
settings, the one where the transition matrix is not constant (Section 6.1), as well as the one where
it is (Sections 6.2 and 6.3).

In a recent paper Mozes et al. (2007) propose an exact compression-based technique to speed up
the Viterbi algorithm. The authors propose to use three well known compression schemes achiev-
ing significant speed-ups whose magnitude depends on which compression algorithm is adopted.
Interestingly the cited approach is not a search scheme, rather it is a preprocessing step. As such,
it qualifies as an orthogonal technique amenable to be used together with CarpeDiem obtaining the
advantages of both techniques.

In facts, to the best of our knowledge, the algorithms CarpeDiem and (Mozes et al., 2007) are
the only exact ones, capable of speeding up the Viterbi algorithm when the assumption of homo-
geneous matrices is dropped. We would also argue that the other approaches presented above are
not easily adapted to work in this, more complex, scenario. In Siddiqi and Moore (2005) the tran-
sition matrix needs to be traversed in advance in order to obtain the highest ranking frequencies. If
those frequencies change over time, this operation needs to be repeated for each t, and the algorithm
would require O(TK2) only to compute this preprocessing step. In Felzenszwalb et al. (2003) it is
necessary to express the weights of the transition from label i to label j in terms of a function of
|i− j|. The effectiveness of the approach depends on particular properties of this function. It could
be argued that, in very particular situations, those properties could be shown to hold even when

2. One whose maximum can be calculated in (nearly) constant time.
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Vertical weights S0
i1 100 S0

j1 50 S0
i2 5 S0

j2 100

Horizontal weights S1
i1,i2 20 S1

i1, j2 20 S1
j1,i2 30 S1

j1, j2 40

Figure 2: Sometimes horizontal weights can be disregarded without loosing the optimal path.

the transition matrix varies with t. However, it is hard to figure out a general way to enforce this
property without inspecting the whole transition matrix at each time step.

CarpeDiem enjoys the desirable property of smoothly scaling to the Viterbi algorithm complex-
ity when the underlying assumptions soften (as argued in Section 4.5). This has two consequences:
1) the algorithm adapts to the problem and to the sequence at hand, and 2) the algorithm can be uni-
versally applied (even when one is unsure about whether the problem fits CarpeDiem assumptions
or not). In contrast with other state-of-the-art algorithms, no domain knowledge is to be given, nor
any parameter needs to be set. This makes CarpeDiem well suited to be used on a regular basis as a
drop-in replacement of the Viterbi algorithm: in the worst case, with no time saving.

4. The CarpeDiem Algorithm

In the general case, in order to determine the end point of the best path to a given layer, one can
avoid inspecting all vertices in that layer. In particular, after sorting the vertices in layer t according
to their vertical weight, the search can be stopped when the difference in vertical weight of the best
node so far and the next vertex in the ordering is big enough to counterbalance any advantage that
can be possibly derived from exploiting a better transition and/or a better ancestor.

To clarify this point, it is interesting to consider the minimal example reported in Figure 2. Let
us assume that the reward for the maximal weight for any transition is 60. Our objective is to find the
endpoint of the best path to each layer. For layer 1 we have no incoming paths, the best endpoint is
simply the vertex with the maximal vertical weight: in the example, i1. In our approach, we consider
vertices with highest vertical weight first. Hence we start by calculating the reward of the optimal
path to node j2: in the example, the path i1, j2 (with score S0

i1 +S1
j2,i1 +S0

j2 = 100+20+100 = 220).
We notice that the reward attainable by reaching i2 cannot be higher than 165, computed as the sum
of the reward for the best path to layer 1 (i.e., 100), plus the maximal weight for any transition
(i.e., 60), plus the vertical weight of i2 (i.e., 5). Therefore the endpoint of the best path to layer
2 must be j2 and it is not necessary to calculate the reward for reaching i2. In the course of the
algorithm (hopefully) many vertices will be left unexplored by means of the above strategy. We note,
however, that this does not prevent from the need of exploring those vertices in the following steps.
When necessity arises CarpeDiem goes back through the previous layers gathering the required
information. This is why CarpeDiem makes use of two procedures: one that finds the best vertex in
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each layer (Algorithm 3), and one that finds the reward for reaching a given node by traversing the
graph from right to left (Algorithm 4).

We say that a vertex is open if the reward of its best incoming path has been computed; otherwise
the vertex is said to be closed. CarpeDiem finds the best vertex for each layer by calling Algorithm 3
(also referred to as forward search strategy), which leaves closed as many vertices as possible. The
backward search strategy is called to open vertices whenever necessary.

The main procedure of CarpeDiem is presented in Algorithm 2; the forward and the backward
search strategies are presented in Algorithms 3 and 4, respectively. Before detailing the algorithm,
we need to introduce several definitions.

Definition 2 Let us define:

S1∗ : an upper bound to the maximal transition weight in the current graph

S1∗ ≥ max
yt ,yt−1

S1
yt ,yt−1 ; (3)

#∗t : the reward of the best path to any vertex in layer t (including the vertical weight of the ending
vertex)

#∗t = max
yt

#(yt);

%t : an upper bound to the reward that can be obtained in reaching layer t (2 ≤ t ≤ T)

%t = #∗t−1 +S1∗; (4)

)t : a total ordering—based on vertical weights—of vertices at layer t.

)t≡ {(yt ,y′t)|S0
yt ! S0

y′t}. (5)

Also, we say that vertex yt is more promising than vertex y′t iff yt )t y′t .

During execution, CarpeDiem calculates several values that are strictly connected to the def-
initions above. In particular G is a vector of K× T elements. G(yt) contains the value of #(yt)
as calculated by CarpeDiem. Also, B is a vector of T elements. Bt contains the value of %t as
calculated by CarpeDiem. To a good extent, proving CarpeDiem correct will involve proving that,
indeed, G(yt) = #(yt) and Bt = %t .

4.1 Algorithm 2 – Main Procedure

Algorithm 2 initializes G(y1) and B2 values and calls Algorithm 3 on all layers 2 . . .T . More specif-
ically, G(y1) is set to S0

1 (as required by Equation 1). Also B2 is set to the maximal vertical weight
found plus S1∗ (as required by Equation 4).

4.2 Algorithm 3 – Forward search strategy

The forward strategy searches for the best vertex for layer t stopping as soon as this vertex can be
determined unambiguously.

At the beginning of the analysis of each layer all vertices in the layer are closed. The algorithm
scans vertices in the order given by )t . As mentioned at the beginning of Section 4, in the general
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begin
foreach y1 { Initialization Step } do

2 G(y1) ← S0
y1 ; { Opens vertex y1 }

end

3 y∗1 ← argmaxy1(G(y1));
B2 ← G(y∗1)+S1∗;

foreach layer t ∈ 2 . . .T do
y∗t ← result of Algorithm 3 on layer t;

end
return path to y∗T ;

end

Algorithm 2: CarpeDiem.

begin
y∗t ← most promising vertex;
y′t ← next vertex in the )t ordering;
Open vertex y∗t {call Algorithm 4};
while G(y∗t ) < Bt +S0

y′t
do

4 Open vertex y′t {call Algorithm 4};
5 y∗t ← argmaxy′′∈{y∗t ,y′t} [G(y′′)];

y′t ← next vertex in the )t ordering;
end

6 Bt+1 ← G(y∗t )+S1∗;
return y∗t ;

end

Algorithm 3: Forward search strategy.

case, the algorithm can avoid opening all vertices in every layer. The search is stopped when the
difference in vertical weight of y∗t and y′t is big enough to counterbalance any advantage that can be
possibly derived from exploiting a better transition and/or a better ancestor. In formulae, let $(y∗t )
be the best predecessor for y∗t , the (forward) search is stopped when the currently best vertex y∗t and
the next vertex y′t in the )t ordering satisfy:

accounts for a better vertical
weight of y∗t w.r.t. yt

︷ ︸︸ ︷

S0
y∗t −S0

y′t ≥

accounts for a possibly bet-
ter predecessor of y′t w.r.t. y∗t

︷ ︸︸ ︷
(

#∗t−1 − #($(y∗t )
)

+

accounts for a possibly bet-
ter transition from y′t prede-
cessor

︷ ︸︸ ︷
(

S1∗ −S1
y∗t ,$(y∗t )

)

. (6)

The above formula is a direct consequence of the exit condition of the while loop of Algorithm 3,
and it can be obtained by substituting3 B and G with % and #, and then expanding % and # using their
definitions (we repeat the relevant definitions in Table 1-a and b).

3. The soundness of the substitution is guaranteed by Theorems 1 and 2.
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a) Definition of % %t = #∗t−1 +S1∗

b) Definition of # (see Eq. 1) #(y∗t ) = #($(y∗t ))+S1
y∗t ,$(y∗t )

+S0
y∗t

Table 1: Summary of few useful quantities

In case the stop criterion is not met, the algorithm calls Algorithm 4 (also referred to as the
backward strategy) which sets G(y′t) = #(y′t). If necessary, the “maximal” vertex y∗t (the vertex that,
so far, has associated maximal reward) is updated. Before exiting, Bt+1 is readied for later use, and
the best vertex is returned.

4.3 Algorithm 4 – Backward search strategy

The backward search strategy opens a vertex yt by finding its best ancestor and setting G(yt) accord-
ingly. In much the same spirit as in the forward strategy, the algorithm saves some computation i)
by exploiting )t−1 in order to inspect first the most promising vertices, and ii) by taking advantage
of %t−1 in order to stop the search as soon as possible.

Data: A vertex yt to be opened
begin

y∗t−1 ← most promising vertex;
y′t−1 ← next vertex in the )t−1 ordering;
while y′t−1 is open do

y∗t−1 ← argmaxy′′∈{y′t−1,y∗t−1}

[

G(y′′)+S1
yt ,y′′

]

;
y′t−1 ← next vertex in the )t−1 ordering;

end
while

(

G(y∗t−1)+S1
yt ,y∗t−1

< Bt−1 +S0
y′t−1

+S1∗
)

do
Open y′t−1 {call Algorithm 4};
y∗t−1 ← argmaxy′′∈{y′t−1,y∗t−1}

[

G(y′′)+S1
yt ,y′′

]

;
y′t−1 ← next vertex in the )t−1 ordering;

end
7 G(yt) ← G(y∗t−1)+S1

yt ,y∗t−1
+S0

yt ;

end

Algorithm 4: Backward search strategy to open yt .

The first loop finds the best predecessor among the open vertices of layer t− 1. In the second
loop, we exploit the same idea behind the forward strategy. Let us inspect the exit condition of the
second loop:

G(y∗t−1)+S1yt,y∗t−1 < Bt−1 +S0
y′t−1

+S1∗.

With the exception of the symbols in bold font, the formula is the same as the one in the exit
condition of the while loop in Algorithm 3. The bold symbols take into account the transition to the
target vertex. Namely, S1yt,y∗t−1 takes into account the transition from the current best vertex (y∗t−1)
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to the target vertex yt and S1∗ accounts for the maximal reward that a transition from y′t−1 to yt can
possibly obtain.

Also the internal working of the second loop is very similar to the one in the forward strategy.
After opening (through a recursive call) y′t−1, the current best vertex is set to the best of y′t−1 and
y∗t−1.

4.4 Example

In the following we provide a description of an execution of CarpeDiem over a toy problem. The
problem consists of labeling a sequence containing four events and two labels (named i and j). The
example is reported in Figure 3. The weight shown on the edge between labels yt−1 and yt corre-
sponds to S1

yt ,yt−1 . The bound S1∗ on the maximum horizontal reward is 60. Two further quantities
are reported in the figure, and shown graphically by means of boxes placed on vertices: within
rectangular boxes, we report the vertical weight of the vertex. Within rounded boxes, we report:

• G(yt), if yt is open;

• Bt +S0
yt , if yt is closed and Bt has already been computed;

• 0, otherwise.

Here we give a detailed description of the algorithm execution over the given graph.

step (a) At the beginning of the execution, all vertices are closed. The initialization steps in Algo-
rithm 2 open all vertices in layer 1. Clearly, there is no reward for arriving at vertices in layer
0 and no incoming transitions to be taken into account. The best vertex in layer 1 is thus the
vertex having the maximum vertical weight.

step (b) The analysis of layer 2 starts by opening the most promising vertex in that layer (vertex j).
Since all vertices at layer 1 are open, the backward strategy already has complete information
at disposal, and it does not need to enter the second loop to open j2. Once G( j2) has been
computed, the algorithm compares this value to the bound on the weight of the best path to
i2. Since S0

i2 +B2 = 165 cannot outperform G( j2) = 220, there is no need to open vertex i2.

step (c) To open i3, the backward strategy goes back to layer 2 and searches for the best path to
that vertex. Again, vertex i2 can be left closed, since there is no chance that the best path to i3
traverses it. In fact,

B2 +S0
i2 +S1∗ = (100+60)+5+60 = 225

cannot outperform the reward

G( j2)+S1
i3, j2 = 220+15 = 235

obtained by passing through j2. Then G(i3) is set to 235+100 = 335.

Unfortunately, this does not allow to make a definitive decision about whether this is the best
vertex of layer 3, since B3 + S0

j3 is (220 + 60)+ 70 = 350. Next step will thereby settle the
question by opening vertex j3.
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Figure 3: CarpeDiem in action on a toy problem.

step (d) The goal is, at this point, to find the best path to j3. Even though j2 has a clear advantage
over i2, this does not suffice to exclude that the latter one is on the optimal path to j3 (since
G( j2)+S1

j3, j2 -< B2 +S0
i2 +S1∗): the backward strategy is then forced to recursively call itself

to open i2.

step (e) By opening i2, the algorithm sets G(i2) to 125 (the best path being i1 → i2), thus ruling it
out as a candidate for being on the optimal path to j3.

step (f) In returning to consider layer 3, we are back to the path i1 → j2 → i3. To open vertices i2
and j3 has been wasteful, though unavoidable.
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step (g) The first vertex to be opened in its layer is j4. Interestingly, the best path to j4 is not
through the best vertex in layer 3. In fact, while the highest reward for a three steps walk is
on vertex i3, it is more convenient to go through vertex j3 to reach vertex j4.

step (h) Since G( j4) = 485 is larger than B4 +S0
i4 , the algorithm terminates leaving i4 closed.

In Section 6 real world problems are considered, and much larger optimizations obtained.

4.5 Algorithm Properties

An intuitive way of characterizing the algorithm complexity is to consider Formula 6, where the
exit condition of Algorithm 3 is rewritten in order to point out why in some cases it is safe to stop
inspecting the current layer. Clearly, the sooner the loop exit condition is satisfied, the faster the
algorithm.

Arguably, the worst case happens when vertical rewards, being equal for each label, do not
provide any discriminative power. In such a case, the left term in Formula 6 is zero, the inequality
is never satisfied, and Algorithm 3 calls Algorithm 4 over all K vertices in every layer. In this case,
for each one of the k vertices to be opened in a new layer, the first loop of Algorithm 4 iterates over
all K predecessors. However, no recursive call takes place. Overall, in the worst case hypothesis,
CarpeDiem has order of O(TKK+TK log(K)) = O(TK2) time complexity.4 CarpeDiem is never
asymptotically worse than the Viterbi algorithm.

The best case happens when horizontal rewards, being equal for each transition, do not provide
any discriminative power. In such a case the right hand side of the inequality in Formula 6 is zero
and the inequality is guaranteed to be satisfied immediately. Moreover, being the backward strategy
based on a bound similar to the one that leads to Formula 6, it will never open any other vertex. Then,
a single vertex per layer is opened and CarpeDiem has order of O(T +TK log(K)) =O(TK log(K))
time complexity. A more formal argument about CarpeDiem complexity is stated by Theorem 3
and proved in Appendix B.

Theorem 3 CarpeDiem has O(TK2) worst case time complexity and O(TK logK) best case time
complexity.

CarpeDiem finds the optimal sequence of labels. By using standard book-keeping techniques,
the optimal sequence of labels can be tracked back by starting from the optimal end point. Then, the
optimality of CarpeDiem can be proved by showing that the vertex returned by the forward strategy
at the end of the algorithm is the end-point of the optimal path through the graph. This property,
stated by Theorem 1, is formally proved in Appendix A.

Theorem 1 Let us consider a sequence of calls to Algorithm 3 on layers 2,3, . . . , t (t ≤ T ). When
Algorithm 3 terminates on layer t, the returned vertex y∗t is the endpoint of the optimal path to layer
t. Formally,

∀yt : #(y∗t ) ≥ #(yt).

Beside the theoretical properties of the algorithm, it is important for the practitioner to consider
its actual performances over real world problems. In the general case the algorithm will open some,
but not all vertices: the exact number of the vertices that will be inspected depends on the particular

4. The O(TK log(K)) term in the formula accounts for the time needed to sort vertices according to )t .
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application and on how the features have been engineered. Empirical evidence (Section 6) suggests
that many problems are closer to the best case than to the worst. Before introducing the experi-
mentation, we show how CarpeDiem can be instantiated in the context of a supervised sequential
learning system and, more in particular, in a system based on the voted perceptron algorithm.

5. Grounding the Voted Perceptron Algorithm on CarpeDiem

The supervised sequential learning problem can be formulated as follows (Dietterich, 2002).

Let {(!xi,!yi)}Ni=1 be a set of N training examples. Each example is a pair of sequences
(!xi,!yi), where !xi = 〈xi,1,xi,2, . . . ,xi,Ti〉 and !yi = 〈yi,1,yi,2, . . . ,yi,Ti〉. The goal is to con-
struct a classifier H that can correctly predict a new label sequence!y = H(!x) given an
input sequence!x.

The SSL problem has been approached with many different techniques. Among others, we recall
Sliding Windows (Dietterich, 2002), hidden Markov models (Rabiner, 1989), Maximum Entropy
Markov Models (McCallum et al., 2000), Conditional Random Fields (Lafferty et al., 2001), Dy-
namic Conditional Random Fields (Sutton et al., 2007), and the voted perceptron algorithm (Collins,
2002).

The voted perceptron uses the Viterbi algorithm at both learning and classification time. It is
then particularly appropriate for the application of our technique. Moreover, it relies on the boolean
features framework (McCallum et al., 2000) which is more general than the HMMs model with
respect to representing the graph. In this framework, depending on how features are implemented,
both static (homogeneous) and dynamic transition matrices can be modeled. We use the term dy-
namic transition matrix to indicate that weights associated to edges may change from time point to
time point, depending on the observations.

In the boolean features framework the learnt classifier is built in terms of a set of boolean
features. Each feature & reports about a salient aspect of the sequence to be labelled in a given
time instant. More formally, given a time point t, a boolean feature is a 1/0-valued function of the
whole sequence of feature vectors !x, and of a restricted neighborhood of yt . The function is meant
to return 1 if the characteristics of the sequence!x around time step t support the classifications given
at and around yt . Under a first order Markov assumption, each & depends only on yt and yt−1. Let
us denote with w& the weight associated to feature &. The classifier learnt by the voted perceptron
algorithm has the form

H(!x) = argmax
!y

T

"
t=1
"
&
w& ·&(!x,yt ,yt−1, t)

and is suitable to be evaluated using the Viterbi algorithm.
In practice, not all boolean features depend on both yt and yt−1. Let us distinguish features

depending on both yt and yt−1 from those depending only on yt . We denote with '0 the set of
features that depends only on yt and thus models per vertex (vertical) information. Analogously,
we denote with '1 the set of features that depend on both yt and yt−1 modeling, thus, per edge
(horizontal) information. The vertical and horizontal weights can be then calculated as:

S0
yt = "

&∈'0
w&&(!x,yt , t)
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and
S1
yt ,yt−1 = "

&∈'1
w&&(!x,yt ,yt−1, t).

In general, the bound on the maximal transition weight S1∗ can be set to the sum of all positive
horizontal weights:

S1∗ = "
&∈'1

J(w&)

where J(x) is x if x> 0, and 0 otherwise. It is noteworthy that this quantity can be computed without
any extra—domain specific—knowledge.

Often, however, better bounds can be given based on specific domain knowledge. An example
of such improvements (one that we exploit throughout our experimentation) consists in partitioning
the horizontal features into sets of mutually exclusive features. Then the bound can be computed
as the sum of the maximal weight of each partition. In case the partitions degenerate to a single set
(i.e., all horizontal features are mutually exclusive), the maximal horizontal weight can be used. For
instance, in many domains where HMMs are routinely applied, horizontal features are used only
to check the last two predicted labels. In such domains, if a horizontal feature is asserted, no other
feature can and we can appropriately set

S1∗ = max
&∈'1

J(w&). (7)

6. Experimentation

To figure out whether and how CarpeDiem can be applied to actual tasks, we tested it on three
different problems: the problem of music harmony analysis (Radicioni and Esposito, 2007), the fre-
quently asked questions (FAQs) segmentation problem (McCallum et al., 2000), and a text recog-
nition problem built starting from the “letter recognition” data set from the UCI machine learning
repository (Frey and Slate, 1991).

The running time of an execution of CarpeDiem depends on how the weights of vertical and
horizontal features compare: the more discriminative are vertical features with respect to horizontal
features, the larger is the edge CarpeDiem has over the Viterbi algorithm.

Overall the three experiments cover three situations that are likely to occur in practice. The
music analys problem represents a situation where S1∗ has been selected by exploiting detailed
domain knowledge: horizontal features have been divided into sets of non trivial partitions and
the bound has been set accordingly (see end of Section 5). Features of the FAQs segmentation
problem have been developed by McCallum et al. (2000) on a different system, and then imported
into ours without modifications. Features used in the text recognition task didn’t go through a real
engineering process; on the contrary, they can be seen as a first, to some extent naive, attempt to
tackle the problem. In these last two cases, we have set S1∗ using Formula 7.

6.1 Tonal Harmony Analysis

Given a musical flow, the task of music harmony analysis consists in associating a label to each time
point (Temperley, 2001; Pardo and Birmingham, 2002). Such labels reveal the underlying harmony
by indicating a fundamental note (root) and a mode, using chord names such as ‘C minor’.
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Music analysis task can be naturally represented as a supervised sequential learning problem.
In fact, by considering only the “vertical” aspects of musical structure, one would hardly produce
reasonable analyses. Experimental evidences about human cognition reveal that in order to dis-
ambiguate unclear cases, composers and listeners refer to “horizontal” features of music as well:
in these cases, context plays a fundamental role, and contextual cues can be useful to the analysis
system.

The system relies on 39 features. They have been engineered so that they take into account the
prescriptions from music harmony theory, a field where vertical and horizontal features naturally
arise. Vertical features report about simultaneous sounds and their correlation with the currently
predicted chord. Horizontal features capture metric patterns and chordal successions. This is a
case where not all horizontal features are mutually exclusive (i.e., S1∗ is not the maximal of pos-
itive horizontal weights) and where horizontal weights may change over time. For instance, the
same transition between two chords can receive different weights according to whether it falls on
accented/unaccented beats.

The training set is composed of 30 chorales (3,020 events) by J.S. Bach (1675-1750). The
classifiers have been tested on 42 separate chorales (3,487 events) from the same author.

6.2 FAQs Segmentation

We experimented on the FAQs segmentation problem as introduced by McCallum et al. (2000).
It basically consists of segmenting Usenet FAQs into four distinct sections: ‘head’, ‘question’,
‘answer’, and ‘tail’.

In this data set, events correspond to text lines and sequences correspond to FAQs. McCallum
et al. define 24 boolean features. Each one is coupled with each possible label for a total of 96
features. Additionally, 16 features are used to take into account the possible transitions between
labels.

The data set consists of a learning set containing 26 sequences (29,406 events) and a test set
containing 22 sequences (33,091 events).

6.3 Text Recognition

Our third experiment deals with the problem of recognizing printed text. We trained the classifiers
on the “The Frog King” tale (122 sequences, 6,931 events) by Grimm brothers, and tested over
the “Cinderella” tale (240 sequences, 13,354 events) by the same authors. The classifier is called
to recognize each letter composing the tale. The data set has been built as follows. Each letter
(corresponding to an individual event) in the tales has been encoded by picking at random one of its
possible descriptions as provided by the letters UCI data set5 (Frey and Slate, 1991). Each sentence
corresponds to a distinct sequence.

We briefly recall here the characteristics of the letters data set as originally proposed by the
authors. The data set contains 20,000 letters described using 16 integer valued features. Such
attributes capture highly heterogeneous facets of the scanned raw image such as: horizontal and
vertical position, the width and height, the mean number of edges per pixel row. The images have
been obtained by randomly distorting 16 fonts taken from the US National Bureau of Standards.
The features used by the learning system are:

5. It can be found at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/letter-recognition.
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Experiment Viterbi CarpeDiem Time Saved (%)
music Analysis 13,582 1,507 88.90%
FAQs segmentation 537 144 73.15%
letter recognition 961,969 34,244 96.44%

Table 2: CPU Time (expressed in seconds) and percentage of time saved by CarpeDiem.

1. 26× (16× 16) = 6,656 vertical features, obtained by the original attributes devised by Frey
and Slate (1991). The reported figure is explained as follows. We consider each of the 16
values of the 16 attributes in the original data set, thus resulting in 256 possible combinations.
Each such combination is still to be coupled with the 26 letters of the English alphabet.

2. the 27×27 = 729 horizontal features, obtained by considering A×A , where A is the set of
letters in the english alphabet, plus a sign for blanks.

6.4 Procedure

We compare the performances of CarpeDiem against those provided by the Viterbi algorithm. To
this aim, we embedded CarpeDiem in a SSL system implementing the voted perceptron learning
algorithm (Collins, 2002). The learnt weights have been then used to build two classifiers: one
based on the Viterbi algorithm, the other one based on CarpeDiem.

For each one of the three problems we divided the data into a learning set and a test set. Each
learning set has been further divided into ten data sets of increasing sizes (the first one contains 10%
of the data, the second one 20% of the data, and so forth). Also, each experiment has been repeated
by varying the number of learning iterations from 1 to 10, for a grand total of 100 classifiers per
problem. We tested each learnt classifier on the appropriate test set recording the classification time
obtained by using first CarpeDiem and then Viterbi.

In the following we will indicate each one of the 100 classifiers by using two numbers separated
by a colon: the former number corresponds to the size of the training set (1 standing for 10%, 2 for
20%, . . . , 10 for 100%), the latter one indicates the number of iterations. For instance, the classifier
8:1 has been acquired by iterating once on 80% of the learning set.

6.5 Results

As earlier mentioned (and implied by Theorem 1), CarpeDiem performs exact inference: classifiers
built on CarpeDiem provide the same answers as those built on the Viterbi algorithm.

We measured the total classification time spent by the algorithms as well as the average time
saved by CarpeDiem with respect to the Viterbi algorithm. They are provided in Table 2: average
time savings range from about 73% (FAQs segmentation) to over 96% (letter recognition). Fig-
ures 4, 5 and 6 graphically report a detailed account of each experiment. Classification times for
each problem were obtained using a fixed size test set. By observing the profiles reported in the fig-
ures, it is apparent that, while the Viterbi algorithm runs in approximately constant time, CarpeDiem
performances depend on the particular classifier used.

In all trials of all experiments CarpeDiem runs in a small fraction of the time needed by Viterbi.
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Figure 4: Results on the music analysis problem. We report on the abscissas the learnt classifiers
indicating i: j for classifier acquired using (10 · i)% of the training set and j iterations.
Labels on the abscissas refer only to the first classifier for each block of experiments;
the following nine bars refer to the remaining ones. For instance, label 3:1 is positioned
below the bar corresponding to the classifier trained on the 30% of the training set and
using 1 iteration. The following nine bars refer to classifiers 3:2, 3:3, . . . , 3:10. We report
on the ordinates the CPU seconds needed for the classification of the test set. Vertical
bars refer to the time spent by CarpeDiem. Triangles refer to the time spent by Viterbi.

One interesting fact is unveiled by the profile of the classification time. Since—in each one
of the three experiments—classification is performed on a data set of fixed size, one would expect
roughly constant classification time. By converse, at least in the first two experiments (Figures 4
and 5), the emerging patterns are similar to those usually observed at learning time. We remark that
the hundred runs of each experiment differ only in the set of weights used by the classifier. Then
it is apparent that, as the voted perceptron learns, it somehow modifies the weights in a way that
proves to be detrimental to the work of CarpeDiem.

To explain the observed patterns, let us consider an informative vertical feature &• and examine
the first iteration of the voted perceptron on a sequence of length T = 100. Also, we assume that
&• is asserted 60 times, and that it votes for the correct label 50 times out of 60. Even though
this example may seem unrealistic, it is not.6 The first iteration on the first sequence the voted
perceptron chooses labels at random. Then, the vast majority of them will be incorrectly assigned,
thus implying a large number of feature weights updates. If all the labels for which &• is asserted
are actually mislabelled, due to the way the update rule acts, the weight associated to &• will be
increased7 by 40. This large increase occurs all at once at the end of the first iteration on the first
sequence, and it is likely to overestimate the weight of &•. The voted perceptron will spend the
rest of learning trying to compensate for this overestimation. However, subsequent updates will be

6. For instance, in the music analysis problem, this could be the case for the feature that votes for the chord that has
exactly 3 notes asserted in the current event.

7. That is, 50− (60−50) = 40.
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Figure 5: Results on the FAQs Segmentation problem. The conventions adopted are the same as for
Figure 4.
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Figure 6: Results on the letter recognition problem. In the inner frame we detail the time spent by
CarpeDiem using the first fifty classifiers. The conventions adopted are the same as for
Figure 4.

of smaller magnitude. In fact, the following predicted labeling will not be randomly guessed, thus
implying a reduced number of updates.

By summarizing, highly predictive features have their weights initially set to very large values;
such weights slowly decrease in the following. The behavior described clearly emerges in Figure 7,
where the individual weights of vertical features (for the music analysis problem) are plotted as
the updates occur. Then, since CarpeDiem is efficient when vertical features are discriminative
compared to horizontal ones, the algorithm is particularly well-suited to be used during the early
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Figure 7: Evolution of vertical weights throughout learning. Each line corresponds to an individual
vertical feature; vertical lines correspond to the beginning of new iterations. The plot
refers to the music analysis data set.

learning steps of the voted perceptron where the time saved by CarpeDiem reaches peaks of 99.47%
(music analysis, classifier 1:1) and 78.60% (FAQs segmentation, classifier 1:1).

Lastly, one might wonder why the observed pattern wasn’t seen in the text recognition problem.
Notwithstanding that the problem itself is a sequential one, to model only bigrams probabilities
proved—against our expectations—to be not enough to provide sufficient discrimination power to
horizontal features. In other words, the horizontal features we devised contribute to the correct
classification only in a marginal way. This is a setting where CarpeDiem can, and actually does,
attain exceptional time savings (Figure 6).

Prompted by such time savings, we re-ran the same experiments using no horizontal features:
the accuracy does not drop down as significantly as in the other two problems. This fact explains
why the pattern observed in Figures 4 and 5 is not observed in Figure 6: since vertical features re-
main predictive with respect to horizontal ones throughout the learning process the performances of
CarpeDiem do not change over time. Here we note one important property of CarpeDiem: Carpe-
Diem time performances reflect the degree of sequentiality inherent to the problem at hand. Actu-
ally, by tracking the number of vertices opened in each layer, one can even measure how important
sequential information is in different parts of the same sequence.

6.6 Comparison with Related Algorithms

In the following we present a brief discussion about two technologies that, if not directly com-
parable with CarpeDiem, are much related to the algorithm. We start by reporting the results of
implementing the CarpeDiem heuristic for the A∗ algorithm. Then, we report about a performance
comparison with non-optimal search algorithms based on the Viterbi beam search approach.
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6.6.1 RELATIONS WITH A∗

It could be argued that the CarpeDiem algorithm looks interestingly similar to the A∗ algorithm (Hart
et al., 1968). In order to investigate this similarity let us consider the following heuristic, based on
the same ideas underlying CarpeDiem:

h(yt) = "
t ′>t

[

max
yt′

(

S0
yt′

)

+S1∗
]

= (T − t)S1∗ +"
t ′>t

[

max
yt′

(

S0
yt′

)
]

.

The heuristic estimates the distance to the goal by summing the best vertical weight in each layer
and the best possible transition between any two layers.

Even though the heuristic is intuitively connected to the strategy implemented in CarpeDiem, the
differences are indeed remarkable. A first important difference is in the choice criteria implemented
in Algorithms 3 and 4 (we will focus only on Algorithm 3 for the sake of exposition). The criterion
in Algorithm 3 states: do not consider any further node in this layer if

G(y∗t ) >= Bt +S0
y′t .

Since Bt = G(y∗t−1)+S1∗, the above criterion approximates the reward of the optimal path by means
of S1∗ only once rather than the T − t times taken by h(yt). Hence, A∗ incurs an high risk of opening
vertices in layers far from the goal only because of the cumulation of these approximations.

Another important difference between the two algorithms is in the fact that CarpeDiem imple-
ments two different heuristics: one is used by Algorithm 3 and one is used by Algorithm 4. On the
contrary A∗ uses the same criterion throughout the computation. Finally, the data structures needed
by CarpeDiem are simpler (and faster) than those needed to implement A∗.

In order to empirically assess whether A∗ could be competitive with respect to CarpeDiem, we
implemented the above heuristic and paid particular attention to tuning the data structures. The
resulting algorithm turned out to be even less efficient than the Viterbi algorithm.

Of course, this does not mean that the same principles implemented by CarpeDiem could not be
plugged into A∗ by means of a carefully chosen heuristic. Rather, it shows that the problem is not
trivial, and deserves ad-hoc research efforts.

6.6.2 VITERBI BEAM SEARCH

To compare CarpeDiem with algorithms based on the Viterbi beam search (VBS) strategy presents
several difficulties. On the one hand, we have an algorithm that guarantees optimality, but not com-
putational performances; on the other hand, we have VBS approaches that guarantee computational
performances abdicating optimality.

In VBS approaches the width of the beam (hereafter b) is particularly important in that it affects
the tradeoff between computational gain and result optimality. For very small b, VBS would most
probably lead to crude approximations; in this case VBS is likely to run faster than CarpeDiem just
because it disregards most of the possibly-optimal paths. By converse, if we were to choose the
beam size almost equal to the number of possible labels K (i.e., b 1 K), then VBS would run in
almost the same time as the Viterbi algorithm. In between there are all other options. Also, the
quality of the solution found by VBS approaches highly depends on the heuristic adopted. In the
following we will disregard any accuracy concern, so that the two approaches could be compared in
terms of execution times solely.
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Let ( be the ratio between the time spent by CarpeDiem and the time spent by the Viterbi
algorithm for solving a given problem: that is, the time savings reported in Table 2 are computed as
[(1− ()× 100]%. Given that the time spent by a Viterbi beam search algorithm is in the order of
b2T , the time saved by a VBS algorithm w.r.t. the Viterbi algorithm is in the order of:

(K2 −b2)T
K2T

= 1−
b2

K2 .

By equating the time saved by CarpeDiem (i.e., 1−() and the time saved via the VBS approach, we
have that by setting:

b=
√

(K2 (8)

an algorithm based on the VBS approach will run in about the same time as CarpeDiem.
We implemented a basic VBS algorithm and measured its running time over the data set de-

scribed in Section 6 and experimented with different settings of b. The results show that to obtain
the same running times as CarpeDiem, the beam size needs to be set as follows:

• b= 25 for the Tonal Harmony Analysis data set. Being K = 78, this amounts to consider 32%
of the possible labels;

• b= 2 for the FAQ Segmentation data set. Being K = 4, this amounts to consider 50% of the
possible labels;

• b= 5 for the text recognition data set. Being K = 27, this amounts to consider 18.5% of the
possible labels;

Two aspects are remarkable in the above results: i) the reported figures have been observed empir-
ically rather than determined using the above formula. It is immediate to verify that they are very
close to the ones returned by using Formula 8; ii) we omitted to implement a heuristic to guide the
VBS search. Since computing the heuristic would require additional efforts, the timings used to
derive such numbers are optimistic approximations of the actual time needed by a full fledged VBS
algorithm.

In summary, CarpeDiem runs at least as fast as a VBS approach when a small to medium beam
size is used while providing some additional benefits. Again, investigating the conditions that make
appropriate one approach over the other one, deserves further deepening the research.

7. Conclusions

In this paper we have proposed CarpeDiem, a replacement of the Viterbi algorithm. On average,
CarpeDiem allows evaluating the best path in a layered and weighted graph in a fraction of the
time needed by the Viterbi algorithm. CarpeDiem is based on a property exhibited by most tasks
commonly tackled by means of sequential learning techniques: the observations at and around a
time instant t are very relevant for determining the t-th label, while information about the succession
of labels is mainly useful in order to disambiguate unclear cases. The extent to which the property
holds determines the performances of the algorithm. We formally proved that CarpeDiem finds the
best possible sequence of labels and that the algorithm complexity ranges between O(TK logK) in
the best case, and O(TK2) in the worst case. The fact that the worst case complexity is the same as
the Viterbi algorithm complexity suggests that, by and large, CarpeDiem is suitable for substituting
the Viterbi algorithm.
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In Section 3, we reviewed recently proposed alternatives and pointed out the following advan-
tages of CarpeDiem with respect to the competitors:

• it is parameter free;

• it does not require any prior knowledge or tuning;

• it never compromises on optimality.

At the present time, the main strength of other approaches with respect to ours is that they have
been devised to improve the forward-backward algorithm as well. We defer the extension of our
approach in that direction to future work.

In addition to the theoretical grounding of CarpeDiem complexity, we provided an experimen-
tation on three real world problems, and compared its execution time with that of the Viterbi algo-
rithm. The experiments show that large time savings can be obtained. The reported figures show
time savings ranging from 73% to 96% with respect to the Viterbi algorithm.

A further interesting facet of CarpeDiem is that its execution trace provides clues about the prob-
lems at hand. It can then be used to understand how salient sequential information is. Also, within
the same sequence, it is often interesting to investigate the time steps where sequential information
gets crucial thus implying higher classification time. For instance, in Radicioni and Esposito (2007)
we used this fact to find where musical excerpts get more difficult.

In a world where the quantity of information as well as its complexity is ever increasing, there
is the need for sophisticated tools to analyse it in reasonable time. Our perception is that, in most
problems, long chains of dependencies are useful to reach top results, but their influence on the
correct labelling decreases with the length of the chain. In a probabilistic setting, the length of the
chain of dependencies would be called the ‘order of the Markov assumption’. In such a context, it
would be appropriate to say that what we call ‘vertical’ features are actually features making a zero
order Markov assumption (no dependency at all), while horizontal features are features making a
first order Markov assumption. The higher the order of the Markov assumption we want to plug into
the model, the slower the algorithm that evaluates the sequential classifier. If our guess is correct,
however, the higher the Markov assumption, the less informative are the features that use it. Should
this be the case, CarpeDiem strategy could be extended to efficiently handle higher order Markov
assumptions, thereby allowing to use sequential classifiers to tackle a larger set of problems.
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Appendix A. Soundness

A proof of soundness for CarpeDiem consists in showing that y∗T is the endpoint of the optimal
path through the graph of interest. Although the whole algorithm is concerned with finding out
the optimal path, we presently restrict ourselves to find the optimal endpoint, since standard book
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symbol description
S0
yt vertical weight of vertex yt
S1
yt ,yt−1 horizontal weight for transition from yt−1 and yt
S1∗ maximal transition reward (fixed for the whole graph)
#(yt) the weight of the best path to yt
#∗t the weight of the best path to the best vertex in level t
%t #∗t−1 +S1∗

G(yt) #(yt) as calculated by CarpeDiem
Bt %t as calculated by CarpeDiem

Table 3: Summary of the notation adopted.

keeping techniques can be used during the search to store path information. The path can be then
be retrieved in O(T ) time.

The proof consists in two Theorems and one Lemma; in particular, Theorem 1 directly im-
plies the soundness of CarpeDiem, while Theorem 2 and Lemma 1 are necessary in the proof of
Theorem 1.

Before entering the core of the proof, let us summarize the notation adopted. We distinguish
between values that are calculated by CarpeDiem, and those representing properties of the graph.
We will use blackboard characters (G and B) to denote the former ones and greek letters (# and %)
for the latter ones. A summary of important definitions is reported in Table 3.

We start by stating and proving Lemma 1, which ensures the soundness of the main bound used
by CarpeDiem.

Lemma 1 If Bt = %t then the bound exploited by CarpeDiem does not underestimate the reward of
the optimal path to any vertex. Formally,

Bt = %t ⇒ Bt +S0
yt ≥ #(yt).

Proof Let us consider the optimal path to yt and denote with $(yt) the predecessor of yt . Then, by
definition we have: #∗t−1 ≥ #($(yt)), and S1∗ ≥ S1

yt ,$(yt). It immediately follows that:

#∗t−1 +S1∗ +S0
yt ≥ #($(yt))+S1

yt ,$(yt) +S0
yt .

By definition %t = #∗t−1 +S1∗ and #(yt) = #($(yt))+S1
yt ,$(yt) +S0

yt , which yields:

%t +S0
yt ≥ #(yt)

and by assumption, this implies:
Bt +S0

yt ≥ #(yt).

Theorem 1 Let us consider a sequence of calls to Algorithm 3 on layers 2,3, . . . , t (t ≤ T ). When
Algorithm 3 terminates on layer t, the returned vertex y∗t is the endpoint of the optimal path to layer
t. Formally,

∀yt : #(y∗t ) ≥ #(yt).
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Proof We prove the stronger fact

Bt = %t ∧∀yt : #(y∗t ) ≥ #(yt).

The proof is by induction on t. The base case for the induction is guaranteed by the initialization
step in Algorithm 2 where B2 and #(y∗1) are set. We start by showing that

∀y1 : #(y∗1) ≥ #(y1) (9)

as follows:

#(y∗1) = #(argmaxy1 G(y1)) → by line 3 ( Algorithm 2)
= #

(

argmaxy1 S0
y1

)

→ by line 2 (Algorithm 2)
= #(argmaxy1 #(y1)) → by Equation 2
= maxy1 #(y1)

⇓

∀y1 : #(y∗1) ≥ #(y1).

In order to prove B2 = %2, we note that Algorithm 2 sets B2 to G(y∗1)+S1∗:

B2 = G(y∗1)+S1∗

= S0
y∗1

+S1∗ → by line 2 (Algorithm 2)

= #(y∗1)+S1∗ → by Equation 2
= #∗1 +S1∗ → by definition of #∗1 (Table 3) and Equation 9
= %2 → by definition of %2 (Table 3).

Let us now assume that for all t̂, 1 ≤ t̂ < t:8

Bt̂ = %t̂
∀yt̂ : #(y∗t̂ ) ≥ #(yt̂)

then we prove Bt = %t as follows:

Bt = G(y∗t−1)+S1∗ → by instruction 6 (Algorithm 3)
= #(y∗t−1)+S1∗ → by Theorem 2
= #∗t−1 +S1∗ → by Equation 10 and definition of #∗t−1

= %t → by definition of %t (Table 3).

In order to prove ∀yt : #(y∗t ) ≥ #(yt) we start by noting that at the end of the main loop of
Algorithm 3 it holds G(y∗t ) ≥ Bt +S0

y′t
. Also, for any yt 5t y′t we have (by Definition 2–Equation 5):

Bt +S0
yt ≤ Bt +S0

y′t
. It follows that yt 5t y′t ⇒ G(y∗t ) ≥ Bt +S0

yt . Using Lemma 1 we have

yt 5t y′t ⇒ G(y∗t ) ≥ #(yt). (10)

8. We note that our definitions give no meaning to B1 and %1. We define them to be equal regardless their value: this
simplifies the discussion allowing an easier formulation of the properties being stated and proved. They are not used
in the algorithm nor in the argument anyway; the definition is thus safe.

1875



ESPOSITO AND RADICIONI

Moreover, since the algorithm scans the vertices in the order given by )t , all vertices yt , yt )t y′t
have been considered by the main loop. Then by line 4 (Algorithm 3), by our inductive hypothesis
(∀t̂ < t : Bt̂ = %t̂) and Theorem 2, we have that for each such vertex G(yt) = #(yt). Moreover, due
to line 5 (Algorithm 3), G(y∗t ) ≥ G(yt). Putting together the two statements, we conclude that

yt )t y′t ⇒ G(y∗t ) ≥ #(yt). (11)

Equation 10, Equation 11, and the fact that )t is a total order, yield

∀yt : G(y∗t ) ≥ #(yt).

By noting that y∗t is open (and exploiting again Theorem 2), we have:

∀yt : #(y∗t ) ≥ #(yt).

Theorem 2 Let us assume ∀t̂ < t : Bt̂ = %t̂ , then after opening vertex yt , G(yt) = #(yt).

Proof By line 7 (Algorithm 4), G(yt) = G(y∗t−1)+S1
yt ,y∗t−1

+S0
yt . Then, our main goal is to prove

G(y∗t−1)+S1
yt ,y∗t−1

+S0
yt = #(yt).

Replacing #(yt) with its definition (Equation 2) yields:

G(y∗t−1)+S1
yt ,y∗t−1

+S0
yt = max

yt−1

(

#(yt−1)+S1
yt ,yt−1 +S0

yt
)

.

The above equality is satisfied if the following two properties hold:

y∗t−1 = argmax
yt−1

(

#(yt−1)+S1
yt ,yt−1

)

(12)

G(y∗t−1) = #(y∗t−1). (13)

The proof, by induction on t, proves that the Equations 12 and 13 are satisfied at the moment (and
after) G(yt) is set. CarpeDiem starts by opening the most promising vertex in layer 2, this is the first
time Algorithm 4 is called and hence the base case of the induction. Let us consider what happens
when a node y2 is opened. Since all vertices in layer 1 have been opened by the initialization step,
the first loop in Algorithm 4 iterates on all of them and the second loop is never entered. Then, just
before line 7, it holds

y∗1 = argmax
y1

(

G(y1)+S1
y2,y1

)

.

Since the initialization step guarantees ∀y1 : G(y1) = #(y1), then properties 12 and 13 are satisfied.
Let us now assume by induction that after opening a vertex yt−1 in layer t− 1 (t > 2) it holds

G(yt−1) = #(yt−1). We focus on the execution of Algorithm 4 on a vertex yt in layer t. Let us denote
with Ot−1 the set of vertices presently open in layer t − 1, and with Ct−1 the set of closed ones.
When the first loop ends, it holds:

y∗t−1 = arg max
yt−1∈Ot−1

(

G(yt−1)+S1
yt ,yt−1

)

.
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Also, since all vertices for which we have taken the argmax are in layer t− 1 and open, we apply
the inductive hypothesis and conclude that:

y∗t−1 = arg max
yt−1∈Ot−1

(

#(yt−1)+S1
yt ,yt−1

)

. (14)

The second loop moves some vertices from Ct−1 to Ot−1. At the same time, however, it updates y∗t−1
so that the above equality is preserved. Then, on exit we can conclude (14) and (for the particular
y′t−1 that caused the loop to exit):

G(y∗t−1)+S1
yt ,y∗t−1

≥ Bt−1 +S0
y′t−1

+S1∗. (15)

Also, by definition of )t−1 (Definition 2–Equation 5), ∀yt−1 : y′t−1 )t−1 yt−1 implies:

Bt−1 +S0
y′t−1

+S1∗ ≥ Bt−1 +S0
yt−1 +S1∗. (16)

Since vertices are considered in )t−1 order and since y′t−1 is the first vertex that has not been opened,
it follows that all closed vertices follow y′t−1 in the )t−1 order. Using this fact along with (15) and
(16), it follows:

∀yt−1 ∈ Ct−1 : G(y∗t−1)+S1
yt ,y∗t−1

≥ Bt−1 +S0
yt−1 +S1∗.

By induction, G(y∗t−1) = #(y∗t−1). Moreover, Lemma 1 implies Bt−1 +S0
yt−1 ≥ #(yt−1). Using these

facts, along with ∀yt ,yt−1 : S1∗ ≥ S1
yt ,yt−1 (Definition 2–Equation 3) we obtain:

∀yt−1 ∈ Ct−1 : #(y∗t−1)+S1
yt ,y∗t−1

≥ #(yt−1)+S1
yt ,yt−1

Which yields:
#(y∗t−1)+S1

yt ,y∗t−1
≥ max

yt−1∈Ct−1

(

#(yt−1)+S1
yt ,yt−1

)

.

This and (14) yield:
y∗t−1 = argmax

yt−1

(

#(yt−1)+S1
yt ,yt−1

)

.

Also, the fact that y∗t−1 is open and the inductive hypothesis, yield G(y∗t−1) = #(y∗t−1).

Appendix B. Complexity

Theorem 3 CarpeDiem has O(TK2) worst case time complexity and O(TK logK) best case time
complexity.

Proof Let us consider the final step of an execution of CarpeDiem, and assume that for each layer
t, exactly kt vertices have been opened. In our proof we separately consider the time spent to
process each layer of the graph. We define the quantity T (t) to represent the overall time spent by
Algorithms 3 and 4 to process layer t. Let us define:

a(yt): the number of steps needed by Algorithm 3 to process vertex yt ;

1877



ESPOSITO AND RADICIONI

b(yt): the number of steps needed by Algorithm 4 to find the best parent for node yt .
We note that a(yt) does not include the time spent by Algorithm 4 since such time is accounted for
by b(yt). Similarly, b(yt) does not include neither the time spent by Algorithm 3, nor the time spent
by recursive calls to Algorithm 4. In fact, the time spent in recursive calls is taken into account by
b values of vertices in previous layers. Then we can compute T (t) as:

T (t) ="
yt
a(yt)+b(yt)

The total complexity of CarpeDiem is then:

T (CarpeDiem) = time for initialization+
T

"
t=2

(O(1)+T (t))

where the “time for initialization” includes the O(K) time spent in the first loop of Algorithm 2 plus
the O(TK logK) time needed to sort each layer according to )t . It follows:

T (CarpeDiem) = O(TK logK)+
T

"
t=2

(O(1)+T (t)) . (17)

Let us now note that a(yt) is at worst O(kt). In fact, since only kt vertices have been opened at
the end of the algorithm, it follows that the steps needed to analyse a vertex yt by (the loop in)
Algorithm 3 is at most kt . We notice that we are overestimating the cost to analyze each node since
kt is the overall number of iterations performed by the mentioned loop. However this overestimation
simplifies the following argument without hindering the result.

b(yt) is, at worst, O(kt−1). In fact, since only kt−1 vertices have been opened at the end of
the algorithm, it follows that the two loops in Algorithm 4 iterate altogether at most kt−1 times.
Moreover, since the steps performed by recursive calls are not to be included in b(yt), it follows
that all operations are O(1), and the complexity accounted for by b(yt) is O(kt−1). In both cases no
computational effort is spent to process closed nodes.

From the above discussion it follows that:

T (t) = "
yt
a(yt)+b(yt)

= "
yt in open vertices

O(kt)+O(kt−1)

= kt · (O(kt)+O(kt−1))

= O(k2
t + ktkt−1).

Putting together the above equation and Equation 17 we have:

T (CarpeDiem) = O(TK logK)+
T

"
t=2

(

O(1)+O(k2
t + ktkt−1)

)

= O(TK logK)+
T

"
t=2

O(k2
t + ktkt−1).

The worst case occurs when CarpeDiem opens every node in every layer. In such case: kt = K for
each t and the above formula reduces to O(TK2). In the best case CarpeDiem opens only one node
per layer, kt = 1 for each t and the complexity is O(TK logK).
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Abstract
We define a model of learning probabilistic acyclic circuits using value injection queries, in which
fixed values are assigned to an arbitrary subset of the wires and the value on the single output wire
is observed. We adapt the approach of using test paths from the Circuit Builder algorithm (Angluin
et al., 2009) to show that there is a polynomial time algorithm that uses value injection queries to
learn acyclic Boolean probabilistic circuits of constant fan-in and log depth. We establish upper and
lower bounds on the attenuation factor for general and transitively reduced Boolean probabilistic
circuits of test paths versus general experiments. We give computational evidence that a polynomial
time learning algorithm using general value injection experiments may not do much better than one
using test paths. For probabilistic circuits with alphabets of size three or greater, we show that the
test path lemmas (Angluin et al., 2009, 2008b) fail utterly. To overcome this obstacle, we introduce
function injection queries, in which the values on a wire may be mapped to other values rather than
just to themselves or constants, and prove a generalized test path lemma for this case.
Keywords: nonadaptive learning algorithms, probabilistic circuits, causal Bayesian networks,
value injection queries, test paths

1. Introduction

Probabilistic networks are used as models in a variety of domains, for example, gene interaction
networks, social networks and causal reasoning. In a binary model of gene interaction, the state of
each gene is either active or inactive, and the state of each gene is determined as a function of the
states of some number of other genes, its inputs. In a probabilistic variant of the model, the activation
function specifies, for each possible combination of the states of the inputs, the probability that the
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gene will be active (Friedman et al., 2000). In the independent cascade model of social networks, the
state of each agent is active or inactive and for each pair (u,v) of agents, there is a probability that
the activation of u will cause v to become active. Kempe, Kleinberg, and Tardos (2003, 2005) study
the problem of maximizing influence in this and related models of social networks. In a Bayesian
network there is an acyclic directed graph and a joint probability distribution over the node values
such that the joint distribution is the product of each of the marginal distributions for each node
given the values of the parents (in-neighbors) of the node.

A fundamental question is how much we can infer about the properties and structure of such
networks from observing and experimenting with their behaviors. Prior research gives evidence
from cryptography that there may be no polynomial time algorithm to learn Boolean functions
represented by acyclic circuits of constant fan-in and depth O(logn) when we can set only the
inputs of the circuit and observe only the output (Angluin and Kharitonov, 1995). In this paper we
consider a different setting, value injection queries, in which we can fix the values on any subset
of wires in the target circuit, but still only observe the output of the circuit.

The concept of value injection queries was inspired by models of gene suppression and gene
overexpression in the study of gene interaction networks (Akutsu et al., 2003; Ideker et al., 2000)
and was introduced by Angluin et al. (2009). In a causal Bayesian network there is an additional
action do(X = x) that forces a node X to take on a value x (Pearl, 2000). A value injection query
may also be viewed as a set of such actions, one for each wire fixed to a value.

Angluin et al. (2009) investigate the learnability of deterministic circuits using value injection
queries and behavioral equivalence queries. Polynomial time learning algorithms using just value
injection queries are given for two classes of acyclic circuits. Circuit Builder uses value injection
queries to learn acyclic deterministic circuits with constant-size alphabets, constant fan-in and depth
O(logn) up to behavioral equivalence in polynomial time. Another algorithm is given that learns
constant-depth acyclic Boolean circuits with NOT gates and unbounded fan-in AND, OR, NAND
and NOR gates up to behavioral equivalence in polynomial time using value injection queries. Neg-
ative results include an exponential lower bound on the number of value injection queries to learn
acyclic Boolean circuits of unbounded depth and unbounded fan-in, and theNP-hardness of learning
acyclic Boolean circuits of unbounded depth and constant fan-in using value injection queries.

In extending these results to analog circuits, Angluin et al. (2008b) consider circuits with
polynomial-size alphabets. They give evidence of the computational hardness of learning acyclic
circuits over a polynomial-size alphabet even if the depth is restricted to O(logn), motivating struc-
tural restrictions on the graphs of the circuits to achieve polynomial time learnability. They give the
Distinguishing Paths Algorithm, which uses value injection queries and learns acyclic deterministic
circuits that are transitively reduced and have polynomial-size alphabets, constant fan-in and un-
bounded depth up to behavioral equivalence in polynomial time. They also give a generalization to
circuits with a constant bound on shortcut width.

In this paper we seek to extend some of these positive learnability results to the case of acyclic
probabilistic circuits. The key technique in the previous work has been the idea of a test path for
an arbitrary wire w in the circuit. Informally speaking, a test path is a directed path of wires from
w to the output wire in which each wire is an input of the next wire on the path, and the other
(non-path) inputs of wires on the path are fixed to constant values, thus isolating the wires along the
path from the rest of the circuit. Ideally, the choice of constant values is made in such a way as to
maximize the effect on the output of the circuit of changing w from one value to another. A test path
thus functions as a kind of “microscope” for viewing the effects of assigning different values to the
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wire w. The primary focus of this paper is to understand the properties of test paths in probabilistic
circuits, and the extent to which they can be used to give polynomial time algorithms for learning
probabilistic acyclic circuits.

In Section 2 we formally define our model of acyclic probabilistic circuits, value injection
queries and distribution injection queries, behavioral equivalence, and the learning problem that
we consider. In Section 3 we establish some basic results about probabilistic circuits and value and
distribution injection experiments. In Section 4 we review the test path lemma used in previous
work to establish the ability of a learner to infer circuit behavior from a small subset of experiments
and show that it fails utterly in probabilistic circuits with alphabet size greater than two. However,
for Boolean probabilistic circuits, we show that the test path lemma holds with an attenuation factor
that depends on the structure of the circuit. (Lemma 10 treats general acyclic circuits and Corol-
lary 11 specializes the bound to transitively reduced circuits.) In Section 5 we apply the test path
lemma in the Boolean case to adapt the Circuit Builder algorithm (Angluin et al., 2009) to find
using value injection queries, with high probability, in time polynomial in n and 1/!, a circuit that
is !-behaviorally equivalent to a target acyclic Boolean probabilistic circuit of size n with constant
fan-in and depth bounded by a constant times logn. In Section 6, we consider lower bounds on
the attenuation of paths; Theorem 16 shows that our bound is tight for transitively reduced circuits
and Theorem 18 gives a lower bound for the case of general acyclic circuits. In Section 7 we give
evidence that polynomial time algorithms using general value injection experiments may not do
significantly better than algorithms that use test paths. In Section 8 we introduce a stronger kind of
query, a function injection query, and show that test paths with function injections overcome the
limitations of test paths for circuits with alphabets of size greater than two.

2. Model

We extend the circuit learning model (Angluin et al., 2008b, 2009) to probabilistic gates. An unusual
feature of this model is that circuits do not have distinguished inputs—since the learning algorithm
seeks to predict the output behavior of value injection experiments that override the values on an
arbitrary subset of wires, each wire is a potential input.

2.1 Probabilistic Circuits

A probabilistic circuit C of size n≥ 1 has n wires, of which one is the distinguished output wire.
We call the set of C’s wiresW , and these wires take values in a finite alphabet " with |"| ≥ 2. If
" = {0,1}, then C is Boolean. The value on a wire is ordinarily determined by the output of an
associated probabilistic gate, whose distribution is a function of the values on other wires.

Formally, a value distribution D is a probability distribution over ", that is, a map from " to
the real interval [0,1] such that #$∈"D($) = 1. The probability of $ is D($). The support of D
is the set of values $ ∈ " such that D($) > 0. When the support of D is a singleton {$}, we say
D is deterministic. For a nonempty set of values S ⊆ ", the uniform distribution U(S) is the
distribution such thatU(S)($) = [$ ∈ S]/|S|, that is, has value 0 on $ %∈ S and 1/|S| for $ ∈ S.

A k-ary probabilistic gate function f maps each k-tuple of values ($1, . . . ,$k) ∈ "k to a value
distribution. When C is Boolean, we can specify f by a truth table giving the expected value for
each Boolean vector of inputs. A probabilistic gate function is deterministic if it maps k-tuples to
deterministic value distributions only.
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A probabilistic gate g of fan-in k pairs a k-ary probabilistic gate function f with a k-tuple
(w1, . . . ,wk) ∈Wk of input wires. The gate g is deterministic if its gate function f is deterministic.
When k = 0, the gate g has no inputs, and we can regard it as specifying a value distribution, or,
whenC is Boolean, a biased coin flip.

A probabilistic circuitC maps wires to probabilistic gates. C is deterministic if all of its gates
are deterministic. The fan-in of C is the maximum fan-in over C’s gates. The circuit graph of C
has a node for each wire inW and a directed edge (u,w) if u is one of the input wires of the gate
associated with w. It is important to distinguish between wires in the circuit and edges in the circuit
graph. For example, if wire u is an input of wires v and w, then there will be two directed edges,
(u,v) and (u,w), in the circuit graph.

Wire w is reachable from wire u if there is a directed path from u to w in the circuit graph. A
wire is relevant if the output wire is reachable from it. The depth of a wire w is the number of edges
in the longest simple path from w to the output wire in the circuit graph. The depth of the circuit
is the maximum depth of any relevant wire. The circuit is acyclic if the circuit graph contains no
directed cycles. The circuit is transitively reduced if its circuit graph is transitively reduced, that
is, if it contains no edge (u,w) such that there is a directed path of length at least two from u to w.
In this paper we assume all circuits are acyclic.

2.2 Experiments

In an experiment some wires are constrained to be particular values or value distributions and the
other wires are left free to take on values according to their gate functions and the values of their
input wires. The behavior of a circuit consists of its responses to all possible experiments. For
probabilistic circuits we consider both value injection experiments and distribution injection exper-
iments.

A distribution injection experiment e is a function with domain W that maps each wire w
to a special symbol ∗ or to a value distribution. A value injection experiment e is a distribution
injection experiment for which every value distribution assigned is deterministic—that is, always
generates the same symbol. To simplify notation, we think of a value injection experiment as a
mapping from W to ("∪ {∗}). If e is either kind of experiment, we say that e leaves w free if
e(w) = ∗; otherwise we say that e constrains w to e(w). If e(w) is a single symbol, then we say e
fixes w to e(w).

We define a partial ordering ≤ on the set containing ∗ and all value distributions D as follows:
D≤ ∗ for every value distribution D, and for two value distributions, D1 ≤ D2 if the support of D1
is a subset of the support of D2. This ordering is extended to experiments on the same set of wires
W as follows: e1 ≤ e2 if for every w ∈W , e1(w) ≤ e2(w). The intuitive meaning of e1 ≤ e2 is that
e1 is at least as constraining as e2 for every wire.

If e is any experiment, w is a wire, and a is ∗ or an element of " or a value distribution, then
the experiment e|w=a is defined to be the experiment e′ such that e′(w) = a and e′(u) = e(u) for all
u ∈W such that u %= w. If e is any experiment then a free path in e is a path in the circuit graph
containing only wires w that are free in e.

2.3 Behavior

Let C be a probabilistic circuit. Then a distribution injection experiment e determines a joint dis-
tribution over assignments of elements of " to all of the wires of the circuit, as follows. If wire w
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is constrained then w is randomly and independently assigned a value in " drawn according to the
value distribution e(w); in the case of a value injection experiment, this just assigns a fixed element
of " to w. If wire w is free and has probabilistic gate function f , and its inputs u1, . . . ,uk have been
assigned the values $1, . . . ,$k, then w is randomly and independently assigned a value from " ac-
cording to the value distribution determined by the gate function on these inputs, that is, according
to the value distribution f ($1, . . . ,$k).

Constrained gates and gates of fan-in zero give the base cases for the above recursive definition,
which assigns an element of " to every wire because the circuit is acyclic. Let C(e,w) denote the
(marginal) value distribution of the assignments of values to w for the above process. The output
distribution of the circuit, denotedC(e), is the distributionC(e,z), where z is the output wire of the
circuit. The behavior of a circuitC is the function that maps value injection experiments e to output
distributionsC(e).

We note that even when the circuit is Boolean and the only non-deterministic gates are uniform
coin flips, the problem of exactly computingC(e) is #P-hard because we can arrange forC(e) to be
the fraction of assignments satisfying a given Boolean formula.

2.4 Example: C1
We give an example of a simple Boolean probabilistic circuit, which we also refer to later. The
2-input averaging gate function A(b1,b2) outputs 1 with probability (b1 + b2)/2. Thus, if both
inputs are 0, the output is deterministically 0, if both inputs are 1, the output is deterministically 1,
and if its inputs disagree, the output is an unbiased coin flip, U({0,1}). Another characterization
of the averaging gate function A is that it randomly and equiprobably selects one of its inputs and
copies it to the output.

We define a circuit C1 of 4 wires as follows: w4 = A(w2,w3), w3 = w1, w2 = w1, and w1 =
U({0,1}). The output wire is w4. C1 is depicted in Figure 1.

!"#$#%&'()"*+

!,#$#!" !-#$#!"

!.#$#/&!,)!-+

Figure 1: The circuitC1; w4 is the output wire.

To illustrate the behavior of this circuit, we consider two value injection experiments. Define the
experiment e to leave every wire inC1 free, that is, e(wi) = ∗ for 1≤ i≤ 4. Given e, we construct one
random outcome as follows. The wire w1 is assigned a value as the result of an unbiased coin flip—
say it is assigned 0. Then the values assigned to w2 and w3 are determined because they are each
the output of an identity gate with w1 as input: both are 0. Finally, because both its input wires have
been assigned values, w4 can be assigned a value according to A(0,0), which is deterministically
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0. It is easy to see that this is one of two possible outcomes for experiment e; either all wires
are assigned 0 or all wires are assigned 1, and these each occur with probability 1/2. The output
distributionC1(e) is just an unbiased coin flip.

Now consider experiment e′ = e|w2=1 that fixes w2 to 1 and leaves the other wires free. Once
again, the value of w1 is determined by a coin flip—say it is assigned 0. Since w2 is fixed to 1,
that is its assignment. Wire w3 is free, and is therefore assigned the value of w1, that is 0. Now the
inputs of w4 have been assigned values, so we consider A(1,0), which randomly and equiprobably
selects 0 or 1. If, instead, the coin flip for w1 had returned 1, all wires would be assigned 1. There
are three possible assignments to (w1,w2,w3,w4) for experiment e′: (1,1,1,1)with probability 1/2,
(0,1,0,0) with probability 1/4 and (0,1,0,1) with probability 1/4. The output distribution C1(e′)
is a biased coin flip that is 1 with probability 3/4.

2.5 Behavioral Equivalence

Two circuitsC andC′ are behaviorally equivalent if they have the same set of wires, the same out-
put wire and the same behavior, that is, for every value injection experiment e,C(e) =C′(e). We also
need a concept of approximate equivalence. The (statistical) distance between value distributions
D and D′ is d(D,D′) = (1/2)#$ |D($)−D′($)|, which takes values in [0,1]. Note that when D and
D′ are deterministic, d(D,D′) is 0 if D=D′ and 1 otherwise. For !≥ 0,C is !-behaviorally equiv-
alent to C′ if they contain the same wires and the same output wire, and for every value injection
experiment e, d(C(e),C′(e)) ≤ !, where d is the statistical distance between value distributions.

In Lemma 2 we show that the behavioral equivalence of C and C′ implies C(e) =C′(e) for all
distribution injection experiments as well. However, behavioral equivalence is not sufficient to guar-
antee that two circuits have the same topology; even when all the gates are Boolean, deterministic
and relevant, the circuit graph of the target circuit may not be uniquely determined by its behavior
(Angluin et al., 2009).

2.6 Queries

The learning algorithm gets information about the target circuit by specifying a value injection ex-
periment e and observing the element of " assigned to the output wire. Such an action is termed a
value injection query, abbreviated VIQ. A value injection query does not return complete informa-
tion about the value distribution C(e), but instead returns an element of " selected according to the
distribution C(e). Thus, in order to approximate the distribution C(e), the learner must repeatedly
make value injection queries with experiment e. In this case, the goal of learning is approximate
behavioral equivalence.

2.7 The Learning Problem

The learning problem is !-approximate learning: by making value injection queries to a target
circuit C drawn from a known class of probabilistic circuits, the goal is to find a circuit C′ that is
!-behaviorally equivalent toC. The inputs to the learning algorithm are the names of the wires inC,
the name of the output wire and positive numbers ! and %, where the learning algorithm is required
to succeed with probability at least (1−%).

We note that acyclic deterministic circuits are a subclass of acyclic probabilistic circuits. If
the target circuit C is deterministic and we learn a probabilistic circuit C′ that is 1/3-behaviorally
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equivalent to C, then we can compute the behavior of C on any value-injection experiment e with
high probability by sampling the behavior of C′(e). The negative results concerning learning deter-
ministic circuits using value injection queries shown by Angluin et al. (2009) carry over to learning
probabilistic circuits. In particular, for ! = 1/3 and % = 1/2, with no bound on fan-in or depth,
the worst-case expected number of value injection queries necessary to learn acyclic probabilistic
Boolean circuits is exponential, while with constant fan-in and no bound on depth, no polynomial
time algorithm can learn acyclic probabilistic Boolean circuits if NP is not equal to BPP.

3. Preliminary Results

In this section we establish some basic results about probabilistic circuits, value injection experi-
ments and distribution injection experiments. The reader may choose to skip this section and return
to it as needed for proofs in subsequent sections.

We first note that ifC is a probabilistic circuit, e is a distribution injection experiment and either
e(w) is a value distribution or e deterministically fixes all the input wires of w, then there is a value
distribution D such that the value of w in C(e) is determined by a random choice according to D,
independent of the values chosen for any other wires. We make systematic use of this observation
to reduce the number of experiments under consideration.

We start by considering two circuits C1 and C2 over the same wires, and distribution injection
experiments e1 and e2 that agree on the distribution assigned to a wire w and that show a certain
distance between C1(e1) and C2(e2). The following lemma says that we may modify e1 and e2 to
fix w to a particular value $ ∈ " while preserving (or increasing) the distance they show.

Lemma 1 Let C1 and C2 be probabilistic circuits on wires W with the same output wire, let w ∈W
be a wire, let D be a value distribution, and let e1 and e2 be distribution injection experiments such
that e1(w) = e2(w) = D. Then there exists a value $ ∈ support(D) such that

d(C1(e1|w=$),C2(e2|w=$)) ≥ d(C1(e1),C2(e2)).

Proof We have

d(C1(e1),C2(e2)) =
1
2 #&∈"

∣∣∣C1(e1)(&)−C2(e2)(&)
∣∣∣

=
1
2 #&∈"

∣∣∣∣∣#'∈"
C1(e1|w=')(&)D(')−#

'∈"
C2(e2|w=')(&)D(')

∣∣∣∣∣

≤
1
2 #'∈"

D(')#
&∈"

∣∣∣C1(e1|w=')(&)−C2(e2|w=')(&)
∣∣∣

= #
'∈"

D(')d(C(e1|w='),C(e2|w=')),

by the triangle inequality. Let

$= argmax
'∈support(D)

d(C(e1|w='),C(e2|w=')),

so that

d(C(e1|w=$),C(e2|w=$)) ≥ d(C(e1),C(e2))
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by an averaging argument.

By successively replacing each value distribution by a particular value, we may convert a distri-
bution injection experiment that shows a certain distance between two circuits into a value injection
experiment that shows at least that distance between the two circuits.

Lemma 2 Let C1 and C2 be probabilistic circuits on wiresW with the same output wire and let e be
a distribution injection experiment. Then there exists a value injection experiment e′ ≤ e such that

d(C1(e′),C2(e′)) ≥ d(C1(e),C2(e)).

Proof By induction on |V |, where V ⊆W is the set of wires that e constrains to distributions that
are not deterministic. If |V | > 0, then let w ∈V . By Lemma 1, there exists a value $ ∈ " such that

d(C1(e|w=$),C2(e|w=$)) ≥ d(C1(e),C2(e)).

Since e|w=$ constrains one fewer wire to a nonconstant distribution, the existence of e′ follows from
the inductive hypothesis.

Thus, value injection experiments suffice to establish approximate behavioral equivalence with
respect to distribution injection experiments.

Corollary 3 If circuits C1 and C2 are !-behaviorally equivalent with respect to value injection ex-
periments, then C1 andC2 are !-behaviorally equivalent with respect to distribution injection exper-
iments.

Suppose thatC is a probabilistic circuit and e1 and e2 are distribution injection experiments. For
each wire w, we say that e1 and e2 agree on w if either

• e1 and e2 constrain w to the same distribution, or

• w is free in e1 and e2, and e1 and e2 agree on all of w’s inputs.

It is clear that if e1 and e2 agree on a wire w, then the marginal distributions of w in e1 and e2 are
identical, that is,C(e1,w) =C(e2,w).

Lemma 4 Let C be a probabilistic circuit on wires W and let e1 and e2 be distribution injection
experiments that agree on wires V ⊆W. Then there exist distribution injection experiments e′1 ≤ e1
and e′2 ≤ e2 such that for each wire w ∈V, there exists a value $ ∈ " such that e′1(w) = e′2(w) = $,
and

d(C(e′1),C(e′2)) ≥ d(C(e1),C(e2)).

Proof By induction on the number of unfixed wires w ∈ V . If there is such a wire, choose v by
the acyclicity of the circuit to be one that is not reachable from the others. If e1(v) = e2(v) = ∗,
then e1 and e2 agree on all of v’s inputs, and by the choice of v, all of v’s inputs are fixed. As
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such, we may assume without loss of generality that e1 and e2 in fact constrain v to the distribution
D=C(e1,v) =C(e2,v). By Lemma 1, there exists a value $ ∈ support(D) such that

d(C(e1|v=$),C(e2|v=$)) ≥ d(C(e1),C(e2)).

The existence of e′1 and e′2 follows from the inductive hypothesis.

The following lemma shows that constraining a wire w does not change the behavior of wires
that are not reachable from w.

Lemma 5 Let C be a probabilistic circuit on wires W, let e be a distribution injection experiment,
let w ∈W be a wire free in e, and let D be a value distribution. Then e and e|w=D agree on all wires
u ∈W such that there is no free path from w to u in e.

Proof If u is constrained, then the conclusion follows. Otherwise, let u ∈W be a wire free in e such
that there is no free path from w to u in e. Then no input v of u has a free path from w to v in e.
We proceed by induction on the length of the longest path to u. If this length is zero, then u does
not have any inputs. Otherwise, the inductive hypothesis applies to all of u’s inputs, on which e and
e|w=D then must agree. It follows that they also agree on u.

If we consider the distance between the behavior of a circuit with a wire constrained to two
different value distributions, the following lemma allows us to move to a situation in which the wire
is constrained to two different value distributions whose supports are disjoint. In the special case
of Boolean circuits, the property of disjoint supports means that the resulting value distributions
are deterministic. Later we see that this fundamentally distinguishes between alphabet size two and
larger alphabets.

Lemma 6 Let C be a probabilistic circuit on wires W, let w ∈W be a wire, and let D1,D2 be value
distributions. There exist value distributions D′

1,D′
2 with support(D′

1)∩ support(D′
2) = /0 such that

for all experiments e,

d(C(e|w=D1),C(e|w=D2)) = d(D1,D2)d(C(e|w=D′
1
),C(e|w=D′

2
)).

Proof Intuitively, we couple D1 and D2 so that D1 = D2 as often as possible and let D̂i be the dis-
tribution of Di given that D1 %=D2. It can be shown that D̂1 and D̂2 have disjoint support. Formally,
we have

d(C(e|w=D1),C(e|w=D2)) =
1
2 #$∈"

∣∣∣C(e|w=D1)($)−C(e|w=D2)($)
∣∣∣

=
1
2 #$∈"

∣∣∣∣∣#&∈"
C(e|w=&)($)(D1(&)−D2(&))

∣∣∣∣∣
.

If we let

D̂1(&) = D1(&)−min(D1(&),D2(&))

D̂2(&) = D2(&)−min(D1(&),D2(&)),
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then

d(C(e|w=D1),C(e|w=D2)) =
1
2 #$∈"

∣∣∣∣∣#&∈"
C(e|w=&)($)(D̂1(&)− D̂2(&))

∣∣∣∣∣
.

Since #&∈" D̂1(&) = 1−#&∈"min(D1(&),D2(&)) and likewise for D2,

d(D1,D2) =
1
2 #&∈"

∣∣∣D1(&)−D2(&)
∣∣∣

=
1
2 #&∈"

∣∣∣D̂1(&)− D̂2(&)
∣∣∣

= #
&∈"

D̂1(&) = #
&∈"

D̂2(&).

If d(D1,D2) > 0, then the distributions D′
1 and D′

2 where

D′
1(&) = D̂1(&)/d(D1,D2)

D′
2(&) = D̂2(&)/d(D1,D2)

satisfy the requisite properties. Otherwise, any two distributions with disjoint support will do.

4. Test Paths

The concept of a test path has been central in previous work on learning deterministic circuits by
means of value injection queries (Angluin et al., 2008b, 2009). A test path for a wire w, or w-test
path, is a value injection experiment in which the free gates form a directed path in the circuit graph
from w to the output wire. All the other wires in the circuit are fixed; this includes the inputs of w.
A side wire with respect to a test path p is a wire fixed by p that is input to a free wire in p.

As an example, suppose that " = {0,1} and the target circuit has a circuit graph as shown in
Figure 2. There are four directed paths from w1 to the output wire: w1w5, w1w3w5, w1w2w4w5 and
w1w3w4w5. A w1-test path is a value injection experiment that sets the wires of one of these paths to
∗ and the other wires to 0 or 1, for example, ∗011∗ or ∗∗0∗∗. For the test path ∗011∗, the side wires
are w3 and w4, while for the test path ∗∗0∗∗ the side wire is w3. The value injection experiments
∗∗∗∗∗ and ∗01∗∗ are not test paths.

A test path may help the learning algorithm determine the effects of assigning different values
to the wire w. The test path lemmas (Angluin et al., 2008b, 2009) may be re-stated as follows.

Lemma 7 Let C be a deterministic circuit. If for some value injection experiment e, wire w free in
e and alphabet symbols $ and & it is the case that

C(p|w=$) =C(p|w=&)

for every test path p≤ e then also

C(e|w=$) =C(e|w=&).
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Figure 2: A circuit graph; w5 is the output wire.

Nontrivial complications arise in attempting to carry over this test path lemma to general proba-
bilistic circuits, as we now show. The following lemma shows that for alphabets of size at least three,
there are transitively reduced probabilistic circuits for which the test-path lemma fails completely.

Lemma 8 If |"| ≥ 3, there exists a probabilistic circuit C, value injection experiment e, wire
w free in e and alphabet symbols $ and & such that although for every test path p ≤ e for w,
d(C(p|w=$),C(p|w=&)) = 0, it is nevertheless the case that d(C(e|w=$),C(e|w=&)) = 1/2.

Proof Assume that "= {0,1,2}, and define probabilistic gate functions T and X as follows.

T (0) = T (1) =U({0,1})
T (2) = 2

X(b1,b2) = b1⊕b2 if b1,b2 ∈ {0,1}
X(b1,b2) =U({0,1}) if b1 = 2 or b2 = 2,

where ⊕ is sum modulo 2. The gate function T flips a coin on input 0 or 1, and passes 2 through
unaltered. The gate function X is exclusive or if neither input is 2, and a coin flip otherwise.

The circuit C has 5 wires, connected as in Figure 3. The output wire is w5; note that C is
transitively reduced.

Consider the experiment e that leaves all the wires free. In this experiment, we haveC(e|w1=0) =
C(e|w1=1) = 0 because w2 is a coin flip and w5 is the exclusive or of two copies of the coin flip. On
the other hand, C(e|w1=2) =U({0,1}) because w4 = w3 = w2 = 2 and w5 is therefore a coin flip.
Thus d(C(e|w1=0),C(e|w1=2)) = 1/2.

However, the only test paths for w1 fix w3 and leave all other wires free, or fix w4 and leave all
other wires free, and the two cases are symmetric. If w3 is fixed to any value and all other wires are
free, then w5 is a coin flip when w1 = 2. If w3 is fixed to 2 and all other wires are free, then w5 is also
a coin flip. If w3 is fixed to b∈ {0,1} and all other wires are free, then when w1 ∈ {0,1}, w2 is a coin
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Figure 3: The circuitC; w5 is the output wire.

flip, and w5 is the exclusive or of b and that coin flip, that is, w5 is also coin flip. Hence, for any test
path p≤ e for w1, we haveC(p|w1=0) =C(p|w1=2) =U({0,1}) and d(C(pw1=0),C(pw1=2)) = 0.

For alphabets " of size larger than 3, we can treat three of the symbols as 0, 1 and 2 in the above
construction, and the other symbols as “tilt,” where each function outputs a tilt value if any of its
inputs is a tilt value.

4.1 A Bound for Boolean Probabilistic Circuits

Surprisingly, the case of |"|= 2 is different; for Boolean probabilistic circuits there is a useful quan-
titative relationship between the difference exposed by an arbitrary experiment e and the differences
exposed by test paths p ≤ e. The bound we give depends on the structure of directed paths on free
wires in e.

Let e be an experiment and w a wire. Define ((e,w) to be the set of all directed paths from w to
the output wire on free wires in e. Let S(e) be the set of wires that originate a free shortcut, that is,
the set of free wires w such that there exists a path p ∈((e,w) with two free wires to which w is an
input. Define

)(e,w) = #
p∈((e,w)

2|p∩S(e)|.

Thus, )(e,w) is the sum over paths in ((e,w) of 2 raised to the number of wires on the path that
originate free shortcuts in e. If there are no wires that originate free shortcuts in e, then this is
just the number of free paths in e. As an example, if the target circuit has the circuit graph shown
in Figure 2 and the experiment e leaves all wires free then ((e,w1) contains the four paths w1w5,
w1w3w5, w1w2w4w5 and w1w3w4w5, S(e) = {w1,w3}, and )(e,w) is 2+4+2+4= 12.

The following technical lemma gives a useful recurrence for )(e,w).

Lemma 9 Let C be a probabilistic circuit, e be a distribution injection experiment, w and u be free
wires where w is an input to u, and D0 be a value distribution. Let * = 2 if w ∈ S(e) and * = 1
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otherwise. Then

)(e,w) = )(e|u=D0 ,w)+)(e|w=1,u) ·*.

Proof The first term of the sum counts paths that don’t contain u, and the second counts paths that
do. Let e′ = e|u=D0 and e′′ = e|w=1. We have

)(e,w) = #
p∈((e,w)

2|p∩S(e)|

= #
p∈((e,w)
u %∈p

2|p∩S(e)| + #
p∈((e,w)
u∈p

2|p∩S(e)|

= #
p∈((e′,w)

2|p∩S(e
′)| + #

p∈((e′′,u)
2|p∩S(e

′′)|*

= )(e′,w)+)(e′′,u) ·*,

since each path p - u from w corresponds to the path p\{w} from u.

Next is the key lemma relating the difference exposed by e to the differences exposed by paths p≤ e
for Boolean probabilistic circuits.

Lemma 10 Let C be a Boolean probabilistic circuit, e be a distribution injection experiment, w be
a wire free in e and D1,D2 be value distributions. If there exists !≥ 0 such that for all w-test paths
p≤ e,

d(C(p|w=D1),C(p|w=D2)) ≤ !,

then
d(C(e|w=D1),C(e|w=D2)) ≤ )(e,w) · !.

Proof By induction on +(e), the number of free wires in e. By Lemma 6, assume that support(D1)∩
support(D2) = /0. The critical feature of the Boolean case is that it follows that D1 = 0 and D2 = 1
without loss of generality—it is important to the following proof that D1 and D2 be deterministic.

If +(e) = 1, then either
d(C(e|w=0),C(e|w=1)) = 0,

or w is the output, e is a w-test path, and )(e,w) = 1. Otherwise, the inductive hypothesis is that the
lemma holds for all experiments e′ with +(e′) < +(e).

Except for w, the experiments e|w=0 and e|w=1 agree on all constrained wires, so by Lemmas 4
and 5, assume without loss of generality that every wire with no free path from w is in fact fixed.
Since C is acyclic, there exists a free wire u %= w whose only unfixed input is w. Let g be the gate
assigned byC to u and let B0 = g(e|w=0) and B1 = g(e|w=1), so that

C(e|w=0) =C(e|w=0,u=B0)

C(e|w=1) =C(e|w=1,u=B1).

By the triangle inequality,

d(C(e|w=0),C(e|w=1)) ≤ d(C(e|w=0,u=B0),C(e|w=1,u=B0))

+d(C(e|w=1,u=B0),C(e|w=1,u=B1)).
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Letting e′ = e|u=B0 , any test path p≤ e′ also satisfies p≤ e since e′ ≤ e. The experiment e′ has one
fewer free wire, as u is free in e, so using the inductive hypothesis, we can bound the first term of the
sum by )(e′,w) · !. We now derive a bound on u-test paths so that the inductive hypothesis applies
to the second term as well. Let *= 2 if w ∈ S(e) and *= 1 otherwise. Let e′′ = e|w=1 and suppose
p≤ e′′ is a u-test path. Then

d(C(p|u=B0),C(p|u=B1))
≤ d(C(p|w=1,u=B0),C(p|w=0,u=B0))+d(C(p|w=0,u=B0),C(p|w=1,u=B1))

[by the triangle inequality]
= d(C(p|w=1,u=B0),C(p|w=0,u=B0))+d(C(p|w=0,u=∗),C(p|w=1,u=∗))

[by the definitions of B0 and B1].

Since w is an input to u, both p|w=∗,u=B0 and p|w=∗,u=∗ are w-test paths. Therefore, both terms of
the sum are bounded by !, and the first is nonzero only if w is an input to some free wire in p other
than u. It follows that

d(C(p|u=B0),C(p|u=B1)) ≤ *!,

and thus that

d(C(e′′|u=0),C(e′′|u=1)) ≤ )(e′′,u) ·*!,

so by Lemma 9,

d(C(e|w=0),C(e|w=1)) ≤ )(e′,w) · !+)(e′′,u) ·*!
= )(e,w) · !.

In the case of transitively reduced circuits, S(e) = /0, and )(e,w) = ,(e,w), where ,(e,w) =
|((e,w)|, the number of directed paths on free wires in e from w to the output wire.

Corollary 11 Let C be a transitively reduced Boolean probabilistic circuit, e be a distribution in-
jection experiment, and w be a wire free in e. If there exists ! ≥ 0 such that for all w-test paths
p≤ e,

d(C(p|w=0),C(p|w=1)) ≤ !,

then
d(C(e|w=0),C(e|w=1)) ≤ ,(e,w) · !.

5. Learning Boolean Probabilistic Circuits

The amount of attenuation given by Lemma 10 allows us to adapt the Circuit Builder algorithm
(Angluin et al., 2009) to learn Boolean probabilistic circuits with constant fan-in and log depth in
polynomial time. For this class of circuits, the attenuation factor )(e,w) is bounded by a polynomial
in n.
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Theorem 12 Given constants c and k there is a nonadaptive learning algorithm that with prob-
ability at least (1− %) successfully !-approximately learns any Boolean probabilistic circuit with
n wires, gates of fan-in at most k and depth at most c logn using value injection queries in time
bounded by a polynomial in n, 1/! and log(1/%).

The rest of the section is devoted to proving this theorem. Let the target circuit be C with
"= {0,1} and let positive constants %, !, k and c be given such that the fan-in ofC is bounded by k
and the depth of C is bounded by c logn. For such a circuit, ,(e,w) is bounded above by kc logn, so
the quantity )(e,w) is bounded above by

)(n) = kc logn ·2c logn = nc(logk+1) = nO(1).

We now describe our Probabilistic Circuit Builder algorithm (PCB). PCB is nonadaptive: first
it computes a set U of value injection experiments such that every test path is equivalent to some
experiment inU . It then repeats each value injection query e∈U enough times that with probability
at least (1−%), the distribution C(e) is estimated with sufficient accuracy for every e ∈U . Finally,
it uses these estimates to build a circuit C′ by repeatedly adding a sufficiently accurate gate all of
whose inputs are in the partially constructed circuit. If the estimates of C(e) are all sufficiently
accurate, thenC′ is !-behaviorally equivalent toC.

5.1 ConstructingU

In choosing the experiments U , the goal is that for every potential test path, U includes an equiv-
alent experiment. The structure of the circuit, however, is not known a priori, a difficulty that we
overcome by the same method as used by Angluin et al. (2009). Let U∗ be a universal set of value
injection experiments such that for every set of kc logn wires and every assignment of symbols
from "∪{∗} to those wires, some experiment e∈U∗ agrees with the values assigned to those wires.
There is a deterministic construction of such a setU∗ of size

2O(kc logn) logn= nO(kc)

in time polynomial in its size (Angluin et al., 2009). (For intuition, a set of nO(kc) independent
random uniform assignments of ∗, 0 and 1 to the wires has this property with high probability.) For
every wire w and test path p for w, there is an experiment inU∗ that leaves the path wires of p free
and fixes the side wires of p to their values in p. Consequently, p and this experiment agree on
the output wire. In order to have experiments in which each free wire is also set to 0 and 1, for
b = 0,1 let Ub contain every experiment e|w=b such that e ∈U∗ and w is free in e. The final set of
experiments isU =U∗ ∪U0∪U1.

5.2 EstimatingC(e) for e ∈U

For each e ∈U , PCB repeatedly makes a value injection query with e to estimate the value distribu-
tionC(e); let Ĉ(e) denote this estimate. By Hoeffding’s bound, we have that

m= O((n)(n)/!)2 log(|U |/%))

trials per experiment e suffice to guarantee that with probability at least 1−%, for all e ∈U ,

d(C(e),Ĉ(e)) ≤ !/(4n)(n)). (1)
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Let e ∈U∗ be a value injection experiment, w be a wire that e leaves free, and D be a value distribu-
tion. We define

Ĉ(e|w=D) = #
$∈"

D($)Ĉ(e|w=$).

Note that this is computed from the values of Ĉ(e|w=$) and does not require new experiments.
If (1) holds for all e ∈U , then we have

d(C(e|w=D),Ĉ(e|w=D)) ≤ #
$∈"

D($)d(C(e|w=$),Ĉ(e|w=$))

≤ !/(4n)(n)). (2)

5.3 Building the CircuitC′

PCB builds the circuit C′ one gate at a time. LetW ′ denote the set of wires of C′ that have already
been assigned a gate by PCB; initiallyW ′ is empty. WhileW ′ %=W , PCB attempts to add another
gate to C′ by searching for a wire w ∈ (W −W ′) and a probabilistic gate g′ all of whose inputs are
inW ′ such that for each experiment e ∈U∗ that leaves w free and fixes all inputs of g′,

d(Ĉ(e),Ĉ(e|w=g′(e))) ≤ 2!/(4n)(n)).

If no such gate can be found orW ′ =W , PCB outputs C′ and halts. We will later show that a gate
can be found as long asW %=W ′.

The search for g′ iterates over every wire w∈ (W−W ′) and every choice of an r-tuple of distinct
wires w1, . . . ,wr fromW ′ as the inputs of w, where 0≤ r ≤ k. For each such choice, PCB attempts
to define a probabilistic gate function f as follows. For each ($1, . . . ,$r) ∈ "r, PCB seeks a number
x ∈ [0,1] such that if Dx is the distribution that is 1 with probability x and 0 with probability (1− x)
then

d(Ĉ(e),Ĉ(e|w=Dx)) ≤ 2!/(4n)(n))

for all experiments e ∈U∗ that leave w free and fix wi to $i for i= 1, . . . ,r. Since the left hand side
is a convex function of x, every such e constrains the possible values of x to an interval, and any x in
the intersection of [0,1] and the intervals for all such e suffices. If the intersection is empty, then the
attempt to define f fails; otherwise, f ($1, . . . ,$r) is defined to be Dx. If PCB succeeds in defining
f for all possible r-tuples ($1, . . . ,$r), then the gate g′ with inputs w1, . . . ,wr and probabilistic gate
function f is assigned to w.

5.4 An Illustration

For some intuition about the operation of PCB, consider the probabilistic Boolean circuit shown in
Figure 4. Wires w1 and w2 are determined by random coin flips, w3 is the AND of w1 and w2, w4 is
the OR of w1 and w2, and w5 is determined by the 3-input averaging gate applied to w1, w3 and w4.
The table shows the probability that w5 = 1 for a selected set of value injection experiments.

Suppose that these experiments are contained in U when PCB attempts to add the first gate to
C′. Of course, PCB will only have repeated sampling estimates of these probabilities, but suppose
for a moment that the exact values were available. BecauseW ′ is empty, the first gate added must
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!"#$#%&'()"*+ !,#$#%&'()"*+

!-#$#!"#34#!, !.#$#!"#43#!,

!0#$#/&!")!-)!.+
# Experiment Pr[w5 = 1]
1. * * * * * 1/2
2. 0 * * * * 1/6
3. 1 * * * * 5/6
4. * * 0 * * 5/12
5. * * 1 * * 3/4
6. * 1 * 0 * 1/3
7. 0 1 * 0 * 0
8. 1 1 * 0 * 2/3
9. * 1 0 0 * 1/6
10. * 1 1 0 * 1/2

Figure 4: A Boolean circuit with output wire w5, and some of its behavior.

have no inputs and must be determined by a coin flip that is 1 with some probability x. In this group
of experiments, there are two constraints for wire w1 for the possible values of x. Experiments 1,
2 and 3 give the constraint (1/6)(1− x)+ (5/6)x = 1/2, which implies x = 1/2, and experiments
6, 7 and 8 give the constraint 0(1− x)+(2/3)x= 1/3, which also implies x= 1/2, consistent with
the gate computing w1 in the target circuit. There are also two constraints on the possible values of
x for the wire w3. Experiments 1, 4 and 5 give the constraint (5/12)(1− x)+(3/4)x= 1/2, which
implies x= 1/4, and experiments 6, 9 and 10 give the constraint (1/6)(1−x)+(1/2)x= 1/3, which
implies x = 1/2. Thus there is no consistent value of x that would allow the first gate to be chosen
for wire w3. Rather than exact values, PCB considers intervals determined by error tolerances, but
when these are small enough, the constraint intervals for w3 will not overlap, and PCB will not
choose the first gate for wire w3.

5.5 Correctness

With probability at least (1− %), the estimates Ĉ(e) satisfy (1) for all e ∈ U . We now assume
that the estimates satisfy these bounds and show that PCB successfully builds a circuit C′ that is
!-behaviorally equivalent toC.

We first establish two lemmas connecting gates, paths and experiments. Given a Boolean prob-
abilistic circuit C and a probabilistic gate g, g is --correct for wire w with respect to C if for every
value injection experiment e that fixes the input wires for gwe have d(C(e),C(e|w=g(e)))≤ -, where
g(e) denotes the value distribution determined by g when its inputs are fixed as in e. Recall that +(e)
denotes the number of free wires in experiment e, and therefore +(e) ≤ n for all e.

Lemma 13 Let C and C′ be probabilistic circuits on wires W, and let e be a distribution injection
experiment. If for every wire w, the gate for w in C′ is --correct for w with respect to C, then

d(C(e),C′(e)) ≤ +(e) ·-.

Proof By induction on +(e), the number of free wires in e. If +(e) = 0, then e constrains the output
wire, and trivially, d(C(e),C′(e)) = 0. Otherwise, the inductive hypothesis is that

d(C(e′),C′(e′)) ≤ +(e′) ·-
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for all experiments e′ with fewer than +(e) free gates.
By Lemma 2, assume that e is in fact a value injection experiment. Since C′ is acyclic, there

exists a free wire w in e such that the inputs to w inC′ are fixed in e to some k-tuple ($1, . . . ,$k)∈ "k.
Let f denote the probabilistic gate function for w in C′, and let D denote the value distribution
f ($1, . . . ,$k). Then we haveC′(e) =C′(e|w=D), and

d(C(e),C′(e)) ≤ d(C(e),C(e|w=D))+d(C(e|w=D),C′(e|w=D))

≤ -+(+(e)−1) ·-
= +(e) ·-

by the inductive hypothesis and the fact that f is --correct for w.

Corollary 14 Let C and C′ be probabilistic circuits on wires W where |W | = n. If for every wire w,
the gate g for w in C′ is --correct for w with respect to C, then

d(C(e),C′(e)) ≤ n ·-.

Proof By the definition of approximate behavioral equivalence and the bound +(e) ≤ n.

Next we show that test paths are sufficient to determine whether a gate is --correct for a wire in
C.

Lemma 15 Let C be a Boolean probabilistic circuit, w a wire and g′ a probabilistic gate. If for
every test path p for w that fixes all the inputs of g′, d(C(p),C(p|w=g′(p))) ≤ -/Kw, where Kw is the
maximum value of )(e,w) for C over all experiments e, then g′ is --correct for w with respect to C.

Proof Let g be the actual gate that C assigns to w. Let e be a value injection experiment that fixes
every input of g′. Then e may not fix all of g’s inputs, but because C is acyclic, g’s inputs are not
reachable from w. By Lemmas 4 and 5, there exists an experiment e′ ≤ e that fixes g’s inputs, with

d(C(e′),C(e′|w=g′(e′))) ≥ d(C(e),C(e|w=g′(e))).

Since e′ fixes all of g’s inputs, C(e′) =C(e′|w=g(e′)). It is given that for all test paths p that fix all
inputs of g′ that

d(C(p|w=g(p)),C(p|w=g′(p))) ≤ -/Kw,

so it follows by Lemma 10 that

d(C(e′|w=g(e′)),C(e′|w=g′(e′))) ≤ )(e′,w) ·-/Kw ≤ -,

and g′ is --correct for w.

To prove that PCB constructs a circuitC′ that is !-behaviorally equivalent to the target circuitC,
we show that for each wire w ∈W , PCB assigns a gate that is !/n-correct for w inC.
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Assume thatW ′ %=W , that is, that not all wires have been assigned gates, and consider PCB as
it attempts to add another gate to C′. PCB looks for a wire w ∈ (W −W ′) and probabilistic gate
g′ ∈ G with all of its inputs inW ′ such that for each experiment e ∈U∗ that leaves w free and fixes
all inputs of g′,

d(Ĉ(e),Ĉ(e|w=g′(e))) ≤ 2!/(4n)(n)).

If this search succeeds, then by (1),

d(C(e),Ĉ(e)) ≤ !/(4n)(n))d(Ĉ(e|w=g′(e)),C(e|w=g′(e))) ≤ !/(4n)(n)),

and thus by the triangle inequality we have

d(C(e|w=g′(e)),C(e)) ≤ !/(n)(n)),

It follows by Lemma 15 and the choice of )(n) that g′ is !/n-correct for w inC.
To see that the search for a gate will succeed as long as W ′ %=W , we note that because C is

acyclic, there is some wire w ∈ (W −W ′) such that all of w’s inputs inC are inW ′. Let g denote the
gate assigned by C to w, with inputs w1, . . . ,wr and probabilistic gate function f . By the existence
of g, there is at least one feasible gate-wire assignment for PCB to make, ensuring the continued
progress of PCB. Consider any experiment e ∈ U∗ that leaves w free and fixes the inputs of g to
($1, . . . ,$r). LetD be the value distribution f ($1, . . . ,$r). ThenC(e) =C(e|w=D) and by (1) and (2)
we have

d(Ĉ(e),C(e)) ≤ !/(4n)(n))

d(C(e|w=D),Ĉ(e|w=D)) ≤ !/(4n)(n)),

so by the triangle inequality,

d(Ĉ(e),Ĉ(e|w=D)) ≤ 2!/(4n)(n)).

Therefore, PCB will continue to make progress until it has assigned a gate to every wire inW , and
every such gate will be !/n-correct for its wire in C, which means that C′ will be !-behaviorally
equivalent toC.

5.6 Running Time

To bound the running time of PCB we argue as follows. The setU of experiments is of cardinality
nO(kc) and can be constructed in time polynomial in its size. To estimate C(e), each experiment in
U is repeated

O((n)(n)/!)2 log(|U |/%))

times; recall that )(n) =O(nc(logk+1)). PCB then chooses a gate for a wire n times. For each choice,
it must at worst iterate over O(n) wires in (W−W ′), over all O(nk) choices of k or fewer input wires
fromW ′, over all |"|k assignments of values to the input wires, and all experiments in U . Thus the
running time of PCB is polynomial in n, 1/! and 1/%.
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6. Lower Bounds on Path Attenuation

The path attenuation bound )(n) is a significant factor in the running time of the PCB algorithm. In
this section we consider lower bounds on path attenuation for Boolean probabilistic circuits. The
following theorem shows that the bound of ,(e,w) for transitively reduced Boolean probabilistic
circuits in Corollary 11 is tight infinitely often.

Theorem 16 There is an infinite set of transitively reduced probabilistic Boolean circuits such that
for each circuit C in the family, there exists a value injection experiment e and a wire w free in e
such that

d(C(e|w=0),C(ew=1)) = 1

and for every test path p for w we have

d(C(p|w=0),C(p|w=1)) = 1/,(e,w).

Proof For each positive integer !, define the circuit C! to be a chain of ! copies of the circuit C1
in Figure 1 with wire w4 of one copy identified with wire w1 of the next copy. More formally, the
3!+1 wires are w0,4 and wi, j for i= 1, . . . ,! and j = 2,3,4. The output wire is w!,4. The wire w0,4
has no inputs and is determined by an unbiased coin flip, that is,U({0,1}). The wires wi,2 and wi,3
are the outputs of deterministic identity gates with input wi−1,4. The wire wi,4 = A(wi,2,wi,3) is the
result of applying the two-input averaging probabilistic gate function A to the wires wi,2 and wi,3.
The circuitC3 is depicted in Figure 5.

To understand the operation of this circuit in response to a value injection experiment e, we may
view each averaging gate as choosing one of its inputs to copy to its output. Starting at the output
wire, this determines a path back to the first wire whose value has been fixed, or to the wire w0,4
(which has no inputs) and the output of the circuit is the value of the wire so reached.

Define experiment e to leave all of the wires free. Let w denote the wire w0,4. Clearly there are 2!

paths on free gates in e from w to the output gate, that is, ,(w,e) = 2!. For experiment e every possi-
ble path starts at wire w and we haveC(e|w=0) = 0 andC(e|w=1) = 1, so d(C(e|w=0),C(e|w=1)) = 1.
However, any test path p for wmust fix one of the wires wi,2 or wi,3 for each i= 1, . . . ,!. Thus, there
is exactly one path that leads back to wire w, and this path is the one chosen by the averaging gates
with probability 1/2!. Thus the result for any test path p for w is d(C(p|w=0),C(p|w=1)) = 1/2! =
1/,(e,w).

This lower bound also holds for general transitively reduced circuit topologies, as follows. (Note
that this result was incorrectly stated in the preliminary version of this paper (Angluin et al., 2008a).)

Theorem 17 Let G be a transitively reduced acyclic directed graph with a designated output node
z that is reachable from every node. For each node w there exists a Boolean probabilistic circuit
C whose circuit graph is G with output wire z such that for every value injection experiment e that
leaves w free and for every test path p≤ e for wire w we have

d(C(e|w=1),C(e|w=0)) ≥ ,(e,w) ·d(C(p|w=1),C(p|w=0)).

Proof Let w be given. To construct C, each node v of G is assigned a probabilistic gate whose
inputs are the in-neighbors of v in G, as follows. For each node v, let P(v) denote the number of
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Figure 5: The circuitC3; w3,4 is the output wire.

1901



ANGLUIN, ASPNES, CHEN, EISENSTAT AND REYZIN

distinct directed paths from w to z that include node v, and for each edge (u,v), let P(u,v) denote
the number of distinct directed paths from w to z that include edge (u,v). If there are no paths from
w to z through v (that is, P(v) = 0) then we let the probabilistic gate function for v be the constant
function 0. The probabilistic gate function for w is a coin flip,U({0,1}).

Otherwise, if node v has inputs u1, . . . ,ur then it is assigned the probabilistic gate function
specified by

Av(b1, . . . ,br) =
r

#
i=1

bi ·P(ui,v)/P(v)

This generalizes the two-input averaging gate A, weighting input ui by the fraction of paths from w
to z passing through v that also pass through ui. We may view Av as performing a random weighted
selection of one of its inputs to copy to its output. The weights have been chosen so that each
directed path from w to z is selected with probability 1/P(w).

Let e be any value injection experiment that leaves w free. If there is no path on free wires in e
from w to the output, then ,(e,w) = 0, and the bound in the conclusion of the lemma holds trivially.
Otherwise, the output of the circuit in response to e is determined by tracing from the output wire,
following the choices of the averaging gates, until either the first wire fixed by e, or w, is reached.
Thus

d(C(e|w=1),C(e|w=0)) = ,(e,w)/P(w),

because there are ,(e,w) paths from w to the output wire in e. Let p≤ e be any test path for w; now
there is just one choice of path that leads back to w, so

d(C(p|w=1),C(p|w=0)) = 1/P(w),

establishing the conclusion of the lemma.

Can the general bound in Lemma 10 be improved to the bound for transitively reduced circuits in
Corollary 11? The following example shows that the better bound is in general not attainable if the
circuit is not transitively reduced. It gives a family of circuits of depth 2! for which the worst-case
ratio of the differences shown for w by an experiment e and the best path for w is (5/4)!,(e,w).

Theorem 18 There exists an infinite set of Boolean probabilistic circuits D1,D2, . . . such that for
each ! there exists a value injection experiment e and a wire w free in e such that ,(e,w) = 4! and

d(D!(e|w=0),D!(e|w=1)) = (5/7)!,

but for any test path p for w,

d(D!(p|w=0),D!(p|w=1)) = (1/7)!.

Proof We first define a Boolean probabilistic circuit D1 and then connect ! copies of it in series
to get D!. The wires of D1 are w1, . . . ,w5. They are connected as in Figure 6; the output wire is
w5. Note that the edge (w1,w5) means that the circuit graph is not transitively reduced. The gate
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Figure 6: The circuit D1; w5 is the output wire.

function G is defined by giving its expected value as a function of its inputs:

E[G(w1,w2,w3,w4)] = ((1−w1)+2w2+2w3+2w4)/7.

Let e be the experiment that leaves all five wires free. It is clear that

d(D1(e|w1=0),D1(e|w1=1)) = 5/7.

We now show that for any test path p for w1,

d(D1(p|w1=0),D1(p|w1=1)) = 1/7.

The possible test paths p for w1 either fix all of w2,w3,w4 or all but one of them. Thus, as we change
from w1 = 0 to w1 = 1 in such a test path, the assignments to wires (w1,w2,w3,w4) change in one
of four possible ways:

(0,b2,b3,b4) to (1,b2,b3,b4)

(0,0,b3,b4) to (1,1,b3,b4)

(0,b2,0,b4) to (1,b2,1,b4)

(0,b2,b3,0) to (1,b2,b3,1)

Checking each of these possible changes against the definition of G, we see that each change pro-
duces a difference of 1/7, as claimed. (This example can be modified to give a difference of 1 versus
1/5.) Thus, setting w= w1, the circuit D1 gives the base case of the claim in the lemma.

To construct D!, we take ! copies of D1 and identify wire w5 in one copy with wire w1 in the
next copy, making the wire w5 of the final copy the output wire of the whole circuit. Let w denote
the wire w1 in the first such copy. Then ,(e,w) = 4! and

d(D!(e|w=0),D!(ew=1)) = (5/7)!.

For any test path p, the signal is attenuated by a factor of 1/7 for each level, and we have

d(D!(p|w=0),D!(p|w=1)) = 1/7!.
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This construction can be generalized to k+ 1 wires for any odd k+ 1, which increases the
attenuation. In the base circuit there are k paths and an attenuation factor of 1/(2k− 3), and the
worst-case ratio of differences for an experiment and its test paths in D! approaches 2!,(e,w) as k
goes to infinity.

7. Exponential Dependence on Depth

The bounds on path attenuation show that test paths may be much less informative than general
value injection experiments, resulting in the exponential dependence of the number of experiments
and the running time of PCB on the depth of the target circuit. It is natural to ask whether we might
do better by using selected general experiments. In this section, we give computational evidence
to the contrary. The following result contrasts with the case of deterministic circuits, where the
Distinguishing Paths algorithm uses value injection queries to learn arbitrary transitively reduced
acyclic deterministic circuits of constant fan-in over polynomial size alphabets in polynomial time
(Angluin et al., 2008b).

Theorem 19 If BPP %=NP and k≥ 4 then there is no polynomial time algorithm using value injec-
tion queries that approximately learns all acyclic transitively reduced Boolean probabilistic circuits
with fan-in bounded by k.

Proof Suppose L is a polynomial time algorithm that approximately learns the behavior of every
transitively reduced acyclic Boolean probabilistic circuit of fan-in bounded by 4 using value in-
jection queries. The hard computational problem we consider is the following: given a satisfiable
3-CNF formula + over the variables x1, . . . ,xn with clauses c1, . . . ,cm, find an assignment to the
variables that satisfies significantly more than seven-eights of the clauses of the formula. Finding
such an assignment is NP-hard by a result of Håstad (2001). We show how to transform the 3-CNF
formula + into a pair of transitively reduced circuits C0 and C1 with maximum fan-in 4 such that
value injection experiments show a difference that is exponentially small in the depth of the circuits
unless we can find a variable assignment that satisfies significantly more than seven-eighths of the
clauses of the formula.

The efficiency of our construction depends on the existence of a family of graphs with an ex-
pansion property. Specifically, there exists a constant .< 1 such that for sufficiently large m, there
exists a directed graph Gm on m nodes with constant out-degree 3 such that the second largest
eigenvalue /2 of the transition matrix for a random walk on Gm satisfies /2 ≤ .. Such a family
can be constructed by the probabilistic method and explicit constructions are also known; these are
surveyed by Hoory, Linial, and Wigderson (2006). Let r be the smallest integer such that .r ≤ 1/40.

Let ! be a positive integer. The two circuits C0 and C1 differ only in their default assignments
to a subset of their wires, so we describe their common structure as follows. The circuit consists
of a stack of ! repetitions of a block consisting of r expander layers above one gadget layer for a
total depth of (2r+1)!. Figure 7 illustrates a block consisting of one expander layer (r = 1) above
a gadget layer. Recall that x1, . . . ,xn are the variables of + and c1, . . . ,cm are the clauses of +.

A gadget layer has three types of wires: inputs gIn1, . . . ,gInm, variables x1, . . . ,xn, and outputs
gOut1, . . . ,gOutm. The input wire gIn j of each gadget layer except the initial one is identified with
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Figure 7: A block with r = 1 for the Boolean formula c1∧ c2∧ c3∧ c4, where c1 = x2∨ x3∨ x4 and
c2 = x1∨ x3∨ x4 and c3 = x1∨ x2∨ x4 and c4 = x1∨ x2∨ x3.

the corresponding output wire eOut j of the expander layer just below it. The variable wires xi of
each gadget layer have no inputs and default to the constant 0. Each output wire gOut j has four
inputs: the corresponding gadget input wire gIn j and the three variable wires for the variables of
the clause c j of +. Its gate function computes the conjunction of gIn j and the value of the clause c j
given its three variable values.

Thus, if the learner sets the variable wires xi in a gadget layer according to a satisfying assign-
ment of +, the signals propagate from the gadget inputs gIn j to their corresponding outputs gOut j
with perfect fidelity. Otherwise, any unsatisfied clause blocks the signal for the corresponding out-
put.

An expander layer averages the outputs of the layer below to be the inputs for the layer above,
according to the expander graph Gm. Each input eIn j of an expander layer is set equal to the
corresponding output of the gadget or expander layer immediately below it. The three inputs to
eOut j are eInk for the three out-neighbors k of j in the expander graph Gm. The gate function for
each eOut j is the three-input averaging gate A(x,y,z), which is 1 with probability (x+y+ z)/3. The
output of the whole circuit is the first output wire of the final (topmost) expander layer.

The initial inputs are the input wires gIn j of the initial gadget layer. They have no inputs; for
the circuitC0 they are all assigned the default value 0, and for the circuitC1 they are all assigned the
default value 1. Note thatC0 and C1 are transitively reduced and have a maximum fan-in of 4.

The challenge for the learner is to determine which of C0 and C1 is the target circuit. If a
value injection experiment succeeds in setting the variable wires in every gadget layer to (possibly
different) satisfying assignments for the formula + and leaves all other wires free, then the output of
C0 is 0 and the output ofC1 is 1. If not all the clauses of + are satisfied, then this distance is reduced.

1905



ANGLUIN, ASPNES, CHEN, EISENSTAT AND REYZIN

Intuitively, the learner’s strategy must be to fix the variable wires in each gadget layer to prevent
the signal from the initial inputs from getting blocked; fixing the input or output wires of gadget or
expander layers would not help, because they would then have the same value regardless of their
inputs. Without a good variable assignment, however, the signal strength drops by a constant factor
for each layer, as we now show.

Let e be a value injection experiment. The experiment e induces an assignment to the variables
of + for each gadget layer, either by fixing the value of each variable wire or letting it default to 0.
The effect of an averaging gate is to select one of its inputs at random and copy the value of that input
to the output. Thus, the output of the circuit for experiment e is in effect determined by a random
walk backward from the output wire until the walk reaches a wire whose value is fixed by e (and
the output is the fixed value), or a gadget layer output wire corresponding to an unsatisfied clause
(and the output is 0), or an initial input wire (and the output is the value of that wire.) Suppose that
for each gadget layer e encodes a variable assignment that satisfies at most (9/10)m of the clauses
of +. We show that the probability that the random walk hits an initial input wire is bounded above
by (39/40)!√m.

Without loss of generality we may assume that e fixes no wires other than variable wires and
initial input wires, because any other fixed wires reduce the probability of reaching an initial input.
For i= 1, . . . ,!, letWi be them×m diagonal matrix with 1s for each satisfied clause in the ith gadget
layer and 0s for each unsatisfied clause. Let B be the transition matrix for an r-step random walk
on Gm and let e1 = (1,0, . . . ,0). The probabilities of the random walk hitting the initial inputs are
given by the vector e1BW!BW!−1 ·BW2BW1. By the following argument, for all i and vectors v, we
have ‖vBWi‖ ≤ (39/40)‖v‖.

Write v= cu+w, where c is a scalar and u= (1, . . . ,1) and w is a vector such that u⊥ w. Then
u is an eigenvector of B with eigenvalue 1 and multiplying w by B shrinks its length to at most the
second eigenvalue of B times its original length. By Pythagoras, ‖cu‖ ≤ ‖v‖ and ‖w‖ ≤ ‖v‖. We
have vBWi = (cu+w)BWi. On one hand, ‖cuBWi‖ = ‖cuWi‖ ≤

√
9/10‖cu‖ ≤ (19/20)‖v‖. On the

other hand, ‖wB‖ ≤ (1/40)‖w‖ ≤ (1/40)‖v‖, because the second eigenvalue of B is no larger than
1/40, and ‖wBWi‖ ≤ (1/40)‖v‖, becauseWi does not increase the L2 norm. The resulting (39/40)!

bound on the L2 norm of the probability vector gives a bound of (39/40)!√m on the L1 norm, which
is an upper bound on the probability that any initial input is reached.

Suppose the learning algorithm L runs in time f (N,1/!,1/%), for some nondecreasing polyno-
mial f , where N is the number of wires in the target circuit. Let N(!) denote the number of wires
in C0 (or C1) as a function of the number ! of blocks in the stack. Then N(!) = O(!(n+ rm)). We
choose ! sufficiently large that

((39/40)!√m) f (N(!),4,4) < 1/4,

clearly N(!) is bounded by a polynomial in m and n.
We randomly and equiprobably choose the target circuit C to be C0 or C1 and simulate L with

target circuit C and != %= 1/4. When L makes a value injection experiment e, we check whether
any of the induced variable assignments of e satisfies more than (9/10)m clauses of +. If so, we
output the assignment and halt. Otherwise, we use a random walk from the output wire in the circuit
C to give an output for e. If no experiment e satisfies more than (9/10)m of the clauses of +, then
the probability that any of them reaches an initial input inC is less than 1/4. If none of them reaches
an initial input, then L cannot distinguish between C0 and C1, and must output a circuit that is not
1/4-approximately behaviorally equivalent to C with probability at least 3/8 > 1/4, violating the
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requirements of approximate learning.

We conclude that if BPP %=NP, any polynomial time learning algorithm requires in expectation
exponentially many queries in ! to learn the default settings of the initial inputs and therefore, PCB
is within a polynomial of optimal.

8. Non-Boolean Circuits Revisited

The sharp contrast in results for transitively reduced circuits with alphabet size at least three, for
which test paths may show no difference (Lemma 8) and those with alphabet size two, for which
test paths must show a significant difference (Lemma 10) motivate us to consider a generalization of
the kinds of experiments we consider, to function injection experiments. This generalization allows
us to extend the results of Lemma 10 to non-Boolean alphabets.

In a value injection experiment, each wire is either fixed to a constant value or left free. In
a function injection experiment for a wire w, these possibilities are expanded to permit a trans-
formation of the value that the wire w would take if it were left free. As an example, consider a
transformation in which the values that w could attain are linearly ordered and all values below a
certain threshold are mapped to the minimum value and all other values are mapped to the maxi-
mum value. It is conceivable that this kind of transformation could be feasible in some domains;
in any case, the theoretical consequences are quite interesting. We first give a general definition
of function injection, but in the results below we are primarily concerned with 2-partitions, that is,
transformations that are like the above example in that they partition the values into at most two
blocks and map each block to a fixed element of the block.

An alphabet transformation is a function f that maps symbols to distributions over symbols.
An alphabet transformation is deterministic if it assigns only deterministic distributions, in which
case we think of it as a map from symbols to symbols. A deterministic alphabet transformation f
is a k-partition if there exists a partition of " into at most k disjoint nonempty sets "i such that for
each i there exists $i ∈ "i such that f ("i) = {$i}. Note that if k1 ≤ k2, every k1-partition is also a
k2-partition.

A 1-partition is a constant function, achieving the same result as fixing the wire to a value
in a value injection experiment. We use 2-partitions to reduce the case of larger alphabets to the
binary case. Note that the 2-partitions of a binary alphabet include the identity and the two constant
functions, but not the negation function.

IfD is a value distribution and f is an alphabet transformation, then f (D) is the value distribution
in which

( f (D))($) = #
&∈"

D(&)( f (&))($).

A function injection experiment is a mapping e with domain W that assigns to each wire the
symbol ∗ or a symbol from " or an alphabet transformation f . Then e leaves w free if e(w) = ∗, fixes
w if e(w) ∈ ", and transforms w if e(w) is an alphabet transformation f . We extend the ordering ≤
on experiments by stipulating that each alphabet transformation f ≤ ∗. A 2-partition experiment
is a function injection experiment in which every alphabet transformation is a 2-partition.

We now define the joint probability distribution on assignments of symbols from " to wires de-
termined by a function injection experiment e. If e fixes w, then w is just assigned e(w). Otherwise,
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if the inputs of w have been assigned the values $1, . . . ,$k and f is the gate function for w, we
randomly and independently choose a symbol $ according to the value distribution f ($1, . . . ,$k).
If w is free in e, then $ is the symbol assigned to w; however, if e(w) is an alphabet transformation,
then a symbol & is chosen randomly and independently according to the value distribution e($) and
assigned to w. That is, when e(w) is an alphabet transformation, we generate the symbol for w
as though it were free, and then use the distribution e(w) to transform that symbol. Because C is
acyclic, this process assigns a symbol to every wire ofC.

In a function injection query (FIQ), the learning algorithm gives a function injection exper-
iment e and receives a symbol $ assigned to the output wire of C by the probability distribution
defined above. A functional test path for a wire w is a function injection experiment in which the
free and transformed wires are a directed path in the circuit graph from w to the output wire, and all
other wires are fixed.

As an example of how functional test paths help in learning non-Boolean probabilistic circuits,
consider again the circuit in the proof of Lemma 8, depicted in Figure 3. We specify a functional test
path p by p(w1) = p(w4) = p(w5) = ∗, p(w3) = 0 and p(w2) is the alphabet transformation 0→ 0,
1→ 0, and 2→ 2. Note that the alphabet transformation is a 2-partition. Then C(p|w1=0) = 0 but
C(p|w1=2) = U({0,1}), so this functional test path witnesses a difference of 1/2, as large as the
experiment that leaves all the wires free. Test paths with functions allow us to carry over the results
of Lemma 10 to non-Boolean alphabets.

Lemma 20 Let C be a probabilistic circuit, e be a function injection experiment, w be a wire free
in e and D1,D2 be value distributions. If there exists !≥ 0 such that for all functional w-test paths
p≤ e that are 2-partitions,

d(C(p|w=D1),C(p|w=D2)) ≤ !,

then
d(C(e|w=D1),C(e|w=D2)) ≤ )(e,w) · !.

Proof The obstacle in Lemma 10 is that when the alphabet is non-Boolean, we may assume only
that D1 and D2 have disjoint support, not that they are deterministic. This obstacle can be overcome
by injecting a 2-partition at w. Let "1 = support(D1) and "2 = support(D2) and assume "1∩"2 = /0.
Then

d(C(e|w=D1),C(e|w=D2)) ≤ #
'1∈"1
'2∈"2

D1('1)D2('2)d(C(e|w='1),C(e|w='2))

by the triangle inequality. Let

($,&) = argmax
'1∈"1
'2∈"2

d(C(e|w='1),C(e|w='2))

so that

d(C(e|w=D1),C(e|w=D2)) ≤ d(D1,D2)d(C(e|w=$),C(e|w=&)).

Let f be an alphabet transformation that maps "1 to $ and "2 to & and all other symbols to either $
or &. Then f is a 2-partition, and

d(C(e|w=D1),C(e|w=D2)) ≤ d(C(e|w= f (D1)),C(e|w= f (D2))).
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Since f (D1) = $ and f (D2) = &, the rest of the proof goes through.

Corollary 21 Let C be a transitively reduced probabilistic circuit, e be a function injection experi-
ment, w be a wire, and D1,D2 be value distributions. If there exists !≥ 0 such that for all functional
w-test paths p≤ e,

d(C(p|w=D1),C(p|w=D2)) ≤ !,

then
d(C(e|w=D1),C(e|w=D2)) ≤ ,(e,w) · !.

We expect that a further generalization of the Probabilistic Circuit Builder algorithm to use
function injection experiments can learn non-Boolean circuits of logarithmic depth and constant fan
in in polynomial time. The universal set would map wires to the set containing all alphabet symbols
from " and all 2-partitions of ", of which there are fewer than |"|22|"|. Thus, the universal set will
still be of size nO(1), suggesting that a polynomial time algorithm may be attainable in this case.

Certain other natural questions arise in response to the idea of function injection experiments.
We can define circuits C and C′ to be strongly behaviorally equivalent if C(e) =C′(e) for every
function injection query e. Does behavioral equivalence imply strong behavioral equivalence? Once
again, alphabet size determines the answer: no for alphabet size greater than two, yes for alphabet
size two.

Lemma 22 For " = {0,1,2}, there exist deterministic circuits C1 and C2 that are behaviorally
equivalent but not strongly behaviorally equivalent.

Proof In bothC1 andC2 there are two wires w1 and w2, where w2 is the output wire. In both circuits
the gate for w2 has input w1 and deterministically maps 0 to 0 and maps 1 and 2 to 1. In C1, w1 is
the constant 1 and C2 it is the constant 2.

Then if e is the value injection experiment that leaves both wires free, C1(e) = 1 =C2(e). If e
fixes either w1 or w2, then alsoC1(e) =C2(e). ThusC1 is behaviorally equivalent toC2.

However, the 2-partition function injection experiment e that leaves w2 free and maps the output
of w1 according to the transformation 0→ 0, 1→ 0, 2→ 2 yields C1(e) = 0 and C2(e) = 1. Thus
C1 is not strongly behaviorally equivalent toC2.

However, 2-partition function experiments suffice to establish strong behavioral equivalence.

Lemma 23 Let C and C′ be probabilistic circuits with the same alphabet ", the same set of wires
and the same output wire. If C(e) =C′(e) for every 2-partition function experiment e then C and C′

are strongly behaviorally equivalent.

Proof By a generalization of the Probabilistic Circuit Builder algorithm to functional test paths.

Because in the Boolean case every 2-partition function injection query is a value injection query,
we then have the following.

Corollary 24 For Boolean probabilistic circuits C and C′, if C is behaviorally equivalent to C′ then
C is strongly behaviorally equivalent to C′.
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9. Discussion and Open Problems

These results concern general probabilistic acyclic gates, with no restriction other than fan-in on the
kinds of probabilistic gate functions considered. Particular domains may warrant specific assump-
tions about the gate functions, which may make the learning problems more tractable. For example,
for the problem of learning the structure of an independent cascade social network using exact value
injection queries, a query-optimal algorithm is presented by Angluin et al. (2008c). Note that social
networks may in general contain cycles, which complicates their analysis.

The Distinguishing Paths algorithm (Angluin et al., 2008b) learns transitively reduced acyclic
deterministic circuits over polynomial size alphabets with constant fan-in and no depth bound using
value injection queries in polynomial time, and relies on a version of the test path lemma. Theo-
rem 19 shows that if BPP %= NP then this algorithm does not generalize to arbitrary transitively re-
duced Boolean probabilistic circuits, but there is a possibility that it might generalize to transitively
reduced Boolean probabilistic circuits with a polynomial bound on the total number of directed
paths in the circuit graph. A somewhat technical open question is whether in the case of general
Boolean probabilistic circuits, the ability to inject the NOT function might reduce the maximum
path attenuation to just the number of paths, as it does in the case of the circuit in Figure 6.
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Abstract

In this paper, we present an automated approach to discover patterns that can distinguish between
sequences belonging to different labeled groups. Our method searches for approximately conserved
motifs that occur with varying statistical properties in positive and negative training examples. We
propose a two-step process to discover such patterns. Using locality sensitive hashing (LSH), we
first estimate the frequency of all subsequences and their approximate matches within a given Ham-
ming radius in labeled examples. The discriminative ability of each pattern is then assessed from
the estimated frequencies by concordance and rank sum testing. The use of LSH to identify ap-
proximate matches for each candidate pattern helps reduce the runtime of our method. Space
requirements are reduced by decomposing the search problem into an iterative method that uses a
single LSH table in memory. We propose two further optimizations to the search for discriminative
patterns. Clustering with redundancy based on a 2-approximate solution of the k-center problem
decreases the number of overlapping approximate groups while providing exhaustive coverage of
the search space. Sequential statistical methods allow the search process to use data from only as
many training examples as are needed to assess significance. We evaluated our algorithm on data
sets from different applications to discover sequential patterns for classification. On nucleotide se-
quences from the Drosophila genome compared with random background sequences, our method
was able to discover approximate binding sites that were preserved upstream of genes. We ob-
served a similar result in experiments on ChIP-on-chip data. For cardiovascular data from patients
admitted with acute coronary syndromes, our pattern discovery approach identified approximately
conserved sequences of morphology variations that were predictive of future death in a test pop-
ulation. Our data showed that the use of LSH, clustering, and sequential statistics improved the
running time of the search algorithm by an order of magnitude without any noticeable effect on
accuracy. These results suggest that our methods may allow for an unsupervised approach to ef-
ficiently learn interesting dissimilarities between positive and negative examples that may have a
functional role.

Keywords: pattern discovery, motif discovery, locality sensitive hashing, classification
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1. Introduction

Pattern discovery has been studied extensively in the context of data mining and knowledge discov-
ery (Han and Kamber, 2005) and causal inference in statistics (Pearl, 2000). The search for patterns
is typically guided by classification. The focus is on discovering activity that can distinguish mem-
bers of a family from non-members (Duda et al., 2000) by identifying activity that is unlikely to
occur purely by chance and may have a functional role (Syed et al., 2007).

Pattern discovery has been applied to data from a variety of applications, for example, world
wide web transactions (Mobasher et al., 1996), marketing information (Shaw et al., 2001), and
medical signals (Li et al., 2005). More recently, there has been an increased interest in applying
techniques for discovering patterns to sequences corresponding to genomic data (Wang et al., 1999).
Of particular importance in computational biology is the problem of discovering subsequences, that
is, motifs, which regulate important biological processes (Kellis et al., 2004). Pattern discovery has
been proposed in this context as a machine learning problem (Brazma et al., 1998):

Given two sets of sequences S+ and S− drawn randomly from families F+ and F− respectively
such that F+∩F− = $, find the patternW of length L that has high likelihood in F+ but not in
F−.

This formulation is sufficiently general to apply to a wide variety of applications where sequen-
tial data exists. Furthermore, an extensive literature on symbolization (Daw et al., 2003) allows
for a large set of time-series signals to be abstracted into sequential data for analysis. We make the
notion of a pattern more explicit by refining the goal of pattern discovery described above as follows:

Given two sets of sequences S+ and S− drawn randomly from families F+ and F− respectively
such that F+ ∩F− = $, find the subsequenceW of length L that occurs with a Hamming dis-
tance of at most d with high likelihood in F+ but not in F−.

In this paper, we propose a method to efficiently carry out the search for such approximate
patterns. A variety of techniques have been proposed to address this problem statement (Lawrence
et al., 1993; Bailey and Elkan, 1994; Grundy et al., 1997; Tavazoie et al., 1999; Liu et al., 2001;
Pavesi et al., 2001; Sinha and Tompa, 2003). The common strategy adopted by these methods is
to approach the problem of pattern discovery by finding activity that is statistically unlikely but
occurs consistently in positive examples. Negative examples are primarily used for evaluation. This
process means that discriminative patterns in negatively labeled sequences are not explored for
classification. Other algorithms for pattern discovery (Delcher et al., 1999; Batzoglou et al., 2000)
enumerate all exact patterns across both positive and negative examples to identify sequences that
can discriminate between these two cases, but become computationally intractable when allowing
subsequences to have an approximate form.

We describe a locality sensitive hashing (LSH) based algorithm to efficiently estimate the fre-
quencies of all approximately conserved subsequences with a certain Hamming radius in both pos-
itive and negative examples. The search process attempts to identify patterns that allow maximum
discrimination between the two groups. In this way, our method unifies the broad areas of existing
work in sequential pattern detection for classification by proposing a way to discover patterns that
are both approximate and derived using the additional information available in negative instances.
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LSH forms a key component of our method. The use of LSH has been proposed earlier in
the context of pattern discovery to identify interesting activity in positive examples (Buhler, 2001;
Buhler and Tompa, 2002). We supplement this work by allowing for information from negative ex-
amples to be factored into the search and by proposing different optimizations to the search process.
In particular, we expand the use of LSH in pattern discovery from indexing to fast counting and
approximate clustering. While LSH provides runtime efficiency to the search process, it imposes
significant space requirements, and we describe an iterative method that uses a single LSH table in
memory to address this issue. We also explore the idea of using clustering as part of pattern discov-
ery to reduce approximate subsequences with significantly overlapping Hamming radii to a small
number. This aspect of our work resembles efforts for web clustering (Haveliwala et al., 2000).
We explore similar ideas within the context of approximate pattern discovery. This decreases the
number of motifs to be evaluated while still providing a fairly exhaustive coverage of the search
space. We describe a clustering method based on a 2-approximate solution of the k-center problem
to achieve this goal.

In addition to LSH and clustering, we also draw upon sequential statistical methods to make the
search for interesting patterns more efficient. The process of identifying patterns with discriminative
ability makes use of concordance and rank sum testing. In many cases, the goodness of approximate
patterns can be assessed without using data from all training sequences. We propose a further
optimization to address these cases. The runtime and space requirements of the pattern discovery
process can be reduced by using sequential statistical methods that allow the search process for
patterns to terminate after using data from only as many training examples as are needed to assess
significance.

We address a similar goal to earlier work on using hypergeometric significance testing to dis-
cover patterns that are enriched in a positive set relative to a negative set (Barash et al., 2001). The
focus of this work is to generate seeds of short lengths that can be expanded using an expectation-
maximization (EM)-like process to produce a position specific scoring matrix of the desired length.
However, in contrast to our work, this method is based on the assumption that a pattern occurs at
most once in each sequence. This leads it to disregard multiple copies of a match within the same
sequence. Moreover, the use of a testing function based on hypergeometric analysis may affect the
accuracy of this method (Leung and Chin, 2006).

Our algorithm to find approximate discriminative patterns is also related to previous work on the
use of profile hidden Markov models (Krogh, 1994; Jaakkola et al., 1999) to optimize recognition
of positively and negatively labeled sequences. This work focuses on learning the parameters of a
hidden Markov model that can represent approximations of subsequences. Generally, this approach
requires large amounts of data or sophisticated priors to train the hidden Markov model. Computing
forward and backward probabilities from the Baum-Welch algorithm is also very computationally
intensive. Subsequent work in this area focuses on mismatch tree-based kernels (Leslie et al., 2003)
for use in a support vector machine (SVM) classifier. This work focuses on efficiently calculating a
kernel based on the mismatch tree data structure (Eskin and Pevzner, 2002), which quantifies how
different two sequences are based on the approximate occurrence of the fixed L-length subsequences
within them. The mismatch kernel is used to train an SVM and assign labels to unknown query
sequences.

Our algorithm supplements this work by measuring how frequently each subsequence occurs in
an approximate form in the data. In contrast to the mismatch kernel, which focuses on quantifying
the difference between two sequences and does not report the frequency of individual approximate
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Figure 1: Overview of the pattern discovery process.

subsequences in the data, our algorithm focuses on identifying the specific approximate patterns
with discriminative value. This approach can be integrated more easily with the use of sequential
statistics, that is, since the frequencies of each approximate pattern are retained during analysis, this
information can be used to determine if patterns are good or bad discriminators without analyzing
all the available data.

We evaluated our algorithm on data sets from different applications to discover sequential pat-
terns for classification. On nucleotide sequences from the Drosophila genome, our method was able
to discover binding sites for genes that are preserved across the genome and do not occur in random
background sequences. On symbolized electrocardiographic time-series from patients with acute
coronary syndromes, our pattern discovery approach identified approximately conserved sequences
of morphology variations that were predictive of future death in a test population. These results sug-
gest that our methods may allow for an unsupervised approach to learn interesting dissimilarities
between positive and negative examples that may have a functional role.

The rest of this paper is organized as follows: Section 2 gives an overview of our algorithm. Sec-
tion 3 describes a locality sensitive hashing scheme to find approximate matches to all subsequences
in the data set. Section 4 proposes the use of clustering to reduce the number of approximate patterns
analyzed during pattern discovery. Section 5 discusses the statistical approaches used in assessing
the goodness of patterns. Section 6 details the evaluation methodology of our pattern discovery
algorithm on data from different real-world applications. Section 7 reports the results of this study.
Section 8 concludes with a discussion.

2. Overview

The process of discovering discriminative patterns of a specified length L from positive and negative
sequences is carried out in two stages: frequency estimation and pattern ranking. Figure 1 presents
an overview of this approach.

2.1 Frequency Estimation

Given a set of positive examples S+ = {S+
x |x = 1, . . . ,N+} and a set of negative examples S− =

{S−y |y = 1, . . . ,N−} the frequency estimation step measures the frequency of every unique subse-
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quenceWi for i= 1, . . . ,M in sequences belonging to S+ and S−. The resulting frequency forWi in
positive and negative examples is denoted as:

f+i = { f+i,z|z ∈ S
+},

f−i = { f−i,z|z ∈ S
−}

where f+i,z and f
−
i,z are the frequencies with whichWi appears in sequences z drawn from S+ and S−,

and f+i and f
−
i are vectors measuring the frequency ofWi in all positive and negative sequences.

To allow for approximate patterns, unique subsequences are then matched to all other subse-
quences at a Hamming distance of at most d fromWi. Denoting this group of subsequences as DWi ,
the resulting frequency for the subsequenceWi and its approximate matches is defined as:

g+
i = !

j∈DWi

f+j ,

g−i = !
j∈DWi

f−j

where g+
i and g

−
i are vectors obtained by summing up the vectors f

+
i and f

−
i for all subsequences

within a given Hamming radius d ofWi.
In Section 3, we describe an LSH-based solution that allows for efficient discovery of the subse-

quences DWi matchingWi. We also present a clustering approach in Section 4 to reduce overlapping
approximate patterns for which frequencies are estimated to a smaller number with less redundancy
for subsequent analysis.

2.2 Pattern Ranking

The goal of the search process is to identify approximately matching subsequences that can discrim-
inate between positive and negative training examples. The pattern ranking stage therefore scores
each candidate approximate pattern according to its discriminative ability. We use two measures to
assess the goodness of patterns.

The first approach to score patterns is to use rank sum testing. This technique is a non-parametric
approach for assessing whether two samples of observations come from the same distribution. Pat-
terns are ordered based on the significance of separation (as measured by the p-value) obtained by
rank sum testing. A second scoring criterion used by our work is the C-statistic, which corresponds
to the area under the receiver operating characteristic (ROC) curve. Details of these techniques are
provided in Section 5. We further describe how sequential methods can be used to reduce the search
process to only process as many training examples as are needed to determine if a candidate pattern
has high or low discriminative ability.

3. Locality Sensitive Hashing

In this section, we describe the use of locality sensitive hashing in our algorithm.

3.1 Finding Approximate Matches for a Subsequence

Locality sensitive hashing (Indyk and Motwani, 1998) has been proposed as a randomized approx-
imation algorithm to solve the nearest neighbor problem. Given a set of subsequences, the goal of
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LSH is to pre-process the data so that future queries searching for closest points under some lp norm
can be answered efficiently. A brief review of LSH is presented here.

Given two subsequences Sx and Sy of length L, we describe them as being similar if they have a
Hamming distance of at most d. To detect similarity, we choose K indices i1, . . . , iK at random with
replacement from the set {1, . . . ,L}. The locality sensitive hash function LSH(S) is then defined as:

LSH(S) =< S[i1], . . . ,S[ik] >

where< .. . > corresponds to the concatenation operator. Under this scheme, Sx and Sy are declared
to be similar if:

LSH(Sx) = LSH(Sy). (1)

The equality in Equation 1 corresponds to an exact match. However, since the indices used by
the locality sensitive hash function LSH(S)may not span the entire subsequences Sx and Sy, an exact
match in Equation 1 may be obtained if Sx and Sy match approximately.

Practically, LSH is implemented by creating a hash table using the LSH(S) values for all subse-
quences as the keys. Searching for the approximate neighbors of a query subsequence corresponds
to a two-step process. The locality sensitive hash function is first applied to the query. Follow-
ing this, the bucket to which the query is mapped is searched for all original subsequences with a
Hamming distance of at most d.

Two subsequences with a Hamming distance of d or less may not match for a random choice of
K indices if one of the K indices chosen corresponds to a position in which Sx and Sy differ. The
probability of such a miss is bounded by (Indyk and Motwani, 1998):

Pr[LSH(Sx) &= LSH(Sy)] ≤ [1− (1−
d
L

)K ].

By repeating the process of choosing K indices T times this probability can be reduced further
to:

Pr[LSH(Sx) &= LSH(Sy)] ≤ [1− (1−
d
L

)K ]T . (2)

Effectively, Equation 2 corresponds to constructing a data structure comprising T hash tables
using different locality sensitive hash functions LSH1(S), . . . ,LSHT (S). Approximate neighbors for
a query are detected by searching for matches in each of these hash tables as described earlier.

The intuition underlying LSH is that the problem of searching through all possible subsequences
in the data set for a match can be reduced to the more feasible problem of first rapidly identifying a
small set of potential matches with a bounded error, and then searching through this smaller set to
remove false positives. The lower the desired error bound for false negatives affecting correctness
(i.e., by choosing K and T ), the higher the corresponding false positive rate affecting the runtime
of the algorithm. The choice between these two parameters depends on the application and the
underlying data set.

3.2 Finding Approximate Matches Between All Subsequences

LSH provides an efficient mechanism to find the nearest neighbors of a given subsequence. To find
the nearest neighbors for all M subsequences in the data set, each member of the set can be passed
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through the entire LSH data structure comprising T hash tables for matches. Unfortunately, this
process is both computationally and memory intensive. In what follows, we describe a strategy to
reduce the space requirements of LSH-based search for all approximate matches between subse-
quences. Section 4 further addresses runtime issues by proposing a clustering amendment to the
search process.

Different approaches have been proposed recently to reduce the space requirements of LSH. In
particular, the use of multi-probe LSH (Lv et al., 2007) has been shown to substantially reduce the
memory requirements for traditional LSH by searching each LSH hash table (i.e., corresponding to
a random selection of K indices) more thoroughly for misses. This additional work translates into
fewer LSH hash tables being needed to bound the given error rate. As a result, the space of the LSH
data structure decreases.

In our work, the memory requirements of LSH are reduced by organizing the approximate
matching process as T iterations. Each iteration makes use of a single locality sensitive hash func-
tion and maintains only a single hash table in memory at any time. To preserve state across itera-
tions, the search process maintains a list of matching pairs found during each loop after removing
false positives. The subsequences DWi matchingWi are found as:

DWi =
T[

t=1
{Wj|LSHt(Wj) = LSHt(Wi)}.

4. Clustering Subsequences

The runtime of the pattern discovery process as described so far is dominated by the approximate
matching of all subsequences. Every subsequence is first used to create the LSH data structure, and
then passed through the LSH data structure to find matches with a Hamming distance of at most
d. This process is associated with considerable redundancy, as matches are sought individually for
subsequences that are similar to each other. The overlap between approximate patterns increases
the computational needs of the pattern discovery process and also makes it more challenging to
interpret the results as good patterns may appear many times in the output.

To address this issue, we reduce patterns to a much smaller group that still collectively spans
the search space. This is done by making use of a clustering method based on a 2-approximate
solution to the k-center problem. The focus of this clustering is to group together the original
subsequences falling into the same hash bucket during the first LSH iteration. Each of the clusters
obtained at the end of this process corresponds to an approximate pattern that is retained. During
subsequent iterations, while all subsequences are still used to construct the LSH tables, only the
cluster centroids are passed through the LSH data structure. This reduces the runtime of the search
by reducing the number of times subsequences have to be passed through the LSH tables to find true
and false positives. It also reduces the memory requirements of the search by reducing the number
of subsequences for which we need to maintain state about approximate matches.

The traditional k-center problem can be formally posed as follows. Given a complete graph
G= (V,E) with edge weights "e ≥ 0, e ∈ E and "(v,v) = 0, v ∈V , the k-center problem is to find
a subset Z ∈V of size at most k such that the following quantity is minimized:

W (Z) =max
i∈V

min
j∈Z

"(i, j).. (3)
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The k-center problem is NP-hard, but a 2-approximate solution has been proposed (Hochbaum
and Shmoys, 1985) for the case where the triangular inequality holds:

"(i, j) +"( j,k) ≥ "(i,k).

The Hamming distance metric obeys the triangular inequality. Under this condition, the pro-
cess of clustering can be decomposed into two stages. During the first LSH iteration, we identify
subsequences that serve as cluster seeds using the 2-approximate solution to the k-center problem.
Subsequent LSH iterations are used to grow the clusters till the probability that any subsequence
within a Hamming distance at most d of the cluster centroid is missed becomes small. This ap-
proach can be considered as being identical to choosing a set of subsequences during the first LSH
iteration, and finding their approximate matches by multiple LSH iterations.

More formally, during the first LSH iteration, for each bucket bi in the hash table for i= 1, . . . ,B,
we solve the k-center problem using the 2-approximate method (Hochbaum and Shmoys, 1985) with
a Hamming distance metric. The number of subsequences forming centers ki for the i-th hash table
bucket is determined alongside the specific centroid subsequences from:

ki =min{k|W (zi(k)) ≤ d} (4)

where W (Z) is defined as in Equation 3 and zi(k) denotes the subsequence centers chosen for a
particular choice of k in Equation 4, that is:

ki =min{k|max
j∈bi

min
zi(k)

"( j,zi(k)) ≤ d}.

The final set of subsequences chosen as centroids at the end of the first LSH iteration then
corresponds to:

#=
B[

i=1
zi(ki).

The LSH iterations that follow find approximate matches to the subsequences in #. It is im-
portant to note that while clustering reduces a large number of overlapping approximate patterns
to a much smaller group, the clusters formed during this process may still overlap. This overlap
corresponds to missed approximate matches that do not hash to a single bucket during the first LSH
iteration. Techniques to merge clusters can be used at the end of the first LSH iteration to reduce
overlap. In our work, we tolerate small amounts of overlap between clusters analogous to the use
of sliding windows to more thoroughly span the search space. Figure 2 illustrates the clustering
process.

5. Pattern Ranking

Given the frequencies g+
i and g

−
i of an approximate pattern corresponding to all subsequences

within a Hamming distance d of the subsequenceWi, a score can be assigned to the pattern by using
concordance statistics and rank sum testing.
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Figure 2: In the absence of clustering there is significant redundancy between the Hamming radii
of approximate patterns. Partitioning the data into disjoint clusters can help address this
issue. In our work, we reduce the original approximate patterns into a small group with
some overlap to span the search space.

5.1 Concordance Statistic

The concordance statistic (C-statistic) (Hanley and McNeil, 1982) measures the discriminative abil-
ity of a feature to classify binary endpoints. The C-statistic corresponds to the area under the receiver
operating characteristic (ROC) curve, which describes the inherent trade-off between sensitivity and
specificity. As opposed to measuring the performance of a particular classifier, the C-statistic di-
rectly measures the goodness of a feature (in this case the frequency with which an approximate
pattern occurs) by evaluating its average sensitivity over all possible specificities.

The C-statistic ranges from 0-1. A pattern that is randomly associated with the labels would
have a C-statistic of 0.5. Conversely, good discriminators would correspond to either low or high
C-statistic values.

5.2 Rank Sum Testing

An alternate approach to assess the goodness of patterns is to make use of rank sum testing (Wilcoxon,
1945; Lehmann, 1975). This corresponds to a non-parametric method to test whether a pattern oc-
curs with statistically different frequencies in both positive and negative examples.

Given the frequencies g+
i and g

−
i of an approximate pattern in both positive and negative exam-

ples, the null and alternate hypotheses correspond to:

H0 : µg+
i

= µg−i ,

H1 : µg+
i
&= µg−i .

Rank sum testing calculates the statisticU whose distribution under H0 is known. This is done
by arranging the g+

i and g
−
i into a single ranked series. The ranks for the observations from the g

+
i

series are added up. Denoting this value as R+ and the number of positive examples by N+, the
statisticU is given by:
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U = R+−
N+(N+ +1)

2
.

The obtained value of U is compared to the known distribution under H0 and a probability
for this observation corresponding to the null hypothesis is obtained (i.e., the p-value). For large
samples, U is approximately normally distributed and its standardized value can be checked in
tables of the normal distribution (Gibbons, 1985; Hollander and Wolfe, 1999). The lower the p-
value obtained through rank sum testing, the more probable it is that g+

i and g
−
i have distributions

with different means, that is, that the approximate pattern is distributed differently in positive and
negative examples.

5.3 Sequential Statistical Tests

The runtime and space requirements of the pattern discovery process can be reduced by analyzing
only a subset of the training data. For example, it may be possible to recognize patterns with high
discriminative ability without the need to analyze all positive and negative examples.

Our pattern discovery algorithm starts out by using a small subset of the initial training data
for batch analysis. This helps identify candidate approximate patterns that occur in the data set and
collectively span the search space. The remaining training examples are used for scoring purposes
only. These examples are added in an online manner and during each iteration, the occurrence of
outstanding candidate patterns in positive and negative examples is updated. Patterns may then be
marked as being good or bad (and consequently removed from further analysis) or studied further
to resolve uncertainty. The number of candidate patterns is therefore monotonically non-increasing
with iteration number. As a result, the analysis of training examples becomes faster as more data is
added, since fewer patterns need to be scored.

A sequential formulation for rank sum testing has been proposed (Phatarfod and Sudbury, 1988)
that adds positive and negative examples in pairs. The frequencies of an approximate pattern in
positive and negative examples at the end of iteration n can be denoted as g+

i ( j) and g−i ( j) where
j = 1, . . . ,n. The corresponding statistic for rank sum testing is:

Un =
n

!
x=1

n

!
y=1

I(g+
i (x) > g−i (y)). (5)

The operator I(.) is equal to one when the inequality holds and zero otherwise. Using this
statistic, the decision at the end of the n-th iteration corresponds to accepting H0 if:

Un
n

<
n
2
−$ log(

1−%
&

) (6)

while H1 is accepted if:

Un
n

>
n
2
−$ log(

%
1−&

)

where $ is defined as Phatarfod and Sudbury (1988):

$=
1− '2

2 − '3

3
√
3 −

'4
48

2
√
3'− '2

2
. (7)
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In Equations 6 to 7, & and % correspond to desired false positive and false negative rates for
the sequential rank sum testing process, while ' is a user-specified parameter that reflects the pref-
erences of the user regarding how fine or coarse a difference the distributions are allowed to have
under the alternate hypothesis. If both inequalities are not met, the process of adding data continues
until there are no more training examples to add. In this case, all outstanding candidate patterns are
rejected.

This formulation of sequential rank sum testing adds data in pairs of positive and negative ex-
amples. In cases where there is a skew in the training examples (without loss of generalization
we assume a much larger number of negative examples than positive ones), we use a different for-
mulation of sequential testing (Reynolds, 1975). Denoting the mean frequency in positive training
samples as:

µ+
i =

N+

!
x=1

g+
i (x).. (8)

The alternate hypothesis can be redefined as the case where hi = g−i − µ+
i is asymmetrically

distributed about the origin. This can be identified using the statistic:

Un =
n

!
x=1

1
x+1

sgn(hi(x))Rxx (9)

where Rxy is defined as the rank of |hi(x)| in the set {|hi(1)|, . . . , |hi(y)|} with x≤ y and sgn(|hi(x)|)
is 1 if hi(x)≥ 0 and -1 otherwise. The test procedure using the statistic continues taking observations
as long asUn ∈ (−',') where ' is a user-specified parameter.

Traditional formulations of sequential significance testing remove good patterns from analysis
when the test statistic is first found to lie above or below a given threshold. Patterns with potentially
low discriminative ability are retained for further analysis and are discarded if they do not meet
any of the admission criteria during any iteration of the search process. Since there may be a large
number of such patterns with low discriminative value, we make use of a modified approach to
reject poor hypotheses while retaining patterns that may have value in classification. This strategy
improves efficiency, while also ensuring that good patterns are ranked using the available training
data. Given the typical goal of pattern discovery to return the best patterns found during the search
process, this technique naturally addresses the problem statement.

Given the test statistics in Equations 5 and 9, we remove all patterns that have a test statistic:

Un < $Umax

whereUmax is the maximum test statistic for any pattern and $ is a user-specific fraction (e.g., 0.2).

5.4 Multiple Hypothesis Correction

While assessing a large number of approximate patterns, M, the statistical significance required
for goodness must be adjusted for Type I (i.e., false positive) errors. If we declare a pattern to be
significant for some probability of the null hypothesis less than (, then the overall false positive rate
for the experiment assuming independence of patterns is given by:

FP= 1− (1−()M.
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If we do not assume that the patterns are independent, the false positive rate can be bounded by:

FP≤ (M.

To account for this condition, a more restrictive level of significance must be set consistent
with the number of unique patterns being evaluated (in our case, the clusters obtained earlier). If
c clusters are assessed for goodness, the Bonferroni correction (Bland and Altman, 1995) suggests
that the level of significance be set at:

(′ =
(
c
.

This addresses the issue of increasing false positives caused by the evaluation of a large number
of clusters by correspondingly lowering the p-value required to accept a pattern.

6. Evaluation

All experiments were carried out on a 3.2 GHz P4 with 2 GB of RAM running Linux Fedora Core4.
The algorithms to be evaluated were implemented in Java.

6.1 Regulatory Motifs in Drosophila Genome

We evaluated our pattern discovery algorithm on data from the Assessment of Computational Mo-
tif Discovery Tools project (Li and Tompa, 2006; Tompa et al., 2005). The focus of this project
was to compare 13 motif discovery tools on nucleotide sequences from the human, mouse, fly and
yeast genomes to see if they could successfully identify known regulatory elements such as binding
sites for genes. These tools differed from each other mainly in their definition of a motif, and in
the method used to search for statistically overrepresented motifs. Authors with specific expertise
were chosen to test each tool and avoid the disadvantage of being run with an uninformed set of pa-
rameters. The expert predictions were then compared with known binding sites in the TRANSFAC
database (Wingender et al., 1996) using various statistics to assess the correctness of the predictions.

In our work, we focused on nucleotide sequences from the Drosophila melanogaster genome
comprising 43 kb base pairs (Li and Tompa, 2006; Tompa et al., 2005). These sequences were
divided into 8 data sets, each corresponding to a different binding site. The Drosophila genome
was the smallest (in terms of the available data) of the four genomes used in the project, allowing
us to compare our method with more computationally intensive algorithms that do not use LSH or
clustering. To use our method, we generated random negative sequences with the same background
frequencies and lengths as the positive examples, and supplemented both positive and negative
sequences with their reverse complements. Our method predicted binding sites in the original data
corresponding to all subsequences in the group DWi with maximum discriminative value. While
our algorithm has been designed to use additional information in negative examples when available,
this approach presents an example of how our method can be used even in cases where only positive
training data is present and negative examples are generated using a simple approach.

The pattern discovery process attempted to find approximate subsequences of lengths 8, 12 and
16. We investigated Hamming radii of 1-3 for patterns of length 8, 2-4 for those of length 12 and 3-5
for length 16. Parameters were chosen using the inequality in Equation 2 so that the LSH probability
of false negatives in each case was below 0.005. For each of these cases, we ran our algorithm three
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times and consistent with the other motif discovery algorithms evaluated, we chose only the best
pattern discovered (where best corresponded to lowest rank sum p-value or no result if a pattern
with a p-value less than 0.05 was not found).

We compared our method to the 13 motif discovery tools evaluated on the same data set using
the nPC and nCC summary statistics (Li and Tompa, 2006; Tompa et al., 2005). Given the number
of nucleotide positions in both known sites and predicted sites (nTP), the number of nucleotide
positions in neither known sites nor predicted sites (nTN), the number of nucleotide positions not in
known sites but in predicted sites (nFP) and the number of nucleotide positions in known sites but
not in predicted sites (nFN), the nucleotide level performance coefficient (nPC) (Pevzner and Sze,
2000) was defined as:

nPC =
nTP

nTP+nFN+nFP
.

The nucleotide level correlation coefficient (nCC) (Burset and Guigo, 1996) was defined as:

nCC =
nTP.nTN−nFN.nFP

√

(nTP+nFN)(nTN+nFP)(nTP+nFP)(nTN+nFN)
.

In addition to comparing our method with results from the 13 motif discovery algorithms eval-
uated in the Assessment of Computational Motif Discovery Tools project, we also explored the
runtime and accuracy of two variations of our algorithm. These variations were meant to assess the
contribution of clustering and LSH-based approximate matching to the performance of our method.
The first variation we examined did not make use of the clustering process described in Section 4 to
reduce overlapping approximate patterns to a smaller group. The second variation further avoided
the use of LSH to match subsequences and was based instead on an exhaustive search.

While comparing the three approaches, we use the following notation: LSHCS for our original
algorithm using clustering and sequential statistics, NoClust for the variation that did not use clus-
tering, and ExhSearch for the exhaustive search algorithm that further avoided the use of LSH to
match subsequences.

For some binding site data sets NoClust and ExhSearch did not terminate even after very long
processing times. We terminated algorithms if they did not produce results within 24 hours of CPU
time. These cases are annotated where included.

6.2 Regulatory Motifs in ChIP-on-chip Yeast Data

We evaluated the ability of our method to discover yeast transcription factor binding motifs in ChIP-
on-chip data (Harbison et al., 2004). The “gold standard” motifs for this data set were generated by
applying a suite of six motif-finding algorithms to intergenic regions from Saccharomyces cerevisiae
and clustering the results to arrive at a consensus motif for each transcription factor. When no motif
was found computationally for the intergenic regions, a literature-based consensus motif was used.

In our experiments, we focused on the 21 transcription factors in the data set for which the six
motif-finding algorithms in Harbison et al. (2004) failed to find a significant motif and the reported
motif had to be based on a consensus obtained from the literature. For all tests, we used the output
from the LSHCS algorithm with the lowest rank sum p-value (or no result if a motif with p-value
less than 0.05 was not found), with the motif width chosen to match the width of the literature
consensus motif. This approach was analogous to earlier work on ChIP-on-chip data to evaluate
motif discovery methods (Siddharthan et al., 2005).
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For each experiment, we defined positive examples as the set of probe sequences found to bind
the transcription factor and set negative examples to be randomly selected non-binding probe se-
quences. The positive and negative sets contained the same number of sequences. This approach
was also chosen to be consistent with earlier studies to evaluate motif discovery tools (Redhead and
Bailey, 2007).

6.3 Predictive Morphology Variations in Electrocardiogram Signals

We evaluated our method on 24-hour electrocardiographic (ECG) signals from patients admitted
with non-ST-elevation acute coronary syndromes (NSTEACS) to discover patterns of morphology
changes associated with future cardiovascular death. Earlier studies suggest that increased beat-
to-beat variations in ECG morphology may be associated with instability in the conduction system
of the heart and could help identify high risk patients (Syed et al., 2008). We applied our pattern
discovery algorithm to discover specific sequences of beat-to-beat changes that had predictive value.

Given a 24-hour ECG signal, we first converted the data recorded during the course of hospi-
talization into a time-series of morphology changes between pairs of consecutive heart beats (Syed
et al., 2008). Morphology changes between beats were measured using a dynamic time-warping
algorithm (Rabiner et al., 1978) that calculates the time-aligned energy difference between beats.
The morphology change time-series was then converted into a sequence using symbolic aggregate
approximation (SAX) (Lin et al., 2003) with an alphabet size of 10. In this manner, multiple ECG
signals were transformed into sequences that could be analyzed by our method. On average, each
sequence corresponding to 24 hours of ECG was almost 100,000 symbols long.

On a training set of 765 patients, where 15 patients died over a 90 day period following NSTEACS
(i.e., 15 positive examples and 750 negative examples), we used our pattern discovery algorithm
to learn sequences of morphology changes in the ECG signal that were predictive of death. We
searched for patterns of length 8 with a Hamming distance of at most 2. Parameters were chosen
using the inequality in Equation 2 so that the LSH probability of false negatives was less than 0.01.
We selected patterns that showed a C-statistic greater than 0.7 and a rank sum test p-value of 0.05
corrected for multiple hypotheses using the Bonferroni correction. These were evaluated on a test
set of 250 patients with 10 deaths.

We also studied the runtime performance of our algorithm on this data set with and without the
use of sequential statistics to find significant patterns. Given the large number of negative examples
in the training data, we employed the sequential formulation in Equations 8 and 9 with $ = 0.2.
Consistent with the notation proposed in Section 6 we denote our original algorithm using sequential
statistics as LSHCS while the variation that avoids sequential statistics is denoted by NoSeqStats.

7. Results

The results of our experiments are as follow.

7.1 Regulatory Motifs in Drosophila Genome

Table 1 presents the results of the 13 different motif discovery algorithms evaluated by the Assess-
ment of Computational Motif Discovery Tools project. The results of using our method are given in
Table 2.
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Algorithm nPC nCC
AlignACE 0 -0.006
ANN-Spec 0.010 0.002
Consensus 0 -0.011
GLAM 0.002 -0.008
Improbizer 0.008 0.002
MEME 0.021 0.027
MEME3 0.016 0.013
MITRA 0 -0.008
Moti f Sampler 0.003 -0.006
Oligodyad-Analysis 0 -0.015
QuickScore 0 -0.016
SeSiMCMC 0.036 0.054
Weeder 0.009 0.011
YMF 0 -0.014

Table 1: Performance of 13 different motif discovery methods on the Drosophila genome
(nPC=performance coefficient, nCC=correlation coefficient) in the Assessment of Com-
putational Motif Discovery Tools project (Tompa et al., 2005).

Parameter nPC nCC
L= 8,d = 1 0.021 0.031
L= 8,d = 2 0.007 -0.009
L= 8,d = 3 0.013 -0.002
L= 12,d = 2 0.013 0.018
L= 12,d = 3 0.039 0.062
L= 12,d = 4 0.013 0.018
L= 16,d = 3 0 -0.011
L= 16,d = 4 0.032 0.055
L= 16,d = 5 0.056 0.093

Table 2: Performance of the LSHCS pattern discovery method on the Drosophila genome using
different input parameters (nPC=performance coefficient, nCC=correlation coefficient,
L=pattern length, d=maximum Hamming distance allowed in pattern).
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Our LSHCS algorithm compared favorably with the other motif discovery algorithms evalu-
ated on the same data by experts. In particular, for two of the parameter settings evaluated (i.e.,
L = 12,d = 3 and L = 16,d = 5), our algorithm had both a higher performance coefficient and a
higher correlation coefficient than any of the other methods. The L = 16,d = 4 case also had a
higher correlation coefficient than the motif discovery algorithms previously reported, although the
performance coefficient for this choice of parameters was exceeded by SeSiMCMC.

We note that these findings help only to validate the ability of our pattern discovery approach to
identify potentially interesting activity. Since these results hold on a specific genome, we caution
against interpreting the results as a more general comparison of LSHCS with nucleotide motif dis-
covery methods. In particular, we observe that the nucleotide motif discovery methods in Table 1
were tested blindly on a single pre-determined choice of parameters. It is possible that with different
choices of input parameters (i.e., similar to the evaluation of LSHCS using different values of L and
d), these methods would have yielded significantly better results.

Tables 3 and 4 present the performance and correlation coefficients for the NoClust and Exh-
Search algorithms. For both these variations, the algorithms did not terminate for the largest choice
of Hamming radius d. Investigation revealed that the slow processing times in these cases were
associated with insufficient memory to store the neighborhoods for all approximate patterns (i.e.,
in the absence of clustering for both algorithms). For large choices of the maximum allowed Ham-
ming radius, the neighborhood for each pattern is more extensive and storing this information for
all overlapping patterns imposes significant space requirements. Conversely, by using clustering,
LSHCS is able to reduce the number of overlapping patterns and avoid references to disk.

We found some of the results in Tables 3 and 4 comparing LSHCS to NoClust and ExhSearch
to be surprising. In contrast to LSHCS, the NoClust variation explores all overlapping patterns
while ExhSearch uses an exhaustive search to find nearest neighbors (i.e., avoiding the small false
negative probability associated with LSH). Since both variations use strictly more data and explore
the outputs of LSHCS as well as other alternatives, we expected the results to improve uniformly
between LSHCS and ExhSearch for all parameter selections. While this was generally the case, for
some parameter choices (e.g., L = 16,d = 4) the best results were obtained by LSHCS. Examining
the outputs by all three algorithms revealed these inconsistencies to be the result of resolving ties
between patterns with identical rank sum p-values arbitrarily. While presenting the results in this
section, we explicitly note this limitation of the objective function (i.e., the rank sum p-value) used
for evaluation.

Ignoring parameter choices for which NoClust and ExhSearch did not terminate, the perfor-
mance of all three methods was similar as shown in Table 5. A comparison of the running time for
all three algorithms is also presented in Table 6. The running time increased significantly both as all
overlapping approximate patterns were studied, and when an exhaustive search was used to replace
LSH. The increase in runtime due to exhaustive search was considerably more than the effect of
examining all overlapping approximate patterns.

7.2 Regulatory Motifs in ChIP-on-chip Yeast Data

The results of applying the LSHCS algorithm on the ChIP-on-chip data set for the 21 transcription
factors for which the six motif-finding algorithms failed to find a significant motif are shown in
Table 7.
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Parameter nPC nCC
L= 8,d = 1 0.037 0.063
L= 8,d = 3† . . . . . .
L= 12,d = 2 0 -0.009
L= 12,d = 3 0.032 0.0499
L= 12,d = 4† . . . . . .
L= 16,d = 3 0 -0.011
L= 16,d = 4 0.020 0.029
L= 16,d = 5† . . . . . .

Table 3: Performance of the NoClust pattern discovery method on the Drosophila genome us-
ing different input parameters (nPC=performance coefficient, nCC=correlation coefficient,
L=pattern length, d=maximum Hamming distance allowed in pattern). † Cases where the
algorithm did not terminate in 24 hours.

Parameter nPC nCC
L= 8,d = 1 0.039 0.065
L= 8,d = 2 0.017 0.015
L= 8,d = 3† . . . . . .
L= 12,d = 2 0.006 0.005
L= 12,d = 3 0.025 0.036
L= 12,d = 4† . . . . . .
L= 16,d = 3 0 -0.011
L= 16,d = 4 0.009 0.008
L= 16,d = 5† . . . . . .

Table 4: Performance of the ExhSearch pattern discovery method on the Drosophila genome us-
ing different input parameters (nPC=performance coefficient, nCC=correlation coefficient,
L=pattern length, d=maximum Hamming distance allowed in pattern). † Cases where the
algorithm did not terminate in 24 hours.

Parameter Average nPC Average nCC
LSHCS 0.019 0.024
NoClust 0.021 0.031
ExhSearch 0.016 0.020

Table 5: Comparison of LSHCS, NoClust and ExhSearch by summarizing results from parameter
selections where all three algorithms terminated within 24 hours (nPC=performance co-
efficient, nCC =correlation coefficient, L=pattern length, d=maximum Hamming distance
allowed in pattern).
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Parameter LSHCS Time NoClust Time ExhSearch Time
L= 8,d = 1 5:01 15:40 3:01:22
L= 8,d = 2 5:53 1:06:06 3:49:08
L= 8,d = 3† 4:13 . . . . . .
L= 12,d = 2 18:14 35:54 17:05:37
L= 12,d = 3 24:48 2:33:12 17:27:43
L= 12,d = 4† 27:30 . . . . . .
L= 16,d = 3 31:08 29:59 18:21:15
L= 16,d = 4 32:20 2:59:14 18:04:59
L= 16,d = 5† 24:15 . . . . . .

Table 6: Time taken for LSHCS, NoClust and ExhSearch pattern discovery methods on the
Drosophila genome using different input parameters. † Cases where one or more of the
algorithm did not terminate in 24 hours.

Transcription Factor Motif Found
ADR1 . . .
DAL80 Yes
GAL80 . . .
GCR1 . . .
GZF3 . . .
HAP2 . . .
HAP3 Yes
HAP5 . . .
MAC1 Yes
MET31 . . .
MET32 . . .
MOT3 Yes
MSN4 . . .
PUT3 . . .
RGT1 . . .
RLM1 . . .
ROX1 Yes
RTG3 . . .
SKO1 . . .
YAP6 Yes
YOX1 . . .

Table 7: Results of LSHCS on the ChIP-on-chip data set for transcription factors (TF) where com-
mon motif-finding algorithms failed to find a significant motif.
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Pattern (Centroid) Rank Sum P-Value C-statistic
ABCCDFGJ 0.025 0.71
FFJJJJCC 0.004 0.70

Table 8: Statistical significance of approximate patterns found on a training set of 765 post-
NSTEACS patients (15 deaths over a 90 day follow-up period) when evaluated on a test
population of 250 patients (10 deaths).

In 6 of the 21 experiments conducted, the discriminative motif with the lowest p-value found
by the LSHCS algorithm corresponded to the consensus motif in the literature, but was not found
by any of the six motif-finding algorithms evaluated earlier. LSHCS, as well as the other six motif-
finding algorithms, failed to find the discriminative motif in the remaining 15 cases although motifs
are described in the literature.

7.3 Predictive Morphology Variations in Electrocardiogram Signals

Our pattern discovery method returned 2 approximate patterns that were assessed to have discrim-
inative value in the training set (i.e., a C-statistic of more than 0.7 and a p-value of less than 0.05
after accounting for the Bonferroni correction). Representing the symbols obtained using SAX by
the letters A-J, where A corresponds to the symbol class for the least beat-to-beat change in mor-
phology and J denotes the symbol for the greatest change, the centroids for the approximate pattern
can be written as:

ABCCDFGJ

FFJJJJCC

The first of these patterns is equivalent to increasing time-aligned energy changes between suc-
cessive beats. This may suggest increased instability in the conduction system of the heart. The
second pattern corresponds to a run of instability followed by a return to baseline. This pattern can
be interpreted as a potential arrhythmia.

The results of testing both patterns on previously unseen data from 250 patients (with 10 deaths
over a 90 day follow-up period) are shown in Table 8. Both patterns found by our approximate
pattern discovery algorithm showed statistical significance in predicting death according to the C-
statistic and rank sum criteria.

A comparison of the running times for the LSHCS and NoSeqStats algorithms is presented in
Table 9. While the outputs produced by both algorithms were identical, the use of sequential statis-
tics helped our LSHCS method decrease the runtime of the search process to almost half of what
we encountered for the variation not using the methods proposed in Section 5.3. We also note that
the NoSeqStats variation used considerably more memory than the LSHCS approach. This effect
was due to LSHCS purging state for patterns that did not obey the inequality in Equation 9. In the
absence of sequential statistics, NoSeqStats had to retain ranking information for all patterns till the
training data set was completely analyzed.
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Algorithm Time
LSHCS 5:08:24
NoSeqStats 9:43:09

Table 9: Time taken by the LSHCS and NoSeqStats pattern discovery algorithms on the cardiovas-
cular training data set.

8. Summary and Discussion

This paper presents an approach to efficiently learn patterns in labeled sequences that can be used
for classification. We define patterns as groups of approximately matching subsequences, that is, all
variations of a subsequence within a given Hamming radius. Our method represents a fully auto-
mated approach for unsupervised pattern discovery, where the goodness of patterns is assessed by
measuring differences in their frequency of occurrence in positive and negative training examples.

We designed our pattern discovery algorithm to make it both accurate and efficient in terms of
space and computation. We briefly review the central ideas of our work.

First, we include patterns from both positive and negative training sets in our search for discrim-
inative activity. In many applications, we can consider positive examples as being associated with
some physical phenomenon. Patterns that occur mainly in positive examples can be considered as
potentially regulatory activity that may cause the phenomenon being studied. Conversely, patterns
that occur mainly in negative examples (i.e., are absent in positive examples) can be considered
as potentially supressive activity. The absence of these suppressive patterns in positive examples
may promote the observed phenomenon. We allow for the discovery of both types of activity. This
approach has a further advantage in that it reduces the need for prior knowledge. In the absence
of negative examples, activity in positive training samples must be assessed through some assump-
tion of statistical over-representation. By being able to directly compare positive examples against
negative ones, we attempt to remove the need for such assumptions.

Second, to efficiently search for approximate patterns, we make use of locality sensitive hashing.
LSH has been proposed as a randomized approximation algorithm to solve the nearest neighbor
problem. We employ an iterative LSH method that is able to efficiently find groups of matching
subsequences for subsequent analysis as candidate patterns.

Third, we explore the idea of clustering together subsequences, so that the number of candidate
patterns can be reduced. This abstraction is intended to decrease the redundancy associated with
evaluating a large number of approximate patterns with significant overlap. Reducing this redun-
dancy, while still spanning the search space, provides an improvement in efficiency and also allows
for more clarity in interpreting the results of the search process.

Finally, we make use of non-parametric statistical methods that have been designed to identify
patterns with different distributions in both positive and negative examples. An extension of this
work is the use of sequential methods, which only use as much of the training data as is needed to
make a decision about a candidate pattern.

We evaluated the use of our pattern discovery algorithm on data from different real-world ap-
plications. On nucleotide sequences from the Drosophila genome, our method was able to discover
approximate binding sites that were preserved upstream of genes. A similar result was seen for
ChIP-on-chip data from the yeast genome. For cardiovascular data from patients admitted with
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acute coronary syndromes, our pattern discovery approach identified approximately conserved se-
quences of morphology changes that were predictive of future death in a test population. Our data
showed that the use of LSH, clustering, and sequential statistics improved the running time of the
search algorithm by an order of magnitude without any noticeable effect on accuracy. These re-
sults suggest that our methods may allow for an efficient unsupervised approach to learn interesting
dissimilarities between positive and negative examples, which may have a functional role.
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Abstract
Support vector machines are a powerful machine learning technology, but the training process
involves a dense quadratic optimization problem and is computationally challenging. A parallel
implementation of linear Support Vector Machine training has been developed, using a combination
of MPI and OpenMP. Using an interior point method for the optimization and a reformulation that
avoids the dense Hessian matrix, the structure of the augmented system matrix is exploited to
partition data and computations amongst parallel processors efficiently. The new implementation
has been applied to solve problems from the PASCAL Challenge on Large-scale Learning. We
show that our approach is competitive, and is able to solve problems in the Challenge many times
faster than other parallel approaches. We also demonstrate that the hybrid version performs more
efficiently than the version using pure MPI.
Keywords: linear SVM training, hybrid parallelism, largescale learning, interior point method

1. Introduction

Support vector machines (SVMs) are powerful machine learning techniques for classification and
regression. They were developed by Vapnik (1998), and are based on statistical learning theory.
They have been applied to a wide range of applications, with excellent results, and so they have
received significant interest.

Like many machine learning techniques, SVMs involve a training stage, where the machine
learns a pattern in the data from a training data set, and a separate test or validation stage where
the ability of the machine to correctly predict labels is evaluated using a previously unseen test data
set. This process allows parameters to be adjusted towards optimal values, while guarding against
overfitting.

The training stage for Support Vector Machines involves at its core a dense convex quadratic
optimization problem (QP). Solving this optimization problem is computationally expensive, pri-
marily due to the dense Hessian matrix. Solving the QP with a general-purpose QP solver would
result in the time taken to scale cubically with the number of data points (O(n3)). Such a complex-
ity result means that, in practise, the SVM training problem cannot be solved by general purpose
optimization solvers.

c©2009 Kristian Woodsend and Jacek Gondzio.
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Several schemes have been developed where a solution is built by solving a sequence of small-
scale problems, where only a few data points (an active set) are considered at a time. Examples
include decomposition (Osuna et al., 1997) and sequential minimal optimization (Platt, 1999), and
state-of-the-art software use these techniques. Active-set techniques work well when the data is
clearly separable by a hyperplane, so that the separation into active and non-active variables is clear.
With noisy data, however, finding a good separating hyperplane between the two classes is not so
clear, and the performance of these algorithms deteriorates (Woodsend and Gondzio, 2007).

In addition, the active set techniques used by standard software are essentially sequential—they
choose a small subset of variables to form the active set at each iteration, and this selection is
based upon the results of the previous iteration. It is not clear how to efficiently implement such an
algorithm in parallel, due to the large number of iterations required and the dependencies between
each iteration and the next.

Few approaches have been developed for training SVMs in parallel, yet multiple-core comput-
ers are becoming the norm, and data sets are becoming ever larger. It is notable that of the 44
submissions to compete in the PASCAL Challenge on Large-scale Learning (Sonnenburg et al.,
2008), only 3 entries were parallel methods.

Parallelization schemes so far proposed have involved splitting the training data to give smaller,
separable optimization sub-problems which can be distributed amongst the processors. Dong et al.
(2003) used a block-diagonal approximation of the kernel matrix to derive independent optimization
problems. The resulting SVMs were used to filter out samples that were likely not to be support
vectors. A SVM was then trained on the remaining samples, using the standard serial algorithm.
Collobert et al. (2002) proposed a mixture of multiple SVMs where single SVMs are trained on
subsets of the training set and a neural network is used to assign samples to different subsets.

Another approach is to use a variation of the standard SVM algorithm that is better suited to a
parallel architecture. Tveit and Engum (2003) developed an exact parallel implementation of the
Proximal SVM (Fung and Mangasarian, 2001), which classifies points by assigning them to the
closest of two parallel planes. Compared to the standard SVM formulation, the single constraint is
removed and the result is an unconstrained QP; this is substantially different from the linear SVM
task set in the PASCAL Challenge.

There have only been a few parallel methods in the literature which train a standard SVM on
the whole of the data set. We briefly survey the methods of Zanghirati and Zanni (2003), Graf et al.
(2005), Durdanovic et al. (2007) and Chang et al. (2008).

The algorithm of Zanghirati and Zanni (2003) decomposes the SVM training problem into a
sequence of smaller, though still dense, QP sub-problems. Zanghirati and Zanni implement the
inner solver using a technique called variable projection method, which is able to work efficiently on
relatively large dense inner problems, and is suitable for implementing in parallel. The performance
of the inner QP solver was improved in Zanni et al. (2006).

In the cascade algorithm introduced by Graf et al. (2005), the SVMs are layered. The support
vectors given by the SVMs of one layer are combined to form the training sets of the next layer.
The support vectors of the final layer are re-inserted into the training sets of the first layer at the
next iteration, until the global KKT conditions are met. The authors show that this feedback loop
corresponds to standard SVM training.

The algorithm of Durdanovic et al. (2007), implemented in the Milde software, is a parallel
implementation of the sequential minimal optimization. The objective function of the dual form
(see Equation 3 below) is expressed in terms of partial gradients. Variables are selected to enter
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the working set, based on the steepest descent direction, and whether the variables are free to move
within their box constraints. A second working set method considers pairwise contributions. Very
large data sets can be split across processors. When a variable zi enters the working set, the owner
processor broadcasts the corresponding data vector xi. All nodes calculate kernel functions and
update their portion of the gradient vector. Although many of the operations within an iteration are
parallelizable, a very large number of sequential outer iterations are still required. The authors use
a hybrid approach to parallelization similar to ours described below, involving a multi-core BLAS
library, but its use is limited to Layer 1 and 2 operations.

Another family of approaches to QP optimization are based on interior point method (IPM)
technology, which works by delaying the split between active and inactive variables for as long as
possible. IPMs generally work well on large-scale problems, largely because the number of itera-
tions tends to grow very slowly with the problem dimension. Unfortunately each iteration requires
the solving of a large system of linear equations. A straight-forward implementation of the stan-
dard SVM dual formulation has a per iteration complexity of O(n3), and would be unusable for
anything but the smallest problems. Several sequential implementations of IPMs for support vector
machines address this difficulty (Ferris and Munson, 2003; Fine and Scheinberg, 2002; Woodsend
and Gondzio, 2007). Returning to parallel implementations, Chang et al. (2008) use parallel IPM
technology for the optimizer, and avoid the problem of inverting the dense Hessian matrix by gen-
erating a low-rank approximation of the kernel matrix using partial Cholesky decomposition with
pivoting. The dense Hessian matrix can then be efficiently inverted implicitly using the low-rank
approximation and the Sherman-Morrison-Woodbury (SMW) formula. Moreover, a large part of
the calculations at each iteration can be distributed amongst the processors effectively. The SMW
formula has been widely used in interior point methods; however, sometimes it runs into numeri-
cal difficulties. Fine and Scheinberg (2002) constructed data sets where an SMW-based algorithm
required many more iterations to terminate, and in some cases stalled before achieving an accurate
solution. They also showed that this situation arises in real-world data sets.

Most of the previous approaches (Durdanovic et al. 2007 is the exception) have considered the
parallel computer system as a cluster of independent processors, communicating through a message
passing scheme such as MPI (MPI-Forum, 1995). Advances in technology have resulted in systems
where several processing cores have access to a single memory space, and such symmetric multi-
processing (SMP) architectures are becoming prevalent. OpenMP (OpenMP Architecture Review
Board, 2008) has proven to work effectively on shared memory systems, while MPI can be used for
message passing between nodes. It can also be used to communicate between processors within an
SMP node, but it is not immediately clear that this is the most efficient technique.

Most high performance computing systems are now clusters of SMP nodes. On such hybrid
systems, a combination of message passing between SMP nodes and shared memory techniques
inside each node could potentially offer the best parallelization performance from the architecture,
although previous investigations have revealed mixed results (Smith and Bull, 2001; Rabenseifner
and Wellein, 2003). A standard approach to combining the two schemes involves OpenMP paral-
lelization inside each MPI process, while communication between the MPI processes is made only
outside of the OpenMP regions. Rabenseifner and Wellein (2003) refer to this style as “master-
only”.

In this paper, we propose a parallel linear SVM algorithm that adopts this hybrid approach to
parallelization. It trains the SVM using the full data set, using an interior point method to give
efficient optimization, and Cholesky decomposition to give good numerical stability. MPI is used to
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communicate between clusters, while within clusters we take advantage of the availability of highly
efficient OpenMP-based BLAS implementations. Data is distributed evenly amongst the proces-
sors. Our approach directly tackles the most computationally expensive part of the optimization,
namely the inversion of the dense Hessian matrix, through providing an efficient implicit inverse
representation. By exploiting the structure of the problem, we show how this can be parallelized
with excellent parallel efficiency. The resulting implementation is significantly faster at SVM train-
ing than active set methods, and it allows SVMs to be trained on data sets that would be impossible
to fit within the memory of a single processor.

The structure of the rest of this paper is as follows. Section 2 gives an outline of interior point
method for optimizing quadratic programs. Section 3 provides a short description of support vector
machines and the formulation we use. Then in Section 4 we describe our approach to training linear
SVMs, exploiting the structure of the QP and accessing memory efficiently. Numerical performance
results are given in Section 5. Section 6 contains some concluding remarks.

We now briefly describe the notation used in this paper. xi is the attribute vector for the ith data
point, and it consists of the observation values directly. There are n observations in the training set,
and m attributes in each vector xi. X is the m×n matrix whose columns are the attribute vectors xi
associated with each point. The classification label for each data point is denoted by yi ∈ {−1,1}.
The variables w ∈ Rm and z ∈ Rn are used for the primal variables (“weights”) and dual variables
(! in SVM literature) respectively, and w0 ∈ R for the bias of the hyperplane. Scalars and column
vectors are denoted using lower case letters, while upper case letters denote matrices. D,S,U,V,Y
and Z are the diagonal matrices of the corresponding lower case vectors.

2. Interior Point Methods

Interior point methods represent state-of-the-art techniques for solving linear, quadratic and non-
linear optimization programmes. In this section the key issues of implementation for QPs are dis-
cussed very briefly; for more details, see Wright (1997).

For the purposes of this paper, we need a method to solve the box and equality-constrained
convex quadratic problem

min
z

1
2
zTQz+ cT z

s.t. Az= b
0≤ z≤ u,

where u is a vector of upper bounds, and the constraint matrix A is assumed to have full row rank.
Dual feasibility requires that AT"+ s− v−Qz = c, where " is the Lagrange multiplier associated
with the linear constraint Az= b and s,v> 0 are the Lagrange multipliers associated with the lower
and upper bounds of z respectively.

At each iteration, an interior point method makes a damped Newton step towards satisfying the
primal feasibility, dual feasibility and complementarity product conditions,

ZSe= µe
(U−Z)Ve= µe,

for a given µ> 0. e is the vector of all ones. We follow a common practice in interior point literature
and denote with a capital letter (Z,S,U,V ) a diagonal matrix with elements of the corresponding
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vector (z,s,u,v) on the diagonal. The algorithm decreases µ before making another iteration, and
continues until both infeasibilities and the duality gap (which is proportional to µ) fall below re-
quired tolerances.

The Newton system to be solved at each iteration can be transformed into the augmented system
equations:

[

−(Q+#−1) AT
A 0

][

$z
$"

]

=

[

rc
rb

]

, (1)

where $z,$" are components of the Newton direction in the primal and dual spaces respectively,
#−1≡ Z−1S+(U−Z)−1V , and rc and rb are appropriately defined residuals. If the block (Q+#−1)
is diagonal, an efficient method to solve such a system is to form the Schur complementC= A (Q+
#−1)−1 AT , solve the smaller system C$"= rb+A (Q+#−1)−1 rc for $", and back-substitute into
(1) to calculate $z. Unfortunately, as we shall see in the next section, for the case of SVM training
the Hessian matrix Q is a completely dense matrix.

3. Support Vector Machines

In this section we briefly outline the standard SVM binary classification primal and dual formu-
lations, and summarise how they can be reformulated as a separable QP (for more details, see
Woodsend and Gondzio, 2007).

A Support vector machine (SVM) is a classification learning machine that learns a mapping
between the features and the target label of a set of data points known as the training set, and
then uses a hyperplane wTx+w0 = 0 to separate the data set and predict the class of further data
points. The labels are the binary values “yes” or “no”, which we represent using the values +1 and
−1. The objective is based on the structural risk minimization principle, which aims to minimize
the risk functional with respect to both the empirical risk (the quality of the approximation to the
given data, by minimising the misclassification error) and maximize the confidence interval (the
complexity of the approximating function, by maximising the separation margin) (Vapnik, 1998).

For a linear kernel, the attributes in the vector xi for the ith data point are the observation values
directly, while for a non-linear kernel the observation values are transformed bymeans of a (possibly
infinite dimensional) non-linear mapping %.

Concentrating on the linear SVM classifier, and using a 2-norm for the hyperplane weights w
and a 1-norm for the misclassification errors &∈Rn, the QP that forms the core of training the SVM
takes the form:

min
w,w0,&

1
2
wTw+ 'eT&

s.t. Y (XTw+w0e) ≥ e−&

w,w0 free, &≥ 0,

(2)

where ' is a positive constant that parameterizes the problem.
Due to the convex nature of the problem, a Lagrangian function associated with (2) can be

formulated, and the solution will be at the saddle point. Partially differentiating the Lagrangian
function gives relationships between the primal variables (w, w0 and &) and the dual variables (z ∈
Rn) at optimality, and substituting these relationships back into the Lagrangian function gives the
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standard dual problem formulation

min
z

1
2
zTYXTXYz− eT z

s.t. yT z= 0
0≤ z≤ 'e.

(3)

However, using one of the optimality relationships, w = XYz, we can rewrite the quadratic
objective in terms of w. Consequently, we can state the classification problem (3) as a separable
QP:

min
w,z

1
2
wTw− eT z

s.t. w−XYz= 0
yT z= 0
w free, 0≤ z≤ 'e.

(4)

The Hessian is simplified to the diagonal matrixQ= diag
([

em
0n

])

where em = (1,1, . . . ,1)∈Rm,

while the constraint matrix becomes:

A=

[

Im −XY
0 yT

]

∈ R
(m+1)×(m+n)

. (5)

As described in Section 2, the Schur complement,

C ≡ A(Q+#−1)−1AT

=

[

Im+XY#zYXT −XY#zy
−yT#zYXT yT#zy

]

∈ R
(m+1)×(m+1)

,

can be formed efficiently from such matrices and used to determine the Newton step. The operation
of building the matrixC is of orderO(n(m+1)2), while inverting the resulting matrix is an operation
of order O((m+ 1)3). The formulation (4) is the basis of our parallel algorithm, where building
matrixC is split between the processors. This approach is efficient if n(m (as was true with all the
Challenge data sets), since building C is the most expensive operation, but it would not be suitable
for data sets with a large number of features and m( n.

4. Implementing the QP for Parallel Computation

To apply (4) to truly large-scale data sets, it is necessary to employ linear algebra operations that
exploit the block structure of the formulation (Gondzio and Sarkissian, 2003; Gondzio and Grothey,
2007). Between clusters, the emphasis is on partitioning the linear algebra operations to minimize
interdependencies between processors. Within clusters, the emphasis is on accessing memory in the
most efficient manner.

The approach described below was implemented using the OOPS interior point solver (Gondzio
and Grothey, 2007).1 We should note here that, as the parallel track of the Challenge was focused
on shared memory algorithms, our submission to the Challenge used only the techniques described
in Section 4.2.
1. Our implementation is available for academic use at http://www.maths.ed.ac.uk/ERGO/software.html.
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4.1 Linear Algebra Operations Between Nodes

We use the augmented system matrix H =

[

−Q−#−1 AT
A 0

]

corresponding to system (4), where

Q = diag
[

em
0

]

, # was described in Section 2 and A is given by Equation (5). This results in H

having a symmetric bordered block diagonal structure. We can break H into blocks:

H =















H1 AT1
H2 AT2

. . . ...
Hp ATp

A1 A2 . . . Ap 0















,

where Hi = −(Qi +#−1
i ) are actually diagonal and Ai result from partitioning the data set evenly

across the p processors. Due to the “arrow-head” structure of H, a block-based Cholesky decompo-
sition of the matrix H = LDLT will be guaranteed to have the structure:

H =











L1
. . .

Lp
LA1 . . . LAp LC





















D1
. . .

Dp
DC





















LT1 LTA1
. . . ...

LTp LTAp
LTC











.

Exploiting this structure allows us to compute the blocks Li,Di and LAi in parallel. Terms that
form the Schur complement can be calculated in parallel but must then be gathered, and the cor-
responding blocks LC and DC computed serially. This requires the exchange of matrices of size
(m+1)× (m+1) between processors.

Hi = LiDiLTi ⇒ Di = −(Qi+#−1
i ),Li = I, (6)

LAi = AiL−Ti D−1
i = AiH−1

i , (7)

C = −
p

(
i=1

AiH−1
i ATi , (8)

= LCDCLTC . (9)

Matrix C is a dense matrix of relatively small size (m+1)× (m+1), and the Cholesky decom-
position C = LCDCLTC is performed in the normal way on a single processor. It is possible that a
coarse-grained parallel implementation of Cholesky decomposition could give better performance
(Luecke et al., 1992), but we did not include this in our implementation as the time taken to perform
the decomposition is negligible compared to computingC.

Once the representation H = LDLT above is known, we can use it to compute the solution of

the system H
[

$z
$"

]

=

[

rc
rb

]

through back-substitution. $z′, $"′ and $"′′ are vectors used for
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intermediate calculations, with the same dimensions as $z and $".

$"′′ = L−1C (rb−
p

(
i
LAirci), (10)

$"′ = D−1
C $"′′, (11)

$"= L−TC $"′, (12)
$z′i = D−1

i rci , (13)
$zi = $z′i−LTAi$". (14)

For the formation of LDLT , Equations (6) and (7) can be calculated on each processor individu-
ally. Outer products (8) are then calculated, and the results gathered onto a single master processor
to form C; this requires each processor to transfer approximately 1

2(m+ 1)2 elements. The master
processor performs the Cholesky decomposition of C (9). Each processor needs to calculate LAirci ,
which again can be performed without any inter-processor communication, and the results are gath-
ered onto the master processor. The master processor then performs the calculations in Equations
(10), (11) and (12) of the back-substitution. Vector $" is broadcast to all processors for them to
calculate Equations (13) and (14) locally.

4.2 Linear Algebra Operations Within Nodes

Within each node, the bulk of operations are due to the contribution of each processor AiH−1
i ATi to

the calculation of the Schur complement in (8), and to a lesser extent the calculation of LAi in (7).
The standard technology for dense linear algebra operations is the BLAS library. Much of

the effort to produce highly efficient implementations of BLAS Layer 3 (matrix-matrix operations)
have concentrated on the routine GEMM, for good reason: Kågström et al. (1998) showed that it is
possible to develop an entire BLAS Layer 3 implementation based on a highly optimized GEMM
routine and a small amount of BLAS Layer 1 and Layer 2 routines. Their approach focused on
efficiently organizing the accessing of memory, both through structuring the data for locality and
through ordering operations within the algorithm. Matrices are partitioned into panels (block rows
or block columns) and further partitioned into blocks of a size that fits in the processor’s cache,
where access times to the data are much shorter. Herrero (2006) has pursued these concepts further,
showing that it is possible to develop an implementation offering competitive performance without
the need for hand-optimized routines.

Goto and van de Geijn (2008) have shown that another limiting factor is the process of looking
up mappings in the page table between virtual and physical addresses of memory. A more efficient
approach ensures that the mappings for all the required data reside in the Translation Look-aside
Buffer, effectively a cache for the page table. In practice, the best way of achieving this is to recast
the matrix-matrix multiplications as a sum of panel-panel multiplications, repacking each panel
into a contiguous buffer. This is the approach implemented in GotoBLAS, the library used in our
implementation.

To perform GEMM C := AB+C, the algorithm described in Goto and van de Geijn (2008)
divides the matrices into panels and uses three optimized components.

1. Divide matrix B into block row panels. Each panel Bp! contains all the columns we need, but
fewer rows than the original matrix B. As required, pack Bp! into a contiguous buffer.
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2. Divide matrix A into block column panels A
!p, so that the inner dimensions of A!p and Bp!

match. Further divide A into blocks Aip. As required, pack block Aip into a contiguous buffer,
so that by the end it is transposed and in the L2 cache.

3. Considering each block Aip in turn, perform the multiplication Ci! := AipBp! +Ci!, with Bp!
brought into the cache in column strips.

Additionally, it is possible in a multi-core system to coordinate the packing of Bp! between the
processors, avoiding redundancy and improving performance.

Similar techniques using panels and blocks can be applied to Cholesky factorization (Buttari
et al., 2009), but again these are not included in our implementation as the factorization of C is a
relatively small part of the algorithm.

Returning to the SVM training problem, by casting the main computation of our algorithm in
terms of matrix-matrix multiplications, we can take advantage of the above improvements for a
multi-threaded architecture:

1. Consider a subblock of the constraint matrix A, consisting of all rows and the number of
columns around the same size as m+1. Call this Ai.

2. Calculate LAi for this subblock, using (7). This involves Layer 1 operations, but these can be
vectorized by the compiler.

3. Calculate C :=C+LAiATi using the GEMM algorithm described above.

The performance gain of this approach is investigated in the next section.

5. Performance

In this section we compare the hybrid OpenMP/MPI version of our software with one using only
MPI, and also our implementation against three other parallel SVM solvers. Data sets are taken
from the PASCAL Challenge on Large-scale Learning, and the sizes we used are shown in Table
1. Due to memory restrictions, we reduced the number of samples in the FD and DNA data sets.
Additionally, the DNA data set was modified from categories to binary features, increasing m by a
factor of 4. The data sets were converted into a simple feature representation in SVM-light format.
The software was run on a cluster of quad-core 3GHz Intel Xeon processors, each with 2GB RAM.
The GotoBLAS library was used for BLAS functions, with the number of OpenMP threads set to 4,
to match the number of cores. We also used the LAM implementation of the MPI library.

To compare the hybrid approach (using the techniques described in Sections 4.1 and 4.2) with
pure MPI (using Section 4.1 only), we used the data sets alpha to zeta. The results are shown in
Figure 1. They consistently show that, although the pureMPI approach has better properties in terms
of parallel efficiency, the hybrid approach is always computationally more efficient. We believe this
is a result of the multi-core processor architecture. The cores are associated with relatively small
local cache memories, and such an architecture demands a fine-grained parallelism where, to reduce
bus traffic, an operation is split into tasks that operate on small portions of data (Buttari et al., 2009).
OpenMP is better suited to this fine-grained parallelism.

We made a comparison with other parallel software PGPDT (Zanni et al., 2006), PSVM (Chang
et al., 2008), and Milde (Durdanovic et al., 2007). All of them are able to handle nonlinear as well as
linear kernels, unlike our implementation. Using a linear kernel in each case, the results are shown
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Figure 1: SVM training time with respect to the number of processors, for the PASCAL data sets (a)
alpha, (b) beta, (c) gamma, (d) delta, (e) epsilon and (f) zeta. For each data set we trained
using two values of '. The results show that, although the pure MPI approach shows
better parallel efficiency properties, the hybrid approach is always computationally more
efficient.
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Data Set n m
Alpha 500000 500
Beta 500000 500
Gamma 500000 500
Delta 500000 500
Espilon 500000 2000
Zeta 500000 2000
FD 2560000 900
OCR 3500000 1156
DNA 6000000 800

Table 1: PASCAL Challenge on Large-scale Learning data sets used in this paper.

Data Set # cores ' OOPS PGPDT PSVM Milde

Alpha 16 1 39 3673 1684 (80611)
0.01 50 4269 4824 (85120)

Beta 16 1 120 5003 2390 (83407)
0.01 48 4738 4816 (84194)

Gamma 16 1 44 — 1685 (83715)
0.01 49 7915 4801 (84445)

Delta 16 1 40 — 1116 (57631)
0.01 46 9492 4865 (84421)

Epsilon 32 1 730 — 17436 (58488)
0.01 293 — 36319 (56984)

Zeta 32 1 544 — 14368 (22814)
0.01 297 — 37283 (68059)

FD 32 1 3199 — — (39227)
0.01 2152 — — (52408)

OCR 32 1 1361 — — (58307)
0.01 1330 — — (36523)

DNA 48 1 2668 — — —
0.01 6557 — — 14821

Table 2: Comparison of parallel SVM training software on PASCAL data sets. Times are in sec-
onds. In all cases except the DNA data set, the Milde software ran but did not terminate
within 24 hours of runtime, so the numbers in brackets show when it was within 1% of its
final objective value; — indicates that the software failed to load the problem.

in Table 2. With the exception of Milde (which has its own message passing implementation), the
LAM implementation of the MPI library was used.

We required an objective value accuracy of ) = 0.01, and chose two values for ' within the
range set in the Challenge, so we believe the training tasks are representative. In keeping with the
evaluation method of the Challenge, the timings shown are for training and do not include time
spent reading the data. The PSVM algorithm includes an additional partial Cholesky factorization
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Parallel Single processor
Data Set ' OOPS OOPS LibLinear LaRank

n cores t n t n t n t

Alpha 1 500,000 16 39 500,000 122 500,000 147 500,000 3354
0.01 50 151 112 2474

Beta 1 500,000 16 120 500,000 394 500,000 135 500,000 6372
0.01 48 154 112 1880

Gamma 1 500,000 16 44 500,000 149 500,000 (8845) 500,000 —
0.01 49 163 348.33 20318

Delta 1 500,000 16 40 500,000 137 500,000 (13266) 500,000 —
0.01 46 134 429 —

Epsilon 1 500,000 32 730 210,000 951 250,000 316 500,000 5599
0.01 293 374 265 2410

Zeta 1 500,000 32 544 230,000 1115 250,000 278 500,000 —
0.01 297 449 248 —

FD 1 2,560,000 48 3199 500,000 1502 500,000 231 500,000 1537
0.01 2152 840 193 332

OCR 1 3,500,000 32 1361 250,000 275 250,000 181 500,000 5695
0.01 1330 297 121 4266

DNA 1 6,000,000 48 2668 600,000 175 600,000 144 600,000 300
0.01 6557 176 30 407

Table 3: Comparison of our SVM training software OOPS, in parallel and on a single processor,
with linear SVM software LibLinear and LaRank, again on PASCAL data sets. Times
for training are in seconds. For the parallel software OOPS, each core had access to 2GB
memory. The single processor codes had access to 4 cores and 8GBmemory, and the larger
data sets were reduced in size to fit. For LibLinear, brackets indicate that the iteration limit
was reached. For LaRank, — indicates that the software did not terminate within 24 hours.

Data Set OOPS LibLinear LaRank
Alpha 0.1345 0.1601 0.1606
Beta 0.4988 0.4988 0.5001
Gamma 0.1174 0.1185 0.1187
Delta 0.1344 0.1346 0.1355
Epsilon 0.0341 0.4935 0.4913
Zeta 0.0115 0.4931 0.4875
FD 0.2274 0.2654 0.3081
OCR 0.1595 0.1660 0.1681

Table 4: Accuracy measured using area under precision recall curve. These values are taken from
the test results tables of the Evaluation pages of the PASCAL Challenge website.

procedure, which we also do not include in the training times. To make the training equivalent,
the rank of the factorization was set to be the number of features m. The Milde software includes
a number of termination criteria but not one based on the objective. Using the default criteria of
maximum gradient below ) resulted in the software never terminating in all but one case within a 24
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hour runtime limit. To be closer to the spirit of the Challenge, we show the time taken to be within
1% of the objective value at the end of 24 hours when the program was terminated prematurely,
although in many cases the output indicated that the method was not yet converging.

The results show that our approach described in this paper and implemented in OOPS is typically
one to two orders of magnitude faster than the other parallel SVM solvers, terminates reliably, and
training times are reasonably consistent for different values of '.

Unfortunately there were no other linear SVM implementations in the Parallel track of the PAS-
CAL Challenge. Instead, we show in Table 3 training time results for two linear SVM codes that
did participate in the PASCAL Challenge: LibLinear (Fan et al., 2008) which won the linear SVM
track, and LaRank (Bordes et al., 2007) specialised for linear SVMs. Both codes ran serially, using
the memory of 4 processor cores (8GB RAM in total), although it should be noted that as we used
the GotoBLAS library when building LibLinear, it was able to use all four processor cores during
BLAS operations. To make training possible, it was necessary to reduce the size of the larger data
sets from the sizes given in Table 1; the number of samples used each time are shown as n in Table 3.

The presentation of the results is slightly unusual in that training times are not directly connected
to accuracy results against a test set. This is because labelled validation and test data sets have not
been made publicly available. Performance statistics related to the precision recall curve were
evaluated on the Challenge website, and so instead we reproduce in Table 4 the results from the
website for area under the precision recall curve results for the test data set. In general the precision
of our method is consistent with the best of the other linear SVM methods that participated.

Taking the results in Tables 3 and 4 together, it is clear that LibLinear in particular is a very
efficient implementation, even in the cases Alpha to Delta where it is working with the full data set.
Table 4 clearly indicates that our approach consistently finds a high-quality solution to the separating
hyperplane, measured in terms of classification accuracy, whereas for LibLinear the quality of the
solution is lower. In many cases, the reduction in prediction accuracy is only small. The results in
Table 4 for the Epsilon and Zeta data sets in particular show, however, that for some problems the
quality of the solution from OOPS can be substantially better.

6. Conclusions

In this paper, we have shown how to develop a hybrid parallel implementation of linear Support
Vector Machine training. The approach allows the entire data set to be used, and consists of the
following steps:

1. Reformulating the problem to remove the dense Hessian matrix.

2. Using interior point method to solve the optimization problem in a predictable time, and
Cholesky decomposition to give good numerical stability of implicit inverses.

3. Exploiting the block structure of the augmented system matrix, to partition the data and linear
algebra computations amongst parallel processing nodes efficiently.

4. Within SMP nodes, casting the main computations as matrix-matrix multiplication where
possible, partitioning the matrices to obtain better data locality, and using highly efficient
BLAS implementation for a multi-threaded architecture.

The above steps were implemented in OOPS. Our results show that, for all cases, the hybrid imple-
mentation was faster than one using purely MPI, even though the MPI version had better parallel
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efficiency. We used the hybrid implementation to solve very large problems from the PASCAL
Challenge on Large-scale Learning, of up to a few million data samples. On these problems the
approach described in this paper was highly competitive, and showed that even on data sets of this
size, training times in the order of minutes are possible.

In this paper we have focused on linear kernels. It is possible to extend the techniques described
above to handle non-linear kernels, by approximating the positive semidefinite kernel matrix K with
a low-rank outer product representation such as partial Cholesky factorization LLT ≈ K (Fine and
Scheinberg, 2002). This approach produces the first r columns of the matrix L (corresponding to
the r largest pivots) and leaves the other columns as zero, giving an approximation of the matrix
K of rank r. Extending the work of Fine and Scheinberg, the diagonal D ∈ Rn×n of the residual
matrix (K−LLT ) can be determined at no extra expense and included in a separable formulation
for non-linear kernels:

min
w,z

1
2
(wTw+ zTDz)− eT z

s.t. w− (YL)T z= 0
− yT z= 0
0≤ z≤ 'e.

Chang et al. (2008) describe how to perform partial Cholesky decomposition in a parallel en-
vironment. Data is segmented between the processors. All diagonal elements are calculated to
determine pivot candidates. Then, for each of the r columns, the largest diagonal element is located.
The corresponding pivot row of L and the original features need to be known by all processors,
so this information is broadcast by the owner processor. With this information, all processors can
update the section of the new column of L for which they are responsible, and also update corre-
sponding diagonal elements. Although the algorithm requires the processors to be synchronised at
each iteration, little of the data needs to be shared amongst the processors: the bulk of the commu-
nication between processors is limited to a vector of length m and a vector of at most length r. Note
that matrix K is known only implicitly, through the kernel function, and calculating its values is an
expensive process. The algorithm therefore calculates each kernel element required to form L only
once, giving a complexity of O(nr2+ nmr) for the initial Cholesky factorization, and O(nr2+ r3)
for each IPM iteration of our algorithm.

The method described in this paper requires all sample data to be loaded into memory, and this
clearly has an impact on the size of problem that can be tackled. It is possible to improve data
handling and increase the storage capacity somewhat, for instance storing the data compactly and
expanding sections into floating point numbers when needed by the BLAS routines (Durdanovic
et al., 2007), but the scaling is still O(nm2). The direction of our further research is to develop
methods that are able to safely ignore or remove data points from consideration as the algorithm
progresses. In conjunction with exploiting the structure of the optimization problem as described in
this paper, we believe this will offer further significant improvements to the overall training time.
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Abstract
To quickly achieve good performance, reinforcement-learning algorithms for acting in large
continuous-valued domains must use a representation that is both sufficiently powerful to capture
important domain characteristics, and yet simultaneously allows generalization, or sharing, among
experiences. Our algorithm balances this tradeoff by using a stochastic, switching, parametric dy-
namics representation. We argue that this model characterizes a number of significant, real-world
domains, such as robot navigation across varying terrain. We prove that this representational as-
sumption allows our algorithm to be probably approximately correct with a sample complexity that
scales polynomially with all problem-specific quantities including the state-space dimension. We
also explicitly incorporate the error introduced by approximate planning in our sample complexity
bounds, in contrast to prior Probably Approximately Correct (PAC) Markov Decision Processes
(MDP) approaches, which typically assume the estimated MDP can be solved exactly. Our experi-
mental results on constructing plans for driving to work using real car trajectory data, as well as a
small robot experiment on navigating varying terrain, demonstrate that our dynamics representation
enables us to capture real-world dynamics in a sufficient manner to produce good performance.
Keywords: reinforcement learning, provably efficient learning

1. Introduction

Reinforcement learning (RL) (Sutton and Barto, 1998) has had some impressive real-world suc-
cesses, including model helicopter flying (Ng et al., 2004) and expert software backgammon players
(Tesauro, 1994). Two of the key challenges in reinforcement learning are scaling up to larger, richer
domains, and developing principled approaches for quickly learning to perform well. Our interest
lies in developing algorithms for large continuous-valued environments, including problems such as
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learning the best route to drive to work, or how a remote robotic rover can learn to traverse different
types of terrain. To perform learning efficiently in such environments, we will assume that the world
dynamics can be compactly described by a small set of simple parametric models, such as one for
driving on highways and another for driving on small roads. We will prove that this assumption
allows our algorithm to require an amount of experience that only scales polynomially with the
state space dimension. We will also empirically demonstrate that these assumptions are realistic for
several real world data sets, indicating that our Continuous-Offset Reinforcement Learning (CORL)
algorithm may be well suited for large, high-dimensional domains.

A critical choice in the construction of a reinforcement-learning algorithm is how to balance
between actions that gather information about the world environment (exploration) versus actions
that are expected to yield high reward given the agent’s current estimates of the world environment
(exploitation). In early work, algorithms such as Q-learning were shown to perform optimally in the
limit of infinite data (Watkins, 1989), but no finite-sample guarantees were known. More recently
there have been three main branches of model-based reinforcement learning research concerned
with the exploration problem. The first consists of heuristic approaches, some of which perform
very well in practice, but lack performance guarantees (for example Jong and Stone 2007). The
second branch strives to perform the action that optimally balances exploration and exploitation at
each step. Such Bayesian approaches include the model parameters inside the state space of the
problem. Poupart et al. (2006) assumed a fully observed discrete state space and modeled the un-
derlying model parameters as hidden states, effectively turning the problem into a continuous-state
partially observable Markov decision process (POMDP). Castro and Precup (2007) also assumed
a fully observed discrete state space but represented the model parameters as counts over the dif-
ferent transitions and reward received, thereby keeping the problem fully observable. Doshi et al.
(2008) considered a Bayesian approach for learning when the discrete state space is only partially
observable, and Ross et al. (2008) considered learning in a partially-observed continuous-valued
robot navigation problem. Approaches in the Bayesian RL framework run into inherent complex-
ity problems and typically produce algorithms that only approximately solve their target optimality
criteria.

In our work we will focus on achieving near optimality, making precise guarantees on when,
and with what probability, it will be achieved. This type of approach to reinforcement learning
was commenced by Kearns and Singh (2002) and Brafman and Tennenholtz (2002) who created
algorithms that were guaranteed to achieve near optimal performance on all but a small number of
samples, with high probability. We will refer to work in this line of research as “probably approx-
imately correct” (PAC-MDP), as introduced by Strehl et al. (2006), and will discuss it further in
the sections that follow. One of the appealing aspects of this area over a Bayesian RL approach is
that it allows one to make precise statements about the efficiency and performance of algorithms:
if the MDP or POMDP used in the Bayesian RL approach could be solved exactly with an infor-
mative prior, then this approach would likely outperform PAC-MDP approaches. However, when a
Bayesian RL problem is only approximately solved or when the prior information is incorrect, it is
unknown how far the resulting solution is from the optimal behavior. Our work lies within this third
PAC-MDP approach, and draws upon the past advances made in this subfield, including our own
initial work in this area (Brunskill et al., 2008). The current work makes a significant theoretical
generalization of our initial results which requires different proof techniques, and presents a number
of new experiments and discussions.
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Within the PAC-MDP line of research, there has been little work on directly considering
continuous-valued states. One exception is the work of Strehl and Littman (2008), who consid-
ered learning in continuous-valued state-action spaces. Their work assumed that a single dynamics
representation was shared among all states, and that the noise parameter of the dynamics represen-
tation was known. The focus of their paper was slightly different than the current work, in that the
authors presented a new online regression algorithm for determining when enough information was
known to make accurate predictions.

An alternate approach to handling continuous state spaces is to discretize the space into a grid.
This step enables prior PAC-MDP algorithms such as R-max (Brafman and Tennenholtz, 2002) to
be applied directly to the discretized space. However, their representation of the world may not fully
exploit existing structure. In particular, such a representation requires that the dynamics model for
each state-action tuple is learned independently. Since each state-action can have entirely different
dynamics, this approach has a great deal of representational power. However, as there is no sharing
of dynamics information among states, it has a very low level of generalization. In contrast, the work
of Strehl and Littman (2008) and the classic linear quadratic Gaussian regulator model (Burl, 1998)
assume that the dynamics model is the same for all states, greatly restricting the representational
power of these models in return for higher generalization and fast learning.

Recently, there have been several approaches that explore the middle ground of representational
power and generalization ability. Jong and Stone (2007) assumed that the dynamics model between
nearby states was likely to be similar, and used an instance-based approach to solve a continuous-
state RL problem. Their experimental results were encouraging but no theoretical guarantees were
provided, and the amount of data needed would typically scale exponentially with the state-space
dimension. A stronger structural assumption is made in the work of Leffler et al. (2007), which
focused on domains in which the discrete state space is divided into a set of types. States within the
same type were assumed to have the same dynamics. The authors proved that a typed representation
can require significantly less experience to achieve good performance compared to a standard R-
max algorithm that learns each state-action dynamics model separately.

Our work draws on the recent progress and focuses on continuous-state, discrete-action, typed
problems. By using a parametric model to represent the dynamics of each of a discrete set of types,
we sacrifice some of the representational power of prior approaches (Leffler et al., 2007; Brafman
and Tennenholtz, 2002) in return for improved generalization, but still retain a much more flexible
representation than approaches that assume a single dynamics model that is shared across all states.
In particular, we prove that restricting our representational power enables our algorithm to have a
sample complexity that scales polynomially with the state-space dimension. An alternate approach
is to place a uniformly spaced grid over the state space and solve the problem using the existing
algorithms from Leffler et al. (2007) or Brafman and Tennenholtz (2002). However, this strategy
results in an algorithm whose computational complexity scales exponentially with the state-space
dimension.

Our algorithm involves a subroutine for solving a continuous-state MDP using the current model
estimates. Outside of special cases like the linear Gaussian quadratic regulator problem (Burl,
1998), planning cannot be performed exactly for generic continuous-state MDPs. Therefore we ex-
plicitly incorporate the error introduced by approximate planning in our sample complexity bounds.
This is in contrast to prior PAC-MDP approaches, which typically assume the estimated MDP can
be solved exactly.
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In particular, our dynamics representation is a simple noisy offset model, where the next state
is presumed to be a function of the prior state, plus an offset and some Gaussian distributed noise.
The offset and Gaussian parameters are assumed to be specified by the type t of the state and action
a, thereby allowing all states of the same type to share dynamics parameters. More formally,

s′ = s+!at + "at , (1)

where s is the current state, s′ is the next state, "at ∼N (0,#at) is drawn from a zero-mean Gaussian
with covariance #at , and !at is the offset.

In our experimental section we first demonstrate our algorithm on the standard RL PuddleWorld
problem of Boyan and Moore (1995). We next illustrate the importance of learning the variance
of different types by an example of an agent with a hard time deadline. The third example is a
simulated decision problem in which an agent is trying to learn the best route for driving to work.
The simulator uses real car-trajectory data to generate its trajectories. In the final experiment, a real
robot car learns to navigate varying terrain. These experiments demonstrate that the noisy offset
dynamics model, while simple, is able to capture real world dynamics for two different domains
sufficiently adequately to allow the agent to quickly learn a good strategy.

At a high level, our work falls into the category of model-based reinforcement-learning algo-
rithms in which the MDP model (Equation 1) can be KWIK-learned (Li et al., 2008; Li, 2009),
and thus it is efficient in exploring the world. The Knows Whats It Knows (KWIK) framework is
an alternate learning framework which incorporates characteristics of the Probably Approximately
Correct (PAC) learning framework, which will be discussed further below, and the mistake bound
framework. Though our theoretical development will follow a PAC-style approach, the KWIK
framework provides another justification of the soundness and effectiveness of our algorithm.

The focus of this paper is on the sample complexity of the CORL algorithm. CORL assumes
an approximate MDP planner to solve the current estimated MDP, and several such approximate
planners with guarantees on the resulting solution involve a discretizaton that results in an expo-
nential tiling of the state space. In such cases the computational complexity of CORL will scale
exponentially with the number of dimensions. However, the experimental results demonstrate that
CORL exhibits computational performance competitive with or better than existing approaches.

The rest of the paper proceeds as follows. In Section 2, we will briefly discuss the background
to our work and then present the CORL algorithm. Section 3 presents our theoretical analysis of our
algorithm. In Section 4 we present experimental results, and in Section 5 we conclude and discuss
future work.

2. A Continuous-state Offset-dynamics Reinforcement Learner

This section introduces terminology and then presents our algorithm, CORL.

2.1 Background

The world is characterized by a continuous-state discounted MDP M = 〈S,A, p(s′|s,a),R,$〉 where
S ⊆ RN is the N-dimensional state space, A is a set of discrete actions, p(s′|s,a) is the transition
dynamics, $ ∈ [0,1) is the discount factor and R : S×A→ [0,1] is the reward function. In addition
to the standard MDP formulation, each state s is associated with a single observable type t ∈ T . The
total number of types is NT and the mapping from states to types S→ T is assumed to be known.
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Algorithm 1 CORL
1: Input: N (dimension of the state space),|A| (number of actions), NT (number of types), R
(reward model), $ (discount factor), Nat (minimum number of samples per state-action pair)

2: Set all type-action tuples 〈t,a〉 to be unknown and initialize the dynamics models (see text) to
create an empirical known-type MDP model M̂K .

3: Start in a state s0.
4: loop
5: Solve MDP M̂K using approximate solver and denote its optimal value function by Qt .
6: Select action a= argmaxaQt(s,a).
7: Increment the appropriate nat count (where t is the type of state s).
8: Observe transition to the next state s′.
9: If nat exceeds Nat then mark 〈a, t〉 as “known” and estimate the dynamics model parameters

for this tuple.
10: end loop

The dynamics of the environment are determined by the current state type t and action a taken:

p(s′|s,a) =N (s′;s+!at ,#at).

Therefore, types partition the state space into regions, and each region is associated with a particular
pair of dynamics parameters.

In this work, we focus on when the reward model is provided1 and the dynamics model parame-
ters are hidden. The parameters of the dynamics model, !at and #at , are assumed to be unknown for
all types t and actions a at the start of learning. This model is a departure from prior related work
(Abbeel and Ng, 2005; Strehl and Littman, 2008), which focuses on a more general linear dynamics
model but assumes a single type and that the variance of the noise #at is known. We argue that
in many interesting problems, the variance of the noise is unknown and estimating this noise may
provide the key distinction between the dynamics models of different types.

In reinforcement learning, the agent must learn to select an action a given its current state s. At
each time step, it receives an immediate reward r based on its current state.2 The agent then moves
to a next state s′ according to the dynamics model. The goal is to learn a policy % : S → A that
allows the agent to choose actions to maximize the expected total reward it will receive. The value
of a particular policy % is the expected discounted sum of future rewards that will be received from
following this policy, and is denoted V %(s) = E%[&'

j=0 $
jr j|s0 = s], where r j is the reward received

on the j-th time step and s0 is the initial state of the agent. Let %∗ be the optimal policy, and its
associated value function be V ∗(s).

2.2 Algorithm

Our algorithm (c.f., Algorithm 1) is derived from the R-max algorithm of Brafman and Tennen-
holtz (2002). We first form a set of 〈t,a〉 tuples, one for each type-action pair. Note that each tuple

1. As long as the reward can be KWIK-learned (Li et al., 2008) then the results are easily extended to when the reward
is unknown. KWIK-learnable reward functions include, for instance, Gaussian, linear and tabular rewards.

2. For simplicity, the reward is assumed to be only a function of state in this paper. It is straightforward to extend our
results to the case when the reward function also depends on the action taken.
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corresponds to a particular pair of dynamics model parameters, 〈!at ,#at〉. A tuple is considered to
be “known” if the agent has been in type t and taken action a a number Nat times. At each time step,
we construct a new MDP M̂K as follows, using the same state space, action space, and discount fac-
tor as the original MDP. If the number of times a tuple has been experienced, nat , is greater than or
equal to Nat , then we estimate the parameters for this dynamics model using maximum-likelihood
estimation:

!̃at =
&nat
i=1(s′i− si)
nat

, (2)

#̃at =
&nat
i=1(s′i− si− !̃at)(s′i− si− !̃at)T

nat
(3)

where the sum ranges over all state-action pairs experienced for which the type of si was t, the
action taken was a, and s′i was the successor state. Note that while Equation 3 is a biased estimator,
it is also popular and consistent, and becomes extremely close to the unbiased estimate when the
number of samples nat is large. We choose it because it makes our later analysis simpler.

Otherwise, we set the dynamics model for all states and the action associated with this type-
action tuple to be a transition with probability 1 back to the same state. We also modify the reward
function for all states associated with an unknown type-action tuple 〈tu,au〉 so that all state-action
values Q(stu ,au) have a value of Vmax (the maximum value possible, 1/(1− $)). We then seek to
solve M̂K . This MDP includes switching dynamics with continuous states, and we are aware of
no planners guaranteed to return the optimal policy for such MDPs in general. CORL assumes
the use of an approximate solver to provide a solution for a MDP. There are a variety of existing
MDP planners, such as discretizing or using a linear function approximation, and we will consider
particular planner choices in the following sections. At each time step, the agent chooses the action
that maximizes the estimate of its current approximate value according to Qt : a= argmaxaQt(s,a).
The complete algorithm is shown in Algorithm 1.

3. Learning Complexity

In this section we will first introduce relevant background and then provide a formal analysis of the
CORL algorithm.

3.1 Preliminaries and Framework

When analyzing the performance of an RL algorithm A , there are many potential criteria to use. In
our work, we will focus predominantly on sample complexity with a brief mention of computational
complexity. Computational complexity refers to the number of operations executed by the algorithm
for each step taken by the agent in the environment. We will follow Kakade (2003) and use sample
complexity as shorthand for the sample complexity of exploration. It is the number of time steps
at which the algorithm, when viewed as a non-stationary policy %, is not "-optimal at the current
state; that is, Q∗(s,a)−Q%(s,a) > " where Q∗ is the optimal state-action value function and Q% is
the state-action value function of the non-stationary policy %. Following Strehl et al. (2006), we are
interested in showing, for a given " and (, that with probability at least 1−( the sample complexity
of the algorithm is less than or equal to a polynomial function of MDP parameters. Note that we
only consider the number of samples to ensure the algorithm will learn and execute a near-optimal
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policy with high probability. As the agent acts in the world, it may be unlucky and experience a
series of state transitions that poorly reflect the true dynamics due to noise.

Prior work by Strehl et al. (2006) provided a framework for analyzing the sample complexity
of R-max-style RL algorithms. This framework has since been used in several other papers (Leffler
et al., 2007; Strehl and Littman, 2008) and we will also adopt the same approach. We first briefly
discuss the structure of this framework.

Strehl et al. (2006) defined an RL algorithm to be greedy if it chooses its action to be the one
that maximizes the value of the current state s (a = argmaxa∈AQ(s,a)). Their main result goes as
follows: let A(",() denote a greedy learning algorithm. Maintain a list K of “known” state-action
pairs. At each new time step, this list stays the same unless during that time step a new state-action
pair becomes known. MDP M̂K is the agent’s current estimated MDP, consisting of the agent’s
estimated models for the known state-action pairs, and self loops and optimistic rewards (as in our
construction described in the prior section) for unknown state-action pairs. MDP MK is an MDP
which consists of the true (underlying) reward and dynamics models for the known state-action
pairs, and again self loops and optimistic rewards for the unknown state-action pairs. To be clear,
the only difference between MDP M̂K and MDP MK is that the first uses the agent’s experience
to generate estimated models for the known state-action pairs, and the second uses the true model
parameters. % is the greedy policy with respect to the current state-action values QM̂K

obtained by
solving MDP M̂K : V %

M̂K
is the associated value function for QM̂K

and may equivalently be viewed as
the value of policy % computed using the estimated model parameters. V %

MK
is the value of policy %

computed using the true model parameters. Assume that " and ( are given and the following three
conditions hold for all states, actions and time steps:

1. Q∗(s,a)−QM̂K
(s,a) ≤ ".

2. V %
M̂K

(s)−V %
MK

(s) ≤ ".

3. The total number of times the agent visits a state-action tuple that is not in K is bounded by
)(",() (the learning complexity).

Then, Strehl et al. (2006) show for any MDP M, A(",() will follow a 4"-optimal policy from its
initial state on all but Ntotal time steps with probability at least 1−2(, where Ntotal is polynomial in
the problem’s parameters ()(",(), 1" ,

1
( ,

1
1−$).

The majority of our analysis will focus on showing that our algorithm fulfills these three criteria.
In our approach, we will define the known state-action pairs to be all those state-actions for which
the type-action pair 〈t(s),a〉 is known. We will assume that the absolute values of the components
in #at are upper bounded by a known constant B* which is, without loss of generality, assumed to
be greater than or equal to 1. This assumption is often true in practice. We denote the determinant
of matrix D by detD, the trace of a matrix D by tr(D), the absolute value of a scalar d by |d| and
the p-norm of a vector v by ‖v‖p. Full proofs, when omitted, can be found in the Appendix.

3.2 Analysis

Our analysis will serve to prove the main result:

Theorem 1 For any given ( and " in a continuous-state noisy offset dynamics MDP with NT types
where the covariance along each dimension of all the dynamics models is bounded by [−B*,B*],
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on all but Ntotal time steps, our algorithm will follow a 4"-optimal policy from its current state with
probability at least 1− 2(, where Ntotal is polynomial in the problem parameters (N, |A|,NT , 1" ,

1
( ,

1
1−$ ,

1
+N

,B*) where +N is the smallest eigenvalue of the dynamics covariance matrices.

Proof To prove this, we need to demonstrate that the three criteria of Strehl et al. (2006) hold. The
majority of our effort will focus on the second criterion. This criterion states that the value of states
under the estimated known-state MDP M̂K must be very close to the value of states under the known-
state MDPMK that uses the true model parameters for all known type-action pairs. To prove this we
must bound how far away the model parameters estimated from the agent’s experience can be from
the true underlying parameters, and how this relates to error in the resulting value function. We
must also consider the error induced by approximately solving the estimated MDP M̂K . Achieving
a given accuracy level in the final value function creates constraints on how close the estimated
model parameters must be to the true model parameters. We will illustrate how these constraints
relate to the amount of experience required to achieve these constraints. This in turn will give us an
expression for the number of samples required for a type-action pair to be known, or the learning
complexity for our algorithm. Once we have proved the second criterion we will discuss how the
other two conditions are also met.

Therefore we commence by formally relating how the amount of experience (number of transi-
tions) of the agent corresponds to the accuracy in the estimated dynamics model parameters.

Lemma 2 Given any ",(> 0, then after T = 12N2B2*
"2( transition samples (s,a,s′) with probability at

least 1− 2(
3 , the estimated offset parameter !̃, computed by Equation 2, and estimated covariance

parameters *̃i j, computed by Equation 3, will deviate from the true parameters ! and *i j by at most
": Pr(‖!̃−!‖2 ≤ ") ≥ 1− (

3 and Pr(maxi |*̃i j−*i j|≤ ") ≥ 1− (
3 .

Proof T will be the maximum of the number of samples to guarantee the above bounds for the
offset parameter ! and the number of samples needed for a good estimate of the variance parameter.
We first examine the offset parameter:

Lemma 3 Given any ",( > 0, define T! = 3N2B*
"2( . If there are T! transition samples (s,a,s′), then

with probability at least 1− (
3 , the estimated offset parameter !̃, computed by Equation 2, will

deviate from the true offset parameter ! by no more than " along any dimension d; formally,
Pr(maxd ‖!̃d−!d‖2 ≥ "√

N ) ≤ (
3N .

Proof From Chebyshev’s inequality, we know

P(|(s′id− sid)−!d|≥
"√
N

) ≤
*2dN
"2

,

where sid and *2d are the value of the i-th state and variance of the offset along dimension d, respec-
tively. Using the fact that the variance of a sum of T! i.i.d. variables is just T! multiplied by the
variance of a single variable, we obtain

Pr(|
T!

&
i=1

(s′id− sid)−T!!d |≥ T!
"√
N

) ≤
T!*2dN
T 2! "2

Pr(|!̃d−!d |≥
"√
N

) ≤
*2dN
T!"2

.
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We require the right-hand side above be at most (
3N and solve for T!:

T! =
3*2dN2

("2
.

We know that the variance along any dimension is bounded above by B* so we can substitute this
in the above expression to derive a bound on the number of samples required:

T! ≥
3B*N2

("2
.

Lemma 3 immediately implies a bound on the L2 norm between the estimated offset parameter
vector and the true offset parameter vector, as follows:

Lemma 4 Given any ",(> 0, if Pr(maxd |!̃d−!d|≥ "√
N ) ≤ (

3N , then Pr(‖!̃−!‖2 ≥ ") ≤ (
3 .

Proof By a union bound, the probability that any of the dimensions exceeds an estimation error of at
most "√

N is at most
(
3 . Given this, with probability at least 1−

(
3 all dimensions will simultaneously

have an estimation error of less than "√
N and from the definition of the L2 norm this immediately

implies that ‖!̃−!‖2 ≤ ".

We next analyze the number of samples needed to estimate the covariance accurately.

Lemma 5 Assumemaxd |!̃d−!d |≤ " for "< 1/4. Given any (> 0, define T* = 12N2B2*
("2 . If there are

T* transition samples (s,a,s′), then with probability at most (3 , the estimated covariance parameter
*̃i j, computed by Equation 3, deviates from the true covariance parameter *i j by more than " over
all entries i j; formally, Pr(maxi, j |*̃i j−*i j|≥ ") ≤ (

3 .

We provide the proof of Lemma 5 in the appendix: briefly, we again use Chebyshev’s inequality
which requires us to bound the variance of the sample covariance.

Combining Lemmas 4 and 5 gives a condition on the minimum number of samples necessary
to ensure, with high probability, that the estimated parameters of a particular type-action dynamics
model are close to the true parameters. Without loss of generality, assume B* ≥ 1, then

T =max{T!,T*} =max
{

3N2B*
"2(

,
12N2B2*
"2(

}

=
12N2B2*
"2(

.

From Lemma 2 we now have an expression that relates how much experience the agent needs
in order to have precise estimates of each model parameter. We next need to establish the distance
between two dynamics models which have different offset and covariance parameters. This distance
will later be important for bounding the value function difference between the estimated model MDP
M̂K and the true model MDP MK .

Following Abbeel and Ng (2005), we choose to use the variational distance between two dy-
namics models P and Q:
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dvar(P(x),Q(x)) =
1
2

Z

X
|P(x)−Q(x)|dx.

In our algorithm, !1 and #1 are the true offset parameter and covariance matrix of the Gaussian
distribution, and !2 and #2 are the offset parameter and covariance matrix estimated from data.
Since we can guarantee that they can be made arbitrarily close (element-wise), we will be able to
bound the variational distance between two Gaussians, one defined with the true parameters and the
other with the estimated parameters. The real-valued, positive eigenvalues of #1 and #2 are denoted
by +1 ≥ +2 ≥ · · · ≥ +N > 0 and +′1 ≥ +′2 ≥ · · · ≥ +′N > 0, respectively. Because of symmetry and
positive definiteness of #1 and #2, +i and +′i must be real as well as positive. Since all eigenvalues
are positive, they are also the singular values of their respective matrices.

Lemma 6 Assume maxi, j |#1(i, j)−#2(i, j)|≤ ", and N"
∥

∥#−11
∥

∥

' < 1, then,

dvar(N (s′ − s|!1,#1),N (s′ − s|!2,#2)) ≤
||!1−!2||2√

+N
+

√

N2"
+N

+
2N3B*"

+2N−N1.5"+N
.

Proof We will use N (!,#) as an abbreviation for N (s′ − s|!,#). Then

dvar(N (!1,#1),N (!2,#2)) ≤ dvar(N (!1,#1),N (!2,#1))+dvar(N (!2,#1),N (!2,#2))

=
||(N (!1,#1),N (!2,#1))||1

2
+

||(N (!2,#1),N (!2,#2))||1
2

≤
√

2dKL(N (!1,#1)‖N (!2,#1))+
√

2dKL(N (!2,#1)‖N (!2,#2))

where dKL(‖) is the Kullback-Leibler divergence. The first step follows from the triangle inequality
and the last step follows from Kullback (1967) (included for completeness in Lemma 14 in the
appendix).

The KL divergence between two N-variate Gaussians has the closed form expression

dKL(N (!1,#1)‖N (!2,#2)) =
1
2

(

(!1−!2)T#
−1
1 (!1−!2)+ ln

det#2
det#1

+ tr
(

#−12 #1
)

−N
)

.

Substituting this expression into the above bound on dvar we get

dvar(N (!1,#1),N (!2,#2)) ≤
√

(!1−!2)T#−11 (!1−!2)+

√

ln
(

det#2
det#1

)

+tr
(

#−12 #1
)

−N. (4)

Our proof relies on bounding both terms of Equation 4. Note that this expression reduces (up to a
constant) to the bound proved by Abbeel and Ng (2005) when the variance is known.

We now start with the first term of Equation 4:

Lemma 7

(!1−!2)T#
−1
1 (!1−!2) ≤

1
+N

||!1−!2||22.
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Proof First note that since #−11 is a Hermitian matrix,

(!1−!2)T#
−1
1 (!1−!2)

||!1−!2)||22

is a Rayleigh quotient which is bounded by the maximum eigenvalue of #−11 . The eigenvalues of
#−11 are precisely the reciprocals of the eigenvalues of #1. Therefore, the Rayleigh quotient above
is at most 1

+N
:

(!1−!2)
T#−11 (!1−!2) ≤

||!1−!2||22
+N

.

We now provide lemmas that bound the components of the second term of Equation 4: proofs are
provided in the appendix.

Lemma 8 If maxi, j |#1(i, j)−#2(i, j)|≤ " for any 1≤ i, j ≤ N, then
∣

∣

∣

∣

ln
det#2
det#1

∣

∣

∣

∣

≤ N"
(

1
+1

+
1
+2

+ · · ·+
1
+N

)

≤
N2"
+N

.

Lemma 9 If maxi, j |#1(i, j)−#2(i, j)|≤ " and N"
∥

∥#−11
∥

∥

1 < 1, then

tr
(

#−12 #1
)

−N ≤
2N3"B*

+2N− (N)1.5+N"
.

Combining the results of Lemmas 7, 8, and 9 completes the proof of Lemma 6.

Note this bound is tight when the means and the variances are the same.
At this point we can relate the number of experiences (samples) of the agent to a distance

measure between the estimated dynamics model (for a particular type-action) and the true dynamics
model.

We now bound the error between the state-action values of the true MDP model MK solved
exactly and the approximate state-action values of our estimated model MDP M̂K obtained using an
approximate planner, as a function of the error in the dynamics model estimates. This is a departure
from most related PAC-MDP work which typically assumes the existence of a planning oracle for
choosing actions given the estimated model.

Lemma 10 (Simulation Lemma) Let M1 = 〈S,A, p1(·|·, ·),R,$〉 and M2 = 〈S,A, p2(·|·, ·),R,$〉 be
two MDPs3 with dynamics as characterized in Equation 1 and non-negative rewards bounded
above by 1. Given an " (where 0 < " ≤ Vmax), assume that for all state-action tuples (s,a),
dvar(p1(·|s,a), p2(·|s,a)) ≤ (1− $)2"/(2$) and the error incurred by approximately solving a MDP,
defined as "plan is also at most (1− $)2"/(2$) (to be precise, "plan = ||V ∗ − Ṽ ∗||' ≤ (1− $)2"/(2$)
where Ṽ ∗ is the value computed by the approximate solver). Let % be a policy that can be applied
to both M1 and M2. Then, for any stationary policy %, for all states s and actions a, |Q%

1(s,a)−
Q̃%
2(s,a)| ≤ ", where Q̃%

2 denotes the state-action value obtained by using an approximate MDP
solver on MDP M2 and Q%

1 denotes the true state-action value for MDP M1 for policy %.

3. For simplicity we present the results here without reference to types. In practice, each dynamics parameter would be
subscripted by its associated MDP, type, and action.
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Proof Let ,Q =maxs,a |Q%
1(s,a)− Q̃%

2(s,a)| and define Ṽ %
2 to be the approximate value of policy %

computed using an approximate MDP solver on MDPM2, and V %
1 be the exact value of policy % on

MDPM1. Note that since we are taking the max over all actions, ,Q is also equal to or greater than
maxs |V %

1 (s)−Ṽ %
2 (s)|. Let Lp2(s′|s,a) denote an approximate backup for MDPM2.

Since these value functions are the fixed-point solutions to their respective Bellman operators,
we have for every (s,a) that

|Q%
1(s,a)− Q̃%

2(s,a)|

=

∣

∣

∣

∣

(

R(s,a)+ $
Z

s′∈S
p1(s′|s,a)V %

1 (s′)ds′
)

−
(

R(s,a)+ $
Z

s′∈S
Lp2(s′|s,a)Ṽ %

2 (s′)ds′
)

∣

∣

∣

∣

≤ $

∣

∣

∣

∣

Z

s′∈S
p1(s′|s,a)V %

1 (s′)−Lp2(s′|s,a)Ṽ %
2 (s′)ds′

∣

∣

∣

∣

≤ $

∣

∣

∣

∣

Z

s′∈S
p1(s′|s,a)V %

1 (s′)− p1(s′|s,a)Ṽ %
2 (s′)+ p1(s′|s,a)Ṽ %

2 (s′)−Lp2(s′|s,a)Ṽ %
2 (s′)ds′

∣

∣

∣

∣

≤ $

∣

∣

∣

∣

Z

s′∈S

[

p1(s′|s,a)(V %
1 (s′)−Ṽ %

2 (s′))+ p1(s′|s,a)Ṽ %
2 (s′)− p2(s′|s,a)Ṽ %

2 (s′)

+p2(s′|s,a)Ṽ %
2 (s′)−Lp2(s′|s,a)Ṽ %

2 (s′)
]

ds′
∣

∣

≤ $

∣

∣

∣

∣

Z

s′∈S
p1(s′|s,a)(V %

1 (s′)−Ṽ %
2 (s′))ds′

∣

∣

∣

∣

+ $

∣

∣

∣

∣

Z

s′∈S
(p1(s′|s,a)− p2(s′|s,a))Ṽ %

2 (s′)ds′
∣

∣

∣

∣

+$

∣

∣

∣

∣

Z

s′∈S
p2(s′|s,a)Ṽ %

2 (s′)−Lp2(s′|s,a)Ṽ %
2 (s′)ds′

∣

∣

∣

∣

where the final expression was obtained by repeatedly adding and subtracting identical terms and
using the triangle inequality. This expression must hold for all states s and actions a, so it must also
hold for the maximum error over all states and actions:

max
s
max
a

|Q%
1(s,a)−Q̃%

2(s,a)| ≤ $
Z

s′∈S
p1(s′|s,a),Qds′ + $

∣

∣

∣

∣

Z

s′∈S
(p1(s′|s,a)−p2(s′|s,a))Ṽ %

2 (s′)ds′
∣

∣

∣

∣

+$

∣

∣

∣

∣

Z

s′∈S

(

p2(s′|s,a)Ṽ %
2 (s′)−Lp2(s′|s,a)Ṽ %

2 (s′)
)

ds′
∣

∣

∣

∣

,Q ≤ $,Q+ $

∣

∣

∣

∣

Z

s′∈S
(p1(s′|s,a)− p2(s′|s,a))Ṽ %

2 (s′)ds′
∣

∣

∣

∣

+$

∣

∣

∣

∣

Z

s′∈S

(

p2(s′|s,a)Ṽ %
2 (s′)−Lp2(s′|s,a)Ṽ %

2 (s′)
)

ds′
∣

∣

∣

∣

≤ $,Q+ $Vmax
∣

∣

∣

∣

Z

s′∈S
p1(s′|s,a)− p2(s′|s,a)ds′

∣

∣

∣

∣

+$

∣

∣

∣

∣

Z

s′∈S

(

p2(s′|s,a)Ṽ %
2 (s′)−Lp2(s′|s,a)Ṽ %

2 (s′)
)

ds′
∣

∣

∣

∣

≤ $,Q+ $Vmaxdvar(p1(s′|s,a), p2(s′|s,a))+ $"plan
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where we have again used the triangle inequality. Therefore

,Q ≤ $,Q+ $Vmaxdvar + $"plan

=
$ dvar1−$

1− $
+
$"plan
1− $

,

where we have used dvar as shorthand for dvar(p1(s′|s,a), p2(s′|s,a))
We have now expressed the error in the value function as the sum of the error due to the model

approximation and the error due to using an approximate MDP planner. Using the assumptions in
the lemma, the result immediately follows.

We can now use the prior lemmas to prove Theorem 1. First we need to examine under what
conditions the two assumptions of the Simulation Lemma hold. The first assumption requires that
dvar(p1(·|s,a), p2(·|s,a)) ≤ (1− $)2"/(2$) for all state-action tuples. From Lemma 6 this holds for
a particular type-action tuple (which encompasses all state-action tuples where the state belongs to
that type) if

||!2−!1||2√
+N

+

√

N2"
+N

+
2N3B*"

+2N− (N)1.5maxi j |*̃i j−*i j|+N
≤

(1− $)2"
2$

(5)

and

max
i j

|*̃i j−*i j|≤ ". (6)

We can ensure Equation 5 holds by splitting the error into three terms:

‖!2−!1‖2√
+N

≤
(1− $)2"
4$

N2"
+N

≤
(1− $)4"2

32$2

2N3B*"
+2N− (N)1.5maxi j |*̃i j−*i j|+N

≤
(1− $)4"2

32$2
.

Given these three equations, and Equation 6, we can obtain bounds on the error in the dynamics
parameter estimates:

‖!̃−!‖2 ≤
(1− $)2"+0.5N

4$
(7)

max
i j

|*̃i j−*i j| ≤
(1− $)4"2+N
32$2N2

(8)

max
i j

|*̃i j−*i j| ≤
(1− $)4"2+2N

16$2N3B*+(1− $)4"2(N)1.5+N
. (9)

Assume4 that +N ≤ 1, N > 1 and B* ≥ 1. In this case the upper bound in Equation 9 will be at
least as small as the upper bounds in Equations 7 and 8.

4. This is just a simplifying assumption and it is trivial to show the bounds will have a similar polynomial dependence
on the parameters if the assumptions do not hold.
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We therefore require that the error " in the model parameters be bounded by

"≤
(1− $)4"2+2N

16$2N3B*+(1− $)4"2(N)1.5+N
(10)

(from Equation 9). Lemma 2 provides a guarantee on the number of samples T = 12N2B2*
"2g required

to ensure with probability at least 1−g that all the model parameters have error of most ". In order
to ensure that the model parameters for all actions and types simultaneously fulfill this criteria with
probability (, it is sufficient to require that g = (/(|A|NT ), from the union bound. We can then
substitute this expression for g and Equation 10 into the expression for the number of samples T :

T =
12N2B2*

(

(1−$)4"2+2N
16$2N3B*+(1−$)4"2(N)1.5+N

)

(
|A|NT

=
12N2|A|NTB2*(16$2N3B*+N1.5+N(1− $)4"2)2

(1− $)8"2(+4N
.

Given this analysis, the first assumption of the Simulation Lemma holds with probability at least
1−( after

O
(

N8|A|NTB4*
(1− $)8"4((+N)4

)

samples.
The second assumption in the Simulation Lemma requires that we have access to an MDP

planner than can produce an approximate solution to our typed-offset-dynamics continuous-state
MDP. At least one such planner exists if the reward model is Lipschitz continuous; under a set of
four conditions, Chow and Tsitsiklis (1991) proved that the optimal value function V" of a discrete-
state MDP formed by discretizing a continuous-state MDP into -(")-length (per dimension)5 grid
cells is an "-close approximation of the optimal continuous-state MDP value function, denoted by
V ∗:

||V"−V ∗||' ≤ ".

The first condition used to prove the above result is that the reward function is Lipschitz-
continuous. In our work, the reward function is assumed to be given, so this condition is a prior
condition on the problem specification. The second condition is that the transition function is piece-
wise Lipschitz continuous. In other words, the transition model is Lipschitz-continuous over each
of a set of finite subsets that cover the state space, and that the boundary between each subset re-
gion is piecewise smooth. For each type and action our transition model is a Gaussian distribution,
which is Lipschitz-continuous, and there are a finite number of different types so it is piecewise
Lipschitz-continuous. As long as our domain fulfills our earlier stated assumption that there are
a finite number of different type regions, and the boundaries between each are piecewise smooth,
then Chow and Tsitsiklis’s second assumption is satisfied. The third condition is that the dynamics
probabilities represent a true probability measure that sums to one (

R

s′ p(s′|s,a) = 1), though the
authors show that this assumption can be relaxed to

R

s′ p(s′|s,a) ≤ 1 and the main results still hold.

5. More specifically, the grid spacing hg must satisfy hg ≤ (1−$)2"
K1+2KK2 and hg ≤

1
2K where K is the larger of the Lipschitz

constants arising from the assumptions discussed in the text, and K1 and K2 are constants discussed in Chow and
Tsitsiklis (1991). For small " any hg satisfying the first condition will automatically satisfy the second condition.

1968
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In our work, our dynamics models are defined to be true probability models. Chow and Tsitsiklis’s
final condition is that there must be a bounded difference between any two controls. In our case we
consider only finite controls, so this property holds directly. Assuming the reward model fulfills the
first condition, our framework satisfies all four conditions made by Chow and Tsitsiklis, and we can
use their result.

By selecting fixed grid points at a regular spacing of (1−$)2"
2$ , and by requiring that there exist at

least one grid point placed in each contiguous single-type region, we can ensure that the maximum
error in the approximate value function compared to the exactly solved value function is at most
(1−$)2"
2$ . This provides a mechanism for ensuring the second assumption of the Simulation Lemma

holds. In other words, if the grid width used is the minimum of (1−$)2"
2$ and the minimum contiguous

length of a single-type region, then the resulting value function using this discrete approximate
planner is no more than (1−$)2"

2$ -worse in value than the optimal exact planner for the continuous-
state MDP.6

Type-action tuples with at least T samples are defined to be “known.” From the analysis above,
the estimated dynamics model for such types have a dvar value from the true known type-action
dynamics model of at most (1− $)2"/(2$). All unknown type-action tuples are defined to be self-
loops. Therefore the dynamics models of our known-type, estimated dynamics MDP M̂K relative to
a known-type MDP with the true dynamics parameters MK have a dvar of zero for all the unknown
type-action tuples (since these are always defined as self loops) and at most (1− $)2"/(2$) for all
the known type-action tuples. Hence the first assumption of the Simulation Lemma holds. The
second assumption of the Simulation Lemma is fulfilled given the analysis in the prior paragraph.
Given these two assumptions are satisfied, the Simulation Lemma guarantees that the approximate
value of our known-type MDP M̂K under its greedy policy % (%(s) = argmaxaQM̂K

(s,a)) is "-close
to the optimal value of the known-type MDP with the true dynamics parameters MK under policy
%: ||Ṽ %

M̂K
−V %

MK
||' ≤ ". This fulfills condition 2 of Strehl et al. (2006).

The first condition of Strehl et al. (2006) can be re-expressed as:

Q∗(s,a)−QM̂K
(s,a) = (Q∗(s,a)−QMK (s,a))+(QMK (s,a)−QM̂K

(s,a)) ≤ ".

We start by considering the first expression, Q∗(s,a)−QMK (s,a). If all type-action pairs are known,
then MK is the same as the original MDP, and this expression equals 0. If some type-action pairs
are unknown, then the value of states of that type, associated with that action, becomes Vmax under
MDPMK . As all known type-action pairs have the same reward and dynamics model as the original
MDP, this implies that the value QMK must be either equal or greater than Q∗, since all the value
of all unknown state-actions is at least as great in QMK as their real value Q∗. For this reason,
Q∗(s,a)−QMK (s,a) is always less than or equal to 0.

We next consider QMK (s,a)−QM̂K
(s,a). The variational distancedvar between the dynamics

models of MK and M̂K for all unknown type-action tuples is zero, because all the dynamics of
unknown tuples are self loops. As discussed above, the dvar between all known type-action tuples
is at most (1− $)2"/(2$). We can then apply the Simulation Lemma to guarantee that |Q%

MK
(s,a)−

Q%
M̂K

(s,a)|≤ ". As a result, the first condition of Strehl et al. (2006) holds.
The third condition limits the number of times the algorithm may experience an unknown type-

action tuple. Since there are a finite number of types and actions, this quantity is bounded above by

6. The condition of the extent of a typed region is a requirement in order to ensure that the discrete-representation
doesn’t skip over a smaller region of a different type, that may have a different optimal policy.
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NatNT |A|, which is a polynomial in the problem parameters (N, |A|,NT , 1" ,
1
( ,

1
1−$ ,

1
+N

,B*). Therefore,
our algorithm fulfills the three specified criteria and the result follows.

3.3 Discussion

Prior PAC-MDP work has focused predominantly on discrete-state, discrete-action environments.
The sample complexity of the R-max algorithm by Brafman and Tennenholtz (2002) scales with the
number of actions and the square of the number of discrete states, since a different dynamics model
is learned for each discrete state-action tuple. In environments in which states of the same type
share the same dynamics, Leffler et al. (2007) proved that the sample complexity scales with the
number of actions, number of discrete states, and number of types. Assuming the number of types
is typically much less than the number of states, this can result in significantly faster learning, as
Leffler et al. (2007) demonstrate empirically. However, a naı̈ve application of either technique to a
continuous-state domain involves uniformly discretizing the continuous-state space. This procedure
that results in a number of states that grows exponentially with the dimension of the state space. In
this scenario the approaches of both Brafman and Tennenholtz (2002) and Leffler et al. (2007)
will have a sample complexity that scales exponentially with the state space dimension, though the
approach of Leffler et al. (2007) will scale better if there are a small number of types.

In contrast, the sample complexity of our approach scales polynomially in the numbers of ac-
tions and types as well as state space dimension, suggesting that it is more suitable for high di-
mensional environments. Our results follow the results of Strehl and Littman (2008), who gave an
algorithm for learning in continuous-state and continuous-action domains that has a sample com-
plexity that is polynomial in the state space dimension and the action space dimension. Our work
demonstrates that we can get similar bounds when we use a more powerful dynamics representa-
tion (allowing states to have different dynamics, but sharing dynamics within the same types), learn
from experience the variance of the dynamics models, and incorporate the error due to approximate
planning.

Our analysis presented so far considers the discounted, infinite-horizon learning setting. How-
ever, our results can be extended to the H-step finite horizon case fairly directly using the results of
Kakade (2003). Briefly, Kakade considers the scenario where a learning algorithm A is evaluated in
a cycling H-step periods. The H-step normalized undiscounted value U of an algorithm is defined
to be the sum of the rewards received during a particular H-step cycle, divided by H. Kakade de-
fines A to be "-optimal if the value over a state-action trajectory, until the end of the current H-step
period, is within " of the optimal valueU . Using this alternate definition of value requires a modifi-
cation of the Simulation Lemma which results in a bound on ,Q of (H−1)Vmaxdvar +(H−1)"plan.
In short, the $/(1− $) terms has been replaced with H − 1. The earlier results on the number of
samples required to obtain good estimates of the model parameters are unchanged, and the final
result follows largely as before, except we now have a polynomial dependence on the horizon H of
the undiscounted problem, compared to a polynomial dependence on the discount factor 1/$.

Finally, though our focus is on sample complexity, it is also important to briefly consider com-
putational complexity. To ensure the approximate planner produces highly accurate results, our
algorithm’s worst-case computational complexity is exponential in the number of state dimensions.
While this fact prevents it from being theoretically computationally efficient, in the next section we
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present experimental results that demonstrate our algorithm performs well empirically compared to
a related approach in a real-life robot problem.

4. Experiments

First we demonstrate the benefit of using domain knowledge about the structure of the dynamics
model on the standard reinforcement-learning benchmark, PuddleWorld (Boyan and Moore, 1995).
Then we illustrate the importance of explicitly learning the variance parameters of the dynamics in a
simulated “catching a plane” experiment. This is in contrast to some past approaches which assume
the variance parameters to be provided, such as Strehl and Littman (2008).

Our central hypothesis is that offset dynamics are a simple model that reasonably approximate
several real world scenarios. In our third experiment, we applied our algorithm to a simulated
problem using in which an agent needs to learn the best route to drive to work, and used date
collected from real cars to simulate the dynamics. In our final experiment we applied our algorithm
to a real-world robot car task in which the car most cross varying terrain (carpet and rocks) to reach
a goal location.

CORL requires a planner to solve the estimated continuous-state MDP. Planning in continuous-
state MDPs is an active area of research in its own right, and is known to be provably hard (Chow and
Tsitsiklis, 1989). In all our experiments we used a standard technique, Fitted Value Iteration (FVI),
to approximately solve the current MDP. In FVI, the value function is represented explicitly at only a
fixed set of states. In our experiments these fixed states are uniformly spaced in a grid over the state
space. Planning requires performing Bellman backups for each grid point; the value function over
points not in this set is computed by function interpolation. We used Gaussian kernel functions as the
interpolation method. Using sufficiently small kernel widths relative to the spacing of the grid points
will make the approach equivalent to using a nearest neighbour standard discretization. However,
there are some practical advantages in coarse grids to more smooth methods of interpolation. We
discuss this issue in more depth in the next section.

In each experiment, Nat was tuned based on informal experimentation.

4.1 Puddle World

Puddle world is a standard continuous-state reinforcement-learning problem introduced by Boyan
andMoore (1995). The domain is a two-dimensional square of width 1 with two oval puddles, which
consist of the area of radius 0.1 around two line segments, one from (0.1,0.75) to (0.45,0.75) and
the other from (0.45,0.4) to (0.45,0.8). The action space consists of the four cardinal directions.
Upon taking an action the agent moves 0.05 in the specified cardinal direction with added Gaussian
noise N (0,0.001 ∗ I), where I is a two-by-two identity matrix. The episode terminates when the
agent reaches the goal region which is defined as the area in which x+ y≥ 1.9. All actions receive
a reward of −1 unless the agent is inside a puddle, in which case it then receives a reward of −400
times the distance inside the puddle. Figure 1 provides a graphical depiction of the puddle world
environment.

We expect CORL will outperform prior approaches on this problem for two reasons. The first
is that we assume the reward is given. However even if the reward model is provided, most past
work still has to learn the dynamics model for this world, which is still a significant undertaking.
The second reason is a feature of the CORL algorithm: its dynamics model uses the additional
information that the dynamics for one action for all states of the same type are identical. Here there
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Figure 1: Puddle world. The small square with a star in it denotes the goal region. The black ovals
represent the puddles and the black line represents a sample partial trajectory of an agent
navigating around this world.

is only a single type, so CORL must learn only 4 sets of transition parameters, one for each action.
Our goal here is simply to demonstrate that this additional information can lead to significantly
faster learning over other more general techniques.

Puddle world has previously been used in reinforcement-learning competitions, and our eval-
uation follows the procedure of the second bakeoff (Dutech et al., 2005). We initially generated
50 starting locations, and cycled through these when initializing each episode. Each episode goes
until the agent reaches the goal, or has taken 300 actions. We report results from taking the av-
erage reward within fifty sequential episodes (so the first point is the average reward of episodes
1-50, the second point is the average of episodes 51-100, etc.). We set Nat to be 15, and solved the
approximate MDP model using Fitted Value Iteration with Gaussian kernel functions. The kernel
means were spaced uniformly in a 20x20 grid across the state space (every 0.05 units), and their
standard deviation was set to 0.01. Note that in the limit as the standard deviation goes to 0 the func-
tion interpolation becomes equivalent to nearest neighbour. Nearest neighbour is the interpolation
method used in the approximate continuous-state MDP solver by Chow and Tsitsiklis (1991) which
provides guarantees on the resulting value function approximation. However, since computational
complexity scales exponentially with the grid discretization, practical application can require the use
of coarse grids. In this case, we found that using a smoother function interpolation method empiri-
cally outperformed a nearest neighbour approach. In particular, we found that a kernel width, which
is a measure of the standard deviation, of 0.01 gave the best empirical performance. This value lies
in the middle of kernel widths which are smaller than the variance of the dynamics models and the
grid spacing and those widths larger than the grid spacing and dynamics models.

We compare our results to the reported results of Jong and Stone (2007)’s Fitted R-max and to
Lagoudakis and Parr (2003)’s Least Squares Policy Iteration (LSPI).7 Fitted R-max is an instance-
based approach that smoothly interpolates the dynamics of unknown states with previously observed
transitions, and takes a similar approach for modeling the reward function. LSPI is a policy iteration
approach which uses a linear basis function representation of the state-action values, and uses a set
of sample transitions to compute the state-action values.

7. Both results reported come from the paper of Jong and Stone (2007).
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Algorithm Number of episodes
50 100 200 400

CORL −19.9 −18.4 −20.3 −18.7
Fitted R-max −130 −20 20 −20
LSPI −500 −330 −310 −80

Table 1: PuddleWorld results. Each entry is the average reward/episode received during the prior
50 episodes. Results for the other algorithms are as reported by Jong and Stone (2007).

On the first 50 episodes, Fitted R-max had an average reward of approximately−130, though on
the next 50 episodes it had learnt sufficiently good models that it reached its asymptotic performance
of an average reward of approximately −20. In contrast, CORL learned a good model of the world
dynamics within the very first episode, since it has the advantage of knowing that the dynamics
across the entire state space are the same. This meant that CORL performed well on all subsequent
episodes, leading to an average reward on the first 50 episodes of −19.9. Least Squares Policy
Iteration (Lagoudakis and Parr, 2003) learned slower than Fitted R-max. Results are summarized in
Table 1.

It is worth a short remark on the comparability of the reported results, as LSPI and Fitted R-
max were run without knowing the reward model. LSPI’s performance on a deterministic reward
reinforcement-learning problem such as PuddleWorld will be identical to its performance in the
known-reward case, as the rewards in the sampled transitions will be the same in either situation.
Given this, assuming known reward, as we do for CORL, will not change the LSPI results. In
contrast we do expect that Fitted R-max will be slightly faster if it does not have to learn the reward
model. This is because a wider interpolation width can be selected if the reward is known and only
the dynamics are unknown, since all states share the same dynamics. However, even in this case,
Fitted R-max will be approximating the Gaussian dynamics by a set of observed transitions, and so
it appears likely that CORL will still be faster than Fitted R-max since CORL assumes the (true)
parametric representation of the transition model.

In summary, given the reward function, CORL can learn a good dynamics model extremely
quickly in PuddleWorld, since the dynamics are typed-offset with a single type. This additional
information enables CORL to learn a good policy for puddle world much faster than Fitted R-max
and LSPI. This experiment illustrates the advantage of CORL when the transition dynamics are
known to be identical across the state space, and to follow a noisy offset model.

4.2 Catching a Plane

We next consider some examples with multiple types. Thousands of people now rely on internet
maps or GPS units to do efficient trip planning, and better traffic prediction is an area of recent
research (Horvitz et al., 2005). In many street systems, there exist a number of different classes
of road types according to the designated speed limits associated with these roads. These different
road types are often also associated with different variances. For example, while highways have
mean speeds that are faster than small side streets, highways typically have a very large variance;
rush hour highway speeds may often be slower than smaller side streets.
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Figure 2: Motivating example where an agent must drive from a start location (designated with an
S) to a goal area (shown with a highlighted rectangle) in time for a deadline, and can
choose to take large high speed and variance roads, or slower small variance roads.

In our first experiment we considered a scenario in which learning this variance is critical: an
agent must learn the best way to drive to an airport in time to catch a plane. A similar real-world
environment is depicted in Figure 2. The agent starts from home and can either drive directly along
a small side street, or cross over to the left or right to reach a main highway. The agent goes
forward more quickly on the highway (with a mean offset of 2 units), but the highway also has a
high variance of 0.49. In contrast, on the small side streets the agent goes forward more slowly (a
mean offset of 1 unit) but with very small variance (0.00001). The state space is four dimensional,
consisting of the agent’s current x and y location, its orientation, and the amount of time that has
passed. On each step five minutes pass. The agent can drive in a 14 by 19 region: outside of this is
considered to be too far away.8 If the agent exits this region it receives a reward of −1. The cost for
each step is −0.05, the reward for reaching the airport in time for check in is +1 and the cost for
not making the airport in time is−1. The discount factor is set to 1.0. Nat was set to 10. An episode
starts when the agent takes its first step and lasts until the agent reaches the goal, exits the allowed
region, or reaches the time at which check in for the plane closes. The agent starts at location 7,3
facing north, and must figure out a way to reach the goal region which spans [6.5−8.5,15.5-17.5].
To solve the underlying MDP, fitted value iteration was used. The fixed points were regularly spaced
grid points with 15 across the x dimension, 20 across the y dimension, 4 orientation angles, and 21
time intervals. This yielded over 25,000 fixed points.

The correct path to take depends on the amount of time left. Here we explored three different
deadline scenarios: when the agent has 60 minutes remaining (RunningLate), 70 minutes remaining
(JustEnough), or 90 minutes remaining until check in closes for the plane (RunningEarly). In all
three scenarios, the agent learned a good enough model of the dynamics within 15 episodes to
compute a good policy. Note that using a naı̈ve discretization of the space with the FVI fixed points
as states and applying R-max would be completely intractable, as a different model would have to
be learned for each of over 25,000 states. We display results for all three scenarios in Table 2. In

8. Note that this could be a reasonable assumption in some cases, such as when doctors had to stay within a certain
radius of a hospital when on call.
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Figure 3: (a) Simulated world map showing example environment. (b) World divided into a set of
discrete types. Agent starts at driveway (black circle) and tries to learn a good route to
reach work. (c) An example section of a car trajectory (constructed from a set of GPS
locations).

the RunningLate scenario the agent learned that the side streets are too slow to allow it to ever reach
the airport in time. Instead it took the higher variance highway which enables it to reach the airport
in time in over half the episodes after Nat is reached for all types: its average reward is −0.4833
and it takes on average 56.62 minutes for it to reach the airport. In JustEnough the agent learned
that the speed of side streets is sufficiently fast for the agent to reach the airport consistently in time,
whereas the higher speed and variance highway would result in the agent failing to reach the check
in time in some cases. Here the agent always reached the goal and receives an average reward of
0.45. In the RunningEarly scenario, the agent has enough time so that it can take either route and
reliably reach the airport in time. In this scenario it learned to always take the highway, since in
expectation that route will be faster. The average reward here was 0.4629.

This simulation serves to illustrate that our algorithm can quickly learn to perform well, in
situations in which learning the variance is critical to ensure good performance.

4.3 Driving to Work

In our second experiment we again consider a simulated trip routing problem, but we now generate
transitions in the simulator by sampling from real traffic data distributions. Here an agent must learn
the best series of actions to drive from home to work in a small simulated world (see Figure 3(a)
and 3(b)). The state consists of the current coordinates (x,y) and the orientation of the agent. There
are three road types and each road type is associated with a different distribution of speeds. The

Scenario Deadline (min) Mean Reward/Episode Mean Time to Reach Goal (min)
RunningLate 60 −0.4833 56.62
JustEnough 70 0.45 60
RunningEarly 90 0.4629 58.6

Table 2: Catching a plane: results after Nat has been reached for all types.
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Figure 4: A histogram of car speeds on small roads that is used to generate transitions on road type
2 and the estimated dynamics model parameters found during the experiment

distributions were obtained from the CarTel project (Eriksson et al., 2008), which consists of a set
of car trajectories from the Boston, Massachusetts area. GPS locations and time stamps are stored
approximately every second from a fleet of 27 cars.9 A section from one car trajectory is shown
in Figure 3(c). Using this data set we extracted car trajectories on an interstate highway, small
side streets and a local highway: these constitute types 1, 2 and 3 respectively in the simulation
world. Each car trajectory consisted of a set of D GPS+time data points, which was converted
into a set of D− 1 transitions. Each transition in the simulation was sampled from these real-
world transitions; for example, transitions in the simulator on road type 2 were sampled from real-
world transitions on small side streets. Transitions from all three road types were all rescaled by
the same constant in order to make the distances reasonable for the simulated world.10 Figure 4
displays a histogram of rescaled transitions associated with small side streets. This figure shows
that the speed distribution for small side streets was not Gaussian: the speed distribution for the
other two street types was also not Gaussian. In particular, in no trajectories used does the car ever
go backwards, whereas in some Gaussian models there will be small probability of this occurring.
In this experiment we sought to investigate how well a noisy offset model could function in this
environment, and the benefit of directly modelling different types of roads. Each transition in the
simulated environment was sampled from the histogram of speeds associated with the road type at
the agent’s current position. Therefore, the data from the simulator is closer to the real environment
than to the Gaussian distributions assumed by the learning algorithm.

The agent received a reward of 1 for reaching the work parking lot, −0.05 for each step, and
−1 if it left the local area. Each episode finished when the agent either reached the goal, left the
local area, or had taken 100 steps. An agent can go left, right or straight at each step. The transition
induced by a straight action was determined by the road type as specified in the prior paragraph,
and going left or right changed the orientation of the agent by 90 degrees with a very small amount
of noise. The number of samples needed until a type-action tuple is known, Nat , was set to be 20.
The discount factor was 1. The agent was always started in the same location and was allowed
to learn across a set of 50 episodes. Results were averaged across 20 rounds of 50 episodes per

9. See more information about the project at http://cartel.csail.mit.edu/.
10. We also removed outlier transitions, as extremely fast speeds/transitions were likely to be errors in the log file.
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Figure 5: Reward versus episode. (a) Compares CORL with 3 types and 1 type to Q-learning.
Results are averaged over 20 rounds (50 episodes per round). Error bars show 95% con-
fidence intervals. (b) Shows Q-learning with 500 episodes per round, averaged over 100
rounds.

round. In one experiment the agent was given full knowledge of the three world types, and learned
a different dynamics model for each type and action. In the second experiment the agent assumed
there was only a single type and learned a dynamics model for each action. We also compared our
approach toQ-learning over a uniformly-spaced discrete grid over the environment with an "-greedy
policy. We used a discretization that was identical to the fixed points used in the fitted value iteration
planner of CORL. Points were mapped to their nearest neighbors. Q-learning requires specifying
two parameters: the learning rate . which determines how much to adjust the state-action value
estimates after each update, and " which specifies how often to take a random action instead of the
action that maximizes the current Q values. In this experiment . was set to 1.0 and decreased by
multiplying by a factor of 0.9999 at each step.11 We set " to be 0.1.

The CORL results are displayed in Figure 5(a). This figure displays three encouraging results.
The first is that in both CORL algorithms the agent learned to consistently reach the goal: the only
way that the agent can receive a reward greater than−1 is to reach the goal, and all confidence inter-
vals lie above −1 for all episodes after 10, indicating that the agent in both cases was successfully
reaching the goal. This is promising because even though the underlying dynamics models were not
exactly Gaussian noisy offset dynamics, a noisy offset model approximation was sufficient for the
agent to learn a good policy in this environment. The estimated parameters computed for one type
and action are displayed in Figure 4.

The second result is that the policy found by the agent that models all three types differently
resulted in significantly higher reward than modeling the world with a single type: its performance
suffered initially because it takes longer to learn a model of the world dynamics, but from about
episode 10-50 modelling all types separately resulted in significantly higher reward per episode
than modelling all types as the same. Table 3 displays the average reward of both approaches on
episodes 10-50. These results demonstrate that traffic data does exhibit different speed distributions

11. We tried different decay factors for the . parameter but found that this worked better than decaying . more rapidly.
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Algorithm Average reward/episode
CORL with 3 types 0.27
CORL with 1 type 0.00
Q-learning −3.2485

Table 3: Average reward on episodes 10-50 for the driving to work example.

on different types of roads, and that by considering such differences CORL can improve route
directions even in a small simulated example.

The third result is that both CORL algorithms significantly outperformed Q-learning: again see
Table 3 for comparing the short term performance of Q-learning to the CORL algorithm. This is not
surprising sinceQ-learning is a model-free approach that trades off speed of computation per step in
return for not requiring consistency between its state values through learned reward and dynamics
models. Here in particular there is a large amount of structure in the domain that Q-learning cannot
use. Q-learning does eventually begin to consistently reach the goal but this is only after about 500
episodes, more than an order of magnitude longer than the CORL algorithms took to find a good
policy. These results are displayed in Figure 5(b). Such results argue that in situations where data
is costly to gather, using a model can be extremely helpful.

4.4 Robot Navigation Over Varying Terrain

We also tried our algorithm in a real-life robotic environment involving a navigation task where
a robotic car must traverse multiple surface types to reach a goal location. This experiment is a
second example where a noisy offset dynamics model provides a sufficiently good representation of
the real-world dynamics to allow our algorithm to learn good policies. We compared to the RAM-
Rmax algorithm (Leffler et al., 2007), a provably efficient RL algorithm for learning in discrete-state
worlds with types. The authors demonstrated that, by explicitly representing the types, they could
get a significant learning speedup compared to R-max, which learns a separate dynamics model
for each state. The RAM-Rmax algorithm represents the dynamics model using a list of possible
next outcomes for a given type. CORL works directly with continuous-valued states, resulting
in the improved sample complexity discussed earlier. This is achieved through assuming a fixed
parametric representation of the dynamics, which is a less flexible model than the one used in RAM-
Rmax. In this experiment we were interested in whether our representation was still rich enough
to capture the real world dynamics involved in varying terrain traversal. We also investigated the
computational load of CORL compared to RAM-Rmax, since by restricting our representation size
we hoped to also achieve computational savings.

In this experiment we ran a LEGO R© Mindstorms NXT robot (see Figure 6(b)) on a multi-
surface environment. A tracking pattern was placed on the top of the robot and an overhead camera
was used to determine the robot’s current position and orientation. The domain, shown in Fig-
ure 6(a), consisted of two types of terrain: rocks embedded in wax and a carpeted area. The goal
was for the agent to begin in the start location (indicated in the figure by an arrow) and end in the
goal without going outside the environmental boundaries. The rewards were −1 for going out of
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(a) (b)

Figure 6: (a) Image of the environment. The start location and orientation is marked with an arrow.
The goal location is indicated by the circle.(b) LEGO R© robot.

bounds, +1 for reaching the goal, and −0.01 for taking an action. Reaching the goal and going out
of bounds ended the episode and resulted in the agent getting moved back to the start location.12

Due to the close proximity of the goal to the boundary, the agent needs an accurate dynamics
model to reliably reach the goal. Part of the difficultly of this task is that the actions were going
forward, turning left, and turning right. Without the ability to move backwards, the robot needed to
approach the goal accurately to avoid falling out of bounds.

For the experiments, we compared our algorithm (“CORL”) and the RAM-Rmax algorithm
(“RAM”). The fixed points for the fitted value iteration portion of our algorithm were set to the
discretized points of the RAM-Rmax algorithm. Both algorithms used an EDISON image segmen-
tation system to uniquely identify the current surface type. The reward function was provided to
both algorithms.

The state space is three dimensional: x, y position and orientation. Our algorithm implementa-
tion for this domain used a full covariance matrix to model the dynamics variance. For the RAM-
Rmax agent, the world was discretized to a forty-by-thirty-by-ten state space. In our algorithm, we
used a function approximator of a weighted sum of Gaussians, as described in Section 2. We used
the same number of Gaussians to represent the value function as the size of the state space used in
the discretized algorithm, and placed these fixed Gaussians at the same locations. The variance over
the x and y variables was independent of each other and of orientation, and was set to be 16. To
average orientation vectors correctly (so that −180◦ degrees and 180◦ do not average to 0) we con-
verted orientations / to a Cartesian coordinate representation x/ = cos(/),y/ = sin(/). The variance
over these two was set to be 9 for each variable (with zero covariance). For our algorithm and the
RAM-Rmax algorithm, the value of Nat was set to four and five, respectively, which was determined
after informal experimentation. The discount factor was set to 1.

Figure 7(a) shows the average reward with standard deviation for each of the algorithms over
three runs. Both algorithms are able to receive near-optimal reward on a consistent basis, choosing

12. A video of the task can be seen at http://people.csail.mit.edu/emma/corl/SuccessfulRun.mov and http:
//people.csail.mit.edu/emma/corl/SuccessfulRun.wmv.
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Figure 7: (a) Reward received by algorithms averaged over three runs. Error bars show one standard
deviation. (b) Total time taken by algorithms averaged over three runs. Error bars show
one standard deviation.

similar paths to the goal. Our dynamics representation is sufficient to allow our algorithm to learn
well in this real-life environment.

In addition, by using a fixed size (parametric) dynamics representation, the computational time
per episode of our algorithm is roughly constant (Figure 7(b)). In the implementation of RAM-
Rmax, the computational time grew with the number of episodes due to its dynamics model repre-
sentation. This suggests that using a fixed size dynamics representation can have significant com-
putation benefits. Overall CORL performed well in this domain, both in terms of reward achieved
and computation required.

5. Conclusion and Future Work

In this paper we have presented CORL, an algorithm for efficiently learning to act in typed, continuous-
state environments. CORL has a sample complexity that scales polynomially with the state space
dimension and the number of types: this bound also directly incorporates the error due to approxi-
mate planning. Experiments on a simulated driving example using real world car data, and a small
robot navigation task, suggest that noisy offset dynamics are a sufficiently rich representation to
allow CORL to perform well in some real-world environments.

Due to the approximate MDP planning, we cannot currently guarantee both polynomial sample
complexity and polynomial computational complexity. There are a number of recent advances
in continuous-state MDP planning (Kocsis and Szepesvári, 2006; Kveton and Hauskrecht, 2006;
Marecki and Tambe, 2008) as well as alternate approaches such as forward search techniques. In
the future it would be interesting to investigate whether there exist alternate MDP planners that
can provide "-close approximations to the exact solutions with a computational complexity that
scales polynomially with the number of state dimensions. Such approaches would enable CORL
to achieve the appealing goal of polynomial dependence on the number of state dimension for both
sample complexity and computational complexity.
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Finally, the bounds provided remain overly large for many practical applications. We are broadly
interested in developing techniques that can tighten the gap between the theoretical bounds and those
needed for practical performance in real-world reinforcement learning.
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Appendix A.

Lemma 5 Assumemaxd |!̃d−!d|≤ " for "< 1/4. Given any (> 0, define T* = 12N2B2*
("2 . If there are

T* transition samples (s,a,s′), then with probability at most (3 , the estimated covariance parameter
*̃i j, computed by Equation 3, deviates from the true covariance parameter *i j by more than " over
all entries i j; formally, Pr(maxi |*̃i j−*i j|≥ ") ≤ (

3 .
Proof First recall that *i j represents the covariance between dimensions i and j. We are interested in
the probability that the estimated covariance *̃i j differs from the true parameter *i j: Pr(|*̃i j−*i j|≥
"). From Chebyshev’s inequality, we can bound this expression as

Pr(|*̃i j−*i j|≥ ") ≤
Var(*̃i j)

"2
, (11)

where Var(*̃i j) is the variance of the sample variance.
We therefore require an upper bound on the variance of the sample covariance. We will derive

a bound on this below in the general case of the covariance between two variables x and y both of
which are Gaussian distributed.

Var(*̃xy) = E[(*̃xy−*xy)
2]

= E





(

1
T*

T*
&
k=1

(xk− x̄)(yk− ȳ)−*xy

)2




where x̄ and ȳ are the respective sample means, and in the second line we have written out the
definition of the sample covariance. We can then use the linearity of expectation to derive

Var(*̃xy) =
1
T 2*

T*
&
k=1

T*
&
m=1

E[(xk− x̄)(xm− x̄)(yk− ȳ)(ym− ȳ)]

−2*xy
1
T*

T*
&
k=1

E[(xm− x̄)(ym− ȳ)]+E[(*xy)
2]

=
1
T 2*

T*
&
k=1

T*
&
m=1

E[(xk− x̄)(xm− x̄)(yk− ȳ)(ym− ȳ)]− (*xy)2
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where the second line follows from the definition of the covariance *xy. We next divide the summa-
tion into two expressions, when m= k and when m 1= k, and use the property that the expectation of
independent variables is the product of their expectations:

Var(*̃xy) =
1
T*
E[(xk−x̄)2(yk−ȳ)2]+

T*(T*−1)
T 2*

E[(xk−x̄)(yk−µk)]E[(xm−x̄)(ym−ȳ)]−(*xy)
2

=
1
T*
E[(xk− x̄)2(yk− ȳ)2]+

T*(T*−1)
T 2*

(*xy)2− (*xy)2.

We can now use the Cauchy-Schwarz inequality on the first term to get

Var(*̃xy) ≤
1
T*

√

E[(xk− x̄)4]E[(yk− ȳ)4]+
T*(T*−1)

T 2*
(*xy)

2− (*xy)
2

=
1
T*

√

E[(xk+µx−µx− x̄)4]E[(yk+µy−µy− ȳ)4]+
T*(T*−1)

T 2*
(*2xy)

2−(*2xy)
2

=
1
T*

√

(3*4xx+6*2xx(x̄−µx)2+(x̄−µx)4)(3*4yy+6*2yy(ȳ−µy)2+(ȳ−µy)4)

+
T*(T*−1)

T 2*
(*xy)2− (*xy)2

where we have used the fact that the fourth central moment of a Gaussian distribution is 3*2xx in the
final line. Next we make use of the assumptions that B* is an upper bound to all covariance matrix
elements and the bound on the maximum error in the parameter offset estimates:

Var(*̃2xy) ≤
("4+6"2B*+3B2*)

T*
+
T*(T*−1)

T 2*
(*xy)

2− (*xy)
2

≤
4B2*
T*

where the last line follows because " < 1/4 and B* ≥ 1. We can then substitute this result into
Equation 11 which yields

P(|*̃i j−*i j|≥ ") ≤
4B2*
"2T*

.

To ensure that this bound holds simultaneously with probability (
3 for all N

2 covariance matrix
elements it suffices by the union bound to require that each covariance entry exceeds its expected
value by more than " with probability at most (

3N2 :

4B2*
"2T*

≤
(
3N2

.

Re-arranging yields the bound for the required number of samples:

T* ≥
12N2B2*
("2

.
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Lemma 8 If maxi, j |#1(i, j)−#2(i, j)|≤ " for any 1≤ i, j ≤ N, then
∣

∣

∣

∣

ln
det#2
det#1

∣

∣

∣

∣

≤ N"
(

1
+1

+
1
+2

+ · · ·+
1
+N

)

≤
N2"
+N

.

Proof Define E = #2 − #1. Clearly, E is symmetric since both #1 and #2 are symmetric. Its
eigenvalues are denoted by 01 ≥ 02 ≥ · · · ≥ 0N , which are real (but can be negative or positive).
First, it is known that

det#1 =
N

1
i=1

+i & det#2 =
N

1
i=1

+′i.

Therefore,

ln
det#2
det#1

= ln
N

1
i=1

+′i
+i

=
N

&
i=1
ln
+′i
+i

.

From Geršgorin’s theorem (Horn and Johnson, 1986, Theorem 6.1.1), the eigenvalues of E must
be small as the elements of E are small. Specifically, each 0i must lie in one of the n Geršgorin
discs:

∀1≤ j ≤ N : Dj = {x ∈ R | |x−E( j, j)|≤ &
j′ 1= j

∣

∣E( j, j′)
∣

∣}.

It follows immediately that

|0i|≤
N

&
j=1

|E(i, j)|≤ N"

as every component in E lies in [−","].
On the other hand, from Weyl’s theorem (Horn and Johnson, 1986, Theorem 4.3.1), we have

01 ≥ +′i−+i ≥ 0N .

We have just proved that both |01| and |0N | are at most N", and thus
∣

∣+′i−+i
∣

∣ ≤ N".

Consequently,
+′i
+i

≤
+i+N"
+i

= 1+
N"
+i

.

Therefore, we have

ln
det#2
det#1

=
N

&
i=1
ln
+′i
+i

≤
N

&
i=1
ln

(

1+
N"
+i

)

≤
N

&
i=1

N"
+i

≤
(N)2"
+N

where the second to last inequality uses the inequality ln(1+ x) ≤ x for x≥ 0.

The following lemmas will be useful to prove Lemma 9.
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Lemma 11 (Lemma 2.7.1 and Theorem 2.7.2 from Golub and Van Loan 1996) Suppose Ax = b
and (A+ ,A)y = b+ ,b with ‖,A‖ ≤ "‖A‖ and ‖,b‖ ≤ "‖b‖. If "2(A) < 1, then A+ ,A is
nonsingular, and

‖y− x‖
‖x‖

≤
2"2(A)

1− "2(A)
,

where ‖·‖ can be any !p matrix/vector norm, and 2(A) = ‖A‖
∥

∥A−1∥
∥ is the corresponding condition

number.

Lemma 12 (A trace inequality of von Neumann 1937) Let A and B be two symmetric matrices of
order n, whose singular values are 31 ≥ 32 ≥ · · ·≥ 3n ≥ 0 and )1 ≥ )2 ≥ · · ·≥ )n ≥ 0, respectively.
Then

|tr(AB)|≤
n

&
i=1

3i)i.

Lemma 13 Suppose the covariance matrix #1 is non-singular; that is its eigenvalues +1 : +N > 0.
Then

tr
(

#−11
)

=
N

&
i=1

1
+i

≤
N
+N

max
i j

|#−11 (i, j)| ≤ ||#−11 ||1

||#−11 ||1 ≤
√
N||#−11 ||2 =

√
N

+N
.

Proof We prove the three upper bounds one by one:

1. It is a known fact that the trace of a matrix equals the sum of its eigenvalues. The first equality
follows from the observation that the eigenvalues of #−11 are 1

+1
, 1+2 , . . . ,

1
+N

.

2. This inequality follows from the definition of ||#−11 ||1: it is the maximum absolute row sum
of the matrix #−11 , and therefore is not less than the largest absolute component of the matrix.

3. It is known that ||A||1 ≤
√
N||A||2 for any N×N matrix A (see, eg. theorem 5.6.18 in Horn

and Johnson 1986). On the other hand, ||#−11 ||2 equals the largest eigenvalue of #−11 , which
is 1

+N
.

Lemma 9 If maxi, j |#1(i, j)−#2(i, j)|≤ " and N"
∥

∥#−11
∥

∥

1 < 1, then

tr
(

#−12 #1
)

−N ≤
2N3"B*

+2N− (N)1.5+N"
.

Proof The i-th row (or column) of #−11 is the solution to the system of linear equations: #1x = ei
where ei has N− 1 zero components except a 1 in the i-th component. Similarly, the i-th row (or
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column) of #−12 is the solution to #2y= ei. Since #1 and #2 differ by at most " in every component,
we have

‖#1−#2‖1
‖#1‖1

≤
N"

‖#1‖1
.

For convenience, denote the right-hand side above by "′. It follows from Lemma 11 that

‖x− y‖1 ≤
2"′2(#1)‖x‖1
1− "′2(#1)

.

The above inequality holds for all N possible e values. Note that ‖x− y‖1 is the absolute sum of
the i-th row (or column) of #−11 −#−12 for ei. Let 01 ≥ 02 ≥ · · ·≥ 0N ≥ 0 be the singular values of
#−11 −#−12 . From Geršgorin’s theorem, it follows that for all i,

0i ≤maxe ‖x− y‖1 ≤
2"′2(#1)
1− "′2(#1)

max
e

‖x‖1 =
2"′2(#1)
1− "′2(#1)

∥

∥#−11
∥

∥

1 (12)

where 2(#1) = ‖#1‖
∥

∥#−11
∥

∥ the condition number of #1. We can now complete the proof:

tr
(

#−12 #1
)

−N = tr
(

(#−12 −#−11 )#1
)

(13)

≤
N

&
i=1

0i+i (14)

≤
2"′2(#1)

∥

∥#−11
∥

∥

1
1− "′2(#1)

N

&
i=1

+i (15)

=
2"′2(#1)

∥

∥#−11
∥

∥

1
1− "′2(#1)

tr(#1) (16)

=
2N"

∥

∥#−11
∥

∥

2
1

1−N"
∥

∥#−11
∥

∥

1
tr(#1) (17)

=
2N2B*"

∥

∥#−11
∥

∥

2
1

1−N"
∥

∥#−11
∥

∥

1
, (18)

≤
2N3"B*

+2N− (N)1.5+N"
. (19)

The first equality (Equation 13) is due to the identity tr
(

#−11 #1
)

= tr(I) =N, and the first inequality
(Equation 14) is a direct application of von Neumann’s inequality (Lemma 12) which can be used
since the eigenvalues +i are also the singular values in this case. The second inequality (Equation 15)
follows from the result of Equation 12, the second equality (Equation 16) follows by the definition of
matrix traces, and the third equality (Equation 17) is obtained by noting that 2(#1) = ‖#1‖1

∥

∥#−11
∥

∥

1.
Since each term in the covariance matrix is known to be bounded by B* then the trace is bounded
by NB* which allows us to generate the fourth equality (Equation 18). The final result is obtained
using the result of Lemma 13.
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Lemma 14 (Theorem from Kullback 1967) Let p1 and p2 be two probability density functions
defined over X . Define

4= {x ∈ X | p1(x) ≥ p2(x)}.

If p1 and p2 are both measurable (integrable) over 4, then

dKL(p1 ‖ p2) ≥
1
8
‖p1− p2‖21 .
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Abstract
Nearest neighbor graphs are widely used in data mining and machine learning. A brute-force
method to compute the exact kNN graph takes !(dn2) time for n data points in the d dimensional
Euclidean space. We propose two divide and conquer methods for computing an approximate kNN
graph in !(dnt) time for high dimensional data (large d). The exponent t ∈ (1,2) is an increasing
function of an internal parameter " which governs the size of the common region in the divide step.
Experiments show that a high quality graph can usually be obtained with small overlaps, that is, for
small values of t. A few of the practical details of the algorithms are as follows. First, the divide step
uses an inexpensive Lanczos procedure to perform recursive spectral bisection. After each conquer
step, an additional refinement step is performed to improve the accuracy of the graph. Finally, a
hash table is used to avoid repeating distance calculations during the divide and conquer process.
The combination of these techniques is shown to yield quite effective algorithms for building kNN
graphs.
Keywords: nearest neighbors graph, high dimensional data, divide and conquer, Lanczos algo-
rithm, spectral method

1. Introduction

Building nearest neighbor graphs is often a necessary step when dealing with problems arising from
applications in such areas as data mining (Brito et al., 1997; Dasarathy, 2002), manifold learning
(Belkin and Niyogi, 2003; Roweis and Saul, 2000; Saul and Roweis, 2003; Tenenbaum et al., 2000),
robot motion planning (Choset et al., 2005), and computer graphics (Sankaranarayanan et al., 2007).
Given a set of n data points X = {x1, . . . ,xn}, a nearest neighbor graph consists of the vertex set X
and an edge set which is a subset of X ×X . The edges are defined based on a proximity measure
#(xi,x j) between two data points xi and x j, where a small # value means that the two points are

c©2009 Jie Chen, Haw-ren Fang and Yousef Saad.
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close. Two types of nearest neighbor graphs (Belkin and Niyogi, 2003; He and Niyogi, 2004) are
often used:

1. $-graph: This is an undirected graph whose edge set consists of pairs (xi,x j) such that #(xi,x j)
is less than some pre-defined threshold $ ∈ R+.

2. kNN graph: This is a directed graph (in general). There is an edge from xi to x j if and only if
#(xi,x j) is among the k smallest elements of the set {#(xi,x!) | ! = 1, . . . , i−1, i+1, . . . ,n}.

The $-graph is geometrically motivated, and many efficient algorithms have been proposed for com-
puting it (see, e.g., Bentley et al., 1977; Chazelle, 1983). However, the $-graph easily results in dis-
connected components (Belkin and Niyogi, 2003) and it is difficult to find a good value of $ which
yields graphs with an appropriate number of edges. Hence, they are not suitable in many situations.
On the other hand, kNN graphs have been shown to be especially useful in practice. Therefore,
this paper will focus on the construction of kNN graphs, for the case when #(·, ·) is the Euclidean
distance between two points in the Rd .

When k = 1, only the nearest neighbor for each data point is considered. This particular case,
the all nearest neighbors problem, has been extensively studied in the literature. To compute the
1NN graph, Bentley (1980) proposed a multidimensional divide-and-conquer method that takes
O(n logd−1 n) time, Clarkson (1983) presented a randomized algorithm with expected O(cdn logn)
time (for some constant c), and Vaidya (1989) introduced a deterministic worst-caseO((c′d)dn logn)
time algorithm (for some constant c′). These algorithms are generally adaptable to k > 1. Thus,
Paredes et al. (2006) presented a method to build a kNN graph, which was empirically studied and
reported to requireO(n1.27) distance calculations for low dimensional data andO(n1.90) calculations
for high dimensional data. Meanwhile, several parallel algorithms have also been developed (Calla-
han, 1993; Callahan and Rao Kosaraju, 1995; Plaku and Kavraki, 2007). Despite a rich existing
literature, efficient algorithms for high dimensional data are still under-explored. In this paper we
propose two methods that are especially effective in dealing with high dimensional data.

Note that the problem of constructing a kNN graph is different from the problem of nearest
neighbor(s) search (see, e.g., Indyk, 2004; Shakhnarovich et al., 2006, and references therein),
where given a set of data points, the task is to find the k nearest points for any query point. Usually,
the nearest neighbors search problem is handled by first building a data structure (such as a search
tree) for the given points in a preprocessing phase. Then, queries can be answered efficiently by ex-
ploiting the search structure. Of course, the construction of a kNN graph can be viewed as a nearest
neighbors search problem where each data point itself is a query. However, existing search methods
in general suffer from an unfavorable trade-off between the complexity of the search structure and
the accuracy of the query retrieval: either the construction of the search structure is expensive, or
accurate searches are costly. The spill-tree (sp-tree) data structure (Liu et al., 2004) is shown to be
empirically effective in answering queries, but since some heuristics (such as the hybrid scheme)
are introduced to ensure search accuracy, the construction time cost is difficult to theoretically ana-
lyze. On the other hand, many (1+ $) nearest neighbor search methods1 have been proposed with
guaranteed complexity bounds (Indyk, 2004). These methods report a point within (1+$) times the
distance from the query to the actual nearest neighbor. Kleinberg (1997) presented two algorithms.
The first one has a O((d log2 d)(d+ logn)) query time complexity but requires a data structure of

1. The $ parameter here is different from that in the “$-graph”.
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size O(n logd)2d , whereas the second algorithm uses a nearly linear (to dn) data structure and re-
sponds to a query in O(n+d log3 n) time. By using locality sensitive hashing, Indyk and Motwani
(1998) gave an algorithm that usesO(n1+1/(1+$) +dn) preprocessing time and requiresO(dn1/(1+$))
query time. Another algorithm given in Indyk and Motwani (1998) is a O(d poly log(dn)) search al-
gorithm that uses a O(n(1/$)O(d) poly log(dn)) data structure. Kushilevitza et al. (2000) proposed a
O((dn)2(n log(d logn/$))O($−2) poly(1/$)poly log(dn/$)) data structure that can answer a query in
O(d2 poly(1/$)poly log(dn/$)) time. In general, most of the given bounds are theoretical, and have
an inverse dependence on $, indicating expensive costs when $ is small. Some of these methods
can potentially be applied for the purpose of efficient kNN graph construction, but many aspects,
such as appropriate choices of the parameters that control $, need to be carefully considered before
a practically effective algorithm is derived. Considerations of this nature will not be explored in the
present paper.

The rest of the paper is organized as follows. Section 2 proposes two methods for computing
approximate kNN graphs, and Section 3 analyzes their time complexities. Then, we show a few ex-
periments to demonstrate the effectiveness of the methods in Section 4, and discuss two applications
in Section 5. Finally, conclusions are given in Section 6.

2. Divide and Conquer kNN

Our general framework for computing an approximate kNN graph is as follows: We divide the set of
data points into subsets (possibly with overlaps), recursively compute the (approximate) kNN graphs
for the subsets, then conquer the results into a final kNN graph. This divide and conquer framework
can clearly be separated in two distinct sub-problems: how to divide and how to conquer. The
conquer step is simple: If a data point belongs to more than one subsets, then its k nearest neighbors
are selected from its neighbors in each subset. However, the divide step can be implemented in many
different ways, resulting in different qualities of graphs. In what follows two methods are proposed
which are based on a spectral bisection (Boley, 1998; Juhász and Mályusz, 1980; Tritchler et al.,
2005) of the graph obtained from an inexpensive Lanczos procedure (Lanczos, 1950).

2.1 Spectral Bisection

Consider the data matrix
X = [x1, . . . ,xn] ∈ R

d×n

where each column xi represents a data point in Rd . When the context is clear, we will use the same
symbol X to also denote the set of data points. The data matrix X is centered to yield the matrix:

X̂ = [x̂1, . . . , x̂n] = X− ceT ,

where c is the centroid and e is a column of all ones. A typical spectral bisection technique splits X̂
into halves using a hyperplane. Let (%,u,v) denote the largest singular triplet of X̂ with

uT X̂ = %vT . (1)

Then, the hyperplane is defined as 〈u,x− c〉 = 0, that is, it splits the set of data points into two
subsets:

X+ = {xi | uT x̂i ≥ 0} and X− = {xi | uT x̂i < 0}.
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This hyperplane maximizes the sum of squared distances between the centered points x̂i to the
hyperplane that passes through the centroid. This is because for any hyperplane 〈w,x− c〉 = 0,
where w is a unit vector, the squared sum is

n

&
i=1

(wT x̂i)2 =
∥

∥wT X̂
∥

∥

2
2 ≤

∥

∥X̂
∥

∥

2
2 = %2,

while w= u achieves the equality.
By a standard property of the SVD (Equation 1), this bisection technique is equivalent to split-

ting the set by the following criterion:

X+ = {xi | vi ≥ 0} and X− = {xi | vi < 0}, (2)

where vi is the i-th entry of the right singular vector v. If it is preferred that the sizes of the two
subsets be balanced, an alternative is to replace the above criterion by

X+ = {xi | vi ≥m(v)} and X− = {xi | vi <m(v)}, (3)

where m(v) represents the median of the entries of v.
The largest singular triplet (%,u,v) of X̂ can be computed using the Lanczos algorithm (Lanc-

zos, 1950; Berry, 1992). In short, we first compute an orthonormal basis of the Krylov subspace
span{q1,(X̂T X̂)q1, . . . ,(X̂T X̂)s−1q1} for an arbitrary initial unit vector q1 and a small integer s. Let
the basis vectors form an orthogonal matrix

Qs = [q1, . . . ,qs].

An equality resulting from this computation is

QT
s (X̂T X̂)Qs = Ts,

where Ts is a symmetric tridiagonal matrix of size s× s. Then we compute the largest eigenvalue
'(s) and corresponding eigenvector ys of Ts:

Tsys = '(s)ys.

Therefore, '(s) is an approximation to the square of the largest singular value %, while the vector
ṽs ≡Qsys is an approximation of the right singular vector v of X̂ . The acute angle ∠(ṽs,v), between
ṽs and v decays rapidly with s, as is shown in an error bound established in Saad (1980):

sin∠(ṽs,v) ≤
K

Cs−1(1+ (1)

where K is a constant, Ck denotes the Chebyshev polynomial of degree k of the first kind, and (1 =
()1−)2)/()2−)n) in which the )i’s denote the eigenvalues of X̂T X̂ , that is, the squared singular
values of X̂ , ordered decreasingly. Note that we have Cs−1(1+ (1) = cosh[(s− 1)cosh−1(1+ (1)],
in which cosh is the hyperbolic cosine. Therefore, a small value of s will generally suffice to yield
an accurate approximation. Note that an exact singular vector is not needed to perform a bisection,
so we usually set a fixed value, say s = 5, for this purpose. The computation of the orthonormal
basis takes time !(sdn), while the time to compute '(s) and ys is negligible, since Ts is symmetric
tridiagonal and s is very small. Hence the time for computing the largest singular triplet of X̂ is
bounded by O(sdn).
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2.2 The Divide Step: Two Methods

Based on the above general bisection technique, we propose two ways to perform the divide step for
computing an approximate kNN graph. The first, called the overlap method, divides the current set
into two overlapping subsets. The second, called the glue method, divides the current set into two
disjoint subsets, and uses a third set called the gluing set to help merge the two resulting disjoint
kNN graphs in the conquer phase. See Figure 1. Both methods create a common region, whose size
is an "-portion of that of the current set, surrounding the dividing hyperplane. Details are given
next.

hyperplane

X1 X2

(a) The overlap method.

hyperplane

X1 X2X3

(b) The glue method.

Figure 1: Two methods to divide a set X into subsets. The size of the common region in the middle
surrounding the hyperplane is an "-portion of the size of X .

2.2.1 THE OVERLAP METHOD

In this method, we divide the set X into two overlapping subsets X1 and X2:
{

X1∪X2 = X ,

X1∩X2 -= /0.

Since %vi is the signed distance from x̂i to the hyperplane, let the set V be defined as

V = {|vi| | i= 1,2, . . . ,n}.

Then we use the following criterion to form X1 and X2:

X1 = {xi | vi ≥−h"(V )} and X2 = {xi | vi < h"(V )}, (4)

where h"(·) is a function which returns the element that is only larger than (100")% of the elements
in the input set. The purpose of criterion (4) is to ensure that the overlap of the two subsets consists
of (100")% of all the data, that is, that2

|X1∩X2| = ."|X |/ .

2. Here, we assume that the distances between points and the hyperplane are all different. Ties are broken arbitrarily.
The same is done for the glue method.

1993



CHEN, FANG AND SAAD

2.2.2 THE GLUE METHOD

In this method, we divide the set X into two disjoint subsets X1 and X2 with a gluing subset X3:


















X1∪X2 = X ,

X1∩X2 = /0,

X1∩X3 -= /0,

X2∩X3 -= /0.

The criterion to build these subsets is as follows:

X1 = {xi | vi ≥ 0}, X2 = {xi | vi < 0},
X3 = {xi |−h"(V ) ≤ vi < h"(V )}.

Note that the gluing subset X3 in this method is exactly the intersection of the two subsets in the
overlap method. Hence, X3 also contains (100")% of the data.

2.3 Refinement

In order to improve the quality of the resulting graph, during each recursion after the conquer step,
the graph can be refined at a small cost. The idea is to update the k nearest neighbors for each point
by selecting from a pool consisting of its neighbors and the neighbors of its neighbors. Formally,
if N(x) is the set of current nearest neighbors of x before refinement, then, for each point x, we
re-select its k nearest neighbors from

N(x)∪





[

z∈N(x)
N(z)



 .

2.4 The Algorithms

We are ready to present the complete algorithms for both methods; see Algorithms 1 and 2. These
algorithms share many similarities: They both fall in the framework of divide and conquer; they
both call the brute-force procedure kNN-BRUTEFORCE to compute the graph when the size of
the set is smaller than a threshold (nk); they both recursively call themselves on smaller subsets;
and they both employ a CONQUER procedure to merge the graphs computed for the subsets and
a REFINE procedure to refine the graph during each recursion. The difference is that Algorithm 1
calls DIVIDE-OVERLAP to divide the set into two subsets (Section 2.2.1), while Algorithm 2 calls
DIVIDE-GLUE to divide the set into three subsets (Section 2.2.2). For the sake of completeness,
pseudocodes of all the mentioned procedures are given in Appendix A.

2.5 Storing Computed Distances in a Hash Table

The brute-force method computes !(n2) pairs of distances, each of which takes !(d) time. One
advantage of the methods presented in this paper over brute-force methods is that the distance cal-
culations can be significantly reduced thanks to the divide and conquer approach. The distances
are needed/computed in: (1) the kNN-BRUTEFORCE procedure which computes all the pairwise
distances and selects the k smallest ones for each point, (2) the CONQUER procedure which selects
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Algorithm 1 Approximate kNN Graph Construction: The Overlap Method
1: function G= kNN-OVERLAP(X , k, ")
2: if |X | < nk then
3: G← kNN-BRUTEFORCE(X , k)
4: else
5: (X1,X2) ← DIVIDE-OVERLAP(X , ") " Section 2.2.1
6: G1 ← kNN-OVERLAP(X1, k, ")
7: G2 ← kNN-OVERLAP(X2, k, ")
8: G← CONQUER(G1, G2, k) " Section 2, beginning
9: REFINE(G, k) " Section 2.3
10: end if
11: end function

Algorithm 2 Approximate kNN Graph Construction: The Glue Method
1: function G= kNN-GLUE(X , k, ")
2: if |X | < nk then
3: G← kNN-BRUTEFORCE(X , k)
4: else
5: (X1,X2,X3) ← DIVIDE-GLUE(X , ") " Section 2.2.2
6: G1 ← kNN-GLUE(X1, k, ")
7: G2 ← kNN-GLUE(X2, k, ")
8: G3 ← kNN-GLUE(X3, k, ")
9: G← CONQUER(G1, G2, G3, k) " Section 2, beginning
10: REFINE(G, k) " Section 2.3
11: end if
12: end function

k smallest distances from at most 2k candidates for each point, and (3) the REFINE procedure which
selects the k smallest distances from at most k+ k2 candidates for each point. Many of the dis-
tances computed from kNN-BRUTEFORCE and REFINE are reused in CONQUER and REFINE, with
probably more than once for some pairs. A naive way is to allocate memory for an n× n matrix
that stores all the computed distances to avoid duplicate calculations. However this consumes too
much memory and is not necessary. A better approach is to use a hash table to store the computed
distances. This will save a significant amount of memory, as a later experiment shows that only a
small portion of the n2 pairs are actually computed. Furthermore the computational time will not
be affected since hash tables are efficient for both retrieving wanted items from and inserting new
items into the table (we do not need the delete operation).

The ideal hash function maps (the distance between) a pair of data points (xi,x j) to a bucket
such that the probability of collision is low. For simplicity of implementations, we use a hash func-
tion that maps the key (xi,x j) to i (and at the same time to j). Collisions easily occur since many
distances between the point xi and other points are computed during the whole process. However,
this naive hashing has already shown rather appealing results in run time. More elaborate imple-
mentations should consider more effective hashing (e.g., double hashing) schemes.
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3. Complexity Analysis

A thorough analysis shows that the time complexities for the overlap method and the glue method
are sub-quadratic (in n), and the glue method is always asymptotically faster than the overlap
method. To this end we assume that in each divide step the subsets X1 and X2 (in both methods) are
balanced. This assumption can always be satisfied by using the Equation (3) to bisect the data set,
instead of the criterion (2). Hence, the time complexity To for the overlap method and Tg for the
glue method satisfy the following recurrence relations:

To(n) = 2To((1+")n/2)+ f (n), (5)
Tg(n) = 2Tg(n/2)+Tg("n)+ f (n), (6)

where f (n) is the combined time for the divide, conquer, and refine steps.

3.1 The Complexity of f

The function f (n) consists of the following three components.

3.1.1 THE TIME FOR THE DIVIDE STEP

This includes the time to compute the largest right singular vector v of the centered matrix X̂ , and
the time to divide points into subsets X1 and X2 (in the overlap method) or subsets X1, X2 and X3
(in the glue method). The former has been shown to be O(sdn) in Section 2.1, where the number
of Lanczos steps s = 5 is fixed in the implementation, while for the latter we can use a linear time
selection method to find the value h"(V ). Therefore the overall time for this step is O(dn).

3.1.2 THE TIME FOR THE CONQUER STEP

This step only involves the points in X1 ∩X2 in the overlap method or X3 in the glue method. For
each of the "n points in these subsets, k nearest neighbors are chosen from at most 2k candidates.
Therefore the time is O(k"n).

3.1.3 THE TIME FOR THE REFINE STEP

For each point, k nearest neighbors are chosen from at most k+ k2 candidates. If all these distances
need to be computed, the overall time is O(k2dn). To the other extreme, if none of them are com-
puted, the factor d can be omitted, which results in O(k2n). In practice, by using a hash table, only
a very small fraction of the k+ k2 distances are actually computed in this step; see also Table 3.
Hence, the best cost estimate for this step is O(k2n).

Indeed, the ultimate useful information from this estimate is that the time for the refinement is
much less than that for the division (which has a O(dn) cost), or at best is of the same order as
the latter. This can be seen from another perspective: Let the number of neighbors k be a constant.
Then even if all the distances are computed, the time is O(k2dn) = O(dn).

From the above three components and the fact that the dimension d dominates k, we conclude
that f (n) is bounded by O(dn).
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3.2 The Complexities of To and Tg
By substituting f (n) = O(dn) into (5) and (6), we derive the closed form solutions to To(n) and
Tg(n), which are stated in the following two theorems.

Theorem 1 The time complexity for the overlap method is

To(n) =!(dnto),

where
to = log2/(1+") 2=

1
1− log2(1+")

.

Theorem 2 The time complexity for the glue method is

Tg(n) =!(dntg/"),

where tg is the solution to the equation

2
2t

+"t = 1.

The proofs will be given in Appendix B. Figure 2 plots the two curves of to and tg as functions
of ", together with a table that lists some of their values. Figure 2 suggests that the glue method is
asymptotically faster than the overlap method. Indeed, this is true for any choice of ".

0 0.1 0.2 0.3 0.41

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

"

 

 

to
tg

" 0.05 0.10 0.15 0.20 0.25 0.30
to 1.08 1.16 1.25 1.36 1.47 1.61
tg 1.06 1.12 1.17 1.22 1.27 1.33

Figure 2: The exponents to and tg as functions of ".

Theorem 3 When 0< "< 1, the exponents to in Theorem 1 and tg in Theorem 2 obey the following
relation:

1< tg < to. (7)

The proof of the above theorem will be given in Appendix B. We remark that when ">
√
2−

1≈ 0.41, to > 2. In this situation the overlap method becomes asymptotically slower than the brute-
force method. Similarly, when "> 1/

√
2≈ 0.71, tg > 2. Hence, a large " (> 0.41) is not useful in

practice.

1997



CHEN, FANG AND SAAD

4. Experiments

In this section we show a few experimental results to illustrate the running times of the two proposed
methods compared with the brute-force method, and the qualities of the resulting graphs. The
experiments were performed under a Linux workstation with two P4 3.20GHz CPUs and 2GB
memory. The algorithms were all implemented using C/C++, and the programs were compiled using
g++ with -O2 level optimization. The divide and conquer methods were implemented according to
Algorithms 1 and 2, and the brute-force method was exactly as in the procedure kNN-BRUTEFORCE
given in Appendix A.

4.1 Running Time

Figure 3 plots the running times versus the dimension d and the number of data points n on a syn-
thetic data set. Since the distribution of the data should have little impact on the running times of
the methods, we used random data (drawn from the uniform distribution over [0,1]d) for this exper-
iment. From Figure 3(a), it is clear that the running time is linear with respect to the dimension d.
This is expected from the complexity analysis. In Figure 3(b), we used "= 0.2, which corresponds
to the theoretical values to = 1.36 and tg = 1.22. We used curves in the form c1n1.36+ c2n+ c3 and
c4n1.22+ c5n+ c6 to fit the running times of the overlap method and the glue method, respectively.
The fitted curves are also shown in Figure 3. It can be seen that the experimental results match the
theoretical analysis quite well.

200 400 600 800 10000

5

10

15

20

25

30

d

Ti
m

e 
(s

ec
on

ds
)

 

 

kNN−overlap
kNN−glue

(a) n= 10000, "= 0.2, d varying

1 2 3 4 5
x 104

0

50

100

150

200

n

Ti
m

e 
(s

ec
on

ds
)

 

 

kNN−overlap
kNN−glue

(b) d = 500, "= 0.2, n varying

Figure 3: The running times for randomly generated data.

4.2 Quality

In another experiment, we used four real-life data sets to test the qualities of the resulting kNN
graphs: The FREY3 face video frames (Roweis and Saul, 2000), the extYaleB4 database (Lee et al.,

3. FREY can be found at http://www.cs.toronto.edu/~roweis/data.html.
4. extYaleB can be found at http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.
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2005), the MNIST5 digit images (LeCun et al., 1998), and the PIE6 face database (Sim et al.,
2003). These data sets are all image sets that are widely used in the literature in the areas of face
recognition, dimensionality reduction, etc. For MNIST, we used only the test set. Table 1 gives
some characteristics of the data. The number of images is equal to n and the size of each image,
that is, the total number of pixels for each image, is the dimension d. The dimensions vary from
about 500 to 10,000. Since some of these data sets were also used later to illustrate the practical
usefulness of our methods in real applications, for each one we used a specific k value that was used
in the experiments of past publications. These values are typically around 10.

FREY extYaleB MNIST PIE
# imgs (n) 1,965 2,414 10,000 11,554
img size (d) 20×28 84×96 28×28 32×32

Table 1: Image data sets.

The qualities of the resulting graphs versus the running times are plotted in Figure 4. Each
plotted point in the figure corresponds to a choice of " (= 0.05,0.10,0.15,0.20,0.25,0.30). The
running times of the brute-force method are also indicated. We use two quality criteria: accuracy
and average rank. The accuracy of an approximate kNN graph G′ (with regard to the exact graph
G) is defined as

accuracy(G′) =
|E(G′)∩E(G)|

|E(G)|
,

where E(·) means the set of directed edges in the graph. Thus, the accuracy is within the range
[0,1], and higher accuracy means better quality. The rank ru(v) of a vertex v with regard to a vertex
u is the position of v in the vertex list sorted in ascending order of the distance to u. (By default, the
rank of the nearest neighbor of u is 1.) Thus, the average rank is defined as

ave-rank(G′) =
1
kn&u &

v∈N(u)
ru(v),

where N(u) means the neighborhood of u in the graph G′. The exact kNN graph has the average
rank (1+ k)/2.

It can be seen from Figure 4 that the qualities of the resulting graphs exhibit similar trends by
using both measures. Take the graph accuracy for example. The larger ", the more accurate the
resulting graph. However, larger values of " lead to more time-consuming runs. In addition, the
glue method is much faster than the overlap method for the same ", while the latter yields more
accurate graphs than the former. The two methods are both significantly faster than the brute-force
method when an appropriate " is chosen, and they can yield high quality graphs even when " is
small.

It is interesting to note that in all the plots, the red circle-curve and the blue plus-curve roughly
overlap. This similar quality-time trade-off seems to suggest that neither of the method is superior
to the other one; the only difference is the " value used to achieve the desired quality. However,
we note that different approximate graphs can yield the same accuracy value or average rank value,
hence the actual quality of the graph depends on real applications.

5. MNIST can be found at http://yann.lecun.com/exdb/mnist.
6. PIE can be found at http://www.cs.uiuc.edu/homes/dengcai2/Data/FaceData.html.
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Figure 4: Graph quality versus running time for different data sets. Each row of the plots cor-
responds to one data set. The left column of plots shows the 1−accuracy measure. The
right column shows the average-rank measure. Each plotted point corresponds to a choice
of ". From left to right on each curve, the " values are 0.05, 0.10, 0.15, 0.20, 0.25, 0.30,
respectively.
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4.3 Distance Calculations and Refinements

We also report the percentage of the distance calculations, which is one of the dominant costs of
the graph construction. The superior efficiency of our methods lies in two facts. First, for n data
points, the brute-force method must compute distances between n(n− 1)/2 pairs of points, while
our methods compute only a small fraction of this number. Second, the use of a (hash) table brings
the benefit of avoiding repeating distance calculations if the evaluations of the same distance are
required multiple times. Tables 2 and 3 confirm these two claims. As expected, the larger the
common region (") is, the more distances need to be calculated, while the benefit of the hashing
becomes more significant. It can also be seen that the savings in distance calculations are more
remarkable when n becomes larger and k becomes smaller, for example, k = 5 for the data set PIE.

FREY (k = 12) extYaleB (k = 10) MNIST (k = 8) PIE (k = 5)
" overlap glue overlap glue overlap glue overlap glue
0.05 6.07% 5.10% 5.13% 4.42% 1.19% 0.94% 0.45% 0.35%
0.10 6.55% 5.80% 5.58% 5.08% 1.42% 1.22% 0.60% 0.47%
0.15 7.48% 6.35% 6.05% 5.46% 1.74% 1.36% 0.78% 0.56%
0.20 8.28% 6.57% 6.66% 5.66% 2.20% 1.52% 1.06% 0.66%
0.25 9.69% 7.00% 7.36% 6.02% 2.92% 1.71% 1.48% 0.77%
0.30 11.48% 7.46% 8.34% 6.26% 4.04% 1.91% 2.07% 0.90%

Table 2: Percentages of distance calculations (with respect to n(n− 1)/2), for different data sets,
different methods, and different "’s.

FREY (k = 12) extYaleB (k = 10) MNIST (k = 8) PIE (k = 5)
" overlap glue overlap glue overlap glue overlap glue
0.05 9.44% 12.15% 11.46% 14.80% 9.56% 11.55% 6.85% 7.01%
0.10 7.07% 12.09% 8.46% 14.36% 6.82% 11.76% 5.27% 8.14%
0.05 5.18% 10.81% 6.25% 12.79% 4.66% 10.17% 3.52% 7.55%
0.20 3.65% 9.12% 4.35% 11.04% 2.98% 8.49% 2.15% 6.40%
0.05 2.62% 7.52% 2.90% 9.55% 1.77% 6.85% 1.23% 5.19%
0.30 1.83% 6.44% 1.88% 7.89% 0.96% 5.41% 0.62% 4.13%

Table 3: Percentages of actual distance calculations with respect to the total number of needed
distances in the refine step, for different data sets, different methods, and different "’s.
This is equivalent to the failure rate of hash table lookups.

The final experiment illustrates the importance of the refine step. Figure 5 shows the decrease
in quality if the REFINE procedure is not invoked. The refinement greatly improves the accuracy of
the approximate graph (especially for " less than 0.2) at some additional cost in the execution time.
This additional expense is worthwhile if the goal is to compute a high quality kNN graph.

5. Applications

kNN graphs have been widely used in various data mining and machine learning applications. This
section discusses two scenarios where the approximate kNN graphs resulting from our proposed
techniques can provide an effective replacement for the exact kNN graph.
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Figure 5: The refine step boosts the accuracy of the graph at some additional computational cost.
Data set: MNIST. The settings are the same as in Figure 4.

5.1 Agglomerative Clustering

Agglomerative clustering (Ward, 1963) is a clustering method which exploits a hierarchy for a set
of data points. Initially each point belongs to a separate cluster. Then, the algorithm iteratively
merges a pair of clusters that has the lowest merge cost, and updates the merge costs between the
newly merged cluster and the rest of the clusters. This process terminates when the desired number
of clusters is reached (or when all the points belong to the single final cluster). A straightforward
implementation of the method takes O(n3) time, since there are O(n) iterations, each of which takes
O(n2) time to find the pair with the lowest merge cost (Shanbehzadeh and Ogunbona, 1997). Fränti
et al. (2006) proposed, at each iteration, to maintain the kNN graph of the clusters, and merge two
clusters that are the nearest neighbors in the graph. Let the number of clusters at the present iteration
be m. Then this method takes O(km) time to find the closest clusters, compared with the O(m2) cost
of finding the pair with the lowest merge cost. With a delicate implementation using a doubly linked
list, they showed that the overall running time of the clustering process reduces toO(+n logn), where
+ is the number of nearest neighbor updates at each iteration. Their method greatly speeds up the
clustering process, while the clustering quality is not much degraded.

However, the quadratic time to create the initial kNN graph eclipses the improvement in the
clustering time. One solution is to use an approximate kNN graph that can be inexpensively created.
Virmajoki and Fränti (2004) proposed a divide-and-conquer algorithm to create an approximate
kNN graph, but their time complexity was overestimated. Our approach also follows the common
framework of divide and conquer. However, we bring three improvements over previous work: (1)
Two methods to perform the divide step are proposed, (2) an efficient way to compute the separating
hyperplane is described, and (3) a detailed and rigorous analysis on the time complexity is provided.
This analysis in particular makes the proposed algorithms practical, especially in the presence of
high dimensional data (e.g., when d is in the order of hundreds or thousands).

We performed an experiment on the data set PIE with 68 classes (see Figure 6). Since class
labels are known, we used the purity and the entropy (Zhao and Karypis, 2004) as quality measures.
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Figure 6: Agglomerative clustering using kNN graphs on the image data set PIE (68 human sub-
jects).

They are defined as

Purity=
q

&
i=1

ni
n
Purity(i), where Purity(i) =

1
ni
max
j

(

n ji
)

,

and

Entropy=
q

&
i=1

ni
n
Entropy(i), where Entropy(i) = −

q

&
j=1

n ji
ni
logq

n ji
ni

.

Here, q is the number of classes/clusters, ni is the size of cluster i, and n ji is the number of class
j data that are assigned to the i-th cluster. The purity and the entropy both range from 0 to 1. In
Figure 6 we show the purities, the entropies, and the values of the objective function for a general
purpose clustering (sum of squared errors, SSE), for different methods and different "’s. In general,
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a higher purity, a lower entropy, and/or a lower SSE means a better clustering quality. As can be
seen the qualities of the clusterings obtained from the approximate kNN graphs are very close to
those resulting from the exact graph, with a few being even much better. It is interesting to note that
the clustering results seem to have little correlation with the qualities of the graphs governed by the
value ".

5.2 Dimensionality Reduction

Many dimensionality reduction methods, for example, locally linear embedding (LLE) (Roweis and
Saul, 2000), Laplacian eigenmaps (Belkin and Niyogi, 2003), locality preserving projections (LPP)
(He and Niyogi, 2004), and orthogonal neighborhood preserving projections (ONPP) (Kokiopoulou
and Saad, 2007), compute a low dimensional embedding of the data by preserving the local neigh-
borhoods for each point. For example, in LLE, a weighted adjacency matrixW is first computed to
minimize the following objective:

E(W ) =&
i

∥

∥

∥
xi−&x j∈N(xi)Wi jx j

∥

∥

∥

2
, subject to&

j
Wi j = 1, ∀i,

where N(·)means the neighborhood of a point. Then, a low dimensional embeddingY = [y1, . . . ,yn]
is computed such that it minimizes the objective:

,(Y ) =&
i

∥

∥

∥
yi−&y j∈N(yi)Wi jy j

∥

∥

∥

2
, subject to YYT = I.

The final solution, Y , is the matrix whose column-vectors are the r bottom right singular vectors of
the Laplacian matrix LLLE = I−W . As another example, in Laplacian eigenmaps, the low dimen-
sional embedding Y = [y1, . . . ,yn] is computed so as to minimize the cost function:

-(Y ) =&
i, j
Wi j

∥

∥yi− y j
∥

∥

2
, subject to YDYT = I,

where D is the diagonal degree matrix. Here, the weighted adjacency matrix W is defined in a
number of ways, one of the most popular being the weights of the heat kernel

Wi j =

{

exp(−
∥

∥xi− x j
∥

∥

2
/%2) if xi ∈ N(x j) or x j ∈ N(xi),

0 otherwise.

The solution, Y , is simply the matrix of r bottom eigenvectors of the normalized Laplacian matrix
Leigenmaps = I−D−1/2WD−1/2 (subject to scaling).

A thorn in the nicely motivated formulations for the above approaches, is that they all begin
with a rather expensive computation to obtain the neighborhood graph of the data. On the other
hand, the cost of computing the solution Y via, for example, the Lanczos algorithm, is relatively
inexpensive, and can be summarized as7 O(rkn), which is independent of the dimension d. The
methods discussed in this paper are suitable alternatives to the expensive brute-force approach to

7. To be more exact, the dominant cost of computing r singular vectors/eigenvectors of a sparse matrix by the Lanczos
method is O(r′ ·nnz), where r′ is the number of Lanczos steps and nnz is the number of nonzeros in the matrix. The
value r′ is in practice a few times of r, and in our situation, the matrix is the (normalized) graph Laplacian, hence
nnz= O(kn).
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Figure 7: Dimensionality reduction on the data set FREY by LLE.

extract the exact kNN graph, since the approximate graphs are accurate enough for the purpose of
dimensionality reduction, while the time costs are significantly smaller. Figures 7 and 8 provide two
illustrations of this.

In Figure 7 are the plots of the dimensionality reduction results of LLE applied to the data set
FREY, where we used k = 12 as that in Roweis and Saul (2000, Figure 3). Figure 7(a) shows
the result when using the exact kNN graph, while Figure 7(b) shows the result when using the
approximate kNN graph by the overlap method with " = 0.30. It is clear that the two results are
almost identical. Figures 7(c) and 7(d) give two plots when the glue method is used. Although the
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Figure 8: Dimensionality reduction on the data set MNIST by Laplacian eigenmaps.

embeddings are different from those of the exact kNN graph in Figure 7(a), they also represent the
original data manifold quite well. This can be seen by tracking the relative locations of the sequence
of images (as shown in 7(e)) in the two dimensional space.

Figure 8 shows the plots of the dimensionality reduction results of Laplacian eigenmaps applied
to the data set MNIST, where we used k= 5. Figure 8(a) shows the original result by using the exact
kNN graph, while 8(b), 8(c) and 8(d) show the results by using the overlap method with " = 0.30,
the glue method with " = 0.15, and the glue method with " = 0.30, respectively. The four plots
all show clear clusterings of the ten classes (digits from 0 to 9), and the localization patterns of the
clusterings are very similar.
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6. Conclusions

We have proposed two sub-quadratic time methods under the framework of divide and conquer for
computing approximate kNN graphs for high dimensional data. The running times of the methods,
as well as the qualities of the resulting graphs, depend on an internal parameter that controls the
overlap size of the subsets in the divide step. Experiments show that in order to obtain a high
quality graph, a small overlap size is usually sufficient and this leads to a small exponent in the
time complexity. An avenue of future research is to theoretically analyze the quality of the resulting
graphs in relation to the overlap size. The resulting approximate graphs have a wide range of
applications as they can be safely used as alternatives to the exact kNN graph. We have shown two
such examples: one in agglomerative clustering and the other in dimensionality reduction. Thus,
replacing the exact kNN graph construction with one produced by the methods proposed here, can
significantly alleviate what currently constitutes a major bottleneck in these applications.
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Appendix A. Pseudocodes of Procedures

1: function G= kNN-BRUTEFORCE(X , k)
2: for i← 1, . . . ,n do
3: for j← i+1, . . . ,n do
4: Compute #(xi,x j) =

∥

∥xi− x j
∥

∥

5: #(x j,xi) = #(xi,x j)
6: end for
7: Set N(xi) = {x j | #(xi,x j) is among the k smallest elements for all j -= i}
8: end for
9: end function

1: function (X1,X2) = DIVIDE-OVERLAP(X , ")
2: Compute the largest right singular vector v of X̂ = X− ceT
3: Let V = {|vi| | i= 1,2, . . . ,n}
4: Find h"(V ) " See Section 2.2.1 for the definition
5: Set X1 = {xi | vi ≥−h"(V )}
6: Set X2 = {xi | vi < h"(V )}
7: end function
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1: function (X1,X2,X3) = DIVIDE-GLUE(X , ")
2: Compute the largest right singular vector v of X̂ = X− ceT
3: Let V = {|vi| | i= 1,2, . . . ,n}
4: Find h"(V )
5: Set X1 = {xi | vi ≥ 0}
6: Set X2 = {xi | vi < 0}
7: Set X3 = {xi |−h"(V ) ≤ vi < h"(V )}
8: end function

1: function G= CONQUER(G1, G2, k)
2: G= G1∪G2
3: for all x ∈V (G1)∩V (G2) do " V (·) denotes the vertex set of the graph
4: Update N(x) ← {y | #(x,y) is among the k smallest elements for all y ∈ N(x)}
5: end for
6: end function

1: function G= CONQUER(G1, G2, G3, k)
2: G= G1∪G2∪G3
3: for all x ∈V (G3) do
4: Update N(x) ← {y | #(x,y) is among the k smallest elements for all y ∈ N(x)}
5: end for
6: end function

1: function REFINE(G, k)
2: for all x ∈V (G) do
3: Update N(x) ← {y | #(x,y) is among the k smallest elements for all

y ∈ N(x)∪
(

S

z∈N(x)N(z)
)

}
4: end for
5: end function

Appendix B. Proofs

Theorem 1 follows from the Master Theorem (Cormen et al., 2001, Chapter 4.3). Theorem 2 is an
immediate consequence of the following lemma, which is straightforward to verify.

Lemma 4 The recurrence relation

T (n) = 2T (n/2)+T ("n)+n

with T (1) = 1 has a solution

T (n) =

(

1+
1
"

)

nt −
n
"

where t is the solution to the equation
2
2t

+"t = 1.

The proof of Theorem 3 requires two lemmas.
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Lemma 5 When 0< x< 1,

log2(1− x2) >
(

log2(1− x)
)(

log2(1+ x)
)

.

Proof By Taylor expansion,
(

ln(1− x)
)(

ln(1+ x)
)

=

(

−
.

&
n=1

xn

n

)(

.

&
n=1

(−1)n+1xn

n

)

= −
.

&
n=1

(

2n−1

&
m=1

(−1)m−1

m(2n−m)

)

x2n

= −
.

&
n=1

(

1
2n

(

1
1

+
1

2n−1

)

−
1
2n

(

1
2

+
1

2n−2

)

+ · · ·+
(−1)n−1

n2

+ · · ·−
1
2n

(

1
2n−2

+
1
2

)

+
1
2n

(

1
2n−1

+
1
1

))

x2n

= −
.

&
n=1

(

1
n

(

1−
1
2

+
1
3

+ · · ·+
1

2n−1

))

x2n

< −
.

&
n=1

(

ln2
n

)

x2n

= (ln2) · ln(1− x2).

The inequality in the lemma follows by changing the bases of the logarithms.

Lemma 6 The following inequality

log2(ab) > (log2 a)(log2 b)

holds whenever 0< a< 1< b< 2 and a+b≥ 2.

Proof By using b≥ 2−a, we have the following two inequalities

log2(ab) ≥ log2(a(2−a)) = log2(1− (1−a))(1+(1−a)) = log2(1− (1−a)2)

and
(log2 a)(log2 b) ≤ (log2 a)(log2(2−a)) = log2(1− (1−a))× log2(1+(1−a)).

Then by applying Lemma 5 with 1−a= x, we have

log2(1− (1−a)2) > log2(1− (1−a))× log2(1+(1−a)).

Thus, the inequality of the lemma holds.
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Proof of Theorem 3 From Theorem 2 we have

tg = 1− log2(1−"tg) > 1.

Then

to− tg =
1

1− log2(1+")
−1+ log2(1−"tg)

=
log2(1+")+ log2(1−"tg)− log2(1+")× log2(1−"tg)

1− log2(1+")
.

Since 0 < " < 1, the denominator 1− log2(1+") is positive. By Lemma 6 the numerator is also
positive. Hence to > tg.
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Abstract

Variable selection in high-dimensional space characterizes many contemporary problems in scien-
tific discovery and decision making. Many frequently-used techniques are based on independence
screening; examples include correlation ranking (Fan & Lv, 2008) or feature selection using a two-
sample t-test in high-dimensional classification (Tibshirani et al., 2003). Within the context of the
linear model, Fan & Lv (2008) showed that this simple correlation ranking possesses a sure inde-
pendence screening property under certain conditions and that its revision, called iteratively sure
independent screening (ISIS), is needed when the features are marginally unrelated but jointly re-
lated to the response variable. In this paper, we extend ISIS, without explicit definition of residuals,
to a general pseudo-likelihood framework, which includes generalized linear models as a special
case. Even in the least-squares setting, the new method improves ISIS by allowing feature deletion
in the iterative process. Our technique allows us to select important features in high-dimensional
classification where the popularly used two-sample t-method fails. A new technique is introduced
to reduce the false selection rate in the feature screening stage. Several simulated and two real data
examples are presented to illustrate the methodology.

Keywords: classification, feature screening, generalized linear models, robust regression, feature
selection

1. Introduction

The remarkable development of computing power and other technology has allowed scientists to
collect data of unprecedented size and complexity. Examples include data from microarrays, pro-
teomics, brain images, videos, functional data and high-frequency financial data. Such a demand
from applications presents many new challenges as well as opportunities for those in statistics and
machine learning, and while some significant progress has been made in recent years, there remains
a great deal to do.

c©2009 Jianqing Fan, Richard Samworth and Yichao Wu.
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A very common statistical problem is to model the relationship between one or more output
variables Y and their associated covariates (or features) X1, . . . ,Xp, based on a sample of size n. A
characteristic feature of many of the modern problems mentioned in the previous paragraph is that
the dimensionality p is large, potentially much larger than n. Mathematically, it makes sense to
consider p as a function of n, which diverges to infinity. The dimensionality grows very rapidly
when interactions of the features are considered, which is necessary for many scientific endeavors.
For example, in disease classification using microarray gene expression data (Tibshirani et al., 2003;
Fan & Ren, 2006), the number of arrays is usually in the order of tens or hundreds while the number
of gene expression profiles is in the order of tens of thousands; in the study of protein-protein
interactions, the sample size may be in the order of thousands, but the number of features can be in
the order of millions.

The phenomenon of noise accumulation in high-dimensional classification and regression has
long been observed by statisticians and computer scientists (see Vapnik 1995, Hastie et al. 2009
and references therein) and has been analytically demonstrated by Fan & Fan (2008). Various fea-
ture selection techniques have been proposed in both the statistics and machine learning literature,
and introductions and overviews written for the machine learning community can be found in, for
example, Liu & Motoda (1998), Guyon & Elisseeff (2003) and Guyon et al. (2006). Specific algo-
rithms proposed include but are not restricted to FCBF (Yu & Li, 2003), CFS (Hall, 2000), ReliefF
(Kononenko, 1994), FOCUS (Almuallim & Dietterich, 1994) and INTERACT (Zhao & Liu, 2007).
See also the special issue published by JMLR on “variable and feature selection”, including Bi et
al. (2003), Bengio & Chapados (2003) and Guyon & Elisseeff (2003).

One particularly popular family of methods is based on penalized least-squares or, more gener-
ally, penalized pseudo-likelihood. Examples include the LASSO (Tibshirani, 1996), SCAD (Fan &
Li, 2001), the Dantzig selector (Candes & Tao, 2007), and their related methods. These methods
have attracted a great deal of theoretical study and algorithmic development recently. See Donoho &
Elad (2003), Efron et al. (2004), Zou (2006), Meinshausen & Bühlmann (2006), Zhao & Yu (2006),
Zou & Li (2008), Bickel et al. (2009), and references therein. However, computation inherent in
those methods makes them hard to apply directly to ultrahigh-dimensional statistical learning prob-
lems, which involve the simultaneous challenges of computational expediency, statistical accuracy,
and algorithmic stability.

A method that takes up the aforementioned three challenges is the idea of independent learning,
proposed and demonstrated by Fan & Lv (2008) in the regression context. The method can be
derived from an empirical likelihood point of view (Hall et al., 2009) and is related to supervised
principal component analysis (Bair et al., 2006; Paul et al., 2008). In the important, but limited,
context of the linear model, Fan & Lv (2008) proposed a two-stage procedure to deal with this
problem. First, so-called independence screening is used as a fast but crude method of reducing the
dimensionality to a more moderate size (usually below the sample size); then, a more sophisticated
technique, such as a penalized likelihood method based on the smoothly clipped absolute deviation
(SCAD) penalty, can be applied to perform the final feature selection and parameter estimation
simultaneously.

Independence screening recruits those features having the best marginal utility, which corre-
sponds to the largest marginal correlation with the response in the context of least-squares regres-
sion. Under certain regularity conditions, Fan & Lv (2008) show surprisingly that this fast feature
selection method has a ‘sure screening property’; that is, with probability very close to 1, the in-
dependence screening technique retains all of the important features in the model. A remarkable
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feature of this theoretical result is that the dimensionality of the model is allowed to grow exponen-
tially in the sample size; for this reason, we refer to the method as an ‘ultrahigh’ dimensional feature
selection technique, to distinguish it from other ‘high’ dimensional methods where the dimension-
ality can grow only polynomially in the sample size. The sure screening property is described in
greater detail in Section 3.2, and as a result of this theoretical justification, the method is referred to
as Sure Independence Screening (SIS).

An important methodological extension, called Iterated Sure Independence Screening (ISIS),
covers cases where the regularity conditions may fail, for instance if a feature is marginally uncor-
related, but jointly correlated with the response, or the reverse situation where a feature is jointly
uncorrelated but has higher marginal correlation than some important features. Roughly, ISIS works
by iteratively performing feature selection to recruit a small number of features, computing residuals
based on the model fitted using these recruited features, and then using the working residuals as the
response variable to continue recruiting new features. The crucial step is to compute the working
residuals, which is easy for the least-squares regression problem but not obvious for other problems.
The improved performance of ISIS has been documented in Fan & Lv (2008).

Independence screening is a commonly used techniques for feature selection. It has been widely
used for gene selection or disease classification in bioinformatics. In those applications, the genes
or proteins are called statistically significant if their associated expressions in the treatment group
differ statistically from the control group, resulting in a large and active literature on the multiple
testing problem. See, for example, Dudoit et al. (2003) and Efron (2008). The selected features are
frequently used for tumor/disease classification. See, for example, Tibshirani et al. (2003), and Fan
& Ren (2006). This screening method is indeed a form of independence screening and has been
justified by Fan & Fan (2008) under some ideal situations. However, common sense can carry us
only so far. As indicated above and illustrated further in Section 4.1, it is easy to construct features
that are marginally unrelated, but jointly related with the response. Such features will be screened
out by independent learning methods such as the two-sample t test. In other words, genes that are
screened out by test statistics can indeed be important in disease classification and understanding
molecular mechanisms of the disease. How can we construct better feature selection procedures
in ultrahigh dimensional feature space than the independence screening popularly used in feature
selection?

The first goal of this paper is to extend SIS and ISIS to much more general models. One
challenge here is to make an appropriate definition of a residual in this context. We describe a
procedure that effectively sidesteps this issue and therefore permits the desired extension of ISIS.
In fact, our method even improves the original ISIS of Fan & Lv (2008) in that it allows variable
deletion in the recruiting process. Our methodology applies to a very general pseudo-likelihood
framework, in which the aim is to find the parameter vector ! = (!1, . . . ,!p)T that is sparse and
minimizes an objective function of the form

Q(!0,!) =
n

"
i=1

L(Yi,!0+xTi !),

where (xTi ,Yi) are the covariate vector and response for the ith individual. Important applications of
this methodology, which is outlined in greater detail in Section 2, include the following:
1. Generalized linear models: All generalized linear models, including logistic regression and
Poisson log-linear models, fit very naturally into our methodological framework. See McCul-
lagh & Nelder (1989) for many applications of generalized linear models. Note in particular
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that logistic regression models yield a popular approach for studying classification problems.
In Section 4, we present simulations in which our approach compares favorably with the
competing LASSO technique (Tibshirani, 1996).

2. Classification: Other common approaches to classification assume the response takes val-
ues in {−1,1} and also fit into our framework. For instance, support vector machine clas-
sifiers (Vapnik, 1995) use the hinge loss function L(Yi,!0 + xTi !) = {1−Yi(!0 + xTi !)}+,
while the boosting algorithm AdaBoost (Freund & Schapire, 1997) uses L(Yi,!0 + xTi !) =
exp{−Yi(!0+xTi !)}.

3. Robust fitting: In a high-dimensional linear model setting, it is advisable to be cautious
about the assumed relationship between the features and the response. Thus, instead of the
conventional least squares loss function, we may prefer a robust loss function such as the L1
loss L(Yi,!0+ xTi !) = |Yi−!0− xTi !| or the Huber loss (Huber, 1964), which also fits into
our framework.

Any screening method, by default, has a large false selection rate (FSR), namely, many unim-
portant features are selected after screening. A second aim of this paper, covered in Section 3, is to
present two variants of the SIS methodology, which reduce significantly the FSR. Both are based
on partitioning the data into (usually) two groups. The first has the desirable property that in high-
dimensional problems the probability of incorrectly selecting unimportant features is small. Thus
this method is particularly useful as a means of quickly identifying features that should be included
in the final model. The second method is less aggressive, and for the linear model has the same
sure screening property as the original SIS technique. The applications of our proposed methods
are illustrated in Section 5.

2. ISIS Methodology in a General Framework

Let y= (Y1, . . . ,Yn)T be a vector of responses and let x1, . . . ,xn be their associated covariate (column)
vectors, each taking values in Rp. The vectors (xT1 ,Y1), . . . ,(xTn ,Yn) are assumed to be independent
and identically distributed realizations from the population (X1, . . . ,Xp,Y )T . The n× p design matrix
is X= (x1, . . . ,xn)T .

2.1 Feature Ranking by Marginal Utilities

The relationship between Y and (X1, . . . ,Xp)T is often modeled through a parameter vector ! =
(!1, . . . ,!p)T , and the fitting of the model amounts to minimizing a negative pseudo-likelihood
function of the form

Q(!0,!) = n−1
n

"
i=1

L(Yi,!0+xTi !).

Here, L can be regarded as the loss of using !0+ xTi ! to predict Yi. The marginal utility of the jth
feature is

Lj = min
!0,! j

n−1
n

"
i=1

L(Yi,!0+Xi j! j),

which minimizes the loss function, where xi = (Xi1, . . . ,Xip)T . The idea of SIS in this framework
is to compute the vector of marginal utilities L = (L1, . . . ,Lp)T and rank them according to the
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marginal utilities: the smaller the more important. Note that in order to compute Lj, we need only
fit a model with two parameters, !0 and ! j, so computing the vector L can be done very quickly and
stably, even for an ultrahigh dimensional problem. The feature Xj is selected by SIS if Lj is one of
the d smallest components of L. Typically, we may take d = $n/ logn%, though the choice of d is
discussed in greater detail in Section 4.

The procedure above is an independence screening method. It uses only a marginal relation
between features and the response variable to screen variables. When d is large enough, it has
high probability of selecting all of the important features. For this reason, we call the method Sure
Independence Screening (SIS). For classification problems with quadratic loss L, Fan & Lv (2008)
show that SIS reduces to feature screening using a two-sample t-statistic. See also Hall et al. (2009)
for a derivation from an empirical likelihood point of view and §3.2 for some theoretical results on
the sure screening property.

2.2 Penalized Pseudo-likelihood

With features crudely selected by SIS, variable selection and parameter estimation can further be
carried out simultaneously using a more refined penalized (pseudo)-likelihood method, as we now
describe. The approach takes joint information into consideration. By reordering the features if
necessary, we may assume without loss of generality that X1, . . . ,Xd are the features recruited by SIS.
We let xi,d = (Xi1, . . . ,Xid)T and redefine ! = (!1, . . . ,!d)T . In the penalized likelihood approach,
we seek to minimize

!(!0,!) = n−1
n

"
i=1

L(Yi,!0+xTi,d!)+
d

"
j=1

p#(|! j|). (1)

Here, p#(·) is a penalty function and # > 0 is a regularization parameter, which may be chosen
by five-fold cross-validation, for example. The penalty function should satisfy certain conditions
in order for the resulting estimates to have desirable properties, and in particular to yield sparse
solutions in which some of the coefficients may be set to zero; see Fan & Li (2001) for further
details.

Commonly used examples of penalty functions include the L1 penalty p#(|!|) = #|!| (Tibshi-
rani, 1996; Park & Hastie, 2007), the smoothly clipped absolute deviation (SCAD) penalty (Fan &
Li, 2001), which is a quadratic spline with p#(0) = 0 and

p′#(|!|) = #

{
{|!|≤#} +

(a#− |!|)+

(a−1)# {|!|>#}

}
,

for some a > 2 and |!| > 0, and the minimum concavity penalty (MCP), p′#(|!|) = (#− |!|/a)+

(Zhang, 2009). The choice a = 3.7 has been recommended in Fan & Li (2001). Unlike the L1
penalty, SCAD and MC penalty functions have flat tails, which are fundamental in reducing biases
due to penalization (Antoniadis & Fan, 2001; Fan & Li, 2001). Park & Hastie (2007) describe
an iterative algorithm for minimizing the objective function for the L1 penalty, and Zhang (2009)
propose a PLUS algorithm for finding solution paths to the penalized least-squares problem with
a general penalty p#(·). On the other hand, Fan & Li (2001) have shown that the SCAD-type of
penalized loss function can be minimized iteratively using a local quadratic approximation, whereas
Zou & Li (2008) propose a local linear approximation, taking the advantage of recently developed
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algorithms for penalized L1 optimization (Efron et al., 2004). Starting from !(0) = 0 as suggested
by Fan & Lv (2008), using the local linear approximation

p#(|!|) ≈ p#(|!(k)|)+ p′#(|!
(k)|)(|!|− |!(k)|),

in (1), at the (k+1)th iteration we minimize the weighted L1 penalty

n−1
n

"
i=1

L(Yi,!0+xTi,d!)+
d

"
j=1

w(k)
j |! j|, (2)

where w(k)
j = p′#(|!

(k)
j |). Note that with initial value !(0) = 0, !(1) is indeed a LASSO estimate for

the SCAD and MC penalties, since p′#(0+) = #. In other words, zero is not an absorbing state.
Though motivated slightly differently, a weighted L1 penalty is also the basis of the adaptive Lasso
(Zou, 2006); in that case w(k)

j ≡ wj = 1/|!̂ j|$, where !̂ = (!̂1, . . . , !̂d)T may be taken to be the
maximum likelihood estimator, and $> 0 is chosen by the user. The drawback of such an approach
is that zero is an absorbing state when (2) is iteratively used—components being estimated as zero
at one iteration will never escape from zero.

For a class of penalty functions that includes the SCAD penalty and when d is fixed as n
diverges, Fan & Li (2001) established an oracle property; that is, the penalized estimates per-
form asymptotically as well as if an oracle had told us in advance which components of ! were
non-zero. Fan & Peng (2004) extended this result to cover situations where d may diverge with
d = dn = o(n1/5). Zou (2006) shows that the adaptive LASSO possesses the oracle property too,
when d is finite. See also further theoretical studies by Zhang & Huang (2008) and Zhang (2009).
We refer to the two-stage procedures described above as SIS-Lasso, SIS-SCAD and SIS-AdaLasso.

2.3 Iterative Feature Selection

The SIS methodology may break down if a feature is marginally unrelated, but jointly related with
the response, or if a feature is jointly uncorrelated with the response but has higher marginal corre-
lation with the response than some important features. In the former case, the important feature has
already been screened at the first stage, whereas in the latter case, the unimportant feature is ranked
too high by the independent screening technique. ISIS seeks to overcome these difficulties by using
more fully the joint covariate information while retaining computational expedience and stability as
in SIS.

In the first step, we apply SIS to pick a set Â1 of indices of size k1, and then employ a penalized
(pseudo)-likelihood method such as Lasso, SCAD, MCP or the adaptive Lasso to select a subset M̂1
of these indices. This is our initial estimate of the set of indices of important features. The screening
stage solves only bivariate optimizations (2.1) and the fitting part solves only a optimization problem
(1) with moderate size k1. This is an attractive feature in ultrahigh dimensional statistical learning.

Instead of computing residuals, as could be done in the linear model, we compute

L(2)
j = min

!0,!M̂1
,! j
n−1

n

"
i=1

L(Yi,!0+xT
i,M̂1

!
M̂1

+Xi j! j), (3)

for j ∈ M̂ c
1 = {1, . . . , p} \ M̂1, where xi,M̂1

is the sub-vector of xi consisting of those elements in

M̂1. This is again a low-dimensional optimization problem which can easily be solved. Note that
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L(2)
j [after subtracting the constant min!0,!M̂1

n−1"n
i=1L(Yi,!0+xT

i,M̂1
!
M̂1

) and changing the sign of
the difference] can be interpreted as the additional contribution of variable Xj given the existence
of variables in M̂1. After ordering {L(2)

j : j ∈ M̂ c
1 }, we form the set Â2 consisting of the indices

corresponding to the smallest k2 elements, say. In this screening stage, an alternative approach is to
substitute the fitted value !̂

M̂1
from the first stage into (3) and the optimization problem (3) would

only be bivariate. This approach is exactly an extension of Fan & Lv (2008) as we have

L(Yi,!0+xT
i,M̂1

!̂
M̂1

+Xi j! j) = (r̂i−!0−Xi j! j)2,

for the quadratic loss, where r̂i = Yi− xTi,M̂1
!̂
M̂1
is the residual from the previous step of fitting.

The conditional contributions of features are more relevant in recruiting variables at the second
stage, but the computation is more expensive. Our numerical experiments in Section 4.4 shows the
improvement of such a deviation from Fan & Lv (2008).

After the prescreening step, we use penalized likelihood to obtain

!̂2 = argmin
!0,!M̂1

,!A2

n−1
n

"
i=1

L(Yi,!0+xT
i,M̂1

!
M̂1

+xTi,Â2!Â2)+ "
j∈M̂1∪Â2

p#(|! j|).

Again, the penalty term encourages a sparse solution. The indices of !̂2 that are non-zero yield a
new estimated set M̂2 of active indices. This step also deviates importantly from the approach in
Fan & Lv (2008) even in the least-squares case. It allows the procedure to delete variables from the
previously selected features with indices in M̂1.

The process, which iteratively recruits and deletes features, can then be repeated until we obtain
a set of indices M̂! which either has reached the prescribed size d, or satisfies M̂! = M̂!−1. Of
course, we also obtain a final estimated parameter vector !̂!. The above method can be considered
as an analogue of the least squares ISIS procedure (Fan & Lv, 2008) without explicit definition of
the residuals. In fact, it is an improvement even for the least-squares problem.

In general, choosing larger values of each kr decreases the computational cost and the prob-
ability that the ISIS procedure will terminate prematurely. However, it also makes the procedure
more like its non-iterated counterpart, and so may offer less improvement in the awkward cases for
SIS described in Section 1. In our implementation, we chose k1 = $2d/3%, and thereafter at the rth
iteration, we took kr = d− |M̂r−1|. This ensures that the iterated versions of SIS take at least two
iterations to terminate; another possibility would be to take, for example, kr =min(5,d− |M̂r−1|).

Fan & Lv (2008) showed empirically that for the linear model ISIS improves significantly the
performance of SIS in the difficult cases described above. The reason is that the fitting of the
residuals from the (r−1)th iteration on the remaining features significantly weakens the priority of
those unimportant features that are highly correlated with the response through their associations
with {Xj : j ∈ M̂r−1}. This is due to the fact that the features {Xj : j ∈ M̂r−1} have lower correlation
with the residuals than with the original responses. It also gives those important features that are
missed in the previous step a chance to survive.
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2.4 Generalized Linear Models

Recall that we say that Y is of exponential dispersion family form if its density can be written in
terms of its mean µ and a dispersion parameter % as

fY (y;µ,%) = exp
{
y&(µ)−b(&(µ))

%
+ c(y,%)

}
,

from some known functions &(·), b(·) and c(·, ·). In a generalized linear model for independent
responses Y1, . . . ,Yn, we assert that the conditional density of Yi given the covariate vector Xi = xi is
of exponential dispersion family form, with the conditional mean response µi related to xi through
g(µi) = xTi ! for some known link function g(·), and where the dispersion parameters are constrained
by requiring that %i = %ai, for some unknown dispersion parameter % and known constants a1, . . . ,an.
For simplicity, throughout the paper, we take a constant dispersion parameter.

It is immediate from the form of the likelihood function for a generalized linear model that such
a model fits within the pseudo-likelihood framework of Section 4. In fact, we have in general that

L(Yi,!0+xTi !) =
n

"
i=1

{
b
(
&(g−1(!0+xTi !)

)
−Yi&

(
g−1(!0+xTi !)

)}
. (4)

If we make the canonical choice of link function, g(·) = &(·), then (4) simplifies to

L(Yi,!0+xTi !) =
n

"
i=1

{
b(!0+xTi !)−Yi(!0+xTi !)

}
.

An elegant way to handle classification problems is to assume the class label takes values 0 or 1,
and fit a logistic regression model. For this particular generalized linear model, we have

L(Yi,!0+xTi !) =
n

"
i=1

{log(1+ e!0+x
T
i !)−Yi(!0+xTi !)},

while for Poisson log-linear models, we may take

L(Yi,!0+xTi !) =
n

"
i=1

{
e!0+x

T
i !−Yi(!0+xTi !)

}
.

3. Reduction of False Selection Rates

Sure independence screening approaches are simple and quick methods to screen out irrelevant
features. They are usually conservative and include many unimportant features. In this section, we
outline two possible variants of SIS and ISIS that have attractive theoretical properties in terms of
reducing the FSRs. The first is an aggressive feature selection method that is particularly useful
when the dimensionality is very large relative to the sample size; the second is a more conservative
procedure.

3.1 First Variant of ISIS

It is convenient to introduce some new notation. We write A for the set of active indices—that is,
the set containing those indices j for which ! j ,= 0 in the true model. Write XA = {Xj : j ∈ A} and
XAc = {Xj : j ∈ Ac} for the corresponding sets of active and inactive variables respectively.
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Assume for simplicity that n is even, and split the sample into two halves at random. Apply
SIS or ISIS separately to the data in each partition (with d = $n/ logn% or larger, say), yielding two
estimates Â (1) and Â (2) of the set of active indices A . Both of them should have large FSRs, as they
are constructed from a crude screening method. Assume that both sets have the satisfy

P(A ⊂ Â ( j)) → 1, for j = 1 and 2.

Then, the active features should appear in both sets with probability tending to one. We thus con-
struct Â = Â (1)∩ Â (2) as an estimate of A . This estimate also satisfies

P(A ⊂ Â) → 1.

However, this estimate contains many fewer indices corresponding to inactive features, as such
indices have to appear twice at random in the sets Â (1) and Â (2). This is indeed shown in Theorem 1
below.

Just as in the original formulation of SIS in Section 2, we can now use a penalized (pseudo)-
likelihood method such as SCAD to perform final feature selection from Â and parameter estima-
tion. We can even proceed without the penalization since the false selection rate is small.

In our theoretical support for this variant of SIS, we will make use of the following condition:

(A1) Let r ∈N, the set of natural numbers. We say the model satisfies the exchangeability condition
at level r if the set of random vectors

{(Y,XA ,Xj1 , . . . ,Xjr) : j1, . . . , jr are distinct elements of Ac}

is exchangeable.

This condition ensures that each inactive feature is equally likely to be recruited by SIS. Note that
(A1) certainly allows inactive features to be correlated with the response, but does imply that each
inactive feature has the same marginal distribution. In Theorem 1 below, the case r = 1 is particu-
larly important, as it gives an upper bound on the probability of recruiting any inactive features into
the model. Note that this upper bound requires only the weakest version (level 1) of the exchange-
ability condition.

Theorem 1 Let r ∈ N, and assume the model satisfies the exchangeability condition (A1) at level r.
If Â denotes the estimator of A from the above variant of SIS, then

P(|Â ∩Ac|≥ r) ≤
(d
r
)2

(p−|A |
r

) ≤
1
r!

( d2

p− |A |

)r
,

where, for the second inequality, we require d2 ≤ p− |A | and d is the prescribed number of selected
features in Â (1) or Â (2).

Proof Fix r ∈ N, and let J = {( j1, . . . , jr) : j1, . . . , jr are distinct elements of Ac}. Then

P(|Â ∩Ac|≥ r) ≤ "
( j1,..., jr)∈J

P( j1 ∈ Â , · · · , jr ∈ Â)

= "
( j1,..., jr)∈J

P( j1 ∈ Â (1), · · · , jr ∈ Â (1))2,
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in which we use the random splitting in the last equality. Obviously, the last probability is bounded
by

max
( j1,..., jr)∈J

P( j1 ∈ Â (1), · · · , jr ∈ Â (1)) "
( j1,..., jr)∈J

P( j1 ∈ Â (1), · · · , jr ∈ Â (1)). (5)

Since there are at most d inactive features from Ac in the set Â (1), the number of r-tuples from J

falling in the set Â (1) can not be more than the total number of such r-tuples in Â (1), that is,

"
( j1,..., jr)∈J

{ j1∈Â(1),··· , jr∈Â(1)} ≤
(
d
r

)
.

Thus, we have

"
( j1,..., jr)∈J

P( j1 ∈ Â (1), · · · , jr ∈ Â (1)) ≤
(
d
r

)
. (6)

Substituting this into (5), we obtain

P(|Â ∩Ac|≥ r) ≤
(
d
r

)
max

( j1,..., jr)∈J
P( j1 ∈ Â (1), · · · , jr ∈ Â (1)).

Now, under the exchangeability condition (A1), each r-tuple of distinct indices in Ac is equally
likely to be recruited into Â (1). Hence, it follows from (6) that

max
( j1,..., jr)∈J

P( j1 ∈ Â (1), · · · , jr ∈ Â (1)) ≤
(d
r
)

(p−|A |
r

) ,

and the first result follows. The second result follows from the simple fact that

(d− i)2

p∗ − i
≤
d2

p∗
, for all 0≤ i≤ d,

where p∗ = p− |A |, and the simple calculation that

(d
r
)2

(p∗
r
) =

1
r!
d2(d−1)2 · · ·(d− r+1)2

p∗(p∗ −1) · · ·(p∗ − r+1)
≤
1
r!

(
d
p∗

)r
.

This completes the proof.

Theorem 1 gives a nonasymptotic bound, using only the symmetry arguments, and this bound
is expected to be reasonably tight especially when p is large. From Theorem 1, we see that if the
exchangeability condition at level 1 is satisfied and if p is large by comparison with n2, then when
the number of selected features d is smaller than n, we have with high probability this variant of
SIS reports no ‘false positives’; that is, it is very likely that any index in the estimated active set
also belongs to the active set in the true model. Intuitively, if p is large, then each inactive feature
has small probability of being included in the estimated active set, so it is very unlikely indeed that
it will appear in the estimated active sets from both partitions. The nature of this result is a little
unusual in that it suggests a ‘blessing of dimensionality’—the bound on the probability of false
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positives decreases with p. However, this is only part of the full story, because the probability of
missing elements of the true active set is expected to increase with p.

Of course, it is possible to partition the data into K > 2 groups, say, each of size n/K, and
estimate A by Â (1) ∩ Â (2) ∩ . . .∩ Â (K), where Â (k) represents the estimated set of active indices
from the kth partition. Such a variable selection procedure would be even more aggressive than the
K = 2 version; improved bounds in Theorem 1 could be obtained, but the probability of missing true
active indices would be increased. As the K = 2 procedure is already quite aggressive, we consider
this to be the most natural choice in practice.

In the iterated version of this first variant of SIS, we apply SIS to each partition separately to
obtain two sets of indices Â (1)

1 and Â (2)
1 , each having k1 elements. After forming the intersection

Â1 = Â
(1)
1 ∩Â (2)

1 , we carry out penalized likelihood estimation as before to give a first approximation
M̂1 to the true active set of features. We then perform a second stage of the ISIS procedure, as
outlined in Section 2, to each partition separately to obtain sets of indices M̂1∪ Â

(1)
2 and M̂1∪ Â

(2)
2 .

Taking the intersection of these sets and re-estimating parameters using penalized likelihood as
in Section 2 gives a second approximation M̂2 to the true active set. This process can be continued
until we reach an iteration ! with M̂! = M̂!−1, or we have recruited d indices.

3.2 Second Variant of ISIS

Our second variant of SIS is a more conservative feature selection procedure and also relies on
random partitioning the data into K = 2 groups as before. Again, we apply SIS to each partition
separately, but now we recruit as many features into equal-sized sets of active indices Ã (1) and Ã (2)

as are required to ensure that the intersection Ã = Ã (1) ∩ Ã (2) has d elements. We then apply a
penalized pseudo-likelihood method to the features XÃ = {Xj : j ∈ Ã} for final feature selection
and parameter estimation.

Theoretical support for this method can be provided in the case of the linear model; namely,
under certain regularity conditions, this variant of SIS possesses the sure screening property. More
precisely, if Conditions (1)–(4) of Fan & Lv (2008) hold with 2'+ ( < 1, and we choose d =
$n/ logn%, then there existsC > 0 such that

P(A ⊆ Ã) = 1−O{exp(−Cn1−2'/ logn+ log p)}.

The parameter ' ≥ 0 controls the rate at which the minimum signal min j∈A |! j| is allowed to con-
verge to zero, while (≥ 0 controls the rate at which the maximal eigenvalue of the covariance matrix
) = Cov(X1, . . . ,Xp) is allowed to diverge to infinity. In fact, we insist that min j∈A |! j| ≥ n−' and
#max())≤ n( for large n, where #max()) denotes the maximal eigenvalue of ). Thus, these technical
conditions ensure that any non-zero signal is not too small, and that the features are not too close to
being collinear, and the dimensionality is also controlled via log p = o(n1−2'/ logn), which is still
of an exponential order. See Fan & Lv (2008) for further discussion of the sure screening property.

Recently, Fan & Song (2009) extended the result of Fan & Lv (2008) to generalized linear
models. Let L̂0 = min!0 n−1"

n
i=1L(Yi,!0) be the baseline value to (2.1). The feature ranking pro-

cedure is equivalent to the thresholding method: M̂*n = { j : Lj−L0 ≥ *n}, in which *n is a given
thresholding value. Under certainly regularity conditions, if

min
j∈A

|cov(Xj,Y )|≥ c1n−', for some c1 > 0 and '< 1/2
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and *n = c0n−2' for a sufficiently small c0, then we have

P(A ⊂ M̂*n) → 1,

exponentially fast, provided that log pn = o(n1−2'). The sure screening property does not depend
on the correlation of the features, as expected. However, the selected model size does depend on the
correlation structure: The more correlated the features, the larger the selected model size. In fact,
Fan & Song (2009) demonstrated further that with probability tending to one exponentially fast,
|M̂*n | = O(*−2n #max())). When #max()) = O(n() and #max()) = O(n−2'), the selected model size
is |M̂*n | = O(n2'+(). In particularly, if the condition 2'+ (< 1 is imposed as in Fan & Lv (2008),
we can reduce safely the model size to o(n) by independence learning.

An iterated version of this second variant of SIS is also available. At the first stage we apply
SIS, taking enough features in equal-sized sets of active indices Ã (1)

1 and Ã (2)
1 to ensure that the

intersection Ã1 = Ã
(1)
1 ∩ Ã (2)

1 has k1 elements. Applying penalized likelihood to the features with
indices in Ã1 gives a first approximation M̃1 to the true set of active indices. We then carry out a
second stage of the ISIS procedure of Section 2 to each partition separately to obtain equal-sized
new sets of indices Ã (1)

2 and Ã (2)
2 , taking enough features to ensure that Ã2 = Ã

(1)
2 ∩ Ã

(2)
2 has k2

elements. Penalized likelihood applied to M̃1∩ Ã2 gives a second approximation M̃2 to the true set
of active indices. As with the first variant, we continue until we reach an iteration !with M̃! = M̃!−1,
or we have recruited d indices.

4. Numerical Results

We illustrate the breadth of applicability of (I)SIS and its variants by studying its performance on
simulated data in four different contexts: logistic regression, Poisson regression, robust regression
(with a least absolute deviation criterion) and multi-class classification with support vector ma-
chines. We will consider three different configurations of the p= 1000 features X1, . . . ,Xp:

Case 1: X1, . . . ,Xp are independent and identically distributed N(0,1) random variables

Case 2: X1, . . . ,Xp are jointly Gaussian, marginally N(0,1), and with corr(Xi,X4) = 1/
√
2 for all

i ,= 4 and corr(Xi,Xj) = 1/2 if i and j are distinct elements of {1, . . . , p}\{4}

Case 3: X1, . . . ,Xp are jointly Gaussian, marginally N(0,1), and with corr(Xi,X5) = 0 for all i ,= 5,
corr(Xi,X4) = 1/

√
2 for all i /∈ {4,5}, and corr(Xi,Xj) = 1/2 if i and j are distinct elements

of {1, . . . , p}\{4,5}.

Case 1, with independent features, is the most straightforward for variable selection. In Cases 2
and 3, however, we have serial correlation such that corr(Xi,Xj) does not decay as |i− j| increases.
We will see later that for both Case 2 and Case 3 the true coefficients are chosen such that the
response is marginally uncorrelated with X4. We therefore expect feature selection in these situations
to be more challenging, especially for the non-iterated versions of SIS. Notice that in the asymptotic
theory of SIS in Fan & Lv (2008), this type of dependence is ruled out by their Condition (4).

Regarding the choice of d, the asymptotic theory of Fan & Lv (2008) shows that in the linear
model there exists &∗ > 0 such that we may obtain the sure screening property with $n1−&∗% <
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d < n. However, &∗ is unknown in practice, and therefore Fan and Lv recommend d = $n/ logn%
as a sensible choice. Of course, choosing a larger value of d increases the probability that SIS
will include all of the correct variables, but including more inactive variables will tend to have a
slight detrimental effect on the performance of the final variable selection and parameter estimation
method. We have found that this latter effect is most noticeable in models where the response
provides less information. In particular, the binary response of a logistic regression model and, to a
lesser extent, the integer-valued response in a Poisson regression model are less informative than the
real-valued response in a linear model. We therefore used d = $ n

4logn% in the logistic regression and
multicategory classification settings of Sections 4.1 and 4.5, d = $ n

2logn% in the Poisson regression
settings of Section 4.2 and d = $ n2% in Section 4.4. These model-based, rather than data-adaptive,
choices of d seem to be satisfactory, as the performance of the procedures is quite robust to different
choices of d (in fact using d = $ n

logn% for all models would still give good performance).

4.1 Logistic Regression

In this example, the data (xT1 ,Y1), . . . ,(xTn ,Yn) are independent copies of a pair (xT ,Y ), where Y
is distributed, conditional on X = x, as Bin(1, p(x)), with log

( p(x)
1−p(x)

)
= !0 + xT!. We choose

n= 400.
As explained above, we chose d = $ n

4logn% = 16 in both the vanilla version of SIS outlined in
Section 2 (Van-SIS), and the second variant (Var2-SIS) in Section 3.2. For the first variant (Var1-
SIS), however, we used d = $ n

logn% = 66; note that since this means the selected features are in the
intersection of two sets of size d, we typically end up with far fewer than d features selected by this
method.

For the logistic regression example, the choice of final regularization parameter # for the SCAD
penalty (after all (I)SIS steps) was made by means of an independent validation data set of size n
(generated from the same model as the original data, used only for tuning the parameters), rather
than by cross-validation. This also applies for the LASSO and Nearest Shrunken Centroid (NSC,
Tibshirani et al., 2003) methods which we include for comparison; instead of using SIS, this method
regularizes the log-likelihood with an L1-penalty. The reason for using the independent tuning data
set is that the lack of information in the binary response means that cross-validation is particularly
prone to overfitting in logistic regression, and therefore perfoms poorly for all methods.

The coefficients used in each of the three cases were as follows:

Case 1: !0 = 0, !1 = 1.2439, !2 = −1.3416, !3 = −1.3500, !4 = −1.7971, !5 = −1.5810, !6 =
−1.5967, and ! j = 0 for j > 6. The corresponding Bayes test error is 0.1368.

Case 2: !0 = 0, !1 = 4, !2 = 4, !3 = 4, !4 = −6
√
2, and ! j = 0 for j > 4. The Bayes test error is

0.1074.

Case 3: !0 = 0, !1 = 4, !2 = 4, !3 = 4, !4 = −6
√
2, !5 = 4/3, and ! j = 0 for j > 5. The Bayes

test error is 0.1040.

In Case 1, the coefficients were chosen randomly, and were generated as (4logn/
√
n+ |Z|/4)U

with Z ∼ N(0,1) and U = 1 with probability 0.5 and −1 with probability −0.5, independent of
Z. For Cases 2 and 3, the choices ensure that even though !4 ,= 0, we have that X4 and Y are
independent. The fact that X4 is marginally independent of the response is designed to make it
difficult for a popular method such as the two-sample t test or other independent learning methods
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to recognize this important feature. Furthermore, for Case 3, we add another important variable X5
with a small coefficient to make it even more difficult to identify the true model. For Case 2, the
ideal variables picked up by the two sample test or independence screening technique are X1, X2
and X3. Using these variables to build the ideal classifier, the Bayes risk is 0.3443, which is much
larger than the Bayes error 0.1074 of the true model with X1,X2,X3,X4. In fact one may exaggerate
Case 2 to make the Bayes error using the independence screening technique close to 0.5, which
corresponds to random guessing, by setting !0 = 0, !1 = !2 = !3 = a, !m = a for m = 5,6, · · · , j,
!4 = −a( j−1)

√
2/2, and !m = 0 for m> j. For example, the Bayes error using the independence

screening technique, which deletes X4, is 0.4290 when j = 20 and a = 4 while the corresponding
Bayes error using Xm, m= 1,2, · · · ,20 is 0.0445.

In the tables below, we report several performance measures, all of which are based on 100
Monte Carlo repetitions. The first two rows give the median L1 and squared L2 estimation errors
‖!− !̂‖1 = "

p
j=0 |! j − !̂ j| and ‖!− !̂‖22 = "

p
j=0(! j − !̂ j)2. The third row gives the proportion

of times that the (I)SIS procedure under consideration includes all of the important features in the
model, while the fourth reports the corresponding proportion of times that the final features selected,
after application of the SCAD or LASSO penalty as appropriate, include all of the important ones.
The fifth row gives the median final number of features selected. Measures of fit to the training data
are provided in the sixth, seventh and eighth rows, namely the median values of 2Q(!̂0, !̂), defined
in (2.1), Akaike’s information criterion (Akaike, 1974), which adds twice the number of features in
the final model, and the Bayesian information criterion (Schwarz, 1978), which adds the product of
logn and the number of features in the final model. Finally, an independent test data set of size 100n
was used to evaluate the median value of 2Q(!̂0, !̂) on the test data (Row 9), as well as to report the
median 0-1 test error (Row 10), where we observe an error if the test response differs from the fitted
response by more than 1/2.

Table 1 compares five methods, Van-SIS, Var1-SIS, Var2-SIS, LASSO, and NSC. The most
noticeable observation is that while the LASSO always includes all of the important features, it does
so by selecting very large models—a median of 94 variables, as opposed to the correct number, 6,
which is the median model size reported by all three SIS-based methods. This is due to the bias of
the LASSO, as pointed out by Fan & Li (2001) and Zou (2006), which encourages the choice of a
small regularization parameter to make the overall mean squared error small. Consequently, many
unwanted features are also recruited. This is also evidenced by comparing the differences between
L1 and L2 losses in the first two rows. Thus the LASSOmethod has large estimation error, and while
2Q(!̂0, !̂) is small on the training data set, this is a result of overfit, as seen by the large values of
AIC/BIC, 2Q(!̂0, !̂) on the test data and the 0-1 test error.

As the features are independent in Case 1, it is unsurprising to see that Van-SIS has the best
performance of the three SIS-based methods. Even with the larger value of d used for Var1-SIS, it
tends to miss important features more often than the other methods. Although the method appears
to have value as a means of obtaining a minimal set of features that should be included in a final
model, we will not consider Var1-SIS further in our simulation study.

Table 2 displays the results of repeating the Case 1 simulations for Van-SIS, Var1-SIS and Var2-
SIS under the same conditions, but using the LASSO penalty function rather than the SCAD penalty
function after the SIS step. These versions are called Van-SIS-LASSO, Var1-SIS-LASSO and Var2-
SIS-LASSO respectively. We see that, as well as decreasing the computational cost, using any of
the three versions of SIS before the LASSO improves performance substantially compared with
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applying the LASSO to the full set of features. On the other hand, the results are less successful
than applying SIS and its variants in conjuction with the SCAD penalty for final feature selection
and parameter estimation. We therefore do not consider Van-SIS-LASSO, Var1-SIS-LASSO and
Var2-SIS-LASSO further.

Van-SIS Var1-SIS Var2-SIS LASSO NSC
‖!− !̂‖1 1.1093 1.2495 1.2134 8.4821 N/A
‖!− !̂‖22 0.4861 0.5237 0.5204 1.7029 N/A
Prop. incl. (I)SIS models 0.99 0.84 0.91 N/A N/A
Prop. incl. final models 0.99 0.84 0.91 1.00 0.34
Median final model size 6 6 6 94 3
2Q(!̂0, !̂) (training) 237.21 247.00 242.85 163.64 N/A
AIC 250.43 259.87 256.26 352.54 N/A
BIC 277.77 284.90 282.04 724.70 N/A
2Q(!̂0, !̂) (test) 271.81 273.08 272.91 318.52 N/A
0-1 test error 0.1421 0.1425 0.1426 0.1720 0.3595

Table 1: Logistic regression, Case 1

Van-SIS-LASSO Var1-SIS-LASSO Var2-SIS-LASSO
‖!− !̂‖1 3.8500 2.1050 3.0055
‖!− !̂‖22 1.0762 0.7536 0.9227
Prop. incl. (I)SIS models 0.99 0.84 0.91
Prop. incl. final models 0.99 0.84 0.91
Median final model size 16.0 9.0 14.5
2Q(!̂0, !̂) (training) 207.86 240.44 226.95
AIC 239.69 260.49 255.99
BIC 302.98 295.40 316.36
2Q(!̂0, !̂) (test) 304.79 280.95 291.79
0-1 test error 0.1621 0.1476 0.1552

Table 2: Logistic regression, Case 1

In Cases 2 and 3, we also consider the iterated versions of Van-SIS and Var2-SIS, which we
denote Van-ISIS and Var2-ISIS respectively. At each intermediate stage of the ISIS procedures,
the Bayesian information criterion was used as a fast way of choosing the SCAD regularization
parameter.

From Tables 3 and 4, we see that the non-iterated SIS methods fail badly in these awkward
cases. Their performance is similar to that of the LASSO method. On the other hand, both of the
iterated methods Van-ISIS and Var2-ISIS perform extremely well (and similarly to each other).

4.2 Poisson Regression

In our second example, the generic responseY is distributed, conditional onX= x, as Poisson(µ(x)),
where log µ(x) = !0+xT!.
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Van-SIS Van-ISIS Var2-SIS Var2-ISIS LASSO NSC
‖!− !̂‖1 20.0504 1.9445 20.1100 1.8450 21.6437 N/A
‖!− !̂‖22 9.4101 1.0523 9.3347 0.9801 9.1123 N/A
Prop. incl. (I)SIS models 0.00 1.00 0.00 1.00 N/A N/A
Prop. incl. final models 0.00 1.00 0.00 1.00 0.00 0.21
Median final model size 16 4 16 4 91 16.5
2Q(!̂0, !̂) (training) 307.15 187.58 309.63 187.42 127.05 N/A
AIC 333.79 195.58 340.77 195.58 311.10 N/A
BIC 386.07 211.92 402.79 211.55 672.34 N/A
2Q(!̂0, !̂) (test) 344.25 204.23 335.21 204.28 258.65 N/A
0-1 test error 0.1925 0.1092 0.1899 0.1092 0.1409 0.3765

Table 3: Logistic regression, Case 2

Van-SIS Van-ISIS Var2-SIS Var2-ISIS LASSO NSC
‖!− !̂‖1 20.5774 2.6938 20.6967 3.2461 23.1661 N/A
‖!− !̂‖22 9.4568 1.3615 9.3821 1.5852 9.1057 N/A
Prop. incl. (I)SIS models 0.00 1.00 0.00 1.00 N/A N/A
Prop. incl. final models 0.00 0.90 0.00 0.98 0.00 0.17
Median final model size 16 5 16 5 101.5 10
2Q(!̂0, !̂) (training) 269.20 187.89 296.18 187.89 109.32 N/A
AIC 289.20 197.59 327.66 198.65 310.68 N/A
BIC 337.05 218.10 389.17 219.18 713.78 N/A
2Q(!̂0, !̂) (test) 360.89 225.15 358.13 226.25 275.55 N/A
0-1 test error 0.1933 0.1120 0.1946 0.1119 0.1461 0.3866

Table 4: Logistic regression, Case 3

Due to the extra information in the count response, we choose n= 200, and apply all versions of
(I)SIS with d = $ n

2logn%= 37. We also use 10-fold cross-validation to choose the final regularization
parameter for the SCAD and LASSO penalties. The coefficients used were as follows:

Case 1: !0 = 5, !1 = −0.5423, !2 = 0.5314, !3 = −0.5012, !4 = −0.4850, !5 = −0.4133, !6 =
0.5234, and ! j = 0 for j > 6.

Case 2: !0 = 5, !1 = 0.6, !2 = 0.6, !3 = 0.6, !4 = −0.9
√
2, and ! j = 0 for j > 4.

Case 3: !0 = 5, !1 = 0.6, !2 = 0.6, !3 = 0.6, !4 = −0.9
√
2, !5 = 0.15, and ! j = 0 for j > 5.

In Case 1, the magnitudes of the coefficients !1, . . . ,!6 were generated as ( logn√
n + |Z|/8)U with Z ∼

N(0,1) andU = 1 with probability 0.5 and −1 with probability 0.5, independently of Z. Again, the
choices in Cases 2 and 3 ensure that, even though !4 ,= 0, we have corr(X4,Y ) = 0. The coefficients
are a re-scaled version of those in the logistic regression model, except that !0 = 5 is used to control
an appropriate signal-to-noise ratio.

The results are shown in Tables 5, 6 and 7. Even in Case 1, with independent features, the ISIS
methods outperform SIS, so we chose not to present the results for SIS in the other two cases. Again,
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both Van-ISIS and Var2-ISIS perform extremely well, almost always including all the important
features in relatively small final models. The LASSO method continues to suffer from overfitting,
particularly in the difficult Cases 2 and 3.

Van-SIS Van-ISIS Var2-SIS Var2-ISIS LASSO
‖!− !̂‖1 0.0695 0.1239 1.1773 0.1222 0.1969
‖!− !̂‖22 0.0225 0.0320 0.4775 0.0330 0.0537
Prop. incl. (I)SIS models 0.76 1.00 0.45 1.00 N/A
Prop. incl. final models 0.76 1.00 0.45 1.00 1.00
Median final model size 12 18 13 17 27
2Q(!̂0, !̂) (training) 1560.85 1501.80 7735.51 1510.38 1534.19
AIC 1586.32 1537.80 7764.51 1542.14 1587.23
BIC 1627.06 1597.17 7812.34 1595.30 1674.49
2Q(!̂0, !̂) (test) 1557.74 1594.10 14340.26 1589.51 1644.63

Table 5: Poisson regression, Case 1

Van-ISIS Var2-ISIS LASSO
‖!− !̂‖1 0.2705 0.2252 3.0710
‖!− !̂‖22 0.0719 0.0667 1.2856
Prop. incl. (I)SIS models 1.00 0.97 N/A
Prop. incl. final models 1.00 0.97 0.00
Median final model size 18 16 174
2Q(!̂0, !̂) (training) 1494.53 1509.40 1369.96
AIC 1530.53 1541.17 1717.91
BIC 1589.90 1595.74 2293.29
2Q(!̂0, !̂) (test) 1629.49 1614.57 2213.10

Table 6: Poisson regression, Case 2

Van-ISIS Var2-ISIS LASSO
‖!− !̂‖1 0.2541 0.2319 3.0942
‖!− !̂‖22 0.0682 0.0697 1.2856
Prop. incl. (I)SIS models 0.97 0.91 0.00
Prop. incl. final models 0.97 0.91 0.00
Median final model size 18 16 174
2Q(!̂0, !̂) (training) 1500.03 1516.14 1366.63
AIC 1536.03 1546.79 1715.35
BIC 1595.40 1600.17 2293.60
2Q(!̂0, !̂) (test) 1640.27 1630.58 2389.09

Table 7: Poisson regression, Case 3
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4.3 Robust Regression

We have also conducted similar numerical experiments using L1-regression for the three cases in
an analogous manner to the previous two examples. We obtain similar results. Both versions of
ISIS are effective in selecting important features with relatively low false positive rates. Hence, the
prediction errors are also small. On the other hand, LASSO missed the difficult variables in cases 2
and 3 and also selected models with a large number of features to attenuate the bias of the variable
selection procedure. As a result, its prediction errors are much larger. To save space, we omit the
details of the results.

4.4 Linear Regression

Note that our new ISIS procedure allows feature deletion in each step. It is an important improve-
ment over the original proposal of Fan & Lv (2008) even in the ordinary least-squares setting. To
demonstrate this, we choose Case 3, the most difficult one, with coefficients given as follows.

Case 3: !0 = 0, !1 = 5, !2 = 5, !3 = 5, !4 = −15
√
2/2, !5 = 1, and ! j = 0 for j > 5.

The response Y is set as Y = xT!+ + with independent + ∼ N(0,1). This model is the same as
Example 4.2.3 of Fan & Lv (2008). Using n = 70 and d = n/2, our new ISIS method includes
all five important variables for 91 out of the 100 repetitions, while the original ISIS without feature
deletion includes all the important features for only 36 out of the 100 repetitions. The median model
size of our new variable selection procedure with variable deletion is 21, whereas the median model
size corresponding to the original ISIS of Fan & Lv (2008) is 19.

We have also conducted the numerical experiment with a different sample size n = 100 and
d = n/2= 50. For 97 out of 100 repetitions, our new ISIS includes all the important features while
ISIS without variable deletion includes all the important features for only 72 repetitions. Their
median model sizes are both 26. This clearly demonstrates the improvement of allowing feature
deletion in this example.

4.5 Multicategory Classification

Our final example in this section is a four-class classification problem. Here we study two different
feature configurations, both of which depend on first generating independent X̃1, . . . , X̃p such that
X̃1, . . . , X̃4 are uniformly distributed on [−

√
3,
√
3], and X̃5, . . . , X̃p are distributed as N(0,1). We use

these random variables to generate the following cases:

Case 1: Xj = X̃ j for j = 1, . . . , p

Case 2: X1 = X̃1−
√
2X̃5, X2 = X̃2+

√
2X̃5, X3 = X̃3−

√
2X̃5, X4 = X̃4+

√
2X̃5, and Xj =

√
3X̃ j for

j = 5, . . . , p.

Conditional onX= x, the responseY was generated according to P(Y = k|X̃= x̃), exp{ fk(x̃)}, for
k= 1, . . . ,4, where f1(x̃) =−ax̃1+ax̃4, f2(x̃) = ax̃1−ax̃2, f3(x̃) = ax̃2−ax̃3 and f4(x̃) = ax̃3−ax̃4
with a= 5/

√
3.

In both Case 1 and Case 2, all features have the same standard deviation since sd(Xj) = 1 for
j = 1,2, · · · , p in Case 1 and sd(Xj) =

√
3 for j = 1,2, · · · , p in Case 2. Moreover, for this case, the

variable X5 is marginally unimportant, but jointly significant, so it represents a challenge to identify
this as an important variable. For both Case 1 and Case 2, the Bayes error is 0.1373.
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For the multicategory classification we use the loss function proposed by Lee, Lin and Wahba
(2004). Denote the coefficients for the kth class by !0k and !k for k = 1,2,3,4, and let B =
((!01,!

T
1 )

T ,
(!02,!

T
2 )

T ,(!03,!
T
3 )

T ,(!04,!
T
4 )

T ). Let fk(x) ≡ fk(x,!0k,!k) = !0k +xT!k, k = 1,2,3,4, and

f(x) ≡ f(x,B) = ( f1(x), f2(x), f3(x), f4(x))T .

The loss function is given by L(Y, f(x)) = " j ,=Y [1+ f j(x)]+, where [-]+ = - if - ≥ 0 and 0 oth-
erwise. Deviating slightly from our standard procedure, the marginal utility of the jth feature is
defined by

Lj =min
B

n

"
i=1

L(Yi, f(Xi j,B))+
1
2

4

"
k=1

!2jk

to avoid possible unidentifiablity issues due to the hinge loss function. Analogous modification is
applied to (3) in the iterative feature selection step. With estimated coefficients !̂0k and !̂k, and
f̂k(x) = !̂0k + xT !̂k for k = 1,2,3,4, the estimated classification rule is given by argmaxk f̂k(x).
There are some other appropriate multi-category loss functions such as the one proposed by Liu,
Shen and Doss (2005).

As with the logistic regression example in Section 4.1, we use n = 400, d = $ n
4logn% = 16 and

an independent validation data set of size n to pick the final regularization parameter for the SCAD
penalty.

The results are given in Table 8. The mean estimated testing error was based on a further testing
data set of size 200n, and we also report the standard error of this mean estimate. In the case of
independent features, all (I)SIS methods have similar performance. The benefits of using iterated
versions of the ISIS methodology are again clear for Case 2, with dependent features.

Van-SIS Van-ISIS Var2-SIS Var2-ISIS LASSO NSC
Case 1

Prop. incl. (I)SIS models 1.00 1.00 0.99 1.00 N/A N/A
Prop. incl. final model 1.00 1.00 0.99 1.00 0.00 0.68
Median modal size 2.5 4 10 5 19 4
0-1 test error 0.3060 0.3010 0.2968 0.2924 0.3296 0.4524
Test error standard error 0.0067 0.0063 0.0067 0.0061 0.0078 0.0214

Case 2
Prop. incl. (I)SIS models 0.10 1.00 0.03 1.00 N/A N/A
Prop. incl. final models 0.10 1.00 0.03 1.00 0.33 0.30
Median modal size 4 11 5 9 54 9
0-1 test error 0.4362 0.3037 0.4801 0.2983 0.4296 0.6242
Test error standard error 0.0073 0.0065 0.0083 0.0063 0.0043 0.0084

Table 8: Multicategory classification

5. Real Data Examples

In this section, we apply our proposed methods to two real data sets. The first one has a binary
response while the second is multi-category. We treat both as classification problems and use the
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hinge loss discussed in Section 4.5. We compare our methods with two alternatives: the LASSO
and NSC.

5.1 Neuroblastoma Data

We first consider the neuroblastoma data used in Oberthuer et al. (2006). The study consists of 251
patients of the German Neuroblastoma Trials NB90-NB2004, diagnosed between 1989 and 2004.
At diagnosis, patients’ ages range from 0 to 296 months with a median age of 15 months. They
analyzed 251 neuroblastoma specimens using a customized oligonucleotide microarray with the
goal of developing a gene expression-based classification rule for neuroblastoma patients to reliably
predict courses of the disease. This also provides a comprehensive view on which set of genes is
responsible for neuroblastoma.

The complete data set, obtained via theMicroArray Quality Control phase-II (MAQC-II) project,
includes gene expression over 10,707 probe sites. Of particular interest is to predict the response
labeled “3-year event-free survival” (3-year EFS) which is a binary variable indicating whether each
patient survived 3 years after the diagnosis of neuroblastoma. Excluding five outlier arrays, there
are 246 subjects out of which 239 subjects have 3-year EFS information available with 49 positives
and 190 negatives. We apply SIS and ISIS to reduce dimensionality from p= 10,707 to d = 50. On
the other hand, our competitive methods LASSO and NSC are applied directly to p= 10,707 genes.
Whenever appropriate, five-fold cross validation is used to select tuning parameters. We randomly
select 125 subjects (25 positives and 100 negatives) to be the training set and the remainder are used
as the testing set. Results are reported in the top half of Table 9. Selected probes for LASSO and all
different (I)SIS methods are reported in Table 10.

In MAQC-II, a specially designed end point is the gender of each subject, which should be an
easy classification. The goal of this specially designed end point is to compare the performance
of different classifiers for simple classification jobs. The gender information is available for all
the non-outlier 246 arrays with 145 males and 101 females. We randomly select 70 males and 50
females to be in the training set and use the others as the testing set. We set d = 50 for our SIS and
ISIS as in the case of the 3-year EFS end point. The results are given in the bottom half of Table 9.
Selected probes for all different methods are reported in Table 11.

End point SIS ISIS var2-SIS var2-ISIS LASSO NSC

3-year EFS No. of features 5 23 10 12 57 9413
Testing error 19/114 22/114 22/114 21/114 22/114 24/114

Gender No. of features 6 2 4 2 42 3
Testing error 4/126 4/126 4/126 4/126 5/126 4/126

Table 9: Results from analyzing two endpoints of the neuroblastoma data
We can see from Table 9 that our (I)SIS methods compare favorably with the LASSO and NSC.

Especially for the end point 3-year EFS, our methods use fewer features while giving smaller testing
error. For the end point GENDER, Table 11 indicates that the most parsimonious model given by
ISIS and Var2-ISIS is a sub model of others.

5.2 SRBCT Data

In this section, we apply our method to the children cancer data set reported in Khan et al. (2001).
Khan et al. (2001) used artificial neural networks to develop a method of classifying the small, round
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Probe SIS ISIS var2-SIS var2-ISIS LASSO
‘A 23 P160638’ x
‘A 23 P168916’ x x
‘A 23 P42882’ x
‘A 23 P145669’ x
‘A 32 P50522’ x
‘A 23 P34800’ x
‘A 23 P86774’ x
‘A 23 P417918’ x x
‘A 23 P100711’ x
‘A 23 P145569’ x
‘A 23 P337201’ x
‘A 23 P56630’ x x x
‘A 23 P208030’ x x
‘A 23 P211738’ x
‘A 23 P153692’ x
‘A 24 P148811’ x
‘A 23 P126844’ x x
‘A 23 P25194’ x
‘A 24 P399174’ x
‘A 24 P183664’ x
‘A 23 P59051’ x
‘A 24 P14464’ x
‘A 23 P501831’ x x
‘A 23 P103631’ x
‘A 23 P32558’ x
‘A 23 P25873’ x
‘A 23 P95553’ x
‘A 24 P227230’ x x
‘A 23 P5131’ x
‘A 23 P218841’ x
‘A 23 P58036’ x
‘A 23 P89910’ x
‘A 24 P98783’ x
‘A 23 P121987’ x x
‘A 32 P365452’ x
‘A 23 P109682’ x
‘Hs58251.2’ x
‘A 23 P121102’ x
‘A 23 P3242’ x
‘A 32 P177667’ x
‘Hs6806.2’ x
‘Hs376840.2’ x
‘A 24 P136691’ x
‘Pro25G B35 D 7’ x x
‘A 23 P87401’ x
‘A 32 P302472’ x
‘Hs343026.1’ x
‘A 23 P216225’ x x x
‘A 23 P203419’ x x
‘A 24 P22163’ x x
‘A 24 P187706’ x
‘C1 QC’ x
‘Hs190380.1’ x x
‘Hs117120.1’ x
‘A 32 P133518’ x
‘EQCP1 Pro25G T5’ x
‘A 24 P111061’ x
‘A 23 P20823’ x x x x
‘A 24 P211151’ x
‘Hs265827.1’ x x
‘Pro25G B12 D 7’ x
‘Hs156406.1’ x
‘A 24 P902509’ x
‘A 32 P32653’ x
‘Hs42896.1’ x
‘A 32 P143793’ x x x
‘A 23 P391382’ x
‘A 23 P327134’ x
‘Pro25G EQCP1 T5’ x
‘A 24 P351451’ x
‘Hs170298.1’ x
‘A 23 P159390’ x
‘Hs272191.1’ x
‘r60 a135’ x
‘Hs439489.1’ x
‘A 23 P107295’ x
‘A 23 P100764’ x x x x x
‘A 23 P157027’ x
‘A 24 P342055’ x
‘A 23 P1387’ x
‘Hs6911.1’ x
‘r60 1’ x

Table 10: Selected probes for the 3-year EFS end point
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Probe SIS ISIS var2-SIS var2-ISIS LASSO NSC
‘A 23 P201035’ x
‘A 24 P167642’ x
‘A 24 P55295’ x
‘A 24 P82200’ x
‘A 23 P109614’ x
‘A 24 P102053’ x
‘A 23 P170551’ x
‘A 23 P329835’ x
‘A 23 P70571’ x
‘A 23 P259901’ x
‘A 24 P222000’ x
‘A 23 P160729’ x
‘A 23 P95553’ x x
‘A 23 P100315’ x
‘A 23 P10172’ x
‘A 23 P137361’ x
‘A 23 P202484’ x
‘A 24 P56240’ x
‘A 32 P104448’ x
‘(-)3xSLv1’ x
‘A 24 P648880’ x
‘Hs446389.2’ x
‘A 23 P259314’ x x x x x x
‘Hs386420.1’ x
‘Pro25G B32 D 7’ x
‘Hs116364.2’ x
‘A 32 P375286’ x x
‘A 32 P152400’ x
‘A 32 P105073’ x
‘Hs147756.1’ x
‘Hs110039.1’ x
‘r60 a107’ x
‘Hs439208.1’ x
‘A 32 P506090’ x
‘A 24 P706312’ x
‘Hs58042.1’ x
‘A 23 P128706’ x
‘Hs3569.1’ x
‘A 24 P182900’ x
‘A 23 P92042’ x
‘Hs170499.1’ x
‘A 24 P500584’ x x x x x x
‘A 32 P843590’ x
‘Hs353080.1’ x
‘A 23 P388200’ x
‘C1 QC’ x
‘Hs452821.1’ x

Table 11: Selected probe for Gender end point

blue cell tumors (SRBCTs) of childhood to one of the four categories: neuroblastoma (NB), rhab-
domyosarcoma (RMS), non-Hodgkin lymphoma (NHL), and the Ewing family of tumors (EWS)
using cDNA gene expression profiles. Accurate diagnosis of SRBCTs to these four distinct diag-
nostic categories is important in that the treatment options and responses to therapy are different
from one category to another.

After filtering, 2308 gene profiles out of 6567 genes are given in the SRBCT data set. It is
available online at http://research.nhgri.nih.gov/microarray/Supplement/. It includes a training set
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of size 63 (12 NBs, 20 RMSs, 8 NHLs, and 23 EWS) and an independent test set of size 20 (6 NBs,
5 RMSs, 3 NHLs, and 6 EWS).

Before performing classification, we standardize the data sets by applying a simple linear trans-
formation to both the training set and the test set. The linear transformation is based on the training
data so that, after standardizing, the training data have mean zero and standard deviation one. Our
(I)SIS reduces dimensionality from p= 2308 to d = $63/ log63% = 15 first while alternative meth-
ods LASSO and NSC are applied to p = 2308 gene directly. Whenever appropriate, a four-fold
cross validation is used to select tuning parameters.

ISIS, var2-ISIS, LASSO and NSC all achieve zero test error on the 20 samples in the test set.
NSC uses 343 genes and LASSO requires 71 genes. However ISIS and var2-ISIS use 15 and 14
genes, respectively.

This real data application delivers the same message that our new ISIS and var2-ISIS methods
can achieve competitive classification performance using fewer features.
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Abstract
Due to the scale and computational complexity of currently used simulation codes, global surrogate
(metamodels) models have become indispensable tools for exploring and understanding the design
space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visual-
ization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used
as accurate building blocks in design packages or larger simulation environments. Consequently,
there is great interest in techniques that facilitate the construction of such approximation models
while minimizing the computational cost and maximizing model accuracy. Many surrogate model
types exist (Support Vector Machines, Kriging, Neural Networks, etc.) but no type is optimal in all
circumstances. Nor is there any hard theory available that can help make this choice. In this paper
we present an automatic approach to the model type selection problem. We describe an adaptive
global surrogate modeling environment with adaptive sampling, driven by speciated evolution. Dif-
ferent model types are evolved cooperatively using a Genetic Algorithm (heterogeneous evolution)
and compete to approximate the iteratively selected data. In this way the optimal model type and
complexity for a given data set or simulation code can be dynamically determined. Its utility and
performance is demonstrated on a number of problems where it outperforms traditional sequential
execution of each model type.
Keywords: model type selection, genetic algorithms, global surrogate modeling, function approx-
imation, active learning, adaptive sampling

1. Introduction

For many problems from science and engineering it is impractical to perform experiments on the
physical world directly (e.g., airfoil design, earthquake propagation). Instead, complex, physics-
based simulation codes are used to run experiments on computer hardware. While allowing scien-
tists more flexibility to study phenomena under controlled conditions, computer experiments require
a substantial investment of computation time. One simulation may take many minutes, hours, days
or even weeks. A simpler approximation of the simulator is needed to make sensitivity analysis,
visualization, design space exploration, etc. feasible (Forrester et al., 2008; Simpson et al., 2008).

As a result researchers have turned to various approximation methods that mimic the behavior
of the simulation model as closely as possible while being computationally cheap(er) to evaluate.
Different types of approximation methods exist, each with their relative strengths. This work con-
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centrates on the use of data-driven, global approximations using compact surrogate models (also
known as emulators, metamodels or response surface models) in the context of computer exper-
iments. The objective is to construct a high fidelity approximation model that is as accurate as
possible over the complete design space of interest using as little simulation points as possible.
Once constructed, the global surrogate model (also referred to as a replacement metamodel1) is
reused in other stages of the computational science and engineering pipeline. So optimization is not
the main goal, but rather a useful post processing step.

The primary users of global surrogate modeling methods are domain experts, few of which will
be experts in the intricacies of efficient sampling and modeling strategies. Their primary concern is
obtaining an accurate replacement metamodel for their problem as fast as possible and with minimal
overhead. Model (type) selection, model parameter optimization, sampling strategy, etc. are of
lesser or no interest to them. Thus, this paper explores an automated way to help answer the always
recurring question from domain experts “Which approximation method is best for my data?”. An
evolutionary algorithm is presented that combines automatic model type selection, automatic model
parameter optimization, and sequential design exploration.

In the next Section we describe the problem of global surrogate modeling followed by an in
depth discussion of the motivation for this work in Section 3. The core approach presented in this
paper is discussed in Section 5 followed by a critical analysis in Section 6. Section 7 describes
a number of surrogate modeling problems we shall use to demonstrate the proposed approach,
followed by their discussion in Section 10 (the experimental setup is described in Section 9). We
conclude in Section 12 with pointers to future work.

2. Global Surrogate Modeling

The mathematical formulation of the problem is as follows: approximate an unknown multivariate
function f : ! "→ Cn, defined on some domain ! ⊂ Rd , whose function values f (X) =
{ f (x1), ..., f (xk)}⊂Cn are known at a fixed set of pairwise distinct sample points X = {x1, ...,xk}⊂
!. Constructing an approximation requires finding a suitable function s from an approximation
space S such that s :! "→ Cn ∈ S and s closely resembles f as measured by some criterion ", where
" constitutes three parts:

"= (#,$,%).

# is the generalization estimator, $ the error (or loss) function, and % is the target value required
by the user. This means that the global surrogate model generation problem (i.e., finding the best
approximation s∗ ∈ S) for a given set of data points D= (X , f (X)) can be formally defined as

s∗ = argmin
t∈T

argmin
&∈'

#($,st,&,D) (1)

such that
#($,s∗t,&,D) ! %

where st,& is the parametrization & (from a parameter space ') of s and st,& is of model type t (from
a set of model types T ).

1. The terms surrogate model and metamodel are used interchangeably.
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The first minimization over t ∈ T is the task of selecting a suitable approximation model type,
that is, a rational function, a neural network, a spline, etc. This is the model type selection problem.
In practice, one typically considers only a single t ∈ T , though others may be included for compari-
son. Then given a particular approximation type t, the task is to find the hyperparameter assignment
& that minimizes the generalization estimator # (e.g., determine the optimal order of a polynomial
model). This is the hyperparameter optimization problem, though generally both minimization’s
are simply referred to as the model selection problem. Many implementations of # have been de-
scribed: the hold-out, bootstrap, cross validation, jack-knife, Akaike’s Information Criterion (AIC),
etc. Different criteria may also be combined in a multi-objective fashion. In this case " is really a
matrix

"=









#1 $1 %1
#2 $2 %2
... ... ...

#m $m %m









with m the number of objectives. A simple example is minimizing the average relative cross val-
idation error together with the maximum absolute deviation in the training points. An additional
assumption is that f is expensive to compute. Thus the number of function evaluations | f (X)| needs
to be minimized and data points must be selected iteratively, at points where the information gain
will be the greatest (Turner et al., 2007). Mathematically this means defining a sampling function

((Xj−1) = Xj , j = 1, ..,N

that constructs a data hierarchy

X0 ⊂ X1 ⊂ X2 ⊂ ... ⊂ XN ⊂ X

of nested subsets of X , where N is the number of levels. X0 is referred to as the initial experimental
design and is constructed using one of the many algorithms available from the theory of Design and
Analysis of Computer Experiments (Kleijnen et al., 2005). Once the initial design X0 is available
it can be used to seed the sampling function (. An important requirement of ( is to minimize the
number of sample points |Xj|− |Xj−1| selected each iteration, yet maximize the information gain
of each successive data level. Depending on the problem, ( can take into account different criteria
(non-linearity of the response, smoothness/uncertainty of the model, location of the optima, etc.).
This process is referred to as adaptive sampling, active learning, model updating, or sequential
design.

An important consequence of the adaptive sampling procedure is that the task of finding the best
approximation s∗ (cfr. Equation 1) becomes a dynamic problem instead of a static one. Since the
optimal model parameters will change as the amount and distribution of data points changes. This
of course makes the problem more difficult.

3. Motivation

While the mathematical formulation of global surrogate modeling is clear cut, its practical im-
plementation raises an obvious question: How should the minimization over t ∈ T and & ∈ ' in
Equation 1 be performed? We discuss both cases in the following subsections.
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3.1 Problem 1: Model Type Selection

The first minimization over t ∈ T is the model type selection problem. Many model types exist:
rational functions, Artificial Neural Networks (ANN), Support Vector Machines (SVM), Gaussian
Process (GP) models, Multivariate Adaptive Regression Splines (MARS), Radial Basis Function
(RBF) models, projection pursuit regression, rational functions, etc.

3.1.1 BACKGROUND

From a theoretic standpoint, selecting the most suitable approximation method for a given response
is a difficult problem that depends on the data characteristics (dimensionality, number of points, dis-
tribution, noise level, periodicity, etc) and the application constraints (accuracy, smoothness, ability
to capture poles or discontinuities, execution speed, interpretability, extrapolation requirements,
etc). Different application domains prefer different model types. For example rational functions are
widely used by the electrical engineering community (Deschrijver and Dhaene, 2005) while ANN
are preferred for hydrological modeling (Solomatine and Ostfeld, 2008). Differences in model type
usage are often due to practical reasons. This is particularly true in industrial settings. For example:
the designer adheres to common practice within his field, the final application restricts the designer
to one particular type (e.g., rational models for EM systems), or the expertise is not available to
properly try other methods.

Of course, this need not always be the case. The choice of the metamodel type can also be
motivated by knowledge of the underlying physics2 (Triverio et al., 2007) or by the special features
the model provides: for example the uncertainty prediction based on random process assumption in
Kriging methods3 (Xiong et al., 2007). So remark there is no such thing as an inherently ‘good’ or
‘bad’ model. A model is only as good as the data it is based on and the expertise of the user that
built it.

3.1.2 CLASSIC APPROACH

If multiple model types are considered, the classic approach is to simply to try out different types
and select the best one according to one or more accuracy criteria. There is ample literature available
that benchmarks model types in this way (Simpson et al., 2001; Jin et al., 2001; Queipo et al., 2005;
Yang et al., 2005; Chen et al., 2006; Wang and Shan, 2007; Chung and Alonso, 2000; Gano et al.,
2006; Gu, 2001; Santner et al., 2003; Lim et al., 2007; Fang et al., 2005; Gorissen et al., 2009c). But
claims that a particular model type is superior to others should always be met with some skepticism.

In order for the different benchmarking studies to be truly useful for a domain expert, the results
of such studies must be collected and compiled into a general set of rules, recipe, or flowchart.
To ease the discussion, let us denote such a compilation into a learning algorithm by L. L is then
essentially a classifier that can predict which model type t ∈ T to use based on dataD and application
requirements ):

2. Knowledge of the physics of the underlying system can make a particular model type to be preferred. For example,
rational functions are popular for all kinds of Linear Time-Invariant systems since theory is available that can be used
to prove that rational pole-residue models conserve certain physical quantities (Triverio et al., 2007).

3. Kriging models are closely related to GP models and and often Kriging and GP models are used as labels for the same
techniques. Great similarities between GP models, SVM models, RBF models, and RBF Neural Networks exist as
well, as has been discussed in Rasmussen and Williams (2006).
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L(D,)) = t.

When executed L should then be able to give a specific recommendation as to which model type
to use for a given problem. This recommendation should be more specific than the general rules
of thumb that are available now. Experience shows this to be exactly what an application engineer
wants. However, constructing such a learner L for any but the most restricted class of problems is
a daunting undertaking for obvious practical reasons. Firstly, deciding which problem/application
features to train the classifier on is far from trivial. Also even if this is done, the number of features
can be expected to be high thus gathering the necessary data (by manually solving Equation 1) to
train L accurately will be very computationally expensive.

Secondly, as mentioned above, the success of a model type largely depends on the expertise
of the user, the quality of the data, and even the quality of the software implementation of the
technique. Neural networks are a good example in this respect. In the right hands they are able to
perform very well on many problems. However, if poor choices are made with regard to training
function, topology selection, generalization control, training parameters, software library, etc. they
may seem to perform poorly. How to take into account this information in L?

Thirdly, a more fundamental problem with this approach is that data must be available in order
for the reasoner to work. However, if only a simulation code is available (as is often the case) data
must be collected, and the optimal data collection strategy that minimizes the number of points
depends on the model type. Also, the optimal model type will change depending on how much data
is available. One could argue to instead train L only on the data characteristics which are known in
advance (e.g., dimensionality, noise level, etc.). The question is then again, which characteristics
are most important? Furthermore, in many cases not much is known about the true behavior of the
response thus there will typically not be enough information to train L accurately.

This brings us to the final point. A main reason for turning towards global surrogate modeling
methods is that little is known about the behavior of the response (Simpson et al., 2008). The goal
is to get insight into that behavior in a computationally cheap way by applying surrogate methods.
Another reason why information about the data may be scarce is that the source of the data is
confidential or proprietary and very little information is disclosed. In these situations using or
training L becomes very difficult.

Finally, we must stress that we do not say that this problem is too difficult and not worth trying
to solve. Indeed many such problems exist and are currently being tackled, particularly in medicine.
Instead we argue that users of global surrogate modeling methods can benefit from a more dynamic
approach that is flexible, can be easily applied to a wide range of different problems, can easily
incorporate new fitting techniques and process knowledge, and naturally integrates with an adaptive
data collection procedure. We shall revisit this point in sections 3.3 and 6.

3.2 Problem 2: Model Parameter Selection

Assuming the model type selection problem has been solved, there remains the model parameter
selection problem (the minimization over & ∈ ' in Equation 1). For example, finding the optimal
C,$ and * parameters in the case of RBF SVMs. This is the classic hyperparameter optimization
problem that also depends on the data characteristics (for example the optimal correlation function
and correlations parameters of a Kriging model will depend on the data distribution (Gorissen et al.,
2008b; Toal et al., 2008). Some models are more sensitive to changes in their parameters than others

2043



GORISSEN, DHAENE AND DE TURCK

and usually it takes a great deal of experience to know how all parameters should be set. Sometimes
this problem is solved through trial and error, but usually it is tackled as an optimization problem
and classic optimization algorithms are used guided by a performance metric.

A huge amount of research has been done on this topic, particularly in the machine learning
community (see Section 4). This particular problem is not the main focus of this work. Rather we
are more interested in tackling the first problem.

3.3 Proposed Solution

While we are primarily interested in the first problem, the approach described in this paper naturally
incorporates problem 2 as well. In both cases there is little theory that can be used as a guide.
It is in this setting that the evolutionary approach can be expected to do well. We describe the
application of a single GA with speciation to both problems: the selection of the surrogate type and
the optimization of the surrogate model parameters (= hyperparameter optimization). In addition,
we do not assume all data is available at once but must be sampled incrementally since it is expensive
(active learning).

The idea is to maintain a heterogeneous population of surrogate model types and let them evolve
cooperatively and dynamically with the changing data distribution. The details will be presented in
Section 5 and a critique in Section 6. In addition, an implementation in the form of a Matlab toolbox
is available for download from http://www.sumo.intec.ugent.be.

4. Related Work

The evolutionary generation of regression models for given input-output data has been widely stud-
ied in the genetic programming community (Vladislavleva et al., 2009; Streeter and Becker, 2003;
Yeun et al., 2004). Given a set of mathematical primitives (+, sin, exp, /, x, y, etc.) the space of sym-
bolic expression trees is searched to find the best function approximation. The application of GAs
to the optimization of model parameters of a single model type (homogeneous evolution) has also
been common (Chen et al., 2004; Lessmann et al., 2006; Tomioka et al., 2007; Friedrichs and Igel,
2005; Zhang et al., 2000) and the extensive work by Yao (1999); Yao and Xu (2006). Integration
with adaptive sampling has also been discussed (Busby et al., 2007). However, these efforts do not
tackle the model type selection problem, they restrict themselves to a particular method (e.g., SVMs
or neural networks). As Knowles and Nakayama (2008) state “Little is known about which types of
model accord best with particular features of a landscape and, in any case, very little may be known
to guide this choice.”. Likewise, Solomatine and Ostfeld (2008) note: “...it is important to stress
that there are always situations when one model type cannot be applied or suffers from inadequa-
cies and can be well complemented or replaced by another one”. Thus an algorithm to help solve
this problem in a dynamic, automated way is very useful (Keys et al., 2007). This is also noticed
by Voutchkov and Keane (2006) who compare different surrogate models for approximating each
objective during optimization. They note that in theory their approach allows the use of a different
model type for each objective. However, such an approach will still require an a priori model type
selection and does not allow for dynamic switching of the model type or the generation of hybrids.

There has also been much research on the use of surrogate models in evolutionary optimization
of expensive simulators (to approximate the fitness function). References include Jin et al. (2002),
Regis and Shoemaker (2004), Paenke et al. (2006) and Emmerich et al. (2006), the work by Ong
et al. (2006), and more recently by Lim et al. (2007). In general the theory is referred to as Surrogate
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Based Optimization or Metamodel Assisted Optimization. A good overview reference is given by
Eldred and Dunlavy (2006) and Queipo et al. (2005). For example, Lim et al. (2007) compare
the utility of different local surrogate modeling techniques (quadratic polynomials, GP, RBF, ...)
including the use of (fixed) ensembles, for optimization of computationally expensive simulation
codes. Local surrogates are used together with a trust region framework to quickly and robustly
identify the optimum. As noted in the introduction, the contrast with this work is that references
such as Lim et al. (2007) are interested in the optimum and not the surrogate itself (they make
only a “mild assumption on the accuracy of the metamodeling technique”). In addition the model
parameters are taken as fixed and there is no integration with active learning. In contrast we place
very strong emphasis on the surrogate model accuracy, the automatic setting of the hyperparameters,
and the efficient sampling of the complete design space.

The work of Sanchez et al. (2006) and Goel et al. (2007) is more useful in our context since
they provide new algorithms for generating an optimal set of ensemble members for a fixed set
of data points (no sampling). Unfortunately, though, the parameters of the models involved must
still be chosen manually. Nevertheless, their approaches are interesting, and can be used to further
enhance the approach presented here. For example, instead of returning the single final best model,
an optimal ensemble member selection algorithm can be used to return a potentially much better
model based on the final population or Pareto front.

From machine learning the work in B. et al. (2004) is also related. The authors describe an
interesting classification algorithm COMB that combines online an ensemble of active learners so
as to expedite the learning progress in pool-based active learning. In their terminology an active
learner is a combination of a model type and a sampling algorithm. A weighted ensemble of active
learners is maintained and each learner is allowed to express interest in a pool of unlabeled training
points. Depending on the interests of the active learners, an unlabeled point is selected, labeled by
the teacher, and based on the added value of that point the different active learners are punished or
rewarded. Internally the active learners are SVMmodels whose parameters are chosen manually. In
principle, with a number of approximations one could adapt the algorithm to the regression case. If
one then also included hyperparameter optimization, the result would be very similar to the SUMO-
Toolbox (cfr. Section 5.2) configured with one or more of the Error, LRM, or EGO (Jones et al.,
1998) sample selection algorithms, but without the ability to combine different criteria. However,
a problem would be that COMB assumes a pool of unlabeled training data is given. However,
when modeling a simulation code in regression no such pool is available. Some external algorithm
would still be needed to generate it in order for COMB to work. COMB does also naturally allow
for different model types but in a more static way than the algorithm in Section 5.3: there is no
hyperparameter optimization, the number of each active learning type remains fixed (though the
weights can change) leading to a potentially high computational cost, and hybrid models are not
considered. The extension to the multi-objective case is also non-trivial. Of course COMB could
be extended to incorporate such features, but the result would be very similar to the work presented
here. Nevertheless, the specific scoring functions, probability weightings, and ensemble weight
updates, seem very useful and could be implemented in the SUMO-Toolbox to complement the
approach presented here.

Finally, the work by Escalante et al. (2008) is most similar to the topic of this paper. Escalante
et al. (2008) consider the problem of finding the optimal classifier and associated hyperparameters
for a given classification problem (active learning is not considered). A solution is encoded as a
vector and Particle Swarm Optimization (PSO) is used to search for good classifiers. Good results
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are shown on various benchmarks. Unlike the GA approach, however, it is less straightforward to
cater for multiple sub-populations, giving models room to mature independently before entering
competition. The use of operators tuned to specific models is also difficult (to increase the search
efficiency). In effect, the PSO approach takes a top-down view, using a high level encoding in a
high dimensional space, a typical particle has 25 dimensions (Escalante et al., 2007). In contrast
the GA approach is bottom up, the model specific operators result in a much smaller search space,
different for each method (e.g., 1 for the spline models and 2 for the SVM models). This leads to
a more efficient search requiring less fitness evaluations and facilitates the incorporation of prior
knowledge. In addition, by using PSO there is no natural way of enabling hybrid solutions (ensem-
bles) without extending the encoding and further increasing the search space. In contrast, the hybrid
solutions arise very naturally in the GA framework and do not impact the search space of the other
model types. The same is true of the extension to the multi-objective case, a very natural step in the
GA case.

In sum, in by far the majority of the related work considered by the authors, speciation was
always constrained to one particular model type, for example neural networks in Stanley and Mi-
ikkulainen (2002). The model type selection problem was still left as an a-priori choice for the user.
Or, if multiple model types are used, the hyperparameters are typically kept fixed and there is no
tie-in with the active learning process.

5. Heterogeneous Evolution of Surrogate Models

This Section discusses how different surrogate models may be evolved cooperatively in order per-
form model type selection.

5.1 Speciated Evolution

Since GAs are population-based they easily lend themselves to parallelism. The terms Parallel
Genetic Algorithms (PGA) or Distributed Genetic Algorithms (DGA) refer to the case whenever
the population is divided up in some way, be it to improve the computational efficiency or search
efficiency. Unfortunately though, the terminology varies between authors and can be confusing
(Nowostawski and Poli, 1999; Alba and Tomassini, 2002). From a biological standpoint it makes
sense to consider speciation: genomes that differ considerably from the rest of the population are
segregated and continue to evolve semi-independently, forming a new species.

The island model (Whitley et al., 1999.; Hocaoglu and Sanderson, 2001; Giannakoglou et al.,
2006) is probably the most well known PGA. Different sub-populations, called demes, exist (ini-
tialized differently) and sporadic migration can occur between islands allowing for the exchange of
genetic material between species and inter-species competition for resources. Selection and recom-
bination are restricted per deme, such that each sub-population may evolve towards different locally
optimal regions of the search space (also called niches). An advantage of using migration is that it
allows sub-species to mature in semi-isolation without being forced to consistently engage in com-
petition. This is particularly useful for the application of this paper. The island model introduces
five new parameters: the migration topology, the migration frequency, the number of individuals to
migrate, a strategy to select the emigrants, and a replacement strategy to incorporate the immigrants.
The island model is illustrated in Figure 1 for two topologies.
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Figure 1: Ring (left) and grid (right) migration topologies in the Island Model

5.2 Global Surrogate Modeling Control Flow

Before we can discuss the concrete implementation of the automatic model type selection algorithm
it is important to revisit the general global surrogate modeling methodology described in Section 2.
It is important to understand the general control flow since it forms the basis for the evolutionary
algorithm described in the next Section.

The general methodology is as follows: Initially, a small initial set of samples is chosen accord-
ing to some experimental design (e.g., Latin hypercube, Box-Behnken, etc.). Based on this initial
set, one or more surrogate models are constructed and their hyperparameters optimized according to
a chosen hyperparameter optimization algorithm (e.g., BFGS, Particle Swarm Optimization (PSO),
Genetic Algorithm (GA), DIRECT, NSGA-II, etc.). Models are assigned a score based on one or
more measures (e.g., cross validation, Akaike’s Information Criterion (AIC), etc.) and the optimiza-
tion continues until no further improvement is possible. The models are then ranked according to
their score and new samples are selected based on the best performing models and the behavior of
the response (the exact criteria depend on the active learning algorithm used). The hyperparameter
optimization process is continued or restarted intelligently and the whole process repeats itself until
one of the following three conditions is satisfied: (1) the maximum number of samples has been
reached, (2) the maximum allowed time has been exceeded, or (3) the user required accuracy has
been met.

Recall that the adaptive sampling procedure has an important effect on the hyperparameter op-
timization. The non-stationary data distribution makes the model parameter optimization surface
dynamic instead of static (as is typically assumed).

A readily available implementation of the control flow described in this Section, and the one we
shall use for the experiments in this paper, is available as the SUrrogateMOdeling Toolbox (SUMO
Toolbox) (Gorissen et al., 2009c) from http://www.sumo.intec.ugent.be.
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5.3 Algorithm

Algorithm 1 Automatic global surrogate modeling with heterogeneous evolution and active learn-
ing
01. X0 = initialExperimentalDesign() ;
02. X = X0;
03 . f |X = evaluateSamples(X) ;
04 .T = {t1, ..., th};
05. Mi = createInitialModels(ti, popsizei); i= 1, ..,h
06. M =

Sh
i=1Mi;

07 . while ( " not reached) do
08. scores= {}; gen= 1;
09 . while ( termination_criteria not reached) do
10. foreachMi ⊆M do
11. scoresi = fitness(Mi,X , f |X ,");
12. elite= sort([scoresi;Mi])|1:el;
13. parents= select(scoresi,Mi);
14. parentsxo = selectXOParents(parents, pc);
15. o f f springxo = crossover(parentsxo,ESdi f f ,ESmax);
16. parentsmut = parents\parentsxo;
17. o f f springmut =mutate(parentsmut);
18. Mi = elite

S

o f f springmut
S

o f f springxo;
19. scores= scoresi∪ scores;
20. end
21. if (mod(gen,mi) = 0)
22. M =migrate(M,scores,mf ,md)
23. end
24. M = extinctionPrevention(M,Tmin);
25. gen= gen+1;
26. end
27 . Xnew = selectSamples(X , f |X ,M);
28 . f |Xnew = evaluateSamples(Xnew);
29 . [X , f |X ] = merge(X , f |X ,Xnew, f |Xnew) ;
30 . end

31 . returnbestModel(M);

We now present the concrete GA for heterogeneous evolution as it is embedded (as a plugin) in the
SUMO Toolbox. The speciation model used is the island model since we found it the most natu-
ral way of evolving multiple model types while still allowing for hybrid solutions. The algorithm is
based on the Matlab GADS toolbox and works as follows (see Algorithm 1 and reference (Gorissen,
2007) for more details): After the initial DOE has been calculated (cfr. the control flow in Section
5.2), an initial sub-population Mi is created for each model type t ∈ T (i = 1, ..,h). The exact cre-
ation algorithm is different for each model type so that model specific knowledge can be exploited.
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Subsequently, each deme is allowed to evolve according to an elitist GA. Parents are selected ac-
cording a selection algorithm (e.g., tournament selection) and offspring undergo either crossover
(with probability pc) or mutation (with probability 1− pc). The modelsMi are implemented as Mat-
lab objects (with full polymorphism) thus each model type can choose its own representation and
mutation/crossover implementations (this implements the minimization over & ∈ ' of Equation 1).
While mutation is straightforward, the crossover operator is more involved (see Section 5.5 below).

The fitness function calculates the quality of the model fit, according to criteria ". The current
deme population is then replaced with its offspring together with el elite individuals. Once every
deme has gone through a generation, migration between individuals is allowed to occur at migration
interval mi, with migration fraction mf and migration direction md (a ring topology is used). The
migration strategy is as follows: the l = (|Mi| ·mf ) fittest individuals ofMi replace the l worst indi-
viduals in the next deme (defined by md). As in Pei and Goodman (2001), migrants are duplicated,
not removed from the source population. Note that in this contribution we are primarily concerned
with inter-model speciation (speciation as in different model types). Intra-model speciation (e.g.,
through the use of fitness sharing within one model type) is something which was not done but could
easily be incorporated.

Once the GA has terminated, control passes back to the main global surrogate modeling algo-
rithm of the SUMO Toolbox. At that pointM contains the best set of models that can be constructed
for the given data. If the accuracy of the models is sufficient the main loop terminates. If not, a
new set of maximally informative sample points is selected based on several criteria (quality of the
models, non-linearity of the response, etc.) and scheduled for evaluation. Once new simulations
become available the GA is resumed.

Note that sample evaluation and model construction/hyperparameter optimization run in paral-
lel. For clarity, algorithm 1 shows them running sequentially but this is not what happens in practice.
In reality both are interleaved to allow an optimal use of computational resources.

5.4 Extinction Prevention

Initial versions of this algorithm exposed a major shortcoming, specifically due to the fact that
models are being evolved. Since not all data is available at once but trickles in, |Xj|− |Xj−1| samples
at a time, models that need a reasonable-to-large number of samples to work well will be at a huge
disadvantage initially. Since they perform badly at first, they may get overwhelmed by other models
who are less sensitive to this problem. In the extreme case where they are driven extinct, they will
never have had a fair chance to compete when sufficient data does become available. They may
even have been the superior choice had they still been around.4 Therefore an Extinction Prevention
(EP) algorithm was introduced that ensures a model type can never disappear completely.

EP works by monitoring the population and each generation recording the number of individ-
uals of each model type. If this number falls below a certain threshold Tmin for a certain model
type, the EP algorithm steps in and ensures the model type has its numbers replenished up to the
threshold. This is done by re-inserting the last models that disappeared for that type (making copies
if necessary). The re-inserted models replace the worst individuals of the other model types (who
do have sufficient numbers) evenly.

Strictly speaking, EP goes completely against the survival of the fittest principle in evolutionary
algorithms. By using it we are manually working against selection, preserving model types which

4. As an example, this observation was often made when using rational models on electro-magnetic data.
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give poor results at that point in time. However, in this setting it seems a fair measure to take (we do
not want to risk loosing a model type completely) and improves results in most cases (see Section
10). At the same time it is straightforward to implement and understand, needing no special control
parameters. All it has to ensure is that a species is never driven extinct.

5.5 Heterogeneous Recombination

The attentive reader will have noticed that one major problem remains with the implementation
as discussed so far. The problem lies in the genetic operators, more specifically in the crossover
operator. Migration between demes means that model types will mix. This means that a set of
parents selected for reproduction may contain more than one model type. The question then arises:
how to perform recombination between two models of completely different types. For example,
how to meaningfully cross an Artificial Neural Network with a rational function? The solution we
propose here is to use ensembles (behavioral recombination). If two models of different types are
selected to recombine, an ensemble is created with the models as ensemble members. Thus, as soon
as migration occurs, model types start mixing, and ensemble models arise as a result. These are
treated as a distinct model type just as the other model types.

However, the danger with this approach is that the population may quickly be overwhelmed by
large ensembles containing duplicates of the best models (as was noticed during initial tests). To
counter this phenomenon we apply the similarity idea from Holland’s sharing concept (Holland,
1975). Individual models will try to mate only with individuals of the same type. Only in the case
where selection has made this impossible shall different model types combine to form an ensemble.
In addition we enforce a maximum ensemble size ESmax and require that ensemble members must
differ ESdi f f percent in their response (their ‘behavior’). This is calculated by evaluating the models
on a dense grid.

This leaves us with only three cases left to explain:

1. ensemble - ensemble recombination: a single-point crossover is made between the ensemble
member lists of each model (note that the type of the ensemble members is irrelevant)

2. ensemble - model recombination: the model replaces a randomly selected ensemble member
with probability pswap or gets absorbed into the ensemble with probability 1− pswap (respect-
ing ESmax and ESdi f f ).

3. ensemble mutation: one ensemble member is randomly deleted

Besides enabling hybrid solutions, using ensembles has the additional benefit of allowing a model
to lie ‘dormant’ in an ensemble with the possibility of re-emerging later (e.g., if after mutation only
one ensemble member remains). Note that, in contrast to Lim et al. (2007) for example, the type of
the ensemble members is not fixed in any way but varies dynamically.

We have not yet mentioned what type of ensemble will be used. There are several methods
for combining the outputs of models, such as average, weighted average, Dempster-Shafer meth-
ods, using rank-based information, supra-Bayesian approach, stacked generalization, etc (Sharkey,
1996). To keep the implementation straightforward and the complexity (number of parameters) low
we have opted for a simple average ensemble. Of course different, more powerful combination
methods could be used instead and they will only improve results. The exact method used is of
lesser importance since it does not change the methodology. The advantage of a simple average
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ensemble is that it works in all cases: It makes no assumption on the model types involved, nor
does it mandate any changes to the models or training algorithms (for example, like negative corre-
lation learning) since this is not always possible (e.g., when using proprietary, application specific,
modeling code).

5.6 Multi-objective Model Selection

A crucial aspect of the model generation algorithm is the choice of a suitable criteria ". In prac-
tice it turns out that selecting an appropriate function for #,$ and a target value for % is difficult.
Particularly if little is known about the structure of the response. This is related to the “The 5
percent problem” (Gorissen et al., 2009b). The fundamental reason for this difficulty is that an
approximation task inherently involves multiple, conflicting, criteria (Li and Zhao, 2006). Thus a
multi-objective approach is very useful here since it enables the use of multiple criteria during the
hyperparameter optimization process (see Jin and Sendhoff 2008 for an excellent overview of this
line of research).

Secondly, it is not uncommon that a simulation engine has multiple outputs that all need to be
modeled (Conti and O’Hagan, 2007). The direct approach is to model each output independently
with separate models (possibly sharing the same data). This, however, leaves no room for trade-offs
nor gives any information about the correlation between different outputs. Instead of performing
two modeling runs (doing a separate hyperparameter optimization for each output) both outputs can
be modeled simultaneously if models with multiple outputs are used in conjunction with a multi-
objective optimization routine.

In both cases such a multi-objective approach can be integrated with the automatic surrogate
model type selection algorithm described here. This means that the best model type can vary per
criteria or, more interestingly, that it enables automatic selection of the best model type for each
output without having to resort to multiple runs. A full discussion of these topics is out of scope for
this paper. However, details and some initial results can already be found in Gorissen et al. (2009a)
and Gorissen et al. (2009b).

6. Critique

The algorithm presented so far has a number of strengths and weaknesses. The obvious advantage is
the ability to perform automatic selection of the model type and complexity for a given data source
(no need to do multiple parallel runs or train a complex classifier). In addition the algorithm is
generic in that it is independent of the data origin (application), model type, and data collection
strategy. New approximation methods can easily be incorporated without changing the algorithm.
Problem specific knowledge and model type specific optimizations based on expert knowledge can
also be incorporated if needed (i.e., by customizing the genetic operators). Furthermore, the algo-
rithm naturally integrates with the data collection strategy, allowing the best model type to change
dynamically and naturally allows for hybrid solutions. Finally, it naturally extends to the multi-
objective case (Section 5.6) and can be easily parallelized to allow for faster computations (though
the computational cost is still outweighed by the simulation cost).

The main disadvantage is due to the fact that the approach is based on evolutionary algorithms:
full determinism can not be guaranteed. This raises the obvious question of how stable the conver-
gence is over multiple runs. The same can be said of standard approaches towards hyperparameter
optimization (which typically include randomization) or for any algorithm involving a GA for that
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matter. Formulating theoretical foundations in order to come to convergence guarantees for GAs
is a difficult undertaking and has been the topic of intense research ever since their inception in
the late 80s. Characterizing the performance of genetic algorithms is complex and depends on the
application domain as well as the implementation parameters (Rawlins, 1991). Most theoretic work
has been done on schema theorems for the Canonical Genetic Algorithm (CGA), which try to prove
convergence in a simplified framework using a binary representation. However prediction of the
future behavior of a GA turns out to be very difficult and much controversy remains over the useful-
ness of these theorems (Poli, 2001; Goldberg, 1989). Theoretical work on other classes of GAs or
using specific operators has also been done (Nakama, 2008; Neubauer, 1997; Rawlins, 1991; Qi and
Palmieri, 1994a,b) but is unfortunately of little practical use here. For example, the work in Anken-
brandt (1990) requires the calculation of fitness ratios, but this is impractical (and computationally
expensive) to do in this situation and the results will vary with the application.

Thus, for the purposes of this paper a full mathematical treatment of algorithm 1 and its conver-
gence is out of scope. Due to the island model, sampling procedure, and heterogeneous representa-
tion/operators used, such a treatment will be far from trivial to construct and distract from the main
theme of the paper. In addition its practical usefulness would remain questionable due to the many
assumptions that will be required. However, gaining a deeper theoretical insight into the robustness
of the algorithm is still very important. A sensitivity study of the main GA parameters involved will
shed more light on this issue.

Theoretical remarks aside, the authors have found that in practice the approach works quite
well. If reasonable population sizes are used together with migration and the extinction prevention
algorithm described in Section 5.4, the results of the algorithm are quite robust and give useful re-
sults and insights into the modeling problem. Besides the results given in this paper, good results
have also been reported on various real world problems from aerodynamics (Gorissen et al., 2009a),
electronics (Gorissen et al., 2008a), hydrology (Couckuyt et al., 2009), and chemistry (Gorissen,
2007).

In sum, this approach is useful if: little information is known about the expected structure of the
response, if it is unclear which model type is most suited to the problem, data is expensive and must
be collected iteratively, and hybrid solutions are useful. In other cases, for example it is clear from a
priori knowledge which model type will be the most suitable (e.g., based on existing rules of thumb
for a well defined, restricted problem), this approach should not be applied, save as a comparison.

7. Test Problems

We now consider five test problems to which we apply the heterogeneous GA (from now on ab-
breviated by HGA). The objective is to validate if the best model type can indeed be determined
automatically, and in a way that is cheaper and better than the simple brute force method: doing
multiple, single model type runs in parallel. The problems include 2 predefined mathematical func-
tions, and real-world problems from electronics and aerodynamics.

The dimensionality of the examples ranges from 2 to 13. This is no inherent limit but simply
depends on the model types used. For example if only SVM-type models are used the number of
dimensions can be arbitrarily high, while for smoothing spline models the dimensionality should be
kept low. It all depends on which model types make up the population.
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We also hope to see evidence of a ‘battle’ between model types. While initially one species
may have the upper hand, as more data becomes available (dynamically changing hyperparameter
optimization landscape) a different species may become dominant. This should result in clearly
noticeable population dynamics, a kind of oscillatory stage before convergence. We briefly discuss
each of the test problems in turn.

7.1 Ackley Function (AF)

The first test problem is Ackley’s Path, a well known benchmark problem from optimization. Its
mathematical definition for d dimensions is:

F(!x) = −20 · exp

(

−0.2

√

1
d
·
d

+
i=1

x2i

)

−exp

(

1
d
·
d

+
i=1
cos(2, · xi)

)

+20+ e

with xi ∈ [−2,2] for i= 1, ...,d. For easy visualization we take d = 2. For this function a validation
set and a test set of 5000 random points each is available. Although this is a function from opti-
mization we are not interested in optimizing it, rather in reproducing it using a regression method
with minimal data.

7.2 Kotanchek Function (KF)

The second predefined function is the Kotanchek function (Smits and Kotanchek, 2004). Its mathe-
matical definition is given as:

F(x1,x2,u1,u2,u3) =
e−x22

1.2+ x21
+ $

with x1 ∈ [−2.5,1.5], x2 ∈ [−1.0,3.0], and with $ uniform random simulated numeric noise with
mean 0 and variance 10−4. As you can see only the first two variables are relevant. For this function
a validation set and a test set of 5000 scattered points each is available.

7.3 EM Example (EE)

The fourth example is a 3D Electro-Magnetic (EM) simulator problem (Lehmensiek, 2001). Two
perfectly conducting round posts, centered in the E-plane of a rectangular waveguide, are modeled,
as shown in Figure 2. The 3 inputs to the simulation code are: the signal frequency f , the diameter
of the posts d, and the distance between the two posts w. The outputs are the complex reflection and
transmission coefficients S11 and S21. The simulation model was constructed for a standard WR90
rectangular waveguide with f ∈[7 GHz, 13 GHz], d ∈[1 mm, 5 mm] and w ∈[4 mm, 18 mm]. In
addition, a 253 data set is available for testing purposes.

7.4 LGBB Example (LE)

NASA’s Langley Research Center is developing a small launch vehicle (SLV) (Pamadi et al., 2004;
Rogers et al., 2003) that can be used for rapid deployment of small payloads to low earth orbit
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Figure 2: Cross sectional view and top view of the inductive posts (Lehmensiek, 2001)

(a) LGBB geometry (Rogers et al., 2003) (b) Lift plotted as a function of speed and an-
gle of attack with side-slip angle fixed to zero
(Gramacy et al., 2004).

Figure 3: LGBB Example

at significantly lower launch costs, improved reliability and maintainability. The vehicle is a three-
stage systemwith a reusable first stage and expendable upper stages. The reusable first stage booster,
which glides back to launch site after staging around Mach 3 is named the Langley Glide-Back
Booster (LGBB). In particular, NASA is interested in the aerodynamic characteristics of the LGBB
from subsonic to supersonic speeds when the vehicle reenters the atmosphere during its gliding
phase.

More concretely, the goal is to gain insight about the response in lift, drag, pitch, side-force,
yaw, and roll of the LGBB as a function of three inputs: Mach number, angle of attack, and side slip
angle. For each of these input configurations the Cart3D flow solver is used to solve the inviscid
Euler equations over an unstructured mesh of 1.4 million cells. Each run of the Euler solver takes
on the order of 5-20 hours on a high end workstation (Rogers et al., 2003). The geometry of the
LGBB used in the experiments is shown in Figure 3a.
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Figure 3b shows the lift response plotted as a function of speed (Mach) and angle of attack
(alpha) with the side-slip angle (beta) fixed at zero. The ridge at Mach 1 separates subsonic from
supersonic cases. From the figure it can be seen there is a marked phase transition between flows
at subsonic and supersonic speeds. This transition is distinctly non-linear and may even be non-
differentiable or non-continuous (Gramacy et al., 2004). Given the computational cost of the CFD
solvers, the LGBB example is an ideal application for metamodeling techniques. Unfortunately
access to the original simulation code is restricted. Instead a data set of 780 points chosen adaptively
according to the method described in Gramacy et al. (2004) was used.

7.5 Boston Housing Example (BH)

The Boston Housing data set contains census information for 506 housing tracts in the Boston area
and is a classic data set used in statistical analysis. It was collected by Harrison et al. and described
in Harrison and Rubinfeld (1978). In the case of regression the objective is to predict the Median
value of owner-occupied homes (in $1000’s) from 13 input variables (e.g., per capita crime rate by
town, nitric oxide concentration, pupil-teacher ratio by town, etc.).

8. Model Types

For the tests the following model types are used: Artificial Neural Networks (ANN), rational func-
tions, RBF models, Kriging models, LS-SVMs, and for the AF example: also smoothing splines.
For the EM example only the model types that support complex valued outputs directly (rational
functions, RBF, Kriging) were included. Each type has its own representation and genetic operator
implementation (thanks to the polymorphism as a result of the object oriented design). As stated
in subsection 5.5 the result of a heterogeneous recombination will be an averaged ensemble. So in
total up to seven model types will be competing to approximate the data. Remember that all model
parameters are chosen automatically as part of the GA. No user input is required, the models and
data points are generated automatically.

The ANN models are based on the Matlab Neural Network Toolbox and are trained with Leven-
berg Marquard backpropagation with Bayesian regularization (MacKay; Foresee and Hagan, 1997)
(300 epochs). The topology and initial weights are determined by the GA. When run alone (without
the HGA) this results in high quality models with a much faster run time than training the weights
by evolution as well. Nevertheless, the high level Matlab code and complex training function do
make the ANNs much slower than any of the other model types.

The LS-SVM models are based on the implementation from Suykens et al. (2002), the kernel
type is fixed to RBF, leaving c and * to be chosen by the GA. The Kriging model implementation
is based on Lophaven et al. (2002) (except for the EM example) and the correlation parameters are
set by the GA (the regression function is set to linear and the correlation function to Gaussian). The
RBF models (and the Kriging models for the EM example, since the data is complex valued) are
based on a custom implementation where the regression function, correlation function, and correla-
tion parameters are all evolved. The rational functions are also based on a custom implementation,
the free parameters being the orders of the two polynomials, the weights of each parameter, and
which parameters belong in the denominator. The spline models are based on the Matlab Splines
Toolbox and only have one free parameter: the smoothness.

Remember that the specific model types chosen for the different tests is less important. This can
be freely chosen by the user. What is important is rather how these different model types are used
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together in a single algorithm. Thus a full explanation of the virtues of each model types, as well as
the representation and genetic operators used is out of scope for this paper and would consume too
much space. Details can be found in Gorissen (2007) or in the implementation that is available as
part of the SUMO Toolbox.

9. Experimental Setup

The following subsections describe the configuration settings used (and their motivation) for per-
forming the experiments.

9.1 Sample Selection Settings

For the LE and BH examples only a fixed, small size, data set is available. Thus, selecting samples
adaptively makes little sense. So for these examples the adaptive sampling loop was switched off.
For the other examples the settings were as follows: an initial optimized Latin hypercube design,
using the method from Ye et al. (2000), of size 50 is used augmented with the corner points. Mod-
eling is allowed to commence once at least 90% of the initial samples are available. Each iteration a
maximum of 50 new samples are selected using the Local Linear (LOLA) adaptive sampling algo-
rithm (Crombecq et al., 2009). LOLA identifies new sample locations by making a tradeoff between
eploration (covering the design space evenly) and exploitation (concentrating on regions where true
response is nonlinear). LOLA’s strengths are that it scales well with the number of dimensions,
makes no assumptions about the underlying problem or surrogate model type, and works in both
the R and C domains. LOLA is able to automatically identify non-linear regions in the domain and
sample these more densely compared to more linear, ‘flatter’ regions.

By default LOLA does not rely on the (possibly misleading) approximation model, but only on
the true response. This is useful here since it allows us to consider the model selection results inde-
pendent from the sample selection settings. I.e., the final distribution of points chosen by LOLA is
the same across all runs and model types. This means that any difference in performance between
models can not be due to differences in sample distribution. However, in many cases it may be
desirable to also include information about the surrogate model itself when choosing potential sam-
ple locations. In this case the LOLA algorithm can be combined with one or more other sampling
criteria that do depend on model characteristics (for example the Error, LRM, and EGO algorithms
available in SUMO).

9.2 GA Settings

The GA is run for a maximum of 15 generations between each sampling iteration (after sampling,
the GA continues with the final population of the previous iteration). It terminates if one of the
following conditions is satisfied: (1) the maximum number of generations is reached, or (2) 8 gen-
erations with no improvement. The size of each deme is set to 15. The migration interval mi is set
to 7, the migration fraction mf to 0.1 and the migration direction is both (copies of the mf best indi-
viduals from island i replace the worst individuals in islands i−1 and i+1). A stochastic uniform
selection function was used. Since we want to find the best approximation over the complete design
space, the fitness of an individual is defined as the root relative square error (RRSE):
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RRSE(yi, ỹi) =

√

+n
i=1(yi− ỹi)2

+n
i=1(yi− ȳ)2

where yi, ỹi, ȳ are the true, predicted, and mean true response values respectively. Intuitively the
RRSE indicates how much better an approximation is than the most simple approximation possible
(the mean) (Ganser et al., 2007). In the case of the BH and LE examples no separate validation set
is available, instead 20% of the available data is reserved for this purpose (taking care to ensure the
validation set is representative of the full data set by maximizing the minimum distance between
validation points). Note that we are using a validation set since it is cheap and we have enough data
available. In the case where data is scarce we would most likely use the more expensive k-fold cross
validation as a fitness measure. This is the case for the EM example.

The remaining parameters are set as follows: pm = 0.2, pc = 0.7,k= 1, pswap = 0.8,el= 1,ESmax =
3,ESdi f f = 0.1,Tmin = 2. The random generator seed was set to Matlab’s default initial seed.

9.3 Termination Criteria

In case of adaptive modeling only (no sample selection), the objective is to see what the most accu-
rate model is that can be found in a limited period of time (= a typical use case). Thus the required
accuracy (= target fitness value) is set to 0. For the LE the timeout is set to 180 minutes. For the BH
example the timeout is significantly extended to 1200 minutes. Given the high dimensionality, the
noise and discontinuities in the input domain it is a hard problem to fit accurately. In this case we
are more interested to see how the population would evolve over such an extended period of time.

In case of adaptive sampling, the criteria are: a target accuracy (RRSE) of 0.01, and for the
AF example a maximum number of 500 data points is enforced (to see what performance can be
reached with a limited sample budget).

9.4 Others

Each problem was modeled twice with the heterogeneous evolution algorithm (once with EP= true,
once with EP = f alse) and once with homogeneous evolution (a single model type run for each
model type in the HGA). To smooth out random effects each run was repeated 15 times. This
resulted in a total of 516 runs which used up a total of at least 130 days worth of CPU time (excluding
initial tests and failed runs). All experiments were run on CalcUA, the cluster available at the
University of Antwerp, which consists of 256 Sun Fire V20z nodes (dual AMD Opteron with 4 or
8 GB RAM), running SUSE linux, and Matlab 7.6 R2008a. Due to space considerations, only the
results for the S11 (EE), and lift (LE) outputs are considered in this paper. For all examples the input
space is normalized to the interval [−1,1].

10. Discussion

We now discuss the results of each problem separately in the following subsections.

10.1 Ackley Function

The composition of the final population for each run is shown in Figure 4 for Extinction Prevention
(EP) equal to true and EP=false. The title above each sub figure shows the average and standard
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Figure 4: AF: Composition of the final population (Left: EP=false, Right: EP=true)
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Figure 5: AF: Error histogram of the final best model in each run (Left: EP=false, Right: EP=true)

deviation over all runs. The first element of each vector corresponds to the first (top) legend entry.
The error histogram of the final model of each run on the test data is shown in Figure 5. The
population evolution for the run that produced the best model in both cases is shown in Figure 6.
Figure 7 then depicts the evolution of the relative error (calculated according to Equation 2) on the
test set as modeling progresses (again in both cases, for the run that produced the best model). The
lighter the regions in Figure 7, the larger the percentage of test samples that have low relative error
(RE) (according to Equation 2).

RE(y, ỹ) =
|y− ỹ|
1+ |y|

. (2)

Finally, a summary of the results for each run is shown in Table 1. The table shows the number
of samples used (|X |), the validation error (VE), the test set error (TE), and the run time for each
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Figure 6: AF: Population evolution of the best run (Left: EP=false, Right: EP=true)
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Figure 7: AF: Error evolution of the best run (Left: EP=false, Right: EP=true)

Method |X | * ¯VERRSE * ¯TERRSE * ¯time (min) *

ANN 4.973E+02 1.759E+01 1.308E-02 3.428E-03 1.298E-02 3.456E-03 1.810E+02 3.176E+01

Kriging 5.263E+02 1.193E+01 2.014E-02 4.266E-03 2.038E-02 4.521E-03 7.256E+01 9.194E+00

LS-SVM 5.202E+02 1.200E+01 1.367E-02 2.262E-03 1.375E-02 2.314E-03 3.995E+01 3.276E+00

Rational 5.170E+02 1.023E+01 1.881E-01 5.854E-02 1.861E-01 5.932E-02 2.033E+01 2.221E+00

RBF 5.193E+02 1.540E+01 1.326E-02 2.365E-03 1.324E-02 2.313E-03 4.371E+01 4.133E+00

Splines 5.308E+02 1.360E+01 2.471E-02 5.660E-03 2.428E-02 5.404E-03 4.292E+01 4.984E+00

HGAEP= f alse 5.055E+02 6.512E+00 3.142E-02 1.777E-02 3.094E-02 1.711E-02 2.366E+02 1.566E+02

HGAEP=true 5.040E+02 0.000E+00 1.346E-02 1.936E-03 1.367E-02 1.897E-03 3.696E+02 6.175E+01

Table 1: AF: Comparison with homogeneous evolution
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Figure 8: AF: normalized plot of the best model overall (HGAEP=true)

experiment. All entries are averaged over 15 runs with the standard deviation shown in the adjacent
column. The plot of the best model found overall is shown in Figure 8.

Regarding the composition of the final population in Figure 4, we see that the results are some-
what mixed for EP=false. In some runs RBF models perform best, in others LS-SVM models. This
is also reflected in the corresponding error histogram plot in Figure 5. The quality of the best model
found in each run differs considerably between runs. In contrast, for EP=true, the results are more
clear cut, RBF models dominate in 14 of the 15 runs. This already demonstrates the usefulness of
extinction prevention. Due to randomness in the initial population and genetic operators a model
type may be driven extinct, unable to return. EP prevents this. In this particular case LS-SVM
models generally perform best initially, pushing the RBF models out of the population. However, as
more data becomes available (active learning), and as the hyperparameter optimization continues,
superior RBF models are discovered and quickly take over the population. This is also nicely shown
in Figure 6. In both cases the RBF models are driven out of the population around generation 50.
Though in the EP=true case the RBF models are able to make a re-appearance around generation
100.

Of course nothing prevents this process from recurring. The fact that the optimal solution
changes with time is not a disadvantage and should actually be expected since the optimization
landscape is dynamic (due to the incremental sampling). Without EP these oscillations are impossi-
ble and everything depends on the initial conditions. As a result the danger of converging to a poor
local optimum is considerably greater. Given the form of the Ackley function, we should really not
be surprised that the RBF models end on top. The different radial basis functions that make up the
RBF model (= a local model) can be expected to match up quite well with the ‘bumps’ of the Ackley
function.

If we assess the quality of the final models (Figure 7) we see that it performs very well. After 500
samples the model has an error smaller than 0.01 on 98% of the test samples. More importantly,
these results are consistent as can be seen from the EP=true plot in Figure 5. Actually, from an
application standpoint consistency at this level (accuracy) is more important than consistency in
model type selection. Since at the end of the day, from an application perspective, the accuracy of
the model is typically most important, not its type.
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Figure 9: KF: Error histogram of the final best model in each run (Left: EP=false, Right: EP=true)

Method |X | * ¯VERRSE * ¯TERRSE * ¯time (min) *

ANN 1.413E+02 2.200E+01 8.102E-04 1.614E-04 8.456E-04 1.671E-04 6.055E+01 1.258E+01

Kriging 5.200E+02 0.000E+00 1.989E-03 3.541E-04 2.023E-03 3.619E-04 1.170E+02 6.224E+01

LS-SVM 5.106E+02 2.849E+00 1.187E-01 4.967E-03 1.194E-01 5.304E-03 5.674E+01 3.571E+00

Rational 1.478E+02 9.146E+01 5.880E-04 2.115E-04 6.276E-04 2.469E-04 1.191E+01 7.547E+00

RBF 5.200E+02 0.000E+00 1.072E-01 3.620E-03 1.089E-01 4.410E-03 9.187E+01 2.157E+01

HGAEP= f alse 3.059E+02 2.071E+02 1.071E-03 3.396E-04 1.085E-03 3.253E-04 3.034E+02 2.656E+02

HGAEP=true 6.267E+01 1.486E+01 7.009E-04 2.288E-04 7.096E-04 2.024E-04 5.490E+01 3.533E+01

Table 2: KF: Comparison with homogeneous evolution

The natural question that remains, is how do these results compare with simply doing multiple
homogeneous evolution (single model type, using the same GA settings) runs, one for each type
separately? Those results are shown in Table 1. Studying the table we see that the HGA compares
favorably. The accuracy of the final models are the essentially the same as those found by the best
performing single model type run, while the variance on the results tends to be lower (EP=true). Of
course this is paid for by an increase in computation time due to the increased population size of the
HGA. Still, the HGA has a factor of 6 larger population size (90 vs 15) but requires only double the
running time of the best performing homogeneous run (ANN). Also the total HGA running time is
still less than the combined run time of all homogeneous runs.

10.2 Kotanchek Function

The composition of the final population and final error histograms for each run are shown in Figures
9 and 10. The population evolution and corresponding error evolution for the best run are shown in
Figures 11 and 12. The comparison with homogeneous evolution is shown in Table 2.

The Kotanchek function is an interesting example since the GA has to ‘discover’ that 3 of the 5
variables are irrelevant. Considering the composition of the final population the Kriging functions
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Figure 10: KF: Composition of the final population (Left: EP=false, Right: EP=true)
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Figure 11: KF: Population evolution of the best run (Left: EP=false, Right: EP=true)

seem to be able to do this best in the EP=false case, with sporadic ‘wins’ for rational functions.
In the EP=true case the situation is different, rational functions dominating all 15 runs. The fact
that the rational functions succeed in doing this is thanks to a weighting scheme used in the genetic
operators and described further in Hendrickx et al. (2006).

The usefulness of EP is demonstrated again as well. While the results of the best run for
EP=false are better than the best run for EP=true (less samples), the former is much more a product
of chance than the latter (which has lower variance). EP=true should still be preferred as it is more
robust. Finally, the quality of the final models is excellent in all runs, and the performance and
running time of the HGA remains competitive with the single model type runs.
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Figure 12: KF: Error evolution of the best run (Left: EP=false, Right: EP=true)
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Figure 13: EE: Composition of the final population (Left: EP=false, Right: EP=true)

10.3 EM Example

The composition of the final population for each run is shown in Figure 13, and the associated error
histogram in Figure 14. The population evolution and corresponding error evolution for the best run
are shown in Figures 15 and 16. Table 3 summarizes the results and a plot of the best model can be
found in Figure 17. Note that Table 3 shows the cross validation error (CV ) instead of the validation
error.

The results are very clear cut, rational functions dominate in every run, easily reaching the
accuracy requirements in about 200 data points (with the EP=true runs generally reaching higher
accuracies). This is to be expected. The physical behavior of two inductive posts in a rectangular
waveguide is well described by a quotient of two differential multinomials (= the transfer function)
and it is this function that needs to be modeled. Thus it is not surprising that rational functions do
well since their form fits the underlying function.
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Figure 14: EE: Error histogram of the final best model in each run (Left: EP=false, Right: EP=true)
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Figure 15: EE: Population evolution of the best run (Left: EP=false, Right: EP=true)

If we compare the HGA runs with the single model type runs we see significant improvements.
Interestingly, the HGA runs need roughly 33-25% less sample evaluations to reach the target accu-
racy, and do so in a fraction of the time (less then 8 minutes vs. an average of 43 minutes for the
homogeneous runs). Thus here we have a strong case for the use of the HGA.

10.4 LGBB Example

The composition of the final population for each run is shown in Figure 18 and the associated error
histogram in Figure 19. The population evolution of the best run is shown in Figure 20. Table 4
shows the comparison with the homogeneous runs. A plot of the response can be found in Figure
21.

Adaptive sampling was switched off for the LGBB example. The objective was to see what
accuracy can be reached and what model type prevails within a fixed time budget. The LGBB

2064



EVOLUTIONARY MODEL TYPE SELECTION FOR GLOBAL SURROGATE MODELING

100 150 200
0

10

20

30

40

50

60

70

80

90

100

Number of samples

Pe
rc

an
ta

ge
 o

f t
es

t s
am

pl
es

 (S
11

)

 

 
e >= 1e0
1e0 > e >= 1e−1
1.e−1 > e >= 1e−2
1e−2 > e >= 1e−3
1.e−3 > e >= 1e−4
e < 1e−4

100 150 200
0

10

20

30

40

50

60

70

80

90

100

Number of samples

Pe
rc

an
ta

ge
 o

f t
es

t s
am

pl
es

 (S
11

)

 

 
e >= 1e0
1e0 > e >= 1e−1
1.e−1 > e >= 1e−2
1e−2 > e >= 1e−3
1.e−3 > e >= 1e−4
e < 1e−4

Figure 16: EE: Error evolution of the best run (Left: EP=false, Right: EP=true)
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Figure 17: EE: normalized plot of |S11| of the best model overall (HGAEP=true, 3 slices forDistance)

Method |X | * ¯CVRRSE * ¯TERRSE * ¯time (min) *

Kriging 7.980E+02 1.137E+02 8.541E-03 7.926E-04 1.881E-02 2.833E-03 7.202E+01 2.780E+01

Rational 8.147E+02 2.314E+02 1.152E-02 4.128E-03 1.708E-02 4.976E-03 4.046E+01 1.914E+01

RBF 6.080E+02 4.226E+01 8.123E-03 6.333E-04 1.556E-02 2.403E-03 1.713E+01 2.159E+00

HGAEP= f alse 1.880E+02 2.536E+01 6.297E-03 1.770E-03 3.518E-02 4.571E-02 7.907E+00 1.440E+00

HGAEP=true 1.980E+02 2.070E+01 6.733E-03 1.457E-03 2.227E-02 1.149E-02 7.722E+00 1.079E+00

Table 3: EE: Comparison with homogeneous evolution

example consists of a 3 dimensional data set and unlike the AF and EE examples there are no clues
as to which model type is most adequate. Running the heterogeneous evolutionary algorithm it turns
out that ANNs give the best fit overall (see Figure 18), achieving excellent accuracy. Changing the
EP setting does not influence this, though the variance is lower for the EP=true case.
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Figure 18: LE: Composition of the final population (Left: EP=false, Right: EP=true)
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Figure 19: LE: Error histogram of the final best model in each run (Left: EP=false, Right: EP=true)

Method |X | ¯VERRSE * ¯time (min)

ANN 7.800E+02 7.47E-003 5.60E-004 3.00E+002

Kriging 7.800E+02 1.08E-001 1.96E-002 3.00E+002

LS-SVM 7.800E+02 1.40E-001 4.09E-005 3.00E+002

Rational 7.800E+02 5.20E-002 3.02E-004 3.00E+002

RBF 7.800E+02 7.34E-002 3.53E-008 3.00E+002

HGAEP= f alse 7.800E+02 7.68E-003 4.38E-004 3.00E+002

HGAEP=true 7.800E+02 7.59E-003 4.26E-004 3.00E+002

Table 4: LE: Comparison with homogeneous evolution
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Figure 20: LE: Population evolution of the best run (Left: EP=false, Right: EP=true)
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Figure 21: LE: normalized lot of the best model overall (HGAEP=true, 3 slices for beta)

Within the same time limits the models produced by the HGA are comparable in accuracy to
the best performing homogeneous runs, which again demonstrates the usefulness of the HGA.

Interestingly it turns out that the third dimension is negligible, the three slices in Figure 21
almost coincide. This was confirmed by using the SUMO model browser to fully explore the re-
sponse. Thus we can safely conclude that side-slip angle has little or no effect on the lift on re-entry
of the LGBB into the atmosphere.

10.5 Boston Housing Example

The final example is the Boston Housing data set, adaptive sampling was also switched off. The
composition of the final population for each run is shown in Figure 22 and the associated error
histogram in Figure 23. The population evolution of the best run is shown in Figure 24. Table 5
shows the comparison with the homogeneous runs.
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Figure 22: BH: Composition of the final population (Left: EP=false, Right: EP=true)
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Figure 23: BH: Error histogram of the final best model in each run (Left: EP=false, Right: EP=true)

Method |X | ¯VERRSE * ¯time (min)

ANN 5.060E+02 2.985E-01 8.962E-03 1.200E+03

Kriging 5.060E+02 3.448E-01 1.077E-02 1.200E+03

LS-SVM 5.060E+02 3.421E-01 6.012E-06 1.200E+03

Rational 5.060E+02 5.006E-01 4.296E-02 1.200E+03

RBF 5.060E+02 1.228E+15 2.104E+15 1.200E+03

HGAEP= f alse 5.060E+02 2.764E-01 2.768E-02 1.200E+03

HGAEP=true 5.060E+02 2.735E-01 1.372E-02 1.200E+03

Table 5: BH: Comparison with homogeneous evolution
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Figure 24: BH: Population evolution of the best run (Left: EP=false, Right: EP=true)

This is a somewhat curious example since it has high dimensionality (13), small support (506 tu-
ples), and the types and ranges of the different inputs parameters vary greatly (e.g., input 4 (CHAS)
is a boolean variable that is 1 if the tract borders the river and 0 otherwise while input 5 (NOX)
is the nitric oxide concentration). Consequently, any analysis of this data should be preceded by a
thorough statistical treatment (feature selection, variance analysis, etc.). We explicitly chose not to
do this but take the data as is and treat is as black box regression problem.

The results are mixed (see Figure 22), though the HGA runs again outperform the homogeneous
runs. (LS-)SVM and ANN models seem to be preferred over Kriging and RBF models but there is
no evidence to distinguish between the models any further. Striking, though, is that about half of the
final population consists of ensembles and that most of these ensembles turn out to be {ANN, RBF}
pairs or multiple ANNs. Figure 25 shows the evolution of the composition of the best performing
ensemble. The popularity of ensembles in this case is in line with the authors’ previous experiences.
When the individual model types are having trouble to fit a difficult response with none really
performing much better than the other, hybrids (ensembles) tend to do well since they can produce
more complicated responses. It is a signal that none of the included model types are really fit for
the approximation problem.

Also striking (and interesting) are the oscillations in the population evolution (see Figure 24,
or Figure 26 for a more marked example). It turns out that every run shows these oscillations
between ensembles and one or two other model types. Interestingly these ‘spikes’ occur every 10
or 7 generations. It remains unclear to the authors how these oscillations may be explained. This is
an issue that is being investigated in more detail.

11. Summary

In summary the results for the different test problems are very promising and in line with previous
results (Gorissen, 2007; Gorissen et al., 2008a; Couckuyt et al., 2009; Gorissen et al., 2009a). The
results show a consensus about which model type to use in all test cases (ignoring the BH example
for the moment). In the case the consensus is not absolute (e.g., the EP=true run for the AF in
Figure 4) the final model accuracies are essentially the same thus this is not really a problem from
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Figure 25: BH: Composition of the best performing ensemble of the best run (Left: EP=false,
Right: EP=true)

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

Generation

N
um

be
r o

f m
od

el
s 

(M
ED

V)

 

 
Ensemble
Kriging
Rational
RBF
LS−SVM
ANN

Figure 26: BH: Oscillations in the population evolution (HGAEP=true)

an application standpoint. More important is that the target accuracy has been reached and that all
model types have been given a fair chance without having to resort to a brute force approach.

In general we found the algorithm to be quite consistent across many runs. When variation does
show up in the model selection results it typically is because two or more model types can fit the
data equally well with only a minor difference in accuracy. This means that the GA may alternate
between the different local optima, giving different model selection results, but still reaching the
targets. The other reason is if the data is simply too difficult to fit using the methods included in the
evolution. In this case ensembles may tend to do well. The BH example seems indicative of this
situation.

It is important to remind the reader, though, that the overall performance of the HGA will of
course depend on the quality of the model types themselves, and more importantly, on the quality
of the creation function and genetic operators (and adequacy of the chosen representation). Good
results have already been obtained with the current implementations though there is still room for
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improvement with respect to the application by an expert in any one type.5 Luckily, an advantage of
the HGA based approach is that since the general algorithm is now in place, it becomes possible to
focus on such improvements without requiring changes to the HGA itself. Specific improvements
(e.g., devised by an expert in a certain model type) are straightforward to integrate into the existing
genetic operators allowing an accumulation knowledge that will improve the overall quality of the
models produced by the HGA.

A next step is to further increase the number of test problems and, more importantly, investigate
the influence of the different parameters involved. In this respect the migration interval and migra-
tion topology parameters are particularly important since they determine how the different model
types interact. For example, if the migration interval is set too high, each deme will produce high
quality models (most of the time is spent optimizing the parameters of a single model type) but there
will have been very little competition between models. If it is set too low, the converse is true. More
research is needed to to better understand this balance and investigate the impact of genetic drift.

12. Conclusion and Future Work

Due to the computational complexity of current simulation codes, the use of global surrogate mod-
eling techniques (adaptive sampling, adaptive modeling) has become standard practice among sci-
entists and engineers alike. However, a recurring problem is selecting the most adequate surrogate
model type and associated complexity. In this contribution we explored an approach based on the
evolutionary migration model that can help tackle this problem in an automatic way if little informa-
tion is known about the true response behavior and there are no a priori model type requirements. In
addition, we have illustrated the usefulness of extinction prevention and ensemble based recombina-
tion. Extinction prevention is a straightforward algorithm that prevents a species from disappearing
from the gene pool at the expense of a minor cost (keeping 2 extra individuals per species ‘alive’).
As a result, the optimal solution is able to change with time, making for a more flexible and adaptive
system which, as demonstrated in the different examples, gives better and more consistent results.

Future work will consist of investigating the oscillations in the BH example, exploring differ-
ent GA parameter values (role of the migration frequency, migration topology, etc.), incorporating
more model types, and more advanced ensemble methods (e.g., stronger constraints on ensemble
composition). As mentioned above, improvements to the genetic operators are ongoing in order to
get more out of each model type. The utility of adding a penalty to the fitness function proportional
to the model complexity and/or training time will also be investigated. Furthermore, we have been
experimenting with sampling strategies that vary dynamically depending on the remaining sample
budget and quality & type of surrogate currently used in the modeling process. The idea is to work
towards an optimal interplay between sampling and modeling. E.g., initially the focus should be on
exploration of the design space while, as accuracy of the models improves, the focus should shift to-
wards refining the model in places where it is uncertain and ensuring the optima it exhibits are really
true optima. Likewise, we are experimenting with dynamic model selection criteria. For example,
if only little data is available cross validation type measures may be unreliable and it makes little
sense enforcing problem specific constraints (e.g., the model response should be bounded between
given bounds). However, when the data density is sufficiently high the opposite will be true. Thus
there seems to be some intuition advocating the use of annealing type strategies.

5. There is a trade-off involved here. Expert application of a surrogate model type will invariably lead to problem
specific bias, reducing the performance on other problems.
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In addition to the global modeling use case. We are also experimenting with linking the HGA
described here with the EGO framework from Jones et al. (1998). The structure of the SUMO
Toolbox allows natural linking of these two components. This allows for automatic model type
switching during optimization (any model type that supports prediction variance can be used) and
may be beneficial for computational expensive codes.

Finally it should be noted that all the algorithms and examples described here are available for
download at http://www.sumo.intec.ugent.be.
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Abstract

We present a method for training support vector machine (SVM)-based classification systems for
combination with other classification systems designed for the same task. Ideally, a new system
should be designed such that, when combined with existing systems, the resulting performance is
optimized. We present a simple model for this problem and use the understanding gained from
this analysis to propose a method to achieve better combination performance when training SVM
systems. We include a regularization term in the SVM objective function that aims to reduce
the average class-conditional covariance between the resulting scores and the scores produced by
the existing systems, introducing a trade-off between such covariance and the system’s individual
performance. That is, the new system “takes one for the team”, falling somewhat short of its best
possible performance in order to increase the diversity of the ensemble. We report results on the
NIST 2005 and 2006 speaker recognition evaluations (SREs) for a variety of subsystems. We show
a gain of 19% on the equal error rate (EER) of a combination of four systems when applying
the proposed method with respect to the performance obtained when the four systems are trained
independently of each other.
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1. Introduction

The work presented in this paper is motivated by our work on the task of speaker verification. In the
last decade, many successful speaker verification systems have relied on the combination of various
component systems to achieve superior performance. In many cases, as in Ferrer et al. (2006) and
Brummer et al. (2007), the combination leads to significant improvements. However, there are
cases in which combining several comparably good systems does not result in improvements over
the single best system (Reynolds et al., 2005). Most of these systems perform the combination of
information sources at the score level1 (Reynolds et al., 2003; Ferrer et al., 2006; Brummer et al.,
2007; Huenupán et al., 2007; Dehak et al., 2007): systems that model each type of feature using a
certain model are independently developed and their scores are combined to produce the final score
and the decision. When training each individual system, all other systems available for combination
are usually ignored while, in fact, the ultimate goal of the systems is to perform well in combination
with all the other systems and not necessarily individually.

It is easy to see that system combination at the score level is not guaranteed to give strictly
better performance than those of the individual systems being combined. In the extreme case, if all
classifiers were generating exactly the same output for each sample, the combined classifier would
not have better performance than the individual ones, independently of the combination procedure
used. Intuitively, what we wish is to have enough diversity across systems such that classifiers
contribute complementary information leading to a better final decision when systems are combined.
System diversity has been the subject of a large amount of research in recent years, with two main
goals: defining a measure of diversity that can predict the performance of the combination, and
designing procedures for achieving diversity in an ensemble of systems. With the goal of motivating
and placing our work in perspective, in the next section we present a discussion focused on existing
techniques for measuring and designing for system diversity.

The contributions of this paper are: (1) the development of a simple model for the combination
problem for a binary classification task under the assumption that the distribution of scores for each
of the classes is Gaussian, and (2) a procedure for improving diversity in an ensemble including
SVM classifiers. We find an upper bound on the EER of an ensemble combination and show that,
for a two-system combination, this upper bound is a function of the performance of the individ-
ual systems and the correlation coefficient obtained from the average class-conditional covariance
matrix of the scores from the two systems. Based on this result, we propose the inclusion of a
regularization term in the SVM objective function when training a new SVM system for combina-
tion with a set of preexisting systems, which introduces a trade-off between the performance of the
resulting model and its average class-conditional covariance with the preexisting systems. Ferrer
et al. (2008b) presented empirical results using the proposed method. Here, we extend this previous
work by developing a framework under which to understand the method, considering the cases of
multiple preexisting systems and nonlinear kernels, and including new results on simulated and on
the NIST 2005 and 2006 speaker-verification evaluation data. Results show that a gain of 19% on
EER can be achieved when using the proposed method with respect to the results obtained when
systems are trained without knowledge of the others.

The paper is organized as follows. Section 2 gives a review of the related research. Section
3 describes a simple model for the system combination problem under consideration. Using the

1. The term score is commonly used in the speaker verification community to refer to the numerical output of a system,
which may or may not be a probability measure.
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conclusions obtained from this development, Section 4 proposes a method for achieving improved
combination performance. In Sections 5 and 6 we present results on simulated data and speaker
verification data, respectively. Section 7 presents our conclusions.

2. Multiple Classifier Systems

In this section we review the literature related to our work, motivating and putting in perspective the
research presented in the rest of the paper.

2.1 Measuring Diversity

For regression problems, the measures of ensemble diversity are well developed. Krogh and Vedelsby
(1995) showed that the quadratic error for a certain input value of a convex combination of estima-
tors trained on a single data set is guaranteed to be less than or equal to the weighted average
quadratic error of the component estimators. The difference between the two is given by an am-
biguity term that measures the variability among ensemble members for the particular input. On a
related development, Ueda and Nakano (1996) give a decomposition of the mean square error of an
ensemble classifier into three terms: average bias, variance and covariance of the ensemble mem-
bers. One would then wish to reduce the covariance term without affecting the bias and variance
terms by reducing the correlation between the members. This term can, in fact, be negative.

Classification problems where ensemble members output an estimate of the posterior proba-
bilities of the classes (as opposed to just the estimated label) can also be considered regression
problems. Tumer and Ghosh (1996) and, later, Fumera and Roli (2005) present a framework for
studying this case. They consider the probability of error as the measure of performance. If the
actual posterior probabilities of the classes given the features were known, the probability of error
could be minimized by choosing, for each value of the input features, the class that has the high-
est posterior. This rule determines a boundary between the regions where each class is predicted
and results in a certain probability of error that is called the Bayes error. In practice, the posterior
probabilities are not known. Tumer and Ghosh assume an additive error model where the individual
classifiers output, for each class wk, a function of the features x such that fk(x) = P(wk|x)+ !k(x).
The predictions are now made based on the output of the classifier instead of the actual posterior
probabilities. Tumer and Ghosh consider the case in which the effect of using the predictions is
a shift in the boundary by a certain amount b. This results in the probability of error being larger
than the Bayes error by a certain amount they call the added error. An expression for the expected
value of the added error is computed assuming that the !k are random variables with a certain mean
and variance independent of the value of x, that they are uncorrelated across classes, that the b is
small such that first-order approximations can be used and that the posterior probabilities are mono-
tonic around the decision boundaries. Using the expression derived for the added error of a single
classifier, they derive the corresponding expression for a classifier formed by the average estimates
obtained from a set of N individual classifiers. Their final expression depends monotonically on
the pairwise correlations between the error functions of the individual classifiers, supporting the
intuition that good combination performance can be achieved if the classifiers being combined have
complementary information such that when one classifier makes a mistake, some other classifier has
the right answer. Fumera and Roli generalize Tumer and Ghosh’s work by allowing the combination
to be a weighted average instead of simple average and arrive at an optimization problem for the
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combination weights. This problem is solved explicitly for the case of unbiased and uncorrelated
estimation errors.

Two assumptions made by Tumer and Ghosh, as well as Fumera and Roli, are not well suited for
the problem of interest in this paper but can be easily replaced for other assumptions without much
consequence on the theory: the use of the classification error as measure of performance and the
uncorrelatedness of the estimation errors across classes. Classification error is usually considered
inappropriate for problems in which the prior probabilities of the classes are very different (as
is the case in most speaker verification applications). For these cases, cost functions are usually
defined where each type of error is assigned a different cost and the expected value of the cost
function is used as performance measure. Derivations in Tumer and Ghosh (1996) can be easily
modified to allow for cost functions. The Bayes classifier would now choose the class for which the
loss is minimized instead of the posterior probability maximized. As for the estimation errors, the
assumption of zero correlation can be easily relaxed when only two classes are considered. In fact,
in our case we can assume that only one of the posteriors is estimated and the other one is calculated
so that the sum is equal to one. In that case, the estimation errors would also sum to one. Hence,
only one estimation error stays in the derivations and the zero correlation assumption is not needed.

Even though the results described above could be considered enough motivation for our devel-
opment of the anticorrelation method in Section 4, in the next section we propose a different de-
velopment that we believe presents an interesting alternative for the above framework. First, we do
not use the additive error model with fixed bias and variance for the posterior probability estimates.
In binary problems like speaker verification one can train classifiers that output a score instead of a
probability. This score can be, for example, the output of a support vector machine or the logarithm
of the ratio between the class likelihoods. These scores are assumed to be monotonically related to
the posterior probability of one of the two classes and, hence, could be easily converted into this
posterior. Nevertheless, in our speaker verification experiments we have found that combining the
scores directly leads to better results than combining the estimated posteriors when using a linear
combiner. In a combination experiment of all pairs of systems from a set of 13 systems, an average
relative gain of 7.6% was found when combining scores versus posterior probabilities (obtained by
learning a logit mapping of the scores) using linear logistic regression. The best performance across
all combinations including any number of systems is obtained when combining the scores of six
systems and this combination is 12% better than the best combination of posterior probabilities.
Considering these results, we eliminate the assumption that the output of the classifiers is a poste-
rior probability, allowing it to be a general continuous value (score). We then replace the additive
error assumption with an assumption that the distribution of the scores for each class is Gaussian,
which, as we will see, is a good approximation for most speaker verification scores.2 Finally, we
focus on a different measure of performance, the equal error rate, which is widely used on binary
classification problems for its simplicity and for being independent of the class priors. This mea-
sure of performance depends on the overall shape of the posterior probabilities and not just on the
difference between them, as is the case for the probability of error or the expected cost. Hence, no
simple extension of the Tumer and Ghosh derivations could be made for this measure even if we

2. We believe this is the reason for the scores combining better with a linear combiner than the mapped posterior
probabilities since when class distributions are Gaussian, the Bayes classifier is linear. Hence, the linear combiner
is a good choice when combining speaker verification scores. The Gaussian approximation, on the other hand, is
not good after the scores have been mapped to posterior probabilities making a linear combiner on the posterior
probabilities suboptimal.
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were willing to consider the system output to be a probability. Under these assumptions we arrive at
an explicit expression for an upper bound on the optimal EER of the combination that is a function
of the EER of the ensemble members and the pairwise class-conditional correlations.

2.2 Creating Diversity

The work described above, including the development we will show in Section 3, defines ways
of quantifying the diversity in the ensemble and how this diversity affects the performance of the
combined classifier under different sets of assumptions, but does not describe ways of achieving
this diversity. Brown et al. (2005a) present a taxonomy of the methods for creating diversity found
in the literature as of 2005. They divide the methods into implicit and explicit, where implicit
methods are those that try to create diversity using randomization methods, while explicit methods
do the same by directly taking into account some measure of the diversity being achieved. They
further divide the methods into three groups based on how they affect the learners to create diversity:
(1) by modifying the starting point in the hypothesis space, (2) by changing the set of accessible
hypotheses or, (3) by defining how the hypothesis space is traversed. Modifying the starting point in
the hypothesis space is applicable only for learners for whom the final hypothesis reached depends
on some random initialization component, as is the case for neural networks. SVMs, on the other
hand, do not fall into this category. Bagging (Breiman, 1996) and boosting (Freund and Schapire,
1997) are diversity creation methods of type 2, since each member of the ensemble is obtained
by changing the training data, resulting in a different set of accessible hypotheses. In the case of
bagging, the method is implicit since the training data for each ensemble is chosen randomly from
the original set, while in the case of boosting, the training samples are weighted when training
a new member of the ensemble in a way that ensures diversity, making it an explicit method of
diversity creation. Allowing each member of the ensemble to use only a subset of features falls into
the type 2 methods (Oza and Tumer, 2001). Finally, type 3 methods are those that directly aim at
improving diversity by including a term measuring diversity in the objective function of the learner.
The negative correlation (NC) learning algorithm is a notable example in this category (Liu, 1999;
Rosen, 1996).

The goal of NC Learning is to minimize the squared error of an ensemble output computed as
the average of the individual outputs in a regression context. This is done by adding a penalty term
in the objective function of each individual neural network forming the ensemble. This penalty was
shown (Brown et al., 2005b) to directly control the covariance term in the bias-variance-covariance
trade-off. Zanda et al. (2007) extend the NC learning framework to classification problems by rein-
terpreting the Tumer and Ghosh model in a regression context. Our proposed anticorrelation method
follows the spirit of the NC learning technique of explicitly creating diversity through the modifica-
tion of the learner’s objective function when the learners are SVMs instead of neural networks.

Much of the work on diversity creation has focused on the generation of large ensembles, where
the number of classifiers is part of the design choices. The size of the ensemble is in fact another
variable to be optimized. In this paper, we constrain the ensemble to contain a relatively small num-
ber of systems. These systems are different in nature, using different sets of features and different
modeling methods and can be quite complex. Each of them might have been developed over several
months or years of research. Hence, we do not take the size of the ensemble as a variable. The indi-
vidual systems are fixed before hand, and all we are allowed to do is (perhaps only slightly) modify
the training procedure of one or more of them in order to increase the diversity of the ensemble. The
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speaker verification system described in this paper can, in fact, be considered as a cascade of two
diversity creation methods. Given an enormous set of highly heterogeneous features coming from a
few different sources in the speech signal (for example, prosodic or spectral information), we train
separate classifiers for each type of feature, perhaps also varying the type of classifier used. This
can be seen as a type 2 diversity creation method. The second stage of diversity creation focuses
on making each new classifier added to the ensemble as new as possible. To achieve this we use
a type 3 diversity creation method, where we add a penalty term in the SVM objective function,
which explicitly aims at reducing the correlation between the new classifier and the preexisting en-
semble. The proposed method is shown to be equivalent to defining a new kernel that we call the
anticorrelation kernel.

Kocsor et al. (2004) introduced a method called margin maximizing discriminant analysis
(MMDA) to obtain sucessive, mutually orthogonal, SVMs for a certain feature vector. In this
method, presented as a nonparametric extension of linear discriminant analysis, the SVM optimiza-
tion problem is modified by adding an orthogonality constraint with respect to the weight vectors
from previous SVMs. The MMDA method can be seen as a particular case of the one proposed in
this paper when the penalty coefficient is set to infinity. Furthermore, the constraints used here are
more general, reducing to the ones used in MMDA when all systems in the ensemble are SVMs, use
the same input features, and these features have identity within-class covariance matrices. Kernel-
based methods for ensemble systems have also been used, for example, in Pavlidis et al. (2002) and
Lanckriet et al. (2004). Pavlidis et al. compare three methods for combination of heterogeneous
information for gene function detection: early, intermediate and late integration. Early integration
(what we here call feature-level combination) consists of concatenating the features from the two
different information sources into a single feature vector. Intermediate integration performs the
combination at the kernel level, and late integration performs the combination at the last stage. This
is what we are calling score-level combination. No explicit attempt at increasing diversity is made
in the paper. Lanckriet et al. (2004) propose a method for combining kernel classifiers by learning a
new kernel matrix that is a linear combination of the kernel matrices of the classifiers in the ensem-
ble. This method requires prior knowledge of the test data, since instead of learning a function, they
learn the labels on the set of unlabeled samples. This particular scenario is not applicable to speaker
recognition where the speaker models are usually trained before any test sample is available.

2.3 System Combination

Once a diverse ensemble has been trained, the output of the individual classifiers must be combined
into a single decision or score. Linear combiners are the most widely used methods for fusion of
classifier outputs. In many cases the weights of the linear combination are determined based on the
classification performance of the classifiers. For a survey of these methods, see Kuncheva (2004),
Chapter 5. Obtaining the weights by training a “supra” classifier or combiner that takes the output
of the individual classifiers as input is in many cases a better option. The main problem with this
approach is that using the output of the individual classifiers on the data used for training them as
training data for the combiner may result in suboptimal performance. The stacked generalization
method (Kuncheva, 2004, Chapter 3) can be used in these cases to generate the training data for the
combiner.

The focus in this paper is on diversity creation rather than on the methods used for combining the
ensemble. Hence, we choose a simple but effective combination method: a linear supra-classifier
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trained with data generated by the stacked generalization method using logistic regression. Linear
logistic regression was shown in our previous work (Ferrer et al., 2008a) to perform comparably
to or better than other linear and nonlinear classifiers for the combination of speaker verification
scores, and it is one of the most commonly used methods for combining speaker verification systems
(Brummer et al., 2007). Other common combination procedures used in speaker verification include
neural networks (Reynolds et al., 2003; Ferrer et al., 2006), support vector machines (SVM) (Ferrer
et al., 2006), and weighted summation using empirically determined weights (Dehak et al., 2007).

3. A Simple Model for System Combination

Consider a binary classification task with classes y ∈ {a,b} for which N separate classifiers are
available. In speaker verification, class a corresponds to impostor and b to true-speaker. Classifier
i produces a score, fi, which can be thresholded to obtain the final decision. That is, the estimated
class ŷ is given by

ŷ=

{

a if fi < ti
b if fi ≥ ti,

(1)

where ti is a tunable threshold.
Here, we consider a setup where the scores from the individual classifiers are combined into a

single score fc = fc( f1, . . . , fN). This final score is the one that is later thresholded to obtain the es-
timated class for the sample. The goal is then to optimize the performance of the final combination,
not that of the individual systems.

In this section we develop a simple model for this problem, which will lead us to an intuitive
conclusion about what could be done to improve the final performance when training a new system
for combination with others.

3.1 Mahalanobis Distance as a Surrogate for EER

Consider for now a single score f , corresponding to a random variable, F .3 A usual way of mea-
suring performance of a score when Equation (1) is used to estimate the class of the samples is
equal error rate (EER), the false acceptance rate when the false rejection and false acceptance rates
are equal. In speaker verification, a false acceptance (which we will call eb|a) is an impostor trial
accepted by the system as the target speaker, and a false rejection (ea|b) is a true-speaker trial con-
sidered an impostor trial by the system.

If we make the assumption that the conditional distribution of the scores for each class is Gaus-
sian, we can obtain an explicit bound for the EER as a function of the Mahalanobis distance between
the class-conditional means. Figure 1 shows how to calculate the EER for this case. We assume that
the class-conditional distribution of the scores is given by

F | Y = y∼N (µy,"2
y), for y= a,b,

where Y is the random variable corresponding to the trial’s class. We further assume, without loss
of generality, that µb ≥ µa, so that (1) is the best way of assigning the labels for a given threshold.

3. Throughout the paper we will adopt the notation of using lower case letters for the samples of the random variable
noted by the corresponding capital letter.
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FERRER, SÖNMEZ AND SHRIBERG

Figure 1: EER calculation when the class-conditional distributions are Gaussian. The EER is equal
to ea|b when t is chosen such that ea|b = eb|a.

With these assumptions we can compute ea|b and eb|a for a certain value of the threshold t as

ea|b(t) = #

(

t−µb
"b

)

, (2)

eb|a(t) = 1−#

(

t−µa
"a

)

, (3)

where # is the cumulative distribution function of the standard normal distribution N (0,1).
The EER is given by eb|a(t∗) when t∗ is chosen such that eb|a(t∗) = ea|b(t∗). In the appendix we

prove the following upper bound on the EER:

EER = eb|a(t∗) = ea|b(t∗) ≤ #(−
1
2
$µ
"

), (4)

where $µ= µb− µa, and " is any value that satisfies " ≥ ("a +"b)/2. Equality is achieved for
"= ("a+"b)/2, but this value of " does not result in a nice expression later on, when we want to
use it to optimize the combination performance. On the other hand,

"=
√

("2
a+"2

b)/2

also satisfies the inequality and does result in a nice expression that we can later use. In the rest of
the paper we will use

M 2 =
2$µ2

"2
a+"2

b
(5)

as a surrogate for the EER of the system. M is the Mahalanobis distance between two Gaussian
distributions with distance between the means $µ and variance ("2

a+"2
b)/2. Using (4), we get that

EER ≤ #(−
M

2
).
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Figure 2: Actual EER for a set of 37 systems versus the upper bound and the exact value under
Gaussian assumptions.

Our strategy in the remainder of the paper will be to reduce the value of the upper bound, with
the hope that this will result in a reduction of the EER. Since # is monotonically increasing in its
argument, decreasing the value of −M (or increasing the value of M ) will decrease the value of the
upper bound.

Figure 2 shows a scatter plot of the actual EER for a set of 37 different individual systems us-
ing different features or different modeling techniques (some of these systems are described by
Ferrer et al. (2006)) versus the upper bound on the EER under Gaussian assumption given by
#(−$µ/

√

2("2
a+"2

b)) and the exact value of the EER, also under Gaussian assumption, given by
#(−$µ/("a+"b)). We can see that the upper bound is tight for high EER values. When the differ-
ence between the class-conditional covariance for both classes is large (which, in our experiments,
is the case for the better systems), the upper bound becomes looser. We see that the exact estimation
under the Gaussian assumption performs significantly better in this case. The remainder of the error
is due to the inaccuracy of the Gaussian assumption. Figure 3 shows the actual distribution of two
of the systems used in this paper compared to their Gaussian approximation. Figure 3.a corresponds
to one of the low EER systems that drifts away from the diagonal in Figure 2, while 3.b corresponds
to a system with EER around 12%. We can clearly see that the Gaussian approximation in this
case is inaccurate, which in turn explains the inaccuracy of the upper bound and the exact formula
developed in this section. Interestingly, even when the Gaussian approximation is inaccurate, (4)
seems to still hold. Our procedure of trying to minimize this upper bound in the hope that the actual
EER will be pushed down would then still be valid.

3.2 Maximum Mahalanobis Distance Combination

Returning to the problem of combining the output of several subsystems into a single score, we use
the results from the previous section and maximize (5) to find the optimal parameters of the com-
biner. This will result in a simple formula that can predict the performance of the combination of
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a. UBM−GMM system scores

−2 0 2 4 6 8 10 12
b. SNERF−SVM system scores

Figure 3: Distribution of scores for two individual systems compared to their Gaussian approxima-
tion.

several subsystems given their individual EERs (or M s) and the average class-conditional covari-
ance matrix for the vector of scores. To do this we further assume that the combination is performed
with a linear function of the individual scores. This is not a very restrictive assumption for speaker
verification since for this task we have repeatedly found that linear combination procedures perform
as well (or better) than nonlinear ones (Ferrer et al., 2008a). The form of the combined scores as a
function of N individual scores is then

fc =
N

%
i=1

&i fi = &t f ,

where & = (&1 . . .&N)t is the vector of weights and f = ( f1 . . . fN)t the vector of individual scores.
We assume that the class-conditional distribution of the fi’s is jointly Gaussian. Hence, each of the
individual scores and the combined score satisfy the assumptions made in the previous section. The
class-conditional distributions of Fc, the random variable corresponding to the combined score, are
given by

Fc | Y = y∼N (&tµy,&t'y&), for y= a,b,
where µy = (µy1 . . .µyN) is the vector of means and 'y = E[(F−µy)(F−µy)t |Y = y] the covariance
matrix for class y for random variable F corresponding to vector f . We can now compute M 2

(Equation 5) for the combined score as a function of the parameters &:

M 2 =
2(&tµb−&tµa)2

&t'a&+&t'b&
=
&t((t&
&t'&

, (6)

where (= µb−µa and
'= 1/2('a+'b). (7)

We wish to find the & that maximizes this expression. Define ) = '1/2&, where '1/2 is a
symmetric matrix square root of ' (which can be computed from the eigendecomposition of ',
which exists and can be chosen to be symmetric since ' is symmetric). Replacing this in (6), and
using the Cauchy-Schwarz inequality,

M 2 =
)t'−1/2((t'−1/2)

)t)
=

‖(t'−1/2)‖2

‖)‖2

≤ ‖(t'−1/2‖2 = (t'−1(,
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with equality when ) * '−1/2(. Hence, the optimal & is a vector in the direction of '−1(.4
Note that we have arrived at the definition of the Mahalanobis distance in multiple dimensions

((t'−1(), which is an intuitive result. We now know that the EER of the combination of the indi-
vidual systems will be at most #(−

√
(t'−1(/2). If we can devise a way of increasing (t'−1(, this

upper bound will decrease.
Anderson and Bahadur (1962) consider the problem of finding all the admissible linear pro-

cedures for classifying into two multivariate normal distributions. They show that & = (ta'a +
tb'b)−1( corresponds to an admissible procedure for any ta and tb (that is, no other linear procedure
will have, simultaneously, strictly better eb|a and ea|b) as long as ta'a + tb'b is positive definite.
Unfortunately, the values for ta and tb that correspond to the EER have to be numerically obtained.
No explicit expression is available for the general case. Since our purpose here is to obtain a simple
explicit expression for the EER (as a function of the EERs of the individual systems and some other
parameters) that we can use to analyze the problem, we have settled for a bound on the EER instead
of using the implicit expression developed by Anderson and Bahadur.

3.3 Analysis for Combination of Two Systems

We now focus on the case N = 2. In this case, we have that the optimal M 2 ((t'−1() is given by

M 2 =
$2

1"22 +$2
2"11 −2$1$2"12

"11"22 −"2
12

=
M 2

1 +M 2
2 −2+M1M2

1−+2 , (8)

where $i is component i of vector (, "i j is component i j of matrix ', M1 = $1/
√
"11 and M2 =

$2/
√
"22 are the Mahalanobis distances for the individual systems, and

+= "12/
√
"11"22. (9)

Note that + is not the correlation between the two systems in the usual sense, since ' is not the
covariance matrix of F , but the average class-conditional covariance.

Let us call the upper bound on the EER, ê, that is, ê= #(−M /2). Figure 4 shows some curves
of êc, the upper bound on the performance of the combination for two systems, as a function of +. To
create these plots we take two actual systems (the MLLR-SVM and the SNERF-SVM, as described
in Section 6.2) and compute the upper bound on the EERs based on their Gaussian approximation.
We also compute matrix ' and from there, +. This gives a single point in this graph (marked with a
star). We can now vary +, keeping ê1 and ê2 (the upper bound on the performance of the individual
systems) fixed, to obtain a curve. We can also obtain curves for different values of ê2. These curves
show us the relation between the performance of system 2, the value of + between the two systems,
and the performance of their combination. We can see that for this particular set of systems, we
could degrade the second system 100% (that is, from 15.6% to 31.3%) and still get a gain in the

4. Note that this is the same direction one would obtain with linear discriminant analysis (LDA). As mentioned in the
introduction, for the experiments in this paper we will use linear logistic regression (LLR) to train the combination
weights. The reason for using LLR instead of LDA, despite the result obtained in this section, is that the results
in this section are obtained under the assumption of class-conditional Gaussianity. When Gaussianity is not closely
satisfied, LLR is believed to be a safer choice being more robust to outliers (Hastie et al., 2001, Section 4.4). In fact,
a set of initial experiments showed that LLR was significantly better than LDA on our speaker verification data.
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Figure 4: Left: Curves of êc (the upper bound on the EER of the combination) for two systems as a
function of +, for ê1 fixed and various values of ê2, where êi denotes the upper bound on
the EER of system i. Right: Simulated contour plots for the scores of two systems assum-
ing class-conditional distributions are Gaussian with equal covariance matrix. Marginal
distributions are kept fixed for all four figures, only + is changed. These plots correspond
to four different points in the darker curve from the left plot.

performance of the combination (or at least in the upper bound) over what we get with the original
pair of systems if, at the same time, we were able to decrease the + from 0.48 to 0 (this point is
denoted by a diamond in the graph).

At first sight, these curves may seem to go against intuition, since when + increases, after
reaching a peak (occurring at the minimum of M1/M2 and M2/M1), they go down again. That is,
very high values of + result in extremely good combination performance. Similarly, when + turns
negative, the combination performance improves, reaching zero EER for + = −1. All these cases
can be easily understood using contour plots of the scores from two systems for varying values of
+. The right plot of Figure 4 shows four different cases. Here we keep the marginal distributions
of the systems fixed and vary only +, which implies that the performance of the two individual
systems stays fixed for the four different plots. That is, the four plots correspond to four different
points in a single curve like the ones in the left plot. Furthermore, we set the covariance matrix
between the two systems to be the same for both classes. In this way, the upper bound (4) is exact
and + is the within-class correlation (assuming both classes have the same prior). We can see that
the separation between the two classes is highly dependent on the value of +. The first plot shows
a typical case, where + = 0.5. The second plot shows the case of + = 0. We can already see
that the overlap between the two classes has been significantly reduced, even though the marginal
distributions have not changed. The third plot shows the case of negative +. This implies that both
systems produce errors in a negatively correlated way, which makes the combination of those two
systems extremely effective at reducing the error rate. The fourth plot illustrates the case in which
+ is larger than the value for which the êc curve peaks, showing good separation between the two
classes. Perfect classification with + = 1 is possible only when both classes have exactly the same
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covariance matrix except possibly for a scalar factor (so that the contour plots become parallel lines)
and the mean vectors for both systems are different. This case corresponds to a zero value in the
denominator of (8) and a nonzero at the numerator.

In practice, if we take pairs of all 37 systems plotted in Figure 2 and compute the actual + and
the + at the peak (that is, +peak = min(M1/M2,M2/M1)) we find that, on average, the actual + is
0.26 to the left of +peak. Considering this empirical fact it seems unreasonable to try to increase +
in order to improve the combination performance, since it would require a large increase in order
to go past the peak into an area where the combination performance is better than the original.
Furthermore, this would work only if the class-conditional covariance matrices were equal, which
is usually not the case. Hence, in this paper, our strategy will be to try to decrease the value of +. Of
course, we also require that the performance of each individual system stays reasonably close to its
original performance, which we hope will result in a new point (in a plot like the one in the left of
Figure 4) located toward the left and lower than the original point. In the next section we introduce
our method for achieving this goal.

4. Anticorrelation Kernel

Suppose that two separate classifiers S and B are available, where S is required to be an SVM,
but B can be any classifier that produces a score for each sample. We will consider B to be a
black box from which we have only the scores that it produces. As we have been assuming, the
final classification decision will be made based on a combination of the outputs generated by both
classifiers. Our strategy will be to train system S using information about system B in order to
improve the combination performance over the one obtained when system S is designed with no
knowledge of system B.

4.1 Support Vector Machines

Consider a labeled training set with m samples, T = {(x j,y j)∈R d×{−1,+1}; j= 1, ...,m}, where
x j is the feature and y j the class corresponding to sample j. The goal is to find a function f (x) =
wtx+ c, such that sign( f (x)) is the predicted class for feature vector x. The standard (primal) SVM
formulation for classification is given by Vapnik (1999):

minimize J(w,!) =
1
2
wtw+C

m

%
j=1

! j

subject to y j(wtx j + c) ≥ 1− ! j j = 1, ...,m
! j ≥ 0 j = 1, ...,m.

(10)

Minimizing the norm of the weight vector is equivalent to maximizing the margin between the
samples and the hyperplane. The slack variables ! j allow for some samples to be at a distance
smaller than the margin to the separating hyperplane or even on the wrong side of the hyperplane.
The parameterC controls the trade-off between the size of the margin and the total amount of error.
By deriving the dual form of the optimization problem above we find that input vectors appear
only as inner products with each other. Hence, if we wish to transform the input features with a
certain function #(x) we only need to be able to compute the inner products between the transforms
for any pair of samples, that is, we only need to know the function K(xk,xl) = #(xk)t#(xl). This
fact is what allows for complex transforms of the input features to be used, as long as the kernel
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function K(xk,xl) can be easily computed. In the next section we will develop the proposed method
considering an inner product kernel. The general case will be treated in Section 4.5.

The above setup corresponds to a classification problem. The regression problem can also be
posed as a convex optimization problem by choosing an appropriate distance measure (Vapnik,
1999; Smola and Schölkopf, 1998) with the objective function given by the sum of the square norm
of the weight vector and an error term, as in the classification case. The dual of this problem
again takes a form in which features appear only in inner products with other features, which again
allows for the kernel trick to be used. Hence, even though the derivations in this paper will be done
considering a classification problem for simplicity, the method described and the interpretations
given can be equally applied to SVM regression problems.

4.2 Modified Support Vector Machines

As we saw in Section 3.3, reducing the + value between system S and system B could lead to an
improvement in combination performance as long as the performance of the individual systems does
not degrade too greatly. We propose to add a term in the SVM objective function (J(w,!) in Equation
(10) that introduces a cost for a model that results in high value of +. Ideally, we would like this term
to be given by ,+ so that low values of + are encouraged, including negative ones. Unfortunately,
this term would make the new objective function nonconvex, making the optimization problem
much more complex. To see this, let us derive an expression for + as a function of the SVM weights.
Let S = wtX + c, where w and c are the SVM parameters. We can compute "12 = "SB (component
1,2 of Equation 7) as5

"SB =
1
2 %
y={a,b}

E[(B−µb,y)(S−µs,y)|Y = y] = wtK,

where we are using the notation µv,y = E[V |Y = y] for any random variable V (scalar or vectorial),
and where

K =
1
2 %
y={a,b}

E[(B−µb,y)(X−µx,y)|Y = y]. (11)

K is simply the vector of average class-conditional covariances between each input feature and the
scores from system B. The value of vector K can be estimated from the training set T as

K̃ =
1
2 %
y={a,b}

1
my

%
j|y j=y

(b j− µ̃b,y)(x j− µ̃x,y), (12)

where b j is the score generated by system B for sample j, my is the number of samples in T from
class y, µ̃b,y = 1

my % j|y j=y b j, and µ̃x,y = 1
my % j|y j=y x j.

Similarly, we can compute "11 = "SS (component 1,1 of Equation 7) as wtMw, where M is the
average class-conditional covariance matrix for the feature vector X ; and "22 = "BB (component
2,2 of Equation 7) as the average class-conditional variance for the B scores that we will call v. We
can now write +2 as

+2 =
"2
SB

"SS"BB
=
wtKKtw
v wtMw

.

5. We use B and S to refer to the systems and the random variables corresponding to the scores produced by these
systems. The actual meaning should be clear from the context.
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This expression and its square root are nonconvex functions of w. Hence, adding the term ,+ to the
objective function of the SVM problem would make the optimization problem nonconvex. On the
other hand, the numerator of +2, "2

SB is a convex function of w and, using it as a regularization term
results in a new problem that is equivalent to a standard SVM problem with a new kernel function.
To see this, write

J"(w,!) =
1
2
wtw+

,
2
wtKKtw+C%

i
!i

=
1
2
wtAw+C%

i
!i,

where A = I+ ,KKt is a symmetric positive semidefinite matrix. We can now change variables
w̃ = Bw, with B symmetric and BtB = A (i.e., B is a matrix square root of A and, since A is a
positive definite symmetric matrix, it always exists and can be chosen to be real and symmetric) and
write it as

minimize J"(w̃,!) = 1
2 w̃

t w̃+C% j ! j

subject to y j(w̃tz j + c) ≥ 1− ! j j = 1, ...,m
! j ≥ 0 j = 1, ...,m,

where
z j = B−1x j. (13)

We see that the appropriate choice of regularization term led us to a very simple new opti-
mization problem. The disadvantage of this choice is that it does not directly achieve our goal of
minimizing +. For example, negative values of + corresponding to negative values of "SB will gen-
erally not be encouraged by the new objective function because the maximum margin (that is, the
minimum value of wtw) corresponds, in most practical cases, to positive values of "SB. Hence, in
practice, for each negative value of "SB the corresponding positive one will result in a smaller value
of the objective function and will be preferred to the negative one. Furthermore, minimizing "SB
does not imply minimization of +, even for positive values, since the denominator is not being taken
into account. Nevertheless, we empirically find that the new optimization problem achieves its goal
of reducing +. In particular, when , is large, "SB is pushed toward zero, forcing + to become zero.

Directly finding the matrix B−1 in (13) is computationally expensive since in general the dimen-
sion d of the feature vectors xi can be very large and the matrix B is a full matrix of size d× d.
Nevertheless, since matrix A has a very particular structure, we can find an expression for its inverse
using the matrix inversion lemma, by which A−1 = I − ,

1+,KtKKK
t . Hence, one way of imple-

menting the proposed method is to define a kernel K(xk,xl) = xtkB
−tB−1xl = xtkA

−1xl to be used by
the SVM. This kernel satisfies the mercer conditions (i.e., it is a valid kernel) since A is a positive
semidefinite matrix. Using the expression for A−1 above we get

K(xk,xl) = xtkxl−
,

1+,KtK
xtkKx

t
lK. (14)

We call this kernel the anticorrelation kernel. The computation ofK(xk,xl) in Equation (14) requires
only the calculation of three inner products, which makes the method computationally feasible.
Another approach is to transform directly the features using (13). This is also computationally
feasible because the inverse of the matrix B has a simple expression. To find this expression we first
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FERRER, SÖNMEZ AND SHRIBERG

note that the matrix B−1 is a matrix square root of A−1. Hence, we need to find a matrix that when
multiplied by its transpose results in A−1 = I− ,

1+,KtKKK
t . It is easy to show that

B−1 = I−
&
KtK

KKt

satisfies this condition when & = 1± 1√
1+,KtK . Hence, given a certain value for , we can find the

corresponding & and transform each feature vector using (13). This means that we can implement
the proposed method by transforming the input features using the following expression:

zi = xi−&
Ktxi
KtK

K. (15)

In the case of speaker verification, a separate K vector is computed for each target model being
trained. Hence, doing the transformation in the feature domain is inefficient, since there is not a
single transformation for each feature vector xi, but one for each target model. The kernel imple-
mentation might be preferable in this case. Furthermore, as we will see in Section 4.5, when the
original SVM problem uses a kernel other than the inner-product one, implementing the anticorre-
lation method as a kernel may be the only feasible option.

4.3 Interpretation of the Modified Problem

To give an interpretation of the new SVM problem, we first need to understand the meaning of the
direction given by the vector K. The average class-conditional covariance between the scores from
system B and the scores from system S is given by wtK. For a fixed value of ‖w‖ = c, the w that
maximizes the absolute value of wtK is given by w = cK/‖K‖. Hence, K gives the direction for
the vector w of SVM weights for which the average class-conditional covariance between the two
systems is maximum. Aw orthogonal toK would result in zero average class-conditional covariance
between the two systems. The term ‖wtK‖2 that we have added to the objective function of the SVM
problem has the effect of penalizing any w vector with a large component in the direction of K. Our
goal is to find a w as orthogonal to K as possible without degrading the performance of the system
so much that the overall combination starts to degrade. This balance can be achieved by tuning the
parameter ,.

We can interpret the kernel given by (14) in a similar way. When , is small this kernel is close
to the linear kernel. When , grows to infinity the kernel subtracts the product of the projections of
the points xk and xl into the vector K from the linear kernel. The resulting value of the kernel will be
small if xk and xl are both aligned with K. Since the SVM will make an effort to separate only points
from different classes that give a high kernel value (that is, that are more “similar”), this means that
we consider vectors whose directions are close to that of K to be unimportant and, consequently,
we emphasize the importance of the vectors whose directions are orthogonal from that of K. This
results in a more effective usage of the features, ignoring those directions that would lead to high
average class-conditional covariance between the systems and taking advantage of the rest.

Finally, if we choose to implement the method as a feature transform instead of a kernel function,
the resulting features have a very simple interpretation. When , = -, Equation (15) becomes z j =
x j−

Ktx j
KtK K, which is the expression for subtracting from x j its component on direction K. If , is not

- then only a part of the component is subtracted.
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4.4 Extension for Multiple Preexisting Scores

An extension to the presented method can be considered where N previous systems are available,
B1,. . . , BN , and we wish to train S to combine well with them. A generalization of the formulas
above can be derived for this setup. We rewrite the objective function as

J"(w,!) =
1
2
wtw+

N

%
k=1

,k
2
wtKkKtkw+C%

i
!i

=
1
2
wtAw+C%

i
!i,

where now A is given by I+%N
k=1,kKkKtk and it is still positive definite and symmetric. The same

approach used above can be used here to simplify the problem to a standard SVM problem. We can
still use the inversion lemma by considering matrices

K = [K1 . . .KN ],

. = diag(,1 . . .,N),

so that I +%N
k=1,kKkKtk = I +K.Kt . We can then use the lemma to get A−1 = I −K(.−1 +

KtK)−1Kt . When ,k = - for all k, A−1 = I − K(KtK)−1Kt . This matrix is idempotent (and
symmetric), hence B−1 = A−1. The transformed features zi for this case are then given by zi =
xi−K(KtK)−1Ktxi, which is the projection of xi on the complementary space to that spanned by
vectors K1 through KN .

4.5 Extension for General Kernels

The development on Section 4.2 was done using inner-product kernel SVMs as the starting point.
In this section we show that the method can be implemented for any kernel function.

Consider a problem for which K0(x,y) = #0(x)t#0(y) has been found to perform better than the
inner-product kernel. One way of implementing the anticorrelation method in this case is to simply
transform the features using #0(x) and then treat the transformed features as the feature vectors x
in Section 4.2. This is conceptually simple, but could be extremely costly computationally if the
dimension of #0(x) is large compared to the dimension of x, or impossible if the transformation #0
is infinite dimensional (as in the case of the Gaussian kernel). Luckily, there is a way of implement-
ing the anticorrelation method without ever computing the transform but only the kernel function
between pairs of features.

In Section 4.2 we found that one way of implementing the proposed method is by the use of the
anticorrelation kernel, defined by Equation (14). In practice, vector K in that equation is computed
from data. We call this empirical value for K, K̃ (Equation 12). We can write K̃ as a linear function
of the features x j used to compute it. That is, K̃ = % j c jx j, where the c j depend on the my’s and all
the bi’s. If we now replace every x in Equation (14) by #0(x) and K by % j c j#0(x j), we get

K(xk,xl) = #0(xk)t#0(xl)−
,% j c j#0(x j)t#0(xk)% j c j#0(x j)t#0(xl)

1+,% j%i c jc j#0(xi)t#0(x j)

= K0(xk,xl)−
,% j c jK0(x j,xk)% j c jK0(x j,xl)

1+,% j%i c jc jK0(xi,x j)
.
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The anticorrelation kernel can then be computed exclusively as a function of the original kernel
K0. The processing time is now significantly increased, though, since two sums over the samples
used to obtain K are needed every time the kernel is computed (the denominator in the second term
can be precomputed and reused, since it does not involve xk or xl). The extension for multiple
preexisting scores follows the same steps as above. In this paper, the inner-product kernel is used
for all experiments.

4.6 Other Approaches

Our goal is to obtain the best possible combination performance given the available systems. The
approach presented above is one path toward this goal. Two other ways of approaching this problem
are considered here.

4.6.1 FEATURE-LEVEL COMBINATION

When system B is also an SVM system and the features corresponding to the samples used for
training system S are also available for system B, an SVM using the features from both systems
concatenated into a single vector can be trained. The resulting SVM is in itself a combination
procedure, which, ideally, should make optimal use of the features from both systems. This may
not be true in practice, though, since a larger feature vector increases the complexity of the system,
making it more prone to overfitting the training data. A further refinement of this approach consists
of weighting the vector components, assigning weight & to the features from one of the original
systems and weight 1−& to the other features. This is done by multiplying the components of the
square-norm of w in the SVM objective function by the inverse of the corresponding feature weight.
That is, we replace ‖w‖2 =%i w2

i with%i w2
i /)i, where )i =& for the features from one set and 1−&

for the features from the other set. This allows us to compensate for different lengths in the original
vectors or to bias the training procedure to make more use of the features from the better-performing
system. Feature-level combination is usually costly and sometimes even infeasible, given the large
size of the original feature vectors, and can be considered only if both systems being combined are
SVM systems.

4.6.2 FEATURE+SCORE COMBINATION

Another method can be considered in which we present the scores generated by system B as input
features to the SVM, along with all the features from system S. Again, a larger weight can be given
to the component corresponding to the score from system B than to the features from S.

5. Experiments on Artificial Data

To test the proposed kernel on a simple task, we generated data for two classes with model

Z =CZ̃+mY ,

where Z̃ is a vector of size d where the components are generated independently with normal distri-
bution with zero mean and unit variance. C is a square random matrix intended to create correlation
between the features. Its components are drawn from a uniform distribution, and a scaling factor is
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applied to force the maximum variance of Z to be 1. The class-dependent mean vector is given by

mY =

{

(0 . . .0)t if Y = a
(m . . .m)t if Y = b.

We take half of the features and train a linear SVM (inner-product kernel), which serves as
system B. The remaining features are used to train system S starting with an inner-product kernel.
The anticorrelation kernel is implemented for varying values of ,. We create two separate sets, one
for training, with 900 examples of class a and N examples of class b, and one for testing, with 10
times more data than in the training set.

The combination is performed using a linear logistic regression model, trained on the training
set with the scores from the two SVM systems, B and S, for each value of ,. Since the scores
obtained on the training set are overly optimistic, we use 10-fold cross-validation on the training
set to create the B and S scores used to train the combiner (Kuncheva, 2004, Section 3.2.2). The
scores from cross-validation for system B are also used to estimate the vector K̃ as in (12). When
only a few samples from one of the classes are available, the estimation of K̃ can be noisy. In our
simulation we vary the number of samples available for class b, keeping the number for a fixed;
hence, in order to keep the variance of the estimator stable across experiments, we use only samples
from class a to estimate K̃.

Figure 5 shows the error rates for the test data for system S, system B, and the score-level
combination as a function of the value of ,, form= 3.0, N= 900 and d= 250. The figure also shows
results for the feature-level and the feature+score combination procedures, explained in Section 4.6.
The weight & for these two systems was tuned using 10-fold cross-validation on the training set.
For these two cases and for system B, the error does not depend on ,. On the other hand, the value
of + between S and B decreases with , (reaching a value close to zero). We see that, in practice,
+ is effectively reduced as , increases, even though we use ,"2

SB as regularization term instead of
,+2. The error for system S also varies with ,. The degradation in performance is expected since
we are trading off poorer performance in exchange for a lower value of +. The small improvement
at moderate values of ,, though, is not too surprising. If the direction K corresponded to one that is
especially noisy, reducing the importance of that direction can lead to improved performance. We
will see more on this in Section 6.5.

The feature-level and feature+score combination methods perform approximately equal at around
1% EER, while, for , = 0, the score-level combination has a significantly worse performance of
1.58%. Nevertheless, as , grows, the performance of the score-level combination using the anticor-
relation kernel improves significantly (from 1.58% to 0.56% when , goes from 0 to 104), making it
the best-performing system. Overall, we see a reduction in EER of around 50%, relative to the EER
of the best combined system when the anticorrelation kernel is not used.

Figure 6 shows the scatter plot of scores (on the training data) for both systems corresponding
to ,= 0 and ,= 10000. We can see that for the large value of ,, the within-class covariances have
been largely reduced. We can also see that the separation of the two classes is better for the larger
,, which explains the performance improvement observed in Figure 5.

Figure 7 shows the results for the score-level combination of systems B and S with , = 0 (that
is, without using the proposed method), the score-level combination with , = -, the feature-level
combination, and the feature+score combination, for several settings of the simulation parameters
N, m, and d. For the score-level combination with ,= - we also present the results obtained when
computing K using our knowledge of the model that generated the data. Since we are creating
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Figure 5: Error of individual systems and their combination, and value of the + coefficient as a
function of , for an artificial problem. The EER of the combination is reduced from
1.58% to 0.56% as , increases.
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Figure 6: Scores from system B versus scores from system S for two values of ,.

the data ourselves according to a model, we can compute K exactly using (11) instead of (12).
It can be shown that, for our setup, K = 1

2 %y={a,b}(C12Ct11 +C22Ct12)wB, where wB is the SVM
weight vector for system B and Ci j is block i j of size d/2× d/2 of matrix C. For each set of
parameters, 10 different random seeds were used to generate the data, keeping matrix C equal for
all 10 experiments. Each bar shows the first quartile, the median, and the third quartile of the set of
EERs obtained from the 10 simulations.

The figure shows that feature+score combination is significantly better than score-level or feature-
level combinations only when the task is easier (m= 3.0) and many samples are available for train-
ing (N = 900). Feature-level combination is optimal when the task is harder (m = 1.8) and the
number of features is small (d = 250) particularly when enough samples are available for training
(N ≥ 300). Plain score-level combination (without anticorrelation) performs comparably to feature-
level combination when the number of training samples is small and the number of features is large,
in which case the feature-level combination suffers from the additional complexity. In all cases,
though, the anticorrelation method (last two bars) is either comparable or significantly better than
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Figure 7: Comparison of EER on simulated data for the score-level combination of system B with
S with , = 0 (called Score in the legend), the score-level combination with , = - (An-
tic) using the estimated value for K (est) or the value obtained from the model (real),
the feature-level combination (Feat), and the feature+score combination (Feat+score) for
several values of the simulation parameters. For each pair of m (distance between means)
and d (feature vector dimension), three values of N (number of samples from class b) are
explored.

plain score-level, feature+score and feature-level combinations. For m = 3.0, the anticorrelation
method significantly outperforms all other combination methods for both values of d and the three
values of N. Gains are smaller or disappear when the task becomes harder (m= 1.8).

The difference between the fourth and the fifth bars in each set is due only to the difference in
the K vector used. The K is estimated using the data (Equation 12) for the fourth bar and using
the model (Equation 11) for the fifth bar. We can see that when the dimension of the feature vector
Z2 is large, the difference between the fourth and the fifth bars becomes larger, indicating that in
these situations the estimation of K is noisier. This is also evident from looking at the reduction
in + achieved for the different values of d when using the data to estimate K. For d = 250, the
reduction is around 90%, while for d = 1000 the reduction is only around 60%. In most experiments
with d = 1000 the value of + when using the estimated value of K does not go under 0.30. This
means that for higher-dimensional vectors, the estimation of K is harder than for lower-dimensional
ones. Nevertheless, even in those cases, the combination using the anticorrelated system with the
estimated K is, in most cases, better than the original score-level combination.
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FERRER, SÖNMEZ AND SHRIBERG

6. Experiments on Speaker Verification

Speaker verification is the task of deciding whether or not a speech sample was produced by a
certain target speaker. It is a binary classification task where the two classes are true-speaker and
impostor. To test the proposed method we use a standard UBM-GMM system, a cepstral supervector
SVM system, an MLLR-based system, and a prosodic system. We show results using the proposed
kernel on all possible combinations involving two systems (two-way combinations) and a variety of
combinations involving three and four systems (three-way and four-way combinations).

6.1 Databases and Error Measures

Experiments were conducted using data from the NIST speaker recognition evaluations (SRE) from
2005 and 2006. Each speaker verification trial consists of a test sample and a speaker model. The
samples are one side of a telephone conversation with approximately 2.5 minutes of speech. We
consider the 1-side training conditions in which we are given 1 conversation side to train the speaker
model. This conversation corresponds to a positive example when training the SVM model for the
speaker. The data used as negative examples for the SVM training and to estimate the K vectors
is taken from 2003 and 2004 NIST evaluations along with some FISHER data, resulting in a total
of 4355 samples. The tasks contain 26,270 trials for SRE05, and 21,343 for SRE06. In both cases
around 1/10th of the trials are target trials. Trials are created by reusing the conversations from a few
hundred speakers as train and test samples, sometimes as target speakers, sometimes as impostors. A
total of 598 distinct models for SRE05 and 584 for SRE06 are created, some of them corresponding
to different conversations from the same speaker.

The performance measures used in this section are the EER and NIST’s detection cost function
(DCF). The DCF is defined as the Bayesian risk with probability of target equal to 0.01, cost of
false alarm equal to 1, and cost of miss equal to 10. The DCF is affected both by the discrimination
power of the system and its calibration, given by the choice of threshold that is believed to minimize
it (Brummer and du Preez, 2006). In this paper, we will not explore the calibration issue, which is,
in itself, a large field of study in the biometrics community. We will present results in terms of
the DCF achieved when choosing the threshold that minimizes it on the test data. This measure is
commonly called minimum DCF and it measures how much information the detector could have
delivered to the user, if the calibration had been perfect (Brummer and du Preez, 2006).

The EER and the DCF are two points in the receiver operating characteristic (ROC) curve of a
system and they give a more complete picture of the behavior of the system for different operating
points than the EER alone. Even though the theory in Section 3 was developed for EER, we will
see that improvements are obtained for both performance measures.

6.2 Individual System Descriptions

The systems chosen to run the experiments in this paper are representative of the systems being
used in most state-of-the-art speaker recognition systems. Somewhat simplified versions of the
best-performing systems were used, in order to facilitate the large amount of computationally costly
experiments that were run. A brief description for each of the systems follows.
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6.2.1 UBM-GMM SYSTEM (G)

This is probably the most widely used paradigm for speaker verification. A Gaussian mixture model
(GMM) is trained using data from many different speakers and recording conditions to create a uni-
versal background model (UBM). The target speaker models are trained by maximum a posteriori
adaptation of the background model to the training data. For a given test sample the logarithm of the
ratio of the likelihoods for the target model and the background model is used as a score. The system
used here is based on 13 mel frequency cepstral coefficients (MFCCs) without the zeroth-order co-
efficient, and first-, second-, and third-order difference features, resulting in 52-dimensional feature
vectors. The features are modeled by 2048 mixture component GMMs. Only the GMM means are
adapted to the observed data, leaving variances and weights untouched. For implementation details
on this system see Shriberg et al. (2005).

6.2.2 SUPERVECTOR-SVM SYSTEM (V)

This system (Campbell et al., 2006) is a variation of the UBM-GMM system, where SVMs are
used to obtain scores. For each sample, the means of the UBM-GMM are adapted to the sample’s
data and stacked together in a single high-dimensional feature vector. A set of held-out samples
(generally the same samples used to create the UBM-GMM) is used as negative examples when
training the SVM, while the target sample is used as the positive example. These features are used
to train a model using support vector regression with an inner-product kernel. The signed distance
to the hyperplane is then used as the output of the system. For this system we use a 512-component
background model. Since the dimension of the original space is 52, the final dimension of the
feature vectors is given by 512×52 = 26,624. Larger background models have been found to give
slightly better performance but increase the computational cost of the experiments. We found 512
components to give a good balance between performance and computational cost of the system.

6.2.3 MLLR-SVM SYSTEM (M)

The MLLR-SVM system (Stolcke et al., 2007, 2006) uses the speaker adaptation transforms used in
the speech recognition system as features for speaker verification. A total of four affine 39x40 trans-
forms is used to map the Gaussian mean vectors from speaker-independent to speaker-dependent
speech models; two transforms each are estimated relative to male and female recognition models,
respectively. The transforms are estimated using maximum-likelihood linear regression (MLLR)
and can be viewed as a text-invariant encapsulation of the speaker’s acoustic properties. The trans-
form coefficients form a 6,240-dimensional feature space. Each feature dimension is rank normal-
ized by replacing the value with its rank in the background data, and scaling ranks to lie in the
interval [0, 1]. The resulting normalized feature vectors are then modeled using the same procedure
as for the supervector-SVM system. The system described in this paragraph is a simplified version
of our best performing MLLR-SVM system which uses a total of 16 transforms and has approxi-
mately 25% lower EER than the 4-transform system (Stolcke et al., 2007). Initial experiments (not
shown here) indicate that improvements from the anticorrelation method are still obtained when the
more complex MLLR system is used, with similar relative gains as the ones shown here.
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6.2.4 SNERF-SVM SYSTEM (S)

This system models syllable-based prosodic NERFs (nonuniform extraction region features) (Shriberg
et al., 2005). Features are based on estimated F0, energy, and duration information extracted
over syllables inferred via automatic syllabification based on automatic speech recognition output.
Prosodic feature sequences are transformed into fixed-length vectors by a particular implementa-
tion of the Fisher score (Ferrer et al., 2007). In this paper, only features modeling sequences of two
syllables are used. In previous work we have found that these features by themselves yield a per-
formance almost as good as using features extracted for sequences of 1, 2, and 3 syllables together.
The resulting feature vector, of dimension 13,343, is first rank-normalized (as in the MLLR system)
and modeled using the same procedure as for the supervector-SVM system.

6.3 Application of the Proposed Method to the Speaker Verification Problem

Most speaker verification systems that use SVMs as models consider each train or test utterance as
a single sample. If necessary, as in the case of the SNERF features and many other cases presented
in the literature (Ferrer et al., 2006; Brummer et al., 2007; Reynolds et al., 2005), a transform is
applied to the input features prior to SVM modeling in order to convert them into a single fixed-
length vector. In other cases, such as the MLLR system, the features are directly generated as a
single fixed-length vector. In our experiments, since we are presenting results on the 1-side training
condition from NIST evaluations, this implies that only one positive sample is available during
training for each speaker model. This means that the estimation of K in (12) will be given only by
impostor samples. These impostor samples are extracted from a held-out set. For each target model
in the task definition we require a separate vector K. This results in significant overhead during
training since each model from system B must be tested against the held-out set used to compute K.
Nevertheless, this has no effect at test time. Once the vector K for each target model is computed,
obtaining the score for a new test is almost as fast as for a linear kernel SVM.

6.4 Results

Table 1 shows the results on SRE05 and SRE06 data for the individual systems. Each system is
represented by a single letter: G for the GMM-UBM,V for the Supervector-SVM,M for the MLLR-
SVM, and S for the SNERF-SVM. For the SVM systems (Supervector, MLLR, and SNERFs), we
show the baseline results (training the SVM with an inner product kernel) and the results obtained by
training the target SVMs using the kernel in (14) with K computed using the scores corresponding
to each of the other three systems. This is indicated by the use of a subindex corresponding to the
system with respect to which the anticorrelation is performed. For example, MG corresponds to
a system that uses the MLLR features and anticorrelation kernel with respect to the GMM-UBM
system (that is, with K given by the vector of average class-conditional covariances between the
MLLR features and the scores from the GMM-UBM system). A list of subindices corresponds
to performing anticorrelation with respect to more than one system as described in Section 4.4.
Hence, system SM,VM corresponds to system S anticorrelated with respect to systems M and VM.
In all cases the anticorrelation results shown correspond to , = -, which implies that the resulting
weight vector will not have a component in the direction of K. This was shown to be optimal in the
simulated experiments and in several preliminary experiments with the systems from this table.
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System SRE05 SRE06
DCF EER% DCF EER%

G 0.303 7.259 0.306 5.639
M 0.266 7.096 0.221 4.979
MG 0.297 8.564 0.243 5.879
MV 0.289 8.768 0.254 6.119
MS 0.271 7.586 0.229 4.979
V 0.205 5.465 0.174 3.419
VG 0.223 6.525 0.179 4.019
VM 0.196 5.465 0.168 3.179
VS 0.203 5.506 0.168 3.359
S 0.545 14.233 0.548 12.777
SG 0.560 15.008 0.562 13.077
SM 0.577 15.824 0.579 13.497
SV 0.569 15.253 0.573 13.137
SM,VM 0.588 16.150 0.592 14.157

Table 1: Results for individual systems (G: GMM-UBM, V: Supervector-SVM, M: MLLR-SVM,
S: SNERF-SVM) with inner product kernel and anticorrelation kernel. When the anticor-
relation kernel is used, a subindex indicates the name of the system or systems with respect
to which the anticorrelation is performed.

It can be seen that in most cases, using the anticorrelation kernel results in a degradation in
performance in the system. A notable exception is the result for system VM (Supervector features
using anticorrelation kernel with respect to the MLLR-SVM system). In this case, preventing the
use of the direction given by K results in a significant gain in performance. This could happen if
vector K corresponded to some noisy direction that, when ignored, allowed for other more robust
directions to be used. This effect was also observed in the simulations and will be discussed in more
detail in Section 6.5.

Table 2 shows results for all the possible two-way combinations of the four individual systems.
For the score-level combinations (indicated with “+”) we used a linear model trained on SRE05
data using logistic regression. Feature-level and feature+score combinations are indicated with
“∪”. The symbol indicates feature concatenation. In the case of feature-level combination, features
from both systems are directly concatenated. In the case of feature+score combination, the features
from one system are concatenated with the scores from the other (this is indicated with the subscript
“scores”). Whenever feature concatenation is performed, a weight is used (as described in Section
4.6) to emphasize the features from one set versus the other. This weight is tuned on SRE05. Since
tuning this weight is extremely demanding computationally (it requires running a full classification
experiment for each value of the weight), only feature+score combination experiments involving
the MLLR systems are run. All possible feature-level combinations are shown, since there are only
three of them.
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We can see that every time a score-level combination (+) is done between systems X and YX,6
the performance is better than that for the combination of X and Y (with the single exception of
SRE05’s EER for V + SV). That is, applying the anticorrelation kernel to system Y always gives a
gain in the combination performance, even though in most cases system YX has worse individual
performance than system Y. Feature-level combinations, X∪Y, do not show any advantage over
the much simpler score-level combination X + Y. This simply indicates that the increased model
complexity of the feature-level combination cannot be properly handled with the available amount of
training samples. Similarly, the feature+score combinations, X∪Yscores, do not give any consistent
improvement over the score-level combinations X+Y.

The most notable gain from using the anticorrelation kernel is found for the combination M +
VM. The relative gain in EER with respect to system M + V is 16%. As mentioned above, system
VM is in fact better performing than system V. That is, anticorrelating with respect to M does not
degrade its performance but improves it. This fact, together with a reduced impostor correlation
between the systems, explains the observed large gain.

The last column in Table 2 shows the class-conditional correlation between the two systems
being combined for the impostor and the target samples in SRE06 data. As we can see, the impostor
correlation is significantly reduced when the proposed method is used, even though it does not reach
a zero value. (This problem was also observed in the simulated experiments for large values of the
feature vector dimension d.) This could mean that the amount of data used for the computation
of K (4355 samples) is not enough to obtain a robust estimation of the statistics in the test data or
that the statistics in the test data are not the same as those in the held-out set used to compute K.
Furthermore, we can see that the target correlation remains almost unchanged by the application
of the anticorrelation kernel. This is reasonable, since the vector K is computed without the use of
any target data. The fact that the target correlation is not reduced when K is computed only over
impostor samples suggests that the correlations in both populations are not equal and one cannot
be predicted from the other. Nevertheless, a reduction in either of the class-conditional correlation
coefficients can result in a reduction of + as given by (9).

Finally, Table 3 shows some three-way and four-way combination results. The first four results
correspond to the combination of the three SVM systems. The three combinations shown that use
the anticorrelation kernel on the V and S systems perform very similarly, resulting in a performance
improvement of 18.9% on the SRE06 EER with respect to the baseline combination. We can see
that using multiple anticorrelation on the S system with respect to the other two systems already in
the combination (M and VM) does not lead to further improvements (line M + VM + SM,VM). This
is, in fact, good news, since doing the multiple anticorrelation involves a significant amount of extra
computation to obtain the K vector of system S with respect to the scores from VM.

The last three lines in Table 3 show the results on some four-way score-level combinations. We
see a large improvement of 19.2% when a successive anticorrelation procedure is used, where each
new model is anticorrelated with the one previously added to the combination. The best three- and
four-way combinations all include the VM system. This was expected since the two-way gain from
using anticorrelation on that system was the largest among all two-way combinations.

An overall observation from this table is that the proposed method performs better on SRE06
data than on SRE05 data, even though the combiner is trained on SRE05 data, making the SRE05
results slightly optimistic. We believe that this might be a consequence of a better statistical match

6. Letters X and Y are used in this section to indicate any two systems. Hence, X,Y ∈ {G,M,V,S}.
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System SRE05 SRE06
DCF EER% DCF EER% CorI / CorT

Gscores ∪M 0.219 5.710 0.189 4.079 -
G+M 0.226 5.750 0.201 4.019 0.51/0.79
G+MG 0.210 5.465 0.188 3.779 0.26/0.76
G+V 0.203 5.383 0.191 3.419 0.74/0.88
G+VG 0.194 5.261 0.182 3.239 0.35/0.86
G+S 0.219 5.587 0.232 4.499 0.16/0.45
G+SG 0.216 5.465 0.224 4.259 0.11/0.44
M∪V 0.188 5.383 0.164 3.239 -
M∪Vscores 0.176 5.098 0.148 3.119 -
M+V 0.180 5.139 0.160 3.299 0.58/0.87
M+VM 0.161 4.812 0.140 2.759 0.37/0.84
MV +V 0.171 4.976 0.142 3.179 0.31/0.83
M∪S 0.245 6.403 0.200 4.379 -
M∪Sscores 0.225 5.913 0.190 4.439 -
M+S 0.224 6.158 0.194 4.319 0.22/0.55
M+SM 0.221 5.995 0.191 4.079 0.14/0.52
MS +S 0.215 5.995 0.191 4.079 0.15/0.53
V∪S 0.183 5.057 0.152 3.179 -
V+S 0.163 4.609 0.146 3.239 0.19/0.50
V+SV 0.161 4.812 0.145 3.119 0.13/0.49
VS +S 0.159 4.527 0.137 2.999 0.15/0.49

Table 2: Results for two-way combinations of the systems in Table 1. Symbol “∪” indicates feature
concatenation. Hence, M∪S corresponds to feature-level combination, while M∪Sscores
corresponds to feature+score combination of systems M and S. Symbol “+” indicates
score-level combination. The last column shows the correlations between the pair of sys-
tems being combined, for the impostor (CorI) and the target (CorT) samples.

between SRE04 data (used to compute the K vectors) and SRE06 data than between SRE04 and
SRE05 data.

Evidently, the behavior found in these experiments cannot be expected to generalize to all pos-
sible sets of features and tasks. For example, if much smaller sets of features were used and enough
training data was available for both classes, feature-level combination might result in better per-
formance than score-level combination (as seen in the simulated experiments). Nevertheless, the
systems used here are representative of the kinds of systems used for speaker recognition on state-
of-the-art systems, where very large feature vectors have been found to outperform smaller ones.
Furthermore, the small amount of positive training examples is an inherent characteristic of the
speaker recognition task. Finally, these characteristics are found in many other modern machine
learning tasks, a notable example being classification of microarray expression data, where the
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System SRE05 SRE06
DCF EER% DCF EER%

M+V+S 0.149 4.690 0.134 3.179
M+VM +SM 0.133 4.364 0.117 2.579
M+VM +SV 0.132 4.445 0.115 2.579
M+VM +SM,VM 0.133 4.405 0.116 2.579
G+M+V+S 0.149 4.649 0.141 3.119
G+MG +VG +SG 0.147 4.323 0.132 2.700
G+MG +VM +SV 0.137 4.160 0.120 2.519

Table 3: Results for three-way and four-way combinations of the systems in Table 1.

number of features is in tens of thousands, and the number of samples for most studies is limited to
tens or at most hundreds.

6.5 Interaction with Intersession Variability Compensation

The variability found across different recordings of the same speaker is commonly called interses-
sion variability (ISV). This effect can be caused by a mismatch in channel conditions, emotional
state, phonetic content, and so on, and it is one of the biggest sources of errors in speaker verifica-
tion. Several methods have been developed to reduce the effect of intersession variability.

In the realm of SVMs, the most widely used ISV compensation (ISVC) method is nuisance
attribute projection (NAP) (Solomonoff et al., 2004; Campbell, 2006). NAP consists of estimating
the directions in the feature space that vary with the sessions and then projecting the samples on
the complement of the space determined by those directions. The noisy directions are calculated as
the first few eigenvectors of the within-speaker covariance matrix. This matrix is in turn estimated
from held-out data for which several samples of each speaker are available. All speakers are pulled
together and a single within-speaker covariance matrix is estimated. The number of directions to
be eliminated from the feature vectors is determined empirically. Both NAP and the anticorrelation
method presented here transform the features by eliminating certain directions. In the case of NAP
these directions are the ones estimated to have information superfluous to the task of speaker verifi-
cation. In the anticorrelation procedure, a single direction is eliminated: the one that maximizes the
average class-conditional covariance between the two systems being combined.

In the case of UBM-GMM systems and systems like the supervector-SVM, which are based
on the UBM-GMM models, a different type of ISVC based on the factor analysis method can be
applied (Kenny and Dumouchel, 2004; Kenny et al., 2007). The method is based on the assumption
that a supervectorm corresponding to a certain sample can be decomposed into a speaker-dependent
and a channel-dependent component. That is, m = s+ c, where s is a speaker supervector and c a
channel supervector. Furthermore, c is assumed to be given by ux, where u is a low-rank matrix
and x is a normally distributed random vector. The components of vector x are called the channel
factors and the columns of matrix u the eigenchannels. In order to estimate the matrix u, a database
with several samples for each speaker (as the one required for NAP) is needed. In some models, s
is further decomposed into different terms. Many different methods have been used to estimate and
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System SRE05 SRE06 SRE06
DCF EER% DCF EER % CorI / CorT

M 0.230 6.525 0.195 4.139 -
MV 0.257 7.667 0.217 4.919 -
V 0.171 4.935 0.145 2.819 -
VM 0.177 5.302 0.144 2.879 -
M+V 0.144 4.568 0.120 2.639 0.47/0.87
M+VM 0.144 4.690 0.117 2.579 0.40/0.86
MV +V 0.142 4.649 0.119 2.639 0.36/0.85

Table 4: Results for individual systems and their combinations after ISVC.

compensate for the channel factors. The method used in this paper for the supervector system is
described by Matrouf et al. (2007).

Table 4 shows a subset of results for two of the systems described in Section 6.2 when ISVC is
applied. Factor analysis is used for the Supervector-SVM system, and NAP is used for the MLLR-
SVM system. We can see that, for these systems, the anticorrelation kernel does not reduce the
class-dependent correlations between pairs of systems enough to result in a gain in the combination
performance. The fact that applying the anticorrelation kernel does not result in a significant reduc-
tion of the class-dependent correlations between the systems indicates that the K vectors computed
from the held-out data are not a good estimation of the K vectors in the test data. If we compare the
impostor correlation between the same pair of systems when no ISVC is applied (Table 2) versus
the impostor correlation when ISVC is applied (Table 4) we see that ISVC’ed systems are much less
correlated. Furthermore, the correlation when the anticorrelation method is applied results in similar
values for ISVC’ed and non-ISVC’ed systems. This suggests that much of the correlation between
the non-ISVC’ed systems is due to intersession variability effects. This intuition is confirmed by
computing the projection of the K direction on the NAP directions, which shows that K is mostly in
the direction of the first few NAP directions (when they are sorted by the size of the corresponding
eigenvalue). Hence, when ISVC is applied to a system, the ISV effects are eliminated (or reduced),
resulting on less-correlated systems that combine better with each other. For example, the perfor-
mance for combination M+V for non-ISVC’ed systems (3.299% from Table 2) is only 3.5% better
than the best of the two individual performances (3.419% from Table 1), while the performance for
that same combination but using ISVC’ed systems (2.639% from Table 4) is 6.4% better than the
best of the two individual performances (2.819% from Table 4).

These observations explain the reduction in class-conditional correlation between pairs of sys-
tems when ISVC is applied to them, since a large part of the class-conditional correlation is due
to the intersession variability. On the other hand, it does not explain why the correlation cannot be
further reduced after the intersession variability noise has been eliminated. The reason for this is
simply that the vector K estimated for each target model does not predict the direction of maximum
impostor covariance on the test data. On the training data, we know that the covariance for the
impostor cloud is necessarily pushed to zero when ,= -, but we do not observe the same behavior
on the test data. This is because, as we saw in the simulations, the estimation of the direction K
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gets noisier for larger feature vectors. Hence, only a very noticeable effect (like the intersession
variability one) can be robustly estimated.

We believe that the observations presented in this section do not invalidate the usefulness of the
method for the speaker verification task. As mentioned in Kenny et al. (2007), for ISVC to work,
a well-balanced database is required where samples from several different recording conditions for
each speaker are available. This kind of database is not easy to obtain. When such a database is
not available, ISVC cannot be applied to the systems. In these cases, the anticorrelation method
proposed here would be able to bring back some of the gain that ISVC would result in if the right
database was available.

7. Conclusions

While speaker verification systems have seen large gains in performance from ad hoc combination
of several component systems, a unified framework for joint development of a combined system that
ensures system diversity has been lacking. The component systems are trained in isolation to max-
imize individual performance rather than the overall system being trained to maximize combined
performance. In this work, we presented a simple model for the system combination problem and
found the performance of the combined system to be a function of the performance of the individual
systems being combined and a “correlation coefficient” obtained from the average class-condition
covariance of the vector of scores. Based on this result we presented a technique for taking into ac-
count the characteristics of the scores from a set of fixed existing systems during the development of
a new SVM system in order to improve the combined system performance. This is realized through a
modification of the SVM optimization problem via the introduction of a regularization term involv-
ing the covariance between the scores of the previously existing systems and the input features to
the SVM, explicitly encouraging diversity of the resulting system ensemble. The trade-off between
the individual performance of the SVM system and the inter-system average class-conditional co-
variance is reflected in the optimization through the introduction of the Lagrange multiplier ,. The
technique can be implemented cheaply through the use of a simple kernel function, which we call
anticorrelation kernel.

We show the effectiveness of the anticorrelation technique in a series of simulated experiments
and in speaker verification experiments on the 2005 and 2006 NIST SRE tasks using four com-
ponent systems: a standard UBM-GMM system, a cepstral supervector system, an MLLR-based
system, and a prosodic system. We show results using the proposed kernel on all possible combi-
nations involving two systems (two-way combinations) and on some combinations involving three
and four systems. We demonstrate a performance gain of around 19% for a four-way combination
using the anticorrelation kernel with respect to the performance of the combination obtained without
anticorrelation. When the same four speaker verification systems are compensated for intersession
variability, the gains from the anticorrelation method disappear. Our analysis indicates that the rea-
son for this is that much of the correlation between the systems is, in fact, due to the intersession
variability. Once systems are compensated for this variability, the remaining correlation is too hard
to estimate robustly. The anticorrelation method can then be seen as a replacement for intersession
variability compensation methods when the right databases are not available for the estimation of
the matrices needed for those methods.

The fact that, in our experiments, the combination performance improves monotonically as ,
grows and + decreases indicates that the optimal trade-off between the performance of the individual

2108



AN ANTICORRELATION KERNEL FOR SUBSYSTEM TRAINING

system and the value of + probably occurs at a negative value of +. Since we are using ,"2
SB as our

regularization term, "SB and, with it, + are forced toward zero and negative values will be unlikely
to occur in our setup. Using a linear term ,+ in the objective function would allow + to become
negative, perhaps leading to better combination results. Solving this optimization problem, though,
requires the use of general-purpose convex optimization software, which would be too slow for our
purposes, or the development of a solver specifically designed for it. This is a direction we plan to
explore.

We note that the anticorrelation technique is general in that it can be applied to any binary clas-
sification task for which more than one system can be trained and at least one of them is an SVM.
Many modern machine learning problems have these characteristics, among them microarray gene
expression classification problems (Brown et al., 2000), biometric tasks (Roy and Bhattacharya,
2005; Heisele et al., 2003), and a variety of other classification tasks (Sebastiani, 2002). The pro-
posed method has the potential to lead to significant gains on some of those tasks and many others
depending on the nature of the features used, their dimension, the number of samples available for
training, the absolute performance of the systems, and so on. Finally, since the implementation of
the proposed method simply reduces to the use of a specific kernel function, any statistical proce-
dure that can be kernelized (of which SVMs are simply one example) could potentially benefit from
it.
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Appendix A. Proof of Upper Bound on EER (Equation 4)

We wish to prove that if a set of scores F is distributed such that F | Y = y ∼ N (µy,"2
y), for

y= a,b (that is, the class-conditional distributions are Gaussian), the EER obtained when the class
is estimated as in (1) is upper bounded by #(− 1

2
$µ
" ), where $µ= µb−µa, and " satisfies "≥ ("a+

"b)/2.
For the case in which "a = "b = ", the threshold t∗ corresponding to EER is given by t∗s =

(µa +µb)/2 (s here stands for same variance) since this is the value that results in the rate of false
acceptances (eb|a) being equal to the rate of false rejections (ea|b). Replacing this threshold in (2) or
(3), we get that EERs = #(− 1

2
$µ
" ). The upper plot in Figure 8 illustrates this case.
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When variances are not equal, the EER threshold is no longer at half the distance between the
two means. Nevertheless, we can find the approximate location of the threshold by mapping the
value of t∗s to two new locations, tdb and tda (d stands for different variance) such that in one case the
rate of false rejections is equal to EERs and in the other case the rate of false acceptances is equal to
EERs. The EER threshold for the unequal variance case, t∗d , will then be somewhere between these
two points, since being to the left or to the right of both of them would result in the rates of false
rejections and false acceptances being different from each other.

The values tda and tdb are determined such that eb|a(tda) = EERs and ea|b(tdb) = EERs, respec-
tively (with ea|b and eb|a defined in (2) and (3)), and they are given by

tdb = "b/"(t∗s −µb)+µb
tda = "a/"(t∗s −µa)+µa.

If tda ≤ tdb then there will be a threshold t∗d between tda and tdb for which ea|b(t∗d) = eb|a(t∗d) =
EERd ≤ EERs. This is the case illustrated in Figure 8. So, if we can find some " such that tda ≤ tdb,
we can replace this value in EERs = #(− 1

2
$µ
" ) to get the desired upper bound. Now,

tda− tdb =
"a
"

(t∗s −µa)+µa−
"b
"

(t∗s −µb)−µb = $µ
(

"b+"a
2"

−1
)

.

Since we are assuming that $µ> 0, we see that tda ≤ tdb if and only if "≥ ("a+"b)/2. When
"= ("a+"b)/2 we get tda = tdb, which implies that EERd = EERs. Hence, we can always compute
EERd as #(− $µ

"a+"b
). It is easy to prove that " =

√

("2
a+"2

b)/2 (the square root of the average
variance instead of the average of the standard deviations) also satisfies "≥ ("a+"b)/2.
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Abstract
We introduce a new technique for the analysis of kernel-based regression problems. The basic tools
are sampling inequalities which apply to all machine learning problems involving penalty terms
induced by kernels related to Sobolev spaces. They lead to explicit deterministic results concerning
the worst case behaviour of !- and "-SVRs. Using these, we show how to adjust regularization
parameters to get best possible approximation orders for regression. The results are illustrated by
some numerical examples.
Keywords: sampling inequality, radial basis functions, approximation theory, reproducing kernel
Hilbert space, Sobolev space

1. Introduction

Support Vector (SV) machines and related kernel-based algorithms are modern learning systems
motivated by results of statistical learning theory as introduced by Vapnik (1995). The concept of
SV machines is to provide a prediction function which is accurate on the given training data and
which is sparse in the sense that it can be written in terms of a typically small subset of all sam-
ples, called the support vectors, as stated by Schölkopf et al. (1995). Therefore, SV regression and
classification algorithms are closely related to regularized problems from classical approximation
theory as pointed out by Girosi (1998) and Evgeniou et al. (2000) who had applied techniques from
functional analysis to derive probabilistic error bounds for SV regression.
This paper provides a theoretical framework to derive deterministic error bounds for some popular
SV machines. We show how a sampling inequality by Wendland and Rieger (2005) can be used
to bound the worst-case generalization error for the "- and the !-regression without making any
statistical assumptions on the inaccuracy of the training data. In contrast to the literature, our error
bounds explicitly depend on the pointwise noise in the data. Thus they can be used for any subse-
quent probabilistic analysis modelling certain assumptions on the noise distribution.
The paper is organized as follows. In the next section we recall some basic facts about reproduc-
ing kernels in Hilbert spaces. Section 3 deals with regularized approximation problems in Hilbert
spaces with reproducing kernels and outlines the connection to classical SV regression (SVR) al-
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gorithms. We provide a deterministic error analysis for the "- and the !-SVR for both exact and
inexact training data. Our analytical results showing optimal convergence orders in Sobolev spaces
are illustrated by numerical experiments.

2. Reproducing Kernels in Hilbert Spaces

We suppose that K is a positive definite kernel on some domain # ⊂ Rd which should contain at
least one point. To start with, we briefly recall the well known definition of a reproducing kernel in
a Hilbert space. In the following we shall use the notation that bold letters denote vectors, that is
v= (v1, . . . ,vd)T ∈ Rd .

Definition 1 Let H (#) be a Hilbert space of functions f : #→ R. A function K : #×#→ R is
called reproducing kernel of H (#), if

• K(y, ·) ∈H (#) for all y ∈# and

• f (y) = ( f ,K(y, ·))H (#) for all f ∈H (#) and all y ∈#.

For each positive definite kernel K :#×#→ R there exists a unique Hilbert space NK(#) of func-
tions f : #→ R, such that K is the reproducing kernel of NK(#) (see Wendland, 2005, Theorems
10.1 and 10.11). This Hilbert space NK(#) is called the native space of K. Though this definition
of a native space is rather abstract, it can be shown that in some cases the native spaces coincide
with classical function spaces.
From now on we shall only consider radial kernels K, that is,

K(x,y) = K(‖x−y‖) for all x,y ∈ R
d ,

where we use the same notation for the kernel K : Rd×Rd → R and for the function K : Rd → R.
We hope that this does not cause any confusion. We shall mainly focus on continuous kernels
K ∈ L1 (#), that is,

‖K‖L1(#) :=
Z

#
|K (x)|dx< $ .

For K ∈ L1
(

Rd), we define the Fourier transform K̂ by

K̂ (%) := (2&)−
d
2

Z

Rd
K (x)e−ix·%dx , % ∈ R

d .

For the case#= Rd there is the following characterization of native spaces of certain radial kernels
K :#→ Rd (Wendland, 2005, Theorem 10.12).

Theorem 2 Suppose that K ∈C(Rd)∩L1(Rd) is a real-valued and positive definite radial kernel.
Then the native space of K is given by

NK(Rd) =

{

f ∈ L2(Rd)∩C(Rd) :
f̂√
K̂

∈ L2(Rd)

}

,

( f ,g)NK(Rd) = (2&)−d/2
(

f̂√
K̂

,
ĝ√
K̂

)

L2(Rd)

,

where f̂ denotes the Fourier transform of f .
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We recall that the Sobolev spacesWs
2 (R

d) on Rd with s≥ 0 are given by

Ws
2 (R

d) :=
{

f ∈ L2(Rd) : f̂ (·)(1+‖·‖22)
s/2 ∈ L2(Rd)

}

. (1)

Therefore for a radial kernel function K whose Fourier transform decays like

c1(1+‖·‖22)
s ≤ K̂ ≤ c2(1+‖·‖22)

s ,s> d/2 (2)

for some constants c1,c2 > 0, the associated native space NK(Rd) is Ws
2 (R

d) with an equivalent
norm. There are several examples of kernels satisfying the condition (2). One famous example for
fixed s ∈ (d/2,$) is the Matern kernel (Wendland, 2005)

Ks(x) :=
21−s

'(s)
‖x‖s−d/22 Kd/2−s(‖x‖2) ,

where K denotes the Bessel function of the third kind. In our examples, however, we focus on
Wendland’s functions (Wendland, 2005). They are very convenient to implement since they are
compactly supported and piecewise polynomials. Such nice reproducing kernels are so far only
available for certain choices of the space dimension d and the decay parameter s (see Wendland,
2005), but a recent result by Schaback (2009) covers almost all cases of practical interest. We shall
explain some more properties of these kernels in the experimental part, see Section 10, and refer to
the recent monograph by Wendland (2005) for details.
In order to establish the equivalence of native spaces and Sobolev spaces on bounded domains one
needs certain extension theorems for Sobolev functions on bounded domains (see Wendland, 2005).

Definition 3 Let #⊂ Rd be a domain. We define the Sobolev spaces of integer orders k ∈ N as

Wk
2 (#) = { f ∈ L2(#) : f has weak derivatives D( f ∈ L2(#) of order |(|≤ k}

with the norm

‖u‖Wk
2 (#) :=

(

)
|(|≤k

‖D(u‖2L2(#)

)1/2

.

For fractional smoothness s= k+* with 0< *< 1 and k ∈ N we define the semi-norm

|u|Ws
2 (#) :=

(

)
|(|=k

Z

#

Z

#

|D(u(x)−D(u(y)|2

‖x−y‖d+2*2
dxdy

)1/2

,

and set

Ws
2 (#) :=

{

u ∈ L2(#) :
(

‖u‖2Wk
2 (#) + |u|2Ws

2 (#)

)1/2
< $

}

.

In the case#= Rd this space is known to be equivalent to the space given by (1) in terms of Fourier
transforms (for more details on these spaces, seeWloka, 1982). Finally, Wendland (2005) proves the
following equivalence for domains having Lipschitz boundaries. Roughly speaking, a set # ⊂ Rd

has a Lipschitz boundary if its boundary is locally (in a suitable direction) the graph of a Lipschitz
function such that # lies completely on one hand-side of this graph (see Brenner and Scott, 1994).
Then there is the following theorem (see Wendland, 2005, Cor. 10.48).
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Theorem 4 Suppose that K ∈ L1(Rd) has a Fourier transform that decays as (1+‖·‖22)−s for s >
d/2. Suppose that # has a Lipschitz boundary. Then

NK(#) ∼=Ws
2 (#)

with equivalent norms.

3. Regularized Problems in Native Hilbert Spaces

In the native Hilbert spaces we consider the following learning or recovery problem. We assume that
we are given (possibly only approximate) function values y1, . . . ,yN ∈ R of an unknown function
f ∈NK(#) on some scattered points X :=

{

x(1), . . . ,x(N)
}

⊂#, that is f
(

x( j))≈ y j for j= 1, . . . ,N.
In the following we shall use the notation that bold letters denote vectors, that is v= (v1, . . . ,vd)T ∈
Rd .
To control accuracy and complexity of the reconstruction simultaneously, we use the optimization
problem

min
s∈NK(#)
!∈R+

1
N

N

)
j=1
V!

(∣

∣

∣
s
(

x( j)
)

− y j
∣

∣

∣

)

+
1
2C

‖s‖2NK(#) , (3)

where C > 0 is a positive parameter and V! denotes a positive function which may be parametrized
by a positive real number !. We point out that V! need not be a classical loss function. Therefore
we shall give some proofs of results which were formulated by Schölkopf and Smola (2002) in the
case of V! being a loss function.

Theorem 5 (Representer theorem) If (sX ,y,!∗) is a solution of the optimization problem (3), then
there exists a vector w ∈ RN such that

sX ,y (·) =
N

)
j=1

wjK
(

x( j), ·
)

,

that is sX ,y ∈ span
{

K
(

x(1), ·
)

, . . . ,K
(

x(N), ·
)}

.

Proof For the readers’ convenience, we repeat the proof from Schölkopf and Smola (2002) in our
specific situation. Every s ∈ NK (#) can be decomposed into two parts s = s|| + s⊥, where s|| is
contained in the linear span of

{

K
(

x(1), ·
)

, . . . ,K
(

x(N), ·
)}

, and s⊥ is contained in the orthogonal
complement, that is

〈

s||,s⊥
〉

NK(#)
= 0. By the reproducing property of the kernel K in the native

space, the problem (3) can be rewritten as

min
s=s||+s⊥
!∈R+

1
N

N

)
j=1
V!

(∣

∣

∣

〈

s||,K
(

x( j), ·
)〉

− y j
∣

∣

∣

)

+
1
2C

∥

∥s||
∥

∥

2
NK(#)

+
1
2C

‖s⊥‖2NK(#) .

Therefore a solution (sX ,y,!∗) of the optimization problem (3) satisfies (sX ,y)⊥ = 0, which implies
sX ,y ∈ span

{

K
(

x(1), ·
)

, . . . ,K
(

x(N), ·
)}

.

Since the proof of Theorem 5 does not depend on the minimality with respect to ! this result holds
also true if ! is a fixed parameter instead of a primal variable. To be precise we state this result as a
corollary.
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Corollary 6 If sX ,y is a solution of the optimization problem

min
s∈NK(#)

1
N

N

)
j=1
V!

(∣

∣

∣
s
(

x( j)
)

− y j
∣

∣

∣

)

+
1
2C

‖s‖2NK(#) , (4)

with ! ∈ R+ being a fixed parameter, then sX ,y ∈ span
{

K
(

x(1), ·
)

, . . . ,K
(

x(N), ·
)}

.

The representer theorems can be used to reformulate infinite-dimensional optimization problems of
the forms (3) or (4) in a finite-dimensional setting (see Schölkopf and Smola, 2002).

4. Support Vector Regression

As a first optimization problem of the form (3) we consider the "-SVR which was introduced by
Schölkopf et al. (2000). The function V! (x) = |x|!+ !" is related to Vapnik’s !-intensive loss func-
tion (Vapnik, 1995)

|x|! =

{

0 i f |x|≤ !
|x|− ! i f |x| > !

,

but has an additional term with a positive parameter ". The associated optimization problem is
called "-SVR and takes the form

min
s∈NK(#)
!∈R+

1
N

N

)
j=1

∣

∣

∣
s
(

x( j)
)

− y j
∣

∣

∣

!
+ !"+

1
2C

‖s‖2NK(#) . (5)

Theorem 7 The optimization problem (5) possesses a solution
(

s(")X ,y,!
∗
)

.

Proof This follows from a general result by Micchelli and Pontil (2005). The problem (5) is
equivalent to the optimization problem

min
s∈NK(#)
+∈R

1
N

N

)
j=1

∣

∣

∣
s
(

x( j)
)

− y j
∣

∣

∣

+2
++2"+

1
2C

‖s‖2NK(#) . (6)

If we set H :=NK(#)×R we can define an inner product on H by

〈h1,h2〉H := 〈 f1, f2〉NK(#) +2C"〈r1,r2〉R

for h j = ( f j,r j), j = 1,2. To make H a space of functions we use the canonical identification of
R with the space of constant functions R → R. The Hilbert space H then has the reproducing
kernel K̃ :=

(

K, 1
2C"1

)

where 1 denotes the constant function which maps everything to 1, that is
K̃ ((x,r) ,(y,s)) = K (x,y) + 1/(2C") for all r,s ∈ R. With this notation the problem (6) can be
rewritten as

min
(s,+)∈H

Qy (IX(s,+))+
1
2C

‖(s,+)‖2H , (7)

where
IX(s,+) :=

(

s(x(1)), . . . ,s(x(N)),+
)T

∈ R
N+1
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and

Qy : RN+1 → R, Qy (p,+) =
1
N

N

)
j=1

∣

∣p j− y j
∣

∣

+2 .

Since Qy is continuous on RN+1 for all y ∈ RN , the problem (7) possesses a solution as shown by
Micchelli and Pontil (2005).

If we introduce the slack variables ,, ,∗ ∈ RN , the representer theorem gives us an equivalent finite-
dimensional problem which was considered by Schölkopf et al. (2000).

min
w∈RN

,∗,,∈RN

!∈R+

1
2
wTKw +C

(

"!+
1
N

N

)
j=1

(

, j +,∗j
)

)

subject to (Kw) j− y j ≤ !+, j ,

(−Kw) j + y j ≤ !+,∗j ,

,∗j ,, j ≥ 0 , !≥ 0 for 1≤ j ≤ N , (8)

where
K=

(

K
(

x(i),x( j)
))

i, j=1...N

denotes the Gram matrix of the kernel K. We will use this equivalent problem for implementation
and our numerical tests.
A particularly interesting problem arises if we skip the parameter " and let ! be fixed. Then the
optimization problem (8) takes the form

min
w∈RN

,∗,,∈RN

1
2
wTKw+C

1
N

N

)
j=1

(

, j +,∗j
)

subject to (Kw) j− y j ≤ !+, j ,

(−Kw) j + y j ≤ !+,∗j ,

,∗j ,, j ≥ 0 for 1≤ j ≤ N . (9)

Schölkopf et al. (2000) called this problem !-SVR. Similarly to the "-SVR, the problem (9) can
be formulated as a regularized minimization problem in a Hilbert space (Evgeniou et al., 2000),
namely

min
s∈NK(#)

1
N

N

)
j=1

∣

∣

∣
s
(

x( j)
)

− y j
∣

∣

∣

!
+
1
2C

‖s‖2NK(#) . (10)

Like the "-SVR, this optimization problem possesses a solution (see Micchelli and Pontil, 2005,
Lemma 1).

5. A Sampling Inequality

We shall employ a special case of a sampling inequality introduced byWendland and Rieger (2005).
It requires the following assumptions which we need from now on. Let # ⊂ Rd be a bounded
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domain with Lipschitz boundary that satisfies an interior cone condition. A domain # is said to
satisfy an interior cone condition with radius r > 0 and angle - ∈

(

0, &2
)

if for every x ∈ # there is
a unit vector ,(x) such that the cone

C (x,,(x) ,-,r) :=
{

x+.y : y ∈ R
d ,‖y‖2 = 1,yT,(x) ≥ cos(-),. ∈ [0,r]

}

is contained in #. In particular, a domain which satisfies an interior cone condition cannot have any
outward cusps. We shall assume for the rest of this paper that # satisfies an interior cone condition
with radius Rmax and angle -. We shall derive estimates that are valid only if the training points are
sufficiently dense in #. To make this condition precise, we will need a slightly unhandy constant
which depends only on the geometry of #, namely (see Wendland, 2005)

C# :=
sin

(

2arcsin
(

sin-
4(1+sin-)

))

sin-

8
(

1+ sin
(

2arcsin
(

sin-
4(1+sin-)

)))

(1+ sin-)
Rmax .

Suppose that K is a radial kernel function such that the native Hilbert space of K is norm-equivalent
to a Sobolev space, that isNK(#) =W /

2 (#). Here we assume that 2/− 1
23> d/2, where we use the

notation 2t3 :=max{n ∈ N0 : n≤ t} for t ≥ 0. Furthermore, let X =
{

x(1), . . . ,x(N)
}

⊂# be a finite
set with sufficiently small fill distance

h := hX ,# := sup
x∈#

min
x( j)∈X

∥

∥

∥
x−x( j)

∥

∥

∥

2
.

The fill distance can be interpreted geometrically as the radius of the largest ball with center in
#̄ that does not contain any of the points x(1), . . . ,x(N). It is a useful quantity for the deterministic
error analysis in Sobolev spaces. The case h= 0 implies that X =

{

x(1), . . . ,x(N)
}

is dense in#, and
therefore convergence is studied for the limit h→ 0 which means that the domain# is equally filled
with points from X . Let us explain the relation to the usual error bounds in terms of the number
of points N. In the case of regularly distributed points we have that h = cN− 1

d with some constant
c > 0 (Wendland, 2005). Therefore the limit h→ 0 is equivalent to the limit N → $ which is the
more intuitive meaning of asymptotic convergence. But there is a drawback, since the error bounds
in terms of N depend crucially on the space dimension d, while error bounds in terms of the fill
distance h are dominated by the smoothness of the function to be learned. We will comment on
this again later for the special error bounds we consider here. We shall use the following result by
Wendland and Rieger (2005).
Theorem 8 Suppose#⊂Rd is a bounded domain with Lipschitz boundary that satisfies an interior
cone condition. Let / be a positive real number with 2/− 1

23 > d
2 , and let 1 ≤ q ≤ $. Then there

exists a positive constant C > 0 such that for all discrete sets X ⊂ # with sufficiently small fill
distance h := hX ,# ≤C#/−2 the inequality

‖u‖Lq(#) ≤C
(

h/−d(
1
2−

1
q )+ ‖u‖W /

2 (#) +‖u|X‖!$(X)

)

holds for all u ∈W /
2 (#), where we use the notation (t)+ :=max{0, t}.

We shall apply this theorem to the residual function f − sX ,y of the function f ∈W /
2 (#) to be

recovered and a solution sX ,y ∈W /
2 (#) of the regression problem. In our applications we shall

focus on the two main cases q = $ and q = 2. Other cases can be treated analogously. It will turn
out that we get optimal convergence rates in the noiseless case. In presence of noise the resulting
error will explicitly be bounded in terms of the noise in the data.
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6. "-SVR with Exact Data

In order to derive error bounds for the "-SVR optimization problem (5) we shall apply Theo-
rem 8 to the residual f − s(")X ,y, where

(

s(")X ,y,!
∗
)

denotes a solution to the problem (5) for X :=
{

x(1), . . . ,x(N)
}

⊂# and y ∈ RN . In this section we consider exact data, that is

f
(

x( j)
)

= y j for j = 1, . . . ,N (11)

for a function f ∈W /
2 (#) ∼= NK(#). As pointed out by Wendland and Rieger (2005) we first need

a stability and a consistency estimate for the solution s(")X ,y.

Lemma 9 Under the assumption (11) concerning the data, we find that for every X a solution
(

s(")X ,y,!
∗
)

to problem (5) satisfies

∥

∥

∥
s(")X ,y

∥

∥

∥

NK(#)
≤ ‖ f‖NK(#) and

∥

∥

∥
s(")X ,y|X −y

∥

∥

∥

!$(X)
≤

N
2C

‖ f‖2NK(#) + !∗ · (1−N") .

Proof We denote the objective function of the optimization problem (5) by

HyC," (s,!) :=
1
N

N

)
j=1

∣

∣

∣
s
(

x( j)
)

− y j
∣

∣

∣

!
+"!+

1
2C

‖s‖2NK(#) , (12)

and the interpolant to f with respect to X and K with I f , that is I f |X = y and
I f ∈ span

{

K
(

x(1), ·
)

, . . . ,K
(

x(N), ·
)}

. With this notation we have

1
2C

∥

∥

∥
s(")X ,y

∥

∥

∥

2

NK(#)
≤ HyC,"

(

s(")X ,y,!
∗
)

≤ HyC," (I f ,0) =
1
2C

∥

∥I f
∥

∥

2
NK(#) ≤

1
2C

‖ f‖2NK(#)

since
∥

∥I f
∥

∥

NK(#) ≤ ‖ f‖NK(#) (Wendland, 2005), which implies the first claim.
Furthermore we have for i= 1, . . . ,N

∣

∣

∣
s(")X ,y

(

x(i)
)

− yi
∣

∣

∣
≤

N

)
j=1

∣

∣

∣
s(")X ,y

(

x( j)
)

− y j
∣

∣

∣

!∗
+ !∗ ≤ NHyC,"

(

s(")X ,y,!
∗
)

+ !∗ (1−N")

≤ NHyC," (I f ,0)+ !∗ (1−N") ≤
N
2C

∥

∥I f
∥

∥

2
NK(#) + !∗ (1−N")

≤
N
2C

‖ f‖2NK(#) + !∗ (1−N") ,

which finishes the proof.

With Theorem 8 we find immediately the following result.

Theorem 10 Suppose #⊂ Rd is a bounded domain with Lipschitz boundary that satisfies an inte-
rior cone condition. Let / be a positive real number with 2/− 1

23 > d
2 and 1 ≤ q ≤ $. We suppose
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f ∈W /
2 (#) with f

(

x(i)) = yi. Let
(

s(")X ,y,!
∗
)

be a solution of the "-SVR. Then there is a constant
C̃ > 0, which depends on /, d and # but not on f or X, such that the approximation error can be
bounded by

∥

∥

∥
f − s(")X ,y

∥

∥

∥

Lq(#)
≤ C̃

(

2h/−d(
1
2−

1
q)+ ‖ f‖W /

2 (#) +
N
2C

‖ f‖2W /
2 (#) + (1−N") · !∗

)

for all discrete sets X ⊂# with fill distance h := hX ,# ≤C#/−2.

Proof Combining Lemma 9 and Theorem 8 leads to
∥

∥

∥
f − s(")X ,y

∥

∥

∥

Lq(#)
≤ C̃

(

h/−d(
1
2−

1
q)+

∥

∥

∥
f − s(")X ,y

∥

∥

∥

W /
2 (#)

+
∥

∥

∥
y− s(")X ,y|X

∥

∥

∥

!$(X)

)

≤ C̃
(

h/−( d2−
d
q )+

(

‖ f‖W /
2 (#)+

∥

∥

∥
s(")X ,y

∥

∥

∥

W /
2 (#)

)

+
∥

∥

∥
y− s(")X ,y|X

∥

∥

∥

!$(X)

)

≤ C̃
(

2h/−( d2−
d
q )+ ‖ f‖W /

2 (#) +
N
2C

‖ f‖2W /
2 (#) + (1−N")!∗

)

.

At first glance the term containing !∗ seems to be odd because it could be uncontrollable. But
according to Chang and Lin (2002) we can at least assume !∗ to be bounded by

!∗ ≤
1
2

(

max
i=1,...,N

yi− min
i=1,...,N

yi
)

.

If this inequality is not satisfied, the problem (8) possesses only the trivial solution s ≡ 0 which is
not interesting. Furthermore, we see that the !∗-term occurs with a factor (1−N"), which can be
used to control this term. If we choose " ≥ 1

N , the term (1−N")!∗ vanishes or is even negative.
The parameter " is a lower bound on the fraction of support vectors (see Schölkopf et al., 2000),
and hence "= 1/N means to get at least one support vector, that is a non-trivial solution. Since we
are not interested in the case of trivial solutions, the condition "≥ 1/N is a reasonable assumption.
On the other hand, we can use the results from Lemma 9 to derive a more explicit upper bound on
!∗ = !∗ (C,", f ) by

0≤
∥

∥

∥
s(")X ,y|X −y

∥

∥

∥

!$(X)
≤

N
2C

‖ f‖2NK(#) + !∗ (1−N") .

If we assume "> 1/N, this leads to

!∗ = !∗ (C,", f ) ≤
N

2C (N"−1)
‖ f‖2NK(#) .

Note that these bounds cannot be used for a better parameter choice, since we would need to rear-
range this inequality and solve for C or ". This would only be possible if there were lower bounds
on !∗ as well. Moreover, the parameter C appears in our error bound as a factor N

2C which implies
that we expect convergence only in the caseC→$. In this case !∗ will be small, as can be deduced
from problem (8).

2123



RIEGER AND ZWICKNAGL

We shall now make our bounds more explicit for the case of quasi-uniformly distributed points. In
this case the number of points N and the fill distance h are related to each other by

c1N−1/d ≤ h≤ c2N−1/d , (13)

where c1 and c2 denote positive constants (see Wendland, 2005, Proposition 14.1).

Corollary 11 In case of quasi-uniform exact data we can choose the problem parameters as

C =
N ‖ f‖W /

2 (#)

2h/
≈ h−(/+d) ‖ f‖W /

2 (#) and "≥
1
N

to get
∥

∥

∥
f − s(")X ,y

∥

∥

∥

L2(#)
≤ C̃h/ ‖ f‖W /

2 (#) ≤ C̃N− /
d ‖ f‖W /

2 (#) ;

or as

C =
N ‖ f‖W /

2 (#)

2h/− d
2

≈ h−(/+ d
2 ) ‖ f‖W /

2 (#) and "≥
1
N

to get
∥

∥

∥
f − s(")X ,y

∥

∥

∥

L$(#)
≤ C̃h/−

d
2 ‖ f‖W /

2 (#) ≤ C̃N− /
d+ 1

2 ‖ f‖W /
2 (#)

for all discrete sets X ⊂# with fill distance h := hX ,# ≤C#/−2, with generic positive constants C̃
which depend on /, d, # but not on f or X.

Note that these bounds yield arbitrarily high convergence orders, provided that the functions are
smooth enough, that is / is large enough. Therefore they are in this setting better than the usual
minimax rate N− 2/

2/+d (see Stone, 1982). In the following we shall only give our error estimates in
terms of the fill distance h rather than in terms of the number of points N. This is due to the fact
that the approximation rate / in h is independent of the space dimension d. However it should be
clear how the approximation rates translate into error estimates in terms of N in the case of quasi-
uniform data due to the inequality (13). Note that the parameter choice in the case of arbitrary,
non-uniformly distributed data can be treated analogously.
Corollary 11 shows, that the solution of the "-SVR leads to the same approximation orders with
respect to the fill distance h as classical kernel-based interpolation (see Wendland, 2005). But the
"-SVR allows for much more flexibility and less complicated solutions. Our numerical results will
confirm these convergence rates.

7. "-SVR with Inexact Data

In this section we denote again by
(

s(")X ,y,!
∗
)

the solution to the problem (5) for a set of points
X :=

{

x(1), . . . ,x(N)
}

⊂# and y∈RN , but we allow the given data to be corrupted by some additive
error r= (r1, . . . ,rN), that means

f
(

x( j)
)

= y j + r j for j = 1, . . . ,N, (14)

where is f ∈W /
2 (#)∼=NK(#). Note that there are no assumptions concerning the error distribution.

As in the previous section we have to show a stability and a consistency estimate of the following
form.
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Lemma 12 Under the assumption (14) concerning the data y, a solution
(

s(")X ,y,!
∗
)

to the optimiza-
tion problem (5) satisfies for every X and for all !≥ 0

∥

∥

∥
s(")X ,y

∥

∥

∥

NK(#)
≤

√

√

√

√

2C
N

N

)
j=1

∣

∣r j
∣

∣

!+2C"!+‖ f‖2NK(#) and

∥

∥

∥
s(")X ,y−y

∥

∥

∥

!$(X)
≤

N

)
j=1

∣

∣r j
∣

∣

!+"N!+(1−N")!∗ +
N
2C

‖ f‖2NK(#) .

Proof Again, we denote the interpolant to f with respect to X and K by I f and use HyC," as defined
in Equation (12). Then we have for all !> 0

1
2C

∥

∥

∥
s(")X ,y

∥

∥

∥

2

NK(#)
≤ HyC,"

(

s(")X ,y,!
∗
)

≤ HyC," (I f ,!) ≤
1
N

N

)
j=1

∣

∣r j
∣

∣

!+"!+
1
2C

‖ f‖2NK(#)

which implies
∥

∥

∥
s(")X ,y

∥

∥

∥

NK(#)
≤

√

√

√

√

2C
N

N

)
j=1

∣

∣r j
∣

∣

!+2C"!+‖ f‖2NK(#) .

Moreover we have for all i= 1, . . . ,N and all !> 0

∣

∣

∣
s(")X ,y

(

x(i)
)

− yi
∣

∣

∣
≤

N

)
j=1

∣

∣

∣
s(")X ,y

(

x( j)
)

− y j
∣

∣

∣

!∗
+ !∗

≤ NHyC,"

(

s(")X ,y,!
∗
)

+(1−N")!∗

≤
N

)
j=1

∣

∣r j
∣

∣

!+"N!+(1−N")!∗ +
N
2C

‖ f‖2NK(#) .

Again we can use the results from Lemma 12 to derive a more explicit upper bound on !∗ =
!∗ (C,", f ,!). Note that !∗ depends now also on the free parameter !.

0≤
∥

∥

∥
s(")X ,y|X −y

∥

∥

∥

!$(X)
≤

N
2C

‖ f‖2NK(#) + !∗ (1−N")+
N

)
j=1

∣

∣r j
∣

∣

!+"N! .

If we assume "> 1/N, this leads to

!∗ (C,", f ,!) ≤
1

N"−1

(

N
2C

‖ f‖2NK(#) +
N

)
j=1

∣

∣r j
∣

∣

!+"N!

)

.

Using the sampling inequality as in the case of exact data leads to the following result on Lq-norms.
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Theorem 13 We suppose f ∈W /
2 (#) with f

(

x(i)) = yi + ri. Let
(

s(")X ,y,!
∗
)

be a solution of the
"-SVR, that is the optimization problem (5). Then there is a constant C̃ > 0, which depends on /, d
and # but not on f or X, such that for all !> 0 the approximation error can be bounded by

∥

∥

∥
f − s(")X ,y

∥

∥

∥

Lq(#)
≤ C̃



h/−( d2−
d
q )+



‖ f‖W /
2 (#)+

√

√

√

√

2C
N

N

)
j=1

∣

∣r j
∣

∣

!+2C"!+‖ f‖2W /
2 (#)





+
N

)
j=1

∣

∣r j
∣

∣

!+"N!+ !∗ (1−N")+
N
2C

‖ f‖2W /
2 (#) +‖r‖!$(X)

)

for all discrete sets X ⊂# with fill distance h := hX ,# ≤C#/−2.

Note that the choice of the “optimal” ! leading to the best bound, depends dramatically on the
problem. We now want to assume that the data errors do not exceed the data itself. For this we
suppose

‖r‖!$(X) ≤ +≤ ‖ f‖W /
2 (#)

for a parameter +> 0.

Corollary 14 If we choose the parameters as

C =
N ‖ f‖2W /

2 (#)

2+
,

! = +, and "=
1
N

,

we get
∥

∥

∥
f − s(")X ,y

∥

∥

∥

L2(#)
≤ C̃

(

h/ ‖ f‖W /
2 (#) ++

)

and
∥

∥

∥
f − s(")X ,y

∥

∥

∥

L$(#)
≤ C̃

(

h/−d/2 ‖ f‖W /
2 (#) ++

)

for all discrete sets X ⊂# with fill distance h := hX ,# ≤C#/−2, with a generic positive constant C̃
which depends on /, d and # but not on f or X.

8. !-SVR with Exact Data

Since our arguments for the "-SVR apply similarly to the !-SVR, we skip over details and just
state the results. Note that in this case the non-negative parameter ! is fixed in contrast to the free
variable in the "-SVR. Analogously to the notation introduced in the previous sections, we denote
by s(!)X ,y the solution to the problem (10) for X :=

{

x(1), . . . ,x(N)
}

⊂# and y ∈ RN . The stability and
consistency estimates take the following form.

Lemma 15 Under the assumption (11) concerning the data, we find that for every X and every
fixed ! ∈ R+ a solution s(!)X ,y to problem (10) satisfies

∥

∥

∥
s(!)X ,y

∥

∥

∥

NK(#)
≤ ‖ f‖NK(#) and

∥

∥

∥
s(!)X ,y|X −y

∥

∥

∥

!$(X)
≤

N
2C

‖ f‖2NK(#) + ! .
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Again this leads to the following result on continuous Lq-norms.

Theorem 16 We suppose f ∈W /
2 (#) with f

(

x(i)) = yi. Let s
(!)
X ,y be a solution of the !-SVR, that is

the optimization problem (10). Then there is a constant C̃> 0, which depends on /, d and # but not
on !, f or X, such that the approximation error can be bounded by

∥

∥

∥
f − s(!)X ,y

∥

∥

∥

Lq(#)
≤ C̃

(

2h/−d(
1
2−

1
q)+ ‖ f‖W /

2 (#) +
N
2C

‖ f‖2W /
2 (#) + !

)

(15)

for all discrete sets X ⊂# with fill distance h := hX ,# ≤C#/−2.

Applying the same arguments as in the "-SVR case we obtain the following corollary.

Corollary 17 If we choose

C =
N ‖ f‖W /

2 (#)

2h/
, respectively C =

N ‖ f‖W /
2 (#)

2h/−d/2

the inequality (15) turns into
∥

∥

∥
f − s(!)X ,y

∥

∥

∥

L2(#)
≤ C̃

(

3h/ ‖ f‖W /
2 (#) + !

)

,

respectively
∥

∥

∥
f − s(!)X ,y

∥

∥

∥

L$(#)
≤ C̃

(

3h/−
d
2 ‖ f‖W /

2 (#) + !
)

for all discrete sets X ⊂# with fill distance h := hX ,# ≤C#/−2, with a generic positive constant C̃
which depends on /, d and # but not on f ∈W /

2 (#) or X.

The rôle of the parameter C is similar to the one in case of the "-SVR. But unlike in the case of the
"-SVR we are free to choose the parameter !. We see that exact data implies that we should choose
!≈ 0. The caseC→ $ and !→ 0 leads to exact interpolation, and the well known error bounds for
kernel-based interpolation (see Wendland, 2005) are attained.
We point out that the !-SVR is closely related to the squared !-loss,

min
s∈NK(#)

1
N

N

)
j=1

∣

∣

∣
s
(

x( j)
)

− y j
∣

∣

∣

2

!
+
1
2C

‖s‖2NK(#) . (16)

This is important because for != 0 we get the square loss. Proceeding along the lines of this section,
we find for a solution s(s!!)X ,y of (16) for exact data the stability bound

∥

∥

∥
s(s!!)X ,y

∥

∥

∥

NK(#)
≤ ‖ f‖NK(#)

and the consistency estimate
∥

∥

∥
s(s!!)X ,y |X −y

∥

∥

∥

!$(X)
≤
√
2
(

N
2C

‖ f‖2NK(#) + !2
)1/2

≤
√
N√
C
‖ f‖NK(#) +

√
2! .

Therefore, we obtain similar approximation results for the !-squared loss as for the !-SVR by insert-
ing the estimates into the sampling inequalities. Similarly, the results of Section 9 can be adapted to
the !-squared loss. For the special case != 0, we obtain the usual least squares, which was analyzed
by Wendland and Rieger (2005) in the case of exact data, and by Riplinger (2007) in the case of
inexact data.
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9. !-SVR with Inexact Data

In this section we denote again by s(!)X ,y the solution to the problem (10) for a set of points X :=
{

x(1), . . . ,x(N)
}

⊂# and y∈RN , but we allow the given data to be corrupted by some additive error
according to assumption (14).

Lemma 18 Under the assumption (14) concerning the data, for every X and every fixed ! ∈ R+ a
solution s(!)X ,y to problem (10) satisfies

∥

∥

∥
s(!)X ,y

∥

∥

∥

NK(#)
≤

√

‖ f‖2NK(#) +
2C
N

N

)
i=1

|ri|! and

∥

∥

∥
s(!)X ,y|X −y

∥

∥

∥

!$(X)
≤

N
2C

‖ f‖2NK(#) +
N

)
i=1

|ri|!+ ! .

These bounds shall now be plugged into the sampling inequality.

Theorem 19 We suppose f ∈W /
2 (#) with f

(

x(i)) = yi. Let s
(!)
X ,y be a solution of the !-SVR, that is

the optimization problem (10). Then there is a constant C̃> 0, which depends on /, d and # but not
on !, f or X, such that the approximation error can be bounded by

∥

∥

∥
f − s(!)X ,y

∥

∥

∥

Lq(#)
≤ C̃

(

2h/−d(
1
2−

1
q)+

(

‖ f‖W /
2 (#) +

√

‖ f‖2W /
2 (#) +

2C
N

N

)
i=1

|ri|!

)

+
N
2C

‖ f‖2W /
2 (#) +

N

)
i=1

|ri|!+ !+‖r‖!$(X)

)

for all discrete sets X ⊂# with fill distance h := hX ,# ≤C#/−2.

If we again assume that the error level + does not overrule the native space norm of the generating
function,

‖r‖!$(X) ≤ +≤ ‖ f‖W /
2 (#) ,

we get the following convergence orders, for our specific choices of the parameters.

Corollary 20 Again we assume that the error satisfies (14). If we choose ! = + and C =
N‖ f‖W/

2
2h/

respectively C =
N‖ f‖W/

2
2h/−d/2 then we find

∥

∥

∥
f − s(!)X ,y

∥

∥

∥

L2(#)
≤ C̃

(

h/ ‖ f‖W /
2 (#) ++

)

and
∥

∥

∥
f − s(!)X ,y

∥

∥

∥

L$(#)
≤ C̃

(

h/−d/2 ‖ f‖W /
2 (#) ++

)

for all discrete sets X ⊂# with fill distance h := hX ,# ≤C#/−2, with a generic positive constant C̃
which depends on /, d, and # but not on f or X.
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10. Numerical Results

In this section we present some numerical examples to support our analytical results, in particular
the rates of convergence in case of exact training data, and the detection of the error levels in case
of noisy data.

10.1 Exact Training Data

Figure 1 illustrates the approximation orders in case of exact given data as considered in Sections 6
and 8. For that, we used regular data sets generated by the respective functions to be reconstructed
and employed the !- and the "-SVR with the parameter choices provided in Corollaries 17 and 11,
respectively. We implemented the finite dimensional formulations of the associated optimization
problems as described in Equations (9) and (8). As kernel functions we used Wendland’s func-
tions for two reasons: On the one hand side they yield rather sparse kernel matrices K due to their
compact support, on the other hand side they are easy to implement since they are piecewise poly-
nomials. Furthermore Wendland’s functions may be scaled to improve their numerical behaviour.
An unscaled function K has support supp(K) ⊂ B(0,1) ⊂ Rd . The scaling is done in such a way
that the decay of the Fourier transform is preserved, that is,

K(c) (x) = c−dK
(x
c

)

, x ∈ R
d . (17)

By construction we have supp
(

K(c)) ⊂ B(0,c), such that small choices of the scaling parameter c
imply rather sparse kernel matrices K(c) =

(

K(c) (
∥

∥x(i)−x( j)
∥

∥

2
))

i, j=1...N . On the other hand side it
is known that the constant factor in our error estimates increases with decreasing c. This is a typical
trade-off situation between good approximation properties and good condition numbers of the ker-
nel matrices K(c) (Wendland, 2005). We chose a scaling c = 0.1 in all one-dimensional examples
and a scaling c = 2 in all two-dimensional examples. Since these standard choices already work
well, there was no need for a more careful choice. To our knowledge, there are so far no theoretical
results on the optimal scaling.
The double logarithmic plots in Figure 1 visualize the convergence orders in terms of the fill dis-
tance. For that, the L$-approximation error ‖ f − sX ,y‖L$ is plotted versus the fill distance h. The
convergence rates can be found as the slopes of the lines.
In subfigure 1(a) the data was generated by

f (x) = (x−0.5)2.5+eps+ ∈W 3
2 ([0,1]) ,

where eps denotes the relative machine precision in the sense of MATLAB. We use the notation
(t)+ := max{0, t} for all t ∈ R. This function f is sampled on regular grids in the unit interval
I := [0,1] with 30 to 96 points. Note that in this case the fill distance is given by h≈ 1/N. We use
two different kernel functions, namely (see Wendland, 2005)

• K1 (x) = (1− |x|)3+ (3 |x|+1) with native spaceW 2
2 ([0,1]), and

• K2 (x) = (1− |x|)5+
(

8 |x|2+5 |x|+1
)

with native spaceW 3
2 ([0,1]) .

The scaling parameter according to Equation (17) is chosen as c= 0.1. We employed the !- and the
"- SVR with the parameter choices provided in Corollaries 17 and 11. The respective corollaries
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predict convergence rates of 1.5 for K1, and 2.5 for K2. In subfigure 1(a) the plots for the !- and
"-SVR (almost identical) both show orders 1.7 for K1 and 2.4 for K2.
Subfigure 1(b) shows a 2-dimensional example. The data is generated by the smooth function

f (x) = sin(x1+ x2) .

This function f is sampled on regular grids in the unit interval I := [0,1]2 with 16 to 144 points.
Note that in this case the fill distance is given by h ≈ 1√

N . We use three different kernel functions,
namely (see Wendland, 2005)

• K3 (x) = (1−‖x‖)4+ (4‖x‖+1) with native spaceW 2.5
2

(

[0,1]2
)

,

• K4 (x) = (1−‖x‖)6+
(

35‖x‖2+18‖x‖+3
)

with native spaceW 3.5
2

(

[0,1]2
)

, and

• K5 (x) = (1−‖x‖)8+
(

32‖x‖3+25‖x‖2+8‖x‖+1
)

with native spaceW 4.5
2

(

[0,1]2
)

.

The kernel functions were scaled by c = 2 according to Equation (17). For the sake of simplicity
we employed only the "-SVR with the parameter choices provided in Corollary 11. The predicted
convergence rates in the fill distance h are 1.5 for K3, 2.5 for K4 and 3.5 for K5. The numerical
experiments show orders 1.8 for K3, 2.8 for K4 and 3.7 for K5. Therefore, the numerical examples
support our analytical results.
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eps K2
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(a) Data generated by f ∈W 3
2 (I) on regular grids in I. "-

and !-SVR yield orders 1.7 for K1, and 2.4 for K2. Scaling
parameter c= 0.1.
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(b) Data generated by smooth function on regular grids in
I2. "-SVR yields orders 1.8 for K3, 2.8 for K4, and 3.7 for
K5. Scaling parameter c= 2.

Figure 1: Logarithm of the L$-approximation error plotted versus the logarithm of the fill distance
h for exact training data.

10.2 Inexact Data

Figure 2 shows examples for the case of noisy data. The plots show the L$-approximation error
‖ f − sX ,y‖L$ versus the fill distance h. For simplicity we concentrated on the case of the "-SVR in
the one dimensional setting. We used the noise model given by Equation (14), that is y = f + r.
In Subfigure 2(a) the function f (x) = sin(10x) is sampled on regular grids of 2 to 56 points in
[0,1]. The data is disturbed by an error r which is normally distributed with mean zero and standard
deviation 0.01. As kernel function we use K1, and the parameters of the "-SVR are chosen as in
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Corollary 14. The plot shows that for h→ 0 the error remains of the same order of magnitude as the
error level ‖r‖!$

.
In Subfigure 2(b) the function f (x) = sin(10x) is sampled on regular grids of 5 to 56 points in the
unit interval I = [0,1]. Here, the data is corrupted by an error of ±0.01, where the sign of the error
is chosen randomly with equal likelihood for plus and minus. As kernel function we use K1 with
c= 0.3, and the parameters of the "-SVR are chosen as in Corollary 14. The plot shows that the L$-
approximation error converges to a constant of the order of magnitude of the error level for h→ 0.
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(a) Data disturbed by random error with mean zero and
standard deviation 0.01. Approximation error for h→ 0
reaches the error level and remains bounded of the same
order of magnitude as the error level.
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(b) Data disturbed by random sign deterministic error
±0.01. Approximation error converges to a constant of
the order of magnitude of the error level for h→ 0.

Figure 2: L$-approximation error versus fill distance in case of inexact data.

11. Summary and Outlook

We proved deterministic worst-case error estimates for kernel-based regression algorithms. The
main ingredient are sampling inequalities. We provided a detailed analysis only for the "- and the
!-SVR for both exact and inexact training data. However, the same techniques apply to all machine
learning problems involving penalty terms induced by kernels related to Sobolev spaces. If the func-
tion to be reconstructed lies in the reproducing kernel Hilbert space (RKHS) of an infinitely smooth
kernel such as the Gaussian or an infinite dot product kernel, a similar analysis based on sampling
inequalities can be done, leading to exponential convergence rates (see Rieger and Zwicknagl 2008
and Zwicknagl 2009 for first results in this direction).
So far, our error estimates depend explicitly on the pointwise noise in the data, and we do not make
any assumptions on the noise distribution. Future work should incorporate probabilistic models on
the noise distribution to yield estimates for the expected error.

Acknowledgments

We thank Professor Robert Schaback for helpful discussions and his continued support. Further
thanks go to the referees for several valuable comments. CR was supported by the Deutsche
Forschungsgemeinschaft through the Graduiertenkolleg 1023 Identification in Mathematical Mod-
els: Synergy of Stochastic and Numerical Methods. BZ would like to thank the German National
Academic Foundation (Studienstiftung des deutschen Volkes) for their support.

2131



RIEGER AND ZWICKNAGL

References

S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods, volume 15 of
Texts in Applied Mathematics. Springer, New York, 1994.

C-C. Chang and C-L. Lin. Training "-support vector regression: Theory and algorithms. Neural
Computation, 14(8):1959–1977, 2002.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines.
Advances in Computational Mathematics, 13:1–50, 2000.

F. Girosi. An equivalence between sparse approximation and support vector machines. Neural
Computation, 10 (8):1455–1480, 1998.

C. A. Micchelli and M. Pontil. Learning the kernel function via regularization. Journal of Machine
Learning Research, 6:1099–1125, 2005.

C. Rieger and B. Zwicknagl. Sampling inequalities for infinitely smooth functions, with applications
to interpolation and machine learning. To appear in Advances in Computational Mathematics,
2008.

M. Riplinger. Lernen als inverses Problem und deterministische Fehlerabschätzung bei Support
Vektor Regression. Diplomarbeit, Universität des Saarlandes, 2007.

R. Schaback. The missing wendland functions. To appear in Advances in Computational Mathe-
matics, 2009.

B. Schölkopf and A.J. Smola. Learning with kernels - Support Vector Machines, Regularisation,
and Beyond. MIT Press, Cambridge, Massachusetts, 2002.

B. Schölkopf, C. Burges, and V.Vapnik. Extracting support data for a given task. In Proceedings,
First International Conference on Knowledge Discovery and Data Mining. CA:AAAI Press.,
Menlo Park, 1995.

B. Schölkopf, R.C. Wiliamson, and P.L. Bartlett. New support vector algorithms. Neural Compu-
tation, 12:1207–1245, 2000.

C.J. Stone. Optimal global rates of convergence for nonparametric regression. The Annals of Statis-
tics, 10:1040–1053, 1982.

V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

H. Wendland. Scattered Data Approximation. Cambridge Monographs on Applied and Computa-
tional Mathematics. Cambridge University Press, Cambridge, 2005.

H. Wendland and C. Rieger. Approximate interpolation. Numerische Mathematik, 101:643–662,
2005.

J. Wloka. Partielle Differentialgleichungen: Sobolevräume und Randwertaufgaben. Mathematische
Leitfäden. Teubner, Stuttgart, 1982.

B. Zwicknagl. Power series kernels. Constructive Approximation, 29(1):61–84, 2009.

2132



Journal of Machine Learning Research 10 (2009) 2133-2136 Submitted 3/09; Published 9/09

RL-Glue: Language-Independent Software for
Reinforcement-Learning Experiments

Brian Tanner BTANNER@CS.UALBERTA.CA
AdamWhite AWHITE@CS.UALBERTA.CA
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2E8

Editor:Mikio L. Braun

Abstract
RL-Glue is a standard, language-independent software package for reinforcement-learning experi-
ments. The standardization provided by RL-Glue facilitates code sharing and collaboration. Code
sharing reduces the need to re-engineer tasks and experimental apparatus, both common barriers
to comparatively evaluating new ideas in the context of the literature. Our software features a
minimalist interface and works with several languages and computing platforms. RL-Glue compat-
ibility can be extended to any programming language that supports network socket communication.
RL-Glue has been used to teach classes, to run international competitions, and is currently used by
several other open-source software and hardware projects.
Keywords: reinforcement learning, empirical evaluation, standardization, open source

1. Introduction and Motivation

Reinforcement learning is an embodied, trial-and-error problem formulation for artificial intelli-
gence (Sutton and Barto, 1998; Kaelbling et al., 1996; Bertsekas and Tsitsiklis, 1996). At a series
of time steps, the agent emits actions in response to observations and rewards generated by the envi-
ronment. The agent’s objective is to select actions that maximize the future rewards. Reinforcement-
learning methods have been successfully applied to many problems including backgammon (Tesauro,
1994), elevator control (Crites and Barto, 1998), and helicopter control (Ng et al., 2004). Reinforcement-
learning models and formalisms have influenced a number of fields, including operations research,
cognitive science, optimal control, psychology, neuroscience, and others.

Reinforcement-learning practitioners create their agents and environments using various incom-
patible software frameworks, making collaboration inconvenient and thus slowing progress in our
community. It can be time consuming, difficult, and sometimes even impossible to exactly repro-
duce the work of others. A conference or journal article is not the appropriate medium to share a
sufficiently detailed specification of the environment, agent and overall experimental apparatus. We
need a convenient way to share source code.

We believe that a standard programming interface for reinforcement-learning experiments will
remove some barriers to collaboration and accelerate the pace of research in our field. To encourage
widespread adoption, this interface should be easy to adhere to, and it should not force users to
abandon their favorite tools or languages. With these goals in mind, we have developed RL-Glue:
language independent software for reinforcement-learning experiments.

c©2009 Brian Tanner and Adam White.
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2. RL-Glue

Reinforcement-learning environments cannot be stored as fixed data-sets, as is common in con-
ventional supervised machine learning. The environment generates observations and rewards in
response to actions selected by the agent, making it more natural to think of the environment and
agent as interactive programs. Sutton and Barto describe one prevalent view of agent-environment
interactions in their introductory text (1998). Their view, shown in Figure 1, clearly separates the
agent and environment into different components which interact in a particular way, following a
particular sequence.

!"#$%

&$'()*$+#$%

,-%(*$
)#.,)/

*01#)',%(*$

rt+1

ot+1

ot

rt

at

Figure 1: Sutton and Barto’s agent-environment interface, with states generalized to observations.

White’s RL-Glue Protocol (2006) formalizes Sutton and Barto’s interface for online, single-
agent reinforcement learning. The RL-Glue Protocol describes how the different aspects of a
reinforcement-learning experiment should be arranged into programs, and the etiquette they should
follow when communicating with each other. These programs (Figure 2) are the agent, the envi-
ronment, the experiment, and RL-Glue. The agent program implements the learning algorithm and
action-selection mechanism. The environment program implements the dynamics of the task and
generates the observations and rewards. The experiment program directs the experiment’s execu-
tion, including the sequence of agent-environment interactions and agent performance evaluation.
The RL-Glue program mediates the communication between the agent and environment programs
in response to commands from the experiment program. Our RL-Glue software (RL-Glue) imple-
ments White’s protocol.1

!"#$%&"'(")*
+%&,%-'

.,(")*
+%&,%-'

!/0(%$'(")*
+%&,%-'

123456(
+%&,%-'

Figure 2: The four programs specified by the RL-Glue Protocol. Arrows indicate the direction of the flow
of control.

RL-Glue can be used either in internal or external mode. In internal mode, the agent, environ-
ment and experiment are linked into a single program, and their communication is through function
calls. Internal mode is currently an option if the agent, environment, and experiment are written
exclusively in Java or C/C++. In external mode, the agent, environment and experiment are linked

1. This can be found at http://glue.rl-community.org/protocol.
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into separate programs. Each program connects to the RL-Glue server program, and all communi-
cation is over TCP/IP socket connections. External mode allows these programs to be written in any
programming language that supports socket communication. External mode is currently supported
for C/C++, Java, Python, Lisp, and Matlab.

Each mode has its strengths and weaknesses. Internal mode has less overhead, so it can execute
more steps per second. External mode is more flexible and portable. The performance difference
between the two modes vanishes as the agent or environment becomes complex enough that com-
putation dominates the socket overhead in terms of time per step. The agent and environment are
indifferent and unaware of their execution mode; the difference in modes lies only in how the agent
and environment are linked or loaded.

3. RL-Glue in Practice

RL-Glue’s provides a common interface for a number of software and hardware projects in the
reinforcement-learning community. For example, there is the annual RL-Competition, where teams
from around the world compare their agents on a variety of challenging environments. The com-
petition software uses the API, called RL-Viz, that is layered on top of RL-Glue to dynamically
load agent and environment programs, modify parameters at runtime and visualize interaction and
performance. All of the environments and sample agents created by the competition organizers
are added to the RL-Library, a public, community-supported repository of RL-Glue compatible
code. The RL-Library is also available as an archive of top competition agents, challenge problems,
project code from academic publications, or any other RL-Glue compatible software that members
of our community would like to share.

The socket architecture of RL-Glue allows diverse software and hardware platforms to be con-
nected as RL-Glue environment programs. There are ongoing projects that connect a mobile robot
platform, a keepaway soccer server, a real-time strategy game, and an Atari emulator to RL-Glue.
Our socket architecture helps lower the barriers for researchers wishing to work on larger scale
environments by providing a simple and familiar interface.

RL-Glue has been used for teaching reinforcement learning in several university courses and
to create experiments for scientific articles published in leading conferences. See our RL-Glue in
practice web page for an updated list of projects and papers that have used RL-Glue.2

4. Other Reinforcement-Learning Software Projects

RL-Glue is not the first software project that aims to standardize empirical reinforcement learning
or to make agent and environment programs more accessible within our community. However, RL-
Glue is the only project that offers a standardized language-independent interface, rich actions and
observations, and fine-grained control of the experiment.

Other projects, most notably: CLSquare,3 PIQLE,4 RL Toolbox,5 JRLF,6 and LibPG,7 offer
significant value to the reinforcement-learning community by offering agents and environments,

2. This can be found at http://glue.rl-community.org/rl-glue-in-practice.
3. This can be found at http://www.ni.uos.de/index.php?id=70.
4. This can be found at http://piqle.sourceforge.net/.
5. This can be found at http://www.igi.tugraz.at/ril-toolbox/.
6. This can be found at http://mykel.kochenderfer.com/jrlf/.
7. This can be found at http://code.google.com/p/libpgrl/.
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intuitive visualizations, programming tools, etc. Users should not be forced to choose between
RL-Glue and these alternative projects. Our design makes it relatively easy to interface existing
frameworks with RL-Glue. We are currently offering our assistance in bridging other frameworks to
RL-Glue, with the hope of improving access to all of these tools for all members of our community.

5. RL-Glue Open Source Project

Website: http://glue.rl-community.org License: Apache 2.0
RL-Glue is more than an interface; it connects a family of community projects, with many levels

of possible participation. Members of the community are invited to submit agent, environment
and experiment programs to the RL-Library. Developers can also extend the reach of RL-Glue
compatibility by writing external-mode or internal-mode interfaces for their favorite programming
language. The RL-Glue software project also welcomes submissions and improvements for all parts
of the software and documentation.
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Abstract
We address classification problems for which the training instances are governed by an input dis-
tribution that is allowed to differ arbitrarily from the test distribution—problems also referred to
as classification under covariate shift. We derive a solution that is purely discriminative: neither
training nor test distribution are modeled explicitly. The problem of learning under covariate shift
can be written as an integrated optimization problem. Instantiating the general optimization prob-
lem leads to a kernel logistic regression and an exponential model classifier for covariate shift. The
optimization problem is convex under certain conditions; our findings also clarify the relationship
to the known kernel mean matching procedure. We report on experiments on problems of spam
filtering, text classification, and landmine detection.
Keywords: covariate shift, discriminative learning, transfer learning

1. Introduction

Most machine learning algorithms are constructed under the assumption that the training data is
governed by the exact same distribution which the model will later be exposed to. In practice,
control over the data generation process is often less perfect. Training data may be obtained under
laboratory conditions that cannot be expected after deployment of a system; spam filters may be
used by individuals whose distribution of inbound emails diverges from the distribution reflected in
public training corpora; image processing systems may be deployed to foreign geographic regions
where vegetation and lighting conditions result in a distinct distribution of input patterns.

The case of distinct training and test distributions in a learning problem has been referred to
as covariate shift and sample selection bias—albeit the term sample selection bias actually refers
to a case in which each training instance is originally drawn from the test distribution, but is then
selected into the training sample with some probability, or discarded otherwise.

The covariate shift model and the missing at random case in the sample selection bias model
allow for differences between the training and test distribution of instances; the conditional distri-
bution of the class variable given the instance is constant over training and test set.

In the covariate shift problem setting, a training sample is available in matrix XL with row
vectors x1, . . . ,xm. This training sample is governed by an unknown distribution p(x|!). Vector y
with elements y1, . . . ,ym are the labels for training examples and are drawn according to an unknown
target concept p(y|x). In addition, unlabeled test data becomes available in matrix XT with rows

c©2009 Steffen Bickel, Michael Brückner and Tobias Scheffer.
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xm+1, . . . ,xm+n. The test data is governed by a different unknown distribution, p(x|"). Training
and test distribution may differ arbitrarily, but there is only one unknown target conditional class
distribution p(y|x).

In discriminative learning tasks such as classification, the classifier’s goal is to produce the
correct output given the input. It is widely accepted that this is best performed by discriminative
learners that directly maximize a quality measure of the produced output. Model-based optimization
criteria such as the joint likelihood of input and output, by contrast, additionally assess how well
the classifier models the distribution of input values. This amounts to adding a term to the criterion
that is irrelevant for the task at hand.

We contribute a discriminative model for learning under different training and test distribu-
tions. The model directly characterizes the divergence between training and test distribution, with-
out the intermediate—intrinsically model-based—step of estimating training and test distribution.
We formulate the search for all model parameters as an integrated optimization problem. This com-
plements the predominant procedure of first estimating the bias of the training sample, and then
learning the classifier on a weighted version of the training sample. We show that the integrated
optimization can be convex, depending on the model type; it is convex for the exponential model.
We derive a Newton gradient descent procedure, leading to a kernel logistic regression and an ex-
ponential model classifier for covariate shift.

After reviewing models for differing training and test distributions in Section 2, we introduce
our integrated model in Section 3. We derive primal and kernelized classifiers for differing training
and test distributions in Sections 4 and 5. In Section 6, we analyze the convexity of the integrated
optimization problem. Section 7 describes an approximation to the joint optimization problem and
Section 8 reveals a new interpretation of kernel mean matching and analyzes the relationship to
our model. In Section 9 we discuss different tuning procedures for learning under covariate shift.
Section 10 provides empirical results and Section 11 concludes.

The discriminative model for the logistic loss is described in a prior conference publication
(Bickel et al., 2007). Our original results showed that the resulting optimization problem is not con-
vex. New findings (Section 6) show that the integrated optimization problem can in fact be convex
when the loss function is chosen appropriately. Section 7 describes a two-stage approximation that
allows to train virtually any type of classifier under covariate shift. The new Section 8 character-
izes the relation to kernel mean matching. New experiments include the exponential target model.
Section 10 uses an experimental setting that differs from the setting of Bickel et al. (2007) in the
parameter tuning process. In some cases, the new setting has improved the performance of baseline
methods.

2. Prior Work

If training and test distributions were known, then the loss on the test distribution could be mini-
mized by weighting the loss on the training distribution with an instance-specific factor. Proposi-
tion 1 (Shimodaira, 2000) illustrates that the scaling factor has to be p(x|")

p(x|!) .

Proposition 1 The expected loss with respect to " equals the expected loss with respect to ! with
weights p(x|")

p(x|!) for the loss incurred by each x, provided that the support of p(x|") is contained in the
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support of p(x|!):

E(x,y)∼"[!( f (x),y)] = E(x,y)∼!

[

p(x|")
p(x|!)!( f (x),y)

]

. (1)

After expanding the expected value into its integral
R

!( f (x),y)p(x,y|")d", the joint distribution
p(x,y|!) is decomposed into p(x|!)p(y|x,!). Since p(y|x,!) = p(y|x) = p(y|x,") is the global
conditional distribution of the class variable given the instance, Proposition 1 follows. All instances
x with positive p(x|") are integrated over. Hence, Equation 1 holds as long as each x with positive
p(x|") also has a positive p(x|!); otherwise, the denominator vanishes. This shows that covariate
shift can only be compensated for as long as the training distribution covers the entire support of the
test distribution. If a test instance had zero density under the training distribution, the test-to-training
density ratio which it would need to be scaled with would incur a zero denominator.

Both, p(x|") and p(x|!) are unknown, but p(x|") is reflected in XT , as is p(x|!) in XL. A
straightforward approach to compensating for covariate shift is to first obtain estimates p̂(x|") and
p̂(x|!) from the test and training data, respectively, using kernel density estimation (Shimodaira,
2000; Sugiyama and Müller, 2005). In a second step, the estimated density ratio is used to re-
sample the training instances, or to train with weighted examples.

This method decouples the problem. First, it estimates training and test distributions. This step
is intrinsically model-based and only loosely related to the ultimate goal of accurate classification.
In a subsequent step, the classifier is derived given fixed weights. Since the parameters of the final
classifier and the parameters that control the weights are not independent, this decomposition into
two optimization steps cannot generally find the optimal setting of the joint parameter vector.

A line of work on learning under sample selection bias has meandered from the statistics and
econometrics community into machine learning (Heckman, 1979; Zadrozny, 2004). Sample selec-
tion bias relies on a model of the data generation process. Test instances are drawn under p(x|").
Training instances are drawn by first sampling x from the test distribution p(x|"). A selector vari-
able # then decides whether x is moved into the training set (# = 1) or moved into the rejected set
(# = −1). For instances in the training set (# = 1) a label is drawn from p(y|x), for the instances
in the rejected set the labels are unknown. A typical scenario for sample selection bias is credit
scoring. The labeled training sample consists of customers who where given a loan in the past and
the rejected sample are customers that asked for but where not given a loan. New customers asking
for a loan reflect the test distribution.

In the missing at random case, the selector variable is only dependent on x, but not on y; that
is, p(#= 1|x,y,",!) = p(#= 1|x,",!). The distribution of the selector variable then maps the test
onto the training distribution:

p(x|!) $ p(x|")p(#= 1|x,",!).

Proposition 2 (Zadrozny, 2004; Bickel and Scheffer, 2007) says that minimizing the loss on in-
stances weighted by p(#|x,",!)−1 in fact minimizes the expected loss with respect to ".

Proposition 2 The expected loss with respect to " is proportional to the expected loss with respect
to ! with weights p(# = 1|x,",!)−1 for the loss incurred by each x, provided that the support of
p(x|") is contained in the support of p(x|!):

E(x,y)∼"[!( f (x),y)] $ E(x,y)∼!

[

1
p(#= 1|x,",!)!( f (x),y)

]

.
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When the model is implemented, p(# = 1|x,",!) is learned by discriminating the training
against the rejected examples; in a second step the target model is learned by following Propo-
sition 2 and weighting training examples by p(#|x,",!)−1. No test examples drawn directly from
p(x|") are needed to train the model, only labeled selected and unlabeled rejected examples are
required. This is in contrast to the covariate shift model that requires samples drawn from the test
distribution, but no selection process is assumed and no rejected examples are needed. Covariate
shift models can be applied to learning under sample selection bias in the missing at random setting
by treating the selected examples as labeled sample and the union of selected (ignoring the labels)
and rejected examples as unlabeled sample.

Propensity scores (Rosenbaum and Rubin, 1983; Lunceford and Davidian, 2004) are applied in
settings related to sample selection bias; the training data is again assumed to be drawn from the test
distribution p(x|") followed by a selection process. The difference to the setting of sample selection
bias is that the selected and the rejected examples are labeled. Weighting the selected examples
by the inverse of the propensity score p(# = 1|x,!,")−1 and weighting the rejected examples by
p(#= −1|x,!,")−1 results in two unbiased samples with respect to the test distribution.

Propensity scoring can precede a variety of analysis steps. This can be the training of a target
model on re-weighted data or just a statistical analysis of the two re-weighted samples. A typical
application for propensity scores is the analysis of the success of a medical treatment. Patients are
selected to be given the treatment and some other patients are selected into the control group. If the
selector variable is not independent of x (patients may be chosen for an experimental therapy only
if they meet specific requirements), the outcome (e.g., ratio of cured patients) of the two groups
cannot be compared directly, propensity scores have to be applied.

Maximum entropy density estimation under sample selection bias has been studied by Dudik
et al. (2005). Bickel and Scheffer (2007) impose a Dirichlet process prior on several learning prob-
lems with related sample selection bias. Elkan (2001) and Japkowicz and Stephen (2002) investigate
the case of training data that is only biased with respect to the class ratio, this can be seen as sample
selection bias where the selection only depends on y.

Kernel mean matching (Huang et al., 2007) is a two-step method that first finds weights for the
training instances such that the first momentum of training and test sets—that is, their mean value—
matches in feature space. The subsequent training step uses these weights. Matching the means in
feature space is equivalent to matching all moments of the distributions if a universal kernel is used.
Huang et al. (2007) derive a quadratic program from Equation 2 that can be solved with standard
optimization tools. %(·) is a mapping into a feature space and B is a regularization parameter.

minα

∥

∥

1
m &

m
i=1'i%(xi)− 1

n &
m+n
i=m+1%(xi)

∥

∥

2 (2)

subject to 'i ∈ [0,B] and
∣

∣

1
m &

m
i=1'i−1

∣

∣ ≤ (

Cortes et al. (2008) theoretically analyze the error that gets introduced by estimating sample
selection bias from data. Their analysis covers the kernel mean matching procedure and a cluster-
based estimation technique.

KLIEP (Sugiyama et al., 2008) estimates resampling weights for the training examples by min-
imizing the Kullback-Leibler divergence between the test distribution and the weighted training
distribution. Tsuboi et al. (2008) derive an extension to KLIEP for large-scale applications and
reveal a close relationship to kernel mean matching.
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3. Integrated Model

Our goal is to find model parameters w for a probabilistic classification model f (x) =
argmaxy p(y|x;w). The model should correctly predict labels of the test dataXT drawn from p(x|").
A regular maximum a posteriori estimation w′ = argmaxw p(y|XL;w)p(w), would only use the
training data (y,XL) governed by p(x|!). By ignoring the test data, this estimate will not generally
result in a model that predicts the missing labels of the test data with a minimum error because the
training distribution p(x|!) is different from the test distribution p(x|").

In the following we devise a probabilistic model that accounts for the difference between train-
ing and test distribution. Before we describe the model we define a joint data matrix X that is a
concatenation of the matrices XL and XT . The model is based on a binary selector variable s: Given
an instance vector x from the joint matrix X of all available instances, selector variable s decides
whether x is drawn into the test data XT (s= −1) or into the training data XL (s= 1) in which case
y is determined. The variable s is governed by the distribution p(s|x;v). Parameter v characterizes
the discrepancy between the training and test distribution. Based on the model for s we can now
describe the generative process underlying our model:

1. Draw parameter vectors v and w from prior distributions p(v) and p(w);

2. For each row x in matrix X draw binary variable s from distribution p(s|x;v); accordingly,
the likelihood of the vector of all selector variables s is p(s|X;v) =)m+n

i=1 p(si|xi;v);

3. For all selected training examples (all examples xi with si = 1) draw vector y of all labels
from p(y|s,X;w,v).

This generative process corresponds to the following factorization of the joint probability of the
vector of labels y, vector of selector variables s, and parameter vectors v and w:

p(y,s,w,v|X) = p(y|s,X;w,v)p(s|X;v)p(w)p(v). (3)

3.1 Maximum A Posteriori Parameter Inference

For parameter inference we want to find parameters w that maximize the posterior probability given
all available data (Equation 4). The available data are the data matrix X, the label vector y, and
the selection vector s, that splits the data matrix into training and test data. Because the parameter
v is unknown and is not needed for the final classifier the best we can do is to integrate it out
(Equation 5).

w∗ = argmaxw p(w|y,s,X) (4)

= argmaxw
Z

p(w,v|y,s,X)dv. (5)

Integrating over v is computationally infeasible. In Equation 6, the integral is therefore approx-
imated by the single assignment of values to the parameters which maximizes the posterior—the
maximum a posteriori (MAP) estimator. In our case, the MAP estimator naturally assigns values to
all parameters, w and v.

(wMAP,vMAP) = argmaxw,v p(w,v|y,s,X) (6)
= argmaxw,v p(y,s,w,v|X) (7)
= argmaxw,v p(y|s,X;w,v)p(s|X;v)p(w)p(v). (8)
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Equation 7 follows from multiplication with a constant p(y,s|X) and from application of the chain
rule. Equation 8 applies the factorization from the generative process of Equation 3.

The class-label posterior p(y|x;wMAP) is conditionally independent of vMAP givenwMAP. However,
wMAP and vMAP are dependent. Assigning a single MAP value to [w,v] instead of integrating over
v is a common approximation. However, sequential maximization of p(s|X;v) over parameters
v followed by maximization of p(y|s,X;w,v) over parameters w with fixed v would amount to
an additional degree of approximation and will not generally coincide with the maximum of the
product in Equation 8. Such a sequential maximization corresponds to the predominant two-step
procedure for learning under covariate shift.

In the next sections we will discuss the likelihood functions p(y|s,X;w,v) and p(s|X;v) and the
optimization problem for parameter inference based on maximization of Equation 8.

3.2 Label Likelihood and Discriminative Weighting Factors

In order to define the label likelihood we first derive a discriminative expression for p(x|")
p(x|!) which

will no longer include any density on instances. When p(s= −1) > 0, which is implied by the test
set not being empty, the definition of s allows us to rewrite the test distribution as p(x|") = p(x|s=
−1,"). Since test instances are only dependent on parameter " but not on parameter !, equation
p(x|s = −1,") = p(x|s = −1,",!) follows. By an analogous argument, p(x|!) = p(x|s = 1,",!)
when p(s= 1) > 0. This implies Equation 9.

In Equation 10, Bayes’ rule is applied twice; the two terms of p(x|",!) cancel each other out in
Equation 11. Since p(s= −1|x,",!) = 1− p(s= 1|x,",!), Equation 12 follows.

The conditional p(s= 1|x,",!) discriminates training (s= 1) against test instances (s= −1).

p(x|")
p(x|!) = p(x|s= −1,",!)

1
p(x|s= 1,",!)

(9)

=
p(s= −1|x,",!)p(x|",!)

p(s= −1|",!)
p(s= 1|",!)

p(s= 1|x,",!)p(x|",!) (10)

=
p(s= 1|",!)
p(s= −1|",!)

p(s= −1|x,",!)
p(s= 1|x,",!) (11)

=
p(s= 1|",!)
p(s= −1|",!)

(

1
p(s= 1|x,",!) −1

)

. (12)

The significance of Equation 12 is that it shows how the optimal example weights, the test-to-
training ratio p(x|")

p(x|!) , can be determined without knowledge of either training or test density. The
right hand side of Equation 12 can be evaluated based on a model that discriminates training against
test examples and outputs how much more likely an instance is to occur in the test data than it is
to occur in the training data. Instead of potentially high-dimensional densities p(x|") and p(x|!), a
conditional distribution of the single binary variable s needs to be modeled.

The expression p(s|x,",!) in Equation 12 corresponds to the parametric model p(s|x;v) of
Equation 3. With this model we can predict test-to-training density ratios for the training data in XL
according to Equation 12.

Since our goal is discriminative training, the likelihood function p(y|XL;w) (not taking training-
test difference v into account) would be )i p(yi|xi;w). By using this likelihood p(y|XL;w) instead
of p(y|s,X;w,v), one would wrongly assume that the training data XL was governed by the test
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distribution. Intuitively, p(x|")p(x|!) dictates how many times, on average, x should occur in XL if XL was
governed by the test distribution ". When the individual conditional likelihood of x is p(y|x;w),
then the likelihood of p(x|")

p(x|!) occurrences of x is p(y|x;w)
p(x|")
p(x|!) . Using a parametric model p(s|x;v),

according to Equation 12 the test-to-training ratio p(x|")
p(x|!) can be expressed as

1

p(s= 1)
p(s= −1)

(

1
p(s= 1|x;v) −1

)

.

Therefore, we define the likelihood function as 2

p(y|s,X;w,v) =
m

)
i=1

p(yi|xi;w)
p(s=1)
p(s=−1)

(

1
p(si=1|xi;v)

−1
)

. (13)

As an immediate corollary of Manski and Lerman (1977), the likelihood function of Equation 13
has the property that when the true value v∗ is given, its maximizer over w is a consistent estimator
of the true parameter w∗ that has produced labels for the test data under the test distribution ". That
is, as the sample grows, the maximizer of Equation 13 converges in probability to the true value w∗

of parameter w.
For the statistical analysis of case-control studies, Prentice and Pyke (1979) estimate the ratio

of two odds ratios with a discriminative model using a formula similar to Equation 12. This double
odds ratio is a statistical measure of the relative risk of an incidence (e.g., lung cancer) given a
specific exposure (e.g., cigarette smoking) based on data from a retrospective study.

3.3 Optimization Problem for Integrated Model

The likelihood function p(s|X;v) resolves to p(si = 1|xi;v) for all training instances and
p(si = −1|xi;v) for all test instances:

p(s|X;v) =
m

)
i=1

p(si = 1|xi;v)
m+n

)
i=m+1

p(si = −1|xi;v). (14)

Equation 15 summarizes Equations 6 to 8 and Equation 16 inserts the likelihood models (Equa-
tions 13 and 14).

p(w,v|y,s,X) $ p(y|s,X;w,v)p(s|X;v)p(w)p(v) (15)

=

(

m

)
i=1

p(yi|xi;w)
p(s=1)
p(s=−1)

(

1
p(si=1|xi;v)

−1
)

)

(16)
(

m

)
i=1

p(si = 1|xi;v)
m+n

)
i=m+1

p(si = −1|xi;v)
)

p(w)p(v).

Using a logistic model for p(s = 1|x;v), we notice that Equation 12 can be simplified as in
Equation 17.

p(s= 1)
p(s= −1)

(

1
1/(1+ exp(−vTx)) −1

)

=
p(s= 1)
p(s= −1)

exp(−vTx). (17)

1. For a simplified presentation we drop the conditioning in the prior ratio, that is, p(s|",!) = p(s).
2. The variable s in the prior ratio p(s=1)

p(s=−1) does not need an index i because at this point it is not conditioned on xi.
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Optimization Problem 1 is derived from Equation 16 in logarithmic form, using linear mod-
els vTxi and wTxi and a logistic model for p(s = 1|x;v). Negative log-likelihoods are abbreviated
!w(yiwTxi) = − log p(yi|xi;w) and !v(sivTxi) = − log p(si|xi;v), respectively; this notation empha-
sizes the duality between likelihoods and empirical loss functions. The regularization terms corre-
spond to Gaussian priors on v and w with variances #2v and #2w.

Optimization Problem 1 Over all w and v, minimize

m

&
i=1

p(s= 1)
p(s= −1)

exp(−vTxi)!w(yiwTxi)+
m+n

&
i=1

!v(sivTxi)+
1
2#2w

wTw+
1
2#2v

vTv.

4. Primal Learning Algorithm

We derive a Newton gradient descent method that directly minimizes Optimization Problem 1 in the
attribute space. To this end, we need to derive the gradient and the Hessian of the objective function.
The update rule assumes the form of a set of linear equations that have to be solved for the update
vector [*v,*w]T. It depends on the current parameters [v,w]T, all combinations of training and test
data, and resulting coefficients. In order to express the update rule as a single equation in matrix
form, we define

X=

[

XL XT 0
0 0 XL

]

,

where XL and XT are the matrices of training vectors and test vectors, respectively.

Theorem 3 The update step for the Newton gradient descent minimization of Optimization Prob-
lem 1 is [v′,w′]T ← [v,w]T +[*v,*w]T with

(XΛXT +S)
[

*v
*w

]

= −Xg−S
[

v
w

]

. (18)

The definitions of coefficients Λ, S, and g—and the proof of the theorem—can be found in Ap-
pendix A.

Given the parameter w, a test instance x is classified as f (x;w) = sign(wTx).

5. Kernelized Learning Algorithm

We derive a kernelized version of the integrated classifier for differing training and test distributions.
A transformation%maps instances into a target space in which a kernel function k(xi,x j) calculates
the inner product %(xi)T%(x j). The update rule (Equation 18) thus becomes

(%(X)Λ%(X)T +S)
[

*v
*w

]

= −%(X)g−S
[

v
w

]

. (19)

%(X) is defined by

%(X) =

[

%(XL) %(XT ) 0
0 0 %(XL)

]

.
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According to the Representer Theorem, the optimal separator is a linear combination of exam-
ples. Parameter vectors α and β in the dual space weight the influence of all examples:

[

v
w

]

= %(X)

[

α

β

]

.

Equation 19 can therefore be rewritten as Equation 20. We now multiply %(X)T from the
left to both sides and obtain Equation 21. We replace all resulting occurrences of %(X)T%(X)
by the kernel matrix K and arrive at Equation 22; S is replaced by S′ such that %(X)TS%(X) =
%(X)T%(X)S′, that is, S′i,i = #−2v for i = 1, . . . ,m+ n and S′m+n+i,m+n+i = #−2w for i = 1, . . . ,m.
Equation 22 is satisfied when Equation 23 is satisfied. Equation 23 is the update rule for the dual
Newton gradient descent.

(%(X)Λ%(X)T +S)%(X)

[

*α

*β

]

= −%(X)g−S%(X)

[

α

β

]

, (20)

%(X)T(%(X)Λ%(X)T +S)%(X)

[

*α

*β

]

= −%(X)T%(X)g−%(X)TS%(X)

[

α

β

]

, (21)

(KΛK+KS′)
[

*α

*β

]

= −Kg−KS′
[

α

β

]

, (22)

(ΛK+S′)
[

*α

*β

]

= −g−S′
[

α

β

]

. (23)

Given the parameters, test instance x is classified by f (x;β) = sign(&m
i=1+ik(x,xi)).

6. Convexity Analysis and Solving the Optimization Problems

The following theorem specifies sufficient conditions for convexity of Optimization Problem 1.
With this theorem we can easily check whether the integrated classifier for covariate shift is convex
for specific models of the negative log-likelihood functions. The negative log-likelihood function
!w itself and its first and second derivatives are needed. Equations 31 and 32 in Appendix A define
shorthand notation which we will use in the following.

Theorem 4 Optimization Problem 1 is convex if the loss function !v is convex and !w is log-convex
and non-negative. The log-convexity condition is equivalent to

!w!′′w− !′2w ≥ 0. (24)

Proof Looking at Optimization Criterion 1 we immediately see that the regularizers are convex. If
!v is convex, the second term is convex as well. We therefore only need to analyze the convexity of
the term

m

&
i=1

p(s= 1)
p(s= −1)

exp(−vTxi)!w(yiwTxi).

A sum is convex if the single summands are convex. And a sufficient condition for convexity of
a function is that it is non-negative and log-convex. The above expression is non-negative as !w is
non-negative. This means we only need to check whether

log
p(s= 1)
p(s= −1)

−vTxi+ log!w,i
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is convex. The prior ratio is assumed to be constant. The second term is linear and therefore convex
and the third term is the log-convexity condition of !w. The second derivative of log!w is

!−1w !′′w+ !−2w !′2w ,

thus log!w is convex if !w!′′w− !′2w is non-negative.

In order to check Optimization Criterion 1 for convexity we need to choose models of the nega-
tive log-likelihood !v and !w and derive their first and second derivatives. These derivations are also
needed to actually minimize Optimization Criterion 1 with the Newton update steps derived in the
last section.

We use a logistic model !v(sivTx) = log(1+ exp(−sivTx)); the abbreviations of Appendix A
can now be expanded:

!′v,isixi j = −
exp(−sivTxi)

1+ exp(−sivTxi)
sixi j; !′′v,ixi jxik =

exp(−sivTxi)
(1+ exp(−sivTxi))2

xi jxik.

For the target classifier, we detail the derivations for logistic and for exponential models of !w.
For the logistic model the derivatives of !w are the same as for !v, only v needs to be replaced by
w and si by yi. For an exponential model with !w(yiwTx) = exp(−yiwTx) the abbreviations are
expanded as follows:

!′w,iyixi j = −exp(−yiwTxi)yixi j; !′′w,ixi jxik = exp(−yiwTxi)xi jxik.

Using Theorem 4 we can now easily check the convexity of the integrated classifier with logistic
model and with exponential model for !w.

Corollary 5 With a logistic model for !w, the condition of Equation 24 is violated and therefore
Optimization Problem 1 with logistic model for !w may not convex in general.

Proof Inserting the logistic function into Equation 24 we get the following solution.

!w,i!
′′
w,i− !′2w,i =

exp(−yiwTxi)
(1+ exp(−yiwTx))2

(

log(1+ exp(−yiwTx))− exp(−yiwTxi)
)

. (25)

The fraction in Equation 25 is always positive, the difference term is always negative which
violates the condition of Equation 24.

Empirically, we find that it is a good choice to select the parameters of a regular, iid logistic
regression classifier as starting point for the Newton gradient search.

One can easily show that the condition of Equation 24 is violated when !w is chosen as hinge
loss or quadratic loss.

Corollary 6 Optimization Problem 1 with exponential model for !w is convex.

Proof The exponential loss is non-negative and its logarithm is linear and therefore convex.

This means the global optimum of Optimization Problem 1 with exponential model for !w can
easily be found by Newton gradient descent.
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7. Two-Stage Approximation to Integrated Model

The previous sections describe a complete solution to the learning problem under covariate shift.
Optimization Problem 1 is convex for the exponential model; solving it using the efficient proce-
dures derived in Sections 4 and 5 produces a globally optimal solution.

For the logistic model, unfortunately, convexity cannot be guaranteed. Furthermore, the regu-
larized regression classifier is deeply embedded in Optimization Problem 1. It would not be easy to
replace it by a different type of classifier such as, for instance, a decision tree. We will now discuss
an approximation to Optimization Problem 1 which solves two consecutive optimization problems.
The first optimization problem produces example-specific weights; the second step generates a clas-
sifier from the weighted examples. Both optimization problems are convex for exponential, logistic,
and hinge loss as well as for many other loss functions. But most significantly, the two-stage ap-
proximation is conceptually simple: the second optimization step can be carried out by any learning
procedure that is able to scale the loss incurred by each example using prescribed weight factors.
Example-specific weights can easily be incorporated into virtually any learning method. Further-
more, as a result of the decomposition into two optimization problems parameter tuning becomes
much easier because cross-validation can be used (cf. Section 9).

The derivation in Section 3.1 approximates the integral over v by simultaneously selecting a pair
of values which maximize the posterior. This leads to the joint MAP hypothesis over v andw. In the
resulting optimization problem, v and w are free parameters. At a higher degree of approximation,
one may factorize the posterior (Equation 26) and at first approximate the integral over v by the
maximum of p(v|y,s,X) (Equations 29 and 30). Subsequently, the posterior over w is maximized
given fixed parameters vMAP′ (Equations 27 and 28).

w∗ = argmaxw
Z

p(w,v|y,s,X)dv

= argmaxw
Z

p(w|y,s,X;v)p(v|y,s,X)dv (26)

≈ argmaxw p(w|y,s,X;vMAP′) (27)
= argmaxw p(y|s,X;w,vMAP′)p(w) (28)

with vMAP′ = argmaxv p(v|y,s,X) (29)
= argmaxv p(s|y,X;v)p(v). (30)

This results in two optimization problems. Only parameter v is free in the first stage (Optimization
Problem 2). The test-to-training ratio (Equation 17) can be derived from the resulting value of v.
Optimization Problem 2 Over v, minimize

m+n

&
i=1

!v(sivTxi)+
1
2#2v

vTv.

In the second stage (Optimization Problem 3), the target model parameters w are optimized with
constant parameters v and constant example weights. The parameters v are the result of Optimiza-
tion Problem 2.

Optimization Problem 3 Over w (v is constant), minimize
m

&
i=1

p(s= 1)
p(s= −1)

exp(−vTxi)!w(yiwTxi)+
1
2#2w

wTw.
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The criterion of Optimization Problem 3 weights the loss !w(yiwTxi) that each example incurs such
that the sample is matched to the test distribution. The last term 1

2#2w
wTw is the regularizer of the

regression. Optimization Problem 3 can easily be adapted to virtually any type of classification
mechanism by inserting the appropriate loss function !w(yiwTxi) and regularizer. Operationally,
an arbitrary classification procedure is applied to a sample that is either resampled from the train-
ing data according to sampling distribution p(s=1)

p(s=−1) exp(−v
Txi), or the classifier is applied to the

training data with the example-specific loss scaled according to p(s=1)
p(s=−1) exp(−v

Txi).

8. Relationship to Kernel Mean Matching

Huang et al. (2007) motivate the kernel mean matching algorithm as a procedure that minimizes the
distance between the means of unlabeled and weighted labeled data in feature space. If the kernel
is universal this is equivalent to minimizing the difference of the distributions. We derive a new
interpretation for kernel mean matching that shows its relation to Optimization Problem 2 and the
above two-stage approximation.

Using a hinge loss for !v(si(vTxi+b)) in Optimization Problem 2 and an explicit offset param-
eter b we obtain a regular support vector machine. The kernel matrix of this SVM is

[ K(LL) K(LT )

KT

(LT ) K(TT )

]

and the target variables are si ∈ {−1,1}. An SVM can heuristically be simplified by setting the dual
parameters 'i for the unlabeled examples to a fixed value m

n . This can be interpreted as a mixture
between an SVM and a Rocchio classifier. The 'i corresponding to the labeled examples (si = 1) are
trained with an SVM; setting 'i of all unlabeled examples (si =−1) to m

n approximates the negative
class (the unlabeled examples) by their centroid in feature space in accordance with the Rocchio
classifier (Joachims, 1997).

The SVM optimization criterion with fixed 'i = m
n for examples with si = −1 is

min 1
2'

T
LK(LL)'L− m

n '
T
LK(LT )1+ 1

2
m2
n2 1K(TT )1−'T

L 1−nmn
'L

subject to 'i ∈
[

0,#2v
]

and &m
i=1'i = &n

i=1
m
n = m;

vector 'L denotes all elements 'i with i= 1, . . . ,m. We can drop the constant terms ('T
L 1 is constant

because of the second constraint) and arrive at Optimization Problem 4.

Optimization Problem 4

min 1
2'

T
LK(LL)'L− m

n '
T
LK(LT )1 subject to 'i ∈

[

0,#2v
]

and 'T
L 1= m.

'L

This is the dual objective of kernel mean matching. The only difference is that Huang et al. (2007)
relax the second constraint up to a small constant (, their constraint is m(1− () ≤ 'T

L 1≤ m(1+ ().
Empirically we find that setting ( to zero has no impact on the performance. The parameter #2v
corresponds to parameter B in Equation 2.

In order to solve the second stage (Optimization Problem 3), kernel mean matching does not use
re-weighting factors p(s=1)

p(s=−1) exp(−v
Txi−b) but directly uses the dual 'i parameters as weights.

To sum up, kernel mean matching can be interpreted as a variant of Optimization Problem 2.
It discriminates training against test examples using a partially Rocchio-style approximation to the
SVM optimization criterion.
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9. Parameter Tuning

Optimization Problem 1 relies on hyper-parameters #2v and #2w that need to be tuned. For the two-
stage approximation of Section 7 and reference methods like kernel mean matching two similar
parameters need to be specified. In addition to the regularization parameters kernel parameters
need to be tuned for non-linear kernels. Parameter tuning for covariate shift models is much more
difficult than for regular prediction models because in the covariate shift setting there is no labeled
data available drawn from the test distribution. Parameter tuning by regular cross-validation on the
labeled training data is inappropriate because the labeled training data is not governed by the test
distribution.

In the following paragraphs we describe different tuning procedures; two procedures require
prior knowledge and one does not require prior knowledge on the hyper-parameters. The tuning
procedures with prior knowledge can be used for all described models. The one without prior
knowledge cannot be used for kernel mean matching and the one-stage model of Optimization
Problem 1.

A typical setting with prior knowledge on the hyper-parameters is when the difference between
training and test data is introduced by a covariate shift over time and the input distribution shifts
constantly over time. The most recent data is the unlabeled test data and the older data has been
labeled and is the training data. In this setting the parameters can be tuned by splitting the labeled
training data into two consecutive parts. The tuning models are learned on the part with earlier
timestamps and the hyper-parameters #2v and #2w and kernel parameters are optimized on the part
with later timestamps.

Another setting with prior knowledge is when in addition to the pair of training and test set an
additional pair of training and fully labeled test set from a different domain with a similar magnitude
of covariate shift is available. This additional set can be used to tune the parameters. Due to
the similar magnitude of the covariate shift the optimal parameters for the additional domain are
assumed to be a good choice for the parameters of the target domain.

For some two-stage models for covariate shift there is no prior knowledge necessary to tune
hyper-parameters. Sugiyama et al. (2008) propose to tune the regularizer of the KLIEP model with
cross-validation. In this manner the first stage parameter #2v (and kernel parameters) of the two-stage
model of Section 7 can be tuned as follows. The training and the test data are both split into training
and tuning folds and the hold-out likelihood of the tuning folds is optimized with grid search on
#2v (and kernel parameters). The hold-out likelihood measures the predictive performance of the
model p(s|x;v) with respect to predicting the selector variable s of the hold out examples. Once the
regularizer of the first stage is tuned, the second stage parameter #2w (and kernel parameters) can
be tuned with cross-validation on weighted training data (Sugiyama and Müller, 2005). The data
of training folds as well as the data of tuning folds are weighted with the estimated training-to-test
ratio.

Kernel mean matching does not provide out-of-sample predictions and it is therefore difficult
to tune the regularization parameter B with cross-validation. The one-stage model of Optimization
Problem 1 is also difficult to tune with cross-validation because there is a bidirectional influence
between the parameters #2v and #2w.

In order to compare the one-stage model and kernel mean matching to the other two-stage
models we use tuning procedures based on prior knowledge in the empirical studies in the next
section.
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BICKEL, BRÜCKNER AND SCHEFFER

10. Empirical Results

We study the benefit of two versions of the integrated classifier for covariate shift and other reference
methods on spam filtering, text classification, and landmine detection problems. The first integrated
classifier uses a logistic model for !w (“integrated log model”), the second an exponential model for
!w (“integrated exp model”); !v is a logistic model in both cases.

The first baseline is a classifier trained under iid assumption with logistic !w. All other reference
methods consist of a two-stage procedure: first, the difference between training and test distribution
is estimated, the classifier is trained on weighted data in a second step. The second method is
kernel mean matching (Huang et al., 2007); we set (=

√
m−1/

√
m as proposed by the authors. In

the third method, separate density estimates for p(x|!) and p(x|") are obtained using kernel density
estimation (Shimodaira, 2000), the bandwidth of the kernel is chosen according to the rule-of-thumb
of Silverman (1986).

The last two reference methods rely on the two-stage approximation of Optimization Problems 2
and 3 with a logistic regression (“two-stage LR”) and an exponential model classifier (“two-stage
exp model”) as their second stages. The example weights are computed according to Equation 17
using a logistic model in the first stage, p(s = 1|x;v) is estimated by training a logistic regression
that discriminates training from test examples.

The baselines differ in the first stage, the second stage is based on a logistic regression classifier
with weighted examples in all cases but the two-stage exponential model baseline. We use a maxi-
mum likelihood estimate of mn for

p(s=1)
p(s=−1) . We use tuning procedures that rely on prior knowledge

(cf. Section 9). Short descriptions of the respective tuning data can be found below. For all experi-
ments we tune the regularization parameters of all methods (and the variance parameter of the RBF
kernels for the landmine experiments) by maximizing AUC on the tuning set.

We use the spam filtering data of Bickel et al. (2007); the collection contains nine different
inboxes with test emails (5270 to 10964 emails, depending on inbox) and one set of training emails
compiled from various different sources. We use a fixed set of 1000 emails as training data. We
randomly select between 32 and 2048 emails from one of the original inboxes. We repeat this
process 10 times for 2048 test emails and 20 to 640 times for 1024 to 32 test emails. As tuning data
we use the labeled emails from an additional inbox different from the test inboxes.

The performance measure is the rate by which the 1−AUC risk is reduced over the iid baseline
(Bickel and Scheffer, 2007); it is computed as 1− 1−AUC

1−AUCiid . We use linear kernels for all methods.
We analyze the rank of the kernel matrix and find that it fulfills the universal kernel requirement of
kernel mean matching; this is due to the high-dimensionality of the data.

Figure 1 (top row) shows the results for various numbers of unlabeled examples. The left col-
umn of Figure 1 compares the integrated classifiers for covariate shift to the kernel mean matching
and kernel density estimation baselines. The right column compares the integrated classifiers (Op-
timization Problem 1) with the two-stage approximations (Optimization Problems 2 and 3). The
results for a specific number of unlabeled examples are averaged over 10 to 640 random test sam-
ples and averaged over all nine inboxes. Averaged over all users and inbox sizes the absolute AUC
of the iid classifier is 0.994. Error bars indicate standard errors of the 1−AUC risk.

The integrated and two-step logistic regression and exponential models and kernel mean match-
ing perform similarly well. The differences to the iid baseline are highly significant. For 1048
examples the 1−AUC risk is even reduced by an average of 30% with the integrated exponential
model classifier! The kernel density estimation procedure is not able to beat the iid baseline. The
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Figure 1: Average reduction of 1−AUC risk over nine users for spam filtering (top row) and Cora
Machine Learning/Networking classification before and after 1996 (second row) and av-
erage increase of AUC for landmine detection over 812 pairs of mine fields (bottom row)
depending on the number of unlabeled test examples.
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BICKEL, BRÜCKNER AND SCHEFFER

convex integrated exponential model performs slightly better than its two-stage approximation; for
larger number of test examples (512 to 2048) this difference is statistically significant according
to a paired t-test with significance level of 5%. For the logistic model, the two-stage optimization
performs similarly well as the integrated version.

We now study text classification using computer science papers from the Cora data set. The task
is to discriminate Machine Learning from Networking papers. We select 812 papers written before
1996 from both classes as training examples and 1285 papers written after 1996 as test examples.
For parameter tuning we apply an additional time split on the training data; we train on the papers
written before 1995 and tune on papers written 1995 (cf. Section 9).

Title and abstract are transformed into tfidf vectors, the number of distinct words is about
40,000. We again use linear kernels (rank analysis verifies the universal kernel property) and aver-
age the results over 20 to 640 random test samples for different sizes (1024 for 20 samples to 32
for 640 samples) of test sets. The resulting 1−AUC risk is shown in Figure 1 (second row). The
average absolute AUC of the iid classifier is 0.998. The methods based on discriminative density es-
timates significantly outperform all other methods. Kernel mean matching is not displayed because
its average performance lies far below the iid baseline. The integrated models reduce the 1−AUC
risk by 15% for 1024 test examples.

In a third set of experiments we study the problem of detecting landmines using the data set
of Xue et al. (2007). The collection contains data of 29 mine fields in different regions. Binary
labels (landmine or safe ground) and nine dimensional feature vectors extracted from radar images
are provided. There are about 500 examples for each mine field. Each of the fields has a distinct
distribution of input patterns, varying from highly foliated to desert areas.

We enumerate all 29× 28 pairs of mine fields, using one field as training and the other as test
data. For tuning we hold out 4 of the 812 pairs. Results are increases over the iid baseline, averaged
over all 29×28−4 combinations. We use RBF kernels with kernel width 0.3 for all methods. The
results are displayed in Figure 1 (bottom row). The average absolute AUC of the iid baseline is
0.64 with a standard deviation of 0.07; note, that the error bars are much smaller than the absolute
standard deviation because they indicate the standard error of the differences to the iid baseline.

For this problem, the exponential model classifiers and kernel mean matching significantly out-
perform all other methods on average. Considering only methods with logistic target model, kernel
mean matching is better than all other methods. Integrated logistic regression and two-stage logistic
regression are still significantly better than the iid baseline except for 32 and 64 test examples. The
integrated classifiers are slightly better than the two-stage variants.

11. Conclusion

We derived a discriminative model for learning under differing training and test distributions. The
contribution of each training instance to the optimization problem ideally needs to be weighted with
its test-to-training density ratio. We show that this ratio can be expressed—without modeling either
training or test density—by a discriminative model that characterizes how much more likely an
instance is to occur in the test sample than it is to occur in the training sample.

We described a generative model whose parameters can be estimated with a joint MAP hypoth-
esis of both the parameters of the test-to-training model and the final classifier. Optimizing these
dependent parameters sequentially incurs an additional approximation compared to solving the joint
optimization problem. We derived a primal and a kernelized Newton gradient descent procedure for
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the joint optimization problem. Theorem 4 specifies the condition for the convexity of Optimiza-
tion Problem 1. Checking the condition using popular loss functions as models of the negative
log-likelihoods reveals that Optimization Problem 1 is convex with exponential loss.

We gave a new interpretation for kernel mean matching and show that it is also based on a
discriminative model similar to Optimization Problem 2.

Empirically, we found that the integrated and the two-stage models as well as kernel mean
matching outperform the iid baseline and the kernel density estimation model in almost all cases.
In some cases, the integrated models perform slightly better than their two-stage counterparts. The
performance of kernel mean matching depends on the problem; for one out of three problems it did
not beat the iid baseline, for the others it yielded comparable results to the integrated models.

The two-stage model is conceptually simpler than the integrated model, and may in some cases
have the greatest practical utility. The main advantage compared to the integrated model is that regu-
larization parameters can be tuned without prior knowledge by cross-validation. Another advantage
of the two-stage model is that in the second stage, after the example-specific weights have been
derived, virtually any learning mechanism can be employed to produce the final classifier from the
weighted training sample. This comes at the cost of only a marginal loss of performance compared
to the integrated model.
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Appendix A. Newton Gradient Descent—Proof of Theorem 3

In this Appendix, we derive Newton gradient descent updates for Optimization Problem 1 and
thereby prove Theorem 3. We abbreviate

!v,i=!v(sivTxi); !′v,isixi j=
,!v(sivTxi)

,v j
; !′′v,ixi jxik=

,2!v(sivTxi)
,v jvk

; (31)

!w,i=!w(yiwTxi); !′w,iyixi j=
,!w(yiwTxi)

,wj
; !′′w,ixi jxik=

,2!w(yiwTxi)
,wjwk

; (32)

-i=
p(s= 1)
p(s= −1)

exp(−vTxi)

and denote the objective function of Optimization Problem 1 by

F(v,w) =
m

&
i=1

-i!w,i+
m+n

&
i=1

!v,i+
1
2#2w

wTw+
1
2#2v

vTv.
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We compute the gradient with respect to v and w.

,F(v,w)

,v j
= −

m

&
i=1

-i!w,ixi j +
m+n

&
i=1

!′v,isixi j +
1
#2v
v j

,F(v,w)

,wj
=

m

&
i=1

-i!′w,iyixi j +
1
#2w

wj.

The Hessian is the matrix of second derivatives.

,2F(v,w)

,v j,vk
=

m

&
i=1

-i!w,ixi jxik +
m+n

&
i=1

!′′v,ixi jxik +
1
#2v
. jk

,2F(v,w)

,v j,wk
= −

m

&
i=1

-i!
′
w,iyixi jxik

,2F(v,w)

,wj,wk
=

m

&
i=1

-i!
′′
w,ixi jxik +

1
#2w

. jk.

We can rewrite the gradient as Xg+S
[

v
w

]

and the Hessian as XΛXT +S using the following defini-
tions, where d is the dimensionality of XT and XL.

gi = −-i!w,i+ !′v,i for i= 1, . . . ,m;
gm+i = −!′v,m+i for i= 1, . . . ,n;

gm+n+i = -i!
′
w,iyi for i= 1, . . . ,m;

Si,i = #−2v for i= 1, . . . ,d;
Sd+i,d+i = #−2w for i= 1, . . . ,d;

Λ =













diag
i=1,...,m

(

-i!w,i+ !′′v,i
)

0 − diag
i=1,...,m

(-i!′w,iyi)

0 diag
i=1,...,n

(

!′′v,m+i
)

0

− diag
i=1,...,m

(-i!′w,iyi) 0 diag
i=1,...,m

(-i!′′w,i)













.

The update step for the Newton gradient descent minimization of Optimization Problem 1 is [v′,w′]T ←
[v,w]T +[*v,*w]T with

(XΛXT +S)
[

*v
*w

]

= −Xg−S
[

v
w

]

.
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Abstract
We have developed an optimized cutting plane algorithm (OCA) for solving large-scale risk mini-
mization problems. We prove that the number of iterations OCA requires to converge to a ! precise
solution is approximately linear in the sample size. We also derive OCAS, an OCA-based linear bi-
nary Support Vector Machine (SVM) solver, and OCAM, a linear multi-class SVM solver. In an ex-
tensive empirical evaluation we show that OCAS outperforms current state-of-the-art SVM solvers
like SVMlight , SVMperf and BMRM, achieving speedup factor more than 1,200 over SVMlight on
some data sets and speedup factor of 29 over SVMperf , while obtaining the same precise sup-
port vector solution. OCAS, even in the early optimization steps, often shows faster convergence
than the currently prevailing approximative methods in this domain, SGD and Pegasos. In addi-
tion, our proposed linear multi-class SVM solver, OCAM, achieves speedups of factor of up to 10
compared to SVMmulti−class . Finally, we use OCAS and OCAM in two real-world applications,
the problem of human acceptor splice site detection and malware detection. Effectively paral-
lelizing OCAS, we achieve state-of-the-art results on an acceptor splice site recognition problem
only by being able to learn from all the available 50 million examples in a 12-million-dimensional
feature space. Source code, data sets and scripts to reproduce the experiments are available at
http://cmp.felk.cvut.cz/˜xfrancv/ocas/html/.
Keywords: risk minimization, linear support vector machine, multi-class classification, binary
classification, large-scale learning, parallelization

1. Introduction

Many applications in, for example, bioinformatics, IT-security and text classification come with
huge numbers (e.g., millions) of data points, which are indeed necessary to obtain state-of-the-
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Berlin, Germany.
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art results. They, therefore, require extremely efficient computational methods capable of dealing
with ever growing data sizes. A wide range of machine learning methods can be described as the
unconstrained regularized risk minimization problem

w∗ = argmin
w∈"n

F(w) :=
1
2
‖w‖2+CR(w) , (1)

where w ∈"n denotes the parameter vector to be learned, 12‖w‖
2 is a quadratic regularization term,

C > 0 is a fixed regularization constant and R : "n → " is a non-negative convex risk function
approximating the empirical risk (e.g., training error).

Special cases of problem (1) are, for example, support vector classification and regression (e.g.,
Cortes and Vapnik, 1995; Cristianini and Shawe-Taylor, 2000), logistic regression (Collins et al.,
2000), maximal margin structured output classification (Tsochantaridis et al., 2005), SVM for multi-
variate performance measures (Joachims, 2005), novelty detection (Schölkopf et al., 1999), learning
Gaussian processes (Williams, 1998) and many others.

Problem (1) has usually been solved in its dual formulation, which typically only uses the com-
putation of dot products between examples. This enables the use of kernels that implicitly compute
the dot product between examples in a Reproducing Kernel Hilbert Space (RKHS) (Schölkopf and
Smola, 2002). On the one hand, solving the dual formulation is efficient when dealing with high-
dimensional data. On the other hand, efficient and accurate solvers for optimizing the kernelized
dual formulation for large sample sizes do not exist.

Recently, focus has shifted towards methods optimizing problem (1) directly in the primal.
Using the primal formulation is efficient when the number of examples is very large and the di-
mensionality of the input data is moderate or the inputs are sparse. This is typical in applications
like text document analysis and bioinformatics, where the inputs are strings embedded into a sparse
high-dimensional feature space, for example, by using the bag-of-words representation. A way to
exploit the primal formulation for learning in the RKHS is based on decomposing the kernel matrix
and thus effectively linearizing the problem (Schölkopf and Smola, 2002).

Due to its importance, the literature contains a plethora of specialized solvers dedicated to
particular risk functions R(w) of problem (1). Binary SVM solvers employing the hinge risk
R(w) = 1

m #
m
i=1max{0,1−yi〈w,xi〉} especially have been studied extensively (e.g., Joachims, 1999;

Zanni et al., 2006; Chang and Lin, 2001; Sindhwani and Keerthi, 2007; Chapelle, 2007; Lin et al.,
2007). Recently, Teo et al. (2007) proposed the Bundle Method for Risk Minimization (BMRM),
which is a general approach for solving problem (1). BMRM is not only a general but also a highly
modular solver that only requires two specialized procedures, one to evaluate the risk R(w) and one
to compute its subgradient. BMRM is based on iterative approximation of the risk term by cutting
planes. It solves a reduced problem obtained by substituting the cutting plane approximation of the
risk into the original problem (1). Teo et al. (2007) compared BMRM with specialized solvers for
SVM classification, SV regression and ranking, and reported promising results. However, we will
show that the implementation of the cutting plane algorithm (CPA) used in BMRM can be dras-
tically sped up making it efficient even for large-scale SVM binary and multi-class classification
problems.

In this paper, we develop an efficient and general algorithm to solve the regularized risk mini-
mization problem (1). Building on the work of Teo et al. (2007), we propose an optimized cutting
plane algorithm (OCA) that extends the standard CPA in two ways. First, unlike CPA, we use the
solution of the reduced problem as a direction in the line-search to directly minimize the original
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(master) problem (1). Second, we introduce a new cutting plane selection strategy that reduces the
number of cutting planes required to achieve the prescribed precision and thus significantly speeds
up convergence. An efficient line-search procedure for the optimization of (1) is the only additional
requirement of OCA compared to the standard CPA (or BMRM).

While our proposed method (OCA) is applicable to a wide range of risk terms R, we will—due
to their importance—discuss in more detail two special cases: learning of the binary (two-class)
and multi-class SVM classifiers. We show that the line-search procedure required by OCA can be
solved exactly for both the binary and multi-class SVM problems in O(m logm) and O(m ·Y 2 +
m ·Y log(m ·Y )) time, respectively, where m is the number of examples and Y is the number of
classes. We abbreviate OCA for binary SVM classifiers with OCAS and the multi-class version
with OCAM.

We perform an extensive experimental evaluation of the proposed methods, OCAS and OCAM,
on several problems comparing them with the current state of the art. In particular, we would like
to highlight the following experiments and results:

• We compare OCAS with the state-of-the-art solvers for binary SVM classification on pre-
viously published data sets. We show that OCAS significantly outperforms the competing
approaches achieving speedups factors of more than 1,200.

• We evaluate OCAS using the large-scale learning challenge data sets and evaluation protocols
described in Sonnenburg et al. (2009). Although OCAS is an implementation of a general
method for risk minimization (1), it is shown to be competitive with dedicated binary SVM
solvers, which ultimately won the large-scale learning challenge.

• We demonstrate that OCAS can be sped up by efficiently parallelizing its core subproblems.

• We compare OCAM with the state-of-the-art implementation of the CPA-based solver for
training multi-class SVM classifiers. We show that OCAM achieves speedups of an order of
magnitude.

• We show that OCAS and OCAM achieve state-of-the-art recognition performance for two
real-world applications. In the first application, we attack a splice site detection problem
from bioinformatics. In the second, we address the problem of learning a malware behavioral
classifier used in computer security systems.

The OCAS solver for training the binary SVM classification was published in our previous
paper (Franc and Sonnenburg, 2008a). This paper extends the previous work in several ways. First,
we formulate OCA for optimization of the general risk minimization problem (1). Second, we give
an improved convergence proof for the general OCA (in Franc and Sonnenburg 2008a the upper
bound on the number of iterations as a function of precision ! scales with O( 1!2 ), while in this
paper the bound is improved to O(1! )). Third, we derive a new instance of OCA for training the
multi-class SVM classifiers. Fourth, the experiments are extended by (i) including the comparison
on the challenge data sets and using the challenge protocol, (ii) performing experiments on multi-
class classification problems and (iii) solving two real-world applications from bioinformatics and
computer security.

The remainder of this paper is organized as follows. The standard cutting plane algorithm
(CPA) to solve (1) is reviewed in Section 2. In Section 3, we point out a source of inefficiency
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of CPA and propose a new optimized cutting plane algorithm (OCA) to drastically reduce training
times. We then develop OCA for two special cases linear binary SVMs (OCAS, see Section 3.1)
and linear multiclass SVMs (OCAM, see Section 3.2). In Section 4, we empirically show that using
OCA, training times can be drastically reduced on a wide range of large-scale data sets including
the challenge data sets. Finally, we attack two real-world applications. First, in Section 5.1, we
apply OCAS to a human acceptor splice site recognition problem achieving state-of-the art results
by training on all available sequences—a data set of 50 million examples (itself about 7GB in size)
using a 12 million dimensional feature space. Second, in Section 5.2, we apply OCAM to learn
a behavioral malware classifier and achieve a speedup of factor of 20 compared to the previous
approach and a speedup of factor of 10 compared to the state-of-the-art implementation of the CPA.
Section 6 concludes the paper.

2. Cutting Plane Algorithm

In CPA terminology, the original problem (1) is called the master problem. Using the approach of
Teo et al. (2007), one may define a reduced problem of (1) which reads

wt = argmin
w

Ft(w) :=
[1
2
‖w‖2+CRt(w)

]

. (2)

(2) is obtained from master problem (1) by substituting a piece-wise linear approximation Rt for the
risk R. Note that only the risk term R is approximated while the regularization term 1

2 ‖w‖
2 remains

unchanged. The idea is that in practise one usually needs only a small number of linear terms in
the piece-wise linear approximation Rt to adequately approximate the risk R around the optimum
w∗. Moreover, it was shown in Teo et al. (2007) that the number of linear terms needed to achieve
arbitrary precise approximation does not depend on the number of examples.

We now derive the approximation to R. Since the risk term R is a convex function, it can be
approximated at any point w′ by a linear under estimator

R(w) ≥ R(w′)+ 〈a′,w−w′〉 , ∀w ∈"n , (3)

where a′ ∈ $R(w′) is any subgradient of R at the pointw′. We will use a shortcut b′ =R(w′)−〈a′,w′〉
to abbreviate (3) as R(w) ≥ 〈a′,w〉+ b′. In CPA terminology, 〈a′,w〉+ b′ = 0 is called a cutting
plane.

To approximate the risk R better than by using a single cutting plane, we can compute a collec-
tion of cutting planes {〈ai,w〉+bi = 0 | i= 1, . . . , t} at t distinct points {w1, . . . ,wt} and take their
point-wise maximum

Rt(w) =max
{

0, max
i=1,...,t

(

〈ai,w〉+bi
)}

. (4)

The zero cutting plane is added to the maximization as the risk R is assumed to be non-negative. The
subscript t denotes the number of cutting planes used in the approximation Rt . It follows directly
from (3) that the approximation Rt is exact at the points {w1, . . . ,wt} and that Rt lower bounds R,
that is, that R(w)≥ Rt(w) ,∀w ∈"n holds. In turn, the objective function Ft of the reduced problem
lower bounds the objective F of the master problem.

Having readily computed Rt , we may now use it in the reduced problem (2). Substituting (4)
with (2), the reduced problem can be expressed as a linearly constrained quadratic problem

(wt ,%t) := argmin
w∈"n,%∈"

[1
2
‖w‖2+C%

]

, (5)
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subject to
%≥ 0 , %≥ 〈ai,w〉+bi , i= 1, . . . , t .

The number of constraints in (5) equals the number of cutting planes t which can be drastically
lower than the number of constraints in the master problem (1) when expressed as a constrained QP
task. As the number of cutting planes is typically much smaller than the data dimensionality n, it is
convenient to solve the reduced problem (5) by optimizing its dual formulation, which reads

&t := argmax
&∈At

Dt(&) :=
[ t

#
i=1

&ibi−
1
2
∥

∥

t

#
i=1
ai&i

∥

∥

2
]

, (6)

where At is a convex feasible set containing all vectors & ∈"t satisfying
t

#
i=1

&i ≤C , &i ≥ 0 , i= 1, . . . , t .

The dual formulation contains only t variables bound by t+1 constraints of simple form. Thus task
(6) can be efficiently optimized by standard QP solvers. Having (6) solved, the primal solution can
be computed as

wt = −
t

#
i=1
ai[&t ]i , and %t = max

i=1,...,t
(〈wt ,ai〉+bi) .

Solving the reduced problem is beneficial if we can effectively select a small number of cutting
planes such that the solution of the reduced problem is sufficiently close to the master problem.
CPA selects the cutting planes using a simple strategy described by Algorithm 1.

Algorithm 1 Cutting Plane Algorithm (CPA)
1: t := 0.
2: repeat
3: Compute wt by solving the reduced problem (5).
4: Add a new cutting plane to approximate the risk R at the current solution wt , that is, compute

at+1 ∈ $R(wt) and bt+1 := R(wt)−〈at+1,wt〉.
5: t := t+1
6: until a stopping condition is satisfied.

The algorithm is very general. To use it for a particular problem one only needs to supply a
formula to compute the cutting plane as required in Step 4, that is, formulas for computing the
subgradient a ∈ $R(w) and the objective value R(w) at given point w.

It is natural to stop the algorithm when

F(wt)−Ft(wt) ≤ ! (7)

holds. Because Ft(wt) is the lower bound of the optimal value, F(w∗), it follows that a solution
wt satisfying (7) also guarantees F(wt)−F(w∗) ≤ !, that is, the objective value differs from the
optimal one by ! at most. An alternative stopping condition advocated in Joachims (2006) stops
the algorithm when R(wt)−Rt(wt) ≤ !̂. It can be seen that the two stopping conditions become
equivalent if we set !=C!̂. Hence we will consider only the former stopping condition (7).

Theorem 1 by Teo et al. (2007) guarantees convergence of the CPA algorithm in O(1! ) time for
a broad class of risk functions:
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Theorem 1 (Teo et al., 2007) Assume that ‖$R(w)‖ ≤ G for all w ∈W , whereW is some domain
of interest containing all wt ′ for t ′ ≤ t. In this case, for any ! > 0 and C > 0, Algorithm 1 satisfies
the stopping condition (7) after at most

log2
F(0)
4C2G2

+
8C2G2

!
−2

iterations.

3. Optimized Cutting Plane Algorithm (OCA)

We first point out a source of inefficiency in CPA and then propose a new method to alleviate the
problem.

CPA selects a new cutting plane such that the reduced problem objective function Ft(wt) mono-
tonically increases w.r.t. the number of iterations t. However, there is no such guarantee for the
master problem objective F(wt). Even though it will ultimately converge arbitrarily close to the
minimum F(w∗), its value can heavily fluctuate between iterations (Figure 1). The reason for these

0 10 20 30 40 50
102

103

104

105 CPA

OCA
F (wb

t )

Ft(wt)

Ft(wt)

F (wt)

iteration t

Figure 1: Convergence behavior of the standard CPA vs. the proposed OCA.

fluctuations is that at each iteration t, CPA selects the cutting plane that perfectly approximates the
master objective F at the current solution wt . However, there is no guarantee that such a cutting
plane will be an active constraint in the vicinity of the optimum w∗, nor must the new solution wt+1
of the reduced problem improve the master objective. In fact, it often occurs that F(wt+1) > F(wt).
As a result, a lot of the selected cutting planes do not contribute to the approximation of the master
objective around the optimum which, in turn, increases the number of iterations.

To speed up the convergence of CPA, we propose a new method which we call the optimized
cutting plane algorithm (OCA). Unlike standard CPA, OCA aims at simultaneously optimizing the
master and reduced problems’ F and Ft objective functions, respectively. In addition, OCA tries to
select cutting planes that have a higher chance of actively contributing to the approximation of the
master objective function F around the optimum w∗. In particular, we propose the following three
changes to CPA.
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Change 1 We maintain the best-so-far best solution wbt obtained during the first t iterations, that is,
F(wb1), . . . ,F(wbt ) forms a monotonically decreasing sequence.

Change 2 The new best-so-far solutionwbt is found by searching along a line starting at the previous
solution wbt−1 and crossing the reduced problem’s solution wt , that is,

wbt =min
k≥0

F(wbt−1(1− k)+wtk) . (8)

Change 3 The new cutting plane is computed to approximate the master objective F at a point wct
which lies in a vicinity of the best-so-far solution wbt . In particular, the point wct is computed
as

wct = wbt (1−µ)+wtµ, (9)

where µ∈ (0,1] is a prescribed parameter. Having the point wct , the new cutting plane is given
by at+1 ∈ $R(wct ) and bt+1 = R(wct )−〈at+1,wct 〉.

Algorithm 2 describes the proposed OCA. Figure 1 shows the impact of the proposed changes
to the convergence. OCA generates a monotonically decreasing sequence of master objective values
and a monotonically and strictly increasing sequence of reduced objective values, that is,

F(wb1) ≥ . . . ≥ F(wbt ) , and F1(w1) < .. . < Ft(wt) .

Note that for CPA only the latter is satisfied. Similar to CPA, a natural stopping condition for OCA
reads

F(wbt )−Ft(wt) ≤ ! , (10)

where ! > 0 is a prescribed precision parameter. Satisfying the condition (10) guarantees that
F(wbt )−F(w∗) ≤ ! holds.

Algorithm 2 Optimized Cutting Plane Algorithm (OCA)
1: Set t := 0 and wb0 := 0.
2: repeat
3: Compute wt by solving the reduced problem (5).
4: Compute a new best-so-far solution wbt using the line-search (8).
5: Add a new cutting plane: compute at+1 ∈ $R(wct ) and bt+1 := R(wct )−〈at+1,wct 〉 where wct

is given by (9).
6: t := t+1
7: until a stopping condition is satisfied

Theorem 2 Assume that ‖$R(w)‖ ≤ G for all w ∈W , where W is some domain of interest con-
taining all wt ′ for t ′ ≤ t. In this case, for any ! > 0, C > 0 and µ∈ (0,1], Algorithm 2 satisfies the
stopping condition (10) after at most

log2
F(0)
4C2G2

+
8C2G2

!
−2

iterations.
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Theorem 2 is proven in Appendix A. Finally, there are two relevant remarks regarding Theo-
rem 2:

Remark 1 Although Theorem 2 holds for any µ from the interval (0,1] its particular value has
impact on the convergence speed in practice. We found experimentally (see Section 4.1) that
µ= 0.1 works consistently well throughout experiments.

Remark 2 Note that the bound on the maximal number of iterations of OCA given in Theorem 2
coincides with the bound for CPA in Theorem 1. Despite the same theoretical bounds, in
practice OCA converges significantly faster compared to CPA, achieving speedups of more
than one order of magnitude as will be demonstrated in the experiments (Section 4). In
the convergence analysis (see Appendix A) we give an intuitive explanation of why OCA
converges faster than CPA.

In the following subsections we will use the OCA Algorithm 2 to develop efficient binary linear
and multi-class SVM solvers. To this end, we develop fast methods to solve the problem-dependent
subtasks, the line-search step (step 4 in Algorithm 2) and the addition of a new cutting plane (step 5
in Algorithm 2).

3.1 Training Linear Binary SVM Classifiers

Given an example set {(x1,y1), . . . ,(xm,ym)} ∈ ("n× {−1,+1})m, the goal is to find a parameter
vector w ∈"n of the liner classification rule h(x) = sgn〈w,x〉. The parameter vector w is obtained
by minimizing

F(w) :=
1
2
‖w‖2+

C
m

m

#
i=1
max{0,1− yi〈w,xi〉} , (11)

which is a special instance of the regularized risk minimization problem (1) with the risk

R(w) :=
1
m

m

#
i=1
max{0,1− yi〈w,xi〉} . (12)

It can be seen that (12) is a convex piece-wise linear approximation of the training error 1m #
m
i=1[[h(xi) .=

yi]].
To use the OCA Algorithm 2 for solving (12), we need the problem-dependent steps 4 and 5.

First, we need to supply a procedure performing the line-search (8) as required in Step 4. Sec-
tion 3.1.1 describes an efficient algorithm solving the line-search exactly in O(m logm) time. Sec-
ond, Step 5 requires a formula for computing a subgradient a ∈ $R(w) of the risk (12) which reads

a= −
1
m

m

#
i=1

'iyixi , 'i =

{

1 if yi〈w,xi〉 ≤ 1 ,
0 if yi〈w,xi〉 > 1 .

Both the line-search and computation of the subgradient can be sped up via the parallelization
described in Section 3.1.2. We call the resulting algorithm the optimized cutting plane algorithm
for SVM (OCAS).
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3.1.1 LINE-SEARCH FOR LINEAR BINARY SVM CLASSIFIERS

The line-search (8) requires minimization of a univariate convex function

F(wbt−1(1− k)+wtk) =
1
2
‖wbt−1(1− k)+wtk‖2+CR(wbt−1(1− k)+wtk) , (13)

with R defined by (12). Note that the line-search very much resembles the master problem (1) with
one-dimensional data. We show that the line-search can be solved exactly in O(m logm) time.

We abbreviate F(wbt−1(1− k)+wtk) by f (k) which is defined as

f (k) := f0(k)+
m

#
i=1

fi(k) =
1
2
k2A0+ kB0+C0+

m

#
i=1
max{0,kBi+Ci} ,

where
A0 = ‖wbt−1−wt‖2
B0 = 〈wbt−1,wt−wbt−1〉 , Bi = C

myi〈xi,w
b
t−1−wt〉 , i= 1, . . . ,m ,

C0 =
1
2
‖wbt−1‖2 , Ci = C

m(1− yi〈xi,wbt−1〉) , i= 1, . . . ,m .

(14)

Hence the line-search (8) involves solving k∗ = argmink≥0 f (k) and computing wbt =wbt−1(1−k∗)+
wtk∗. Since f (k) is a convex function, its unconstrained minimum is attained at the point k∗, at which
the sub-differential $ f (k) contains zero, that is, 0 ∈ $ f (k∗) holds. The subdifferential of f reads

$ f (k) = kA0+B0+
m

#
i=1

$ fi(k) , where $ fi(k) =







0 if kBi+Ci < 0 ,
Bi if kBi+Ci > 0 ,

[0,Bi] if kBi+Ci = 0 .

Note that the subdifferential is not a function because there exist k’s for which $ f (k) is an interval.
The first term of the subdifferential $ f (k) is an ascending linear function kA0+B0 since A0 must be
greater than zero. Note that A0 = ‖wbt−1−wt‖2 equals 0 only if the algorithm has converged to the
optimum w∗, but in this case the line-search is not invoked. The term $ fi(k) appearing in the sum is

k < ki k = ki k > ki
Bi = 0 0 0 0
Bi < 0 Bi [Bi,0] 0
Bi > 0 0 [0,Bi] Bi

Table 1: The value of $ fi(k) with respect to k.

either constantly zero, if Bi = 0, or it is a step-like jump whose value changes at the point ki = −Ci
Bi .

In particular, the value of $ fi(k) w.r.t. k is summarized in Table 1. Hence the subdifferential $ f (k)
is a monotonically increasing function as is illustrated in Figure 2. To solve k∗ = argmink≥0 f (k) we
proceed as follows:

1. We compute the maximal value of the subdifferential $ f (k) at point 0:

max($ f (0)) = B0+
m

#
i=1

[[(Bi < 0∧ ki > 0)∨ (Bi > 0∧ ki ≤ 0)]]Bi .
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2. If max($ f (0)) is strictly greater than zero, we know that the unconstrained minimum
argmink f (k) is attained at a point less than or equal to 0. Thus, the constrained minimum
k∗ = argmink≥0 f (k), that is, the result of the line-search, is attained at the point k∗ = 0.

3. If max($ f (0)) is less than zero, then the optimum k∗ = argmink≥0 f (k) corresponds to the
unconstrained optimum argmink f (k). To get k∗ we need to find an intersection between the
graph of $ f (k) and the x-axis. This can be done efficiently by sorting points K = {ki | ki >
0, i = 1, . . . ,m} and checking the condition 0 ∈ $ f (k) for k ∈ K and for k in the intervals
which split the domain (0,() in the points K. These computations are dominated by sorting
the numbers K, which takes O(|K| log |K|) time.

Computing the parameters (14) of the function f (k) requires O(mn) time, where m is the number
of examples and n is the number of features. Having the parameters computed, the worst-case time
complexities of the steps 1, 2 and 3 are O(m), O(1) and O(m logm), respectively.

3.1.2 PARALLELIZATION

Apart from solving the reduced problem (2), all subtasks of OCAS can be efficiently parallelized:

Output computation. This involves computation of the dot products 〈wt ,xi〉 for all i = 1, . . . ,m,
which requires O(s) time, where s equals the number of all non-zero elements in the training
examples. Distributing the computation equally to p processors reduces the effort to O( sp).

Note that the remaining products with data required by OCAS, that is, 〈wbt ,xi〉 and 〈wct ,xi〉,
can be computed from 〈wt ,xi〉 in time O(m).

ki1

ki3ki2 = k∗|Bi2 |

|Bi1 |

|Bi3 |

0

k

∂f(k)

Figure 2: Graph depicting the subdifferential $ f (k) of the objective function f (k). The line-search
requires computing k∗ = mink≥0 f (k) which is equivalent to finding the intersection k∗
between the graph of $ f (k) and the positive part of the x-axis.
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Line-search. The dominant part is sorting |K| numbers which can be done in O(|K| log |K|) time.
A speedup can be achieved by parallelizing the sorting function by using p processors,
reducing time complexity to O

( |K| log |K|
p

)

. Note that our implementation of OCAS uses
quicksort, whose worst-case time complexity is O(|K|2), although its expected run-time is
O(|K| log |K|).

Cutting plane computation. The dominant part requires the sum − 1
m #

m
i=1'iyixi, which can be

done in O(s') time, where s' = |{i|'i .= 0, ∀i = 1, . . . ,m}| is the number of non-zero 'i.
Using p processors results in a time complexity of O( s'p ).

It is worth mentioning that OCAS usually requires a small number of iterations (usually less
than 100 and almost always less than 1000). Hence, solving the reduced problem, which cannot be
parallelized, is not the bottleneck, especially when the number of examples m is large.

3.2 Training General Linear Multi-Class SVM Classifiers

So far we have assumed that (i) the ultimate goal is to minimize the probability of misclassification,
(ii) the input observations x are vectors from "n and (iii) the label y can attain only two values
{−1,+1}. In this section, we will consider the regularized risk minimization framework applied to
the learning of a general linear classifier (Tsochantaridis et al., 2005).

We assume that the input observation x is from an arbitrary set X and the label y can have
values from Y = {1, . . . ,Y}. In addition, let ) : Y ×Y → " be an arbitrary loss function which
satisfies )(y,y) = 0, ∀y ∈ Y , and )(y,y′) > 0, ∀(y,y′) ∈ Y ×Y , y .= y′. We consider the multi-class
classification rule h : X → Y defined as

h(x;w) = argmax
y∈Y

〈w,*(x,y)〉 ,

where w ∈"d is a parameter vector and* : X ×Y →"d is an arbitrary map from the input-output
space to the parameter space. Given example set {(x1,y1), . . . ,(xm,ym)} ∈ (X ×Y )m, learning the
parameter vector w using the regularized risk minimization framework requires solving problem
(1) with the empirical risk Remp(h(·;w)) = 1

m #
m
i=1 )(h(xi),yi). Tsochantaridis et al. (2005) propose

two convex piece-wise linear upper bounds on risk Remp(h(·;w)). The first one, called the margin
re-scaling approach, defines the proxy risk as

R(w) :=
1
m

m

#
i=1
max
y∈Y

(

)(y,yi)+ 〈*(xi,y)−*(xi,yi),w〉
)

. (15)

The second one, called the slack re-scaling approach, defines the proxy risk as

R(w) :=
1
m

m

#
i=1
max
y∈Y

)(y,yi)
(

1+ 〈*(xi,y)−*(xi,yi),w〉
)

. (16)

In the rest of this section we will derive the OCA solver for minimization of the margin re-scaling
risk (15). Note that modification of the solver to optimize the slack re-scaling risk (16) is straight-
forward and that both variants have exactly the same computational complexity. Note also that for
the special case when )(y,y′) is the 0/1-loss, both (15) and (16) become equivalent.
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To use the OCA Algorithm 2 for the regularized minimization of (15), we need, first, to derive
a procedure performing the line-search (8) required in Step 4 and, second, to derive a formula for
the computation of the subgradient of the risk R as required in Step 5. Section 3.2.1 describes an
efficient algorithm solving the line-search exactly in O(m ·Y 2+m ·Y log(m ·Y )) time. The formula
for computing the subgradient a ∈ $R(w) of the risk (15) reads

a=
1
m

m

#
i=1

(

*(xi, ŷi)−*(xi,yi)
)

,

where
ŷi = argmax

y∈Y

(

)(yi,y)+ 〈*(xi,y)−*(xi,yi),w〉
)

.

We call the resulting method the optimized cutting plane algorithm for multi-class SVM (OCAM).
Finally, note that the subtasks of OCAM can be parallelized in a fashion similar to the binary case
(see Section 3.1.2).

3.2.1 LINE-SEARCH FOR GENERAL MULTI-CLASS LINEAR SVM CLASSIFIERS

In this section, we derive an efficient algorithm to solve the line-search (8) for the margin re-scaling
risk (15). The algorithm is a generalization of the line-search for the binary SVM described in
Section 3.1.1. Since the core idea remains the same we only briefly describe the main differences.

The goal of the line-search is to minimize a univariate function F(wbt−1(1− k)+wtk) defined
by (13) with the risk R given by (15). We can abbreviate F(wbt−1(1−k)+wtk) by f (k) which reads

f (k) := f0(k)+
m

#
i=1

fi(k) =
1
2
k2A0+ kB0+C0+

m

#
i=1
max
y∈Y

(

kByi +Cyi
)

,

where the constants A0, B0, C0, (Byi ,C
y
i ), i = 1, . . . ,m,y ∈ Y are computed accordingly. Similar to

the binary case, the core idea is to find an explicit formula for the subdifferential $ f (k), which,
consequently, allows solving the optimality condition 0 ∈ $ f (k). For a given fi(k), let Ŷi(k) = {y ∈
Y | kByi +Cyi =maxy′∈Y

(

kBy
′

i +Cy
′

i
)

} be a set of indices of the linear terms which are active at the
point k. Then the subdifferential of f (k) reads

$ f (k) = kA0+B0+
m

#
i=1

$ fi(k) where $ fi(k) = co{Byi | y ∈ Ŷi(k)} . (17)

The subdifferential (17) is composed of a linear term kA0+B0 and a sum of maps $ fi : "→ I ,
i = 1, . . . ,m, where I is a set of all closed intervals on a real line. From the definition (17) it
follows that $ fi is a step-function (or staircase function), that is, $ fi is composed of piece-wise
linear horizontal and vertical segments. An explicit description of these linear segments is crucial
for solving the optimality condition 0 ∈ $ f (k) efficiently. Unlike the binary case, the segments
cannot be computed directly from the parameters (Byi ,C

y
i ),y ∈ Y , however, they can be found by

the simple algorithm described below.
First, we introduce an equivalent representation of $ fi. Unlike (17), the new representation

explicitly defines intervals where $ fi(k) is a constant and the points for which the constant value of

2168



OPTIMIZED CUTTING PLANE SUPPORT VECTOR MACHINES

(B2, C2)

kk2
ik1

i

(B̂2
i , Ĉ2

i ) = (B1
i , C1

i )

fi(k) = maxy(kBy
i + Ck

i )

(B̂3
i , Ĉ3

i ) = (B4
i , C4

i )

(B̂1
i , Ĉ1

i ) = (B3
i , C3

i )

Figure 3: Figure shows an example of the function fi(k) which is defined as the point-wise maxi-
mum over linear terms kByi +Cyi , y = 1, . . . ,4. The parameters (B̂zi ,Ĉ

z
i ), z = 1, . . . ,3, and

points kzi , z= 1,2 found by Algorithm 3 are also visualized.

$ fi(k) changes. Let Z ∈ {1, . . . ,Y − 1} be a given integer and k1i , . . . ,k
Z−1
i be a strictly increasing

sequence of real numbers. Then we define a system of Z open intervals {I 1i , . . . ,I Zi } such that

I 1i = (−(,k1i ) , I Zi = (kZ−1i ,() , and I zi = (kz−1i ,kzi ) ,∀1< z< Z .

It can be seen that there exist an integer Z and a sequence k1i , . . . ,k
Z−1
i such that the map $ fi can be

equivalently written as

$ fi(k) =

{

B̂zi if k ∈ I zi ,
[B̂zi , B̂

z+1
i ] if k ∈ kzi ,

(18)

where {B̂1i , . . . , B̂Zi } is a subset of {B1i , . . . ,BYi }. Provided the representation (18) is known for all $ fi,
i= 1, . . . ,m, the line-search k∗ = argmink>0 f (k) can be solved exactly by finding the intersection of
$ f (k) and the x-axis, that is, solving the optimality condition 0 ∈ $ f (k). To this end, we can use the
same algorithm as in the binary case (see Section 3.1.1). The only difference is that the number of
points kzi in which the subdifferential $ f (k) changes its value is higher; m · (Y −1) in the worst case.
As the computations of the algorithm for solving 0 ∈ $ f (k) are dominated by sorting the points kzi ,
the worst-case computational complexity is approximately O(m ·Y log(m ·Y )).

Finally, we introduce Algorithm 3, which finds the required representation (18) for a given $ fi.
In the description of Algorithm 3, we do not use the subscript i to simplify the notation. Figure 3
shows an example of input linear terms (Byi ,C

y
i ), y ∈ Y defining the function fi(k) and the sorted

sequence of active terms (B̂zi ,Ĉ
z
i ),z = 1, . . . ,Z, and points kzi , z = 1, . . . ,Z, in which the activity of

the linear terms changes. At the beginning, the algorithm finds a linear term which is active in the
leftmost interval (−(,k1), that is, the line with the maximal slope. Then the algorithm computes
intersections with the leftmost active linear term that was found and the remaining lines with lower
slopes. The leftmost intersection identifies the next active term. This process is repeated until the
rightmost active term is found. The worst-case computational complexity of Algorithm 3 is O(Y 2).
In turn, the total complexity of the line-search procedure is O(m ·Y 2 +m ·Y log(m ·Y )), that is,
O(m ·Y 2) time is required for running Algorithm 3 m times and O(m ·Y log(m ·Y )) time for solving
the optimality condition 0 ∈ $ fi(k) as described above.
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Algorithm 3 Finding explicit piece-wise linear representation (18) of $ fi
Require: (By,Cy), y ∈ Y
Ensure: Z, {B̂1, . . . , B̂Z}, and {k1, . . . ,kZ−1}
1: ŷ := argmaxy∈Ŷ C

y where Ŷ := {y | By =miny′∈Y By
′
}.

2: Z := 1, k := −( and B̂1 := Bŷ
3: while k < ( do
4: Ŷ := {y | By > Bŷ}
5: if Ŷ is empty then
6: k := (
7: else
8: ÿ := argminy∈Ŷ

Cy−Cŷ
By−Bŷ

9: kZ := Cÿ−Cŷ
Bÿ−Bŷ

10: Z := Z+1
11: B̂Z := Bÿ
12: ŷ := ÿ
13: end if
14: end while

Note that the described algorithm is practical only if the output space Y is of moderate size since
the complexity of the line-search grows quadratically with Y = |Y |. For that reason, this algorithm
is ineffective for structured output learning where the cardinality of Y grows exponentially with the
number of hidden states.

4. Experiments

In this section we perform an extensive empirical evaluation of the proposed optimized cutting
plane algorithm (OCA) applied to linear binary SVM classification (OCAS) and multi-class SVM
classification (OCAM) .

In particular, we compare OCAS to various state-of-the-art SVM solvers. Since several of
these solvers did not take part in the large-scale learning challenge, we perform an evaluation
of SVMlight , Pegasos, GPDT, SGD, BMRM, SVMperf version 2.0 and version 2.1 on previously
published medium-scale data sets (see Section 4.1.1). We show that OCAS outcompetes previous
solvers gaining speedups of several orders of magnitude over some of the methods and we also
analyze the speedups gained by parallelizing the various core components of OCAS.

In addition, we use the challenge data sets and follow the challenge protocol to compare OCAS
with the best performing methods, which were LaRank and LibLinear (see Section 4.1.2). Finally,
in section 4.2, we compare the multi-class SVM solver OCAM to the standard CPA implemented
for multi-class SVM on four real-world problems using the challenge evaluation protocol.

4.1 Comparison of Linear Binary SVM

We first compare OCAS with several binary linear SVM solvers on previously published data sets
followed by an analysis using the challenge criteria on the challenge data sets.
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4.1.1 EVALUATION ON PREVIOUSLY USED DATA SETS

We now compare current state-of-the-art SVM solvers (SGD, Pegasos, SVMlight , SVMperf , BMRM,
GPDT1), on a variety of data sets with the proposed method (OCAS), using 6 experiments measur-
ing:

1. Influence of the hyper-parameter µ on the speed of convergence
2. Training time and objective for optimal C
3. Speed of convergence (time vs. objective)
4. Time to perform a full model selection
5. Effects of parallelization
6. Scalability w.r.t. data set size

To this end, we implemented OCAS and the standard CPA2 in C. We use the very general com-
pressed sparse column (CSC) representation to store the data. Here, each element is represented by
an index and a value (each 64bit). To solve the reduced problem (2), we use our implementation of
improved SMO (Fan et al., 2005). The source code of OCAS is freely available for download as part
of LIBOCAS (Franc and Sonnenburg, 2008b) and as a part of the SHOGUN toolbox (Sonnenburg
and Rätsch, 2007).

All competing methods train SVM classifiers by solving the convex problem (1) either in its
primal or dual formulation. Since in practice only limited precision solutions can be obtained,
solvers must define an appropriate stopping condition. Based on the stopping condition, solvers can
be categorized into approximative and accurate.

Approximative Solvers make use of heuristics (e.g., learning rate, number of iterations) to obtain
(often crude) approximations of the optimal solution. They have a very low per-iteration cost and
low total training time. Especially for large-scale problems, they are claimed to be sufficiently
precise while delivering the best performance vs. training time trade-off (Bottou and Bousquet,
2007), which may be attributed to the robust nature of large-margin SVM solutions. However,
while they are fast in the beginning they often fail to achieve a precise solution. Among the most
efficient solvers to-date are Pegasos (Shwartz et al., 2007) and SGD (Bottou and Bousquet, 2007),
both of which are based on stochastic (sub-)gradient descent.

Accurate Solvers In contrast to approximative solvers, accurate methods solve the optimization
problem up to a given precision !,where ! commonly denotes the violation of the relaxed KKT con-
ditions (Joachims, 1999) or the (relative) duality gap. Accurate methods often have good asymptotic
convergence properties, and thus for small ! converge to very precise solutions being limited only by
numerical precision. Among the state-of-the-art accurate solvers are SVMlight , SVMperf , BMRM
and GPDT.

Because there is no widely accepted consensus on which approach is “better”, we used both
types of methods in our comparison.

1. Solvers include: SGD version 1.1 (svmsgd2) http://leon.bottou.org/projects/sgd, SVMlight 6.01 and
SVMperf 2.1 http://svmlight.joachims.org, pegasos http://ttic.uchicago.edu/˜shai/code/, BMRM
version 0.01 http://users.rsise.anu.edu.au/˜chteo/BMRM.html and GPDT http://dm.unife.it/gpdt.

2. To not measure implementation specific effects (solver, dot-product computation etc.).
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Experimental Setup We trained all methods on the data sets summarized in Table 2. We aug-
mented the Cov1, CCAT, Astro data sets from Joachims (2006) by the MNIST, an artificial dense
data set and two larger bioinformatics splice site recognition data sets for worm and human.3

Data Set MNIST Astro Artificial Cov1 CCAT Worm Human
Examples 70,000 99,757 150,000 581,012 804,414 1,026,036 15,028,326

Dim 784 62,369 500 54 47,236 804 564
Sparsity 19 0.08 100 22 0.16 25 25
Split 77/09/14 43/05/52 33/33/33 81/09/10 87/10/03 80/05/15 -

Table 2: Summary of the data sets used in the experimental evaluation. Sparsity denotes the aver-
age number of non-zero elements of a data set in percent. Split describes the size of the
train/validation/test sets in percent.

These data sets have been used and are described in detail in Joachims (2006), Shwartz et al.
(2007) and Franc and Sonnenburg (2008a). The Covertype, Astrophysics and CCAT data sets were
provided to us by Shai Shalev-Shwartz and should match the ones used in Joachims (2006). The
Worm splice data set was provided by Gunnar Rätsch. We did not apply any extra preprocessing to
these data sets.4

The artificial data set was generated from two Gaussian distributions with different diagonal
covariance matrices of multiple scale. Unless otherwise stated, experiments were performed on a
2.4GHz AMD Opteron Linux machine. We disabled the bias term in the comparison. As stopping
conditions we use the defaults: !light = !gpdt = 0.001, !per f = 0.1 and !bmrm = 0.001. For OCAS we
used the same stopping condition that is implemented in SVMperf , that is, F(w)−Ft(w)

C ≤
!per f
100 = 10−3.

Note that these ! have very different meanings denoting the maximum KKT violation for SVMlight ,
the maximum tolerated violation of constraints for SVMperf and for BMRM the relative duality gap.
For SGD we fix the number of iterations to 10 and for Pegasos we use 100/+, as suggested in
Shwartz et al. (2007). For the regularization parameter C and + we use the following relations:
+ = 1/C, Cper f =C/100, Cbmrm =C and Clight =Cm. Throughout the experiments we use C as a
shortcut forClight .5

Influence of the Hyper-parameter µ on the Speed of Convergence In contrast to the standard
CPA, OCAS has a single hyper-parameter µ (see Section 3). The value of µ determines the point
wct =wbt (1−µ)+wtµ at which the new cutting plane is selected. The convergence proof (see Theo-
rem 2) requires µ to be from the interval (0,1], however, the theorem does not indicate which value
is the optimal one. For this reason, we empirically determined the value of µ.

For varying µ∈ {0.01,0.05,0.1, . . . ,1} we measured the time required by OCAS to train the
classifier on the Astro, CCAT and Cov1 data sets. The regularization constant C was set to the

3. Data sets found at: Worm and Human http://www.fml.tuebingen.mpg.de/raetsch/projects/lsmkl, Cov1
http://kdd.ics.uci.edu/databases/covertype/covertype.html, CCAT http://www.daviddlewis.com/
resources/testcollections/rcv1/, MNIST http://yann.lecun.com/exdb/mnist/.

4. However, we noted that the Covertype, Astro-ph and CCAT data set already underwent preprocessing because the
latter two have ‖xi‖2 = 1.

5. The exact cmdlines are: svm perf learn -l 2 -m 0 -t 0 --b 0 -e 0.1 -c Cper f , pegasos -lambda
+ -iter 100/+ -k 1, svm learn -m 0 -t 0 -b 0 -e 1e-3 -c Clight , bmrm-train -r 1 -m 10000 -i
999999 -e 1e-3 -c Cbmrm, svmsgd2 -lambda + -epochs 10.
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optimal value for the given data set. Figure 4 shows the results. For Astro and CCAT the optimal
value is µ= 0.1 while for Cov1 it is µ= 0.01. For all three data sets the training time does not
change significantly within the interval (0,0.2). Thus we selected µ= 0.1 to be the best value and
we used this setting in all remaining experiments.
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cov1

Figure 4: Training time vs. value of the hyper-parameter µ of the OCAS solver measured on the
Astro, CCAT and Cov1 data sets. The value µ= 0.1 (dash line) is used in all remaining
experiments.

Training Time and Objective For Optimal C We trained all methods on all except the human
splice data set using the training data and measured training time (in seconds) and computed the
unconstrained objective value F(w) (cf. Equation 11).

The results are displayed in Table 3. The proposed method—OCAS—consistently outperforms
all its competitors in the accurate solver category on all benchmark data sets in terms of training
time while obtaining a comparable (often the best) objective value. BMRM and SVMperf implement
the same CPA algorithm but due to implementation-specific details, results can be different. Our
implementation of CPA gives very similar results (not shown).6 Note that for SGD, Pegasos (and
SVMper f2.0—not shown), the objective value sometimes deviates significantly from the true ob-
jective. As a result, the learned classifier may differ substantially from the optimal parameter w∗.
However, as training times for SGD are significantly below all others, it is unclear whether SGD
achieves the same precision using less time with further iterations. An answer to this question is
given in the next paragraph.

Speed of Convergence (Time vs. Objective) To address this problem we re-ran the best meth-
ods, CPA, OCAS and SGD, recording intermediate progress, that is, in the course of optimization
record time and objective for several time points. The results are shown in Figure 5. OCAS was
stopped when reaching the maximum time or a precision of 1−F(w∗)/F(w) ≤ 10−6 and in all
cases achieved the minimum objective. In three of the six data sets, OCAS not only, achieves the

6. In contrast to SVMperf , BMRM and our implementation of CPA did not converge for large C on Worm even after
5000 iterations. Most likely, the core solver of SVMperf is more robust.
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Astro CCAT Cov1 MNIST Worm Artificial
svmlight 2.0939e+03 8.1235e+04 2.5044e+06 6.7118e+05 3.1881e+04 1.3170e+02

2972 22 77429 5295 1027310 41531 622391 2719 2623193 44852 231059 3060
svmperf2.1 2.1180e+03 8.1744e+04 2.5063e+06 6.7245e+05 3.2224e+04 1.3186e+02

38 2 228 228 520 152 1295 228 2029 4436 709 162
svmperf2.0 2.1188e+03 8.1760e+04 2.5071e+06 6.7276e+05 3.2327e+04 1.3182e+02

-1 11 -1 1250 -1 345 -1 6115 -1 16515 -1 455
bmrm 2.1152e+03 8.1682e+04 2.5060e+06 6.7250e+05

42 2 327 248 678 225 2318 4327 -
ocas 2.1103e+03 8.1462e+04 2.5045e+06 6.7158e+05 3.1920e+04 1.3172e+02

21 1 48 25 80 10 137 10 125 258 76 13
pegasos 2.1090e+03 8.1564e+04 2.5060e+06 Error 4.6212e+04 1.3120e+03

2689K 4 70M 127 470M 460 270M 647 82M 213 25K 1
sgd 2.2377e+03 8.2963e+04 2.6490e+06 1.3254e+06 2.1299e+05 1.8097e+02

10 1 10 4 10 1 10 1 10 9 10 2
gpdt 1.1725e+03 1.5418e+05 1.3034e+06 5.9796e+06 1.3205e+04 1.2642e+02

130 5 3570 2263 4844 1794 526 118 38092 39095 615 137

Table 3: Training time for optimal C comparing OCAS with other SVM solvers. ”-” means not
converged, blank not attempted. Shown in bold is the unconstrained SVM objective value
Eq. (11). The two numbers below the objective value denote the number of iterations
(left) and the training time in seconds (right). Lower time and objective values are better.
All methods solve the unbiased problem. As convergence criteria, the standard settings de-
scribed in Section 4.1.1 are used. OnMNIST Pegasos ran into numerical problems. OCAS
clearly outperforms all of its competitors in the accurate solver category by a large mar-
gin achieving similar and often the lowest objective value. The objective value obtained
by SGD and Pegasos is often far away from the optimal solution; see text for a further
discussion.

best objective as expected at a later time point, but already from the very beginning. Further analysis
made clear that OCAS wins over SGD in cases where large Cs were used and thus the optimization
problem is more difficult. Still, plain SGD outcompetes even CPA. One may argue that, practi-
cally, the true objective is not the unconstrained SVM-primal value (11) but the performance on
a validation set, that is, optimization is stopped when the validation error does not change. This
has been discussed for leave-one-out in Franc et al. (2008) and we—to some extent—agree with
this. One should, however, note that in this case one does not obtain an SVM but some classifier
instead. A comparison should not then be limited to SVM solvers but should also be open to any
other large scale approach, like online algorithms (e.g., perceptrons). We argue that to compare
SVM solvers in a fair way one needs to compare objective values. We therefore ran Pegasos using
a larger number of iterations on the Astro and splice data sets. On the Astro data set, Pegasos sur-
passed the SVMlight objective after 108 iterations, requiring 228 seconds. SVMlight , in comparison,
needed only 22 seconds. Also, on the splice data set we ran Pegasos for 1010 iterations, which took
13,000 seconds and achieved a similar objective as that of SVMper f2.0, requiring only 1224 sec-
onds. Finally, note that, although BMRM, SVMperf and our implementation of CPA solve the same
equivalent problem using the CPA, differences in implementations lead to varying results.7 Since it

7. Potentially due to a programming error in this pre-release of BMRM, it did not show convergence on the splice data
set even after > 6500 iterations.
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Worm Artificial
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Figure 5: Objective value vs. training time of CPA (red), SGD (green) and OCAS (blue) measured
for different numbers of training examples.The dashed line shows the time required to
run SGD for 10 iterations. OCAS was stopped when the precision fell below 10−6 or the
training time for CPA was achieved. In all cases, OCAS achieves the minimal objective
value and, even from the beginning, outperforms all other methods, including SGD, on
half of the data sets.
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is still interesting to see how the methods perform w.r.t. classification performance, we describe the
analysis under this criterion in the next paragraph.

Time to Perform a Full Model Selection When using SVMs in practice, their C parameter needs
to be tuned during model selection. We therefore train all methods using different settings8 for C on
the training part of all data sets, evaluate them on the validation set and choose the best model to do
predictions on the test set. As the performance measure, we use the area under the receiver operator
characteristic curve (auROC) (Fawcett, 2003). Results are displayed in Table 4.

Astro CCAT Cov1 MNIST Worm Artificial
avg svm perf 98.15±0.00 98.51±0.01 83.92±0.01 95.86±0.01 99.45±0.00 86.38±0.02

svmlight 1 152 1 124700 10 282703 10 9247 0.5 86694 0.005 42491
svmperf2.0 1 67 1 20827 50 1765 5 21113 5 106241 0.005 111621
svmperf2.1 1 13 1 1750 5 781 10 887 1 22983 0.005 24520

bmrm 1 17 1 2735 10 1562 10 20278 -
ocas 1 4 1 163 50 51 10 35 0.1 1438 0.005 6740

pegasos 98.15 98.51 83.89 95.84 99.27 78.35
1 59 1 2031 5 731 5 2125 5 1438 5 201

sgd 98.13 98.52 83.88 95.71 99.43 80.88
0.5 1 1 20 1 5 1 3 0.005 69 0.005 7

gpdt 1 30 1 33693 5 11615 10 408 0.5 283941 0.005 90807

Table 4: Model selection experiment comparing OCAS with other SVM solvers. ”-” means not
converged, blank not attempted. Shown in bold is the area under the receiver operator
characteristic curve (auROC) obtained for the best model chosen based on model selection
over a wide range of regularization constants C. In each cell, numbers on the left denote
the optimal C, numbers on the right the training time in seconds to perform the whole
model selection. Because there is little variance, for accurate SVM solvers only the mean
and standard deviation of the auROC are shown. SGD is clearly fastest achieving similar
performance for all except the artificial data set. However, often aC smaller than the ones
chosen by accurate SVMs is selected—an indication that the learned decision function
is only remotely SVM-like. Among the accurate solvers, OCAS clearly outperforms its
competitors. It should be noted that training times for all accurate methods are dominated
by training for large C (see Table 3 for training times for the optimal C). For further
discussion see the text.

Again, among the accurate methods OCAS outperforms its competitors by a large margin, fol-
lowed by SVMperf . Note that for all accurate methods the performance is very similar and has
little variance. Except for the artificial data set, plain SGD is clearly fastest while achieving a sim-
ilar accuracy. However, the optimal parameter settings for accurate SVMs and SGD are different.
Accurate SVM solvers use a larger C constant than SGD. For a lower C, the objective function is
dominated by the regularization term ‖w‖. A potential explanation is that SGD’s update rule puts
more emphasis on the regularization term, and SGD, when not run for a large number of iterations,
does imply early stopping.

Our suggestion for practitioners is to use OCAS whenever a reliable and efficient large-scale
solver with proven convergence guarantees is required. This is typically the case when the solver is

8. For Worm and Artificial we used C ∈ {0.001,0.005,0.01,0.05,0.1,0.5,1,5}, for CCAT, Astro, Cov1 C ∈
{0.1,0.5,1,5,10} and for MNISTC ∈ {1,5,10,50,100}.
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Figure 6: This figure displays how the methods scale with data set size on the Worm splice data set.
The slope of the “lines” in this figure denotes the exponent e in O(me), where the black
line denotes linear effort O(m).

to be operated by non-expert users who know little (or nothing) about tuning the hyper-parameters of
the optimization algorithm. Therefore, as long as the full data set fits into memory, we recommend
OCAS. Otherwise, if sub-sampling is not an option, online approximative solvers like SGD are the
only viable way to proceed.

Effects of Parallelization As OCAS training times are very low on the above data sets, we also
apply OCAS to the 15 million human splice data set. Using a 2.4GHz 16-core AMD Opteron Linux
machine, we run OCAS usingC= 0.0001 on 1 to 16 CPUs and show the accumulated times for each
of the subtasks, the total training time and the speedup w.r.t. the single CPU algorithm in Table 5.
Also shown is the accumulated time for each of the threads. As can be seen—except for the line-

CPUs 1 2 4 8 16
speedup 1 1.77 3.09 4.5 4.6
line search (s) 238 184 178 139 117
at (s) 270 155 80 49 45
output (s) 2476 1300 640 397 410
total (s) 3087 1742 998 684 671

Table 5: Speedups due to parallelizing OCAS on the 15 million human splice data set.

search—computations distribute nicely. Using 8 CPU cores the speedup saturates at a factor of 4.5,
most likely as memory access becomes the bottleneck (for 8 CPUs output computation creates a
load of 28GB/s just on memory reads).

Scalability w.r.t. Data Set Size In this section, we investigate how computational times of OCAS,
CPA and SGD scale with the number of examples on the Worm splice data set for sizes 100 to
1,026,036. Results are shown in Figure 6. We again use our implementation of CPA which shares
essential sub-routines with OCAS. Both OCAS and SGD scale roughly linearly. Note that SGD is
much faster (because it runs for a fixed number of iterations and thus stops early).
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4.1.2 EVALUATION ON CHALLENGE DATA

In this section, we use the challenge data sets and follow the challenge protocol to compare OCAS
to the best-performing methods, which were LaRank (Bordes et al., 2007) and LibLinear (Fan et al.,
2008). To this end, we apply OCAS to the challenge data sets Alpha, Gamma and Zeta following
the challenge protocol for the SVM track.

The data sets are artificially generated based on a mixture of Gaussians and have certain prop-
erties (see Table 6): The Alpha data set is separable with a large margin using quadratic features.

Optimal Number of examples
Data Set Model training testing validation Dim. Description
Alpha quadratic 500,000 300,000 100,000 500 well separable
Gamma semi-quadratic 500,000 300,000 100,000 500 Multiscale low var.
Zeta linear 500,000 300,000 100,000 2000 Intrinsic dim. 400

Table 6: Summary of the three challenge data sets used: Alpha, Gamma, Zeta.

The Gamma data set is well separable too, but contains features living on different scales. Fi-
nally, the optimal model for Zeta is a linear classifier—of its 2,000 features 1,600 are nuisance
dimensions. The challenge protocol requires training on the unmodified data sets with C = 0.01
and precision ! = 0.01. To measure convergence speed, objective values are measured while train-
ing. The second challenge experiment simulates model selection by training for different C ∈
{0.0001,0.001,0.01,0.1,1,10}.

The left column in Figure 7 displays the course of convergence of the three methods. While
OCAS is quite competitive on Gamma and Zeta in this experiment, it is slower on Alpha. It should
also be noted that OCAS, in contrast to the online-style algorithms LaRank and LibLinear, has to
do a full pass through the data in each iteration. However, it usually requires very few iterations to
obtain precise solutions.

In the simulated model selection experiment (right column of Figure 7), OCAS performs well
for low values of C on all data sets. However, at first glance it is competitive for large values of C
only on Zeta. Investigating objective values on Gamma for LibLinear, we noticed that they signifi-
cantly deviate (objective values much larger, deviation by 50% forC= 10) from LaRank/OCAS for
C ∈ {1,10}. Still, on Alpha OCAS is slower.

4.2 Comparison of Linear Multi-Class SVMs

In this section, we compare the proposed multi-class SVM solver OCAM described in Section 3.2
with multi-class CPA (CPAM). We consider the Crammer and Singer (2001) formulation of multi-
class SVMs which corresponds to the minimization of the following convex objective,

F(w) :=
1
2
‖w‖2+

C
m

m

#
i=1
max
y∈Y

(

[[yi .= y]]+ 〈wy−wyi ,xi〉
)

, (19)

wherew= [w1, . . . ,wY ] is a matrix of parameter vectors and {(x1,yi), . . . ,(xm,ym)}∈ ("n×Y )m is a
set of training examples. The multi-class classification rule then reads h(x) =
argmaxy∈Y 〈x,wy〉.
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Figure 7: Results of LaRank, LibLinear and OCAS on the Alpha, Gamma and Zeta challenge data
sets. The left column of the figures displays the unconstrained SVM primal objective (11)
(C is not scaled with m) w.r.t. SVM training time for fixed C = 0.01. The right column
displays the SVM training time for different C. We omitted the data set size vs. CPU
time figure since all three methods show a similar curve (a line with slope ≈ 1 in log-
log representation, corresponding to the expected O(m) effort) . Note that for the Zeta
data set OCAS converges after a single pass through the data, which results in collapsing
the performance curve into a single point. For low C, OCAS achieves very competitive
results. For further explanation see text.
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We implemented OCAM and CPAM in C, exactly according to the description in Section 3.2.
Both implementations use the Improved Mitchel-Demyanov-Malozemov algorithm (Franc, 2005)
as the core QP solver and they use exactly the same functions for the computation of cutting planes
and classifier outputs. The implementation of both methods is freely available for download as
part of LIBOCAS (Franc and Sonnenburg, 2008b). The experiments are performed on an AMD
Opteron-based 2.2GHz machine running Linux.

In the evaluation we compare OCAM with CPAM to minimize programming bias. In addition,
we perform a comparison with SVMmulti−class v2.20 later in Section 5.2.

We use four data sets with inherently different properties that are summarized in Table 7. The
Malware data set is described in Section 5.2. The remaining data sets, MNIST, News20 and Sector,
are downloaded from http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multiclass.
html. We used the versions with the input features scaled to the interval [0,1]. Each data set is ran-
domly split into a training and a testing part.

features number of num. of examples
number of type classes training testing

Malware 3,413 dense 14 3,413 3,414
MNIST 780 dense 10 60,000 10,000
News20 62,060 sparse 20 15,935 3,993
Sector 55,197 sparse 105 6,412 3,207

Table 7: Multi-class data sets used in the comparison of OCAM and CPAM.

Malware MNIST News20 Sector
error time error time error time error time

Standard CPAM 10.25 12685 7.07 15898 14.45 7276 5.58 12840
Proposed OCAM 10.16 1705 7.08 5387 14.45 1499 5.61 3970
speedup 7.4 3.0 4.9 3.2

Table 8: Comparison of OCAM and CPA on a simulated model selection problem. The reported
time corresponds to training over the whole range of regularization constantsCs. The error
is the minimal test classification over the classifiers trained with differentCs.

In the first experiment, we train the multi-class classifiers on training data with a range of
regularization constants C = {100,101, . . . ,107} (for Malware C = {100, . . . ,108} since the op-
timal C = 107 is the boundary value). Both solvers use the same stopping condition (10) with
! = 0.01F(w). We measure the total time required for training over the whole range of Cs and the
best classification error measured on the testing data. Table 8 summarizes the results. While the
classification accuracy of OCAM and CPAM are comparable, OCAM consistently outperforms the
standard CPAM in terms of runtime, achieving speedup of factor from 3 to 7.4.

In the second experiment, we measure the three performance figures defined in the large-scale
challenge: (i) the objective value as a function of the runtime, (ii) the runtime as a function of C
and (iii) the runtime as a function of the data set size. For figures (i) and (ii) we use the optimal
C obtained in the first experiments. Results for the first three data sets are shown in Figure 8.
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Figure 8: Results of the standard CPAM and the proposed OCAM on the Malware, MNIST and
News20 data sets. The left column of figures displays the unconstrained SVM objec-
tive (19) w.r.t. SVM training time. The middle column displays the training time as a
function of the number of examples. In both experimentsC was fixed to its optimal value
as determined in model selection. The right column shows the training time for different
Cs. See text for a discussion of the results.

The objective vs. time figure is consistent with the results obtained in Section 4.1 for the two-class
variant, that is, the objective value of the standard CPAM significantly fluctuates while OCAM
decreases the objective monotonically and converges faster in all cases. The data size vs. time
figure shows that in both cases the runtime is approximately linear w.r.t. the number of examples,
though the curve of CPAM grows slightly faster compared to OCAM. The main difference shows
the figure depicting the runtime as a function of C. It is seen that OCAM is considerably faster for
large values ofC, which is crucial for efficient model selection (see the experiment in Section 5.2) .
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5. Applications

In this section we attack two real-world applications. First, in Section 5.1, we apply OCAS to a
human acceptor splice site recognition problem. Second, in Section 5.2, we use OCAM for learning
a behavioral malware classifier.

5.1 Human Acceptor Splice Site Recognition

To demonstrate the effectiveness of our proposed method, OCAS, we apply it to the problem of
human acceptor splice site detection. Splice sites mark the boundaries between potentially protein-
coding exons and (non-coding) introns. In the process of translating DNA to protein, introns are
excised from pre-mRNA after transcription (Figure 9). Most splice sites are so-called canonical
splice sites that are characterized by the presence of the dimers GT and AG at the donor and acceptor
sites, respectively.

Figure 9: The major steps in protein synthesis. In the process of converting DNA to messenger
RNA, the introns (green) are spliced out. Here we focus on detecting the so-called ac-
ceptor splice sites that employ the AG consensus and are found at the “left-hand side”
boundary of exons. Figure taken from (Sonnenburg, 2002).

However, the occurrence of the dimer alone is not sufficient to detect a splice site. The classifi-
cation task for splice site sensors, therefore, consists in discriminating true splice sites from decoy
sites that also exhibit the consensus dimers. Assuming a uniform distribution of the four bases,
adenine (A), cytosine (C), guanine (G) and thymine (T), one would expect 1/16th of the dimers to
contain the AG acceptor splice site consensus. Considering the size of the human genome, which
consists of about 3 billion base pairs, this constitutes a large-scale learning problem (the expected
number of AGs is 180 million).

Many different methods to detect splice sites have been proposed. They all predict splice sites
based on the local context, that is, a short window around the AG dimer. Currently, support vec-
tor machines are the most accurate splice site detectors (Degroeve et al., 2005; Sonnenburg et al.,
2007b). Sonnenburg et al. (2007b) showed that prediction accuracy steadily increases with training
sample size. However, even though they already used the linadd algorithm (Sonnenburg et al.,
2007a) to speed up string kernel-based SVMs on a quad-core system, they could not use all avail-
able 50 million training points (but “only” 8 million). The string kernel that performed best was the
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weighted degree (WD) string kernel with shifts (Rätsch et al., 2005). It basically counts matching
k-mers for various k in a position-dependent way. Employing a giant string kernel feature space,
Sonnenburg et al. (2007b) achieved 45.58%± 0.38 aoPRC in a genome-wide study on human ac-
ceptor splice sites—also available as the DNA data set used in the large-scale learning challenge.

On the other hand, Degroeve et al. (2005) trained a linear SVM based on a number of pre-
selected and explicitly computed string kernel feature spaces that are subsets from the spectrum
(Leslie et al., 2002) and WD kernel (Rätsch et al., 2005) feature spaces: Left and right of the splice
site spectrum kernels of order 3 up to order 6 were used (Leslie et al., 2002). Over the whole
window, a WD kernel of order 3 with weights equal to 1 was used (Rätsch and Sonnenburg, 2004).
Even though this approach scales well, they used < 100,000 data points (potentially, since they
relied on the unmodified SVMlight binary).

Here, we propose to train OCAS on all available 50 million strings of length 141 from Son-
nenburg et al. (2007b) using the features corresponding to two weighted spectrum kernels (one left
and one right of the splice site, that is, positions 1-59 and 62-141) and a WD kernel (applied to the
whole string). For the spectrum kernels of order 1 up to 8 and for the WD kernel of order 8 is used.
Thus, the spanned string kernel feature space has 12,495,340 dimensions.

As the raw string-based data set already has a size of 7.1 ·109 bytes and even a sparse represen-
tation of each string would increase the data set by a factor of more than 3,000 ((141+59+80) ·12
bytes per feature vector, assuming a 4 byte integer and an 8 byte float), we will implicitly compute
features from the raw input strings on demand. The only required operations in OCAS for which we
will have to expand the features are the addition to a dense vector w← w+&,(x) and the output
computation w ·,(x).

We implemented a rather general framework that allows stacking of arbitrary features that sup-
port such operations (dense and sparse real-valued, weighted spectrum and WD kernel features for
specified k-mer length). As we know from Section 4.1.1, most time is spent in computing outputs,
hence we parallelized this part of the code (based on shared memory parallelization, that is, posix
threads).

Before training on the 50 million examples, we perform model selection on only 1 million
examples to determine the optimal k-mer length for the two spectrum kernels, the WD kernel and
its weighting and the SVM regularization constant C. The optimal parameter setting was found to
be C = 1, kwspec = 8, kwd = 8, where the WD kernel weights are taken from the first 8 weights
of the weights of a wd kernel of order 40.9 Parameters were selected from C ∈ {0.5,1,3,5,10},
kwspec ∈ {3,6,8}, kwd = {3,6,8} with the WD kernel-weighting from order 8, 25 or 40.

We then trained on 50 million examples on an 8-core AMD Opteron Linux-based machine,
obtaining a record area over the precision recall curve (aoPRC) of 42.23%. For comparison, the
previous best method achieved aoPRC of 45.58% (variance 0.38%). Note that this is the DNA data
set used in the large-scale learning challenge, for which the best participant obtained an aoPRC
of 80.89% (lower is better). OCAS converged in just 138 iterations, however, the total training
time was about 40 hours, of which almost 34 hours were spent on computing outputs (already in a
parallelized way; see Table 9 for the detailed timing statistics). Even though we observed that this
parallelization was quite effective, it suggests that we are measuring random memory access speed.
Due to the size of the normal vector (about 100MB since we are using double precision floats) we
see only cache misses. This suggests that even using just single precision floats would reduce the

9. In Sonnenburg (2008) it was suggested that the WD kernel-weighting influences the effect of mismatches of the WD
kernel score.
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training time by 17 hours. Even though modern DDR-SDRAM is capable of speeds of up to 8
GB/s (Wikipedia, 2009) when being accessed in a linear way, we observed a memory speed of only
1.4GB/s on this system. It turns out that only DDR-333 memory is installed with a peak transfer
rate of 2.7GB/s. Thus, additional speedups can be achieved by distributed memory parallelization
and by grouping the access of features in w to minimize cache misses. Alternatively, switching to
a many-core architecture like the NVIDIA Tesla s1070 computing system10 that employs 960 CPU
cores and a peak memory rate of 400GB/s could drastically reduce training times, potentially to
even under 1 minute. Finally, it should be noted that storing the 138 cutting planes required almost
13 GB of memory.

Iterations Output Line Search Add at Solver Total
138 34 hours 222s 7 hours 5min 41 hours

Table 9: Timing statistics for the human acceptor splice site experiment.

5.2 Malware Classification

Malware is malicious software that occurs in the form of Internet worms, computer viruses and
Trojan horses. Due to an enormous increase of new variants of malware, methods for its automatic
detection and categorization are becoming crucial in modern anti-malware products. Rieck et al.
(2008) propose a malware behavioral classifier trained from labeled examples. Malware binaries
are collected via honeypots and spam-traps, and malware family labels are generated by running an
anti-virus tool. This results in a corpus of more than 10,000 unique malware instances. The behavior
of each binary is monitored in a sand box environment and behavior-based analysis reports summa-
rizing operations, such as opening an outgoing IRC connection or stopping a network service, are
generated. The reports have a form of text files which are then embedded into a high-dimensional
vector space using the bag-of-words model. Finally, a discriminative multi-class SVM classifier is
trained.

Rieck et al. (2008) use the multi-class classifier based on one-against-all decomposition, where
each binary classifier is trained by a kernel SVM. To increase classification performance, the scale
of the independently trained binary discriminant functions, forming the multi-class classifier, is
normalized by fitting a logistic function. Rieck et al. (2008) report promising results achieving 88%
classification accuracy, which is competitive with commercial anti-virus software tools handcrafted
manually by computer security experts. Apart from the classification accuracy, the ability to re-
train swiftly on new examples is a crucial feature for practical application of the system. While the
classification accuracy was the main focus in Rieck et al. (2008), the issue of fast training was not
addressed. The SVMlight that they used required approximately 13-14 hours to perform the whole
model selection on a high-end single CPU computer.11

To resolve the problem of fast training, we apply our proposed OCAM solver and compare its
performance with SVMmulti−class (Joachims et al., 2009). SVMmulti−class version 2.2012 is a highly
optimized implementation of CPAM which uses numerous heuristic speedups like adaptive accu-

10. Found at http://www.nvidia.com/object/product_tesla_s1070_us.html.
11. Personal communication with authors of Rieck et al. (2008).
12. Found at http://www.cs.cornell.edu/People/tj/svm_light/svm_multiclass.html.
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racy management, caching or 1-slack reformulation (for more details see Joachims et al. 2009).
Note that OCAM is the plain implementation of the proposed Algorithm 2, hence there is still the
possibility to improve its performance by implementing the same heuristics. SVMmulti−class

optimizes a slightly modified risk R′(w) = 1
m #

m
i=1maxy∈Y

(

100[[yi .= y]]+ 〈wy−wyi ,xi〉
)

. To make
objectives of SVMmulti−class and OCAM equivalent we use the transform: xi = x′i/100 and C =
100C′ where x′i andC′ denote inputs and the regularization constant used by SVMmulti−class . SVMmulti−class

stops optimization when F(wt)−Ft(wt)≤C!′, hence we apply !=C!′ in OCAM to use equivalent
stopping conditions. In addition, we use !′ = 0.1, which is the default setting in SVMmulti−class .

solver error [%] training time
SVMmulti−class v2.20 11.45±0.72 25,330 sec ≈ 7 hours
OCAM 11.49±0.91 2,451 sec ≈ 40 minutes
Rieck et al. (2008) 12 ≈ 13-14 hours

Table 10: Comparison of SVMmulti−class v2.20 with the proposed OCAM on the malware classifi-
cation problem. The reported error is a 5-fold cross-validation estimate of the per-class
average classification error. The training time refers to the total time required by model
selection. We also compare with the previous results reported in Rieck et al. (2008).
OCAS achieves a speedup of factor 10 over SVMmulti−class and of factor 20 compared to
the one-against-all based classifier trained by kernel SVMlight used in Rieck et al. (2008).

We adopted the evaluation protocol from Rieck et al. (2008). The classification accuracy is
measured in terms of average per-class classification error, that is, E = 1

Y #y∈Y
1
mi #i|yi=y[[yi .= h(xi)]],

where mi is the number of examples in the i-th class. The malware corpus of 10,072 examples is
randomly split 5 times into training, validation and testing partitions of approximately equal size.
The training partition is used to train the multi-class SVM using a range of different regularization
constantsC ∈ {100,101, . . . ,1010}. The bestC is selected based on classification accuracy measured
on the validation part. Finally, we report average and standard deviations of the per-class average
classification error computed on testing data over the 5 random splits.

Due to the very high-dimensional feature space, the explicit representation of the input vectors
is inefficient. To apply the linear SVM solvers, we use the standard trick of representing the kernel
matrix by the whitened empirical kernel map (Schölkopf and Smola, 2002). This representation
reduces the number of features to the number of training examples. The runtime required by the
singular value decomposition (SVD) to compute the whitened matrix is approximately 5 minutes,
which is negligible w.r.t. the runtime of the SVM solvers. Note that training linear SVMs on the
whitened kernel map is equivalent to training the kernel SVM classifier.

The experiments are performed on a laptop computer with an Intel CPU @ 1.8 GHz. Table 10
summarizes the results. The classification performance of SVMmulti−class and OCAM is almost
identical. The performance of both methods is slightly better than the results reported by Rieck et al.
(2008), who used a heuristic one-against-all decomposition combined with the logistic regression.
Comparison of the runtimes shows that the proposed OCAM is more than 10 times faster than the
competing SVMmulti−class and more than 20 times faster than the SVMlight solver used in Rieck et al.
(2008).

2185



FRANC AND SONNENBURG

6. Conclusions

We have developed a novel method for solving large-scale risk minimization problems. Our pro-
posed optimized cutting plane algorithm (OCA) extends the standard CPA algorithm of Teo et al.
(2007) by, first, optimizing directly the primal problem via a line-search and, second, developing
a new cutting plane selection strategy which significantly reduces the number of cutting planes
needed to achieve an accurate solution. We have shown that the number of iterations OCA requires
to converge to a !-precise solution is approximately linear in the sample size. Applying OCA to two
important learning problems, we obtained very fast specialized solvers for linear binary SVM clas-
sification (OCAS), and linear multi-class SVM classification (OCAM). In an extensive empirical
evaluation on a large variety of problems comparing the proposed OCA with previous state-of-the-
art SVM solvers, we achieved (depending on the task) speedups of up to three orders of magnitude
obtaining the same precise SV solution. By parallelizing the subtasks of the algorithm, OCAS
gained additional speedups of factors of up to 4.6 on a multi-core multiprocessor machine. Ap-
plying OCAS to a real-world splice site detection problem, we were able to train on a 12-million
dimensional data set containing 50 million examples, achieving a new record performance for that
task. Finally, we could reduce the training time on a malware classification problem by a factor of
20 over the previous approach. It remains as future work to derive OCAS for general structured out-
put learning problems. Furthermore, we plan to extend OCAS to incorporate a bias term. Finally, it
will be future work to investigate how the kernel framework can be incorporated into OCAS.
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Appendix A. Convergence Analysis

In this section we prove the convergence of OCA (Theorem 2). The core of the proof is adopted
from Teo et al. (2007) who proved the Convergence Theorem 1 of the standard CPA. The main idea
of the convergence theorem is based on deriving a lower bound on the improvement of the duality
gap F(wbt )−Ft(wt) = !t and expressing this lower bound as a difference inequality (20), defined in
Theorem 3. Having the difference inequality, (20) the proof of the convergence Theorem 2 follows
easily.

The most laborious part is thus proving the auxiliary Theorem 3. The lower bound on the
improvement !t − !t+1, which is the core inequality (20) in Theorem 3, is proven by showing that
the objective value of the reduced problem solved at iteration t+1 must increase, provided the new
added cutting plane violates the constraints of the reduced problem at iteration t. In the standard
CPA, it is trivial to show that the new added cutting plane violates these constraints by at least !t .
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Due to the sophisticated cutting plane selection strategy used in OCA, the violation of constraints
is not obvious. Nevertheless, it can be proven, as we show in Lemma 1. Lemma 1 constitutes the
main difference in the proofs of the standard CPA and the proposed OCA. The same lemma also
explains why OCA converges faster than CPA. It will be shown that the minimal improvement of
the reduced problem objective is a function of the constraint violation. While in the standard CPA
the violation is guaranteed to be !t , the inequality (21) shows that the new cutting plane added in
OCA violates the constraints by !t + C

2 ‖w
c
t −wt‖2. Unfortunately, we do not know how to bound

the second term and thus the resulting lower bounds are the same for both algorithms.
The rest of this section is organized as follows. We first derive Lemmas 1, 2 and then we prove

the auxiliary Theorem 3. Finally, we give the proof of the Convergence Theorem 2, which uses all
previous results.

Theorem 3 Assume that ‖$R(w)‖ ≤ G for all w ∈W , where W is some domain of interest con-
taining all wt ′ for t ′ ≤ t, and that F(wbt )−Ft(wt) = !t > 0. In this case

!t − !t+1 ≥
!t
2
min

{

1,
!t

4C2G2

}

. (20)

Lemma 1 Let F(wbt ) − Ft(wt) = !t > 0. Then Algorithm 2 computes a new cutting plane
〈w,at+1〉+ bt+1 = 0 which violates the constraints of the reduced problem (5) solved in the t-th
iteration by at least !tC , that is, it holds that

C
(

bt+1+ 〈wt ,at+1〉−%t
)

≥ !t +
C
2
‖wct −wt‖2 ≥ !t . (21)

PROOF : We use the subgradient wct +Cat+1 ∈ $F(wct ) to put a lower bound on the master objective
F by means of a linear function at the point wct , that is,

f (w) = F(wct )+ 〈wct +Cat+1,w−wct 〉 ≤ F(w) , ∀w ∈"n . (22)

In Step 4 of Algorithm 2, the new best-so-far solution, wbt , is computed as the minimizer of F
over the line connecting the old best-so-far solution, wbt−1, and the solution of reduced problem wt .
In step 5, the new cutting plane 〈w,at+1〉+ bt+1 = 0 is taken at the point wct = wbt (1−µ)+wtµ,
µ ∈ (0,1]. Hence we conclude that F(wbt ) ≤ F(wct ). Using the latter inequality and the lower
bound (22), we obtain

f (wbt ) ≤ F(wbt ) ≤ F(wct ) = f (wct ) .

Since wct lies on the line segment connecting wbt with wt and because f (wbt ) ≤ f (wct ) we conclude
that

f (wct ) ≤ f (wt) . (23)
Note that the inequality (23) holds only for µ∈ (0,1]. Using (22) we can rewrite (23) as

F(wct ) ≤ F(wct )+ 〈wct +Cat+1,wt−wct 〉 . (24)

Combining F(wbt ) ≤ F(wct ) and F(wbt )−Ft(wt) = !t we get F(wct )−Ft(wt) ≥ !t . Finally, substi-
tuting (24) to the latter inequality yields

F(wct )+ 〈wct +Cat+1,wt−wct 〉−Ft(wt) ≥ !t ,

which can be further rearranged into (21).
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Lemma 2 (Teo et al., 2007) Let -(.) = l.− h
2.
2 be a concave quadratic function such that -′(0) ≥

L> 0 and |-′′(.)| = h≤ H, ∀. ∈ [0,1]. Then the maximal value of - attained for the interval [0,1]
has a lower bound defined by

max
.∈[0,1]

-(.) ≥
L
2
min

(

1,
L
H

)

.

PROOF : Using l ≥ L and h ≤ H we obtain a lower bound -(.) by L.− H
2 .
2. The unconstrained

maximum of the lower bound is attained at point L
H , which leads to the value of

L2
2H . If

L
H > 1 then

the constrained maximum of the lower bound is attained at 1, which yields the maximal value of
L− H

2 . Using
L
H > 1, the value of L− H

2 has a lower bound of
L
2 . Taking the minimum over both

maxima proves the claim.

PROOF OF THEOREM 3: We can put a lower bound on the difference !t − !t+1 using the improve-
ment of the dual objective function Dt+1(&t+1)−Dt(&t) because

!t − !t+1 = F(wbt )−Ft(wt)−F(wbt+1)+Ft+1(wt+1)
≥ Ft+1(wt+1)−Ft(wt)
= Dt+1(&t+1)−Dt(&t) .

The inequality follows after excluding the term F(wbt )−F(wbt+1) ≥ 0 and the last equality is the
result of the fact that the primal and dual optimal values are equal.

The value of Dt+1(&t+1) is defined as the maximum of Dt+1 w.r.t. the convex feasible set At+1.
Hence, by maximizing Dt+1 w.r.t. a line segment lying entirely inside At+1 we get a lower bound
on Dt+1(&t+1), that is,

Dt+1(&t+1)−Dt(&t) ≥ max
.∈[0,1]

-(.) := Dt+1
(

/(1− .)+ 0.
)

−Dt(&t) ,

where / and 0 are arbitrary vectors from At+1. Specifically, we define the vectors as

/= (&t ;0) ∈"t+1 and 0= (0;C) ∈"t+1 . (25)

Now we show that -(.) is a function compliant with the assumptions of Lemma 2, which will
allow us to lower bound its value for the interval [0,1]. To this end, we need to derive the explicit
form of -(.) and then compute -′(0) and an upper bound on -′′(.), ∀. ∈ [0,1]. Defining a vector
b= (b1; . . . ;bt+1) ∈"t+1 and a matrix A= (a1, . . . ,at+1) ∈"n×(t+1) we can write the objective of
the dual of the reduced problem as Dt+1(&) = 〈&,b〉− 1

2‖A&‖
2. Using the latter definition of Dt+1

and (25), we can rewrite -(.) as

-(.) = .
〈

0−/,b−ATA/
〉

−
1
2
.2

∥

∥A/−A0
∥

∥

2
.

The value of the derivative -′(0) can be written as

-′(0) =
〈

0−/,b−ATA/
〉

=C
(

bt+1+ 〈wt ,at+1〉−%t) . (26)

The second equality of (26) was derived by using (25), wt = −#ti=1 ai[&t ]i and Ft(wt) = Dt(&t).
Using Lemma 1, we get a lower bound of the right-hand side of (26), that is

-′(0) ≥ !t . (27)
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The absolute value of the second derivative |-′′(.)| can be upper bound by

|-′′(.)| = ‖A/−A0‖2 ≤ ‖A/‖2+‖A0‖2 ≤ 4C2 max
i=1,...,t+1

‖ai‖2 ≤ 4C2G2 , (28)

where we use the assumption ai = ‖$F(w)‖ ≤G and the fact that the vector 1CA& equals the convex
combination of the columns ofA for any &∈At+1, hence, its norm cannot be greater than maxi ‖ai‖.
Finally, using (27) and (28) in Lemma 2 yields the claim of Theorem 3.

PROOF OF THEOREM 2: The proof is adopted from Teo et al. (2007). For any !t > 4C2G2 it follows
from (20) that !t+1 ≤ !t

2 . Moreover, !0 ≤ F(0), since F is nonnegative. Hence, we need at most
log2

F(0)
4C2G2 iterations to achieve a level of precision better than 4C

2G2. Subsequently, we need to
solve the following difference equation:

!t+1− !t = −
!2t

8C2G2
.

Since this is monotonically decreasing, we can upper bound this by solving the differential equation
!′(t) = − !2(t)

8C2G2 , with the boundary condition !(0) = 4C2G2. This in turn yields !(t) = 8C2G2
t+2 , and

hence t ≤ 8C2G2
! − 2 to achieve !(t) ≤ !. For a given ! we will need 8C2G2

! − 2 more iterations to
converge. This proves the claim.
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Abstract
We study boosting algorithms for learning to rank. We give a general margin-based bound for
ranking based on covering numbers for the hypothesis space. Our bound suggests that algorithms
that maximize the ranking margin will generalize well. We then describe a new algorithm, smooth
margin ranking, that precisely converges to a maximum ranking-margin solution. The algorithm
is a modification of RankBoost, analogous to “approximate coordinate ascent boosting.” Finally,
we prove that AdaBoost and RankBoost are equally good for the problems of bipartite ranking and
classification in terms of their asymptotic behavior on the training set. Under natural conditions,
AdaBoost achieves an area under the ROC curve that is equally as good as RankBoost’s; further-
more, RankBoost, when given a specific intercept, achieves a misclassification error that is as good
as AdaBoost’s. This may help to explain the empirical observations made by Cortes and Mohri, and
Caruana and Niculescu-Mizil, about the excellent performance of AdaBoost as a bipartite ranking
algorithm, as measured by the area under the ROC curve.
Keywords: ranking, RankBoost, generalization bounds, AdaBoost, area under the ROC curve

1. Introduction

Consider the following supervised learning problem: Sylvia would like to get some recommenda-
tions for good movies before she goes to the theater. She would like a ranked list that agrees with
her tastes as closely as possible, since she will probably go to see the movie closest to the top of the
list that is playing at the local theater. She does not want to waste her time and money on a movie
she probably will not like.

The information she provides is as follows: for many different pairs of movies she has seen, she
will tell the learning algorithm whether or not she likes the first movie better than the second one.1
This allows her to rank whichever pairs of movies she wishes, allowing for the possibility of ties

∗. Also at Center for Computational Learning Systems, Columbia University, 475 Riverside Drive MC 7717, New York,
NY 10115.

1. In practice, she could simply rate the movies, but this gives pairwise information also. The pairwise setting is strictly
more general in this sense.

c©2009 Cynthia Rudin and Robert E. Schapire.
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between movies, and the possibility that certain movies cannot necessarily be compared by her (for
instance, she may not wish to directly compare cartoons with action movies). Sylvia does not need
to be consistent, in the sense that she may rank a> b> c> a. (The loss function and algorithm will
accommodate this. See Martin Gardner’s amusing article (Gardner, 2001) on how nontransitivity
can arise naturally in many situations.) Each pair of movies such that Sylvia ranks the first above
the second is called a “crucial pair.”

The learning algorithm has access to a set of n individuals, called “weak rankers” or “ranking
features,” who have also ranked pairs of movies. The learning algorithm must try to combine the
views of the weak rankers in order to match Sylvia’s preferences, and generate a recommendation
list that will generalize her views. In this paper, our goal is to design and study learning algorithms
for ranking problems such as this collaborative filtering task.

The ranking problem was studied in depth by Freund et al. (2003), where the RankBoost algo-
rithm was introduced. In this setting, the ranked list is constructed using a linear combination of
the weak rankers. Ideally, this combination should minimize the probability that a crucial pair is
misranked, that is, the probability that the second movie in the crucial pair is ranked above the first.
RankBoost aims to minimize an exponentiated version of this misranking probability.

A special case of the general ranking problem is the “bipartite” ranking problem, where there
are only two classes: a positive class (good movies) and a negative class (bad movies). In this case,
the misranking probability is the probability that a good movie will be ranked below a bad movie.
This quantity is an affine transformation of the (negative of the) area under the Receiver-Operator-
Characteristic curve (AUC).

Bipartite ranking is different from the problem of classification; if, for a given data set, the
misclassification error is zero, then the misranking error must also be zero, but the converse is not
necessarily true. For the ranking problem, the examples are viewed relative to each other and the
decision boundary is irrelevant.

Having described the learning setting, we can now briefly summarize our three main results.

• Generalization bound: In Section 3, we provide a margin-based bound for ranking in the gen-
eral setting described above. Our ranking margin is defined in analogy with the classification
margin, and the complexity measure for the hypothesis space is a “sloppy covering number,”
which yields, as a corollary, a bound in terms of the L! covering number. Our bound indicates
that algorithms that maximize the margin will generalize well.

• Smooth margin ranking algorithm: We present a ranking algorithm in Section 4 designed
to maximize the margin. Our algorithm is based on a “smooth margin,” and we present an
analysis of its convergence.

• An equivalence between AdaBoost and RankBoost: A remarkable property of AdaBoost is
that it not only solves the classification problem, but simultaneously solves the same problem
of bipartite ranking as its counterpart, RankBoost. This is proved in Section 5. One does
not need to alter AdaBoost in any way for this property to hold. Conversely, the solution of
RankBoost can be slightly altered to achieve a misclassification loss that is equally as good
as AdaBoost’s.

We now provide some background and related results.
Generalization bounds are useful for showing that an algorithm can generalize beyond its train-

ing set, in other words, that prediction is possible. More specifically, bounds indicate that a small
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probability of error will most likely be achieved through a proper balance of the empirical error and
the complexity of the hypothesis space. This complexity can by measured by many informative
quantities; for instance, the VC dimension, which is linked in a fundamental way to classification,
and the Rademacher and Gaussian complexities (Bartlett and Mendelson, 2002). The use of these
quantities is tied to a kind of natural symmetry that typically exists in such problems, for instance,
in the way that positive and negative examples are treated symmetrically in a classification setting.
The limited bipartite case has this symmetry, but not the more general ranking problem that we
have described. Prior bounds on ranking have either made approximations in order to use the VC
Dimension for the general problem (as discussed by Clemençon et al., 2005, 2007, who work on
statistical aspects of ranking) or focused on the bipartite case (Freund et al., 2003; Agarwal et al.,
2005; Usunier et al., 2005). For our bound, we choose a covering number in the spirit of Bartlett
(1998). The covering number is a general measure of the capacity of the hypothesis space; it does
not lend itself naturally to classification like the VC dimension, is not limited to bipartite ranking,
nor does it require symmetry in the problem. Thus, we are able to work around the lack of symme-
try in this setting. In fact, a preliminary version of our work (Rudin et al., 2005) has been extended
to a highly nonsymmetric setting, namely the case where the top part of the list is considered more
important (Rudin, 2009). Several other recent works also consider this type of highly nonsymmetric
setting for ranking (Dekel et al., 2004; Cossock and Zhang, 2008; Clemençon and Vayatis, 2007;
Shalev-Shwartz and Singer, 2006; Le and Smola, 2007).

When deriving generalization bounds, it is important to consider the “separable” case, where
all training instances are correctly handled by the learning algorithm so that the empirical error is
zero. In the case of bipartite ranking, the separable case means that all positive instances are ranked
above all negative instances, and the area under the ROC curve is exactly 1. In the separable case
for classification, one important indicator of a classifier’s generalization ability is the “margin.” The
margin has proven to be an important quantity in practice for determining an algorithm’s generaliza-
tion ability, for example, in the case of AdaBoost (Freund and Schapire, 1997) and support vector
machines (SVMs) (Cortes and Vapnik, 1995). Although there has been some work devoted to gen-
eralization bounds for ranking as we have mentioned (Clemençon et al., 2005, 2007; Freund et al.,
2003; Agarwal et al., 2005; Usunier et al., 2005), the bounds that we are aware of are not margin-
based, and thus do not provide this useful type of discrimination between ranking algorithms in the
separable case.

Since we are providing a general margin-based bound for ranking in Section 3, we derive al-
gorithms which create large margins. For the classification problem, it was proved that AdaBoost
does not always fully maximize the (classification) margin (Rudin et al., 2004). In fact, AdaBoost
does not even necessarily make progress towards increasing the margin at every iteration. Since
AdaBoost (for the classification setting) and RankBoost (for the ranking setting) were derived anal-
ogously for the two settings, RankBoost does not directly maximize the ranking margin, and it does
not necessarily increase the margin at every iteration. In Section 4.1 we introduce a “smooth mar-
gin” ranking algorithm, and prove that it makes progress towards increasing the smooth margin for
ranking at every iteration; this is the main step needed in proving convergence and convergence
rates. This algorithm is analogous to the smooth margin classification algorithm “approximate co-
ordinate ascent boosting” (Rudin et al., 2007) in its derivation, but the analogous proof that progress
occurs at each iteration is much trickier; hence we present this proof here, along with a theorem
stating that this algorithm converges to a maximum margin solution.
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Although AdaBoost and RankBoost were derived analogously for the two settings, the parallels
between AdaBoost and RankBoost are deeper than their derivations. A number of papers, including
those of Cortes and Mohri (2004) and Caruana and Niculescu-Mizil (2006) have noted that in fact,
AdaBoost experimentally seems to be very good at the bipartite ranking problem, even though it
was RankBoost that was explicitly designed to solve this problem, not AdaBoost. Or, stated another
way, AdaBoost often achieves a large area under the ROC curve. In Section 5, we present a pos-
sible explanation for these experimental observations. Namely, we show that if the weak learning
algorithm is capable of producing the constant classifier (the classifier whose value is always one),
then remarkably, AdaBoost and RankBoost produce equally good solutions to the ranking problem
in terms of loss minimization and area under the ROC curve on the training set. More generally, we
define a quantity called “F-skew,” an exponentiated version of the “skew” used in the expressions
of Cortes and Mohri (2004, 2005) and Agarwal et al. (2005). If the F-skew vanishes, AdaBoost
minimizes the exponentiated ranking loss, which is the same loss that RankBoost explicitly mini-
mizes; thus, the two algorithms will produce equally good solutions to the exponentiated problem.
Moreover, if AdaBoost’s set of weak classifiers includes the constant classifier, the F-skew always
vanishes. From there, it is only a small calculation to show that AdaBoost and RankBoost achieve
the same asymptotic AUC value whenever it can be defined. An analogous result does not seem to
hold true for support vector machines; SVMs designed to maximize the AUC only seem to yield the
same AUC as the “vanilla” classification SVM in the separable case, when the AUC is exactly one
(Rakotomamonjy, 2004; Brefeld and Scheffer, 2005). The main result may be useful for practition-
ers: if the cost of using RankBoost is prohibitive, it may be useful to consider AdaBoost to solve
the ranking problem.

The converse result also holds, namely that a solution of RankBoost can be slightly modified so
that the F-skew vanishes, and the asymptotic misclassification loss is equal to AdaBoost’s whenever
it can be defined.

We proceed from the most general to the most specific. First, in Section 3 we provide a margin-
based bound for general ranking. In Sections 4.1 and 4.2 we fix the form of the hypothesis space
to match that of RankBoost, that is, the space of binary functions. Here, we discuss RankBoost,
AdaBoost and other coordinate-based ranking algorithms, and introduce the smooth margin ranking
algorithm. In Section 5, we focus on the bipartite ranking problem, and discuss conditions for
AdaBoost to act as a bipartite ranking algorithm by minimizing the exponentiated loss associated
with the AUC. Sections 3 and 4.2 focus on the separable case where the training error vanishes, and
Sections 4.1 and 5 focus on the nonseparable case. Sections 6, 7, and 8 contain the major proofs.

A preliminary version of this work appeared in a conference paper with Cortes andMohri (Rudin
et al., 2005). Many of the results from that work have been made more general here.

2. Notation

We use notation similar to Freund et al. (2003). The training data for the supervised ranking problem
consists of instances and their truth function values. The instances, denoted by S, are {xi}i=1,...,m,
where xi ∈X for all i. The set X is arbitrary and may be finite or infinite, usually X ⊂R

N . In the case
of the movie ranking problem, the xi’s are the movies and X is the set of all possible movies. We
assume xi ∈ X are chosen independently and at random (iid) from a fixed but unknown probability
distribution D on X (assuming implicitly that anything that needs to be measurable is measurable).
The notation x∼D means x is chosen randomly according to distribution D . The notation S∼Dm
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means each of the m elements of the training set S are chosen independently at random according to
D .

The values of the truth function " : X ×X → {0,1}, which is defined over pairs of instances, are
analogous to the “labels” in classification. If "(x(1),x(2)) = 1, this means that the pair x(1),x(2) is a
crucial pair: x(1) should be ranked more highly than x(2). We will consider a non-noisy case where
" is deterministic, which means "(x(1),x(1)) = 0, meaning that x(1) should not be ranked higher
than itself, and also that "(x(1),x(2)) = 1 implies "(x(2),x(1)) = 0, meaning that if x(1) is ranked
more highly than x(2), then x(2) should not be ranked more highly than x(1). It is possible to have
"(a,b) = 1, "(b,c) = 1, and "(c,a) = 1, in which case the algorithm will always suffer some loss;
we will be in the nonseparable case when this occurs. The total number of crucial training pairs can
be no larger than m(m− 1)/2 based on the rules of ", and should intuitively be of the order m2 in
order for us to perform ranking with sufficient accuracy. We assume that for each pair of training
instances xi,xk we receive, we also receive the value of "(xi,xk). In a more general model, we allow
the value "(xi,xk) to be generated probabilisitically conditional on each training pair xi,xk. For the
generalization bounds in this paper, for simplicity of presentation, we do not consider this more
general model, although all of our results can be shown to hold in the more general case as well.
The quantity E := Ex(1),x(2)∼D ["(x(1),x(2))] is the expected proportion of pairs in the database that
are crucial pairs, 0≤ E ≤ 1/2.

Back to the collaborative filtering example, to obtain the training set, Sylvia is given a random
sample of movies, chosen randomly from the distribution of movies being shown in the theater.
Sylvia must see these training movies and tell us all pairs of these movies such that she would rank
the first above the second to determine values of the truth function ".

Our goal is to construct a ranking function f : X → R, which gives a real valued score to each
instance in X . We do not care about the actual values of each instance, only the relative values;
for instance, we do not care if f (x(1)) = .4 and f (x(2)) = .1, only that f (x(1)) > f (x(2)), which we
interpret to mean that x(1) is predicted by f to be ranked higher (better) than x(2). Also, the function
f should be bounded, f ∈ L!(X ) (or in the case where |X | is finite, f ∈ !!(X )).
In the usual setting of boosting for classification, | f (x)|≤ 1 for all x and the margin of training

instance i (with respect to classifier f ) is defined by Schapire et al. (1998) to be yi f (xi), where yi is
the classification label, yi ∈ {−1,1}. Themargin of classifier f is defined to be the minimummargin
over all training instances, mini yi f (xi). Intuitively, the margin tells us how much the classifier f
can change before one of the training instances is misclassified; it gives us a notion of how stable
the classifier is.

For the ranking setting, we define an analogous notion of margin. Here, we normalize our
bounded function f so that 0 ≤ f ≤ 1. The margin of crucial pair xi,xk (with respect to ranking
function f ) will be defined as f (xi)− f (xk). The margin of ranking function f , is defined to be the
minimum margin over all crucial pairs,

margin f := µf := min
{i,k|"(xi,xk)=1}

f (xi)− f (xk).

Intuitively, the margin tells us how much the ranking function can change before one of the crucial
pairs is misranked. As with classification, we are in the separable case whenever the margin of f is
positive.

In Section 5 we will discuss the problem of bipartite ranking. Bipartite ranking is a subset of
the general ranking framework we have introduced. In the bipartite ranking problem, every training
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instance falls into one of two categories, the positive classY+ and the negative classY−. To transform
this into the general framework, take "(xi,xk) = 1 for each pair i ∈Y+ and k ∈Y−. That is, a crucial
pair exists between an element of the positive class and an element of the negative class. The class
of each instance is assumed deterministic, consistent with the setup described earlier. Again, the
results can be shown to hold in the case of nondeterministic class labels.

It may be tempting to think of the ranking framework as if it were just classification over the
space X × X . However, this is not the case; the examples are assumed to be drawn randomly
from X , rather than pairs of examples drawn from X ×X . Furthermore, the scoring function f has
domain X , that is, in order to produce a single ranked list, we should have f : X → R rather than
f :X ×X →R. In the latter case, one would need an additional mechanism to reconcile the scores to
produce a single ranked list. Furthermore, the bipartite ranking problem does not have the same goal
as classification even though the labels are {−1,+1}. In classification, the important quantity is the
misclassification error involving the sign of f , whereas for bipartite ranking, the important quantity
is perhaps the area under the ROC curve, relying on differences between f values. A change in the
position of one example can change the bipartite ranking loss without changing the misclassification
error and vice versa.

3. A Margin-Based Bound for Ranking

Bounds in learning theory are useful for telling us which quantities (such as the margin) are involved
in the learning process (see Bousquet, 2003, for discussion on this matter). In this section, we
provide a margin-based bound for ranking, which gives us an intuition for separable-case ranking
and yields theoretical encouragement for margin-based ranking algorithms. The quantity we hope
to minimize here is the misranking probability; for two randomly chosen instances, if they are a
crucial pair, we want to minimize the probability that these instances will be misranked. Formally,
this misranking probability is:

PD{misrank f } := PD{ f (x̄) ≤ f (x̃) | "(x̄, x̃) = 1} = Ex̄,x̃∼D [1[ f (x̄)≤ f (x̃)] | "(x̄, x̃) = 1]

=
Ex̄,x̃∼D [1[ f (x̄)≤ f (x̃)]"(x̄, x̃)]

Ex̄,x̃∼D ["(x̄, x̃)] =
Ex̄,x̃∼D [1[ f (x̄)≤ f (x̃)]"(x̄, x̃)]

E
. (1)

The numerator of (1) is the fraction of pairs that are both crucial and incorrectly ranked by f , and the
denominator, E := Ex̄,x̃∼D ["(x̄, x̃)] is the fraction of pairs that are crucial pairs. Thus, PD{misrank f }
is the fraction of crucial pairs that are incorrectly ranked by f .

Since we do not know D , we may calculate only empirical quantities that rely only on our
training sample. An empirical quantity that is analogous to PD{misrank f } is the following:

PS{misrank f } := PS{margin f ≤ 0} := PS{ f (xi) ≤ f (xk) | "(xi,xk) = 1}

=
#m
i=1#

m
k=1 1[ f (xi)≤ f (xk)]"(xi,xk)
#m
i=1#

m
k=1"(xi,xk)

.

We make this terminology more general, by allowing it to include a margin of $. For the bound
we take $> 0:

PS{margin f ≤ $} := PS{ f (xi)− f (xk) ≤ $ | "(xi,xk) = 1}

=
#m
i=1#

m
k=1 1[ f (xi)− f (xk)≤$]"(xi,xk)
#m
i=1#

m
k=1"(xi,xk)

,
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that is, PS{margin f ≤ $} is the fraction of crucial pairs in S×S with margin not larger than $.
We want to bound PD{misrank f } in terms of an empirical, margin-based term and a complexity

term. The type of complexity we choose is a “sloppy covering number” of the sort used by Schapire
et al. (1998). Since such a covering number can be bounded by an L! covering number, we will
immediately obtain L! covering number bounds as well, including a strict improvement on the one
derived in the preliminary version of our work (Rudin et al., 2005). Here, we implicitly assume that
F ⊂ L!(X ), f ∈ F are everywhere defined.

We next define sloppy covers and sloppy covering numbers.

Definition 1 For %,$≥ 0, a set G is a $-sloppy %-cover for F if for all f ∈F and for all probability
distributions D on X , there exists g ∈ G such that

Px∼D[| f (x)−g(x)|≥ $] ≤ %.

The corresponding sloppy covering number is the size of the smallest $-sloppy %-cover G , and is
written N (F ,$,%).

The L! covering number N!(F ,%) is defined as the minimum number of (open) balls of radius
% needed to cover F , using the L! metric. Since ‖ f − g‖! < $ implies that Px∼D[| f (x)− g(x)| ≥
$] = 0, we have that the sloppy covering number N (F ,$,%) is never more than N!(F ,$), and in
some cases it can be exponentially smaller, such as for convex combinations of binary functions as
discussed below.

Here is our main theorem, which is proved in Section 6:

Theorem 2 (Margin-based generalization bound for ranking) For %> 0, $> 0 with probability at
least

1−2N
(

F ,
$
4
,
%
8

)

exp
[

−
m(%E)2

8

]

over the random choice of the training set S, every f ∈ F satisfies:

PD{misrank f }≤ PS{margin f ≤ $}+ %.

In other words, the misranking probability is upper bounded by the fraction of instances with margin
below $, plus %; this statement is true with probability depending on m, E, $, %, and F .

We have chosen to write our bound in terms of E, but we could equally well have used an
analogous empirical quantity, namely

Exi,xk∼S["(xi,xk)] =
1

m(m−1)

m

#
i=1

m

#
k=1

"(xi,xk).

This is an arbitrary decision; we can in no way influence Exi,xk∼S["(xi,xk)] in our setting, since we
are choosing training instances randomly. E can be viewed as a constant, where recall 0< E ≤ 1/2.
If E = 0, it means that there is no information about the relative ranks of examples, and accordingly
the bound becomes trivial. Note that in the special bipartite case, E is the proportion of positive
examples multiplied by the proportion of negative examples.

In order to see that this bound encourages the margin to be made large, consider the simplified
case where the empirical error term is 0, that is, PS{margin f ≤ $} = 0. Now, the only place where
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$ appears is in the covering number. In order to make the probability of success larger, the covering
number should be made as small as possible, which implies that $ should be made as large as
possible.

As a special case of the theorem, we consider the standard setting where f is a (normalized)
linear combination of a dictionary of step functions (or “weak rankers”). In this case, we can show
the following, proved in Section 6:

Lemma 3 (Upper bound on covering numbers for convex combinations of binary weak classifiers)
For the following hypothesis space:

F =

{

f : f =#
j
& jh j, #

j
& j = 1, ∀ j & j ≥ 0, h j : X → {0,1},h j ∈H

}

,

we have

lnN (F ,$,%) ≤
ln |H | ln(2/%)

2$2
.

Thus, Theorem 2 implies the following corollary.

Corollary 4 (Margin-based generalization bound for ranking, convex combination of binary weak
rankers) For %> 0, $> 0 with probability at least

1−2exp
(

ln |H | ln(16/%)
$2/8

−
m(%E)2

8

)

over the random choice of the training set S, every f ∈ F satisfies:

PD{misrank f }≤ PS{margin f ≤ $}+ %.

In this case, we can lower bound the right hand side by 1− ' for an appropriate choice of %. In
particular, Corollary 4 implies that

PD{misrank f }≤ PS{margin f ≤ $}+ %

with probability at least 1−' if

%=

√

4
mE2

[

8ln |H |
$2

ln
(

4mE2$2
ln |H |

)

+2ln
(

2
'

)]

. (2)

This bound holds provided that $ is not too small relative to m, specifically, if

m$2 ≥
64ln |H |

E2
.

Note that the bound in (2) is only polylogarithmic in |H |.
As we have discussed above, Theorem 2 can be trivially upper bounded using the L! covering

number.
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Corollary 5 (Margin-based generalization bound for ranking, L! covering numbers) For % > 0,
$> 0 with probability at least

1−2N!

(

F ,
$
4

)

exp
[

−
m(%E)2

8

]

over the random choice of the training set S, every f ∈ F satisfies:

PD{misrank f }≤ PS{margin f ≤ $}+ %.

Consider the case of a finite hypothesis space F where every function is far apart (in L!) from every
other function. In this case, the covering number is equal to the number of functions. This is the
worst possible case, where N

(

F , $4
)

= |F | for any value of $. In this case, we can solve for %
directly:

' := 2|F |exp
[

−
m(%E)2

8

]

=⇒ %=
1√
m

√

8
E2

(ln2|F |+ ln(1/')).

This indicates that the error may scale as 1/
√
m. For the ranking problem, since we are dealing

with pairwise relationships, we might expect worse dependence, but this does not appear to be the
case. In fact, the dependence on m is quite reasonable in comparison to bounds for the problem of
classification, which does not deal with examples pairwise. This is true not only for finite hypothesis
spaces (scaling as 1/

√
m) but also when the hypotheses are convex combinations of weak rankers

(scaling as
√

ln(m)/m).

4. Coordinate-Based Ranking Algorithms

In the previous section we presented a uniform bound that holds for all f ∈ F . In this section, we
discuss how a learning algorithm might pick one of those functions in order to make PD{misrank f }
as small as possible, based on intuition gained from the bound of Theorem 2. Our bound suggests
that given a fixed hypothesis space F and a fixed number of instances m we try to maximize the
margin. We will do this using coordinate ascent. Coordinate ascent/descent is similar to gradient
ascent/descent except that the optimization moves along single coordinate axes rather than along
the gradient. (See Burges et al., 2005, for a gradient-based ranking algorithm based on a proba-
bilistic model.) We first derive the plain coordinate descent version of RankBoost, and show that
it is different from RankBoost itself. In Section 4.2 we define the smooth ranking margin G̃. Then
we present the “smooth margin ranking” algorithm, and prove that it makes significant progress to-
wards increasing this smooth ranking margin at each iteration, and converges to a maximum margin
solution.

4.1 Coordinate Descent and Its Variation on RankBoost’s Objective

We take the hypothesis space F to be the class of convex combinations of weak rankers {h j} j=1,...,n,
where h j : X → {0,1}. The function f is constructed as a normalized linear combination of the h j’s:

f =
# j & jh j
||λ||1

,

where ||λ||1 = # j & j, & j ≥ 0.
We will derive and mention many different algorithms based on different objective functions;

here is a summary of them:
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F(λ) : For the classification problem, AdaBoost minimizes its objective, denoted F(λ), by coor-
dinate descent.

G(λ) : For classification limited to the separable case, the algorithms “coordinate ascent boosting”
and “approximate coordinate ascent boosting” are known to maximize the margin (Rudin
et al., 2007). These algorithms are based on the smooth classification margin G(λ).

F̃(λ) : For ranking, “coordinate descent RankBoost” minimizes its objective, denoted F̃(λ), by
coordinate descent. RankBoost itself minimizes F̃(λ) by a variation of coordinate descent
that chooses the coordinate with knowledge of the step size.

G̃(λ) : For ranking limited to the separable case, “smooth margin ranking” is an approximate
coordinate ascent algorithm that maximizes the ranking margin. It is based on the smooth
ranking margin G̃(λ).

The objective function for RankBoost is a sum of exponentiated margins:

F̃(λ) := #
{i,k:["(xi,xk)=1]}

e−(# j & jh j(xi)−# j & jh j(xk)) = #
ik∈Cp

e−(Mλ)ik ,

where we have rewritten in terms of a structure M, which describes how each individual weak
ranker j ranks each crucial pair xi,xk; this will make notation significantly easier. Define an index
set that enumerates all crucial pairs Cp = {i,k : "(xi,xk) = 1}. Formally, the elements of the two-
dimensional matrixM are defined as follows, for index ik corresponding to crucial pair xi,xk:

Mik, j := h j(xi)−h j(xk).

The first index of M is ik, which runs over crucial pairs, that is, elements of Cp, and the second
index j runs over weak rankers. The size of M is |Cp|× n. Since the weak rankers are binary, the
entries of M are within {−1,0,1}. The notation (·) j means the jth index of the vector, so that the
following notation is defined:

(Mλ)ik :=
n

#
j=1

Mik, j& j =
n

#
j=1

& jh j(xi)−& jh j(xk), and (dTM) j := #
ik∈Cp

dikMik, j,

for λ ∈ R
n and d ∈ R

|Cp|.

4.1.1 COORDINATE DESCENT RANKBOOST

Let us perform standard coordinate descent on this objective function, and we will call the algorithm
“coordinate descent RankBoost.” We will not get the RankBoost algorithm this way; we will show
how to do this in Section 4.1.2. For coordinate descent on F̃ , at iteration t, we first choose a direction
jt in which F̃ is decreasing very rapidly. The direction chosen at iteration t (corresponding to the
choice of weak ranker jt) in the “optimal” case (where the best weak ranker is chosen at each
iteration) is given as follows. The notation e j indicates a vector of zeros with a 1 in the jth entry:

jt ∈ argmax
j

[

−
(F̃(λt +)e j)

()

∣

∣

∣

)=0

]

= argmax
j

#
ik∈Cp

e−(Mλt)ikMik, j

= argmax
j

#
ik∈Cp

dt,ikMik, j= argmax
j

(dTt M) j, (3)
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where the “weights” dt,ik are defined by:

dt,ik :=
e−(Mλt)ik

F̃(λt)
=

e−(Mλt)ik

#ĩk̃∈Cp e
−(Mλt)ĩk̃

.

From this calculation, one can see that the chosen weak ranker is a natural choice, namely, jt is the
most accurate weak ranker with respect to the weighted crucial training pairs; maximizing (dTt M) j
encourages the algorithm to choose the most accurate weak ranker with respect to the weights.

The step size our coordinate descent algorithm chooses at iteration t is )t , where )t satisfies
the following equation for the line search along direction jt . Define It+ := {ik : Mik, jt = 1}, and
similarly, It− := {ik :Mik, jt = −1}. Also define dt+ := #ik∈I+ dt,ik and dt− := #ik∈I− dt,ik. The line
search is:

0 = −
(F̃(λt +)e jt )

()

∣

∣

∣

)=)t
= #

ik∈Cp
e−(M(λt+)te jt ))ikMik, jt

= #
ik∈It+

e−(Mλt)ik e−)t − #
ik∈It−

e−(Mλt)ik e)t

0 = dt+e−)t −dt−e)t

)t =
1
2
ln
(

dt+
dt−

)

. (4)

Thus, we have derived the first algorithm, coordinate descent RankBoost. Pseudocode can be
found in Figure 1. In order to make the calculation for dt numerically stable, we write dt in terms
of its update from the previous iteration.

4.1.2 RANKBOOST

Let us contrast coordinate descent RankBoost with RankBoost. They both minimize the same ob-
jective F̃ , but they differ by the ordering of steps: for coordinate descent RankBoost, jt is calculated
first, then )t . In contrast, RankBoost uses the formula (4) for )t in order to calculate jt . In other
words, at each step RankBoost selects the weak ranker that yields the largest decrease in the loss
function, whereas coordinate descent RankBoost selects the weak ranker of steepest slope. Let us
derive RankBoost. Define the following for iteration t (eliminating the t subscript):

I+ j := {ik :Mik, j = 1}, I− j := {ik :Mik, j = −1}, I0 j := {ik :Mik, j = 0},
d+ j := #

ik∈I+ j

dt,ik, d− j := #
ik∈I− j

dt,ik, d0 j := #
ik∈I0 j

dt,ik.

For each j, we take a step according to (4) of size 1
2 ln

d+ j
d− j , and choose the jt which makes the

objective function F̃ decrease the most. That is:

jt : = argmin
j

F̃
(

λt +

(

1
2
ln
d+ j

d− j

)

e jt
)

= argmin
j

#
ik∈Cp

e−(Mλt)ik e−Mik, j
1
2 ln

d+ j
d− j

= argmin
j
#
ik
dt,ik

(

d+ j

d− j

)− 1
2Mik, j

= argmin
j

[

2(d+ jd− j)
1/2+d0 j

]

. (5)
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1. Input: MatrixM, No. of iterations tmax

2. Initialize: &1, j = 0 for j = 1, ...,n, d1,ik = 1/m for all ik

3. Loop for t = 1, ..., tmax

(a) jt ∈ argmax j(dTt M) j “optimal” case choice of weak classifier

(b) dt+ = #{ik:Mik, jt=1} dt,ik, dt− = #{ik:Mik, jt=−1} dt,ik

(c) )t = 1
2 ln
(

dt+
dt−

)

(d) dt+1,ik = dt,ike−Mik, jt)t/normaliz. for each crucial pair ik in Cp

(e) λt+1 = λt +)te jt , where e jt is 1 in position jt and 0 elsewhere.

4. Output: λtmax/||λtmax ||1

Figure 1: Pseudocode for coordinate descent RankBoost.

After we make the choice of jt , then we can plug back into the formula for )t , yielding )t = 1
2 ln

d+ jt
d− jt
.

We have finished re-deriving RankBoost. As we mentioned before, the plain coordinate descent
algorithm has more natural weak learning associated with it, since the weak ranker chosen tries to
find the most accurate weak ranker with respect to the weighted crucial pairs; in other words, we
argue (3) is a more natural weak learner than (5).

Note that for AdaBoost’s objective function, choosing the weak classifier with the steepest slope
(plain coordinate descent) yields the same as choosing the weak classifier with the largest decrease
in the loss function: both yield AdaBoost.2

2. For AdaBoost, entries of the matrixM are MAda
i j := yih j(xi) ∈ {−1,1} since hypotheses are assumed to be {−1,1}

valued for AdaBoost. Thus d0 j = 0, and from plain coordinate descent: jt = argmax
j

d+ j−d− j = argmax
j

2d+ j−1,

that is, jt = argmax
j

d+ j. On the other hand, for the choice of weak classifier with the greatest decreases in the loss

(same calculation as above):

jt = argmin
j

2(d+ jd− j)
1/2, that is,

jt = argmin
j

d+ j(1−d+ j) = argmax
j

d2+ j−d+ j,

and since d+ j > 1/2, the function d2+ j−d+ j is monotonically increasing in d+ j, so jt = argmax
j

d+ j. Thus, whether

or not AdaBoost chooses its weak classifier with knowledge of the step size, it would choose the same weak classifier
anyway.
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4.2 Smooth Margin Ranking

The value of F̃ does not directly tell us anything about the margin, only whether the margin is
positive. In fact, it is possible to minimize F̃ with a positive margin that is arbitrarily small, relative
to the optimal.3 Exactly the same problem occurs for AdaBoost. It has been proven (Rudin et al.,
2004) that it is possible for AdaBoost not to converge to a maximum margin solution, nor even to
make progress towards increasing the margin at every iteration. Thus, since the calculations are
identical for RankBoost, there are certain cases in which we can expect RankBoost not to converge
to a maximum margin solution.

Theorem 6 (RankBoost does not always converge to a maximum margin solution) There exist ma-
tricesM for which RankBoost converges to a margin that is strictly less than the maximum margin.

Proof Since RankBoost and AdaBoost differ only in their definitions of the matrixM, they possess
exactly the same convergence properties for the same choice of M. There is an 8× 8 matrix M in
Rudin et al. (2004) for which AdaBoost converges to a margin value of 1/3, when the maximum
margin is 3/8. Thus, the same convergence property applies for RankBoost. It is rare in the separa-
ble case to be able to solve for the asymptotic margin that AdaBoost or RankBoost converges to; for
this 8×8 example, AdaBoost’s weight vectors exhibit cyclic behavior, which allowed convergence
of the margin to be completely determined.

A more complete characterization of AdaBoost’s convergence with respect to the margin (and thus
RankBoost’s convergence) can be found in Rudin et al. (2007).

In earlier work, we have introduced a smooth margin function, which one can maximize in
order to achieve a maximum margin solution for the classification problem (Rudin et al., 2007). A
coordinate ascent algorithm on this function makes progress towards increasing the smooth margin
at every iteration. Here, we present the analogous smooth ranking function and the smooth margin
ranking algorithm. The extension of the convergence proofs for this algorithm is nontrivial; our
main contribution in this section is a condition under which the algorithm makes progress.

The smooth ranking function G̃ is defined as follows:

G̃(λ) :=
− ln F̃(λ)

||λ||1
.

It is not hard to show (see Rudin et al., 2007) that:

G̃(λ) < µ(λ) ≤ *, (6)

where the margin can be written in this notation as:

µ(λ) =min
i

(Mλ)i
‖λ‖1

3. One can see this by considering any vector λ such that (Mλ)ik is positive for all crucial pairs ik. That is, we choose
any λ that yields a positive margin. We can make the value of F̃ arbitrarily small by multiplying λ by a large positive
constant; this will not affect the value of the margin because the margin is minik∈Cp(Mλ)ik/||λ||1, and the large
constant will cancel. In this way, the objective can be arbitrarily small, while the margin is certainly not maximized.
Thus, coordinate descent on F̃ does not necessarily have anything to do with maximizing the margin.
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and the best possible margin is:

*= min
{d:#ik dik=1,dik≥0}

max
j

(dTM) j = max
{λ̄:# j &̄ j=1,&̄ j≥0}

min
i

(Mλ̄)i.

In other words, the smooth ranking margin is always less than the true margin, although the two
quantities become closer as ||λ||1 increases. The true margin is no greater than *, the min-max
value of the game defined byM (see Freund and Schapire, 1999).

We now define the smooth margin ranking algorithm, which is approximately coordinate ascent
on G̃. As usual, the input to the algorithm is matrix M, determined from the training data. Also,
we will only define this algorithm when G̃(λ) is positive, so that we only use it once the data has
become separable; we can use RankBoost or coordinate descent RankBoost to get us to this point.

We will define iteration t+ 1 in terms of the quantities known at iteration t. At iteration t, we
have calculated λt , at which point the following quantities can be calculated:

gt := G̃(λt)

weights on crucial pairs dt,ik := e−(Mλt)ik/F̃(λt)

direction jt = argmax
j

(dTt M) j

edge rt := (dTt M) jt .

The choice of jt is the same as for coordinate descent RankBoost (also see Rudin et al., 2007).
The step size )t is chosen to obey Equation (12) below, but we need a few more definitions before
we state its value, so we do not define it yet; we will first define recursive equations for F̃ and G̃.
We also have st = ||λt ||1 and st+1 = st +)t , and gt+1 = G̃(λt +)te jt ), where )t has not yet been
defined.

As before, It+ := {i,k|Mik jt = 1,"(xi,xk) = 1}, It− := {i,k|Mik jt =−1,"(xi,xk) = 1}, and now,
It0 := {i,k|Mik jt = 0,"(xi,xk) = 1}. Also dt+ :=#It+ dt,ik, d− :=#It− dt,ik, and dt0 :=#It0 dt,ik. Thus,
by definition, we have dt+ +dt− +dt0 = 1. Now, rt can be written rt = dt+−dt−. Define the factor

+t := dt+e−)t +dt−e)t +dt0, (7)

and define its “derivative”:

+′t :=
(+t(dt+e−)+dt−e)+dt0)

()

∣

∣

∣

)=)t
= −dt+e−)t +dt−e)t . (8)

We now derive a recursive equation for F̃ , true for any ).

F̃(λt +)e jt ) = #
{i,k|"(xi,xk)=1}

e(−Mλt)ik e−Mik jt)

= F̃(λt)(dt+e−)+dt−e)+dt0).

Thus, we have defined +t so that

F̃(λt+1) = F̃(λt +)te jt ) = F̃(λt)+t .
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We use this to write a recursive equation for G̃.

G̃(λt +)e jt ) =
− ln(F̃(λt +)e jt ))

st +)
=

− ln(F̃(λt))− ln(dt+e−)+dt−e)+dt0)
st +)

= gt
st

st +)
−
ln(dt+e−)+dt−e)+dt0)

st +)
.

For our algorithm, we set )= )t in the above expression and use the notation defined earlier:

gt+1 = gt
st

st +)t
−

ln+t
st +)t

gt+1−gt =
gtst −gtst −gt)t

st +)t
−

ln+t
st +)t

= −
1
st+1

[gt)t + ln+t ] . (9)

Now we have gathered enough notation to write the equation for )t for smooth margin ranking.
For plain coordinate ascent, the update )∗ solves:

0 =
(G̃(λt +)e jt )

()

∣

∣

∣

)=)∗
=

(
()

[

− ln F̃(λt +)e jt )
st +)

]

∣

∣

∣

)=)∗

=
1

st +)∗



−
[

− ln F̃(λt +)∗e jt )
st +)∗

]

+





−(F̃(λt +)e jt )/()
∣

∣

∣

)=)∗

F̃(λt +)∗e jt )









=
1

st +)∗



−G̃(λt +)∗e jt )+





−(F̃(λt +)e jt )/()
∣

∣

∣

)=)∗

F̃(λt +)∗e jt )







 . (10)

We could solve this equation numerically for )∗ to get a smooth margin coordinate ascent algorithm;
however, we avoid this line search for )∗ in smooth margin ranking. We will do an approximation
that allows us to solve for )∗ directly so that the algorithm is just as easy to implement as RankBoost.
To get the update rule for smooth margin ranking, we set )t to solve:

0 =
1

st +)t







−G̃(λt)+







−(F̃(λt +)e jt )/()
∣

∣

∣

)=)t

F̃(λt +)te jt )













=
1

st +)t

(

−gt +
−+′t F̃(λt)

+t F̃(λt)

)

gt+t = −+′t . (11)

This expression can be solved analytically for )t , but we avoid using the exact expression in our
calculations whenever possible, since the solution is not that easy to work with in our analysis:

)t = ln





−gtdt0+
√

g2t d2t0+(1+gt)(1−gt)4dt+dt−
(1+gt)2dt−



 . (12)

We are done defining the algorithm and in the process we have derived some useful recursive
relationships. In summary:
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Smooth margin ranking is the same as described in Figure 1, except that (3c) is replaced by
(12), where dt0 = 1−dt+−dt− and gt = G(λt).

Binary weak rankers were required to obtain an analytical solution for )t , but if one is willing
to perform a 1-dimensional linesearch (10) at each iteration, real-valued features can just as easily
be used.

Now we move onto the convergence proofs, which were loosely inspired by the analysis of
Zhang and Yu (2005). The following theorem gives conditions when the algorithmmakes significant
progress towards increasing the value of G̃ at iteration t. An analogous statement was an essential
tool for proving convergence properties of approximate coordinate ascent boosting (Rudin et al.,
2007), although the proof of the following theorem is significantly more difficult since we could
not use the hyperbolic trigonometric tricks from prior work. As usual, the weak learning algorithm
must always achieve an edge rt of at least * for the calculation to hold, where recall rt = (dTt M) jt =
dt+ −dt−. At every iteration, there is always a weak ranker which achieves edge at least *, so this
requirement is always met in the “optimal case,” where we choose the best possible weak ranker
at every iteration (i.e., the argmax over j). There is one more condition in order for the algorithm
to make progress, namely that most of the weight should indicate the strength of the weak ranker,
which implies that dt0 cannot take too much of the weight. Specifically, dt0 < 2

3(1− rt)(1− r2t ),
which is derived from a bound on the second derivative of the step size.

Theorem 7 (Progress according to the smooth margin) For 0 ≤ gt < rt < 1 and 0 ≤ dt0 < 2
3(1−

rt)(1− r2t ) the algorithm makes progress at iteration t:

gt+1−gt ≥
1
2
)t(rt−gt)

st+1
.

The proof of this theorem is in Section 7. This theorem tells us that the value of the smooth ranking
margin increases significantly when the condition on d0 holds. This theorem is the main step in
proving convergence theorems, for example:

Theorem 8 (Convergence for smooth margin ranking) If dt0 < 2
3(1−rt)(1−r

2
t ) for all t, the smooth

margin ranking algorithm converges to a maximum margin solution, that is, limt→! gt = *. Thus
the limiting margin is *, that is, limt→!µ(λt) = *.

Besides Theorem 7, the only other key step in the proof of Theorem 8 is the following lemma,
proved in Section 7:

Lemma 9 (Step-size does not increase too quickly for smooth margin ranking)

lim
t→!

)t
st+1

= 0.

From here, the proof of the convergence theorem is not difficult. The two conditions found in The-
orem 7 and Lemma 9 are identical to those of Lemma 5.1 and Lemma 5.2 of Rudin et al. (2007).
These are the only two ingredients necessary to prove asymptotic convergence using the proof out-
line of Theorem 5.1 of Rudin et al. (2007); an adaptation of this proof suffices to show Theorem 8,
which we now outline.

Proof (of Theorem 8) The values of gt constitute a nondecreasing sequence which is uniformly
bounded by 1. Thus, a limit g! must exist, g! := limt→! gt . By (6), we know that gt ≤ * for all
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t. Thus, g! ≤ *. Let us suppose that g! < *, so that *− g! 0= 0. This assumption, together with
Theorem 7 and Lemma 9 can be used in the same way as in Rudin et al. (2007) to show that #t )t
is finite, implying that:

lim
t→!

)t = 0.

Using this fact along with (11), we find:

g! = lim
t→!

gt = liminf
t→!

gt = liminf
t→!

−+′t
+t

= liminf
t→!

−(−dt+e−)t +dt−e)t )
dt+e−)t +dt−e)t +dt0

= liminf
t→!

rt ≥ *.

This is a contradiction with the original assumption that g! < *. It follows that g! = *, or limt→!(*−
gt) = 0. Thus, the smooth ranking algorithm converges to a maximum margin solution.

5. AdaBoost and RankBoost in the Bipartite Ranking Problem

In this section, we present an equivalence between AdaBoost and RankBoost in terms of their be-
havior on the training set. Namely, we show that under very natural conditions, AdaBoost asymp-
totically produces an area under the ROC curve value that is equally as good as RankBoost’s. Con-
versely, RankBoost (but with a change in the intercept), produces a classification that is equally as
good as AdaBoost’s. Note that this result is designed for the non-separable case; it holds in the
separable case, but the result is trivial since the area under the curve is exactly one. Also, let us be
clear that the result is a theoretical proof based on the optimization of the training set only. It is not
an experimental result, nor is it a probabilistic guarantee about performance on a test set (such as
Theorem 2).

In the bipartite ranking problem, the focus of this section, recall that every training instance falls
into one of two categories, the positive class Y+ and the negative class Y−. We will take "(xi,xk) = 1
for each pair i ∈Y+ and k ∈Y− so that crucial pairs exist between elements of the positive class and
elements of the negative class. Define yi = +1 when i ∈Y+, and yi =−1 otherwise. The AUC (area
under the Receiver Operator Characteristic curve) is equivalent to the Mann-Whitney U statistic,
and it is closely related to the fraction of misranks. Specifically,

1−AUC(λ) =
#i∈Y+ #k∈Y− 1[(Mλ)ik≤0]

|Y+||Y−|
= fraction of misranks.

In the bipartite ranking problem, the function F̃ becomes an exponentiated version of the AUC, that
is, since 1[x≤0] ≤ e−x, we have:

|Y+||Y−|(1−AUC(λ)) = #
i∈Y+

#
k∈Y−

1[(Mλ)ik≤0] ≤ #
i∈Y+

#
k∈Y−

e−(Mλ)ik = F̃(λ). (13)

We define the matrixMAda, which is helpful for describing AdaBoost. MAda is defined element-
wise by MAda

i j = yih j(xi) for i = 1, ...,m and j = 1, ...,n. Thus, Mik j = h j(xi)−h j(xk) = yih j(xi)+

ykh j(xk) = MAda
i j +MAda

k j . (To change from AdaBoost’s usual {−1,1} hypotheses to RankBoost’s
usual {0,1} hypotheses, divide entries ofM by 2.) Define the following functions:

F+(λ) := #
i∈Y+

e−(MAdaλ)i and F−(λ) := #
k∈Y−

e−(MAdaλ)k .
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The objective function for AdaBoost is F(λ) := F+(λ)+F−(λ). The objective function for Rank-
Boost is:

F̃(λ) = #
i∈Y+

#
k∈Y−

exp

[

−#
j
& jh j(xi)

]

exp

[

+#
j
& jh j(xk)

]

= #
i∈Y+

#
k∈Y−

exp

[

−#
j
& jyih j(xi)

]

exp

[

−#
j
& jykh j(xk)

]

= F+(λ)F−(λ). (14)

Thus, both objective functions involve exponents of the margins of the training instances, but with
a different balance between the positive and negative instances. In both cases, the objective func-
tion favors instances to be farther away from the decision boundary—even when the instances are
correctly classified and not close to the decision boundary. (This is in contrast to support vector
machines which do not suffer any loss for non-support vectors. This is the main reason why an
analogous result does not hold for SVMs.)

We now define a quantity called F-skew:

F-skew(λ) := F+(λ)−F−(λ). (15)

F-skew is the exponentiated version of the “skew,” which measures the imbalance between positive
and negative instances. The “skew” plays an important role in the expressions of Cortes and Mohri
(2004, 2005) and Agarwal et al. (2005). The F-skew measures how much greater the positive in-
stances contribute to AdaBoost’s objective than the negative instances. If the F-skew is 0, it means
that the positive and negative classes are contributing equally.

The following theorem shows that whenever the F-skew vanishes, any sequence λt that opti-
mizes AdaBoost’s objective F also optimizes RankBoost’s objective F̃ , and vice versa.

Theorem 10 (Equivalence between AdaBoost and RankBoost’s objectives) Let {λt}!t=1 be any se-
quence for which AdaBoost’s objective is minimized,

lim
t→!

F(λt) = inf
λ
F(λ), (16)

and lim
t→!

F-skew(λt) = 0. Then RankBoost’s objective is minimized,

lim
t→!

F̃(λt) = inf
λ
F̃(λ). (17)

Conversely, for any sequence for which RankBoost’s objective is minimized, and for which the F-
skew vanishes, AdaBoost’s objective is minimized as well.

The proof of the converse follows directly from

(F+(λ)+F−(λ))2− (F+(λ)−F−(λ))2 = 4F+(λ)F−(λ),

Equations (14) and (15), and continuity of the functions involved. The proof of the forward direction
in Section 8 uses a theory of convex duality for Bregman divergences developed by Della Pietra et al.
(2002) and used by Collins et al. (2002). This theory allows characterization for functions that may
have minima at infinity like F and F̃ .

Theorem 10 has very practical implications due to the following, proved in Section 8:
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Corollary 11 (AdaBoost minimizes RankBoost’s objective) If the constant weak hypothesis h0(x) =
1 is included in the set of AdaBoost’s weak classifiers, or equivalently, ifMAda has a column j0 such
that MAda

i, j0 = yi for all i, and if the {λt}!t=1 sequence obeys (16), then lim
t→!

F-skew(λt) = 0.

This result and the previous together imply that if the constant weak hypothesis is included in
the set of AdaBoost’s weak classifiers, then the F-skew vanishes, and RankBoost’s objective F̃ is
minimized.

Not only does AdaBoost minimize RankBoost’s exponential objective function in this case, it
also achieves an equally good misranking loss. Before we state this formally as a theorem, we
need to avoid a very particular nonuniqueness problem. Namely, there is some ambiguity in the
definition of the ranking loss for RankBoost and AdaBoost due to the arbitrariness in the algorithms,
and the discontinuity of the function 1[z≤0], which is used for the misranking loss #i 1[(Mλ)i≤0].
The arbitrariness in the algorithms arises from the argmax step; since argmax is a set that may
contain more than one element, and since the algorithm does not specify which element in that set
to choose, solutions might be different for different implementations. There are many examples
where the argmax set does contain more than one element (for instance, the examples in Rudin
et al., 2004). The vector lim

t→!
1[Mλt≤0] may not be uniquely defined; for some i,k pair we may

have lim
t→!

(Mλt)ik = 0, and in that case, values of lim
t→!

1[(Mλt)ik≤0] may take on the values 0, 1, or
the limit may not exist, depending on the algorithm. Thus, in order to write a sensible theorem,
we must eliminate this pathological case. No matter which implementation we choose, this only
becomes a problem if lim

t→!
(Mλt)ik = 0, that is, there is a tie in the rankings. If there is no tie, the

result is deterministic. In other words, when the pathological case is eliminated, the limiting AUC
can be defined and AdaBoost asymptotically achieves the same AUC as RankBoost:

Theorem 12 (AdaBoost and RankBoost achieve the same area under the ROC curve) Consider any
two sequences {λt}t and {λ′

t}t that minimize RankBoost’s objective F̃, that is,

lim
t→!

F̃(λt) = lim
t→!

F̃(λ′
t) = inf

λ
F̃(λ).

Then, if each positive example has a final score distinct from each negative example, that is,
∀ ik, lim

t→!
(Mλt)ik 0= 0, lim

t→!
(Mλ′

t)ik 0= 0, then both sequences will asymptotically achieve the same
AUC value. That is:

lim
t→!

[

#
i∈Y+

#
k∈Y−

1[(Mλt)ik≤0]

]

= lim
t→!

[

#
i∈Y+

#
k∈Y−

1[(Mλ′
t)ik≤0]

]

.

The proof is in Section 8. This theorem shows that, in the case where the F-skew vanishes and there
are no ties, AdaBoost will generate the same area under the curve value that RankBoost does. That
is, a sequence of λ′

t’s generated by AdaBoost and a sequence of λt’s generated by RankBoost will
asymptotically produce the same value of the AUC.

Combining Theorem 10, Corollary 11 and Theorem 12, we can conclude the following, as-
suming distinct final scores: if the constant hypothesis is included in the set of AdaBoost’s weak
classifiers, then AdaBoost will converge to exactly the same area under the ROC curve value as
RankBoost. Given these results, it is now understandable (but perhaps still surprising) that Ada-
Boost performs so well as a ranking algorithm.
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This logic can be made to work in reverse, so that adding a constant hypothesis to RankBoost’s
output will also produce a minimizer of AdaBoost’s objective. In order for this to work, we need
to assign the coefficient for the constant classifier (the intercept) to force the F-skew to vanish.
Changing the coefficient of the constant hypothesis does not affect RankBoost’s objective, but it
does affect AdaBoost’s. We choose the coefficient to obey the following:

Corollary 13 (RankBoost minimizes AdaBoost’s objective) Define j0 as the entry corresponding to
the constant weak classifier. Take λt to be a minimizing sequence for RankBoost’s objective, that is,
λt obeys (17). Consider λcorrected

t where:

λ
corrected
t := λt +bte j0 ,

where e j0 is 1 in the jth0 entry corresponding to the constant weak classifier, and 0 otherwise, and
where:

bt =
1
2
ln
F+(λt)

F−(λt)
.

Then, λcorrected
t converges to a minimum of AdaBoost’s objective, that is, λcorrected

t obeys (16).

The proof is in Section 8. Now, we can extend to the misclassification error. The proof of the
following is also in Section 8:

Theorem 14 (AdaBoost and RankBoost achieve the same misclassification error) Consider any two
sequences {λcorrected

t }t and {λ′corrected
t }t , corrected as in Corollary 13, that minimize RankBoost’s

objective F̃, that is,

lim
t→!

F̃(λcorrected
t ) = lim

t→!
F̃(λ′corrected

t ) = inf
λ
F̃(λ).

Then, if no example is on the decision boundary, that is, ∀i, lim
t→!

(MAdaλcorrected
t )i 0= 0,

∀k lim
t→!

(MAdaλcorrected
t )k 0= 0, and ∀i, lim

t→!
(MAdaλ′corrected

t )i 0= 0, ∀k lim
t→!

(MAdaλ′corrected
t )k 0= 0, then

both sequences will asymptotically achieve the same misclassification loss. That is:

lim
t→!

[

#
i∈Y+

1[(MAdaλcorrected
t )i≤0] + #

k∈Y−
1[(MAdaλcorrected

t )k≤0]

]

= lim
t→!

[

#
i∈Y+

1[(MAdaλ′corrected
t )i≤0] + #

k∈Y−
1[(MAdaλ′corrected

t )k≤0]

]

.

Thus, we have shown quite a strong equivalence relationship between RankBoost and AdaBoost.
Under natural conditions, AdaBoost achieves the same area under the ROC curve as RankBoost,
and RankBoost can be easily made to achieve the same misclassification error as AdaBoost on the
training set.

The success of an algorithm is often judged using both misclassification error and the area under
the ROC curve. A practical implication of this result is that AdaBoost and RankBoost both solve
the classification and ranking problems at the same time. This is true under the conditions speci-
fied, namely using a set of binary weak classifiers that includes the constant classifier, and using the
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correction for RankBoost’s intercept. In terms of which should be used, we have found that Ada-
Boost tends to converge faster for classification (and uses less memory), whereas RankBoost tends
to converge faster for ranking. If the algorithm is stopped early, we suggest that if misclassification
error is more important, to choose AdaBoost, and conversely, if area under the ROC curve is more
important, to choose RankBoost. Asymptotically, as we have shown, they produce equally good
solutions for both classification and ranking on the training set.

5.1 Connection to Multiclass/Multilabel Algorithms

The results above imply convergence properties of two algorithms for solving multiclass/ multilabel
problems. Specifically, the algorithms AdaBoost.MH and AdaBoost.MR of Schapire and Singer
(1999) have the same relationship to each other as AdaBoost and RankBoost.

In the multilabel setting, each training instance x ∈ X may belong to multiple labels in Y ,
where Y is a finite set of labels or classes. The total number of classes is denoted by c. Examples
are ordered pairs (x,Y ), Y ⊂ Y . We use the reduction of Schapire and Singer (1999) where training
example i is replaced by a set of single-labeled training examples {(xi,yi!)}!=1,...,c, where yi! = 1 if
yi! ∈ Yi and −1 otherwise. Thus, the set of training examples are indexed by pairs i,!. Within this
reduction, the weak classifiers become h j : X ×Y → R.

Let us now re-index the training pairs. The training pairs i,!will now be assigned a single index.
Define the entries of matrix M̆ by M̆ı̆ j = yı̆h j(xı̆,yı̆) for all pairs i,! indexed by ı̆. With this notation,
the objective function of AdaBoost.MH becomes:

FMH(λ) :=#
ı̆
exp(−M̆λ)ı̆.

Using similar notation, the objective function of AdaBoost.MR becomes:

FMR(λ) := #
ı̆∈{{i,!}:yi!=1}

exp(−M̆λ)ı̆ #
k̆∈{{i,!}:yi!=−1}

exp(−M̆λ)k̆.

The forms of functions FMH and FMR are the same as those of AdaBoost and RankBoost, respec-
tively, allowing us to directly apply all of the above results. In other words, the same equivalence
relationship that we have shown for AdaBoost and RankBoost applies to AdaBoost.MH and Ada-
Boost.MR.

Now, we move onto the proofs.

6. Proofs from Section 3

This proof in large part follows the approach of Bartlett (1998) and Schapire et al. (1998).
For f ∈ F , we will be interested in the expectation

P$, f := Px̄,x̃∼D [ f (x̄)− f (x̃) ≤ $ | "(x̄, x̃) = 1] = Ex̄,x̃∼D
[

1[ f (x̄)− f (x̃)≤$] | "(x̄, x̃) = 1
]

as well as its empirical analog

P̂$, f := PS{margin f ≤ $} = Px̄,x̃∼S [ f (x̄)− f (x̃) ≤ $ | "(x̄, x̃) = 1]
= Ex̄,x̃∼S

[

1[ f (x̄)− f (x̃)≤$] | "(x̄, x̃) = 1
]

.
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Note that in this notation,
PD{misrank f } = P0, f .

Our goal is to show that P0, f ≤ P̂$, f + % for all f ∈ F with high probability. To do so, we will first
show that for every f ∈ F ,

P0, f − P̂$, f ≤ P$/2,g− P̂$/2,g+
%
2

for some g in the cover G , and then show that the difference P$/2,g− P̂$/2,g on the right must be
small for all g ∈ G , with high probability.

Lemma 15 Let f and g be any functions in F , and let D be any joint distribution on pairs x̄, x̃. Let
0≤ $1 < $2. Then

Ex̄,x̃∼D
[

1[ f (x̄)− f (x̃)≤$1]−1[g(x̄)−g(x̃)≤$2]
]

≤ Px̄,x̃∼D

{

| f (x̄)−g(x̄)|≥ $2−$1
2

}

+Px̄,x̃∼D

{

| f (x̃)−g(x̃)|≥ $2−$1
2

}

.

Proof First, note that
1[y≤$1]−1[z≤$2] =

{

1 if y≤ $1 < $2 < z
0 otherwise

which means that this difference can be equal to 1 only if z− y is at least $2−$1. Thus,

Ex̄,x̃∼D
[

1[ f (x̄)− f (x̃)≤$1]−1[g(x̄)−g(x̃)≤$2]
]

= Px̄,x̃∼D { f (x̄)− f (x̃) ≤ $1 < $2 < g(x̄)−g(x̃)}
≤ Px̄,x̃∼D {|( f (x̄)− f (x̃))− (g(x̄)−g(x̃))|≥ $2−$1}
≤ Px̄,x̃∼D {| f (x̄)−g(x̄)|+ | f (x̃)−g(x̃)|≥ $2−$1}

≤ Px̄,x̃∼D

{

| f (x̄)−g(x̄)|≥ $2−$1
2

∨ | f (x̃)−g(x̃)|≥ $2−$1
2

}

≤ Px̄,x̃∼D

{

| f (x̄)−g(x̄)|≥ $2−$1
2

}

+Px̄,x̃∼D

{

| f (x̃)−g(x̃)|≥ $2−$1
2

}

by the union bound.

The following lemma is true for every training set S:

Lemma 16 Let G be a $/4-sloppy %/8-cover for F . Then for all f ∈ F , there exists g ∈ G such
that

P0, f − P̂$, f ≤ P$/2,g− P̂$/2,g+
%
2
.

Proof Let g ∈ G . Lemma 15, applied to the distribution D , conditioned on "(x̄, x̃) = 1, implies

P0, f −P$/2,g ≤ Px∼D1

{

| f (x)−g(x)|≥ $
4

}

+Px∼D2

{

| f (x)−g(x)|≥ $
4

}

where D1 and D2 denote the marginal distributions on x̄ and x̃, respectively, under distribution
x̄, x̃∼D , conditioned on "(x̄, x̃) = 1. In other words, for any event,(x), Px∼D1{,(x)} is the same as
Px̄,x̃∼D {,(x̄) | "(x̄, x̃) = 1}, and similarly Px∼D2{,(x)} is the same as Px̄,x̃∼D {,(x̃) | "(x̄, x̃) = 1}.
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Likewise,

P̂$/2,g− P̂$, f ≤ Px∼S1

{

| f (x)−g(x)|≥ $
4

}

+Px∼S2

{

| f (x)−g(x)|≥ $
4

}

where S1 and S2 are distributions defined analogously for the empirical distribution on S. Thus,

P0, f −P$/2,g+ P̂$/2,g− P̂$, f ≤ Px∼D1

{

| f (x)−g(x)|≥ $
4

}

+Px∼D2

{

| f (x)−g(x)|≥ $
4

}

+Px∼S1

{

| f (x)−g(x)|≥ $
4

}

+Px∼S2

{

| f (x)−g(x)|≥ $
4

}

= 4 Px∼D∗

{

| f (x)−g(x)|≥ $
4

}

(18)

where D∗ is the (uniform) mixture of the four distributions D1, D2, S1 and S2. Constructing D∗ in
this way allows us to find a g that is close to f for all four terms simultaneously, which is needed
for the next step. Since G is a $/4-sloppy %/8-cover, we can now choose g to be a function in the
cover G such that

Px∼D∗

{

| f (x)−g(x)|≥ $
4

}

≤
%
8

which, plugging in to equation (18), proves the lemma.

In the proof of the theorem, we will use the g’s to act as representatives (for slightly different
events), so we must show that we do not lose too much by doing this.

Lemma 17 Let G be a $/4-sloppy %/8-cover for F . Then

PS∼Dm
{

∃ f ∈ F : P0, f − P̂$, f ≥ %
}

≤ PS∼Dm

{

∃g ∈ G : P$/2,g− P̂$/2,g ≥
%
2

}

.

Proof By Lemma 16, for every training set S, for any f ∈ F , there exists some g ∈ G such that

P0, f − P̂$, f ≤ P̂$/2,g−P$/2,g+
%
2
.

Thus, if there exists an f ∈ F such that P0, f − P̂$, f ≥ %, then there exists a g ∈ G such that P$/2,g−
P̂$/2,g ≥ %

2 . The statement of the lemma follows directly.

Now we incorporate the fact that the training set is chosen randomly. We will use a generalization
of Hoeffding’s inequality due to McDiarmid, as follows:

Theorem 18 (McDiarmid’s Inequality McDiarmid 1989) Let X1,X2, ...Xm be independent random
variables under distribution D. Let f (x1, . . . ,xm) be any real-valued function such that for all
x1,x2, . . . ,xm;x′i,

| f (x1, . . . ,xi, . . . ,xm)− f (x1, . . . ,x′i, . . .xm)|≤ ci.
Then for any %> 0,

PX1,X2,...,Xm∼D { f (X1,X2, ...,Xm)−E[ f (X1,X2, ...,Xm)] ≥ %} ≤ exp
(

−
2%2

#m
i=1 c2i

)

,

PX1,X2,...,Xm∼D {E[ f (X1,X2, ...,Xm)]− f (X1,X2, ...,Xm) ≥ %} ≤ exp
(

−
2%2

#m
i=1 c2i

)

.
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Lemma 19 For any f ∈ F ,

PS∼Dm{P$, f − P̂$, f ≥ %/2}≤ 2exp
[

−
m(%E)2

8

]

.

Proof To make notation easier for this lemma, we introduce some shorthand notation:

topD := Ex̄,x̃∼D [1[ f (x̄)− f (x̃)≤$]"(x̄, x̃)]

topS :=
1

m(m−1)

m

#
i=1

m

#
k=1
1[ f (xi)− f (xk)≤$]"(xi,xk)

botD := E := Ex̄,x̃∼D ["(x̄, x̃)]

botS :=
1

m(m−1)

m

#
i=1

m

#
k=1

"(xi,xk).

Since diagonal terms have "(xi,xi) which is always 0, topD = ES∼Dm [topS] and similarly, botD =
ES∼Dm [botS]. Thus, we can bound the difference between topS and topD using large deviation
bounds, and similarly for the difference between botS and botD . We choose McDiarmid’s Inequality
to perform this task. It is not difficult to show using the rules of " that the largest possible change
in topS due to the replacement of one example is 1/m. Similarly the largest possible change in botS
is 1/m. Thus, McDiarmid’s inequality applied to topS and botS implies that for every %1 > 0:

PS∼Dm{topD − topS ≥ %1} ≤ exp[−2%21m]

PS∼Dm{botS−botD ≥ %1} ≤ exp[−2%21m].

Here, we use %1 to avoid confusion with the % in the statement of the lemma; we will specify %1 in
terms of % later, but since the equations are true for any %1 > 0, we work with general %1 for now.
Consider the following event:

topD − topS < %1 and botS−botD < %1.

By the union bound, this event is true with probability at least 1−2exp[−2%21m]. When the event is
true, we can rearrange the equations to be a bound on

topD
botD

−
topS
botS

.

We do this as follows:
topD
botD

−
topS
botS

<
topD
botD

−
topD − %1
botD + %1

. (19)

If we now choose:
%1 =

%botD
2− %+2 topDbotD

≥
%botD
4

=:
%E
4

then the right hand side of (19) is equal to %/2. Here, we have used E := botD , and by the definition
of topD and botD , we always have topD ≤ botD . We directly have:

1−2exp[−2%21m] ≥ 1−2exp

(

−2m
[

%E
4

]2
)

.
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Therefore, from our earlier application of McDiarmid, we find that with probability at least

1−2exp
[

−
m(%E)2

8

]

the following holds:
P$, f − P̂$, f =

topD
botD

−
topS
botS

< %/2.

As mentioned earlier, we could have equally well have written the lemma in terms of the em-
pirical quantity botD rather than in terms of E. We have made this decision because the bound is
useful for allowing us to determine which quantities are important to maximize in our algorithms;
we cannot maximize botD in practice because we are choosing m random instances from D , thus
we have no influence at all over the value of botD in practice. Either way, the bound tells us that the
margin should be an important quantity to consider in the design of algorithms.

Also, note that this proof implicitly used our simplifying assumption that the truth function "
is deterministic. In the more general case, where the value "(xi,xk) of each training pair xi,xk is
determined probabilistically, an alternative proof giving the same result can be given using Azuma’s
lemma.
Proof (of Theorem 2) LetG be a $/4-sloppy %/8-cover of F of minimum size. Applying Lemma 17,
the union bound, and then Lemma 19 for $/2, we find:

PS∼Dm
{

∃ f ∈ F : P0, f − P̂$, f ≥ %
}

≤ PS∼Dm

{

∃g ∈ G : P$/2,g− P̂$/2,g ≥
%
2

}

.

≤ #
g∈G

PS∼Dm

{

P$/2,g− P̂$/2,g ≥
%
2

}

≤ #
g∈G

2exp
(

−
m(%E)2

8

)

= N

(

F ,
$
4
,
%
8

)

2exp
[

−
m(%E)2

8

]

.

Now we put everything together. With probability at least

1−N

(

F ,
$
4
,
%
8

)

2exp
[

−
m(%E)2

8

]

,

we have
PD{misrank f } = P0, f ≤ P̂$, f + %= PS{margin f ≤ $}+ %.

Thus, the theorem has been proved.

We now provide a proof for Lemma 3, which gives an estimate of the covering number for
convex combinations of dictionary elements.
Proof (of Lemma 3)We are trying to estimate the covering number for F , where

F =

{

f : f =#
j
& jh j,#

j
& j = 1,∀ j & j ≥ 0,h j : X → {0,1},h j ∈H

}

.
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Consider the following set GN of all g that can be written as a simple average of N elements of H :

GN =

{

1
N

(g1+ · · ·+gN) : g1, . . . ,gN ∈H

}

.

We claim that GN is a $-sloppy %-cover when

N ≥
ln(2/%)
2$2

. (20)

To show this, let f be any function F , and let D be any distribution. We know that f = # j & jh j
for some & j’s as above, where the number of terms in the sum can be much more than N. Let us
pick N dictionary elements g1, . . . ,gN from H by choosing them randomly and independently with
replacement according to the distribution imposed by the coefficients λ. That is, each gi is selected
to be h j with probability equal to & j. Thus, if & j is large, it is more likely that h j will be chosen as
one of the N chosen elements g1, . . . ,gN . Construct g as the average of those N elements.

Let x ∈ X be any fixed element. Then g(x) is an average of N Bernoulli random variables,
namely, g1(x), . . . ,gN(x); by the manner in which each g j was chosen, each of these Bernoulli
random variables is 1 with probability exactly f (x). Therefore, by Hoeffding’s inequality,

Pg {|g(x)− f (x)|≥ $}≤ 2e−2$
2N

where Pg{·} denotes probability with respect to the random choice of g.
This holds for every x. Now let x be random according to D. Then

Eg [Px∼D {| f (x)−g(x)|≥ $}] = Ex∼D [Pg {| f (x)−g(x)|≥ $}]

≤ Ex∼D
[

2e−2$
2N
]

= 2e−2$
2N .

Thus, there exists g ∈ GN such that

Px∼D {| f (x)−g(x)|≥ $}≤ 2e−2$
2N .

Hence, selecting N as in equation (20) ensures that GN is a $-sloppy %-cover. The covering number
N (F ,$,%) is thus at most

|GN |≤ |H |N ,

which is the bound given in the statement of the lemma.

7. Proofs from Section 4.2

Proof (of Lemma 9) There are two possibilities; either limt→! st = ! or limt→! st < !. We handle
these cases separately, starting with the case limt→! st = !. From (9),

st+1(gt+1−gt) = −gt)t − ln+t
st(gt+1−gt) = −gt)t −)t(gt+1−gt)− ln+t
st(gt+1−gt) = −)tgt+1− ln+t

st(gt+1−gt)+ ln+t +)t = )t(1−gt+1) ≥ )t(1−*)
gt+1−gt
1−*

+
ln+t +)t
st(1−*)

≥
)t
st

≥
)t
st+1

.
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Since the gt’s constitute a nondecreasing sequence bounded by 1, (gt+1−gt) → 0 as t → !, so the
first term on the left vanishes. The second term will vanish as long as we can bound ln+t +)t by a
constant, since by assumption, st → !.

We define g1̃ as the first positive value of G̃(λt); the value of G̃ only increases from this value.
In order to bound ln+t +)t , we use Equation (11):

ln+t +)t = ln(−+′t)− lngt +)t = ln[dt+e−)t −dt−e)t ]− lngt +)t
= ln[dt+−dt−e2)t ]+ lne−)t − lngt +)t
≤ lndt+− lngt ≤ ln1− lng1̃ = − lng1̃ < !.

Thus, the second term will vanish, and we now have the sequence )t/st+1 upper bounded by a
vanishing sequence; thus, it too will vanish.

Now for the case where limt→! st < !. Consider

T

#
t=1̃

)t
st+1

=
T

#
t=1̃

st+1− st
st+1

=
T

#
t=1̃

Z st+1

st

1
st+1

du

≤
T

#
t=1̃

Z st+1

st

1
u
du=

Z sT+1

s1̃

1
u
du= ln

sT+1
s1̃

.

By our assumption that limt→! st <!, the above sequence is a bounded increasing sequence. Thus,
#!
t=1̃

)t
st+1 converges. In particular,

lim
t→!

)t
st+1

= 0.

Proof (of Theorem 7) The proof relies completely on an important calculus lemma, Lemma 20
below. Before we state the lemma, we make some definitions and derive some tools for later use.

We will be speaking only of iterations t and t + 1, so when the iteration subscript has been
eliminated, it refers to iteration t rather than iteration t+ 1. From now on, the basic independent
variables will be r,g and d0. Here, the ranges are 0 < r < 1, 0 ≤ g < r, 0 ≤ d0 < 2

3(1− r)(1− r2).
We change our notation to reinforce this: d+ and d− can be considered functions of the basic
variables r and d0 since d+ = (1+ r−d0)/2 and d− = (1− r−d0)/2. Also define +(r,g,d0) := +t ,
+′(r,g,d0) = +′t , and )(r,g,d0) := )t , which are specified by (7), (8) and (11).

Define the following:

-(r,g,d0) :=
− ln+(r,g,d0)
)(r,g,d0)

.

B(r,g,d0) :=
-(r,g,d0)−g

r−g
.

Now we state the important lemma we need for proving the theorem.

Lemma 20 For 0< r < 1, 0≤ g< r, 0≤ d0 < 2
3(1− r)(1− r2),

B(r,g,d0) > 1/2.
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The proof is technical and has been placed in the Appendix. Using only this lemma, we can
prove the theorem directly. Let us unravel the notation a bit. From the definition of -(r,g,d0)
and Lemma 20:

− ln+(r,g,d0)
)(r,g,d0)

= -(r,g,d0) = g+(r−g)B(r,g,d0) >
r+g
2

− ln+(r,g,d0) >
(r+g))(r,g,d0)

2
.

Using this relation at time t and incorporating the recursive equation, Equation (9),

gt+1−gt =
1
st+1

[−gt)t − ln+t ] >
)t
st+1

[

−gt +
(rt +gt)
2

]

=
1
2
)t(rt−gt)

st+1
.

We have proved the theorem, minus the proof of Lemma 20 which was the key step. Lemma 20 is
a challenging calculus problem in three variables. For the sake of intuition, we plot B as a function
of r and g for fixed d0 = 0.01 in Figure 2. The result of Lemma 20 is apparent, namely that B is
lower bounded by 1/2.

Figure 2: Surface plot of B as a function of r and g with d0 = 0.01.

8. Proofs from Section 5

Proof (of Theorem 10) A proof is only necessary to handle the nonseparable case, since the state-
ment of the theorem is trivial in the separable case. To see this, assume first that we are in the
separable case, that is,

lim
t→!

F+(λt) = lim
t→!

F−(λt) = 0,
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thus
lim
t→!

F̃(λt) = lim
t→!

F(λt) = 0

and we are done. For the rest of the proof, we handle the nonseparable case.
It is possible that the infimum of F or F̃ occurs at infinity, that is, F or F̃ may have no mini-

mizers. Thus, it is not possible to characterize the minimizers by setting the first derivatives to zero.
So, in order to more precisely describe the conditions (16) and (17), we now use a technique used
by Della Pietra et al. (2002) and later used by Collins et al. (2002), in which we consider F and F̃
as functions of another variable, where the infimum can be achieved. Define, for a particular matrix
M̄, the function

FM̄(λ) :=
m̄

#
i=1

e−(M̄λ)i .

Define
P̄ := {p|pi ≥ 0 ∀i, (pTM̄) j = 0 ∀ j}

Q̄ := {q|qi = exp(−(M̄λ)i) for some λ}.

We may thus consider F̄M̄ as a function of q̄, that is, F̄M̄(q̄) = #m̄
i=1 q̄i, where q̄ ∈ Q̄ . We know that

since all q̄i’s are positive, the infimum of F̄ occurs in a bounded region of q̄ space, which is just
what we need.

Theorem 1 of Collins et al. (2002), which is taken directly from Della Pietra et al. (2002),
implies that the following are equivalent:

1. q̄∗ ∈ P̄∩ closure (Q̄ ).

2. q̄∗ ∈ argminq̄∈ closure(Q̄ )F̄M̄(q̄).

Moreover, either condition is satisfied by exactly one vector q̄∗.
The objective function for AdaBoost is F = F̄MAda and the objective for RankBoost is F̃ = F̄M,

so the theorem holds for both objectives separately. For the function F , denote q̄∗ as q∗, also P̄ as
PAda and Q̄ as Q Ada. For the function F̃ , denote q̄∗ as q̃∗, also P̄ as P̃ and Q̄ as Q̃ . The condition
q∗ ∈ PAda can be rewritten as:

#
i∈Y+

q∗i MAda
i j + #

k∈Y−
q∗kMAda

k j = 0 ∀ j. (21)

Define qt element-wise by: qt,i := e−(MAdaλt)i , where the λt’s are a sequence that obey (16),
for example, a sequence produced by AdaBoost. Thus, qt ∈ Q Ada automatically. By assumption,
F(qt) converges to the minimum of F . Thus, since F is continuous, any limit point of the qt’s must
minimize F as well. But because q∗ is the unique minimizer of F , this implies that q∗ is the one and
only !p-limit point of the qt’s, and therefore, that the entire sequence of qt’s converges to q∗ in !p.

Now define vectors q̃t element-wise by

q̃t,ik := qt,iqt,k = exp[−(MAda
λt)i− (MAda

λt)k] = exp[−(Mλt)ik].

Automatically, q̃t ∈ Q̃ . For any pair i,k the limit of the sequence q̃t,ik is q̃!ik := q∗i q∗k .
What we need to show is that q̃! = q̃∗. If we can prove this, we will have shown that {λt}t

converges to the minimum of RankBoost’s objective function, F̃ . We will do this by showing
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that q̃! ∈ P̃ ; once we accomplish this, due to the uniqueness of q̃∗ as the intersection of P̃ and
closure(Q̃ ) , we will have proved that q̃! = q̃∗. So, now we proceed to show q̃! ∈ P̃ , using our
assumption that the F-skew vanishes. Our assumption that the F-skew vanishes can be rewritten as:

lim
t→!

[

#
i∈Y+

qt,i− #
k∈Y−

qt,k

]

= 0,

that is, since all terms are bounded,
#
i∈Y+

q∗i = #
k∈Y−

q∗k . (22)

Consider the quantities (q̃!TM) j. Remember, if these quantities are zero for every j, then q̃! ∈ P̃
and we have proved the theorem.

(q̃!TM) j = #
i∈Y+

#
k∈Y−

q∗i q∗k(MAda
i j +MAda

k j )

=

(

#
k∈Y−

q∗k

)(

#
i∈Y+

q∗i MAda
i j

)

+

(

#
i∈Y+

q∗i

)(

#
k∈Y−

q∗kMAda
k j

)

. (23)

Incorporating (22), which is the condition that F-skew(q∗) = 0, (23) becomes:

(q̃!TM) j =

(

#
i∈Y+

q∗i

)[

#
i∈Y+

q∗i MAda
i j + #

k∈Y−
q∗kMAda

k j

]

.

In fact, according to (21), the bracket in this expression is zero for all j. Thus, q̃! ∈ P̃ . We have
proved the forward direction of the theorem. The backwards direction, as noted earlier, follows
from (F+ +F−)2− (F+−F−)2 = 4F+F−.

Proof (of Corollary 11) Recall that q∗ ∈ PAda. Specifically writing this condition just for the
constant weak classifier yields:

0 = #
i∈Y+

q∗i MAda
i0 + #

k∈Y−
q∗kMAda

k0 = #
i∈Y+

q∗i yi+ #
k∈Y−

q∗kyk

= #
i∈Y+

q∗i − #
k∈Y−

q∗k = lim
t→!

F-skew(λt).

Proof (of Theorem 12)We know from the proof of Theorem 10 that since {λt}t and {λ′
t}t minimize

F̃ , we automatically have q̃t → q̃∗ and q′t → q̃∗ in !p where

q′t,ik := e−(Mλ′
t)ik .

Thus, we have that for all crucial pairs i,k such that i ∈ Y+ and k ∈ Y−:

lim
t→!

e−(Mλt)ik = lim
t→!

e−(Mλ′
t)ik = q̃∗ik.
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For each crucial pair i,k, if q̃∗ik > 1 then lim
t→!

(Mλt)ik < 0, that is,

lim
t→!

1[(Mλt)ik≤0] = 1,

and conversely, if q̃∗ik < 1 then
lim
t→!

1[(Mλt)ik≤0] = 0.

This is provided by the continuity of the function 1[z≤0] away from z = 0, and since there are no
asymptotic ties in score as we have assumed, q̃∗ik 0= 1. The same statement holds for λ′

t . Summing
over i,k pairs yields:

lim
t→!

[

#
i∈Y+

#
k∈Y−

1[(Mλt)ik≤0]

]

= lim
t→!

[

#
i∈Y+

#
k∈Y−

1[(Mλ′
t)ik≤0]

]

.

The theorem has been proved. Note that the AUC value is obtained from this sum by the formula
(13).

Proof (of Corollary 13) By Theorem 10, it is sufficient to show that the correction does not influence
the value of F̃(λt) and that it makes the F-skew vanish. Consider the vector λt + ce j0 .

F̃(λ+ ce j0) = #
i∈Y+

#
k∈Y−

exp

[

−#
j
& jh j(xi)− c

]

exp

[

+#
j
& jh j(xk)+ c

]

= #
i∈Y+

#
k∈Y−

exp

[

−#
j
& jh j(xi)

]

exp

[

+#
j
& jh j(xk)

]

= F̃(λ).

So, changing the coefficient of the constant weak classifier will not affect the values of F̃(λ). Now,
let’s compute the F-skew of the corrected sequence:

F-skew(λcorrectedt ) = F+(λt +bte j0)−F− (λt +bte j0)

= #
i∈Y+

e−(MAdaλt)i−bt − #
k∈Y−

e−(MAdaλt)k+bt

= e−btF+(λt)− ebtF−(λt) = 0

where this latter expression is equal to zero by our choice of bt . Since the F-skew of the corrected
sequence is always 0, the corrected sequence will minimize not only RankBoost’s objective, but
also AdaBoost’s.

Proof (of Theorem 14)We will use a similar argument as in Theorem 12 for misclassification error
rather than for ranking error. By assumption, λt is a sequence that minimizes RankBoost’s objective
F̃ and the correction forces the F-skew to be zero. Thus λcorrectedt minimizes RankBoost’s objective,
and Theorem 10 implies that λcorrectedt is also a minimizing sequence for AdaBoost’s objective F .
Using the same argument as in Theorem 12 substituting AdaBoost for RankBoost, we have that

lim
t→!

e−(MAdaλcorrectedt )i =: q∗i
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exists for all i and
lim
t→!

e−(MAdaλcorrectedt )k =: q∗k

exists for all k. Now, we have that for each example i, if q∗i > 1 then lim
t→!

(MAda
λt)i < 0, that is,

lim
t→!

1[(MAdaλcorrectedt )i≤0] = 1,

and conversely, if q̃∗i < 1 then
lim
t→!

1[(MAdaλcorrectedt )i≤0] = 0.

The same holds for all k and for λ′corrected
t . Again, there is no asymptotic convergence to the decision

boundary as we have assumed, q̃∗i 0= 1, q̃∗k 0= 1. The same statement holds for λ′corrected
t . Summing

over i and k yields:

lim
t→!

[

#
i∈Y+

1[(MAdaλcorrectedt )i≤0] + #
k∈Y−

1[(MAdaλcorrectedt )k≤0]

]

= lim
t→!

[

#
i∈Y+

1[(MAdaλ′corrected
t )i≤0] + #

k∈Y−
1[(MAdaλ′corrected

t )k≤0]

]

.

9. Conclusions

We have presented three main results. First, in Section 3, we presented a generalization bound for
ranking. This bound incorporates a margin, allowing it to be useful in the separable case. The
second main result is an algorithm, smooth margin ranking, that maximizes the ranking margin.
Our third result is that under very general conditions, AdaBoost solves classification and ranking
problems simultaneously, performing just as well for the ranking problem as RankBoost. Con-
versely, RankBoost with a change in intercept performs just as well for the classification problem
as AdaBoost.

10. Open Problems and Future Work

The three main results presented in this paper yield many new directions for future research. We
gave a margin-based bound for general ranking. It is worth investigating the design of more special-
ized margin-based bounds for ranking. We have developed one such bound in Rudin (2009); In that
work, we develop a specialized bound based on Theorem 2, designed to emphasize the top portion
of the list.

We described a new ranking algorithm, smooth margin ranking, that maximizes the margin. It
would be natural to compare the empirical performance of the smooth margin ranking algorithm
and RankBoost. In fact, it is also worth considering the empirical performance of AdaBoost to
RankBoost, now that we know AdaBoost can be used for ranking.
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Appendix A. Proof of Lemma 20

We will first prove some properties of ),+,-, and B in the following lemmas. First, we show
)(r,g,d0) is a nonnegative, deceasing function of g, and that +(r,g,d0) is an increasing function of
g. We also provide a bound on the second derivative of ), which is the key step in the proof of
Lemma 20.

Lemma 21 (Properties of )(r,g,d0) and +(r,g,d0)) For fixed values of r and d0, considering g as a
variable, within the range 0≤ g< r:

(i) lim
g→r

)(r,g,d0) = 0,

(ii)
()(r,g,d0)

(g
=

−+(r,g,d0)
g+′(r,g,d0)+ +′′(r,g,d0)

=
−+(r,g,d0)

(1−g2)+(r,g,d0)−d0
< 0,

(iii) lim
g→r

()(r,g,d0)
(g

=
−1

1− r2−d0
< 0,

(iv)
(+(r,g,d0)

(g
≥ 0,

(v) +(r,0,1− r) = 1− r ≤ d0+
√

(1−d0)2− r2 = +(r,0,d0),

(vi)
(2)(r,g,d0)

(g2
< 0 whenever d0 ≤

2
3
(1− r)(1− r2) and g> 0.

Proof By definition

+(r,g,d0) =
(1+ r−d0)

2
e−)(r,g,d0) +

(1− r−d0)
2

e)(r,g,d0) +d0,

+′(r,g,d0) = −
(1+ r−d0)

2
e−)(r,g,d0) +

(1− r−d0)
2

e)(r,g,d0),

and similarly define +′′(r,g,d0)= +(r,g,d0)−d0. Part (i) can be seen from (11), that is,−+′(r,g,d0)=
g+(r,g,d0), which simplifies to

(1+ r−d0)
2

e−)(r,g,d0)−
(1− r−d0)

2
e)(r,g,d0)
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= g
(1+ r−d0)

2
e−)(r,g,d0) +g

(1− r−d0)
2

e)(r,g,d0) +gd0,

so one sets g= r and verifies that )= 0 satisfies the equation. Part (ii) is shown by taking implicit
derivatives of (11) as follows:

()(r,g,d0)
(g

(g+′(r,g,d0)+ +′′(r,g,d0))+ +(r,g,d0) = 0,

that is,

()(r,g,d0)
(g

=
−+(r,g,d0)

g+′(r,g,d0)+ +′′(r,g,d0)
, (24)

and then simplifying using (11) and the definition of +′′(r,g,d0). For the inequality, the numerator
is negative, and the denominator is (using d+,d− notation) g(−d+e−) + d−e))+ d+e−) + d−e) =
(1− g)d+e−) +(1+ g)d−e) > 0 since g < 1. Part (iii) is shown from (i) and (ii); for g→ r, we
have )(r,g,d0) → 0, and thus +(r,g,d0) → 1. The inequality comes from 1− r2−d0 > 1− r−d0 =
2d− ≥ 0. To show (iv), by the chain rule,

(+(r,g,d0)
(g

= +′(r,g,d0)
()(r,g,d0)

(g
.

Since +(r,g,d0) > 0 and +′(r,g,d0) = −g+(r,g,d0), we know +′(r,g,d0) ≤ 0. Additionally, from
(ii), ()

(g < 0. Thus (iv) is proved. For (v), we know that when g = 0, +′(r,g,d0) = −g+(r,g,d0)

means +′(r,0,d0) = 0. Using the definition for +′(r,g,d0), we find that e)(r,0,d0) =
(

1+r−d0
1−r−d0

)1/2
.

Substituting this into the definition of + yields the equality conditions in (v). The inequality comes
from the fact that the right hand side, d0+

√

(1−d0)2− r2, is monotonically decreasing in d0. For
(vi), a derivative of (24) yields:

(g+′(r,g,d0)+ +′′(r,g,d0))
(2)(r,g,d0)

(g2

= −
(

()(r,g,d0)
(g

)[(

()(r,g,d0)
(g

)

(g+′′(r,g,d0)+ +′′′(r,g,d0))+2+′(r,g,d0)
]

,

where +′′′(r,g,d0)= +′(r,g,d0). The left expression (using d+,d− notation) is g+′(r,g,d0)++′′(r,g,d0)=
d+(1−g)e−)+d−(1+g)e) > 0 since g< 1. Since (ii) shows that ()/(g< 0, we are left to show
that the bracketed expression on the right is negative in order for the second derivative of ) to be
negative. Consider that quantity:

(

()(r,g,d0)
(g

)

(g+′′(r,g,d0)+ +′′′(r,g,d0))+2+′(r,g,d0)

= +′(r,g,d0)
[

()(r,g,d0)
(g

(

g+′′(r,g,d0)+ +′(r,g,d0)
+′(r,g,d0)

)

+2
]
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and substituting +′(r,g,d0) = −g+(r,g,d0) and +′′(r,g,d0) = +(r,g,d0)−d0,

= +′(r,g,d0)
[

()(r,g,d0)
(g

(

g+(r,g,d0)−gd0−g+(r,g,d0)
−g+(r,g,d0)

)

+2
]

= +′(r,g,d0)
[

()(r,g,d0)
(g

(

d0
+(r,g,d0)

)

+2
]

and from (ii),

= +′(r,g,d0)
[

−d0
(1−g2)+(r,g,d0)−d0

+2
]

. (25)

Since−+′(r,g,d0) = g+(r,g,d0), we know +′(r,g,d0) < 0 when g> 0. Let us show that the bracketed
expression of (25) is positive. Using our assumption on d0, also 1− r2 < 1−g2, (v), and (iv),

d0 < (1− r2)(1− r)
2
3

< (1−g2)(1− r)
2
3

= (1−g2)+(r,0,1− r)
2
3

≤ (1−g2)+(r,0,d0)
2
3
≤ (1−g2)+(r,g,d0)

2
3
.

Rearranging this yields
d0

[(1−g2)+(r,g,d0)−d0]
< 2.

The proof is finished.

In order to build up to Lemma 20, we need some properties of -(r,g,d0) and B.

Lemma 22 (Properties of -(r,g,d0)) For every fixed value of r and d0, considering g as a variable,
within the range 0≤ g< r:

(i) lim
g→r

-(r,g,d0) = r

(ii) -(r,g,d0) > g

(iii)
(-(r,g,d0)

(g
> 0

(iv) -(r,g,d0) < r.

Proof The proof of (i) uses L’Hôpital’s rule, which we have permission to use from Lemma 21 (i)
since limg→r)(r,g,d0) = 0.

lim
g→r

-(r,g,d0) = lim
g→r

− ln+(r,g,d0)
)(r,g,d0)

= lim
g→r

− +′(r,g,d0)
+(r,g,d0)

()(r,g,d0)
(g

()(r,g,d0)
(g

= lim
g→r

g= r.

Here we have used that limg→r
()(r,g,d0)

(g is finite from Lemma 21 (ii), and applied (11), that is,
−+′(r,g,d0) = g+(r,g,d0).

For the proofs of (ii) and (iii) we consider the derivative of -(r,g,d0) with respect to g. Recall
that +′(r,g,d0) is given by the formula (8).

(-(r,g,d0)
(g

=

[

−+′(r,g,d0)
+(r,g,d0)

+
ln+(r,g,d0)
)(r,g,d0)

]

1
)(r,g,d0)

()(r,g,d0)
(g

= (-(r,g,d0)−g)
(

−
()(r,g,d0)

(g

)

1
)(r,g,d0)

. (26)

2227



RUDIN AND SCHAPIRE

For the last line above we used (11) and the definition of -(r,g,d0). Since )(r,g,d0) is a posi-
tive, decreasing function of g from Lemma 21 (ii), we know −()(r,g,d0)/(g and 1/)(r,g,d0) are
positive. Thus,

sign
(

(-(r,g,d0)
(g

)

= sign(-(r,g,d0)−g). (27)

We show next that -(r,0,d0) > 0. From (11), we know 0 = −+′(r,0,d0), which by definition of
+′(r,g,d0) in (8) gives )(r,0,d0) = 1

2 ln(d+/d−) > 0. Now,

-(r,0,d0) =
− ln+(r,0,d0)
)(r,0,d0)

=
1

)(r,0,d0)

(

− ln
(

2(d−d+)1/2+d0
))

.

We also have 2(d−d+)1/2+d0 < d− +d+ +d0 = 1, so we are done showing that -(r,0,d0) > 0.
Now we proceed by contradiction. Assume that there is some value of ḡ, where 0 ≤ ḡ < r, for

which -(r, ḡ,d0) ≤ ḡ. That is, assume the functions -(r,g,d0) and f (g) = g cross. In that case, the
derivative (-(r,g,d0)/(g would have a nonpositive sign at g= ḡ by (27), and the function -(r,g,d0)
would be a nonincreasing function for ḡ< g< r. That is, since -(r,g,d0) would have a nonpositive
slope at ḡ, it cannot increase to cross the line f (g) = g in order to reverse the sign of the slope.
However, this is a contradiction, since the function must indeed increase; it must reach the limiting
value r as g→ r, as we showed in (i). Hence, -(r,g,d0) > g for all g such that 0 ≤ g < r, proving
(ii), and thus by (27), (-(r,g,d0)/(g> 0 for all g such that 0≤ g< r, proving (iii).

The proof of (iv) is again by contradiction. Fix arbitrary values of r and d0. Assume -(r, ḡ,d0)≥
r for some ḡ < r. Since the function -(r,g,d0) is an increasing function of g, -(r,g,d0) must be
larger than r and strictly increasing for g> ḡ. Yet by (i), -(r,g,d0) → r as g→ r for each fixed pair
of r and d0. This is a contradiction, since -(r,g,d0) cannot decrease to meet this limit.

Lemma 23

(i) 0< B(r,g,d0) < 1

(ii) lim
g→r

B(r,g,d0) =
1
2
for fixed r and d0.

Proof From Lemma 22 (ii), -(r,g,d0)−g is positive, and by assumption g< r. Thus,B(r,g,d0)> 0.
Also, from Lemma 22 (iv), -(r,g,d0) < r. Thus, B(r,g,d0) < 1. Thus (i) is proved. The proof of
(ii) uses L’Hôpital’s rule twice (which we may use by Lemma 21 (i)) also (11), and the fact that
derivatives of )(r,g,d0) with respect to g are finite.

lim
g→r

B(r,g,d0) = lim
g→r

− ln+(r,g,d0)
)(r,g,d0) −g
r−g

= lim
g→r

− ln+(r,g,d0)−g)(r,g,d0)
)(r,g,d0)(r−g)

= lim
g→r

− +′(r,g,d0)
+(r,g,d0)

()(r,g,d0)
(g −g ()(r,g,d0)

(g −)(r,g,d0)

−)(r,g,d0)+(r−g) ()(r,g,d0)
(g

= lim
g→r

−)(r,g,d0)
−)(r,g,d0)+(r−g) ()(r,g,d0)

(g

= lim
g→r

− ()(r,g,d0)
(g

−2 ()(r,g,d0)
(g +(r−g) (

2)(r,g,d0)
(g2

=
1
2
.
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There is one thing left in order to prove Lemma 20. This is where the key step appears, that is,
our bound on the second derivative of ).

Lemma 24
(r−g)
)(r,g,d0)

(

−
()(r,g,d0)

(g

)

< 1.

Proof Define
.(r,g,d0) := (r−g)

(

−
()(r,g,d0)

(g

)

−)(r,g,d0).

In order to prove the lemma, we need only to show that .(r,g,d0) is always negative. We will show
that (.(r,g,d0)/(g is positive. Thus, the largest possible value of .(r,g,d0) occurs when g is at
its maximum, namely, when g = r. If g = r, then .(r,g,d0) = 0. Thus, .(r,g,d0) is everywhere
negative and the lemma is proved. Now we have only to prove (.(r,g,d0)/(g is positive. Again, we
take derivatives:

(.(r,g,d0)
(g

= (r−g)
(

−
(2)(r,g,d0)

(g2

)

,

and since r−g is always positive, and since we have taken efforts to ensure )’s second derivative is
negative (except at the irrelevant endpoint g= 0) in Lemma 21 (vi), we are done.

We finally prove Lemma 20.
Proof (of Lemma 20)We consider (B(r,g,d0)/(g for each fixed pair of r and d0 values and derive
a differential equation for B . We will prove that the derivative is always nonnegative. Then we will
use Lemma 23 to show that B(r,g,d0) is nonnegative. Here is the differential equation:

(B(r,g,d0)
(g

=
1

r−g

[

(-(r,g,d0)
(g

−1+
-(r,g,d0)−g

r−g

]

=
1

r−g

[

(-(r,g,d0)
(g

−1+B(r,g,d0)
]

=
1

r−g

[

(-(r,g,d0)−g)
(

−
()(r,g,d0)

(g
1

)(r,g,d0)

)

−1+B(r,g,d0)
]

=
1

r−g

[

B(r,g,d0)(r−g)
(

−
()(r,g,d0)

(g
1

)(r,g,d0)

)

−1+B(r,g,d0)
]

=
B(r,g,d0)
r−g

[

(r−g)
(

−
()(r,g,d0)

(g
1

)(r,g,d0)

)

−
(

1
B(r,g,d0)

−1
)]

. (28)

Here we have incorporated the differential equation for -(r,g,d0) from (26). Again, we will prove
by contradiction. Assume that for some values of r and g, where g < r, we have B(r,g,d0) ≤
1/2. That is, assume

(

1
B(r,g,d0) −1

)

≥ 1. In that case, the bracket in Equation (28) is negative,
by Lemma 24. Since 0 < B(r,g,d0) < 1 from Lemma 23, and g < r by assumption, the factor
B(r,g,d0)/(r− g) of Equation (28) is positive and the bracket is negative, thus (B(r,g,d0)

(g < 0, so
B(r,g,d0) is a decreasing function. Hence, for each fixed r and d0, B(r,g,d0) decreases from a value
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which is less than or equal to 1/2. Recall from Lemma 23 that limg→rB(r,g,d0) = 1/2, and thus
this limit can never be attained. Contradiction. Thus, for all values of r, d0 and g within 0< r < 1,
0≤ g< r, 0≤ d0 < 2

3(1−r)(1−r
2), we must have B(r,g,d0) > 1/2. We have proved the lemma.
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The P-Norm Push: A Simple Convex Ranking Algorithm that
Concentrates at the Top of the List
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Abstract
We are interested in supervised ranking algorithms that perform especially well near the top of the
ranked list, and are only required to perform sufficiently well on the rest of the list. In this work,
we provide a general form of convex objective that gives high-scoring examples more importance.
This “push” near the top of the list can be chosen arbitrarily large or small, based on the preference
of the user. We choose !p-norms to provide a specific type of push; if the user sets p larger, the
objective concentrates harder on the top of the list. We derive a generalization bound based on
the p-norm objective, working around the natural asymmetry of the problem. We then derive a
boosting-style algorithm for the problem of ranking with a push at the top. The usefulness of the
algorithm is illustrated through experiments on repository data. We prove that the minimizer of the
algorithm’s objective is unique in a specific sense. Furthermore, we illustrate how our objective is
related to quality measurements for information retrieval.
Keywords: ranking, RankBoost, generalization bounds, ROC, information retrieval

1. Introduction

The problem of supervised ranking is useful in many application domains, for instance, maintenance
operations to be performed in a specific order, natural language processing, information retrieval,
and drug discovery. Many of these domains require the construction of a ranked list, yet often, only
the top portion of the list is used in practice. For instance, in the setting of supervised movie ranking,
the learning algorithm provides the user (an avid movie-goer) with a ranked list of movies based on
preference data. We expect the user to examine the top portion of the list as a recommendation. It
is possible that she never looks at the rest of the list, or examines it only briefly. Thus, we wish to
make sure that the top portion of the list is correctly constructed. This is the problem on which we
concentrate.

We present a fairly general and flexible technique for solving these types of problems. Specif-
ically, we derive a convex objective function that places more emphasis at the top of the list. The
algorithm we develop using this technique (“The P-Norm Push”) is based on minimization of a
specific version of this objective. The user chooses a parameter “p” in the objective, corresponding
to the p of an !p norm. By varying p, one changes the degree of concentration (“push”) at the top
of the list. One can concentrate at the very top of the list (a big push, large p), or one can have a
moderate emphasis at the top (a little push, low p), or somewhere in between. The case with no

∗. Also at Center for Computational Learning Systems, Columbia University, 475 Riverside Drive MC 7717, New York,
NY 10115.

c©2009 Cynthia Rudin.
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emphasis at the top (no push, p = 1) corresponds to a standard objective for supervised bipartite
ranking, namely the exponentiated pairwise misranking error.

The P-Norm Push is motivated in the setting of supervised bipartite ranking. In the supervised
bipartite ranking problem, each training instance has a label of +1 or -1; each movie is either a good
movie or a bad movie. In this case, we want to push the bad movies away from the top of the list
where the good movies are desired. The quality of a ranking can be determined by examining the
Receiver Operator Characteristic (ROC) curve. The AUC (Area Under the ROC Curve) is precisely
a constant times one minus the total standard pairwise misranking error. The accuracy measure for
our problem is different; we care mostly about the leftmost portion of the ROC curve, corresponding
to the top of the ranked list. We wish to make the leftmost portion of the curve higher. Thus, we
choose to make a tradeoff: in order make the leftmost portion of the curve higher, we sacrifice on
the total area underneath the curve. The parameter p in the P-Norm Push allows the user to directly
control this tradeoff.

This problem is highly asymmetric with respect to the positive and negative classes, and is not
represented by a sum of independent random variables. It is interesting to consider generalization
bounds for such a problem; it is not clear how to use standard techniques that require natural sym-
metry with respect to the positive and negative examples, for instance, many VC bounds rely on this
kind of symmetry. In this work, we present a generalization bound that uses covering numbers as a
measure of complexity. This bound is designed specifically to handle these asymmetric conditions.
The bound underscores an important property of algorithms that concentrate on a small portion of
the domain, such as algorithms that concentrate on the top of a ranked list: these algorithms require
more examples for generalization.

Recently, there has been a large amount of interest in the supervised ranking problem, and espe-
cially in the bipartite problem. Freund et al. (2003) have developed the RankBoost algorithm for the
general setting. We inherit the setup of RankBoost, and our algorithm will also be a boosting-style
algorithm. Oddly, Freund and Schapire’s classification algorithm AdaBoost (Freund and Schapire,
1997) performs just as well for bipartite ranking as RankBoost; both algorithms achieve equally
good values of the AUC (Rudin and Schapire, 2009). This is in contrast with support vector ma-
chine classifiers (Cortes and Vapnik, 1995), which do not tend to perform well for the bipartite
ranking problem (Rakotomamonjy, 2004; Brefeld and Scheffer, 2005). Mozer et al. (2002) aim to
manipulate specific points of the ROC curve in order to study “churn” in the telecommunications
industry. Perhaps the closest algorithm to ours is the one proposed by Dekel et al. (2004), who have
used a similar form of objective with different specifics to achieve a different goal, namely to rank
labels in a multilabel setting. Other related works on label ranking include those of Crammer and
Singer (2001) and Shalev-Shwartz and Singer (2006). The work of Yan et al. (2003) contains a brief
mention of a method to optimize the lower left corner of the ROC curve, though their multi-layer
perception approach is highly non-convex. There is a lot of recent work on generalization bounds
(and large deviation bounds) for supervised ranking, namely, the bounds of Freund et al. (2003),
Clemençon et al. (2008), Agarwal et al. (2005), Usunier et al. (2005), Hill et al. (2002), Rudin et al.
(2005) and Rudin and Schapire (2009), though we were only able to adapt techniques from the lat-
ter two bounds to our particular setting, since the covering number approach can handle the natural
asymmetry of our problem. There is also a body of work on ROC curves in general, for example,
the estimation of confidence bands for ROC curves (Macskassy et al., 2005), and more recent works
by Clemençon and Vayatis addressing statistical aspects of ranking problems (e.g., Clemençon and
Vayatis, 2007, 2008).
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There is a large body of literature on information retrieval (IR) that considers other quality
measurements for a ranked list, including “discounted cumulative gain,” “average precision” and
“winner take all.” In essence, the P-Norm Push algorithm can be considered as a way to interpolate
between AUC maximization (no push, p = 1) and a quantity similar to “winner take all” (largest
possible push, p = !). A simple variation of the P-Norm Push derivation can be used to derive
convex objectives that are somewhat similar to the “discounted cumulative gain” as we illustrate in
Section 7. Our approach yields simple smooth convex objectives that can be minimized using simple
coordinate techniques. In that sense, our work complements those of Tsochantaridis et al. (2005)
and Le and Smola (2007) who also minimize a convex upper bound of IR ranking measurements, but
with a structured learning approach that requires optimization with exponentially many constraints;
those works have suggested useful ways to combat this problem. Additionally, there are recent
works (Cossock and Zhang, 2006; Zheng et al., 2007) that suggest regression approaches to optimize
ranking criteria for information retrieval.

Here is the outline of the work: in Section 2, we present a general form of objective function,
allowing us to incorporate a push near the top of the ranked list. In order to construct a specific
case of this objective, one chooses both a loss function ! and a convex “price” function g. We will
choose g to be a power law, g(r) = rp, so that a higher power p corresponds to a larger push near
the top. In Section 3 we give some examples to illustrate how the objective works. In Section 4,
we provide a generalization bound for our objective with ! as the 0-1 loss, based on L! covering
numbers. The generalization bound has been improved from the conference version of this work
(Rudin, 2006). In Section 5 we derive the “P-Norm Push” coordinate descent algorithm based on
the objective with ! chosen as the exponential loss used for AdaBoost and RankBoost. Section 6
discusses uniqueness of the minimizer of the P-Norm Push algorithm’s objective. We prove that the
minimizer is unique in a specific sense. This result is based on conjugate duality and the theory of
Bregman distances (Della Pietra et al., 2002), and is analogous to the result of Collins et al. (2002)
for AdaBoost. The “primal” problem for AdaBoost can be written as relative entropy minimization.
For the objective of the P-Norm Push algorithm, the problem is more difficult and the primal is
not a common function. Section 7 illustrates the similarity between quality measurements used for
information retrieval and our objective, and gives other variations of the objective. In Section 8,
we demonstrate the P-Norm Push on repository data. Section 9 discusses open problems and future
work. Sections 10 and 11 contain the major proofs from Sections 4 and 6. The P-Norm Push was
recently applied to the problem of prioritizing manholes in New York City for maintenance and
repair (Rudin et al., 2009).

The main contributions of this work are: a generalization bound for a learning problem that is
asymmetric by design, a simple user-adjustable, easy-to-implement algorithm for supervised rank-
ing with a “push,” and a proof that the minimizer of the algorithm’s objective is unique in a specific
sense.

2. An Objective for Ranking with a Push

The set of instances with positive labels is {xi}i=1,...,I , where xi ∈ X . The negative instances are
{x̃k}k=1,...,K , where x̃k ∈ X . We always use i for the index over positive instances and k for the index
over negative instances. In the case of the movie ranking problem, the xi’s are the good movies used
for training, the x̃k’s are the bad movies, and X is a database of movies. Our goal is to construct a
ranking function f that gives a real valued score to each instance in X , that is, f : X → R . We do
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not care about the actual values of each instance, only the relative values; for positive-negative pair
xi, x̃k, we care that f (xi) > f (x̃k) but it is not important to know, for example, that f (xi) = 0.4 and
f (x̃k) = 0.1.
Let us now derive the general form of our objective. For a particular negative example, we wish

to reduce its Height, which is the number of positive examples ranked beneath it. That is, for each
k, we wish to make Height(k) small, where:

Height(k) :=
I

"
i=1
1[ f (xi)≤ f (x̃k)].

Let us now add the push. We want to concentrate harder on negative examples that have high
scores; we want to push these examples down from the top. Since the highest scoring negative
examples also achieve the largest Heights, these are the examples for which we impose a larger
price. Namely, for convex, non-negative, monotonically increasing function g : R+ → R+, we place
the price g(Height(k)) on negative example k:

g

(

I

"
i=1
1[ f (xi)≤ f (x̃k)]

)

.

If g is very steep, we pay an extremely large price for a high scoring negative example. Examples
of steep functions include g(r) = er and g(r) = rp for p large. Thus we have derived an objective to
minimize, namely the sum of the prices for the negative examples:

Rg,1( f ) :=
K

"
k=1

g

(

I

"
i=1
1[ f (xi)≤ f (x̃k)]

)

.

The effect of g is to force the value of Rg,1 to come mostly from the highest scoring negative
examples. These high scoring negative examples are precisely the examples represented by the
leftmost portion of the ROC Curve. Minimizing Rg,1 should thus boost performance around high
scoring negative examples and increase the leftmost portion of the ROC Curve.

It is hard to minimize Rg,1 directly due to the 0-1 loss in the inner sum. Instead, we will mini-
mize an upper bound, Rg,!, which incorporates ! : R → R+, a convex, non-negative, monotonically
decreasing upper bound on the 0-1 loss. Popular loss functions include the exponential, logistic,
and hinge losses. We can now define the general form of our objective:

Rg,!( f ) :=
K

"
k=1

g

(

I

"
i=1

!
(

f (xi)− f (x̃k)
)

)

.

To construct a specific version of this objective, one chooses the loss !, the price function g, and
an appropriate hypothesis space F over which to minimize Rg,!. In order to derive RankBoost’s
specific objective from Rg,!, we would choose ! as the exponential loss and g to be the identity.

For the moment, let us assume we care only about the very top of the list, that is, we wish to
push the most offending negative example as far down the list as possible. Equivalently, we wish to
minimize Rmax, the number of positives below the highest scoring negative example:

Rmax( f ) :=max
k

I

"
i=1
1[ f (xi)≤ f (x̃k)].
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Minimizing this misranking error at the very top is similar to optimizing a “winner take all” loss
such as 1[maxi f (xi)≤maxk f (x̃k)] in that both would choose a ranked list where a negative example is not
at the top of the list.

Although it is hard to minimize Rmax( f ) directly, Rg,! can give us some control over Rmax.
Namely, the following relationships exist between Rg,!, Rg,1 and Rmax.

Theorem 1 For all convex, non-negative, monotonic g and for all ! that are upper bounds for the
0-1 loss, we have that:

Kg
(

1
K
Rmax( f )

)

≤ Rg,1( f ) ≤ Kg
(

Rmax( f )
)

and Rg,1( f ) ≤ Rg,!( f ).

Proof The proof of the first inequality follows from the monotonicity of g and Jensen’s inequality
for convex function g.

Kg
(

1
K
Rmax( f )

)

= Kg

(

1
K
max
k

I

"
i=1
1[ f (xi)≤ f (x̃k)]

)

≤Kg

(

1
K

K

"
k=1

I

"
i=1
1[ f (xi)≤ f (x̃k)]

)

≤
K

"
k=1

g

(

I

"
i=1
1[ f (xi)≤ f (x̃k)]

)

= Rg,1( f ).

For the second inequality, we use the fact that g is monotonic:

Rg,1( f ) =
K

"
k=1

g

(

I

"
i=1
1[ f (xi)≤ f (x̃k)]

)

≤ Kmax
k
g

(

I

"
i=1
1[ f (xi)≤ f (x̃k)]

)

= Kg

(

max
k

I

"
i=1
1[ f (xi)≤ f (x̃k)]

)

= Kg
(

Rmax( f )
)

.

Using that ! is an upper bound on the 0-1 loss, we have the last inequality:

Rg,1( f ) =
K

"
k=1

g

(

I

"
i=1
1[ f (xi)≤ f (x̃k)]

)

≤
K

"
k=1

g

(

I

"
i=1

!
(

f (xi)− f (x̃k)
)

)

= Rg,!( f ).

The fact that the function Kg( 1K r) is monotonic in r adds credibility to our choice of objective Rg,!;
if Rg,!( f ) is minimized, causing a reduction in Kg( 1KRmax( f )), then Rmax( f ) will also be reduced.
Thus, Theorem 1 suggests that Rg,! is a reasonable quantity to minimize in order to incorporate a
push at the top, for instance, in order to diminish Rmax. Also recall that if g is especially steep, for
instance g(r) = er or g(r) = rp for p large, then g−1("K

k=1 g(rk)) ≈ maxk rk. That is, the quantity
g−1(Rg,1), for steep functions g, will approximate Rmax.

For most of the paper, we are considering the power law (or “p-norm”) price functions g(r) =
rp. By allowing the user to choose p, we allow the amount of push to be specified to match the
application. At the heart of this derivation, we are using !p-norms to interpolate between the !1-
norm (the AUC), and the !!-norm (the values of Rmax). In what follows, we overload notation by
defining Rp,! to denote Rg,! where g(r) = rp:

Rp,!( f ) :=
K

"
k=1

(

I

"
i=1

!
(

f (xi)− f (x̃k)
)

)p

.
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Thus, R1/pp,! ( f ) → Rmax,!( f ) as p→ !, where Rmax,!( f ) :=maxk"I
i=1 !

(

f (xi)− f (x̃k)
)

.
As we will discuss, the choice of p should depend on the number of examples. More examples

are needed for generalization if a larger value of p is chosen.

3. Illustrating That It Works

In this section, we will give some examples to illustrate how the objective concentrates on the top
of the list when p is large, or more generally, when g is steep.

3.1 First Illustration: Swap on the Bottom vs. Swap on the Top

For our first illustration, we aim simply to show that the objective function we have derived really
does care more about the top of the list than the rest. Consider the set of examples x1,x2,x3, . . . ,x8
with vector of labels:

(−1,+1,−1,+1,−1,−1,+1,+1).

Consider scoring function forig which gives the scores: forig(xi) = i for all i. Placing the labels in
rank order of forig yields:

labels in original rank order: (−1 +1 −1 +1 −1 −1 +1 +1) .

Using the power law g(r) = r4 for the price function, we can compute the value of R4,1( forig) for
this ranked list: 04+14+24+24 = 33.

Now consider fswapOnBot which swaps the scores of a pair of examples at the bottom of the
ranked list, fswapOnBot(x1) = 2, fswapOnBot(x2) = 1, and fswapOnBot(xi) = i for all other i. The new
rank ordering of labels is:

swap on the bottom: (+1 −1 −1 +1 −1 −1 +1 +1) .

Here a negative example is ranked above one more positive example than before. Computing the
value of R4,1( fswapOnBot) yields 14+14+24+24 = 34> 33; the value of R4,1 changes slightly when
a swap is made at the bottom of the list, only from 33 to 34. Let us now instead consider a swap
near the top of the list, so that the new set of labels is again only one swap away from the original,
fswapOnTop(x6) = 7, fswapOnTop(x7) = 6, and fswapOnTop(xi) = i for all other i. The new ordering of
labels is:

swap on the top: (−1 +1 −1 +1 −1 +1 −1 +1) .

Here, the value of R4,1( fswapOnTop) is 04 + 14 + 24 + 34 = 98( 33. So, in both cases only one
swap was made between neighboring examples; however, the swap at the top of the list changed the
objective dramatically (from 33 to 98) while the swap at the bottom hardly changed the objective at
all (from 33 to 34). So, we have now illustrated that the objective function Rp,1( f ) concentrates at
the top of the list.

The same behavior occurs using different loss functions !. This is summarized in Table 1 for
three loss functions: the 0-1 loss which we have just explained, the exponential loss !(r) = e−r, and
the logistic loss !(r) = log(1+ e−r). (Note that using natural log for the logistic loss does not give
an upper bound on the 0-1 loss, it is off by a multiplicative factor that is irrelevant in experiments.)
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x1, x2, x3, x4, x5, x6, x7, x8 R4,1( f ) R4,exp( f ) R4,logistic( f )
y: (−1,+1,−1,+1,−1,−1,+1,+1)

labels ordered by forig :
(−1,+1,−1,+1,−1,−1,+1,+1) 33 17,160.17 430.79

labels ordered by fswapOnBot :
(+1,−1,−1,+1,−1,−1,+1,+1) 34 72,289.39 670.20

labels ordered by fswapOnTop :
(−1,+1,−1,+1,−1,+1,−1,+1) 98 130,515.09 1,212.23

Table 1: Values of the objective function R4,! for the three slightly different labelings, using the 0-1
loss (column R4,1), exponential loss (column R4,exp), and logistic loss (column R4,logistic).
The objective functions change much more in reaction to the swap at the top of the list: the
values in the third row (swap on the top) are significantly higher than those in the second
row (swap on the bottom).

3.2 A Second Illustration: Reversal of Polarity

Let us assume we want to choose a scoring function f by minimizing our objective Rp,!( f ) over
f ∈ F where F has only two functions, F = { f1, f2}. This is an interesting experiment in which
there are only 2 choices available for the function f : the first concentrates on the top of the ranked
list, but performs poorly on the rest, whereas the second performs badly on the top of the ranked
list, but performs well over all. In fact, the second scoring function f2 is exactly a negation of the
first scoring function f1. Here are the labels and hypotheses:

labels +1 +1 −1 −1 −1 −1 −1 +1 +1 +1 +1 +1 −1 −1
f1 : ( 14 13 12 11 10 9 8 7 6 5 4 3 2 1 )/14
f2 : (−14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 )/14

Here, f1 performs well at the top of the list (the two top-scoring examples are positive), but the whole
middle of the list is reversed; there are 5 negative examples in a row, and below that 5 positives.
On the other hand, f2 misses the top two examples which have scores -1/14 and -2/14, however,
the 10 middle examples are correctly ranked. f2 has a larger AUC than f1, but f1 is better at the
top of the list. Now, which of f1 and f2 would the misranking objectives from Section 2 prefer?
Let us answer this for various Rp,!, for different p and !. Specifically, we will demonstrate that as
p becomes larger, Rp,! prefers the first hypothesis which performs better at the top. Table 2 shows
values of Rp,! for three different loss functions and for various values of p. This table shows that for
smaller p, f2 is preferred. At some value of p, the “polarity” reverses and then f1 is preferred. So,
using steeper price functions means that we are more likely to prefer scoring functions that perform
well at the top of the list.
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p Rp,1( f1) Rp,1( f2) argmin
f∈{ f1, f2}

Rp,1( f ) Rp,exp( f1) Rp,exp( f2) argmin
f∈{ f1, f2}

Rp,exp( f )

1 25 24 f2 50.25 49.80 f2
2 125 118 f2 367.39 362.35 f2
3 625 726 f1 2.73∗103 2.70∗103 f2
4 3.13∗103 4.88∗103 f1 2.056∗104 2.057∗104 f1
5 1.56∗104 3.38∗104 f1 1.56∗105 1.60∗105 f1
6 7.81∗104 23.56∗104 f1 1.20∗106 1.28∗106 f1
7 3.91∗105 16.48∗105 f1 9.34∗106 10.36∗106 f1
8 1.95∗106 11.53∗106 f1 7.29∗107 8.53∗107 f1
9 9.77∗106 80.71∗106 f1 5.72∗108 7.13∗108 f1
10 4.88∗107 56.50∗107 f1 4.50∗109 6.02∗109 f1

p Rp,logistic ( f1) Rp,logistic ( f2) argmin
f∈{ f1, f2}

Rp,logistic( f )

1 34.34 34.09 f2
2 170.18 167.90 f2
3 851.09 836.46 f2
4 4.29∗103 4.22∗103 f2
5 2.18∗104 2.15∗104 f2
6 1.114∗105 1.110∗105 f2
7 5.72∗105 5.79∗105 f1
8 2.96∗106 3.05∗106 f1
9 1.53∗107 1.63∗107 f1
10 7.98∗107 8.74∗107 f1

Table 2: This table shows that as the price function gets steeper (as p increases), the scoring func-
tion f1 that performs better on the top of the list is preferred. We show the values for each
of the objectives Rp,1, Rp,exp and Rp,logistic for p= 1, . . . ,10 applied to f1 (first column) and
f2 (second column). The third column shows which of the two scoring functions f1 or f2
achieve a lower value of the objective.

3.3 Third Illustration: Contribution of Each Positive-Negative Pair

Consider the following list of labels and function values :

y : (1 1 −1 1 1 −1 1 1 −1 1 1 −1 1 1 −1 1 1 −1 −1 −1)
f : (20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1)/20

Figure 1 illustrates the amount that each positive-negative pair contributes to Rp,exp for var-
ious values of p. We aim to show that Rp,exp becomes more influenced by the highest scoring
negative examples as p is increased. On the vertical axis are the positive examples i = 1, . . . ,12
ordered by score, with the highest scoring examples at the bottom. On the horizontal axis are
the negative examples k = 1, . . . ,8 ordered by score, with the highest scoring examples on the
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left. The value of the (i,k)th entry is the contribution of the kth highest scoring negative exam-
ple,

(

"ī e−( f (xī)− f (x̃k))
)p, multiplied by the proportion attributed to the ith highest scoring positive

example, e−( f (xi)− f (x̃k))/"ī e−( f (xī)− f (x̃k)). As we adjust the value of p, one can see that most of the
contribution shifts towards the left, or equivalently, towards the highest scoring negative examples.

p=1 p=2 p=4 p=6 p=8

Figure 1: Contribution of each positive-negative pair to the objective Rp,exp. Each square represents
an i,k pair, where i is an index along the vertical axis, and k is along the horizontal axis.
Lighter colors indicate larger contributions to Rp,exp. The upper left corner represents the
highest (worst) ranked negative and the lowest (worst) ranked positive.

4. A Generalization Bound for Rp,1
We present two bounds, where the second has better dependence on p than the first. A preliminary
version of the first bound appears in the conference version of this paper (Rudin, 2006). This work
is inspired by the works of Koltchinskii and Panchenko (2002), Cucker and Smale (2002), and
Bousquet (2003).

Assume that the positive instances xi ∈ X , i = 1, ..., I are chosen independently and at random
(iid) from a fixed but unknown probability distribution D+ on X . Assume the negative instances
x̃k ∈ X , k = 1, ...,K are chosen iid from D−. The notation x ∼ D means x is chosen randomly
according to distribution D . The notation S+ ∼D I

+ means each of the I elements of the training set
S+ are chosen independently at random according to D+. Similarly for S− ∼DK

− .
We now define the “true” objective function for the underlying distribution:

Rtruep,1 ( f ) :=
(

Ex−∼D−

(

Ex+∼D+1[ f (x+)− f (x−)≤0]
)p

)1/p

=
∥

∥

∥
Px+∼D+

(

f (x+)− f (x−) ≤ 0|x−
)

∥

∥

∥

Lp(X−,D−)
.

The empirical loss associated with Rtruep,1 ( f ) is the following:

Rempiricalp,1 ( f ) :=

(

1
K

K

"
k=1

(

1
I

I

"
i=1
1[ f (xi)− f (x̃k)≤0]

)p)1/p

.

Here, for a particular x̃k, Rempiricalp,1 ( f ) takes into account the average number of positive examples
that have scores below x̃k. It is a monotonic function of Rp,1. To make this notion more general, let
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us consider the average number of positive examples that have scores that are close to or below x̃k.
A more general version of Rempiricalp,1 ( f ) is thus defined as:

Rempiricalp,1,# ( f ) :=

(

1
K

K

"
k=1

(

1
I

I

"
i=1
1[ f (xi)− f (x̃k)≤#]

)p)1/p

.

This terminology incorporates the “margin” value #. As before, we suffer some loss whenever
positive example xi is ranked below negative example x̃k, but now we also suffer loss whenever xi
and x̃k have scores within # of each other. Note that Rempiricalp,1,# is an empirical quantity, so it can be
measured for any #. We will state two bounds, proved in Section 10, where the second is tighter
than the first. The first bound is easier to understand and is a direct corollary of the second bound.

Theorem 2 (First Generalization Bound) For all $ > 0, p ≥ 1, # > 0, the probability over random
choice of training set, S+ ∼D I

+,S− ∼DK
− that there exists an f ∈ F such that

Rtruep,1 ( f ) ≥ Rempiricalp,1,# ( f )+ $

is at most:
2N

(

F ,
$#
8

)(

exp
[

−2
( $
4

)2p
K
]

+ exp
[

−
$2

8
I+ lnK

])

.

Here the covering number N (F ,$) is defined as the number of $-sized balls needed to cover F in
L!, and it is used here as a complexity measure for F . This expression states that, provided I and K
are large, then with high probability, the true error Rtruep,1 ( f ) is not too much more than the empirical
error Rempiricalp,1,# ( f ).

It is important to note the implications of this bound for scalability. More examples are required
for larger p. This is because we are concentrating on a small portion of input space corresponding
to the top of the ranked list. If most of the value of Rtruep,1 comes from a small portion of input space,
it is necessary to have more examples in that part of the space in order to estimate its value with
high confidence. The fact that more examples are required for large p can affect performance in
practice. A 1-dimensional demonstration of this fact is given at the end of Section 10.

Theorem 2 shows that the dependence on p is important for generalization. The following theo-
rem shows that in most circumstances, we have much better dependence on p. Specifically, the de-

pendence can be shifted from−$2p in the exponential to a factor related to−$2
(

inf f Rtruep,1 ( f )
)2(p−1)

.
The bound becomes much tighter than Theorem 2 when all hypotheses have a large enough true risk,
that is, when inf f Rtruep,1 ( f ) is large compared to $.

Theorem 3 (Second Generalization Bound) For all $> 0, p≥ 1, #> 0, the probability over random
choice of training set, S+ ∼D I

+,S− ∼DK
− that there exists an f ∈ F such that

Rtruep,1 ( f ) ≥ Rempiricalp,1,# ( f )+ $

is at most:

2N
(

F ,
$#
8

)(

exp
[

−2Kmax
{

$2

16
(Rp,min)2(p−1) ,

( $
4

)2p
}]

+ exp
[

−
$2

8
I+ lnK

])

.

where Rp,min := inf f∈F Rtruep,1 ( f ).
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The proof is in Section 10. The dependence on p is now much better than in Theorem 2. It is
possible that the bound can be tightened in other ways, for instance, to use a different type of
covering number. For instance, one might use the “sloppy covering number” in Rudin and Schapire
(2009)’s ranking bound, which is adapted from the classification bound of Schapire et al. (1998).

The purpose of Theorems 2 and 3 is to provide the theoretical justification required for our
choice of objective, provided a sufficient number of training examples. Having completed this, let
us now write an algorithm for minimizing that objective.

5. A Boosting-Style Algorithm

We now choose a specific form for our objective Rg,! by choosing !. We have already chosen g to
be a power law, g(r) = rp. From now on, ! will be the exponential loss !(r) = e−r. One could just
as easily choose another loss; we choose the exponential loss in order to compare with RankBoost.
The objective when p= 1 is exactly that of RankBoost, whose global objective is R1,exp. Here is the
objective function, Rp,exp for p≥ 1 :

Rp,exp( f ) :=
K

"
k=1

(

I

"
i=1

e−( f (xi)− f (x̃k))

)p

.

The function f is constructed as a linear combination of “weak rankers” or “ranking features,”
{h j} j=1,...,n, with h j : X → [0,1] so that f = " j % jh j, where λ ∈ R n. Thus, the hypothesis space F
is the class of convex combinations of weak rankers. Our objective is now Rp,exp(λ):

Rp,exp(λ) :=
K

"
k=1

(

I

"
i=1

e−(" j % jh j(xi)−" j % jh j(x̃k))

)p

=
K

"
k=1

(

I

"
i=1

e−(Mλ)ik

)p

,

where we have rewritten in terms of a matrixM, which describes how each individual weak ranker j
ranks each positive-negative pair xi, x̃k; this will make notation significantly easier. Define an index
set that enumerates all positive-negative pairs Cp = {ik : i ∈ 1, . . . , I,k ∈ 1, . . . ,K} where index ik
corresponds to the ith positive example and the kth negative example. Formally,

Mik, j := h j(xi)−h j(x̃k).

The size ofM is |Cp|×n. The notation (·)a means the ath index of the vector, that is,

(Mλ)ik :=
n

"
j=1

Mik, j% j =
n

"
j=1

% jh j(xi)−% jh j(x̃k).

The function Rp,exp(λ) is convex in λ. This is because e−(Mλ)ik is a convex function of λ,
any sum of convex functions is convex, and a composition of an increasing convex function with a
convex function is convex. (Note that Rp,exp(λ) is convex but not necessarily strictly convex.)

We now derive a boosting-style coordinate descent algorithm for minimizing Rp,exp as a function
of λ. At each iteration of the algorithm, the coefficient vector λ is updated. At iteration t, we denote
the coefficient vector by λt . There is much background material available on the convergence of
similar coordinate descent algorithms (for instance, see Zhang and Yu, 2005). We start with the
objective at iteration t:

Rp,exp(λt) :=
K

"
k=1

(

I

"
i=1

e(−Mλt)ik

)p

.
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We then compute the variational derivative along each “direction” and choose weak ranker jt to
have largest absolute variational derivative. The notation e j means a vector of 0’s with a 1 in the jth
entry.

jt ∈ argmax
j

[

−
dRp,exp(λt +&e j)

d&

∣

∣

∣

&=0

]

, where

dRp,exp(λt +&e j)
d&

∣

∣

∣

&=0
= p

K

"
k=1





(

I

"
i=1

e(−Mλt)ik

)p−1( I

"
i=1

−Mik, je−(Mλt)ik

)



 .

Define the vector qt on pairs i,k as qt,ik := e(−Mλt)ik , and the weight vector dt as dt,ik := qt,ik/"ik qt,ik.
Our choice of jt becomes (ignoring constant factors that do not affect the argmax):

jt ∈ argmax
j

K

"
k=1





(

I

"
i=1

dt,ik

)p−1 I

"
i=1

dt,ikMik, j





= argmax
j

"
ik
d̃t,ikMik, j, where d̃t,ik = dt,ik

(

"
i′
dt,i′k

)p−1

.

To update the coefficient of weak ranker jt , we now perform a linesearch for the minimum
of Rp,exp along the jtht direction. The distance to travel in the jtht direction, denoted &t , solves
0=

dRp,exp(λt+&e jt )
d&

∣

∣

∣

&t
. Ignoring division by constants, this equation becomes:

0=
K

"
k=1





(

I

"
i=1

dt,ike−&tMik, jt

)p−1( I

"
i=1

Mik, jt dt,ike
−&tMik, jt

)



 . (1)

The value of &t can be computed analytically in some cases, for instance, when the weak rankers
are binary-valued and p= 1 (this is RankBoost). Otherwise, we simply use a linesearch to solve this
equation for &t . To complete the algorithm, we set λt+1 = λt +&te jt . To avoid having to compute
dt+1 directly from λt , we can perform the update by:

dt+1,ik =
dt,ike−&tMik, jt

zt
where zt :="

ik
dt,ike−&tMik, jt .

The full algorithm is shown in Figure 2. This implementation is not optimized for very large
data sets since the size ofM is |Cp|×n. Note that the weak learning part of this algorithm in Step
3(a), when written in this form, is the same as for AdaBoost and RankBoost. Thus, any current
implementation of a weak learning algorithm for AdaBoost or RankBoost can be directly used for
the P-Norm Push.

6. Uniqueness of the Minimizer

We now show that a function f =" j % jh j (or limit of functions) minimizing our objective is unique
in some sense. SinceM is not required to be invertible (and often is not), we cannot expect to find
a unique vector λ; one may achieve the identical values of (Mλ)ik with different choices of λ. It is
also true that elements of λt may approach ±!, and furthermore, elements ofMλt often approach
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1. Input: {xi}i=1,...,I positive examples, {x̃k}k=1,...,K negative examples, {h j} j=1,...,n weak clas-
sifiers, tmax number of iterations, p power.

2. Initialize: %1, j = 0 for j= 1, ...,n, d1,ik = 1/IK for i= 1, ..., I, k= 1, ...,K Mik, j = h j(xi)−
h j(x̃k) for all i,k, j

3. Loop for t = 1, ..., tmax

(a) jt ∈ argmax j"ik d̃t,ikMik, j where d̃t,ik = dt,ik ("i′ dt,i′k)
p−1

(b) Perform a linesearch for &t . That is, find a value &t that solves (1).

(c) λt+1 = λt +&te jt , where e jt is 1 in position jt and 0 elsewhere.

(d) zt = "ik dt,ike−&tMik, jt

(e) dt+1,ik = dt,ike−&tMik, jt /zt for i= 1, ..., I, k = 1, ...,K

4. Output: λtmax

Figure 2: Pseudocode for the “P-Norm Push” algorithm.

+!, so it would seem difficult to prove (or even define) uniqueness. A trick that comes in handy
for such situations is to use the closure of the space Q′ := {q′ ∈ R IK

+ |q′ik = e−(Mλ)ik for some λ ∈
R n}. The closure of Q ′ includes the limits where Mλt becomes infinite, and considers the linear
combination of hypotheses Mλ rather than λ itself, so it does not matter whether M is invertible.
With the help of convex analysis, we will be able to show that our objective function yields a unique
minimizer in the closure of Q ′. Here is our uniqueness theorem:

Theorem 4 Define Q′ := {q′ ∈ R IK
+ |q′ik = e−(Mλ)ik for some λ ∈ R n} and define Q̄ ′ as the closure

of Q ′ in R IK. Then for p≥ 1, there is a unique q′∗ ∈ Q̄ ′ where:

q′∗ = argminq′∈Q̄ ′"
k

(

"
i
q′ik

)p

.

Our uniqueness proof depends mainly on the theory of convex duality for a class of Bregman
distances, as defined by Della Pietra et al. (2002). This proof is inspired by Collins et al. (2002) who
have proved uniqueness of this type for AdaBoost. In the case of AdaBoost, the primal optimization
problem corresponds to a minimization over relative entropy. Our case is more unusual and the
primal is not a common function. The proof of Theorem 4 is located in Section 11.

7. Variations of the Objective and Relationship to Information Retrieval Measures

It is possible to use variations of our basic derivation in Section 2 to derive other specialized ob-
jectives. Some of these objectives are similar to current popular quality measurements from infor-
mation retrieval (IR), such as the “discounted cumulative gain” (DCG) (Järvelin and Kekäläinen,
2000). A basic property of this quality measurement, and additionally the average precision (the
mean of precision values), is that it is proportional to a sum over relevant documents (which are the
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positive examples in this setting), and uses a discounting factor that decreases according to the rank
of a relevant document. The discounting factor here is analogous to the price function. Let us use
the framework we have developed to derive new quality measurements with these properties.

Our derivation in Section 2 is designed to push the highly ranked negative examples down.
Rearranging this argument, we can also pull the positive examples up, using the “reverse height.”
The reverse height of positive example i is the number of negative examples ranked above it.

Reverse Height(i) :="
k
1[ f (xi)≤ f (x̃k)].

The reverse height is very similar to the rank used in the IR quality measurements. The reverse
height only considers the relationship of the positives to the negatives, and disregards the relation-
ship of positives to each other. Precisely, define:

Rank(i) :="
k
1[ f (xi)≤ f (x̃k)] +"̄

i
1[ f (xi)≤ f (xī)] = Reverse Height(i)+"̄

i
1[ f (xi)≤ f (xī)].

The rank can often be substituted for the reverse height. For discounting factor g : R+ → R+,
consider the variations of our objective:

RReverse Heightg,1 ( f ) ="
i
g(Reverse Height(i)) ="

i
g

(

"
k
1[ f (xi)≤ f (x̃k)]

)

.

RRankg,1 ( f ) ="
i
g(Rank(i)) ="

i
g

(

"
k
1[ f (xi)≤ f (x̃k)] +"̄

i
1[ f (xi)≤ f (xī)]

)

.

Then, one might maximize RRankg,1 for various g. The function g should achieve the largest values for
the positive examples i that possess the smallest reverse heights or ranks, since those are at the top of
the list. It should thus be a decreasing function with steep negative slope near the y-axis. Choosing
g(z) = 1/z gives the average value of 1/rank. Choosing g(z) = 1/ ln(1+ z) gives the discounted
cumulative gain:

AveR( f ) ="
i

1
Rank(i)

="
i

1
"k 1[ f (xi)≤ f (x̃k)] +"ī 1[ f (xi)≤ f (xī)]

,

DCG( f ) ="
i

1
ln(1+Rank(i))

="
i

1
ln

(

1+"k 1[ f (xi)≤ f (x̃k)] +"ī 1[ f (xi)≤ f (xī)]
) .

Let us consider the practical implications of minimizing the negation of the DCG. The discounting
function 1/ ln(1+ z) is decreasing, but its negation is not convex so there is no optimization guaran-
tee. This is true even if we incorporate the exponential loss since −1/ ln(1+ ez) is not convex. The
same observation holds for the AveR.

It is possible, however, to choose a different discounting factor that allows us to create a convex
objective to minimize. Let us choose a discounting factor of − ln(1+ z), which is similar to the
discounting factors for the AveR and DCG in that it is decreasing and convex. Figure 3 illustrates
these discounting factors. Using this new discounting factor, and using the reverse height rather
than the rank (which is an arbitrary choice), we arrive at the following objective:

RgIR,1( f ) :="
i
ln

(

1+"
k
1[ f (xi)≤ f (x̃k)]

)

,
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Figure 3: Discounting factor for discounted cumulative gain 1/ ln(1+z) (upper curve), discounting
factor for the average of the reciprocal of the ranks 1/z (middle curve), and new discount-
ing factor − ln(1+ z) (lower curve) versus z.

and bounding the 0-1 loss from above,

RgIR,exp( f ) :="
i
ln

(

1+"
k
e−( f (xi)− f (x̃k))

)

. “IR Push” (2)

Equation (2) is our version of IR-ranking measures, which we refer to by “IR Push” in Section 8. It is
also very similar in essence to the objective for the multilabel problem defined by Dekel et al. (2004).
The objective (2) is globally convex. In general, one must be careful when defining discounting
factors in order to avoid non-convexity. Figure 4 illustrates the contribution of each positive-negative
pair to RgIR,exp( f ) for the set of labels and examples defined in Section 3.3. The slant towards the
lower left indicates that this objective is biased towards the top of the list.

Concentrating on the Bottom: Since our objective concentrates at the top of the ranked list, it can
just as easily be made to concentrate on the bottom of the ranked list by reversing the positive and
negative examples, or equivalently, by using the reverse height with a discounting factor of −zp. In
this case, our p-norm objective becomes:

RBottomp,exp ( f ) :=
I

"
i=1

(

K

"
k=1

e−( f (xi)− f (x̃k))

)p

.

Here, positive examples that score very badly are heavily penalized. RBottomp,exp ( f ) is also convex, so
it can be easily minimized. Also, one can now write an objective that concentrates on the top and
bottom simultaneously such as Rp,exp( f )+ const RBottomp,exp ( f ).

Crucial Pairs Formulation: The bipartite ranking problem is a specific case of the pairwise ranking
problem. For the more general problem, the labels are replaced by a “truth function” ' : X ×X →
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Figure 4: Contribution of each positive-negative pair to the objective RgIR,exp. Each square rep-
resents an i,k pair, where i is an index along the vertical axis, and k is along the
horizontal axis, as described in Section 3.3. Lighter colors indicate larger contri-
bution. The value of the i,kth entry is the contribution of the ith positive example,
ln

(

1+"k e−( f (xi)− f (x̃k))
)

, multiplied by the proportion of the loss attributed to the kth

negative example, e−( f (xi)− f (x̃k))/"k̄ e−( f (xi)− f (x̃k̄)).

{0,1}, indicating whether the first element of the pair should be ranked above the second. In this
case, one can replace the objective by:

RCrucial Pairsg,! ( f ) :=
m

"
k=1

g

(

m

"
i=1

!
(

f (xi)− f (xk)
)

'(xi,xk)
)

,

where the indices i and k now run over all training examples. A slightly more general version of
the above formula for g(z) = zp and the exponential loss was used by Ji et al. (2006) for the natural
language processing problem of named entity recognition in Chinese. This algorithm performed
quite well, in fact, within the margin of error of the best algorithm, but with a much faster training
time. Its performance was substantially better than the support vector machine algorithm tested for
this experiment. In Ji et al. (2006)’s setup, the P-Norm Push was used twice; the first time, a low
value of p was chosen and a cutoff was made. The algorithm was used again for re-ranking (after
some additional processing) with a higher value of p.

8. Experiments

The experiments of Ji et al. (2006) indicate the usefulness of our approach for larger, real-world
problems. In this section, we will discuss the performance of the P-Norm Push on some smaller
problems, since smaller problems are challenging when it comes to generalization. The choices
we have made in Section 5 allow us to compare with RankBoost, which also uses the exponential
loss. Furthermore, the choice of g as an adjustable power law allows us to illustrate the effect of the
price g on the quality of the solution. Experiments have been performed using the P-Norm Push for
p= 1 (RankBoost), 2,4,8,16 and 64, and using the IR Push information retrieval objective (2). For
the P-Norm Push, the linesearch for &t was performed using matlab’s “fminunc” subroutine. The
total number of iterations, tmax, was fixed at 100 for all experiments. For the information retrieval
objective, “fminunc” was used for the full optimization, which can be done for small experiments.
Data were obtained from the UCI machine learning repository (Asuncion and Newman, 2007) and
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all features were normalized to [0,1]. The three data sets chosen were MAGIC, ionosphere, and
housing.

The first experiment uses the UCI MAGIC data set, which contains data from the Major Atmo-
spheric Gamma Imaging Cherenkov Telescope project. The goal is to discriminate the statistical
signatures of Monte Carlo simulated “gamma” particles from simulated “hadron” particles. In this
problem, there are several relevant points on the ROC curve that determine the quality of the result.
These points correspond to different acceptable false positive rates for different experiments, and
all are close to the top of the list. There are 19020 examples (12332 gamma and 6688 hadron) and
11 features. Positive examples represent gamma particles and negative examples represent hadron
particles. As a sample run, we chose 1000 examples randomly for training and tested on the rest.

Table 3 shows how different algorithms (the columns) performed with respect to different qual-
ity measures (the rows) on the MAGIC data. Each column of Table 3 represents a P-Norm Push
or IR Push trial. The quality of the results is measured using the AUC (top row, larger values are
better), Rp,1 for various p (middle rows, smaller values are better), and the DCG and AveR (bottom
rows, larger values are better). The best algorithms for each measure are summarized in bold and
in the rightmost column. ROC curves and zoomed-in versions of the ROC curves for this sample
run are shown in Figure 5. We expect the P-Norm Push for small p to yield the best results for

MAGIC data set
measure p=1 p=2 p=4 p=8 p=16 p=64 IR best
AUC 0.8370 0.8402 0.8397 0.8363 0.8329 0.8288 0.8284 small p
R2,1 6.5515 5.9731 5.5896 5.4806 5.4990 5.5819 5.5886 medium p
R4,1 4.2134 3.4875 2.8875 2.5638 2.4291 2.3651 2.3582 IR / large p
R8,1 3.8830 2.9138 2.1091 1.6266 1.3923 1.2396 1.2257 IR / large p
R16,1 6.8153 4.7208 3.0545 1.9698 1.4494 1.1096 1.0823 IR / large p
DCG 1.4022 1.4048 1.4066 1.4084 1.4087 1.4087 1.4087 IR / large p
AveR 8.1039 8.5172 8.6860 9.6701 9.7520 9.7679 9.7688 IR / large p

Table 3: Test performance of minimizers of Rp,exp and RgIR,exp on a sample run with the MAGIC
data set. Only significant digits are kept (factors of 10 have been removed). The best
scores in each row are in bold and the right column summarizes the result by listing which
algorithms performed the best with respect to each quality measure.

optimizing AUC, and we expect the large p and IR columns to yield the best results for Rp,1 when
p is large, and for the DCG and AveR. In other words, the rightmost column ought to say “small p”
towards the top, followed by “medium p,” and then “IR / large p.” This general trend is observed.
In this particular trial run, the IR Push and P-Norm Push for p= 64 yielded almost identical results,
and their ROC curves are almost on top of each other in Figure 5.

The next experiment uses a much smaller data set, namely the UCI ionosphere data set, which
has 351 examples (225 positive and 126 negative). These are data collected from a phased array of
antennas. The goal is to distinguish “good” radar returns from “bad” radar returns. The good returns
represent signals that reflect back towards the antenna, indicating structure in the ionosphere. The
features are based on characteristics of the received signal. Out of the 34 features, we choose 5
of them (the last 5 features), which helps to alleviate overfitting, though there is still significant
variation in results due to the small size of the data set. We used 3-fold cross-validation, where all
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Figure 5: ROC Curves for the P-Norm Push and IR Push on the MAGIC data set. All plots are
number of true positives vs. number of false positives. Upper Left: Full ROC Curves
for training. Upper Right: Zoomed-in version of training ROC Curves. Lower Left: Full
ROC Curves for testing. Lower Right: Zoomed-in version of testing ROC Curves.

algorithms were run once on each split, and the mean performance is reported in Table 4. ROC
curves from one of the trials is presented in Figure 6. The trend from small to large p is able to be
observed, despite variation due to train/test splits.

ionosphere data set
measure p=1 p=2 p=4 p=8 p=16 p=64 IR best
AUC 0.6797 0.6732 0.6700 0.6612 0.6479 0.6341 0.6409 small p
R2,1 2.1945 2.1931 2.1515 2.1213 2.1575 2.1974 2.1811 med/lg p
R4,1 2.0841 1.9891 1.8041 1.5911 1.4327 1.3104 1.4046 IR / large p
R8,1 3.7099 3.3459 2.6271 1.8950 1.3861 1.0823 1.2979 IR / large p
R16,1 1.7294 1.4558 0.8786 0.4236 0.2437 0.1884 0.2272 IR / large p
DCG 13.9197 14.1308 14.3261 14.5902 14.6916 14.7903 14.7169 IR / large p
AveR 2.9712 3.1610 3.3041 3.5084 3.5849 3.6571 3.6076 IR/ large p

Table 4: Mean test performance of minimizers of Rp,exp and RgIR,exp over 3-fold cross-validation on
the ionosphere data set.

We last consider the Boston Housing data set, which has 506 examples (35 positive, 471 neg-
ative), 13 features. This data set is skewed; there are significantly fewer positive examples than
negative examples. In order to use the housing data set for a bipartite ranking problem, we used
the fourth feature (which is binary) as the label y. The fourth feature describes whether a tract
bounds the Charles River. Since there is some correlation between this feature and the other features
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Figure 6: ROC Curves for the P-Norm Push and IR Push on ionosphere data set. All plots are
number of true positives vs. number of false positives. Upper Left: Full ROC Curves
for training. Upper Right: Zoomed-in version of training ROC Curves. Lower Left: Full
ROC Curves for testing. Lower Right: Zoomed-in version of testing ROC Curves.

(such as distance to employment centers and tax-rate), it is reasonable for our learning algorithm
to predict whether the tract bounds the Charles River based on the other features. We used 3-fold
cross-validation (≈ 12 positives in each test set), where all algorithms were run once on each split,
and the mean performance is reported in Table 5. ROC curves from one of the trials is presented in
Figure 7. The trend from small to large p is again generally observed, despite variation due to data
set size.

For all of these experiments, in agreement with our algorithm’s derivation, a larger push (p
large) causes the algorithm to perform better near the top of the ranked list on the training set. As
discussed, this ability to correct the top of the list is not without sacrifice; we do sacrifice the ranks
of items farther down on the list and we do reduce the value of the AUC, but we have made this
choice on purpose in order to perform better near the top of the list.

9. Discussion and Open Problems

Here we describe interesting directions for future work.

9.1 Producing Dramatic Changes in the ROC curve

An open question is to quantify what properties of a hypothesis space and data set would allow an
increase in p to cause a dramatic change in the ROC curve. In Section 8, we have shown cases
where the benefits of increasing p are substantial, and in Section 3.2 we have shown that a dramatic
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housing data set
measure p=1 p=2 p=4 p=8 p=16 p=64 IR best
AUC 0.7739 0.7633 0.7532 0.7500 0.7420 0.7330 0.7373 small p
R2,1 3222 3406 3665 3799 3818 3759 3847 small p
R4,1 294078 292870 304457 307135 305498 298611 304915 small/med p
R8,1 3.9056 3.5246 3.3908 3.2953 3.2479 3.3173 3.2346 IR / large p
R16,1 1.1762 0.9694 0.8337 0.8028 0.7801 0.8816 0.7788 IR / large p
DCG 3.6095 3.6476 3.6757 3.6858 3.6977 3.6671 3.6931 IR / large p
AveR 0.5241 0.5644 0.6022 0.6124 0.6258 0.6012 0.6250 IR / large p

Table 5: Mean test performance of minimizers of Rp,exp and RgIR,exp over 3-fold cross validation
with the housing data set. Only significant digits are kept (factors of 10 have been re-
moved). The best scores in each row are in bold and the right column summarizes the
result by listing which algorithms performed the best with respect to each quality mea-
sure.

Figure 7: ROC Curves for the P-Norm Push and IR Push on the housing data set. All plots are
number of true positives vs. number of false positives. Upper Left: Full ROC Curves
for training. Upper Right: Zoomed-in version of training ROC Curves. Lower Left: Full
ROC Curves for testing. Lower Right: Zoomed-in version of testing ROC Curves.

change is possible, even using an extremely small hypothesis space. However, it is sometimes the
case that changes in p do not greatly affect the ROC curve.

A factor involved in this open question involves the flexibility of the hypothesis space with
respect to the training set. Given a low capacity hypothesis space in which there is not too much
flexibility in the set of solutions that yield good rankings, increasing p will not have much of an
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effect. On the other hand, if a learning machine is high capacity, it probably has the flexibility
to change the shape of the ROC curve dramatically. However, a high capacity learning machine
generally is able to produce a consistent (or nearly consistent) ranking, and again, the choice of
p probably does not have much effect. With respect to optimization on the training set, we have
found the effect of increasing p to be the most dramatic when the hypothesis space is: limited (so
as not to produce an almost consistent ranking), not too limited (features themselves are better than
random guesses) and flexible (for instance, allowing some hypotheses to negate in order to produce
a better solution as in Section 3.2). If such hypotheses are not available, we believe it is unlikely that
any algorithm, whether the P-Norm Push, or any optimization algorithm for information retrieval
measures, would be able to achieve a dramatic change in the ROC curve.

9.2 Optimizing Rmax Directly

Given that there is no generalization guarantee for the !-norm, that is, Rmax, is it useful to directly
minimize Rmax? This is still a convex optimization problem, and variations of this are done in other
contexts, for instance, in the context of label ranking by Shalev-Shwartz and Singer (2006) and
Crammer and Singer (2001). One might consider, for instance, optimizing Rmax and measuring
success on the test set using Rp,1 for p< !.

One answer is provided by the equivalence of norms in finite dimensions. For instance, the value
of Rmax scales with Rp,1, as demonstrated in Theorem 1. So optimizing Rmax would still possibly
be useful with respect to measuring success on smaller p (though in this case, one could optimize
Rp,!).

9.3 Choices for ! and g

An important direction for future research is the choice of loss function ! and price function g. This
framework is flexible in that different choices for ! and g can be chosen based on the particular
goal, whether it is to optimize the AUC, Rp,1 for some p, one of the IR measures suggested, or
something totally different. The objective for the IR measures needed a concave price function
ln(1+ z), in which case the objective convex was made convex by using the exponential loss, in
other words., ln(1+ ex) is convex. It may be possible to leverage the loss function in other cases,
allowing us to consider more varied price functions while still working with an objective that is
convex. One appealing possibility is to choose a non-monotonic function for g, which might allow
us to concentrate on a specific portion of the ROC Curve; however, it may be difficult to maintain
the convexity of the objective through the choice of the loss function.

Now we move on to the proofs.

10. Proof of Theorem 2 and Theorem 3

We define a Lipschitz function ( : R → R (with Lipschitz constant Lip(()) which will act as our
loss function, and gives us the margin. We will eventually use the same piecewise linear definition
of ( as Koltchinskii and Panchenko (2002), but for now, we require only that ( obey 0≤ ((z)≤ 1 ∀z
and ((z) = 1 for z< 0. Since ((z) ≥ 1[z≤0], we can define an upper bound for Rtruep,1 ( f ):

Rtruep,( ( f ) :=

(

Ex−∼D−

(

Ex+∼D+(
(

f (x+)− f (x−)
)

)p
)1/p

.
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We have Rtruep,1 ( f ) ≤ Rtruep,( ( f ). The empirical error associated with Rtruep,( is:

Rempiricalp,( ( f ) :=

(

1
K

K

"
k=1

(

1
I

I

"
i=1

(
(

f (xi)− f (x̃k)
)

)p)1/p

.

First, we bound from above the quantity Rtruep,( by two terms: the empirical error term Rempiricalp,( ,
and a term characterizing the deviation of Rempiricalp,( from Rtruep,( uniformly:

Rtruep,1 ( f ) ≤ Rtruep,( ( f ) = Rtruep,( ( f )−Rempiricalp,( ( f )+Rempiricalp,( ( f )

≤ sup
f̄∈F

(

Rtruep,( ( f̄ )−Rempiricalp,( ( f̄ )
)

+Rempiricalp,( ( f ).

The proof of Theorem 3 mainly involves an upper bound on the first term. The second term will be
upper bounded by Rempiricalp,1,# ( f ) by our choice of (. Define L( f ) as follows:

L( f ) := Rtruep,( ( f )−Rempiricalp,( ( f ).

Let us outline the proof that follows. The goal is to bound L( f ) uniformly over f ∈ F . To do
this, we use a covering number argument similar to that of Cucker and Smale (2002). First, we will
cover F by L! disks. We show in Lemma 5 (below) that the value of L( f ) within each disk does not
change very much provided that the disks are small. We then derive a probabilistic bound on L( f )
for any f in Lemma 9, and use this bound on representatives fr from each disk. A union bound over
disks yields the result. The most effort of this proof is devoted to the bound on L( f ) in Lemma 9
below, which uses McDiarmid’s Inequality. Let us now proceed with the proof.

The following lemma is true for every training set S. It will be used later to show that the value
of L( f ) does not change much within each L! ball.

Lemma 5 For any two functions f1, f2 ∈ L!(X ),

L( f1)−L( f2) ≤ 4Lip(()|| f1− f2||!.

Proof First, we rearrange the terms:

L( f1)−L( f2) = Rtruep,( ( f1)−Rempiricalp,( ( f1)−Rtruep,( ( f2)+Rempiricalp,( ( f2)

= [Rtruep,( ( f1)−Rtruep,( ( f2)]− [Rempiricalp,( ( f1)−Rempiricalp,( ( f2)]. (3)
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We bound from above the second bracketed term of (3),

Rempiricalp,( ( f1)−Rempiricalp,( ( f2)

=

[

1
K

K

"
k=1

[

1
I

I

"
i=1

(
(

f1(xi)− f1(x̃k)
)

]p]1/p

−

[

1
K

K

"
k=1

[

1
I

I

"
i=1

(
(

f2(xi)− f2(x̃k)
)

]p]1/p

≤

[

1
K

K

"
k=1

∣

∣

∣

∣

∣

1
I

I

"
i=1

(
(

f1(xi)− f1(x̃k)
)

−
1
I

I

"
i=1

(
(

f2(xi)− f2(x̃k)
)

∣

∣

∣

∣

∣

p]1/p

≤

[

1
K

K

"
k=1

[

1
I

I

"
i=1

∣

∣

∣
(
(

f1(xi)− f1(x̃k)
)

−(
(

f2(xi)− f2(x̃k)
)∣

∣

∣

]p]1/p

≤

[

1
K

K

"
k=1

[

1
I

I

"
i=1
Lip(()

∣

∣

∣
f1(xi)− f1(x̃k)− f2(xi)+ f2(x̃k)

∣

∣

∣

]p]1/p

≤

[

1
K

K

"
k=1

[

1
I

I

"
i=1
Lip(()2sup

x

∣

∣

∣
f1(x)− f2(x)

∣

∣

∣

]p]1/p

= 2Lip(()‖ f1− f2‖!.

Here, we have used Minkowski’s inequality for !p(R K), which is the triangle inequality ‖ f −g‖p ≥
‖ f‖p−‖g‖p, and the definition of the Lipschitz constant for (. An identical calculation for the first
bracketed term of (3), again using Minkowski’s inequality yields:

Rtruep,( ( f1)−Rtruep,( ( f2) ≤ 2Lip(()|| f1− f2||!.

Combining the two terms yields the statement of the lemma.

The following step appears in Cucker and Smale (2002). Let !$ :=N
(

F , $
8Lip(()

)

, the covering
number of F by L! disks of radius $

8Lip(() . Define f1, f2, ..., f!$ to be the centers of such a cover. In
other words, the collection of L! disks Br centered at fr and with radius $

8Lip(() is a cover for F . In
the proof of the theorem, we will use the center of each disk to act as a representative for the whole
disk. So, we must show that we do not lose too much by using fr as a representative for disk Br.

Lemma 6 For all $> 0,

PS+∼D I
+,S−∼DK

−

{

sup
f∈Br

L( f ) ≥ $

}

≤ PS+∼D I
+,S−∼DK

−

{

L( fr) ≥
$
2

}

.

Proof By Lemma 5, for every training set S and for all f ∈ Br,

sup
f∈Br

L( f )−L( fr) ≤ 4Lip(() sup
f∈Br

|| f − fr||! ≤ 4Lip(()
$

8Lip(()
=
$
2

Thus,
sup
f∈Br

L( f ) ≥ $ =⇒ L( fr) ≥
$
2
.

The statement of the lemma follows directly.

Here is an inequality that will be useful in the next proof as the mechanism for incorporating p into
the bound.
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Lemma 7 For 0≤ a,b≤ 1,

|a1/p−b1/p|≤min
{

|a−b|a(1/p)−1, |a−b|1/p
}

.

Proof For p= 1 there is nothing to prove, so take p> 1. We need to show both

|a1/p−b1/p|≤ |a−b|a(1/p)−1 (4)

and

|a1/p−b1/p|≤ |a−b|1/p. (5)

Let us show (5) first. For z1,z2 ≥ 0, it is true that zp1 + zp2 ≤ (z1+ z2)p as an immediate consequence
of the binomial theorem. When a≥ b, substitute z1 = (a−b)1/p, z2 = b1/p. The result follows after
simplification. The case a ≤ b is completely symmetric so no additional work is needed. To show
(4), consider first the case a≥ b, so that

b1/p−1 ≥ a1/p−1.

Multiplying by b yields b1/p ≥ a1/p−1b, negating and adding a1/p yields

a1/p−b1/p ≤ a1/p−a1/p−1b, so a1/p−b1/p ≤ (a−b)a1/p−1.

Exactly the same steps (with reversed inequalities) can be used to show the b≥ a case.

The benefit of using the minimum in Lemma 7 is that the first term most often gives a tighter bound.
In the case where it does not do so, the second term applies. An illustration of this inequality is
provided in Figure 8.

We now incorporate the fact that the training set is chosen randomly. We will use a generaliza-
tion of Hoeffding’s inequality due to McDiarmid, as follows:

Theorem 8 (McDiarmid, 1989) Let X1,X2, ...Xm be independent random variables under distribu-
tion D on X . Let f : Xm → R be any function such that:

sup
x1,x2,··· ,xm,x′i

∣

∣

∣
f (x1, . . . ,xi, . . . ,xm)− f (x1, . . . ,x′i, . . .xm)

∣

∣

∣
≤ ci for 1≤ i≤ m.

Then for any $> 0,

PX1,X2,...,Xm∼D

{

f (X1,X2, ...,Xm)−E
[

f (X1,X2, ...,Xm)
]

≥ $
}

≤ exp
(

−
2$2

"m
i=1 c2i

)

,

PX1,X2,...,Xm∼D

{

E
[

f (X1,X2, ...,Xm)
]

− f (X1,X2, ...,Xm) ≥ $
}

≤ exp
(

−
2$2

"m
i=1 c2i

)

,

and thus by the union bound,

PX1,X2,...,Xm∼D

{∣

∣

∣
f (X1,X2, ...,Xm)−E

[

f (X1,X2, ...,Xm)
]

∣

∣

∣
≥ $

}

≤ 2exp
(

−
2$2

"m
i=1 c2i

)

.
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Figure 8: Functions |a1/p − b1/p| (lower curve), |a − b|1/p (upper curve), and min(|a −
b|a(1/p)−1, |a− b|1/p) (middle curve) versus b. For this figure p = 4 and a = 0.4. One
can see that in most cases, |a− b|a(1/p)−1 is a better approximation to |a1/p− b1/p| than
|a−b|1/p).

Here is our main probabilistic bound on L( f ) for an individual f . It uses McDiarmid’s Inequality
(Theorem 8) and Lemma 7.

Lemma 9 For all $1 > 0, for all f ∈ F :

PS+∼D I
+,S−∼DK

−

(

L( f ) ≥ $1
)

≤ 2exp
[

−2Kmax
{

$21
4

(

Rtruep,( ( f )
)2(p−1)

,
($1
2

)2p
}]

+2exp
[

−
$21
2
I+ lnK

]

. (6)

Proof Define

RDSp,(( f ) :=

(

1
K

K

"
k=1

(

Ex+∼D+(
(

f (x+)− f (x̃k)
)

)p)1/p

.

Now,

PS+∼D I
+,S−∼DK

−

(

L( f ) ≥ $1
)

= PS+∼D I
+,S−∼DK

−

(

Rtruep,( ( f )−RDSp,(( f )+RDSp,(( f )−Rempiricalp,( ( f ) ≥ $1
)

≤ PS−∼DK
−

(

Rtruep,( ( f )−RDSp,(( f ) ≥
$1
2

)

+PS+∼D I
+,S−∼DK

−

(

RDSp,(( f )−Rempiricalp,( ( f ) ≥
$1
2

)

=: term1+ term2. (7)

We bound term1 and term2 of (7) separately.
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Bound on term1: The following uses Lemma 7 above (translating into notation of the lemma):

Rtruep,( ( f )−RDSp,(( f )

=
(

Ex−∼D−

(

Ex+∼D+(
(

f (x+)− f (x−)
))p)1/p

−

(

1
K

K

"
k=1

(

Ex+∼D+(
(

f (xi)− f (x̃k)
))p

)1/p

= a1/p−b1/p ≤ |a1/p−b1/p|≤min
{

|a−b|a(1/p)−1, |a−b|1/p
}

.

Thus for all $1 > 0,

PS−∼DK
−

(

Rtruep,( ( f )−RDSp,(( f ) ≥
$1
2

)

≤ PS−∼DK
−

(

min
{

|a−b|a(1/p)−1, |a−b|1/p
}

≥
$1
2

)

= PS−∼DK
−

(

|a−b|a1/p−1 ≥
$1
2

\

|a−b|
1
p ≥

$1
2

)

= PS−∼DK
−

(

|a−b|≥
$1
2
a1−1/p

\

|a−b|≥
($1
2

)p)

= PS−∼DK
−

(

|a−b|≥
$1
2

(

Rtruep,( ( f )
)p−1 \

|a−b|≥
($1
2

)p)

= PS−∼DK
−

(

|a−b|≥max
{$1
2

(

Rtruep,( ( f )
)p−1

,
($1
2

)p})

.

Let
$2 :=max

{$1
2

(

Rtruep,( ( f )
)p−1

,
($1
2

)p}
.

Then,

PS−∼DK
−

(

Rtruep,( ( f )−RDSp,(( f ) ≥
$1
2

)

≤ PS−∼DK
−

(∣

∣

∣

∣

∣

Ex−∼D−

(

Ex+∼D+(
(

f (x+)− f (x−)
))p

−

1
K

K

"
k=1

(

Ex+∼D+(
(

f (x+)− f (x̃k)
))p

∣

∣

∣

∣

∣

≥ $2

)

.

The largest possible change in 1
K "

K
k=1

(

Ex+∼D+(
(

f (x+)− f (x̃k)
))p

due to the replacement of one
negative example is 1/K. By McDiarmid’s inequality,

PS−∼DK
−

(

Rtruep,( ( f )−RDSp,(( f ) ≥
$1
2

)

≤ exp

(

−
2$22
K 1
K2

)

= 2exp(−2K$22)

= 2exp
(

−2Kmax
{

$21
4

(

Rtruep,( ( f )
)2(p−1)

,
($1
2

)2p
})

. (8)
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Bound on term2:

RDSp,(( f )−Rempiricalp,( ( f )

=

(

1
K

K

"
k=1

(

Ex+∼D+(
(

f (x+)− f (x−)
)

)p)1/p

−

(

1
K

K

"
k=1

(

1
I

I

"
i=1

(
(

f (xi)− f (x̃k)
)

)p)1/p

.

Thus for all $1 > 0,

PS+∼D I
+,S−∼DK

−

(

RDSp,(( f )−Rempiricalp,( ( f ) ≥
$1
2

)

= PS+∼D I
+,S−∼DK

−

(

1
K1/p

∥

∥

∥
Ex+∼D+(

(

f (x+)− f (·)
)∥

∥

∥

!p(RK)

−
1

K1/p

∥

∥

∥

∥

∥

1
I

I

"
i=1

(
(

f (xi)− f (·)
)

∥

∥

∥

∥

∥

!p(RK)

≥
$1
2





≤ PS+∼D I
+,S−∼DK

−





1
K1/p

∥

∥

∥

∥

∥

Ex+∼D+(
(

f (x+)− f (·)
)

−
1
I

I

"
i=1

(
(

f (xi)− f (·)
)

∥

∥

∥

∥

∥

!p(RK)

≥
$1
2





≤ PS+∼D I
+,S−∼DK

−





∥

∥

∥

∥

∥

Ex+∼D+(
(

f (x+)− f (·)
)

−
1
I

I

"
i=1

(
(

f (xi)− f (·)
)

∥

∥

∥

∥

∥

!!(RK)

≥
$1
2





= PS+∼D I
+,S−∼DK

−

(

∃k :

∣

∣

∣

∣

∣

Ex+∼D+(
(

f (x+)− f (x̃k)
)

−
1
I

I

"
i=1

(
(

f (xi)− f (x̃k)
)

∣

∣

∣

∣

∣

≥
$1
2

)

.

We now use McDiarmid’s Inequality. The largest possible change in 1
I "

I
i=1(

(

f (xi)− f (x̃k)
)

due
to the replacement of one positive example is 1/I. Thus, for all x̃k,

PS+∼D I
+,S−∼DK

−

(∣

∣

∣

∣

∣

Ex+∼D+(
(

f (x+)− f (x̃k)
)

−
1
I

I

"
i=1

(
(

f (xi)− f (x̃k)
)

∣

∣

∣

∣

∣

≥
$1
2

)

≤ 2exp

[

−
2
( $1
2
)2

I 1I2

]

= 2exp
[

−
$21
2
I
]

.

By the union bound over the K negative examples:

PS+∼D I
+,S−∼DK

−

(

∃k :

∣

∣

∣

∣

∣

Ex+∼D+(
(

f (x+)− f (x̃k)
)

−
1
I

I

"
i=1

(
(

f (xi)− f (x̃k)
)

∣

∣

∣

∣

∣

≥
$1
2

)

≤ 2K exp
[

−
$21
2
I
]

= 2exp
[

−
$21
2
I+ ln(K)

]

,

and thus,

PS+∼D I
+,S−∼DK

−

(

Rtruep,( ( f )−RDSp,(( f ) ≥
$1
2

)

≤ 2exp
[

−
$21
2
I+ lnK

]

.
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Combining this with (8) and (7) yields the statement of the lemma.

Proof (Of Theorem 2 and Theorem 3) Since the Br are a cover for F , it is true that

sup
f∈F

L( f ) ≥ $ ⇐⇒ ∃r ≤ !$ such that sup
f∈Br

L( f ) ≥ $.

First applying the union bound over balls, then applying Lemma 6 we find:

PS+∼D I ,S−∼DK

{

sup
f∈F

L( f ) ≥ $

}

≤
!$

"
r=1

PS+∼D I ,S−∼DK

{

sup
f∈Br

L( f ) ≥ $

}

≤
!$

"
r=1

PS+∼D I ,S−∼DK {L( fr) ≥ $/2} .

We bound from above using (6) in order to prove Theorem 3 using $1 = $/2, also Rtruep,( ( fr) ≥
Rtruep,1 ( fr) and additionally Rtruep,1 ( fr) ≥ inf f∈F Rtruep,1 ( f ) for every fr:

PS+∼D I ,S−∼DK

{

sup
f∈F

L( f ) ≥ $

}

≤
!$

"
r=1
2exp

[

−2Kmax
{

$2

16
(

Rtruep,( ( fr)
)2(p−1)

,
( $
4

)2p
}]

+2exp
[

−
$2

8
I+ lnK

]

≤ N

(

F ,
$

8Lip(()

)[

2exp
[

−2Kmax
{

$2

16

(

min
r
Rtruep,( ( fr)

)2(p−1)
,
( $
4

)2p
}]

(9)

+2exp
[

−
$2

8
I+ lnK

]]

≤ N

(

F ,
$

8Lip(()

)

[

2exp

[

−2Kmax

{

$2

16

(

inf
f̃∈F

Rtruep,1 ( f̃ )
)2(p−1)

,
( $
4

)2p
}]

+2exp
[

−
$2

8
I+ lnK

]]

.

Now we put everything together. The probability that there exists an f ∈ F where

Rtruep,( ( f ) ≥ Rempiricalp,( ( f )+ $

is at most

N

(

F ,
$

8Lip(()

)[

2exp
[

−2Kmax
{

$2

16
(Rp,min)2(p−1) ,

( $
4

)2p
}]

+2exp
[

−
$2

8
I+ lnK

]]

,
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where Rp,min = inf f Rtruep,1 ( f ). Let us choose ((z) = 1 for z ≤ 0, ((z) = 0 for z ≥ #, and linear in
between, with slope −1/#. Thus, Lip(() = 1/#. Since ((z) ≤ 1 for z≤ #, we have:

Rempiricalp,( ( f ) =

(

1
K

K

"
k=1

(

1
I

I

"
i=1

(
(

f (xi)− f (x̃k)
)

)p)1/p

≤

(

1
K

K

"
k=1

(

1
I

I

"
i=1
1[ f (xi)− f (x̃k)≤#]

)p)1/p

= Rempiricalp,1,# ( f ).

Thus, the probability that there exists an f ∈ F where

Rtruep,1 ( f ) ≥ Rempiricalp,1,# ( f )+ $

is at most

N

(

F ,
$#
8

)[

2exp
[

−2Kmax
{

$2

16
(Rp,min)2(p−1) ,

( $
4

)2p
}]

+2exp
[

−
$2

8
I+ lnK

]]

.

Thus, the theorem has been proved. A tighter bound is obtained if we bound differently at (9):
instead of using Rtruep,1 ( fr) ≥ inf f∈F Rtruep,1 ( f ), we could stop at Rtruep,1 ( fr) ≥ minr Rtruep,1 ( fr) and then
choose the { fr}r to maximize minr Rtruep,1 ( fr).

Theorem 2 follows directly from the statement of Theorem 3.

10.1 1-Dimensional Illustration

As discussed earlier, since most of the value of Rtruep,1 comes from a small portion of the domain,
more examples are needed to compensate. Let us give a 1-dimensional illustration where this is
the case. Almost half the distribution (proportion 1

2 −
$
2 ) consists of negative examples uniformly

distributed on [−1,0]. Almost half the distribution (proportion 1
2 −

$
2 ) are positive examples uni-

formly distributed on [0,1]. An $/2 proportion of the distribution are positive examples distributed
on [−2,−1], and the remaining $/2 are negative examples on [1,2]. Drawing a training set of size
m from that distribution, with probability (1− $)m, all examples will be drawn from [−1,1], miss-
ing the essential part of the distribution. Let the hypothesis space F consist of one monotonically
increasing function, and one monotonically decreasing function. Assuming the test set is large and
represents the full distribution, the correct function to minimize Rmax on the test set is the decreasing
function. However, with high probability (1−$)m, the increasing function will be (wrongly) chosen,
achieving on the training set, Rmax = 0, but on the test set, the worst possible value Rmax = I. Thus,
Rmax relies heavily on an $-sized portion of the input space. Contrast this with behavior of the AUC,
which is hardly affected by this portion of the input space, and is close to 1 with high probability
for both training and testing.

11. Proof of Theorem 4

We will use a theorem of Della Pietra et al. (2002), and we will follow their definitions leading
to this theorem. Consider a function ( : S ⊂ R IK → [−!,!] (unrelated to the ( of the proof of
Theorem 3). We will use this function to define a Bregman distance and consider an optimization
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problem related to this Bregman distance. The dual of this optimization problem will be almost
exactly the same as minimization of Rp,exp due to our choice of (. The theorem of Della Pietra
et al. (2002) will then provide a kind of uniqueness of the minimizer. The most difficult part of this
theorem is finding the function ( and showing that the conditions of the framework are satisfied.

Let us first give the definition of a Bregman distance with respect to function (, and then define
the primal and dual optimization problems. The effective domain of (, denoted )(, is the set of
points where ( is finite. The function ( is proper if there is no p such that ((p) = −! and at least
some p with ((p) 3= !. (Do not confuse the vector p ∈ R IK with the scalar power p. Entries of
p will always be indexed by pik to avoid confusion.) A proper function ( is essentially smooth if
it is differentiable on the interior of the domain int()() and if lim! |*((p!)| = +! (element-wise)
whenever p! is a sequence in int()(), converging to a point on the boundary. Assume that the
function ( is Legendre, meaning that it is closed (lower semi-continuous), convex and proper, and
additionally that int()() is convex, and ( is essentially smooth and strictly convex on int()(). The
Bregman Distance associated with ( is B( : )(× int()() → [0,!] defined as:

B((p,q) := ((p)−((q)−〈*((q),p−q〉.

Fix a vector p0 ∈ )(. The feasible set for p0 with respect to matrix M ∈ R IK×n is: P = {p ∈
R IK |pTM= pT0M}. This will be the domain of the primal problem. The primal problem is to find,
for fixed q0 ∈ )(:

argminp∈PB((p,q0). (primal problem)

Now we lead up to the definition of the dual problem. The Legendre-Bregman Conjugate associated
with ( is !( : int()()×R IK → R ∪{!} defined as:

!((q,v) := sup
p∈)(

(

〈v,p〉−B((p,q)
)

.

Note that for fixed q, the Legendre-Bregman conjugate is exactly the convex conjugate of B((·,q).
The Legendre-Bregman Projection is the argument of the sup whenever it is well-defined, namely,
L( : int()()×R IK → )( is defined by:

L((q,v) := argmaxp∈)(
(

〈v,p〉−B((p,q)
)

,

whenever this is well-defined. Della Pietra et al. (2002) have shown that:

L((q,v) = (*()−1(*((q)+v). (10)

The dual problem can also be viewed as a minimization of a Bregman distance. Namely, it can be
shown (cf. Proposition 2.7 of Della Pietra et al., 2002) that the dual objective can be written in terms
of L((q0,v) :

〈v,p0〉− !((q0,v) = B((p0,q0)−B(
(

p0,L((q0,v)
)

.

Thus, since the first term on the right is not a function of v, the dual problem can be written:

argmaxv∈R IKB((p0,q0)−B(
(

p0,L((q0,v)
)

= argminv∈R IKB(
(

p0,L((q0,v)
)

, (dual problem)
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where we have assumed in the domain of v that )(∗ = R IK and where (∗ is the convex conjugate
of (. We will rewrite the domain of the dual problem as the class Q , defined as follows. For the
q0 ∈ )( and M ∈ R IK×n fixed in the primal problem, the Legendre-Bregman projection family for
q0 andM is defined by:

Q (q0,M) = {q ∈ )(|q= L((q0,−Mλ) for some λ ∈ R n}.

So instead of considering the minimizer with respect to v, we will instead consider the minimizer
with respect to q ∈ Q . In order to proceed, a few more technical conditions are required, namely:

• A1. ( is Legendre.

• A2. )(∗ = R IK where (∗ is the convex conjugate of (.

• A3. B( extends to a function B( : )(×)( → [0,!] such that B((p,q) is continuous in p and
q, and satisfies B((p,q) = 0 iff p= q.

• A4. L( extends to a function L( : )(×R IK → )( satisfying L( : (q,0) = q, such that L((q,v)
and B((L((q,v),q) are jointly continuous in q and v.

• A5. B((p, ·) is coercive for every p∈)(\int()(), where a function f : S→ [−!,!] is coercive
if the level sets {q ∈ S| f (q) ≤ c} are bounded for every c ∈ R .

We now state Proposition 3.2 of Della Pietra et al. (2002) which will give us uniqueness within
the closure of the set Q . Define Q̄ as the closure of Q in R IK .

Theorem 10 (Della Pietra et al., 2002) Let ( satisfy A1.-A5. and suppose that p0,q0 ∈ )( with
B((p0,q0) < !. Then there exists a unique q∗ ∈ )( satisfying the following four properties:

1. q∗ ∈ P
T

Q̄

2. B((p,q) = B((p,q∗)+B((q∗,q) for any p ∈ P and q ∈ Q̄

3. q∗ = argminp∈PB((p,q0) (primal problem)

4. q∗ = argminq∈Q̄ B((p0,q) (dual problem)

Moreover, any one of these four properties determines q∗ uniquely.

If we can prove that our objective function fits into this framework, we can use part (4) of this
theorem to provide uniqueness in the closure of the set Q , which will be related to our set Q ′. Let
us now do exactly this.

Consider the following function ( : R IK
>0 → [−!,!]:

((q) :="
ik
qik+(qik,q), where +(qik,q) := ln

(

qik
p1/p("i′ qi′k)(p−1)/p

)

.

We extend the definition to R IK
+ by the conventions 0 ln0= 0 and qik+(qik,q) = 0 whenever qik = 0

for all i. Thus, )( is now R IK
+ . The boundary in our case is where qik equals 0 for one or more ik

pairs. We must now show that ( is Legendre.
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Lemma 11 ( is strictly convex in int()(), where )( are vectors in R IK
+ with strictly positive entries.

The proof is in the Appendix.

Lemma 12 ( is Legendre.

Proof ( is proper since there is no q such that ((q) = −!. In order to achieve this, the term
inside the logarithm must be exactly zero. When that happens, qik = 0, and by our convention,
qik+(qik,q) = 0, thus the entire ik term is zero rather than −!. It can be verified that ( is lower
semi-continuous. Also, int()() = R IK

>0 which is convex. We have already shown that ( is strictly
convex on int()() in Lemma 11, and by our definition of ( on the boundary, it is convex on )(.
We now show that ( is essentially smooth with respect to the boundary. Consider the following
calculation for the gradient of ( in int()():

(*((q))ik =
,((q)
,qik

=
1
p

+ ln

(

qik
p1/p ("i′ qi′k)

(p−1)/p

)

=
1
p

+ +(qik,q), (11)

since +(qik,q)→−! as qik → 0, ( is essentially smooth. All the conditions have now been checked.

Also, we require the following:

Lemma 13 Conditions A1.-A5. are obeyed.

The proof of this lemma is in the Appendix.
Proof (Of Theorem 4) Let us compute the quantities above for our function (, namely we would
like to find the space Q and the dual objective B((p0,q). Using (11) it can be shown that:

(

(*()−1(z)
)

ik = pe(zik−1/p)
(

"
i′
e(zi′k−1/p)

)p−1

.

We now wish to compute L(. First, let us compute a term that appears often:

ezik−1/p where zik = (*((q)+v)ik =
1
p

+ +(qik,q)+ vik can be rewritten:

ezik−1/p = exp
[

1
p
−
1
p

+ +(qik,q)+ vik
]

= evike+(qik,q).

Thus from (10),

L((q,v)ik = pevike+(qik,q)
(

"
i′
evi′ke+(qi′k,q)

)p−1

= pevik
qik

p1/p("i′ qi′k)(p−1)/p

(

"i′ evi′kqi′k
p1/p("i′ qi′k)(p−1)/p

)p−1

= evikqik

(

"
i′
evi′kqi′k

)(p−1)
1

("i′ qi′k)(p−1) . (12)
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In our case, we choose q0 to be constant, q0ik = q0 for all i,k. We can now obtain Q :

Q (q0,M) =







q
∣

∣

∣
q= e−(Mλ)ik

(

"
i′
e−(Mλ)i′k

)(p−1)
q0

I(p−1)
for some λ ∈ R n







.

In order to make the last fraction become 1, we choose q0 = I(p−1). We now need only to define
p0 in order to define the dual problem. In our case, we choose p0 = 0 so that the dual objective
function is B((0,q). Let us choose q ∈ Q , that is, qik = e−(Mλ)ik

(

"i′ e−(Mλ)i′k
)(p−1) and substitute

using (11) and the definitions of ( and B(:

B((0,q) = ((0)−((q)−〈*((q),0−q〉
= −((q)+q ·*((q)

= −((q)+
1
p"ik

qik +((q)

=
1
p"k

(

"
i
e−(Mλ)ik

)(

"
i′
e−(Mλ)i′k

)(p−1)

=
1
p"k

(

"
i
e−(Mλ)ik

)p

=
1
p
Rp,exp(λ).

Thus, we have arrived at exactly the objective function for our algorithm. In other words, the
function ( was carefully chosen so that the dual objective would be exactly as we wished, modulo
the constant factor 1/p which does not affect minimization.

Part 4 of Theorem 10 tells us that the objective function of our algorithm has a unique minimizer
in Q̄ as long as A1.-A5. are obeyed, which holds from Lemma 13. It remains only to show that a
vector in Q̄ yields a unique vector in Q̄ ′. Consider a sequence of vectors in Q defined element-wise
by q!,ik = e−(Mλ)!,ik

(

"i′ e−(Mλ)!,i′k
)p−1

such that q! → q̄ as ! → !. Then consider the sequence
defined by:

q!,ik

("i′ q!,i′k)
(p−1)/p = e−(Mλ)!,ik .

By definition of Q ′, each vector in this sequence is in Q′. This sequence converges pointwise to
q̄ik

("i′ q̄i′k)
(p−1)/p ∈ Q̄ ′, or if q̄ik = 0, then the ikth component of the sequence converges to 0. Since we

are in a finite dimensional space, namely R IK , pointwise convergence is sufficient.

It was unnecessary to state the primary objective B((p,q0) explicitly to prove the theorem, how-
ever, we state it in order to compare with the relative entropy case where p= 1. Recall that q0 is the
constant vector with entries I p−1. Thus, (*((q0))ik = 1

p++(q0,q0)= 1
p+ln(q0/[p1/p(Iq0)(p−1)/p])=

1
p(1− ln p) for all ik.

B((p,q0) = ((p)−((q0)−〈*((q0),p−q0〉

= ((p)−〈*((q0),p〉+
1
p
IpK = ((p)− (*((q0))ik"

ik
pik +

1
p
IpK

= "
ik
pik ln

[

pik
p1/p("i′ pi′k)(p−1)/p

]

−
1
p
(1− ln p)"

ik
pik +

1
p
IpK.
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For p= 1 this reduces exactly to the relative entropy case.
One interesting note is how to find a function ( to suit such a problem; when we introduced it, we

gave no indication of the techniques required to find such a function. In this case, we discovered the
function ( again via convex duality. We knew the desired dual problem was precisely our objective
Rp,exp, thus, we were able to recover the primal problem by convex conjugation. The double dual in
this case is the objective itself. From there, the function ( was obtained by analogy with the relative
entropy case.

12. Conclusions

We have provided a method for constructing a ranked list where correctness at the top of the list is
most important. Our main contribution is a general set of convex objective functions determined
by a loss ! and price function g. A boosting-style algorithm based on a specific family of these
objectives is derived. We have demonstrated the effect of a number of different price functions, and
it is clear, both theoretically and empirically, that a steeper price function concentrates harder at the
top of the list.
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Appendix A.

We provide proofs of Lemma 11 and Lemma 13.

Proof (Of Lemma 11) First, rewrite (:

((q) ="
k

[(

"
i
qik lnqik

)

− (ln p1/p)

(

"
i
qik

)

−
p−1
p

(

"
i
qik

)

ln

(

"
i
qik

)]

.

The middle term is linear so it does not affect convexity of the sum. It is sufficient to prove convexity
of the following function, since ( would then be a sum (over k) of convex functions. Define f :
R I

>0 → R as follows, for q ∈ R I
+:

f (q) :=
(

"
i
qi lnqi

)

+
1− p
p

(

"
i
qi

)

ln

(

"
i
qi

)

.

Thus, the Hessian is:
, f (q)
,q!,qi

=
1
qi
-i=! +

1− p
p

1
"i′ qi′

.
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To show that the Hessian is positive definite, we show that wTHw> 0 whenever w 3= 0.

"
i!
wiw!

, f
,q!,qi

= "
i
w2i
1
qi

+
1− p
p

(

"
i
wi

)2
1

"i qi

=

(

1
"i qi

)





(

"
i
w2i
1
qi

)(

"
i
qi

)

+

(

1
p
−1

)

(

"
i
wi

)2


 .

Now, consider the Cauchy-Schwarz inequality, used in the following way:
(

"
i
wi

)2

=

〈

w
√q ,

√q
〉2

≤
∥

∥

∥

∥

w
√q

∥

∥

∥

∥

2

2
‖
√q‖22 =

(

"
i

w2i
qi

)(

"
i
qi

)

.

Substituting back,

"
i!
wiw!

, f
,q!,qi

≥
(

1
"i qi

)





(

"
i
w2i
1
qi

)(

"
i
qi

)

+
1
p

(

"
i
wi

)2

−

(

"
i
w2i
1
qi

)(

"
i
qi

)





=

(

1
"i qi

)

1
p

(

"
i
wi

)2

.

Recall that equality in Cauchy-Schwarz is only achieved when vectors are dependent, that is, for
some & ∈ R , wi = &qi for all i. Since the elements of q are all strictly positive, if wi = &qi, then
at the same time we cannot have "i wi = 0. Thus, when equality holds in Cauchy-Schwarz, then
("i wi)2 > 0 unless w= 0. Thus, whether the Cauchy-Schwarz inequality is strict or not, we have:

"
i!
wiw!

, f
,q!,qi

> 0 whenever w 3= 0.

Thus, ( is strictly convex.

Proof (Of Lemma 13) Condition A1. was proven in Lemma 12. To show A2., note that:

((∗(v))ik = pe(vik−1/p)
(

"
i′
e(vi′k−1/p)

)p−1

.

Thus, )(∗ = R IK .
For A3., let us simplify using (11), where this calculation is valid for p,q ∈ )(× int()():

B((p,q) = ((p)−((q)−*((q) · (p−q)

= "
ik
pik+(pik,p)−((q)− 1

p"ki
(pik−qik)−"

ik
pik+(qik,q)+((q)

= "
ik
pik

(

+(pik,p)− +(qik,q)
)

−
1
p"ik

(pik−qik). (13)
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Now we consider the boundary. If for some ik pair, pik = 0 then let pik(+(pik,p)− +(qik,q)) = 0 for
all q. If for some ik pair, pik 3= 0 and additionally qik = 0 we define B((p,q) =!. This completes our
definition of B( on the boundary of R IK

+ . Let us prove that B((p,q) = 0 implies p= q. Considering
the interior, B( can only be 0 at a minimum since it is non-negative. A necessary condition for B(
to be at a minimum is for ,B((p,q)/,pik = 0 for all ik:

∀ik 0=
,B((p,q)
,pik

= 1−
p−1
p

+ +(pik,p)− +(qik,q)−
1
p
⇒∀ik +(pik,p)− +(qik,q) = 0.

It is true that +(pik,p)− +(qik,q) = 0 for pair ik implies that pik = qik. To see this, note that one can
determine pik directly from the +(pik,p) values as follows. Set zik := p1/p exp(+(pik,p)). Now,

zik

(

"
i′
zi′k

)p−1

= pik.

Hence, ∀ik,+(pik,p)− +(qik,q) = 0 implies that p = q. Consider now the boundary. If for any ik,
pik 3= 0 and qik = 0 then B((p,q) =! 3= 0. So, if B((p,q) = 0, then whenever qik = 0 we must have
pik = 0. On the other hand, if pik = 0, there will be a contribution to B((p,q) of 1pqik, implying that
qik must be 0 in order for B((p,q) = 0. Thus, A3. holds.

We now show A4. Let us define the boundary values for L(. If for some k we have "i′ qi′k = 0,
then let (L((q,v))ik = 0 for all i. Otherwise, (12) can be used as written. Thus, we always have
L((q,0) = q, and L((q,v) is jointly continuous in q and v. Now consider B((L((q,v),q). Let us
simplify this expression in the interior, starting from (12) and (13) and using the notation {L}ik for
the vector {L((q,v)}ik.

B((L ,q) = "
ik
Lik

(

+(Lik,L)− +(qik,q)
)

−
1
p"ik

(Lik−qik)

= "
ik
Lik ln

(

Lik
p1/p("i′ Li′k)(p−1)/p

p1/p("i′ qi′k)(p−1)/p

qik

)

−
1
p"ik

(Lik−qik)

= "
ik
Lik ln











evikqik("i′ evi′kqi′k)p−1
(

1
"i′ qi′k

)p−1

[

("i′ evi′kqi′k)
p
(

1
"i qi′k

)p−1
](p−1)/p

("i′ qi′k)(p−1)/p

qik











−
1
p"ik

(Lik−qik)

= "
ik
Likvik−

1
p"ik

(Lik−qik).

Thus, since L( is jointly continuous in q and v, B( is jointly continuous in q and v.
For A5., we need to show that B((p, ·) is coercive, meaning that the level set {q∈)( :B((p,q)≤

c} is bounded, with p ∈ )(\int()() which are vectors in R IK
+ with at least one entry that is 0.

Recall that we use the convention 0ln0= 0. Consider from (13), using the fact that for any ik pair,
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lnq(p−1)/p
ik ≤ ln("i qik)

(p−1)/p:

B((p,q) = "
ik
pik

(

+(pik,p)− +(qik,q)
)

−
1
p"ik

(pik−qik)

= "
ik
−pik+(qik,q)+

1
p
qik + function(p)

≥ "
ik
−pik lnqik + pik ln

(

q(p−1)/p
ik

)

+
1
p
qik + function(p)

=
1
p"ik

−pik lnqik +qik + function(p).

Since logarithms grow slowly, one can choose a qik large enough so that this sum exceeds any
fixed constant c, regardless of the values of the other qik’s. Thus, the set {q ∈ )( : B((p,q) ≤ c} is
bounded. We are done checking the conditions.
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Stéphan Clemençon and Nicolas Vayatis. Empirical performance maximization for linear rank
statistics. In Advances in Neural Information Processing Systems 22, 2008.
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Abstract
Nondeterministic classifiers are defined as those allowed to predict more than one class for some
entries from an input space. Given that the true class should be included in predictions and the
number of classes predicted should be as small as possible, these kind of classifiers can be con-
sidered as Information Retrieval (IR) procedures. In this paper, we propose a family of IR loss
functions to measure the performance of nondeterministic learners. After discussing such mea-
sures, we derive an algorithm for learning optimal nondeterministic hypotheses. Given an entry
from the input space, the algorithm requires the posterior probabilities to compute the subset of
classes with the lowest expected loss. From a general point of view, nondeterministic classifiers
provide an improvement in the proportion of predictions that include the true class compared to
their deterministic counterparts; the price to be paid for this increase is usually a tiny proportion
of predictions with more than one class. The paper includes an extensive experimental study using
three deterministic learners to estimate posterior probabilities: a multiclass Support Vector Machine
(SVM), a Logistic Regression, and a Naı̈ve Bayes. The data sets considered comprise both UCI
multi-class learning tasks and microarray expressions of different kinds of cancer. We successfully
compare nondeterministic classifiers with other alternative approaches. Additionally, we shall see
how the quality of posterior probabilities (measured by the Brier score) determines the goodness of
nondeterministic predictions.
Keywords: nondeterministic, multiclassification, reject option, multi-label classification, poste-
rior probabilities

1. Introduction

There are several learners that successfully solve classification tasks in which the number of classes
is higher than two; see for instance Wu et al. (2004) and Lin et al. (2008). However, for each class
C most classification errors frequently occur between small subsets of classes that are somehow
similar to C, regardless of the approach used. This fact suggests that multiclass classifiers would
increase in reliability if they were allowed to express their doubts whenever they were asked to
classify some entries.

In this paper we explore how to learn classifiers with multiple outcomes, like nondeterministic
automata; we shall call them nondeterministic classifiers. Since they return a set of values, these
classifiers could be called set-valued classifiers. To fix ideas, let us consider a screening for a set
of medical diseases (or other diagnostic situations); for some inputs, a nondeterministic classifier

c©2009 Juan José del Coz, Jorge Dı́ez and Antonio Bahamonde.
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would be able to predict not just one single disease, but a set of options. These multiple predictions
will be provided to domain experts when the classifier is not sure enough to give a unique class.
Thus nondeterministic predictions may discard some options and allow domain experts to make
practical decisions. Even when the nondeterministic classifier returns most of the available classes
for the representation of an entry, we can read that the learned hypothesis is acknowledging its
ignorance about how to deal with that entry.

It is evident that nondeterministic classifiers will include true classes in their predictions more
frequently than deterministic hypotheses: they only have one possibility to be right. In this sense,
nondeterministic predictions are backed by greater reliability. To be useful, however, nondetermin-
istic classifiers should not only predict a set of classes containing the correct or true one, but their
prediction sets should also be as small as possible. Notice that these requirements are common in
algorithms designed for Information Retrieval. In this case, the queries are the entries to be classi-
fied and the Recall and Precision are then applied to each prediction. Hence, the loss functions for
nondeterministic classifiers can be built as combinations of IR measures, as F! functions are.

Starting from the distribution of posterior probabilities of classes, given one entry, we present
an algorithm that computes the subset of classes with the lowest expected loss. In the experiments
reported at the end of the paper, we employed three deterministic learners that provide posterior
probabilities: Support Vector Machines (SVM), Logistic Regression (LR), and Naı̈ve Bayes (NB).
We successfully compared the achievements of our nondeterministic classifiers with those obtained
by other alternative approaches.

The paper is organized as follows. In the next section, we present an overview of related work
on classifiers that return subsets of classes instead of a single class. The formal settings both for
nondeterministic classifiers and their loss functions are presented in the third section. After that,
in Section 4, we derive an algorithm to learn nondeterministic hypotheses. Then, we conclude the
paper with a section in which we report an experimental study of their performance. In addition
to the comparison mentioned above, we discuss the role played by the deterministic learner that
provides posterior probabilities. We see that the quality of posterior probabilities determines the
goodness of nondeterministic predictions. The data sets used are publicly available and, in addition
to a group of data sets from the UCI Repository (Asuncion and Newman, 2007), they include a
group of classification tasks of cancer patients from gene expressions captured by microarrays.

2. Related Work

Nondeterministic classifiers are somehow related to classifiers with reject option (Chow, 1970). In
this approach, the entries that are likely to be misclassified are rejected, they are not classified and
can be handled by more sophisticated procedures: a manual classification, for instance. The core as-
sumption is that the cost of making a wrong decision is 1, while the cost of using the reject option is
given by some d, 0< d < 1. In this context, provided that posterior probabilities are exactly known,
an optimal rejection rule can be devised (Chow, 1970; Bartlett and Wegkamp, 2008): an entry is
rejected if the maximum posterior probability is less than a threshold. Notice that classifiers with
reject option are a relaxed version of nondeterministic classifiers. Rejection is a nondeterministic
classification that includes the complete set of classes. On the other hand, instead of avoiding dif-
ficult classifications, for each entry, nondeterministic classifers adventure a set of possible classes,
not necessarily the complete set.
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However, predictors of more than one class are not completely new. Given an " ∈ [0,1], the
so-called confidence machines make conformal predictions (Shafer and Vovk, 2008): they produce
a set of labels containing the true class with a probability greater than 1− ".

To the best of our knowledge, the most directly related work to the approach presented in this
paper is that of Zaffalon (2002) and Corani and Zaffalon (2008a,b). In these papers, the authors
describe the Naı̈ve Credal Classifier, a set-valued classifier which is an extension of the Naı̈ve Bayes
classifier to imprecise probabilities. The Naı̈ve Credal Classifier models prior ignorance about the
distribution of classes by means of a set of prior densities (also called the prior credal set), which is
turned into a set of posterior probabilities by element-wise application of Bayes’ rule. The classifier
returns all the classes that are non-dominated by any other class according to the posterior credal
set.

Another learning task that is related to this paper is multi-label classification. However, training
instances in multi-label tasks can belong to more than one class, while nondeterministic training
sets are the same as those of standard classification. In Tsoumakas and Katakis (2007), the au-
thors provide an in-depth description of multi-label classification, enumerate several methods and
compare their performance using Information Retrieval measures. Some applications have likewise
arisen within the context of hierarchical organization of biological objects: predicting gene func-
tions (Clare and King, 2003), or mapping biological entities into ontologies (Kriegel et al., 2004).

The formal setting presented in this paper was previously introduced in Alonso et al. (2008).
There, we dealt with an interesting application of nondeterministic classifiers, in which classes
(or ranks, in that context) are linearly ordered. The aim was to predict the rank (in an ordered
scale) of carcasses of beef cattle. This value determines, on the one hand, the prices to be obtained
by carcasses and, on the other, the genetic value of animals in order to select studs for the next
generation. In this application, nondeterministic classifiers return an interval of ranks. Interval
predictions are useful even when the intervals comprise more than one rank. For instance, it is
possible to reject an animal as a stud for the next generation when a prediction interval is included
in the lowest part of the scale. However, if we need a unique rank, we may decide to appeal to an
actual expert to resolve the ambiguity, an expensive classification procedure not always available in
practice.

The novelty of this paper is that now we deal with a standard classification setting; that is, the
sets of classes are not ordered. This fact is very important as the search for the optimal prediction
leads to a dramatic difference in complexity. Thus, if k is the number of classes, the search in the
ordinal case is just of order k2, while in the unordered case, at a first glance, the search is of order 2k.
However, the Theorem of Correctness of Algorithm 1 proves that this search can be accomplished
in polynomial time.

Additionally, this paper reports an extensive experimental study. First, we test whether non-
deterministic classifiers outperform Naı̈ve Credal Classifiers and other alternative approaches. We
then investigate the role played by the ingredients of nondeterministic classifiers.

3. Formal Presentation and Notation

Let X be an input space and Y = {C1, ...,Ck} a finite set of classes. We consider a multiclassification
task given by a training set S= {(x1,y1), . . . ,(xn,yn)} drawn from an unknown distribution Pr(X ,Y )
from the product X ×Y . Within this context, we define
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Definition 1 A nondeterministic hypothesis is a function h from the input space to the set of non-
empty subsets of Y ; in symbols, if P(Y ) is the set of all subsets of Y ,

h : X −→ P(Y )\{∅}.

The aim of such a learning task is to find a nondeterministic hypothesis h from a space H that
optimizes the expected prediction performance (or risk) on samples S′ independently and identically
distributed (i.i.d.) according to the distribution Pr(X ,Y )

R#(h) =
Z

#(h(x),y) d(Pr(x,y)),

where #(h(x),y) is a loss function that measures the penalty due to the prediction h(x) when the
true value is y.

In nondeterministic classification, we would like to favor those decisions of h that contain the
true classes, and a smaller rather than a larger number of classes. In other words, we interpret
the output h(x) as an imprecise answer to a query about the right class of an entry x ∈ X . Thus,
nondeterministic classification can be seen as a kind of Information Retrieval task for each entry.

Performance in Information Retrieval is compared using different measures in order to consider
different perspectives. The most frequently used measures are Recall (proportion of all relevant
documents that are found by a search) and Precision (proportion of retrieved documents that are
relevant). The harmonic average of the two amounts is used to capture the goodness of a hypothesis
in a single measure. In the weighted case, the measure is called F!. The idea is to measure a tradeoff
between Recall and Precision.

For further reference, let us recall the formal definitions of these Information Retrieval measures.
Thus, for a prediction of a nondeterministic hypothesis h(x) with x ∈ X , and a class y ∈ Y , we can
compute the following contingency matrix, where z ∈ Y ,

y= z y '= z
z ∈ h(x) a b
z /∈ h(x) c d

(1)

in which each entry (a,b,c,d) is the number of times that the corresponding combination of mem-
berships occurs. Notice that a can only be 1 or 0, depending on whether the class y is included in
the prediction h(x) or not; b is the number of classes different from y included in h(x); c = 1− a;
and d is the number of classes different from y that are not included in h(x).

According to the matrix, Equation (1), if h is a nondeterministic hypothesis and (x,y) ∈ X ×Y ,
we thus have the following definitions.

Definition 2 The Recall in a query (i.e., an entry x) is defined as the proportion of relevant classes
(y) included in h(x):

R(h(x),y) =
a

a+ c
= a= 1y∈h(x).

Definition 3 The Precision is defined as the proportion of retrieved classes in h(x) that are relevant
(y):

P(h(x),y) =
a

a+b
=
1y∈h(x)
|h(x)|

.
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h(x) Precision Recall F1 F2
[1,2,3] 0.33 1 0.50 0.71
[1,2] 0.50 1 0.67 0.83
[1] 1 1 1 1

[2,3,4] 0 0 0 0

Table 1: The Precision, Recall, F1, and F2 for different predictions of a nondeterministic classifier
h for an entry x with class 1, (y= 1)

In other words, given a hypothesis h, the Precision for an entry x, that is, P(h(x),y), is the probability
of finding the true class (y) of the entry (x) by randomly choosing one of the classes of h(x).

Finally, the tradeoff is formalized by

Definition 4 The F! is defined, in general, by

F!(h(x),y) =
(1+!2)PR
!2P+R

=
(1+!2)a

(1+!2)a+b+!2c
. (2)

Thus, for a nondeterministic classifier h and a pair (x,y),

F!(h(x),y) =

{

1+!2
!2+|h(x)| if y ∈ h(x)
0 otherwise.

(3)

The most frequently used F-measure is F1. For ease of reference, let us state that

F1(h(x),y) =
2y∈h(x)
1+ |h(x)|

.

Notice that for deterministic classifiers, the accuracy is equal to Recall, Precision, and F! given
that |h(x)| = 1.

To illustrate the use of the F-measures of an entry, let us consider an example. If we assume that
the true class of an entry x is 1, (y = 1), then, depending on the value of h(x), Table 1 reports the
Recall, Precision, F1, and F2. We observe that the reward attached to a prediction containing the
true class with another extra class ranges from 0.667 for F1 to 0.833 for F2; whereas the amounts
are lower when the prediction includes 2 extra classes.

Once we have the definition of F! for individual entries, it is straightforward to extend it to a
test set. Hence, when S′ is a test set of size n, the average loss on it will be computed by

R#
ND

(h,S′) =
1
n

n

$
j=1

#ND(h(x′j),y′j) =
1
n

n

$
j=1

(

1−F!(h(x′j),y′j)
)

(4)

=
1
n

n

$
j=1

(

1−
1+!2

!2+ |h(x′j)|
1y′j∈h(x′j)

)

.

The average Recall and Precision can be similarly defined. For ease of reference, let us remark
that the Recall is the proportion of times that h(x′) includes y′ and is thus a generalization of the
deterministic accuracy.
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Figure 1: Conditional probabilities of class +1 given the discriminant value (horizontal axis) of
entries x ∈ X . Vertical bars separate the region where both classes {−1,+1} have a
probability of over 1/3

3.1 Nondeterministic Classification in a Binary Task

To complete this section, let us show what nondeterministic classifiers look like in the simplest case,
which will be further developed in the following sections. Let us assume that in a binary classifica-
tion task (the classes are codified by −1 and +1) we have a loss 1 for each false classification. On
the other hand, we are allowed to predict both classes, in which case the loss will be 1/3: the F1 for
a classification of 2 classes containing the true one; see Table 1. The extension for dealing with F!,
with ! '= 1, is straightforward.

The optimum classifier will return only one class when it is sufficiently sure. In doubtful situa-
tions, however, the nondeterministic classifier should opt for predicting the 2 classes. This will be
the case whenever the probability of error for both classes is higher than 1/3, since this is the loss
for predictions of two classes; see Figure 1. Therefore, if we have the conditional probabilities of
classes given the entries, the optimum classifier will be given by

hND(x) =







{−1} i f %(x) < 1/3
{−1,+1} i f 1/3≤ %(x) < 2/3
{+1} i f 2/3≤ %(x),

(5)

where we are representing by %(x) the posterior probability:

%(x) = Pr(class= +1|x).

Notice that Equation (5) is equivalent to the generalized Bayes discriminant function described
in Bartlett and Wegkamp (2008) when the cost of using the reject option is calculated using the F1
loss function.

2278



LEARNING NONDETERMINISTIC CLASSIFIERS

Algorithm 1 The nondeterministic classifier nd•, an algorithm for computing the prediction with
one or more classes for an entry x provided that the posterior probabilities of classes are given
Input:

{

Cj : j = 1, ..,k sorted byPr(Cj|x)
}

Input: !: trade-off between Recall and Precision
Initialize i= 0, #0 = 1
repeat
i= i+1
#i = 1− 1+!2

!2+i $
i
j=1Pr(Cj|x)

until ((i== k) or (#i−1 ≤ #i)
if (#i−1 ≤ #i) then
return {Cj : j = 1, .., i−1}

else
return {Cj : j = 1, ..,k}

end if

4. Nondeterministic Classification Using Multiclass Posterior Probabilities

In the general multiclass setting presented at the beginning of Section 3, let x be an entry of the
input space X and let us now assume that we know the conditional probabilities of classes given
the entry, Pr(Cj|x). Additionally, we shall assume that the classes are ordered according to these
probabilities. In this context, we wish to define the

h(x) = Z ⊂ Y = {C1, . . . ,Ck}

that minimizes the risk defined in Equation (1) when we use the nondeterministic loss given by F!,
(Equations 2, 3, and 4). We shall prove that such an h(x) can be computed by Algorithm 1, which
does not need to search through all non-empty subsets of Y .

Theorem 1 (Correctness). If the conditional probabilities Pr(Cj|x) are known, Algorithm 1 returns
the nondeterministic prediction for h(x) that minimizes the risk given by the loss 1−F!.

Proof To minimize the risk, Equation (1), it suffices to compute

#x(Z) = $
y∈Y

#ND(Z,y)Pr(y|x), (6)

with Z ⊂ {C1, . . . ,Ck}. Then, we only have to define

h(x) = argmin{#x(Z) : Z ⊂ {C1, . . . ,Ck}}.

The proof has two parts. First, we shall see that if h(x) has r classes, then those are the r classes
with the highest probabilities; bearing in mind that classes are ordered, h(x) = Zr = {Cj : j= 1, ..,r}.
For this purpose, we need to see that any other subset of r classes will increase the loss due to Zr.
This is a consequence of the following.

The value of Equation (6) for Zr is #r in Algorithm 1. In fact, with the complementary proba-
bility of $r

j=1Pr(Cj|x), we expect a loss of 1: the true class will not be one of the r first classes. On
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the other hand, with this sum of probabilities, the true class will be in h(x), and therefore the loss
will be 1 minus the F! of the prediction h(x) = {Cj : j = 1, ..,r}:

#x (Cj : j = 1, ..,r) =

(

1−
r

$
j=1

Pr(Cj|x)

)

+

(

r

$
j=1

Pr(Cj|x)

)

(

1−
1+!2

!2+ r

)

= 1−
1+!2

!2+ r

r

$
j=1

Pr(Cj|x)

= #r.

Notice that for any other subset of r classes, we could achieve a similar expression simply by
modifying the set of posterior probabilities of the last sum. Therefore, to minimize the value of
Equation (6) with r classes, we need those with the highest probability.

In the second step, we only have to show that the index r returned by the Algorithm is the
right one. We shall see that the search for the best r can be accomplished in linear time, as in the
Algorithm. In fact, we shall establish that when the Algorithm reaches the number of classes with
which the loss increases, adding further classes will only increase the loss. In symbols, we shall
prove that

#r ≤ #r+1 ⇒ #r+1 ≤ #r+2.

To do so, we shall next express the exit condition of the loop #r ≤ #r+1 when (r+ 1) ≤ k in a
different way. The following expressions are equivalent:

#r ≤ #r+1 (7)

1+!2

!2+ r

r

$
j=1

Pr(Cj|x) ≥
1+!2

!2+ r+1

r+1

$
j=1

Pr(Cj|x)

(!2+ r+1)
r

$
j=1

Pr(Cj|x) ≥ (!2+ r)
r+1

$
j=1

Pr(Cj|x)

r

$
j=1

Pr(Cj|x) ≥ (!2+ r)Pr(Cr+1|x).

Therefore, if #r ≤ #r+1 and (r+1) ≤ k, then

Pr(Cr+1|x)+
r

$
j=1

Pr(Cj|x) ≥ (!2+ r)Pr(Cr+1|x)+Pr(Cr+1|x).

However, bearing in mind that the classes are ordered, we have that Pr(Cr+1|x) ≥ Pr(Cr+2|x),
and using Equation (7), we conclude that

r+1

$
j=1

Pr(Cj|x) ≥ (!2+ r+1)Pr(Cr+2|x) ⇔ #r+1 ≤ #r+2.
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4.1 Corollaries

In order to draw some practical consequences, let us reword the previous Theorem. It states that the
optimum classification for an input x is the set of r classes with the highest posterior probabilities,
where r is the lowest integer that fulfills

r

$
j=1

Pr(Cj|x) ≥ (!2+ r)Pr(Cr+1|x), (8)

or the set of all classes when this condition is not fulfilled by any r. Expressed in this way, it is
straightforward to see that for two classes, with != 1, Algorithm 1 coincides with the rule defined
in Equation (5).

Additionally, we would like to underscore that Equation (8) hinders the use of naı̈ve thresholds
to compute nondeterministic predictions. Thus, a nondeterministic classifier that always predicts
the top r classes for a constant value r is not a correct option. Equation (8) shows that r, at least,
depends on the input x.

Moreover, we should not search for a threshold & to return, for all inputs, the first r classes
whose sum of probabilities is above &:

r

$
j=1

Pr(Cj|x) ≥ &. (9)

Note that given a & value in [0,1], Equation (9) straightforwardly gives rise to a nondeterministic
classifier as follows. For each input x, if the set of classes is ordered according to their posterior
probabilities, we define

h&(x) =

{

C1, . . . ,Cr :
r

$
j=1

Pr(Cj|x) ≥ & &
r−1

$
j=1

Pr(Cj|x) < &

}

. (10)

Again, the right-hand side of Equation (8) shows that the threshold (&) would depend on the
number of classes predicted, the probability of the first class excluded from the prediction, and the
parameter !: the trade-off between Precision and Recall. The idea behind Equation (8) is that, once
we have decided to include the top r classes, to add the (r+ 1)th class we should guarantee that
Pr(Cr+1|x) is not much smaller than the sum of probabilities of the top r classes.

However, it may be argued that the inaccuracy of posterior probabilities would partially invali-
date the preceding theoretical discussion. In fact, posterior probabilities are not known in practice:
they are estimated by algorithms that frequently try to optimize the classification accuracy of a
hypothesis that returns the class with the highest probability. In other words, probabilities are dis-
criminant values instead of thorough descriptions of the distribution of classes in a learning task.
Therefore, in the experiments reported at the end of the paper, we shall consider the classifiers
defined by Equation (10) as a possible alternative method to the nondeterministic classifier of Algo-
rithm 1.

5. Experimental Results

In this section we report the results of a set of experiments conducted to evaluate the proposals
of this paper. The next subsection describes the settings used in the experiments: deterministic
learners, data sets, procedures to set parameters, and methods to estimate the scores.
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Data sets #classes #samples #features
zoo 7 101 16
iris 3 150 4
glass 6 214 9
ecoli 8 336 7
balance scale 3 625 4
vehicle 4 846 18
vowel 11 990 11
contraceptive 3 1473 9
yeast 10 1484 8
car 4 1728 6
image 7 2310 19
waveform 3 5000 40
landsat 6 6435 36
letter recognition 26 20000 16

Table 2: Description of the data sets downloaded from the UCI repository. The classes are not
linearly separable

We have two goals here. On the one hand, we compare our approach with two alternative
methods. The comparison will first be established with a state-of-the-art set-valued algorithm, the
Naı̈ve Credal Classifier (NCC) (Zaffalon, 2002; Corani and Zaffalon, 2008a,b). This algorithm is an
extension of the traditional Naı̈ve Bayes classifier towards imprecise probabilities and is designed
to return robust set-valued (nondeterministic) classifications. We show that our method can improve
the performance of NCC. We then contrast our method with an implementation of Equation (10);
once again our proposals outperform this alternative way to learn nondeterministic classifiers.

On the other hand, we analyze the influence of a number of factors related to nondeterministic
learners. We accordingly discuss how the scores of a nondeterministic learner are affected by the
quality of posterior probabilities. We see that the performance of a nondeterministic classifier is
highly correlated with the accuracy of its deterministic counterpart. The section ends with a study
of the meaning of the parameter !.

5.1 Experimental Settings

We used three different methods for learning posterior probabilities in order to build nondeter-
ministic classifiers. First, we employed the Naı̈ve Bayes (NB) used by NCC as its deterministic
counterpart (Corani and Zaffalon, 2008b). The second deterministic learner was a multiclass SVM;
the implementation used was libsvm (Wu et al., 2004) with the linear kernel. Last, we employed the
logistic regression (LR) of Lin et al. (2008). It should be noted that we are not only using the multi-
class classifiers learned by SVM or LR. Primarily, we apply the mechanisms that provide posterior
probabilities from their outputs.

For each of these learners, we built ndd , where d stands for the name of the deterministic coun-
terpart, nb, svm or lr. Recall that ndd is the implementation of Algorithm 1 that aims to optimize
F1; that is, != 1.
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Data sets #classes #samples #features Original source Used in
brain 5 42 5597 Pomeroy et al. (2002) [1]
nci 9 60 7131 Ross et al. (2000) [1, 3, 4]
lung 6 6 70 16387 Tamayo et al. (2007)
leukemia 3 3 72 12582 Armstrong et al. (2002) [2]
lung 4 4 82 9036 Tamayo et al. (2007)
lung 11 11 89 4459 Tamayo et al. (2007)
tumors 11 11 174 12533 Su et al. (2001) [1, 2]
tumors 14 14 190 16063 Ramaswamy et al. (2001) [1, 2, 4]
lung 16 16 201 493 Tamayo et al. (2007)
leukemia 7 7 327 12558 Yeoh et al. (2002) [2]

Table 3: Description of cancer microarray data sets used in the experiments including the original
sources and papers from which they are taken. For the sake of brevity, we have denoted
the papers as follows: [1] Tibshirani and Hastie (2007), [2] Tan et al. (2005), [3] Staunton
et al. (2001), [4] Yeung and Bumgarner (2003)

In the experiments that follow, we used two kinds of data sets. First, we considered data sets
downloaded from the UCI repository (Asuncion and Newman, 2007), all of which have more ex-
amples than attributes. We included all the data sets that fulfill the following rules: continuous or
ordinal attribute values, no more than 40 attributes and no more than 20000 examples. The inten-
tion was to consider small data sets that are not linearly separable. Additionally, we excluded those
learning tasks with missing values or in which every deterministic learner considered (NB, SVM,
LR) achieves a proportion of successful classifications of over 95%; otherwise nondeterministic
learners would be too similar to their deterministic counterpart. A description of the group of data
sets considered can be found in Table 2.

We then evaluated the performance on learning tasks in which the aim was to classify cancer
patients from gene expressions captured by microarrays. Unlike the first package of data sets, all
the classes are now linearly separable given the dimensions of the input space and the number of
entries. Table 3 shows the details of these data sets.

Every table of scores (Tables 4, 5, 6, 7, 8) is devoted to reporting the experimental results
achieved in one of the kinds of data sets by one of the deterministic learners and by two nondeter-
ministic algorithms that are to be compared. All the tables have a similar layout. First, they contain
the scores of the deterministic learner d: the F1 (or accuracy or Recall), and the Brier score, a mea-
sure for the quality of posterior probabilities (Brier, 1950; Yeung et al., 2005), computed by means
of

BS=
1
2n

n

$
i=1

k

$
j=1

([yi =Cj]−Pr(Cj|xi))2 .

Then we report, for each nondeterministic learner, the F1, Precision, Recall, and the average number
of classes predicted (|h(x)|). All the scores were estimated by means of a 5-fold cross validation
repeated 2 times. We did not use the 10-fold procedure, since in certain data sets there are too few
examples in some of the classes.

Following Demšar (2006), we used the Wilcoxon signed ranks test to compare the performance
of two classifiers when the measurements are F1, Precision, Recall, or the average |h(x)|. Unless
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NB NCC ndnb
Data set F1 BS F1 P R |h(x)| F1 P R |h(x)|
zoo 95.0 0.03 92.3 90.5 100.0 1.496 95.2 94.3 97.0 1.055
iris 93.3 0.05 92.9 92.5 94.0 1.037 93.9 93.5 94.7 1.023
glass 68.0 0.22 69.2 66.5 76.6 1.321 70.7 67.6 77.6 1.253
ecoli 83.5 0.12 82.0 81.0 85.7 1.240 84.4 82.2 88.7 1.136
balance 73.9 0.16 76.0 74.2 79.7 1.132 79.9 74.9 90.1 1.370
vehicle 60.8 0.30 60.9 59.8 63.4 1.103 63.3 60.2 69.6 1.241
vowel 62.1 0.25 64.6 62.6 69.8 1.296 65.5 60.9 75.5 1.429
contra 50.0 0.30 50.3 50.1 50.6 1.013 56.6 47.9 74.6 1.670
yeast 58.1 0.28 58.4 58.2 59.0 1.037 60.8 54.4 74.3 1.500
car 86.8 0.11 87.3 87.0 87.8 1.017 83.4 76.6 98.0 1.487
image 90.9 0.08 91.4 90.5 94.8 1.195 91.2 90.9 92.0 1.026
waveform 80.1 0.17 80.1 80.0 80.4 1.007 80.9 80.0 82.5 1.051
landsat 82.0 0.17 82.0 81.6 83.1 1.058 82.1 81.9 82.4 1.011
letter 73.9 0.19 74.6 74.2 75.8 1.081 74.8 73.3 78.0 1.166

Table 4: Scores obtained by Naı̈ve Bayes, the Naı̈ve Credal Classifier and nondeterministic classi-
fiers on UCI data sets using a 5-fold cross validation repeated 2 times. For ease of reading,
F1, Precision (P), and Recall (R) are expressed as percentages. The best nondeterministic
F1 for each data set is boldfaced

explicitly stated, we use the expression statistically significant differences to mean that p < 0.01.
Additionally, in order to provide a quick view of the order of magnitude of the scores, we have
boldfaced the best nondeterministic F1 score for each data set.

To select the regularization parameter, C, for SVM and LR, we used a 2-fold cross validation
repeated 5 times performed on training sets. We searched withinC ∈ [10−2, . . . ,102].

5.2 Nondeterministic Classifiers vs. Naı̈ve Credal Classifiers

In this subsection, we compare our nondeterministic learner withNCC (Corani and Zaffalon, 2008b),
a state-of-the-art set-valued (nondeterministic) algorithm. In order to ensure a fair comparison, our
approach uses the Naı̈ve Bayes (NB) employed by NCC as its deterministic counterpart. Table 4
reports the scores of NB, NCC and our algorithm ndnb.

The nondeterministic ndnb is significantly (remember that we are using Wilcoxon tests) better
than NCC both in Recall and F1. Moreover, ndnb wins in 12 out of 14 data sets in F1, and in 11
out of 14 in Recall. However, the scores in Precision and size of predictions are more balanced;
the differences are not significant. In Precision, NCC wins in 5 cases, loses in 8, and there is 1 tie
situation. The size scores are favorable to NCC in 8 out of 14 data sets.

To complete the comparison, we should discuss the results achieved on high dimensional data
sets (Table 3). Nevertheless, we do not show the scores on each data set. The characteristics of
these tasks are not appropriate for Naı̈ve Bayes (a large number of attributes with a small number
of examples); therefore, the posterior probabilities of NB are poor (they are significantly worse than
those achieved by SVM and LR) and this affects the performance of our nondeterministic algorithm
and NCC. Our method tends to be almost deterministic, the average value for the size of predictions
is |h(x)| = 1.008. This is not optimal, as we shall see later, but it is acceptable behavior. However,
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SVM ndsvm& ndsvm
Data set F1 BS F1 P R |h(x)| F1 P R |h(x)|
zoo 94.0 0.08 38.9 24.6 100.0 4.390 94.2 92.4 98.0 1.134
iris 96.0 0.02 83.2 74.8 100.0 1.510 97.6 96.7 99.3 1.053
glass 61.7 0.26 63.7 53.3 85.0 1.711 63.0 55.9 77.3 1.484
ecoli 86.5 0.11 75.1 66.3 97.2 1.854 87.4 85.0 92.3 1.152
balance 91.7 0.06 83.8 77.5 98.7 1.528 91.3 89.0 98.1 1.272
vehicle 79.8 0.13 79.6 71.0 97.8 1.576 82.5 77.9 92.0 1.297
vowel 82.0 0.15 66.3 55.0 97.5 2.313 82.9 78.8 91.5 1.288
contra 51.3 0.29 55.9 48.3 71.3 1.599 57.7 46.7 83.1 1.960
yeast 59.0 0.27 60.6 50.4 82.2 1.817 62.4 53.4 81.6 1.706
car 85.3 0.11 82.8 76.1 97.3 1.475 85.6 83.0 90.8 1.169
image 95.9 0.03 84.8 79.1 99.8 1.579 96.1 95.3 97.9 1.058
waveform 86.4 0.10 85.7 80.0 97.1 1.343 87.6 81.5 91.8 1.126
landsat 86.8 0.09 84.4 78.4 97.6 1.453 87.8 85.7 91.9 1.139
letter 85.8 0.11 71.0 64.3 98.2 2.949 86.3 76.7 91.0 1.186

Table 5: Scores obtained by SVM learners on UCI data sets using a 5-fold cross validation repeated
2 times. For ease of reading, F1, Precision (P), and Recall (R) are expressed as percentages.
The best nondeterministic F1 for each data set is boldfaced

LR ndlr& ndlr
Data set F1 BS F1 P R |h(x)| F1 P R |h(x)|
zoo 95.0 0.04 91.0 88.4 97.0 1.252 95.4 95.0 96.0 1.045
iris 96.7 0.05 74.4 61.7 100.0 1.767 94.4 92.2 99.0 1.137
glass 60.3 0.27 61.5 49.3 86.0 1.844 63.0 51.8 85.5 1.774
ecoli 87.5 0.11 76.9 68.3 96.1 1.668 87.0 84.4 92.1 1.173
balance 86.7 0.11 88.9 87.4 92.6 1.185 88.7 87.7 90.9 1.136
vehicle 77.0 0.16 74.8 64.9 95.3 1.674 79.2 74.1 89.7 1.342
vowel 57.9 0.30 54.1 41.5 83.5 2.226 57.8 48.6 79.7 1.908
contra 50.8 0.29 55.9 47.7 72.3 1.644 58.0 47.4 82.5 1.928
yeast 58.4 0.28 59.4 49.0 80.9 1.818 61.0 52.2 79.9 1.713
car 80.9 0.13 80.7 74.1 95.0 1.482 82.0 78.9 88.5 1.215
image 88.4 0.11 72.3 60.9 98.7 1.915 88.0 85.1 93.8 1.196
waveform 86.5 0.10 81.8 72.8 99.6 1.536 87.4 82.9 96.4 1.272
landsat 77.7 0.18 68.6 58.1 93.8 1.940 76.6 71.7 86.9 1.387
letter 71.8 0.24 49.3 36.5 90.7 3.253 70.3 64.9 82.5 1.556

Table 6: Scores obtained by LR learners on UCI data sets using a 5-fold cross validation repeated 2
times. For ease of reading, F1, Precision (P), and Recall (R) are expressed as percentages.
The best nondeterministic F1 for each data set is boldfaced

the scores of NCC on these data sets are inadmissible; their classifiers predict almost all classes for
every example, their average values are: F1 = 25.73, P= 15.39, R= 100, and |h(x)| = 8.58.

In fact, the behavior of NCC is difficult to predict, sometimes it is almost a deterministic clas-
sifier, whereas in other tasks the number of classes predicted by NCC is very high. Moreover, its
degree of nondeterminism is not related to the difficulty of the learning task. When the accuracy of
the deterministic classifiers decreases, the average number of classes predicted would be expected
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SVM ndsvm& ndsvm
Data set F1 BS F1 P R |h(x)| F1 P R |h(x)|
brain 81.8 0.15 59.2 44.9 97.5 2.504 82.9 78.0 93.8 1.401
nci 48.3 0.35 42.9 33.2 68.3 2.492 47.7 41.4 65.0 2.167
lung 6 72.1 0.21 65.7 57.9 85.7 1.907 73.0 70.4 78.6 1.221
leukemia 3 94.5 0.04 75.1 64.5 100.0 1.862 95.7 94.9 97.3 1.049
lung 4 87.1 0.11 73.9 63.0 96.9 1.743 87.3 85.3 91.4 1.122
lung 11 58.4 0.31 49.3 36.5 84.2 2.656 60.4 53.8 78.0 1.903
tumors 11 89.6 0.13 30.6 19.1 99.7 6.135 88.9 87.1 92.8 1.199
tumors 14 70.0 0.26 45.0 35.3 95.0 4.550 66.5 60.2 84.7 2.021
lung 16 84.8 0.17 25.0 14.5 100.0 7.440 87.3 83.1 95.8 1.266
leukemia 7 92.0 0.07 70.1 59.9 99.4 2.216 92.1 90.6 95.1 1.090

Table 7: Scores obtained by SVM learners on cancer microarray data sets using a 5-fold cross vali-
dation repeated 2 times. For ease of reading, F1, Precision (P), and Recall (R) are expressed
as percentages. The best nondeterministic F1 for each data set is boldfaced

LR ndlr& ndlr
Data set F1 BS F1 P R |h(x)| F1 P R |h(x)|
brain 86.8 0.11 86.3 82.7 94.0 1.274 86.1 84.5 89.2 1.106
nci 55.8 0.33 56.7 55.8 58.3 1.142 57.8 56.7 60.0 1.158
lung 6 70.7 0.22 74.3 72.5 77.9 1.150 73.3 72.1 75.7 1.107
leukemia 3 97.3 0.02 92.2 88.8 100.0 1.258 97.7 97.3 98.7 1.028
lung 4 88.9 0.10 88.9 86.4 93.9 1.153 88.8 87.8 90.8 1.061
lung 11 69.0 0.24 69.1 65.2 77.5 1.354 68.9 65.7 75.9 1.316
tumors 11 94.8 0.05 89.5 85.9 99.1 1.421 93.7 93.0 95.1 1.057
tumors 14 75.3 0.18 76.8 73.9 83.2 1.337 76.8 75.2 80.3 1.145
lung 16 88.1 0.10 88.3 86.0 93.0 1.157 88.4 87.4 90.3 1.060
leukemia 7 91.9 0.07 90.6 87.9 96.3 1.202 91.9 91.4 93.1 1.040

Table 8: Scores obtained by LR learners on cancer microarray data sets using a 5-fold cross valida-
tion repeated 2 times. For ease of reading, F1, Precision (P), and Recall (R) are expressed
as percentages. The best nondeterministic F1 for each data set is boldfaced

to increase. However the correlation between the accuracy of NB and |h(x)| of NCC is 0.24. In the
case of ndnb, this correlation is −0.75: negative and quite high.

5.3 Comparing nd with Another Alternative Method

In accordance with the discussion in Section 4.1, we shall now compare the nondeterministic clas-
sifiers learned by Algorithm 1 with the alternative classifier defined in Equation (10) that uses a
threshold & for the sum of posterior probabilities. The comparison will be established with pos-
terior probabilities provided by SVM and LR given that both outperform the accuracy achieved by
Naı̈ve Bayes classifiers in the data sets used in these experiments. The & nondeterministic classifiers
will be denoted by ndd& , where d stands for the deterministic counterpart.

To select the parameter &, we use a grid search employing a 2-fold cross validation repeated 5
times, aiming to optimize F1. The searching space depends on the learning task S. If the proportion
of successful classifications for deterministic classifiers, the accuracy, is a, then we search within
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& ∈ [a0,a1, . . . ,a5]; six options distribute from a to 0.99. In symbols, a0 = a,a5 = 0.99, and ai+1−
ai = 0.99−a

5 .
In UCI data sets, Tables 5 and 6, ndsvm and ndlr win the corresponding nd& in 13 out of 14

data sets in F1 and Precision. In Recall we have the opposite situation; & classifiers win in 13 out
of 14 cases. Moreover, & classifiers always predict more classes than ndsvm and ndlr. In other
words, & classifiers predict more classes than necessary. All differences are significant. Thus, our
nd classifiers are better than those computed with the & parameter.

In cancer microarray data, Tables 7 and 8, ndsvm always wins in F1, Precision, and average
|h(x)|; while ndsvm always loses in Recall. All differences are again significant. However, when
posterior probabilities are provided by LR, the differences are not significant in F1, although ndlr
has 5 wins, 1 tie and 4 losses; in Precision and average size of predictions the differences are
significant in favor of ndlr. Furthermore, as usual, the Recall is significantly higher for & classifiers.

The conclusion is that & classifiers seem to need more classes in their predictions than nd clas-
sifiers. In fact, Equation (9) only considers the Recall. In practice, this means more Recall, but
less Precision and F1. Therefore, to optimize the F1 measure, in an experimental environment,
Equation (8) is more adequate than Equation (9), as we have conjectured theoretically in Section
4.1.

5.4 The Importance of Posterior Probabilities

The objective of this subsection is to experimentally investigate the degree of dependency between
nondeterministic scores and the accuracy of posterior probabilities. In this study we again employ
SVM and LR with the collection of data sets detailed in Tables 2 and 3.

Let us first consider the set of UCI data sets. Comparing the results in Tables 5 and 6, it can
be seen that the scores of ndlr are significantly worse than those of ndsvm in F1, Precision, Recall
(p< 0.03), and in average size of predictions. The general message is that ndlr include unnecessary
classes in their predictions. The base posterior probabilities seem to be the cause of this behavior:
the Brier score of LR is significantly worse than that of SVM.

On the other hand, the scores obtained with cancer microarray data sets are shown in Tables 7
and 8. The characteristics of UCI and microarray data sets are quite different, and this affects
the performance of classifiers. The main difference is that LR now has a significantly better Brier
score than SVM. Moreover, the ndlr algorithm achieves better results than ndsvm. The differences
are significant in F1, Precision, Recall (p < 0.02), and average |h(x)|. Yet again, inferior posterior
probabilities seem to be responsible for the inclusion of unnecessary classes in nondeterministic
predictions.

In the preceding discussion of the scores achieved by nondeterministic learners, we found sig-
nificant differences when the Brier scores of the deterministic counterparts presented significant
differences. In fact, the scores of a learner built with Algorithm 1 depend on the quality of the pos-
terior probabilities supplied by the corresponding deterministic learner. It seems plausible to draw
the conclusion that the better the posterior probabilities, the better the nondeterministic scores. In
order to quantify this statement, we compared deterministic Brier scores with nondeterministic F1,
Recall, and Precision values; see Figure 2. We separated the scores achieved by UCI and cancer
data sets and included the scores of ndnb in UCI data sets. Similar results would be achieved if we
compared nondeterministic scores with deterministic accuracy.
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Figure 2: Correlation between Brier scores and F1, Recall, and Precision. The left column shows
the results with UCI data sets, while the right column uses cancer data sets. Similar results
would be achieved if we compared nondeterministic scores with deterministic accuracy

We observed that the correlations between the Brier scores of deterministic learners and non-
deterministic scores (F1, Recall, and Precision) are very high: their absolute values are in all cases
greater than 0.89. Therefore, in order to choose a nondeterministic approach in a practical appli-
cation, given a data set, it would be recommendable to first analyze the Brier score of different
deterministic learners.
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Figure 3: Evolution of F1, F2, Precision and Recall on two UCI data sets (yeast and vowel) for
different ! values and for the nondeterministic learners generated by SVM, LR, and NB

5.5 The Meaning of !

In this subsection, we analyze from the point of view of the user the role played by the parameter ! in
Algorithm 1. Its theoretical aim is to control the size of predictions: as the ! value increases, the size
of predictions will become bigger and therefore the Recall scores will be higher; see Equation (8).
The problem is that it is not always of interest to increase Recall values, since that would worsen F1
scores: adding more classes in predictions increases incorrect answers.

In Figure 3 we show the evolution of F1, F2, Precision and Recall on two UCI data sets (yeast
and vowel) for different ! values and for the nondeterministic learners generated by SVM, LR, and
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NB. Quite similar graphs could have been generated for the other data sets used in the experiments
reported in this section.

Initially, ! = 0 makes the nondeterministic classifiers deterministic. Therefore, the scores rep-
resented in the left-hand side of all the graphs in Figure 3 are all the same: the accuracy of the de-
terministic classifier. As ! values become higher, the Recall increases and the Precision decreases.
The main goal of the learning method proposed here is to look for a tradeoff of these measures that
is determined by !, a user-modifiable parameter.

In practice, the value of ! that the classifier must aim to optimize should be fixed by an expert
in the field of application in which the classifier is going to be employed. The kind of decisions that
one would like to take from nondeterministic classifications must be considered.

It can be observed in the graphs in Figure 3 that the best scores in F1 are not always achieved
for ! = 1. With small values of !, F1 increases. However, when some point near 1 is exceeded,
the F1 score of the nondeterministic learner typically falls below the accuracy of the corresponding
deterministic learner. Nonetheless, optimal values are frequently reached around the nominal value:
!= 1 (or 2 respectively). Slight improvements can be achieved in F1 (in general F!) if we use a grid
search for ! values to be used in Algorithm 1.

6. Conclusions

We have studied classifiers that are allowed to predict more than one class for entries from an input
space: nondeterministic or set-valued classifiers. Using a clear analogy with Information Retrieval,
we have proposed a family of loss functions based on F! measures. After discussing such measures,
we derived an algorithm to learn optimal nondeterministic hypothesis. Given an entry from the
input space, the algorithm requires the posterior probabilities to compute the subset of classes with
the lowest expected loss.

The paper includes a set of experiments carried out on two collections of data sets. The first one
was downloaded from the UCI repository, the classes of which are not linearly separable. The sec-
ond group is formed by data sets whose input spaces represent microarray expressions of different
kinds of cancer, the classes of which are separable.

Using these benchmarks, we first compared nondeterministic learners obtained from a Naı̈ve
Bayes with those learned by a state-of-the-art set-valued (nondeterministic) algorithm, the Naı̈ve
Credal Classifier (NCC) (Zaffalon, 2002; Corani and Zaffalon, 2008a,b), an extension of the tradi-
tional Naı̈ve Bayes classifier designed to return robust set-valued classifications. We showed that,
using the loss measures defined in this paper, our method can improve the performance of NCC.
Additionally, an important advantage of our nondeterministic classifiers over NCC is that we can
control the degree of nondeterministic behavior. We can regulate the number of classes predicted by
fixing the F! to be optimized: as ! is higher (the weight of Recall is increased in the harmonic aver-
age F!), the size of our predictions grows (see Section 5.5). However the nondeterministic behavior
of NCC is quite difficult to predict.

In addition to Naı̈ve Bayes, we used a multiclass SVM and a Logistic Regression. With the
posterior probabilities provided by these deterministic learners, we built another alternative method
to predict more than one class: the set of classes which the highest posterior probabilities summing
more than a threshold &. We also found that the classifiers built with our algorithm outperform this
option based on a threshold.
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On the other hand, in the experiments reported in this paper, we studied the role of the determin-
istic learners that explicitly provide posterior probabilities. We found that the better the posterior
probabilities, the better the nondeterministic classifiers. In fact we obtained very high correlations
between the Brier scores of deterministic probabilities and the F1, Precision and Recall values of
their nondeterministic counterparts.
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Abstract
Recent methods for estimating sparse undirected graphs for real-valued data in high dimensional
problems rely heavily on the assumption of normality. We show how to use a semiparametric Gaus-
sian copula—or “nonparanormal”—for high dimensional inference. Just as additive models extend
linear models by replacing linear functions with a set of one-dimensional smooth functions, the
nonparanormal extends the normal by transforming the variables by smooth functions. We derive a
method for estimating the nonparanormal, study the method’s theoretical properties, and show that
it works well in many examples.

Keywords: graphical models, Gaussian copula, high dimensional inference, sparsity, !1 regular-
ization, graphical lasso, paranormal, occult

1. Introduction

The linear model is a mainstay of statistical inference that has been extended in several important
ways. An extension to high dimensions was achieved by adding a sparsity constraint, leading to the
lasso (Tibshirani, 1996). An extension to nonparametric models was achieved by replacing linear
functions with smooth functions, leading to additive models (Hastie and Tibshirani, 1999). These
two ideas were recently combined, leading to an extension called sparse additive models (SpAM)
(Ravikumar et al., 2008, 2009a). In this paper we consider a similar nonparametric extension of
undirected graphical models based on multivariate Gaussian distributions in the high dimensional
setting. Specifically, we use a high dimensional Gaussian copula with nonparametric marginals,
which we refer to as a nonparanormal distribution.

If X is a p-dimensional random vector distributed according to a multivariate Gaussian distribu-
tion with covariance matrix !, the conditional independence relations between the random variables
X1,X2, . . . ,Xp are encoded in a graph formed from the precision matrix"= !−1. Specifically, miss-
ing edges in the graph correspond to zeroes of ". To estimate the graph from a sample of size n, it
is only necessary to estimate !, which is easy if n is much larger than p. However, when p is larger
than n, the problem is more challenging. Recent work has focused on the problem of estimating the
graph in this high dimensional setting, which becomes feasible if G is sparse. Yuan and Lin (2007)
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Assumptions Dimension Regression Graphical Models

parametric
low linear model multivariate normal
high lasso graphical lasso

nonparametric
low additive model nonparanormal
high sparse additive model !1-regularized nonparanormal

Figure 1: Comparison of regression and graphical models. The nonparanormal extends additive
models to the graphical model setting. Regularizing the inverse covariance leads to an
extension to high dimensions, which parallels sparse additive models for regression.

and Banerjee et al. (2008) propose an estimator based on regularized maximum likelihood using an
!1 constraint on the entries of ", and Friedman et al. (2007) develop an efficient algorithm for com-
puting the estimator using a graphical version of the lasso. The resulting estimation procedure has
excellent theoretical properties, as shown recently by Rothman et al. (2008) and Ravikumar et al.
(2009b).

While Gaussian graphical models can be useful, a reliance on exact normality is limiting. Our
goal in this paper is to weaken this assumption. Our approach parallels the ideas behind sparse
additive models for regression (Ravikumar et al., 2008, 2009a). Specifically, we replace the Gaus-
sian with a semiparametric Gaussian copula. This means that we replace the random variable
X = (X1, . . . ,Xp) by the transformed random variable f (X) = ( f1(X1), . . . , fp(Xp)), and assume that
f (X) is multivariate Gaussian. This semiparametric copula results in a nonparametric extension of
the normal that we call the nonparanormal distribution. The nonparanormal depends on the func-
tions { f j}, and a mean µ and covariance matrix !, all of which are to be estimated from data. While
the resulting family of distributions is much richer than the standard parametric normal (the para-
normal), the independence relations among the variables are still encoded in the precision matrix
"= !−1. We propose a nonparametric estimator for the functions { f j}, and show how the graphical
lasso can be used to estimate the graph in the high dimensional setting. The relationship between
linear regression models, Gaussian graphical models, and their extensions to nonparametric and
high dimensional models is summarized in Figure 1.

Most theoretical results on semiparametric copulas focus on low or at least finite dimensional
models (Klaassen and Wellner, 1997; Tsukahara, 2005). Models with increasing dimension require
a more delicate analysis; in particular, simply plugging in the usual empirical distribution of the
marginals does not lead to accurate inference. Instead we use a truncated empirical distribution. We
give a theoretical analysis of this estimator, proving consistency results with respect to risk, model
selection, and estimation of " in the Frobenius norm.

In the following section we review the basic notion of the graph corresponding to a multivariate
Gaussian, and formulate different criteria for evaluating estimators of the covariance or inverse
covariance. In Section 3 we present the nonparanormal, and in Section 4 we discuss estimation of
the model. We present a theoretical analysis of the estimation method in Section 5, with the detailed
proofs collected in an appendix. In Section 6 we present experiments with both simulated data and
gene microarray data, where the problem is to construct the isoprenoid biosynthetic pathway.
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2. Estimating Undirected Graphs

Let X = (X1, . . . ,Xp) denote a random vector with distribution P = N(µ,!). The undirected graph
G= (V,E) corresponding to P consists of a vertex setV and an edge set E. The setV has p elements,
one for each component of X . The edge set E consists of ordered pairs (i, j) where (i, j)∈ E if there
is an edge between Xi and Xj. The edge between (i, j) is excluded from E if and only if Xi is
independent of Xj given the other variables X\{i, j} ≡ (Xs : 1≤ s≤ p, s ! i, j), written

Xi ⊥⊥ Xj
∣∣∣ X\{i, j}. (1)

It is well known that, for multivariate Gaussian distributions, (1) holds if and only if "i j = 0 where
"= !−1.

Let X (1),X (2), . . . ,X (n) be a random sample from P, where X (i) ∈ Rp. If n is much larger than p,
then we can estimate ! using maximum likelihood, leading to the estimate "̂= S−1, where

S=
1
n

n

#
i=1

(
X (i)−X

)(
X (i)−X

)T

is the sample covariance, with X the sample mean. The zeroes of " can then be estimated by
applying hypothesis testing to "̂ (Drton and Perlman, 2007, 2008).

When p> n, maximum likelihood is no longer useful; in particular, the estimate !̂ is not positive
definite, having rank no greater than n. Inspired by the success of the lasso for linear models, several
authors have suggested estimating ! by minimizing

−!(")+$#
j!k

|" jk|

where
!(") =

1
2

(log |"|− tr("S)− p log(2%))

is the log-likelihood with S the sample covariance matrix. The estimator "̂ can be computed ef-
ficiently using the glasso algorithm (Friedman et al., 2007), which is a block coordinate descent
algorithm that uses the standard lasso to estimate a single row and column of " in each iteration.
Under appropriate sparsity conditions, the resulting estimator "̂ has been shown to have good the-
oretical properties (Rothman et al., 2008; Ravikumar et al., 2009b).

There are several different ways to judge the quality of an estimator !̂ of the covariance or
"̂ of the inverse covariance. We discuss three in this paper, persistency, norm consistency, and
sparsistency. Persistency means consistency in risk, when the model is not necessarily assumed
to be correct. Suppose the true distribution P has mean µ0, and that we use a multivariate normal
p(x;µ0,!) for prediction; we do not assume that P is normal. We observe a new vector X ∼ P and
define the prediction risk to be

R(!) = −E log p(X ;µ0,!) = −
Z

log p(x;µ0,!)dP(x).

It follows that
R(!) =

1
2
(
tr(!−1!0)+ log |!|− p log(2%)

)
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where !0 is the covariance of X under P. If S is a set of covariance matrices, the oracle is defined
to be the covariance matrix !∗ that minimizes R(!) over S :

!∗ = argmin!∈SR(!).

Thus p(x;µ0,!∗) is the best predictor of a new observation among all distributions in {p(x;µ0,!) :
! ∈ S}. In particular, if S consists of covariance matrices with sparse graphs, then p(x;µ0,!∗) is, in
some sense, the best sparse predictor. An estimator !̂n is persistent if

R(!̂n)−R(!∗)
P→ 0

as the sample size n increases to infinity. Thus, a persistent estimator approximates the best estima-
tor over the class S , but we do not assume that the true distribution has a covariance matrix in S , or
even that it is Gaussian. Moreover, we allow the dimension p= pn to increase with n. On the other
hand, norm consistency and sparsistency require that the true distribution is Gaussian. In this case,
let !0 denote the true covariance matrix. An estimator is norm consistent if

‖!̂n−!‖ P→ 0

where ‖ ·‖ is a norm. If E(") denotes the edge set corresponding to", an estimator is sparsistent if

P

(
E(") ! E("̂n)

)
→ 0.

Thus, a sparsistent estimator identifies the correct graph consistently. We present our theoretical
analysis on these properties of the nonparanormal in Section 5.

3. The Nonparanormal

We say that a random vector X = (X1, . . . ,Xp)T has a nonparanormal distribution if there exist
functions { f j}pj=1 such that Z ≡ f (X)∼N(µ,!), where f (X) = ( f1(X1), . . . , fp(Xp)). We then write

X ∼ NPN (µ,!, f ).

When the f j’s are monotone and differentiable, the joint probability density function of X is given
by

pX(x) =
1

(2%)p/2|!|1/2
exp

{
−
1
2

( f (x)−µ)T !−1 ( f (x)−µ)
} p

&
j=1

| f ′j(x j)|. (2)

Lemma 1 The nonparanormal distribution NPN (µ,!, f ) is a Gaussian copula when the f j’s are
monotone and differentiable.

Proof By Sklar’s theorem (Sklar, 1959), any joint distribution can be written as

F(x1, . . . ,xp) =C{F1(x1), . . . ,Fp(xp)}

where the functionC is called a copula. For the nonparanormal we have

F(x1, . . . ,xp) ='µ,!('
−1(F1(x1)), . . . ,'−1(Fp(xp)))
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where 'µ,! is the multivariate Gaussian cdf and ' is the univariate standard Gaussian cdf. Thus,
the corresponding copula is

C(u1, . . . ,up) ='µ,!('−1(u1), . . . ,'−1(up)).

This is exactly a Gaussian copula with parameters µ and !. If each f j is differentiable then the
density of X has the same form as (2).

Note that the density in (2) is not identifiable; to make the family identifiable we demand that
f j preserve means and variances:

µj = E(Zj) = E(Xj) and (2j ≡ ! j j = Var(Zj) = Var(Xj) . (3)

Note that these conditions only depend on diag(!) but not the full covariance matrix.
Let Fj(x) denote the marginal distribution function of Xj. Then

Fj(x) = P(Xj ≤ x) = P(Zj ≤ f j(x)) ='

(
f j(x)−µj

( j

)

which implies that
f j(x) = µj +( j'−1 (Fj(x)) . (4)

The following basic fact says that the independence graph of the nonparanormal is encoded in
"= !−1, as for the parametric normal.

Lemma 2 If X ∼NPN (µ,!, f ) is nonparanormal and each f j is differentiable, then Xi⊥⊥Xj |X\{i, j}
if and only if "i j = 0, where "= !−1.

Proof From the form of the density (2), it follows that the density factors with respect to the graph
of ", and therefore obeys the global Markov property of the graph.

Next we show that the above is true for any choice of identification restrictions.

Lemma 3 Define
h j(x) ='−1(Fj(x)) (5)

and let ) be the covariance matrix of h(X). Then Xj ⊥⊥ Xk |X\{ j,k} if and only if )−1
jk = 0.

Proof We can rewrite the covariance matrix as

! jk = Cov(Zj,Zk) = ( j(kCov(h j(Xj),hk(Xk)).

Hence != D)D and
!−1 = D−1)−1D−1,

where D is the diagonal matrix with diag(D) = (. The zero pattern of )−1 is therefore identical to
the zero pattern of !−1.
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Figure 2: Densities of three 2-dimensional nonparanormals. The component functions have the
form f j(x) = sign(x)|x|* j . Left: *1 = 0.9, *2 = 0.8; center: *1 = 1.2, *2 = 0.8; right
*1 = 2, *2 = 3. In each case µ= (0,0) and !=

(1 .5
.5 1
)
.

Thus, it is not necessary to estimate µ or ( to estimate the graph.
Figure 2 shows three examples of 2-dimensional nonparanormal densities. In each case, the

component functions f j(x) take the form

f j(x) = a jsign(x)|x|* j +b j

where the constants a j and b j are set to enforce the identifiability constraints (3). The covariance in
each case is ! =

(1 .5
.5 1
)
and the mean is µ= (0,0). The exponent * j determines the nonlinearity. It

can be seen how the concavity of the density changes with the exponent *, and that *> 1 can result
in multiple modes.

The assumption that f (X) = ( f1(X1), . . . , fp(Xp) is normal leads to a semiparametric model
where only one dimensional functions need to be estimated. But the monotonicity of the functions
f j, which map onto R, enables computational tractability of the nonparanormal. For more general
functions f , the normalizing constant for the density

pX(x) + exp
{
−
1
2

( f (x)−µ)T !−1 ( f (x)−µ)
}

cannot be computed in closed form.
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4. Estimation Method

Let X (1), . . . ,X (n) be a sample of size n where X (i) = (X (i)
1 , . . . ,X (i)

p )T ∈ Rp. In light of (5) we define

ĥ j(x) ='−1(F̃j(x))

where F̃j is an estimator of Fj. A natural candidate for F̃j is the marginal empirical distribution
function

F̂j(t) ≡
1
n

n

#
i=1
1{

X (i)
j ≤t

}.

Now, let , denote the parameters of the copula. Tsukahara (2005) suggests taking ,̂ to be the
solution of

n

#
i=1

-
(
F̃1(X

(i)
1 ), . . . , F̃p(X

(i)
p ),,

)
= 0

where - is an estimating equation and F̃j(t) = nF̂j(t)/(n+ 1). In our case, , corresponds to the
covariance matrix. The resulting estimator ,̂, called a rank approximate Z-estimator, has excellent
theoretical properties. However, we are interested in the high dimensional scenario where the di-
mension p is allowed to increase with n; the variance of F̂j(t) is too large in this case. Instead, we
use the following truncated or Winsorized1 estimator:

F̃j(x) =






.n if F̂j(x) < .n
F̂j(x) if .n ≤ F̂j(x) ≤ 1−.n
(1−.n) if F̂j(x) > 1−.n,

(6)

where .n is a truncation parameter. Clearly, there is a bias-variance tradeoff in choosing .n. Essen-
tially the same estimator with .n = 1/n is studied by Klaassen and Wellner (1997) in the case of
bivariate Gaussian copula. In what follows we use

.n ≡
1

4n1/4
√
% logn

.

This provides the right balance so that we can achieve the desired rate of convergence in our estimate
of " and the associated undirected graph G in the high dimensional setting.

Given this estimate of the distribution of variable Xj, we then estimate the transformation func-
tion f j by

f̃ j(x) ≡ µ̂j + (̂ jh̃ j(x) (7)

where
h̃ j(x) ='−1

(
F̃j(x)

)

and µ̂j and (̂ j are the sample mean and the standard deviation:

µ̂j ≡
1
n

n

#
i=1

X (i)
j and (̂ j =

√
1
n

n

#
i=1

(
X (i)
j − µ̂j

)2
.

1. After Charles P. Winsor, whom John Tukey credited with converting him from topology to statistics Mallows 1990.
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Now, let Sn( f̃ ) be the sample covariance matrix of f̃ (X (1)), . . . , f̃ (X (n)); that is,

Sn( f̃ ) ≡
1
n

n

#
i=1

(
f̃ (X (i))−µn( f̃ )

)(
f̃ (X (i))−µn( f̃ )

)T
(8)

µn( f̃ ) ≡
1
n

n

#
i=1

f̃ (X (i)).

We then estimate " using Sn( f̃ ). For instance, the maximum likelihood estimator is "̂MLEn =
Sn( f̃ )−1. The !1-regularized estimator is

"̂n = argmin
"

{
tr
(
"Sn( f̃ )

)
− log |"|+$‖"‖1

}
(9)

where $ is a regularization parameter, and ‖"‖1 = # j!k |" jk|. The estimated graph is then Ên =

{( j,k) : "̂ jk ! 0}.
The nonparanormal is analogous to a sparse additive regression model (Ravikumar et al., 2009a),

in the sense that both methods transform the variables by univariate functions. However, while
sparse additive models use a regularized risk criterion to fit univariate transformations, our nonpara-
normal estimator uses a two-step procedure:

1. Replace the observations, for each variable, by their respective normal scores, subject to a
Winsorized truncation.

2. Apply the graphical lasso to the transformed data to estimate the undirected graph.

The first step is non-iterative and computationally efficient, with no tuning parameters; it also
makes the nonparanormal amenable to theoretical analysis.

Starting with the model in (2), another possibility would be to parametrize each f j according to
some parametric class of monotone functions such as the Box-Cox family, and then find the maxi-
mum likelihood estimates of (", f1, ... fp) in that class. This might lead to estimates of f j that depend
on", and vice versa, and the estimation problem would not in general be convex. Alternatively, due
to (4), the marginal information could be used to estimate the parameters. Our nonparametric ap-
proach to estimating the transformations has the advantages of making few assumptions and being
easy to compute. In the following section we analyze the theoretical properties of this estimator.

5. Theoretical Results

In this section we present our theoretical results on risk consistency, model selection consistency,
and norm consistency of the covariance ! and inverse covariance ". From Lemma 3, the estimate
of the graph does not depend on ( j, j ∈ {1, . . . , p} and µ, so we assume that ( j = 1 and µ= 0. Our
key technical result is an analysis of the covariance of the Winsorized estimator defined in (6), (7),
and (8). In particular, we show that under appropriate conditions,

max
j,k

∣∣∣Sn( f̃ ) jk−Sn( f ) jk
∣∣∣= oP(1)

where Sn( f̃ ) jk denotes the ( j,k) entry of the matrix. This result allows us to leverage the recent
analysis of Rothman et al. (2008) and Ravikumar et al. (2009b) in the Gaussian case to obtain
consistency results for the nonparanormal. More precisely, our main theorem is the following.
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Theorem 4 Suppose that p = n/ and let f̃ be the Winsorized estimator defined in (7) with .n =
1

4n1/4
√
% logn

. Define

CM ≡
48√
%

(√
2M−1

)
(M+2). (10)

For some M ≥ 2(/+1).

Then for any 0≥CM

√
log p log2 n

n1/2
and sufficiently large n, we have

P

(
max
jk

∣∣∣Sn( f̃ ) jk−Sn( f ) jk
∣∣∣> 20

)

≤
1

2
√
% log(np)

+2exp

(

2log p−
n1/202

1232%2 log2 n

)

+2exp

(

2log p−
n1/2

8% logn

)

+o(1).

The proof of the above theorem is given in Section 7. The following corollary is immediate, and
specifies the scaling of the dimension in terms of sample size.

Corollary 5 Let M ≥max{15%,2/+1}. Then

P



max
jk

∣∣∣Sn( f̃ ) jk−Sn( f ) jk
∣∣∣> 2CM

√
log p log2 n

n1/2



= o(1).

Hence,

max
j,k

∣∣∣Sn( f̃ ) jk−Sn( f ) jk
∣∣∣= OP





√
log p log2 n

n1/2



 .

The following corollary yields estimation consistency in both the Frobenius norm and the !2-
operator norm. The proof follows the same arguments as the proof of Theorem 1 and Theorem 2
from Rothman et al. (2008), replacing their Lemma 1 with our Theorem 4.

For a matrix A = (ai j), the Frobenius norm ‖ · ‖F is defined as ‖A‖F ≡
√
#i, j a2i j. The !2-

operator norm ‖ · ‖2 is defined as the magnitude of the largest eigenvalue of the matrix, ‖A‖2 ≡
max‖x‖2=1 ‖Ax‖2. In the following, we write an . bn if there are positive constants c andC indepen-
dent of n such that c≤ an/bn ≤C.

Corollary 6 Suppose that the data are generated as X (i) ∼ NPN (µ0,!0, f0), and let "0 = !−10 . If
the regularization parameter $n is chosen as

$n . 2CM

√
log p log2 n

n1/2

where CM is defined in Theorem 4. Then the nonparanormal estimator "̂n of (9) satisfies

‖"̂n−"0‖F = OP





√
(s+ p)(log p log2 n)

n1/2
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and

‖"̂n−"0‖2 = OP





√
s(log p log2 n)

n1/2



 ,

where

s≡ Card({(i, j) ∈ {1, . . . , p}×{1, . . . , p}|"0(i, j) ! 0, i ! j})

is the number of nonzero off-diagonal elements of the true precision matrix.

To prove the model selection consistency result, we need further assumptions. We follow
Ravikumar (2009) and let the p2× p2 Fisher information matrix of !0 be 1 ≡ !0⊗!0 where ⊗
is the Kronecker matrix product, and define the support set S of "0 = !−10 as

S≡ {(i, j) ∈ {1, . . . , p}×{1, . . . , p}|"0(i, j) ! 0} .

We use Sc to denote the complement of S in the set {1, . . . , p}× {1, . . . , p}, and for any two
subsets T and T ′ of {1, . . . , p}× {1, . . . , p}, we use 1TT ′ to denote the sub-matrix with rows and
columns of 1 indexed by T and T ′ respectively.

Assumption 1 There exists some * ∈ (0,1], such that
∥∥1ScS(1SS)−1

∥∥
2 ≤ 1−*.

As in Ravikumar et al. (2009b), we define two quantities K!0 ≡ ‖!0‖2 and K1 ≡ ‖(1SS)−1‖2.
Further, we define the maximum row degree as

d ≡ max
i=1,...,p

Card({ j ∈ 1, . . . , p |"0(i, j) ! 0}) .

Assumption 2 The quantities K!0 and K1 are bounded, and there are positive constants C such that

min
( j,k)∈S

|"0( j,k)|≥C

√
log3 n
n1/2

for large enough n.

The proof of the following corollary uses our Theorem 4 in place of Equation (12) in the analysis
of Ravikumar et al. (2009b).

Corollary 7 Suppose the regularization parameter is chosen as

$n . 2CM

√
log p log2 n

n1/2

where C(M,n, p) is defined in Theorem 4. Then the nonparanormal estimator "̂n satisfies

P

(
G
(
"̂n,"0

))
≥ 1−o(1)

where G("̂n,"0) is the event
{
sign

(
"̂n( j,k)

)
= sign("0( j,k)) , ∀ j,k ∈ S

}
.
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Our persistency (risk consistency) result parallels the persistency result for additive models
given in Ravikumar et al. (2009a), and allows model dimension that grows exponentially with sam-
ple size. The definition in this theorem uses the fact (from Lemma 11) that supx'−1

(
F̃j(x)

)
≤

√
2logn when .n = 1/(4n1/4

√
% logn).

In the next theorem, we do not assume the true model is nonparanormal and define the popula-
tion and sample risks as

R( f ,") =
1
2
{
tr
[
"E( f (X) f (X)T

]
− log |"|− p log(2%)

}

R̂( f ,") =
1
2
{tr ["Sn( f )]− log |"|− p log(2%)} .

Theorem 8 Suppose that p≤ en/ for some /< 1, and define the classes

Mn =
{
f : R→ R : f is monotone with ‖ f‖2 ≤C

√
logn

}

Cn =
{
" : ‖"−1‖1 ≤ Ln

}
.

Let "̂n be given by
"̂n = argmin

"∈Cn

{
tr
(
"Sn( f̃ )

)
− log |"|

}
.

Then

R( f̃n,"̂n)− inf
( f ,")∈M p

n ⊕Cn
R( f ,") = OP

(

Ln

√
logn
n1−/

)

.

Hence the Winsorized estimator of ( f ,") with .n = 1/(4n1/4
√
% logn) is persistent over Cn when

Ln = o
(
n(1−/)/2/

√
logn

)
.

The proofs of Theorems 4 and 8 are given in Section 7.

6. Experimental Results

In this section, we report experimental results on synthetic and real data sets. We mainly compare
the !1-regularized nonparanormal and Gaussian (paranormal) models, computed using the graphical
lasso algorithm (glasso) of Friedman et al. (2007). The primary conclusions are: (i) When the data
are multivariate Gaussian, the performance of the two methods is comparable; (ii) when the model
is correct, the nonparanormal performs much better than the graphical lasso in many cases; (iii) for
a particular gene microarray data set, our method behaves differently from the graphical lasso, and
may support different biological conclusions.

Note that we can reuse the glasso implementation to fit a sparse nonparanormal. In particular,
after computing the Winsorized sample covariance Sn( f̃ ), we pass this matrix to the glasso routine
to carry out the optimization

"̂n = argmin
"

{
tr
(
"Sn( f̃ )

)
− log |"|+$n‖"‖1

}
.
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6.1 Neighborhood Graphs

We begin by describing a procedure to generate graphs as in (Meinshausen and Bühlmann, 2006),
with respect to which several distributions can then be defined. We generate a p-dimensional sparse
graph G ≡ (V,E) as follows: Let V = {1, . . . , p} correspond to variables X = (X1, . . . ,Xp). We
associate each index j with a point (Y (1)

j ,Y (2)
j ) ∈ [0,1]2 where

Y (k)
1 , . . . ,Y (k)

n ∼ Uniform[0,1]

for k = 1,2. Each pair of nodes (i, j) is included in the edge set E with probability

P

(
(i, j) ∈ E

)
=

1√
2%
exp

(
−
‖yi− y j‖2n

2s

)

where yi ≡ (y(1)i ,y(2)i ) is the observation of (Y (1)
i ,Y (2)

i ) and ‖ ·‖n represents the Euclidean distance.
Here, s= 0.125 is a parameter that controls the sparsity level of the generated graph. We restrict the
maximum degree of the graph to be four and build the inverse covariance matrix "0 according to

"0(i, j) =






1 if i= j
0.245 if (i, j) ∈ E
0 otherwise,

where the value 0.245 guarantees positive definiteness of the inverse covariance matrix.
Given "0, n data points are sampled from

X (1), . . . ,X (n) ∼ NPN(µ0,!0, f0)

where µ0 = (1.5, . . . ,1.5), !0 ="−1
0 . For simplicity, the transformation functions for all dimensions

are the same, f1 = . . .= fp = f . To sample data from the nonparanormal distribution, we also require
g≡ f−1; two different transformations g are employed.

Definition 9 (Gaussian CDF Transformation) Let g0 be a one-dimensional Gaussian cumulative
distribution function with mean µg0 and the standard deviation (g0 , that is,

g0(t) ≡'

(
t−µg0
(g0

)
.

We define the transformation function g j = f−1j for the j-th dimension as

g j(z j) ≡ ( j





g0(z j)−
Z

g0(t)-
(
t−µj
( j

)
dt

√
Z

(
g0(y)−

Z

g0(t)-
(
t−µj
( j

)
dt
)2

-
(
y−µj
( j

)
dy




+µj

where ( j = !0( j, j).
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Figure 3: The power and cdf transformations. The densities are estimated using a kernel density
estimator with bandwidths selected by cross-validation.

Definition 10 (Symmetric Power Transformation) Let g0 be the symmetric and odd transformation
given by

g0(t) = sign(t)|t|*

where *> 0 is a parameter. We define the power transformation for the j-th dimension as

g j(z j) ≡ ( j




g0(z j−µj)√

Z

g20(t−µj)-
(
t−µj
( j

)
dt



+µj.

These transformation are constructed to preserve the marginal mean and standard deviation. In
the following experiments, we refer to them as the cdf transformation and the power transforma-
tion, respectively. For the cdf transformation, we set µg0 = 0.05 and (g0 = 0.4. For the power
transformation, we set *= 3.

To visualize these two transformations, we sample 5000 data points from a one-dimensional nor-
mal distribution N(0.5,1.0) and then apply the above two transformations; the results are shown in
Figure 3. It can be seen how the cdf and power transformations map a univariate normal distribution
into a highly skewed and a bi-modal distribution, respectively.
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Figure 4: Regularization paths for the glasso and nonparanormal with n = 500 (top) and n = 200

(bottom). The paths for the relevant variables (nonzero inverse covariance entries) are
plotted as solid (black) lines; the paths for the irrelevant variables are plotted as dashed
(red) lines. For non-Gaussian distributions, the nonparanormal better separates the rele-
vant and irrelevant dimensions.

To generate synthetic data, we set p = 40, resulting in
(40
2
)
+ 40 = 820 parameters to be es-

timated, and vary the sample sizes from n = 200 to n = 1000. Three conditions are considered,
corresponding to using the cdf transform, the power transform, or no transformation. In each case,
both the glasso and the nonparanormal are applied to estimate the graph.
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6.1.1 COMPARISON OF REGULARIZATION PATHS

We choose a set of regularization parameters ); for each $ ∈ ), we obtain an estimate "̂n which
is a 40× 40 matrix. The upper triangular matrix has 780 parameters; we vectorize it to get a
780-dimensional parameter vector. A regularization path is the trace of these parameters over all
the regularization parameters within ). The regularization paths for both methods are plotted in
Figure 4. For the cdf transformation and the power transformation, the nonparanormal separates the
relevant and the irrelevant dimensions very well. For the glasso, relevant variables are mixed with
irrelevant variables. If no transformation is applied, the paths for both methods are almost the same.

6.1.2 ESTIMATED TRANSFORMATIONS

For sample size n= 1000, we plot the estimated transformations for three of the variables in Figure
5. It is clear that Winsorization plays a significant role for the power transformation. This is intuitive
due to the high skewness of the nonparanormal distribution in this case.
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Figure 5: Estimated transformations for the first three variables. Winsorization plays a significant
role for the power transformation due to its high skewness.
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Figure 6: Boxplots of the oracle scores for n= 1000,500,200 (top, center, bottom).

6.1.3 QUANTITATIVE COMPARISON

To evaluate the performance for structure estimation quantitatively, we use false positive and false
negative rates. LetG= (V,E) be a p-dimensional graph (which has at most

(p
2
)
edges) in which there

are |E| = r edges, and let Ĝ$ = (V, Ê$) be an estimated graph using the regularization parameter $.
The number of false positives at $ is

FP($) ≡ number of edges in Ê$ not in E

The number of false negatives at $ is defined as

FN($) ≡ number of edges in E not in Ê$.

The oracle regularization level $∗ is then

$∗ = argmin
$∈)

{FP($)+FN($)} .

The oracle score is FP($∗) + FN($∗). Figure 6 shows boxplots of the oracle scores for the two
methods, calculated using 100 simulations.
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To illustrate the overall performance of these two methods over the full paths, ROC curves are
shown in Figure 7, using

(

1−
FN($)
r

,1−
FP($)(p
2
)
− r

)

.

The curves clearly show how the performance of both methods improves with sample size, and that
the nonparanormal is superior to the Gaussian model in most cases.
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Figure 7: ROC curves for sample sizes n= 1000,500,200 (top, middle, bottom).

Let FPE ≡ FP($∗) and FNE ≡ FN($∗), Tables 1, 2, and 3 provide numerical comparisons of
both methods on data sets with different transformations, where we repeat the experiments 100
times and report the average FPE and FNE values with the corresponding standard deviations. It’s
clear from the tables that the nonparanormal achieves significantly smaller errors than the glasso if
the true distribution of the data is not multivariate Gaussian and achieves performance comparable
to the glasso when the true distribution is exactly multivariate Gaussian.

Figure 8 shows typical runs for the cdf and power transformations. It’s clear that when the
glasso estimates the graph incorrectly, the mistakes include both false positives and negatives.
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Nonparanormal glasso

n FPE (sd(FPE)) FNE (sd(FNE)) FPE (sd(FPE)) FNE (sd(FNE))

1000 0.10 (0.3333) 0.05 (0.2190) 3.73 (2.3904) 7.24 (3.2910)

900 0.18 (0.5389) 0.16 (0.4197) 3.31 (2.4358) 8.94 (3.2808)

800 0.16 (0.5069) 0.23 (0.5659) 3.80 (2.9439) 9.91 (3.4789)

700 0.26 (0.6295) 0.43 (0.7420) 3.45 (2.5519) 12.26 (3.5862)

600 0.33 (0.6039) 0.41 (0.6371) 3.31 (2.8804) 14.25 (4.0735)

500 0.58 (0.9658) 1.10 (1.0396) 3.18 (2.9211) 17.54 (4.4368)

400 0.71 (1.0569) 1.52 (1.2016) 1.58 (2.3535) 21.18 (4.9855)

300 1.37 (1.4470) 2.97 (2.0123) 0.67 (1.6940) 23.14 (5.0232)

200 2.03 (1.9356) 7.13 (3.4514) 0.01 (0.1000) 24.03 (4.9816)

Table 1: Quantitative comparison on the data set using the cdf transformation. For both FPE and
FNE, the nonparanormal performs much better in general.

Nonparanormal glasso

n FPE (sd(FPE)) FNE (sd(FNE)) FPE (sd(FPE)) FNE (sd(FNE))

1000 0.27 (0.7086) 0.35 (0.6571) 2.89 (1.9482) 4.97 (2.9213)

900 0.38 (0.6783) 0.41 (0.6210) 2.98 (2.3697) 5.99 (3.0467)

800 0.25 (0.5751) 0.73 (0.8270) 4.10 (2.7834) 6.39 (3.3571)

700 0.69 (0.9067) 0.90 (1.0200) 4.42 (2.8891) 8.80 (3.9848)

600 0.92 (1.2282) 1.59 (1.5314) 4.64 (3.3830) 10.58 (4.2168)

500 1.17 (1.3413) 2.56 (2.3325) 4.00 (2.9644) 13.09 (4.4903)

400 1.88 (1.6470) 4.97 (2.7687) 3.14 (3.4699) 17.87 (4.7750)

300 2.97 (2.4181) 7.85 (3.5572) 1.36 (2.3805) 21.24 (4.7505)

200 2.82 (2.6184) 14.53 (4.3378) 0.37 (0.9914) 24.01 (5.0940)

Table 2: Quantitative comparison on the data set using the power transformation. For both FPE and
FNE, the nonparanormal performs much better in general.

6.1.4 COMPARISON IN THE GAUSSIAN CASE

The previous experiments indicate that the nonparanormal works almost as well as the glasso in
the Gaussian case. This initially appears surprising, since a parametric method is expected to be
more efficient than a nonparametric method if the parametric assumption is correct. To manifest
this efficiency loss, we conducted some experiments with very small n and relatively large p. For
multivariate Gaussian models, Figure 9 shows results with (n, p,s) = (50,40,1/8),(50,100,1/15)
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Nonparanormal glasso

n FPE (sd(FPE)) FNE (sd(FNE)) FPE (sd(FPE)) FNE (sd(FNE))

1000 0.10 (0.3333) 0.05 (0.2190) 0.09 (0.3208) 0.06 (0.2386)

900 0.24 (0.7537) 0.14 (0.4025) 0.22 (0.6447) 0.15 (0.4113)

800 0.17 (0.4277) 0.16 (0.3949) 0.16 (0.4431) 0.19 (0.4191)

700 0.25 (0.6871) 0.33 (0.8534) 0.29 (0.8201) 0.27 (0.7501)

600 0.37 (0.7740) 0.36 (0.7456) 0.36 (0.7722) 0.37 (0.6459)

500 0.28 (0.5874) 0.46 (0.7442) 0.25 (0.5573) 0.45 (0.6571)

400 0.55 (0.8453) 1.37 (1.2605) 0.47 (0.7713) 1.35 (1.2502)

300 1.24 (1.3715) 3.07 (1.7306) 0.98 (1.2058) 3.04 (1.8905)

200 1.62 (1.7219) 5.89 (2.7373) 1.55 (1.6779) 5.62 (2.6620)

Table 3: Quantitative comparison on the data set without any transformation. The two methods
behave similarly, the glasso is slightly better.

and (30,100,1/15). From the mean ROC curves, we see that nonparanormal does indeed behave
worse than the glasso, suggesting some efficiency loss. However, from the corresponding boxplots,
the efficiency reduction is relatively insignificant.

6.1.5 THE CASE WHEN p3 n

Figure 10 shows results from a simulation of the nonparanormal using cdf transformations with n=
200, p = 500 and sparsity level s = 1/40. The boxplot shows that the nonparanormal outperforms
the glasso. A typical run of the regularization paths confirms this conclusion, showing that the
nonparanormal path separates the relevant and irrelevant dimensions very well. In contrast, with the
glasso the relevant variables are “buried” among the irrelevant variables.

6.2 Gene Microarray Data

In this study, we consider a data set based on Affymetrix GeneChip microarrays for the plant Ara-
bidopsis thaliana, (Wille et al., 2004). The sample size is n = 118. The expression levels for each
chip are pre-processed by log-transformation and standardization. A subset of 40 genes from the
isoprenoid pathway are chosen, and we study the associations among them using both the para-
normal and nonparanormal models. Even though these data are generally treated as multivariate
Gaussian in the previous analysis (Wille et al., 2004), our study shows that the results of the non-
paranormal and the glasso are very different over a wide range of regularization parameters. This
suggests the nonparanormal could support different scientific conclusions.

6.2.1 COMPARISON OF THE REGULARIZATION PATHS

We first compare the regularization paths of the two methods, in Figure 11. To generate the paths,
we select 50 regularization parameters on an evenly spaced grid in the interval [0.16,1.2]. Although
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Figure 8: Typical runs for the two methods for n= 1000 using the cdf and power transformations.
The dashed (black) lines in the symmetric difference plots indicate edges found by the
glasso but not the nonparanormal, and vice-versa for the solid (red) lines.

the paths for the two methods look similar, there are some subtle differences. In particular, variables
become nonzero in a different order, especially when the regularization parameter is in the range
$∈ [0.2,0.3]. As shown below, these subtle differences in the paths lead to different model selection
behaviors.

6.2.2 COMPARISON OF THE ESTIMATED GRAPHS

Figure 12 compares the estimated graphs for the two methods at several values of the regularization
parameter $ in the range [0.16,0.37]. For each $, we show the estimated graph from the nonpara-
normal in the first column. In the second column we show the graph obtained by scanning the full
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Figure 9: For Gaussian models, comparison of boxplots of the oracle scores and ROC curves for
small n and relatively large p. The ROC curves suggest some efficiency loss of the non-
paranormal; however, the corresponding boxplots indicate this loss is insignificant.
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Figure 10: For the cdf transformation with n= 200, p= 500,s= 1/40, comparison of the boxplots
and a typical run of the regularization paths. The nonparanormal paths separate the
relevant from the irrelevant dimensions well. For the glasso, the relevant variables are
“buried” in irrelevant variables.

regularization path of the glasso fit and finding the graph having the smallest symmetric difference
with the nonparanormal graph. The symmetric difference graph is shown in in the third column. The
closest glasso fit is different, with edges selected by the glasso not selected by the nonparanormal,
and vice-versa. Several estimated transformations are plotted in Figure 13, which are are nonlinear.
Interestingly, several of the differences between the fitted graphs are related to these variables.
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Figure 11: The regularization paths of both methods on the microarray data set. Although the paths

for the two methods look similar, there are some subtle differences.

7. Proofs

We assume, without loss of generality from Lemma 3, that µj = 0 and ( j = 1 for all j = 1, . . . , p.
Thus, define f̃ j(x) ≡'−1(F̃j(x)) and f j(x) ≡'−1(Fj(x)), and let g j ≡ f−1j .

7.1 Proof of Theorem 4

We start with some useful lemmas; the first is from Abramovich et al. (2006).

Lemma 11 (Gaussian Distribution function vs. Quantile function) Let ' and - denote the distribu-
tion and density functions of a standard Gaussian random variable. Then

-(t)
2t

≤ 1−'(t) ≤
-(t)
t

if t ≥ 1

and

('−1)′(3) =
1

-('−1(3))
.

Also, for 3≥ 0.99, we have

'−1(3) =

√

2log
(

1
1−3

)
− r(3) (11)

where r(3) ∈ [0,1.5].

Lemma 12 (Distribution function of the transformed random variable) For any * ∈ (−2,2)

'−1
(
Fj
(
g j(*

√
logn)

))
= *

√
logn.
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Figure 12: The nonparanormal estimated graph for three values of $ = 0.2448,0.2661,0.30857
(left column), the closest glasso estimated graph from the full path (middle) and the
symmetric difference graph (right).
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Figure 13: Estimated transformations for the microarray data set, indicating non-Gaussian
marginals. The corresponding genes are among the nodes appearing in the symmetric
difference graphs above.

Proof The statement follows from

Fj(t) = P(Xj ≤ t) = P(g j(Zj) ≤ t) = P(Zj ≤ g−1j (t)) ='
(
g−1j (t)

)
. (12)

which holds for any t.
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Lemma 13 (Gaussian maximal inequality) LetW1, . . . ,Wn be identically distributed standard Gaus-
sian random variables (do not have to be independent). Then for any *> 0

P

(
max
1≤i≤n

Wi >
√
* logn

)
≤

1
n*/2−1√2%* logn

.

Proof Using Mill’s inequality, we have

P

(
max
1≤i≤n

Wi >
√
* logn

)
≤

n

#
i=1
P

(
Wi >

√
* logn

)
≤ n

-(
√
* logn)√
* logn

=
1

n*/2−1√2%* logn
,

from which the result follows.

Lemma 14 For any *> 0 that satisfies 1−.n−'
(√

* logn
)

> 0 for all n, we have

P

[
F̂j
(
g j
(√

* logn
))

> 1−.n
]
≤ exp

{
−2n

(
1−.n−'

(√
* logn

))2}
. (13)

and

P

[
F̂j
(
g j
(
−
√
* logn

))
< .n

]
≤ exp

{
−2n

(
1−.n−'

(√
* logn

))2}
. (14)

Proof Using Hoeffding’s inequality,

P

[
F̂j
(
g j
(√

* logn
))

> 1−.n
]

= P

[
F̂j
(
g j
(√

* logn
))

−Fj
(
g j
(√

* logn
))

> 1−.n−Fj
(
g j
(√

* logn
))]

≤ exp
{
−2n

(
1−.n−Fj

(
g j
(√

* logn
)))2}

.

Equation (13) then follows from equation (12). The proof of equation (14) uses the same argument.

Now let M > 2 and set 4=
1
2
. We split the interval
[
g j(−

√
M logn),g j(

√
M logn)

]

into two parts, the middle

Mn ≡
(
g j
(
−
√
4 logn

)
,g j

(√
4 logn

))

and ends

En ≡
[
g j
(
−
√
M logn

)
,g j

(
−
√
4 logn

)]
∪
[
g j
(√

4 logn
)

,g j
(√

M logn
)]

.

The behaviors of the function estimates in these two regions are different, so we first establish
bounds on the probability that a sample can fall in the end region En.

2318



THE NONPARANORMAL

Lemma 15 Let A≡
√
2
%
(
√
M−

√
4). Then

P(X1 j ∈ En) ≤ A
√
logn
n4

, ∀ j ∈ {1, . . . , p}.

Proof Using Equation (12) and the mean value theorem, we have

P(X1 j ∈ En)

= P

(
X1 j ∈

[
g j(

√
4 logn),g j(

√
M logn)

])
+P

(
X1 j ∈

[
g j(−

√
M logn),g j(−

√
4 logn)

])

= Fj
(
g j(

√
M logn)

)
−Fj

(
g j(

√
4 logn)

)
+Fj

(
g j(−

√
4 logn)

)
−Fj

(
g j(−

√
M logn)

)

= 2
(
'(
√
M logn)−'(

√
4 logn)

)

≤ 2-
(√

4 logn
)(√

M logn−
√
4 logn

)
.

The result of the lemma follows directly.

We next bound the error of theWinsorized estimate of a component function over the end region.

Lemma 16 For all n, we have

sup
t∈En

∣∣∣'−1(F̃j(t))−'−1 (Fj(t))
∣∣∣<

√
2(M+2) logn, ∀ j ∈ {1, . . . , p}.

Proof From Lemma 12 and the definition of En, we have

sup
t∈En

∣∣'−1 (Fj(t))
∣∣ ∈

[
0,
√
M logn

]
.

Given the fact that .n =
1

4n1/4
√
% logn

, we have F̃j(t) ∈
(
1
n
,1−

1
n

)
. Therefore, from Equation

(11),

sup
t∈En

∣∣∣'−1
(
F̃j(t)

)∣∣∣ ∈
[
0,
√
2logn

)
.

The result follows from the triangle inequality and
√
M+

√
2≤

√
2(M+2).

Now for any 0> 0, we have

P

(
max
j,k

∣∣∣Sn( f̃ ) jk−Sn( f ) jk
∣∣∣> 20

)

= P

(

max
j,k

∣∣∣∣∣
1
n

n

#
i=1

{
f̃ j(Xi j) f̃k(Xik)− f j(Xi j) fk(Xik)−µn( f̃ j)µn( f̃k)+µn( f j)µn( fk)

}∣∣∣∣∣
> 20

)

≤ P

(

max
j,k

∣∣∣∣∣
1
n

n

#
i=1

(
f̃ j(Xi j) f̃k(Xik)− f j(Xi j) fk(Xik)

)∣∣∣∣∣
> 0

)

+ P

(
max
j,k

∣∣∣µn( f̃ j)µn( f̃k)−µn( f j)µn( fk)
∣∣∣> 0

)
.
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We only need to analyze the rate for the first term above, since the second one is of higher order
(Cai et al., 2008). Let

5i( j,k) ≡ f̃ j(Xi j) f̃k(Xik)− f j(Xi j) fk(Xik)

and

6t,s( j,k) ≡ f̃ j(t) f̃k(s)− f j(t) fk(s).

We define the event An as

An ≡
{
g j
(
−
√
M logn

)
≤ X1 j, . . . ,Xn j ≤ g j

(√
M logn

)
, j = 1, . . . , p

}
.

Then, by Lemma 13, when M ≥ 2(/+1), we have

P(Ac
n) ≤ P

(
max

i, j∈{1,...,n}×{1,...,p}
| f j(Xi j)| >

√
2log(np)

)
≤

1
2
√
% log(np)

.

Therefore

P

(

max
j,k

∣∣∣∣∣
1
n

n

#
i=1

5i( j,k)

∣∣∣∣∣
> 0

)

≤ P

(

max
j,k

∣∣∣∣∣
1
n

n

#
i=1

5i( j,k)

∣∣∣∣∣
> 0,An

)

+ P(Ac
n)

≤ P

(

max
j,k

∣∣∣∣∣
1
n

n

#
i=1

5i( j,k)

∣∣∣∣∣
> 0,An

)

+
1

2
√
% log(np)

.

Thus, we only need to carry out our analysis on the event An. On this event, we have the following
decomposition:

P

(

max
j,k

∣∣∣∣∣
1
n

n

#
i=1

5i( j,k)

∣∣∣∣∣
> 0, An

)

≤ P



max
j,k

1
n #
Xi j∈Mn,Xik∈Mn

|5i( j,k)| >
0
4



+P

(

max
j,k

1
n #
Xi j∈En,Xik∈En

|5i( j,k)| >
0
4

)

+ 2P



max
j,k

1
n #
Xi j∈Mn,Xik∈En

|5i( j,k)| >
0
4



 .

We now analyze each of these terms separately.

Lemma 17 On the event An, let 4= 1/2 and 0≥CM

√
log p log2 n

n1/2
, then

P

(

max
j,k

1
n #
Xi j∈En,Xik∈En

|5i( j,k)| >
0
4

)

= o(1).
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Proof We define

,1 ≡
n4/20

8A
√
logn

with the same parameter A as in Lemma 15. Such a ,1 guarantees that

n0
4,1

−nA
√
logn
n4

= nA
√
logn
n4

> 0.

By Lemma 15, we have

P

(
1
n

n

#
i=1
1{Xi j∈En,Xik∈En} >

0
4,1

)

≤ P

(
n

#
i=1
1{Xi j∈En} >

n0
4,1

)

= P

(
n

#
i=1

(
1{Xi j∈En}−P(X1 j ∈ En)

)
>

n0
4,1

−nP(X1 j ∈ En)

)

≤ P

(
n

#
i=1

(
1{Xi j∈En}−P(X1 j ∈ En)

)
>

n0
4,1

−nA
√
logn
n4

)

.

Using the Bernstein’s inequality, for 4=
1
2
,

P

(
1
n

n

#
i=1
1{Xi j∈En,Xik∈En} >

0
4,1

)

≤ P

(
n

#
i=1

(
1{Xi j∈En}−P(X1 j ∈ En)

)
> nA

√
logn
n4

)

≤ exp

(

−
c1n2−4 logn

c2n1−4/2
√
logn+ c3n1−4/2

√
logn

)

= o(1),

where c1,c2,c3 > 0 are generic constants.
Therefore,

P

(

max
j,k

1
n #
Xi j∈En,Xik∈En

|5i( j,k)| >
0
4

)

= P

(

max
j,k

1
n #
Xi j∈En,Xik∈En

|5i( j,k)| >
0
4
,max

j,k
sup

t∈En,s∈En
|6t,s( j,k)| > ,1

)

+P

(

max
j,k

1
n #
Xi j∈En,Xik∈En

|5i( j,k)| >
0
4
,max

j,k
sup

t∈En,s∈En
|6t,s( j,k)|≤ ,1

)

≤ P

(

max
j,k

sup
t∈En,s∈En

|6t,s( j,k)| > ,1

)

+P

(
1
n

n

#
i=1
1{Xi j∈En,Xik∈En} >

0
4,1

)

= P

(

max
j,k

sup
t∈En,s∈En

|6t,s( j,k)| > ,1

)

+o(1).
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Now, we analyze the first term

P

(

max
j,k

sup
t∈En,s∈En

|6t,s( j,k)| > ,1

)

≤ p2P

(

sup
t∈En,s∈En

|6t,s( j,k)| > ,1

)

= p2P

(

sup
t∈En,s∈En

| f̃ j(t) f̃k(s)− f j(t) fk(s)| > ,1

)

.

By adding and subtracting terms f j(t) and fs(t), we have

P

(

sup
t∈En,s∈En

| f̃ j(t) f̃k(s)− f j(t) fk(s)| > ,1

)

≤ P

(

sup
t∈En,s∈En

|( f̃ j(t)− f j(t))( f̃k(s)− fk(s))| >
,1
3

)

+ P

(

sup
t∈En,s∈En

|( f̃ j(t)− f j(t))| · | fk(s)| >
,1
3

)

+ P

(

sup
t∈En,s∈En

|( f̃k(s)− fk(s))| · | f j(t)| >
,1
3

)

.

The first term can further be decomposed to be

P

(

sup
t∈En,s∈En

|( f̃ j(t)− f j(t))( f̃k(s)− fk(s))| >
,1
3

)

≤ P

(

sup
t∈En

|( f̃ j(t)− f j(t))| >
√
,1
3

)

+P

(

sup
s∈En

|( f̃k(s)− fk(s))| >
√
,1
3

)

.

Also, from the definition of En, we have

sup
t∈En

| f j(t)| = sup
t∈En

∣∣∣g−1j (t)
∣∣∣≤

√
M logn.

Since 0≥CM
√

log p log2 n
n1/2 , we have

,1
3

=
n4/20

24A
√
logn

≥
CM

√
log p log2 n

24A
√
logn

= 2(M+2) logn.

This implies that
√
,1
3

≥
√
2(M+2) logn and

,1
3
√
M logn

≥
√
2(M+2) logn.

Then, from Lemma 16, we get

P

(

sup
t∈En

|( f̃ j(t)− f j(t))| >
√
,1
3

)

= 0
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and

P

(

sup
t∈En,s∈En

|( f̃ j(t)− f j(t))| · | fk(s)| >
,1
3

)

= 0.

The claim of the lemma then follows directly.

Remark 18 From the above analysis, we see that the data in the tails doesn’t affect the rate. Using
exactly the same argument, we can also show that

P



max
j,k

1
n #
Xi j∈Mn,Xik∈En

|5i( j,k)| >
0
4



= o(1).

Lemma 19 On the event An, let 4= 1/2 and 0≥CM

√
log p log2 n

n1/2
. We have

P



max
j,k

1
n #
Xi j∈Mn,Xik∈Mn

|5i( j,k)| >
0
4



≤ 2exp

(

2log p−
n1/202

1232%2 log2 n

)

+2exp

(

2log p−
n1/2

8% logn

)

.

Proof We have

P



max
j,k

1
n #
Xi j∈Mn,Xik∈Mn

|5i( j,k)| >
0
4



≤ p2P

(

sup
t∈Mn,s∈Mn

| f̃ j(t) f̃k(s)− f j(t) fk(s)| >
0
4

)

≤ p2P

(

sup
t∈Mn,s∈Mn

|( f̃ j(t)− f j(t))( f̃k(s)− fk(s))| >
0
12

)

+ 2p2P

(

sup
t∈Mn,s∈Mn

|( f̃ j(t)− f j(t))| · | fk(s)| >
0
12

)

.

Further, since

sup
t∈Mn

| f j(t)| = sup
t∈Mn

∣∣∣g−1j (t)
∣∣∣=

√
4 logn

and sup
t∈Mn,s∈Mn

|( f̃ j(t)− f j(t))( f̃k(s)− fk(s))| is of higher order than supt∈Mn,s∈Mn |( f̃ j(t)− f j(t))| ·

| fk(s)|, we only need to analyze the term P

(

supt∈Mn |( f̃ j(t)− f j(t))| >
0

12
√
4 logn

)

.

Since .n =
1

4n4/2
√
2%4 logn

, using Mill’s inequality we have

2.n =
-(
√
4 logn)

2
√
4 logn

≤ 1−'(
√
4 logn).
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This implies that

1−.n−'(
√
4 logn) ≥ .n > 0.

Using Lemma 14, we have

p2P
(
F̂j
(
g j
(√

4 logn
))

> 1−.n
)
≤ p2 exp

(
−2n.2n

)
= exp

(

2log p−
n1−4

(16%4 logn)

)

(15)

and

p2P
(
F̂j
(
g j
(
−
√
4 logn

))
< .n

)
≤ exp

(

2log p−
n1−4

(16%4 logn)

)

. (16)

Define an event Bn as

Bn ≡
{
.n ≤ F̂j

(
g j
(√

4 logn
))

≤ 1−.n, j = 1, . . . , p
}

.

From (15) and (16), it is easy to see that

P(Bc
n) ≤ 2exp

(

2log p−
n1/2

8% logn

)

.

From the definition of F̃j, we have

p2P

(

sup
t∈Mn

| f̃ j(t)− f j(t)| >
0

12
√
4 logn

)

≤ p2P

(

sup
t∈Mn

∣∣∣'−1
(
F̃j(t)

)
−'−1 (Fj(t))

∣∣∣>
0

12
√
4 logn

,Bn

)

+P(Bc
n) .

≤ p2P

(

sup
t∈Mn

∣∣∣'−1
(
F̂j(t)

)
−'−1 (Fj(t))

∣∣∣>
0

12
√
4 logn

)

+2exp

(

2log p−
n1/2

8% logn

)

.

Define

T1n ≡max
{
Fj
(
g j
(√

4 logn
))

,1−.n
}
and T2n ≡ 1−min

{
Fj
(
g j
(
−
√
4 logn

))
,.n
}

.

From Equation (12) and the fact that 1−.n ≥'
(√

4 logn
)
, we have that

T1n = T2n = 1−.n.

Thus, by the mean value theorem,

P

(

sup
t∈Mn

∣∣∣'−1
(
F̂j(t)

)
−'−1 (Fj(t))

∣∣∣>
0

12
√
4 logn

)

≤ P

(

('−1)′ (max{T1n,T2n}) sup
t∈Mn

∣∣∣F̂j(t)−Fj(t)
∣∣∣>

0

12
√
4 logn

)

= P

(

('−1)′ (1−.n) sup
t∈Mn

∣∣∣F̂j(t)−Fj(t)
∣∣∣>

0

12
√
4 logn

)

.
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Finally, using the Dvoretzky-Kiefer-Wolfowitz inequality,

P

(

sup
t∈Mn

∣∣∣'−1
(
F̂j(t)

)
−'−1 (Fj(t))

∣∣∣>
0

12
√
4 logn

)

≤ P

(

sup
t∈Mn

∣∣∣F̂j(t)−Fj(t)
∣∣∣>

0

('−1)′ (1−.n)12
√
4 logn

)

≤ 2exp

(

−2
n02

1444 logn [('−1)′ (1−.n)]
2

)

.

Furthermore, by Lemma 11,

('−1)′ (1−.n) =
1

-('−1(1−.n))
≤

1

-

(√
2log

1
.n

) =
√
2%
(
1
.n

)
= 8%n4/2

√
4 logn.

This implies that

p2P

(

sup
t∈Mn

∣∣∣'−1
(
F̂j(t)

)
−'−1 (Fj(t))

∣∣∣>
0

12
√
4 logn

)

≤ 2exp

(

2log p−
n1/202

1232%2 log2 n

)

.

In summary, we have

P



max
j,k

1
n #
Xi j∈Mn,Xik∈En

|5i( j,k)| >
0
4



≤ 2exp

(

2log p−
n1/202

1232%2 log2 n

)

+2exp

(

2log p−
n1/2

8% logn

)

This finish the proof.

The conclusion of Theorem 4 follows from Lemma 17 and Lemma 19.

7.2 Proof of Theorem 8

Proof First note that the population and sample risks are

R( f ,") =
1
2
{
tr
[
"E( f (X) f (X)T

]
− log |"|− p log(2%)

}

R̂( f ,") =
1
2
{tr ["Sn( f )]− log |"|− p log(2%)} .

Therefore, for all ( f ,") ∈M p
n ⊕Cn, we have

|R̂( f ,")−R( f ,")| =
1
2
∣∣tr
[
"
(
E[ f f T ]−Sn( f )

)]∣∣

≤
1
2
‖"‖1maxjk

sup
f j, fk∈Mn

|E( f j(Xj) fk(Xk)−Sn( f ) jk|

≤
Ln
2
max
jk

sup
f j, fk∈Mn

|E( f j(Xj) fk(Xk)−Sn( f ) jk|.
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Now, if F is a class of functions, we have

E

(

sup
g∈F

|µ̂(g)−µ(g)|

)

≤
CJ[ ](‖F‖2 ,F )

√
n

(17)

for someC> 0, where F(x) = supg∈cF |g(x)|, µ(g) = E(g(X)) and µ̂(g) = n−1#n
i=1 g(Xi) (see Corol-

lary 19.35 of van der Vaart 1998). Here the bracketing integral is defined to be

J[ ](.,F ) =
Z .

0

√
logN[ ](u,F )du

where logN[ ](0,F ) is the bracketing entropy. For the class of one dimensional, bounded and mono-
tone functions, the bracketing entropy satisfies

logN[ ](0,M ) ≤ K
(
1
0

)

for some K > 0 (van der Vaart and Wellner, 1996).
Now, let Pn,p be the class of all functions of the form m(x) = f j(x j) fk(xk) for j,k ∈ {1, . . . , p},

where f j ∈Mn for each j. Then the bracketing entropy satisfies

logN[ ](C
√
logn,Pn,p) ≤ 2log p+K

(
1
0

)

and the bracketing integral satisfies J[ ](C
√
logn,Pn,p) = O(

√
logn log p). It follows from (17) and

Markov’s inequality that

max
jk

sup
f j, fk∈Mn

|Sn( f ) jk−E( f j(Xj) fk(Xk)| = OP

(√
logn log p

n

)

= OP

(√
logn
n1−/

)

.

Therefore,

sup
( f ,")∈M p

n ⊕Cn
|R̂( f ,")−R( f ,")| = OP

(
Ln

√
logn

n(1−/)/2

)
.

As a consequence, we have

R( f ∗,"∗) ≤ R( f̃n,"̂n)

≤ R̂( f̃n,"̂n)+OP

(
Ln

√
logn

n(1−/)/2

)

≤ R̂( f ∗,"∗)+OP

(
Ln

√
logn

n(1−/)/2

)

≤ R( f ∗,"∗)+OP

(
Ln

√
logn

n(1−/)/2

)

and the conclusion follows.
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8. Concluding Remarks

In this paper we have introduced the nonparanormal, a type of Gaussian copula with nonparametric
marginals that is suitable for estimating high dimensional undirected graphs. The nonparanormal
can be viewed as an extension of sparse additive models to the setting of graphical models. We
proposed an estimator for the component functions that is based on thresholding the tails of the
empirical distribution function at appropriate levels. A theoretical analysis was given to bound the
difference between the sample covariance with respect to these estimated functions and the true
sample covariance. This analysis was leveraged with the recent work of Ravikumar et al. (2009b)
and Rothman et al. (2008) to obtain consistency results for the nonparanormal. Computationally,
fitting a high dimensional nonparanormal is no more difficult than estimating a multivariate Gaus-
sian, and indeed one can exploit existing software for the graphical lasso. Our experimental results
indicate that the sparse nonparanormal can give very different results than a sparse Gaussian graph-
ical model. This suggests that it may be a useful tool for relaxing the normality assumption, which
is often made only for convenience.
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Abstract
In recursive linear models, the multivariate normal joint distribution of all variables exhibits a de-
pendence structure induced by a recursive (or acyclic) system of linear structural equations. These
linear models have a long tradition and appear in seemingly unrelated regressions, structural equa-
tion modelling, and approaches to causal inference. They are also related to Gaussian graphical
models via a classical representation known as a path diagram. Despite the models’ long history, a
number of problems remain open. In this paper, we address the problem of computing maximum
likelihood estimates in the subclass of ‘bow-free’ recursive linear models. The term ‘bow-free’
refers to the condition that the errors for variables i and j be uncorrelated if variable i occurs in the
structural equation for variable j. We introduce a new algorithm, termed Residual Iterative Condi-
tional Fitting (RICF), that can be implemented using only least squares computations. In contrast to
existing algorithms, RICF has clear convergence properties and yields exact maximum likelihood
estimates after the first iteration whenever the MLE is available in closed form.

Keywords: linear regression, maximum likelihood estimation, path diagram, structural equation
model, recursive semi-Markov model, residual iterative conditional fitting

1. Introduction

A system of linear structural equations determines a linear model for a set of variables by dictating
that, up to a random error term, each variable is equal to a linear combination of some of the re-
maining variables. Traditionally the errors are assumed to have a centered joint multivariate normal
distribution. Presenting a formalism for simultaneously representing causal and statistical hypothe-

c©2009 Mathias Drton, Michael Eichler and Thomas S. Richardson.
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ses (Pearl, 2000; Spirtes et al., 2000), these normal linear models, which are also called structural
equation models, are widely used in the social sciences (Bollen, 1989) and many other contexts.

In seminal work, Wright (1921, 1934) introduced path diagrams, which are useful graphical
representations of structural equations. A path diagram is a graph with one vertex for each variable
and directed and/or bi-directed edges. A directed edge i→ j indicates that variable i appears as
covariate in the equation for variable j. The directed edges are thus in correspondence with the
path coefficients, that is, the coefficients appearing in the linear structural equations. A bi-directed
edge i↔ j indicates correlation between the errors in the equations for variables i and j. Graphs
of this kind are also considered by Shpitser and Pearl (2006), who refer to them as recursive semi-
Markovian causal models.

1.1 A Motivating Example

We motivate the normal linear models analyzed here with the following example, which is adapted
from a more complex longitudinal study considered in Robins (2008).

Consider a two-phase sequential intervention study examining the effect of exercise and diet
on diabetes. In the first phase patients are randomly assigned to a number of hours of exercise
per week (Ex) drawn from a log-normal distribution. At the end of this phase blood pressure (BP)
levels are measured. In the second phase patients are randomly assigned to a strict calorie controlled
diet that produces a change in body-mass index (!BMI). The assigned change in BMI, though
still randomized, is drawn, by design, from a normal distribution with mean depending linearly on
X = log(Ex) and BP. The dependence here is due to practical and ethical considerations. Finally at
the end of the second phase, triglyceride levels (Y ) indicating diabetic status are measured.

A question of interest is whether or not there is an effect of X on the outcome Y that is not
mediated through the dependence of !BMI on X and BP. In other words, if there had been no
ethical or practical restrictions, and the assignment (!BMI) in the second phase was completely
randomized and thus independent of BP and X , would there still be any dependence between X and
Y? Note that due to underlying confounding factors such as life history and genetic background, we
would expect to observe dependence between BP and Y even if the null hypothesis of no effect of
X on Y was true and the second treatment (!BMI) was completely randomized.

Our model consists of two pieces. First, the design of the study dictates that

X = "0+ #X , (1)
!BMI= $0+ $1X+ $2 BP+ #!BMI, (2)

where #X ∼N (0,%2X) and #!BMI ∼N (0,%2!BMI) are independent. This assignment model is comple-
mented by a model describing how BP and Y respond to the prior treatments:

BP= &0+&1X+ #BP, (3)
Y = '0+'1X+'2!BMI+ #Y , (4)

where (#BP,#Y)t are centered bivariate normal and independent of #X and #!BMI. We denote the vari-
ances of #BP and #Y by %2BP and %2Y , respectively, and write %BP,Y for the possibly non-zero covariance
of #BP and #Y . Figure 1 shows the path diagram for this structural equation model.

Equations (1), (2) and (3) simply specify conditional expectations that can be estimated in re-
gressions. However, this is not the case in general with (4). Instead,

E [Y | X ,!BMI] = '̄0+ '̄1X+ '̄2!BMI
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X BP !BMI Y

Figure 1: Path diagram illustrating a two-phase trial with two treatments (X and !BMI) and two
responses (BP and Y ). The treatment X is randomly assigned, and !BMI is randomized
conditional on BP and X . The bi-directed edge indicates possible dependence due to
unmeasured factors (genetic or environmental).

with

'̄1 = '1−
$2%BP,Y(&1$2+ $1)
$22%

2
BP +%2!BMI

,

'̄2 = '2+
$2%BP,Y

$22%
2
BP +%2!BMI

,

and '̄0 = '0+('1− '̄1)E[X ]+('2− '̄2)E[!BMI]. We see that '1 and '2 would have an interpretation
as regression coefficients if: (i) the assignment of !BMI did not depend on BP (i.e., $2 = 0) and
thus both treatments were completely randomized, or (ii) there were no dependence between #Y and
#BP (i.e., %BP,Y = 0). Similarly, in E [Y | X ,BP,!BMI], the coefficient of !BMI is equal to '2 but the
coefficient for X is '1−&1%BP,Y/%2BP.

In this paper we consider likelihood-based methods for fitting a large class of structural equation
models that includes the one given by (1)-(4) and can be used for consistent estimation of parameters
such as '1. For alternative semi-parametric methods, see Robins (1999) and Gill and Robins (2001).

1.2 Challenges in Structural Equation Modelling

A number of mathematical and statistical problems arise in the normal linear models associated
with systems of structural equations:

1. Different path diagrams may induce the same statistical model, that is, family of multivariate
normal distributions. Such model equivalence occurs, for example, for the two path diagrams
1→ 2 and 1← 2, which differ substantively by the direction of the cause-effect relationship.
The two associated statistical models, however, are identical, both allowing for correlation
between the two variables.

2. In many important special cases the path coefficient associated with a directed edge i→ j has
a population interpretation as a regression coefficient in a regression of j on a set of variables
including i. However, as seen already in §1.1, this interpretation is not valid in general.

3. The parameters of the model may not be identifiable, so two different sets of parameter values
may lead to the same population distribution; for an early review of this problem see Fisher
(1966).
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4. The set of parameterized covariance matrices may contain ‘singularities’ at which it cannot
be approximated locally by a linear space. At ‘singular’ points, (2 and normal approximation
to the distribution of likelihood ratio tests and maximum likelihood estimators (MLE) may
not be valid; see, for instance, Drton (2009).

5. Iterative procedures are typically required for maximization of the likelihood function, which
for some models can be multimodal (Drton and Richardson, 2004). Such multimodality typ-
ically occurs in small samples or under model misspecification.

The problems listed may arise in models without unobserved variables and become only more
acute in latent variable models. They are challenging in full generality, but significant progress has
been made in special cases such as recursive linear models with uncorrelated errors, which are also
known as directed acyclic graph (DAG) models or ‘Bayesian’ networks (Lauritzen, 1996; Pearl,
1988). A normal DAG model is equivalent to a series of linear regressions, is always identified and
has standard asymptotics. Under simple sample size conditions, the MLE exists almost surely and is
a rational function of the data. Graphical modelling theory also solves problem 1 by characterizing
all DAGs that induce the same statistical model (Andersson et al., 1997). For more recent progress
on the general equivalence problem see Ali et al. (2009, 2005) and Zhang and Spirtes (2005).

1.3 Contribution of This Work

The requirement of uncorrelated errors may be overly restrictive in many settings. While arbitrary
correlation patterns over the errors may yield rather ill-behaved statistical models, there are sub-
classes of models with correlated errors in which some of the nice properties of DAG models are
preserved; compare McDonald (2002). In this paper we consider path diagrams in which there are
no directed cycles and no ‘double’ edges of the form i→↔ j (compare Def. 2 and 3). Since such
double edges have been called ‘bows’, we call this class bow-free acyclic path diagrams (BAPs).
An example of a BAP arose in our motivating example in §1.1; see Figure 1. While instrumental
variable models, which are much studied in economics, contain bows, most models in other social
sciences are based on BAPs. For instance, all path diagrams in Bollen (1989) are BAPs.

Bow-free acyclic path diagrams were also considered by Brito and Pearl (2002) who showed that
the associated normal linear models are almost everywhere identifiable; see §2.2 for the definition.
This result and other identification properties of BAP models are reviewed in Section 2. In Section
3 we give details on likelihood equations and Fisher-information of normal structural equation mod-
els. This sets the scene for our main contribution: the Residual Iterative Conditional Fitting (RICF)
algorithm for maximization of the likelihood function of BAP models, which is presented in Section
4. Standard software for structural equation modelling currently employs general-purpose optimiza-
tion routines for this task (Bollen, 1989, Appendix 4C). Many of these algorithms, however, neglect
constraints of positive definiteness on the covariance matrix and suffer from convergence prob-
lems. According to Steiger (2001), failure to converge is ‘not uncommon’ and presents significant
challenges to novice users of existing software. In contrast, our RICF algorithm produces positive
definite covariance matrix estimates during all its iterations and has good convergence properties,
as illustrated in the simulations in Section 5. Further discussion of RICF is provided in Section 6.
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2. Normal Linear Models and Path Diagrams

Let Y = (Yi | i ∈V ) ∈ RV be a random vector, indexed by the finite set V , that follows a multivariate
normal distribution N (0,)) with positive definite covariance matrix ). A zero mean vector is
assumed merely to avoid notational overhead. The models we consider subsequently are induced
by linear structural equations as follows.

2.1 Systems of Structural Equations and Path Diagrams

Let {pa(i) | i∈V} and {sp(i) | i∈V} be two families of index sets. For reasons explained below, we
refer to these index sets as sets of parents and spouses, respectively. We require that i (∈ pa(i)∪ sp(i)
for all i ∈ V ; moreover, let the second family satisfy the symmetry condition that j ∈ sp(i) if and
only if i ∈ sp( j). These two families determine a system of structural equations

Yi = * j∈pa(i)&i j Yj + #i, i ∈V, (5)

whose zero-mean errors #i and # j are uncorrelated if i (∈ sp( j), or equivalently, j (∈ sp(i). The
equations in (5) correspond to a path diagram, that is, a mixed graph G featuring both directed (→)
and bi-directed (↔) edges but no edges from a vertex i to itself (see Figures 1 and 2). The vertex
set of G is the index set V , and G contains the edge j → i if and only if j ∈ pa(i), and the edge
j↔ i if and only if j ∈ sp(i) (or equivalently, i ∈ sp( j)). Subsequently, we exploit the path diagram
representation of (5). If i→ j is an edge in G, then we call i a parent of j, and if i↔ j is in G then
i is referred to as a spouse of j. Thus, as remarked above, pa(i), sp(i) are, respectively, the sets of
parents and spouses of i.

Let G be a path diagram and define B(G) to be the collection of all V ×V matrices B = (&i j)
that satisfy

&i j = 0 whenever j→ i is not an edge in G, (6)

and are such that I−B is invertible. Let P(V ) be the cone of positive definite V ×V matrices and
O(G) ⊆ P(V ) the set of matrices += (,i j) ∈ P(V ) that satisfy

,i j = 0 whenever i (= j and j↔ i is not in G. (7)

(Here and in the sequel, a symbol such asV denotes both a finite set and its cardinality.) The system
(5) associated with the path diagram G can be written compactly as Y = BY + #. If we assume that
B∈B(G) and that the error covariance matrix Var(#) =+ is inO(G), then (5) has a unique solution
Y that is a multivariate normal random vector with covariance matrix ) = (I−B)−1+(I−B)−t .
Here, I is the identity matrix and the superscript ‘−t’ stands for transposition and inversion.

The above considerations lead to the following definition of a linear model associated with a
path diagram (or equivalently, a system of structural equations).

Definition 1 The normal linear model N(G) associated with a path diagram G is the family of mul-
tivariate normal distributions N (0,)) with covariance matrix in the set P(G) =
{

(I−B)−1+(I−B)−t | B ∈ B(G),+ ∈O(G)
}

. We call the map -G : B(G)×O(G) → P(G) given
by

-G(B,+) = (I−B)−1+(I−B)−t

the parameterization map of N(G).
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Figure 2: Path diagrams that are (a) cyclic, (b) acyclic but not bow-free, (c) acyclic and bow-free.
Only path diagram (c) yields a curved exponential family.

Example 1 The path diagram G in Figure 2(a) depicts the equation system

Y1 = #1, Y2 = &21Y1+&24Y4+ #2,

Y3 = &31Y1+&32Y2+ #3, Y4 = &43Y3+ #4,

where #1,#2,#3,#4 are pairwise uncorrelated, that is, the matrices + ∈ O(G) are diagonal. This
system exhibits a circular covariate-response structure as the path diagram contains the directed
cycle 2→ 3→ 4→ 2. This feedback loop is reflected in the fact that det(I−B) = 1−&24&43&32
for B ∈ B(G). Therefore, the path coefficients need to satisfy &24&43&32 (= 1 in order to lead to a
positive definite covariance matrix in P(G). This example is considered in more detail in Drton
(2009), where it is shown that the parameter space P(G) has singularities that lead to non-standard
behavior of likelihood ratio tests.

The models considered in the remainder of this paper do not have any feedback loops, that is,
they have the following structure.

Definition 2 A path diagram G and its associated normal linear model N(G) are recursive or
acyclic if G does not contain directed cycles, that is, there do not exist i, i1, . . . , ik ∈ V such that
G features the edges i→ i1 → i2 → · · ·→ ik → i.

We use the term acyclic rather than recursive, as some authors have used the term ‘recursive’
for path diagrams that are acyclic and contain no bi-directed edges. If G is acyclic, then the vertices
in V can be ordered such that a matrix B that satisfies (6) is lower-triangular. It follows that

det(I−B) = 1. (8)

In particular, I − B is invertible for any choice of the path coefficients &i j, j → i in G, and the
parameterization map -G is a polynomial map.

2.2 Bow-free Acyclic Path Diagrams (BAPs)

The normal linear model N(G) associated with a path diagram G is everywhere identifiable if the
parameterization map -G is one-to-one, that is, for all B0 ∈ B(G) and +0 ∈O(G) it holds that

-G(B,+) =-G(B0,+0) =⇒ B= B0 and +=+0. (9)

If there exists a Lebesgue null set NG ⊆ B(G)×O(G) such that (9) holds for all (B0,+0) (∈ NG, then
we say that N(G) is almost everywhere identifiable.
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Acyclic path diagrams may contain bows, that is, double edges i→↔ j. It is easy to see that normal
linear models associated with path diagrams with bows are never everywhere identifiable. However,
they may sometimes be almost everywhere identifiable as is the case for the next example. This
example illustrates that almost everywhere identifiability is not enough to ensure regular behavior
of statistical procedures.

Example 2 The path diagramG in Figure 2(b) features the bow 3→↔4. The associated normal linear
model N(G) is also known as an instrumental variable model. The 9-dimensional parameter space
P(G) is part of the hypersurface defined by the vanishing of the so-called tetrad %13%24−%14%23.
It follows that the model N(G) lacks regularity because the tetrad hypersurface has singularities at
points ) ∈ P(G) with %13 = %14 = %23 = %24 = 0. These singularities occur if and only if &31 =
&32 = 0, and correspond to points at which the identifiability property in (9) fails to hold. This lack
of smoothness expresses itself statistically, for example, when testing the hypothesis &31 = &32 = 0
in model N(G). Using the techniques in Drton (2009), the likelihood ratio statistic for this problem
can be shown to have non-standard behavior with a large-sample limiting distribution that is given
by the larger of the two eigenvalues of a 2× 2-Wishart matrix with 2 degrees of freedom and the
identity matrix as scale parameter.

Definition 3 A path diagram G and its associated normal linear model N(G) are bow-free if G
contains at most one edge between any pair of vertices. If G is bow-free and acyclic, we call it a
bow-free acyclic path diagram (BAP).

As stressed in the introduction, BAPs are widespread in applications. Examples are shown
in Figures 1, 2(c) and 6. Contrary to some path diagrams with bows, the normal linear models
associated with BAPs are always at least almost everywhere identifiable.

Theorem 4 (Brito and Pearl, 2002) If G is a BAP, then the normal linear model N(G) is almost
everywhere identifiable.

Many BAP models are in fact everywhere identifiable.

Theorem 5 (Richardson and Spirtes, 2002) Suppose G is an ancestral BAP, that is, G does not
contain an edge i↔ j such that there is a directed path j→ i1→ · · ·→ ik → i that leads from vertex
j to vertex i. Then the normal linear model N(G) is everywhere identifiable.

The next example shows that the condition in Theorem 5 is sufficient but not necessary for
identification. The characterization of the class of BAPs whose associated normal linear models are
everywhere identifiable remains an open problem.

Example 3 The BAPG in Figure 2(c) is not ancestral because it contains the edges 4↔ 2→ 3→ 4.
Nevertheless, the associated normal linear model N(G) is everywhere identifiable, which can be
shown by identifying the parameters in B and + row-by-row following the order 1 < 2 < 3 < 4.
It is noteworthy that the model N(G) in this example is not a Markov model, that is, a generic
multivariate normal distribution in N(G) exhibits no conditional independence relations. Instead,
the entries of covariance matrices )= (%i j) ∈ P(G) satisfy

(%11%22−%212)(%14%33−%13%34) = (%13%24−%14%23)(%12%13−%11%23). (10)
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1 2 3 4 5

Figure 3: Bow-free acyclic path diagram whose associated normal linear model is almost, but not
everywhere, identifiable. The model is not a curved exponential family.

The constraint in (10) has a nice interpretation. Let (Y1, . . . ,Y4) have (positive definite) covariance
matrix ) = (%i j), and define e2 = Y2−%21/%11Y1 to be the residual in the regression of Y2 on Y1.
Then (10) holds for ) if and only if Y1 and Y4 are conditionally independent given e2 and Y3.

The above-stated Theorem 4 was proved in Brito and Pearl (2002), and an inspection of their
proof reveals the following fact.

Lemma 6 If the normal linear model N(G) associated with a BAP G is everywhere identifiable,
then the (bijective) parameterization map -G has an inverse that is a rational map with no pole on
P(G).

By (8), the parameterization map -G for a BAP G is polynomial and thus smooth. If -−1
G

is rational and without pole, then the image of -G, that is, P(G) is a smooth manifold (see, e.g.,
Edwards, 1994, II.4). This has an important consequence.

Corollary 7 If the normal linear model N(G) associated with a BAP G is everywhere identifiable,
then N(G) is a curved exponential family.

The theory of curved exponential families is discussed by Kass and Vos (1997). It implies in par-
ticular that maximum likelihood estimators in curved exponential families are asymptotically nor-
mal, and that likelihood ratio statistics comparing two such families are asymptotically chi-square
regardless of where in the null hypothesis a true parameter is located. Unfortunately, however,
Lemma 6 and Corollary 7 do not hold for every BAP.

Example 4 The normal linear model associated with the BAP G in Figure 3 is not a curved expo-
nential family. In this model the identifiability property in (9) breaks down if and only if (B,+)
satisfy

&21,14,24−,2,4+,224 = 0, &32&43,2+,24 = 0.

It can be shown that the covariance matrices -G(B,+) associated with this set of parameters yield
points at which the 13-dimensional set P(G) has more than 13 linearly independent tangent direc-
tions. Hence, P(G) is singular at these covariance matrices.
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3. Likelihood Inference

Suppose a sample of size N is drawn from a multivariate normal distribution N (0,)) in the linear
model N(G) associated with a BAP G= (V,E). We group the observed random vectors as columns
in the V ×N matrix Y such that Yin represents the observation of variable i on subject n. Having
assumed a zero mean vector, we define the empirical covariance matrix as

S= (si j) =
1
N
YYt ∈ R

V×V .

Assuming N ≥ V , the matrix S is positive definite with probability one. (As before, V here also
denotes the cardinality of the set.) Models with unknown mean vector µ∈ RV can be treated by es-
timating µ by the empirical mean vector and adjusting the empirical covariance matrix accordingly;
N ≥V +1 then ensures almost sure positive definiteness of the empirical covariance matrix.

3.1 Likelihood Function and Likelihood Equations

Given observations Y with empirical covariance matrix S, the log-likelihood function ! : B(G)×
O(G) → R of the model N(G) takes the form

!(B,+) = −
N
2
logdet(+)−

N
2
tr
[

(I−B)t+−1(I−B)S
]

. (11)

Here we ignored an additive constant and used that det(I−B) = 1 if B ∈ B(G); compare (8). Let
& = (&i j | i ∈V, j ∈ pa(i)) and , = (,i j | i ≤ j, j ∈ sp(i) or i = j) be the vectors of unconstrained
elements in B and+. Let P and Q be the matrices with entries in {0,1} that satisfy vec(B) = P& and
vec(+) = Q,, respectively, where vec(A) refers to stacking of the columns of the matrix A. Taking
the first derivatives of !(B,+) with respect to & and , we obtain the likelihood equations.

Proposition 8 The likelihood equations of the normal linear model N(G) associated with a BAP G
can be written as

Pt vec
(

+−1(I−B)S
)

= Pt vec
(

+−1S
)

−Pt
(

S⊗+−1)P&= 0, (12)
Qt vec

(

+−1−+−1(I−B)S(I−B)t+−1) = 0, (13)

where ⊗ denotes the Kronecker product.

In general, the likelihood equations need to be solved iteratively. One possible approach pro-
ceeds by alternately solving (12) and (13) for & and ,, respectively. For fixed ,, (12) is a linear
equation in & and easily solved. For fixed &, (13) constitutes the likelihood equations of a mul-
tivariate normal covariance model for # = (I−B)Y , which is specified by requiring that +i j = 0
whenever the edge i↔ j is not in G. The solution of (13), with & fixed, requires, in general, another
iterative method. As an alternative to this nesting of two iterative methods, we propose in Section 4
a method that solves (12) and (13) in joint updates of & and ,.

Remark 9 When proving their identifiability result for BAP models, Brito and Pearl (2002) gave
an algorithm for recovering the parameters & and , from a population covariance matrix. Applied to
the empirical covariance matrix S, this algorithm produces consistent estimates &̃ and ,̃. However,
these are generally not the maximum likelihood estimators (MLE) and the error covariance matrix
corresponding to ,̃ may fail to be positive definite.

2337



DRTON, EICHLER AND RICHARDSON

3.2 Fisher-Information

Large-sample confidence intervals for (&,,) can be obtained by approximating the distribution of
theMLE (&̂, ,̂) by the normal distribution with mean vector (&,,) and covariance matrix 1

N I(&,,)−1.
Here, I(&,,) denotes the Fisher-information, which, as shown in Appendix A, is of the following
form.

Proposition 10 The (expected) Fisher-information of the normal linear model N(G) associated
with a BAP G is

I(&,,) =

(

Pt
(

)⊗+−1)P Pt
[

(I−B)−1⊗+−1]Q
Qt

[

(I−B)−t⊗+−1]P 1
2 Q

t(+−1⊗+−1)Q

)

.

The Fisher-information in Proposition 10 need not be block-diagonal, in which case the esti-
mation of the covariances , affects the asymptotic variance of the MLE &̂. However, this does not
happen for bi-directed chain graphs, which form one of the model classes discussed by Wermuth
and Cox (2004). A path diagram G is a bi-directed chain graph if its vertex set V can be partitioned
into disjoint subsets .1, . . . ,.T , known as chain components, such that all edges in each subgraph
G.t are bi-directed and edges between two subsets .s (= .t are directed, pointing from .s to .t , if
s < t. Since bi-directed chain graphs are ancestral graphs the associated normal linear models are
everywhere identifiable.

Proposition 11 For a BAP G, the following two statements are equivalent:

(i) For all underlying covariance matrices ) ∈ P(G), the MLEs of the parameter vectors & and
, of the normal linear model N(G) are asymptotically independent.

(ii) The path diagram G is a bi-directed chain graph.

A proof of Proposition 11 is given in Appendix A. This result is an instance of the asymptotic
independence of mean and natural parameters in mixed parameterizations of exponential families
(Barndorff-Nielsen, 1978).

4. Residual Iterative Conditional Fitting

We now present an algorithm for computing the MLE in the normal linear model N(G) associated
with a BAP. The algorithm extends the iterative conditional fitting (ICF) procedure of Chaudhuri
et al. (2007), which is for path diagrams with exclusively bi-directed edges.

Let Yi ∈ RN denote the i-th row of the observation matrix Y and Y−i = YV\{i} the (V \ {i})×N
submatrix of Y . The ICF algorithm proceeds by repeatedly iterating through all vertices i ∈ V and
carrying out three steps: (i) fix the marginal distribution of Y−i, (ii) fit the conditional distribution
of Yi given Y−i under the constraints implied by the model N(G), and (iii) obtain a new estimate of
) by combining the estimated conditional distribution (Yi | Y−i) with the fixed marginal distribution
of Y−i. The crucial point is then that for path diagrams containing only bi-directed edges, the
problem of fitting the conditional distribution for (Yi |Y−i) under the constraints of the model can be
rephrased as a least squares regression problem. Unfortunately, the consideration of the conditional
distribution of (Yi |Y−i) is complicated for path diagrams that contain also directed edges. However,
as we show below, the directed edges can be ‘removed’ by consideration of residuals, which here
refers to estimates of the error terms # = (I−B)Y . Since it is based on this idea, we give our new
extended algorithm the name Residual Iterative Conditional Fitting (RICF).
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4.1 The RICF Algorithm

The main building block of the new algorithm is the following decomposition of the log-likelihood
function. We adopt the shorthand notation XC for the C×N submatrix of a D×N matrix X , where
C ⊆ D.

Theorem 12 Let G be a BAP and i ∈V. Let ‖x‖2 = xtx and define

,ii.−i = ,ii−+i,−i+
−1
−i,−i+−i,i (14)

to be the conditional variance of #i given #−i; recall that +−1
−i,−i = (+−i,−i)−1. Then the log-

likelihood function !(B,+) of the model N(G) can be decomposed as

!(B,+) =−
N
2
log,ii.−i−

1
2,ii.−i

∥

∥Yi−Bi,pa(i)Ypa(i)−+i,sp(i)(+
−1
−i,−i #−i)sp(i)

∥

∥

2

−
N
2
logdet(+−i,−i)−

1
2
tr
(

+−1
−i,−i#−i#

t
−i

)

. (15)

Proof Forming #= (I−B)Y , we rewrite (11) as

!(B,+) = −
N
2
logdet(+)−

1
2
tr
(

+−1##t
)

=: !(+ | #). (16)

Using the inverse variance lemma (Whittaker, 1990, Prop. 5.7.3), we partition +−1 as
(

,ii +i,−i
+−i,i +−i,−i

)−1
=

(

,−1
ii.−i −,−1

ii.−i+i,−i+
−1
−i,−i

−+−1
−i,−i+−i,i,

−1
ii.−i +−1

−i,−i++−1
−i,−i+−i,i,

−1
ii.−i+i,−i+

−1
−i,−i

)

.

We obtain that the log-likelihood function in (16) equals

!(+ | #) =−
N
2
log,ii.−i−

1
2,ii.−i

∥

∥#i−+i,−i+
−1
−i,−i#−i

∥

∥

2

−
N
2
logdet(+−i,−i)−

1
2
tr
(

+−1
−i,−i#−i#

t
−i

)

.

By definition, #i = Yi−Bi,pa(i)Ypa(i). Moreover, under the restrictions (7),

+i,−i+
−1
−i,−i#−i =+i,sp(i)(+

−1
−i,−i #−i)sp(i),

which yields the claimed decomposition.

The log-likelihood decomposition (15) is essentially based on the decomposition of the joint
distribution of # into the marginal distribution of #−i and the conditional distribution (#i | #−i). This
leads to the idea of building an iterative algorithm whose steps are based on fixing the marginal
distribution of #−i and estimating a conditional distribution. In order to fix the marginal distribution
#−i we need to fix the submatrix +−i,−i comprising all but the i-th row and column of + as well as
the submatrix B−i,V , which comprises all but the i-th row of B. With +−i,−i and B−i,V fixed we can
compute #−i as well as the pseudo-variables, defined by

Z−i =+−1
−i,−i #−i. (17)

2339



DRTON, EICHLER AND RICHARDSON

i=2 1

2

3

4

Y1

Y2 Z4

&21

,24

i=3 1

2

3

4

Y1

Y2

Y3&31

&32

i=4 1

2

3

4

Z2

Y3

Y4

&43

,24

Figure 4: Illustration of the RICF update steps in Example 5. The structure of each least squares
regression is indicated by directed edges pointing from the predictor variables to the re-
sponse variable depicted by a square node. (See text for details.)

From (15), it now becomes apparent that, for fixed +−i,−i and B−i,V , the maximization of the log-
likelihood function !(B,+) can be solved by maximizing the function

(

(&i j) j∈pa(i),(,ik)k∈sp(i),,ii.−i) 1→

−
N
2
log,ii.−i−

1
2,ii.−i

∥

∥Yi− *
j∈pa(i)

&i jYj− *
k∈sp(i)

,ikZk
∥

∥

2 (18)

over Rpa(i)×Rsp(i)× (0,/). The maximizers of (18), however, are the least squares estimates in the
regression of Yi on both (Yj | j ∈ pa(i)) and (Zk | k ∈ sp(i)).

Employing the above observations, the RICF algorithm for computing the MLE (B̂,+̂) repeats
the following steps for each i ∈V :

1. Fix +−i,−i and B−i,V , and compute residuals #−i and pseudo-variables Zsp(i);

2. Obtain least squares estimates of &i j, j∈ pa(i),,ik, k∈ sp(i), and,ii.−i by regressing response
variable Yi on the covariates Yj, j ∈ pa(i) and Zk, k ∈ sp(i);

3. Compute an estimate of ,ii = ,ii.−i++i,−i+
−1
−i,−i+−i,i using the new estimates and the fixed

parameters; compare (14).

After steps 1 to 3, we move on to the next vertex inV . After the last vertex inV we return to consider
the first vertex. The procedure is continued until convergence.

Example 5 For illustration of the regressions performed in RICF, we consider the normal linear
model associated with the BAP G in Figure 2(c). The parameters to be estimated in this model are
&21, &31, &32, &43 and ,11, ,22, ,33, ,44, ,24.

Vertex 1 in Figure 2(c) has no parents or spouses, and its RICF update step consists of a trivial
regression. In other words, the variance ,11 is the unconditional variance ofY1 with MLE ,̂11 = s11.
For the remaining vertices, the corresponding RICF update steps are illustrated in Figure 4, where
the response variable Yi in the i-th update step is shown as a square node while the remaining
variables are depicted as circles. Directed edges indicate variables acting as covariates in the least
squares regression. These covariates are labelled according to whether the random variable Yj, or
the pseudo-variable Zj defined in (17), is used in the regression. Note that since sp(3) = /0, repetition
of steps 1-3 in §4.1 is required only for i ∈ {2,4}.
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In RICF, the log-likelihood function !(B,+) from (11) is repeatedly maximized over sections in
the parameter space defined by fixing the parameters +−i,−i, and B−i,V . RICF thus is an iterative
partial maximization algorithm and has the following convergence properties.

Theorem 13 If G is a BAP and the empirical covariance matrix S is positive definite, then the
following holds:

(i) For any starting value (B̂0,+̂0) ∈ B(G)×O(G), RICF constructs a sequence of estimates
(B̂s,+̂s)s in B(G)×O(G) whose accumulation points are local maxima or saddle points
of the log-likelihood function !(B,+). Moreover, evaluating the log-likelihood function at
different accumulation points yields the same value.

(ii) If the normal linear model N(G) is everywhere identifiable and the likelihood equations have
only finitely many solutions then the sequence (B̂s,+̂s)s converges to one of these solutions.

Proof Let !()) be the log-likelihood function for the model of all centered multivariate normal dis-
tributions on RV . If S is positive definite then the set C that comprises all positive definite matrices
) ∈ RV×V at which !())≥ !(B̂0,+̂0) is compact. In particular, the log-likelihood function in (11) is
bounded, and claim (i) can be derived from general results about iterative partial maximization al-
gorithms; see for example, Drton and Eichler (2006). For claim (ii) note that if N(G) is everywhere
identifiable, then the compact setC has compact preimage 0−1G (C) under the model parameterization
map; recall Lemma 6.

Remark 14 If the normal linear model N(G) associated with a BAP G is not everywhere identifi-
able, then it is possible that a sequence of estimates (B̂s,+̂s)s produced by RICF diverges and does
not have any accumulation points. In these cases, however, the corresponding sequence of covari-
ance matrices -G(B̂s,+̂s)s still has at least one accumulation point because it ranges in the compact
set C exhibited in the proof of Theorem 13. Divergence of (B̂s,+̂s)s occurs in two instances in the
simulations in §5; compare Table 1. In both cases, the sequence-G(B̂s,+̂s)s converges to a positive
definite covariance matrix.

4.2 Computational Savings in RICF

If G is a DAG, that is, an acyclic path diagram without bi-directed edges, then the MLE (B̂,+̂) in
N(G) can be found in a finite number of regressions (e.g., Wermuth, 1980). However, we can also
run RICF. Since in a DAG, sp(i) = /0 for all i ∈ V , step 2 of RICF regresses variable Yi solely on
its parents Yj, j ∈ pa(i). Not involving pseudo-variables that could change from one iteration to the
other, this regression remains the same throughout different iterations, and RICF converges in one
step.

Similarly, for a general BAP G, if vertex i ∈ V has no spouses, sp(i) = /0, then the MLE of
Bi,pa(i) and ,ii can be determined by a single iteration of the algorithm. In other words, RICF
reveals these parameters as being estimable in closed form, namely as rational functions of the data.
(This occurred for vertex i= 3 in Example 5.) It follows that, to estimate the remaining parameters,
the iterations need only be continued over vertices j with sp( j) (= /0.
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For further computational savings note that+dis(i),V\(dis(i)∪{i}) = 0, where dis(i) = { j | j↔ · · ·↔
i, j (= i} is the district of i ∈V . Hence, since sp(i) ⊆ dis(i),

(+−1
−i,−i#−i)sp(i) = (+−1

dis(i),dis(i)#dis(i))sp(i);

see Koster (1999, Lemma 3.1.6) and Richardson and Spirtes (2002, Lemma 8.10). Since #dis(i) =
Ydis(i) −Bdis(i),pa(dis(i))Ypa(dis(i)), it follows that in the RICF update step for vertex i attention can be
restricted to the variables in {i}∪pa(i)∪dis(i)∪pa(dis(i)).

Finally, note that while the RICF algorithm is described in terms of the entire data matrix Y , the
least squares estimates computed in its iterations are clearly functions of the empirical covariance
matrix, which is a sufficient statistic.

5. Simulation Studies

In order to evaluate the performance of the RICF algorithm we consider two scenarios. First, we fit
linear models based on randomly generated BAPs to gene expression data. This scenario is relevant
for model selection tasks, and we compare RICF’s performance in this problem to that of algorithms
implemented in software for structural equation modelling. Second, we study how RICF behaves
when it is used to fit larger models to data simulated from the respective model. In contrast to the
first scenario, the second scenario involves models that generally fit the considered data well.

5.1 Gene Expression Data

We consider data on gene expression in Arabidopsis thaliana from Wille et al. (2004). We restrict
attention to 13 genes that belong to one pathway: DXPS1-3, DXR, MCT, CMK, MECPS, HDS,
HDR, IPPI1, GPPS, PPDS1-2. Data from n = 118 microarray experiments are available. We fit
randomly generated BAP models to these data using RICF and two alternative methods.

The BAP models are generated as follows. For each of the 78 possible pairs of vertices i <
j in V = {1, . . . ,13} we draw from a multinomial distribution to generate a possible edge. The
probability for drawing the edge i→ j is d, and the probability for drawing i↔ j is b so that with
probability 1−d−b there is no edge between i and j. We then apply a random permutation to the
vertices to obtain the final BAP. For each of twelve combinations (d,b) with d = 0.05,0.1,0.2,0.3
and b= 0.05,0.1,0.2, we simulate 1000 BAPs. The expected number of edges thus varies between
7.8 and 39.

For fitting the simulated BAPs to the gene expression data, we implemented RICF in the statis-
tical programming environment R (R Development Core Team, 2007). As alternatives, we consider
the R package ‘sem’ (Fox, 2006) and the widely used software LISREL (Jöreskog and Sörbom,
1997) in its student version 8.7 for Linux (student versions are free but limited to 15 variables).
Both these programs employ general purpose optimizers, for example, ‘sem’ makes a call to the R
function ‘nlm’.

Our simulation results are summarized in Table 1. Each row in the table corresponds to a choice
of the edge probabilities d and b. The first three columns count how often, in 1000 simulations, the
three considered fitting routines failed to converge. The starting values of LISREL and ‘sem’ were
set according to program defaults, and RICF was started by setting B̂(0) and +̂(0) equal to the MLE
in the DAG model associated with the DAG obtained by removing all bi-directed edges from the
considered BAP.
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No convergence All All Running time
d b RICF LIS SEM converge agree RICF LIS SEM
0.05 0.05 0 36 47 941 940 0.03 0.02 1.15

0.1 0 177 221 746 739 0.09 0.03 1.58
0.2 0 499 599 347 333 0.21 0.04 2.71

0.1 0.05 0 32 36 951 949 0.04 0.03 1.58
0.1 0 137 193 786 780 0.09 0.03 2.09
0.2 0 440 610 364 354 0.25 0.04 3.43

0.2 0.05 0 19 39 958 954 0.05 0.03 2.67
0.1 0 91 176 815 808 0.13 0.04 3.34
0.2 1 326 520 461 452 0.33 0.05 5.03

0.3 0.05 0 16 38 960 957 0.06 0.04 4.04
0.1 0 59 136 859 850 0.17 0.04 4.96
0.2 1 225 471 519 490 0.40 0.06 6.97

Table 1: Fitting simulated BAPs to gene expression data using RICF, LISREL and ‘sem’. Each row
is based on 1000 simulations. Running time is average CPU time (in sec.) for the cases in
which all three algorithms converged. (See text for details.)

LISREL and ‘sem’ failed to converge for a rather large number of models. The LISREL output
explained why convergence failed, and virtually all failures were due to the optimizer converging to
matrices that were not positive definite. The remedy would be to try new starting values but doing
this successfully in an automated fashion is a challenging problem in itself. For RICF convergence
failure arose in only two cases. In both cases the RICF estimates (B̂,+̂) had some diverging entries.
Despite the divergence in (B,+)-space, the sequence of associated covariance matrices -G(B̂,+̂)
computed by RICF converged, albeit very slowly. Recall that this phenomenon is possible in models
that are almost, but not everywhere, identifiable (Remark 14). In these examples LISREL produced
similarly divergent sequences with approximately the same likelihood, and ‘sem’ reported conver-
gence in one case but gave an estimate whose likelihood was nearly 40 points smaller than the
intermediate estimates computed by LISREL and RICF.

The columns labelled ‘All converge’ and ‘All agree’ in Table 1 show how often all methods
converged, and when this occurred, how often the three computed maxima of the log-likelihood
function were the same up to one decimal place. Since all methods are for local maximization, sub-
stantial disagreements in the computed maxima can occur if the likelihood function is multimodal.

Finally, the last three columns give average CPU time use for the cases in which all three al-
gorithms converge. These are quoted to show that RICF is competitive in terms of computational
efficiency, but for the following reasons the precise times should not be used for a formal compar-
ison. On the one hand, LISREL is fast because it is compiled code. This is not the case for the
R-based ‘sem’ and RICF. On the other hand, the fitting routines in LISREL and ‘sem’ not only
compute the MLE but also produce various other derived quantities of interest. This is in contrast
to our RICF routine, which only computes the MLE.
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Figure 5: Boxplots of CPU times (in sec. on log10-scale) used by RICF when fitting BAP models
to simulated data. Each boxplot summarizes 500 simulations. The number of variables is
denoted by p, the sample size is n, and the parameter d determines the expected number
of edges of the simulated BAPs (see text for details).

5.2 Simulated Data

In order to demonstrate how RICF behaves when fitting larger models we use the algorithm on
simulated data. We consider different choices for the number of variables p and generate random
BAPs according to the procedure used in §5.1. We limit ourselves to two different settings for
the expected number of edges, choosing d = 0.1 or d = 0.2 and setting b = d/2 in each case.
For each BAP G, we simulate a covariance matrix ) = (I−B)−1+(I−B)−t ∈ P(G) as follows.
The free entries in B ∈ B(G) and the free off-diagonal entries in + ∈ O(G) are drawn from a
N (0,1) distribution. The diagonal entries ,ii are obtained by adding a draw from a (21-distribution
to the sum of the absolute values of the off-diagonal entries in the i-th row of +. This makes
+ diagonally dominant and thus positive definite. Finally, we draw a sample of size n from the
resulting multivariate normal distribution N(G). For each distribution two cases, namely n= 3p/2
and n = 10p, are considered to illustrate sample size effects. For each combination of p, d and n,
we simulate 500 BAPs and associated data sets.

Figure 5 summarizes the results of our simulations in boxplots. As could be expected, the
running time for RICF increases with the number of variables p and the expected number of edges
in the BAP (determined by d). Moreover, the running time decreases for increased sample size n,
which is plausible because the empirical covariance matrix of a larger sample tends to be closer
to the underlying parameter space P(G). The boxplots show that even with p = 50 variables the
majority of the RICF computations terminate within a few seconds. However, there are also a
number of computations in which the running time is considerably longer, though still under two

2344



ML ESTIMATION FOR LINEAR MODELS WITH CORRELATED ERRORS

3
2

1
54

Figure 6: Path diagram for seemingly unrelated regressions.

minutes. This occurs in particular for the denser case with smaller sample size (d = 0.2 and n =
3p/2).

6. Discussion

As mentioned in the introduction, normal linear models associated with path diagrams are employed
in many applied disciplines. The models, also known as structural equation models, have a long
tradition but remain of current interest in particular due to the more recent developments in causal
inference; compare, for example, Pearl (2000) and Spirtes et al. (2000). Despite their long tradition,
however, many mathematical, statistical and computational problems about these models remain
open.

The new contribution of this paper is the Residual Iterative Conditional Fitting (RICF) algorithm
for maximum likelihood estimation in BAPmodels. Software for computation of MLEs in structural
equation models often employs optimization methods that are not designed to deal with positive
definiteness constraints on covariance matrices. This can be seen in particular in Table 1 which
shows that two available programs, LISREL (Jöreskog and Sörbom, 1997) and the R package ‘sem’
(Fox, 2006), fail to converge in a rather large number of problems. This is in line with previous
experience by other authors; see, for example, Steiger (2001). Our new RICF algorithm, on the
other hand, does not suffer from these problems. It has clear convergence properties (Theorem 13)
and can handle problems with several tens of variables (see Figure 5). In addition, RICF has the
desirable feature that it estimates parameters in closed form (in a single cycle of its iterations) if this
is possible. If applied to a model based on a directed acyclic graph (DAG), the algorithm converges
in a single cycle and performs exactly the regressions commonly used for fitting multivariate normal
DAG models. This feature and the fact that RICF can be implemented using nothing but least
squares computations make it an attractive alternative to less specialized optimization methods.

In another special case, namely seemingly unrelated regressions, RICF reduces to the algorithm
of Telser (1964). A path diagram representing seemingly unrelated regressions is shown in Figure
6. The variables Y1, Y2 and Y3 are then commonly thought of as covariates. Since they have no
spouses, the MLEs of the variances ,11, ,22 and ,33 are equal to the empirical variances s11, s22
and s33. For the remaining variables Yi, i= 4,5, RICF performs regressions on both the “covariates”
Ypa(i) and the residual # j, j ∈ {4,5}\{i}. These are precisely the steps performed by Telser.

Existing structural equation modelling software also fits models with latent variables, whereas
the RICF algorithm applies only to BAP models without latent variables. However, RICF could
be used to implement the M-step in the EM algorithm (Kiiveri, 1987) in order to fit latent variable
models. This EM-RICF approach would yield an algorithm with theoretical convergence properties.

Finally, we emphasize that the RICF algorithm is determined by the path diagram. However,
different path diagrams may induce the same statistical model; recall point (1) in §1.2 in the intro-
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duction. This model equivalence of path diagrams may be exploited to find a diagram for which
the running time of RICF is short. For example, for every BAP that is equivalent to a DAG model,
parameter estimates could be computed in closed form and hence in finitely many steps. Relevant
graphical constructions for this problem are described in Drton and Richardson (2008) and Ali et al.
(2005).
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Appendix A. Proofs

Proof [Proof of Proposition 10] Let & and , be the vectors of unconstrained elements in B and +,
respectively. The second derivatives of the log-likelihood function with respect to & and , are:

12!(B,+)

1&1&t
= −N ·Pt

(

S⊗+−1)P, (19)

12!(B,+)

1&1,t
= −N ·Pt

[

S(I−B)t+−1⊗+−1]Q, (20)

12!(B,+)

1,1,t
= −

N
2
Qt

{[

+−1⊗+−1(I−B)S(I−B)t+−1] (21)

+
[

+−1(I−B)S(I−B)t+−1⊗+−1]}Q.

Replacing S by E[S] = (I−B)−1+(I−B)−t in (19)-(21) yields the claim.

Proof [Proof of Proposition 11] If G is a bi-directed chain graph, then the submatrix B.t ,.t = 0 for
all t, while for s (= t we have +.s,.t = 0. In this case the second derivative of the log-likelihood
function with respect to &i j and ,kl is equal to 12!(B,+)/1&i j 1,kl = [(I−B)−1] jl (+−1)ik. Now
[(I−B)−1] jl may only be non-zero if j = l or l is an ancestor of j, that is, if there exists a directed
path l → j1 → · · ·→ jm → j in G. On the other hand, (+−1)ik = 0 whenever i and k are not in the
same chain component. Therefore, the second derivative in (20) is equal to zero.

Conversely, it follows that the second derivative in (20) vanishes for all parameters only if the
graph belongs to the class of bi-directed chain graphs.
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Abstract
Consider the following problem: given sets of unlabeled observations, each set with known label
proportions, predict the labels of another set of observations, possibly with known label propor-
tions. This problem occurs in areas like e-commerce, politics, spam filtering and improper content
detection. We present consistent estimators which can reconstruct the correct labels with high prob-
ability in a uniform convergence sense. Experiments show that our method works well in practice.
Keywords: unsupervised learning, Gaussian processes, classification and prediction, probabilistic
models, missing variables

1. Introduction

Different types of learning problems assume different problem settings. In supervised learning, we
are given sets of labeled instances. Another learning type called unsupervised learning focuses on
the setting where unlabeled instances are given. Recently, it has been realized that unlabeled in-
stances when used in conjunction with a small amount of labeled instances can deliver considerable
learning performance improvement in comparison to using labeled instances alone. This leads to a
semi-supervised learning setting.

∗. A short version of this paper appeared in Quadrianto et al. (2008).
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(a) Supervised Learning (b) Unsupervised Learning

(c) Semi - supervised Learning (d) Learning from Proportions

Figure 1: Different types of learning problems (colors encode class labels). 1(a) - supervised
learning: only labeled instances are given; 1(b) - unsupervised learning: only un-
labeled instances are given; 1(c) - semi-supervised learning: both labeled and un-
labeled instances are given; 1(d): learning from proportions: at least as many data
aggregates (groups of data with their associated class label proportions) as there are num-
ber of classes are given.

We are interested in a learning setting where groups of unlabeled instances are given. The
number of group is at least as many as number of classes. Each group is equipped with information
on class label proportions. We called this informative group as aggregate (see Figure 1 for an
illustration). This type of learning problem appears in areas like e-commerce, politics, spam filtering
and improper content detection, as we illustrate below.

Assume that an internet services company wants to increase its profit in sales. Obviously send-
ing out discount coupons will increase sales, but sending coupons to customers who would have
purchased the goods anyway decreases the margins. Alternatively, failing to send coupons to cus-
tomers who would only buy in case of a discount reduces overall sales. We would like to identify
the class of would-be customers who are most likely to change their purchase decision when re-
ceiving a coupon. The problem is that there is no direct access to a sample of would-be customers.
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Typically only a sample of people who buy regardless of coupons (those who bought when there
was no discount) and a mixed sample (those who bought when there was discount) are available.
The mixing proportions can be reliably estimated using random assignment to control and treatment
groups. How can we use this information to determine the would-be customers?

Politicians face the same problem. They can rely on a set of always-favorable voters who will
favor them regardless, plus a set of swing voters who will make their decision dependent on what
the candidates offer. Since the candidate’s resources (finance, ability to make election promises,
campaign time) are limited, it is desirable for them to focus their attention on that part of the demo-
graphic where they can achieve the largest gains. Previous elections can directly reveal the profile
of those who favor regardless, that is those who voted in favor where low campaign resources were
committed. Those who voted in favor where substantial resources were committed can be either
swing voters or always-favorable. So in a typical scenario there is no separate sample of swing
voters.

Likewise, consider the problem of spam filtering. Data sets of spam are likely to contain almost
pure spam (this is achieved e.g. by listing e-mails as spam bait), while user’s inboxes typically
contain a mix of spam and non-spam. We would like to use the inbox data to improve estimation
of spam. In many cases it is possible to estimate the proportions of spam and non-spam in a user’s
inbox much more cheaply than the actual labels. We would like to use this information to categorize
e-mails into spam and non-spam.

Similarly, consider the problem of filtering images with “improper content”. Data sets of such
images are readily accessible thanks to user feedback, and it is reasonable to assume that this la-
beling is highly reliable. However the rest of images on the web (those not labeled) is a far larger
data set, albeit without labels (after all, this is what we would like to estimate the labels for). That
said, it is considerably cheaper to obtain a good estimate of the proportions of proper and improper
content in addition to having one data set of images being of likely improper content. We would
like to obtain a classifier based on this information.

2. Problem Definition

In this paper, we present a method that makes use of the knowledge of label proportions directly. As
motivated by the above examples, our method would be practically useful in many domains such as
identifying potential customers, potential voters, spam e-mails and improper images. We also prove
bounds indicating that the estimates obtained are close to those from a fully labeled scenario.

Before defining the problem, we emphasize that the formal setting is more general than the
above examples might suggest. More specifically, we may not require any label to be known, only
their proportions within each of the involved data sets. Also the general problem is not restricted to
the binary case but instead can deal with large numbers of classes. Finally, it is possible to apply our
method to problems where the test label proportions are unknown, too. This simple modification
allows us to use this technique whenever covariate shift via label bias is present.

Formally, in a learning from proportions setting, we are given n sets of observations Xi =
{

xi1, . . . ,ximi
}

of respective sample sizesmi (calibration set) i= 1, . . . ,n as well as a set X = {x1, . . . ,xm}
(test set). Moreover, we are given the fractions !iy of labels y ∈ Y (|Y | ≤ n) contained in each set
Xi. These fractions form a full (column) rank mixing matrix, ! ∈ Rn×|Y | with the constraint that
each row sums up to 1 and all entries are nonnegative. The marginal probability p(y) of the test
set X may or may not be known. Note that the label dictionaries Yi do not need to be the same

2351



QUADRIANTO, SMOLA, CAETANO AND LE

across all sets i (define Y := ∪i Yi) and we also allow for !iy = 0 if needed. It is our goal to design
algorithms which are able to obtain conditional class probability estimates p(y|x) solely based on
this information.

As an illustration, take the spam filtering example. We have X1 = “mail in spam box” (only
spam) and X2 = “mail in inbox” (spam mixed with non-spam). Also suppose that we may know
the proportion of spam vs non-spam in our inbox is 1 : 9. That means, we know: !1,spam =
1.0,!1,non−spam = 0,!2,spam = 0.1 and !2,non−spam = 0.9. The test set X then may be X2 itself, for
example. Thus, the marginal probability of the test set will simply be: p(y = spam) = 0.1, p(y =
non− spam) = 0.9. The goal is to find p(spam|mail) in X . Note that, in general, our setting is dif-
ferent and more difficult than that of transduction. The latter requires at least some labeled instances
of all classes are given. In the spam filtering example, we have no pure non-spam instances.

Key to our proposed solution is a conditional independence assumption, x ⊥⊥ i |y. In other
words, we assume that the conditional distribution of x is independent of the index i, as long as
we know the label y. This is a crucial assumption: after all, we want the distributions within each
class to be independent of which aggregate they can be found in. If this were not the case it would
be impossible to infer about the distribution on the test set from the (biased) distributions over the
aggregates.

3. Mean Operators

Our idea relies on uniform convergence properties of the expectation operator and of corresponding
risk functionals (Altun and Smola, 2006; Dudı́k and Schapire, 2006). In doing so, we are able to
design estimators with the same performance guarantees in terms of uniform convergence as those
with full access to the label information.

At the heart of our reasoning lies the fact that many estimators rely on data by solving a convex
optimization problem. We begin our exposition by discussing how this strategy can be employed in
the context of exponential families. Subsequently we state convergence guarantees and we discuss
how our method can be extended to other estimates such as Csiszar and Bregman divergences and
other function spaces.

3.1 Exponential Families

Denote by X the space of observations and let Y be the space of labels. Moreover, let "(x,y) :
X ×Y → H be a feature map into a Reproducing Kernel Hilbert Space (RKHS) H with kernel
k((x,y),(x′,y′)). In this case we may state conditional exponential models via

p(y|x,#) = exp(〈"(x,y),#〉−g(#|x)) with g(#|x) = log $
y∈Y

exp〈"(x,y),#〉 ,

where the normalization g is called the log-partition function, often referred to as the cumulant
generating function. Note that while in general there is no need for Y to be discrete, we make
this simplifying assumption in order to be able to reconstruct the class probabilities efficiently. For
{(xi,yi)} drawn iid from a distribution p(x,y) on X ×Y the conditional log-likelihood is given by

log p(Y |X ,#) =
m

$
i=1

[〈"(xi,yi),#〉−g(#|xi)] = m〈µXY ,#〉−
m

$
i=1

g(#|xi),
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where the empirical mean in feature space µXY is defined as in Table 2. In order to avoid overfitting
one commonly maximizes the log-likelihood penalized by a prior p(#). This means that we need to
solve the following optimization problem

#∗ := argmin
#

[− log{p(Y |X ,#)p(#)}] . (1)

For instance, for a Gaussian prior on #, i.e. for

− log p(#) = %‖#‖2+ const.,

we have

#∗ = argmin
#

[

m

$
i=1

g(#|xi)−m〈µXY ,#〉+%‖#‖2
]

. (2)

The problem is that in our setting we do not know the labels yi, so the sufficient statistics µXY cannot
be computed exactly. Note, though that the only place where the labels enter the estimation process
is via the mean µXY . Our strategy is to exploit the fact that this quantity, however, is statistically
well behaved and converges under relatively mild technical conditions at rateO(m− 1

2 ) to its expected
value

µxy := E(x,y)∼p(x,y)["(x,y)],

as will be shown in Theorem 3. Our goal therefore will be to estimate µxy and use it as a proxy
for µXY , and only then solve (2) with the estimated µ̂XY instead of µXY . We will discuss explicit
convergence guarantees in Section 5 after describing how to compute the mean operator in detail.

3.2 Estimating the Mean Operator

In order to obtain #∗ we would need µXY , which is impossible to compute exactly, since we do not
have Y . However, we know that µXY converges to µxy. Hence, if we are able to approximate µxy then
this, in turn, will be a good estimate for µXY .

Our quest is therefore as follows: express µxy as a linear combination over expectations with
respect to the distributions on the data sets X1, . . . ,Xn (where n ≥ |Y |). Secondly, show that the
expectations of the distributions having generated the sets Xi (µsetx [i,y′], see Table 2), can be ap-
proximated by empirical means (µsetX [i,y′], see Table 2). Finally, we need to combine both steps to
provide guarantees for µXY .

It will turn out that in certain cases some of the algebra can be sidestepped, in particular when-
ever we may be able to identify several sets with each other (e.g. the test set X is one of the calibra-
tion data sets Xi) or whenever "(x,y) factorizes into &(x)⊗'(y). We will discuss these simplifica-
tions in Section 4.

3.2.1 MEAN OPERATOR

Since µxy is a linear operator mapping p(x,y) into a Hilbert Space we may expand µxy via

µxy = E(x,y)∼p(x,y)["(x,y)] = $
y∈Y

p(y)Ex∼p(x|y)["(x,y)] = $
y∈Y

p(y)µclassx [y,y],
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Xi ith set of observations: Xi = {xi1, . . . ,ximi}
mi number of observations in Xi
X test set of observations: X = {x1, . . . ,xm}
Y test set of labels: Y = {y1, . . . ,ym}
m number of observations in the test set X
!iy proportion of label y in set i
"(x,y) map from (x,y) to a Hilbert Space

Table 1: Notations used in the paper.

Expectations with respect to the model:
µxy := E(x,y)∼p(x,y)["(x,y)]

µclassx [y,y′] := E(x)∼p(x|y)["(x,y′)]
µsetx [i,y′] := E(x)∼p(x|i)["(x,y′)]
µclassx [y] := E(x)∼p(x|y)[&(x)]
µsetx [i] := E(x)∼p(x|i)[&(x)]

Expectations with respect to data:
µXY := 1

m $
m
i=1"(xi,yi)

(1a) µsetX [i,y′] := 1
mi $x∈Xi "(x,y

′) (known)
(1b) µsetX [i] := 1

mi $x∈Xi&(x) (known)
Estimates:
(2) µ̂classx = (!1!)−1!1µsetX
(3a) µ̂XY = $y∈Y p(y)µ̂classx [y,y]
(3b) µ̂XY = $y∈Y p(y)'(y)⊗ µ̂classx [y]
(4) #̂∗ solution of (2) for µXY = µ̂XY .

Table 2: Major quantities of interest in the paper. Numbers on the left represent the order in which
the corresponding quantity is computed in the algorithm (letters denote the variant of the
algorithm: ‘a’ for general feature map "(x,y) and ‘b’ for factorizing feature map "(x,y) =
&(x)⊗'(y)). Lowercase subscripts refer to model expectations, uppercase subscripts are
sample averages.

where the shorthand µclassx [y,y] is defined in Table 2. This means that if we were able to compute
µclassx [y,y] we would be able to “reassemble” µxy from its individual components. We now show that
µclassx [y,y] can be estimated directly.

Our conditional independence assumption, p(x|y, i) = p(x|y), yields the following:

p(x|i) =$
y
p(x|y, i)p(y|i) =$

y
p(x|y)!iy. (3)

In the above equation, we form a mixing matrix ! with the element !iy = p(y|i). This allows us to
define the following means

µsetx [i,y′] := Ex∼p(x|i)["(x,y′)]
(3)
=$

y
!iyµclassx [y,y′].

2354



ESTIMATING LABELS FROM LABEL PROPORTIONS

Algorithm 1
Input data sets X , {Xi}, probabilities !iy and p(y)
for i= 1 to n and y′ ∈ Y do
Compute empirical means µsetX [i,y′]

end for
Compute µ̂classx = (!1!)−1!1µsetX
Compute µ̂XY = $y∈Y p(y)µ̂classx [y,y]
Solve the minimization problem

#̂∗ = argmin
#

[

m

$
i=1

g(#|xi)−m〈µ̂XY ,#〉+%‖#‖2
]

Return #̂∗.

Note that in order to compute µsetx [i,y′] we do not need any label information with respect to p(x|i).
It is simply the expectation of "(·,y′) on the distribution of bag i. However, since we have at least
|Y | of those equations and we assumed that ! has full column rank, they allow us to solve a linear
system of equations and compute µclassx [y,y] from µsetx [i,y′] for all i. In shorthand we may use

µsetx = !µclassx and hence µclassx = (!1!)−1!1µsetx (4)

to compute µclassx [y,y] for all y ∈ Y . With some slight abuse of notation we have µclassx and µsetx
represent the matrices of terms µclassx [y,y′] and µsetx [i,y′] respectively. There will be as many matrices
as the dimensions of "(x,y), thus (4) has to be solved separately for each dimension of "(x,y).

Obviously we cannot compute µsetx [i,y′] explicitly, since we only have samples from p(x|i).
However the same convergence results governing the convergence of µXY to µxy also hold for the
convergence of µsetX [i,y′] to µsetx [i,y′]. Hence we may use the empirical average µsetX [i,y′] as the esti-
mate for µsetx [i,y′] and from that find an estimate for µXY .

3.2.2 BIG PICTURE

Overall, our strategy is as follows: use empirical means on the bags Xi to approximate expectations
with respect to the bag distribution. Use the latter to compute expectations with respect to a given
label, and finally, use the means conditional on the label distribution to obtain µxy which is a good
proxy for µXY (see Algorithm 1), i.e.

µsetX [i,y′] −→ µsetx [i,y′] −→ µclassx [y,y′] −→ µxy −→ µXY .

For the first and last step in the chain we can invoke uniform convergence results. The remaining
two steps in the chain follow from linear algebra. As we shall see, whenever there are considerably
more bags than classes we can exploit the overdetermined system to our advantage to reduce the
overall estimation error and use a rescaled version of (4).

4. Special Cases

In some cases the calculations described in Algorithm 1 can be carried out more efficiently. They
arise whenever the matrix ! has special structure or whenever the test set and one of the training
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sets coincide. Moreover, we may encounter situations where the fractions of observations in the test
set are unknown and we would like, nonetheless, to find a good proxy for µXY .

4.1 Minimal Number of Sets

Assuming that |Y | = n and that ! has full rank it follows that (!1!)−1!1 = !−1. Hence we can
obtain the proxy for µXY more directly via µclassx = !−1µsetx .

4.2 Testing on One of the Calibration Sets

Note that there is no need for requiring that the test set X be different from one of the calibration sets
(vide example in Problem Definition). In particular, when X = Xi the uncertainty in the estimate of
µXY can be greatly reduced provided that the estimate of µXY as given in (4) contains a large fraction
of the mean of at least one of the classes. We will discuss this situation in more detail when it comes
to binary classification since there the advantages will be most obvious.

4.3 Special Feature Map

Whenever the feature map "(x,y) factorizes into &(x)⊗'(y) we can simplify calculation of the
means considerably. More specifically, instead of estimating O(|Y | ·n) parameters we only require
calculation of O(n) terms. The reason for this is that we may pull the dependency on y out of the
expectations. Defining µclassx [y],µsetx [i], and µsetX [i] as in Table 2 allows us to simplify

µ̂XY = $
y∈Y

p(y)'(y)⊗ µ̂classx [y] where µ̂classx = (!1!)−1!1µsetX . (5)

Here the last equation is understood to apply to the vector of means µx := (µ[1], . . . ,µ[n]) and µX ac-
cordingly. A significant advantage of (5) is that we only need to perform O(n) averaging operations
rather thanO(n · |Y |). Obviously the cost of computing (!1!)−1!1 remains unchanged but the latter
is negligible compared to the operations in Hilbert Space. Note that &(x) ∈ RD denotes an arbitrary
feature representation of the inputs, which in many cases can be defined implicitly via a kernel
function. As the joint feature map "(x,y) factorizes into &(x)⊗'(y), we can write the inner prod-
uct in the joint representation as 〈"(x,y),"(x′,y′)〉 = 〈&(x),&(x′)〉〈'(y),'(y′)〉 = k(x,x′)k(y,y′). In
general, the kernel function on inputs and labels can be different. Specifically, for a label diag-
onal kernel k(y,y′) = ((y,y′), the standard winner-takes-all multiclass classification is recovered
(Tsochantaridis et al., 2005). With this setting, the input feature &(x) can be defined implicitly via
a kernel function by invoking the Representer Theorem (Schölkopf and Smola, 2002).

4.4 Binary Classification

One may show (Hofmann et al., 2006) that the feature map "(x,y) takes on a particularly appealing
form of "(x,y) = y&(x) where y ∈ {±1}. This follows since we can always re-calibrate 〈"(x,y),#〉
by an offset independent of y such that "(x,1)+"(x,−1) = 0.

If we moreover assume that X1 only contains class 1 and X2 = X contains a mixture of classes
with labels 1 and −1 with proportions p(1) =: ) and p(−1) = 1− ) respectively, we obtain the
mixing matrix

!=

[

1 0
) 1−)

]

⇒ !−1 =

[

1 0
−)
1−)

1
1−)

]

.
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Plugging this into (5) yields

µ̂XY = )µsetX [1]− (1−))
[

−)
1−)µ

set
X [1]+ 1

1−)µ
set
X [2]

]

= 2)µsetX [1]−µsetX [2]. (6)

Consequently, taking a simple weighted difference between the averages on two sets, e.g. one set
containing spam whereas the other one containing an unlabeled mix of spam and non-spam, allows
one to obtain the sufficient statistics needed for estimation.

4.5 Overdetermined Systems

Assume that we have significantly more bags n than class labels |Y |, possibly with varying numbers
of observations mi per bag. In this case it would make sense to find a weighting of the bags such that
those which are largest and most relevant for the test set are given the highest degree of importance.
Instead of stating the problem as one of solving a linear system we now restate it as one of solving
an approximation problem. To simplify notation we assume that the feature map factorizes, i.e. that
"(x,y) = &(x)⊗'(y). A weighted linear combination of the squared discrepancy between the class
means and the set means is given by

minimize
µclassx

n

$
i=1

wi

∥

∥

∥

∥

∥

µsetX [i]− $
y∈Y

!iyµclassx [y]

∥

∥

∥

∥

∥

2

, (7)

where wi are some previously chosen weights which reflect the importance of each bag. Typically
we might choose wi = O(m− 1

2
i ) to reflect the fact that convergence between empirical means and

expectations scales with O(m− 1
2 ). Before we discuss specific methods for choosing a weighting, let

us review the statistical properties of the estimator.

Remark 1 (Underdetermined Systems) Similarly, when we have less bags n than class labels |Y |,
we can state the problem as one of solving a regularized least squares problem as follows

minimize
µclassx

n

$
i=1

∥

∥

∥

∥

∥

µsetX [i]− $
y∈Y

!iyµclassx [y]

∥

∥

∥

∥

∥

2

+%*(µclassx [y]∀y ∈ Y ).

For example, we can let *(µclassx [y]∀y ∈ Y ) = $y∈Y
∥

∥µclassx [y]−µclassx [y+1]
∥

∥

2. This makes sense
whenever different labels have related means µclassx [y].

5. Convergence Bounds

The obvious question is how well µ̂XY manages to approximate µXY and secondly, how badly any
error in estimating µXY would affect the overall quality of the solution. We approach this problem
as follows: first we state the uniform convergence properties of µXY and similar empirical operators
relative to µxy. Secondly, we apply those bounds to the cases discussed above, and thirdly, we show
that the approximate minimizer of the log-posterior has a bounded deviation from what we would
have obtained by knowing µXY exactly. Much of the reasoning follows the ideas of Altun and Smola
(2006).
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5.1 Uniform Convergence for Mean Operators

An important tool in studying uniform convergence properties of random variables are Rademacher
averages (Ledoux and Talagrand, 1991; Mendelson, 2002). They are needed to state the key results
in our context.

Definition 2 (Rademacher Averages) Let X be a domain and p a distribution on X and assume
that X := {x1, . . . ,xm} is drawn iid from p. Moreover, let F be a class of functions X → R.
Furthermore denote by +i Rademacher random variables, i.e. {±1} valued with zero mean. The
Rademacher average is

Rm(F , p) := EXE+

[

sup
f∈F

∣

∣

∣

∣

∣

1
m

m

$
i=1

+i f (xi)

∣

∣

∣

∣

∣

]

.

This quantity measures the flexibility of the function class F—in our case linear functions in "(x,y).
Altun and Smola (2006) state the following result:

Theorem 3 (Convergence of Empirical Means) Denote by " : X →B a map into a Banach space
B , denote by B∗ its dual space and let F the class of linear functions on B with bounded B∗ norm
by 1. Let R > 0 such that for all f ∈ F we have | f (x)| ≤ R. Moreover, assume that X is an m-
sample drawn from p on X . For ,̄ > 0 we have that with probability at least 1− exp(−,̄2m/2R2)
the following holds:

‖µX −µx‖B ≤ 2Rm(F , p)+ ,̄.

For k ≥ 0 we only have a failure probability of 1− exp(−,̄2m/R2).

Theorem 4 (Bartlett and Mendelson 2002) Whenever B is a Reproducing Kernel Hilbert Space
with kernel k(x,x′) the Rademacher average can be bounded from above by Rm(F )≤m− 1

2 [Ex[k(x,x)]]
1
2 .

Our approximation error can be bounded as follows. From the triangle inequality we have:

‖µ̂XY −µXY‖ ≤ ‖µ̂XY −µxy‖+‖µxy−µXY‖ .

For the second term we may employ Theorem 3 directly. To bound the first term note that by
linearity

, := µ̂XY −µxy =$
y
p(y)

[

(!1!)−1!1,̂
]

y,y
, (8)

where we define the “matrix” of coefficients

,̂
[

i,y′
]

:= µsetx [i,y′]−µsetX [i,y′]. (9)

In the more general case of overdetermined systems we have

,=$
y
p(y)

[

(!1W!)−1!1W ,̂
]

y,y
.
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Now note that all ,̂ [i,y′] also satisfy the conditions of Theorem 3 since the sets Xi are drawn iid
from the distributions p(x|i) respectively. We may bound each term individually in this fashion and
subsequently apply the union bound to ensure that all n · |Y | components satisfy the constraints.
Hence each of the terms needs to satisfy the constraint with probability 1− (/(n|Y |) to obtain an
overall bound with probability 1−(. To obtain bounds we would need to bound the linear operator
mapping ,̂ into ,.

Note that this statement can be improved since all errors ,̂[i,y′] and ,̂[ j,y′] for i 4= j are indepen-
dent of each other simply by the fact that each bag Xi was sampled independently from the other.
We will discuss this in the context of choosing a practically useful value ofW below.

5.2 Special Cases

A closed form solution in the general case is not particularly useful since it depends heavily on
the kernel k, the mixing proportions ! and the class probabilities on the test set. However, for a
number of special cases it is possible to provide more detailed explicit analysis: firstly the situation
where "(x,y) = &(x)⊗'(y) and secondly, the binary classification setting where "(x,y) = y&(x)
and X2 = X , where much tighter bounds are available.

5.3 Special Feature Map with Full Rank

Here we only need to deal with n rather than with n× |Y | empirical estimates, i.e. µsetX [i] vs. µsetX [i,y′].
Hence (8) and (9) specialize to

,=$
y
p(y)

n

$
i=1

'(y)⊗
[

(!1!)−1!1
]

yi
,̂[i]

,̂ [i] := µsetx [i]−µsetX [i].

Assume that with high probability each ,̂[i] satisfies ‖,̂[i]‖ ≤ ci (we will deal with the explicit
constants ci later). Moreover, assume for simplicity that |Y | = n and that ! has full rank (otherwise
we need to follow through on our expansion using (!1!)−1!1 instead of !−1). This implies that

‖,‖2 = $
i, j
〈,̂[i], ,̂[ j]〉×$

y,y′
p(y)p(y′)k(y,y′)

[

!−1
]

yi
[

!−1
]

y′ j

≤ $
i, j
cic j

∣

∣

∣

[

!−1
]1Ky,p!−1

∣

∣

∣

i j
, (10)

where Ky,p
y,y′ = k(y,y′)p(y)p(y′). Combining several bounds we have the following theorem:

Theorem 5 Assume that we have n sets of observations Xi of size mi, each of which drawn from dis-
tributions with probabilities !iy of observing data with label y. Moreover, assume that k((x,y),(x′,y′)) =
k(x,x′)k(y,y′) ≥ 0 where k(x,x) ≤ 1 and k(y,y) ≤ 1. Finally, assume that m= |X |. In this case the
mean operator µXY can be estimated by µ̂XY with probability at least 1−( with precision

‖µXY − µ̂XY‖ ≤
[

2+
√

log((n+1)/()
]

×
[

m− 1
2 +

[

$
i, j
m− 1

2
i m− 1

2
j

∣

∣

∣

[

!−1
]1Ky,p!−1

∣

∣

∣

i j

]
1
2
]

.

Proof We begin our argument by noting that both for "(x,y) and for &(x) the corresponding
Rademacher averages Rm for functions of RKHS norm bounded by 1 is bounded by m− 1

2 . This
is a consequence of all kernels being bounded by 1 in Theorem 4 and k ≥ 0.
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Next note that in Theorem 3 we may set R = 1, since for ‖ f‖ ≤ 1 and k((x,y),(x,y)) ≤ 1 and
k(x,x) ≤ 1 it follows from the Cauchy Schwartz inequality that | f (x)| ≤ 1. Solving ( ≤ exp−m,2

for , yields ,≤ m− 1
2

[

2+
√

log(1/()
]

.
Finally, note that we have n+ 1 deviations which we need to bound: one between µXY and

µxy, and n for each of the ,[i] respectively. Dividing the failure probability ( into n+ 1 cases
yields bounds of the form m− 1

2

[

2+
√

log((n+1)/()
]

and m− 1
2

i

[

2+
√

log((n+1)/()
]

respec-
tively. Plugging all error terms into (10) and summing over terms yields the claim and substituting
this back into the triangle inequality proves the claim.

5.4 Binary Classification

Next we consider the special case of binary classification where X2 = X . Using (6) we see that the
corresponding estimator is given by

µ̂XY = 2)µsetX [1]−µsetX [2].

Since µ̂XY shares a significant fraction of terms with µXY we are able to obtain tighter bounds as
follows:

Theorem 6 With probability 1−( (for 1> (> 0) the following bound holds:

‖µ̂XY −µXY‖ ≤ 2)
[

2+
√

log(2/()
]

[

m− 1
2

1 +m− 1
2

+

]

,

where m+ is the number of observations with y= 1 in X2.

Proof Denote by µ[X+] and µ[X−] the averages over the subsets of X2 with positive and negative
labels respectively. By construction we have that

µXY = )µ[X+]− (1−))µ[X−]

µ̂XY = 2)µsetX [1]−)µ[X+]− (1−))µ[X−].

Taking the difference yields 2) [µsetX [1]−µ[X+]]. To prove the claim note that we may use Theorem 3
both for

∥

∥µsetX [1]−Ex∼p(x|y=1)[&(x)]
∥

∥ and for
∥

∥µ[X+]−Ex∼p(x|y=1)[&(x)]
∥

∥. Taking the union bound
and summing over terms proves the claim.

The bounds we provided show that µ̂XY converges at the same rate to µxy as µXY does, assuming that
the sizes of the sets Xi increase at the same rate as X .

5.5 Overdetermined Systems

Given the optimal value of weighting W , the class mean can be reconstructed as a solution of a
weighted least square problem in (7) and this minimizer is given by

µ̂classx = (!1W!)−1!1WµsetX whereW = diag(w1, . . . ,wn) and wi > 0.

It is easy to see that whenever n = |Y | and ! has full rank there is only one possible solution
regardless of the choice ofW . For overdetermined systems the choice ofW may greatly affect the
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quality of the solution and it is therefore desirable to choose a weighting which minimizes the error
in estimating µXY .

In choosing a weighting, we may take advantage of the fact that the errors ,̂[i] are independent
for all i. This follows from the fact that all bags are drawn independently of each other. Moreover,
we know that E[,̂[i]] = 0 for all i. Finally we make the assumption that k(y,y′) = ((y,y′), that is, that
the kernel in the labels is diagonal. In this situation our analysis is greatly simplified and we have:

,=$
y
'(y)⊗ p(y)(!1W!)−1!W ,̂

and hence E
[

‖,‖2
]

=
n

$
i=1
$
y
E

[

‖,̂[i]‖2
]

W 2
ii

[

!1i (!1W!)−1
]2

y
p2(y).

Using the assumption that E
[

‖,̂[i]‖2
]

= O(m−1
i ) we may find a suitable scale of the weight vectors

by minimizing
n

$
i=1
$
y

W 2
ii
mi

[

!1i (!1W!)−1
]2

y
p2(y) (11)

with respect to the diagonal matrix W . Note that the optimal value of W depends both on the
mixtures of the bags !i and on the propensity of each class p(y). That is, being able to well estimate
a class which hardly occurs at all is of limited value.

5.6 Stability Bounds

To complete our reasoning we need to show that our bounds translate into guarantees in terms of the
minimizer of the log-posterior. In other words, estimates using the correct mean µXY vs. its estimate
µ̂XY do not differ by a significant amount. For this purpose we make use of Altun and Smola (2006,
Lemma 17).

Lemma 7 Denote by f a convex function on H and let µ, µ̂ ∈ H . Moreover let % > 0. Finally
denote by #∗,∈H the minimizer of

L(#,µ) := f (#)−〈µ,#〉+%‖#‖2

with respect to # and #̂∗ the minimizer of L(#̂, µ̂) respectively. In this case the following inequality
holds:

∥

∥#∗ − #̂∗
∥

∥ ≤ %−1 ‖µ− µ̂‖ . (12)

This means that a good estimate for µ immediately translates into a good estimate for the minimizer
of the approximate log-posterior. This leads to the following bound on the risk minimizer.

Corollary 8 The deviation between #∗, as defined in (1) and #̂∗, the minimizer of the approximate
log-posterior using µ̂XY rather than µXY , is bounded by O(m− 1

2 +$i m
− 1
2

i ).

Finally, we may use Altun and Smola (2006, Theorem 16) to obtain bounds on the quality of #̂∗
when considering how well it minimizes the true negative log-posterior. Using the bound

L(#̂∗,µ)−L(#∗,µ) ≤
∥

∥#̂∗ −#∗
∥

∥‖µ̂−µ‖

yields the following bound for the log-posterior:
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Corollary 9 The minimizer #̂∗ of the approximate log-posterior using µ̂XY rather than µXY incurs a
penalty of at most %−1 ‖µ̂XY −µXY‖2.

5.7 Stability Bounds under Perturbation

Denote 1 ∈ {1}|Y | as the vector of all ones and 0 ∈ {0}|Y | as the vector of all zeros. Let - be the
perturbation matrix such that the perturbed mixing matrix !̃ is related to the original mixing matrix
! by !̃= !+-. Note that the perturbed mixing matrix !̃ still needs to have non-negative entries and
each row sums up to 1, !̃1= 1. The stochasticity constraint on the perturbed mixing matrix imposes
special structure on the perturbation matrix, i.e. each row of perturbation matrix must sum up to 0,
-1= 0. Let #̂∗ be the minimizer of (2) with mean µ̂XY approximated via mixing matrix !. Similarly,
define #̃∗ for µ̃XY with mixing matrix !̃. We would like to bound the distance

∥

∥#̂∗ − #̃∗
∥

∥ between
the minimizers. Our perturbation bound relies on Lemma 7 and on the fact that we can bound the
errors made in computing an (pseudo-) inverse of a matrix:

Lemma 10 (Stability of Inverses) For any matrix norm ‖.‖ and full rank matrices ! and !+-, the
error between the inverses of ! and !+- is bounded by

∥

∥!−1− (!+-)−1
∥

∥ ≤
∥

∥!−1
∥

∥

∥

∥(!+-)−1
∥

∥‖-‖ .

Proof We use the following identity !−1− (!+-)−1 = (!+-)−1-!−1. The identity can be shown
by left multiplying both sides of equation with (!+-). Finally, by submultiplicative property of a
matrix norm, the inequality

∥

∥!−1-(!+-)−1
∥

∥ ≤
∥

∥!−1
∥

∥‖-‖
∥

∥(!+-)−1
∥

∥ follows.

Theorem 11 (Stability of Pseudo-Inverses: Wedin 1973) For any unitarily invariant matrix norm
‖.‖ and full column rank matrices ! and !+-, the error between the pseudo-inverses of ! and !+-
is bounded by

∥

∥!†− (!+-)†
∥

∥ ≤ µ
∥

∥!†
∥

∥

+.

∥

∥(!+-)†
∥

∥

+. ‖-‖ ,

where µ denotes a scalar constant depending on the matrix norm, ‖.‖+. denotes the spectral norm
of a matrix, and the pseudo-inverse !† defined as !† := (!1!)−1!1.

Proof See Wedin (1973, Theorem 4.1) for a proof.

Remark 12 For full rank matrices, the constant term µ in Theorem 11 is equal to unity regardless
of the matrix norm considered (Wedin, 1973).

First, we would like to bound the difference between µ̂XY and µ̃XY , i.e. ,p := µ̂XY − µ̃XY . For the
special feature map with full rank, this translates to

,p =$
y
p(y)

n

$
i=1

'(y)⊗
[

!−1− !̃−1
]

yi µ
set
X [i]

‖,p‖2 =$
i, j

〈

µsetX [i],µsetX [ j]
〉

×
[

(!−1− !̃−1)1Ky,p(!−1− !̃−1)
]

i j
.
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Lemma 13 Define Ky,p :=V1
y,pVy,p. With the spectral norm ‖.‖+. and a full rank mixing matrix !,

the following bound holds:

‖µ̂XY − µ̃XY‖+. ≤ ‖Vy,p‖+.
∥

∥!−1
∥

∥

+. ‖-‖+.
∥

∥(!+-)−1
∥

∥

+.

[

$
i, j

〈

µsetX [i],µsetX [ j]
〉

]
1
2

. (13)

Proof We first upper bound
[

(!−1− !̃−1)1Ky,p(!−1− !̃−1)
]

i j by
∥

∥(!−1− !̃−1)1Ky,p(!−1− !̃−1)
∥

∥

+.. We factorize K
y,p as V1

y,pVy,p since Ky,p is a positive (semi-)
definite matrix. The element Ky,p

y,y′ = k(y,y′)p(y)p(y′) is obtained by multiplying a kernel k(y,y′)
with a rank-one kernel k′(y,y′) = p(y)p(y′) where p is a positive function. This conformal trans-
formation preserves the positive (semi-) definiteness of Ky,p (Schölkopf and Smola, 2002). Thus,
∥

∥(!−1− !̃−1)1Ky,p(!−1− !̃−1)
∥

∥

+. ≤
∥

∥Vy,p(!−1− !̃−1)
∥

∥

2
+. ≤

[

‖Vy,p‖+.
∥

∥(!−1− !̃−1)
∥

∥

+.

]2 ≤
[

‖Vy,p‖+.
∥

∥!−1
∥

∥

+. ‖-‖+.
∥

∥(!+-)−1
∥

∥

+.

]2. The last inequality
follows directly from Lemma 10.

Corollary 14 Define Ky,p :=V1
y,pVy,p. With the spectral norm ‖.‖+. and a full column rank mixing

matrix !, the following bound holds:

‖µ̂XY − µ̃XY‖+. ≤
√
2‖Vy,p‖+.

∥

∥!†
∥

∥

+. ‖-‖+.
∥

∥(!+-)†
∥

∥

+.

[

$
i, j

〈

µsetX [i],µsetX [ j]
〉

]
1
2

. (14)

Proof Similar to Lemma 13 with the constant factor µ in Theorem 11 equals to
√
2 for a spectral

norm.

Combining Lemma 13 for the full rank mixing matrix case (or Corollary 14 for the full column
rank mixing matrix case) with Lemma 7, we are ready to state the stability bound under perturbation:

Lemma 15 (Stability Bound under Perturbation) The distance ,s between the two minimizers,
#̂∗ and #̃∗, is bounded by

,s ≤ %−1 ‖µ̂XY − µ̃XY‖ .

It is clear from (13) and (14) that the stability of our algorithm under perturbation will depend on
the size of the perturbation and on the behavior of the (pseudo-) inverse of the perturbed mixing
matrix. Note that by the triangle inequality, the distance in (12) can be decomposed as

∥

∥#∗ − #̂∗
∥

∥ ≤
∥

∥#∗ − #̃∗
∥

∥+
∥

∥#̃∗ − #̂∗
∥

∥ and the second term in RHS vanishes whenever the size of perturbation - is
zero.

6. Extensions

We describe two types of extensions on our proposed estimator: function spaces and unknown label
proportions on the test sets. We will discuss both of them in turn.
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6.1 Function Spaces

Note that our analysis so far focused on a specific setting, namely maximum-a-posteriori analysis in
exponential families. While this is a common and popular setting, the derivations are by no means
restricted to this. We have the entire class of (conditional) models described by Altun and Smola
(2006) and Dudı́k and Schapire (2006) at our disposition. They are characterized via

minimize
p

−H(p) subject to ‖Ez∼p ["(z)]−µ‖ ≤ ,.

Here p is a distribution, H is an entropy-like quantity defined on the space of distributions, and
"(z) is some evaluation map into a Banach space. This means that the optimization problem can
be viewed as an approximate maximum entropy estimation problem, where we do not enforce ex-
act moment matching of µ but rather allow , slack. In both Altun and Smola (2006) and Dudı́k
and Schapire (2006) the emphasis lay on unconditional density models: the dual of the above op-
timization problem. In particular, it follows that for H being the Shannon-Boltzmann entropy, the
dual optimization problem is the maximum a posteriori estimation problem, which is what we are
solving here.

In the conditional case, p denotes the collection of probabilities p(y|xi) and the operator
Ez∼p ["(z)] = 1

m $
m
i=1Ey|p(y|xi) ["(xi,y)] is the conditional expectation operator on the set of obser-

vations. Finally, µ= 1
m $

m
i=1"(xi,yi), that is, it describes the empirical observations. We have two

design parameters:

6.1.1 FUNCTION SPACE

Depending on which Banach Space norm we may choose to measure the deviation between µ and
its expectation with respect to p in terms of e.g. the !2 norm, the !1 norm or the !. norm. The latter
leads to sparse coding and convex combinations. This means that instead of solving an optimization
problem of the form of (2) we would minimize expression of the form

m

$
i=1

g(#|xi)−m〈µXY ,#〉+%‖#‖pB∗ ,

where p ≥ 1 and B∗ is the Banach space of the natural parameter # which is dual to the space B
associated with the evaluation functionals "(x,y). The most popular choice for B∗ is !1 which leads
to sparse coding (Candes and Tao, 2005; Chen et al., 1995).

6.1.2 ENTROPY AND REGULARITY

Depending on the choice of entropy and divergence functionals we obtain a range of diverse estima-
tors. For instance, if we were to choose the unnormalized entropy instead of the entropy, we would
obtain algorithms more akin to boosting. We may also use Csiszar and Bregmann divergences. The
key point is that our reasoning of estimating µXY based on an aggregate of samples with unknown
labels but known label proportions is still applicable.

6.2 Unknown Test Label Proportions

In many practical applications we may not actually know the label proportions on the test set. For
instance, when deploying the algorithm to assess the spam in a user’s mailbox we will not know
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what the fraction would be. Nor is it likely that the user would be willing or able or trustworthy
enough to provide a reliable estimate. This means that we need to estimate those proportions in
addition to the class means µclassx .

We may use a fairly straightforward simplification of the covariate shift correction procedure of
Huang et al. (2007) in this context. The basic idea is to exploit the fact that there the map p(x) →
µ[p(x)] = Ex[&(x)] is injective for characteristic kernels (Sriperumbudur et al., 2008). Examples
of such a characteristic kernel is Gaussian RBF, Laplacian, and B2n+1-splines. This means that as
long as the conditional distributions p(x|y) are different for different choices of y we will be able
to recover the test label proportions by the simple procedure of minimizing the distance between
µ[p] and $y/yµ[p(x|y)]. While we may not have access to the true expectations we are still able to
estimate µclassx [y] for all y ∈ Y . This leads to the optimization problem

minimize
/

∥

∥

∥

∥

∥

1
m

m

$
i=1

&(xi)− $
y∈Y

/yµclassX [y]

∥

∥

∥

∥

∥

2

(15)

subject to /y ≥ 0 and $
y∈Y

/y = 1.

Here the sum is taken over the elements of the test set, that is x j ∈ X . Very similar bounds to those
by Huang et al. (2007) can be obtained and they are omitted for the sake of brevity as the reasoning
is essentially identical.

Note that obviously (15) may be used separately from the previous discussion, that is, when the
training proportions are known but the test proportions are not. However, we believe that the most
significant benefit is obtained in using both methods in conjunction since many practical situations
exhibit both problems simultaneously.

7. Related Work and Alternatives

While being highly relevant in practice, the problem has not seen as much attention by researchers
as one would expect. Some of the few works which cover a related subject are those by Chen et al.
(2006) and Musicant et al. (2007), and by Kück and de Freitas (2005). We hope that our work will
stimulate research in this area as relevant problems are fairly widespread.

7.1 Transduction

In transduction one attempts to solve a related problem: the patterns xi on the test set are known,
usually also some label proportions on the test set are known but obviously the actual labels on the
test set are not known. One way of tackling this problem is to perform transduction by enforcing a
proportionality constraint on the unlabeled data, e.g. via a Gaussian Process model (Gärtner et al.,
2006; Mann and McCallum, 2007).

At first glance these methods might seem applicable for our problem but they do require that we
have at least some labeled instances of all classes at our disposition which need to be drawn in an
unbiased fashion. This is clearly not the case in our setting. That said, it is well possible to use our
setting in the context of transduction, that is, to replace the unknown mean µtestXY on the test set by the
empirical estimate on the training set. Such strategies lead to satisfactory performance on par with
(albeit not exceeding) existing transduction approaches.
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7.2 Self Consistent Proportions

Kück and de Freitas (2005) introduced a more informative variant of the binary multiple-instance
learning, in which groups of instances are given along with estimates of the fraction of positively-
labeled instances per group. The authors build a fully generative model of the process which deter-
mines the assignment of observations to individual bags. Such a procedure is likely to perform well
when a large number of bags is present.

In order to deal with the estimation of the missing variables a MCMC sampling procedure is
used. While Kück and de Freitas (2005) describe the approach only for a binary problem, it could
be extended easily to multiclass settings.

In a similar vein, Chen et al. (2006) and Musicant et al. (2007) also use a self-consistent ap-
proach where the conditional class estimates need to match the observed ones. Consequently it
shares the same similar drawbacks, since we typically only have as many sets as classes.

7.3 Conditional Probabilities

A seemingly valid alternative approach is to try building a classifier for p(i|x) and subsequently
recalibrating the probabilities to obtain p(y|x), e.g. via p(y|i). At first sight this may appear promis-
ing since this method is easily implemented by most discriminative methods. The idea would be to
reconstruct p(y|x) by

p(y|x) =$
i
!iy p(i|x).

However, this is not a useful estimator in our setting for a simple reason: it assumes the conditional
independence y⊥⊥ x | i, which obviously does not hold. Instead, we have the property that i⊥⊥ x| y,
that is, the distribution over x for a given class label does not depend on the bag. This mismatch in
the probabilistic model can lead to disastrous estimates as the following simple example illustrates:

Example 1 Assume that X ,Y = {1,2} and that p(y = 1|x = 1) = p(y = 2|x = 2) = 1. In other
words, the estimation problem is solvable since the classes are well separated. Moreover, assume
that ! is given by

!=

[

0.5− , 0.5+ ,
0.5 0.5

]

for 0< ,6 1.

Here, p(i|x) is useless for estimating p(y|x), since we will only exceed random guessing by at most ,.
On the other hand, it is easily possible to obtain a good estimate for µXY by our proposed procedure.

The reason for this failure can be found in the following expansion

p(y|x) =$
i
p(y|x, i)p(i|x) 4=$

i
p(y|i)p(i|x) since p(y|x, i) 4= p(y|i). (16)

The problem with (16) is that the estimator does not really attempt to compute the probability p(y|x),
which we are interested in but instead, it attempts to discern which mixture distribution pi the ob-
servation x most likely originated from. For this to work we would need good probability estimates
as the basis of reweighting. Our approach tackles the problem at the source by recalibrating the
sufficient statistics directly.
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7.4 Reduction to Binary

For binary classification and real-valued classification scores we may resort to a rather straightfor-
ward heuristic: build a classifier which is able to distinguish between the sets X1 and X2 and subse-
quently threshold labels such that the appropriate fraction of observations in X1 and X2 matches the
proper labels. The intuition is that since the bags X1 and X2 do contain some information about how
the two classes differ, we should be able to use this information to distinguish between different
class labels.

It is likely that one might be able to obtain a proper reduction bound in this context. However,
extensions to multi-class are highly nontrivial. It also turns out that even in the binary case this
method, while overall fairly competitive, is inferior to our approach.

7.5 Density Estimation

One way of obtaining p(x|i) is to carry out density estimation. While, in principle, this approach is
flawed because of the incorrect conditional independence assumptions, it can still lead to acceptable
results whenever each of the bags contains one majority class. This allows us to obtain

p(x|y) =$
i

[

!−1
]

yi p(x|i).

To re-calibrate the probability estimates Bayes’ theorem is invoked to compute posterior proba-
bilities. Since this approach involves density estimation it tends to fail fairly catastrophically for
high-dimensional data due to the curse of dimensionality. These problems are also manifest in the
experiments.

8. Experiments

Data Sets: We use binary and three-class classification data sets from the UCI repository1 and the
LibSVM site.2 If separate training and test sets are available, we merge them before performing
nested 10-fold cross-validation. Since we need to generate as many splits as classes, we limit
ourselves to three classes.

For the binary data sets we use half of the data for X1 and the rest for X2. We also remove all
instances of class 2 from X1. That is, the conditional class probabilities in X2 match those from the
repository, whereas in X1 their counterparts are deleted.

For three-class data sets we investigate two different partitions. In scenario A we use class 1
exclusively in X1, class 2 exclusively in X2, and a mix of all three classes weighted by (0.5 · p(1),0.6 ·
p(2),0.7 · p(3)) to generate X3. In scenario B we use the following splits





c1 ·0.4 · p(1) c1 ·0.2 · p(2) c1 ·0.2 · p(3)
c2 ·0.1 · p(1) c2 ·0.2 · p(2) c2 ·0.1 · p(3)
c3 ·0.5 · p(1) c3 ·0.6 · p(2) c3 ·0.7 · p(3)



 .

Here the constants c1,c2 and c3 are chosen such that the probabilities are properly normalized. As
before, X3 contains half of the data.

1. UCI can be found at http://archive.ics.uci.edu/ml/.
2. LibSVM can be found at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/.
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Model Selection: As stated, we carry out a nested 10-fold cross-validation procedure: 10-
fold cross-validation to assess the performance of the estimators; within each fold, 10-fold cross-
validation is performed to find a suitable value for the parameters.

For supervised classification, i.e. discriminative sorting, such a procedure is quite straightfor-
ward because we can directly optimize for classification error. For kernel density estimation (KDE),
we use the log-likelihood as our criterion.

Due to the high number of hyper-parameters (at least 8) in MCMC, it is difficult to perform
nested 10-fold cross-validation. Instead, we choose the best parameters from a simple 10-fold
crossvalidation run. In other words, we are giving the MCMC method an unfair advantage over our
approach by reporting the best performance during the model selection procedure.

Finally, for the re-calibrated sufficient statistics µ̂XY we use the estimate of the log-likelihood on
the validation set as the criterion for cross-validation, since no other quantity, such as classification
errors is readily available for estimation.
Algorithms: For discriminative sorting we use an SVM with a Gaussian RBF kernel whose

width is set to the median distance between observations (Schölkopf, 1997); the regularization pa-
rameter is chosen by cross-validation. The same strategy applies for our algorithm. For KDE, we
use Gaussian kernels. Cross-validation is performed over the kernel width. For MCMC, 10000
samples are generated after a burn-in period of 10000 steps (Kück and de Freitas, 2005).
Optimization: Bundle methods (Smola et al., 2007; Teo et al., 2007) are used to solve the

optimization problem in Algorithm 1. For our regularized log-likelihood, the solver converges to ,
precision in O(log(1/,)) steps.
Results: The experimental results are summarized in Table 3. Our method outperforms KDE

and discriminative sorting. In terms of computation, our approach is somewhat more efficient, since
it only needs to deal with a smaller sample size (only X rather than the union of all Xi). The training
time for our method is less than 2 minutes for all cases, whereas MCMC on average takes 15 minutes
and maybe even much longer when the number of active kernels and/or observations are high. Note
that KDE fails on two data sets due to numerical problems (high dimensional data).

Our method also performs well on multiclass data sets. As described in Section 5.2, the quality
of our minimizer of the negative log-posterior depends on the mixing matrix and this is noticeable
in the reduction of performance for the dense mixing matrix (scenario B) in comparison to the
better conditioned sparse mixing matrix (scenario A). In other words, for ill conditioned ! even our
method has its limits, simply due to numerical considerations of effective sample size.
Unknown test label proportions: In this experiment, we use binary and three-class classifi-

cation data sets with the same split procedure as in the previous experiment but we select testing
examples by a biased procedure to introduce unknown test label proportions. To describe our bi-
ased procedure, consider a random variable 0i for each point in the pool of possible testing samples
where 0i = 1 means the i-th sample is being included and 0i = 0 means the sample is discarded.
In our case, the biased procedure only depends on the label y, i.e. P(0 = 1|y = 1) = 0.5 and
P(0 = 1|y = −1) = 1.0 for binary problems and P(0 = 1|y = 1) = 0.6, P(0 = 1|y = 2) = 0.3,
and P(0 = 1|y = 3) = 0.1 for three-class problems. We then estimate the test proportion by solv-
ing the quadratic program in (15) with interior point methods (or any other successive optimization
procedure). Since we are interested particularly to assess the effectiveness of our test proportion es-
timation method, in solving (15) we assume that we can compute µclassX [y] directly, i.e. the instances
are labeled. The mean square error rates of test proportions for several binary and three-class data
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Data MM KDE DS MCMC BA
ionosphere 18.4±3.2 17.5±3.2 12.2±2.6 18.0±2.1 35.8
iris 10.0±3.6 16.8±3.4 15.4±1.1 21.1±3.6 29.9
optdigits 1.8±0.5 0.7±0.4 9.8±1.2 2.0±0.4 49.1
pageblock 3.8±2.3 7.1±2.8 18.5±5.6 5.4±2.8 43.9
pima 27.5±3.0 34.8±0.6 34.4±1.7 23.8±1.8 34.8
tic 31.0±1.5 34.6±0.5 26.1±1.5 31.3±2.5 34.6
yeast 9.3±1.5 6.5±1.3 25.6±3.6 10.4±1.9 39.9
wine 7.4±3.0 12.1±4.4 18.8±6.4 8.7±2.9 40.3
wdbc 7.8±1.3 5.9±1.2 10.1±2.1 15.5±1.3 37.2
sonar 24.2±3.5 35.2±3.5 31.4±4.0 39.8±2.8 44.5
heart 30.0±4.0 38.1±3.8 28.4±2.8 33.7±4.7 44.9
breastcancer 5.3±0.8 14.2±1.6 3.5±1.3 4.8±2.0 34.5
australian 17.0±1.7 33.8±2.5 15.8±2.9 30.8±1.8 44.4
svmguide3 20.4±0.9 27.2±1.3 25.5±1.5 24.2±0.8 23.7
adult 18.9±1.2 24.5±1.3 22.1±1.4 18.7±1.2 24.6
cleveland 19.1±3.6 35.9±4.5 23.4±2.9 24.3±3.1 22.7
derm 4.9±1.4 27.4±2.6 4.7±1.9 14.2±2.8 30.5
musk 25.1±2.3 28.7±2.6 22.2±1.8 19.6±2.8 43.5
german 32.4±1.8 41.6±2.9 37.6±1.9 32.0±0.6 32.0
covertype 37.1±2.5 41.9±1.7 32.4±1.8 41.1±2.2 45.9
splice 25.2±2.0 35.5±1.5 26.6±1.7 28.8±1.6 48.4
gisette 10.3±0.9 † 12.2±0.8 50.0±0.0 50.0
madelon 44.1±1.5 † 46.0±2.0 49.6±0.2 50.0
cmc 37.5±1.4 43.8±0.7 45.1±2.3 46.9±2.6 49.9
bupa 48.5±2.9 50.8±5.1 40.3±4.9 50.4±0.8 49.7
protein A 43.3±0.4 48.9±0.9 N/A 65.5±1.7 60.6
protein B 46.9±0.3 55.2±1.5 N/A 66.1±2.1 60.6
dna A 14.8±1.2 28.1±0.6 N/A 39.8±2.6 41.6
dna B 31.3±1.3 30.4±0.7 N/A 41.5±0.1 41.6
senseit A 19.8±0.1 44.2±0.0 N/A ‡ 44.2
senseit B 21.1±0.1 44.2±0.0 N/A ‡ 44.2

Table 3: Classification error on UCI/LibSVM data sets. Errors are reported in mean ± standard
error. The best result and those not significantly worse than it, are highlighted in boldface.
We use a one-sided paired t-test with 95% confidence. MM: Mean Map (our method);
KDE: Kernel Density Estimation; DS: Discriminative Sorting (only applicable for binary
classification); MCMC: the sampling method; BA: Baseline, obtained by predicting the major
class. †: Program fails (too high dimensional data - only KDE). ‡: Program fails (large data
sets - only MCMC).
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sets are presented in Table 4. The results show that our proportion estimation method works reason-
ably well.
Overdetermined systems: Here we are interested to assess the performance of our estimator

with optimized weights when we have more data sets n than class labels |Y | with varying number
of observations mi per data set. We simulate the problem in binary settings with the following split
(n= 8)

























c1 ·0.25 · p(1) c1 ·0.10 · p(2)
c2 ·0.15 · p(1) c2 ·0.10 · p(2)
c3 ·0.05 · p(1) c3 ·0.20 · p(2)
c4 ·0.05 · p(1) c4 ·0.10 · p(2)
c5 ·0.05 · p(1) c5 ·0.00 · p(2)
c6 ·0.05 · p(1) c6 ·0.05 · p(2)
c7 ·0.05 · p(1) c7 ·0.15 · p(2)
c8 ·0.35 · p(1) c8 ·0.30 · p(2)

























and the split (n= 6) in three-class settings is as follows
















c1 ·0.30 · p(1) c1 ·0.10 · p(2) c1 ·0.00 · p(3)
c2 ·0.10 · p(1) c2 ·0.10 · p(2) c2 ·0.20 · p(3)
c3 ·0.05 · p(1) c3 ·0.00 · p(2) c3 ·0.05 · p(3)
c4 ·0.05 · p(1) c4 ·0.20 · p(2) c4 ·0.05 · p(3)
c5 ·0.00 · p(1) c5 ·0.05 · p(2) c5 ·0.10 · p(3)
c6 ·0.50 · p(1) c6 ·0.55 · p(2) c6 ·0.60 · p(3)

















.

We use BFGS to obtain the optimal weights of the minimization problem in (11). We perform 10-
fold cross validation with respect to the log-likelihood. The error rates are presented in Table 5. For
all cases except one, the estimator with optimized weights improves error rates compared with the
unweighted one.

Binary data sets

Data MSE
australian 0.00804±0.00275
breastcancer 0.00137±0.00063
adult 0.00610±0.00267
derm 0.00398±0.00175
gisette 0.00331±0.00108
wdbc 0.00319±0.00103

Three-class data sets

Data MSE
protein 0.00290±0.00066
dna 0.00339±0.00075
senseit 0.00072±0.00031

Table 4: Unknown test label proportion case. Square errors of estimating the test proportions on
UCI/LibSVM data sets. The 10-run errors are reported in mean ± standard error.

Stability of Mixing Matrices: Lastly, we are interested to assess the performance of our pro-
posed method when the given mixing matrix ! are perturbed so that they do not exactly match
how the data is generated. We used binary classification data sets and defined the perturbed mixing
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Binary data sets

Data unweighted weighted
wdbc 23.29±2.68 14.22±1.79
australian 34.44±4.03 29.58±3.71
svmguide3 24.28±2.20 18.50±1.73
gisette 8.77±1.05 7.69±0.51
splice 33.43±1.65 21.12±2.59

Three-class data sets

Data unweighted weighted
protein 57.46±0.02 57.46±0.02
senseit 28.25±2.60 23.51±0.78
dna 20.01±1.26 16.80±1.19

Table 5: Overdetermined systems. Errors of weighted/unweighted estimators for overdetermined
systems on UCI/LibSVM data sets. The 10-fold cross validation errors are reported in
mean ± standard error. The numbers in boldface are significant with 95% confidence
(one-sided paired t-test).

matrix as

!̃= !+-=

[

1 0
) 1−)

]

+

[

−,1 ,1
,2 −,2

]

.

We varied ,1 ∈ {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} and ,2 ∈ {0.0,0.1,0.3,0.5} and mea-
sured the performance as a function of the size of the perturbation, 1= ‖-‖2 = tr(-1-). Note that
unperturbed mixing matrix refer to the case of {,1,,2} = {0,0}. The experiments are summarized
in Figure 2. The results suggest that for a reasonable size of perturbations, our method is stable.

9. Conclusion

In this paper we obtained a rather surprising result, namely that it is possible to consistently recon-
struct the labels of a data set if we can only obtain information about the proportions of occurrence
of each class (in at least as many data aggregates as there are classes). In particular, we proved that
up to constants, our algorithm enjoys the same rates of convergence afforded to methods which have
full access to all label information.

This finding has significant implications with regard to the amount of privacy afforded by sum-
mary statistics. In particular, it implies that whenever accurate summary statistics exist and when-
ever the available individual statistics are highly dependent on the summarized random variable we
will be able to perform inference on the summarized variable with a high degree of confidence. In
other words, some techniques used to anonymize observations, e.g. demographic data, may not be
really safe (at least when it is possible to estimate the missing information, provided enough data).

Recently Chiaia et al. (2007) applied a summarization technique to infer drug use based on
the concentration of metabolites in the sewage of cities, suburbs or at an even more finely grained
resolution. While this only provides aggregate information about the proportions of drug users,
such data, in combination with detailed demographic information might be used to perform more
detailed inference with regard to the propensity of individuals to use controlled substances. It is in
these types of problem where our method could be applied straightforwardly.
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Figure 2: Performance accuracy of binary classification data sets (n = |Y | = 2) as a function of
the amount of perturbation applied to the mixing matrix, ‖-‖2 = tr(-1-) with - = !̃−
!. 2(a): Adult, 2(b): Australian and 2(c): Breastcancer data sets. x-axis denotes ‖-‖2

as a function of ,1 ∈ {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. Color coded plots
denote ‖-‖2 as a function of ,2 ∈ {0.0,0.1,0.3,0.5}, for example red colored plot refers
to performance when only label proportions of the first set are perturbed.
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Abstract

A Boolean function f is correlation immune if each input variable is independent of the output,
under the uniform distribution on inputs. For example, the parity function is correlation immune.
We consider the problem of identifying relevant variables of a correlation immune function, in the
presence of irrelevant variables. We address this problem in two different contexts. First, we ana-
lyze Skewing, a heuristic method that was developed to improve the ability of greedy decision tree
algorithms to identify relevant variables of correlation immune Boolean functions, given examples
drawn from the uniform distribution (Page and Ray, 2003). We present theoretical results revealing
both the capabilities and limitations of skewing. Second, we explore the problem of identifying
relevant variables in the Product Distribution Choice (PDC) learning model, a model in which the
learner can choose product distributions and obtain examples from them. We prove a lemma estab-
lishing a property of Boolean functions that may be of independent interest. Using this lemma, we
give two new algorithms for finding relevant variables of correlation immune functions in the PDC
model.

Keywords: correlation immune functions, skewing, relevant variables, Boolean functions, product
distributions
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1. Introduction

A Boolean function f : {0,1}n → {0,1} is correlation immune if for every input variable xi, the
values of xi and f (x1, . . . ,xn) are independent, with respect to the uniform distribution on {0,1}n
(cf. Roy, 2002). Examples of correlation immune functions include parity of k ≥ 2 variables, the
constant functions f ≡ 1 and f ≡ 0, and the function f (x) = 1 iff all bits of x are equal.

If a function f is not correlation immune, then given access to examples of f drawn from the
uniform distribution, one can easily identify (at least one) relevant variable of f by finding an input
variable that is correlated with the output of f . This approach clearly fails if f is correlation immune.

We consider the problem of identifying relevant variables of a correlation immune function, in
the presence of irrelevant variables. This problem has been addressed by machine learning practi-
tioners through the development of heuristics, and by computational learning theorists, who have
analyzed the problem in standard learning models. We were motivated by work from both commu-
nities, and present results related to both types of work. First, we present a theoretical analysis of
skewing, a heuristic method that was developed to improve the ability of greedy decision tree learn-
ing algorithms to identify relevant variables of correlation immune functions, given examples drawn
from the uniform distribution (Page and Ray, 2003; Ray and Page, 2004). Second, we present algo-
rithms for identifying relevant variables in the Product Distribution Choice (PDC) model of learn-
ing. The PDC model, which we introduce below, is a variant of the standard PAC learning model
(Valiant, 1984) in which the learner can specify product distributions and sample from them.1

Greedy decision tree learning algorithms perform poorly on correlation immune functions be-
cause they rely on measures such as Information Gain (Quinlan, 1997) and Gini gain (Breiman
et al., 1984) to choose which variables to place in the nodes of the decision tree. The correlation
immune functions are precisely those in which every attribute has zero gain under all standard gain
measures, when the gain is computed on the complete data set (i.e., the truth table) for the function.
Thus when examples of a correlation immune function are drawn uniformly at random from the
complete data set, the learning algorithms have no basis for distinguishing between relevant and
irrelevant attributes.

Experiments have shown skewing to be successful in learning many correlation immune func-
tions (Page and Ray, 2003). One of the original motivations behind skewing was the observation
that obtaining examples from non-uniform product distributions can be helpful in learning particular
correlation immune functions such as parity. Skewing works by reweighting the given training set
to simulate receiving examples from a subclass of product distributions called skewed distributions.
In a skewed distribution, each input variable xi is independently set to 1 with probability pi; further,
there is a fixed probability p, such that each pi is either equal to p or to 1− p.

However, simulating alternative distributions is not the same as sampling directly from them.
The Product Distribution Choice (PDC) model allows such direct sampling. This model can be seen
as a variant of the PAC model, and has similarities with other learning models studied previously
(see Section 5). In the PDC model, the learner has access to an oracle from which it can request
examples. Before requesting an example, the learner specifies a product distribution. The oracle
then supplies an example drawn from that distribution. In our study of the PDC model, we focus

1. Our PDC model algorithms could be presented independently of any discussion of the skewing heuristic. However,
the algorithms rely on technical results that we originally proved to analyze skewing, and we present those technical
results as part of our discussion of skewing. Readers who are only interested in understanding the PDC algorithms
will need to read some of the material on skewing, but can skip Sections 9.3 and 11.
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on a fundamental learning task: the problem of identifying relevant variables in the presence of
irrelevant ones.

Note that by setting the parameters of the product distribution to be equal to 0 and 1, one
can simulate membership queries in the PDC model. However, we are particularly interested in
exploring learning in the PDC model when the parameters of the chosen product distributions are
bounded away from 0 and 1.

Our interest in the PDC model is motivated not just by our study of skewing, but by a more
general question: In learning, how much does it help to have access to data from different distribu-
tions? In practice, it may be possible to obtain data from different distributions by collecting it from
different sources or populations. Alternatively, one may be able to alter environmental conditions to
change the distribution from which data is obtained. In such settings, it can be expensive to sample
from too many distributions, and it may be difficult or impossible to sample from “extreme” distri-
butions. Thus in the PDC model, we are concerned not just with time and sample complexity, but
also in the number and type of product distributions specified.

2. Summary of Results

We begin by showing that, given a complete data set, skewing will succeed. That is, given the com-
plete truth table of a target Boolean function as the training set, skewing will find a relevant variable
of that function. (More particularly, under any random choice of skewing parameters, a single round
of the skewing procedure will find a relevant variable with probability 1.) This result establishes
that the approach taken by skewing is fundamentally sound. However, it says nothing about the ef-
fectiveness of skewing when, as is typically the case, the training set contains only a small fraction
of the examples in the truth table. In particular, this result does not address the question of whether
skewing would be effective given only a polynomial-size sample and polynomial time.

We also analyze a variant of skewing called sequential skewing (Ray and Page, 2004), in the case
that the full truth table is given as input. Experiments indicate that sequential skewing scales better
to higher dimensional problems than standard skewing. We show here, however, that even when the
entire truth table is available as the training set, sequential skewing is ineffective for a subset of the
correlation immune functions known as the 2-correlation immune functions. A Boolean function
f : {0,1}n → {0,1} is 2-correlation immune if, for every pair of distinct input variables xi and
x j, the variables xi, x j, and f (x1, . . . ,xn) are mutually independent. Thus, any practical advantage
sequential skewing has over standard skewing comes at the cost of not working on this subset of
functions.

We present two new algorithms in the PDC model for identifying a relevant variable of an n-
variable Boolean function with r relevant variables. The first algorithm uses only r distinct p-biased
distributions (i.e., distributions in which each input variable is independently set to 1 with some
fixed probability p). It runs in time polynomial in n and its sample size, which is O((r+1)2r ln 2nr! ).
(The algorithm is randomized, but we also give a deterministic version achieving slightly different
bounds.) The second algorithm uses O(e3r ln 1!) p-biased distributions, and runs in time polynomial
in n and the sample size, O(e9r(r+ ln n!) ln(

1
!)). Both algorithms choose the distributions they use

non-adaptively. For r = O(logn), only the second algorithm runs in time polynomial in n, but the
first uses O(logn) distributions, whereas the second uses a number of distributions that depends
polynomially on n.
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The second of our two algorithms is based on a new sample complexity result that we prove
using martingales.

Previous algorithms for identifying relevant variables in the PDC model, and achieving bounds
similar to ours, use distributions that are not p-biased, and choose the distributions they use adap-
tively. Independently, Arpe and Mossel (to appear) have recently developed an algorithm that is
similar to our first algorithm. We discuss these related algorithms further in Sections 5 and 10.

Since p-biased distributions are skewed distributions, our algorithms can be viewed as skewing
algorithms for a setting in which it is possible to sample directly from skewed distributions, rather
than to just simulate those distributions.

We also examine skewing in the context for which it was originally designed: learning from a
random sample drawn from the uniform distribution. We prove a negative result in this context, a
sample complexity lower bound for the problem of learning parity functions. Technically, we prove
the bound for a variant of skewing, called skewing with independent samples, that is more amenable
to analysis than standard skewing. For intuitive reasons, and based on experimental evidence, we
think it likely that the bound also holds for standard skewing. The bound implies that skewing with
independent samples requires a sample of size at least n"(logn) to find (with constant probability of
failure) a relevant variable of an n-variable Boolean function computing the parity of logn of its
variables.

Correlation immunity is defined in terms of the uniform distribution. We discuss a natural
extension of correlation immunity to non-uniform product distributions. We give a simple example
of a function that is correlation immune with respect to a non-uniform product distribution. Thus
while functions like parity are difficult for greedy learners when examples come from the uniform
distribution, other functions can be difficult when examples come from another product distribution.

Our analysis of skewing given a complete data set, and our two new algorithms in the PDC
model, are both based on a lemma that we prove which shows that Boolean functions have a certain
useful property. Specifically, we show that every non-constant Boolean function f on {0,1}n has a
variable xi such that induced functions fxi←0 and fxi←1 on {0,1}n−1 (produced by hardwiring xi to
0 and 1) do not have the same number of positive examples of Hamming weight k, for some k. This
lemma may be of independent interest.

3. Organization of the Paper

We first give some background on skewing in Section 4. In Section 5, we discuss related work.
Section 6 contains basic definitions and lemmas, including characterizations of correlation immune
functions, and simple lemmas on quantities such as Gini gain and the magnitude of the first-order
Fourier coefficients. It also contains a simple example of a function that is correlation immune with
respect to a non-uniform product distribution. Section 7 discusses sample complexity bounds used
later in the paper, and proves an upper bound on the estimation of Gini gain, based on martingales.

In Section 8, we prove the lemma showing the useful property of Boolean functions.
We begin our analysis of skewing in Section 9 with results for the setting in which the entire

truth table is given as the training set.
Section 10 contains our two new algorithms for the PDC model. It also contains a discussion of

two PDC algorithms that are implicit in the literature.
Finally, Section 11 contains our sample complexity lower bounds on learning parity functions

using skewing with independent samples.
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4. Background on Skewing

As a motivating example, suppose we have a Boolean function f (x1, . . . ,xn) whose value is the par-
ity of r of its variables. Function f is correlation immune. With respect to the uniform distribution
on the domain of f , all n variables of f have zero gain. Equivalently, the first-order Fourier coef-
ficients of f are all zero (cf. Section 6.3). But, with respect to other product distributions on the
examples, the r relevant variables of f have non-zero gain, while the n− r irrelevant variables still
have zero gain (see Page and Ray, 2003; Arpe and Reischuk, 2007). This suggests that learning cor-
relation immune functions might be easier if examples could be obtained from non-uniform product
distributions.

In many machine learning applications, however, we have little or no control over the distribu-
tion from which we obtain training data. The approach taken by skewing is to reweight the training
data, to simulate receiving examples from another distribution. More particularly, the skewing algo-
rithm works by choosing a “preferred setting” (either 0 or 1) for every variable xi in the examples,
and a weighting factor p where 1

2 < p < 1. These choices define a product distribution over ex-
amples x ∈ {0,1}n in which each variable xi has its preferred setting with probability p, and the
negation of that setting with probability 1− p.

To simulate receiving examples from this product distribution, the skewing algorithm begins
by initializing the weight of every example in the training set to 1. Then, for each xi, and each
example, it multiplies the weight of the example by p if the value of xi in the example matches its
preferred setting, and by 1− p otherwise. This process is called “skewing” the distribution. The
algorithm computes the gain of each variable with respect to the reweighting. The algorithm repeats
this procedure a number of times, with different preferred settings chosen each time. Finally, it
uses all the calculated gains to determine which variable to output. The exact method used varies in
different skewing implementations. In the paper that introduced skewing, the variable chosen was
the one whose calculated gains exceeded a certain threshold the maximum number of times (Page
and Ray, 2003).

In the context of decision tree learning, skewing is applied at every node of the decision tree,
in place of standard gain calculations. After running skewing on the training set at that node, the
variable chosen by the skewing procedure is used as the split variable at that node.

In investigating skewing, we are particularly interested in cases in which the number of rele-
vant variables is much less than the total number of variables. Optimally, we would like sample
complexity and running time to depend polynomially on n and 2r (and on log 1! ), so that we have a
polynomial-time algorithm when r = O(logn).

5. Related Work

Throughout this paper, we focus on the problem of finding a relevant variable of a target Boolean
function, given a labeled sample drawn from the uniform distribution. Given a procedure that finds
a single relevant variable xi of a Boolean function f (for any f with at most r relevant variables),
it is usually easy to extend the procedure to find all relevant variables of the target by recursively
applying it to the induced functions obtained by hardwiring xi to 1 and 0 respectively.

It is a major open problem whether there is a polynomial-time algorithm for finding relevant
variables of a Boolean function of logn relevant variables (out of n total variables) using examples
from the uniform distribution (cf. Blum, 2003). Mossel et al. (2003) gave an algorithm for learning
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arbitrary functions on r relevant variables, using examples drawn from the uniform distribution, in
time polynomial in ncr and ln(1/!), for some c < 1. This improves on the naı̈ve algorithm which
requires time polynomial in nr for small r. The heart of the algorithm is a procedure to find a
relevant variable. The algorithm of Mossel et al. uses both Gaussian elimination and estimates of
Fourier coefficients, and is based on structural properties of Boolean functions.

Mossel et al. also briefly considered the question of finding a relevant variable, given examples
drawn from a single product distribution [p1, . . . , pn].2 They stated a result that is similar to our
Theorem 9.1, namely that if a product distribution is chosen at random, then with probability 1,
the Fourier coefficient (for that distribution) associated with any relevant variable will be non-zero.
The important difference between that result and Theorem 9.1 is that our theorem applies not to all
random product distributions, but just to random skewed distributions. Since skewed distributions
have measure zero within the space of all product distributions, the result of Mossel et al. does not
imply anything about skewed distributions.

In interesting recent work that was done independently of this paper, Arpe and Mossel (to ap-
pear) addressed the problem of finding relevant variables of a Boolean function, using examples
from biased distributions. If an input to a Boolean function f is drawn from a p-biased distribution,
the output of f on that input is a random variable. Arpe and Mossel observed that the expectation
of this random variable is a polynomial in the bias, and expressed the Maclaurin series for this
polynomial in terms of the Fourier coefficients of f . They used this expression to develop a family
of algorithms for identifying relevant variables. For a function with r relevant variables, the s-th
algorithm estimates Fourier coefficients of Hamming weight up to s, using about r/s distributions.
They also extended their algorithms to allow estimation of biases by sampling, a problem we do not
address here.

Applying the results of Arpe and Mossel for s= 1 to the case of uniformly spaced biases yields
an algorithm that is almost the same as our first algorithm, with a very different correctness proof.
Although Arpe and Mossel did not give the sample size of their algorithm explicitly, some compu-
tations show that it is larger than the sample size we give (in Theorem 10.1), by a factor roughly
equal to 16r. Like us, they used a large deviation bound to derive a sample size, but they did not
estimate parameters for this bound in the best way known. If that is done, following the approach
of Furst et al. (1991), the discrepancy vanishes.

The problem of learning parity functions has been extensively studied in various learning mod-
els. It is a well-known open question whether it is possible to PAC-learn parity functions in poly-
nomial time, using examples drawn from the uniform distribution, in the presence of random clas-
sification noise. This problem is at least as difficult as other open problems in learning; in fact,
a polynomial time algorithm for this problem would imply a polynomial-time algorithm for the
problem mentioned above, learning functions of logn relevant variables using examples from the
uniform distribution (Feldman et al., 2006).

Our lower bound result for parity in Section 11 relies on Fourier-based techniques previously
used to prove lower bounds for learning parity in statistical query (SQ) learning learning models
(Blum et al., 1994; Jackson, 2003). Roughly speaking, statistical query learning algorithms learn
a target function by adaptively specifying predicates that are defined over labeled examples of the

2. They also claimed that this result implies an algorithm for learning functions with r relevant variables in time poly-
nomial in 2r, n, and ln(1/!), given examples drawn from almost any product distribution. However, the justification
for their claim was faulty, since it does not take into account the magnitude of the non-zero Fourier coefficient.
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function. For each such predicate, the algorithm obtains an estimate (within a certain tolerance) of
the probability that a random labeled example of the function satisfies the given predicate.

Jackson (2003) proved that that any “SQ-based” algorithm for learning the class of all parity
functions takes time "(2n/2). Jackson also showed that a more complex argument could be used
to prove a stronger bound of "(2n). For the problem of learning just the parity functions having
r relevant variables, rather than all parity functions, these bounds become "(

(n
r
)1/2

) and "(
(n
r
)

)
respectively. Although skewing with independent samples is not an SQ-based algorithm, we prove
a bound that is similar to the weaker of these two bounds, using a similar technique. (Our bound
is for identifying a single relevant variable of the target parity function, rather than for learning the
function.) The proof of Jackson’s stronger bound relies on properties of SQ-based algorithms that
are not shared by skewing with independent samples, and it is an open question whether a similar
bound is achievable for skewing with independent samples.

Subsequent to Jackson’s work, Yang gave lower bounds for learning parity using “honest” statis-
tical queries (Yang, 2001, 2005). While the gain estimates performed in skewing seem to correspond
to honest statistical queries, the correspondence is not direct. One cannot determine the gain of a
variable with respect to a skewed distribution by using only a single honest statistical query. Be-
cause lower bounds in statistical query models rely on the fact that only limited information can be
obtained from the examples in the sample used to answer a single query, lower bounds for learning
with honest statistical queries do not directly imply lower bounds for skewing with independent
samples. Further, we were unable to verify relevant lower bounds given by Yang.3

At the other extreme from correlation-immune functions are functions for which all first order
Fourier coefficients are non-zero (i.e., all relevant variables have non-zero gain). This is true of
monotone functions (see Mossel et al., 2003). Arpe and Reischuk, extending previous results, gave
a Fourier-based characterization of the class of functions that can be learned using a standard greedy
covering algorithm (Arpe and Reischuk, 2007; Akutsu et al., 2003; Fukagawa and Akutsu, 2005).
This class is a superset of the set of functions for which all relevant variables have non-zero degree-1
Fourier coefficients.

The PDC model investigated in this paper has some similarity to the extended statistical query
model of Bshouty and Feldman (2002). In that model, the learner can specify a product distribution
in which each variable is set to 1 with probability #,1/2 or 1−#, for some constant 1/2 > # > 0.
The learner can then ask a statistical query which will be answered with respect to the specified
distribution. In the PDC model the user can specify an arbitrary product distribution, and can ask
for random examples with respect to that distribution. One could simulate the extended statistical
query model in the PDC model by using random examples (drawn with respect to the specified
distribution) to answer the statistical queries.

A PDC algorithm for finding relevant variables is implicit in the work of Bshouty and Feldman
(2002). We discuss this algorithm in some detail in Section 10. Its running time is polynomial
in n and its sample size, which is O(n216r log2 n! + nr216r log n!). It uses n distributions. Like our
second new algorithm, when r = O(logn) it runs in time polynomial in n and log 1! . Unlike our
new algorithms, it chooses its distributions adaptively, and uses distributions that are not p-biased.

3. Yang (2001) gives an explicit lower bound for learning parity with honest statistical queries, and credits Jackson for
proving this implicitly (Jackson, 2003). However, Jackson’s proof is for a different statistical query learning model,
and his proof does not work for honest statistical queries. Yang (2005) states a general lower bound that can be
applied to parity. Its proof, in particular the discussion of “bad queries,” seems to us to be incomplete.
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Nevertheless, the distributions used by this algorithm are simple. In each, one parameter of the
distribution is equal to 1/2, while the others are all equal to 1/4.

As noted in the introduction, it is possible to simulate membership queries in the PDC model
by setting the parameters of the chosen product distribution to 0 and 1. The problem of efficiently
learning Boolean functions with few relevant variables, using membership queries alone, has been
addressed in a number of papers (Blum et al., 1995; Bshouty and Hellerstein, 1998; Damaschke,
2000). The goal in these papers is to have attribute-efficient algorithms that use a number of queries
that is polynomial in r, the number of relevant variables, but only logarithmic in n, the total number
of variables. Guijarro et al. (1999) investigated the problem of identifying relevant variables in the
PAC model with membership queries.

In Section 10 we briefly describe a simple adaptive algorithm for identifying relevant variables
using membership queries and uniform random examples. The algorithm is not novel; a similar
approach is used in a number of algorithms for related problems (see, e.g., Arpe and Reischuk, 2007;
Guijarro et al., 1999; Blum et al., 1995; Damaschke, 2000; Bshouty and Hellerstein, 1998). The
algorithm runs in time polynomial in n and log 1! , and uses logn+ 1 distinct product distributions.
The time and sample complexity are lower for this algorithm than for the other PDC algorithms
discussed in this paper, and for r = "(logn), the number of product distributions used is lower as
well. However, the other algorithms use only distributions whose parameters are bounded away
from 0 and 1.

We use Fourier-based techniques in proving some of our results. There is an extensive literature
on using Fourier methods in learning, including some of the papers mentioned above. Some of the
most important results are described in the excellent survey of Mansour (1994).

Correlation immune functions and k-correlation immune functions have applications to secure
communication, and have been widely studied in that field (see Roy, 2002, for a survey). Recent
citations stem from the work of Siegenthaler (1984), but research on correlation immune functions
predates those citations. Golomb (1999) has pointed out that his work in the 1950’s on the clas-
sification of Boolean functions (Golomb, 1959) was motivated by the problem, useful for missile
guidance, of designing bit sequences that would resist prediction methods based on correlation.
During that period, as he states, such military applications “were not explicitly mentioned in the
open literature.”

Correlation immune functions have also been studied in other fields under different guises. The
truth table of a k-correlation immune function corresponds to a certain orthogonal array (Camion
et al., 1991). Orthogonal arrays are used in experimental design. The positive examples of a k-
correlation immune function form a k-wise independent set. Such sets are used in derandomization
(see, e.g., Alon, 1996).

It is natural to ask how many n-variable Boolean functions are correlation immune, since these
actually need skewing. The question has been addressed in a number of different papers, as de-
scribed by Roy (2002). Counts of correlation immune functions up to n= 6, separated by Hamming
weight, were computed by Palmer et al. (1992). For larger n one can use the analytic approximation
22n ·Pn, where

Pn =
1
2

(

8
$

)n/2
2−n

2/2
(

1−
n2

4 ·2n

)

.

Since there are 22n Boolean functions in all, Pn approximates the probability that a random Boolean
function is correlation immune. Its main term was found by Denisov (1992), and the rest is the
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beginning of an asymptotic series investigated by Bach (to appear). Even for small n, the above
approximation is fairly accurate. For example, there are 503483766022188 6-variable correlation
immune functions, and the above formula gives 4.99×1014.

Skewing was developed as an applied method for learning correlation-immune Boolean func-
tions. Skewing has also been applied to non-Boolean functions, and to Bayes nets (Lantz et al.,
2007; Ray and Page, 2005).

The main results in Sections 8 and 9 of this paper appeared in preliminary form in Rosell et al.
(2005).

6. Preliminaries

We begin with basic definitions and fundamental lemmas.

6.1 Notation and Terminology

We consider two-class learning problems, where the features, or variables, are Boolean. A target
function is a Boolean function f (x1, . . . ,xn). An example is an element of {0,1}n. Example a ∈
{0,1}n is a positive example of Boolean function f (x1, . . . ,xn) if f (a) = 1, and a negative example
of f if f (a) = 0. A labeled example is an element (a,b) ∈ {0,1}n×{0,1}; it is a labeled example
of f if f (a) = b.

Let f (x1, . . . ,xn) be a Boolean function. The function f is a mapping from {0,1}n to {0,1}. An
assignment a= (a1, . . . ,an) to the variables x1, . . . ,xn is an element of {0,1}n. The assignment ob-
tained from a by negating the ith bit of a is denoted by a¬xi . Given a Boolean function f (x1, . . . ,xn),
variable xi is a relevant variable of f if there exists a ∈ {0,1}n such that f (a) )= f (a¬xi).

A parity function is a Boolean function f (x1, . . . ,xn) such that for some I ⊆ {1, . . . ,n}, f (x) =
(%i∈I xi) mod 2 for all x ∈ {0,1}n.

For &∈ {0,1}n, let &i = (&1, . . . ,&i−1,&i+1, . . . ,&n), that is, &i denotes &with its ith bit removed.
A truth table for a function f over a set of variables is a list of all assignments over the variables,

together with the mapping of f for each assignment. For i ∈ [1 . . .n] and b ∈ {0,1}, fxi←b denotes
the function on n−1 variables produced by “hardwiring” the ith variable of f to b. More formally,
fxi←b : {0,1}n−1→ {0,1} such that for all a∈ {0,1}n−1, fxi←b(a)= f (a1,a2, . . . ,ai−1,b,ai, . . . ,an−1).
The integers between 1 and n are denoted by [1 . . .n]. For real a and b, (a,b) denotes the open

interval from a to b.
For any probability distribution D, we use PrD and ED to denote the probability and expectation

with respect to distribution D. When D is defined on a finite set X and A⊆ X , we define PrD(A) to
be equal to %a∈APrD(a). We omit the subscript D when it is clear from context.

Given a probability distribution D on {0,1}n, and a Boolean function f : {0,1}n → {0,1}, a
random example of f drawn with respect to D is an example (x, f (x)) where x is drawn with respect
to D.

A training set T for learning an n-variable Boolean function is a multiset consisting of elements
in {0,1}n× {0,1}. It defines an associated distribution on {0,1}n× {0,1} sometimes known as
the empirical distribution. For each (a,y) ∈ {0,1}n× {0,1}, the probability of (a,y) under this
distribution is defined to be the fraction of examples in the training set that are equal to (a,y). In
the absence of noise, a training set for learning a function f : {0,1}n → {0,1} is a set of labeled
examples (x, f (x)). The empirical distribution on such a training set can be viewed as a distribution
on {0,1}n, rather than on {0,1}n×{0,1}.
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A product distribution D on {0,1}n is a distribution defined by a parameter vector [p1, . . . , pn] in
[0,1]n where for all x ∈ {0,1}n, PrD[x] = ('i:xi=1 pi)('i:xi=0(1− pi)). The uniform distribution on
{0,1}n is the product distribution defined by [1/2,1/2, . . . ,1/2]. For fixed p∈ (0,1), we use D[p] to
denote the product distribution defined by [p, . . . , p]. Distribution D[p] is the p-biased distribution.

A skew is a pair (&, p) where & ∈ {0,1}n is an assignment, and p ∈ (0,1). We refer to & as the
orientation of the skew, and p as the weighting factor.

Each skew (&, p) induces a probability distribution D(&,p) on the 2n assignments in {0,1}n as
follows. Let (p : {0,1}× {0,1} → {p,1− p} be such that for b,b′ ∈ {0,1}, (p(b,b′) = p if b =
b′ and (p(b,b′) = 1− p otherwise. For each a ∈ {0,1}n, distribution D(&,p) assigns probability
)n
i=1(p(&i,ai) to a. Thus distribution D(&,p) is a product distribution in which every variable is

set to 1 either with probability p, or with probability 1− p. We call distributions D(&,p) skewed
distributions. When &= (1, . . . ,1), the distribution D(&,p) is the p-biased distribution D[p].

We note that in other papers on skewing, p is required to be in (1/2,1), rather than in (0,1).
Here it is more convenient for us to let p be in (0,1). Given any orientation &, and any p ∈ (0,1),
skew (&̄,1− p), where &̄ is the bitwise complement of &, induces the same distribution as (&, p).
Thus allowing p to be in (0,1) does not change the class of skewed distributions, except that we
also include the uniform distribution.

Given a,b ∈ {0,1}n, let *(a,b) = |{i ∈ [1, . . . ,n]|ai )= bi}|, that is, *(a,b) is the Hamming
distance between a and b. For a,b ∈ {0,1}n, let a+ b denote the componentwise mod 2 sum of a
and b. Given c ∈ {0,1}n, we use w(c) to denote the Hamming weight (number of 1’s) of c. Thus
w(a+b) = *(a,b).

In the product distribution choice (PDC) learning model, the learning algorithm has access to
a special type of random example oracle for a target function f (x1, . . . ,xn). This random example
oracle takes as input the parameters [p1, . . . , pn] of a product distribution D over unlabeled exam-
ples (x1, . . . ,xn). The oracle responds with a random example (x1, . . . ,xn) drawn according to the
requested distribution D, together with the value of the target f on that example. The learning algo-
rithm is given as input a confidence parameter !, where 0< !< 1. The algorithm is also given n as
input.

6.2 Gain

Greedy tree learners partition a data set recursively, choosing a “split variable” at each step. They
differ from one another primarily in their measures of “goodness” for split variables. The measure
used in the well-known CART system is Gini gain (Breiman et al., 1984). Gini gain was also used
in the decision tree learners employed in experimental work on skewing (Page and Ray, 2003; Ray
and Page, 2004). In this paper, we use the term “gain” to denote Gini gain.

Gini gain is defined in terms of another quantity called the Gini index. Let S be a (multi) set of
labeled examples. Let S1 = {(x,y) ∈ S|y = 1} and S0 = {(x,y) ∈ S|y = 0}. The Gini index of S is
2 |S1||S0||S|2 . Let H̃(S) denote the Gini index of S.

Let xi be a potential split variable. Let T1 = {(x,y)∈ S|xi = 1} and T0 = {(x,y)∈ S|xi = 0}. The
Gini index of S conditional on xi is defined to be H̃(S|xi) := |T1|

|S| H̃(T1) + |T0|
|S| H̃(T0). In decision tree

terms, this is the weighted sum of the Gini indices of the child nodes resulting from a split on xi.
The Gini gain of xi with respect to S is

G(S,xi) = H̃(S)− H̃(S|xi).
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The Gini gain is always a value in the interval [0,1/2]. Some definitions of Gini gain and Gini
index differ from the one above by a factor of 2; our definition follows that of Breiman et al. (1984).

Now suppose that each example in our (multi) set S has an associated weight, a real number
between 0 and 1. We can define the gain on this weighted set by modifying the above definitions
in the natural way: each time the definitions involve the size of a set, we instead use the sum of the
weights of the elements in the set.

We can also define Gini index and Gini gain of variable xi with respect to f : {0,1}n → {0,1}
under a distribution D on {0,1}n. The Gini index of f with respect to a probability distribution
D on {0,1}n is 2PrD[ f = 1](1−PrD[ f = 1]). Let H̃D( f ) denote the Gini index of f with respect
to D. For any potential split variable xi, the Gini index of f with respect to D, conditional on xi
is H̃D( f |xi) := PrD[xi = 0]H̃D( fxi←0)+PrD[xi = 1]H̃D( fxi←1). The Gini gain of a variable xi with
respect to f , under distribution D, is

GD( f ,xi) = H̃D( f )− H̃D( f |xi).

The Gini gain of xi with respect to f , under the uniform distribution on {0,1}n, is equal to the
Gini gain of xi with respect to the training set T consisting of all entries in the truth table of f .

Given a skew (&, p) and a function f , the Gini gain of a variable xi with respect to f under
distribution D(&,p) is equivalent to the gain that is calculated, using the procedure described in
Section 4, by applying skew (&, p) to the training set T consisting of the entire truth table for
f .
The following lemma relates the size of the Gini gain with respect to a distribution D to the

difference in the conditional probabilities PrD[ f = 1|xi = 1]−PrD[ f = 1|xi = 0].

Lemma 1 Let f be an n-variable Boolean function, and let D be a distribution on {0,1}n such that
Pr[xi = 1] is strictly between 0 and 1. Then GD( f ,xi), the Gini gain of variable xi with respect to f ,
under distribution D, is equal to

2pi(1− pi)(PrD[ f = 1|xi = 1]−PrD[ f = 1|xi = 0])2

where pi = PrD[xi = 1].

Proof. Let p = pi, + = PrD[ f = 1], +1 = PrD[ f = 1|xi = 1], and +0 = PrD[ f = 1|xi = 0]. Thus
+= p+1+(1− p)+0.

The Gini gain of xi with respect to f is

2(+(1−+)− p(+1(1−+1))− (1− p)(+0(1−+0)))

= 2(+(1−+)− (p+1+(1− p)+0))+ p+21++20(1− p)
= 2(+(1−+)−++ p+21++20(1− p))
= 2(−+2+ p+21++20(1− p)).

Substituting p+1+(1− p)+0 for +, we get that the last quantity is

= 2(−p2+21−2p(1− p)+0+1− (1− p)2+20+ p+21++20(1− p))
= 2((1− p)p(+21−2+0+1++20))

= 2p(1− p)(+1−+0)
2
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!

Under distribution D on {0,1}n, xi and (the output of) f are independent iff GD( f ,xi) = 0.

6.3 Fourier Coefficients

Given a Boolean function f : {0,1}n → {0,1}, define an associated function F = 1− 2 f . That is,
F : {0,1}n → {1,−1} is such that F(x) = 1−2 f (x) for all x ∈ {0,1}n. The function F can be seen
as an alternative representation of Boolean function f , using−1 and 1 respectively to represent true
and false outputs, rather than 1 and 0.

For every z ∈ {0,1}n, let ,z : {0,1}n → {1,−1} be such that ,z(x) = (−1)%ni=1 xizi . Thus ,z is
the alternative representation of the function computing the parity of the variables set to 1 by z. For
z ∈ {0,1}n, n-variable Boolean function f , and associated F = 1−2 f , the Fourier coefficient f̂ (z)
is

f̂ (z) := E[F(x),z(x)]
where the expectation is with respect to the uniform distribution on x ∈ {0,1}n.

The degree of Fourier coefficient f̂ (z) is w(z), the Hamming weight of z. The Fourier coefficient
associated with the variable xi is f̂ (z) where z is the characteristic vector of xi (i.e., zi = 1 and
for j )= i, z j = 0). In an abuse of notation, we will use f̂ (xi) to denote this Fourier coefficient.
Thus f̂ (xi) = E[F(x)(1− 2xi)]. The function F can be expressed by its Fourier series, as we have
F(x) = %z∈{0,1}n f̂ (z),z(x).

Fourier coefficients can be generalized from the uniform distribution to product distributions, as
described by Furst et al. (1991). Let D be a product distribution on {0,1}n defined by parameters
[p1, . . . , pn], all of which are strictly between 0 and 1. For z ∈ {0,1}n, let -D,z : {0,1}n → {0,1}
be such that -D,z(x) = 'i:zi=1

µi−xi
&i

where µi = pi is ED[xi] and &i =
√

pi(1− pi) is the standard
deviation of xi under D. The Fourier coefficient f̂D(z), for product distribution D, is

f̂D(z) := ED[F(x)-D,z(x)].

When D is the uniform distribution, this is the ordinary Fourier coefficient.
Parseval’s identity, applied to the Fourier coefficients of product distributions, states that

%
z∈{0,1}n

f̂D
2
(z) = 1.

The Fourier coefficient associated with the variable xi, with respect to product distribution D, is
f̂D(z), where z is the characteristic vector of xi. Abusing notation as before, we will use f̂D(xi) to
denote this Fourier coefficient. Thus

f̂D(xi) =
piED[F(x)]−ED[xiF(x)]

√

pi(1− pi)
.

The next lemma shows that the gain of a variable and its Fourier coefficient are closely related.

Lemma 2 Let f be an n-variable Boolean function, and let D be a product distribution over {0,1}n
defined by [p1, . . . , pn], such that each pi ∈ (0,1). Then

f̂D(xi) = 2
√

pi(1− pi)(PrD[ f = 1|xi = 1]−PrD[ f = 1|xi = 0])

and
GD( f ,xi) = f̂ 2D(xi)/2.
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Proof. By definition,

f̂ (xi) =
piED[F(x)]−ED[xiF(x)]

√

pi(1− pi)
.

Let + = PrD[ f = 1] (which equals PrD[F = −1]), +1 = PrD[ f = 1|xi = 1], and +0 = PrD[ f =
1|xi = 0].

Since piED[F(x)] = pi(1−2+), ED[F(x)xi] = pi(1−2+1), and += pi+1+(1− pi)+0, it follows
that

piED[F(x)]−ED[xiF(x)] = 2pi(−+++1)

= 2pi(−pi+1− (1− pi)+0++1)

= 2pi(1− pi)(+1−+0).

Dividing by
√

pi(1− pi), we have that

f̂D(xi) = 2
√

pi(1− pi)(PrD[ f = 1|xi = 1]−PrD[ f = 1|xi = 0]).

The lemma follows immediately from Lemma 1. !

The following important facts about first-order Fourier coefficients for product distributions are
easily shown. For D a product distribution on {0,1}n where each pi ∈ (0,1),

1. If xi is an irrelevant variable of a Boolean function f , then f̂D(xi) = 0.

2. GD( f ,xi) = 0 iff f̂D(xi) = 0.

6.4 Correlation Immune Functions

For k≥ 1, a Boolean function is defined to be k-correlation immune if for all 1≤ d ≤ k, all degree-d
Fourier coefficients of f are equal to 0. An equivalent definition is as follows (Xiao and Massey,
1988; Brynielsson, 1989). Let x1, . . . ,xn be random Boolean variables, each chosen uniformly and
independently. Let y= f (x1, . . . ,xn). Then f is k-correlation immune if and only if, for any distinct
variables xi1 , . . . ,xik of f , the variables y,xi1 ,xi2 , . . . ,xik are mutually independent.

A greedy decision tree learner would have difficulty learning k-correlation immune functions us-
ing only k-lookahead; to find relevant variables in the presence of irrelevant ones for such functions,
it would need to use k+1-lookahead.

A Boolean function is correlation immune if it is 1-correlation immune. Equivalently, a Boolean
function f is correlation immune if all variables of f have zero gain for f , with respect to the uniform
distribution on {0,1}n. As can be seen from Lemma 1, this is the case iff for every input variable
xi of the function, Pr[ f = 1|xi = 1] = Pr[ f = 1|xi = 0], where probabilities are with respect to the
uniform distribution on {0,1}n. The following alternative characterization of correlation-immune
functions immediately follows: A Boolean function is correlation-immune iff

|{a ∈ {0,1}n | f (a) = 1 and ai = 1}| = |{a ∈ {0,1}n | f (a) = 1 and ai = 0}|.
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6.5 Correlation Immune Functions for Product Distributions

Correlation immune functions are defined with respect to the uniform distribution. Here we extend
the definition to apply to arbitrary product distributions with parameters strictly between 0 and 1. In
particular, for such a product distribution D, we can define a function to be correlation immune for
D if either (1) The degree-1 Fourier coefficients with respect to D are all 0, or (2) the gain of every
variable with respect to D is 0, or (3) PrD[ f = 1|xi = 1]−PrD[ f = 1|xi = 0] = 0 for all variables xi
of f . By the results in Section 6, these conditions are equivalent.4

A natural question is whether there are (non-constant) correlation immune functions for non-
uniform product distributions D. There are, as illustrated by the following example, which can be
easily generalized to other similar product distributions.

6.5.1 EXAMPLE

Let n be a multiple of 3, and let D be the product distribution defined by [2/3,2/3, . . . ,2/3].
For any n that is a multiple of 3, we will show that the following function f is correlation

immune with respect to D.
Let f be the n-variable Boolean function such that f (x) = 1 if x = 110110110110 . . . (i.e., n/3

repetitions of 110), or when x is equal to one of the two right-shifts of that vector. For all other x,
f (x) = 0.
To prove correlation immunity, it suffices to show that for each xi, PrD[ f = 1|xi = 1] = PrD[ f =

1].
Each positive example of f has the same probability. It is easy to verify that for each xi, 2/3 of

the positive examples have xi = 1. Thus PrD[ f = 1 and x= 1] = 2/3PrD[ f = 1]. So,

PrD[ f = 1|x= 1] = PrD[ f = 1 and x= 1]/PrD[x= 1]
= (2/3PrD[ f = 1])/(2/3)
= PrD[ f = 1]

!

In Section 9 we will give examples of product distributionsD for which there are no correlation-
immune functions.

7. Estimating First-order Fourier Coefficients and Gain

Fourier-based learning algorithms work by computing estimates of selected Fourier coefficients
using a sample. Given a training set S = {(x(1),y(1)), . . . ,(x(m),y(m))} for a Boolean function f
and z ∈ {0,1}n, the estimated Fourier coefficient for z, calculated on S, with respect to product
distribution D, is

f̂S,D(z) :=
1
m

m

%
j=1

(1−2y( j))-D,z(x( j)).

We will use f̂S,D(xi) to denote f̂S,D(z), where z is the characteristic vector of xi.

4. We do not extend the definition of correlation-immunity to non-product distributions. With respect to a non-product
distribution, it is possible for both relevant and irrelevant variables to have non-zero gain.
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To simplify notation, where D is clear from context, we will often write f̂S(z) instead of f̂S,D(z).
Since -D,z depends on D, calculating f̂S(z) from S requires knowledge of D. Since we will apply
this lemma in the context of the PDC model, in which D is known, this is not a problem for us.

If S is a random sample of f drawn with respect to D, then f̂D(z) = ED[(1−2 f (x))-D,z(x)] and
f̂S,D(z) is the estimate of the expectation ED[(1−2 f (x))-D,z(x)] on sample S.
In Section 10, there are situations in which we will know that, with respect to a known product

distribution D, there exists a relevant variable of a function f whose first-order Fourier coefficient
has magnitude at least q, for some value q. As mentioned earlier, the first-order Fourier coefficients
of irrelevant variables are zero. Thus if one can estimate first-order Fourier coefficients of f so the
estimates each have additive error less than q/2, then a non-empty subset of the relevant variables
of f can be constructed by taking all variables whose Fourier coefficient estimates are at least q/2.
The following lemma gives an upper bound on the sample size that would be needed to produce the
desired estimates with high probability (by setting . = q/2). The lemma is implicit in the paper of
Furst et al. (1991), and follows from a standard bound of Hoeffding.

Lemma 3 Let f be an n-variable Boolean function and let D be a product distribution over {0,1}n
defined by [p1, . . . , pn]. Let +=maxi{1/pi,1/(1− pi)}, .> 0, and 0< !< 1. If S is a set of at least

1
.2
2(+−1) ln

2n
!

random examples of f , drawn from distribution D, then with probability at least 1− !, | f̂S,D(xi)−
f̂D(xi)| < . for all variables xi of f .

The above lemma is useful only in situations in which the parameters of D are known, so that
f̂D can be computed. A similar bound can be applied when D is an unknown product distribution,
and its parameters are estimated from the sample (see Furst et al., 1991).

Skewing works by estimating gain, rather than by estimating first-order Fourier coefficients.
More generally, one can use gain estimates rather than Fourier coefficient estimates to try to identify
relevant variables of a function (assuming some have non-zero gain). Below in Lemma 6 we give a
sample-complexity bound for estimating gain. We prove this bound using martingales. In contrast to
the bound given in Lemma 3, this bound can be applied in cases where the distribution is unknown
and arbitrary (i.e., it does not have to be a product distribution).

Before presenting the martingale-based bound, however, we first prove a bound that easily fol-
lows from the work of Furst et al. (1991) and the relationship between gain and first-order Fourier
coefficients given in Lemma 2. The bound itself is the same as the bound for estimating Fourier
coefficients given in Lemma 3. Algorithmically, the bound applies to the following procedure for
estimating G(D,xi), when D is a known product distribution. Given a sample S, use it to com-
pute the estimate f̂S(xi) of the Fourier coefficient of xi. If f̂S(xi) is in the interval [−1,1], then let
f̃S(xi) = f̂S(xi), otherwise, let f̃S(xi) = 1 if f̂S(xi) is positive, and f̃S(xi) =−1 otherwise. Thus f̃S(xi)
is f̂S(xi), restricted to the interval [-1,1]. Output ( f̃S(xi))2/2 as the estimate for GD( f ,xi).

Lemma 4 Let f be an n-variable Boolean function and let D be a product distribution over {0,1}n
defined by [p1, . . . , pn]. Let +=maxi{1/pi,1/(1− pi)}, .> 0, and 0< !< 1. If S is a set of

1
.2
2(+−1) ln

2n
!
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random examples of f , drawn from distribution D, then with probability at least 1−!, |( f̃S(xi))2/2−
GD( f ,xi)|≤ ..

Proof. By Lemma 2, GD( f ,xi) = f̂ 2D(xi)
2 . Let Y = f̂D(xi) and let Ỹ = f̃S(xi). By Lemma 3, with

probability at least 1− !, | f̂S(xi)−Y | < .. As noted by Furst et al. (1991), since Y is a Fourier co-
efficient, Y ∈ [−1,1], and thus restricting the estimate of Y to [−1,1] can only increase its accuracy.
Thus |Ỹ −Y |< . as well. It follows that |Ỹ 2/2−GD( f ,xi)|= |Ỹ 2/2−Y 2/2|= 1

2 |(Ỹ −Y )(Ỹ +Y )|≤
., since |Ỹ +Y |≤ 2. !

The bound in the above lemma is similar to the martingale-based bound we give below in
Lemma 6. The main difference is that it has a factor of (+− 1), meaning that it depends on pi.
In Section 10, Theorem 10.2, we apply Lemma 6 to prove a sample complexity result for an algo-
rithm in the PDC model. In this context, pi is not constant, and applying the bound in Lemma 4
instead would yield a slightly worse sample complexity for the algorithm (by a factor of O(r)). We
now proceed with the presentation of the martingale-based bound. The bound is based on a standard
large deviation estimate, which can be thought of as a “vector” version of the Chernoff bound. It
implies that a martingale is unlikely to wander too far from its initial value.

We recall some definitions. Let Z(0),Z(1), . . . be a discrete-time Markov process in Rk with
differences bounded by c. That is, Z(0),Z(1), . . . are random variables taking values in Rk, such
that the distribution of Z(t + 1) given Z(u) for all u ≤ t depends only on Z(t), and for each pair
Z(t),Z(t+ 1) the L2 norm ||Z(t+ 1)−Z(t)|| is at most c. We call the process a martingale if for
all t ≥ 0, E[Z(t)] exists, and E[Z(t+ 1)|Z(t)] = Z(t). (More general definitions exist, but this will
suffice for our purpose.)

Lemma 5 Let Z(t) be a martingale in Rk with differences bounded by c. Then for any /> 0,

Pr[ ||Z(t)−Z(0)||≥ / ] ≤ 2exp(
−/2

2tc2
). (1)

Proof See, for example, Pinelis (1992). !

Lemma 6 Let f be an n-variable Boolean function and let D be a product distribution over {0,1}n
whose parameters are in (0,1). Let .> 0, and 0< !< 1. If S is a set of at least

256ln(2n/!)/.2

random examples of f , drawn from distribution D, then with probability at least 1− !, |G(S,xi)−
GD( f ,xi)|≤ . for all variables xi of f .

Proof Let xi be a variable, and consider the 2×2 table

f = 0 f = 1

xi = 0 a1 a2
xi = 1 a3 a4

In this table, the a j’s are probabilities, so that a1 denotes the probability (under D) that xi = f = 0,
and similarly for the others. Therefore, 0≤ a j ≤ 1, and %a j = 1.
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By drawing a random sample S of f from distribution D, we get counts m1,m2,m3,m4 corre-
sponding to the a j’s. For example, m2 is the number of examples in S for which xi = 0 and f = 1.
We can view the sampling procedure as happening over time, where the tth example is drawn at
time t.

At times t = 0,1,2, . . ., we can observe

Z(t) := (m1−a1t,m2−a2t,m3−a3t,m4−a4t).

By the definition of Z,

E[Z(t+1)−Z(t)|Z(t)] = a1(1−a1,−a2,−a3,−a4)+a2(−a1,1−a2,−a3,−a4)
+a3(−a1,−a2,1−a3,−a4)+a4(−a1,−a2,−a3,1−a4)

= (0,0,0,0)

where the last equation follows because %a j = 1. Thus Z(0),Z(1), . . . is a martingale in R4. Also,
Z(t+1)−Z(t) equals, up to symmetry, (1−a1,−a2,−a3,−a4). Since a22+a23+a24 ≤ 1,

(1−a1)2+a22+a23+a24 ≤ 2,

and the martingale has differences bounded by c=
√
2.

The gain of xi in f with respect to distribution D is

GD( f ,xi) = 2 [+(1−+)− p+1(1−+1)− (1− p)+0(1−+0)]

where
+= Pr[ f = 1] = a2+a4,

p= Pr[xi = 1] = a3+a4,

+0 = Pr[ f = 1|xi = 0] =
a2

a1+a2
,

and
+1 = Pr[ f = 1|xi = 1] =

a4
a3+a4

.

Substituting these into the above gain formula and simplifying, we get

GD( f ,xi) = 2
[

(a1+a3)(a2+a4)−
a3a4
a3+a4

−
a1a2
a1+a2

]

.

Define the function G(a1, . . . ,a4) to be equal to the right hand side of the above equation. This is a
continuous function of the a j’s, on the simplex a j ≥ 0, %a j = 1.

Observe that
0<

0
0a j

(

a jak
a j +ak

)

=
1

(a j/ak +1)2
< 1,

if a j,ak > 0, and

0≤
0
0a j

(a1+a3)(a2+a4) ≤%ai = 1.

This implies that
∣

∣0G/0a j
∣

∣ ≤ 2 in the interior of the simplex.
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Suppose that b = (b1,b2,b3,b4) and c = (c1,c2,c3,c4) are two points on the interior of the
simplex with max j{|c j−b j|} = µ. Let a(t) = b+ t(c−b) be the the parametric equation of the line
from b to c, and let G̃(t) = G(a(t)).

Letting ai(t) be the ith coordinate of a(t), and applying the chain rule, we get that

0G̃
0t

=%
i

0G̃
0ai

dai
dt

. (2)

Since G̃(0) = G(b) and G̃(1) = G(c), by the mean value theorem, there exists t∗ ∈ [0,1] such
that

0G̃
0t

(t∗) = G(c)−G(b). (3)

For (a1, . . . ,a4) in the interior of the simplex,
∣

∣0G̃/0ai
∣

∣≤ 2. By the definition of a(t), |dai/dt|=
|ci−bi|≤ µ. Thus (2) and (3) imply that

|G(c)−G(b)|≤ 8µ. (4)

Since G is continuous, this holds even for probability vectors b and c on the boundary.
We seek a sample size m large enough that (for all variables xi)

Pr[ |G(S,xi)−GD( f ,xi)|≥ . ] ≤
!
n
.

Let the empirical frequencies be â j = mi/m, i= 1, . . . ,4. By (4), it will suffice to make m large
enough that, with probability at least 1−!/n, we observe |â j−a j|< ./8 for all j. Let’s call a sample
“bad” if for some j, |mj/m−a j| ≥ ./8. Since Z(0) =!0, this implies that ||Z(m)−Z(0)||≥ .m/8.
If we take /= .m/8, c=

√
2, and t = m in the Chernoff bound (1), we see that

Pr[ bad sample ] ≤ 2e−
.2m
256 .

This will be less than !/n as soon as

m≥
256ln(2n/!)

.2
.

!

8. A Property of Non-constant Boolean Functions

In this section we prove a property of Boolean functions that we will use repeatedly in subsequent
sections. The property is given in the following lemma.

For k ∈ [0, . . . ,n], letWk( f ) denote the number of positive assignments of f of Hamming weight
k.

Lemma 7 Let f be a non-constant Boolean function on {0,1}n. Then there exists a variable xi of
f and a number k ∈ [0, . . . ,n−1] such that Wk( fxi←0) )=Wk( fxi←1).
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Proof. Assume no such variable xi exists.
Without loss of generality, assume that f (0n) = 1. We prove that for all a ∈ {0,1}n, f (a) = 1.

The proof is by induction on the Hamming weight of a, w(a). The base case clearly holds.
Now let j ∈ [0, . . . ,n− 1]. Assume inductively that all assignments x of Hamming weight j

satisfy f (x) = 1. Let l ∈ [1, . . . ,n]. Let t ∈ {0,1}n be an arbitrary assignment of Hamming weight j
such that tl = 0; t exists because j < n. By the initial assumption,Wj( fxl←0) =Wj( fxl←1). Further,
by the inductive assumption, for every assignment u such that w(u) = j, f (u) = 1. There are
precisely

(n−1
j

)

assignments u such that w(u) = j and ul = 0. All these assignments u satisfy f (u) =

1, and thus Wj( fxl←0) =
(n−1

j
)

. Therefore Wj( fxl←1) =
(n−1

j
)

also. The quantity
(n−1

j
)

is equal to
the total number of assignments in {0,1}n−1 of Hamming weight j. It follows that fxl←1(b) = 1
for all b ∈ {0,1}n−1 of Hamming weight j, and hence f (a) = 1 for all a ∈ {0,1}n such al = 1 and
w(a) = j+1. Since index l is arbitrary, and each assignment of Hamming weight j+1 has at least
one variable set to 1, it follows that f (a) = 1 for all a ∈ {0,1}n of Hamming weight j+1.

We have thus shown by induction that f (a) = 1 for all a ∈ {0,1}n. This contradicts the property
that f is a non-constant function. !

Lemma 7 can be restated using the terminology of weight enumerators. Given a binary code
(i.e., a subset C of {0,1}n, for some n), the weight enumerator of this code is the polynomial
P(z) = %kWkzk, where Wk is the number of codewords (elements of C) of Hamming weight k.
Lemma 7 states that if f is a non-constant Boolean function, then it has a relevant variable xi such
that codesC0 := {x∈ {0,1}n−1| fxi←0(x) = 1}, andC1 := {x∈ {0,1}n−1| fxi←1(x) = 1} have different
weight enumerators.

Lemma 7 proves the existence of a variable xi with a given property. One might conjecture
that all relevant variables of f would share this property, but this is not the case, as shown in the
following simple example.

8.1 Example

Let f (x1,x2,x3) = (¬x1 ∨¬x2 ∨ x3)(x1 ∨ x2 ∨¬x3). Let & = (0,0,0). Since f (1,1,0) )= f (0,1,0),
x1 is a relevant variable of f . It is straightforward to verify that, for k ∈ {0,1,2}, Wk( fx1←0) =
Wk( fx1←1). The same holds for x2 by symmetry. Variable x3 is the only one satisfying the property
of Lemma 7.

9. Skewing Given the Entire Truth Table

In this section, we analyze skewing in an idealized setting, where the available data consists of the
full truth table of a Boolean function. We then do an analysis of sequential skewing in the same
setting.

9.1 A Motivating Example

Recall that a correlation immune function f (x1, . . . ,xn) is one such that for every variable xi, the
gain of xi with respect to f is 0 under the uniform distribution on {0,1}n. We are interested in
the following question: When skewing is applied to a correlation immune function, will it cause a
relevant variable to have non-zero gain under the skewed distribution? (Equivalently, will it cause
one of the first-order Fourier coefficients to become non-zero?) We show that, in the idealized
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setting, the answer to this question is “yes” for nearly all skews. The answer is somewhat different
for sequential skewing.

When we use a skew (&, p) to reweight a data set that consists of an entire truth table, the
weight assigned to each assignment a in the truth table by the skewing procedure is PD(&,p)(a),
where D(&, p) is the skewed distribution defined by (&, p). Moreover, the gain of a variable xi as
measured on the weighted truth table is precisely the gain with respect to D(&, p). By Lemma 1,
it follows that a variable xi will have gain on the skewed (weighted) truth table data set iff PD( f =
1|xi = 1)−PD( f = 1|xi = 0) )= 0, where D = D(&, p). If xi is a relevant variable, the difference
PD( f = 1|xi = 1)−PD( f = 1|xi = 0) can be expressed as a polynomial h(p) in p of degree at most
r−1, where r is the number of relevant variables of f . If xi is an irrelevant variable, PD( f = 1|xi =
1)−PD( f = 1|xi = 0) = 0. The main work in this section will be to show that for some relevant
variable xi, this polynomial is not identically 0. Having proved that, we will know that for at most
r−1 values of weight factor p (the roots of h), h(p) = 0. For all other values of p, h(p) )= 0, and xi
has gain in f with respect to D(&, p).

We give an example construction of the polynomial h(p) for a particular function and skew.
Consider a Boolean function f over 5 variables whose positive examples are (0,0,0,1,0),
(0,0,1,0,0), (1,0,1,1,0). Assume a skew (&, p) where & = (1, . . . ,1) and p is some arbitrary
value in (0,1). Let D = D(&,p). There are two positive examples of f setting x1 = 0, namely
(0,0,0,1,0) and (0,0,1,0,0). It is easy to verify that PD( f = 1|x1 = 0) = 2p(1− p)3. Simi-
larly, PD( f = 1|x1 = 1) = p2(1− p)2. Let h(p) = PD( f = 1|x1 = 1)−PD( f = 1|x1 = 0). Then
h(p) = p2(1− p)2−2p(1− p)3, which is a degree-4 polynomial in p. This polynomial has at most
4 roots, and it is not identically 0. It follows that for all but at most 4 choices of p, h(p) is not zero.
Thus if we choose p uniformly at random from (0,1), with probability 1, x1 has gain for ( f ,&, p).

9.2 Analysis of Skewing Given the Complete Truth Table

For f : {0,1}n → {0,1} a Boolean function, k ∈ [1 . . .n], and & ∈ {0,1}n, letW ( f ,&,k) denote the
number of assignments b ∈ {0,1}n such that f (b) = 1 and *(b,&) = k.

Using the symmetry of the Boolean hypercube, we can generalize Lemma 7 to obtain the fol-
lowing lemma, which we will use in our analysis of skewing.

Lemma 8 Let f be a non-constant Boolean function on {0,1}n, & ∈ {0,1}n be an orientation, and
i ∈ [1 . . .n]. Then there exists a variable xi of f and k ∈ [0, . . . ,n− 1] such that W ( fxi←1,&i,k) )=
W ( fxi←0,&i,k).

Proof. Recall that given two assignments a and b, we use a+b to denote componentwise addi-
tion mod 2. Let f ′ : {0,1}n → {0,1} be such that f ′(x) = f (x+&).

Applying Lemma 7 to function f ′, let xi and k be such thatWk( f ′xi←1) )=Wk( f ′xi←0).
For all a ∈ {0,1}n−1, f ′xi←&i(a) = 1 and w(a) = k iff fxi←0(a+ &i) = 1 and *(a+ &i,&i) =

w((a+&i)+&i) = k. It follows thatWk( f ′xi←&i) =W ( fxi←0,&i,k). The analogous statement holds
forWk( f ′xi←¬&i). ThusW ( fxi←1,&i,k) )=W ( fxi←0,&i,k). !

We now show the connection between the above lemma and gain.

Lemma 9 Let f be a Boolean function on {0,1}n, & ∈ {0,1}n be an orientation, and i ∈ [1 . . .n].
Let r be the number of relevant variables of f . If W ( fxi←1,&i, j) = W ( fxi←0,&i, j) for all j ∈
[1 . . .n−1], then for all weighting factors p ∈ (0,1), xi does not have gain for ( f ,&, p). Conversely,
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if W ( fxi←1,&i, j) )=W ( fxi←0,&i, j) for some j ∈ [1 . . .n−1], then for all but at most r−1 weighting
factors p ∈ (0,1), xi has gain for ( f ,&, p).

Proof. Let f0 denote fxi←0 and f1 denote fxi←1. Let & ∈ {0,1}n be an orientation.
For real valued variables y and z and for a ∈ {0,1}n, let T&,a(y,z) be the multiplicative term

yn−dzd , where d = *(&,a), the Hamming distance between & and a. So, for example, if &= (1,1,1)
and a= (1,0,0), T&,a(y,z) = yz2. Note that for p ∈ (0,1), T&,a(p,1− p) is the probability assigned
to a by distribution D(&,p). For & ∈ {0,1}n and f a Boolean function on {0,1}n, let g f ,& be the
polynomial in y and z such that

g f ,&(y,z) = %
a∈{0,1}n: f (a)=1

T&,a(y,z). (5)

Thus, for example, if f is the two-variable disjunction f (x1,x2) = x1 ∨ x2, and & = (1,1), then
g f ,& = y1z1+ y1z1+ y2z0 = y2+2yz.

Define g′(y,z) = g f1,&i(y,z)− g f0,&i(y,z), where g is as given in Equation 5. The quantity
W ( f ,&,k) is the value of the coefficient of the term yn−kzk in g f ,&. Thus g′(y,z) = %n−1

j=0 c jyn−1− jz j,
where for all j ∈ [0 . . .n−1], c j =W ( f1,&i, j)−W ( f0,&i, j).

Let p ∈ (0,1). Under distribution D(&,p), Pr( f = 1|xi = 0) and Pr( f = 1|xi = 1) are equal to
g f0,&i(p,1− p) and g f1,&i(p,1− p) respectively. Thus by Lemma 1, xi has gain for ( f ,&, p) iff
g′(p,1− p) = 0.

Let h(p) be the polynomial in p such that h(p) = g′(p,1− p).
If xi is irrelevant, then for all fixed p ∈ (0,1), xi has no gain for ( f ,&, p). Further,W ( f1,&i, j) =

W ( f0,&i, j) for all j ∈ [0 . . .n−1]. Thus the lemma holds if xi is irrelevant. In what follows, assume
xi is relevant.

IfW ( f1,&i, j) =W ( f0,&i, j) for all j ∈ [0 . . .n− 1], then h(p) is identically 0 and for all fixed
p ∈ (0,1), xi has no gain for ( f ,&, p).

Suppose conversely thatW ( f1,&i, j) )=W ( f0,&i, j) for some j. Then g′(y,z) is not identically 0.
We will show that h(p) = g′(p,1− p) is a polynomial of degree at most r−1 that is not identically
0.

We begin by showing that h(p) has degree at most r−1. Let xl )= xi be an irrelevant variable of
f . Assume without loss of generality that &l = 1. Then since f (axl←1) = 1 iff f (axl←0) = 1,

g f ,&(p,1− p) = %
a∈{0,1}n: f (a)=1,al=1

pT&l ,al (p,1− p)+ %
a∈{0,1}n: f (a)=1,al=0

(1− p)T&l ,al (p,1− p)

= %
a∈{0,1}n: f (a)=1,al=0

T&l ,al (p,1− p)

= %
b∈{0,1}n−1: fxl←0(b)=1

T&l ,b(p,1− p)

= g fxl←0,&l (p,1− p).

That is, g f ,&(p,1− p) is equal to the corresponding polynomial for the function g fxl←0,&l (p,1− p)
produced by hardwiring irrelevant variable xl to 0. By repeating this argument, we get that g f ,& =
g f̃ ,&̃ where f̃ is the function obtained from f by hardwiring all of its irrelevant variables to 0, and
&̃ is & restricted to the relevant variables of f . Thus g has degree at most r and h(p) = g′(p,1− p)
has degree at most r−1.
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Let j′ be the smallest j such thatW ( f1,&i, j) )=W ( f0,&i, j). Then c j′ is non-zero, and all (non-
zero) terms of g′(y,z) have the form c jyr−1− jz j where j≥ j′. We can thus factor out z j′ from g′(y,z)
to get g′(y,z) = z j′g′′(y,z), where g′′(y,z) = %r−1

j= j′ c jy
r−1− jz j− j′ . One term of g′′ is c j′yr−1− j′ , while

all other terms have a non-zero power of z. Thus for p = 1, g′′(p,1− p) = c j′ which is non-zero,
proving that g′′(p,1− p) is not identically 0. Hence h(p) = z j′g′′(p,1− p) is the product of two
polynomials that are not identically 0, and so h(p) is not identically 0.

Finally, since h(p) is a polynomial of degree at most r−1 that is not identically 0, it has at most
r−1 roots. It follows that there are at most r−1 values of p in (0,1) such that xi does not have gain
for ( f ,&, p). !

We now present the main theorem of this section.

Theorem 9.1 Let f be a non-constant Boolean function on {0,1}n. Let & ∈ {0,1}n be an orienta-
tion, and let p be chosen uniformly at random from (0,1). Then with probability 1 there exists at
least one variable xi such that xi has gain for ( f ,&, p).

Proof. Let & ∈ {0,1}n be a fixed orientation. Let r be the number of relevant variables of f .
Let xi be the variable of f whose existence is guaranteed by Lemma 8. Thus W ( fxi←1,&i, j) )=
W ( fxi←0,&i, j) for some j. By Lemma 9, for all but at most r−1 weighting factors p ∈ (0,1), xi has
gain for ( f ,&, p). With probability 1, a random p chosen uniformly from (0,1) will not be equal to
one of those r−1 weighting factors. !

Using the techniques above, one can also show that for certain p-biased distributions D[p], there
do not exist any non-constant correlation immune functions with respect to D[p]. Let f be a non-
constant Boolean function defined on {0,1}n. By Lemma 8 and the proof of Lemma 9, there is
some variable xi such that associated polynomial h(p) (defined with respect to & = (1, . . . ,1)) is
not identically 0. It follows that for any p that is not a root of h, xi has gain for ( f ,(1, . . . ,1), p),
and thus f is not correlation immune with respect to distribution D[p]. The polynomial h(p) has
degree at most n−1 and integer coefficients with magnitude at most 2n, which restricts its possible
roots. For example, every root of h must be algebraic. Thus for any non-algebraic p, there are no
Boolean functions that are correlation immune with respect to D[p]. Similarly, since h has integral
coefficients with magnitude bounded by 2n, an elementary theorem on polynomials (sometimes
called the “Rational Zeroes Theorem”) immediately implies that any rational zero of h must have
magnitude at least 1/2n. Thus for any p such that 0 < p < 1/2n, there are no n-variable Boolean
functions that are correlation immune with respect to D[p].

With Theorem 9.1 we have shown that for any non-constant function and any orientation &,
there exists at least one variable xi such that if p is chosen randomly, then, with probability 1, xi
has gain with respect to f under the distribution D(&,p). However, the theorem says nothing about
the magnitude of the gain. If the chosen p is close to a root of the polynomial h(p), defined in the
proof of Lemma 9, then the gain will be very small. Moreover, the gain can vary depending on the
function and on the skew. (We will prove a result later in the paper, in Lemma 11, which shows that
with a certain probability, a randomly chosen p will cause xi to have reasonably large gain.)

The identity of the variable(s) having gain can also depend on the skew. There may be relevant
variables other than xi that don’t have gain for any p. In the example given following the proof of
Lemma 7, variables x1 and x2 will have no gain for ( f ,(0, . . . ,0), p) no matter the choice of p.

Theorem 9.1 suggests that skewing is an effective method for finding relevant variables of a non-
constant Boolean f , because for nearly all skews, there will be at least one variable with non-zero
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gain. Equivalently, for nearly all skewed distributions, function f is not correlation immune with
respect to that distribution. However, in practice—even in a noiseless situation where examples are
all labeled correctly according to a function f—we do not usually have access to the entire truth
table, and thus are not able to compute the exact gain of a variable under distribution D(&,p) defined
by the skew. We can only estimate that gain. Moreover, in practice we cannot sample from the
distribution D(&,p). Instead, we simulate D(&,p) by reweighting our sample.

9.3 Analysis of Sequential Skewing

Sequential skewing is a variant of skewing. In sequential skewing, n iterations of reweighting are
performed, where n is the number of input variables of the target function. On the jth iteration,
examples are reweighted according to the preferred setting of the jth variable alone; if the setting of
the jth variable matches the preferred setting, the example is multiplied by p, otherwise the example
is multiplied by 1− p. The reweighting in the jth iteration is designed to simulate the product
distribution in which each variable other than x j is 1 with probability 1/2, and variable x j has its
preferred setting with probability p. In addition to the n iterations of reweighting, the gain of every
variable is also calculated with respect to the original, unweighted, data set. As in standard skewing,
the algorithm uses the calculated gains to determine which variable to output.

In the reweighting done by sequential skewing, there is a chosen variable xi, a preferred setting
c ∈ {0,1} of that variable, and a weight factor p ∈ (0,1). We thus define a (sequential) skew to
be a triple (i,c, p), where i ∈ [1 . . .n], c ∈ {0,1}, and p ∈ (0,1). Define the probability distribution
D(i,c,p) on {0,1}n such that for a ∈ {0,1}n, D(i,c,p) assigns probability p · (12)

n−1 to a if ai = c, and
(1− p) · (12)

n−1 otherwise. Thus D(i,c,p) is the distribution that would be generated by applying
sequential skewing, with parameters xi, c and p, to the entire truth table.

Let f be a Boolean function on {0,1}n. We say that variable x j has gain for ( f , i,c, p) if under
distribution D(i,c,p), G( f |x j) > 0. By Lemma 1, x j has gain for (i,c, p) iff under distribution D(i,c,p),
Pr[ f = 1|x j = 1] )= Pr[ f = 1|x j = 0].

We will use the following lemma.

Lemma 10 A Boolean function f is 2-correlation immune iff it is 1-correlation immune, and for all
pairs i< j, the inputs xi and x j are independent given f (x1, . . . ,xn).

Proof. We first prove the forward direction. If f is 2-correlation immune, then it is certainly
1-correlation immune, and all triples ( f ,xi,x j) are mutually independent.

The reverse direction is a calculation. Let 1,+,2 ∈ {0,1}. Using pairwise independence, and
then 1-correlation immunity, we get

Pr[ f = 1,xi = +,x j = 2] = Pr[ f = 1]Pr[xi = +,x j = 2 | f = 1]

= Pr[ f = 1]Pr[xi = + | f = 1]Pr[x j = 2 | f = 1]

= Pr[ f = 1]Pr[xi = +]Pr[x j = 2].

This holds even if Pr[ f = 1] = 0, for then both sides vanish. !

The constant functions f = 0 and f = 1 are 2-correlation immune, as is any parity function
on 3 or more variables. We have enumerated the 2-correlation immune functions up to n = 5 and
found that when n ≤ 4, the only such functions are as above, but for n = 5, others begin to appear.
Specifically, there are 1058 2-correlation immune functions of 5 variables, but only 128 parity

2397



HELLERSTEIN, ROSELL, BACH, RAY AND PAGE

functions and complements of these (with no constraint on the relevant variables). (Our enumeration
method works as follows. Vanishing of the relevant Fourier coefficients can be expressed as a linear
system with 0-1 solutions, which we can count by a “splitting” process reminiscent of the time-
space tradeoff for solving subset sum problems, Odlyzko 1980.) Denisov (1992) gave an asymptotic
formula for the number of 2-correlation immune functions, and from this work it follows that for
large n, only a small fraction of the 2-correlation immune functions will be parity functions.

The following theorem shows that, in our idealized setting, sequential skewing can identify a
relevant variable of a function, unless that function is 2-correlation immune. It follows that sequen-
tial skewing will be ineffective in finding relevant variables of a parity function, even with unlimited
sample sizes. In contrast, standard skewing can identify relevant variables of a parity function if the
sample size is large enough.

Theorem 9.2 Let f be a correlation-immune Boolean function on {0,1}n, let i ∈ [1 . . .n], and let
c ∈ {0,1}. Let p be chosen uniformly at random from (0,1). If the function f is 2-correlation
immune, then for all j ∈ [1 . . .n], x j has no gain for ( f , i,c, p). Conversely, if f is not 2-correlation
immune, then for some j ∈ [1 . . .n], x j has gain for ( f , i,c, p) with probability 1.

Proof. Let f be a correlation immune function. Let i ∈ [1 . . .n] and c ∈ {0,1}.
Assume c= 1. The proof for c= 0 is symmetric and we omit it. Consider skew (i,c, p), where

p ∈ (0,1). Let f−1(1) = {x ∈ {0,1}∗| f (x) = 1}.
Let j ∈ [1 . . .n]. Let A1 = |{a ∈ f−1(1) | ai = c and a j = 1}|, and B1 = |{a ∈ f−1(1) | ai )=

c and a j = 1}|. Similarly, let A0 = |{a ∈ f−1(1) | ai = c and a j = 0}|, B0 = |{a ∈ f−1(1) | ai )=
c and a j = 0}|.

Under distribution D(i,c,p), if j )= i, Pr[ f = 1|x j = 1] = (A1p+B1(1− p))
(1
2
)n−2. If j = i, then

because c= 1, Pr[ f = 1|x j = 1] = A1
( 1
2
)n−1. Similarly, if j )= i, Pr[ f = 1|x j = 0] = (A0p+B0(1−

p))
(1
2
)n−2. If j = i, Pr[ f = 1|x j = 0] = B0

( 1
2
)n−1.

The difference Pr[ f = 1|x j = 1]−Pr[ f = 1|x j = 0] is a linear function in p. If i )= j, this function
is identically zero iff A1 = A0 and B1 = B0. If it is not identically 0, then there is at most one value
of p ∈ (0,1) for which it is 0. If i = j, this function is identically zero iff A1 = B0. Also note that
for i= j, A0 = 0 and B1 = 0 by definition.

In addition, since f is correlation immune, A1 +A0 = B1 +B0. If i = j, then Pr[ f = 1|x j =
1]−Pr[ f = 1|x j = 0] is therefore identically zero and xi has no gain for ( f , i,c, p). If j )= i, then
x j has no gain for ( f , i,c, p) iff A1 = A0 = B1 = B0. This latter condition is precisely the condition
that Pr[xi = 1∧ x j = +| f = 2] = Pr[xi = 1| f = 2]Pr[x j = +| f = 2] under the uniform distribution
on {0,1}n. If this condition holds for all pairs i )= j, no variable x j has gain for ( f , i,c, p), and by
Lemma 10, f is 2-correlation immune. Otherwise for some i )= j, x j has gain for ( f , i,c, p) for all
but at most 1 value of p. The theorem follows. !

10. Exploiting Product Distributions

Until now we have simulated alternative product distributions through skewing. But simulating al-
ternative distributions is not the same as sampling directly from them. In particular, skewing can
magnify idiosyncracies in the sample in a way that does not occur when sampling from true alter-
native distributions. We now consider the PDC model, in which the learning algorithm can specify
product distributions and request random examples from those distributions. In practice it might be
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possible to obtain examples from such alternative distributions by working with a different popu-
lation or varying an experimental set-up. Intuitively, one might expect a high degree of overhead
in making such changes, in which case it would be desirable to keep the number of alternative
distributions small.

10.1 FindRel1: Finding a Relevant Variable Using r Distributions

Let Booleanr,n denote the Boolean functions on n variables that have at most r relevant variables. We
first present a simple algorithm that we call FindRel1, based on Theorem 9.1. It identifies a relevant
variable of any target function in Booleanr,n, with probability 1− !, by estimating the first-order
Fourier coefficient of xi for r distinct product distributions. The algorithm assumes that r is known.
If not, standard techniques can be used to compensate. For example, one can repeat the algorithm
with increasing values of r (perhaps using doubling), until a variable is identified as being relevant.

The algorithm works as follows. For j ∈ {1, . . . ,r}, let Dj denote the product distribution that
sets each of the n input variables to 1 with probability j/(r+1). For each Dj, the algorithm requests
a sample S j of sizem0 (we will specifym0 in the proof below). Then, for each of the n input variables
xi, it estimates the associated first-order Fourier coefficients from sample S j by computing f̂S,Dj(xi).
At the end, the algorithm outputs the set of all variables xi whose gain on some S j exceeded a
threshold 30 (also specified below).

Theorem 10.1 For all non-constant f ∈ Booleanr,n, with probability at least 1− ! FindRel1 will
output a non-empty subset of the relevant variables of f . FindRel1 uses a total of O((r+1)2r ln 2nr! )
examples, drawn from r distinct p-biased distributions. The running time of FindRel1 is polynomial
in 2r lnr, n, and ln 1! .

Proof. Since f is non-constant, it has at least one relevant variable. Recall that for distribution
D on {0,1}n, GD( f ,xi) denotes the gain of xi with respect to f under distribution D. Recall also that
D[p] denotes the product distribution that sets each variable xi to 1 with probability p.

By the arguments in Section 9, for each relevant variable xi, PrD[p][ f = 1|xi = 1]−PrD[p][ f =
1|xi = 0] can be written as a polynomial of degree r− 1 in p. Call this polynomial hi(p). For all
irrelevant variables xi of f , hi(p) is identically 0.

Now let xi be a relevant variable such that hi(p) is not identically 0. By Theorem 9.1, f has at
least one such relevant variable. The polynomial hi(p) has degree at most r− 1 and hence has at
most r−1 roots. Therefore, for at least one j ∈ {1, . . . ,r}, hi( j/(r+1)) )= 0.

Let j∗ ∈ {1, . . . ,r} be such that hi( j∗/(r+ 1)) )= 0. Since hi has integer coefficients and is of
degree at most r− 1, it follows that hi( j∗/(r+ 1)) = b/(r+ 1)r−1, for some integer b. Thus the
absolute value of hi( j∗/(r+ 1)) is at least 1/(r+ 1)r−1, and by Lemma 2, the first-order Fourier

coefficient (for distribution Dj∗) associated with xi has magnitude at least 2
√

j∗
(r+1) (1−

j∗
r+1 )

(r+1)(r−1) , which is

lower bounded by q := 2
√

1
(r+1) (1−

1
r+1 )

(r+1)(r−1) . Set 30 in the description of FindRel1 to be q/2=
√
r/(r+1)r.

For any single Dj, it follows from Lemma 3 that if m0 = 2(r+1)2rr−1 ln 2nr! , if we use a sample
of size m0 drawn from Dj and estimate all n first-order Fourier coefficients for distribution Dj using
that sample, then with probability at least 1− !

r , each of the estimates will have additive error less
than q/2. Thus with probability at least 1−!, this will hold for all r of the Dj. The total number of
examples drawn by FindRel1 is rm0 = 2(r+1)2r ln 2nr! .
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Since for some relevant variable, the associated Fourier coefficient is at least q for some Dj, and
for all irrelevant variables, the associated Fourier coefficient is 0 for all Dj, the theorem follows. !

Skewing uses gain estimates, rather than estimates of the first-order Fourier coefficients. Find-
Rel1 can be modified to use gain estimates. By a similar argument as above, it follows from
Lemma 1 that for distribution Dj∗ , some relevant variable has gain at least
q′ = 2 1

r+1(1−
1
r+1)(

1
r+1)

2r−2 with respect to that distribution. We could thus modify FindRel1
to output the variables whose gain exceeds q′/2. Then Lemma 6 implies that a sample of size
m0 = O(r4r−2 ln nr! ) would suffice for the modified FindRel1 to output a non-empty subset of rele-
vant variables. This sample complexity bound is higher than the bound for the original FindRel1
based on Fourier coefficients.

10.2 FindRel2: Lowering the Sample Complexity

We now present our second algorithm, FindRel2. As discussed in the introduction, it has an advan-
tage over FindRel1 in terms of running time and sample complexity, but requires examples from a
larger number of distinct distributions. FindRel2 is based on the following lemma.

Lemma 11 Let f have r ≥ 1 relevant variables. Suppose p is chosen uniformly at random from
(0,1). Then there exists a relevant variable xi of f , and a value (≥ 2e−3r such that with probability
at least (/2 (with respect to the choice of p), GD[p]( f ,xi) ≥ (/2.

Proof By Theorem 9.1 and its proof, there exists a variable xi of f such that PrD[p][ f = 1|xi =
1]−PrD[p][ f = 1|xi = 0] can be expressed as a polynomial hi(p), which has integer coefficients and
is not identically 0. Let g(p) = GD[p]( f ,xi). By Lemma 1,

g(p) = 2p(1− p)hi(p)2.

Then there are integers 20, . . . ,22r such that g(p) = 2%2rj=0 2 j p j. Since g(p) is non-negative but not
identically 0, we have

( :=
Z 1

0
g(p)dp= 2

2r

%
j=0

2 j
j+1

> 0.

This is at least 2/L, where L is the least common multiple of {1, . . . ,2r+1}. Observe that for each
prime, the number of times it appears in the prime factorization of L equals the number of its powers
that are ≤ 2r+1. By an explicit form of the prime number theorem,

logL= %
pk≤2r+1
k≥1

log p≤ 3r.

(This can be checked directly for r = 1, and for r ≥ 2 we can use Theorem 12 of Rosser and
Schoenfeld 1962.) Thus, ( ≥ 2e−3r. Now let 1 be the fraction of p ∈ (0,1) for which g(p) ≥ (/2.
Then,

(=
Z

g≥(/2
g+

Z

g<(/2
g≤ 1+((/2)(1−1).

This implies 1≥ (/(2− () > (/2, and the lemma follows. !

Note that the proof of the above lemma relies crucially on the non-negativity of the gain function,
and thus the same proof technique could not be applied to first-order Fourier coefficients, which can
be negative.
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It is possible that the bounds in the above result could be improved by exploiting how g comes
from the Boolean function f . Without such information, however, the bounds are essentially the best
possible. Indeed, by properly choosing g, one can use this idea to estimate the density of primes
from below, and get within a constant factor of the prime number theorem. See Montgomery (1994)
for a discussion of this point.

FindRel2, our second algorithm for finding a relevant variable, follows easily from the above
lemma. We describe the algorithm in terms of two size parameters m1 and m2, and a classification
threshold 31.

The algorithm begins by choosing m1 values for p, uniformly at random from (0,1). Let P be
the set of chosen values. For each value p ∈ P, the algorithm requests m2 random examples drawn
with respect to distribution D[p], forming a sample Sp. Then, for each of the n input variables xi, it
computes G(Sp,xi), the gain of xi on the sample Sp. At the end, the algorithm outputs all variables
xi such that G(Sp,xi) > 31 for at least one of the generated samples Sp.

Using Lemma 11, we can give values to parameters m1, m2, and 31 in FindRel2 and prove the
following theorem.

Theorem 10.2 For all non-constant f ∈ Booleanr,n, with probability at least 1− !, FindRel2 will
output a non-empty subset of the relevant variables of f . FindRel2 uses O(e9r(r+ ln(n/!)) ln(1/!))
examples, drawn from O(e3r log 1!) product distributions. The running time is polynomial in 2

r, n,
and log 1! .

Proof. As in the proof of Theorem 10.1, f has at least one relevant variable xi for which hi(p)
is not identically 0. Let xi∗ denote this variable. Let !1 = !2 = !/2.

If the statement of Lemma 11 holds for any value of ( at all, it holds for the lower bound.
We therefore let ( = 2e−3r. By Lemma 11, for at least a (/2 fraction of the values of p ∈ (0,1),
GD[p]( f ,xi∗)≥ (/2. Let us call these “good” values of p. If a single p is chosen uniformly at random
from (0,1), then the probability p is good is at least (/2.

Letm1 = e3r ln 1
!1

= 2
( ln

1
!1
. If the algorithm choosesm1 independent random values of p to form

the set P, the probability that P does not contain any good p’s is at most (1−(/2)m1 ≤ e−m1(/2 = !1.
Suppose P contains at least one good p. Let p∗ be such a p. Let 2 = GD[p∗]( f ,xi∗). Then,

2≥ (/2= e−3r. Set 31 in the algorithm to e−3r/2, the resulting lower bound for 2/2.
Set m2 in the algorithm to be equal to 256ln(2nm1/!2)/321.
Consider any p ∈ P. Then by Lemma 6, with probability at least 1− !2/m1, |G(Sp,xi)−

GD[p](xi)| < 2/2 for all variables xi. Since |P| = m1, it follows that |G(Sp,xi)−GD[p](xi)| < 2/2
holds for all variables xi and for all p ∈ P, with probability at least 1−!2.

Assuming P has at least one good p∗, GD[p∗](xi∗) ≥ 2, while for all p ∈ P and all irrelevant xi,
and GD[p](xi) = 0. Thus if |G(Sp,xi)−GD[p](xi)|< 2/2 holds for every xi and p ∈ P, and P contains
at least one good p, then FindRel2 outputs a non-empty subset of relevant variables of f .

It follows that the the probability that the algorithm does not output a non-empty subset of the
relevant variables is at most !1+!2 = !, as claimed.

It remains to estimate the number of examples used, which is m1m2. The only problem is with
m2. Since 0 < !1 < 1/2, we have 0 < ln(2ln(1/!1)) < ln(1/!1). Using this, together with the
definitions of m1 and (, we find that

ln(2nm1/!2) = ln(2n)+ ln(2ln(1/!1))− ln(()− ln(!2)
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≤ ln(n)+ ln(1/!1)+3r+ ln(1/!2)
= ln(n)+3r+2ln(2/!).

Combining this with the definitions of m2 and 31 gives us m2 = O(e6r(r+ ln(n/!))), and since
m1 = e3r ln(2/!), we get m1m2 = O(e9r(r+ ln(n/!)) ln(1/!)). !

We do not know the best exponents for which a result like Theorem 10.2 is true. We do note,
however, that more careful use of the prime number theorem would allow the exponents 9 and 3 to
be lowered to 6+o(1) and 2+o(1), respectively.

Using not too many more examples, the random choices can be eliminated from FindRel2, as
follows. Since the g appearing in the proof of Lemma 11 is a polynomial, the set of p ∈ [0,1] for
which g(p) ≥ (/2 is a finite union of closed intervals. Their lengths sum to at least (/2 = e−3r.
In the open interval between any two adjacent closed intervals, there must be a local minimum of
g, which is a zero of g′, a polynomial of degree ≤ 2r− 1. It follows that there are at most 2r of
these closed intervals, making one have length at least h := e−3r/(2r). Our algorithm can therefore
try p = h,2h,3h, . . . and be guaranteed that one of these is good. (We don’t have to try p = 0,1
because g vanishes there.) With this modification, the number of distributions becomes O(re3r) and
the number of examples becomes O(re9r(r+ ln(n/!))).

10.3 Two Algorithms From The Literature

Another approach to finding a relevant variable is implicit in work of Bshouty and Feldman (2002).
We present it briefly here.

Bshouty and Feldman’s approach is based on the following facts. Variable xi is relevant to f iff
there is some Fourier coefficient f̂ (z) with zi = 1 and f̂ (z) )= 0. Further, if f has r relevant variables,
the absolute value of every non-zero Fourier coefficient of f is at least 1/2r.

For b ∈ {0,1}n−1, let 1b denote the concatenation of 1 with b. Let w(b) denote the Ham-
ming weight of b. Define R1( f ) = %b∈{0,1}n−1 f̂ 2(1b)( 1

22w(b) ). Thus R1 is a weighted sum of the
Fourier coefficients f̂ (z) such that z1 = 1. For any z ∈ {0,1}n, the quantity f̂ 2(z) is non-zero
only if {i|zi = 1} ⊆ {i| variable xi is a relevant variable of f}. Therefore, if f̂ 2(1b) )= 0, then
w(b) ≤ r. It follows that if x1 is relevant, R1 > 1/24r. If x1 is irrelevant, R1 = 0 . Let D′ be the
product distribution specified by the parameter vector [1/2,1/4,1/4, . . . ,1/4] and let w ∈ {0,1}n
be such that w = [1,0, . . . ,0]. As shown by Bshouty and Feldman (2002, proof of Lemma 11),
R1 = Ex∼U [Ey∼D′ [ f (y),w(x⊕ y)]]2. Here x ∼U denotes that the first expectation is with respect to
an x drawn from the uniform distribution on {0,1}n, and y∼D′ denotes that the second expectation
is with respect to a y drawn from distribution D′. For any fixed x, Ey∼D′ [ f (y),w(x⊕ y)]] can be
estimated by drawing random samples (y, f (y)) from D′. The quantity R1 can thus be estimated
by uniformly generating values for x, estimating Ey∼D′ [ f (y),w(x⊕ y)]] for each x, and then taking
the average over all generated values of x. Using arguments of Bshouty and Feldman, which are
based on a standard Hoeffding bound, it can be shown that for some constant c1, a sample of size
O(2c1r log2( 1!′ )) from D′ suffices to estimate R1 to within an additive error of 1

24r+1 , with probability
1− !′. If the estimate obtained is within this error, then whether xi is relevant can be determined
by just checking whether the estimate is greater than 1

24r+1 . We can apply this procedure to all n
variables xi, each time taking a sample of y’s from a new distribution. Setting !′ = !/n, it follows
that a sample of size O(n2c1r log2 n!) suffices to determine, with probability 1− !, which of the n
variables are relevant. Thus this algorithm finds all the relevant variables.
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The above algorithm uses examples chosen from n product distributions. Each product distribu-
tion has exactly one parameter set to 1/2, and all other parameters set to a fixed value # )= 1/2 (here
#= 1/4, although this choice was arbitrary).

If the parameters of the product distribution can be set to 0 and 1, membership queries can be
simulated. We now briefly describe an algorithm that uses membership queries and uniform random
examples to find a relevant variable of a target function with at most r relevant variables. A similar
approach is used in a number of algorithms for related problems (see, e.g., Arpe and Reischuk,
2007; Guijarro et al., 1999; Blum et al., 1995; Damaschke, 2000; Bshouty and Hellerstein, 1998).

The algorithm first finds the value of f (a) for some arbitrary a, either by asking a membership
query or choosing a random example. Then, the algorithm draws a random sample S (with respect
to the uniform distribution) of size 2r ln 1! . Assuming the function contains at least one relevant
variable, a random example has probability at least 1/2r of being negative, and probability at least
1/2r of being positive. Thus if the function has at least 1 relevant variable, with probability at
least 1− !, S contains an example a′ such that f (a′) )= f (a). (If it contains no such example, the
algorithm outputs the constant function f (x) = f (a).) The algorithm then takes a and a′, and using
membership queries, executes a standard binary-search procedure for finding a relevant variable of
a Boolean function, given a positive and a negative example of that function (cf. Blum et al., 1995,
Lemma 4). This procedure makes O(logn) membership queries.

If we carry out the membership queries in the PDC model by asking for examples from product
distributions with parameters 0 and 1, the result is an algorithm that finds a relevant variable with
probability at least 1− ! using O(logn) product distributions and O(2r log 1!) random examples.
The random examples can also be replaced by membership queries on (n,r) universal sets (see, e.g.,
Bshouty and Hellerstein, 1998).

11. On the Limitations of Skewing

One of the motivating problems for skewing was that of learning the parity of r of n variables.
The results of Section 9 imply that skewing is effective for learning parity functions if the entire
truth table is available as the training set. (Of course, if the entire truth table is available, there are
much more straightforward ways of identifying relevant variables.) Equivalently, we can identify
relevant variables if we are able to determine the exact gain of each variable with respect to skewed
distributions. In practice, though, we need to estimate gain values based on a random sample. The
random sample must be large enough so that we can still identify a relevant variable, even though
the gain estimates for the variables will have some error. We now consider the following sample
complexity question: how large a random sample is needed so that skewing can be used to identify
a relevant variable of the parity function, with “high” probability? We would like to know how
quickly this sample complexity grows as r and n grow.

Skewing is not a statistical query learning algorithm, but it is based on the estimation of statis-
tics. In what follows, we use techniques that were previously employed to prove lower bounds for
statistical query learning of parity functions.

It is difficult to analyze the behavior of skewing because the same sample is used and re-used for
many gain calculations. This introduces dependencies between the resulting gain estimates. Here
we consider a modification of the standard skewing procedure, in which we pick a new, independent
random sample each time we estimate the gain of a variable with respect to a skew (&, p). We call
this modification “skewing with independent samples.” Intuitively, since the motivation behind
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skewing is based on estimating statistical quantities, choosing a new sample to make each estimate
should not hurt accuracy. In experiments, skewing with independent samples was more effective in
finding relevant variables than standard skewing (Ray et al., 2009).

For simplicity, assume that the variable output by the skewing algorithm is one that exceeds a
fixed threshold the maximum number of times. However, as we discuss below, our lower bounds
would also apply to implementations using other output criteria.

We prove a sample complexity lower bound for skewing with independent samples, when ap-
plied to a target function that is the parity of r of n variables. The proof is based on the fact that the
skewing algorithm does not use all the information in the examples. Given a skew (&, p), and an
example (x, f (x)), the skewing algorithm weights this example according to d = *(x,&), the Ham-
ming distance between x and &. The calculation of the gain for a variable xi on the weighted data set
then depends only on f (x), whether xi = &i, and on d. These three pieces of information together
constitute a “summary” of the example (x, f (x)), for orientation &. The skewing algorithm uses
only these summaries; it does not use any other information about the examples. We will argue that
the summaries do not contain enough information to identify relevant variables of a parity function,
unless the sample size is “large”.

We begin by proving a technical lemma, using techniques of Jackson (2003) and Blum et al.
(1994).

Let Parityr,n be the set of parity functions on n variables which have r relevant variables. So
for each f ∈ Parityr,n, f (x1, . . . ,xn) = xi1 + xi2 + . . . + xir where the sum is taken mod 2, and the
xi j are distinct. Let NEQ(b,c) denote the inequality predicate, that is, NEQ(b,c) = 1 if b )= c and
NEQ(b,c) = 0 if b= c.

Let d ∈ {0, . . . ,n} and b,c ∈ {0,1}. For f ∈ Parityr,n and & ∈ {0,1}n, the quantity
Pr[NEQ(&i,xi) = b, f (x) = c, and *(x,&) = d] has the same value for all relevant variables xi of
f (where the probability is with respect to the uniform distribution over all x ∈ {0,1}n). The
same holds for all irrelevant variables xi of f . We define S f ,&1 (b,c,d) = Pr[NEQ(&i,xi) = b, f (x) =

c, and *(x,&) = d]when xi is a relevant variable of f , and S f ,&2 (b,c,d) = Pr[NEQ(&i,xi) = b, f (x) =
c, and *(x,&) = d] when xi is an irrelevant variable of f .

As an example, suppose &′ ∈ {0,1}n is such that f (&′) = 0. Then S f ,&
′

1 (0,1,d) =
1
2n %t∈T

(r−1
t

)(n−r
d−t

)

where T = {t ∈ Z|t is odd and 0 ≤ t ≤ d}. Similarly, S f ,&
′

2 (1,0,d) =
1
2n %t∈T ′

(r
t
)(n−r−1

d−1−t
)

where T ′ = {t ∈ Z|t is even and 0≤ t ≤ d−1}.
For variable xi and orientation &, we call (NEQ(&i,xi), f (x),*(x,&)) the summary tuple cor-

responding to (x, f (x)). Thus for target function f ∈ Parityr,n and orientation &, S
f ,&
1 (b,c,d) is the

probability of obtaining a summary tuple (b,c,d) for variable xi when xi is relevant, and S f ,&2 (b,c,d)
is the same probability in the case that xi is irrelevant.

We prove the following upper bound on |S f ,&1 (b,c,d)−S f ,&2 (b,c,d)|.

Lemma 12 For all & ∈ {0,1}n, f ∈ Parityr,n, b,c ∈ {0,1} and d ∈ {0, . . . ,n},

|S f ,&1 (b,c,d)−S f ,&2 (b,c,d)|≤
1
2

(

(

n−1
r

)−1/2
+

(

n−1
r−1

)−1/2
)

.
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Proof. Suppose first that f (&) = 0. For any &′ ∈ {0,1}n such that f (&′) = 0, S f ,&
′

1 (b,c,d) =

S f ,&1 (b,c,d), and the analogous equality holds for S2. Without loss of generality, we may therefore
assume that &= 0n.

Let S1 = S f ,&1 (b,c,d) and S2 = S f ,&2 (b,c,d). Let 2 = |S1 − S2|. Define a function 4i(x,y) :
{0,1}n×{0,1}→ {1,−1} such that 4i(x,y) = −1 if NEQ(&i,xi) = b, y= c, and *(x,&) = d, and
4i(x,y) = 1 otherwise.

For xi a relevant variable of f , E[4i(x, f (x))] = 1−2S1 (where the expectation is with respect to
the uniform distribution on x∈ {0,1}n). Similarly, for xi an irrelevant variable of f , E[4i(x, f (x))] =
1−2S2.

Let x j be a relevant variable of f , and let xk be an irrelevant variable of f .
Since |S1−S2| = 2,

|E[4 j(x, f (x))]−E[4k(x, f (x))]| = 2|S1−S2| = 22.

As noted by Jackson (2003), it follows from an analysis in Blum et al. (1994) that for any parity
function h on n variables, and any function g : {0,1}n+1 → {1,−1},

E[g(x,h(x))] = ĝ(0n+1)+ ĝ(z1)

where z∈ {0,1}n is the characteristic vector of the relevant variables of h (equivalently, ,z = 1−2h),
and z1 denotes the assignment (z1, . . . ,zn,1).

Thus we have
E[4 j(x, f (x))] = 4̂ j(0n+1)+ 4̂ j(z1)

E[4k(x, f (x))] = 4̂k(0n+1)+ 4̂k(z1)

where z is the characteristic vector of the relevant variables of f . It follows from the definition of 4i
that 4̂ j(0n+1) = 4̂k(0n+1). Therefore,

|4̂ j(z1)− 4̂k(z1)| = 22.

Now consider any other parity function f ′ ∈ Parityr,n. Since &= 0n, f ′(&) = f (&) = 0. There-
fore, S f

′,&
1 = S1 and S f

′,&
2 = S2. If relevant variable x j of f is also a relevant variable of f ′, then

E[4 j(x, f ′(x))] = 4̂ j(0n+1)+ 4̂ j(z′1), where z′ is the characteristic vector of the relevant variables
of f ′. Thus 4̂ j(z′1) = 4̂ j(z1).

There are
(n−1
r−1

)

functions f ′ ∈ Parityr,n such that x j is a relevant variable of f ′. It follows that
there are at least

(n−1
r−1

)

Fourier coefficients of 4 j that are equal to 4̂ j(z1). By Parseval’s identity,

|4̂ j(z1)|≤
(

n−1
r−1

)−1/2
.

Similarly, E[4k(x, f (x))] = E[4k(x, f ′(x))] for all f ′ ∈ Parityr,n such that xk is an irrelevant vari-
able of f ′. Since there are

(n−1
r

)

such f ′, an analogous argument shows that

|4̂k(z1)|≤
(

n−1
r

)−1/2
.

Thus
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2 =
|4̂ j(z1)− 4̂k(z1)|

2

≤
|4̂ j(z1)|+ |4̂k(z1)|

2

≤
1
2

(

(

n−1
r

)−1/2
+

(

n−1
r−1

)−1/2
)

.

Thus the lemma holds in the case that f (&) = 0.
Now suppose that f (&) = 1. Given a ∈ {0,1}n, f (a) = 1 iff a differs from & in an even number

of its relevant variables (and in an arbitrary number of its irrelevant variables). Further, f (a) = 1
iff a differs from 0n in an odd number of its relevant variables (and in an arbitrary number of its
irrelevant variables). Thus S f ,&1 (b,c,d) = S f ,0

n

1 (b,1− c,d) and S f ,&2 (b,c,d) = S f ,0
n

2 (b,1− c,d).
Since the bound proved above for the case f (&) = 0 holds for arbitrary c, it holds for |S f ,0

n

1 (b,1−
c,d)−S f ,0

n

2 (b,1− c,d)|, and the lemma follows. !

The above lemma gives an upper bound on 2 = |S f ,&1 (b,c,d)− S f ,&2 (b,c,d)|. Another way
to prove such an upper bound is to use the fact that a statistical query algorithm could deter-
mine whether variable xi was relevant by asking a query requesting the value of Pr[NEQ(&i,xi) =
b, f (x) = c, and *(x,&) = d] within tolerance 2/2 (assuming 2 > 0). Queries of this type could be
used to find all the relevant variables of f , which uniquely determines parity function f . If 2 were
too large, this would contradict known lower bounds on statistical learning of parity. This approach
yields a bound that is close to the one given in the lemma above, but the proof is less direct. (See,
for example, Blum et al. 1994 for the definition of the statistical query model.)

We now prove a sample complexity lower bound for learning parity functions, using skewing
with independent samples.

Theorem 11.1 Suppose we use skewing with independent samples to identify a relevant variable
of f , where f ∈ Parityr,n. Assuming that the samples are drawn from the uniform distribution, to
successfully output a relevant variable with probability at least µ requires that the total number of

examples used in making the gain estimates be at least (µ− r
n )min{(

n−1
r−1)

1/2
,(n−1r )

1/2}
4(n+1) .

Proof. Consider running skewing with independent samples with a target function f ∈ Parityr,n.
To estimate the gain of a variable xi with respect to a skew (&, p), the skewing algorithm uses
a sample drawn from the uniform distribution. In calculating this estimate, the algorithm does
not use the full information in the examples. For each labeled example (x, f (x)), it uses only the
information in the corresponding summary tuple (b,c,d) = (NEQ(&i,xi), f (x),*(x,&)). We may
therefore assume that the skewing algorithm is, in fact, given only the summary tuples, rather than
the raw examples.

The number of distinct possible summary tuples is at most 4(n+1), since there are two possible
values each for b and c, and n+ 1 possible values for d. The uniform distribution on examples x
induces a distribution D on the summary tuples generated for skew (&, p) and variable xi. For fixed
&, distribution D is the same for all relevant variables xi of f . It is also the same for all irrelevant
variables xi of f . Let D&

1 be the distribution for the relevant variables, and D&
2 be the distribution for
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the irrelevant variables. Let q be the distance between D&
1 and D&

2 as measured in the L1 norm. That
is, if K denotes the set of possible summary tuples, then q= %z∈K |PrD&

1
[z]−PrD&

2
[z]|.

Since there are at most 4(n+ 1) possible summary tuples. it follows from Lemma 12 that
q≤ 2(n+1)(

(n−1
r−1

)−1/2
+

(n−1
r

)−1/2
).

Let m be the total number of examples used to estimate the gain of all variables xi under all
skews (&, p) used by the skewing algorithm. Since the L1 distance between D&

1 and D&
2 is at most

q for every skew (&, p) and every variable xi, it follows that during execution of the algorithm,
with probability at least (1− q)m, the summary tuples generated for the relevant variables of f are
distributed in the same way as the summary tuples generated for the irrelevant variables of f .

By the symmetry of the parity function, if the target function f is randomly chosen from
Parityr,n, then with probability at least (1−q)m, the final variable output by the skewing algorithm
when run on this f is equally likely to be any of the n input variables of f . Thus the probability that
the skewing algorithm outputs an irrelevant variable is at least (1−q)m(n−rn ), and the probability that
it outputs a relevant variable is at most 1− (1−q)m(n−rn ) < 1− (1−qm)(1− r

n) < r
n +qm(1− r

n) <
r
n +qm. The first inequality in this sequence holds because (1−q)m ≥ (1−qm), since 0< q< 1.
Since the above holds for a random target function in Parityr,n, it holds for the worst-case f ∈

Parityr,n. It follows that if skewing with independent samples outputs a relevant variable of f (for
any f ∈ Parityr,n) with probability at least µ, then the total number of examples used must be at least
µ− r

n
q . Since q≤ 2(n+1)(

(n−1
r−1

)−1/2
+

(n−1
r

)−1/2
), it follows that 1/q≥ min{(n−1r−1)

1/2
,(n−1r )

1/2}
4(n+1) . !

To make the theorem concrete, consider the case where r= logn. Note that if we simply choose
one of the n variables at random, the probability of choosing a relevant variable in this case is lognn .
It follows from the theorem that for skewing to output a relevant variable with success “noticeably”
greater than random guessing, that is, with probability at least lognn + 1

p(n) , for some polynomial p, it
would need to use more than a superpolynomial number of examples.

The above proof relies crucially on the fact that skewing uses only the information in the sum-
mary tuples. The details of how the summary tuples are used is not important to the proof. Thus
the lower bound applies not only to the implementation of skewing that we assumed (in which the
chosen variable is the one whose gain exceeds the fixed threshold the maximum number of times).
Assuming independent samples, the lower bound would also apply to other skewing implementa-
tions, including, for example, an implementation in which the variable with highest gain over all
skews was chosen as the output variable.

On the other hand, one can also imagine variants of skewing to which the proof would not
apply. For example, suppose that we replaced the single parameter p used in skewing by a vector
of parameters [p1, . . . , pn], so that in reweighting an example, variable xi causes the weight to be
multiplied by either pi or 1− pi, depending on whether there is a match with xi’s preferred setting.
Our proof technique would not apply here, since we would be using information not present in the
summary tuples. To put it another way, the proof exploits the fact that the distributions used by
skewing are simple ones, defined by a pair (&, p). Interestingly, it was our focus on such simple
distributions that led us to the two new algorithms in Section 10.

The negative result above depends on the fact that for f a parity function with r relevant vari-
ables, the distribution of the summary tuples for a relevant variable xi is very close to the distribution
of the summary tuples for an irrelevant variable xi. For other correlation immune functions, the dis-
tributions are further apart, making those functions easier for skewing to handle. For example,
consider Consensusr,n, the set of all n-variable Boolean functions with r relevant variables, whose
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value is 1 iff the r relevant variables are all equal. The functions in this set are correlation im-
mune. Assume n+ r is even. Let d = (n+ r)/2 and &= (1,1, . . . ,1). Let S1 = Pr[xi = 0,*(x,&) =
d, and f (x) = 1] when xi is a relevant variable of f . Let S2 = Pr[xi = 0,*(x,&) = d, and f (x) = 1]
when xi is an irrelevant variable of f . Then S1 = 1

2n
(n−r
n−r
2

)

and S2 = 1
2n (

(n−r−1
n−r
2 −1

)

+
(n−r−1
n+r
2 −1

)

). Then
S1−S2 ="( 12n

(n−r
n−r
2

)

), since the first term of S2 is equal to S1/2, and the second term of S2 is much
smaller than the first. Since

( m
m/2

)

= 3( 2
m

√
m), S1− S2 = "( 1√

n−r2r ). Even for r as large as n/2, this
is "( 1√

n2r ). Note the difference between this quantity and the analogous bound for parity. The

dependence here is on 1
2r rather than on roughly

(n
r
)1/2.

12. Conclusions and Open Questions

In this paper, we studied methods of finding relevant variables that are based on exploiting product
distributions.

We provided a theoretical study of skewing, an approach to learning correlation immune func-
tions (through finding relevant variables) that has been shown empirically to be quite successful. On
the positive side, we showed that when the skewing algorithm has access to the complete truth table
of a target Boolean function—a case in which standard greedy gain-based learners fail—skewing
will succeed in finding a relevant variable of that function. More particularly, under any random
choice of skewing parameters, a single round of the skewing procedure will find a relevant variable
with probability 1.

In some sense the correlation immune functions are the hardest Boolean functions to learn, and
parity functions are among the hardest of these to learn, since a parity function of k+ 1 variables
is k-correlation immune. In contrast to the positive result above, we showed (using methods from
statistical query learning) that skewing needs a sample size that is superpolynomial in n to learn
parity of logn relevant variables, given examples from the uniform distribution.

We leave as an open question the characterization of the functions of logn variables that skewing
can learn using a sample of size polynomial in n, given examples from the uniform distribution.

Skewing operates on a sample from a single distribution, and can only simulate alternative prod-
uct distributions. We used the PDC model to study how efficiently one can find relevant variables,
given the ability to sample directly from alternative product distributions. We presented two new
algorithms in the PDC model for identifying a relevant variable of an n-variable Boolean function
with r relevant variables.

We leave as an open problem the development of PDC algorithms with improved bounds, and
a fuller investigation of the tradeoffs between time and sample complexity, and the number and
types of distributions used. As a first step, it would be interesting to show an algorithm whose
time complexity is polynomial in n when r = logn, using a number of p-biased distributions that is
polynomial in logn. Our lower bound for parity relied on the assumption of independent samples.
We suspect that the lower bound also holds if the assumption is removed, but proving it seems to
require a different approach. As we mentioned earlier, it is a major open problem whether there is a
polynomial-time algorithm for finding relevant variables of a function of logn variables, using only
examples from the uniform distribution.
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Abstract
We study the problem of learning near-optimal behavior in finite Markov Decision Processes
(MDPs) with a polynomial number of samples. These “PAC-MDP” algorithms include the well-
known E3 and R-MAX algorithms as well as the more recent Delayed Q-learning algorithm. We
summarize the current state-of-the-art by presenting bounds for the problem in a unified theoretical
framework. A more refined analysis for upper and lower bounds is presented to yield insight into
the differences between the model-free Delayed Q-learning and the model-based R-MAX.
Keywords: reinforcement learning, Markov decision processes, PAC-MDP, exploration, sample
complexity

1. Introduction

In the reinforcement-learning (RL) problem (Sutton and Barto, 1998), an agent acts in an unknown
or incompletely known environment with the goal of maximizing an external reward signal. In the
most standard mathematical formulation of the problem, the environment is modeled as a finite
Markov Decision Process (MDP) where the goal of the agent is to obtain near-optimal discounted
return. Recent research has dealt with probabilistic bounds on the number of samples required
for near-optimal learning in finite MDPs (Kearns and Singh, 2002; Kakade, 2003; Brafman and
Tennenholtz, 2002; Strehl and Littman, 2005; Strehl et al., 2006a,b). The purpose of this paper is
to summarize this field of knowledge by presenting the best-known upper and lower bounds for
the problem. For the upper bounds, we present constructive proofs using a unified framework in
Section 3.1; these tools may be useful for future analysis. While none of the bounds we present
are entirely new, the main contribution of this paper is to streamline as well as consolidate their
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analyses. In addition, the bounds we present are stated in terms of an admissible heuristic provided
to the algorithm (see Section 1.3) and the (unknown) optimal value function. These bounds are
more refined than the ones previously presented in the literature and more accurately reflect the
performance of the corresponding algorithms. For the lower bound, we provide an improved result
that matches the upper bound in terms of the number of states of the MDP.

An outline of the paper is as follows. This introduction section concludes with a formal spec-
ification of the problem and related work. In Section 2, R-MAX and Delayed Q-learning are de-
scribed. Then, we present their analyses and prove PAC-MDP upper bounds in Section 3. A new
lower bound is proved in Section 4.

1.1 Main Results

We present two upper bounds and one lower bound on the achievable sample complexity of general
reinforcement-learning algorithms (see Section 1.5 for a formal definition). The two upper bounds
dominate all previously published bounds, but differ from one another. When logarithmic factors
are ignored, the first bound, for the R-MAX algorithm, is

Õ(S2A/(!3(1− ")6)),

while the corresponding second bound, for the Delayed Q-learning algorithm, is

Õ(SA/(!4(1− ")8)).

Here, S and A are the number of states and the number of actions, respectively, of the MDP, ! and
# are accuracy parameters, and " is a discount factor. R-MAX works by building an approximate
MDP model and the S2A term in its sample complexity follows from requiring accuracy in each of
the S2A parameters of the model. Delayed Q-learning, on the other hand, does not build an explicit
model and can be viewed as an approximate version of value iteration. Thus, accuracy only needs
to be guaranteed for each of the SA entries in the value function.

While previous bounds are in terms of an upper bound 1/(1− ") on the value function, we
find that tighter bounds are possible if a more informative value-function upper bound is given.
Specifically, we can rewrite the bounds in terms of the initial admissible heuristic values (see Sec-
tion 1.3) supplied to the algorithms, U(·, ·), and the true (unknown) value function V ∗(·). Ignoring
logarithmic factors, for R-MAX the bound is

Õ

(

V 3maxS |{(s,a) ∈ S ×A|U(s,a) ≥V ∗(s)− !}|

!3(1− ")3

)

, (1)

and for Delayed Q-learning

Õ

(

V 3max$(s,a)∈S×A[U(s,a)−V ∗(s)]+
!4(1− ")4

)

, (2)

where Vmax ≥ maxs,aU(s,a) is an upper bound on the admissible heuristic (and also on the true
value function), and [x]+ is defined as max(0,x) for x ∈ R. Thus, we observe that for R-MAX one
factor of SA/(1− ")3 gets replaced by |{(s,a) : U(s,a) ≥ V ∗(s)− !}|V 3max,1 the number of state-
action pairs whose heuristic initial value is larger than V ∗ − !, while for Delayed Q-learning the

1. This quantity can be as small as SV 3max and as large as SAV 3max, where Vmax ∈ [0, 1
1−" ].
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factor SA/(1− ")4 is replaced by V 3max$(s,a)∈S×A(U(s,a)−V ∗(s)),2 V 3max times the total sum of
differences between the heuristic values and the optimal value function. The latter term is better,
because it takes more advantage of accurate heuristics. For instance, ifU(s,a) =V ∗(s)+! andV ∗(s)
is large for all s, then the bound for R-MAX stays essentially the same but the one for Delayed Q-
learning is greatly improved. Please see Russell and Norvig (1994) for discussions and references
on admissible heuristics. The method of incorporating admissible heuristics into Q-learning (Ng
et al., 1999) and R-MAX (Asmuth et al., 2008) are well known, but the bounds given in Equation 1
and Equation 2 are new.

The upper bounds summarized above may be pessimistic and thus may not reflect the worst-case
behavior of these algorithms. Developing lower bounds, especially matching lower bounds, tells us
what can (or cannot) be achieved. Although matching lower bounds are known for deterministic
MDPs (Koenig and Simmons, 1996; Kakade, 2003), it remains an open question for general MDPs.
The previous best lower bound is due to Kakade (2003), and was developed for the slightly different
notion of H-horizon value functions instead of the "-discounted ones we focus on here. Adapting
his analysis to discounted value functions, we get the following lower bound:

%

(

SA
!(1− ")2

ln
1
#

)

.

Based on the work of Mannor and Tsitsiklis (2004), we provide an improved lower bound

%

(

SA
!2
ln
S
#

)

(3)

which simultaneously increases the dependence on both S and 1/!. While we choose to drop de-
pendence on 1/(1− ") in our lower bound to facilitate a cleaner analysis, we believe it is possible
to force a quadratic dependence by a more careful analysis. This new lower bound (3) has a few
important implications. First, it implies that Delayed Q-learning’s worst-case sample complexity
has the optimal dependence on S. Second, it increases the dependence on 1/! significantly from
linear to quadratic. It would be interesting to know whether a cubic dependence on 1/! is possible,
which would match the upper bound for R-MAX (ignoring logarithmic factors).

Our lower bound is tight for the factors S, 1/!, and 1/#, in the weaker parallel sampling model
(Kearns and Singh, 1999). This finding suggests that a worse dependence on 1/! is possible only in
MDPs with slow mixing rates.3 In both the parallel sampling model and the MDP used to prove the
lower bound given by Equation 3 (see Section 4), the distribution of states being sampled/visited
mixes extremely fast (in one and two timesteps, respectively). The slower the mixing rate, the more
difficult the temporal credit assignment problem (Sutton and Barto, 1998). In other words, a worse
dependence on 1/! may require the construction of an MDP where deep planning is necessary.

Before finishing the informal introduction, we should point out that the present paper focuses
on worst-case upper bounds and so the sample complexity of exploration bounds like Equations 1
and 2 can be too conservative for MDPs encountered in practice. However, the algorithms and their
analyses have proved useful for guiding development of more practical exploration schemes as well
as improved algorithms. First of all, these algorithms formalize the principle of “optimism under the

2. This quantity can be as small as 0 and as large as SAV 4max, where Vmax ∈ [0, 1
1−" ].

3. There are many ways to define a mixing rate. Roughly speaking, it measures how fast the distribution of states an
agent reaches becomes independent of the initial state and the policy being followed.
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face of uncertainty” (Brafman and Tennenholtz, 2002) which has been empirically observed to be
effective for encouraging active exploration (Sutton and Barto, 1998). Sample complexity analysis
not only shows soundness of this principle in a mathematically precise manner, but also motivates
novel RL algorithms with efficient exploration (e.g., Nouri and Littman 2009 and Li et al. 2009).
Second, there are several places in the proofs where the analysis can be tightened under various
assumptions about the MDP. The use of admissible heuristic functions as discussed above is one
example; another example is the case where the number of next states reachable from any state-
action pair is bounded by a constant, implying the factor S in Equation 1 may be shaved off (cf.,
Lemma 14). More opportunities lie in MDPs with various structural assumptions. Examples include
factored-state MDPs (Kearns and Koller, 1999; Strehl et al., 2007; Diuk et al., 2009), Relocatable
Action Models (Leffler et al., 2007), and Object-Oriented MDPs (Walsh et al., 2009), in all of
which an exponential reduction in sample complexity can be achieved, as well as in MDPs where
prior information about the model is available (Asmuth et al., 2009). Third, the streamlined analysis
we present here is very general and applies not only to finite MDPs. Similar proof techniques have
found useful in analyzing model-based algorithms for continuous-state MDPs whose dynamics are
linear (Strehl and Littman, 2008a) or multivariate normal (Brunskill et al., 2008); see Li (2009) for
a survey.

1.2 Markov Decision Processes

This section introduces theMarkov Decision Process (MDP) notation used throughout the paper; see
Sutton and Barto (1998) for an introduction. Let PX denote the set of probability distributions over
the set X . A finite MDPM is a five tuple 〈S ,A,T,R ,"〉, where S is a finite set called the state space,
A is a finite set called the action space, T : S×A→ PS is the transition distribution, R : S×A→ PR

is the reward distribution, and 0≤ "< 1 is a discount factor on the summed sequence of rewards. We
call the elements of S and A states and actions, respectively, and use S and A to denote the number
of states and the number of actions, respectively. We let T (s′|s,a) denote the transition probability
of state s′ of the distribution T (s,a). In addition, R(s,a) denotes the expectation of the distribution
R (s,a).

We assume that the learner (also called the agent) receives S, A, and " as input. The learning
problem is defined as follows. The agent always occupies a single state s of the MDPM. The agent
is told this state and must choose an action a. It then receives an immediate reward r ∼ R (s,a)
and is transported to a next state s′ ∼ T (s,a). This procedure then repeats forever. The first state
occupied by the agent may be chosen arbitrarily. Intuitively, the solution or goal of the problem is
to obtain as large as possible reward in as short as possible time. In Section 1.5, we provide one
possible formalization of this objective within the PAC-MDP framework. We define a timestep to
be a single interaction with the environment, as described above. The t th timestep encompasses the
process of choosing the t th action. We also define an experience of state-action pair (s,a) to refer to
the event of taking action a from state s.

A policy is any strategy for choosing actions. A stationary policy is one that produces an action
based on only the current state, ignoring the rest of the agent’s history. We assume (unless noted
otherwise) that rewards4 all lie in the interval [0,1]. For any policy &, let V &

M(s) = E[$'
j=1 "

j−1r j|s]
(Q&

M(s,a) = E[$'
j=1 "

j−1r j|s,a]) denote the discounted, infinite-horizon value (action-value) func-

4. It is easy to generalize, by linear transformations (Ng et al., 1999), to the case where the rewards are bounded above
and below by known but arbitrary constants without changing the optimal policy.
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tion for & in M (which may be omitted from the notation) from state s. If H is a positive integer, let
V &
M(s,H) denote the H-step value of policy & from s. If & is non-stationary, then s is replaced by a
partial path ct = (s1,a1,r1, . . . ,st), in the previous definitions. Specifically, let st and rt be the t th
encountered state and received reward, respectively, resulting from execution of policy & in some
MDP M. Then, V &

M(ct) = E[$'
j=0 "

jrt+ j|ct ] and V &
M(ct ,H) = E[$H−1

j=0 "
jrt+ j|ct ]. These expectations

are taken over all possible infinite paths the agent might follow in the future. The optimal policy
is denoted &∗ and has value functions V ∗

M(s) and Q∗
M(s,a). Note that a policy cannot have a value

greater than 1/(1− ") by the assumption that the maximum reward is 1.5

1.3 Admissible Heuristics

We also assume that the algorithms are given an admissible heuristic for the problem before learning
occurs. An admissible heuristic is a functionU : S ×A→ R that satisfiesU(s,a)≥Q∗(s,a) for all
s ∈ S and a ∈ A. We also assume thatU(s,a) ≤Vmax for all (s,a) ∈ S ×A and some quantity Vmax.
Prior information about the problem at hand can be encoded into the admissible heuristic and its
upper bound Vmax. With no prior information, we can always set U(s,a) = Vmax = 1/(1− ") since
V ∗(s) = maxa∈AQ∗(s,a) is at most 1/(1− "). Therefore, without loss of generality, we assume
0≤U(s,a) ≤Vmax ≤ 1/(1− ") for all (s,a) ∈ S ×A.

1.4 A Note on the Use of Subscripts

Each algorithm that we consider maintains several variables. For instance, an action value or action-
value estimate, Q(s,a), sometimes called a Q-value, where (s,a) is any state-action pair, is main-
tained. We will often discuss a particular instance or time t during the execution of the algorithm.
In this case, when we refer to Q(s,a) we mean the value of that variable at the current moment. To
be more explicit, we may write Qt(s,a), which refers to the value of Q(s,a) immediately preceding
the t th action of the agent. Thus, Q1(s,a) is the initial value of Q(s,a).

1.5 PAC-MDP Model

There are three essential ways to quantify the performance of a reinforcement-learning algorithm.
They are computational complexity, the amount of per-timestep computation the algorithm uses
during learning; space complexity, the amount of memory used by the algorithm; and learning
complexity, a measure of how much experience the algorithm needs to learn in a given task. The
last of these is difficult to define and several different ideas have been discussed in the literature.
On the one hand, requiring an algorithm to “optimally explore”—meaning to obtain maximum
expected discounted reward (E[$'

t=1 "
t−1rt ]) over a known prior of MDPs—is an extremely difficult

task tractable only in highly specialized cases (Gittins, 1989). Thus, we consider the relaxed but
still challenging and useful goal of acting near-optimally on all but a polynomial number of steps
(Kakade, 2003; Strehl and Littman, 2008b).

To formalize the notion of “efficient learning”, we allow the learning algorithm to receive two
additional inputs, ! and #, both positive real numbers. The first parameter, !, controls the quality of
behavior we require of the algorithm (how close to optimality do we want the algorithm to be) and
the second parameter, #, is a measure of confidence (how certain do we want to be of the algorithm’s

5. Thus, when comparing our results to the original R-MAX paper Brafman and Tennenholtz (2002), note that 1 takes
the place of the quantity Rmax.
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performance). As these parameters approach zero, greater exploration and learning is necessary, as
higher quality is demanded of the algorithms.

In the following definition, we view an algorithm as a non-stationary (in terms of the current
state) policy that, on each timestep, takes as input an entire history or trajectory through the MDP
(its actual history) and outputs an action (which the agent then executes). Formally, we define the
policy of any algorithmA at a fixed instance in time t to be a functionAt : {S×A× [0,1]}∗×S →A,
that maps future paths to future actions.6

Definition 1 (Kakade 2003) Let c = (s1,a1,r1,s2,a2,r2, . . .) be a random path generated by exe-
cuting an algorithm A in an MDP M. For any fixed ! > 0, the sample complexity of exploration
(sample complexity, for short) of A is the number of timesteps t such that the policy at time t, At ,
satisfies VAt (st) <V ∗(st)− !.

Note that the sample complexity of an algorithm is dependent on some infinite-length path
through the MDP. We believe this definition captures the essence of measuring learning. It directly
measures the number of times the agent acts poorly (quantified by !) and we view “fast” learners as
those that act poorly as few times as possible. Based on this intuition, we define what it means to
be an “efficient” learning algorithm.

Definition 2 An algorithm A is said to be an efficient PAC-MDP (Probably Approximately Cor-
rect in Markov Decision Processes) algorithm if, for any ! > 0 and 0 < # < 1, the per-timestep
computational complexity, space complexity, and the sample complexity of A are less than some
polynomial in the relevant quantities (S,A,1/!,1/#,1/(1− ")), with probability at least 1−#. It is
simply PAC-MDP if we relax the definition to have no computational complexity requirement.

The terminology, PAC, in this definition is borrowed from Angluin (1988) for the distribution-
free supervised-learning model of Valiant (1984). One thing to note is that we only require a PAC-
MDP algorithm to behave poorly (non-!-optimally) on no more than a small (polynomially) number
of timesteps. We do not place any limitations on when the algorithm acts poorly or how poorly it
acts on those timesteps. This definition is in contrast to Valiant’s PAC notion, which is more “off-
line” in that it requires the algorithm to make all of its mistakes ahead of time (during the learning
phase) before identifying a near-optimal policy. The notion of PAC-MDP is also closely related
to the Mistake Bound (MB) model of Littlestone (1988) where the goal of a learner that predicts
sequentially must make a small (polynomial) number of mistakes during a whole run. Indeed, if we
count every timestep in which an algorithm behaves non-!-optimally as a mistake, then a PAC-MDP
algorithm makes only a polynomial number of mistakes during a whole run with high probability,
similar to an MB algorithm. However, a mistake in a PAC-MDP algorithm refers to the quality of a
policy rather than prediction errors as in MB.

Efficient learnability in the sample-complexity framework from above implies efficient learn-
ability in a more realistic framework called Average Loss that measures the actual return (sum of
rewards) achieved by the agent against the expected return of the optimal policy (Strehl and Littman,
2008b). The analysis of R-MAX by Kakade (2003) and of MBIE by Strehl and Littman (2005) use
the same definition as above. The analysis of R-MAX by Brafman and Tennenholtz (2002) and of

6. The action of an agent on timestep t in state st is given by the function evaluated at the empty history, At( /0,st).
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E3 by Kearns and Singh (2002) use slightly different definitions of efficient learning.7 Our analyses
are essentially equivalent, but simpler in the sense that mixing-time arguments are avoided. Com-
pared with recently published regret bounds (Auer et al., 2009), our sample complexity bounds are
easier to obtain and do not depend on quantities like mixing time or diameter that may be hard to
determine a priori.

1.6 Related Work

There has been some theoretical work analyzing RL algorithms. In a Bayesian setting, with a
known prior over possible MDPs, we could ask for the policy that maximizes expected reward. This
problem has been solved (Gittins, 1989) for a specialized class of MDPs, called K-armed bandits.
However, a solution to the more general problem seems unlikely to be tractable, although progress
has been made (Duff and Barto, 1997; Poupart et al., 2006).

Early results include proving that under certain conditions various algorithms can, in the limit,
compute the optimal value function from which the optimal policy can be extracted (Watkins and
Dayan, 1992). These convergence results make no performance guarantee after only a finite amount
of experience, although more recent work has looked at convergence rates (Szepesvári, 1998; Kearns
and Singh, 1999; Even-Dar and Mansour, 2003). These types of analyses make assumptions that
simplify the exploration issue.

The work by Fiechter (1994) was the first to prove that efficient (polynomial) approximate
learning is achievable, via a model-based algorithm, when the agent has an action that resets it
to a distinguished start state. Other recent work has shown that various model-based algorithms,
including E3 (Kearns and Singh, 2002), R-MAX (Brafman and Tennenholtz, 2002), and MBIE
(Strehl and Littman, 2005) can achieve polynomial learning guarantees without the necessity of
resets.

2. Algorithms

The total number of RL algorithms introduced in the literature is huge, so we limit the study to
those with the best formal PAC-MDP learning-time guarantees. The two algorithms we study are
R-MAX and Delayed Q-learning, because the best sample complexity bounds known for any PAC-
MDP algorithm are dominated by the bound for one of these two algorithms. However, the bounds
for R-MAX and Delayed Q-learning are incomparable—the bound for R-MAX is better in terms
of 1/! and 1/(1− "), while the bound for Delayed Q-learning is better in terms of S. In fact, in
Section 4 we will show that the sample complexity of Delayed Q-learning is optimal in terms of S
via a matching lower bound.

2.1 R-MAX

Suppose that the agent has acted for some number of timesteps and consider its experience with
respect to some fixed state-action pair (s,a). Let n(s,a) denote the number of timesteps in which
the agent has taken action a from state s. Suppose the agent has observed the following n(s,a)
immediate rewards for taking action a from state s: r[1],r[2], . . . ,r[n(s,a)]. Then, the empirical

7. Kearns and Singh (2002) dealt with discounted and undiscounted MDPs differently. In the discounted case the agent
is required to halt after a polynomial amount of time and output a near-optimal policy from the current state, with
high probability.
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mean reward is

R̂(s,a) :=
1

n(s,a)

n(s,a)

$
i=1

r[i].

Let n(s,a,s′) denote the number of times the agent has taken action a from state s and immediately
transitioned to the state s′. Then, the empirical transition distribution is the distribution T̂ (s,a)
satisfying

T̂ (s′|s,a) :=
n(s,a,s′)
n(s,a)

for each s′ ∈ S.

In the R-MAX algorithm, the action-selection step is always to choose the action that maximizes
the current action value, Q(s, ·). The update step is to solve the following set of Bellman equations:

Q(s,a) = R̂(s,a)+ "$
s′
T̂ (s′|s,a)max

a′
Q(s′,a′), if n(s,a) ≥ m, (4)

Q(s,a) = U(s,a), otherwise,

where R̂(s,a) and T̂ (·|s,a) are the empirical (maximum-likelihood) estimates for the reward and
transition distribution of state-action pair (s,a) using only data from the first m observations of
(s,a). Solving this set of equations is equivalent to computing the optimal action-value function
of an MDP, which we call Model(R-MAX). This MDP uses the empirical transition and reward
distributions for those state-action pairs that have been experienced by the agent at least m times.
Rather than attempt to model the other state-action pairs, we assert their value to beU(s,a), which
is guaranteed to be an upper bound on the true value function. An important point is that R-MAX
uses only the first m samples in the empirical model. To avoid complicated notation, we redefine
n(s,a) to be the minimum ofm and the number of times state-action pair (s,a) has been experienced.
This usage is consistent with the pseudo-code provided in Algorithm 1. That is, the computation of
R̂(s,a) and T̂ (s′|s,a) in Equation 4, uses only the first n(s,a) = m samples.

Any implementation of R-MAXmust choose a technique for solving the set of Equations 4 such
as dynamic programming and linear programming approaches (Puterman, 1994), and this choice
will affect the computational complexity of the algorithm. However, for concreteness we choose
value iteration (Puterman, 1994), a relatively simple and fast MDP solving routine that is widely
used in practice. Rather than require exact solution of Equations 4, a more practical approach is
to only guarantee a near-optimal greedy policy. The following two classic results are useful in
quantifying the number of iterations needed.

Proposition 3 (Corollary 2 from Singh and Yee 1994) Let Q′(·, ·) and Q∗(·, ·) be two action-value
functions over the same state and action spaces. Suppose that Q∗ is the optimal value function
of some MDP M. Let & be the greedy policy with respect to Q′ and &∗ be the greedy policy with
respect to Q∗, which is the optimal policy for M. For any ( > 0 and discount factor " < 1, if
maxs,a {|Q′(s,a)−Q∗(s,a)|}≤ ((1− ")/2, then maxs {V &∗(s)−V &(s)}≤ (.

Proposition 4 Let ) > 0 be any real number satisfying ) < 1/(1− ") where " < 1 is the discount
factor. Suppose that value iteration is run for

⌈

ln(1/()(1−")))
1−"

⌉

iterations where each initial action-
value estimate, Q(·, ·), is initialized to some value between 0 and 1/(1− "). Let Q′(·, ·) be the
resulting action-value estimates. Then, we have that maxs,a {|Q′(s,a)−Q∗(s,a)|}≤ ).
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Proof Let Qi(s,a) denote the action-value estimates after the ith iteration of value iteration.8 Let
*i :=max(s,a) |Q∗(s,a)−Qi(s,a)|. Now, we have that

*i = max
(s,a)

|(R(s,a)+ "$
s′
T (s,a,s′)V ∗(s′))− (R(s,a)+ "$

s′
T (s,a,s′)Vi−1(s′))|

= max
(s,a)

|"$
s′
T (s,a,s′)(V ∗(s′)−Vi−1(s′))|

≤ "*i−1.

Using this bound along with the fact that *0 ≤ 1/(1− ") shows that *i ≤ "i/(1− "). Setting this
value to be at most ) and solving for i yields i≥ ln()(1−"))

ln" . We claim that

ln 1
)(1−")

1− "
≥
ln()(1− "))
ln(")

. (5)

Note that Equation 5 is equivalent to the statement 1− " ≤ − ln", which follows from the identity
ex ≥ 1+ x.

The previous two propositions imply that if we require value iteration to produce an (-optimal
policy it is sufficient to run it for O

(

ln(1/(((1−")))
1−"

)

iterations. The resulting pseudo-code for R-
MAX is given in Algorithm 1. We have added a real-valued parameter, !1, that specifies the desired
closeness to optimality of the policies produced by value iteration. In Section 3.2.2, we show that
both m and !1 can be set as functions of the other input parameters, !, #, S, A, and ", in order to
make theoretical guarantees about the learning efficiency of R-MAX.

2.2 Delayed Q-learning

The Delayed Q-learning algorithm was introduced by Strehl et al. (2006b) as the first algorithm
that is known to be PAC-MDP and its per-timestep computational demands are minimal (roughly
equivalent to those of Q-learning). Due to its low memory requirements, it can also be viewed as a
model-free algorithm and the first to be provably PAC-MDP. Its analysis is also noteworthy because
the polynomial upper bound on its sample complexity is a significant improvement, asymptotically,
over the best previously known upper bound for any algorithm, when only the dependence on S and
A is considered.

The algorithm is called “delayed” because it waits until a state-action pair has been experienced
m times before updating that state-action pair’s associated action value, where m is a parameter
provided as input. When it does update an action value, the update can be viewed as an average
of the target values for the m most recently missed update opportunities. An important observa-
tion is that, when m is large enough, a Delayed Q-learning update will be sufficiently close to a
true Bellman update (Lemma 22). In this sense, this algorithm is similar to Real-Time Dynamic
Programming (Barto et al., 1995), but uses online transitions to dynamically form an approximate
Bellman backup.

To encourage exploration, Delayed Q-learning uses the “optimism in the face of uncertainty”
principle as in R-MAX. Specifically, its initial action-value function is an over-estimate of the true

8. The initial values are therefore denoted by Q0(·, ·).
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Algorithm 1 R-MAX
0: Inputs: S, A, ", m, !1, andU(·, ·)
1: for all (s,a) do
2: Q(s,a) ←U(s,a) // action-value estimates
3: r(s,a) ← 0
4: n(s,a) ← 0
5: for all s′ ∈ S do
6: n(s,a,s′) ← 0
7: end for
8: end for
9: for t = 1,2,3, · · · do
10: Let s denote the state at time t.
11: Choose action a := argmaxa′∈AQ(s,a′).
12: Let r be the immediate reward and s′ the next state after executing action a from state s.
13: if n(s,a) < m then
14: n(s,a) ← n(s,a)+1
15: r(s,a) ← r(s,a)+ r // Record immediate reward
16: n(s,a,s′) ← n(s,a,s′)+1 // Record immediate next-state
17: if n(s,a) = m then
18: for i= 1,2,3, · · · ,

⌈

ln(1/(!1(1−")))
1−"

⌉

do
19: for all (s̄, ā) do
20: if n(s̄, ā) ≥ m then
21: Q(s̄, ā) ← R̂(s̄, ā)+ "$s′ T̂ (s′|s̄, ā)maxa′Q(s′,a′).
22: end if
23: end for
24: end for
25: end if
26: end if
27: end for

function; during execution, the successive value function estimates remain over-estimates with high
probability, thanks to the delayed update rule (Lemma 23).

Like R-MAX, Delayed Q-learning performs a finite number of action-value updates. Due to
the strict restrictions on the computational demands used by Delayed Q-learning, slightly more
sophisticated internal logic is needed to guarantee this property. Pseudo-code9 for Delayed Q-
learning is provided in Algorithm 2. More details are provided in the following subsections.

In addition to the standard inputs, the algorithm also relies on two free parameters,

• !1 ∈ (0,1): Used to provide a constant “exploration bonus” that is added to each action-value
estimate when it is updated.

9. Compared to the implementation provided by Strehl et al. (2006b), we have modified the algorithm to keep track of
b(s,a), the “beginning” timestep for the current attempted update for (s,a). The original pseudo-code kept track of
t(s,a), the time of the last attempted update for (s,a). The original implementation is less efficient and adds a factor
of 2 to the computational bounds. The analysis of Strehl et al. (2006b) also applies to the pseudo-code presented
here, however.
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Algorithm 2 Delayed Q-learning
0: Inputs: S, A, ", m, !1, andU(·, ·)
1: for all (s,a) do
2: Q(s,a) ←U(s,a) // action-value estimates
3: AU(s,a) ← 0 // used for attempted updates
4: l(s,a) ← 0 // counters
5: b(s,a) ← 0 // beginning timestep of attempted update
6: LEARN(s,a) ← true // the LEARN flags
7: end for
8: t∗ ← 0 // time of most recent action value change
9: for t = 1,2,3, · · · do
10: Let s denote the state at time t.
11: Choose action a := argmaxa′∈AQ(s,a′).
12: Let r be the immediate reward and s′ the next state after executing action a from state s.
13: if b(s,a) ≤ t∗ then
14: LEARN(s,a) ← true
15: end if
16: if LEARN(s,a) = true then
17: if l(s,a) = 0 then
18: b(s,a) ← t
19: end if
20: l(s,a) ← l(s,a)+1
21: AU(s,a) ← AU(s,a)+ r+ "maxa′Q(s′,a′)
22: if l(s,a) = m then
23: if Q(s,a)−AU(s,a)/m≥ 2!1 then
24: Q(s,a) ← AU(s,a)/m+ !1
25: t∗ ← t
26: else if b(s,a) > t∗ then
27: LEARN(s,a) ← false
28: end if
29: AU(s,a) ← 0
30: l(s,a) ← 0
31: end if
32: end if
33: end for

• A positive integer m: Represents the number of experiences of a state-action pair before an
update is allowed.

In the analysis of Section 3.3, we provide precise values for m and !1 in terms of the other inputs
(S, A, !, #, and ") that guarantee the resulting algorithm is PAC-MDP. In addition to its action-value
estimates, Q(s,a), the algorithm also maintains the following internal variables,

• l(s,a) for each (s,a): The number of samples (or target values) gathered for (s,a).
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• AU(s,a) for each (s,a): Stores the running sum of target values used to update Q(s,a) once
enough samples have been gathered.

• b(s,a) for each (s,a): The timestep for which the first experience of (s,a) was obtained for
the most recent or ongoing attempted update.

• LEARN(s,a) ∈ {true, false} for each (s,a): A Boolean flag that indicates whether or not,
samples are being gathered for (s,a).

2.2.1 THE UPDATE RULE

Suppose that, at time t ≥ 1, action a is performed from state s, resulting in an attempted update,
according to the rules to be defined in Section 2.2.2. Let sk1 ,sk2 , . . . ,skm be the m most recent next-
states observed from executing (s,a) at times k1 < k2 < · · · < km, respectively (km = t). For the
remainder of the paper, we also let ri denote the ith reward received during the execution of Delayed
Q-learning.

Thus, at time ki, action a was taken from state s, resulting in a transition to state ski and an
immediate reward rki . After the t th action, the following update occurs:

Qt+1(s,a) =
1
m

m

$
i=1

(rki + "Vki(ski))+ !1 (6)

as long as performing the update would result in a new action-value estimate that is at least !1
smaller than the previous estimate. In other words, the following equation must be satisfied for an
update to occur:

Qt(s,a)−

(

1
m

m

$
i=1

(rki + "Vki(ski))

)

≥ 2!1. (7)

If this condition does not hold, then no update is performed, and so Qt+1(s,a) = Qt(s,a).

2.2.2 MAINTENANCE OF THE LEARN FLAGS

We provide an intuition behind the behavior of the LEARN flags. Please see Algorithm 2 for a
formal description of the update rules. The main computation of the algorithm is that every time
a state-action pair (s,a) is experienced m times, an update of Q(s,a) is attempted as in Section
2.2.1. For our analysis to hold, however, we cannot allow an infinite number of attempted updates.
Therefore, attempted updates are only allowed for (s,a) when LEARN(s,a) is true. Besides being
set to true initially, LEARN(s,a) is also set to true when any state-action pair is updated (because
our estimate Q(s,a) may need to reflect this change). LEARN(s,a) can only change from true to
false when no updates are made during a length of time for which (s,a) is experienced m times
and the next attempted update of (s,a) fails. In this case, no more attempted updates of (s,a) are
allowed until another action-value estimate is updated.

2.2.3 DELAYED Q-LEARNING’S MODEL

Delayed Q-learning was introduced as a model-free algorithm. This terminology was justified by
noting that the space complexity of Delayed Q-learning, which is O(SA), is much less than what
is needed in the worst case to completely represent an MDP’s transition probabilities (O(S2A)).
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However, there is a sense in which Delayed Q-learning can be thought of as using a model. This
interpretation follows from the fact that Delayed Q-learning’s update (Equation 6) is identical to !1
plus the result of a full Bellman backup using the empirical (maximum likelihood) model derived
from themmost recent experiences of the state-action pair being updated. Sincem is much less than
what is needed to accurately model the true transition probability (in the L1 distance metric), we say
that Delayed Q-learning uses a sparse model (Kearns and Singh, 1999). In fact, Delayed Q-learning
uses this sparse model precisely once, throws it away, and then proceeds to gather experience for
another sparse model. When m = 1, this process may occur on every timestep and the algorithm
behaves very similarly to a version of Q-learning that uses a unit learning rate.

3. PAC-MDP Analysis

First, we present a general framework that allows us to prove the bounds for both algorithms. We
then proceed to analyze R-MAX and Delayed Q-learning.

3.1 General Framework

We now develop some theoretical machinery to prove PAC-MDP statements about various algo-
rithms. Our theory will be focused on algorithms that maintain a table of action values, Q(s,a), for
each state-action pair (denoted Qt(s,a) at time t).10 We also assume an algorithm always chooses
actions greedily with respect to the action values. This constraint is not really a restriction, since
we could define an algorithm’s action values as 1 for the action it chooses and 0 for all other ac-
tions. However, the general framework is understood and developed more easily under the above
assumptions. For convenience, we also introduce the notationV (s) to denote maxaQ(s,a) andVt(s)
to denote V (s) at time t.

Definition 5 Suppose an RL algorithm A maintains a value, denoted Q(s,a), for each state-action
pair (s,a)∈ S×A. Let Qt(s,a) denote the estimate for (s,a) immediately before the t th action of the
agent. We say that A is a greedy algorithm if the t th action of A , at , is at := argmaxa∈AQt(st ,a),
where st is the t th state reached by the agent.

For all algorithms, the action values Q(·, ·) are implicitly maintained in separate max-priority
queues (implemented with max-heaps, say) for each state. Specifically, if A = {a1, . . . ,ak} is the
set of actions, then for each state s, the values Q(s,a1), . . . ,Q(s,ak) are stored in a single priority
queue. Therefore, the operations maxa′∈AQ(s,a) and argmaxa′∈AQ(s,a), which appear in almost
every algorithm, takes constant time, but the operation Q(s,a) ←V for any value V takes O(ln(A))
time (Cormen et al., 1990). It is possible that other data structures may result in faster algorithms.

The following is a definition of a new MDP that will be useful in our analysis.

Definition 6 Let M = 〈S ,A,T,R ,"〉 be an MDP with a given set of action values, Q(s,a), for each
state-action pair (s,a), and a set K of state-action pairs, called the known state-action pairs. We
define the known state-action MDP MK = 〈S ∪{zs,a|(s,a) /∈ K},A,TK ,RK ,"〉 as follows. For each
unknown state-action pair, (s,a) /∈ K, we add a new state zs,a to MK, which has self-loops for each

10. However, the main result in this subsection (Theorem 10) does not rely on the algorithm having an explicit repre-
sentation of each action value. For example, they could be implicitly held inside of a function approximator (e.g.,
Brunskill et al. 2008).
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action (TK(zs,a|zs,a, ·) = 1). For all (s,a) ∈ K, RK(s,a) = R(s,a) and TK(·|s,a) = T (·|s,a). For
all (s,a) /∈ K, RK(s,a) = Q(s,a)(1− ") and TK(zs,a|s,a) = 1. For the new states, the reward is
RK(zs,a, ·) = Q(s,a)(1− ").

The known state-action MDP is a generalization of the standard notions of a “known state
MDP” of Kearns and Singh (2002) and Kakade (2003). It is an MDP whose dynamics (reward
and transition functions) are equal to the true dynamics of M for a subset of the state-action pairs
(specifically those in K). For all other state-action pairs, the value of taking those state-action pairs
in MK (and following any policy from that point on) is equal to the current action-value estimates
Q(s,a). We intuitively view K as a set of state-action pairs for which the agent has sufficiently
accurate estimates of their dynamics.

Definition 7 For algorithm A , for each timestep t, let Kt (we drop the subscript t if t is clear from
context) be a set of state-action pairs defined arbitrarily in a way that depends only on the history
of the agent up to timestep t (before the (t)th action). We define AK to be the event, called the escape
event, that some state-action pair (s,a) /∈ Kt is experienced by the agent at time t.

The following is a well-known result of the Chernoff-Hoeffding Bound and will be needed later;
see Li (2009, Lemma 56) for a slightly improved result.

Lemma 8 Suppose a weighted coin, when flipped, has probability p> 0 of landing with heads up.
Then, for any positive integer k and real number #∈ (0,1), there exists a number m=O((k/p) ln(1/#)),
such that after m tosses, with probability at least 1−#, we will observe k or more heads.

One more technical lemma is needed before presenting the main result in this section. Note that
even if we assume V ∗

M(s) ≤Vmax and Q(s,a) ≤Vmax for all s ∈ S and a ∈ A, it may not be true that
V ∗
MK

(s)≤Vmax. However, the following lemma shows we may instead use 2Vmax as an upper bound.

Lemma 9 Let M = 〈S ,A,T,R ,"〉 be an MDP whose optimal value function is upper bounded by
Vmax. Furthermore, let MK be a known state-action MDP for some K ⊆ S ×A defined using value
function Q(s,a). Then, V ∗

MK
(s) ≤Vmax+maxs′,a′Q(s′,a′) for all s ∈ S .

Proof For any policy & and any state s ∈ S , let (s1,a1,r1,s2,a2,r2,s3,a3,r3, . . .) be a path generated
by starting in state s = s1 and following & in the known state-action MDP, MK , where st and rt are
the state and reward at timestep t, and at = &(st) for all t. The value function,V &

MK
(s), can be written

as (see, e.g., Sutton and Barto 1998)

V &
MK (s) = EMK

[

r1+ "r2+ "2r3+ · · · | s1 = s,&
]

,

which says the quantity V &
MK

(s) is the expected discounted total reward accumulated on this random
path. Here, we use EMK to denote the expectation with respect to randomness in the MDPMK .

Denote by + be the first timestep in which (s+,a+) /∈ K; note += ' if all visited state-actions are
in K. Due to construction of MK , if + is finite, then

s+ = s++1 = s++2 = · · ·

a+ = a++1 = a++2 = · · · = &(s+)
r+ = r++1 = r++2 = · · · = (1− ")Q(s+,a+).
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Thus, for any fixed +≥ 1, the discounted total reward

r1+ "r2+ "2r3+ · · ·

= r1+ "r2+ · · ·+ "+−2r+−1+ "+−1Q(s+,a+)
≤ r1+ "r2+ · · ·+ "+−2r+−1+max

s′,a′
Q(s′,a′),

where the first step is due to the way we define transition/reward functions in MK for state-actions
outside K. The above upper bound holds for all fixed value of + (finite or infinite), and so

EMK

[

r1+ "r2+ "2r3+ · · · | s1 = s,&
]

≤ EMK

[

r1+ "r2+ · · ·+ "+−2r+−1 | s1 = s,&
]

+max
s′,a′

Q(s′,a′).

Finally, since the transition and reward functions of M and MK are identical for state-actions in K,
we have

EMK

[

r1+ "r2+ · · ·+ "+−2r+−1 | s1 = s,&
]

= EM
[

r1+ "r2+ · · ·+ "+−2r+−1 | s1 = s,&
]

,

which implies

EMK

[

r1+ "r2+ "2r3+ · · · | s1 = s,&
]

≤ EM
[

r1+ "r2+ · · ·+ "+−2r+−1
]

+max
s′,a′

Q(s′,a′)

≤ V &
M(s)+max

s′,a′
Q(s′,a′)

≤ Vmax+max
s′,a′

Q(s′,a′).

Note that all learning algorithms we consider take ! and # as input. We let A(!,#) denote the
version of algorithm A parameterized with ! and #. The proof of Theorem 10 follows the structure
of the work of Kakade (2003), but generalizes several key steps. The theorem also generalizes a
previous result by Strehl et al. (2006a) by taking the admissible heuristic into account.

Theorem 10 Let A(!,#) be any greedy learning algorithm such that, for every timestep t, there
exists a set Kt of state-action pairs that depends only on the agent’s history up to timestep t. We
assume that Kt = Kt+1 unless, during timestep t, an update to some state-action value occurs or the
escape event AK happens. Let MKt be the known state-action MDP and &t be the current greedy
policy, that is, for all states s, &t(s) = argmaxaQt(s,a). Furthermore, assume Qt(s,a) ≤ Vmax for
all t and (s,a). Suppose that for any inputs ! and #, with probability at least 1− #, the following
conditions hold for all states s, actions a, and timesteps t: (1) Vt(s) ≥ V ∗(s)− ! (optimism), (2)
Vt(s)−V &t

MKt
(s)≤ ! (accuracy), and (3) the total number of updates of action-value estimates plus the

number of times the escape event from Kt, AK, can occur is bounded by ,(!,#) (learning complexity).
Then, when A(!,#) is executed on any MDP M, it will follow a 4!-optimal policy from its current
state on all but

O
(

Vmax,(!,#)
!(1− ")

ln
1
#
ln

1
!(1− ")

)

timesteps, with probability at least 1−2#.
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Proof Suppose that the learning algorithm A(!,#) is executed on MDP M. Fix the history of the
agent up to the t th timestep and let st be the t th state reached. Let At denote the current (non-
stationary) policy of the agent. Let H = 1

1−" ln
1

!(1−") . From Lemma 2 of Kearns and Singh (2002),
we have that |V &

MKt
(s,H)−V &

MKt
(s)| ≤ !, for any state s and policy &. LetW denote the event that,

after executing policy At from state st in M for H timesteps, one of the two following events oc-
cur: (a) the algorithm performs a successful update (a change to any of its action values) of some
state-action pair (s,a), or (b) some state-action pair (s,a) /∈ Kt is experienced (escape event AK).
Assuming the three conditions in the theorem statement hold, we have the following:

VAt
M (st ,H)

≥ V &t
MKt

(st ,H)−2Vmax Pr(W )

≥ V &t
MKt

(st)− !−2Vmax Pr(W )

≥ V (st)−2!−2Vmax Pr(W )

≥ V ∗(st)−3!−2Vmax Pr(W ).

The first step above follows from the fact that following At in MDP M results in behavior identical
to that of following &t in MKt unless event W occurs, in which case a loss of at most 2Vmax can
occur (Lemma 9). The second step follows from the definition of H above. The third and final steps
follow from Conditions 2 and 1, respectively, of the proposition.

Now, suppose that Pr(W ) < !
2Vmax . Then, we have that the agent’s policy on timestep t is 4!-

optimal:
VAt
M (st) ≥VAt

M (st ,H) ≥V ∗
M(st)−4!.

Otherwise, we have that Pr(W )≥ !
2Vmax , which implies that an agent followingAt will either perform

a successful update in H timesteps, or encounter some (s,a) /∈Kt in H timesteps, with probability at
least !

2Vmax . Call such an event a “success”. Then, by Lemma 8, after O( ,(!,#)HVmax! ln1/#) timesteps
t where Pr(W ) ≥ !

2Vmax , ,(!,#) successes will occur, with probability at least 1− #. Here, we have
identified the event that a success occurs after following the agent’s policy forH steps with the event
that a coin lands with heads facing up. However, by Condition 3 of the proposition, with probability
at least 1−#, ,(!,#) is the maximum number of successes that will occur throughout the execution
of the algorithm.

To summarize, we have shown that with probability 1−2#, the agent will execute a 4!-optimal
policy on all but O( ,(!,#)HVmax! ln 1#) = O( ,(!,#)Vmax!(1−") ln 1# ln

1
!(1−") ) timesteps.

3.2 Analysis of R-MAX

We will analyze R-MAX using the tools from Section 3.1.

3.2.1 COMPUTATIONAL COMPLEXITY

When the initial value function isU(s,a) = 1/(1− ") for all (s,a), there is a simple way to change
the R-MAX algorithm that has a minimal affect on its behavior and saves greatly on computa-
tion. The important observation is that for a fixed state s, the maximum action-value estimate,
maxaQ(s,a) will be 1/(1− ") until all actions have been tried m times. Thus, there is no need to
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run value iteration (lines 17 to 25 in Algorithm 1) until each action has been tried exactly m times.
In addition, if there are some actions that have been tried m times and others that have not, the algo-
rithm should choose one of the latter. One method to accomplish this balance is to order each action
and try one after another until all are chosen m times. Kearns and Singh (2002) called this behavior
“balanced wandering”. However, it is not necessary to use balanced wandering; for example, it
would be perfectly fine to try the first action m times, the second action m times, and so on. Any
deterministic method for breaking ties in line 11 of Algorithm 1 is valid as long as mA experiences
of a state-action pair results in all action being chosen m times.

On most timesteps, the R-MAX algorithm performs a constant amount of computation to choose
its next action. Only when a state’s last action has been tried m times does it solve its internal
model. Our version of R-MAX uses value iteration to solve its model. Therefore, the per-timestep
computational complexity of R-MAX is

-

(

SA(S+ ln(A))

(

1
1− "

)

ln
1

!1(1− ")

)

.

This expression is derived using the fact that value iteration performs
⌈

1
1−" ln

1
!1(1−")

⌉

iterations,
where each iteration involves SA full Bellman backups (one for each state-action pair). A Bellman
backup requires examining all possible O(S) successor states and the update to the priority queue
takes time O(ln(A)). Note that R-MAX updates its model at most S times. From this observation
we see that the total computation time of R-MAX is O

(

B+ S2A(S+ln(A))
1−" ln 1

!1(1−")

)

, where B is the
number of timesteps for which R-MAX is executed.

When a general admissible initial value function U is used, we need to run value iteration
whenever some n(s,a) reaches the threshold m. In this case, a similar analysis shows that the total
computation time of R-MAX is O

(

B+ S2A2(S+ln(A))
1−" ln 1

!1(1−")

)

.

3.2.2 SAMPLE COMPLEXITY

The main result of this section is the following theorem.

Theorem 11 Suppose that 0≤ !< 1
1−" and 0≤ #< 1 are two real numbers and M = 〈S ,A,T,R ,"〉

is any MDP. There exists inputs m = m(1! ,
1
#) and !1, satisfying m(1! ,

1
#) = O

(

(S+ln(SA/#))V 2max
!2(1−")2

)

and
1
!1

=O(1! ), such that if R-MAX is executed on M with inputs m and !1, then the following holds. Let
At denote R-MAX’s policy at time t and st denote the state at time t. With probability at least 1−#,
VAt
M (st) ≥V ∗

M(st)− ! is true for all but

O

(

|{(s,a) ∈ S ×A|U(s,a) ≥V ∗(s)− !}|

!3(1− ")3

(

S+ ln
SA
#

)

V 3max ln
1
#
ln

1
!(1− ")

)

timesteps t.

First, we discuss the accuracy of the model maintained by R-MAX. The following lemma shows
that two MDPs with similar transition and reward functions have similar value functions. Thus, an
agent need only ensure accuracy in the transitions and rewards of its model to guarantee near-
optimal behavior.
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Lemma 12 (Strehl and Littman, 2005) Let M1 = 〈S ,A,T1,R1,"〉 and M2 = 〈S ,A,T2,R2,"〉 be two
MDPs with non-negative rewards bounded by 1 and optimal value functions bounded by Vmax. Sup-
pose that |R1(s,a)−R2(s,a)| ≤ ( and ‖T1(s,a, ·)− T2(s,a, ·)‖1 ≤ 2) for all states s and actions
a. There exists a constant C > 0 such that for any 0 ≤ ! ≤ 1/(1− ") and stationary policy &, if
(= 2)=C!(1− ")/Vmax, then

|Q&
1(s,a)−Q&

2(s,a)|≤ !.

Let nt(s,a) denote the value of n(s,a) at time t during execution of the algorithm. For R-MAX,
let the “known” state-action pairs Kt , at time t (See Definition 6), to be

Kt := {(s,a) ∈ S ×A|nt(s,a) ≥ m},

which is dependent on the parameter m that is provided as input to the algorithm. In other words,
Kt is the set of state-action pairs that have been experienced by the agent at least m times. We will
show that for large enough m, the dynamics, transition and reward, associated with these pairs can
be accurately approximated by the agent.

The following event will be used in our proof that R-MAX is PAC-MDP. We will provide a
sufficient condition (specifically, L1-accurate transition and reward functions) to guarantee that the
event occurs, with high probability. In words, the condition says that the value of any state s, under
any policy, in the empirical known state-action MDP (M̂Kt ) is !1-close to its value in the true known
state-action MDP (MKt ).
Event A1 For all stationary policies &, timesteps t and states s during execution of the R-MAX

algorithm on some MDP M, |V &
MKt

(s)−V &
M̂Kt

(s)|≤ !1.
Next, we quantify the number of samples needed from both the transition and reward distribu-

tions for a state-action pair to compute accurate approximations.

Lemma 13 Suppose that r[1],r[2], . . . ,r[m] are m rewards drawn independently from the reward
distribution, R (s,a), for state-action pair (s,a). Let R̂(s,a) be the empirical (maximum-likelihood)
estimate of R (s,a). Let #R be any positive real number less than 1. Then, with probability at least
1−#R, we have that |R̂(s,a)−R (s,a)|≤ !Rn(s,a), where

!Rm :=
√

ln(2/#R)
2m

.

Proof This result follows directly from Hoeffding’s bound (Hoeffding, 1963).

Lemma 14 Suppose that T̂ (s,a) is the empirical transition distribution for state-action pair (s,a)
using m samples of next states drawn independently from the true transition distribution T (s,a). Let
#T be any positive real number less than 1. Then, with probability at least 1− #T , we have that
‖T (s,a)− T̂ (s,a)‖1 ≤ !Tn(s,a) where

!Tm =

√

2[ln(2S−2)− ln(#T )]

m
.
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Proof The result follows immediately from an application of Theorem 2.1 of Weissman et al.
(2003).11

Lemma 15 There exists a constant C such that if R-MAX with parameters m and !1 is executed on
any MDP M = 〈S ,A,T,R ,"〉 and m satisfies

m≥CV 2max
(

S+ ln(SA/#)
!12(1− ")2

)

= Õ
(

SV 2max
!12(1− ")2

)

,

then Event A1 will occur with probability at least 1−#.

Proof Event A1 occurs if R-MAX maintains a close approximation of its known state-action MDP.
By Lemmas 9 and 12, it is sufficient to obtain (C!1(1−")/Vmax)-approximate transition and reward
functions (where C is a constant), for those state-action pairs in Kt . The transition and reward
functions that R-MAX uses are the maximum-likelihood estimates, using only the first m samples
(of immediate reward and next-state pairs) for each (s,a) ∈ K. Intuitively, as long as m is large
enough, the empirical estimates for these state-action pairs will be accurate, with high probability.12
Consider a fixed state-action pair (s,a). From Lemma 13, we can guarantee the empirical reward
distribution is accurate enough, with probability at least 1− #′, as long as

√

ln(2/#′)
2m ≤ C!1(1−

")/Vmax. From Lemma 14, we can guarantee the empirical transition distribution is accurate enough,
with probability at least 1− #′, as long as

√

2[ln(2S−2)−ln(#′)]
m ≤ C!1(1− ")/Vmax. It is possible to

choosem, as a function of the parameters of the MDPM, large enough so that both these expressions
are satisfied but small enough so that

m .
S+ ln(1/#′)
!21(1− ")2

V 2max.

With this choice, we guarantee that the empirical reward and empirical distribution for a single
state-action pair will be sufficiently accurate, with high probability. However, to apply the simula-
tion bounds of Lemma 12, we require accuracy for all state-action pairs. To ensure a total failure
probability of #, we set #′ = #/(2SA) in the above equations and apply the union bound over all
state-action pairs.

Proof (of Theorem 11). We apply Theorem 10. Let !1 = !/2. Assume that Event A1 oc-
curs. Consider some fixed time t. First, we verify Condition 1 of the theorem. We have that
Vt(s) ≥ V ∗

M̂Kt
(s)− !1 ≥ V ∗

MKt
(s)− 2!1 ≥ V ∗(s)− 2!1. The first inequality follows from the fact that

11. The result of Weissman et al. (2003) is established using an information-theoretic argument. A similar result can be
obtained (Kakade, 2003) by the multiplicative form of Chernoff’s bounds.

12. There is a minor technicality here. The samples, in the form of immediate rewards and next states, experienced by an
online agent in an MDP are not necessarily independent samples. The reason is that the learning environment or the
agent could prevent future experiences of state-action pairs based on previously observed outcomes. Nevertheless,
all the tail inequality bounds, including the Chernoff and Hoeffding Bounds, that hold for independent samples also
hold for online samples in MDPs that can be viewed as martingales, a fact that follows from the Markov property.
There is an extended discussion and formal proof of this fact elsewhere (Strehl and Littman, 2008b). An excellent
review (with proofs) of the tail inequalities for martingales that we use in the present paper is by McDiarmid (1989).
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R-MAX computes its action values by computing an !1-approximate solution of its internal model
(M̂Kt ) (using Proposition 4). The second inequality follows from Event A1 and the third from the
fact that MKt can be obtained from M by removing certain states and replacing them with a maxi-
mally rewarding state whose actions are self-loops, an operation that only increases the value of any
state. Next, we note that Condition 2 of the theorem follows from Event A1. Finally, observe that
the learning complexity, ,(!,#) ≤ |{(s,a)|U(s,a) ≥V ∗(s)− !}|m. To see this fact, first note that
state-action pair (s,a) with U(s,a) < V ∗(s)− ! will never be experienced, with high probability,
because initially the agent chooses actions greedily with respect to U(s,a) and there always exists
another action a′ such that Qt(s,a′) >V ∗(s)− !. Next, note that each time an escape occurs, some
(s,a) /∈ K is experienced. However, once (s,a) is experienced m times, it becomes part of and never
leaves the set K. To guarantee that Event A1 occurs with probability at least 1−#, we use Lemma 15
to set m.

3.3 Analysis of Delayed Q-learning

In this section, we analyze the computational and sample complexity of Delayed Q-learning.

3.3.1 COMPUTATIONAL COMPLEXITY

On most timesteps, Delayed Q-learning performs only a constant amount of computation. Its worst-
case computational complexity per timestep is

-(ln(A)),

where the logarithmic term is due to updating the priority queue that holds the action-value estimates
for the current state. Since Delayed Q-learning performs at most SA

(

1+ SA
(1−")!1

)

attempted updates
(see Lemma 19), each update involves m transitions, and each transition requires computing the
greedy action whose computation complexity is O(ln(A)), the total computation time of Delayed
Q-learning is

O
(

B+
mS2A2 ln(A)

!1(1− ")

)

,

where B is the number of timesteps for which Delayed Q-learning is executed. Since the number of
attempted updates is bounded by a constant, the amortized computation time per step is O(1) as B
approaches '.

3.3.2 SAMPLE COMPLEXITY

In this section, we show that Delayed Q-learning is PAC-MDP.

Theorem 16 (Strehl et al., 2006b) Suppose that 0 ≤ ! < 1
1−" and 0 ≤ # < 1 are two real numbers

and M = 〈S ,A,T,R ,"〉 is any MDP. There exists inputs m = m(1! ,
1
#) and !1, satisfying m(1! ,

1
#) =

O
(

(1+"Vmax)2
!21

ln SA
!1#(1−")

)

and 1
!1

=O( 1
!(1−") ), such that if Delayed Q-learning is executed on M, then

the following holds. Let At denote Delayed Q-learning’s policy at time t and st denote the state at
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time t. With probability at least 1−#, VAt
M (st) ≥V ∗

M(st)− ! is true for all but

O

(

Vmax(1+ "Vmax)2$(s,a)∈S×A[U(s,a)−V ∗(s)]+
!4(1− ")4

ln
1
#
ln

1
!(1− ")

ln
SA

#!(1− ")

)

timesteps t.

Definition 17 An update (or successful update) of state-action pair (s,a) is a timestep t for which
a change to the action-value estimate Q(s,a) occurs. An attempted update of state-action pair
(s,a) is a timestep t for which (s,a) is experienced, LEARN(s,a) = true and l(s,a) = m. An at-
tempted update that is not successful is an unsuccessful update.

To prove the main theorem we need some additional results. The following lemmas are modified
slightly from Strehl et al. (2006b). For convenience, define

/ :=
SA

(1− ")!1
.

Lemma 18 The total number of updates during any execution of Delayed Q-learning is at most /.

Proof Consider a fixed state-action pair (s,a). Its associated action-value estimate Q(s,a) is ini-
tialized to U(s,a) ≤ 1/(1− ") before any updates occur. Each time Q(s,a) is updated it decreases
by at least !1. Since all rewards encountered are non-negative, the quantities involved in any update
(see Equation 6) are non-negative. Thus, Q(s,a) cannot fall below 0. It follows that Q(s,a) cannot
be updated more than 1/(!(1− ")) times. Since there are SA state-action pairs, we have that there
are at most SA/(!(1− ")) total updates.

Lemma 19 The total number of attempted updates during any execution of Delayed Q-learning is
at most SA(1+/).

Proof Consider a fixed state-action pair (s,a). Once (s,a) is experienced for the mth time, an at-
tempted update will occur. Suppose that an attempted update of (s,a) occurs during timestep t.
Afterwards, for another attempted update to occur during some later timestep t ′, it must be the case
that a successful update of some state-action pair (not necessarily (s,a)) has occurred on or after
timestep t and before timestep t ′. From Lemma 18, there can be at most / total successful updates.
Therefore, there are at most 1+/ attempted updates of (s,a). Since there are SA state-action pairs,
there can be at most SA(1+/) total attempted updates.

Definition 20 During timestep t of the execution of Delayed Q-learning, we define Kt to be the set

Kt :=

{

(s,a) ∈ S ×A | Qt(s,a)−

(

R(s,a)+ "$
s′
T (s′|s,a)Vt(s′)

)

≤ 3!1

}

.
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The set Kt consists of the state-action pairs with low Bellman residual. The state-action pairs
not in Kt are the ones whose action-value estimates are overly optimistic in the sense that they
would decrease significantly if subjected to a Bellman backup (as in value iteration). Intuitively, if
(s,a) /∈ Kt , then it is very likely that (s,a) will be updated successfully by Delayed Q-learning if
visited m times. This intuition is formalized by the following definition and lemma.

Definition 21 Suppose we execute Delayed Q-learning in an MDP M. Define Event A2 to be the
event that for all timesteps t, if (s,a) /∈ Kk1 and an attempted update of (s,a) occurs during timestep
t, then the update will be successful, where k1 < k2 < · · ·< km = t are m last timesteps during which
(s,a) is experienced consecutively by the agent.

Lemma 22 Suppose we execute Delayed Q-learning with parameter m satisfying

m≥
(1+ "Vmax)2

2!12
ln

(

3SA
#

(

1+
SA

!1(1− ")

))

(8)

in an MDP M. The probability that Event A2 occurs is greater than or equal to 1−#/3.

Proof Fix any timestep k1 (and the complete history of the agent up to k1) satisfying: the agent
is in state s and about to take action a, where (s,a) /∈ Kk1 on timestep k1, LEARN(s,a) = true,
and l(s,a) = 0 at time k1. In other words, if (s,a) is experienced m− 1 more times after timestep
k1, then an attempted update will result. Let Q = [(s[1],r[1]), . . . ,(s[m],r[m])] ∈ (S×R)m be any
sequence of m next-state and immediate reward tuples. Due to the Markov assumption, whenever
the agent is in state s and chooses action a, the resulting next-state and immediate reward are chosen
independently of the history of the agent. Thus, the probability of the joint event
1. (s,a) is experienced m−1 more times, and
2. the resulting next-state and immediate reward sequence equals Q

is at most the probability that Q is obtained by m independent draws from the transition and reward
distributions (for (s,a)). Therefore, it suffices to prove this lemma by showing that the probability
that a random sequence Q could cause an unsuccessful update of (s,a) is at most #/3. We prove
this statement next.

Suppose m rewards, r[1], . . . ,r[m], and m next states, s[1], . . . ,s[m], are drawn independently
from the reward and transition distributions, respectively, for (s,a). By a straightforward application
of the Hoeffding bound (with random variables Xi := r[i]+ "Vk1(s[i]) so that 0≤ Xi ≤ (1+ "Vmax)),
it can be shown that our choice of m guarantees that

1
m

m

$
i=1

(r[i]+ "Vk1(s[i]))−E[X1] < !1

holds with probability at least 1− #/(3SA(1+ /)). If it does hold and an attempted update is
performed for (s,a) using these m samples, then the resulting update will succeed. To see the
claim’s validity, suppose that (s,a) is experienced at times k1 < k2 < · · · < km = t and at time ki the
agent is transitioned to state s[i] and receives reward r[i] (causing an attempted update at time t).
Then, we have that

Qt(s,a)−

(

1
m

m

$
i=1

(r[i]+ "Vki(s[i]))

)

> Qt(s,a)−E[X1]− !1 > 2!1.
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We have used the fact thatVki(s′)≤Vk1(s′) for all s′ and i= 1, . . . ,m. Therefore, with high probabil-
ity, Equation 7 will be true and the attempted update of Q(s,a) at time km will succeed.

Finally, we extend our argument, using the union bound, to all possible timesteps k1 satisfying
the condition above. The number of such timesteps is bounded by the same bound we showed for
the number of attempted updates (that is, SA(1+/)).

The next lemma states that, with high probability, Delayed Q-learning will maintain optimistic
action values.

Lemma 23 During execution of Delayed Q-learning, if m satisfies Equation 8, then Qt(s,a) ≥
Q∗(s,a) holds for all timesteps t and state-action pairs (s,a), with probability at least 1−#/3.

Proof It can be shown, by a similar argument as in the proof of Lemma 22, that
(1/m)$m

i=1 (rki + "V ∗(ski)) > Q∗(s,a)− !1 holds, for all attempted updates, with probability at least
1− #/3. Assuming this equation does hold, the proof is by induction on the timestep t. For the
base case, note that Q1(s,a) =U(s,a) ≥Q∗(s,a) for all (s,a). Now, suppose the claim holds for all
timesteps less than or equal to t. Thus, we have that Qt(s,a) ≥ Q∗(s,a), and Vt(s) ≥ V ∗(s) for all
(s,a). Suppose s is the t th state reached and a is the action taken at time t. If it does not result in an
attempted update or it results in an unsuccessful update, then no action-value estimates change, and
we are done. Otherwise, by Equation 6, we have thatQt+1(s,a) = (1/m)$m

i=1 (rki + "Vki(ski))+!1≥
(1/m)$m

i=1 (rki + "V ∗(ski)) + !1 ≥ Q∗(s,a), by the induction hypothesis and an application of the
equation from above.

Lemma 24 (Strehl et al., 2006b) If Event A2 occurs, then the following statement holds: If an
unsuccessful update occurs at time t and LEARNt+1(s,a) = false, then (s,a) ∈ Kt+1.

Proof (By contradiction) Suppose an unsuccessful update occurs at timestep t, LEARNt+1(s,a) =
f alse, and (s,a) /∈ Kt+1. Let k1 < k2 < · · · < km be the most recent m timesteps in which a is taken
in state s. Clearly, km = t. Because of Event A2, we have (s,a) ∈ Kk1 . Since no update occurred on
timestep t, we have that Kt = Kt+1. It follows from Kt = Kt+1 that (s,a) /∈ Kt , implying that there
must exist some timestep t ′ > k1 in which a successful update occurs. Thus, by the rules of Section
2.2.2, LEARNt+1(s,a) remains true, which contradicts our assumption.

The following lemma bounds the number of timesteps t in which a state-action pair (s,a) /∈ Kt
is experienced.

Lemma 25 If Event A2 occurs and Qt(s,a) ≥ Q∗(s,a) holds for all timesteps t and state-action
pairs (s,a), then the number of changes to the Q-function is at most$(s,a)∈S×A

[U(s,a)−V ∗(s)]+
!1

, and the
number of timesteps t such that a state-action pair (st ,at) /∈Kt is at most 2m$(s,a)∈S×A

[U(s,a)−V ∗(s)]+
!1

.

Proof We claim that Q(s,a) cannot be changed more than [U(s,a)−V ∗(s)]+
!1

times. First, note that
Q(s,a) is initialized toU(s,a) and each successful update decreases its value by at least !1. Now, let
a∗ = argmaxaQ∗(s,a). By assumption Q(s,a∗) ≥ Q∗(s,a∗) = V ∗(s). Thus, we conclude that once
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Q(s,a) falls below V ∗(s), action a will never again be chosen in state s, since actions are chosen
greedily with respect to Q(·, ·). Updates to (s,a) only occur after (s,a) has been experienced. Thus,
at most [U(s,a)−V ∗(s)]+

!1
changes toQ(s,a) can occur, and the total number of changes to the Q-function

is at most $(s,a)∈S×A

[U(s,a)−V ∗(s)]+
!1

.
Suppose (s,a) /∈ Kt is experienced at time t and LEARNt(s,a) = false (implying the last at-

tempted update was unsuccessful). By Lemma 24, we have that (s,a) ∈ Kt ′+1 where t ′ was the time
of the last attempted update of (s,a). Thus, some successful update has occurred since time t ′ +1.
By the rules of Section 2.2.2, we have that LEARN(s,a) will be set to true and by Event A2, the
next attempted update will succeed.

Now, suppose that (s,a) /∈ Kt is experienced at time t and LEARNt(s,a) = true. Within at most
m more experiences of (s,a), an attempted update of (s,a) will occur. Suppose this attempted
update takes place at time q and that the m most recent experiences of (s,a) happened at times
k1 < k2 < · · ·< km = q. By Event A2, if (s,a) /∈ Kk1 , the update will be successful. Otherwise, since
(s,a) ∈ Kk1 , some successful update must have occurred between times k1 and t (since Kk1 /= Kt).
Hence, even if the update is unsuccessful, LEARN(s,a) will remain true, (s,a) /∈ Kq+1 will hold,
and the next attempted update of (s,a) will be successful.

In either case, if (s,a) /∈ Kt , then within at most 2m more experiences of (s,a), a successful
update of Q(s,a) will occur. Thus, reaching a state-action pair not in Kt at time t will happen at
most 2m$(s,a)∈S×A

[U(s,a)−V ∗(s)]+
!1

times.

Using these Lemmas we can prove the main result.

Proof (of Theorem 16) We apply Theorem 10. Set m as in Lemma 22 and let !1 = !(1− ")/3.
First, note that Kt is defined with respect to the agent’s action-value estimates Q(·, ·) and other
quantities that don’t change during learning. Thus, we have that Kt = Kt+1 unless an update to
some action-value estimate takes place. We now assume that Event A2 occurs, an assumption that
holds with probability at least 1−#/3, by Lemma 22. By Lemma 23, we have that Condition 1 of
Theorem 10 holds, namely that Vt(s) ≥V ∗(s)− ! for all timesteps t. Next, we claim that Condition
2, Vt(s)−V &t

MKt
(s) ≤ 3!1

1−" = ! also holds. For convenience let M′ denote MKt . Recall that for all
(s,a), eitherQt(s,a) =Q&t

M′(s,a)when (s,a) /∈Kt , orQt(s,a)−(R(s,a)+ "$s′ T (s′|s,a)Vt(s′))≤ 3!1
when (s,a) ∈ Kt (by definition of Kt). Note that V &t

M′ is the solution to the following set of Bellman
equations:

V &t
M′(s) = R(s,&t(s))+ " $

s′∈S
T (s′|s,&t(s))V &t

M′(s′) if (s,&t(s)) ∈ Kt ,

V &t
M′(s) = Qt(s,&t(s)), if (s,&t(s)) /∈ Kt .

The vectorVt is the solution to a similar set of equations except with some additional positive reward
terms on the right-hand side for the case (s,&t(s)) ∈ Kt , each bounded by 3!1, due to our definition
of the set Kt . This fact implies that Vt(s)−V &t

MKt
(s) ≤ 3!1

1−" , as desired; see, e.g., Munos and Moore
(2000) for a proof. Finally, for Condition 3 of Theorem 10, we note that by Lemma 25, ,(!,#) =

O
(

2m$(s,a)∈S×A

[U(s,a)−V ∗(s)]+
!1

)

=O
(

(1+"Vmax)2$(s,a)∈S×A[U(s,a)−V ∗(s)]+
!3(1−")3 ln SA

!#(1−")

)

, where ,(!,#) is the
number of updates and escape events that occur during execution of Delayed Q-learning with inputs
! and # (equivalently, with inputs !1 and m, which are derived from ! and #).
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We’ve proven upper bounds on the learning complexity of Delayed Q-learning and R-MAX.
The analysis techniques are general and have proven useful in analyzing other related algorithms
(Asmuth et al., 2008; Brunskill et al., 2008; Leffler et al., 2007; Strehl et al., 2007; Strehl and
Littman, 2008a).

4. A New Lower Bound

The main result of this section (Theorem 26) is an improvement on published lower bounds for
learning in MDPs. Existing results (Kakade, 2003) show a linear dependence on S and !, but we
find that a linearithmic on S and a quadratic dependence on ! are necessary for any reinforcement-
learning algorithm A that satisfies the following assumptions:

• At is a deterministic policy at all timesteps t, and

• At and At+1 can differ only in st ; namely, the action-selection policy of the algorithm may
change only in the most recently visited state.

Both assumptions are introduced to simplify our analysis. We anticipate the same lower bound
to hold without these assumptions as they do not appear to restrict the power of an algorithm in
the family of difficult-to-learn MDPs that we will describe soon. Also, while we choose to drop
dependence on 1/(1− ") in our new lower bound to facilitate a cleaner analysis, we believe it is
possible to force a quadratic dependence by a more careful analysis. Finally, we note that the
analysis bears some similarity to the lower bound analysis of Leffler et al. (2005) although their
result is different and is for a different learning model.

Theorem 26 For any reinforcement-learning algorithm A that satisfies the two assumptions above,
there exists an MDP M such that the sample complexity of A in M is

%

(

SA
!2
ln
S
#

)

.

To prove this theorem, consider the family of MDPs depicted in Figure 1. The MDPs have
S = N+ 2 states: S = {1,2, . . . ,N,+,−}, and A actions. For convenience, denote by [N] the set
{1,2, . . . ,N}. Transitions from each state i ∈ [N] are the same, so only the transitions from state 1
are depicted. One of the actions (the solid one) deterministically transports the agent to state+ with
reward 0.5+ !. Let a be any of the other A− 1 actions (the dashed ones). From any state i ∈ [N],
taking a will transition to + with reward 1 and probability pia, and to − with reward 0 otherwise,
where pia ∈ {0.5,0.5+ 2!} are numbers very close to 0.5+ !. Furthermore, for each i, there is at
most one a such that pia = 0.5+2!. Transitions from states+ and− are identical: they simply reset
the agent to one of the states in [N] uniformly at random.

In fact, the MDP defined above can be viewed as N copies of a multi-armed bandit problem
where the states + and − are dummy states for randomly resetting the agent to the next “real” state.
Therefore, the optimal action in a state i is independent of the optimal action in any other state: it is
the solid action if pia = 0.5 for all dashed actions a; otherwise, it is the dashed action a for which
pia = 0.5+2!. Intuitively, this MDP is hard to learn for exactly the same reason that a biased coin
is hard to learn if the bias (that is, the probability of head after a coin toss) is close to 0.5.
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Figure 1: The difficult-to-learn MDPs for an improved sample complexity lower bound.

Lemma 27 There exist constants c1,c2 ∈ (0,1) such that during a whole run of the algorithm A ,
for any state i ∈ [N], the probability that A takes sub-optimal actions in i more than mi times is at
least p(mi), where

p(mi) := c2 exp
(

−
mi!2

c1A

)

.

The following result is useful for proving Lemma 27.

Lemma 28 (Mannor and Tsitsiklis, 2004, Theorem 1) Consider the K-armed bandit problem and
let !,# ∈ (0,1). We call an algorithm AB (!,#)-correct if it always terminates after a finite number
T of trials and outputs an !-optimal arm with probability at least 1−#. Here, the sample complexity
T is a random variable, and we let E be the expectation with respect to randomness in the bandit’s
rewards and AB (if the algorithm is stochastic). Then there exist constants c1,c2,!0,#0 ∈ (0,1), such
that for every K ≥ 2, ! ∈ (0,!0), and # ∈ (0,#0), and for every (!,#)-correct algorithm AB, there is
a K-armed bandit problem such that

E[T ] ≥
c1K
!2
ln
c2
#

.

Proof (of Lemma 27) If we treat decision making in each state as an A-arm bandit problem, finding
the optimal action for that state becomes one of finding an !-optimal arm (action) in the bandit
problem. This bandit problem is the one used by Mannor and Tsitsiklis (2004) to establish the
sample complexity lower bound in Lemma 28.13

By construction of the MDP in Figure 1, there is at most one optimal action in each state i∈ [N].
Thus, if any RL algorithm A can guarantee, with probability at least 1− #i, that at most mi sub-
optimal actions are taken in state i during a whole run, then we can turn it into a bandit algorithm
AB with a sample complexity of 2mi + 1 in the following way: we simply run A for 2mi + 1 steps
and the majority action must be !-optimal with probability at least 1−#i. In other words, Lemma 28

13. The lower bound of Mannor and Tsitsiklis (2004) is for expected sample complexity. But, this result automatically
applies to worst-case sample complexity, which is what we consider in the present paper.
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for sample complexity in K-armed bandits results immediately in a lower bound for the total number
of sub-optimal actions taken by A , yielding

mi ≥
c1A
!2
ln
c2
#i

for appropriately chosen constants c1 and c2. Reorganizing terms gives the desired result.

We will need two technical lemma to prove the lower bound. Their proofs are given after the
proof of the main theorem.

Lemma 29 Let c and * be constants in (0,1). Under the constraints $i mi ≤ , and mi > 0 for all i,
the function

f (m1,m2, . . . ,mN) = 1−
N

0
i=1

(1− c*mi)

is minimized when m1 = m2 = · · · = mN = ,
N . Therefore,

f (m1,m2, . . . ,mN) ≥ 1−
(

1− c*
,
N

)N
.

Lemma 30 If there exist some constants c1,c2 > 0 such that

#≥ 1−
(

1− c2 exp
(

−
,1
c12

))2

,

for some positive quantities 1, ,, 2, and #, then

,=%

(

2
1
ln
2
#

)

.

Proof (of Theorem 26) Let ,(!,#) be an upper bound of the sample complexity of any PAC-MDP
algorithm A with probability at least 1−#. Let sub-optimal actions be taken mi times in state i∈ [N]
during a whole run of A . Consequently,

#≥ Pr

(

N

$
i=1

mi > ,(!,#)

)

= 1−Pr

(

N

$
i=1

mi ≤ ,(!,#)

)

,

where the first step is because the actual sample complexity of A is at least $i mi.
We wish to find a lower bound for the last expression above by optimizing the values of mi’s

subject to the constraint, $i mi ≤ ,(!,#). Due to the statistical independence of what states i ∈ [N]
are visited by the algorithm,14 we can factor the probability above to obtain

#≥ 1− max
m1,...,mN ;$i mi≤,(!,#)

N

0
i=1

(1− p(mi)) .

14. It does not help for the algorithm to base its policy in one state on samples collected in other states, due to the
independence of states in this MDP. If an algorithm attempts to do so, an adversary can make use of this fact to assign
pia to even increase the failure probability of the algorithm.
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where Lemma 27 is applied.
We now use Lemma 29 to obtain a lower bound of the last expression above, which in turn

lower-bounds #. Applying this lemma with c= c2 and *= exp(− !2
c1A) gives

#≥ 1−
(

1− c2 exp
(

−
,(!,#)!2

c1NA

))N

. (9)

The theorem then follows immediately from Lemma 30 using 2= N and 1= !2/A.

Proof (of Lemma 29) Since f (m1, . . . ,mN) ∈ (0,1), finding the minimum of f is equivalent to
finding the maximum of the following function:

g(m1,m2, . . . ,mN) = ln(1− f (m1,m2, . . . ,mN)) =
N

$
i=1
ln(1− c*mi) ,

under the same constraints. Due to the concavity of ln(·), we have

g(m1,m2, . . . ,mN) ≤ N ln

(

1
N

N

$
i=1

(1− c*mi)

)

= N ln

(

1−
c
N

N

$
i=1

*mi
)

.

Finally, we use the fact that the arithmetic mean is no less than the geometric mean to further
simplify the upper bound of g:

g(m1,m2, . . . ,mN) ≤ N ln
(

1− c*
1
N $

N
i=1mi

)

≤ N ln
(

1− c*
,
N

)

.

Equality holds in all inequalities above when m1 = m2 = · · · = mN = ,
N .

Proof (of Lemma 30) Reorganizing terms in Equation (9) gives

1− c2 exp
(

−
,1
c12

)

≥ (1−#)
1
2 .

The function (1− #)1/# is a decreasing function of # for 0 < # < 1, and lim#→0+(1− #)1/# = 1/e.
Therefore, as long as # is less than some constant c3 ∈ (0,1), we will have

(1−#)
1
2 =

(

(1−#)
1
#

)
#
2
≥ (c4)

#
2 = exp

(

−
c5#
2

)

,

where c4 = (1− c3)1/c3 ∈
(

0, 1e
)

and c5 = ln 1
c4 ∈ (1,') are two constants. It is important to note

that c3 (and thus c4 and c5) does not depend on 1 or 2. Now, apply the inequality ex ≥ 1+ x for
x= −c5#/2 to get exp(−c5#/2) ≥ 1− c5#/2. The above chain of inequalities results in:

1− c2 exp
(

−
,1
c12

)

≥ 1−
c5#
2

.

Solving this inequality for , gives the desired lower bound for ,.

We have shown a new sample complexity lower bound that has a linearithmic dependence on S
in the worst case. Thus, Delayed Q-learning is optimal in the sense of minimizing the dependence
(of sample complexity of exploration) on the number of states.
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5. Conclusion

We have presented and improved PAC-MDP upper and lower bounds reported in the literature.
We studied two algorithms, R-MAX (which is model based) and Delayed Q-learning (which is
model free) that are able to make use of non-trivial admissible heuristic functions. Comparing
the relative strengths of model-based and model-free algorithms has been an important problem
in the reinforcement-learning community (see, e.g., Atkeson and Gordon 1997 and Kearns and
Singh 1999). Our analysis indicates that both can learn efficiently in finite MDPs in the PAC-MDP
framework. The bounds suggest that a model-free method can be less sensitive on the size of the
state space (linearithmic vs. quadratic dependence in the bound, matching the lower bound) whereas
a model-based method can be less sensitive to the effective horizon, 1/(1− "). Future work should
focus on tightening bounds further and expanding analyses to state spaces in which generalization
is necessary.
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Csaba Szepesvári. The asymptotic convergence-rate of Q-learning. In Advances in Neural Infor-
mation Processing Systems 10, pages 1064–1070, 1998.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, Novem-
ber 1984.

Thomas J. Walsh, István Szita, Carlos Diuk, and Michael L. Littman. Exploring compact
reinforcement-learning representations with linear regression. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, 2009.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279–292, 1992.

Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J. Weinberger.
Inequalities for the L1 deviation of the empirical distribution. Technical Report HPL-2003-97R1,
Hewlett-Packard Labs, 2003.

2444



Journal of Machine Learning Research 10 (2009) 2445-2471 Submitted 6/09; Published 11/09

Prediction With Expert Advice For The Brier Game

Vladimir Vovk VOVK@CS.RHUL.AC.UK
Fedor Zhdanov FEDOR@CS.RHUL.AC.UK
Computer Learning Research Centre
Department of Computer Science
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

Editor: Yoav Freund

Abstract
We show that the Brier game of prediction is mixable and find the optimal learning rate and sub-
stitution function for it. The resulting prediction algorithm is applied to predict results of football
and tennis matches, with well-known bookmakers playing the role of experts. The theoretical per-
formance guarantee is not excessively loose on the football data set and is rather tight on the tennis
data set.

Keywords: Brier game, classification, on-line prediction, strong aggregating algorithm, weighted
average algorithm

1. Introduction

The paradigm of prediction with expert advice was introduced in the late 1980s (see, e.g., DeSantis
et al., 1988, Littlestone and Warmuth, 1994, Cesa-Bianchi et al., 1997) and has been applied to
various loss functions; see Cesa-Bianchi and Lugosi (2006) for a recent book-length review. An
especially important class of loss functions is that of “mixable” ones, for which the learner’s loss
can be made as small as the best expert’s loss plus a constant (depending on the number of ex-
perts). It is known (Haussler et al., 1998; Vovk, 1998) that the optimal additive constant is attained
by the “strong aggregating algorithm” proposed in Vovk (1990) (we use the adjective “strong” to
distinguish it from the “weak aggregating algorithm” of Kalnishkan and Vyugin, 2008).

There are several important loss functions that have been shown to be mixable and for which the
optimal additive constant has been found. The prime examples in the case of binary observations
are the log loss function and the square loss function. The log loss function, whose mixability
is obvious, has been explored extensively, along with its important generalizations, the Kullback-
Leibler divergence and Cover’s loss function (see, e.g., the review by Vovk, 2001, Section 2.5).

In this paper we concentrate on the square loss function. In the binary case, its mixability
was demonstrated in Vovk (1990). There are two natural directions in which this result could be
generalized:

Regression: observations are real numbers (square-loss regression is a standard problem in statis-
tics).

c©2009 Vladimir Vovk and Fedor Zhdanov.
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Classification: observations take values in a finite set (this leads to the “Brier game”, to be defined
shortly, a standard way of measuring the quality of predictions in meteorology and other
applied fields: see, e.g., Dawid, 1986).

The mixability of the square loss function in the case of observations belonging to a bounded in-
terval of real numbers was demonstrated in Haussler et al. (1998); Haussler et al.’s algorithm was
simplified in Vovk (2001). Surprisingly, the case of square-loss non-binary classification has never
been analysed in the framework of prediction with expert advice. The purpose of this paper is to
fill this gap. Its short conference version (Vovk and Zhdanov, 2008a) appeared in the ICML 2008
proceedings.

2. Prediction Algorithm and Loss Bound

A game of prediction consists of three components: the observation space !, the decision space ",
and the loss function # : !×"→ R. In this paper we are interested in the following Brier game
(Brier, 1950): ! is a finite and non-empty set, " := P (!) is the set of all probability measures on
!, and

#($,%) = &
o∈!

(%{o}−'${o})2 ,

where '$ ∈ P (!) is the probability measure concentrated at $: '${$} = 1 and '${o} = 0 for
o &= $. (For example, if != {1,2,3}, $= 1, %{1} = 1/2, %{2} = 1/4, and %{3} = 1/4, #($,%) =
(1/2−1)2+(1/4−0)2+(1/4−0)2 = 3/8.)

The game of prediction is being played repeatedly by a learner having access to decisions made
by a pool of experts, which leads to the following prediction protocol:

Protocol 1 Prediction with expert advice
L0 := 0.
Lk0 := 0, k = 1, . . . ,K.
for N = 1,2, . . . do
Expert k announces %kN ∈ ", k = 1, . . . ,K.
Learner announces %N ∈ ".
Reality announces $N ∈!.
LN := LN−1+#($N ,%N).
LkN := LkN−1+#($N ,%kN), k = 1, . . . ,K.

end for

At each step of Protocol 1 Learner is given K experts’ advice and is required to come up with his
own decision; LN is his cumulative loss over the first N steps, and LkN is the kth expert’s cumulative
loss over the first N steps. In the case of the Brier game, the decisions are probability forecasts for
the next observation.

An optimal (in the sense of Theorem 1 below) strategy for Learner in prediction with expert
advice for the Brier game is given by the strong aggregating algorithm (see Algorithm 1). For each
expert k, the algorithm maintains its weight wk, constantly slashing the weights of less successful
experts. Its description uses the notation t+ :=max(t,0).

The algorithm will be derived in Section 5. The following result (to be proved in Section 4)
gives a performance guarantee for it that cannot be improved by any other prediction algorithm.
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Algorithm 1 Strong aggregating algorithm for the Brier game
wk0 := 1, k = 1, . . . ,K.
for N = 1,2, . . . do
Read the Experts’ predictions %kN , k = 1, . . . ,K.
Set GN($) := − ln&K

k=1wkN−1e−#($,%kN), $ ∈!.
Solve &$∈!(s−GN($))+ = 2 in s ∈ R.
Set %N{$} := (s−GN($))+/2, $ ∈!.
Output prediction %N ∈ P (!).
Read observation $N .
wkN := wkN−1e−#($N ,%kN).

end for

Theorem 1 Using Algorithm 1 as Learner’s strategy in Protocol 1 for the Brier game guarantees
that

LN ≤ min
k=1,...,K

LkN + lnK (1)

for all N = 1,2, . . . . If A< lnK, Learner does not have a strategy guaranteeing

LN ≤ min
k=1,...,K

LkN +A (2)

for all N = 1,2, . . . .

3. Experimental Results

In our first empirical study of Algorithm 1 we use historical data about 8999 matches in various
English football league competitions, namely: the Premier League (the pinnacle of the English
football system), the Football League Championship, Football League One, Football League Two,
the Football Conference. Our data, provided by Football-Data, cover four seasons, 2005/2006,
2006/2007, 2007/2008, and 2008/2009. The matches are sorted first by date, then by league, and
then by the name of the home team. In the terminology of our prediction protocol, the outcome of
each match is the observation, taking one of three possible values, “home win”, “draw”, or “away
win”; we will encode the possible values as 1, 2, and 3.

For each match we have forecasts made by a range of bookmakers. We chose eight bookmakers
for which we have enough data over a long period of time, namely Bet365, Bet&Win, Gamebookers,
Interwetten, Ladbrokes, Sportingbet, Stan James, and VC Bet. (And the seasons mentioned above
were chosen because the forecasts of these bookmakers are available for them.)

A probability forecast for the next observation is essentially a vector (p1, p2, p3) consisting of
positive numbers summing to 1. The bookmakers do not announce these numbers directly; instead,
they quote three betting odds, a1, a2, and a3. Each number ai > 1 is the total amount which the
bookmaker undertakes to pay out to a client betting on outcome i per unit stake in the event that
i happens (if the bookmaker wishes to return the stake to the bettor, it should be included in ai;
i.e., the odds are announced according to the “continental” rather than “traditional” system). The
inverse value 1/ai, i ∈ {1,2,3}, can be interpreted as the bookmaker’s quoted probability for the
observation i. The bookmaker’s quoted probabilities are usually slightly (because of the competition
with other bookmakers) in his favour: the sum 1/a1+1/a2+1/a3 exceeds 1 by the amount called
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the overround (at most 0.15 in the vast majority of cases). We use Victor Khutsishvili’s (2009)
formula

pi := a−%i , i= 1,2,3, (3)
for computing the bookmaker’s probability forecasts, where % > 0 is chosen such that a−%1 + a−%2 +
a−%3 = 1. Such a value of % exists and is unique since the function a−%1 + a−%2 + a−%3 continuously
and strictly decreases from 3 to 0 as % changes from 0 to (. In practice, we usually have % > 1
as a−11 + a−12 + a−13 > 1 (i.e., the overround is positive). The method of bisection was more than
sufficient for us to solve a−%1 + a−%2 + a−%3 = 1 with satisfactory accuracy. Khutsishvili’s argument
for (3) is outlined in Appendix B.

Typical values of % in (3) are close to 1, and the difference %−1 reflects the bookmaker’s target
profit margin. In this respect %−1 is similar to the overround; indeed, the approximate value of the
overround is (%− 1)&3i=1 a

−1
i lnai assuming that the overround is small and none of ai is too close

to 0. The coefficient of proportionality &3i=1 a
−1
i lnai can be interpreted as the entropy of the quoted

betting odds.
The results of applying Algorithm 1 to the football data, with 8 experts and 3 possible observa-

tions, are shown in Figure 1. Let LkN be the cumulative loss of Expert k, k = 1, . . . ,8, over the first
N matches and LN be the corresponding number for Algorithm 1 (i.e., we essentially continue to
use the notation of Theorem 1). The dashed line corresponding to Expert k shows the excess loss
N (→ LkN−LN of Expert k over Algorithm 1. The excess loss can be negative, but from the first part
of Theorem 1 (Equation (1)) we know that it cannot be less than − ln8; this lower bound is also
shown in Figure 1. Finally, the thick line (the positive part of the x axis) is drawn for comparison:
this is the excess loss of Algorithm 1 over itself. We can see that at each moment in time the algo-
rithm’s cumulative loss is fairly close to the cumulative loss of the best expert (at that time; the best
expert keeps changing over time).

Figure 2 shows the distribution of the bookmakers’ overrounds. We can see that in most cases
overrounds are between 0.05 and 0.15, but there are also occasional extreme values, near zero or in
excess of 0.3.

Figure 3 shows the results of another empirical study, involving data about a large number of
tennis tournaments in 2004, 2005, 2006, and 2007, with the total number of matches 10,087. The
tournaments include, for example, Australian Open, French Open, US Open, and Wimbledon; the
data is provided by Tennis-Data. The matches are sorted by date, then by tournament, and then by
the winner’s name. The data contain information about the winner of each match and the betting
odds of 4 bookmakers for his/her win and for the opponent’s win. Therefore, now there are two
possible observations (player 1’s win and player 2’s win). There are four bookmakers: Bet365,
Centrebet, Expekt, and Pinnacle Sports. The results in Figure 3 are presented in the same way as in
Figure 1.

Typical values of the overround are below 0.1, as shown in Figure 4 (analogous to Figure 2).
In both Figure 1 and Figure 3 the cumulative loss of Algorithm 1 is close to the cumulative loss

of the best expert. The theoretical bound is not hopelessly loose for the football data and is rather
tight for the tennis data. The pictures look almost the same when Algorithm 1 is applied in the more
realistic manner where the experts’ weights wk are not updated over the matches that are played
simultaneously.

Our second empirical study (Figure 3) is about binary prediction, and so the algorithm of Vovk
(1990) could have also been used (and would have given similar results). We included it since we
are not aware of any empirical studies even for the binary case.
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Figure 1: The difference between the cumulative loss of each of the 8 bookmakers (experts) and of
Algorithm 1 on the football data. The theoretical lower bound − ln8 from Theorem 1 is
also shown.

For comparison with several other popular prediction algorithms, see Appendix C. The data
used for producing all the figures and tables in this section and in Appendix C can be downloaded
from http://vovk.net/ICML2008.

4. Proof of Theorem 1

This proof will use some basic notions of elementary differential geometry, especially those con-
nected with the Gauss-Kronecker curvature of surfaces. (The use of curvature in this kind of results
is standard: see, e.g., Vovk, 1990, and Haussler et al., 1998.) All definitions that we will need can
be found in, for example, Thorpe (1979).

A vector f ∈ R! (understood to be a function f : !→ R) is a superprediction if there is % ∈ "
such that, for all $ ∈!, #($,%) ≤ f ($); the set ) of all superpredictions is the superprediction set.
For each learning rate *> 0, let +* : R! → (0,()! be the homeomorphism defined by

+*( f ) : $ ∈! (→ e−* f ($), f ∈ R
!. (4)

The image +*()) of the superprediction set will be called the *-exponential superprediction set. It
is known that

LN ≤ min
k=1,...,K

LkN +
lnK
*

, N = 1,2, . . . ,

can be guaranteed if and only if the *-exponential superprediction set is convex (part “if” for all K
and part “only if” for K → ( are proved in Vovk, 1998; part “only if” for all K is proved by Chris
Watkins, and the details can be found in Appendix A). Comparing this with (1) and (2) we can see
that we are required to prove that
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Figure 2: The overround distribution histogram for the football data, with 200 bins of equal size
between the minimum and maximum values of the overround.

• +*()) is convex when *≤ 1;

• +*()) is not convex when *> 1.

Define the *-exponential superprediction surface to be the part of the boundary of the *-
exponential superprediction set +*()) lying inside (0,()!. The idea of the proof is to check that,
for all *< 1, the Gauss-Kronecker curvature of this surface is nowhere vanishing. Even when this is
done, however, there is still uncertainty as to in which direction the surface is bulging (towards the
origin or away from it). The standard argument (as in Thorpe, 1979, Chapter 12, Theorem 6) based
on the continuity of the smallest principal curvature shows that the *-exponential superprediction
set is bulging away from the origin for small enough *: indeed, since it is true at some point, it is
true everywhere on the surface. By the continuity in * this is also true for all *< 1. Now, since the
*-exponential superprediction set is convex for all *< 1, it is also convex for *= 1.

Let us now check that the Gauss-Kronecker curvature of the *-exponential superprediction sur-
face is always positive when *< 1 and is sometimes negative when *> 1 (the rest of the proof, an
elaboration of the above argument, will be easy). Set n := |!|; without loss of generality we assume
!= {1, . . . ,n}.

A convenient parametric representation of the *-exponential superprediction surface is










x1
x2
...

xn−1
xn










=











e−*((u1−1)2+u22+···+u2n)

e−*(u21+(u2−1)2+···+u2n)

...
e−*(u21+···+(un−1−1)2+u2n)

e−*(u21+···+u2n−1+(un−1)2)











, (5)
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Figure 3: The difference between the cumulative loss of each of the 4 bookmakers and of Algo-
rithm 1 on the tennis data. Now the theoretical bound is − ln4.

where u1, . . . ,un−1 are the coordinates on the surface, u1, . . . ,un−1 ∈ (0,1) subject to u1+ · · ·un−1 <
1, and un is a shorthand for 1−u1− · · ·−un−1. The derivative of (5) in u1 is

,
,u1










x1
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...

xn−1
xn










= 2*











(un−u1+1)e−*((u1−1)2+u22+···+u2n−1+u2n)
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(un−u1+1)e2*u1
(un−u1)e2*u2

...
(un−u1)e2*un−1

(un−u1−1)e2*un










,

the derivative in u2 is

,
,u2










x1
x2
...

xn−1
xn










-










(un−u2)e2*u1
(un−u2+1)e2*u2

...
(un−u2)e2*un−1

(un−u2−1)e2*un










,

and so on, up to

,
,un−1










x1
x2
...

xn−1
xn










-










(un−un−1)e2*u1
(un−un−1)e2*u2

...
(un−un−1+1)e2*un−1
(un−un−1−1)e2*un










,

all coefficients of proportionality being equal and positive.

2451



VOVK AND ZHDANOV

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Figure 4: The overround distribution histogram for the tennis data.

A normal vector to the surface can be found as

Z :=

∣
∣
∣
∣
∣
∣
∣
∣
∣

e1 · · · en−1 en
(un−u1+1)e2*u1 · · · (un−u1)e2*un−1 (un−u1−1)e2*un

... . . . ...
...

(un−un−1)e2*u1 · · · (un−un−1+1)e2*un−1 (un−un−1−1)e2*un

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where ei is the ith vector in the standard basis of Rn and |·| stands for the determinant (the matrix
contains both scalars and vectors, but its determinant can still be computed using the standard rules).
The coefficient in front of e1 is the (n−1)× (n−1) determinant

∣
∣
∣
∣
∣
∣
∣
∣
∣

(un−u1)e2*u2 · · · (un−u1)e2*un−1 (un−u1−1)e2*un
(un−u2+1)e2*u2 · · · (un−u2)e2*un−1 (un−u2−1)e2*un

... . . . ...
...

(un−un−1)e2*u2 · · · (un−un−1+1)e2*un−1 (un−un−1−1)e2*un

∣
∣
∣
∣
∣
∣
∣
∣
∣

- e−2*u1

∣
∣
∣
∣
∣
∣
∣
∣
∣

un−u1 · · · un−u1 un−u1−1
un−u2+1 · · · un−u2 un−u2−1

... . . . ...
...

un−un−1 · · · un−un−1+1 un−un−1−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

= e−2*u1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1 un−u1−1
2 1 · · · 1 un−u2−1
1 2 · · · 1 un−u3−1
...
... . . . ...

...
1 1 · · · 2 un−un−1−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= e−2*u1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1 un−u1−1
1 0 · · · 0 u1−u2
0 1 · · · 0 u1−u3
...
... . . . ...

...
0 0 · · · 1 u1−un−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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= e−2*u1
(

(−1)n(un−u1−1)+(−1)n+1(u1−u2)
+(−1)n+1(u1−u3)+ · · ·+(−1)n+1(u1−un−1)

)

= e−2*u1(−1)n ((u2+u3+ · · ·+un)− (n−1)u1−1)
= −e−2*u1(−1)nnu1 - u1e−2*u1 (6)

(with a positive coefficient of proportionality, e2*, in the first -; the third equality follows from the
expansion of the determinant along the last column and then along the first row).

Similarly, the coefficient in front of ei is proportional (with the same coefficient of proportion-
ality) to uie−2*ui for i = 2, . . . ,n− 1; indeed, the (n− 1)× (n− 1) determinant representing the
coefficient in front of ei can be reduced to the form analogous to (6) by moving the ith row to the
top.

The coefficient in front of en is proportional to

e−2*un

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

un−u1+1 un−u1 · · · un−u1 un−u1
un−u2 un−u2+1 · · · un−u2 un−u2
...

... . . . ...
...

un−un−2 un−un−2 · · · un−un−2+1 un−un−2
un−un−1 un−un−1 · · · un−un−1 un−un−1+1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= e−2*un

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 · · · 0 un−u1
0 1 · · · 0 un−u2
...

... . . . ...
...

0 0 · · · 1 un−un−2
−1 −1 · · · −1 un−un−1+1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= e−2*un

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 · · · 0 un−u1
0 1 · · · 0 un−u2
...
... . . . ...

...
0 0 · · · 1 un−un−2
0 0 · · · 0 nun

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= nune−2*un

(with the coefficient of proportionality e2*(−1)n−1).
The Gauss-Kronecker curvature at the point with coordinates (u1, . . . ,un−1) is proportional (with

a positive coefficient of proportionality, possibly depending on the point) to
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,ZT
,u1...
,ZT
,un−1
ZT

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(7)

(Thorpe, 1979, Chapter 12, Theorem 5, with T standing for transposition).
A straightforward calculation allows us to rewrite determinant (7) (ignoring the positive coeffi-

cient ((−1)n−1ne2*)n) as
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(1−2*u1)e−2*u1 0 · · · 0 (2*un−1)e−2*un
0 (1−2*u2)e−2*u2 · · · 0 (2*un−1)e−2*un
...

... . . . ...
...

0 0 · · · (1−2*un−1)e−2*un−1 (2*un−1)e−2*un
u1e−2*u1 u2e−2*u2 · · · un−1e−2*un−1 une−2*un

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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-

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1−2*u1 0 · · · 0 2*un−1
0 1−2*u2 · · · 0 2*un−1
...

... . . . ...
...

0 0 · · · 1−2*un−1 2*un−1
u1 u2 · · · un−1 un

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= u1(1−2*u2)(1−2*u3) · · ·(1−2*un)+u2(1−2*u1)(1−2*u3) · · ·(1−2*un)+ · · ·
+un(1−2*u1)(1−2*u2) · · ·(1−2*un−1) (8)

(with a positive coefficient of proportionality; to avoid calculation of the parities of various per-
mutations, the reader might prefer to prove the last equality by induction in n, expanding the last
determinant along the first column). Our next goal is to show that the last expression in (8) is
positive when *< 1 but can be negative when *> 1.

If *> 1, set u1 = u2 := 1/2 and u3 = · · ·= un := 0. The last expression in (8) becomes negative.
It will remain negative if u1 and u2 are sufficiently close to 1/2 and u3, . . . ,un are sufficiently close
to 0.

It remains to consider the case *< 1. Set ti := 1−2*ui, i= 1, . . . ,n; the constraints on the ti are

−1< 1−2*< ti < 1, i= 1, . . . ,n,
t1+ · · ·+ tn = n−2*> n−2.

(9)

Our goal is to prove
(1− t1)t2t3 · · ·tn+ · · ·+(1− tn)t1t2 · · ·tn−1 > 0,

that is,
t2t3 · · ·tn+ · · ·+ t1t2 · · ·tn−1 > nt1 · · ·tn. (10)

This reduces to
1
t1

+ · · ·+
1
tn

> n (11)

if t1 · · ·tn > 0, and to
1
t1

+ · · ·+
1
tn

< n (12)

if t1 · · ·tn < 0. The remaining case is where some of the ti are zero; for concreteness, let tn = 0.
By (9) we have t1+ · · ·+ tn−1 > n−2, and so all of t1, . . . , tn−1 are positive; this shows that (10) is
indeed true.

Let us prove (11). Since t1 · · ·tn > 0, all of t1, . . . , tn are positive (if two of them were negative,
the sum t1+ · · ·+ tn would be less than n−2; cf. (9)). Therefore,

1
t1

+ · · ·+
1
tn

> 1+ · · ·+1
︸ ︷︷ ︸

n times

= n.

To establish (10) it remains to prove (12). Suppose, without loss of generality, that t1 > 0,
t2 > 0,. . . , tn−1 > 0, and tn < 0. We will prove a slightly stronger statement allowing t1, . . . , tn−2 to
take value 1 and removing the lower bound on tn. Since the function t ∈ (0,1] (→ 1/t is convex, we
can also assume, without loss of generality, t1 = · · · = tn−2 = 1. Then tn−1+ tn > 0, and so

1
tn−1

+
1
tn

< 0;
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therefore,
1
t1

+ · · ·+
1
tn−2

+
1
tn−1

+
1
tn

< n−2< n.

Finally, let us check that the positivity of the Gauss-Kronecker curvature implies the convexity
of the *-exponential superprediction set in the case * ≤ 1, and the lack of positivity of the Gauss-
Kronecker curvature implies the lack of convexity of the *-exponential superprediction set in the
case * > 1. The *-exponential superprediction surface will be oriented by choosing the normal
vector field directed towards the origin. This can be done since






x1
...
xn




 -






e2*u1
...

e2*un




 , Z - (−1)n−1






u1e−2*u1
...

une−2*un




 , (13)

with both coefficients of proportionality positive (cf. (5) and the bottom row of the first determinant
in (8)), and the sign of the scalar product of the two vectors on the right-hand sides in (13) does
not depend on the point (u1, . . . ,un−1). Namely, we take (−1)nZ as the normal vector field directed
towards the origin. The Gauss-Kronecker curvature will not change sign after the re-orientation: if
n is even, the new orientation coincides with the old, and for odd n the Gauss-Kronecker curvature
does not depend on the orientation.

In the case * > 1, the Gauss-Kronecker curvature is negative at some point, and so the *-
exponential superprediction set is not convex (Thorpe, 1979, Chapter 13, Theorem 1 and its proof).

It remains to consider the case *≤ 1. Because of the continuity of the *-exponential superpre-
diction surface in * we can and will assume, without loss of generality, that *< 1.

Let us first check that the smallest principal curvature k1= k1(u1, . . . ,un−1,*) of the *-exponential
superprediction surface is always positive (among the arguments of k1 we list not only the coordi-
nates u1, . . . ,un−1 of a point on the surface (5) but also the learning rate * ∈ (0,1)). At least at some
(u1, . . . ,un−1,*) the value of k1(u1, . . . ,un−1,*) is positive: take a sufficiently small * and the point
on the surface (5) with coordinates u1 = · · ·= un−1 = 1/n; a simple calculation shows that this point
will be a point of local maximum for x1+ · · ·+ xn. Therefore, for all (u1, . . . ,un−1,*) the value of
k1(u1, . . . ,un−1,*) is positive: if k1 had different signs at two points in the set

{

(u1, . . . ,un−1,*) |u1 ∈ (0,1), . . . ,un−1 ∈ (0,1),u1+ · · ·+un−1 < 1,* ∈ (0,1)
}

, (14)

we could connect these points by a continuous curve lying completely inside (14); at some point
on the curve, k1 would be zero, in contradiction to the positivity of the Gauss-Kronecker curvature
k1 · · ·kn−1.

Now it is easy to show that the *-exponential superprediction set is convex. Suppose there
are two points A and B on the *-exponential superprediction surface such that the interval [A,B]
contains points outside the *-exponential superprediction set. The intersection of the plane OAB,
whereO is the origin, with the *-exponential superprediction surface is a planar curve; the curvature
of this curve at some point between A and B will be negative (remember that the curve is oriented by
directing the normal vector field towards the origin), contradicting the positivity of k1 at that point.

5. Derivation of the Prediction Algorithm

To achieve the loss bound (1) in Theorem 1 Learner can use, as discussed earlier, the strong aggre-
gating algorithm (see, e.g., Vovk, 2001, Section 2.1, (15)) with * = 1. In this section we will find
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a substitution function for the strong aggregating algorithm for the Brier game with * ≤ 1, which
is the only component of the algorithm not described explicitly in Vovk (2001). Our substitution
function will not require that its input, the generalized prediction, should be computed from the
normalized distribution (wk)Kk=1 on the experts; this is a valuable feature for generalizations to an
infinite number of experts (as demonstrated in, e.g., Vovk, 2001, Appendix A.1).

Suppose that we are given a generalized prediction (l1, . . . , ln)T computed by the aggregating
pseudo-algorithm from a normalized distribution on the experts. Since (l1, . . . , ln)T is a superpredic-
tion (remember that we are assuming *≤ 1), we are only required to find a permitted prediction








#1
#2
...
#n








=








(u1−1)2+u22+ · · ·+u2n
u21+(u2−1)2+ · · ·+u2n

...
u21+u22+ · · ·+(un−1)2








(15)

(cf. (5)) satisfying
#1 ≤ l1, . . . ,#n ≤ ln. (16)

Now suppose we are given a generalized prediction (L1, . . . ,Ln)T computed by the aggregating
pseudo-algorithm from an unnormalized distribution on the experts; in other words, we are given






L1
...
Ln




 =






l1+ c
...

ln+ c






for some c ∈ R. To find (15) satisfying (16) we can first find the largest t ∈ R such that (L1−
t, . . . ,Ln− t)T is still a superprediction and then find (15) satisfying

#1 ≤ L1− t, . . . ,#n ≤ Ln− t. (17)

Since t ≥ c, it is clear that (#1, . . . ,#n)T will also satisfy the required (16).

Proposition 2 Define s ∈ R by the requirement

n

&
i=1

(s−Li)+ = 2. (18)

The unique solution to the optimization problem t →max under the constraints (17) with #1, . . . ,#n
as in (15) will be

ui =
(s−Li)+

2
, i= 1, . . . ,n, (19)

t = s−1−u21− · · ·−u2n. (20)

There exists a unique s satisfying (18) since the left-hand side of (18) is a continuous, increasing
(strictly increasing when positive) and unbounded above function of s. The substitution function is
given by (19).
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Proof of Proposition 2 Let us denote the ui and t defined by (19) and (20) as ui and t, respectively.
To see that they satisfy the constraints (17), notice that the ith constraint can be spelt out as

u21+ · · ·+u2n−2ui+1≤ Li− t,

which immediately follows from (19) and (20). As a by-product, we can see that the inequality
becomes an equality, that is,

t = Li−1+2ui−u21− · · ·−u2n, (21)

for all i with ui > 0.
We can rewrite (17) as 







t ≤ L1−1+2u1−u21− · · ·−u2n,
...

t ≤ Ln−1+2un−u21− · · ·−u2n,
(22)

and our goal is to prove that these inequalities imply t < t (unless u1 = u1, . . . ,un = un). Choose ui
(necessarily ui > 0 unless u1 = u1, . . . ,un = un; in the latter case, however, we can, and will, also
choose ui > 0) for which .i := ui− ui is maximal. Then every value of t satisfying (22) will also
satisfy

t ≤ Li−1+2ui−
n

&
j=1

u2j

= Li−1+2ui−2.i−
n

&
j=1

u2j +2
n

&
j=1

. ju j−
n

&
j=1

.2j

≤ Li−1+2ui−
n

&
j=1

u2j −
n

&
j=1

.2j ≤ t. (23)

The penultimate ≤ in (23) follows from

−.i+
n

&
j=1

. ju j =
n

&
j=1

(. j− .i)u j ≤ 0.

The last ≤ in (23) follows from (21) and becomes < when not all u j coincide with u j.

The detailed description of the resulting prediction algorithm was given as Algorithm 1 in Sec-
tion 2. As discussed, that algorithm uses the generalized prediction GN($) computed from unnor-
malized weights.

6. Conclusion

In this paper we only considered the simplest prediction problem for the Brier game: competing
with a finite pool of experts. In the case of square-loss regression, it is possible to find efficient
closed-form prediction algorithms competitive with linear functions (see, e.g., Cesa-Bianchi and
Lugosi, 2006, Chapter 11). Such algorithms can often be “kernelized” to obtain prediction algo-
rithms competitive with reproducing kernel Hilbert spaces of prediction rules. This would be an
appealing research programme in the case of the Brier game as well.
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Appendix A. Watkins’s Theorem

Watkins’s theorem is stated in Vovk (1999, Theorem 8) not in sufficient generality: it presupposes
that the loss function is mixable. The proof, however, shows that this assumption is irrelevant (it can
be made part of the conclusion), and the goal of this appendix is to give a self-contained statement
of a suitable version of the theorem. (The reader will notice that the generality of the new version is
essential only for our discussion in Section 4, not for Theorem 1 itself.)

In this appendix we will use a slightly more general notion of a game of prediction (!,",#):
namely, the loss function # : !×"→ R is now allowed to take values in the extended real line
R := R∪{−(,(} (although the value −( will be later disallowed).

Partly following Vovk (1998), for each K = 1,2, . . . and each a > 0 we consider the following
perfect-information game GK(a) (the “global game”) between two players, Learner and Environ-
ment. Environment is a team of K+ 1 players called Expert 1 to Expert K and Reality, who play
with Learner according to Protocol 1. Learner wins if, for all N = 1,2, . . . and all k ∈ {1, . . . ,K},

LN ≤ LkN +a; (24)

otherwise, Environment wins. It is possible that LN = ( or LkN = ( in (24); the interpretation of
inequalities involving infinities is natural.

For each K we will be interested in the set of those a > 0 for which Learner has a winning
strategy in the game GK(a) (we will denote this by L! GK(a)). It is obvious that

L! GK(a)& a′ > a=⇒ L! GK(a′);

therefore, for each K there exists a unique borderline value aK such that L! GK(a) holds when
a> aK and fails when a< aK . It is possible that aK = ( (but remember that we are only interested
in finite values of a).

These are our assumptions about the game of prediction (similar to those in Vovk, 1998):

• " is a compact topological space;

• for each $ ∈ !, the function % ∈ " (→ #($,%) is continuous (R is equipped with the standard
topology);

• there exists % ∈ " such that, for all $ ∈!, #($,%) < (;

• the function # is bounded below.
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We say that the game of prediction (!,",#) is *-mixable, where *> 0, if

∀%1 ∈ ",%2 ∈ ",/ ∈ [0,1] ∃' ∈ " ∀$ ∈! : e−*#($,') ≥ /e−*#($,%1) + (1−/)e−*#($,%2). (25)

In the case of finite !, this condition says that the image of the superprediction set under the map-
ping +* (see (4)) is convex. The game of prediction is mixable if it is *-mixable for some *> 0.

It follows from Hardy et al. (1952, Theorem 92, applied to the means M0 with 0(x) = e−*x)
that if the prediction game is *-mixable it will remain *′-mixable for any positive *′ < *. (For
another proof, see the end of the proof of Lemma 9 in Vovk, 1998.) Let *∗ be the supremum of the
* for which the prediction game is *-mixable (with *∗ := 0 when the game is not mixable). The
compactness of " implies that the prediction game is *∗-mixable.

Theorem 3 (Chris Watkins) For any K ∈ {2,3, . . .},

aK =
lnK
*∗

.

In particular, aK < ( if and only if the game is mixable.

The theorem does not say explicitly, but it is easy to check, that L!GK(aK): this follows both from
general considerations (cf. Lemma 3 in Vovk, 1998) and from the fact that the strong aggregating
algorithm wins GK(aK) = GK(lnK/*∗).

Proof of Theorem 3 The proof will use some notions and notation used in the statement and proof
of Theorem 1 of Vovk (1998). Without loss of generality we can, and will, assume that the loss
function satisfies # > 1 (add a suitable constant to # if needed). Therefore, Assumption 4 of Vovk
(1998) (the only assumption in that paper not directly made here) is satisfied. In view of the fact
that L! GK(lnK/*∗), we only need to show that L! GK(a) does not hold for a < lnK/*∗. Fix
a< lnK/*∗.

The separation curve consists of the points (c(1),c(1)/*) ∈ [0,()2, where 1 := e−* and *
ranges over [0,(] (see Vovk, 1998, Theorem 1). Since the two-fold convex mixture in (25) can be
replaced by any finite convex mixture (apply two-fold mixtures repeatedly), setting * := *∗ shows
that the point (1,1/*∗) is Northeast of (actually belongs to) the separation curve. On the other
hand, the point (1,a/ lnK) is Southwest and outside of the separation curve (use Lemmas 8–12 of
Vovk, 1998). Therefore, E (i.e., Environment) has a winning strategy in the game G(1,a/ lnK). It
is easy to see from the proof of Theorem 1 in Vovk (1998) that the definition of the game G can be
modified, without changing the conclusion about G(1,a/ lnK), by replacing the line

E chooses n≥ 1 {size of the pool}
in the protocol on p. 153 of Vovk (1998) by

E chooses n∗ ≥ 1 {lower bound on the size of the pool}
L chooses n≥ n∗ {size of the pool}

(indeed, the proof in Section 6 of Vovk, 1998, only requires that there should be sufficiently many
experts). Let n∗ be the first move by Environment according to her winning strategy.

Now suppose L! GK(a). From the fact that there exists Learner’s strategy L1 winning GK(a)
we can deduce: there exists Learner’s strategy L2 winning GK2(2a) (we can split the K2 experts into
K groups of K, merge the experts’ decisions in each group with L1, and finally merge the groups’
decisions with L1); there exists Learner’s strategy L3 winning GK3(3a) (we can split the K3 experts
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Loss resulting from (3) Loss resulting from (26) Difference
5585.69 5588.20 2.52
5585.94 5586.67 0.72
5586.60 5587.37 0.77
5588.47 5590.65 2.18
5588.61 5589.92 1.31
5591.97 5593.48 1.52
5596.01 5601.85 5.84
5596.56 5598.02 1.46

Table 1: The bookmakers’ cumulative Brier losses over the football data set when their probability
forecasts are computed using formula (3) and formula (26).

into K groups of K2, merge the experts’ decisions in each group with L2, and finally merge the
groups’ decisions with L1); and so on. When the number Km of experts exceeds n∗, we obtain a
contradiction: Learner can guarantee

LN ≤ LkN +ma

for all N and all Km experts k, and Environment can guarantee that

LN > LkN +
a
lnK

ln(Km) = LkN +ma

for some N and k.

Appendix B. Khutsishvili’s Theory

In the conference version of this paper (Vovk and Zhdanov, 2008a) we used

pi :=
1/ai

1/a1+1/a2+1/a3
, i= 1,2,3, (26)

in place of (3). A natural way to compare formulas (3) and (26) is to compare the losses of the
probability forecasts found from the bookmakers’ betting odds using those formulas. Using Khut-
sishvili’s formula (3) consistently leads to smaller losses as measured by the Brier loss function:
see Tables 1 and 2. The improvement of each bookmaker’s total loss over the football data set is
in the range 0.72–5.84; over the tennis data set the difference is in the range 1.27–11.64. These
differences are of the order of the differences in cumulative loss between different bookmakers, and
so the improvement is significant.

The goal of this appendix is to present, in a rudimentary form, Khutsishvili’s theory behind (3).
The theory is based on a very idealized model of a bookmaker, who is assumed to compute the
betting odds a for an event of probability p using a function f ,

a := f (p).
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Loss resulting from (3) Loss resulting from (26) Difference
3935.32 3944.02 8.69
3943.83 3945.10 1.27
3945.70 3957.33 11.64
3953.83 3957.75 3.92

Table 2: The bookmakers’ cumulative Brier losses over the tennis data set when their probability
forecasts are computed using formula (3) and formula (26).

Different bookmakers (and the same bookmaker at different times) can use different functions f .
Therefore, different bookmakers may quote different odds because they may use different f and
because they may assign different probabilities to the same event.

The following simple corollary of Darboux’s theorem describes the set of possible functions f ;
its interpretation will be discussed straight after the proof.

Theorem 4 (Victor Khutsishvili) Suppose a function f : (0,1) → (1,() satisfies the condition

f (pq) = f (p) f (q) (27)

for all p,q ∈ (0,1). There exists c> 0 such that f (p) = p−c for all p ∈ (0,1).

Proof Equation (27) is one of the four fundamental Cauchy equations, which can be easily reduced
to each other. For example, introducing a new function g : (0,() → (0,() by g(u) := ln f (e−u) and
new variables x,y ∈ (0,() by x := − ln p and y := − lnq, we transform (27) to the most standard
Cauchy equation g(x+y) = g(x)+g(y). By Darboux’s theorem (see, e.g., Aczél, 1966, Section 2.1,
Theorem 1(b)), g(x) = cx for all x> 0, that is, f (p) = p−c for all p ∈ (0,1).

The function f is defined on (0,1) since we assume that in real life no bookmaker will assign a
subjective probability of exactly 0 or 1 to an event on which he accepts bets. It would be irrational
for the bookmaker to have f (p) ≤ 1 for some p, so f : (0,1) → (1,(). To justify the requirement
(27), we assume that the bookmaker offers not only “single” but also “double” bets (Wikipedia,
2009). If there are two events with quoted odds a and b that the bookmaker considers independent,
his quoted odds on the conjunction of the two events will be ab. If the probabilities of the two events
are p and q, respectively, the probability of their conjunction will be pq. Therefore, we have (27).

Theorem 4 provides a justification of Khutsishvili’s formula (3): we just assume that the book-
maker applies the same function f to all three probabilities p1, p2, and p3. If f (p) = p−c, we have
pi = a−%i , where %= 1/c and i= 1,2,3, and % can be found from the requirement p1+ p2+ p3 = 1.

An important advantage of (3) over (26) is that (3) does not impose any upper limits on the
overround that the bookmaker may charge (Khutsishvili, 2009). If the game has n possible outcomes
(n= 3 for football and n= 2 for tennis) and the bookmaker uses f (p) = p−c, the overround is

n

&
i=1

a−1i −1=
n

&
i=1

pci −1
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and so continuously changes between −1 and n− 1 as c ranges over (0,() (in practice, the over-
round is usually positive, and so c ∈ (0,1)). Even for n= 2, the upper bound of 1 is too large to be
considered a limitation. The situation with (26) is very different: upper bounding the numerator of
(26) by 1 and replacing the denominator by 1+o, where o is the overround, we obtain pi < 1

1+o for
all i, and so o<mini p−1i −1; this limitation on o is restrictive when one of the pi is close to 1.

An interesting phenomenon in racetrack betting, known since Griffith (1949), is that favourites
are usually underbet while longshots are overbet (see, e.g., Snowberg and Wolfers, 2007, for a
recent survey and analysis). Khutsishvili’s formula (3) can be regarded as a way of correcting this
“favourite-longshot bias”: when ai is large (the outcome i is a longshot), (3) slashes 1/ai when
computing pi more than (26) does.

Appendix C. Comparison with Other Prediction Algorithms

Other popular algorithms for prediction with expert advice that could be used instead of Algorithm
1 in our empirical studies reported in Section 3 are, among others, the Weighted Average Algo-
rithm (WdAA, proposed by Kivinen and Warmuth, 1999), the weak aggregating algorithm (WkAA,
proposed independently by Kalnishkan and Vyugin, 2008, and Cesa-Bianchi and Lugosi, 2006,
Theorem 2.3; we are using Kalnishkan and Vyugin’s name), and the Hedge algorithm (HA, pro-
posed by Freund and Schapire, 1997). In this appendix we pay most attention to the WdAA since
neither WkAA nor HA satisfy bounds of the form (2). (The reader can consult Vovk and Zhdanov,
2008b, for details of experiments with the latter two algorithms and formula (26) used for extracting
probabilities from the quoted betting odds.) We also briefly discuss three more naive algorithms.

The Weighted Average Algorithm is very similar to the strong aggregating algorithm (SAA)
used in this paper: the WdAA maintains the same weights for the experts as the SAA, and the only
difference is that the WdAA merges the experts’ predictions by averaging them according to their
weights, whereas the SAA uses a more complicated “minimax optimal” merging scheme (given
by (19) for the Brier game). The performance guarantee for the WdAA applied to the Brier game
is weaker than the optimal (1), but of course this does not mean that its empirical performance is
necessarily worse than that of the SAA (i.e., Algorithm 1). Figures 5 and 6 show the performance of
this algorithm, in the same format as before (see Figures 1 and 3). We can see that for the football
data the maximal difference between the cumulative loss of the WdAA and the cumulative loss of
the best expert is slightly larger than that for Algorithm 1 but still well within the optimal bound lnK
given by (1). For the tennis data the maximal difference is almost twice as large as for Algorithm 1,
violating the optimal bound lnK.

In its most basic form (Kivinen and Warmuth, 1999, the beginning of Section 6), the WdAA
works in the following protocol. At each step each expert, Learner, and Reality choose an ele-
ment of the unit ball in Rn, and the loss function is the squared distance between the decision
(Learner’s or an expert’s move) and the observation (Reality’s move). This covers the Brier game
with ! = {1, . . . ,n}, each observation $ ∈ ! represented as the vector ('${1}, . . . ,'${n}), and
each decision % ∈ P (!) represented as the vector (%{1}, . . . ,%{n}). However, in the Brier game the
decision makers’ moves are known to belong to the simplex {(u1, . . . ,un) ∈ [0,()n |&n

i=1 ui = 1},
and Reality’s move is known to be one of the vertices of this simplex. Therefore, we can optimize
the ball radius by considering the smallest ball containing the simplex rather than the unit ball. This
is what we did for the results reported here (although the results reported in the conference version
of this paper, Vovk and Zhdanov, 2008a, are for the WdAA applied to the unit ball in Rn). The
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Figure 5: The difference between the cumulative loss of each of the 8 bookmakers and of the
Weighted Average Algorithm (WdAA) on the football data. The chosen value of the
parameter c = 1/* for the WdAA, c := 16/3, minimizes its theoretical loss bound. The
theoretical lower bound − ln8≈−2.0794 for Algorithm 1 is also shown (the theoretical
lower bound for the WdAA, −11.0904, can be extracted from Table 3 below).
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Figure 6: The difference between the cumulative loss of each of the 4 bookmakers and of theWdAA
for c := 4 on the tennis data.
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Algorithm Maximal difference Theoretical bound
Algorithm 1 1.2318 2.0794

WdAA (c= 16/3) 1.4076 11.0904
WdAA (c= 1) 1.2255 none

Table 3: The maximal difference between the loss of each algorithm in the selected set and the loss
of the best expert for the football data (second column); the theoretical upper bound on
this difference (third column).

radius of the smallest ball is

R :=
√

1−
1
n
≈









0.8165 if n= 3
0.7071 if n= 2
1 if n is large.

As described in Kivinen and Warmuth (1999), the WdAA is parameterized by c := 1/* instead of
*, and the optimal value of c is c= 8R2, leading to the guaranteed loss bound

LN ≤ min
k=1,...,K

LkN +8R2 lnK

for all N = 1,2, . . . (see Kivinen and Warmuth, 1999, Section 6). This is significantly looser than
the bound (1) for Algorithm 1.

The values c= 16/3 and c= 4 used in Figures 5 and 6, respectively, are obtained by minimizing
the WdAA’s performance guarantee, but minimizing a loose bound might not be such a good idea.
Figure 7 shows the maximal difference

max
N=1,...,8999

(

LN(c)− min
k=1,...,8

LkN
)

, (28)

where LN(c) is the loss of the WdAA with parameter c on the football data over the first N steps and
LkN is the analogous loss of the kth expert, as a function of c. Similarly, Figure 8 shows the maximal
difference

max
N=1,...,10087

(

LN(c)− min
k=1,...,4

LkN
)

(29)

for the tennis data. And indeed, in both cases the value of c minimizing the empirical loss is far
from the value minimizing the bound; as could be expected, the empirical optimal value for the
WdAA is not so different from the optimal value for Algorithm 1. The following two figures, 9 and
10, demonstrate that there is no such anomaly for Algorithm 1.

Figures 11 and 12 show the behaviour of the WdAA for the value of parameter c = 1, that is,
*= 1, that is optimal for Algorithm 1. They look remarkably similar to Figures 1 and 3, respectively.

Precise numbers associated with the figures referred to above are given in Tables 3 and 4: the
second column gives the maximal differences (28) and (29), respectively. The third column gives the
theoretical upper bound on the maximal difference (i.e., the optimal value of A in (2), if available).
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Figure 7: The maximal difference (28) for the WdAA as function of the parameter c on the football
data. The theoretical guarantee ln8 for the maximal difference for Algorithm 1 is also
shown (the theoretical guarantee for the WdAA, 11.0904, is given in Table 3).
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Figure 8: The maximal difference (29) for the WdAA as function of the parameter c on the tennis
data. The theoretical bound for the WdAA is 5.5452 (see Table 4).
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Figure 9: The maximal difference ((28) with * in place of c) for Algorithm 1 as function of the
parameter * on the football data.
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Figure 10: The maximal difference ((29) with * in place of c) for Algorithm 1 as function of the
parameter * on the tennis data.
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Figure 11: The difference between the cumulative loss of each of the 8 bookmakers and of the
WdAA on the football data for c= 1 (the value of parameter minimizing the theoretical
performance guarantee for Algorithm 1).
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Figure 12: The difference between the cumulative loss of each of the 4 bookmakers and of the
WdAA for c= 1 on the tennis data.
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Algorithm Maximal difference Theoretical bound
Algorithm 1 1.1119 1.3863
WdAA (c= 4) 2.0583 5.5452
WdAA (c= 1) 1.1207 none

Table 4: The maximal difference between the loss of each algorithm in the selected set and the loss
of the best expert for the tennis data (second column); the theoretical upper bound on this
difference (third column).

The following two algorithms, the weak aggregating algorithm (WkAA) and the Hedge algo-
rithm (HA), make increasingly weaker assumptions about the prediction game being played. Al-
gorithm 1 computes the experts’ weights taking full account of the degree of convexity of the loss
function and uses a minimax optimal substitution function. Not surprisingly, it leads to the optimal
loss bound of the form (2). The WdAA computes the experts’ weights in the same way, but uses a
suboptimal substitution function; this naturally leads to a suboptimal loss bound. The WkAA “does
not know” that the loss function is strictly convex; it computes the experts’ weights in a way that
leads to decent results for all convex functions. The WkAA uses the same substitution function as
the WdAA, but this appears less important than the way it computes the weights. The HA “knows”
even less: it does not even know that its and the experts’ performance is measured using a loss
function. At each step the HA decides which expert it is going to follow, and at the end of the step it
is only told the losses suffered by all experts. Both WkAA and HA depend on a parameter, which is
denoted c in the case of WkAA and 1 in the case of HA; the ranges of the parameters are c ∈ (0,()
and 1 ∈ [0,1). The loss bounds that we give below assume that the loss function takes values in the
interval [0,L], in the case of the WkAA, and that the losses are chosen from [0,L], in the case of
HA, where L is a known constant. In the case of the Brier loss function, L= 2.

In the notation of (1), a simple loss bound for the WkAA is

LN ≤ min
k=1,...,K

LkN +2L
√
N lnK (30)

(Kalnishkan and Vyugin, 2008, Corollary 14); this is quite different from (1) as the “regret term”
2L

√
N lnK in (30) depends on N. This bound is guaranteed for c =

√
lnK/L. For c =

√
8lnK/L,

Cesa-Bianchi and Lugosi (2006, Theorem 2.3) prove the stronger bound

LN ≤ min
k=1,...,K

LkN +L
√
2N lnK+L

√

lnK
8

.

The performance of the WkAA on our data sets is significantly worse than that of the WdAA
with c= 1: the maximal difference (28)–(29) does not exceed lnK for all reasonable values of c in
the case of football but only for a very narrow range of c (which is far from both Kalnishkan and
Vyugin’s

√
lnK/2 and Cesa-Bianchi and Lugosi’s

√
8lnK/2) in the case of tennis. Moreover, the

WkAA violates the bound for Algorithm 1 for all reasonable values of c on some natural subsets
of the football data set: for example, when prediction starts from the second (2006/2007) season.
Nothing similar happens for the WdAA with c= 1 on our data sets.
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The loss bound for the HA is

ELN ≤
L∗N ln 11 +L lnK

1−1
(31)

(Freund and Schapire, 1997, Theorem 2), where ELN stands for Learner’s expected loss (the HA
is a randomized algorithm) and L∗N stands for mink=1,...,K LkN . In the same framework, the strong
aggregating algorithm attains the stronger bound

ELN ≤
L∗N ln 11 +L lnK
K ln K

K+1−1
(32)

(Vovk, 1998, Example 7). Of course, the SAA applied to the HA framework (as described above,
with no loss function) is very different from Algorithm 1, which is the SAA applied to the Brier
game; we refer to the former algorithm as SAA-HA. Figure 13 shows the ratio of the right-hand
side of (32) to the right-hand side of (31) as function of 1.
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Figure 13: The relative performance of the HA and SAA-HA for various numbers of experts as
function of parameter 1.

The losses suffered by the HA and the SAA-HA on our data sets are very close and violate
Algorithm 1’s regret term lnK for all values of 1. It is interesting that, for both football and tennis
data, the loss of the HA is almost minimized by setting its parameter 1 to 0 (the qualification
“almost” is necessary only in the case of the tennis data). The HA with 1 = 0 coincides with the
Follow the Leader Algorithm (FLA), which chooses the same decision as the best (with the smallest
loss up to now) expert; if there are several best experts (which almost never happens after the first
step), their predictions are averaged with equal weights. Standard examples (see, e.g., Cesa-Bianchi
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and Lugosi, 2006, Section 4.3) show that this algorithm (unlike its version Follow the Perturbed
Leader) can fail badly on some data sequences. Its empirical performance on the football data set is
not so bad: it violates the loss bound for Algorithm 1 only slightly; however, on the tennis data set
the bound is violated badly.

The decent performance of the Follow the Leader Algorithm on the football data set suggests
checking the empirical performance of other similarly naive algorithms, such as the following two.
The Simple Average Algorithm’s decision is defined as the arithmetic mean of the experts’ decisions
(with equal weights). The Bayes Mixture Algorithm (BMA) is the strong aggregating algorithm
applied to the log loss function; this algorithm is in fact optimal, but not for the Brier loss function.
The BMA has a very simple description (Cesa-Bianchi and Lugosi, 2006, Section 9.2), and was
studied from the point of view of prediction with expert advice already in DeSantis et al. (1988).

We have found that none of the three naive algorithms perform consistently poorly, but they
always fail badly on some natural part of our data sets. The advantage of the more sophisticated
algorithms having strong performance guarantees is that there is no danger of catastrophic perfor-
mance on any data set.
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Abstract
We show how to follow the path of cross validated solutions to families of regularized optimization
problems, defined by a combination of a parameterized loss function and a regularization term.
A primary example is kernel quantile regression, where the parameter of the loss function is the
quantile being estimated. Even though the bi-level optimization problem we encounter for every
quantile is non-convex, the manner in which the optimal cross-validated solution evolves with the
parameter of the loss function allows tracking of this solution. We prove this property, construct
the resulting algorithm, and demonstrate it on real and artificial data. This algorithm allows us to
efficiently solve the whole family of bi-level problems. We show how it can be extended to cover
other modeling problems, like support vector regression, and alternative in-sample model selection
approaches.1

1. Introduction

In the standard predictive modeling setting, we are given a training sample of n examples {x1,y1}, ...,
{xn,yn} drawn i.i.d from a joint distribution P(X ,Y ), with xi ∈ Rp and yi ∈ R for regression,
yi ∈ {0,1} for two-class classification. We aim to employ these data to build a model Ŷ = f̂ (X)
to describe the relationship between X and Y , and later use it to predict the value of Y given new X
values. This is often done by defining a family of models F and finding (exactly or approximately)
the model f ∈ F which minimizes an empirical loss function: !n

i=1L(yi, f (xi)). Examples of such
algorithms include linear and logistic regression, empirical risk minimization in classification and
others.

If F is complex, it is often desirable to add regularization to control model complexity and
overfitting. The generic regularized optimization problem can be written as:

f̂ = argmin
f∈F

n

!
i=1

L(yi, f (xi))+"J( f ) ,

where J( f ) is an appropriate model complexity penalty and " is the regularization parameter. Given
a loss and a penalty, selection of a good value of " is amodel selection problem. Popular approaches
that can be formulated as regularized optimization problems include all versions of support vector

1. A short version of this paper appeared at ICML 2008 (Rosset, 2008).
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machines, ridge regression, the Lasso and many others. For an overview of predictive modeling,
regularized optimization and the algorithms mentioned above, see for example Hastie et al. (2001).

In this paper we are interested in a specific setup where we have a family of regularized op-
timization problems, defined by a parameterized loss function and a regularization term. A major
motivating example for this setting is regularized quantile regression (Koenker, 2005). In regular-
ized linear quantile regression we take the family F to be all linear combinations characterized by
a coefficient vector # ∈ Rp and the modeling problem is

#̂($,") = argmin
#

n

!
i=1

L$(yi−#Txi)+"‖#‖qq , 0< $< 1, 0≤ "< % , (1)

where L$, the parameterized quantile loss function, has the form:

L$(r) =

{

r$ r ≥ 0
−r(1− $) r < 0 ,

and is termed $-quantile loss because its population optimizer is the appropriate quantile (Koenker,
2005):

argmin
c
E(L$(Y − c)|X = x) = quantile $ of P(Y |X = x) . (2)

Because quantile loss has this optimizer, the solution of the quantile regression problems for the
whole range 0 < $ < 1 has often been advocated as an approach to estimating the full conditional
probability of P(Y |X) (Koenker, 2005; Perlich et al., 2007). Much of the interesting information
about the behavior of Y |X may lie in the details of this conditional distribution, and if it is not
nicely behaved (i.i.d Gaussian noise being the most commonly used concept of nice behavior), just
estimating a conditional mean or median is often not sufficient to properly understand and model
the mechanisms generating Y . The importance of estimating a complete conditional distribution,
and not just a central quantity like the conditional mean, has long been noted and addressed in
various communities, like econometrics, education and finance (Koenker, 2005; Buchinsky, 1994;
Eide and Showalter, 1998). There has been a surge of interest in the machine learning community
in conditional quantile estimation in recent years, including theoretical analyses of consistency in
quantile estimation and connections with support vector machines (Steinwart and Christmann, 2008;
Christmann and Steinwart, 2008); methodological work on algorithms for quantile regression and
their performance (Meinshausen, 2006; Takeuchi et al., 2006; Mease et al., 2007); and work on
practical uses of extreme quantile estimation for data mining applications Perlich et al. (2007).
Figure 1 shows a graphical representation of L$ for several values of $, and a demonstration of the
conditional quantile curves in a univariate regression setting, where the linear model is correct for
the median, but the noise has a non-homoscedastic distribution.

On the penalty side, we typically use the !q norm of the parameters with q ∈ {1,2}. Adding a
penalty can be thought of as shrinkage, complexity control or putting a prior to express our expec-
tation that the #’s should be small.

As has been noted in the literature (Rosset and Zhu, 2007; Hastie et al., 2004; Li et al., 2007;
Takeuchi et al., 2009) if q ∈ {1,2} and if we fix $ = $0, we can devise path following (AKA
parametric programming) algorithms to efficiently generate the 1-dimensional curve of solutions
{#̂($0,") : 0 ≤ " < %} . Although it has not been explicitly noted by most of these authors (a
notable exception being Takeuchi et al. 2009), it naturally follows that similar algorithms exist for
the case that we fix "= "0 and are interested in generating the curve {#̂($,"0) : 0< $< 1}.
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Figure 1: Quantile loss function for some values of $ (left) and an example where the median of
Y is linear in X but the quantiles of P(Y |X) are not because the noise is not identically
distributed (right).

In addition to parameterized quantile regression, there are other modeling problems in the lit-
erature which combine a parameterized loss function problem with the existence of efficient path
following algorithms. These include :

1. Support vector regression (SVR, Smola and Schölkopf 2004, see Gunther and Zhu 2005 for
path following algorithm) with !1 or !2 regularization, where the parameter & determines the
width of the don’t care region around 0.

2. Weighted support vector machines, where the parameter of the loss function corresponds
to reweighting the hinge loss differentially for the two classes, for example as a means for
deriving accurate probability estimates (as recently suggested by Wang et al. 2008).

3. Huberized Lasso (Rosset and Zhu, 2007) with !1 regularization, where huberizing adds ro-
bustness to the traditional squared error loss, with a tunable parameter.

An important extension of the !2-regularized optimization problem is to non-linear fitting through
kernel embedding (Schölkopf and Smola, 2002). The kernelized version of Problem (1) is

f̂ ($,") = argmin
f !i

L$(yi− f (xi))+
"
2
‖ f‖2HK

, (3)

where ‖ ·‖HK is the norm induced by the positive-definite kernelK in the Reproducing Kernel Hilbert
Space (RKHS) it generates. The well known representer theorem (Kimeldorf and Wahba, 1971) im-
plies that the solution of Problem (3) lies in a low dimensional subspace spanned by the representer
functions {K(·,xi), i ∈ 1, ...,n}. Following the ideas of Hastie et al. (2004) for the support vector
machine, Li et al. (2007) have shown that the "-path of solutions to Problem (3) when $ is fixed can
also be efficiently generated. A similar approach was independently developed by Takeuchi et al.
(2009).

It is important to note the difference in the roles of the two parameters $, ". The former defines
a family of loss functions, in our case leading to estimation of different quantiles. Thus we would
typically want to build and use a model for every value of $. The latter is a regularization parameter,
controlling model complexity with the aim of generating a better model and avoiding overfitting,
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and is not part of the prediction objective (at least as long as we avoid the Bayesian view). We
would therefore typically want to generate a set of models #∗($) (or f ∗($) in the kernel case), by
selecting a good regularization parameter "∗($) for every value of $, thus obtaining a family of good
models for estimating the range of conditional quantiles, and consequently the whole conditional
distribution.

This problem, of model selection to find a good regularization parameter, is often handled
through cross-validation. In its simplest form, cross-validation entails having a second, indepen-
dent set of data {x̃i, ỹi}Ni=1 (often referred to as a validation set), which is used to evaluate the
performance of the models and select a good regularization parameter. For a fixed $, we can write
our model selection problem as a Bi-level programming extension of Problems (1) and (3), where
f ∗($) = f̂ ($,"∗) and "∗ solves

min
"

N

!
i=1

Lcv(ỹi, f̂ ($,")Tx̃i) (4)

s.t. f̂ ($,") solves Problem (3) ,

where Lcv is the cross validation loss function (the bi-level formulation for Problem (1) would
be identical, with #̂ replacing f̂ ). We will assume for now that Lcv = L$, in order to evaluate
the performance in estimating the $th quantile. The objective of this minimization problem is not
convex as a function of ". A similar non-convex optimization problem has been tackled by Kunapuli
et al. (2008) for the support vector machine, which is very similar to quantile regression from
an optimization perspective (piecewise linear objective with quadratic penalty). The fundamental
difference between their setting and ours is that they had a single bi-level optimization problem,
while we have a family of such problems, parameterized by $. This allows us to take advantage of
internal structure to solve the bi-level problem for all values of $ simultaneously (or more accurately,
in one run of our algorithm).

The concept of a parameterized family of bi-level regularized quantile regression problems is
demonstrated in Figure 2, where we see the cross-validation curves of the objective of (4) as a
function of " for several values of $ on the same data set. As we can see, the optimal level of
regularization varies with the quantile, and correct choice of the regularization parameter can have
a significant effect on the success of our quantile prediction model.

The main goal of this paper is to devise algorithms for following the bi-level optimal solu-
tion path f ∗($) as a function of $, and demonstrate their practicality. Our algorithms are based on
extensions and generalizations of some of the ideas underlying the path following algorithms for 1-
dimensional paths on convex problems (Hastie et al., 2004; Li et al., 2007; Rosset and Zhu, 2007).
We concentrate our attention on the quantile regression case (both kernelized and linear), as one
where the parameterized-loss problem is well motivated and historically useful, but we also discuss
the similarities and differences in algorithms for the other examples we mentioned above. We show
that this non-convex family of bi-level programs can be solved exactly, as the optimum among the
solutions ofO(n+N) standard (convex) path-following problems, with some additional twists. This
result is based on a characterization of the evolution of the solution path f̂ ($, ·) as $ varies, and on an
understanding of the properties of optimal solutions of the bi-level problem, which can only occur at
a limited set of points. We combine these insights to formulate an actual algorithm for solving this
family of bi-level programs via path-following. However, this algorithm carries a heavy computa-
tional burden. The question of whether it is practical from a computational perspective depends on
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Figure 2: Estimated prediction error curves of Kernel Quantile Regression for some quantiles on
one data set. The errors are shown as a function of the regularization parameter ".

the properties of the modeling problems at hand, and may also benefit greatly from computational
tricks and optimization shortcuts which are not the focus of this paper. We demonstrate its ability to
successfully generate the complete set of cross-validated solutions on some illuminating simulation
problems and on two medium-size real-life data-sets.

The rest of this paper is organized as follows. In Section 2 we discuss the properties of the
quantile regression solution paths f̂ ($,") and their evolution as $ changes. We then discuss in
Section 3 the properties of the bi-level optimization Problem (4) and demonstrate that the solutions
change predictably with $. This is because the optimal solution always corresponds to a situation
where either one of the validation points is crossing the non-differentiability elbow in the cross
validation loss Lcv, or the regularization path is going thorough a knot in its piecewise linear change.
However, due to the non-convexity of the problem, the solutions occasionally “jump” from one such
point to another. It turns out that to follow this jumpy behavior we need to follow, not one path of
solutions, but about N + n of them, corresponding to all possible candidates for Lcv optimizers.
Bringing together all our insights leads us to formulate an algorithm in Section 4, which allows
us to follow the path of solutions { f ∗($) , 0 < $ < 1} and only requires following a large but
manageable number of solution paths of problem (3) simultaneously. In Section 5 we discuss the
extension of our methodology to other scenarios, including application of our methodology to SVR.
We demonstrate our methods with a simulated and real data study in Section 6, where we show that
our approach leads to model-selection that is more efficient than previous approaches, and illustrate
the interesting behavior of KQR in practice.
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2. Quantile Regression Solution Paths

We concentrate our discussion on the kernel quantile regression (KQR) formulation in (3), with the
understanding that it subsumes the linear formulation (1) with !2 regularization by using the linear
kernel K(x, x̃) = xTx̃.

We briefly survey the results of Li et al. (2007) regarding the properties of f̂ ($, ·), the optimal
solution path of (3), with $ fixed. Similar results were independently generated by Takeuchi et al.
(2009), who concentrate on the properties of f̂ ($, ·) with " fixed (as we elaborate below, these
problems are in fact very similar). The representer theorem (Kimeldorf and Wahba, 1971) implies
that the solution can be written as

f̂ ($,")(x) =
1
"

[

#̂0+
n

!
i=1

'̂iK(x,xi)
]

. (5)

For a proposed solution f (x) define:

• E = {i : yi− f (xi) = 0} (points on elbow of L$)

• L = {i : yi− f (xi) < 0} (left of elbow)

• R = {i : yi− f (xi) > 0} (right of elbow).

Then Li et al. (2007) show that the Karush-Kuhn-Tucker (KKT) conditions for optimality of a
solution f̂ ($,") of problem (3) can be phrased as

• i ∈ E ⇒ −(1− $) ≤ '̂i ≤ $

• i ∈ L ⇒ '̂i = −(1− $)

• i ∈ R ⇒ '̂i = $

• !i '̂i = 0.

With some additional algebra, they show that for a fixed $, there is a series of knots, 0= "0 < "1 <
... < "m < % such that for "≥ "m we have f̂ ($,") = constant and for "k−1 < "≤ "k we have

f̂ ($,")(x) =
1
"

(

"k f̂ ($,"k)(x)+("−"k)hk(x)
)

, (6)

where hk(x) = bk0 +!i∈Ek b
k
i K(x,xi) can be thought of as the direction in which the solution is

moving for the region "k−1 < " ≤ "k. The knots "k are points on the path where an observation
passes between E and either L or R , that is ∃i ∈ E such that exactly 'i = $ or 'i = −(1− $).
This observation may be either entering the elbow (if it was previously in L or R ), or exiting it
(if it previously had 'i ∈ (−(1− $),$)).2 These insights lead Li et al. (2007) to an algorithm for
incrementally generating f̂ ($,") as a function of " for fixed $, starting from " = % (where the
solution only contains the intercept #0).

2. It is clear that the definition of an observation as entering or exiting the elbow is arbitrary, since an observation which
enters at "k when we are decreasing " actually exits at "k if we choose to traverse the path while increasing ". There
is also a possibility of more than one observation making this transition at once. With general $ and points in general
location, this event has probability zero. As we will see, in the course of our investigation of the paths we are bound
to encounter such cases, and we will address this issue when it comes up.
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Although Li et al. (2007) suggest it is a topic for further study, it is in fact a reasonably straight
forward extension of their results to show that a similar scenario holds when we fix " and allow
$ only to change. As previously mentioned, this has been recognized and used by other authors,
including Takeuchi et al. (2009) for quantile regression, and Wang et al. (2008) for weighted hinge
loss. More interestingly, the same is also true when both $, " are changing together along a straight
line, that is, a 1-dimensional subspace of the ($,") space (this has been observed by Wang et al.
(2006) for SVR, which is very similar from an optimization perspective). The following lemma
makes this more general result concrete. The proof relies on a study of the KKT conditions in the
spirit of Li et al. (2007) and the other references above, and we omit it.

Lemma 1 Let $(") = u"+ v, and denote f̂ (") = f̂ ($("),"). Then in the range ( = {" ≥ 0 : 0 <
$(") < 1} there exist knots "0 < ... < "m such that for "k−1 < "≤ "k we have:

f̂ (")(x) =
1
"

(

"k f̂ ("k)(x)+("−"k)hk(x)
)

,

where hk(x) = bk0+!i∈Ek b
k
i K(x,xi), and the direction bk =







bk0
...

bk|Ek|






is the solution of a set of

linear equations with |Ek|+1 unknowns:

Akbk =

(

0
rEk

)

with
Ak =

(

0 1T

1 KEk

)

,

as defined in Li et al. (2007); and r j = y j +u ·
(

!i∈Rk K(x j,xi)−!i∈Lk K(x j,xi)
)

for j ∈ Ek.

Armed with this result, we next show the main result of this section: that the knots themselves
move in a (piecewise) straight line as $ changes, and can therefore be tracked as $ and the regular-
ization path change. Fix a quantile $0 and assume that "k is a knot in the "-solution path for quantile
$0. Further, let ik be the observation that is passing in or out of the elbow at knot "k. AssumeWLOG
that '̂ik($0,"k) = $0, that is, it is on the boundary between Rk and Ek. Let K̃Ek be the matrix KEk

with the ik column removed, and b̃k = bk with index ik removed. Let si = ! j∈R ∪L∪{ik}K(xi,x j) for
i ∈ Ek. Let sEk be the vector of all these values.

Theorem 2 Any knot "k moves linearly as $ changes. That is, there exists a constant ck such that
for quantile $0+) there is a knot in the "-solution path at "k + ck), for ) ∈ [−&k,*k], a non-empty
neighborhood of 0. ck is determined through the solution of another set of |Ek|+1 linear equations
with |Ek|+1 unknowns

Bk
(

b̃k
ck

)

=

(

−(|R |+ |L |+1)
−sEk

)

,

with
Bk =

(

0 1T 0
1 K̃Ek −yEk

)

.
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And the fit at this knot progresses as

f̂ ($0+),"k + ck)) =
1

"k + ck)
(

"k f̂ ("k,$0)(x)+)hk(x)
)

(7)

hk(x) = b̃k0+ !
i∈Ek−ik

b̃ki K(x,xi)+ !
i∈L∪R ∪{ik}

K(x,xi) . (8)

Proof For small ), themodified knot should be characterized by 'ik = $0+), and L ,R ,E remaining
the same. If we can find a ck such that this holds for quantile $0 + ) and " = "k + ck), and also
the KKT conditions are maintained, we have our knot for quantile $0 + ). Assume this can be
accomplished by moving in a direction hk as in Equations (7) and (8). For the KKT conditions to
hold we need to maintain:

C1. f̂ ($0+),"k + ck))(xi) = yi , ∀i ∈ E

C2. '̂i($0+),"k + ck)) = '̂i($0,"k)+) , ∀i ∈ L ∪R ∪{ik}

C3. !i∈Ek−{ik} b̃
k
i = −|L ∪R ∪{ik}|

where C1 maintains the observations in E at the elbow, C2 maintains the equality requirements on
'̂ for the observations in L ∪R (and the one on the boundary), and C3 maintains the constraint that
the '̂’s sum to 0.

We can express C1 in terms of Equations (7) and (8) and condition C2:

f̂ ($0+),"k+ ck))(xi) = yi , ∀i ∈ E

⇔ hk(xi) = b̃k0+ !
j∈Ek−ik

b̃kjK(x j,xi)+ !
j∈L∪R ∪{ik}

K(x j,xi) = ckyi , ∀i ∈ E , (9)

where the last term on the RHS of (9) accounts for the changes in the '̂ j which C2 implies for
j ∈ L ∪R ∪{ik}.
Now, by combining C3 and (9) into one set of equations in matrix notation, we get the result of

the theorem:
(

b̃k
ck

)

=
(

Bk
)−1

(

−(|R |+ |L |+1)
−sEk

)

and moving in the direction of the solution of this matrix equation as in (7,8) maintains the KKT
conditions and the observation at the elbow, hence is a knot on the "-solution path for quantile $+)
for every (small enough) ).

This theorem tells us that we can in fact track the knots in the solution efficiently as $ changes.
We still have to account for various types of events that can change the direction the knot is moving
in. The value 'i for a point in Ek−{ik} can reach $ or −(1− $), or a point in L ∪R may reach the
elbow E . These events correspond to knots crossings, that is, the knot "k is encountering another
knot (which is tracking the other event). There are also knot birth events, and knots merge events,
which are possible but rare, and somewhat counter-intuitive. We defer the details of how these are
identified and handled to the detailed algorithm description (Appendix A). When any of these events
occurs, the set of knots has to be updated and their directions have to be re-calculated using Lemma
1, Theorem 2 and the new identity of the sets E ,L ,R and the observation ik. This in essence allows
us to map the whole 2-dimensional solution surface f̂ ($,").
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3. The Bi-level Optimization Problem

Our next task is to show how our ability to track the knots as $ changes allows us to track the solution
of the bi-level optimization Problem (4) as $ changes. The key to this step is the following result.

Theorem 3 When the cross validation loss is the quantile loss (i.e., LCV= L$), then any minimizer3
of (4) is always either at a knot in the "-path for this $ or a point where a validation observation
crosses the elbow. In other words, one of the two following statements must hold:

• "∗ is a knot: ∃i ∈ {1...n} s.t. f̂ ($,"∗($))(xi) = yi and 'i ∈ {$,−(1− $)}, or

• "∗ is a validation crossing: ∃i ∈ {1...N} s.t. f̂ ($,"∗($))(x̃i) = ỹi

Proof Define L̃ , R̃ in the obvious way, as the sets of validation observations with negative and
positive residuals, respectively, for a given model. Fix $, and consider the cross validation loss for a
given value of ":

Lcv(") :=
N

!
i=1

Lcv(ỹi, f̂ (")(x̃i)) = !
i∈L̃

(1− $)( f̂ (")(x̃i)− ỹi)+ !
i∈R̃

$ · (ỹi− f̂ (")(x̃i)) =

= $ !
i∈R̃

yi− (1− $)!
i∈L̃

yi− $ !
i∈R̃

f̂ ("k)(x̃i)+(1− $)!
i∈L̃

f̂ ("k)(x̃i)+

+
("−"k)

"



−$ !
i∈R̃

(hk(x̃i)− f̂ ("k)(x̃i))+(1− $)!
i∈L̃

(hk(x̃i)− f̂ ("k)(x̃i))





where k is such that "k−1 ≤ " ≤ "k (where the list of ".’s now combines both knots and validation
crossings), and we take advantage of the representation in (6). From the last two rows we can see
that Lcv is monotone in " as long as L̃ , R̃ are fixed (i.e., no validation crossing occurs) and hk is
fixed (i.e., no knot is encountered). Therefore any local (or global) extremum must be at a knot or a
validation crossing.

Corollary 4 Given the complete solution path for $ = $0, the solutions of the bi-level Problem (4)
for a range of quantiles around $0 can be obtained by following the paths of the knots and the
validation crossings only, as $ changes.

To implement this corollary in practice, we have two main issues to resolve:

1. How do we follow the paths of the validation crossings?

2. How do we determine which one of the knots and validation crossings is going to be optimal
for every value of $?

The first question is easy to answer when we consider the similarity between the knot following
problem we solve in Theorem 2 and the validation crossing following problem. In each case we

3. In pathological cases there may be a “segment” of minimizers. In this case it can be shown that such a segment will
always be flanked by points described in the theorem.
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have a set of elbow observations whose fit must remain fixed as $ changes, but whose '̂ values may
vary; sets L ,R whose '̂ are changing in a pre-determined manner with $, but whose fit may vary
freely; and one special observation which characterizes the knot or validation crossing. The only
difference is that in a knot this is a border observation from the training set, so both its fit and its
'̂ are pre-determined, while in the case of validation crossing it is a validation observation, whose
fit must remain fixed (at the elbow), but which does not even have a '̂ value. Taking all of this into
account, it is easy to show the following result, closely related to Theorem 2. Assume there is a
validation crossing at "v for quantile $0, and that validation set observation jv is the one crossing
the elbow, that is,

f̂ ($0,"v)(x̃ jv) = 0 .

Let sEv ,KEv ,bEv be defined as in Theorem 2 (with {iv} = + for definition of s). Let kv =
(K(XEv , x̃ jv)) be a 1× |Ev| vector of the kernel evaluations at x̃ jv for the elbow observation function-
als.
Proposition 5 "v moves linearly as $ changes. That is, there exists a constant dv such that for
quantile $0+ ) there is a validation crossing in the "-solution path at "v + dv), for ) ∈ [−&v,*v],
a non-empty neighborhood of 0. dv is determined through the solution of a set of |Ev|+ 2 linear
equations with |Ev|+2 unknowns:

Bv
(

b̃v
dv

)

=





−(|R |+ |L |)
−sEv
−s̃ jv





with

Bv =





0 1T 0
1 KEv −yEv
1 kv −ỹ jv



 .

Furthermore, the solution f̂ ($0+),"v+ cv)) is given by:

f̂ ($0+),"v+ cv)) =
1

"v+ cv)
(

"v f̂ ("v,$0)(x)+)hv(x)
)

hv(x) = b̃v0+ !
i∈Ev

bvi K(x,xi)+ !
i∈L∪R

K(x,xi) .

The proof relies on following the same steps as the proof of Theorem 2 and is omitted for brevity.
The second question we have posed requires us to explicitly express the validation loss (i.e.,

L$ on the validation set) at every knot and validation crossing in terms of ), so we can compare
them and identify the optimum at every value of ). Using the representation in (7) we can write the
validation loss for a knot k (denote f k()) = f̂ ($0+),"k + ck))):

!N
i=1 Lcv(ỹi, f k())(x̃i)) =

= −(1− $0−))!
i∈L̃

(ỹi− f k())(x̃i))+($0+))!
i∈R̃

(ỹi− f k())(x̃i)) =

=
N

!
i=1

Lcv(ỹi, f k(0)(x̃i))+)!
i
|ỹi− f k(0)(x̃i)|+

)
"k + ck)

· (10)

·



−(1− $0−))!
i∈L̃

(ck f k(0)(x̃i)−hk(x̃i))+($0+))!
i∈R̃

(ck f k(0)(x̃i)−hk(x̃i))



 .
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A similar expression can be derived for validation crossings (with f k,ck,hk replaced by f v,dv,hv
in the obvious way). These are rational functions of ) with quadratic expressions in the numerator
and linear expressions in the denominator. Our cross-validation task can be re-formulated as the
identification of the minimum of these rational functions among all knots and validation crossings,
for every value of $ in the current segment, where the directions hk,hv of all knots and validation
crossings are fixed (and therefore so are the coefficients in the rational functions). This is a lower-
envelope tracking problem, which has been extensively studied in the literature (Sharir and Agarwal
1995 and references therein). The algorithms developed mostly conform to the common-sense ap-
proach of maintaining the order of the validation loss scores from smallest to largest; identifying the
$ values where elements with neighboring scores meet (i.e., obtain identical score); and whenever a
meeting occurs, re-calculating only the relevant crossing points, that is, those of the elements that
changed order and their immediate neighbors. We also have to re-calculate some of the validation
loss scores whenever an event happens on the training solution path (like a knot crossing).

To calculate the meeting point of two elements with neighboring scores (assume WLOG that
they are two knots k, l) we find the zeros of the cubic equation obtained by requiring equality for the
two rational functions of the form (10) corresponding to the two elements. Writing the expression
in (10) for both k and l, and requiring equality gives us the cubic equation:

0= "k"l(lok− lol)+ (11)
+)[("kcl +"lck)(lok− lol)+"k"l(lak− lal)+"l($0LRk−Lek)−"k($0LRl−Lel)]
+)2[ckcl(lok− lol)+(ck"l + cl"k)(lak− lal)+

+cl($0LRk−Lek)+"lLRk− ck($0LRl−Lel)−"kLRl]
+)3[ckcl(lak− lal)+ clLRk− ckLRl] ,

where:

lok =
N

!
i=1

Lcv(ỹi, f k(0)(x̃i))

lak =!
i
|ỹi− f k(0)(x̃i)|

LRk = !
i∈L̃

(ck f k(0)(x̃i)−hk(x̃i))+!
i∈R̃

(ck f k(0)(x̃i)−hk(x̃i))

Lek = !
i∈L̃

(ck f k(0)(x̃i)−hk(x̃i)) ,

with similar expressions for the elements with subscript l derived in the obvious way. The smallest
non-negative solution for ) is the one we are interested in.

Figure 3 gives a simple illustration of the process of following the validation loss scores, and
identifying their optimum, while updating the directions of the knots and validation crossings as
events occur. It shows the set of training and validation loss scores for two knots and the validation
loss only for one validation crossing. The training loss is shown in solid lines, and the validation
loss in dashed lines. Assuming these are the only three candidates in Theorem 3, the figure shows in
bold the lower envelope which defines the optimal cross validation solution at every value of $. As
we can see, in this example the first (left) switch is between two knots as a result of a knot crossing,
while the second (right) is a result of a validation crossing becoming optimal. It should be noted,
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Figure 3: Illustration of the process of lower envelope tracking, in the presence of two knots and
one validation crossing being tracked. See text for details.

that the linearity of the solid and dashed lines in Figure 3 is for illustration simplicity, and is not a
realistic depiction of the non-linear evolution of the loss as $ varies, as discussed above.

4. Algorithm Overview

Bringing together all the elements from the previous sections, we now give a succinct overview
of the resulting algorithm (Algorithm 1). Since there is a multitude of details, we defer a detailed
pseudo-code description of our algorithm to Appendix A.

The algorithm follows the knots of the "-solution path as $ changes using the results of Section
2, and keeps track of the cross-validated solution using the results of Section 3. Every time an
event happens (like a knot crossing), the direction in which two of the knots are moving has to be
changed, or knots have to be added or deleted. Between these events, the evolution of the cross-
validation objective at all knots and validation crossings has to be sorted and followed. Their order
is maintained and updated whenever crossings occur between them.

4.1 Approximate Computational Complexity

Looking at Algorithm 1, we should consider the number of steps of the two loops and the complexity
of the operations inside the loops. Even for a “standard” "-path following problem for fixed $, it is in
fact impossible to rigorously bound the number of steps in the general case, but it has been argued
and empirically demonstrated by several authors that the number of knots in the path behaves as
O(n), the number of samples (Rosset and Zhu, 2007; Hastie et al., 2004; Li et al., 2007). In our
case the outer loop of Algorithm 1 implements a 2-dimensional path following problem, that can
be thought of as following O(n) 1-dimensional paths traversed by the knots of the path. It therefore
stands to reason (and we confirm it empirically below) that the outer loop typically has O(n2)
steps where events happen. The events in the inner loop, in turn, have to do with the N validation
observations meeting the O(n) knots. So a similar logic would lead us to assume that the number
of meeting events (counted by the inner loop) should be at most O(nN) total for the whole running
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Algorithm 1: Main steps of our algorithm
Input: The entire "-solution path for quantile $0; the bi-level optimizer "∗($0)
Output: Cross-validated solutions f ∗($) for $ ∈ [$0,$end]
Initialization: Identify all knots and validation crossings in the solution path for $0; Find1
direction of each knot according to Theorem 2 ;
Find direction of each validation crossing according to Proposition 5;2
Create a listM of knots and validation crossings sorted by their validation loss ;3
Let "∗($0) be the one at the bottom of the listM, and f ∗($0) accordingly ;4
Calculate future meeting of each pair of neighbors inM by solving the cubic equation5
implied by (10);
Set $now = $0 ;6
while $now < $end do7

Find value $1 > $now where first knot crossing occurs;8
Find value $2 > $now where first knot merge occurs;9
Find value $3 > $now where first knot birth occurs;10
Set $new =min($1,$2,$3);11
while $now < $new do12

Find value $4 > $now where first future meeting (order change) inM occurs;13
Find value $5 > $now where first validation crossing birth occurs;14
Find value $6 > $now where first validation crossing cancelation occurs;15
Set $next =min($4,$5,$6,$new);16
Update "∗($), f ∗($) for $ ∈ ($now,$next) as the evolution of the knot or validation17
crossing attaining the minimal Lcv in M (i.e., the one at "∗($now)) ;
Update M according to the first event (order change, birth, cancelation);18
Update the future meetings of the affected elements using (10);19
Set $now = $next;20

end21
Update the list of knots according to the first event (knot crossing, birth, merge) ;22
Update the directions of affected knots using Theorem 2 ;23

end24

of the algorithm (i.e., many iterations of the outer loop may have no events happening in the inner
loop). Each iteration of either loop requires a re-calculation of up to three directions (of knots or
validation crossings), using Theorem 2 or Proposition 5. These calculations involve updating and
inverting matrices that are roughly |E |× |E | in size (where |E | is the number of observations in
the elbow). However note that only one row and column are involved in the updating, leading
to a complexity of O(n+ |E |2) for the whole direction calculation operation, using the Sherman-
Morrison formula (Sherman and Morrison, 1949) for updating the inverse. In principle, |E | can be
equal to n, although it is typically much smaller for most of the steps of the algorithm, on the order
of

√
n or less. So we assume here that the loop cost is between O(n) and O(n2).
Putting all of these facts and assumptions together, we can estimate the algorithm’s computa-

tional complexity’s typical dependence on the number of observations in the training and validation
set as ranging between O(n2 ·max(n,N)) and O(n3 ·max(n,N)). Clearly, this estimation procedure
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falls well short of a formal “worst case” complexity calculation, but we offer it as an intuitive guide
to support our experiments below and get an idea of the dependence of running time on the amount
of data used.

We have not considered the complexity of the lower envelope tracking problem in our analysis,
because it is expected to have a much lower complexity (number of order changes
O(max(n,N) log(max(n,N))) and each order change involves O(1) work).

5. Extensions

In this section we discuss some of the possible extensions of our algorithm. First we discuss the
design of algorithms that are similar in spirit for other parameterized loss function problems, in
particular for support vector regression (&-SVR) and Huberized least squares regression. We then
move on to the use of in-sample model selection criteria instead of cross validation. Finally, we
address the issue of possible non-monotonicity in $, noted by previous authors (Koenker, 2005;
Takeuchi et al., 2006). We demonstrate how our algorithm can be naturally extended to amend this
situation.

5.1 Support Vector Regression and Weighted Support Vector Machines

One possible view of regularized &-SVR (Smola and Schölkopf, 2004) is similar to the quantile
regression problem for $= 0.5:

f̂ (&,") = argmin
f !i

L&(yi− f (xi))+
"
2
‖ f‖2HK

(12)

where the parameterized loss function L& is piecewise linear and symmetric around zero, with a
don’t care region of size 2&:

L&(r) =







r− & r ≥ &
0 −&< r < &
−r− & r ≤−&

.

The loss is parameterized by &. From an optimization perspective, this problem is very similar to
KQR, with a piecewise linear loss and an RKHS norm penalty. The solution can be represented as in
(5), and the KKT conditions for optimality of solutions of (12) in terms of coefficients of representer
functions have been formalized and used to design "-path following algorithms by Gunther and Zhu
(2005). For example, if we define for a proposed solution f (x) of &-SVR:

• L = {i : yi− f (xi) < −&} (points on left of left elbow of L&)

• EL = {i : yi− f (xi) = −&} (left elbow)

• C = {i : |yi− f (xi)| < &} (don’t care region)

• ER = {i : yi− f (xi) = &} (right elbow)

• R = {i : yi− f (xi) > 0} (right of right elbow),

Then the Karush-Kuhn-Tucker (KKT) conditions for optimality of a solution f̂ (&,") of Problem
(12) can be phrased as:

2486



BI-LEVEL PATH FOLLOWING

• i ∈ C ⇒ '̂i = 0

• i ∈ L ⇒ '̂i = −1

• i ∈ R ⇒ '̂i = 1

• i ∈ EL ⇒ −1≤ '̂i ≤ 0

• i ∈ ER ⇒ 0≤ '̂i ≤ 1

• !i '̂i = 0.

Wang et al. (2006) have noted that &-paths (with fixed ") can similarly be followed. Because of the
fundamental similarity in the optimization setting, all our results regarding behavior of "-paths and
knots as $ changes in quantile regression (e.g., Theorem 2) can be adapted in a reasonably straight
forward manner to follow paths and knots of "-solution paths in &-SVR, as & varies.

There is, however, a fundamental difference in the statistical setting between parameterized
quantile loss and parameterized &-SVR loss. While every quantile loss function defines an interest-
ing modeling problem of estimation of a given conditional quantile, there is no such clear motivation
for varying &. Furthermore, there is no obvious way in which the cross validation loss should change
with &, if at all. In most cases, it seems & is viewed more as another tuning parameter for a single
modeling problem (like "), than a parameter defining a range of loss functions, each of its own in-
dependent interest. In this situation, the only motivation for solving the range of bi-level problems
parameterized by & may be as a way to efficiently traverse the entire (&,") solution space in search
of a single “best” prediction model. It may therefore be appropriate to use a single cross validation
objective Lcv independent of &. If we choose Lcv = L$=0.5 (the symmetric quantile loss, sometimes
called absolute loss), then our observations on the bi-level path following problem (e.g., Theorem 3)
would require slight modifications, but the ideas would carry through to the &-SVR case in a straight
forward manner.

An interesting recent development is the proposal of weighted support vector machines for
probability estimation by Wang et al. (2008). Their proposed approach calls for fitting weighted
versions of the support vector machine, with a range of relative weights applied to the two classes,
as a provably valuable approach for estimating probabilities. We omit the details for brevity, but note
that like the SVR case above, extending our bi-level approach to this problem is straight forward.

5.2 !1-regularized Huberized Squared Loss

Rosset and Zhu (2007) suggested the use of robust versions of squared error loss with !1 regular-
ization, as an approach for combining computational efficiency and robustness to long-tailed error
distribution. Huber’s loss function is quadratic for small absolute residuals, then continues linearly
as the residuals move away from zero, while maintaining differentiability. It is parameterized with
a huberizing point t:

Lt(r) =

{

r2 |r| < t
2t|r|− r2 otherwise .

The algorithm proposed in Rosset and Zhu (2007) for "-path following can be thought of as an
extension of the LARS-Lasso algorithm proposed for the Lasso (squared error loss with !1 penalty)
by Efron et al. (2004). The loss function is differentiable, there is no concept of elbow (although

2487



ROSSET

there are still knots), the KKT conditions are quite different, and if we also use a differentiable Lcv,
the cross validation procedure would be affect as well. However, the general reasoning of this paper
can still be applied to build bi-level path following algorithms for the Huberized lasso problem, and
to choose good t," combinations.

5.3 Use of In-sample Model Selection Criteria

Li et al. (2007) follow the literature in proposing two model selection criteria for selecting "∗ for
a fixed value of $, when there is no validation sample. These are Schwartz information criterion
(SIC, Schwarz, 1978) and generalized approximate cross validation (GACV, Yuan, 2006). Both of
these use the model’s effective degrees of freedom (DF) as a complexity measure which penalizes
the empirical error. Following Zou et al. (2007), Li et al. (2007) show that an unbiased estimate of
DF is the size of the elbow |E |. Thus, they arrive at following SIC and GACV approximations:

SIC(") = log

(

1
n

n

!
i=1

L$(yi− f̂ ($,")(xi))
)

+
logn
2n

|E | (13)

GACV(") =
!n
i=1L$(yi− f̂ ($,")(xi))

n− |E |
. (14)

If we were to adopt these measures (or similar ones) for model selection instead of the cross
validation approach using an independent validation set, tracking the optimal solution "∗($) requires
no extra work besides following the knots of the solution (as described in Sections 2, 4). This is
guaranteed by the following simple result:

Proposition 6 For any fixed $, the minimizer "∗($) of SIC, GACV and any similar model selection
criterion which is monotone in both !n

i=1L$(yi− f̂ ($,")(xi)) and |E |, is always at one of the knots
of the solution path.

Proof The loss is monotone between knots (e.g., from looking at Equation 6), while |E | is fixed.

Thus, if we wish to use SIC or similar measures for selecting "∗($), the inner loop of Algorithm 1
(lines 12-21) can be omitted and replaced with a simple tracking of the value of SIC at the knots
that are being followed. Since the algorithmic complexity of applying SIC/GACV is reduced com-
pared to cross validation, and given the ongoing debates in the literature on the merits of in-sample
versus out-of-sample model selection, it may often be beneficial to apply these in-sample methods
in addition, or even instead of, cross validation. We demonstrate and compare performance of the
two approaches in Section 6 below.

5.4 Addressing Quantile Crossings

The problem of quantile crossing, as formulated by Koenker (2005), is that for any fixed " (in
particular "= 0 in the linear quantile regression case, which is the one that Koenker (2005) concen-
trates on), the prediction f̂ ($,")(x) may not be non-decreasing in $ for a fixed x. That is, we may
have $0 < $1 and f̂ ($0,")(x) > f̂ ($1,")(x), which can never be true of the corresponding population
conditional quantiles, of course.

Takeuchi et al. (2006) address this problem by constraining the solution to comply with the
monotonicity requirement over a finite set of “interesting” quantiles. Their approach cannot work
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in our case, since our algorithm is local in nature and generates the solutions for the complete space
of ($,") values. However, we can offer a partial remedy to the quantile crossing problem through
observation of the guaranteed sub-optimality of the resulting solutions, and a consequent envelope
tracking modification. The main motivation is the following:

Proposition 7 Assume $0 < $1 and f̂ ($0,")(x) > f̂ ($1,")(x) for some ",x. Then either

EY |X=xL$0(Y, f̂ ($0,")(x)) ≥ EY |X=xL$0(Y, f̂ ($1,")(x)) . (15)

or
EY |X=xL$1(Y, f̂ ($0,")(x)) ≤ EY |X=xL$1(Y, f̂ ($1,")(x)) (16)

Thus, we can always improve the predictive quality of either f̂ ($0,") or f̂ ($1,") by eliminating the
non-monotonicity.

Proof In what follows we eliminate the explicit conditioning in the expectations. All expectations
are with regard to the distribution P(Y |X = x). Denote by c0 and c1 the $0 and $1 quantiles re-
spectively of P(Y |X = x). By definition, c0 ≤ c1. We also assume f̂ ($0,")(x) > f̂ ($1,")(x). We
hereafter denote these two fitted value by f̂0, f̂1 respectively for brevity. This gives us three possible
scenarios:

1. f̂1 ≥ c0. In this case (15) holds, since:

EL$0(Y, f̂0) = $0
Z

y≥ f̂0
y− f̂0dP(y|x)+(1− $0)

Z

y< f̂0
−y+ f̂0dP(y|x)

= $0
Z

y≥ f̂0
P(Y ≥ y|x)dy+(1− $0)

Z

y< f̂0
P(Y ≤ y|x)dy

= EL$0(Y, f̂1)+
Z f̂0

f̂1
[(1− $0)P(Y ≤ y|x)− $0P(Y ≥ y|x)]dy

≥ EL$0(Y, f̂1) ,

where the inequality on the last line is because P(Y ≤ y|X = x) ≥ $0 in the range f̂1 ≤ y≤ f̂0
(by our assumption that c0 ≤ f̂1 < f̂0).

2. f̂0 ≤ c1. By the same line of argument in this case (16) holds.

3. If neither of the previous two holds, we must have f̂1 < c0 ≤ c1 < f̂0. Following the same
steps as in case 1 we write:

EL$0(Y, f̂0) = EL$0(Y, f̂1)+
Z f̂0

f̂1
[(1− $0)P(Y ≤ y|x)− $0P(Y ≥ y|x)]dy (17)

EL$1(Y, f̂0) = EL$1(Y, f̂1)+
Z f̂0

f̂1
[(1− $1)P(Y ≤ y|x)− $1P(Y ≥ y|x)]dy . (18)

Assume EL$0(Y, f̂0) < EL$0(Y, f̂1). It implies the integral in (17) is negative which in turn
implies that the integral in (18) is also negative, since trivially

,
,$

Z f̂0

f̂1
[(1− $)P(Y ≤ y|x)− $P(Y ≥ y|x)]dy< 0 .

This negativity implies EL$1(Y, f̂0) < EL$1(Y, f̂1).
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The following is an immediate consequence of Proposition 7 if we take P(Y |x̃i) to be a point mass
at Y = ỹi.

Corollary 8 If non-monotonicity holds at a validation point, that is, $0 < $1 and f̂ ($0,")(x̃i) >
f̂ ($1,")(x̃i), then either

L$0(ỹi, f̂ ($0,")(x̃i)) ≥ L$0(ỹi, f̂ ($1,")(x̃i))

or
L$1(ỹi, f̂ ($0,")(x̃i)) ≤ L$1(ỹi, f̂ ($1,")(x̃i)) .

Thus, we can improve our holdout performance at either quantile $0 or $1 by appropriately enforcing
monotonicity.

We conclude that eliminating non-monotonicity can improve both predictive performance and
cross validation performance. In terms of practical implications, it is easy to see (though not trivial
to implement) how our algorithm can be extended to identify quantile crossings. When these occur,
at least one knot will be moving in the ‘wrong direction’, that is, the expression in (7) will be
decreasing in ). The algorithm will then have to keep careful tabs on the upper and lower limits
of the fit at every " as $ changes (the quantile-crossing gap). Discussion of the details and the
appropriate way to resolve the non-monotonicity given this envelope is left for future work.

6. Experiments

Our methodology offers a new approach for generating the full set of cross-validated kernel quantile
regression models. There are several interesting aspects of the modeling problem in general and our
algorithm in particular that should be studied through a data-based study.

First, to evaluate the new algorithm, the efficiency of the algorithm should be compared to
alternative approaches that allow generation of complete set of solutions and cross-validation. This
includes the naive grid-based search whereby the KQR problem is solved using standard approaches
(Takeuchi et al., 2006) for a grid of values in the ($,") space, and a good regularization parameter is
chosen for each value of $ by cross-validation; and the method of Li et al. (2007), which can be used
to generate the complete "-path at a grid of $-values and cross validate each path separately. As Li
et al. (2007) demonstrated clearly, their "-path method is far superior to the grid-based approach in
terms of computation, and so we concentrate on comparison to the "-path approach only, and show
that our algorithm compares favorably to it in generating the full set of bi-level solutions.

Second, we may also be interested in studying properties of the modeling problem, not necessar-
ily tied to the new algorithm. Cross-validation based selection of regularization should be compared
to in-sample approaches such as SIC (Schwarz, 1978) and GACV (Yuan, 2006). As noted above,
all of these can be implemented in our framework. It is obvious that given the same amount of data
for model fitting, it is better to use holdout data for model selection. However, the fair comparison
should be between integrating the validation set into the training set and implementing an in-sample
model selection approach, and using a smaller training set in a cross-validation framework.

Another interesting question about the modeling approach regards the ability of KQR to deal
with skewed and non-homogeneous error distributions, and still generate reasonable estimates of
the underlying quantiles.

We address all of these aspects in this section.
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Figure 4: Left: The function f (x) (solid), data points drawn from it with i.i.d normal error, and our
cross-validated estimates of quantiles 0.1,0.25,0.5,0.75,0.9 (dashed lines, from bottom
to top). Right: Evolution of optimal regularization parameter "̂($), as $ varies.

6.1 Simulations

Our simulation setup starts with univariate data x ∈ [0,1] and a “generating” function f (x) = 2 ·
(

exp(−30 · (x−0.25)2)+ sin(- · x2)
)

(see Figure 4). We then let Y = f (x)+ &, where the errors &
are independent, with a distribution that can be either:

1. &∼ N(0,1), that is, i.i.d standard normal errors

2. &+(x+1)2 ∼ exp(1/(x+1)2), which gives us errors that are still independent and have mean
0, but are asymmetric and have non-constant variance, with small signal-to-noise ratio on the
higher values of x (see Figure 5).

Figure 4 demonstrates the results of the algorithm with i.i.d normal errors, 200 training samples
and 200 validation samples and a Gaussian kernel with parameter .= 0.2. In the left panel, we see
that the quantile estimates all capture the general shape of the true curve, with some “smoothing”
due to regularization. In the right panel we see the evolution of the optimal regularization parameter
"̂($) as $ varies. We see the expected “jumpy” behavior of the optimal parameter, but we do not
see a clear tendency to be smaller for quantiles closer to 1/2. This is somewhat surprising when
we think in terms of bias and variance (or approximation error and estimation error) in learning.
Values of $ closer to 1/2 typically create learning problems that are “easier”, that is, variance is
smaller (Koenker, 2005), and this should in principle allow us to build more complex models (reduce
regularization), and decrease bias. A confounding factor in this analysis is the fact that the scale
of quantile error need not be comparable for different quantiles. In particular, we may expect that
loss magnitude would be larger for quantiles close to 0.5, where both types of errors get penalized
equally. If that is the case, then having the similar regularization parameter may in fact imply less
regularization for $ close to 0.5 compared to extreme quantiles. Another interesting observation is
that while "∗($) may be jumpy, both the empirical and the validation loss may vary smoothly. This
smoothness is in fact guaranteed for the validation loss Lcv, since it is easily seen that the “jumps”
are points where validation loss is equal at two knots or validation crossings.

Next we consider the computational complexity of the algorithm, and its dependence on the
number of training samples (with 200 validation samples). We compare it to the KQR algorithm
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NTRAIN NSTEPS TIME(BI-LEVEL) TIME(LI ET AL.) BREAK-EVEN RESOLUTION
200 29238 931 SEC. 2500 SEC. 3000
100 12269 99 SEC. 900 SEC. 900
50 2249 23 SEC. 480 SEC. 400

Table 1: Number of steps and run times of our algorithm and of Li et al. (2007), for the whole path
from $ = 0.1 to $ = 0.9, as a function of the number of training observations NTRAIN.
These results are based on applying Li et al. (2007) at 8000 different values of $. The last
column shows what resolution would give similar running times to both approaches (see
text for details).

of Li et al. (2007), who have already demonstrated that their algorithm is significantly more effi-
cient than grid-based approaches for generating 1-dimensional paths for fixed $. Table 1 shows the
number of steps of the main (outer) loop of Algorithm 1 and the total run time of our algorithm for
generating the complete set of cross-validated solutions for $ ∈ [0.1,0.9] as a function of the num-
ber of training samples (with validation sample fixed at 200). Also shown is the run time for the
algorithm of Li et al. (2007), when we use it on a grid of 8000 evenly spaced $ values in [0.1,0.9]
and find the best cross validated solution by enumerating the candidates as identified in Section 3.
Our conjecture that the number of knots in the 2-dimensional path behaves like O(n2) seems to be
consistent with these results, as is the hypothesized overall time complexity dependence of O(n3).
Since 8000 is typically an unnecessarily fine grid for practical applications, we offer in the last
column an evaluation of the comparative efficiency of the two methods in terms of the number of
distinct $ values that can be fitted with the Li et al. (2007) approach in roughly the same running
time as our approach. It is clear from these results that if just a small number of $ values (say, 10)
are sufficient to address the complete problem, our approach does not carry a computational benefit.

Next, we demonstrate the ability of KQR to capture the quantiles with “strange” errors from
model 2. Figure 5 shows a data sample generated from this model and the (0.25,0.5,0.75) quantiles
of the conditional distribution P(Y |X) (solid), compared to their cross-validated KQR estimates
(dashed), using 500 samples for learning and 200 for validation (more data is needed for learning
because of the very large variance at values of x close to 1). As expected, we can see that estimation
of the lower quantiles, and at smaller values of x is easier, because the distribution P(Y |X = x) has
long right tails everywhere and has much larger variance when x is big.

6.2 Baseball Data and California Housing

As discussed in Perlich et al. (2007), estimating conditional quantiles is often a modeling task that
is well grounded in practical applications. In the context of house prices, we can think of estimat-
ing a high (but not extreme4) conditional quantile as the seller’s search for a favorable bargaining
position in negotiations. Similarly for salaries, estimating a high conditional quantile can serve as a
measure of what an employee can expect to receive optimistically (but still realistically), given his
characteristics and performance.We therefore demonstrate KQR on two well studied data sets that
correspond to such modeling problems: baseball salaries as a function of a player’s home runs and
years of experience (He et al., 1998) and the California housing data set (Pace and Barry, 1997),

4. Extreme quantile estimation is also of interest in some contexts, but we do not demonstrate it here due to the inherent
statistical difficulty and questionable results, see some discussion in Conclusion section.
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Figure 5: Quantiles of P(Y |X) (solid), and their estimates (dashed) for quantiles (0.25,0.5,0.75)
with the exponential error model.

which describes the median prices of houses in neighborhoods of California along with nine ex-
planatory demographic variables. We seek to demonstrate predictive performance, fitted models
and the relative performance of different model selection approaches.

For our experiments, we use a Gaussian kernel, with the parameter / = 1 chosen based on
experimentation, to give flexible but not overly jumpy fits. We demonstrate the fit and accuracy
of model selection using CV compared to using SIC. For CV, we used 50 of the 263 players in
the data set for validation (selection of "̂($)) and 50 more for testing the accuracy of the resulting
model. Thus, 163 examples were used for training. For SIC, we used 213 (training+validation)
as the training set, and applied Equation (13) for selecting "̂($). Both approaches were evaluated
using the 50 test observations. In Figure 6 we show the resulting fit in both approaches, for three
different quantiles. As expected, compensation seems to be monotone in performance (home runs)
but not in experience (salary tends to increase as players gain experience, but then decreases as
they get older and performance deteriorates). As we can see, the model-selected surfaces are quite
similar between CV and SIC, though this need not be the case, as we should keep in mind that SIC
is choosing between models trained on more data. In terms of accuracy on the test set (shown above
each plot), The results are also very comparable. When comparing the two approaches we should
also keep in mind the reduced complexity of applying SIC, and the existing literature on instability
of CV-based model selection, though this is not evident in our results.

For the California housing data set, we use only longitude and latitude as the two explanatory
variables in fitting KQR, to facilitate meaningful visualization of results. We model the log of the
median price, since the actual median fluctuates widely over the data. We use 500 observations
for training and 50 as validation for CV, 550 as training for SIC, and 500 additional observations
for testing. Figure 7 shows the results. It is clear that visualization is hampered by the fact that
California is far from being rectangular, so one corner of the plots (latitude 34N, longitude 122W)
is well inside the ocean, while the other (latitude 40N, longitude 115W) is well inland from the
California border. The wild extrapolation of the fit in that direction is therefore not informative.

2493



ROSSET

Home ru
ns

0

10

20

30

40

Experience

5

10

15

20

Salary(K$)

0

500

1000

1500

2000

2500

CV: Quantile 0.25 Error:86.06

Home ru
ns

0

10

20

30

40

Experience

5

10

15

20

Salary(K$)

0

500

1000

1500

2000

2500

SIC: Quantile 0.25 Error:90.91

Home ru
ns

0

10

20

30

40

Experience

5

10

15

20

Salary(K$)

0

500

1000

1500

2000

2500

CV: Quantile 0.5 Error:130.61

Home ru
ns

0

10

20

30

40

Experience

5

10

15

20

Salary(K$)

0

500

1000

1500

2000

2500

SIC: Quantile 0.5 Error:131.26

Home ru
ns

0

10

20

30

40

Experience

5

10

15

20

Salary(K$)

0

500

1000

1500

2000

2500

CV: Quantile 0.75 Error:119.68

Home ru
ns

0

10

20

30

40

Experience

5

10

15

20

Salary(K$)

0

500

1000

1500

2000

2500

SIC: Quantile 0.75 Error:118.51

Figure 6: Models selected using CV (left) and SIC (right) on the Baseball data, for three different
quantiles.
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On each plot the fit at San Francisco (red circle), Los Angeles (blue square) and Sacramento (green
triangle) are marked. We can see that the selected fits using CV and SIC are quite similar, with
possible exception to the more jumpy fit selected by SIC for quantile 0.5. The valid insights that
seem to arise out of these plots relate to the lower house values in the central valley of California
compared to the coastal area, and the reduced house values in the Sacramento area compared to near
by the Bay Area.

7. Conclusions and Future Work

In this paper we have demonstrated that the family of bi-level optimization Problems (4) defined
by the family of loss functions L$ can be solved via a path following approach which essentially
maps the whole surface of solutions f̂ ($,") as a function of both $ and " and uses insights about
the possible locations of the bi-level optima to efficiently find them. This leads to a closed-form
algorithm for finding f ∗($) for all quantiles. We see two main contributions in this work: a. Char-
acterization of a family of non-convex optimization problems of great practical interest which can
be solved using solely convex optimization techniques and b. Formulation of a practical algorithm
for generating the full set of cross-validated solutions for the family of kernel quantile regression
problems.

We have shown how our approach can be extended to other modeling problems with a parame-
terized loss function, such as SVR, and to other versions of KQR, including using in-sample model
selection criteria and enforcing monotonicity on the resulting quantiles.

There are many other interesting aspects of our work, which we have not touched on here,
including: development of further optimization shortcuts to improve algorithmic efficiency, inves-
tigation of the range of applicability of our algorithmic approach beyond KQR and SVR, analysis
of the use of various kernels for KQR and how the kernel parameters and kernel properties interact
with the solutions, and more extensive empirical studies.

It is of particular interest to us to investigate the bias-variance tradeoff in loss function selection.
As we have mentioned, modeling with the quantile loss function L$ leads to estimation of the $th
quantile of P(Y |x) in the decision theoretic sense that the population optimizer of the loss function
is this quantile (see Equation 2). However, this by no means guarantees that a model learned from
finite data using L$ (with or without regularization) will do well in predicting the $th quantile. In
particular, there is no guarantee that a model built using a different loss function (say, L0, 0 0= $)
will not do better in predicting this quantile. This can be thought of in terms of bias and variance,
where the model generating quantile 0 is similar enough to the one for quantile $ (i.e., bias is small),
but it is “easier” to learn with L0, that is, variance is smaller, which would typically be the case if
0 is closer to 1/2 than $ (Koenker, 2005). A detailed investigation of this question is outside the
scope of the current work, but will be a natural extension.

A particularly important and difficult type of quantile estimation problems pertains to estimation
of extreme quantiles (e.g., $ = 0.01 or $ = 0.99) which can serve as approximations for expected
extreme values of the function being estimated. These problems are typically very difficult statis-
tically, that is, hard because of the scarcity of information implicit in trying to estimate events we
rarely observe. However they are not expected to be particularly difficult algorithmically. That is,
our (and others’) KQR approaches can estimate these models, but it is not clear how useful the
results are. These observations are verified by our limited experiments (results not shown), which
yield very “jumpy” and unstable models for extreme quantiles.
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Figure 7: Synthetic maps of the models selected using CV (left) and SIC (right) on the CA housing
data, for three different quantiles. The fits at San Francisco (red circle), Los Angeles
(blue square) and Sacramento (green triangle) are marked on each map.
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Appendix A. Pseudo-code of Algorithm

Algorithm 2 and its accompanying procedures describe our implementation in some detail. This
pseudo code is meant to complete the implementation details given in the paper. We use mathe-
matical notation rather than programming commands as much as possible, to make understanding
easier. Given the complexities and intricacies involved in the complete implementation, it seems
unrealistic and probably non-useful to give an exhaustive description. Rather, we concentrate on
clarifying the general flow of the algorithm and the mathematical problems it solves at each step.
We also emphasize the aspects of the algorithm not covered in technical detail in the main text,
such as the differentiation of different types of events (knot crossing, knot merging, knot splitting).
Where the text offers the technical content, we simply refer to that point. For example, Theorem
2 describes the direction calculation and also implicitly the accounting orf the identities of the sets
E ,L ,R required for it. We thus simply refer back to it where relevant in the algorithm.

Some further comments on the pseudo code:

• We assume the training and validation data are “global variables” known to all procedures.

• We use f̂ and '̂ interchangeably, given formula (5).

• Some of the elements are not described in the most efficient implementation, which would
require a lot more accounting and data management. For example, the search for the minima
in the function UpdateValidList does not have to be done from scratch on every call, but a list
can be maintained, and only the necessary items updated.

• The pseudo-code glosses over numerical issues which plague the actual implementation. In
particular, all equalities must have “tolerance” in the practical implementation due to machine
rounding errors. This obviously creates a problem when events on the path are bunched
together close enough that two distinct events fall within this tolerance.

• We avoid repetition of similar procedures. Thus the call to function KnotSplit at end of Al-
gorithm 2 is replaced with a brief explanation of its near-identity to the function KnotCross
which is already given.
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Algorithm 2: Algorithm description
Input: The entire "-solution path for quantile $0 characterized by its m knots λ = "1, ...,"m;

the solution directions g= g1, ...,gm as defined in (6); and i= i1, ..., im the
observations which “hit the elbow” at every knot

Output: Cross-validated solutions f ∗($) for $ ∈ [$0,$end] described as set of intervals in the
variable OPT

/* Initialization: find validation crossings, calculate cross validation
loss at knots and validation crossings, sort by it, find future
meetings of neighbors on the list, where the order changes */

SetM = InitializeValidList($0,λ,g);1

Set OPT = ($0, f ∗($0),h∗) where f ∗($0) = f̂ ($0,M."1), h∗ =M.h1 are from the first2
(smallest loss) entry in M;
Set $now = $0 ;3

Let T be the list of the fits f= ( f̂ ($0,"1), ..., f̂ ($0,"m)), regularization values4
λ = ("1, ...,"m), rates c= (c1, ...,cm), and directions h= (h1, ...,hm) as defined in
Theorem 2; /* Main loop */

while $now < $end do5
Update {$new,knew, inew, type} = FindEvent(T );6
Update T."k = T."k +($new− $now)T.ck for k = 1, ...,m;7
Update T. fk according to (6);8
while $now < $new do9

Set $keep = $now;10
(M, change, $now) = UpdateValidList(M,$keep,$new);11
if change=TRUE then12

OPT = concatenate(OPT,($now, f ∗($now),h∗)) where f ∗($now) = f ($now,M."1),13
h∗ =M.h1 are from the first (smallest loss) entry inM;

end14

end15
if type = cross then /* Knot crossing of knots knew, knew+1 */16

Set T = KnotCross(T,knew,$now);17
else if type = merge then /* Knot merge of knew, knew+1, knew+2 */18

Remove knots knew, knew+2 from T ;19
Update sets E ,R ,L for the remaining knot (Move the observation which defined the20
two removed knots from E to L or R );
else /* Knot split of knot knew with observation inew */21

/* Function KnotSplit would be identical to
KnotCross---identify two observations at border and find
legal directions---except that a split situation yields three
such directions, hence three knots, while a cross situation
yields two */

end22
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Procedure "IntializeValidList”: Initialization of bi-level candidate list
Input: Initial value $0, vector of knot values λ, corresponding directions g
Output: A listM = {(rk,"k, lk,hk,$k) : k = 1, ...,m+ v} sorted by l1 ≤ l2 ≤ .... ≤ lm+v,

where:
rk is an indicator in {knot, valx} whether this is a knot or a validation crossing
"k is its “location” on the path
lk is its cross validation loss
hk is its direction
$k is knot meeting point

Find knot directions h1, ...,hm according to Theorem 2;1
/* Identify all validation crossings in the solution path for $0 */
Set V =+ the empty set;2
for k = 1, ...,m knots and i= 1, ...,N validation observations do3
if f̂ ($0,"k−1)(x̃i) > ỹi and f̂ ($0,"k)(x̃i) < ỹi or vice versa then4

Set "̃= "k
f̂ ($0,"k)(x̃i)−gk(x̃i)

ỹi−gk(x̃i) ;5

Find the validation crossing direction h̃(x) according to Proposition 5;6

Add the entry ("̃, h̃) characterizing the validation crossing to the set V ;7

end8

end9
/* Sort knots and validation crossings by their loss */
Denote the number of validation crossings by v= |V |;10
for k = 1, ...,m do11

Calculate knot validation loss: lk = !N
i=1L$0( f̂ ($0,"k)(x̃i), ỹi);12

end13
for k = 1, ...,v do14

Calculate validation crossing loss: lm+k = !N
i=1L$0( f̂ ($0, "̃k)(x̃i), ỹi);15

end16
Create list M = {(rk,"k, lk,hk,$k) : k = 1, ...,m+ v} sorted by l1 ≤ l2 ≤ .... ≤ lm+v, where:17
rk is an indicator whether this is a knot or a validation crossing with possible values knot18

and valx respetively
"k is its “location” on the path19
lk is its cross validation loss20
hk is its direction21
$k is knot meeting point, defined below;22

/* Identify mtg pts of neighboring knots or valid. crossings */
for k = 1, ...,m+ v−1 do23

Let $k = $0+)k where )k is the minimal positive solution of the Problem (11) with24
l = k+1;

end25

2499



ROSSET

Procedure "FindEvent”: Find the next event on the path as $ changes
Input: The list T of knots and their directions
Output: Event type in {cross, merge, birth}, $new where next event happens, knew the knot

where this event happens, inew the observation involved in the event (if a birth)
/* Next knot crossing or knot merging */

Set $̃k = T."k−T."k+1
T.ck+1−T.ck , k = 1, ...,m−1;1

Set knew = argmink=1,...,m−1{$̃k : $̃k > 0} ;2
Set $new = $̃knew if $̃knew = $̃knew+1 then3

type=merge ; /* Knots merging 3⇒ 1 */4
else5

type=cross; /* Two knots crossing */6
end7
/* Next observation-knot crossing = knot birth */
for k = 1, ...,m do8

Set i′k = argmini=1,...,n{T."k( f̂ (T."k)(xi)−yi)
T.ck(yi−hk(xi)) : T."k( f̂ (T."k)(xi)−yi)

T.ck(yi−hk(xi)) > 0};9

Set $′k to be the minimum attained;10

end11
Set k′ = argmink $′k;12
if $′k′ < $new then13

Set $new = $′k′ , knew = k′, type=birth ;14
end15

2500



BI-LEVEL PATH FOLLOWING

Procedure "UpdateValidList”: Find the next validation event on the path as $ changes, and
update the list if necessary
Input: Validation candidate listM, current value $keep, next event on main path $new
Output: Logical indicator change whether optimum changed, Updated listM, and $now

where next validation event happens
Set change = FALSE ;1
/* Pair of validation crossings can disappear, or a new a validation

crossing can appear, or a regular order change in the elements in M
can occur. We first identify the next order change in the list M */

Set $now =mink=1,...,m+v−1M.$k;2
Set know = argmink=1,...,m+v−1M.$k;3
/* Now find the next time a validation observation hits a knot ⇒ new

validation crossing */

For i= 1, ...N and k = 1...,m set 1$(i,k) =M."k
f̂ ($keep,M."k)(x̃i)−ỹi
ỹiM.ck−M.hk(x̃i) ;4

Set $̃= $keep+mini=1,...,N,k=1,...,m{1$(i,k) : 1$(i,k) > 0} ;5
Set (ĩ, k̃) = argmini=1,...,N,k=1,...,m{1$(i,k) : 1$(i,k) > 0};6
if $now > $new and $̃> $new then /* No validation event before $new */7

$now = $new;8
return;9

else if $now > $̃ then /* New validation xing appears---add it to list */10

Set "̃= ($̃− $keep)M.ck̃ +M."k̃ ;11

Set l̃ = !N
i=1L$̃( f̂ ($̃, "̃)(x̃i), ỹi);12

Set the validation xing direction h̃(x) according to Proposition 5;13
Find the location k′ in the sorted list of the cross validation loss l̃ and insert the element14

(r = valx, "̃, l̃, h̃) into M at location k′ ;
Recalculate $k′−1,$k′ in M according to (11);15
Set $now = $̃;16

else17
/* If two validation crossings meet knot---the two disappear */
Set (merged,M) = CheckMerge(M,know);18
if merged=FALSE then /* Usual situation: swap elements, update meetings19
*/

Swap elements know and know+1 in M;20
Recalculate $know−1,$know ,$know+1 in M according to (11);21
if know = 1 then /* First element changed ⇒ change of optimum */22

changed = TRUE;23
end24

end25

end26
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Procedure "CheckMerge”: Find out if the validation event is in fact two validation crossings
of same observation meeting a knot and merging
Input: Validation candidate listM, index of event point k
Output: Logical indicator merge whether a merge occurred, updated listM
merge = FALSE;1
/* With observations in general location, $k = $k+1 in M implies

immediately that we have a merge. Two of k,k+1,k+2 are validation
crossings of the same observation, the knot is the third involved in
the crossing. If we do not assume that, more checks are required! */

ifM.$k =M.$k+1 then2
merge = TRUE ;3
/* Find out which one of the entries k,k+1,k+2 in M is a knot,

delete the other two */
if M.rk = knot then4

remove entries k+1,k+2 fromM;5
else ifM.rk+1 = knot then6

remove entries k,k+2 fromM ;7
else /* M.rk+2 = knot */8

remove entries k,k+1 fromM ;9
Update M.$k−1,M.$k according to (11);10

end11
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Procedure "KnotCross”: Update directions when knots cross
Input: Knot list T , index of first of crossing knots k, current quantile $
Output: Updated list T
/* Identify i1, i2, the ‘‘knot’’ observations at the two knots */

Find i1, i2 s.t. 'i j ∈ {$,−(1− $)} and yi j = f̂ ($,T."k+ j−1)(xi j) for j ∈ {1,2};1

Calculate the sets E ,R ,L as defined in the text for the meeting knots (leaving out the2
“border observations” i1, i2);
Set u= k for rel= 1,2 do /* try releasing each border observation to E or L3
or R as appropriate */

Add observation irel to E and calculate direction h,c according to Theorem 2;4
/* Check sign and magnitude of birel for consistency (to maintain

'irel ∈ [−(1− $),$] as $ increases) */

if birel ≤ 1 and '̂irel = $ then5
Update entry u in T with this direction h,c, set u= u+1 ;6

else if birel ≥−1 and '̂irel = −(1− $) then7
Update entry u in T with this direction h,c, set u= u+1 ;8

end9

if '̂(irel) = $ then10
Add irel to R ;11

else /* '̂(irel) = −1− $ */12
Add irel to L ;13

Calculate direction h and c according to Theorem 2;14
/* Check sign and magnitude of h(xirel) for sign consistency */

if h(xirel) < 0 and '̂irel = $ then15
Update entry u in T with this direction h,c, set u= u+1 ;16

else if h(xirel) > 0 and '̂irel = −(1− $) then17
Update entry u in T with this direction h,c, set u= u+1 ;18

end19

end20
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Abstract
We consider a general class of regularization methods which learn a vector of parameters on the
basis of linear measurements. It is well known that if the regularizer is a nondecreasing function of
the L2 norm, then the learned vector is a linear combination of the input data. This result, known
as the representer theorem, lies at the basis of kernel-based methods in machine learning. In this
paper, we prove the necessity of the above condition, in the case of differentiable regularizers.
We further extend our analysis to regularization methods which learn a matrix, a problem which
is motivated by the application to multi-task learning. In this context, we study a more general
representer theorem, which holds for a larger class of regularizers. We provide a necessary and
sufficient condition characterizing this class of matrix regularizers and we highlight some concrete
examples of practical importance. Our analysis uses basic principles from matrix theory, especially
the useful notion of matrix nondecreasing functions.
Keywords: kernel methods, matrix learning, minimal norm interpolation, multi-task learning,
regularization

1. Introduction

Regularization in Hilbert spaces is an important methodology for learning from examples and has a
long history in a variety of fields. It has been studied, from different perspectives, in statistics (see
Wahba, 1990, and references therein), in optimal estimation (Micchelli and Rivlin, 1985) and re-
cently has been a focus of attention in machine learning theory, see, for example (Cucker and Smale,
2001; De Vito et al., 2004; Micchelli and Pontil, 2005a; Shawe-Taylor and Cristianini, 2004; Vapnik,
2000) and references therein. Regularization is formulated as an optimization problem involving an
error term and a regularizer. The regularizer plays an important role, in that it favors solutions with
certain desirable properties. It has long been observed that certain regularizers exhibit an appealing
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property, called the representer theorem, which states that there exists a solution of the regulariza-
tion problem that is a linear combination of the data. This property has important computational
implications in the context of regularization with positive semidefinite kernels, because it transforms
high or infinite-dimensional problems of this type into finite dimensional problems of the size of the
number of available data (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004).

The topic of interest in this paper will be to determine the conditions under which representer
theorems hold. In the first half of the paper, we describe a property which a regularizer should
satisfy in order to give rise to a representer theorem. It turns out that this property has a simple
geometric interpretation and that the regularizer can be equivalently expressed as a nondecreasing
function of the Hilbert space norm. Thus, we show that this condition, which has already been
known to be sufficient for representer theorems, is also necessary. In the second half of the paper,
we depart from the context of Hilbert spaces and focus on a class of problems in which matrix
structure plays an important role. For such problems, which have recently appeared in several
machine learning applications, we show a modified version of the representer theorem that holds
for a class of regularizers significantly larger than in the former context. As we shall see, these
matrix regularizers are important in the context of multi-task learning: the matrix columns are the
parameters of different regression tasks and the regularizer encourages certain dependences across
the tasks.

In general, we consider problems in the framework of Tikhonov regularization (Tikhonov and
Arsenin, 1977). This approach finds, on the basis of a set of input/output data (x1,y1), . . . , (xm,ym)∈
H ×Y , a vector in H as the solution of an optimization problem. Here, H is a prescribed Hilbert
space equipped with the inner product 〈·, ·〉 and Y ⊆ R a set of possible output values. The opti-
mization problems encountered in regularization are of the type

min
{

E
(

(〈w,x1〉, . . . ,〈w,xm〉) ,(y1, . . . ,ym)
)

+ !"(w) : w ∈H
}

, (1)

where !> 0 is a regularization parameter. The functionE :Rm×Y m→R is called an error function
and " :H → R is called a regularizer. The error function measures the error on the data. Typically,
it decomposes as a sum of univariate functions. For example, in regression, a common choice
would be the sum of square errors, #m

i=1(〈w,xi〉−yi)2. The function", called the regularizer, favors
certain regularity properties of the vector w (such as a small norm) and can be chosen based on
available prior information about the target vector. In some Hilbert spaces such as Sobolev spaces
the regularizer is a measure of smoothness: the smaller the norm the smoother the function.

This framework includes several well-studied learning algorithms, such as ridge regression
(Hoerl and Kennard, 1970), support vector machines (Boser et al., 1992), and many more—see
Schölkopf and Smola (2002) and Shawe-Taylor and Cristianini (2004) and references therein.

An important aspect of the practical success of this approach is the observation that, for certain
choices of the regularizer, solving (1) reduces to identifying m parameters and not dim(H ). Specif-
ically, when the regularizer is the square of the Hilbert space norm, the representer theorem holds:
there exists a solution ŵ of (1) which is a linear combination of the input vectors,

ŵ=
m

#
i=1

cixi, (2)

where ci are some real coefficients. This result is simple to prove and dates at least from the 1970’s,
see, for example, Kimeldorf and Wahba (1970). It is also known that it extends to any regular-
izer that is a nondecreasing function of the norm (Schölkopf et al., 2001). Several other variants
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and results about the representation form (2) have also appeared in recent years (De Vito et al.,
2004; Dinuzzo et al., 2007; Evgeniou et al., 2000; Girosi et al., 1995; Micchelli and Pontil, 2005b;
Steinwart, 2003; Wahba, 1992). Moreover, the representer theorem has been important in machine
learning, particularly within the context of learning in reproducing kernel Hilbert spaces (Aronszajn,
1950)—see Schölkopf and Smola (2002) and Shawe-Taylor and Cristianini (2004) and references
therein.

Our first objective in this paper is to derive necessary and sufficient conditions for representer
theorems to hold. Even though one is mainly interested in regularization problems, it is more
convenient to study interpolation problems, that is, problems of the form

min
{

"(w) : w ∈H ,〈w,xi〉 = yi, ∀i= 1, . . . ,m
}

. (3)

Thus, we begin this paper (Section 2) by showing how representer theorems for interpolation and
regularization relate. On one side, a representer theorem for interpolation easily implies such a the-
orem for regularization with the same regularizer and any error function. Therefore, all representer
theorems obtained in this paper apply equally to interpolation and regularization. On the other side,
though, the converse implication is true under certain weak qualifications on the error function.

Having addressed this issue, we concentrate in Section 3 on proving that an interpolation prob-
lem (3) admits solutions representable in the form (2) if and only if the regularizer is a nondecreasing
function of the Hilbert space norm. That is, we provide a complete characterization of regularizers
that give rise to representer theorems, which had been an open question. Furthermore, we dis-
cuss how our proof is motivated by a geometric understanding of the representer theorem, which
is equivalently expressed as a monotonicity property of the regularizer. We note that for simplicity
throughout the paper we shall assume that " is differentiable. However our results are constructive
and it should be possible to extend them to the non-differentiable case.

Our second objective is to formulate and study the novel question of representer theorems for
matrix problems. To make our discussion concrete, let us consider the problem of learning n linear
regression vectors, represented by the parameters w1, . . . ,wn ∈ Rd , respectively. Each vector can
be thought of as a “task” and the goal is to jointly learn these n tasks. In such problems, there is
usually prior knowledge that relates these tasks and it is often the case that learning can improve if
this knowledge is appropriately taken into account. Consequently, a good regularizer should favor
such task relations and involve all tasks jointly.

In the case of interpolation, this learning framework can be formulated concisely as

min{"(W ) :W ∈Md,n , w*
t xti = yti, ∀i= 1, . . . ,mt , t = 1, . . . ,n} , (4)

whereMd,n denotes the set of d×n real matrices and the column vectors w1, . . . ,wn ∈ Rd form the
matrix W . Each task t has its own input data xt1, . . . ,xtmt ∈ Rd and corresponding output values
yt1, . . . ,ytmt ∈ Y .

An important feature of such problems that distinguishes them from the type (3) is the appear-
ance of matrix products in the constraints, unlike the inner products in (3). In fact, as we will
discuss in Section 4.1, problems of the type (4) can be written in the form (3). Consequently, the
representer theorem applies if the matrix regularizer is a nondecreasing function of the Frobenius
norm.1 However, the optimal vector ŵt for each task can be represented as a linear combination of

1. Defined as ‖W‖2 =
√

tr(W*W ).
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only those input vectors corresponding to this particular task. Moreover, with such regularizers it
is easy to see that each task in (4) can be optimized independently. Hence, these regularizers are of
no practical interest if the tasks are expected to be related.

This observation leads us to formulate a modified representer theorem, which is appropriate for
matrix problems, namely,

ŵt =
n

#
s=1

ms
#
i=1

c(t)si xsi ∀ t = 1, . . . ,n, (5)

where c(t)si are scalar coefficients, for t,s = 1, . . . ,n, i = 1, . . . ,ms. In other words, we now allow
for all input vectors to be present in the linear combination representing each column of the op-
timal matrix. As a result, this definition greatly expands the class of regularizers that give rise to
representer theorems.

Moreover, this framework can be used in many applications where matrix optimization prob-
lems are involved. Our immediate motivation, however, has been more specific than that, namely
multi-task learning. Learning multiple tasks jointly has been a growing area of interest in machine
learning and other fields, especially during the past few years (Abernethy et al., 2009; Argyriou
et al., 2006, 2008a, 2007; Candès and Recht, 2009; Cavallanti et al., 2008; Izenman, 1975; Maurer,
2006a,b; Srebro et al., 2005; Wolf et al., 2007; Xiang and Bennett, 2005; Xiong et al., 2006; Yuan
et al., 2007). For instance, some of these approaches use regularizers which involve the trace norm2
of matrixW . There have been several motivations for the trace norm, derived from kernel learning,
maximum likelihood, matrix factorization or graphical models. Another motivation is that under
conditions a small trace norm favors low-rank matrices. This means that the tasks (the columns of
W ) are related in that they all lie in a low-dimensional subspace of Rd . In the case of the trace norm,
the representer theorem (5) is known to hold—see Abernethy et al. (2009), Argyriou et al. (2008a)
and Amit et al. (2007); see also the discussion in Section 4.1.

It is natural, therefore, to ask a question similar to that in the standard Hilbert space (or single-
task) setting. That is, under which conditions on the regularizer a representer theorem holds. In
Section 4.2, we provide an answer by proving a necessary and sufficient condition for representer
theorems (5) to hold for problem (4), expressed as a simple monotonicity property. This property is
analogous to the one in the Hilbert space setting, but its geometric interpretation is now algebraic
in nature. We also give a functional description equivalent to this property, that is, we show that the
regularizers of interest are the matrix nondecreasing functions of the quantity W*W .

Our results cover matrix problems of the type (4) which have already been studied in the litera-
ture. But they also point towards some new learning methods that may perform well in practice and
can now be made computationally efficient. Thus, we close the paper with a discussion of possible
regularizers that satisfy our conditions and have been used or can be used in the future in machine
learning problems.

1.1 Notation

Before proceeding, we introduce the notation used in this paper. We use Nd as a shorthand for the
set of integers {1, . . . ,d}. We use Rd to denote the linear space of vectors with d real components.
The standard inner product in this space is denoted by 〈·, ·〉, that is, 〈w,v〉 = #i∈Nd wivi, ∀w,v ∈ Rd ,

2. Equal to the sum of the singular values ofW .
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where wi,vi are the i-th components of w,v respectively. More generally, we will consider Hilbert
spaces which we will denote by H , equipped with an inner product 〈·, ·〉.

We also let Md,n be the linear space of d × n real matrices. If W,Z ∈ Md,n we define their
Frobenius inner product as 〈W,Z〉 = tr(W*Z), where tr denotes the trace of a matrix. With Sd we
denote the set of d×d real symmetric matrices and with Sd+ (Sd++) its subset of positive semidefinite
(definite) ones. We use , and - for the positive definite and positive semidefinite partial orderings,
respectively. Finally, we let Od be the set of d×d orthogonal matrices.

2. Regularization Versus Interpolation

The line of attack which we shall follow in this paper will go through interpolation. That is, our
main concern will be to obtain necessary and sufficient conditions for representer theorems that
hold for interpolation problems. However, in practical applications one encounters regularization
problems more frequently than interpolation problems.

First of all, the family of the former problems is more general than that of the latter ones.
Indeed, an interpolation problem can be simply obtained in the limit as the regularization parameter
goes to zero (Micchelli and Pinkus, 1994). More importantly, regularization enables one to trade
off interpolation of the data against smoothness or simplicity of the model, whereas interpolation
frequently suffers from overfitting.

Thus, frequently one considers problems of the form

min
{

E
(

(〈w,x1〉, . . . ,〈w,xm〉) ,(y1, . . . ,ym)
)

+ !"(w) : w ∈H
}

, (6)

where !> 0 is called the regularization parameter. This parameter is not known in advance but can
be tuned with techniques like cross validation, see, for example, Wahba (1990). Here, the function
" : H → R is a regularizer, E : Rm×Y m → R is an error function and xi ∈ H ,yi ∈ Y ,∀i ∈ Nm,
are given input and output data. The set Y is a subset of R and varies depending on the context,
so that it is typically assumed equal to R in the case of regression or equal to {−1,1} in binary
classification problems. One may also consider the associated interpolation problem, which is

min
{

"(w) : w ∈H ,〈w,xi〉 = yi, ∀i ∈ Nm
}

. (7)

Under certain assumptions, the minima in problems (6) and (7) are attained (the latter whenever
the constraints in (7) are satisfiable). Such assumptions could involve, for example, lower semicon-
tinuity and boundedness of sublevel sets for" and boundedness from below forE . These issues will
not concern us here, as we shall assume the following about the error function E and the regularizer
", from now on.

Assumption 1 The minimum (6) is attained for any !> 0, any input and output data {xi,yi : i∈Nm}
and any m ∈ N. The minimum (7) is attained for any input and output data {xi,yi : i ∈ Nm} and any
m ∈ N, whenever the constraints in (7) are satisfiable.

The main objective of this paper is to obtain necessary and sufficient conditions on" so that the
solution of problem (6) satisfies a linear representer theorem.

Definition 2 We say that a class of optimization problems such as (6) or (7) satisfies the linear
representer theorem if, for any choice of data {xi,yi : i ∈ Nm} such that the problem has a solution,
there exists a solution that belongs to span{xi : i ∈ Nm}.
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In this section, we show that the existence of representer theorems for regularization problems is
equivalent to the existence of representer theorems for interpolation problems, under a quite general
condition that has a simple geometric interpretation.

We first recall a lemma from (Micchelli and Pontil, 2004, Sec. 2) which states that (linear or
not) representer theorems for interpolation lead to representer theorems for regularization, under no
conditions on the error function.

Lemma 3 Let E : Rm×Y m → R, " : H → R satisfying Assumption 1. Then if the class of inter-
polation problems (7) satisfies the linear representer theorem, so does the class of regularization
problems (6).

Proof Consider a problem of the form (6) and let ŵ be a solution. We construct an associated
interpolation problem

min
{

"(w) : w ∈H ,〈w,x1〉 = 〈ŵ,x1〉, . . . ,〈w,xm〉 = 〈ŵ,xm〉
}

. (8)

By hypothesis, there exists a solution w̃ of (8) that lies in span{xi : i ∈ Nm}. But then "(w̃) ≤"(ŵ)
and hence w̃ is a solution of (6). The result follows.

This lemma requires no special properties of the functions involved. Its converse, in contrast,
requires assumptions about the analytical properties of the error function. We provide one such
natural condition in the theorem below, but other conditions could conceivably work too. The main
idea in the proof is, based on a single input, to construct a sequence of appropriate regularization
problems for different values of the regularization parameter !. Then, it suffices to show that letting
!→ 0+ yields a limit of the minimizers that satisfies an interpolation constraint.

Theorem 4 Let E : Rm×Y m → R and " : H → R. Assume that E ," are lower semicontinuous,
that " has bounded sublevel sets and that E is bounded from below. Assume also that, for some v ∈
Rm \{0},y ∈ Y m, there exists a unique minimizer of min{E(av,y) : a ∈ R} and that this minimizer
does not equal zero. Then if the class of regularization problems (6) satisfies the linear representer
theorem, so does the class of interpolation problems (7).

Proof Fix an arbitrary x /= 0 and let a0 be the minimizer of min{E(av,y) : a ∈ R}. Consider the
problems

min
{

E

(

a0
‖x‖2

〈w,x〉v,y
)

+ !"(w) : w ∈H

}

,

for every ! > 0, and let w! be a solution in the span of x (known to exist by hypothesis). We then
obtain that

E(a0v,y)+ !"(w!) ≤ E

(

a0
‖x‖2

〈w!,x〉v,y
)

+ !"(w!) ≤ E (a0 v,y)+ !"(x) . (9)

Thus, "(w!) ≤ "(x) and so, by the hypothesis on ", the set {w! : ! > 0} is bounded. Therefore,
there exists a convergent subsequence {w!! : !∈N}, with !! → 0+, whose limit we call w̄. By taking
the limit inferior as ! → $ on the inequality on the right in (9), we obtain

E

(

a0
‖x‖2

〈w̄,x〉v,y
)

≤ E (a0 v,y) .

2512



WHEN IS THERE A REPRESENTER THEOREM? VECTOR VERSUS MATRIX REGULARIZERS

Consequently,

a0
‖x‖2

〈w̄,x〉 = a0

or, using the hypothesis that a0 /= 0,
〈w̄,x〉 = ‖x‖2.

In addition, since w! belongs to the span of x for every ! > 0, so does w̄. Thus, we obtain that
w̄= x. Moreover, from the definition of w! we have that

E

(

a0
‖x‖2

〈w!,x〉v,y
)

+ !"(w!) ≤ E (a0 v,y)+ !"(w) ∀w ∈H such that 〈w,x〉 = ‖x‖2

and, combining with the definition of a0, we obtain that

"(w!) ≤"(w) ∀w ∈H such that 〈w,x〉 = ‖x‖2.

Taking the limits inferior as ! → $, we conclude that w̄= x is a solution of the problem

min{"(w) : w ∈H ,〈w,x〉 = ‖x‖2} .

Moreover, this assertion holds even when x= 0, since the hypothesis implies that 0 is a global min-
imizer of ". Indeed, any regularization problem of the type (6) with zero inputs, xi = 0,∀i ∈ Nm,
admits a solution in their span. Thus, we have shown that " satisfies property (13) in the next sec-
tion and the result follows immediately from Lemma 9 below.

We now comment on some commonly used error functions. The first is the square loss,

E(z,y) = #
i∈Nm

(zi− yi)2 ,

for z,y ∈ Rm. It is immediately apparent that Theorem 4 applies in this case.
The second function is the hinge loss,

E(z,y) = #
i∈Nm

max(1− ziyi,0) ,

where the outputs yi are assumed to belong to {−1,1} for the purpose of classification. In this case,
we may select yi = 1,∀i ∈ Nm, and v = (1,−2,0, . . . ,0)* for m ≥ 2. Then the function E(·v,y) is
the one shown in Figure 1.

Finally, the logistic loss,
E(z,y) = #

i∈Nm

log
(

1+ e−ziyi
)

,

is also used in classification problems. In this case, we may select yi = 1,∀i ∈ Nm, and v= (2,−1)*
for m= 2 or v= (m−2,−1, . . . ,−1)* for m> 2. In the latter case, for example, setting to zero the
derivative of E(·v,y) yields the equation (m−1)ea(m−1) +ea−m+2= 0, which can easily be seen
to have a unique solution.

Summarizing, we obtain the following corollary.
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Figure 1: Hinge loss along the direction (1,−2,0, . . . ,0).

Corollary 5 If E : Rm×Y m → R is the square loss, the hinge loss (for m≥ 2) or the logistic loss
(for m ≥ 2) and " : H → R is lower semicontinuous with bounded sublevel sets, then the class of
problems (6) satisfies the linear representer theorem if and only if the class of problems (7) does.

Note also that the condition on E in Theorem 4 is rather weak in that an error function E may
satisfy it without being convex. At the same time, an error function that is “too flat”, such as a
constant loss, will not do.

We conclude with a remark about the situation in which the inputs xi are linearly independent.3
It has a brief and straightforward proof, which we do not present here.

Remark 6 Let E be the hinge loss or the logistic loss and " : H → R be of the form "(w) =
h(‖w‖), where h :R+ →R is a lower semicontinuous function with bounded sublevel sets. Then the
class of regularization problems (6) in which the inputs xi, i∈Nm, are linearly independent, satisfies
the linear representer theorem.

3. Representer Theorems for Interpolation Problems

The results of the previous section allow us to focus on linear representer theorems for interpolation
problems of the type (7). We are going to consider the case of a Hilbert space H as the domain of
an interpolation problem. Interpolation constraints will be formed as inner products of the variable
with the input data.

In this section, we consider the interpolation problem

min{"(w) : w ∈H ,〈w,xi〉 = yi, i ∈ Nm}. (10)

We coin the term admissible to denote the class of regularizers we are interested in.

Definition 7 We say that the function " : H → R is admissible if, for every m ∈ N and any data
set {(xi,yi) : i ∈ Nm}⊆H ×Y such that the interpolation constraints are satisfiable, problem (10)

3. This occurs frequently in practice, especially when the dimensionality d is high.
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admits a solution ŵ of the form
ŵ= #

i∈Nm

cixi, (11)

where ci are some real parameters.

We say that " : H → R is differentiable if, for every w ∈ H , there is a unique vector denoted by
%"(w) ∈H , such that for all p ∈H ,

lim
t→0

"(w+ t p)−"(w)

t
= 〈%"(w), p〉.

This notion corresponds to the usual notion of directional derivative on Rd and in that case %"(w)
is the gradient of " at w.

In the remainder of the section, we always assume that Assumption 1 holds for". The following
theorem provides a necessary and sufficient condition for a regularizer to be admissible.

Theorem 8 Let " : H → R be a differentiable function and dim(H ) ≥ 2. Then " is admissible if
and only if

"(w) = h(〈w,w〉) ∀ w ∈H , (12)

for some nondecreasing function h : R+ → R.

It is well known that the above functional form is sufficient for a representer theorem to hold,
see, for example, Schölkopf et al. (2001). Here we show that it is also necessary.

The route we follow to prove the above theorem is based on a geometric interpretation of rep-
resenter theorems. This intuition can be formally expressed as condition (13) in the lemma below.
Both condition (13) and functional form (12) express the property that the contours of" are spheres
(or regions between spheres), which is apparent from Figure 2.

Lemma 9 A function " :H → R is admissible if and only if it satisfies the property that

"(w+ p) ≥"(w) ∀ w, p ∈H such that 〈w, p〉 = 0. (13)

Proof Suppose that " satisfies property (13), consider arbitrary data xi,yi, i ∈ Nm, and let ŵ be a
solution to problem (10). We can uniquely decompose ŵ as ŵ = w̄+ p where w̄ ∈ L := span{xi :
i ∈ Nm} and p ∈ L⊥. From (13) we obtain that "(ŵ) ≥ "(w̄). Also w̄ satisfies the interpolation
constraints and hence we conclude that w̄ is a solution to problem (10).

Conversely, if " is admissible choose any w ∈ H and consider the problem min{"(z) : z ∈
H ,〈z,w〉 = 〈w,w〉}. By hypothesis, there exists a solution belonging in span{w} and hence w is a
solution to this problem. Thus, we have that "(w+ p) ≥"(w) for every p such that 〈w, p〉 = 0.

It remains to establish the equivalence of the geometric property (13) to condition (12), which
says that " is a nondecreasing function of the L2 norm.
Proof of Theorem 8 Assume first that (13) holds and dim(H ) < $. In this case, we only need to
consider the case that H = Rd since (13) can always be rewritten as an equivalent condition on Rd ,
using an orthonormal basis of H .
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Figure 2: Geometric interpretation of Theorem 8. The function" should not decrease when moving
to orthogonal directions. The contours of such a function should be spherical.

First we observe that, since " is differentiable, this property implies the condition that

〈%"(w), p〉 = 0 , (14)

for all w, p ∈ Rd such that 〈w, p〉 = 0.
Now, fix any w0 ∈ Rd such that ‖w0‖ = 1. Consider an arbitrary w ∈ Rd \ {0}. Then there

exists an orthogonal matrix U ∈ Od such that w = ‖w‖Uw0 and det(U) = 1 (see Lemma 20 in
the appendix). Moreover, we can write U = eD for some skew-symmetric matrix D ∈Md,d (see
Example 6.2.15 in Horn and Johnson, 1991). Consider now the path z : [0,1] → Rd with

z(&) = ‖w‖e&Dw0 ∀ & ∈ [0,1].

We have that z(0) = ‖w‖w0 and z(1) = w. Moreover, since 〈z(&),z(&)〉 = 〈w,w〉, we obtain that

〈z′(&),z(&)〉 = 0 ∀ & ∈ (0,1).

Applying (14) with w= z(&), p= z′(&), it follows that

d"(z(&))
d&

= 〈%"(z(&)),z′(&)〉 = 0.

Consequently, "(z(&)) is constant and hence "(w) ="(‖w‖w0). Setting h(') ="(
√

'w0), ∀' ∈
R+, yields (12). In addition, h must be nondecreasing in order for " to satisfy property (13).

For the case dim(H ) = $ we can argue similarly using instead the path

z(&) =
(1−&)w0+&w
‖(1−&)w0+&w‖

‖w‖
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which is differentiable on (0,1) when w /∈ span{w0}. We confirm equation (12) for vectors in
span{w0} by a limiting argument on vectors not in span{w0} since " is continuous.

Conversely, if "(w) = h(〈w,w〉) and h is nondecreasing, property (13) follows immediately.

The assumption of differentiability is crucial for the above proof and we postpone the issue of
removing it to future work. Nevertheless, property (13) follows immediately from functional form
(12) without any assumptions.

Remark 10 Let " :H → R be a function of the form

"(w) = h(〈w,w〉) ∀ w ∈H ,

for some nondecreasing function h : R+ → R. Then " is admissible.

We also note that we could modify Definition 7 by requiring that any solution of problem (10)
be in the linear span of the input data. We call such regularizers strictly admissible. Then with minor
modifications to Lemma 9 (namely, requiring that equality in (13) holds only if p = 0) and to the
proof of Theorem 8 (namely, requiring h to be strictly increasing) we have the following corollary.

Corollary 11 Let " : H → R be a differentiable function and dim(H ) ≥ 2. Then " is strictly
admissible if and only if "(w) = h(〈w,w〉), ∀w ∈H , where h : R+ → R is strictly increasing.

Theorem 8 can be used to verify whether the linear representer theorem can be obtained when
using a regularizer ". For example, the function ‖w‖pp = #i∈Nd |wi|

p is not admissible for any
p> 1, p /= 2, because it cannot be expressed as a function of the Hilbert space norm. Indeed, if we
choose any a ∈ R and let w = (a(i1 : i ∈ Nd), the requirement that ‖w‖pp = h(〈w,w〉) would imply
that h(a2) = |a|p,∀a ∈ R, and hence that ‖w‖p = ‖w‖.

4. Matrix Learning Problems

In this section, we investigate how representer theorems and results like Theorem 8 can be extended
in the context of optimization problems which involve matrices.

4.1 Exploiting Matrix Structure

As we have already seen, our discussion in Section 3 applies to any Hilbert space. Thus, we may
consider the finite Hilbert space of d×n matricesMd,n equipped with the Frobenius inner product
〈·, ·〉. As in Section 3, we could consider interpolation problems of the form

min{"(W ) :W ∈Md,n,〈W,Xi〉 = yi,∀i ∈ Nm} (15)

where Xi ∈ Md,n are prescribed input matrices and yi ∈ Y are scalar outputs, for i ∈ Nm. Then
Theorem 8 states that such a problem admits a solution of the form

Ŵ = #
i∈Nm

ciXi, (16)

where ci are some real parameters, if and only if " can be written in the form

"(W ) = h(〈W,W 〉) ∀W ∈Md,n, (17)
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where h : R+ → R is nondecreasing.
However, in machine learning practice, optimization problems of the form (15) occur most

frequently in a more special form. That is, usually the constraints of (15) use the structure inherent
in matrices—and hence the matrix variable cannot be regarded as a vector variable. Thus, in many
recent applications, some of which we shall briefly discuss below, it is natural to consider problems
like

min{"(W ) :W ∈Md,n , w*
t xti = yti, ∀i ∈ Nmt , t ∈ Nn} . (18)

Here, wt ∈ Rd denote the columns of matrix W , for t ∈ Nn, and xti ∈ Rd ,yti ∈ Y are prescribed
inputs and outputs, for i ∈ Nmt , t ∈ Nn. In addition, the desired representation form for solutions of
such matrix problems is different from (16). In this case, one may encounter representer theorems
of the form

ŵt = #
s∈Nn

#
i∈Nms

c(t)si xsi ∀t ∈ Nn, (19)

where c(t)si are scalar coefficients for s, t ∈ Nn, i ∈ Nms .
To illustrate the above, consider the problem of multi-task learning and problems closely related

to it (Abernethy et al., 2009; Ando and Zhang, 2005; Argyriou et al., 2006, 2008a, 2007; Candès
and Recht, 2009; Cavallanti et al., 2008; Izenman, 1975; Maurer, 2006a,b; Raina et al., 2006; Srebro
et al., 2005; Xiong et al., 2006; Yuan et al., 2007, etc.). In learning multiple tasks jointly, each task
may be represented by a vector of regression parameters that corresponds to the column wt in our
notation. There are n tasks and mt data examples {(xti,yti) : i ∈ Nmt} for the t-th task. The learning
algorithm used is

min
{

E
(

w*
t xti,yti : i ∈ Nmt , t ∈ Nn

)

+ !"(W ) :W ∈Md,n
}

, (20)

where E : RM×Y M → R,M = #t∈Nn mt . The error term expresses the objective that the regression
vector for each task should fit well the data for this particular task. Note, however, that this term
need not separate as the sum of functions of the individual task vectors. The choice of the regularizer
" is important in that it captures certain relationships between the tasks. One common choice is the
trace norm, which is defined to be the sum of the singular values of a matrix or, equivalently,

"(W ) = ‖W‖1 := tr(W*W )
1
2 .

Regularization with the trace norm learns the tasks as one joint optimization problem and can be
seen as a convex relaxation of regularization with the rank (Fazel et al., 2001). It has been shown
that for certain configurations of the input data the low rank solution can be recovered using the
trace norm approach (Candès and Recht, 2009; Recht et al., 2008). More generally, regardless of
the rank of the solution, it has been demonstrated that this approach allows for accurate estimation
of related tasks even when there are only few data points available for each task.

Thus, it is natural to consider optimization problems of the form (18). In fact, these problems
can be seen as instances of problems of the form (15), because the quantity w*

t xti can be written as
the inner product between W and a matrix having all its columns equal to zero except for the t-th
column being equal to xti. It is also easy to see that (15) is a richer class since the corresponding
constraints are less restrictive.

Despite this fact, by focusing on the class (18) we concentrate on problems of more practical
interest and we can obtain representer theorems for a richer class of regularizers, which includes
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the trace norm and other useful functions. In contrast, regularization with the functional form (17)
is not a satisfactory approach since it ignores matrix structure. In particular, regularization with the
Frobenius norm (and a separable error function) corresponds to learning each task independently,
ignoring relationships among the tasks.

A representer theorem of the form (19) for regularization with the trace norm has been shown
in Argyriou et al. (2008a). Related results have also appeared in Abernethy et al. (2009) and Amit
et al. (2007). We repeat here the statement and the proof of this theorem, in order to better motivate
our proof technique of Section 4.2.

Theorem 12 If " is the trace norm then problem (18) (or problem (20)) admits a solution Ŵ of the
form (19), for some c(t)si ∈ R, i ∈ Nms ,s, t ∈ Nn.

Proof Let Ŵ be a solution of (18) and let L := span{xsi : s ∈ Nn, i ∈ Nms}. We can decompose the
columns of Ŵ as ŵt = w̄t + pt , ∀t ∈ Nn, where w̄t ∈ L and pt ∈ L⊥. Hence Ŵ = W̄ +P, where W̄ is
the matrix with columns w̄t and P is the matrix with columns pt . Moreover we have that P*W̄ = 0.
From Lemma 21 in the appendix, we obtain that ‖Ŵ‖1 ≥ ‖W̄‖1. We also have that ŵ*

t xti = w̄*
t xti,

for every i ∈ Nmt , t ∈ Nn. Thus, W̄ preserves the interpolation constraints (or the value of the error
term) while not increasing the value of the regularizer. Hence, it is a solution of the optimization
problem and the assertion follows.

A simple but important observation about this and related results is that each task vector wt is
a linear combination of the data for all the tasks. This contrasts to the representation form (16)
obtained by using Frobenius inner product constraints. Interpreting (16) in a multi-task context, by
appropriately choosing the Xi as described above, would imply that each wt is a linear combination
of only the data for task t.

Finally, in some applications the following variant, similar to the type (18), has appeared,

min{"(W ) :W ∈Md,n , w*
t xi = yti, ∀i ∈ Nm, t ∈ Nn} . (21)

Problems of this type correspond to a special case in multi-task learning applications in which the
input data are the same for all the tasks. For instance, this is the case with collaborative filtering
or applications in marketing where the same products/entities are rated by all users/consumers (see,
for example, Aaker et al., 2004; Evgeniou et al., 2005; Lenk et al., 1996; Srebro et al., 2005, for
various approaches to this problem).

4.2 Characterization of Matrix Regularizers

Our objective in this section will be to state and prove a general representer theorem for problems
of the form (18) or (21) using a functional form analogous to (12). The key insight used in the
proof of Argyriou et al. (2008a) has been that the trace norm is defined in terms of a matrix function
that preserves the partial ordering of matrices. That is, it satisfies Lemma 21, which is a matrix
analogue of the geometric property (13). To prove our main result (Theorem 15), we shall build on
this observation in a way similar to the approach followed in Section 3.

We shall focus on the interpolation problems (18) and (21). First of all, observe that, by defini-
tion, problems of the type (18) include those of type (21). Conversely, consider a simple problem of
type (18) with two constraints,W11 = 1,W22 = 1. If the set of matrices satisfying these constraints
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also satisfied constraints of the form w*
t x1 = yt1 for some x1 ∈ Rd ,yt1 ∈ Y , then x1 would have to

be the zero vector. Therefore, the class of problems (18) is strictly larger than the class (21).
However, it turns out that with regard to representer theorems of the form (19) there is no

distinction between these two classes of problems. In other words, the representer theorem holds
for the same regularizers ", independently of whether each task has its own specific inputs or the
inputs are the same across the tasks. More importantly, we can connect the existence of representer
theorems to a geometric property of the regularizer, in a way analogous to property (13) in Section
3. These facts are stated in the following proposition.

Proposition 13 The following statements are equivalent:

(a) Problem (21) admits a solution of the form (19), for every data set {(xi,yti) : i∈Nm, t ∈Nn}⊆
Rd×Y and every m ∈ N, such that the interpolation constraints are satisfiable.

(b) Problem (18) admits a solution of the form (19), for every data set {(xti,yti) : i ∈ Nmt , t ∈
Nn}⊆ Rd×Y and every {mt : t ∈ Nn}⊆ N, such that the interpolation constraints are satis-
fiable.

(c) The function " satisfies the property

"(W +P) ≥"(W ) ∀W,P ∈Md,n such that W*P= 0 . (22)

Proof We will show that (a) =⇒ (c), (c) =⇒ (b) and (b) =⇒ (a).
[(a) =⇒ (c)] Consider anyW ∈Md,n. Choose m= n and the input data to be the columns of

W . In other words, consider the problem

min{"(Z) : Z ∈Md,n,Z*W =W*W} .

By hypothesis, there exists a solution Ẑ = WC for some C ∈ Mn,n. Since (Ẑ −W )*W = 0, all
columns of Ẑ−W have to belong to the null space ofW*. But, at the same time, they have to lie
in the range of W and hence we obtain that Ẑ =W . Therefore, we obtain property (22) after the
variable change P= Z−W .

[(c) =⇒ (b)] Consider arbitrary xti ∈ Rd ,yti ∈ Y ,∀i ∈ Nmt , t ∈ Nn, and let Ŵ be a solution to
problem (18). We can decompose the columns of Ŵ as ŵt = w̄t + pt , where w̄t ∈ L := span{xsi, i ∈
Nms ,s ∈ Nn} and pt ∈ L⊥, ∀t ∈ Nn. By hypothesis "(Ŵ ) ≥ "(W̄ ). Since Ŵ interpolates the data,
so does W̄ and therefore W̄ is a solution to (18).

[(b) =⇒ (a)] Trivial, since any problem of type (21) is also of type (18).

We remark in passing that, by a similar proof, property (22) is also equivalent to representer
theorems (19) for the class of problems (15).

The above proposition provides us with a criterion for characterizing all regularizers satisfying
representer theorems of the form (19), in the context of problems (15), (18) or (21). Our objective
will be to obtain a functional form analogous to (12) that describes functions satisfying property
(22). This property does not have a simple geometric interpretation, unlike (13) which describes
functions with spherical contours. The reason is that matrix products are more difficult to tackle
than inner products.
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Similar to the Hilbert space setting (12), where we required h to be a nondecreasing real func-
tion, the functional description of the regularizer now involves the notion of a matrix nondecreasing
function.

Definition 14 We say that the function h : Sn+ → R is nondecreasing in the order of matrices if
h(A) ≤ h(B) for all A,B ∈ Sn+ such that A4 B.

Theorem 15 Let d,n ∈ N with d ≥ 2n. The differentiable function " :Md,n → R satisfies property
(22) if and only if there exists a matrix nondecreasing function h : Sn+ → R such that

"(W ) = h(W*W ) ∀W ∈Md,n. (23)

Proof We first assume that " satisfies property (22). From this property it follows that, for all
W,P ∈Md,n withW*P= 0,

〈%"(W ),P〉 = 0. (24)

To see this, observe that if the matrixW*P is zero then, for all )> 0, we have that

"(W + )P)−"(W )

)
≥ 0.

Taking the limit as )→ 0+ we obtain that 〈%"(W ),P〉 ≥ 0. Similarly, choosing ) < 0 we obtain
that 〈%"(W ),P〉 ≤ 0 and equation (24) follows.

Now, consider any matrix W ∈Md,n. Let r = rank(W ) and let us write W in a singular value
decomposition as follows

W = #
i∈Nr

*i uiv*i ,

where *1 ≥ *2 ≥ · · · ≥ *r > 0 are the singular values and ui ∈ Rd , vi ∈ Rn, ∀i ∈ Nr, are sets of
singular vectors, so that u*

i u j = v*i v j = (i j, ∀i, j ∈ Nr. Also, let ur+1, . . . ,ud ∈ Rd be vectors that
together with u1, . . . ,ur form an orthonormal basis of Rd . Without loss of generality, let us pick u1
and consider any unit vector z orthogonal to the vectors u2, . . . ,ur. Let k = d− r+1 and q ∈ Rk be
the unit vector such that

z= Rq,

where R = (u1,ur+1, . . . ,ud). We can complete q by adding d− r columns to its right in order to
form an orthogonal matrixQ∈Ok and, since d> n, we may select these columns so that det(Q) = 1.
Furthermore, we can write this matrix as Q= eD with D ∈Mk,k a skew-symmetric matrix (see Horn
and Johnson, 1991, Example 6.2.15).

We also define the path Z : [0,1] →Md,n as

Z(&) = *1Re&De1v*1 +
r

#
i=2

*i uiv*i ∀& ∈ [0,1],

where e1 denotes the vector (1 0 . . .0)* ∈ Rk. In other words, we fix the singular values, the right
singular vectors and the r− 1 left singular vectors u2, . . . ,ur and only allow the first left singular
vector to vary. This path has the properties that Z(0) =W and Z(1) = *1zv*1 +#r

i=2*i uiv*i .
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By construction of the path, it holds that

Z′(&) = *1Re&DDe1v*1

and hence

Z(&)*Z′(&) =
(

*1Re&De1v*1
)*

*1Re&DDe1v*1 = *21 v1e*1De1v*1 = 0 ,

for every & ∈ (0,1), because D11 = 0. Hence, using equation (24), we have that

〈%"(Z(&)),Z′(&)〉 = 0

and, since
d"(Z(&))

d&
= 〈%"(Z(&)),Z′(&)〉, we conclude that "(Z(&)) equals a constant indepen-

dent of &. In particular, "(Z(0)) ="(Z(1)), that is,

"(W ) ="

(

*1zv*1 +
r

#
i=2

*i uiv*i

)

.

In other words, if we fix the singular values ofW , the right singular vectors and all the left singular
vectors but one, " does not depend on the remaining left singular vector (because the choice of z is
independent of u1).

In fact, this readily implies that " does not depend on the left singular vectors at all. Indeed,
fix an arbitrary Y ∈Md,n such that Y*Y = I. Consider the matrix Y (W*W )

1
2 , which can be written

using the same singular values and right singular vectors asW . That is,

Y (W*W )
1
2 = #

i∈Nr

*i +iv*i ,

where +i = Yvi, ∀i ∈ Nr. Now, we select unit vectors z1, . . . ,zr ∈ Rd as follows:

z1 = u1
z2 ⊥ z1,u3, . . . ,ur,+1
...
...

zr ⊥ z1, . . . ,zr−1,+1, . . . ,+r−1 .
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This construction is possible since d ≥ 2n. Replacing successively ui with zi and then zi with +i,
∀i ∈ Nr, and applying the invariance property, we obtain that

"(W ) = "

(

#
i∈Nr

*i uiv*i

)

= "

(

*1z1v*1 +*2z2v*2 +
r

#
i=3

*i uiv*i

)

...
...

= "

(

#
i∈Nr

*i ziv*i

)

= "

(

*1 +1v*1 +
r

#
i=2

*i ziv*i

)

...
...

= "

(

#
i∈Nr

*i +iv*i

)

="
(

Y (W*W )
1
2

)

.

Therefore, defining the function h : Sn+ → R as h(A) ="(YA 1
2 ), we deduce that "(W ) = h(W*W ).

Finally, we show that h is matrix nondecreasing, that is, h(A) ≤ h(B) if 0 4 A 4 B. For any

such A,B and since d ≥ 2n, we may defineW =





A 1
2

0
0



, P=





0
(B−A)

1
2

0



 ∈Md,n. ThenW*P= 0,

A=W*W , B= (W +P)*(W +P) and thus, by hypothesis,

h(B) ="(W +P) ≥"(W ) = h(A).

This completes the proof in one direction of the theorem.
To show the converse, assume that"(W ) = h(W*W ), where the function h is matrix nondecreas-

ing. Then for anyW,P∈Md,n withW*P= 0, we have that (W+P)*(W+P) =W*W+P*P-W*W
and, so, "(W +P) ≥"(W ), as required.

As in Section 3, differentiability is not required for sufficiency, which follows from the last lines
of the above proof. Moreover, the assumption on d and n is not required either.

Remark 16 Let the function " :Md,n → R be of the form

"(W ) = h(W*W ) ∀W ∈Md,n,

for some matrix nondecreasing function h : Sn+ → R. Then " satisfies property (22).

We conclude this section by providing a necessary and sufficient first-order condition for the
function h to be matrix nondecreasing.

Proposition 17 Let h : Sn+ → R be a differentiable function. The following properties are equiva-
lent:
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(a) h is matrix nondecreasing

(b) the matrix %h(A) :=
(

,h
,ai j : i, j ∈ Nn

)

is positive semidefinite, for every A ∈ Sn+.

Proof If (a) holds, we choose any x ∈ Rn, t > 0,A ∈ Sn+ and note that

h(A+ txx*)−h(A)

t
≥ 0.

Letting t go to zero gives that x*%h(A)x≥ 0.
Conversely, if (b) is true, we have, for every x∈Rn,M ∈ Sn+, that x*%h(M)x= 〈%h(M),xx*〉 ≥ 0

and, so, 〈%h(M),C〉 ≥ 0 for all C ∈ Sn+. For any A,B ∈ Sn+ such that A4 B, consider the univariate
function g : [0,1] → R, g(t) = h(A+ t(B−A)). By the chain rule it is easy to verify that g is nonde-
creasing. Therefore we conclude that h(A) = g(0) ≤ g(1) = h(B).

4.3 Examples

Using Proposition 13, Theorem 15 and Remark 16, one may easily verify that the representer the-
orem holds for a variety of regularizers. In particular, functional description (23) subsumes the
special case of monotone spectral functions.

Definition 18 Let r = min{d,n}. A function " :Md,n → R is called monotone spectral if there
exists a function h : Rr

+ → R such that

"(W ) = h(*1(W ), . . . ,*r(W )) ∀W ∈Md,n,

where *1(W ) ≥ · · ·≥ *r(W ) ≥ 0 denote the singular values of matrix W and

h(*1, . . . ,*r) ≤ h(+1, . . . ,+r) whenever *i ≤ +i for all i ∈ Nr.

Corollary 19 Assume that the function " :Md,n → R is monotone spectral. Then " satisfies prop-
erty (22).

Proof Clearly,"(W ) = h
(

&
(

(W*W )
1
2

))

, where & : Sn+ →Rr
+ maps a matrix to the ordered vector

of its r highest eigenvalues. Let A,B ∈ Sn+ such that A 4 B. Weyl’s monotonicity theorem (Horn
and Johnson, 1985, Cor. 4.3.3) states that if A 4 B then the spectra of A and B are ordered. Thus,
&(A 1

2 ) ≤ &(B 1
2 ) and hence h(&(A 1

2 )) ≤ h(&(B 1
2 )). Applying Remark 16, the assertion follows.

We note that related results to the above corollary have appeared in Abernethy et al. (2009). They
apply to the setting of (15) when the Xi are rank one matrices.

Interesting examples of monotone spectral functions are the Schatten Lp norms and prenorms,

"(W ) = ‖W‖p := ‖*(W )‖p ,

where p ∈ [0,+$) and *(W ) denotes the min{d,n}-dimensional vector of the singular values ofW .
For instance, we have already mentioned in Section 4.1 that the representer theorem holds when the
regularizer is the trace norm (the L1 norm of the spectrum). But it also holds for the rank of a matrix.
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Rank minimization is an NP-hard optimization problem (Vandenberghe and Boyd, 1996), but the
representer theorem has some interesting implications. First, that the problem can be reformulated
in terms of reproducing kernels and second, that an equivalent problem in as few variables as the
total sample size can be obtained.

If we exclude spectral functions, the functions that remain are invariant under leftmultiplication
with an orthogonal matrix. Examples of such functions are Schatten norms and prenorms composed
with right matrix scaling,

"(W ) = ‖WM‖p , (25)

whereM ∈Mn,n. In this case, the corresponding h is the function S 5→ ‖
√

&(M*SM)‖p. To see that
this function is matrix nondecreasing, observe that if A,B∈ Sn+ and A4B then 04M*AM4M*BM
and hence &(M*AM) ≤ &(M*BM) by Weyl’s monotonicity theorem (Horn and Johnson, 1985, Cor.
4.3.3). Therefore, ‖

√

&(M*AM)‖p ≤ ‖
√

&(M*BM)‖p.
For instance, the matrixM above can be used to select a subset of the columns ofW . In addition,

more complicated structures can be obtained by summation of matrix nondecreasing functions and
by taking minima or maxima over sets. For example, we can obtain a regularizer such as

"(W ) =min

{

#
k∈NK

‖W (Ik)‖1 : {I1, . . . , IK} ∈ P

}

,

where P is the set of partitions of Nn in K subsets andW (Ik) denotes the submatrix ofW formed by
just the columns indexed by Ik. This regularizer is an extension of the trace norm (K = 1) and can
be used for multi-task learning via dimensionality reduction on multiple subspaces (Argyriou et al.,
2008b).

Yet another example of a valid regularizer is the one considered in (Evgeniou et al., 2005,
Sec. 3.1), which encourages the tasks to be close to each other, namely

"(W ) = #
t∈Nn

∥

∥

∥

∥

∥

wt −
1
n #s∈Nn

ws

∥

∥

∥

∥

∥

2

.

This regularizer immediately verifies property (22), and so by Theorem 15 it is a matrix nondecreas-
ing function ofW*W . One can also verify that this regularizer is the square of the form (25) with
p = 2 and M = In− 1

n11
*, where 1 denotes the n-dimensional vector all of whose components are

equal to one.
Finally, it is worth noting that the representer theorem does not apply to a family of “mixed”

matrix norms of the form
"(W ) = #

i∈Nd

‖wi‖p2 ,

where wi denotes the i-th row ofW and p> 1, p /= 2.

5. Conclusion

We have characterized the classes of vector and matrix regularizers which lead to certain forms of
the solution of the associated interpolation problems. In the vector case, we have proved the neces-
sity of a well-known sufficient condition for the “standard representer theorem”, which is encoun-
tered in many learning and statistical estimation problems. In the matrix case, we have described
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a novel class of regularizers which lead to a modified representer theorem. This class, which re-
lies upon the notion of matrix nondecreasing function, includes and extends significantly the vector
class. To motivate the need for our study, we have discussed some examples of regularizers which
have been recently used in the context of multi-task learning and collaborative filtering.

In the future, it would be valuable to study in more detail special cases of the matrix regularizers
which we have encountered, such as those based on orthogonally invariant functions. It would
also be interesting to investigate how the presence of additional constraints affects the representer
theorem. In particular, we have in mind the possibility that the matrix may be constrained to be in
a convex cone, such as the set of positive semidefinite matrices. Finally, we leave to future studies
the extension of the ideas presented here to the case in which matrices are replaced by operators
between two Hilbert spaces.
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Appendix A.

Here we collect some auxiliary results which are used in the above analysis.
The first lemma states a basic property of connectedness through rotations.

Lemma 20 Let w,v∈Rd and d ≥ 2. Then there exists U ∈Od with determinant 1 such that v=Uw
if and only if ‖w‖ = ‖v‖.

Proof If v = Uw we have that v*v = w*w. Conversely, if ‖w‖ = ‖v‖ /= 0, we may choose
orthonormal vectors {x! : ! ∈ Nd−1} ⊥ w and {z! : ! ∈ Nd−1} ⊥ v and form the matrices R =
(

w x1 . . . xd−1
)

and S =
(

v z1 . . . zd−1
)

. We have that R*R = S*S. We wish to solve
the equation UR = S. For this purpose we choose U = SR−1 and note that U ∈ Od because
U*U = (R−1)*STSR−1 = (R−1)*R*RR−1 = I. Since d ≥ 2, in the case that det(U) = −1 we can
simply change the sign of one of the x! or z! to get det(U) = 1 as required.

The second lemma concerns the monotonicity of the trace norm.

Lemma 21 Let W,P ∈Md,n such that W*P= 0. Then ‖W +P‖1 ≥ ‖W‖1.

Proof Weyl’s monotonicity theorem (Horn and Johnson, 1985, Cor. 4.3.3) implies that if A,B ∈ Sn+
and A- B then &(A)≥ &(B) and hence trA 1

2 ≥ trB 1
2 . We apply this fact to the matricesW*W +P*P

and P*P to obtain that

‖W +P‖1 = tr((W +P)*(W +P))
1
2 = tr(W*W +P*P)

1
2 ≥ tr(W*W )

1
2 = ‖W‖1 .
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Abstract
The standard maximum margin approach for structured prediction lacks a straightforward proba-
bilistic interpretation of the learning scheme and the prediction rule. Therefore its unique advan-
tages such as dual sparseness and kernel tricks cannot be easily conjoined with the merits of a
probabilistic model such as Bayesian regularization, model averaging, and ability to model hidden
variables. In this paper, we present a new general framework called maximum entropy discrimina-
tion Markov networks (MaxEnDNet, or simply, MEDN), which integrates these two approaches and
combines and extends their merits. Major innovations of this approach include: 1) It extends the
conventional max-entropy discrimination learning of classification rules to a new structural max-
entropy discrimination paradigm of learning a distribution of Markov networks. 2) It generalizes
the extant Markov network structured-prediction rule based on a point estimator of model coeffi-
cients to an averaging model akin to a Bayesian predictor that integrates over a learned posterior
distribution of model coefficients. 3) It admits flexible entropic regularization of the model during
learning. By plugging in different prior distributions of the model coefficients, it subsumes the well-
known maximum margin Markov networks (M3N) as a special case, and leads to a model similar to
an L1-regularized M3N that is simultaneously primal and dual sparse, or other new types of Markov
networks. 4) It applies a modular learning algorithm that combines existing variational inference
techniques and convex-optimization based M3N solvers as subroutines. Essentially, MEDN can be
understood as a jointly maximum likelihood and maximum margin estimate of Markov network.
It represents the first successful attempt to combine maximum entropy learning (a dual form of
maximum likelihood learning) with maximum margin learning of Markov network for structured
input/output problems; and the basic principle can be generalized to learning arbitrary graphical
models, such as the generative Bayesian networks or models with structured hidden variables. We
discuss a number of theoretical properties of this approach, and show that empirically it outper-
forms a wide array of competing methods for structured input/output learning on both synthetic
and real OCR and web data extraction data sets.
Keywords: maximum entropy discrimination, structured input/output model, maximum margin
Markov network, graphical models, entropic regularization, L1 regularization

1. Introduction

Inferring structured predictions based on high-dimensional, often multi-modal and hybrid covari-
ates remains a central problem in data mining (e.g., web-info extraction), machine intelligence (e.g.,
machine translation), and scientific discovery (e.g., genome annotation). Several recent approaches
to this problem are based on learning discriminative graphical models defined on composite features
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that explicitly exploit the structured dependencies among input elements and structured interpreta-
tional outputs. Major instances of such models include the conditional random fields (CRFs) (Laf-
ferty et al., 2001), Markov networks (MNs) (Taskar et al., 2003), and other specialized graphical
models (Altun et al., 2003). Various paradigms for training such models based on different loss func-
tions have been explored, including the maximum conditional likelihood learning (Lafferty et al.,
2001) and the maximum margin learning (Altun et al., 2003; Taskar et al., 2003; Tsochantaridis
et al., 2004), with remarkable success.

The likelihood-based models for structured predictions are usually based on a joint distribution
of both input and output variables (Rabiner, 1989) or a conditional distribution of the output given
the input (Lafferty et al., 2001). Therefore this paradigm offers a flexible probabilistic framework
that can naturally facilitate: hidden variables that capture latent semantics such as a generative hier-
archy (Quattoni et al., 2004; Zhu et al., 2008a); Bayesian regularization that imposes desirable biases
such as sparseness (Lee et al., 2006; Wainwright et al., 2006; Andrew and Gao, 2007); and Bayesian
prediction based on combining predictions across all values of model parameters (i.e., model av-
eraging), which can reduce the risk of overfitting. On the other hand, the margin-based structured
prediction models leverage the maximummargin principle and convex optimization formulation un-
derlying the support vector machines, and concentrate directly on the input-output mapping (Taskar
et al., 2003; Altun et al., 2003; Tsochantaridis et al., 2004). In principle, this approach can lead
to a robust decision boundary due to the dual sparseness (i.e., depending on only a few support
vectors) and global optimality of the learned model. However, although arguably a more desirable
paradigm for training highly discriminative structured prediction models in a number of application
contexts, the lack of a straightforward probabilistic interpretation of the maximum-margin models
makes them unable to offer the same flexibilities of likelihood-based models discussed above.

For example, for domains with complex feature space, it is often desirable to pursue a “sparse”
representation of the model that leaves out irrelevant features. In likelihood-based estimation, sparse
model fitting has been extensively studied. A commonly used strategy is to add an L1-penalty to the
likelihood function, which can also be viewed as a MAP estimation under a Laplace prior. However,
little progress has been made so far on learning sparse MNs or log-linear models in general based on
the maximum margin principle. While sparsity has been pursued in maximum margin learning of
certain discriminative models such as SVM that are “unstructured” (i.e., with a univariate output), by
using L1-regularization (Bennett andMangasarian, 1992) or by adding a cardinality constraint (Chan
et al., 2007), generalization of these techniques to structured output space turns out to be non-trivial,
as we discuss later in this paper. There is also very little theoretical analysis on the performance
guarantee of margin-based models under direct L1-regularization. Our empirical results as shown in
this paper suggest that an L1-regularized maximum margin Markov network, even when estimable,
can be sensitive to the magnitude of the regularization coefficient. Discarding the features that
are not completely irrelevant can potentially hurt generalization ability. Another example, it is
well known that presence of hidden variables in MNs can cause significant difficulty for maximum
margin learning. Indeed, semi-supervised or unsupervised learning of structured maximum margin
model remains an open problem of which progress was only made in a few special cases, with
usually computationally very expensive algorithms (Xu et al., 2006; Altun et al., 2006; Brefeld and
Scheffer, 2006).

In this paper, we propose a general theory of maximum entropy discrimination Markov net-
works (MaxEnDNet, or simply MEDN) for structured input/output learning and prediction. This
formalism offers a formal paradigm for integrating both generative and discriminative principles and
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the Bayesian regularization techniques for learning structured prediction models. It integrates the
spirit of maximum margin learning from SVM, the design of discriminative structured prediction
model in maximum margin Markov networks (M3N), and the ideas of entropic regularization and
model averaging in maximum entropy discrimination methods (Jaakkola et al., 1999). Essentially,
MaxEnDNet can be understood as a jointly maximum likelihood and maximum margin estimate of
Markov networks. It allows one to learn a distribution of structured prediction models that offers
a wide range of important advantages over conventional models such as M3N, including more ro-
bust prediction due to an averaging prediction-function based on the learned distribution of models,
Bayesian-style regularization that can lead to a model that is simultaneous primal and dual sparse,
and allowance of hidden variables and semi-supervised learning based on partially labeled data.

While the formalism of MaxEnDNet is extremely general, our main focus and contributions
of this paper will be concentrated on the following results. We will formally define the MaxEnD-
Net as solving a generalized entropy optimization problem subject to expected margin constraints
on the structured predictions, and under an arbitrary prior of feature coefficients; and we derive
a general form of the solution to this problem. An interesting insight immediately following this
general form is that, a trivial assumption on the prior distribution of the coefficients, that is, a stan-
dard normal, reduces the linear MaxEnDNet to the standard M3N, as shown in Theorem 3. This
understanding opens the way to use different priors for MaxEnDNet to achieve more interesting
regularization effects. We show that, by using a Laplace prior for the feature coefficients, the re-
sulting Laplace MaxEnDNet (LapMEDN) is effectively an M3N that is not only dual sparse (i.e.,
defined by a few support vectors), but also primal sparse (i.e., shrinkage on coefficients correspond-
ing to irrelevant features). We develop a novel variational learning method for the LapMEDN,
which leverages on the hierarchical/scale-mixture representation of the Laplace prior (Andrews and
Mallows, 1974; Figueiredo, 2003) and the reducibility of MaxEnDNet to M3N, and combines the
variational Bayesian technique with existing convex optimization algorithms developed for M3N
(Taskar et al., 2003; Bartlett et al., 2004; Ratliff et al., 2007). We also provide a formal analysis
of the generalization error of the MaxEnDNet, and prove a PAC-Bayes bound on the prediction
error by MaxEnDNet. We performed a thorough comparison of the Laplace MaxEnDNet with com-
peting methods, including M3N (i.e., the Gaussian MaxEnDNet), L1-regularized M3N (Zhu et al.,
2009b), CRFs, L1-regularized CRFs, and L2-regularized CRFs, on both synthetic and real structured
input/output data. The Laplace MaxEnDNet exhibits mostly superior, and sometimes comparable
performance in all scenarios been tested.

As demonstrated in our recent work (Zhu et al., 2008c, 2009a), MaxEnDNet is not limited to
fully observable MNs, but can readily facilitate jointly maximum entropy and maximum margin
learning of partially observed structured I/O models, and directed graphical models such as the
supervised latent Dirichlet allocation (LDA). Due to space limit, we leave these instantiations and
generalizations to future papers.

The rest of the paper is structured as follows. In the next section, we review the basic structured
prediction formalism and set the stage for our model. Section 3 presents the general theory of max-
imum entropy discrimination Markov networks and some basic theoretical results, followed by two
instantiations of the general MaxEnDNet, the Gaussian MaxEnDNet and the Laplace MaxEnDNet.
Section 4 offers a detailed discussion of the primal and dual sparsity property of Laplace MaxEnD-
Net. Section 5 presents a novel iterative learning algorithm based on variational approximation and
convex optimization. In Section 6, we briefly discuss the generalization bound of MaxEnDNet.
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Then, we show empirical results on both synthetic and real OCR and web data extraction data sets
in Section 7. Section 8 discusses some related work and Section 9 concludes this paper.

2. Preliminaries

In structured prediction problems such as natural language parsing, image annotation, or DNA
decoding, one aims to learn a function h :X →Y that maps a structured input x∈X , e.g., a sentence
or an image, to a structured output y ∈ Y , e.g., a sentence parsing or a scene annotation, where,
unlike a standard classification problem, y is a multivariate prediction consisting of multiple labeling
elements. Let L denote the cardinality of the output, and ml where l = 1, . . . ,L denote the arity of
each element, then Y = Y1× · · ·×YL with Yl = {a1, . . . ,aml} represents a combinatorial space of
structured interpretations of the multi-facet objects in the inputs. For example, Y could correspond
to the space of all possible instantiations of the parse trees of a sentence, or the space of all possible
ways of labeling entities over some segmentation of an image. The prediction y ≡ (y1, . . . ,yL) is
structured because each individual label yl ∈ Yl within y must be determined in the context of other
labels yl′ '=l , rather than independently as in classification, in order to arrive at a globally satisfactory
and consistent prediction.

Let F : X ×Y → R represent a discriminant function over the input-output pairs from which
one can define the predictive function, and let H denote the space of all possible F . A common
choice of F is a linear model, F(x,y;w) = g(w(f(x,y)), where f = [ f1 . . . fK ]( is a K-dimensional
column vector of the feature functions fk : X ×Y → R, and w = [w1 . . .wK ]( is the corresponding
vector of the weights of the feature functions. Typically, a structured prediction model chooses an
optimal estimate w! by minimizing some loss function J(w), and defines a predictive function in
terms of an optimization problem that maximizes F( · ;w!) over the response variable y given an
input x:

h0(x;w!) = arg max
y∈Y (x)

F(x,y;w!), (1)

where Y (x) ⊆ Y is the feasible subset of structured labels for the input x. Here, we assume that
Y (x) is finite for any x.

Depending on the specific choice of g(·) (e.g., linear, or log linear), and the loss function J(w)
(e.g., likelihood, or margin-based loss) for estimating the parameter w!, incarnations of the general
structured prediction formalism described above can be seen in classical generative models such as
the HMM (Rabiner, 1989) where g(·) can be an exponential family distribution function and J(w)
is the (negative) joint likelihood of the input and its labeling; and in recent discriminative models
such as CRFs (Lafferty et al., 2001), where g(·) is a Boltzmann machine and J(w) is the (negative)
conditional likelihood of the structured labeling given input; and the M3N (Taskar et al., 2003),
where g(·) is an identity function and J(w) is a loss defined on the margin between the true labeling
and any other feasible labeling in Y (x). Our approach toward a more general discriminative training
is based on a maximum entropy principle that allows an elegant combination of the discriminative
maximum margin learning with the generative Bayesian regularization and hierarchical modeling,
and we consider the more general problem of finding a distribution of F( · ;w) over H that enables
a convex combination of discriminant functions for robust structured prediction.

Before delving into the exposition of the proposed approach, we end this section with a brief
recapitulation of the basic M3N, upon which the proposed approach is built. Under a max-margin
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framework, given a set of fully observed training data D = {〈xi,yi〉}Ni=1, we obtain a point estimate
of the weight vector w by solving the following max-margin problem P0 (Taskar et al., 2003):

P0 (M3N) : min
w,!

1
2
‖w‖2+C

N

"
i=1

!i

s.t. ∀i,∀y '= yi : w(#fi(y) ≥ #"i(y)−!i, !i ≥ 0 ,

where #fi(y) = f(xi,yi)− f(xi,y) and #Fi(y;w) = w(#fi(y) is the “margin” between the true label
yi and a prediction y, #"i(y) is a labeling loss with respect to yi, and !i represents a slack variable
that absorbs errors in the training data. Various forms of the labeling loss have been proposed in
the literature (Tsochantaridis et al., 2004). In this paper, we adopt the hamming loss used by Taskar
et al. (2003): #"i(y) = "L

j=1 I(y j '= yij), where I(·) is an indicator function that equals to one if the
argument is true and zero otherwise. The problem P0 is not directly solvable by using a standard
constrained optimization toolbox because the feasible space for w,

F0 =
{

w : w(#fi(y) ≥ #"i(y)−!i; ∀i,∀y '= yi
}

,

is defined by O(N|Y |) number of constraints, and Y is exponential to the size of the input x.
Exploring sparse dependencies among individual labels yl in y, as reflected in the specific design of
the feature functions (e.g., based on pair-wise labeling potentials in a pair-wise Markov network),
and the convex duality of the objective, efficient optimization algorithms based on cutting-plane
(Tsochantaridis et al., 2004) or message-passing (Taskar et al., 2003) have been proposed to obtain
an approximate optimum solution to P0. As described shortly, these algorithms can be directly
employed as subroutines in solving our proposed model.

3. Maximum Entropy Discrimination Markov Networks

Instead of learning a point estimator of w as in M3N, in this paper, we take a Bayesian-style ap-
proach and learn a distribution p(w), in a max-margin manner. For prediction, we employ a convex
combination of all possible models F( · ;w) ∈H based on p(w), that is:

h1(x) = arg max
y∈Y (x)

Z

p(w)F(x,y;w)dw . (2)

Now, the open question underlying this averaging prediction rule is how we can devise an appro-
priate loss function and constraints over p(w), in a similar spirit as the margin-based scheme over w
in P0, that lead to an optimum estimate of p(w). In the sequel, we present Maximum Entropy Dis-
crimination Markov Networks, a novel framework that facilitates the estimation of a Bayesian-style
regularized distribution of M3Ns defined by p(w). As we show below, this new Bayesian-style max-
margin learning formalism offers several advantages such as simultaneous primal and dual sparsity,
PAC-Bayesian generalization guarantee, and estimation robustness. Note that the MaxEnDNet is
different from the traditional Bayesian methods for discriminative structured prediction such as the
Bayesian CRFs (Qi et al., 2005), where the likelihood function is well defined. Here, our approach
is of a “Bayesian-style” because it learns and uses a “posterior” distribution of all predictive mod-
els instead of choosing one model according to some criterion, but the learning algorithm is not
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based on the Bayes theorem, but a maximum entropy principle that biases towards a distribution
that makes less additional assumptions over a given prior over the predictive models. We emphasize
that this “posterior” is different from, and should not be confused with, the conventional Bayesian
posterior defined according to the Bayes rule.

It is well-known that exponential family distributions can be expressed variationally as the so-
lution to a maximum entropy estimation subject to moment constraints, and the maximum entropy
estimation of parameters can be understood as a dual to the maximum likelihood estimation of the
parameters of exponential family distributions. Thus our combination of the maximum entropy
principle with the maximum margin principle to be presented in the sequel offers an elegant way
of achieving jointly maximum margin and maximum likelihood effects on learning structured in-
put/output Markov networks, and in fact, general exponential family graphical models.

3.1 Structured Maximum Entropy Discrimination

Given a training set D of structured input-output pairs, analogous to the feasible space F0 for the
weight vector w in a standard M3N (c.f., problem P0), we define the feasible subspace F1 for the
weight distribution p(w) by a set of expected margin constraints:

F1 =
{

p(w) :
Z

p(w)[#Fi(y;w)−#"i(y)]dw≥−!i, ∀i,∀y '= yi
}

.

We learn the optimum p(w) from F1 based on a structured maximum entropy discrimination
principle generalized from the maximum entropy discrimination (Jaakkola et al., 1999). Under this
principle, the optimum p(w) corresponds to the distribution that minimizes its relative entropy with
respect to some chosen prior p0, as measured by the Kullback-Leibler divergence between p and p0:
KL(p||p0) = 〈log(p/p0)〉p, where 〈·〉p denotes the expectations with respect to p. If p0 is uniform,
then minimizing this KL-divergence is equivalent to maximizing the entropy H(p) = −〈log p〉p. A
natural information theoretic interpretation of this formulation is that we favor a distribution over
the discriminant function class H that bears minimum assumptions among all feasible distributions
in F1. The p0 is a regularizer that introduces an appropriate bias, if necessary.

To accommodate non-separable cases in the discriminative prediction problem, instead of min-
imizing the usual KL, we optimize the generalized entropy (Dudı́k et al., 2007; Lebanon and Laf-
ferty, 2001), or a regularized KL-divergence, KL(p(w)||p0(w)) +U(!), where U(!) is a closed
proper convex function over the slack variables. This term can be understood as an additional “po-
tential” in the maximum entropy principle. Putting everything together, we can now state a general
formalism based on the following maximum entropy discrimination Markov network framework:

Definition 1 (Maximum Entropy Discrimination Markov Networks) Given training data D =
{〈xi,yi〉}Ni=1, a chosen form of discriminant function F(x,y;w), a loss function #"(y), and an ensu-
ing feasible subspace F1 (defined above) for parameter distribution p(w), the MaxEnDNet model
that leads to a prediction function of the form of Equation (2) is defined by the following generalized
relative entropy minimization with respect to a parameter prior p0(w):

P1 (MaxEnDNet) : min
p(w),!

KL(p(w)||p0(w))+U(!)

s.t. p(w) ∈ F1, !i ≥ 0,∀i.
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The P1 defined above is a variational optimization problem over p(w) in a subspace of valid
parameter distributions. Since both the KL and the functionU in P1 are convex, and the constraints
in F1 are linear, P1 is a convex program. In addition, the expectations 〈F(x,y;w)〉p(w) are required
to be bounded in order for F to be a meaningful model. Thus, the problem P1 satisfies the Slater’s
condition1 (Boyd and Vandenberghe, 2004, chap. 5), which together with the convexity make P1
enjoy nice properties, such as strong duality and the existence of solutions. The problem P1 can be
solved via applying the calculus of variations to the Lagrangian to obtain a variational extremum,
followed by a dual transformation of P1. We state the main results below as a theorem, followed by
a brief proof that lends many insights into the solution to P1 which we will explore in subsequent
analysis.

Theorem 2 (Solution to MaxEnDNet) The variational optimization problem P1 underlying the
MaxEnDNet gives rise to the following optimum distribution of Markov network parameters w:

p(w) =
1

Z($)
p0(w)exp

{

"
i,y '=yi

$i(y)[#Fi(y;w)−#"i(y)]
}

, (3)

where Z($) is a normalization factor and the Lagrange multipliers $i(y) (corresponding to the
constraints in F1) can be obtained by solving the dual problem of P1:

D1 : max
$

− logZ($)−U!($)

s.t. $i(y) ≥ 0, ∀i, ∀y '= yi

where U!(·) is the conjugate of the slack function U(·), that is, U!($) = sup! ("i,y '=yi $i(y)!i−
U(!)).

Proof (sketch) Since the problem P1 is a convex program and satisfies the Slater’s condition, we
can form a Lagrangian function, whose saddle point gives the optimal solution of P1 and D1, by
introducing a non-negative dual variable $i(y) for each constraint in F1 and another non-negative
dual variable c for the normalization constraint

R

p(w)dw = 1. Details are deferred to Appendix
B.1.

Since the problem P1 is a convex program and satisfies the Slater’s condition, the saddle point
of the Lagrangian function is the KKT point of P1. From the KKT conditions (Boyd and Vanden-
berghe, 2004, Chap. 5), it can be shown that the above solution enjoys dual sparsity, that is, only a
few Lagrange multipliers will be non-zero, which correspond to the active constraints whose equal-
ity holds, analogous to the support vectors in SVM. Thus MaxEnDNet enjoys a similar generaliza-
tion property as the M3N and SVM due to the the small “effective size” of the margin constraints.
But it is important to realize that this does not mean that the learned model is “primal-sparse”, that
is, only a few elements in the weight vector w are non-zero. We will return to this point in Section 4.

For a closed proper convex function %(µ), its conjugate is defined as %!(&) = supµ[&(µ−%(µ)].
In the problem D1, by convex duality (Boyd and Vandenberghe, 2004), the log normalizer logZ($)
can be shown to be the conjugate of the KL-divergence. If the slack function is U(!) = C‖!‖ =

1. Since 〈F(x,y;w)〉p(w) are bounded and !i ≥ 0, there always exists a !, which is large enough to make the pair
(p(w),!) satisfy the Slater’s condition.
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C"i !i, it is easy to show that U!($) = I'("y$i(y) ≤C, ∀i), where I'(·) is a function that equals
to zero when its argument holds true and infinity otherwise. Here, the inequality corresponds to the
trivial solution != 0, that is, the training data are perfectly separable. Ignoring this inequality does
not affect the solution since the special case ! = 0 is still included. Thus, the Lagrange multipliers
$i(y) in the dual problem D1 comply with the set of constraints that "y$i(y) = C, ∀i. Another
example is U(!) = KL(p(!)||p0(!)) by introducing uncertainty on the slack variables (Jaakkola
et al., 1999). In this case, expectations with respect to p(!) are taken on both sides of all the
constraints in F1. Take the duality, and the dual function of U is another log normalizer. More
details were provided by Jaakkola et al. (1999). Some other U functions and their dual functions
are studied by Lebanon and Lafferty (2001) and Dudı́k et al. (2007).

Unlike most extant structured discriminative models including the highly successful M3N, which
rely on a point estimator of the parameters, the MaxEnDNet model derived above gives an optimum
parameter distribution, which is used to make prediction via the rule (2). Indeed, as we will show
shortly, the MaxEnDNet is strictly more general than the M3N and subsumes the later as a special
case. But more importantly, the MaxEnDNet in its full generality offers a number of important
advantages while retaining all the merits of the M3N. First, MaxEnDNet admits a prior that can be
designed to introduce useful regularization effects, such as a primal sparsity bias. Second, the Max-
EnDNet prediction is based on model averaging and therefore enjoys a desirable smoothing effect,
with a uniform convergence bound on generalization error. Third, MaxEnDNet offers a principled
way to incorporate hidden generative models underlying the structured predictions, but allows the
predictive model to be discriminatively trained based on partially labeled data. In the sequel, we
analyze the first two points in detail; exploration of the third point is beyond the scope of this paper,
and can be found in Zhu et al. (2008c), where a partially observedMaxEnDNet (PoMEN) is devel-
oped, which combines (possibly latent) generative model and discriminative training for structured
prediction.

3.2 Gaussian MaxEnDNet

As Equation (3) suggests, different choices of the parameter prior can lead to different MaxEnDNet
models for predictive parameter distribution. In this subsection and the following one, we explore a
few common choices, e.g., Gaussian and Laplace priors.

We first show that, when the parameter prior is set to be a standard normal, MaxEnDNet leads
to a predictor that is identical to that of the M3N. This somewhat surprising reduction offers an
important insight for understanding the property of MaxEnDNet. Indeed this result should not
be totally unexpected given the striking isomorphisms of the opt-problem P1, the feasible space
F1, and the predictive function h1 underlying a MaxEnDNet, to their counterparts P0, F0, and h0,
respectively, underlying an M3N. The following theorem makes our claim explicit.

Theorem 3 (Gaussian MaxEnDNet: Reduction of MEDN to M3N) Assuming F(x,y;w) =
w(f(x,y), U(!) = C"i !i, and p0(w) = N (w|0, I), where I denotes an identity matrix, then the
posterior distribution is p(w) =N (w|µ, I), where µ= "i,y '=yi $i(y)#fi(y), and the Lagrange multi-
pliers $i(y) in p(w) are obtained by solving the following dual problem, which is isomorphic to the
dual form of the M3N:

max
$ "

i,y '=yi
$i(y)#"i(y)−

1
2
‖ "
i,y '=yi

$i(y)#fi(y)‖2
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s.t. "
y '=yi

$i(y) =C; $i(y) ≥ 0, ∀i, ∀y '= yi,

where #fi(y) = f(xi,yi)− f(xi,y) as in P0. When applied to h1, p(w) leads to a predictive function
that is identical to h0(x;w) given by Equation (1).

Proof See Appendix B.2 for details.

The above theorem is stated in the duality form. We can also show the following equivalence in
the primal form.

Corollary 4 Under the same assumptions as in Theorem 3, the mean µ of the posterior distribution
p(w) under a Gaussian MaxEnDNet is obtained by solving the following primal problem:

min
µ,!

1
2
µ(µ+C

N

"
i=1

!i

s.t. µ(#fi(y) ≥ #"i(y)−!i; !i ≥ 0, ∀i, ∀y '= yi.

Proof See Appendix B.3 for details.

Theorem 3 and Corollary 4 both show that in the supervised learning setting, the M3N is a
special case of MaxEnDNet when the slack function is linear and the parameter prior is a standard
normal. As we shall see later, this connection renders many existing techniques for solving the M3N
directly applicable for solving the MaxEnDNet.

3.3 Laplace MaxEnDNet

Recent trends in pursuing “sparse” graphical models has led to the emergence of regularized ver-
sion of CRFs (Andrew and Gao, 2007) and Markov networks (Lee et al., 2006; Wainwright et al.,
2006). Interestingly, while such extensions have been successfully implemented by several authors
in maximum likelihood learning of various sparse graphical models, they have not yet been fully
explored or evaluated in the context of maximum margin learning, although some existing methods
can be extended to achieve sparse max-margin estimators, as explained below.

One possible way to learn a sparse M3N is to adopt the strategy of L1-SVM (Bennett and Man-
gasarian, 1992; Zhu et al., 2004) and directly use an L1 instead of the L2-norm of w in the loss
function (see appendix A for a detailed description of this formulation and the duality derivation).
However, the primal problem of an L1-regularized M3N is not directly solvable using a standard
optimization toolbox by re-formulating it as an LP problem due to the exponential number of con-
straints; solving the dual problem, which now has only a polynomial number of constraints as in
the dual of M3N, is also non-trivial due to the complicated form of the constraints. The constraint
generation methods (Tsochantaridis et al., 2004) are possible. However, although such methods
have been shown to be efficient for solving the QP problem in the standard M3N, our preliminary
empirical results show that such a scheme with an LP solver for the L1-regularized M3N can be
extremely expensive for a non-trivial real data set. Another type of possible solvers are based on a
projection to L1-ball (Duchi et al., 2008), such as the gradient descent (Ratliff et al., 2007) and the
dual extragradient (Taskar et al., 2006) methods.
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TheMaxEnDNet interpretation of theM3N offers an alternative strategy that resembles Bayesian
regularization (Tipping, 2001; Kaban, 2007) in maximum likelihood estimation, where shrinkage
effects can be introduced by appropriate priors over the model parameters. As Theorem 3 reveals,
an M3N corresponds to a Gaussian MaxEnDNet that admits a standard normal prior for the weight
vector w. According to the standard Bayesian regularization theory, to achieve a sparse estimate
of a model, in the posterior distribution of the feature weights, the weights of irrelevant features
should peak around zero with very small variances. However, the isotropy of the variances in all
dimensions of the feature space under a standard normal prior makes it infeasible for the resulting
M3N to adjust the variances in different dimensions to fit a sparse model. Alternatively, now we
employ a Laplace prior for w to learn a Laplace MaxEnDNet. We show in the sequel that, the
parameter posterior p(w) under a Laplace MaxEnDNet has a shrinkage effect on small weights,
which is similar to directly applying an L1-regularizer on an M3N. Although exact learning of a
Laplace MaxEnDNet is also intractable, we show that this model can be efficiently approximated
by a variational inference procedure based on existing methods.

The Laplace prior ofw is expressed as p0(w) =(K
k=1

√
)
2 e

−
√
)|wk| = (

√
)
2 )Ke−

√
)‖w‖. This density

function is heavy tailed and peaked at zero; thus, it encodes a prior belief that the distribution ofw is
strongly peaked around zero. Another nice property of the Laplace density is that it is log-concave,
or the negative logarithm is convex, which can be exploited to obtain a convex estimation problem
analogous to LASSO (Tibshirani, 1996).

Theorem 5 (Laplace MaxEnDNet: a sparse M3N) Assuming F(x,y;w) = w(f(x,y),
U(!) = C"i !i, and p0(w) = (K

k=1

√
)
2 e

−
√
)|wk| = (

√
)
2 )Ke−

√
)‖w‖, then the Lagrange multipliers

$i(y) in p(w) (as defined in Theorem 2) are obtained by solving the following dual problem:

max
$ "

i,y '=yi
$i(y)#"i(y)−

K

"
k=1
log

)
)−*2k

s.t. "
y '=yi

$i(y) =C; $i(y) ≥ 0, ∀i, ∀y '= yi.

where *k = "i,y '=yi $i(y)#fki(y), and #fki(y) = fk(xi,yi)− fk(xi,y) represents the kth component of
#fi(y). Furthermore, constraints *2k < ), ∀k, must be satisfied.

Since several intermediate results from the proof of this Theorem will be used in subsequent
presentations, we provide the complete proof below. Our proof is based on a hierarchical repre-
sentation of the Laplace prior. As noted by Andrews and Mallows (1974), the Laplace distribution
p(w) =

√
)
2 e

−
√
)|w| is equivalent to a two-layer hierarchical Gaussian-exponential model, where w

follows a zero-mean Gaussian distribution p(w|+) = N (w|0,+) and the variance + admits an expo-
nential hyper-prior density,

p(+|)) =
)
2
exp{−

)
2
+}, for +≥ 0.

This alternative form straightforwardly leads to the following new representation of our multivariate
Laplace prior for the parameter vector w in MaxEnDNet:

p0(w) =
K

(
k=1

p0(wk) =
K

(
k=1

Z

p(wk|+k)p(+k|))d+k =
Z

p(w|+)p(+|))d+, (4)
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where p(w|+) =(K
k=1 p(wk|+k) and p(+|)) =(K

k=1 p(+k|)) represent multivariate Gaussian and ex-
ponential, respectively, and d+! d+1 · · ·d+K .
Proof (of Theorem 5) Substitute the hierarchical representation of the Laplace prior (Equation 4)
into p(w) in Theorem 2, and we get the normalization factor Z($) as follows,

Z($) =
Z Z

p(w|+)p(+|))d+ · exp{w(*− "
i,y '=yi

$i(y)#"i(y)}dw

=
Z

p(+|))
Z

p(w|+) · exp{w(*− "
i,y '=yi

$i(y)#"i(y)}dw d+

=
Z

p(+|))
Z

N (w|0,A)exp{w(*− "
i,y '=yi

$i(y)#"i(y)}dw d+

=
Z

p(+|))exp{
1
2
*(A*− "

i,y '=yi
$i(y)#"i(y)}d+

= exp{− "
i,y '=yi

$i(y)#"i(y)}
K

(
k=1

Z

)
2
exp(−

)
2
+k)exp(

1
2
*2k+k)d+k

= exp{− "
i,y '=yi

$i(y)#"i(y)}
K

(
k=1

)
)−*2k

, (5)

where A= diag(+k) is a diagonal matrix and * is a column vector with *k defined as in Theorem 5.
The last equality is due to the moment generating function of an exponential distribution. The con-
straint *2k < ), ∀k is needed in this derivation to avoid the integration going infinity. Substituting
the normalization factor derived above into the general dual problem D1 in Theorem 2, and using
the same argument of the convex conjugate ofU(!) =C"i !i as in Theorem 3, we arrive at the dual
problem in Theorem 5.

It can be shown that the dual objective function of Laplace MaxEnDNet in Theorem 5 is con-
cave.2 But since each *k depends on all the dual variables $ and *2k appears within a logarithm, the
optimization problem underlying Laplace MaxEnDNet would be very difficult to solve. The SMO
(Taskar et al., 2003) and the exponentiated gradient methods (Bartlett et al., 2004) developed for
the QP dual problem of M3N cannot be easily applied here. Thus, we will turn to a variational ap-
proximation method, as shown in Section 5. For completeness, we end this section with a corollary
similar to the Corollary 4, which states the primal optimization problem underlying the MaxEnDNet
with a Laplace prior. As we shall see, the primal optimization problem in this case is complicated
and provides another perspective of the hardness of solving the Laplace MaxEnDNet.

Corollary 6 Under the same assumptions as in Theorem 5, the mean µ of the posterior distribu-
tion p(w) under a Laplace MaxEnDNet is obtained by solving the following primal problem:

min
µ,!

√
)

K

"
k=1

(

√

µ2k +
1
)
−

1√
)
log

√

)µ2k +1+1
2

)

+C
N

"
i=1

!i

s.t. µ(#fi(y) ≥ #"i(y)−!i; !i ≥ 0, ∀i, ∀y '= yi.

2. *2k is convex over $ because it is the composition of f (x) = x2 with an affine mapping. So, )−*2k is concave and
log()−*2k) is also concave due to the composition rule (Boyd and Vandenberghe, 2004).
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Proof The proof requires the result of Corollary 7. We defer it to Appendix B.4.

Since the “norm”3

K

"
k=1

(

√

µ2k +
1
)
−

1√
)
log

√

)µ2k +1+1
2

)

! ‖µ‖KL

corresponds to the KL-divergence between p(w) and p0(w) under a Laplace MaxEnDNet, we will
refer to it as a KL-norm and denote it by ‖ ·‖KL in the sequel. This KL-norm is different from the L2-
norm as used in M3N, but is closely related to the L1-norm, which encourages a sparse estimator. In
the following section, we provide a detailed analysis of the sparsity of Laplace MaxEnDNet resulted
from the regularization effect from this norm.

4. Entropic Regularization and Sparse M3N

Comparing to the structured prediction law h0 due to an M3N, which enjoys dual sparsity (i.e., few
support vectors), the h1 defined by a Laplace MaxEnDNet is not only dual-sparse, but also primal
sparse; that is, features that are insignificant will experience strong shrinkage on their corresponding
weight wk.

The primal sparsity of h1 achieved by the Laplace MaxEnDNet is due to a shrinkage effect
resulting from the Laplacian entropic regularization. In this section, we take a close look at this
regularization effect, in comparison with other common regularizers, such as the L2-norm in M3N
(which is equivalent to the Gaussian MaxEnDNet), and the L1-norm that at least in principle could
be directly applied to M3N. Since our main interest here is the sparsity of the structured prediction
law h1, we examine the posterior mean under p(w) via exact integration. It can be shown that under
a Laplace MaxEnDNet, p(w) exhibits the following posterior shrinkage effect.

Corollary 7 (Entropic Shrinkage) The posterior mean of the Laplace MaxEnDNet has the follow-
ing form:

〈wk〉p =
2*k
)−*2k

, ∀1≤ k ≤ K, (6)

where *k = "i,y '=yi $i(y)( fk(xi,yi)− fk(xi,y)) and *2k < ), ∀k.

Proof Using the integration result in Equation (5), we can get:

,logZ
,$i(y)

= v(#fi(y)−#"i(y), (7)

where v is a column vector and vk = 2*k
)−*2k

, ∀1≤ k ≤ K. An alternative way to compute the deriva-
tives is using the definition of Z : Z =

R

p0(w) · exp{w(*−"i,y '=yi $i(y)#"i(y)}dw . We can get:
,logZ
,$i(y)

= 〈w〉(p #fi(y)−#"i(y). (8)

3. This is not exactly a norm because the positive scalability does not hold. But the KL-norm is non-negative due to
the non-negativity of KL-divergence. In fact, by using the inequality ex ≥ 1+ x, we can show that each component
(
√

µ2k + 1
) −

1√
)
log

√
)µ2k+1+1
2 ) is monotonically increasing with respect to µ2k and ‖µ‖KL ≥ K/

√
), where the equal-

ity holds only when µ= 0. Thus, ‖µ‖KL penalizes large weights. For convenient comparison with the popular L2 and
L1 norms, we call it a KL-norm.
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Figure 1: Posterior means with different priors against their corresponding *="i,y '=yi $i(y)#fi(y).
Note that the * for different priors are generally different because of the different dual
parameters.

Comparing Equations (7) and (8), we get 〈w〉p = v, that is, 〈wk〉p = 2*k
)−*2k

, ∀1 ≤ k ≤ K. The
constraints *2k < ), ∀k are required to get a finite normalization factor as shown in Equation (5).

Here * is isomorphic to an unregularized estimate of the feature weight vector which directly
comes from a linear combination of support vectors (and therefore not sparsified). A plot of the
relationship between 〈wk〉p under a Laplace MaxEnDNet and the corresponding *k revealed by
Corollary 7 is shown in Figure 1 (for example, the red curve), from which we can see that, the
smaller the *k is, the more shrinkage toward zero is imposed on 〈wk〉p.

This entropic shrinkage effect on w is not present in the standard M3N, and the Gaussian Max-
EnDNet. Recall that by definition, the vector *!"i,y$i(y)#fi(y) is determined by the dual param-
eters $i(y) obtained by solving a model-specific dual problem. When the $i(y)’s are obtained by
solving the dual of the standard M3N, it can be shown that the optimum point solution of the param-
eters w! = *. When the $i(y)’s are obtained from the dual of the Gaussian MaxEnDNet, Theorem
3 shows that the posterior mean of the parameters 〈w〉pGaussian = *. (As we have already pointed
out, since these two dual problems are isomorphic, the $i(y)’s for M3N and Gaussian MaxEnDNet
are identical, hence the resulting *’s are the same.) In both cases, there is no shrinkage along any
particular dimension of the parameter vector w or of the mean vector of p(w). Therefore, although
both M3N and Gaussian MaxEnDNet enjoy the dual sparsity, because the KKT conditions imply
that most of the dual parameters $i(y)’s are zero, w! and 〈w〉pGaussian are not primal sparse. From
Equation (6), we can conclude that the Laplace MaxEnDNet is also dual sparse, because its mean
〈w〉pLaplace can be uniquely determined by *. But the shrinkage effect on different components of the
〈w〉pLaplace vector causes 〈w〉pLaplace to be also primal sparse.

A comparison of the posterior mean estimates of w under MaxEnDNet with three different
priors versus their associated * is shown in Figure 1. The three priors in question are, a standard
normal, a Laplace with ) = 4, and a Laplace with ) = 6. It can be seen that, under the entropic
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regularization with a Laplace prior, the 〈w〉p gets shrunk toward zero when * is small. The larger
the ) value is, the greater the shrinkage effect. For a fixed ), the shape of the shrinkage curve (i.e.,
the 〈w〉p−* curve) is smoothly nonlinear, but no component is explicitly discarded, that is, no
weight is set explicitly to zero. In contrast, for the Gaussian MaxEnDNet, which is equivalent to the
standard M3N, there is no such a shrinkage effect.

Corollary 6 offers another perspective of how the Laplace MaxEnDNet relates to the L1-norm
M3N, which yields a sparse estimator. Note that as ) goes to infinity, the KL-norm ‖µ‖KL ap-
proaches ‖µ‖1, that is, the L1-norm.4 This means that the MaxEnDNet with a Laplace prior will be
(nearly) the same as the L1-M3N if the regularization constant ) is large enough.

A more explicit illustration of the entropic regularization under a Laplace MaxEnDNet, compar-
ing to the conventional L1 and L2 regularization over an M3N, can be seen in Figure 2, where the fea-
sible regions due to the three different norms used in the regularizer are plotted in a two dimensional
space. Specifically, it shows (1) L2-norm: w21+w22 ≤ 1; (2) L1-norm: |w1|+ |w2| ≤ 1; and (3) KL-
norm:5

√

w21+1/)+
√

w22+1/)− (1/
√
)) log(

√

)w21+1/2+1/2)− (1/
√
)) log(

√

)w21+1/2+

1/2)≤ b, where b is a parameter to make the boundary pass the (0,1) point for easy comparison with
the L2 and L1 curves. It is easy to show that b equals to

√

1/)+
√

1+1/)−(1/
√
)) log(

√
)+1/2+

1/2). It can be seen that the L1-norm boundary has sharp turning points when it passes the axises,
whereas the L2 and KL-norm boundaries turn smoothly at those points. This is the intuitive ex-
planation of why the L1-norm directly gives sparse estimators, whereas the L2-norm and KL-
norm due to a Laplace prior do not. But as shown in Figure 2(b), when the ) gets larger and
larger, the KL-norm boundary moves closer and closer to the L1-norm boundary. When )→ ',
√

w21+1/)+
√

w22+1/)−(1/
√
)) log(

√

)w21+1/2+1/2)−(1/
√
)) log(

√

)w21+1/2+1/2)→
|w1|+ |w2| and b→ 1, which yields exactly the L1-norm in the two dimensional space. Thus, under
the linear model assumption of the discriminant functions F( · ;w), our framework can be seen as a
smooth relaxation of the L1-M3N.

5. Variational Learning of Laplace MaxEnDNet

Although Theorem 2 seems to offer a general closed-form solution to p(w) under an arbitrary prior
p0(w), in practice the Lagrange multipliers $i(y) in p(w) can be very hard to estimate from the dual
problem D1 except for a few special choices of p0(w), such as a normal as shown in Theorem 3,
which can be easily generalized to any normal prior. When p0(w) is a Laplace prior, as we have
shown in Theorem 5 and Corollary 6, the corresponding dual problem or primal problem involves
a complex objective function that is difficult to optimize. Here, we present a variational method for
an approximate learning of the Laplace MaxEnDNet.

Our approach is built on the hierarchical interpretation of the Laplace prior as shown in Equation
(4). Replacing the p0(w) in Problem P1 with Equation (4), and applying the Jensen’s inequality, we
get an upper bound of the KL-divergence:

KL(p||p0) = −H(p)−〈log
Z

p(w|+)p(+|))d+〉p

4. As )→ ', the logarithm terms in ‖µ‖KL disappear because of the fact that logxx → 0 when x→ '.
5. The curves are drawn with a symbolic computational package to solve an equation of the form: 2x− logx= a, where
x is the variable to be solved and a is a constant.
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Figure 2: (a) L2-norm (solid line) and L1-norm (dashed line); (b) KL-norm with different Laplace
priors.

≤−H(p)−〈
Z

q(+) log
p(w|+)p(+|))

q(+)
d+〉p

! L(p(w),q(+)),

where q(+) is a variational distribution used to approximate p(+|)). The upper bound is in fact a
KL-divergence: L(p(w),q(+)) = KL(p(w)q(+)||p(w|+)p(+|))). Thus, L is convex over p(w), and
q(+), respectively, but not necessarily joint convex over (p(w),q(+)).

Substituting this upper bound for the KL-divergence in P1, we now solve the following Varia-
tional MaxEnDNet problem,

P1′ (vMEDN) : min
p(w)∈F1;q(+);!

L(p(w),q(+))+U(!).

P1′ can be solved with an iterative minimization algorithm alternating between optimizing over
(p(w),!) and q(+), as outlined in Algorithm 1, and detailed below.
Step 1: Keep q(+) fixed, optimize P1′ with respect to (p(w),!). Using the same procedure as

in solving P1, we get the posterior distribution p(w) as follows,

p(w) - exp{
Z

q(+) log p(w|+)d+ −b} · exp{w(*− "
i,y '=yi

$i(y)#"i(y)}

- exp{−
1
2
w(〈A−1〉qw−b+w(*− "

i,y '=yi
$i(y)#"i(y)}

=N (w|µ,.),
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Algorithm 1 Variational MaxEnDNet
Input: data D = {〈xi,yi〉}Ni=1, constantsC and ), iteration number T
Output: posterior mean 〈w〉Tp
Initialize 〈w〉1p ← 0, .1 ← I
for t = 1 to T −1 do
Step 1: solve (9) or (10) for 〈w〉t+1p = .t*; update 〈ww(〉t+1p ← .t + 〈w〉t+1p (〈w〉t+1p )(.

Step 2: use (11) to update .t+1 ← diag(
√

〈w2k〉
t+1
p

) ).
end for

where *= "i,y '=yi $i(y)#fi(y), A= diag(+k), and b= KL(q(+)||p(+|))) is a constant. The posterior
mean and variance are 〈w〉p = µ= .* and . = (〈A−1〉q)−1 = 〈ww(〉p−〈w〉p〈w〉(p , respectively.
Note that this posterior distribution is also a normal distribution. Analogous to the proof of Theorem
3, we can derive that the dual parameters $ are estimated by solving the following dual problem:

max
$ "

i,y '=yi
$i(y)#"i(y)−

1
2
*(.* (9)

s.t. "
y '=yi

$i(y) =C; $i(y) ≥ 0, ∀i, ∀y '= yi.

This dual problem is now a standard quadratic program symbolically identical to the dual of an
M3N, and can be directly solved using existing algorithms developed for M3N, such as the SMO
(Taskar et al., 2003) and the exponentiated gradient (Bartlett et al., 2004) methods. Alternatively,
we can solve the following primal problem:

min
w,!

1
2
w(.−1w+C

N

"
i=1

!i (10)

s.t. w(#fi(y) ≥ #"i(y)−!i; !i ≥ 0, ∀i, ∀y '= yi.

Based on the proof of Corollary 4, it is easy to show that the solution of the problem (10) leads to
the posterior mean of w under p(w), which will be used to do prediction by h1. The primal problem
can be solved with the subgradient (Ratliff et al., 2007), cutting-plane (Tsochantaridis et al., 2004),
or extragradient (Taskar et al., 2006) method.
Step 2: Keep p(w) fixed, optimize P1′ with respect to q(+). Taking the derivative of L with

respect to q(+) and set it to zero, we get:

q(+) - p(+|))exp{〈log p(w|+)〉p}.

Since both p(w|+) and p(+|)) can be written as a product of univariate Gaussian and univariate ex-
ponential distributions, respectively, over each dimension, q(+) also factorizes over each dimension:
q(+) =(K

k=1 q(+k), where each q(+k) can be expressed as:

∀k : q(+k) - p(+k|))exp{〈log p(wk|+k)〉p}

-N (
√

〈w2k〉p|0,+k)exp(−
1
2
)+k).
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The same distribution has been derived by Kaban (2007), and similar to the hierarchical rep-
resentation of a Laplace distribution we can get the normalization factor:

R

N (
√

〈w2k〉p|0,+k) ·
)
2 exp(−

1
2)+k)d+k =

√
)
2 exp(−

√

)〈w2k〉p). Also, we can calculate the expectations 〈+
−1
k 〉q which

are required in calculating 〈A−1〉q as follows,

〈
1
+k
〉q =

Z 1
+k
q(+k)d+k =

√

)
〈w2k〉p

. (11)

We iterate between the above two steps until convergence. Due to the convexity (not joint
convexity) of the upper bound, the algorithm is guaranteed to converge to a local optimum. Then,
we apply the posterior distribution p(w), which is in the form of a normal distribution, to make
prediction using the averaging prediction law in Equation (2). Due to the shrinkage effect of the
Laplacian entropic regularization discussed in Section 4, for irrelevant features, the variances should
converge to zeros and thus lead to a sparse estimation of w. To summarize, the intuition behind this
iterative minimization algorithm is as follows. First, we use a Gaussian distribution to approximate
the Laplace distribution and thus get a QP problem that is analogous to that of the standard M3N;
then, in the second step we update the covariance matrix in the QP problem with an exponential
hyper-prior on the variance.

6. Generalization Bound

The PAC-Bayes theory for averaging classifiers (McAllester, 1999; Langford et al., 2001) provides
a theoretical motivation to learn an averaging model for classification. In this section, we extend
the classic PAC-Bayes theory on binary classifiers to MaxEnDNet, and analyze the generalization
performance of the structured prediction rule h1 in Equation (2). In order to prove an error bound
for h1, the following mild assumption on the boundedness of discriminant function F( · ;w) is
necessary, that is, there exists a positive constant c, such that,

∀w, F( · ;w) ∈H : X ×Y → [−c,c].

Recall that the averaging structured prediction function under theMaxEnDNet is defined as h(x,y)=
〈F(x,y;w)〉p(w). Let’s define the predictive margin of an instance (x,y) under a function h as
M(h,x,y) = h(x,y) −maxy′ '=y h(x,y′). Clearly, h makes a wrong prediction on (x,y) only if
M(h,x,y) ≤ 0. Let Q denote a distribution over X ×Y , and let D represent a sample of N in-
stances randomly drawn from Q. With these definitions, we have the following structured version
of PAC-Bayes theorem.

Theorem 8 (PAC-Bayes Bound of MaxEnDNet) Let p0 be any continuous probability distribu-
tion over H and let / ∈ (0,1). If F( · ;w) ∈H is bounded by ±c as above, then with probability at
least 1−/, for a random sample D of N instances from Q, for every distribution p over H , and for
all margin thresholds 0> 0:

PrQ(M(h,x,y) ≤ 0) ≤ PrD(M(h,x,y) ≤ 0)+O
(

√

0−2KL(p||p0) ln(N|Y |)+ lnN+ ln/−1
N

)

,
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where PrQ(.) and PrD(.) represent the probabilities of events over the true distribution Q, and over
the empirical distribution of D , respectively.

The proof of Theorem 8 follows the same spirit of the proof of the original PAC-Bayes bound,
but with a number of technical extensions dealing with structured outputs and margins. See ap-
pendix B.5 for the details.

Recently, McAllester (2007) presents a stochastic max-margin structured prediction model,
which is different from the averaging predictor under the MaxEnDNet model, by defining/designing
a “posterior” distribution from which a model is sampled to make prediction, and achieves a PAC-
Bayes bound which holds for arbitrary models sampled from the particular posterior distribution.
Langford and Shawe-Taylor (2003) show an interesting connection between the PAC-Bayes bounds
for averaging classifiers and stochastic classifiers, again by designing a posterior distribution. But
our posterior distribution is solved with MaxEnDNet and is generally different from those designed
by McAllester (2007) and Langford and Shawe-Taylor (2003).

7. Experiments

In this section, we present empirical evaluations of the proposed Laplace MaxEnDNet (LapMEDN)
on both synthetic and real data sets. We compare LapMEDNwith M3N (i.e., the GaussianMaxEnD-
Net), L1-regularized M3N (L1-M3N), CRFs, L1-regularized CRFs (L1-CRFs), and L2-regularized
CRFs (L2-CRFs). We use the quasi-Newton method (Liu and Nocedal, 1989) and its variant (An-
drew and Gao, 2007) to solve the optimization problem of CRFs, L1-CRFs, and L2-CRFs. For M3N
and LapMEDN, we use the exponentiated gradient method (Bartlett et al., 2004) to solve the dual
QP problem; and we also use the sub-gradient method (Ratliff et al., 2007) to solve the correspond-
ing primal problem. To the best of our knowledge, no formal description, implementation, and
evaluation of the L1-M3N exist in the literature, therefore for comparison purpose we had to de-
velop this model and algorithm anew. Details of our work along this line was reported in Zhu et al.
(2009b), which is beyond the scope of this paper. But briefly, for our experiments on synthetic data,
we implemented the constraint generating method (Tsochantaridis et al., 2004) which uses MOSEK
to solve an equivalent LP re-formulation of L1-M3N. However, this approach is extremely slow on
larger problems; therefore on real data we instead applied the sub-gradient method (Ratliff et al.,
2007) with a projection to an L1-ball (Duchi et al., 2008) to solve the larger L1-M3N based on the
equivalent re-formulation with an L1-norm constraint (i.e., the second formulation in Appendix A).

7.1 Evaluation on Synthetic Data

We first evaluate all the competing models on synthetic data where the true structured predictions are
known. Here, we consider sequence data, that is, each input x is a sequence (x1, . . . ,xL), and each
component xl is a d-dimensional vector of input features. The synthetic data are generated from
pre-specified conditional random field models with either i.i.d. instantiations of the input features
(i.e., elements in the d-dimensional feature vectors) or correlated (i.e., structured) instantiations of
the input features, from which samples of the structured output y, that is, a sequence (y1, . . . ,yL),
can be drawn from the conditional distribution p(y|x) defined by the CRF based on a Gibbs sampler.
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7.1.1 I.I.D. INPUT FEATURES

The first experiment is conducted on synthetic sequence data with 100 i.i.d. input features (i.e.,
d = 100). We generate three types of data sets with 10, 30, and 50 relevant input features, respec-
tively. For each type, we randomly generate 10 linear-chain CRFs with 8 binary labeling states (i.e.,
L= 8 and Yl = {0,1}). The feature functions include: a real valued state-feature function over a one
dimensional input feature and a class label; and 4 (2×2) binary transition feature functions captur-
ing pairwise label dependencies. For each model we generate a data set of 1000 samples. For each
sample, we first independently draw the 100 input features from a standard normal distribution, and
then apply a Gibbs sampler (based on the conditional distribution of the generated CRFs) to assign
a labeling sequence with 5000 iterations.

For each data set, we randomly draw a subset as training data and use the rest for testing.
The sizes of training set are 30, 50, 80, 100, and 150. The QP problem in M3N and the first
step of LapMEDN is solved with the exponentiated gradient method (Bartlett et al., 2004). In all
the following experiments, the regularization constants of L1-CRFs and L2-CRFs are chosen from
{0.01,0.1,1,4,9,16} by a 5-fold cross-validation during the training. For the LapMEDN, we use
the same method to choose ) from 20 roughly evenly spaced values between 1 and 268. For each
setting, a performance score is computed from the average over 10 random samples of data sets.

The results are shown in Figure 3. All the results of the LapMEDN are achieved with 3 itera-
tions of the variational learning algorithm. From the results, we can see that under different settings
LapMEDN consistently outperforms M3N and performs comparably with L1-CRFs and L1-M3N,
both of which encourage a sparse estimate; and both the L1-CRFs and L2-CRFs outperform the
un-regularized CRFs, especially in the cases where the number of training data is small. One in-
teresting result is that the M3N and L2-CRFs perform comparably. This is reasonable because as
derived by Lebanon and Lafferty (2001) and noted by Globerson et al. (2007) that the L2-regularized
maximum likelihood estimation of CRFs has a similar convex dual as that of the M3N, and the only
difference is the loss they try to optimize, that is, CRFs optimize the log-loss while M3N optimizes
the hinge-loss. Another interesting observation is that when there are very few relevant features,
L1-M3N performs the best (slightly better than LapMEDN); but as the number of relevant features
increases LapMEDN performs slightly better than the L1-M3N. Finally, as the number of training
data increases, all the algorithms consistently achieve better performance.

7.1.2 CORRELATED INPUT FEATURES

In reality, most data sets contain redundancies and the input features are usually correlated. So,
we evaluate our models on synthetic data sets with correlated input features. We take the similar
procedure as in generating the data sets with i.i.d. features to first generate 10 linear-chain CRF
models. Then, each CRF is used to generate a data set that contain 1000 instances, each with 100
input features of which 30 are relevant to the output. The 30 relevant input features are partitioned
into 10 groups. For the features in each group, we first draw a real-value from a standard normal
distribution and then corrupt the feature with a random Gaussian noise to get 3 correlated features.
The noise Gaussian has a zero mean and standard variance 0.05. Here and in all the remaining
experiments, we use the sub-gradient method (Ratliff et al., 2007) to solve the QP problem in both
M3N and the variational learning algorithm of LapMEDN. We use the learning rate and complexity
constant that are suggested by the authors, that is, $t = 1

21
√
t and C = 2001, where 1 is a parameter

we introduced to adjust $t and C. We do K-fold CV on each data set and take the average over the
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Figure 3: Evaluation results on data sets with i.i.d features.
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Figure 4: Results on data sets with 30 relevant features.

10 data sets as the final results. Like the method of Taskar et al. (2003), in each run we choose one
part to do training and test on the rest K-1 parts. We vary K from 20, 10, 7, 5, to 4. In other words,
we use 50, 100, about 150, 200, and 250 samples during the training. We use the same grid search
to choose ) and 1 from {9,16,25,36,49,64} and {1,10,20,30,40,50,60} respectively. Results are
shown in Figure 4. We can get the same conclusions as in the previous results.

Figure 5 shows the true weights of the corresponding 200 state feature functions in the model
that generates the first data set, and the average of estimated weights of these features under all
competing models fitted from the first data set. All the averages are taken over 10 fold cross-
validation. From the plots (2 to 7) of the average model weights, we can see that: for the last 140
state feature functions, which correspond to the last 70 irrelevant features, their average weights
under LapMEDN (averaged posterior means w in this case), L1-M3N and L1-CRFs are extremely
small, while CRFs and L2-CRFs can have larger values; for the first 60 state feature functions, which
correspond to the 30 relevant features, the overall weight estimation under LapMEDN is similar to
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Figure 5: From top to bottom, plot 1 shows the weights of the state feature functions in the linear-
chain CRF model from which the data are generated; plot 2 to plot 7 show the average
weights of the learned LapMEDN, M3N, L1-M3N, CRFs, L2-CRFs, and L1-CRFs over
10 fold CV, respectively.
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Figure 6: The average variances of the features on the first data set by LapMEDN.
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that of the sparse L1-CRFs and L1-M3N, but appear to exhibit more shrinkage. Noticeably, CRFs
and L2-CRFs both have more feature functions with large average weights. Note that all the models
have quite different average weights from the model (see the first plot) that generates the data. This
is because we use a stochastic procedure (i.e., Gibbs sampler) to assign labels to the generated data
samples instead of using the labels that are predicted by the model that generates the data. In fact,
if we use the model that generates the data to do prediction on its generated data, the error rate is
about 0.5. Thus, the learned models, which get lower error rates, are different from the model that
generates the data. Figure 6 shows the variances of the 100-dimensional input features (since the
variances of the two feature functions that correspond to the same input feature are the same, we
collapse each pair into one point) learned by LapMEDN. Again, the variances are the averages over
10 fold cross-validation. From the plot, we can see that the LapMEDN can recover the correlation
among the features to some extend, e.g., for the first 30 correlated features, which are the relevant
to the output, the features in the same group tend to have similar (average) variances in LapMEDN,
whereas there is no such correlation among all the other features. From these observations in both
Figure 5 and 6, we can conclude that LapMEDN can reasonably recover the sparse structures in the
input data.

7.2 Real-World OCR Data Set

The OCR data set is partitioned into 10 subsets for 10-fold CV as in Taskar et al. (2003) and Ratliff
et al. (2007). We randomly select N samples from each fold and put them together to do 10-fold
CV. We vary N from 100, 150, 200, to 250, and denote the selected data sets by OCR100, OCR150,
OCR200, and OCR250, respectively. On these data sets and the web data as in Section 7.4, our
implementation of the cutting plane method for L1-M3N is extremely slow. The warm-start simplex
method of MOSEK does not help either. For example, if we stop the algorithm with 600 iterations
on OCR100, then it will take about 20 hours to finish the 10 fold CV. Even with more than 5
thousands of constraints in each training, the performance is still very bad (the error rate is about
0.45). Thus, we turn to an approximate projected sub-gradient method to solve the L1-M3N by
combining the on-line subgradient method (Ratliff et al., 2007) and the efficient L1-ball projection
algorithm (Duchi et al., 2008). The projected sub-gradient method does not work so well as the
cutting plane method on the synthetic data sets. That’s why we use two different methods.

For 1= 4 on OCR100 and OCR150, 1= 2 on OCR200 and OCR250, and )= 36, the results are
shown in Figure 7. We can see that as the number of training instances increases, all the algorithms
get lower error rates and smaller variances. Generally, the LapMEDN consistently outperforms
all the other models. M3N outperforms the standard, non-regularized, CRFs and the L1-CRFs.
Again, L2-CRFs perform comparably with M3N. This is a bit surprising but still reasonable due to
the understanding of their only difference on the loss functions (Globerson et al., 2007) as we have
stated. By examining the prediction accuracy during the learning, we can see an obvious over-fitting
in CRFs and L1-CRFs as shown in Figure 8. In contrast, L2-CRFs are very robust. This is because
unlike the synthetic data sets, features in real-world data are usually not completely irrelevant. In
this case, putting small weights to zero as in L1-CRFs will hurt generalization ability and also lead to
instability to regularization constants as shown later. Instead, L2-CRFs do not put small weights to
zero but shrink them towards zero as in the LapMEDN. The non-regularized maximum likelihood
estimation can easily lead to over-fitting too. For the two sparse models, the results suggest the
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Figure 7: Evaluation results on OCR data set with different numbers of selected data.
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Figure 9: Error rates of different models on OCR100 with different regularization constants. The
regularization constant is the parameter C for M3N, and for all the other models, it is the
parameter ). From left to right, the regularization constants for the two regularized CRFs
(above plot) are 0.0001, 0.001, 0.01, 0.1, 1, 4, 9, 16, and 25; forM3N and LapMEDN, the
regularization constants are k2, 1 ≤ k ≤ 9; and for L1-M3N, the constants are k2, 13 ≤
k ≤ 21.

potential advantages of L1-norm regularized M3N, which are consistently better than the L1-CRFs.
Furthermore, as we shall see later, L1-M3N is more stable than the L1-CRFs.

7.3 Sensitivity to Regularization Constants

Figure 9 shows the error rates of the models in question on the data set OCR100 over different
magnitudes of the regularization constants. For M3N, the regularization constant is the parameter
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C, and for all the other models, the regularization constant is the parameter ). When the ) changes,
the parameterC in LapMEDN and L1-M3N is fixed at the unit 1.

From the results, we can see that the L1-CRFs are quite sensitive to the regularization constants.
However, L2-CRFs, M3N, L1-M3N and LapMEDN are much less sensitive. LapMEDN and L1-M3N
are the most stable models. The stability of LapMEDN is due to the posterior weighting instead of
hard-thresholding to set small weights to zero as in the L1-CRFs. One interesting observation is that
the max-margin based L1-M3N is much more stable compared to the L1-norm regularized CRFs.
One possible reason is that like LapMEDN, L1-M3N enjoys both the primal and dual sparsity, which
makes it less sensitive to outliers; whereas the L1-CRF is only primal sparse.

7.4 Real-World Web Data Extraction

The last experiments are conducted on the real world web data extraction as extensively studied by
Zhu et al. (2008a). Web data extraction is a task to identify interested information from web pages.
Each sample is a data record or an entire web page which is represented as a set of HTML elements.
One striking characteristic of web data extraction is that various types of structural dependencies
between HTML elements exist, e.g. the HTML tag tree or the Document Object Model (DOM)
structure is itself hierarchical. In the work of Zhu et al. (2008a), hierarchical CRFs are shown to
have great promise and achieve better performance than flat models like linear-chain CRFs (Lafferty
et al., 2001). One method to construct a hierarchical model is to first use a parser to construct
a so called vision tree. Then, based on the vision tree, a hierarchical model can be constructed
accordingly to extract the interested attributes, e.g. a product’s name, image, price, description, etc.
See the paper (Zhu et al., 2008a) for an example of the vision tree and the corresponding hierarchical
model. In such a hierarchical extraction model, inner nodes are useful to incorporate long distance
dependencies, and the variables at one level are refinements of the variables at upper levels.

In these experiments,6 we identify product items for sale on the Web. For each product item,
four attributes—Name, Image, Price, and Description are extracted. We use the data set that is built
with web pages generated by 37 different templates (Zhu et al., 2008a). For each template, there are
5 pages for training and 10 for testing. We evaluate all the methods on the record level, that is, we
assume that data records are given, and we compare different models on the accuracy of extracting
attributes in the given records. In the 185 training pages, there are 1585 data records in total; in the
370 testing pages, 3391 data records are collected. As for the evaluation criteria, we use the two
comprehensive measures, that is, average F1 and block instance accuracy. As defined by Zhu et al.
(2008a), average F1 is the average value of the F1 scores of the four attributes, and block instance
accuracy is the percent of data records whose Name, Image, and Price are all correctly identified.

We randomly select m = 5,10,15,20,30,40,or,50 percent of the training records as training
data, and test on all the testing records. For eachm, 10 independent experiments were conducted and
the average performance is summarized in Figure 10. From the results, we can see that all: first, the
models (especially the max-margin models, that is, M3N, L1-M3N, and LapMEDN) with regular-
ization (i.e., L1-norm, L2-norm, or the entropic regularization of LapMEDN) can significantly out-
perform the un-regularized CRFs. Second, the max-margin models generally outperform the condi-
tional likelihood-based models (i.e., CRFs, L2-CRFs, and L1-CRFs). Third, the LapMEDN perform
comparably with the L1-M3N, which enjoys both dual and primal sparsity as the LapMEDN, and

6. These experiments are slightly different from those by Zhu et al. (2008a). Here, we introduce more general feature
functions based on the content and visual features as used by Zhu et al. (2008a).
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Figure 10: The average F1 values and block instance accuracy on web data extraction with different
number of training data.

outperforms all other models, especially when the number of training data is small. Finally, as in
the previous experiments on OCR data, the L1-M3N generally outperforms the L1-CRFs, which
suggests the potential promise of the max-margin based L1-M3N.

8. Related Work

Our work is motivated by the maximum entropy discrimination (MED)method proposed by Jaakkola
et al. (1999), which integrates SVM and entropic regularization to obtain an averaging maximum
margin model for classification. The MaxEnDNet model presented is essentially a structured ver-
sion of MED built on M3N—the so called “structured SVM”. As we presented in this paper, this
extension leads to a substantially more flexible and powerful new paradigm for structured discrim-
inative learning and prediction, which enjoys a number of advantages such as model averaging,
primal and dual sparsity, accommodation of latent generative structures, but at the same time raises
new algorithmic challenges in inference and learning.

Related to our approach, a sparse Bayesian learning framework has been proposed to find sparse
and robust solutions to regression and classification. One example along this line is the relevance
vector machine (RVM) (Tipping, 2001). The RVM was proposed based on SVM. But unlike SVM
which directly optimizes on the margins, RVM defines a likelihood function from the margins with
a Gaussian distribution for regression and a logistic sigmoid link function for classification and then
does type-II maximum likelihood estimation, that is, RVM maximizes the marginal likelihood. Al-
though called sparse Bayesian learning (Figueiredo, 2001; Eyheramendy et al., 2003), as shown by
Kaban (2007) the sparsity is actually due to the MAP estimation. The similar ambiguity of RVM is
justified by Wipf et al. (2003). Unlike these approaches, we adhere to a full Bayesian-style principle
and learn a distribution of predictive models by optimizing a generalized maximum entropy under
a set of the expected margin constraints. By defining likelihood functions with margins, similar
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Bayesian interpretations of both binary and multi-class SVM were studied by Sollich (2002) and
Zhang and Jordan (2006).

The hierarchical interpretation of the Laplace prior has been explored in a number of contexts
in the literature. Based on this interpretation, a Jeffrey’s non-informative second-level hyper-prior
was proposed by Figueiredo (2001), with an EM algorithm developed to find the MAP estimate.
The advantage of the Jeffrey’s prior is that it is parameter-free. But as shown by Eyheramendy et al.
(2003) and Kaban (2007), usually no advantage is achieved by using the Jeffrey’s hyper-prior over
the Laplace prior. A gamma hyper-prior was used by Tipping (2001) in place of the second-level
exponential as in the hierarchical interpretation of the Laplace prior.

To encourage sparsity in SVM, two strategies have been used. The first one is to replace the
L2-norm by an L1-norm of the weights (Bennett and Mangasarian, 1992; Zhu et al., 2004). The
second strategy is to explicitly add a cardinality constraint on the weights. This will lead to a hard
non-convex optimization problem; thus relaxations must be applied (Chan et al., 2007). Under
the maximum entropy discrimination models, feature selection was studied by Jebara and Jaakkola
(2000) by introducing a set of structural variables. Recently, a smooth posterior shrinkage effect
was shown by Jebara (2009), which is similar to our entropic regularization effect. However, an
analysis of their connections and differences is still not obvious.

Although the parameter distribution p(w) in Theorem 2 has a similar form as that of the Bayesian
Conditional Random Fields (BCRFs) (Qi et al., 2005), MaxEnDNet is fundamentally different from
BCRFs as we have stated. Dredze et al. (2008) present an interesting confidence-weighted linear
classification method, which automatically estimates the mean and variance of model parameters
in online learning. The procedure is similar to (but indeed different from) our variational Bayesian
method of Laplace MaxEnDNet.

Finally, some of the results shown in this paper can be also found in our recent conference
papers (Zhu et al., 2008b; Zhu and Xing, 2009).

9. Conclusions and Future Work

To summarize, we have presented a general theory of maximum entropy discrimination Markov net-
works for structured input/output learning and prediction. This formalism offers a formal paradigm
for integrating both generative and discriminative principles and the Bayesian regularization tech-
niques for learning structured prediction models. It subsumes popular methods such as support
vector machines, maximum entropy discrimination models (Jaakkola et al., 1999), and maximum
margin Markov networks as special cases, and therefore inherits all the merits of these techniques.

The MaxEnDNet model offers a number of important advantages over conventional structured
prediction methods, including: 1) model averaging, which leads to a PAC-Bayesian bound on gen-
eralization error; 2) entropic regularization over max-margin learning, which can be leveraged to
learn structured prediction models that are simultaneously primal and dual sparse; and 3) latent
structures underlying the structured input/output variables, which enables better incorporation of
domain knowledge in model design and semi-supervised learning based on partially labeled data.
In this paper, we have discussed in detail the first two aspects, and the third aspect was explored in
(Zhu et al., 2008c). We have also shown that certain instantiations of theMaxEnDNet model, such as
the LapMEDN that achieves primal and dual sparsity, can be efficiently trained based on an iterative
optimization scheme that employs existing techniques such as the variational Bayes approximation
and the convex optimization procedures that solve the standard M3N. We demonstrated that on syn-
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thetic data the LapMEDN can recover the sparse model as well as the sparse L1-regularized MAP
estimation, and on real data sets LapMEDN can achieve superior performance.

Overall, we believe that the MaxEnDNet model can be extremely general and adaptive, and it
offers a promising new framework for building more flexible, generalizable, and large scale struc-
tured prediction models that enjoy the benefits from both generative and discriminative modeling
principles. While exploring novel instantiations of this model will be an interesting direction to
pursue, development of more efficient learning algorithms, formulation of tighter but easy to solve
convex relaxations, and adapting this model to challenging applications such as statistical machine
translation, and structured associations of genome markers to complex disease traits could also lead
to fruitful results. Finally, the basic principle of MaxEnDNet can be generalized to directed graph-
ical models. The MedLDA model (Zhu et al., 2009a) for discriminative topic modeling represents
our first successful attempt along this direction.
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Appendix A. L1-M3N and its Lagrange-Dual

Based on the L1-norm regularized SVM (Zhu et al., 2004; Bennett and Mangasarian, 1992), a
straightforward formulation of L1-M3N is as follows,

min
w,!

1
2
‖w‖+C

N

"
i=1

!i

s.t. w(#fi(y) ≥ #"i(y)−!i; !i ≥ 0, ∀i, ∀y '= yi

where ‖.‖ is the L1-norm. #fi(y) = f(xi,yi)− f(xi,y), and #"i(y) is a loss function. Another equiv-
alent formulation7 is as follows:

min
w,!

C
N

"
i=1

!i

s.t.
{

‖w‖ ≤ )
w(#fi(y) ≥ #"i(y)−!i; !i ≥ 0, ∀i, ∀y '= yi.

7. See Taskar et al. (2006) for the transformation technique.
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To derive the convex dual problem, we introduce a dual variable $i(y) for each constraint in the
former formulation and form the Lagrangian as follows,

L($,w,!) =
1
2
‖w‖+C

N

"
i=1

!i− "
i,y '=yi

$i(y)(w(#fi(y)−#"i(y)+!i).

By definition, the Lagrangian dual is,

L!($) = inf
w,!
L($,w,!)

= inf
w

[1
2
‖w‖− "

i,y '=yi
$i(y)w(#fi(y)

]

+ inf
!

[

C
N

"
i=1

!i− "
i,y '=yi

$i(y)!i
]

+ "

= −sup
w

[

w(( "
i,y '=yi

$i(y)#fi(y))−
1
2
‖w‖

]

− sup
!

[

"
i,y '=yi

$i(y)!i−C
N

"
i=1

!i
]

+ ",

where " = "i,y '=yi $i(y)#"i(y).
Again, by definition, the first term on the right-hand side is the convex conjugate of %(w) =

1
2‖w‖ and the second term is the conjugate ofU(!) =C"N

i=1 !i. It is easy to show that,

%!($) = I'(| "
i,y '=yi

$i(y)#fki (y)|≤
1
2
, ∀1≤ k ≤ K),

and
U!($) = I'("

y '=yi
$i(y) ≤C, ∀i),

where as defined before I'(·) is an indicator function that equals zero when its argument is true and
infinity otherwise. #fki (y) = fk(xi,yi)− fk(xi,y).

Therefore, we get the dual problem as follows,

max
$ "

i,y '=yi
$i(y)#"i(y)

s.t. | "
i,y '=yi

$i(y)#fki (y)|≤
1
2
, ∀k

"
y '=yi

$i(y) ≤C, ∀i.

Appendix B. Proofs of Theorems and Corollaries

In this section, we prove the theorems and corollaries.

B.1 Proof of Theorem 2

Proof As we have stated, P1 is a convex program and satisfies the Slater’s condition. To compute its
convex dual, we introduce a non-negative dual variable $i(y) for each constraint in F1 and another
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non-negative dual variable c for the normalization constraint
R

p(w)dw = 1. This gives rise to the
following Lagrangian:

L(p(w),!,$,c) = KL(p(w)||p0(w))+U(!)+ c(
Z

p(w)dw −1)

− "
i,y '=yi

$i(y)(
Z

p(w)[#Fi(y;w)−#"i(y)]dw +!i).

The Lagrangian dual function is defined as L!($,c) ! infp(w);!L(p(w),!,$,c). Taking the derivative
of L w.r.t p(w), we get,

,L
,p(w)

= 1+ c+ log
p(w)

p0(w)
− "

i,y '=yi
$i(y)[#Fi(y;w)−#"i(y)].

Setting the derivative to zero, we get the following expression of distribution p(w),

p(w) =
1

Z($)
p0(w)exp{ "

i,y '=yi
$i(y)[#Fi(y;w)−#"i(y)]},

where Z($) !
R

p0(w)exp{"i,y '=yi $i(y)[#Fi(y;w)−#"i(y)]}dw is a normalization constant and
c= −1+ logZ($).

Substituting p(w) into L!, we obtain,

L!($,c) = inf
p(w);!

(− logZ($)+U(!)− "
i,y '=yi

$i(y)!i)

= − logZ($)+ inf
!

(U(!)− "
i,y '=yi

$i(y)!i)

= − logZ($)− sup
!

( "
i,y '=yi

$i(y)!i−U(!))

= − logZ($)−U!($),

which is the objective in the dual problem D1. The {$i(y)} derived from D1 lead to the optimum
p(w) according to Equation (3).

B.2 Proof of Theorem 3

Proof Replacing p0(w) and #Fi(y;w) in Equation (3) with N (w|0, I) and w(#fi(y) respectively,
we can obtain the following closed-form expression of the Z($) in p(w):

Z($) !

Z

N (w|0, I)exp
{

"
i,y '=yi

$i(y)[w(#fi(y)−#"i(y)]
}

dw

=
Z

(22)−
K
2 exp

{

−
1
2
w(w+ "

i,y '=yi
$i(y)[w(#fi(y)−#"i(y)]

}

dw

= exp
(

− "
i,y '=yi

$i(y)#"i(y)+
1
2
‖ "
i,y '=yi

$i(y)#fi(y)‖2
)

.
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Substituting the normalization factor into the general dual problem D1, we get the dual prob-
lem of Gaussian MaxEnDNet. As we have stated, the constraints "y '=yi $i(y) = C are due to the
conjugate ofU(!) =C"i !i.

For prediction, again replacing p0(w) and #Fi(y;w) in Equation (3) withN (w|0, I) andw(#fi(y)
respectively, we can get p(w) = N (w|µ, I), where µ= "i,y '=yi $i(y)#fi(y). Substituting p(w) into
the predictive function h1, we can get h1(x)= argmaxy∈Y (x)µ(f(x,y)= ("i,y '=yi $i(y)#fi(y))(f(x,y),
which is identical to the prediction rule of the standard M3N (Taskar et al., 2003) because the dual
parameters are achieved by solving the same dual problem.

B.3 Proof of Corollary 4

Proof Suppose (p!(w),!!) is the optimal solution of P1, then we have: for any (p(w),!), p(w) ∈
F1 and !≥ 0,

KL(p!(w)||p0(w))+U(!!) ≤ KL(p(w)||p0(w))+U(!).

From Theorem 3, we conclude that the optimum predictive parameter distribution is p!(w) =
N (w|µ!, I). Since p0(w) is also normal, for any distribution p(w) = N (w|µ, I)8 with several steps
of algebra it is easy to show that KL(p(w)|p0(w)) = 1

2µ
(µ. Thus, we can get: for any (µ,!), µ∈

{µ : µ(#fi(y) ≥ #"i(y)−!i, ∀i, ∀y '= yi} and !≥ 0,

1
2
(µ!)((µ!)+U(!!) ≤

1
2
µ(µ+U(!!),

which means the mean of the optimum posterior distribution under a Gaussian MaxEnDNet is
achieved by solving a primal problem as stated in the Corollary.

B.4 Proof of Corollary 6

Proof The proof follows the same structure as the above proof of Corollary 4. Here, we only present
the derivation of the KL-divergence under the Laplace MaxEnDNet.

Theorem 2 shows that the general posterior distribution is p(w) = 1
Z($) p0(w)exp(w(*−

"i,y '=yi $i(y)#"i(y)) and Z($) = exp(−"i,y '=yi $i(y)#"i(y))(K
k=1

)
)−*2k

for the Laplace MaxEnDNet
as shown in Equation (5). Use the definition of KL-divergence and we can get:

KL(p(w)|p0(w)) = 〈w〉(p *−
K

"
k=1
log

)
)−*2k

=
K

"
k=1

µk*k−
K

"
k=1
log

)
)−*2k

,

Corollary 7 shows that µk = 2*k
)−*2k

, ∀1 ≤ k ≤ K. Thus, we get )
)−*2k

= )µk
2*k and a set of equa-

tions: µk*2k + 2*k − )µk = 0, ∀1 ≤ k ≤ K. To solve these equations, we consider two cases.
First, if µk = 0, then *k = 0. Second, if µk '= 0, then we can solve the quadratic equation to get

8. Although F1 is much richer than the set of normal distributions with an identity covariance matrix, Theorem 3 shows
that the solution is a restricted normal distribution. Thus, it suffices to consider only these normal distributions in
order to learn the mean of the optimum distribution. The similar argument applies to the proof of Corollary 6.
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*k: *k =
−1±

√
1+)µ2k

µk . The second solution includes the first one since we can show that when

µk → 0, −1±
√
1+)µ2k

µk → 0 by using the L’Hospital’s Rule. Thus, we get:

µk*k = −1±
√

)µ2k +1.

Since *2k < ) (otherwise the problem is not bounded), µk*k is always positive. Thus, only the
solution µk*k = −1+

√

1+)µ2k is feasible. So, we get:

)
)−*2k

=
)µ2k

2(
√

)µ2k +1−1)
=

√

)µ2k +1+1
2

,

and

KL(p(w)|p0(w)) =
K

"
k=1

(

√

)µ2k +1− log

√

)µ2k +1+1
2

)

−K

=
√
)

K

"
k=1

(

√

µ2k +
1
)
−

1√
)
log

√

)µ2k +1+1
2

)

−K.

Applying the same arguments as in the above proof of Corollary 4 and using the above result of the
KL-divergence, we get the problem in Corollary 6, where the constant −K is ignored. The margin
constraints defined with the mean µare due to the linearity assumption of the discriminant functions.

B.5 Proof of Theorem 8

We follow the same structure as the proof of PAC-Bayes bound for binary classifier (Langford et al.,
2001) and employ the similar technique to generalize to multi-class problems (Schapire et al., 1998).
Recall that the output space is Y , and the base discriminant function is F( · ;w) ∈ H : X ×Y →
[−c,c], where c > 0 is a constant. Our averaging model is specified by h(x,y) = 〈F(x,y;w)〉p(w).
We define the margin of an example (x,y) for such a function h as,

M(h,x,y) = h(x,y)−max
y′ '=y

h(x,y′). (12)

Thus, the model h makes a wrong prediction on (x,y) only ifM(h,x,y)≤ 0. Let Q be a distribution
over X ×Y , and letD be a sample of N examples independently and randomly drawn from Q. With
these definitions, we have the PAC-Bayes theorem. For easy reading, we copy the theorem in the
following:
Theorem 8 (PAC-Bayes Bound of MaxEnDNet) Let p0 be any continuous probability distri-

bution over H and let / ∈ (0,1). If F( · ;w) ∈H is bounded by ±c as above, then with probability
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at least 1−/, for a random sample D of N instances from Q, for every distribution p over H , and
for all margin thresholds 0> 0:

PrQ(M(h,x,y) ≤ 0) ≤ PrD(M(h,x,y) ≤ 0)+O
(

√

0−2KL(p||p0) ln(N|Y |)+ lnN+ ln/−1
N

)

,

where PrQ(.) and PrD(.) represent the probabilities of events over the true distribution Q, and over
the empirical distribution of D , respectively.
Proof Let m be any natural number. For every distribution p, we independently draw m base
models (i.e., discriminant functions) Fi ∼ p at random. We also independently draw m variables
µi ∼U([−c,c]), where U denote the uniform distribution. We define the binary functions gi : X ×
Y → {−c,+c} by:

gi(x,y;Fi,µi) = 2cI(µi < Fi(x,y))− c.

With the Fi, µi, and gi, we define Hm as,

Hm = { f : (x,y) 4→ 1
m

m

"
i=1

gi(x,y;Fi,µi)|Fi ∈H ,µi ∈ [−c,c]}.

We denote the distribution of f over the set Hm by pm. For a fixed pair (x,y), the quantities
gi(x,y;Fi,µi) are i.i.d bounded random variables with the mean:

〈gi(x,y;Fi,µi)〉Fi∼p,µi∼U [−c,c] = 〈(+c)p[µi ≤ Fi(x,y)|Fi]+ (−c)p[µi > Fi(x,y)|Fi]〉Fi∼p

= 〈
1
2c
c(c+Fi(x,y))−

1
2c
c(c−Fi(x,y))〉Fi∼p

= h(x,y).

Therefore, 〈 f (x,y)〉 f∼pm = h(x,y). Since f (x,y) is the average over m i.i.d bounded variables,
Hoeffding’s inequality applies. Thus, for every (x,y),

Pr f∼pm [ f (x,y)−h(x,y) > !] ≤ e−
m
2c2

!2 .

For any two events A and B, we have the inequality,

Pr(A) = Pr(A,B)+Pr(A, B̄) ≤ Pr(B)+Pr(B̄|A).

Thus, for any 0> 0 we have

PrQ[M(h,x,y) ≤ 0] ≤ PrQ[M( f ,x,y) ≤ 0
2
]+PrQ[M( f ,x,y) >

0
2
|M(h,x,y) ≤ 0], (13)

where the left hand side does not depend on f . We take the expectation w.r.t f ∼ pm on both sides
and can get
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PrQ[M(h,x,y) ≤ 0] ≤ 〈PrQ[M( f ,x,y) ≤ 0
2
]〉 f∼pm

+〈PrQ[M( f ,x,y) >
0
2
|M(h,x,y) ≤ 0]〉 f∼pm . (14)

Fix h,x, and y, and let y′ achieve the margin in (12). Then, we get

M(h,x,y) = h(x,y)−h(x,y′), andM( f ,x,y) ≤ f (x,y)− f (x,y′).

With these two results, since 〈 f (x,y)− f (x,y′)〉 f∼pm = h(x,y)−h(x,y′), we can get

〈PrQ[M( f ,x,y) >
0
2
|M(h,x,y) ≤ 0]〉 f∼pm = 〈Pr f∼pm [M( f ,x,y) >

0
2
|M(h,x,y) ≤ 0]〉Q

≤ 〈Pr f∼pm [ f (x,y)− f (x,y′) >
0
2
|M(h,x,y) ≤ 0]〉Q

≤ 〈Pr f∼pm [ f (x,y)− f (x,y′)−M(h,x,y) >
0
2
]〉Q

≤ e−
m02

32c2 , (15)

where the first two inequalities are due to the fact that if two events A ⊆ B, then p(A) ≤ p(B), and
the last inequality is due to the Hoeffding’s inequality.

Substitute (15) into (14), and we get,

PrQ[M(h,x,y) ≤ 0] ≤ 〈PrQ[M( f ,x,y) ≤ 0
2
]〉 f∼pm + e−

m02

32c2 . (16)

Let pm0 be a prior distribution on Hm. pm0 is constructed from p0 over H exactly as pm is
constructed from p. Then, KL(pm||pm0 ) = mKL(p||p0). By the PAC-Bayes theorem (McAllester,
1999), with probability at least 1−/ over sample D , the following bound holds for any distribution
p,

〈PrQ[M( f ,x,y) ≤ 0
2
]〉 f∼pm ≤ 〈PrD [M( f ,x,y) ≤ 0

2
]〉 f∼pm

+

√

mKL(p||p0)+ lnN+ ln/−1+2
2N−1

. (17)

By the similar statement as in (13), for every f ∈Hm we have,

PrD [M( f ,x,y) ≤ 0
2
] ≤ PrD [M(h,x,y) ≤ 0]+PrD [M( f ,x,y) ≤ 0

2
|M(h,x,y) > 0].
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Taking the expectation at both sides w.r.t f ∼ pm, we can get

〈PrD [M( f ,x,y) ≤ 0
2
]〉 f∼pm ≤ PrD [M(h,x,y) ≤ 0]

+〈PrD [M( f ,x,y) ≤ 0
2
|M(h,x,y) > 0]〉 f∼pm , (18)

where the second term at the right hand side equals to 〈Pr f∼pm [M( f ,x,y)≤ 0
2 |M(h,x,y) > 0]〉(x,y)∼D

by exchanging the orders of expectations, and we can get

Pr f∼pm
[

M( f ,x,y) ≤ 0
2
|M(h,x,y) > 0

]

= Pr f∼pm
[

∃y′ '= y : # f (x,y′) ≤ 0
2
|∀y′ '= y : #h(x,y′) > 0

]

≤ Pr f∼pm
[

∃y′ '= y : # f (x,y′) ≤ 0
2
|#h(x,y′) > 0

]

≤ "
y′ '=y

Pr f∼pm
[

# f (x,y′) ≤ 0
2
|#h(x,y′) > 0

]

≤ (|Y |−1)e−
m02

32c2 , (19)

where we use # f (x,y′) to denote f (x,y)− f (x,y′), and use #h(x,y′) to denote h(x,y)−h(x,y′).
Put (16), (17), (18), and (19) together, then we get following bound holding for any fixed m and

0> 0,

PrQ[M(h,x,y) ≤ 0] ≤ PrD [M(h,x,y) ≤ 0]+ |Y |e−
m02

32c2 +

√

mKL(p||p0)+ lnN+ ln/−1+2
2N−1

.

To finish the proof, we need to remove the dependence onm and 0. This can be done by applying
the union bound. By the definition of f , it is obvious that if f ∈ Hm then f (x,y) ∈ {(2k−m)c/m :
k= 0,1, . . . ,m}. Thus, even though 0 can be any positive value, there are no more than m+1 events
of the form {M( f ,x,y) ≤ 0/2}. Since only the application of PAC-Bayes theorem in (17) depends
on (m,0) and all the other steps are true with probability one, we just need to consider the union of
countably many events. Let /m,k = //(m(m+ 1)2), then the union of all the possible events has a
probability at most "m,k /m,k = "m(m+ 1)//(m(m+ 1)2) = /. Therefore, with probability at least
1−/ over random samples of D , the following bound holds for all m and all 0> 0,

PrQ[M(h,x,y) ≤ 0]−PrD [M(h,x,y) ≤ 0] ≤ |Y |e−
m02

32c2 +

√

mKL(p||p0)+ lnN+ ln/−1m,k +2
2N−1

≤ |Y |e−
m02

32c2 +

√

mKL(p||p0)+ lnN+3ln m+1
/ +2

2N−1
.

Setting m= 616c20−2 ln N|Y |2
KL(p||p0)+17 gives the results in the theorem.
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Abstract
Many learning tasks, such as large-scale text categorization and word prediction, can benefit from
efficient training and classification when the number of classes, in addition to instances and fea-
tures, is large, that is, in the thousands and beyond. We investigate the learning of sparse class
indices to address this challenge. An index is a mapping from features to classes. We compare
the index-learning methods against other techniques, including one-versus-rest and top-down clas-
sification using perceptrons and support vector machines. We find that index learning is highly
advantageous for space and time efficiency, at both training and classification times. Moreover, this
approach yields similar and at times better accuracies. On problems with hundreds of thousands of
instances and thousands of classes, the index is learned in minutes, while other methods can take
hours or days. As we explain, the design of the learning update enables conveniently constraining
each feature to connect to a small subset of the classes in the index. This constraint is crucial for
scalability. Given an instance with l active (positive-valued) features, each feature on average con-
necting to d classes in the index (in the order of 10s in our experiments), update and classification
take O(dl log(dl)).
Keywords: index learning, many-class learning, multiclass learning, online learning, text catego-
rization

1. Introduction

A fundamental activity of intelligence is to repeatedly and rapidly categorize. Categorization (clas-
sification or prediction) has a number of uses; in particular, categorization enables inferences and
the taking of appropriate actions in different situations. Advanced intelligence, whether of animals
or artificial systems, may require effectively working with myriad classes (concepts or categories).
How can a system quickly classify when the number of classes is huge (Figure 1), that is, in the thou-
sands and beyond? In nature, this problem of rapid classification in the presence of many classes
may have been addressed (for evidence of fast classification in the visual domain, see Thorpe et al.
1996 and Grill-Spector and Kanwisher 2005). Furthermore, ideally, we seek systems that efficiently
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?x

Figure 1: The problem of quick classification in the presence of myriad classes: How can a system
quickly classify a given instance, specified by a feature vector x ∈ Rn, into a small subset
of classes from among possibly millions of candidate classes (shown by small circles)?
How can a system efficiently learn to quickly classify?

learn to efficiently classify in the presence of myriad classes. Many tasks can be viewed as instan-
tiations of this large-scale many-class learning problem, including: (1) classifying text fragments
(such as queries, advertisements, news articles, or web pages) into a large collection of categories,
such as the ones in the Yahoo! topic hierarchy (http://dir.yahoo.com) or the Open Directory
Project (http://dmoz.org) (e.g., Dumais and Chen, 2000; Liu et al., 2005; Madani et al., 2007;
Xue et al., 2008), (2) statistical language modeling and similar prediction problems (e.g., Goodman,
2001; Even-Zohar and Roth, 2000; Madani et al., 2009), and (3) determining the visual categories
for image tagging, object recognition, and multimedia retrieval (e.g., Wang et al., 2001; Forsyth and
Ponce, 2003; Fidler and Leonardis, 2007; Chua et al., 2009; Aradhye et al., 2009). The following
realization is important: in many prediction tasks, such as predicting words in text (statistical lan-
guage modeling), training data is abundant because the class labels are not costly, that is, the source
of class feedback (the labels) need not be explicit assignment by humans (see also Section 3.1).

To classify an instance, applying binary classifiers, one by one, to determine the correct class(es)
is quickly rendered impractical with increasing number of classes. Moreover, learning binary clas-
sifiers can be too costly with large numbers of classes and instances (millions and beyond). Other
techniques, such as nearest neighbors, can suffer similar drawbacks, such as prohibitive space re-
quirements, possibly slow classification speeds, or poor generalization. Ideally, we desire scalable
discriminative learning methods that learn compact classification systems that attain adequate accu-
racy.

One idea for achieving quick classification is to use the features of the given instance as cues to
dramatically reduce the space of possibilities, that is, to build and update a mapping, or an index,
from features to the classes. We explore this idea in this work. An index here is a weighted bipartite
graph that connects each feature to zero or more classes. During classification, given an instance
containing certain features, the index is used (“looked up”) much like a typical inverted index for
document retrieval would be. Here, classes are retrieved and ranked by the scores that they obtain
during retrieval, as we describe. The ranking or the scores can then be used for class assignment. In
this work, we explore the learning of such cues and connections, which we refer to as index learning.
For this approach to be effective overall, roughly, two properties need to hold: To achieve adequate
accuracy and efficiency and in many problems arising in practice, (1) each feature need only connect
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to a relatively small number of classes, and (2) these connections can be discovered efficiently. We
provide empirical evidence for these conjectures by presenting efficient and competitive indexing
algorithms.

We design our algorithms to efficiently learn sparse indices that yield accurate class rankings.
As we explain, the computations may best be viewed as being carried out from the side of features.
During learning, each feature determines to which relatively few classes it should lend its weights
(votes) to, subject to (space) efficiency constraints. This parsimony in connections is achieved
by a kind of sparsity-preserving updates. Given an instance with l active (i.e., positive-valued)
features, each feature on average connecting to d classes in the index, update and classification take
O(dl log(dl)) operations. d is in the order of 10s in our experiments. The approach we develop
uses ideas from online learning and multiclass learning, including mistake driven and margin-based
updates, and expert aggregation (e.g., (e.g., Rosenblatt, 1958; Genest and Zidek, 1986; Littlestone,
1988; Crammer and Singer, 2003a), as well as the idea of the inverted index, a core data structure
in information retrieval (e.g., Witten et al., 1994; Turtle and Flood, 1995; Baeza-Yates and Ribeiro-
Neto, 1999).

We empirically compare our algorithms to one-versus-rest and top-down classifier based meth-
ods (e.g., Rifkin and Klautau, 2004; Liu et al., 2005; Dumais and Chen, 2000), and to the first
proposal for index learning by Madani et al. (2007). We use linear classifiers—perceptrons and
support vector machines—in the one-versus-rest and top-down methods. One-versus-rest is a sim-
ple strategy that has been shown to be quite competitive in accuracy in multiclass settings, when
properly regularized binary classifiers are used (Rifkin and Klautau, 2004), and linear support vec-
tor machines achieve the state of the art in accuracy in many text classification problems (e.g.,
Sebastiani, 2002; Lewis et al., 2004). Hierarchical training and classification is a fairly scalable and
conceptually simple method that has commonly been used for large-scale text categorization (e.g.,
Koller and Sahami, 1997; Dumais and Chen, 2000; Dekel et al., 2003; Liu et al., 2005).

In our experiments on six text categorization data sets and one word prediction problem, we
find that the index is learned in seconds or minutes, while the other methods can take hours or days.
The index learned is more efficient in its use of space than those of the other classification systems,
and yields quicker classification time. Very importantly, we find that budgeting the connections of
the features is a major factor in rendering the approach scalable. We explain how the design of
the update makes this budget enforcement convenient. We have observed that the accuracies are
as good as and at times better than the best of the other methods that we tested. As we explain,
methods based on binary classifiers, such as one-versus-rest and top-down, are at a disadvantage in
our many-class tasks, not just in terms of efficiency but also in accuracy. The indexing approach is
simple: it requires neither taxonomies, nor extra feature reduction preprocessing. Thus, we believe
that index learning offers a viable option for various many-class settings.

The contribution of this paper include:

• Raising the problem of large-scale many-class learning, with the goal of achieving both effi-
cient classification and efficient training

• Proposing and exploring index learning, and developing a novel weight-update method in the
process

• Empirically comparing index learning to several commonly used techniques, on a range of
small and large problems and under several evaluation measures of accuracy and space and

2573



MADANI, CONNOR AND GREINER

time efficiency, and providing evidence that very scalable systems are possible without sacri-
ficing accuracy

This paper is organized as follows. In Section 2, we discuss related work. In Section 3, we
describe and motivate the learning problem, independent of the solution strategy. We explain the
index, and describe our implementation and measures of index quality, in terms of both accuracy
and efficiency. We then report on the NP-hardness of a formalization of the index learning problem.
In Section 4, we present our index learning approach. Throughout this section, we discuss and
motivate the choices in the design of the algorithms. In particular, the consideration of what each
feature should do in isolation turns out to be very useful. In Section 5, we briefly describe the other
methods we compare against, including the one-versus-rest and top-down methods. In Section 6,
we present a variety of experiments. We report on comparisons among the techniques and our
observations on the effects of parameter choices and tradeoffs. In Section 7, we summarize and
provide concluding thoughts. In the appendices, we present a proof of NP-hardness and additional
experiments.

2. Related Work

Related work includes multiclass learning and online learning, expert methods, indexing, streaming
algorithms, and concepts in cognitive psychology.

There exists much work on multiclass learning, including nearest neighbors approaches, naive
Bayes, support vector machine variants, one-versus-rest and output-codes (see, for example, Hastie
et al., 2001; Rennie et al., 2003; Dietterich and Bakiri, 1995); however, the focus has not been
scalability to very large numbers of classes.

Multiclass online algorithms with the goal of obtaining good rankings include the multiclass
and multilabel perceptron (MMP) algorithm (Crammer and Singer, 2003a) and subsequent work
(e.g., Crammer and Singer, 2003b; Crammer et al., 2006). These algorithms are very flexible and
include both additive and multiplicative variants, and may optimize an objective in each update;
some variants can incorporate non-linear kernel techniques. We may refer to them as prototype
methods because the operations (such as weight adjustments and imposing various constraints) can
be viewed as being performed on the (prototype) weight vector for each class. In our indexing algo-
rithms it is the features that update and normalize their connections to the classes. This difference is
motivated by efficiency (for further details, see Sections 4.1 and 4.4, and the experiments). Similar
to the perceptron algorithm (Rosenblatt, 1958), we use a variant of mistake driven updating. The
variant is based on trying to achieve and preserve a margin during online updating. Learning to
improve or optimize some measure of margin has been shown to improve generalization (Vapnik,
2000). On use of margin for online methods, see for instance Krauth and Mezard (1987), Anlauf
and Biehl (1989), Freund and Schapire (1999), Gentile (2001), Li and Long (2002), Li et al. (2002),
Crammer et al. (2006) and Carvalho and Cohen (2006). In our setting, a simple example shows
that keeping a margin can be beneficial over pure mistake-driven updating even when considering a
single feature in isolation (Section 4.3.1).

The indexing approach in its focus on features (predictors) has similarities with additive models
and tree-induction algorithms (Hastie et al., 2001), and may be viewed as a variant of so-called
expert (opinion or forecast) aggregation and weight learning (e.g., Mesterharm, 2000; Freund et al.,
1997; Cesa-Bianchi et al., 1997; Vovk, 1990; Genest and Zidek, 1986). In the standard experts
problems, all or most experts provide their output, and the output is usually binary or a probability
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(the outcome to predict is binary). In our setting, a relatively small set of features are active in each
instance, and only those features are used for voting and ranking. In this respect, the problem is in
the setting of the “sleeping” or “specialist” experts scenarios (Freund et al., 1997; Cohen and Singer,
1999). Differences or special properties of our setting include the fact that here each expert provides
a partial class-ranking with its votes, the votes can change over time (not fixed), and the pattern of
change is dependent on the algorithm used (the experts are not “autonomous”). In a multiclass
calendar scheduling task (Blum, 1997), Blum investigates an algorithm in which each feature votes
for (connects to) the majority class in the past 5 classes seen for that feature (the classes of the most
recent 5 instances in which the feature was active). This design choice was due to the temporal
(drifting) nature of the learning task. Feature weights for the goodness of the features are learned
(in a multiplicative or Winnow style manner). Mesterharm refers to such features (or experts) as sub-
experts (Mesterharm, 2000, 2001), as the performance can be significantly enhanced by learning a
good weighting for mixing (aggregating) the experts’ votes,1 and it is shown how different linear
threshold algorithms can be extended to the multiclass weight learning setting. The classifier is
referred to as a linear-max classifier, since the maximum scoring class is assigned to the instance
(as opposed to a linear-threshold classifier). Mesterharm’s work includes the case where the experts
may cast probabilities for each class, but the focus is not on how the features may compute such
probabilities (it is assumed the experts are given). Learning different weights for the features can
complement indexing techniques. Section 4.3.2 gives a limited form of differential expert weighting
(see also Madani, 2007a).

The one-versus-rest technique (e.g., Rifkin and Klautau, 2004) and use of a class hierarchy
(taxonomy) (e.g., Liu et al., 2005; Dumais and Chen, 2000; Koller and Sahami, 1997) for top-down
training are simple intuitive techniques commonly used for text categorization. The use of the
structure of a taxonomy for training and classification offers a number of efficiency and/or accu-
racy advantages (Koller and Sahami, 1997; Liu et al., 2005; Dumais and Chen, 2000; Dekel et al.,
2003; Xue et al., 2008), but also can present several drawbacks. Issues such as multiple taxonomies,
evolving taxonomies, unnecessary intermediate categories on the path from the root to deeper cat-
egories, or unavailability of a taxonomy are all difficulties for the tree-based approaches. In our
experiments, we find that index learning offers both several efficiency advantages and ease of use
(Section 6). No taxonomy or separate feature-reduction pre-processing is required. Indeed, our
method can be viewed as a feature selection or reduction method. On the other hand, researchers
have shown some accuracy advantages from the use of the taxonomy structure (e.g., top-down) com-
pared to “flat” one-versus-rest training (in addition to efficiency) (e.g., Dumais and Chen, 2000; Liu
et al., 2005; Dekel et al., 2003) (this depends somewhat on the particular method and the loss used).
Our current indexing approach is flat (but see Huang et al. 2008, for a two-stage nonlinear method
using fast index learning for the first stage). One advantage that classifier-based methods such as
one-versus-rest and top-down may offer is that the training can be highly parallelized: learning of
each binary classifier can be carried out independent of the others.

The inverted index, for instance from terms to documents, is a fundamental data structure in
information retrieval (Witten et al., 1994; Baeza-Yates and Ribeiro-Neto, 1999). Akin to the TFIDF
weight representation and variants, the index learned is also weighted. However, in our case, the
classes (to be indexed), unlike the documents, are implicit, indirectly specified by the training in-
stances (the instances are not the “documents” to be indexed), and the index construction becomes

1. Theoretical work often focuses the analysis on learning the best expert, and the use of term “subexpert” is introduced
by Mesterharm to differentiate.
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a learning problem. As one simple consequence, the presence of a feature in a training instance that
belongs to class c does not imply that the feature will point to class c in the index learned. We give a
baseline algorithm, similar to TFIDF index construction in its independent computation of weights,
in Section 4.2. Indexing has also been used to speed up nearest neighbor methods, classification,
and retrieval and matching schemes (e.g., Grobelnik and Mladenic, 1998; Bayardo et al., 2007; Fi-
dler and Leonardis, 2007). Indexing could be used to index already trained (say linear) classifiers,
but the issues of space and time efficient learning remain, and accuracy can suffer when using bi-
nary classifiers for class ranking (see Section 6.1). Learning of an unweighted index was introduced
by Madani et al. (2007), in which the problem of efficient classification under myriad classes was
motivated. This two-stage approach is explained in Section 6.4.1, and we see in Section 6.4.1 that
learning a weighted index to improve ranking appears to be a better strategy than the original ap-
proach in terms of accuracy, as well as simplicity and efficiency. Subsequent work on indexing
by Madani and Huang (2008) explores further variations and advances to feature updating (e.g.,
supporting nonstationarity and hinge-loss minimization), taking as a starting point the findings of
this work on the benefits of efficient feature updating. It also includes comparisons with additional
multiclass approaches. This paper is an extension of the work by Madani and Connor (2008).

The field of data-streaming algorithms studies methods for efficiently computing statistics of
interest over data streams, for example, reporting the items with proportions exceeding a threshold,
or the highest k proportion items (sometimes called “hot-list” or “iceberg” queries). This is to be
achieved under certain efficiency constraints, for example, with at most two passes over the data and
poly logarithmic space (e.g., see Fang et al., 1998; Gibbons and Matias, 1999). Note that in the case
of a single feature, if we only value good rankings, computing weights may not be necessary, but
in the general case of multiple features, the weights become the votes given to each class, and are
essential in significantly improving the final rankings. An algorithm similar to our single-feature
update for the Boolean case is used as a subroutine by Karp et al. (2003), for efficiently computing
most frequent items. In some scenarios, drifts in proportions can exist, and then online and possibly
competitive measures of performance may become important (Borodin and El Yaniv, 1998; Albers
and Westbrook, 1998). In this ranking and drifting respect, the feature-update task has similarities
with online list-serving and caching (Borodin and El Yaniv, 1998), although we may assume that
the sequence is randomly ordered (at minimum, not ordered by an adversary). Some connections
and differences between goals in machine learning research and space-efficient streaming and online
computations are discussed by Guha and McGregor (2007).

Statistical language modeling and similar prediction tasks are often accomplished by n-gram
(Markov) models (Goodman, 2001), but the supervised (or discriminative) approach may provide
superior performance due to its potential for effectively aggregating richer feature sets (Even-Zohar
and Roth, 2000; Madani et al., 2009). Prior work has focused on discriminating within a small
(confusion) set of possibilities. In the related task of prediction games (Madani, 2007a,b), Madani
proposes and explores an integrated learning activity in which a system builds its own classes to be
predicted and to help predict. That approach involves large-scale long-term online learning, where
the number of concepts grows over time, and can exceed millions.

Concepts and various phenomena associated with them have been studied extensively in cog-
nitive psychology (e.g., Murphy, 2002). A general question that motivated our work, and that ap-
pears heretofore uninvestigated, is the question of computational processes required for a system to
effectively deal with a huge number of concepts. Three prominent theories on the nature of the rep-
resentation of concepts are the classical theory (logical representations), the exemplar theory (akin
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to nearest neighbors), and the prototype theory (akin to linear feature-based representations). Pro-
totype theory is perhaps the most successful in explaining various observed phenomena regarding
human concepts (Murphy, 2002). Interestingly, our work suggests a predictor-based representa-
tion for efficient recall/recognition purposes, that is, the representation of a concept, at a minimum
for recall/retrieval purposes, is distributed among the features (predictors or cues). However, the
predictor-based representation remains closest to the prototype theory.

3. Many-Class Learning and Indexing

In this section, we first present the learning setting and introduce some notation in the process.
Next, we motivate many-class learning and the indexing approach. In Section 3.2, we define the
index and how it is implemented and used in this work. We then present our accuracy and efficiency
evaluation measures in Section 3.3. Before moving to index learning (Section 4), we analyze the
computational complexity of a formulation of index learning in Section 3.4.

A learning problem consists of a collection S of instances, where S can denote a finite set, or, in
the online setting, a sequence of instances. Each training instance is specified by a vector of feature
values, vx, as well as a class (or assigned label) that the instance belongs to,2 cx. Thus each instance
x is a pair 〈vx,cx〉. F and C denote respectively the set of all features and classes. Our proposed
algorithms ignore features with nonpositive value,3 and in our experiments feature values range in
[0,1]. vx[ f ] denotes the value of feature f in the vector of features of instance x, where vx[ f ] ≥ 0.
If vx[ f ] > 0, we say feature f is active (in instance x), and denote this aspect by f ∈ x. Thus, an
instance may be viewed as a set of active features, and the input problem may be seen as a tripartite
graph (Figure 2). The number of active features is denoted by |x|. We also use the expression x ∈ c
to denote that instance x belongs to class c (c is a class of x).

As an example, in text categorization, a “document” (e.g., an email, an advertisement, a news
article, etc.) is typically translated to a vector by a “bag of words” method as follows. Each term
(e.g., “ball”, “cat”, “the”, ”victory”, ...) is assigned an exclusive unique integer id. The finite set
of words (more generally phrases or ngrams), those appearing in at least one document in the data
set, comprise the set of features F . Thus the vector vx corresponding to a document lives in an |F |
dimensional space, where vx[i] = k iff the word with id i (corresponding to dimension i) appears
k times in the document, where k ≥ 0 (other possibilities for feature values include Boolean and
TFIDF weighting). Therefore, in typical text categorization tasks, the number of active features
in an instance is the number of unique words that appear in the corresponding document. The
documents in the training set are assigned zero or more true class ids as well. Section 6 describes
further the feature representation and other aspects of our experimental data. For background on
machine learning in particular when applied to text classification, please refer to Sebastiani (2002)
or Lewis et al. (2004).

2. In this paper, to keep the treatment focused, and for simplicity of evaluation and algorithm description, we treat
the multiclass but single class (label) per instance setting. However, two of our seven data sets include multilabel
instances. Whenever necessary, we briefly note the changes needed, for example, to the algorithm, to handle multiple
labels. However, the multilabel setting may require additional treatment for better accuracy.

3. A partial remedy is to replace each feature that can also have negative values by two features, one having value
max(v,0), the other max(0,−v).
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Figure 2: A depiction of the problem: the input can be viewed as a tripartite graph, possibly
weighted, and perhaps only seen one instance at a time in an online manner. Our goal is
to learn an accurate efficient index, that is, a sparse weighted bipartite graph that connects
each feature to zero or more classes, such that an adequate level of accuracy is achieved
when the index is used for classification. The instances are ephemeral: they serve only
as intermediaries in affecting the connections from features to classes. The index to learn
is also equivalent to a sparse weight matrix (in which the entries are nonnegative in our
current work) (see Sections 3.2 and 3.2.1).

3.1 The Level of Human Involvement in Teaching and Many-Class Learning

Learning under myriad-classes is not confined to a few text-classification problems. There are a
number of tasks that could be viewed as problems with many classes and, if effective many-class
methods are developed, such an interpretation can be quite useful. In terms of the sources of the
classes, we may roughly distinguish supervised learning problems along the following dimensions
(the roles of the teacher):

1. The source that defines the classes of interest, that is, the space of the target classes to predict.

2. The source of supervisory feedback, that is, the source or the process that assigns to each
instance one or more class labels, using the defined set of classes. This is necessary for the
procurement of training data, for supervised learning.

In many familiar cases, the classes are both human-defined and human-assigned. These include
typical text classification problems (e.g., see Lewis et al. 2004 and Open Directory Project or Yahoo!
directories/topics). In many others, class assignment is achieved by some “natural” or indirect
activity, that is, the “labeling” process is not as explicit or controlled. The labeling is a by-product
of an activity carried out for other purposes. One example of this case is data sets obtained from
news groups postings (e.g., Lang, 1995). In this case, users post or reply to messages, without
necessarily verifying whether their message is topically relevant to the group. Another example
problem is predicting words using the context that the word appears (the words are the classes). In
these problems, the set of the classes of interest may be viewed as human-defined, but the labeling
is implicit (collections of written or spoken texts in the word prediction task). The extreme case
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where both the set of classes and the labeling is achieved with little or no human involvement is also
possible, and we believe very important. For instance, Madani (2007b,a) explores tasks in which
it is (primarily) the machine that builds its own many concepts, through experience, and learns
prediction connections among them. This is a kind of autonomous learning. As human involvement
and control diminishes over the learning process, the amount of noise tends to increase. However,
training data as well as the number of classes can increase significantly. We have used the term
“many-class” (in contrast to multiclass) to emphasize this aspect of the large number of classes in
these problems.

Thus, in large-scale many-class learning problems, all the three sets S, C , and F can be huge.
For instance, in experiments reported here, C and F can be in the tens of thousands, and S can
be in the millions. S can be an infinite stream of instances and C and F can grow indefinitely in
some tasks (e.g., Madani, 2007a). While F can be large (e.g., hundreds of thousands), in many
applications such as text classification, instances tend to be relatively sparse: relatively a few of the
features (tens or hundreds) are active in each instance.

The number of classes is so large that indexing them, not unlike the inverted index used for re-
trieval of documents and other object types, is a plausible approach. An important difference from
traditional indexing is that classes, unlike documents, are implicit, specified only by the instances
that belong to them. An index is a common technique for fast retrieval and classification, for in-
stance to speed up nearest neighbor or nearest centroid computations (e.g., Grobelnik and Mladenic,
1998; Bayardo et al., 2007; Gabrilovich and Markovitch, 2007; Fidler and Leonardis, 2007). Also,
for fast classification when there is a large number of classes, after one-versus-rest training of linear
binary classifiers (see Section 5 on one-versus-rest training), a natural and perhaps necessary tech-
nique is to index the weights, that is, to build an index mapping each feature to those classifiers in
which the feature has nonzero weight. This approach is indirect and does not adequately address
efficient classification and space efficiency,4 and the problem of slow training time for one-versus-
rest training remains. Here, we propose to learn the index edges as well as their weights directly.
For good classification performance as well as efficiency, we need to be very selective in the choice
of the index entries, that is, which connections to create and with what weights. Figure 3 presents
the basic cycle of categorization via index look up and learning via index updating (adjustments to
connection weights). We have termed the system that is learned a Recall System (Madani et al.,
2007): a system that, when presented with an instance, quickly “recalls” the appropriate classes
from a potentially huge number of possibilities.

3.2 Index Definition, Implementation, and Use

The use of the index for retrieval, scoring, and ranking (classification) is similar to the use of in-
verted indexes for document retrieval. Here, features “index” classes instead of documents. In our
implementation, for each feature there corresponds exactly one list that contains information about
the feature’s connections (similar to inverted or posting lists Witten et al. 1994 and Baeza-Yates and
Ribeiro-Neto 1999). The list may be empty. Each entry in the list corresponds to a class that the
feature is connected to. An entry in the list for feature f contains the id of a class c, as well as the
connection or edge weight w f ,c, w f ,c > 0. Each class has at most one entry in a feature’s list. If
a class c doesn’t have an entry in the list for feature f , then wf ,c is taken to be 0. The connection

4. Our experiments show that if we do not drop some of the connections during learning, training and classification time
and space consumption suffer significantly.
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Basic Mode of Operation:
Repeat
1. Get next instance x
2. Retrieve, score, and rank classes via
active features of x
3. If update condition is met:
3.1 Update index.

4. Zero (reset) the scores of the retrieved classes.
(a)

Algorithm RankedRetrieval(x, dmax)
/* initially, for each class c, its score sc is zero */
1. For each active feature f (i.e., vx[ f ] > 0):
For the first dmax classes with highest
connection weight to f :
1.1. sc ← sc+(r f ×wf ,c×vx[ f ])
2. Return those classes with nonzero score,
ranked by score.

(b)

Figure 3: (a) The cycle of classification and learning (updating). During pure classification (e.g.,
when testing), step 3 is skipped. See part (b) and Section 3.2 for how to use the index, and
Section 4 for when and how to update the index. (b) The algorithm that uses a weighted
index for retrieving and scoring classes. See Section 3.2.

weights are updated during learning. Our index learning algorithms keep the lists small for space
and time efficiency (as we explain in Section 4.1). For ease of updating and efficiency, the lists are
doubly linked circular dynamic lists in our implementation, and are kept sorted by weight.

Figure 3(b) shows how the index is used, via a procedure that we name RankedRetrieval. On
presentation of an instance, the active features score the classes that they are connected to. The
score that a class c receives, sc, can be written as

sc = !
f∈x

r f ×wf ,c×vx[ f ], (1)

where r f is a measure of the predictiveness power or the rating of feature f , and we describe a
method for computing it in Section 4.3.2. Currently, for simplicity, we may assume the rating is 1
for all features.5 Note that the sum need only go over the entries in the list for each active feature
(other weights are zero). We use a hash map to efficiently update the class scores during scoring.
In a sense, each active feature casts votes for a subset of the classes, and those classes receive and
tally their incoming votes (scores). In this work, the scores of the retrieved classes are positive.
The positive scoring classes can then be ranked by their score, or, if it suffices, only the maximum
scoring class can be kept track of and reported. Note that if negative scores (or edge weights) were
allowed, then, when some true class obtains a negative score, the system would potentially have to
process (i.e., retrieve or update) all zero scoring classes as well, hurting efficiency (this depends on
how update and classification are defined). The scores of the retrieved classes are reset to 0 before
the next call to RankedRetrieval.

On instance x, and with d connections per feature in the index, there can be at most |vx|d unique
classes scored. The average computation time of RankedRetrieval is thusO(d|vx| log(d|vx|)), where
d denotes the average number of connections of a randomly picked feature (from a randomly picked
instance). In our implementation, for each active feature, only at most the dmax classes (25 in our
experiments) with highest connection weights to the feature participate in scoring.

5. After index learning, r f can be incorporated into the connection weights wf ,c.
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3.2.1 GRAPH AND LINEAR-ALGEBRAIC VIEWS OF THE INDEX

A useful way of viewing the index is as a directed weighted bipartite graph (Figure 2): on one side
there are features (one node per feature) and on the other side there are the classes. The index maps
(connects) each feature to a subset of zero or more classes. An edge connecting feature f to class c
has a positive weight denoted by wf ,c, or wi, j for feature i and class j, and corresponds to a list entry
in the list for feature f . Absent edges have zero weight. The outdegree of a feature is the number
of (outgoing) edges of the feature. Small feature outdegrees translates to efficiency in retrieval (and
updating as we will see).

In addition to the graph-theoretic view, the index can also be seen as a sparse non-negative
(weight) matrix W. Let the rows correspond to the features and let the columns correspond to the
classes. Retrieval or classification involves efficiently computing6 the vector of class scores vTxW,
and post-processing the resulting (sparse) score vector (e.g., sorting the positive scoring classes).
Efficiency constraints translate to limiting the number of nonzero entries in each row. In the indexing
algorithms of this paper, the sum of the entries in each row does not exceed 1. Lemma 1 below states
that this restriction does not lose power, among the set of nonnegative matrices, for achieving good
rankings.

3.3 Evaluating the Index

We evaluate index learning based on efficiency as well as the quality of classification (accuracy).
In large-scale learning, both memory and time efficiency are important, and both at training as well
as classification times.7 Our other goal is to maintain satisfactory accuracy. In our experiments in
Section 6.2 (on finite samples), we report on three measures of efficiency: training time Ttr, the size
of the index learned, denoted by |W|, meaning the number of edges or nonzero weights in the index,
and the average number of edges d touched (processed) per feature during classification (a measure
of work/speed during classification time). We next describe our classification accuracy measures.

We use the standard accuracy (i.e., one minus zero-one error), here denoted R1, as well as other
measures of ranking quality. R1 allows us to compare to other published results. A method for
ranking classes, given an instance x, outputs a sorted list of zero or more classes. In addition to
weighted indices, we describe other methods for ranking the classes in Section 5. An instance may
belong to multiple classes in some tasks (two of our data sets in Figure 8). To simplify evaluation
and presentation, in this paper we only consider the highest ranked true class. Let kx be the rank of
the highest ranked true class after presenting instance x to the system. Thus kx ∈ {1,2,3, · · ·}. If the
true class does not appear in the ranked list, then kx = ". We use Rk to denote recall at (rank) k,
which measures the proportion of (test) instances for which one of the true classes ended in the top
k classes:

Rk = recall at k = Ex[kx ≤ k],

where Ex denotes expectation over the instance distribution and [kx ≤ k] = 1 iff kx ≤ k, and 0 other-
wise (Iverson bracket). So we get a reward of 1 if the true class is within top k for a given instance,
0 otherwise, and Rk is the expectation. In our experiments, we will report on (average) recall at
rank 1, R1, and recall at rank 5, R5, on held-out sets. R1 is simply the standard accuracy, that is,

6. Feature ratings, can be incorporated in a diagonal matrix R, where R[i, i] = ri (the rating of feature i) and R[i, j] = 0,
when i *= j. Obtaining the scores would then be vTx RW.

7. Note that in online learning, there isn’t a sharp separation between the training and testing phases.
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the highest ranked class is assigned to the instance, and R1 measures the proportions of instances to
which the true class was assigned.

We also report on the harmonic (mean) rank (HR) (reciprocal of mean reciprocal rank or MRR),
defined as:

MRR= Ex
1
kx

, and HR=MRR−1.

MRR gives a reward of 1 if a correct class is ranked highest, the reward drops to 1/2 at rank 2,
and slowly goes down the higher the k (the lower the rank). If the right class is not retrieved, the
reward is 0. MRR is the expectation or the empirical average of such reward over (test) instances,
and we simply invert it to get a measure of ranking performance, the harmonic rank HR. The lower
the HR, the better, and it has a minimum of 1 (rank 1 is best). MRR is a commonly used measure
in information retrieval, such as in question answering tasks (e.g., Radev et al., 2002). In our
experiments, we report the HR values so that the reader can quickly get an impression of the average
class-ranking performance of the various methods.

Both Rk and MRR are appropriate for settings in which we value better ranks significantly more
than worse ranks. Thus, if an index is perfect half the time, that is, ranks the correct class of the
given instance at top (rank 1) half the time, but fully fails the rest of the time, that is, does not
retrieve the correct class at all, then its HR value is 2. However, for an index that always retrieves
the correct class, but ranks it third, the HR value is worse, at 3. Note that one could raise the
fraction 1

kx to a different exponent (instead of 1) to shift the emphasis in one direction or another.
Rk does not reflect the quality of ranking within top k, and it simply cuts the reward off if the right
class is outside top k. HR is a smoother measure. Our evaluation measure are from the point of
view of an instance to be classified. This is appropriate with large numbers of classes and in many
applications, such as personalization or text prediction, in which a given instance (a query, a page,
etc.) should be classified into one or a few classes that the system is confident about. In a number of
information retrieval tasks such as question answering and document retrieval, the extra emphasis
on higher ranks is well motivated. We expect that the situation would be similar for typical many-
class problems, such as text categorization. The common precision and recall measures used in
machine learning are often computed from the point of view of a class: for each class, the instances
are ranked according to the classifier’s scores for the class. This is especially appropriate when we
are interested in performance on a single class at a time. For instance, when we seek to rank or filter
instances based on their degree of membership in a given class of interest (e.g., a news topic). Our
indexing techniques are more appropriate for the problem of obtaining good rankings per instance,
similar to some other multiclass ranking algorithms (e.g., Crammer and Singer, 2003a). However,
existing techniques for improving precision/recall for imbalanced classes may be applicable (e.g.,
Li et al., 2002). We conclude this section with a simplifying property of non-negative matrices, for
the purposes of ranking.

Lemma 1 LetW be the non-negative matrix corresponding to an index (features correspond to the
rows and classes are the columns). The ranking thatW produces on nonzero scoring classes is not
changed under positive scaling, that is, #W, for #> 0, produces the same ranking.

Proof The score for each class is obtained in the vector vTxW. Therefore, the ranking obtained from
vTx#W= #vTxW, is the same as the ranking in the vector vTxW, when #> 0 and all entries in vTxW
are non-negative.
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The lemma implies that optimal matrices, for the objective of say maximizing R1 on the training
set, among non-negative matrices in which the entries in each row sum to at most 1.0, exist. The
indexing algorithms presented in this paper learn non-negative weight matrices.

3.4 Computational Complexity of Index Learning

Can we efficiently compute an index achieving maximum training accuracy given any finite set S
of instances? If we constrain the outdegree of each feature to be below a given constant (motivated
by space and time efficiency), then the corresponding decision problem is NP-hard under plausible
objectives such as optimizing accuracy (R1):

Theorem 2 The index learning problem with the objective of either maximizing accuracy (R1) or
minimizing HR on a given set of instances, and with the constraint of a constant upper bound (e.g.,
1) on the outdegree of each feature is NP-Hard.

The proof is by a reduction from the minimum cover problem (see Appendix A). A problem
involving only two classes is shown NP-hard. We do not know whether the indexing problem is
approximable in polynomial time however, or whether removing the constraint on the outdegree
alters the complexity. Linear programming formulations exist with continuous objectives and no
explicit outdegree constraint (Madani and Connor, 2007; Madani and Huang, 2008).

The next section describes very efficient online algorithms that perform well in our experiments.
We motivate our choices in the algorithm design, but leave theoretical guarantees to future work.

4. Feature Focus Algorithms for Index Learning

Figure 4 present our main index learning technique. After first giving a quick overview of the
approach, we motivate the choices in the design of the algorithm in the rest of this section.

On a given instance, after the use of the index for scoring and ranking (an invocation of Ranke-
dRetrieval), if a measure of margin (to be described shortly) is not large enough, an update to the
index is made. The margin is the score obtained by the true class, minus the highest scoring incorrect
(negative) class (either of the two scores can be zero). Our index learning algorithms may be best
described as performing their updates from the features’ side or features’ “point of view” (rather
than the classes’ side or class prototypes), and hence we name the whole family feature-focus algo-
rithms. As we will explain, this design was motivated by considerations of efficiency (Sections 4.1
and 4.4). The basic question for each feature is to which subset of classes it should connect (possibly
none), and with what weights. Figure 4(d) gives a generic feature updating scheme and Figure 4(c)
gives the instantiation we use in our experiments. Initially, all weights are zero. Note that when a
weight is zeroed, the connection is removed. This means that, in our index implementation, the list
entry corresponding to the edge is removed from the list of the edges of the feature.

We next motivate the design choices in FF. The problem of what each feature in isolation should
do during learning turns out to be helpful and we first explore and discuss this single feature case.
We then present the IND(ependent) method, a baseline in which effectively on every instance every
feature updates. We then motivate mistake-driven updating, and in particular the use of margin.8

8. All the examples given to illustrate various aspects make the assumption of Boolean feature values, but the feature-
focus algorithm as presented works with the more general nonnegative values.
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/* The FF Algorithm */
Algorithm FeatureFocus(x, wmin, dmax, $m)
1. RankedRetrieval(x, dmax). /* retrieve/score */
2. Compute the margin $:
$= scx − s′x, where s′x = maxc *=cx sc.
3. If $> $m, return. /* update not necessary */
4. Otherwise, for each active f ∈ x:
/* update active features’ connections */
4.1 FSU(x, f , wmin).

(a)

Algorithm RankedRetrieval(x, dmax)
/* initially, for each class c, its score sc is zero */
1. For each active feature f (i.e., vx[ f ] > 0):
For the first dmax classes with highest
connection weight to f :
1.1. sc ← sc+(r f ×wf ,c×vx[ f ])
2. Return those classes with nonzero score,
ranked by score.

(b)

/* Feature Streaming Update (allowing “leaks”) */
Algorithm FSU(x, f , wmin) /* Single feature updating */
1. w′

f ,cx ← w′
f ,cx +vx[ f ] /* increase weight to cx. */

2. w′
f ← w′

f +vx[ f ] /* increase total out-weight */

3. ∀c, wf ,c ←
w′
f ,c
w′
f
/* (re)compute proportions */

4. If wf ,c < wmin, then /* drop tiny weights */
wf ,c ← 0,w′

f ,c ← 0
(c)

Algorithm GenericWeightUpdate
Each active feature:
1. Strengthens weight to true class
2. Weakens other class connections
3. Drops weak edges (tiny weights)

(d)

Figure 4: (a) Pseudo-code for the Feature-Focus (FF) learning algorithm. The FF algorithm is
invoked on every training instance. This corresponds to steps 2 and 3 in Figure 3(a).
(b) The RankedRetrieval procedure for scoring and ranking (copied from Figure 3(b)).
(c) Feature streaming update, or FSU: The connection weight of f to the true class cx is
strengthened. Others connections are weakened due to the division. All the weights are
zero at the beginning of index learning. (e) Generic weight updating: on each training
instance, each active feature strengthens its weight to the true class, weakens its other
connections, and drops those that are too weak.

We conclude with a comparison of FF to existing online algorithms, in particular the perceptron
algorithm and Winnow. The reader may wish to skip some of these sections at this point and go to
the experiments (Section 6) on a first reading.

4.1 Updating for a Single Feature

Assume (training) instances arrive in a streaming fashion (from some infinite source), and assume
the single label (per instance) setting. Fix one feature and imagine the substream of instances
that have that feature active. Let us consider Boolean feature values only (vx[ f ] ∈ {0,1}) here for
simplicity. Thus, we basically obtain a stream of observed classes, <c(1),c(2),c(3), · · ·>, for the
given feature. Ignoring other features for now, and considering efficiency constraints, to which
classes should this feature connect to, and with what weights? We next argue that our objective of
a good ranking, subject to efficiency, reduces to computing the proportion in the sequence for those
classes (if any) that exceed a desired proportion threshold.

In this single feature case, classes are ranked by the weight assigned to them by the feature.
The constraint (of space efficiency) is that the feature may connect to only a subset of all possible
classes, say dmax at most. The question is how the feature should connect so that an objective such
as Rk or HR (harmonic rank) is maximized. We will focus on the scenario where the stream of
classes is generated by an iid drawing from a fixed probability distribution.

2584



LEARNING WHEN CONCEPTS ABOUND

It is not hard to verify that the best classes are the dmax classes with the highest proportions in
the stream, or the highest P(c) if the distribution is fixed and known (more precisely, P(c| f ), but f
is fixed here) and the ranking should also be by P(c). For a finite sequence on which we are allowed
to compute proportions before having to connect the feature, this can easily be established.

Lemma 3 A finite sequence of classes is given (class observations). To maximize HR, when the
feature can connect to at most k different classes, a k highest frequency set of classes should be
picked, that is, choose S, such that |S| = k and S = {c|nc ≥ nc′ ,∀c′ *∈ S}), where nc denotes the
number of times c occurs in the sequence. The classes in S should be ordered by their occurrence
counts to maximize HR. The same set maximizes Rk.

Proof This can be established by a simple “swapping” or “exchange” argument. We look at the
sum of rewards over the sequence rather than averages, as the sequence length is fixed. Consider
maximizing Rk first. Let nc denote the number of times class c appears in the sequence. For any
chosen set S of size k, a pair of classes (c,c′) is out of order if nc < nc′ , but c ∈ S, and c′ *∈ S. Then
Rk for S is improved if c is replaced by c′, the improvement is nc′ −nc. Similarly HR is improved for
an ordered set S if a pair like above exists (improvement of (nc′ −nc)1

j , where j denotes the rank of
c in S), or a pair within the chosen set is out of order (improvement of (nc′ −nc)(1/ j−1/ j′), where
j′, j′ > j, denotes the old rank of c′.).

For unbounded streams generated by iid drawing of classes from a fixed distribution over a finite
number of classes, the empirical proportions of classes, over the sequence seen so far (of length at
least k), take the place of the counts, in order to maximize expected HR or expected Rk on the unseen
portion of the sequence.

We will use FSU (Feature Streaming Update, Figure 4(c)) in our main feature-focus algorithm.
An FSU update takes at most two list traversals (involving finding or inserting the connection). With
d connections per feature, a full update on an instance takes Õ(d|x|). Note that when features are
Boolean, FSU simply computes edge weights that approximate the conditional probabilities P(c| f )
(the probability that instance x ∈ c given that f ∈ x and FSU is invoked). Since the weights are
between 0 and 1 and approximate probabilities, it eases the decision of assessing importance of a
connection: weights below wmin are dropped at the expense of some potential loss in accuracy. FSU
keeps total counts (w′

f and w′
f ,cx , which we will describe and motivate later). Note that wmin effec-

tively bounds the maximum outdegree during learning to be 1
wmin . We note that this space efficiency

of FSU is central to making feature-focus algorithms space and time efficient (see Section 6.3.1).
Given that FSU zeros some weights during its computation, it is instructive to look at how well it
does in approximating proportions for the (sub)stream of classes that it processes for a single feature.
This gives us an idea of how to set the wmin parameter and what to expect. Appendix A presents syn-
thetic experiments and a discussion. To summarize, when the true probability (weight) w of interest
is several multiples of wmin, with sufficient sample size, the chance of dropping it is very low (the
probability quickly goes down to 0 with increasing w

wmin ), and moreover, the computed weight is also
close to the true conditional. See Section 6.3.3 on the effect of choice of wmin ∈ {0.001,0.01,0.1}
on accuracy on several data sets.
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4.1.1 UNINFORMATIVE FEATURES, ADAPTABILITY, AND DRIFTING ISSUES

In FSU, we keep and update two sets of weights, the edge weights wf ,c (not greater than 1), w′
f ,c,

as well as total weight w′
f . In case of binary features (vx[ f ] = 1), we can simply think of w′

f as
total count of times FSU has been invoked for the feature, and w′

f ,c as an under-estimate of the
co-occurrence count in that stream (w′

f ,c can be less than the co-occurrence count, as it is reset to
0 if the edge is dropped). Note that if cx is not already connected (for example in the beginning),
wf ,c and w′

f ,c are 0. An important point is that total weight w′
f is never reduced. This is useful as a

way of down-weighing uninformative features (such as “the”). Thus, due to edge dropping, we may
have the sum of proportions remain less than 1, !c w f ,c < 1, even when w′

f > 0. We have found this
alternative slightly better in our experiments than the case in which w′

f = !c w′
f ,c (i.e., when w′

f is
kept as the exact sum of the weights). See Section 6.3.5.

In case of non-Boolean feature values, similar to perceptron and Winnow updates (Rosenblatt,
1958; Littlestone, 1988), the degree of activity of the feature, vx[ f ], affects how much the connection
between the feature and the true class is strengthened. We could use a learning rate, a multiplier
for vx[ f ], to further control the aggressiveness of the updates. We have not experimented with that
option.

Note also that as wf grows, the feature may become less adaptive, as a new class will have to
occur more frequently to obtain a strong weight ratio with respect to wf . In particular, after wf >

1
wmin , a new class will be immediately dropped.9 For long-term online learning, where distributions
can drift (nonstationarity), this can slow or stop adaptation, and updates that effectively keep a finite
memory or history are more appropriate. Note also that, if the same training instances can be seen
multiple times (e.g., in multiple passes on finite data sets), with wf growing, the fitting capability of
the algorithms is curbed. This may be desired as a means of overfitting prevention. Other indexing
updates have been developed, offering various trade-offs (see our discussion in Section 4.4, and
Madani and Huang 2008, and Madani et al. 2009, in particular for a simple update appropriate for
nonstationarity).

Before describing the main feature-focus algorithm, we describe a baseline algorithm we refer
to as IND(ependent). This algorithm can be implemented in an offline (batch) manner. It is based
on computing the conditionals P(c| f ).

4.2 Always Updating (the IND Algorithm)

One method of index construction is to simply assign each edge the class conditional probabilities,
P(c| f ) (the conditional probability that instance x ∈ c given that f ∈ x). This can be computed for
each feature independent of other features. We refer to this variant as the IND (“INDependent”)
algorithm (Figure 5). Features are treated as Boolean here (vx[ f ] ∈ {0,1}). After processing the
training set (computing counts and then conditional probabilities), only weights exceeding a thresh-
old pind are kept. The use of pind not only leads to space savings, but also can improve accuracy
significantly. The best threshold pind (for improving accuracy) is often significantly greater than
0 (see Section 6.3.7). In our experiments with IND, we choose the best threshold by observing
performance on a random 20% subset of the training set. We thus implemented the IND algorithm

9. At this point, updates can only affect classes already connected, and updates may improve the accuracy of their
assigned weights, though there is a small chance that even classes with significant weights may be eventually dropped
(this has probability 1 over an infinite sequence!). In any case, at this point or soon after, it is possible to stop updating.
In our experiments, with finite data and small number of passes over the data sets, this was not an issue.
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Algorithm IND(S, pind) /* IND algorithm */
1. For each instance x in training sample S:
1.1 For each f ∈ x: /* increment counts for f */
1.1.1 n f ← n f +1
1.1.2 n f ,cx ← n f ,cx +1
2. Build the index: for each feature f and class c:
2.1 w←

n f ,c
n f .

2.2 If w≥ pind , wf ,c ← w. (otherwise wf ,c ← 0. )

Figure 5: Pseudo-code for the IND(ependent) algorithm, implemented for the case of Boolean fea-
tures only. The choice of pind affects accuracy significantly, and is picked using a held
out set (see Section 4.2).

as a batch algorithm, that is, we computed the weights P(c| f ) exactly, not in an online streaming
manner described10 for FSU. The exact computation can be done on the relatively smaller data sets.
IND is in fact the fastest algorithm on the smaller data sets, since the count updates are simple and
there is no call to index retrieval during training. This counting phase for index construction can
also be distributed. On larger data sets, IND runs into memory problems and becomes very slow
during training, due to many features keeping connections to too many classes.11 This aspect points
to the importance of space efficiency for large-scale learning.

The IND algorithm, in its independent computations of weights for each feature, has similarities
with the multiclass Naive Bayes algorithm (e.g., Rennie et al. 2003). Major differences include the
computation of P( f |c) (the reverse) in plain multiclass Naive Bayes, and that for classification,
we are summing the weights (instead of multiplying under the independence assumption), similar
to some techniques for expert opinion aggregation (Genest and Zidek, 1986; Cesa-Bianchi et al.,
1997). We have found that summing improves accuracy. See Madani and Connor (2007) for a more
detailed comparison to multiclass Naive Bayes. In its independent computation of weights, IND is
also similar to inverted index construction using, for instance, TFIDF.

IND offers a nice baseline, but we can potentially do significantly better than computing pro-
portions for each feature independently. Often features are inter-dependent. For instance, features
can be near duplicates or redundant. In particular, with increasing feature vector sizes, the accuracy
of methods that in effect assume feature independence can degrade significantly.

4.3 Mistake-Driven Updating Using a Margin (the FF Algorithm)

FF adds and drops edges and modifies edge weights during learning by processing one instance at
a time,12 and by invoking a feature updating algorithm, such as FSU. Unlike IND, FF addresses
feature dependencies by not updating the index on every training instance. Equivalently, a feature
updates its connection on only a fraction of the training instances in which it is active. This is
motivated and explained next.

10. In case the instance belongs to multiple classes, step 1.1.2 is executed for each true class.
11. However, note that the FSU algorithm can be instead employed here to keep memory consumption in check.
12. The feature and class sets can also grow incrementally.
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4.3.1 WHEN TO UPDATE?

FSU should not be invoked on every training instance. In particular, “lazy” or mistake-driven
updating (not updating all the time) can, to some extent, address issues with feature dependencies.
It can, for example, avoid over counting the influence of features that are basically duplicates by
learning relatively low connection weights for each such feature (similar to a rational for mistake
driven updates in other learning algorithms such as the perceptron). We next give a simple scenario,
case 1, to demonstrate accuracy improvements that can be obtained by lazy updating.
Case 1. Imagine the simple case of two classes, c1 and c2, and two Boolean features, f1 and

f2. Assume f1 is perfect for c1, P(c1| f1) = P( f1|c1) = 1, but that f2 appears in instances of both
classes, and P( f2|c1) = 1 (i.e., f2 appears in all instances of c1), but also P( f2|c2) = 1. Then, given
only f2, that is, an instance x = { f2} (x contains f2 only), we want to rank c2 higher. Now, if say
P(c1) > P(c2) (c1 is more frequent than c2), and we always invoked FSU, f2 would also give a
higher weight to c1, ranking c1 higher than c2 on x ∈ c2. An optimal solution, for accuracy R1 or
for HR, has the property that f2 has a higher connection weight to c2 than to c1 (with wf1,c2 = 0, an
optimal solution satisfies: wf1,c1 > wf2,c2 > wf2,c1 . ). Now, if FF invoked FSU only when the correct
class was not ranked highest, the connection weights in this example would converge to an optimal
configuration. To see this, note that as soon as x ∈ c1 is seen f1 obtains a weight of 1 to c1. Next,
only updates on x ∈ c2 will be performed, since c1 is ranked correctly due to f1 having a weight of
1 and f2 keeping some nonzero weight to it. f2 makes a stronger connection to c2 than c1 after at
most 2 FSU invocations. R1 in the optimal case would be 1.0 here, while it can approach 0.5 if we
always update. Note that as fewer updates in general mean fewer connections (sparser indices), we
may also save in space in this lazy update regime (see Section 6).

On the other hand, if we don’t update at all when the right class is at rank 1, we may also suffer
from suboptimal performance. This happens even in the case of a single feature. Thus “proactive”
updating is useful too. The next case elaborates.
Case 2. Consider the single feature case and three classes c1, c2, c3, where P(c1) = 0.5, while

P(c2) = P(c3) = 0.25. Thus c1 should be ranked highest, for say maximizing R1. This yields
optimal R1 = 0.5, and if we always invoke FSU, this will be the case after a few updates (we will
soon get w1,1 ≈ 0.5, and w1,2 ≈ w1,3 ≈ 0.25). If we don’t update when true class is at rank 1, c2
or c3 can easily take the place of c1 when an instance x ∈ c2 or x ∈ c3 is presented, but we need to
reverse the situation subsequently when x′ ∈ c1 is presented, and instances belonging to c1 are more
frequent. In general, the connection weights from the feature to c1, c2, and c3 will be similar in the
purely mistake-driven updating regime, and on sequences that look like the worst case alternating
sequence: c1,c2,c1,c3,c1,c2, · · ·, the running value of R1 can approach 0. While random sequences
are not as bad, we should still expect significant inferior performance. On randomly generated
sample of size 2000 according to above class distribution, averaging over 100 80-20 splits, always
(proactive) updating gave an average R1 performance of 0.479±0.02 (standard deviation of 0.02),
while the lazy update gave 0.428±0.09.

Therefore, not updating when the rank of the right class is adequate may cause unnecessary
instability in behavior and inferior performance as well. Of course, we desire an algorithm that
can perform well in the single feature case. Continued updating even when the true class is ranked
highest is akin to keeping a kind of extended memory (in the connection weights).

We strike a balance between the two desirables by using the notion of margin. The margin on
the current instance is the score of the positive class minus the score of the highest scoring negative
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class:
$= scx − s′x, where scx ≥ 0,s′x ≥ 0,s′x = max

c*=cx
sc.

If the margin $ does not exceed a desired margin threshold $m, we update13 (invoke FSU). Note
that both scx and s′x can be 0. If we set the margin threshold to 0, we may fit more instances in
the training set, and handle situations like case 1, but underperform for case 2 situations. With a
sufficiently high margin, updates are always made and case 2 is covered, but fitting power (case 1)
can suffer. There is a tradeoff, and a good question is what the best choice of threshold may be? The
best choice depends on the problem and the feature vector representation. Individual edge weights
are in the [0,1] range, and when the instances are l2 normalized, we have observed that on average
top classes obtain scores in the [0,1] range as well, irrespective of data sets or choice of margin
threshold (Madani and Connor, 2007).

Our use of margin is somewhat similar to the use of margin for online algorithms such as per-
ceptron and Winnow (e.g., Carvalho and Cohen, 2006; Crammer and Singer, 2003a), although our
particular motivation from considering case 2, “stability” or keeping some “extended memory” for
each feature, appears to be different.

4.3.2 RATING THE FEATURES: DOWN-WEIGH INFREQUENT FEATURES

It may be a good idea to down-weigh or eliminate those features’ votes that are only seen a few
times during learning, as their proportion estimates (connection weights) can be inaccurate and in
particular higher than what they should be. Consider the first time FSU is invoked on a feature.
After that update, such a feature gives a weight of 1 (the maximum possible) to the class it gets
connected to. This is undesired. Of course, how much to down-weigh can depend on the problem,
and how feature values are distributed. In our experiments, during scoring of the class, we multiply
a feature’s score for class c, wf ,c, by a rating r f (see Equation 1 in Section 3.2), r f = min(1,

# f
10),

where # f ≥ 1 denotes the number of times feature f has been seen so far. # f is computed only during
the first pass over training data. We show that on some problems, this option improves accuracy.

4.4 Summary and Relations to other Methods

The FF algorithm aggregates the votes of each features for ranking and classification. During learn-
ing, FF may be viewed as directing a stream of classes to each feature, so that each feature can
compute weights for a subset of the classes that it may connect to. The stream, for example with the
use of margin, may be hard to characterize and may show drifts during learning: it may initially be
those instances in which the feature is active, but later it may correspond to a subsequence of those
instances which are somewhat hard to classify. Features may be space constrained: they need to
be space efficient in the number of connections they make as well as in computing their connection
weights. This efficiency aspect is especially important in large-scale many-class learning.

The FF algorithm has similarities with online algorithms such as Winnow (Littlestone, 1988), as
it normalizes (in general weakens some of) the weights, and the perceptron algorithm (Rosenblatt,
1958), as for example the updates are in part additive (ignoring the normalization or weakening).
The important difference that changes the nature of the algorithm is that changes to weights are

13. For instances with multiple true classes, the margin is computed for each positive true class. Every active feature is
updated for each true class for which its margin is below the margin threshold.
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Figure 6: In learning a weight matrix for multiclass learning (here the features corresponding to the
rows), prototype methods operate on the columns (part a), for instance in normalizing the
(column) weight vectors, while feature-focus methods operate on the rows (part b), for
example in ensuring that the number of nonzeros in each row remain within a budget.

done from the side of features, unlike Winnow or perceptron. The Winnow algorithm does the nor-
malization from the side of the classes: each class is represented by a classifier (a class prototype),
and each classifier has its feature weights normalized after each update. If normalization is done
for all features, many features, whether or not active, get weakened. In a sense, the classifier ranks
the features in order of importance for its own concept. A number of learning algorithms in the
family of linear classifier learning algorithms, focus on the class side, for example, learning a pro-
totype classifier for each class (e.g., Crammer and Singer, 2003a) (see Figure 6). This is a natural
approach for binary classification. In our case, it is the classes whose connections to a feature may
be weakened due to one or more classes being strengthened. In the FSU update given in this paper,
this weakening happens irrespective of whether a class was ranked high (this aspect is similar to
Winnow, but again, for class weights instead of feature weights). Alternative feature-focus updates
are possible (e.g., Madani and Huang, 2008). It is best to view each feature as a voter or “expert”,
and the goal is to obtain good class rankings for each instance by adjusting the votes. A prototype
for a class is more appropriate for ranking instances for that class.

To keep memory consumption in check, it seems most direct to constrain features not to connect
to more than say 10s of classes, rather than somehow constraining the classes (class prototypes). It
appeared harder to us to bound the number of features a class needs, and different classes may
require widely varying number of features for adequate performance. See Raghavan et al. (2007)
for an exploration of the number of useful features that different (binary) learning problems need for
achieving (nearly) maximum accuracy. We also note that in many problems of interest, the number
of classes, while large, is significantly smaller than the number of features. In many domains, as
the number of classes grows, the number of features tends to grow too (possibly in a proportional
manner). In the best of worlds, each feature could be predictive for at most one class. While reality
is far from this idealized picture, and we anticipate many interactions, expecting that features may
not require high outdegrees for good accuracy, can be a good first assumption. A fruitful future
avenue may be exploring this assumption via modeling and developing theoretical arguments.

A second related reason is that constraining the feature outdegrees to remain relatively small
(e.g., 10s) appears easier to implement and more time efficient in an online processing regime.
Again, a class may require 100s of features and beyond for good performance. Therefore processing
the needed classes, to examine importance of features, can take more time, per instance. Finally, we
seek rapid categorization per instance, and constraining indegree of classes may not guarantee that
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the outdegree of commonly occurring features would be small. Constraining the degrees of classes
is not directly related to the average time required for processing an instance. Given that an index is
required for efficient classification, that is, efficient access from features to the relevant classes, one
would need additional data structures (additional memory) for efficient prototype processing.

For the perceptron update, continued updating can increase weight magnitudes with no bound.
This makes designing an effective weight management criterion difficult. False positive classes
may obtain negative connections to features they weren’t connected to (when ranked higher than
the true positive). These extra connections hurt sparsity. Moreover negative connections may not
be as useful in the task of ranking multiple classes, to the extent that they are useful in the binary-
class case and when learning a single prototype, for ranking instances: in the many-class case, the
true class could simply have higher positive weights to the appropriate features. Of course, our
discussion does not preclude efficient algorithms that, nevertheless, perform their operations from
the class side.

5. Techniques Based on Binary Classifier Training

We compare against hierarchical or top-down training and classification, a commonly used method
when a taxonomy of classes, a tree from general classes at the top to specific classes, is available
(Dumais and Chen, 2000; Liu et al., 2005). The hierarchical method reduces to one-versus-rest
classification when the classes are flat (when there is just one level), which is another common
method for multiclass classification (e.g., Rifkin and Klautau, 2004). We compare against one-
versus-rest on relatively small sets, to see how indexing performs in more traditional classification
settings. Note that the FF algorithm, while motivated by many-class learning, is a linear method
applicable to few classes and in particular binary classification as well.

The one-versus-rest method simply trains a binary classifier for each class using all the data.
During classification, all the classifiers are applied and their scores rather than classification out-
comes are used for ranking.14 We observed no advantage in obtaining probabilities here compared
to using raw scores. The one-versus-rest method becomes quickly inefficient, at both training and
classification times, as the number of classes increases (as all the classifiers need to be applied to a
given instance).

Linear classifiers such as support vector machines (SVMs) often perform the best in very high
dimensional problems such as text classification (Lewis et al., 2004; Sebastiani, 2002). We tested
perceptrons and SVMs in one-versus-rest and top-down methods. We use single pass and multiple
pass perceptrons (Rosenblatt, 1958) as well as committees of them. Here, each perceptron in the
committee is represented as a sparse vector and random weight initialization, in [−1,1], is used
when a new feature is added to the prototype. Unless specified, we run the perceptron learning
algorithm until the 0/1 error on training is not improved (computed at the end of each pass), for 5
consecutive passes. Perceptron committees often obtain performance close to SVMs (e.g., Carvalho
and Cohen, 2006), although their training time can be less.

14. Note that the use of index for classification is one-versus-rest (or “flat” classification), but the index was not obtained
by training binary classifiers.
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Algorithm TopDownProbabilities(x, c, p, C̃x)
1. For each class ci that is a child of c:
1.1 pci ← p×Pci(x). /* obtain probability */
1.2 If pci ≥ pmin
1.2.1 C̃x ← C̃x∪{(ci, pci})
1.2.2 TopDownProbabilities(x, ci, pci , C̃x)

Figure 7: Pseudo-code for top-down classification. Pci(x) denotes the probability assigned to x by
the classifier trained for ci in the tree. For each instance x, the first call is TopDownProb-
abilities(x, root, 1.0, {}).

5.1 Hierarchical Training and Classification

Briefly, hierarchical training works by first training classifiers for the first level classes in a one-
vs-rest manner (e.g., Dumais and Chen, 2000). Then the same procedure can be repeated for the
children of each class residing in the 2nd level (in general, the level below), training each classifier
only on the instances that belong to one of the siblings. Only the classifiers for the top level classes
will be trained on all the instances. For ranking and categorization using the hierarchical approach,
we use classifier probabilities. We obtain probabilities from classifier scores by the method of
sigmoid fitting (Platt, 1999). This may require additional training time for improved accuracy. In
the experiments, we report on the effect of increasing the number of sigmoid-fitting trials on one of
the data sets (Reuters RCV1).

During classification, whenever a classifier is applied, we use the probability it assigns. The
probabilities are multiplied along a path top-down (Figure 7). A path of candidate classes is ter-
minated if the probability falls under some threshold pmin. All the classifier at the first level (cor-
responding to the classes at the top level) are applied to a given instance. During test time, we
tried several thresholds: pmin = 0.05+0.05k,k= 1,2, · · ·, and report results on the threshold giving
highest accuracy R1. All our ranking methods are evaluated on the deepest classes an instance is
assigned to. For the evaluation of the top-down method, from the list of candidates obtained for a
given test instance, any class whose child is also in the list is removed, and the remaining classes
are sorted by their assigned probabilities. For the list of the true classes of the test instance, again
only those true classes with no child in the list are kept. Then R1, R5 and HR are computed (for the
highest ranked true positive class).

We note that if we don’t use the probabilities and ranking, that is, use class assignments to follow
a path, the classification performance greatly suffers. This is since classifiers (when having to assign
a class) in the higher levels can make “premature” false positive and false negative mistakes (and
false negative mistakes are very costly). This inferior performance has been noted before too (e.g.,
Dekel et al., 2003).

6. Experiments

In this section, after describing the data sets we use and the experimental set up, we report on
comparisons with other approaches. We then report on several ablation experiments as well as
comparisons to the simpler IND algorithm and a previous (unweighted) indexing method. We con-
clude the section with experiments on some properties of our index learning method and the indices
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Data Sets |S| |F | |C | Ex|vx| Ex|Cx|
Reuters-21578 9.4k 33k 10 80.9 1
20 Newsgroups 20k 60k 20 80 1
Industry 9.6k 69k 104 120 1
Reuters RCV1 23k 47k 414 76 2.08
Ads 369k 301k 12.6k 27.2 1.4
Web 70k 685k 14k 210 1
Jane Austen 749k 299k 17.4k 15.1 1

Figure 8: Data sets: |S| is number of instances, |F | is the number of features, |C | is the total number
of classes, Ex|vx| is the average (expected) number of unique active features per instance
(avg. vector size), and Ex|Cx| is the average number of class labels per instance.

learned (average class indegrees, performance on the training data, ...), and we give a few examples
of the learned connections.

Figure 8 presents the data sets that we use, shown in order of class size |C |. The first 6 are text
categorization, and the last is a word prediction task. Ads refers to a text classification problem
provided by Yahoo! Web refers to a web page classification into Yahoo! directory of topics. Jane
Austen is 6 online novels of Jane Austen, concatenated (obtained from project Gutenberg (http:
//www.gutenberg.org/). The others are commonly used text categorization data sets (Lang, 1995;
Rose et al., 2002.; Lewis et al., 2004).

On the first three small sets, we compare against one-versus-rest, and our purpose is mainly to
compare accuracy. On the next 3, Reuters RCV1, Ads, and Web, we compare against the top-down
method. In both the one-versus-rest and top-down methods, we deploy either single perceptron
training, committee of 10 perceptrons, or a fast algorithm for learning linear SVMs (Keerthi and
DeCoste, 2005). We could not run the SVM on the Web data as it took longer than a day, and had to
limit our SVM experiments on Ads.15 For the final word prediction data, the task is to predict each
word given features derived from the surrounding words in the sentence. For this problem, since
the classes (the words) do not form a hierarchy and one-versus-rest is too inefficient, we only show
performance of the indexing method.

All instance vectors are l2 (cosine) normalized. For text categorization data, the features are
standard unigram or bigram words and phrases. The feature vectors were obtained from publicly
available sources in the cases of Reuters RCV1 (Lewis et al., 2004), and the newsgroups (from
Rennie16). For RCV1, we used the training split only (23k documents) to be able to experiment
with the slower algorithms. We obtained the Ads and Web data sets from Yahoo! For the web
data set, to obtain a sufficient number of instances per class, we cut the taxonomy at depth 4, that
is, we only considered the true classes up to depth 4. To simplify evaluation, we used the lowest
true class(es) in the hierarchy the instance was classified under at test time. Thus an instance in
Reuters RCV1 corpus on average is assigned two true classes. We note that in many practical text

15. There has been further advances on speeding up linear SVM training algorithms since the submission of this paper
(e.g., Shalev-Schwartz et al., 2007; Hsieh et al., 2008). The perceptron training timings in our tables may be a better
indicator of the training times for the more recent algorithms.

16. Obtained from people.csail.mit.edu/jrennie/20Newsgroups.
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categorization applications such as personalization, classes at the top level are too generic to be
informative/useful. For top-down training, we trained the classifier on the internal classes as well.
Web and Ads had just over 20 classes in the first level (after root), while Reuters RCV1 has two (we
used both the Industry and Topic trees). The Jane Austen (word prediction) data set was obtained by
processing Jane Austen’s six online novels: the surrounding neighborhood of each word, 3 words
on one side, 3 on the other, and their conjunctions, provided the features (about 15 many).

We report on the average performance over ten trials. In each trial a random 10% of the data is
held out. The exception is the newsgroup data set where we use the 10 train-test splits by Rennie
et al. (2003), each 80-20, and we used their vector representations, to be able to compare directly
with their results. We used a 2.4GHz AMD Opteron processor with 64 GB of RAM, with light load.

Figures 9 and 10 present the algorithms’ performance under both accuracy and efficiency cri-
teria. As a simple baseline, we report the performance of FrequencyBaseline (FB) as well, which
ranks classes simply based on the frequency of the classes in the training data set.

For the FF algorithm, we used wmin =0.01 for the minimum weight threshold during learning,
and dmax =25 (max-outdegree during look up). Note that dmax of 25 means a class is retrieved as
along as it is within the first 25 highest weight connections of some active feature, even if its weight
is not much higher than wmin. During training, the FF algorithm looks for a true (positive) class
within the first 50 top scoring classes. If it is not found, the score of the positive class is assumed 0.
We report on performance after pass 1 with 0 margin threshold ($m = 0), as well as best performance
in R1 within the first 10 passes, with $m ∈ {0,0.1,0.5}. We did not optimize on the choice of these
parameters, for example, we may do better for lower dmax values (see Section 6.3.2). Note that
a $m value above 0.5 basically means to update on most instances as index edge weights are less
than 1, and thus class score differences tend not to be much higher than 1.0, when instances are l2
normalized. For the SVM, we report the best performance in R1 over the regularization parameter
C ∈ {1,5,10,100} for the first three small data sets andC ∈ {1,10} for the large ones. OftenC = 1
and 10 suffices (accuracies are close). There are 10 perceptrons in the committee (often, 5 to 20
suffices for attaining much of the accuracy).

6.1 Accuracy Comparisons

We first observe that the FF algorithm is competitive with the best of others. In particular it achieves
the highest R5 in 5 of the 6 categorization domains, and the highest average R1 in 4 of 6 cases.
We have observed that comparison based on the HR results often yields similar rankings of the
algorithms tested as does R1. We limit the discussions to R1 and R5. In particular R1 (plain accuracy
or one minus zero-one error) is a simple commonly used performance measure. For the classifier
based methods, observe that there is a good separation from perceptron to SVMs, suggesting that the
classification tasks are challenging. The performance of FF on newsgroup ties the best performance
achieved by Rennie et al. (2003), and they used special feature vector representations, for the linear
SVM as well as their methods, to reach that performance.17 In the case of RCVI, for top-down
training, we experimented with using a fixed sigmoid, that is, no sigmoid fitting, as well as sigmoid
fitting using one or more trials of obtaining scores (score-class pairs). When not fitting, we used
fixed values of 0 bias and -2 slope: 1

1+e−2s , where s denotes the score of classifier on the instance.

17. On the industry data set, we found that the classes have similar proportions, close to 0.01. As we keep only 10% for
test, and there are only just under 10k instances in the whole set, we see that the performance of Frequency Baseline
is very low. The classes with the highest proportion in training are not the classes with the highest proportion on the
test set.
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Rank (HR) R1 R5 Ttr d |W|
Small Reuters, 10 classes

$m=0, p=1 1.082 0.860 0.998 0s 4.9 55k
$m=0.5, p=1 1.066 0.884 ±0.009 0.997 0s 5 73k
perceptron 1.08 0.871 0.995 4s 10 74k
committee 1.06 0.891 0.999 40s 10 74+
SVM C=1 1.052 0.906 ±0.009 0.998 11s 10 74+
FreqBaseline 1.6 0.42 0.86 - - -

News Groups, 20 classes
$m=0, p=1 1.137 0.798 0.978 2s 10 113k
$m=0.5, p=1 1.085 0.865 ±0.005 0.987 2s 10 171k
perceptron 1.229 0.728 0.928 20s 20 189k
committee 1.122 0.830 0.970 220s 20 189+
SVM C=1 1.1020 0.852 ±0.005 0.975 92s 20 189+
FreqBaseline 3.33 0.05 0.25 - - -

Industry, 104 classes
$m=0, p=1 1.114 0.861 0.942 4s 16.7 124k
$m=0.5, p=3 1.094 0.886±0.008 0.949 16s 15.8 196k
perceptron 1.488 0.595 0.773 55s 104 330k
committee 1.17 0.816 0.904 610s 104 330+
SVM C=10 1.112 0.872 ±0.009 0.933 235s 104 330+
FreqBaseline 31 0.005 0.03 - - -

Figure 9: Comparisons on the smaller data sets. Ttr is training time (s=seconds, m=minutes,
h=hours), d is the number of “connections” touched on average per feature of a test in-
stance, and |W| denotes the number of (nonzero) weights in the system (see Section 6.2).
The first two rows for each set report on FF, the first row being FF with 0 margin threshold,
after one pass (p=4 means trained for four passes). Some example standard deviations for
R1 are also shown.

Thus, at score of 0, the (probability) value obtained is 0.5, and score of 1, the probability is 1
1+e−1 ≈

0.73. When sigmoid fitting, we used one or more 80-20 splits of the training data, trained on 80,
obtained the scores on the remaining 20, pooled the scores from different trials and fitted a sigmoid
on the points. We then trained the classifier on the whole set. With more trials, we got better results
on RCV1, but with diminishing returns, and this takes more time. For Ads, we could run the SVM
with no fitting. Committee and perceptron used 3 trials. We performed the binomial sign test to
compare the performance of FF (the second row for each data set) against the best of others (this
is the SVM result, when available) as follows. We paired the Rk values on the same splits of data,
10 many for each data set, and counted the number of wins and losses of FF. The bold-faced R1
and R5 values indicate significance with confidence level p ≤ 0.05 (i.e., either 9 or 10 wins). We
observe that FF is superior with statistical significance in many cases, and only in one case, R1 on
the smallest data set, does it have statistically significant inferior performance.

The competitive and even superior accuracy of the FF algorithm provides evidence that im-
proving class ranking on each instance, in the context of other classes that may be relevant (other
retrieved classes), and at the same time, keeping the index sparse, is a good strategy or learning
bias for our high performance categorization task. Methods based on binary classifiers can be at
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Rank (HR) R1 R5 Ttr d |W|
Reuters RCV1, 414 classes

$m = 0, p=1 1.181 0.763 0.955 6s 15.1 181k
$m = 0.1, p=4 1.164 0.787±0.008 0.952 24s 12.9 223k
perceptron 1.418 0.621 0.815 70s 38 760k
committee 1.197 0.769 0.918 750s 36 760k+
C=1,0fit 1.26 0.72 0.89 94s 36 4meg
C=1,1 trial 1.18 0.779 0.936 200s 36 4meg
C=1,3 trials 1.17 0.782 0.937 400s 36 4meg
C=1,4 trials 1.17 0.783 ±0.01 0.939 520s 36 4meg
FreqBaseline 4.58 0.082 0.348 - - -

Ads, 12.6k classes
$m = 0, p=1 1.269 0.706 0.892 27s 7.8 814k
$m = 0.1, p=4 1.254 0.725±0.003 0.890 92s 6.7 1meg
perceptron 1.738 0.517 0.642 0.5h+ 80 5meg
committee 1.424 0.652 0.758 5h+ 80 5meg+
SVM C=10, 0 fit 1.424 0.665 ±0.003 0.774 12h+ 80 5meg+
FreqBaseline 35.56 0.012 0.033 - - -

Web, 14k classes
$m = 0, p=1 2.22 0.346 0.575 64s 8 1.6meg
$m = 0, p=2 2.21 0.352±0.007 0.576 128s 8 1.5meg
perceptron 6.69 0.098 0.224 1h+ 250 14meg
committee 3.78 0.207 0.335 12h+ 190 14meg+
FreqBaseline 10.4 0.053 0.126 - - -

Jane Austen, 17.4k classes
$m = 0, p=1 2.71 0.272 ±0.002 0.480 40s 8.7 1.5meg
$m = 0.1, p=4 2.73 0.279 ±0.002 0.462 160s 9.1 1.6meg
$m = 0.5, p=4 3.01 0.243 ±0.002 0.425 160s 9.1 1.6meg
FreqBaseline 10.3 0.037 0.15 - - -

Figure 10: Comparisons on the larger data sets. Ttr is training time (s=seconds, m=minutes,
h=hours), d is the number of “connections” touched on average per feature of a test
instance, and |W| denotes the number of (nonzero) weights in the system (see Sec-
tion 6.2). The first two rows for each set report on FF, the first row being FF with 0
margin threshold, after one pass (p=4 means trained for four passes). Some example
standard deviations for R1 are also shown.

a disadvantage because the task of choosing whether a single class should be assigned or not, in
isolation, can be error-prone, especially with large numbers of classes. Classifier scores can be used
for ranking classes, but the classifiers were not obtained with the objective of a good ranking of the
classes for each instance (and their scores may not be calibrated):18 a typical binary classifier such
as an SVM is trained to yield a separation among instances (a good class prototype). The scores of
such a classifier are more suitable for ranking the instances for the corresponding class than ranking
classes for each instance. Top-down classification can help accuracy in that the top classifiers may
effectively discover features useful for making general distinctions, and lower-level classifiers can
similarly use features for making fine distinctions among a smaller set of sibling classes. On the

18. However, for the one-versus-rest experiments, we also evaluated rankings using the probabilities obtained via sigmoid
fitting, instead of using the raw classifier scores, but saw no change or inferior accuracies (not shown).
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other hand, top-down classification inherits the problems of one-versus-rest (for the children of ev-
ery parent node, the problem is akin to one-versus-rest). Furthermore, the errors of the intermediate
classifiers along a classification path can add up. Indexing achieves a kind of direct “flat” classifi-
cation (akin to one-versus-rest, but not via binary classifiers). Features that are directly predictive
of classes can be discovered, skipping error-prone intermediary classifiers. On the other hand, dis-
tinguishing thousands of classes via a single linear classifier (the index) can be error-prone.19 It is
ultimately an empirical question which of these fairly different learning techniques may outperform
others.

6.2 Efficiency and Ease of Use

We see that the training times of the FF algorithm is dramatically lower than others, and the ratio
grows with data set size, reaching or exceeding two orders of magnitude.

Our measure of work, d, is the expected number of “connections” touched per feature of a
randomly drawn instance during categorization. For example, for the ads data set, on average just
under 8 connections (classes) are touched during index look up per feature, or 8 × 27 total are
touched per instance (the average number of features of a vector is 27, see Figure 8), while for
top-down ranking, 80 classifiers are applied on average (over 22 at the top level) during the course
of top-down ranking/classification. We are assuming the classifiers have a memory-time efficient
hashed representation. Again, we see that the indexing approach can have a significant advantage
here.

In the case of the index, the space consumption |W| is simply the number of edges (positive
weights) in the bipartite graph. In the case of classifiers, we assumed a sparse representation (only
nonzero weights are explicitly represented), and in most cases used a perceptron classifier, trained
in a mistake driven fashion as a lower estimate for other classifiers.20 On the smaller data sets, the
difference is not important. However, we see that on the large categorization data sets the classifier
based methods can consume significantly more space. We also note that for the FF algorithm, with
higher $m, the index size increases. This is caused by more updates being performed with higher
$m, and more updates tends to increase edge additions. This does not appear to increase the work d
though.

The FF algorithm is very flexible. We could run it on our workstations for all the data sets (with
2 to 4 GB RAM), each pass taking no more than a few minutes at most. This was not possible for
the classifier based methods on the large data sets (inadequate memory). In general, the top-down
method required significant engineering effort (encoding the taxonomy structure, writing the clas-
sifiers to file for largest data sets, etc). Liu et al. (2005) also report on the considerable engineering
effort required and the need for distributing the computation.

6.3 Effects of Various Options and Parameters

In this section, we investigate the effects of various parameters and options on accuracy and ef-
ficiency. For each option, we show performance on a subset of data sets to show the difference
that using that option can make. In each case, unless otherwise specified, the remaining parameters
(such as choice of margin) are as in Figures 9 and 10 for best performance, and as before we report

19. Huang et al. (2008) explore a multi-stage data-driven classification approach, using fast indexing for the first stage.
20. We have observed that the committee of perceptrons can be converted into a single linear classifier by weight aver-

aging after training without degrading accuracy.
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No Constraints Default Constraints Ttr (single pass)
Small Reuters 0.884 ±0.008 0.884 ±0.008 0s vs 0s
News Group 0.866 ±0.006 0.865 ±0.005 3s vs 2s
Industry 0.889 ±0.009 0.886 ±0.008 9s vs 4s
RCV1 0.787 ±0.007 0.787 ±0.008 [40s−50s] vs 6s
Ads 0.716 0.711 45m vs 27s
Web 0.327 0.347 2h vs 64s
Jane Austen 0.276 0.274 1h vs 41s

Figure 11: No constraints on dmax (maximum outdegree) nor wmin (wmin set to 0), compared to the
default settings. Accuracies (R1 values) are not affected much, but efficiency suffers
greatly. The rough training times for a single pass are compared.

averages and standard deviations for 10 random trials of 90-10 splits (except for news groups, for
which the 80-20 split is given).

6.3.1 REMOVING EFFICIENCY CONSTRAINTS

We designed the FF algorithm with efficiency in mind. It is instructive to see how the algorithm
performs when we remove the efficiency constraints (wmin and dmax). Note however that such con-
straints may actually help accuracy somewhat by removing unreliable weights and preventing over-
fitting.

In these experiments, we set wmin to 0 and dmax to a large number (1000). We show the best
R1 result for choice of margin threshold $m ∈ {0,0.1,0.5}, over the first 5 passes, and compare
to default values for the efficiency constraints. We observe that the accuracies are not affected.
However FF now takes much space and time to learn, and classification time is hurt too. On the web
data, for instance, the number of edges in the index grows to 6.5meg after first pass (it was about
1.5meg before). The average number of edges touched per feature grows to 1633, versus 8 for the
default, thus 200 times larger, which explains the slow-down in training time.

For the ads, web, and Jane Austen, due to the very long running times, we ran FF for only a few
trials, sufficient to convince ourselves that the accuracy does not change (see also next section). We
report the result (with or without constraints) from the first pass of a single trial, on the same split
of data.

6.3.2 OUTDEGREE CONSTRAINT

Figure 12 shows accuracy against the degree constraint, dmax, on the 3 large categorization data
sets. We see that accuracy may in fact improve with lower degrees (RCV1 and Web). At outdegree
constraint of 3 for RCV1, the number of edges in the learned index is around 80k instead of 180k
(for the default dmax = 25), and the number of classes (connections) touched per feature is under 3,
instead of 15 (Figure 10).

In general, it may be a better policy to use a weight threshold, greater than wmin, instead of a max
outdegree constraint, for more efficient retrieval, as well as more reduction in index size, without
loss in ranking accuracy.
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Figure 12: Accuracy (R1) after one pass against the outdegree constraint.

0.001 0.01 0.1
RCV1 0.786 ±0.009 0.787 ±0.008 0.761 ±0.008
Ads 0.728 ±0.002 0.725 ±0.003 0.701 ±0.003
Web 0.332 ±0.005 0.352 ±0.003 0.30 ±0.006

Figure 13: The effect of wmin on accuracy. We took the best R1 within the first 5 passes. The
standard deviations are also shown. The value wmin = 0.1 is significantly inferior, while
setting wmin to 0.001 does not lead to significant improvements.

6.3.3 THE MINIMUM WEIGHT CONSTRAINT

We noted in Section 4.1 that a wmin value of 0.01 can be adequate if we expect most useful edge
weights to be in say [0.05,1] range, while a wmin value of 0.1 is probably inadequate for best per-
formance. Figure 13 shows the R1 values for wmin ∈ {0.001,0.01,0.1} on the three bigger text
categorization data sets. Other options were set as in Figure 10, and the best R1 value within first 5
passes is reported.

Note that while wmin =0.1 is inferior, the bulk of accuracy is achieved by weights above 0.1, and
wmin ≤ 0.01 does not make a difference on these data sets.

6.3.4 MULTIPLE PASSES AND CHOICE OF MARGIN

Figure 14 shows accuracy (with standard deviations over 10 runs for two plots) as a function of
the number of passes and different margin values, in the case of Reuters RCV1. As can be seen,
different margin values can result in different accuracies. In some data sets, accuracy degrades
somewhat right after pass 1, exhibiting possible overfitting as training performance increases.
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Figure 14: Reuters RCV1: Accuracy (R1) for margin threshold $m ∈ {0,0.1,0.2,0.5} against the
number of passes.

No Leakage Allow Leakage
News Group 0.866 ±0.005 0.865 ±0.005
RCV1 0.780 ±0.008 0.787 ±0.008
Ads 0.696 ± 0.002 0.725 ± 0.003

Figure 15: On some data sets, allowing weight leakage when dropping edges can significantly im-
prove accuracy.

6.3.5 DISALLOWING WEIGHT “LEAKS”

An uninformative feature such as “the” should give low votes to all classes. However, since the
outdegree is constrained for memory reasons, if we imposed a constraint that the connection weights
of a feature should sum to 1, then “the” may give significant but inaccurate weights to the classes
that it happens to get connected with. Allowing for weight leaks is one way of addressing this issue.
Figure 15 compares results. For the NO case in the figure (not allowing), whenever an edge from
f to c is dropped, its weight, w′

f ,c, is subtracted from w′
f . Thus w′

f = !w′
f ,c when we don’t allow

leaks, and w′
f ≥ !w′

f ,c when we allow them.

6.3.6 DOWN WEIGHING LITTLE SEEN FEATURES

Figure 16 shows the effect of down weighing infrequent features (the default option, see Sec-
tion 4.3.2), against treating all features as equal (not using the option). Down-weighing infrequent
features can significantly help.
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No Down-Weigh With Down-Weigh
Newsgroup 0.860 ±0.005 0.865 ±0.005
RCV1 0.758 ±0.007 0.787 ±0.008
Web 0.327 ±0.006 0.352 ± 0.007

Figure 16: Down-weighing infrequent features can significantly improve accuracy.

IND Bool FF p=1 best Bool FF best FF
News Group 0.846 ±0.006 0.860 ±0.006 0.860 ±0.005 0.865 ±0.005
Industry 0.799 ±0.01 0.839 ±0.011 0.867 ±0.008 0.886 ±0.009
RCV1 0.686 ±0.009 0.76 ±0.01 0.780 ±0.008 0.789 ±0.008

Figure 17: Comparisons with IND and the effect of using feature values or treating them as Boolean
and no l2 normalization. The last column (best FF) contains results when default FF
(with the use of feature values, l2 normalization) is used (from Figure 9). Boolean FF
with the right margin can significantly beat IND in accuracy, and use of feature values
in FF appears to help over Boolean representation.

6.3.7 IND AND BOOLEAN FEATURES

IND treats features independently and as Boolean, but computes the conditionals exactly. Thus IND
is similar to Boolean FF with high margin and wmin = 0, but IND also has a post-improvement step
of adjusting pind (using the training set), which we have observed can improve the test accuracy of
IND significantly (in addition to reducing index size). In these experiments pind was chosen from,

{0.01,0.02, · · · ,0.09,0.1,0.15,0.2,0.25, · · · ,0.6}.

Here we compare IND against FF with Boolean values (and feature vectors are not l2 normal-
ized). This allows us to see how much using features values helps, as well as a comparison to a
simpler heuristic of computing the conditional probabilities exactly and dropping the small values
afterward. Figure 17 shows the results. For Newsgroup, Industry and RCV1, the best value of pind
was respectively 0.01,0.1, and 0.3. To see the effect of edge removal on the accuracy of IND, if we
chose pind = 0 (did no edge removal), we would get R1 averaging below 0.58 on RCV1 (instead of
current 0.69).

To achieve the best performance with Boolean features for FF on newsgroup, we had to raise the
margin threshold to 7.0. Margin threshold of 1 or below gave significantly inferior results of 0.82 or
below. Note that the scores that the classes receive during retrieval can increase significantly with
Boolean features (compared to using the feature values in l2 normalized vector representation).

We conclude that IND can be significantly outperformed by FF with an appropriate margin.

6.4 Other Experiments

Here, we first compare to an older indexing method (Madani et al., 2007) and then report and discuss
some properties of the FF learning algorithm, such as the training performance, average scores of
the top class, and a few example connections learned.
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No Classifiers With Classifiers FF
News Group 0.681 ±0.007 0.768 ±0.006 0.86
Industry 0.658 ±0.009 0.795 ± 0.01 0.88± 0.008

Figure 18: The performance of the non-ranking indexer algorithm, learning an unweighted index,
with and without classifiers (first two columns) (Madani et al., 2007). The goal of im-
proving class rankings, via learning a weighted index, simplifies indexing and improves
classification accuracy.

6.4.1 COMPARISON TO OLDER INDEX LEARNING

The first idea for use of an index was to drastically lower the number of candidate classes to a
manageable set when classifying a given instance, say 10s, and then use classifiers, possibly trained
using the index as well (for efficient training), to precisely categorize the instances (Madani et al.,
2007). Here, we briefly compare using that method, which we will refer to as unweighted indexing,
against our current FF method. We have already noted that (binary) classifiers appear inferior for
class ranking, especially as we increase the number of classes, in our comparisons in one-versus-
rest experiments. Here, we present results showing that adding an intermediate index trained as
described by Madani et al. (2007) does not improve accuracy. Furthermore, FF is significantly
faster and easier to use.

The unweighted indexing algorithm of Madani et al. (2007) uses a threshold ttol during training
and updates the index only when more than ttol many false positive classes are retrieved on a training
instance or when a false negative occurs. In that work, class-feature weights are computed only to
decide whether a connection or an edge should go into the index. We report accuracy under two
regimes when we test unweighted indexing: (1) as a baseline, when only using the class-feature
weights (without training classifiers), (2) when classifiers are also trained, here committee of per-
ceptrons, trained in an online manner in tandem with the learning of the index, and the classes are
ranked using the scores of the retrieved classifiers on the instance. For further details on that algo-
rithm, please refer to Madani et al. (2007). Note that if we use the classifiers for direct classification
(and not ranking) we obtain significantly inferior accuracy.

Figure 18 shows the results on the newsgroup and Industry data sets. When using no classifiers,
we obtained the best R1 performance with ttol = 5 (out of ttol ∈ {2,5,20}) on the newsgroup and
Industry data sets. The accuracy improves with more passes, but reaches a ceiling in under 20
passes, and we have reported the best performance over the passes. With the addition of classifiers,
the best R1 is obtained when we don’t use the indexer (see Figure 9), but the results from using the
indexer can be close as the number of classes grows and with tolerance set in 10s. We have shown
the result for ttol =5 for newsgroup, and ttol =20 for Industry. We observe that we require classifiers
for the unweighted index learning method, to significantly improve accuracy, and the combination
still lags behind FF in accuracy.

We note that while unweighted indexing without classifier training is fast, classifier training
adds significant space and time overhead. Training was an order of magnitude slower than FF on
the two data sets we reported on, and the classifiers also require 10 or more training passes to reach
best performance.
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Figure 19: Train and test accuracy versus the number of passes, on the newsgroup (left) and web
(right) data sets. Increasing the margin threshold can help control overfitting, but may
not result in best test performance.

6.4.2 TRAINING VERSUS TEST PERFORMANCE OF FF

Figure 19 shows the train and test R1 values as a function of pass. For the training performance,
at end of each pass, the R1 performance is computed on the same training instances rather than
on the held-put sets. The higher the margin threshold, the less the capacity for fitting and therefor
the less the possibility of overfitting. In the case of the newsgroup, we see that we reach the best
performance with a relatively high margin threshold of $m≈ 1, and the test and training performance
remain roughly steady with more passes, unlike the case for $m =0. For the web data set, we see
that the difference between train and test performance also decreases as we increase the margin
threshold, but the best test performance is obtained with margin threshold of 0.

6.4.3 LEARNING CLASS PROTOTYPES

FF does not necessarily learn good (binary) classifiers or class prototypes, that is, the incoming
weights into a class ci (the vector (w1,i, · · · ,wf|F|,i)), may make a poor class prototype vector. For
example, we used such “prototypes” for ranking instances for each class in Reuters-21578 and
newsgroup. The ranking quality (max F1) was significantly lower than that obtained from a single
perceptron or a linear SVM trained for the class (5 to 10% reduction in absolute value of Max-
F1 compared to perceptron on Reuters-21578 classes). On the newsgroup data set, the Max-F1
performances were comparable to single perceptrons but lagged the performance of SVMs.

6.4.4 CLASS INDEGREES

In Section 4.4 it was mentioned that prototypes may require more (nonzero) weights and process-
ing time than features, and thus feature-based methods could have an efficiency advantage over
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prototype-based methods (even when adjusted for the average vector length times average feature
outdegree). Of course, this all depends on the details of what processing needs to be performed for a
given algorithm and what the average numbers come out to. It may be useful to look at the average
indegree of a class during the FF algorithm on our data sets.

Let the indegree of a class, that is, the length of the prototype vector, be the number of features
that have a significant edge to the class (within the highest dmax edges for each feature). After
one pass of training, the indegree for the top ranking class (averaged over test instances), for the
Newsgroup, Industry, RCV1, Ads, and Web was respectively: 6k, 2k, 4k, 530, and 14k. The true
class had a lower but somewhat similar average indegree, except for the web, where the true class
had an average indegree of 6700. Furthermore, in general, the average indegree of classes at given
rank goes down with increasing rank. This is plausible: concepts with relatively higher indegree
(i.e., more connections) tend to beat others in the score received: they tend to be ranked closer to
the top.

Observe that the uniform averages (indegree of a class picked uniformly at random) is signifi-
cantly lower for the big data sets, due to the skew in class frequencies. The uniform averages can
be computed from Figures 9 and 10, for example, for the Web data it is: 1.5meg

14k ≈ 100.

6.4.5 EXAMPLE FEATURES AND CONNECTIONS

On RCV1, there were about 300 feature-class connections with weight greater than 0.9 (strong
connections). Examples included: “figurehead” to the class “EQUITY MARKETS”, “gunfir” to
the class “WAR, CIVIL WAR“, and ”manuf” (manufacturing) to “LEADING INDICATORS”. Ex-
amples of features with relatively large “leaks”, that is, with wf = !c w f ,c < 0.25, and thus likely
uninformative, included “ago”, “base”, “year”, and “intern”.21

7. Conclusions

We raised the challenge of large-scale many-class learning and explored the approach of index
learning. In this index-learning context, we began with the informal conjecture that (1) each feature
need only connect to a relatively small number of classes, and (2) these connections can be dis-
covered efficiently. We provided evidence that there exist very efficient online learning algorithms
that nevertheless enjoy competitive and at times better accuracy performance than other commonly
used methods. The algorithms may best be viewed as performing the computations from the side of
features (the predictors) rather than the classes (the predicted). Each feature computes that choice of
classes it may connect to and the connection weights. In particular, for very large-scale problems,
each feature is space constrained in performing its computations and in the number of classes to
which it can connect.

Much work remains in terms of advancing the algorithms and developing an understanding
of their successes and limitations, including developing insights into the possible regularities in
naturally occurring data that could explain the observed successes. We intend to further investigate
index-learning algorithms, including different update methods and objectives, to develop theoretical
properties, and to explore applications to various domains.

21. The feature “the” was probably dropped (a “stop” word) during the tokenization of this data set (Lewis et al., 2004).
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Appendix A. NP-Hardness

For the purpose of establishing hardness, the problem is specified by a finite set of instances, wherein
each instance is assigned a class and specified by the set of its active features. The features need only
be Boolean. Of course, more general problems are at least as hard. We show NP-hardness when
a fixed upper constraint is imposed on the outdegree on each feature in the index. The problem
is NP-hard under either objective of maximizing accuracy or maximizing the MRR reward on the
given set. For MRR, for each instance, the reward is the reciprocal rank 1

kx , that is, the rank of
the correct class in the ranking returned by the index. On a single instance, the reward could be
0, if the class is not retrieved, and maxes at 1, if the correct class has rank 1. Note that MRR in
Section 3.3 is simply the average reward per instance. For accuracy (R1), the reward is either 1,
if the correct class is ranked highest, or otherwise 0. The decision problem is then to determine
whether a weighted index (a weighted bipartite graph) satisfying the outdegree constraint exists that
yields a total reward, !x∈X r(cx), exceeding a desired threshold.

Theorem 4 The index learning problem with the objective of either maximizing accuracy (R1) or
minimizing HR on a given set of instances, with the constraint of a constant upper bound, such as
1, on the outdegree of each feature is NP-Hard.

Proof The reduction is from the SET COVER problem (Garey and Johnson., 1979). We reduce the
SET COVER problem to problem of computing an index wherein each feature can connect to at most
1 class.

An instance I of SET COVER consist of a set U = {e1, . . . ,en} of elements and a set S =
{S1, . . . ,Sm} of subsets of U . The goal is to find a smallest subset S ′ ⊆ S such that

S

Si∈S ′ = U .
Given a SET COVER instance I , we construct an instance of the indexing problem with only two
classes c1 and c2 such that there is a SET COVER solution of size C for I iff there is an index
(with the maximum outdegree of 1 constraint), such that the maximum total reward, the number of
instances for which the right class is ranked highest, is |U |+ |S |−C.

In the constructed indexing problem, there is one feature fi corresponding to each set Si ∈ S ,
for a total of m features. There is also one instance x j for each element e j ∈U (1 ≤ j ≤ n), and x j
contains feature fi (x j is connected to fi) iff the element e j belongs to the set Si. These instances,
called the “original instances”, belong to class c1. In addition, there are m “extra” instances, one for
each set (or each feature). Each of these extra instances contains only the feature it corresponds to,
and belongs only to class c2 (see Figure 20).

Here, in constructing an index, we need to decide for each feature whether to connect the feature
to c1 or to c2 (we can only connect to one of the two), and with what weights. Now, if a cover of
size C exists, then we can easily obtain an index yielding reward of |U |+ |S | - C: we connect the
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Figure 20: Reduction of the minimum set cover problem to index learning.

features in the cover (i.e., those features whose corresponding sets are in the cover) to c1, each with
weight of |S |, and we connect all the other features to c2 with a relatively small weight of say 1. In
this way, for any original instance (|U | many), c1 is ranked highest, as at least one of its feature (the
one(s) in the cover) connects to c1 with high weight. For only |S |−C many of the extra instances,
the correct class is missed, thus the total reward is |U |+ |S |−C.

For the reverse direction, we want to show that if an index with reward R exists, then there is
a cover size C ≤ |U |+ |S |−R. Assume an index is given with reward R. Note that lowering the
connection weights to c2 does not degrade the reward. So assume all such weights are at fixed
minimum value vmin. Next, we note that any index can be converted to one in which all the original
instances are “covered”, that is, the index ranks the right class highest: take any original instance for
which this is not the case, and take one of its features that is connected to c2 (there must be at least
one), drop that edge, and connect it to c1 with high enough weight so that c1 is ranked highest. The
weight can simply be vmin|S |. This operation does not degrade total reward as we lose on exactly
one extra instance, but gain on at least one original instance. We may repeat this operation until all
original instances are covered, and the reward is now R′ ≥ R. Now, we see that R′ = |U |+ |S |−n,
where n is the number of those extra instances for which c2 is not retrieved, equal to the number of
features covering the original instances (connecting to c1), or the cover size in the original problem
isC = n= |U |+ |S |−R′ ≤ |U |+ |S |−R.

Observe that the NP-hardness remains and is easier to show if we use the maximum incoming
score rule for class retrieval (each class gets the maximum of its incoming edge weights) instead
of the sum. This reduction does not establish NP-hardness of constant-ratio approximability of
class ranking (due to the subtraction), which remains an interesting open problem. For instance,
either a constant-ratio approximation to loss (for problems with high accuracy) or accuracy (for
problems with high loss) would be interesting. A similar reduction for the problem of computing
an unweighted index shows that problem is NP-hard even to approximate (Madani et al., 2007).

Appendix B. Approximation Consequences of Edge Dropping

Consider the setting of Section 4.1 wherein a feature wants to compute the proportions of the (suf-
ficiently frequent) classes in the stream it observes. There are two causes for inaccuracies in com-
puting proportions:
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Figure 21: The performance of FSU under different allowances wmin. FSU computes the class
proportions from processing a stream of 1000 class observations. For a choice of high-
est true probability p∗, the remaining probability mass (1− p∗) is spread evenly over
remaining classes. This is done under two regimes of generating classes. In (a) the
number of unique classes is fixed at |C |= 100, and in (b) it is |C |= 1 1

p∗ 2 (i.e., modeling
the situation in which other classes tie or have close probabilities to the maximum). The
experiment, consisting of picking a class distribution and generating a 1000 draws, is
repeated for 200 trials. In each trial, the deviation ratio of the highest proportion value
computed by FSU, p̃c1 , from the true maximum probability, p∗, is computed. This de-
viation (ratio) is |p̃c1−p

∗|
p∗ . The average deviation over the 200 trials is plotted against

p∗. In the plot of part (b), the deviation is also compared to the case of 100 classes
and wmin = 0.01. We note that wmin ≈ 0.01 appears satisfactory for p∗ ≥ 0.05, while
wmin ≈ 0.1 performs well for a much smaller range.

• Finite samples (at any given time only a finite sample has been observed).

• Setting small weights (below wmin) to 0 (dropping edges) to save memory.

As FSU may drop and reinsert edges repeatedly, its approximation of actual proportions suffers
from more than the issue of finite samples alone. We want to get an idea of this extra loss that we
incur compared to the case when memory is not an issue (when no edges are dropped). Intuitively,
FSU should work well as long as the proportions we are interested in sufficiently exceed the wmin
threshold. The probability that a class with say probability p is not seen in some 1

wmin trials is
(1− p)1/wmin , and as long the ratio p

wmin is high (several multiples), for example, p > 4wmin, this
probability is relatively small. For example, for wmin = 0.01, and p = 0.05, the probability of not
seeing such a class for a stretch of 100 consecutive trials is 0.006. More generally, the chance of
being set to 0 (dropped) for a class with occurrence probability p quickly diminishes as we increase
the ratio p

wmin , and therefore the cause of inaccuracies due to finite memory (the outdegree constraint
on features) is mitigated.

We conducted experiments to see how much the proportion estimation by FSU deviates from
true proportions and in particular compared that deviation to the deviations when FSU is not memory
constrained (when wmin is set to 0). Figures 21 and 22 show the results. The experiments differ
on how we generated the classes and computed the deviations. In the first of these experiments,
to generate the true-class distribution, for some fixed number of classes |C |, one class is given a
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Figure 22: The performance of FSU, under different allowances wmin. The vector of true class
probabilities is generated by uniformly and sequentially picking from [0,1], and keeping
track of total mass p (which should not exceed 1). If for latest generated class the
probability drawn is greater than remaining mass 1− p, the remaining mass is assigned
instead, and class generation is stopped. FSU is evaluated after seeing a stream of 1000
classes iid drawn from such a source. The l1 and l" (or lmax) distances between the vector
of empirical proportions that FSU computes and the true probabilities vector, averaged
over 200 trials, is reported. FSU with wmin =0.01 yields distances comparable to FSU
with wmin = 0, but wmin =0.1 yields significantly inferior estimates.

highest probability p∗, and the remaining classes obtain the remaining probability mass divided
uniformly: 1−p∗

|C |−1 . We then generated a stream of 1000 class observations (1000 iid draws) from
such a distribution, and gave it to FSU with different values of wmin. We computed the deviation
ratio: |p̃c1−p

∗|
p∗ , where c1 denotes the class ranked highest by FSU, and p̃c1 is its assigned probability

(highest computed probability). We averaged this deviation (ratio) over 200 trials of repeating the
experiments. Figure 21(a) shows the averages when |C | = 100 (so all classes except for one, obtain
1−p∗

99 ). Figure 21(b) shows the results for |C | = 1 1
p∗ 2 (e.g., for when p∗ ≥ 0.5, |C | = 2, and when

p∗ = 0.05, |C | = 20). Thus Figure 21(b) shows how FSU with limited wmin compares when the
classes have similar proportions.

In the second set of experiments, we generated the probability for each class uniformly from the
[0,1] interval, keeping track of the total probability p used up during the course of generation. If the
newest class gets a probability greater than 1− p, 1− p is assigned to it and class generation, for se-
lecting a distribution, is stopped. We then sampled iid to get a sequence of 1000 class observations.
We compared the vector of class proportions that FSU computed using l1 or l" distance against
the vector of true probabilities. We averaged the distances over 200 trials. We plot the results for
FSU under different wmin constraints. We see that a threshold of wmin ≥ 0.1 is not appropriate if
the proportions we are interested in may be below 0.5, but a threshold of wmin ≈ 0.01 does well,
if we are interested in true proportions that are greater than 0.05 say. We compared a number of
other statistics, such as the maximum deviation from true probability, and the probability that the
deviation is larger than a threshold, and FSU with wmin = 0.01 performed similarly to wmin = 0
on the distributions tested. The reason as alluded to earlier is that those classes with proportions
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significantly greater than wmin have a high chance of being seen early and frequently enough in the
stream and not being dropped.

Thus, as long as we expect that the useful proportions are a few multiples away from the wmin
we choose, FSU is expected to compute proportions that are close to ones computed by the FSU
with wmin set to 0 (no space constraints). Further, we expected that most often the important feature
connection weights that determine the true classes during ranking have fairly high weight. Note
also that the constraint of finite samples also points to the limited utility of trying to keep track
of relatively low proportions: for most useful features, we may see them below say a 1000 times
(in common data sets), and commonly occurring features tend not to be discriminative. Finally,
vector length is a factor: if there tend to exist strong features-class connections, the influence of
the weaker connections on changing the ranking will be limited, in particular when the number
of active features is adequately small. Thus, in many practical learning problems, expecting that
most useful proportions (weights) are in a relatively small interval, say [0.05,1] (or that the features
do not require high outdegree) may be reasonable (see Section 6.3.3). In general however, some
experimentation may be required to set the wmin parameter.
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Abstract
We propose hashing to facilitate efficient kernels. This generalizes previous work using sampling
and we show a principled way to compute the kernel matrix for data streams and sparse feature
spaces. Moreover, we give deviation bounds from the exact kernel matrix. This has applications to
estimation on strings and graphs.
Keywords: hashing, stream, string kernel, graphlet kernel, multiclass classification

1. Introduction

In recent years, a number of methods have been proposed to deal with the fact that kernel methods
have slow runtime performance if the number of kernel functions used in the expansion is large.
We denote by X the domain of observations and we assume thatH is a Reproducing Kernel Hilbert
SpaceH with kernel k : X×X → R.

1.1 Keeping the Kernel Expansion Small

One line of research (Burges and Schölkopf, 1997) aims to reduce the number of basis functions
needed in the overall function expansion. This led to a number of reduced set Support Vector algo-
rithms which work as follows: a) solve the full estimation problem resulting in a kernel expansion,
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b) use a subset of basis functions to approximate the exact solution, c) use the latter for estimation.
While the approximation of the full function expansion is typically not very accurate, very good
generalization performance is reported. The big problem in this approach is that the optimization of
the reduced set of vectors is rather nontrivial.

Work on estimation on a budget (Dekel et al., 2006) tries to ensure that this problem does not
arise in the first place by ensuring that the number of kernel functions used in the expansion never
exceeds a given budget or by using an !1 penalty (Mangasarian, 1998). For some algorithms, for
example, binary classification, guarantees are available in the online setting.

1.2 Keeping the Kernel Simple

A second line of research uses variants of sampling to achieve a similar goal. That is, one uses the
feature map representation

k(x,x′) =
〈

!(x),!(x′)
〉

.

Here !maps X into some feature space F. This expansion is approximated by a mapping ! :X→ F

k(x,x′) =
〈

!(x),!(x′)
〉

often !(x) =M!(x).

Here ! has more desirable computational properties than !. For instance, ! is finite dimensional
(Fine and Scheinberg, 2001; Kontorovich, 2007; Rahimi and Recht, 2008), or ! is particularly sparse
(Li et al., 2007).

1.3 Our Contribution

Firstly, we show that the sampling schemes of Kontorovich (2007) and Rahimi and Recht (2008)
can be applied to a considerably larger class of kernels than originally suggested—the authors only
consider languages and radial basis functions respectively. Secondly, we propose a biased approxi-
mation ! of !which allows efficient computations even on data streams. Our work is inspired by the
count-min sketch of Cormode and Muthukrishnan (2004), which uses hash functions as a computa-
tionally efficient means of randomization. This affords storage efficiency (we need not store random
vectors) and at the same time they give performance guarantees comparable to those obtained by
means of random projections.

As an application, we demonstrate computational benefits over suffix array string kernels in the
case of document analysis and we discuss a kernel between graphs which only becomes computa-
tionally feasible by means of compressed representation.

1.4 Outline

We begin with a description of previous work in Section 2 and propose the hash kernels in Section 3
which is suitable for data with simple structure such as strings. An analysis follows in Section 4.
And we propose a graphlet kernel which generalizes hash kernels to data with general structure—
graphs and discuss a MCMC sampler in Section 5. Finally we conclude with experiments in Sec-
tion 6.
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2. Previous Work and Applications

Recently much attention has been paid to efficient algorithms with randomization or hashing in the
machine learning community.

2.1 Generic Randomization

Kontorovich (2007) and Rahimi and Recht (2008) independently propose the following: denote by
c ∈ C a random variable with measure P. Moreover, let !c : X → R be functions indexed by c ∈ C.
For kernels of type

k(x,x′) = Ec∼P(c)
[

!c(x)!c(x′)
]

(1)

an approximation can be obtained by samplingC = {c1, . . . ,cn}∼ P and expanding

k(x,x′) =
1
n

n

"
i=1

!ci(x)!ci(x
′).

In other words, we approximate the feature map !(x) by !(x) = n− 1
2 (!c1(x), . . . ,!cn(x)) in the

sense that their resulting kernel is similar. Assuming that !c(x)!c(x′) has bounded range, that is,
!c(x)!c(x′) ∈ [a,a+R] for all c, x and x′ one may use Chernoff bounds to give guarantees for large
deviations between k(x,x′) and k(x,x′). For matrices of size m×m one obtains bounds of type
O(R2#−2 logm) by combining Hoeffding’s theorem with a union bound argument over the O(m2)
different elements of the kernel matrix. The strategy has widespread applications beyond those of
Kontorovich (2007) and Rahimi and Recht (2008):

• Kontorovich (2007) uses it to design kernels on regular languages by sampling from the class
of languages.

• The marginalized kernels of Tsuda et al. (2002) use a setting identical to (1) as the basis for
comparisons between strings and graphs by defining a random walk as the feature extractor.
Instead of exact computation we could do sampling.

• The Binet-Cauchy kernels of Vishwanathan et al. (2007b) use this approach to compare tra-
jectories of dynamical systems. Here c is the (discrete or continuous) time and P(c) discounts
over future events.

• The empirical kernel map of Schölkopf (1997) uses C = X and employs some kernel function
$ to define !c(x) = $(c,x). Moreover, P(c) = P(x), that is, placing our sampling points ci on
training data.

• For RBF kernels, Rahimi and Recht (2008) use the fact that k may be expressed in the system
of eigenfunctions which commute with the translation operator, that is the Fourier basis

k(x,x′) = Ew∼P(w)[e−i〈w,x〉ei〈w,x′〉]. (2)

Here P(w) is a nonnegative measure which exists for any RBF kernel by virtue of Bochner’s
theorem, hence (2) can be recast as a special case of (1). What sets it apart is the fact that the
variance of the features !w(x) = ei〈w,x〉 is relatively evenly spread. (2) extends immediately to
Fourier transformations on other symmetry groups (Berg et al., 1984).

• The conditional independence kernel of Watkins (2000) is one of the first instances of (1).
Here X,C are domains of biological sequences, !c(x) = P(x|c) denotes the probability of
observing x given the ancestor c, and P(c) denotes a distribution over ancestors.
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While in many cases straightforward sampling may suffice, it can prove disastrous whenever !c(x)
has only a small number of significant terms. For instance, for the pair-HMM kernel most strings
c are unlikely ancestors of x and x′, hence P(x|c) and P(x′|c) will be negligible for most c. As a
consequence the number of strings required to obtain a good estimate is prohibitively large—we
need to reduce ! further.

2.2 Locally Sensitive Hashing

The basic idea of randomized projections (Indyk andMotawani, 1998) is that due to concentration of
measures the inner product 〈!(x),!(x′)〉 can be approximated by"n

i=1 〈vi,!(x)〉〈vi,!(x′)〉 efficiently,
provided that the distribution generating the vectors vi satisfies basic regularity conditions. For
example, vi ∼N(0, I) is sufficient, where I is an identity matrix. This allows one to obtain Chernoff
bounds and O(#−2 logm) rates of approximation, where m is the number of instances. The main
cost is to store vi and perform the O(nm) multiply-adds, thus rendering this approach too expensive
as a preprocessing step in many applications.

Achlioptas (2003) proposes a random projection approach that uses symmetric random variables
to project the original feature onto a lower dimension feature space. This operation is simple and
faster and the author shows it does not sacrifice the quality of the embedding. Moreover, it can be
directly applied to online learning tasks. Unfortunately, the projection remains dense resulting in
relatively poor computational and space performance in our experiments.

2.3 Sparsification

Li et al. (2007) propose to sparsify !(x) by randomization while retaining the inner products. One
problem with this approach is that when performing optimization for linear function classes, the
weight vector w which is a linear combination of !(xi) remains large and dense, thus obliterating a
significant part of the computational savings gained in sparsifying !.

2.4 Count-Min Sketch

Cormode and Muthukrishnan (2004) propose an ingenious method for representing data streams.
Denote by I an index set. Moreover, let h : I → {1, . . . ,n} be a hash function and assume that there
exists a distribution over h such that they are pairwise independent.

Assume that we draw d hash functions hi at random and let S ∈ Rn×d be a sketch matrix. For
a stream of symbols s update Shi(s),i ← Shi(s),i + 1 for all 1 ≤ i ≤ d. To retrieve the (approximate)
counts for symbol s′ compute mini Shi(s′),i. Hence the name count-min sketch. The idea is that
by storing counts of s according to several hash functions we can reduce the probability of colli-
sion with another particularly large symbol. Cormode and Muthukrishnan (2004) show that only
O(#−1 log1/%) storage is required for an #-good approximation, where 1−% is the confidence.

Cormode and Muthukrishnan (2004) discuss approximating inner products and the extension
to signed rather than nonnegative counts. However, the bounds degrade for real-valued entries.
Even worse, for the hashing to work, one needs to take the minimum over a set of inner product
candidates.
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2.5 Random Feature Mixing

Ganchev and Dredze (2008) provide empirical evidence that using hashing can eliminate alphabet
storage and reduce the number of parameters without severely impacting model performance. In
addition, Langford et al. (2007) released the Vowpal Wabbit fast online learning software which
uses a hash representation similar to the one discussed here.

2.6 Hash Kernel on Strings

Shi et al. (2009) propose a hash kernel to deal with the issue of computational efficiency by a very
simple algorithm: high-dimensional vectors are compressed by adding up all coordinates which
have the same hash value—one only needs to perform as many calculations as there are nonzero
terms in the vector. The hash kernel can jointly hash both label and features, thus the memory
footprint is essentially independent of the number of classes used.

3. Hash Kernels

Our goal is to design a possibly biased approximation which a) approximately preserves the inner
product, b) which is generally applicable, c) which can work on data streams, and d) which increases
the density of the feature matrices (the latter matters for fast linear algebra on CPUs and graphics
cards).

3.1 Kernel Approximation

As before denote by I an index set and let h : I → {1, . . . ,n} be a hash function drawn from a
distribution of pairwise independent hash functions. Finally, assume that !(x) is indexed by I and
that we may compute !i(x) for all nonzero terms efficiently. In this case we define the hash kernel
as follows:

k(x,x′) =
〈

!(x),!(x′)
〉

with ! j(x) = "
i∈I;h(i)= j

!i(x) (3)

We are accumulating all coordinates i of !(x) for which h(i) generates the same value j into coordi-
nate ! j(x). Our claim is that hashing preserves information as well as randomized projections with
significantly less computation. Before providing an analysis let us discuss two key applications:
efficient hashing of kernels on strings and cases where the number of classes is very high, such as
categorization in an ontology.

3.2 Strings

Denote by X = I the domain of strings on some alphabet. Moreover, assume that !i(x) := &i#i(x)
denotes the number of times the substring i occurs in x, weighted by some coefficient &i ≥ 0. This
allows us to compute a large family of kernels via

k(x,x′) ="
i∈I

&2i #i(x)#i(x′). (4)

Teo and Vishwanathan (2006) propose a storage efficient O(|x|+ |x′|) time algorithm for computing
k for a given pair of strings x,x′. Here |x| denotes the length of the string. Moreover, a weighted
combination "i'ik(xi,x) can be computed in O(|x|) time after O("i |xi|) preprocessing.
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The big drawback with string kernels using suffix arrays/trees is that they require large amounts
of working memory. Approximately a factor of 50 additional storage is required for processing
and analysis. Moreover, updates to a weighted combination are costly. This makes it virtually
impossible to apply (4) to millions of documents. Even for modest document lengths this would
require Terabytes of RAM.

Hashing allows us to reduce the dimensionality. Since for every document x only a relatively
small number of terms #i(x) will have nonzero values—at most O(|x|2) but in practice we will
restrict ourselves to substrings of a bounded length l leading to a cost of O(|x| · l)—this can be done
efficiently in a single pass over x. Moreover, we can compute !(x) as a pre-processing step and
discard x altogether.

Note that this process spreads out the features available in a document evenly over the coordi-
nates of !(x). Moreover, note that a similar procedure can be used to obtain good estimates for a
TF/IDF reweighting of the counts obtained, thus rendering preprocessing as memory efficient as the
actual computation of the kernel.

3.3 Multiclass

Classification can sometimes lead to a very high dimensional feature vector even if the underly-
ing feature map x→ !(x) may be acceptable. For instance, for a bag-of-words representation of
documents with 104 unique words and 103 classes this involves up to 107 coefficients to store the
parameter vector directly when the !(x,y) = ey⊗ !(x), where ⊗ is the tensor product and ey is a
vector whose y-th entry is 1 and the rest are zero. The dimensionality of ey is the number of classes.

Note that in the above case !(x,y) corresponds to a sparse vector which has nonzero terms only
in the part corresponding to ey. That is, by using the joint index (i,y) with !(x,y)(i,y′) = !i(x)%y,y′
we may simply apply (3) to an extended index to obtain hashed versions of multiclass vectors. We
have

! j(x,y) = "
i∈I;h(i,y)= j

!i(x).

In some cases it may be desirable to compute a compressed version of !(x), that is, !(x) first and
subsequently expand terms with y. In particular for strings this can be useful since it means that
we need not parse x for every potential value of y. While this deteriorates the approximation in an
additive fashion it can offer significant computational savings since all we need to do is permute a
given feature vector as opposed to performing any summations.

3.4 Streams

Some features of observations arrive as a stream. For instance, when performing estimation on
graphs, we may obtain properties of the graph by using an MCMC sampler. The advantage is that
we need not store the entire data stream but rather just use summary statistics obtained by hashing.

4. Analysis

We show that the penalty we incur from using hashing to compress the number of coordinates only
grows logarithmically with the number of objects and with the number of classes. While we are
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unable to obtain the excellent O(#−1) rates offered by the count-min sketch, our approach retains
the inner product property thus making hashing accessible to linear estimation.

4.1 Bias and Variance

A first step in our analysis is to compute bias and variance of the approximation !(x) of !(x).
Whenever needed we will write !h(x) and kh(x,x′) to make the dependence on the hash function h
explicit. Using (3) we have

kh(x,x′) ="
j
"

i:h(i)= j
!i(x) "

i′:h(i′)= j
!′i(x′)

= k(x,x′)+ "
i,i′:i.=i′

!i(x)!i′(x′)%h(i),h(i′) (5)

where % is the Kronecker delta function. Taking the expectation with respect to the random choice
of hash functions h we obtain the expected bias

Eh[k
h
(x,x′)] =

(

1− 1
n
)

k(x,x′)+ 1
n"

i
!i(x)"

i′
!i′(x′)

Here we exploited the fact that for a random choice of hash functions the collision probability is 1n
uniformly over all pairs (i, j). Consequently k(x,x′) is a biased estimator of the kernel matrix, with
the bias decreasing inversely proportional to the number of hash bins.

The main change is a rank-1 modification in the kernel matrix. Given the inherent high dimen-
sionality of the estimation problem, a one dimensional change does not in general have a significant
effect on generalization.

Straightforward (and tedious) calculation which is completely analogous to the above derivation
leads to the following expression for the variance Varh[k

h
(x,x′)] of the hash kernel:

Varh[k
h
(x,x′)] = n−1

n2

(

k(x,x)k(x′,x′)+ k2(x,x′)−2"
i
!2i (x)!2i (x′)

)

Key in the derivation is our assumption that the family of hash functions we are dealing with is
pairwise independent.

As can be seen, the variance decreases O(n−1) in the size of the values of the hash function.
This means that we have an O(n− 1

2 ) convergence asymptotically to the expected value of the kernel.

4.2 Information Loss

One of the key fears of using hashing in machine learning is that hash collisions harm performance.
For example, the well-known birthday paradox shows that if the hash function maps into a space of
size n then with O(n 12 ) features a collision is likely. When a collision occurs, information is lost,
which may reduce the achievable performance for a predictor.

Definition 1 (Information Loss) A hash function h causes information loss on a distribution D with
a loss function L if the expected minimum loss before hashing is less than the expected minimum
loss after hashing:

min
f

E
(x,y)∼D

[L( f (x),y))] <min
g

E
(x,y)∼D

[L(g(h(x)),y))]
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Redundancy in features is very helpful in avoiding information loss. The redundancy can be
explicit or systemic such as might be expected with a bag-of-words or substring representation. In
the following we analyze explicit redundancy where a feature is mapped to two or more values in
the space of size n. This can be implemented with a hash function by (for example) appending the
string i ∈ {1, . . . ,c} to feature f and then computing the hash of f ◦ i for the i-th duplicate.

The essential observation is that the information in a feature is only lost if all duplicates of the
feature collide with other features. Given this observation, it’s unsurprising that increasing the size
of n by a constant multiple c and duplicating features c times makes collisions with all features
unlikely. It’s perhaps more surprising that when keeping the size of n constant and duplicating
features, the probability of information loss can go down.

Theorem 2 For a random function mapping l features duplicated c times into a space of size n, for
all loss functions L and and distributions D on n features, the probability (over the random function)
of no information loss is at least:

1− l[1− (1− c/n)c+(lc/n)c].

To see the implications consider l = 105 and n = 108. Without duplication, a birthday paradox
collision is virtually certain. However, if c = 2, the probability of information loss is bounded by
about 0.404, and for c= 3 it drops to about 0.0117.
Proof The proof is essentially a counting argument with consideration of the fact that we are dealing
with a hash function rather than a random variable. It is structurally similar to the proof for a Bloom
filter (Bloom, 1970), because the essential question we address is: “What is a lower bound on the
probability that all features have one duplicate not colliding with any other feature?”

Fix a feature f . We’ll argue about the probability that all c duplicates of f collide with other
features.

For feature duplicate i, let hi = h( f ◦ i). The probability that hi = h( f ′ ◦ i′) for some other feature
f ′ ◦ i′ is bounded by (l−1)c/n because the probability for each other mapping of a collision is 1/n
by the assumption that h is a random function, and the union bound applied to the (l−1)cmappings
of other features yields (l− 1)c/n. Note that we do not care about a collision of two duplicates of
the same feature, because the feature value is preserved.

The probability that all duplicates 1≤ i≤ c collide with another feature is bounded by (lc/n)c+
1− (1− c/n)c. To see this, let c′ ≤ c be the number of distinct duplicates of f after collisions. The
probability of a collision with the first of these is bounded by (l−1)c

n . Conditioned on this collision,
the probability of the next collision is at most (l−1)c−1

n−1 , where 1 is subtracted because the first
location is fixed. Similarly, for the ith duplicate, the probability is (l−1)c−(i−1)

n−(i−1) . We can upper bound
each term as lc

n , implying the probability of all c
′ duplicates colliding with other features is at most

(lc/n)c′ . The probability that c′ = c is the probability that none of the duplicates of f collide, which
is (n−1)!

nc(n−c−1)! ≥ ((n− c)/n)c. If we pessimistically assume that c′ < c implies that every duplicate
collides with another feature, then

P(coll) ≤ P(coll|c′ = c)P(c′ = c)+P(c′ .= c)
≤ (lc/n)c+1− ((l− c)/l)c.

Simplification gives (lc/n)c+1− (1− c/n)c as claimed. Taking a union bound over all l features,
we get that the probability any feature has all duplicates collide is bounded by l[1− (1− c/n)c +
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(lc/n)c].

4.3 Rate of Convergence

As a first step note that any convergence bound only depends logarithmically on the size of the
kernel matrix.

Theorem 3 Assume that the probability of deviation between the hash kernel and its expected value
is bounded by an exponential inequality via

P
[
∣

∣

∣
kh(x,x′)−Eh

[

kh(x,x′)
]
∣

∣

∣
> #

]

≤ cexp(−c′#2n)

for some constants c,c′ depending on the size of the hash and the kernel used. In this case the error
# arising from ensuring the above inequality, with probability at least 1−%, for m observations and
M classes (for a joint feature map !(x,y), is bounded by

#≤
√

(2log(m+1)+2log(M+1)− log%+ logc−2log2)/nc′.

Proof Apply the union bound to the kernel matrix of size (mM)2, that is, to all T :=m(m+1)M(M+
1)/4 unique elements. Solving

Tcexp(−c′#2n) = %,

we get the bound on # is
√

log(Tc)− log%
c′n

. (6)

Bounding log(Tc) from above

log(Tc) = logT + logc≤ 2log(m+1)+2log(M+1)+ logc−2log2,

and plugging it into (6) yields the result.

4.4 Generalization Bound

The hash kernel approximates the original kernel by big storage and computation saving. An inter-
esting question is whether the generalization bound on the hash kernel will bemuch worse than the
bound obtained on the original kernel.

Theorem 4 (Generalization Bound) For binary class SVM, let K=
〈

!(x),!(x′)
〉

,K= 〈!(x),!(x′)〉
be the hash kernel matrix and original kernel matrix. Assume there exists b ≥ 0 such that b ≥
tr(K)− tr(K). Let F be the class of functions mapping from X×Y to R given by f (x,y) = −yg(x),
where g is a linear function in a kernel-defined feature space with norm at most 1. For any size
m sample {(x1,y1), . . . ,(xm,ym)} drawn i.i.d. from data distribution D over X× Y and for any

2623



SHI, PETTERSON, DROR, LANGFORD, SMOLA AND VISHWANATHAN

% ∈ (0,1) and any (> 0, with probability at least 1−%, we have

P(y .= sgn(g(x))) ≤
1
m(

m

"
i=1

)i+
4
m(

√

tr(K)+3

√

ln(2%)
2m

(7)

≤
1
m(

m

"
i=1

)i+
4
m(

√

tr(K)+
4
m(

√
b+3

√

ln(2%)
2m

, (8)

where )i =max{0,(− yig(xi)}, and g(xi) =
〈

w,!(xi,yi)
〉

.

Proof The standard Rademacher bound states that for any size m sample drawn i.i.d from D, for
any % ∈ (0,1) and any (> 0, with probability at least 1−%, the true error of the binary SVM ,whose
kernel matrix is denoted as K′, can be bounded as follows:

P(y .= sgn(g(x))) ≤
1
m(

m

"
i=1

)i+
4
m(

√

tr(K′)+3

√

ln(2%)
2m

. (9)

We refer the reader to Theorem 4.17 in Shawe-Taylor and Cristianini (2004) for a detailed proof.
The inequality (7) follows by letting K′ = K. Because tr(K) ≤ b+ tr(K) ≤ (

√
b+

√

tr(K))2, we
have 4

m(

√

tr(K) ≤ 4
m(

√

tr(K)+ 4
m(
√
b. Plugging above inequality into inequality (7) gives inequal-

ity (8). So the theorem holds.

The approximation quality depends on the both the feature and the hash collision. From the defini-
tion of hash kernel (see (3)), the feature entries with the same hash value will add up and map to a
new feature entry indexed by the hash value. The higher collision of the hash has, the more entries
will be added up. If the feature is sparse, the added up entries are mostly zeros. So the difference
of the maximum and the sum of the entries is reasonably small. In this case, the hash kernel gives
a good approximation of the original kernel, so b is reasonably small. Thus the generalization error
does not increase much as the collision increases. This is verified in the experiment section in Ta-
ble 4—increasing the collision rate from 0.82% to 94.31% only slightly worsens the test error (from
5.586% to 6.096%).

Moreover, Theorem 4 shows us the generalization bounds on the hash kernel and the original
kernel only differ by O((m()−1). This means that when our data set is large, the difference can
be ignored. A surprising result as we shall see immediately is that in fact, the difference on the
generalization bound is always nearly zero regardless of m,(.

4.5 The Scaling Factor Effect

An interesting observation on Theorem 4 is that, if we use a new feature mapping !′ = a!, where
a ∈ [0,1), it will make the bias term in (5) small. As we decrease a enough, the bias term can be
arbitrarily small. Indeed, it vanishes when a= 0. It seems that thus we can get a much tighter bound
according to Theorem 4—the term with b vanishes when a= 0. So is there an optimal scaling factor
a that maximizes the performance? It turns out that any nonzero a doesn’t effect the performance at
all, although it does tighten the bound.

Let’s take a closer look at the hash kernel binary SVM, which can be formalized as

min
w

&||w||2

2
+

m

"
i=1
max{0,1− yi

〈

w,!(xi,yi)
〉

}. (10)
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Applying a new feature mapping !̂= a! gives

min
ŵ

&̂||ŵ||2

2
+

m

"
i=1
max{0,1− yi

〈

ŵ,!(xi,yi)
〉

}, (11)

where &̂ = &
a2 and ŵ = aw. &̂ is usually determined by model selection. As we can see, given a

training data set, the solutions to (10) and (11) are exactly identical for a .= 0. When a= 0, g(x)≡ 0
for all x,w, and the prediction degenerates to random guessing. Moreover, the generalization bound
can be tighten by applying a small a nearly zero. This shows that hashing kernel SVM has nearly
the same generalization bound as the original SVM in theory.

5. Graphlet Kernels

Denote by G a graph with vertices V (G) and edges E(G). Several methods have been proposed to
perform classification on such graphs. Most recently, Przulj (2007) proposed to use the distribution
over graphlets, that is, subgraphs, as a characteristic property of the graph. Unfortunately, brute
force evaluation does not allow calculation of the statistics for graphlets of size more than 5, since
the cost for exact computation scales exponentially in the graphlet size.

In the following we show that sampling and hashing can be used to make the analysis of larger
subgraphs tractable in practice. For this denote by S ⊆ G an induced subgraph of G, obtained by
restricting ourselves to only V (S) ⊆ V (G) vertices of G and let #S(G) be the number of times S
occurs in G. This suggests that the feature map G→ !(G), where !S(G) = #S(G) will induce a
useful kernel: adding or removing an edge (i, j) only changes the properties of the subgraphs using
the pair (i, j) as part of their vertices.

5.1 Counting and Sampling

Depending on the application, the distribution over the counts of subgraphs may be significantly
skewed. For instance, in sparse graphs we expect the fully disconnected subgraphs to be con-
siderably overrepresented. Likewise, whenever we are dealing with almost complete graphs, the
distribution may be skewed towards the other end (i.e., most subgraphs will be complete). To deal
with this, we impose weights *(k) on subgraphs containing k edges |E(S)|.

To deal with the computational complexity issue simultaneously with the issue of reweighting
the graphs S we simply replace explicit counting with sampling from the distribution

P(S|G) = c(G)*(|E(S)|) (12)

where c(G) is a normalization constant. Samples from P(S|G) can be obtained by a Markov-Chain
Monte Carlo approach.

Lemma 5 The following MCMC sampling procedure has the stationary distribution (12).

1. Choose a random vertex, say i, of S uniformly.
2. Add a vertex j from G\Si to Si with probability c(Si,G)*(|E(Si j)|).

Here Si denotes the subgraph obtained by removing vertex i from S, and Si j is the result of adding
vertex j to Si.
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Note that sampling over j is easy: all vertices of G which do not share an edge with S\i occur with
the same probability. All others depend only on the number of joining edges. This allows for easy
computation of the normalization c(Si,G).
Proof We may encode the sampling rule via

T (Si j|S,G) =
1
k
c(Si,G)*(|E(Si j)|)

where c(Si,G) is a suitable normalization constant. Next we show that T satisfies the balance
equations and therefore can be used as a proposal distribution with acceptance probability 1.

T (Si j|S,G)P(S)
T (S|Si j,G)P(Si j)

=
k−1c(Si,G)*(|E(Si j)|)c(G)*(|E(S)|)

k−1c(Si j, j,G)*(|E(Si j, ji)|)c(G)*(|E(Si j)|)
= 1.

This follows since Si j, j = Si and likewise Si j, ji = S. That is, adding and removing the same vertex
leaves a graph unchanged.

In summary, we obtain an algorithm which will readily draw samples S from P(S|G) to characterize
G.

5.2 Dependent Random Variables

The problem with sampling from a MCMC procedure is that the random variables are dependent
on each other. This means that we cannot simply appeal to Chernoff bounds when it comes to
averaging. Before discussing hashing we briefly discuss averages of dependent random variables:

Definition 6 (Bernoulli Mixing) Denote by Z a stochastic process indexed by t ∈ Z with probabil-
ity measure P and let +n be the ,-algebra on Zt with t ∈ Z\1, . . . ,n−1. Moreover, denote by P−
and P+ the probability measures on the negative and positive indices t respectively. The mixing
coefficient * is

*(n,PX) := sup
A∈+n

∣

∣

∣
P(A)−P−×P+(A)

∣

∣

∣
.

If limn→-*(n,Pz) = 0 we call Z to be *-mixing.

That is, *(n,PX) measures how much dependence a sequence has when cutting out a segment of
length n. Nobel and Dembo (1993) show how such mixing processes can be related to iid observa-
tions.

Theorem 7 Assume that P is *-mixing. Denote by P∗ the product measure obtained from
. . .Pt×Pt+1 . . .Moreover, denote by +l,n the ,-algebra on Zn,Z2n, . . . ,Zln. Then the following holds:

sup
A∈+l,n

|P(A)−P∗(A)|≤ l*(n,P).

This allows us to obtain bounds for expectations of variables drawn from P rather than P∗.
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Theorem 8 Let P be a distribution over a domain X and denote by ! :X → H a feature map into a
Hilbert Space with 〈!(x),!(x′)〉 ∈ [0,1]. Moreover, assume that there is a *-mixing MCMC sampler
of P with distribution PMC from which we draw l observations xin with an interleave of n rather
than sampling from P directly. Averages with respect to PMC satisfy the following with probability
at least 1−%:

∥

∥

∥ E
x∼P(x)

[!(x)]−
1
l

l

"
i=1

!(xin)
∥

∥

∥
≤ l*(n,PMC)+

2+
√

log 2%√
l

.

Proof Theorem 7, the bound on ‖!(x)‖, and the triangle inequality imply that the expectations with
respect to PMC and P∗ only differ by l*. This establishes the first term of the bound. The second
term is given by a uniform convergence result in Hilbert Spaces from Altun and Smola (2006).

Hence, sampling from a MCMC sampler for the purpose of approximating inner products is sound,
provided that we only take sufficiently independent samples (i.e., a large enough n) into account.
The translation of Theorem 8 into bounds on inner products is straightforward, since
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5.3 Hashing and Subgraph Isomorphism

Sampling from the distribution over subgraphs S∈G has two serious problems in practice which we
will address in the following: firstly, there are several graphs which are isomorphic to each other.
This needs to be addressed with a graph isomorphism tester, such as Nauty (McKay, 1984). For
graphs up to size 12 this is a very effective method. Nauty works by constructing a lookup table to
match isomorphic objects.

However, even after the graph isomorphism mapping we are still left with a sizable number of
distinct objects. This is where a hash map on data streams comes in handy. It obviates the need to
store any intermediate results, such as the graphs S or their unique representations obtained from
Nauty. Finally, we combine the convergence bounds from Theorem 8 with the guarantees available
for hash kernels to obtain the approximate graph kernel.

Note that the two randomizations have very different purposes: the sampling over graphlets is
done as a way to approximate the extraction of features whereas the compression via hashing is
carried out to ensure that the representation is computationally efficient.

6. Experiments

To test the efficacy of our approach we applied hashing to the following problems: first we used it
for classification on the Reuters RCV1 data set as it has a relatively large feature dimensionality.
Secondly, we applied it to the DMOZ ontology of topics of webpages1 where the number of topics
is high. The third experiment—Biochemistry and Bioinformatics Graph Classification uses our
hashing scheme, which makes comparing all possible subgraph pairs tractable, to compare graphs
(Vishwanathan et al., 2007a). On publicly available data sets like MUTAG and PTC as well as on

1. Dmoz L2 denotes non-parent topic data in the top 2 levels of the topic tree and Dmoz L3 denotes non-parent topic
data in the top 3 levels of the topic tree.
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Data Sets #Train #Test #Labels
RCV1 781,265 23,149 2
Dmoz L2 4,466,703 138,146 575
Dmoz L3 4,460,273 137,924 7,100

Table 1: Text data sets. #X denotes the number of observations in X.

Algorithm Pre TrainTest Error %
BSGD 303.60s 10.38s 6.02
VW 303.60s 87.63s 5.39
VWC 303.60s 5.15s 5.39
HK 0s 25.16s 5.60

Table 2: Runtime and Error on RCV1. BSGD: Bottou’s SGD. VW: Vowpal Wabbit without cache.
VWC: Vowpal Wabbit using cache file. HK: hash kernel with feature dimension 220. Pre: prepro-
cessing time. TrainTest: time to load data, train and test the model. Error: misclassification rate.
Apart from the efficacy of hashing operation itself, the gain of speed is also due to a multi-core
implementation—hash kernel uses 4-cores to access the disc for online hash feature generation. For
learning and testing evaluation, all algorithms use single-core.

the biologically inspired data set DD used by Vishwanathan et al. (2007a), our method achieves the
best known accuracy.

In both RCV1 and Dmoz, we use linear kernel SVM with stochastic gradient descent (SGD)
as the workhorse. We apply our hash kernels and random projection (Achlioptas, 2003) to the
SGD linear SVM. We don’t apply the approach in Rahimi and Recht (2008) since it requires a
shift-invariant kernel k(x,y) = k(x− y), such as RBF kernel, which is not applicable in this case.
In the third experiment, existing randomization approaches are not applicable since enumerating
all possible subgraphs is intractable. Instead we compare hash kernel with existing graph kernels:
random walk kernel, shortest path kernel and graphlet kernel (see Borgwardt et al. 2007).

6.1 Reuters Articles Categorization

We use the Reuters RCV1 binary classification data set (Lewis et al., 2004). 781,265 articles are
used for training by stochastic gradient descent (SGD) and 23,149 articles are used for testing. Con-
ventionally one would build a bag of words representation first and calculate exact term frequency
/ inverse document frequency (TF-IDF) counts from the contents of each article as features. The
problem is that the TF calculation needs to maintain a very large dictionary throughout the whole
process. Moreover, it is impossible to extract features online since the entire vocabulary dictionary
is usually unobserved during training. Another disadvantage is that calculating exact IDF requires
us to preprocess all articles in a first pass. This is not possible as articles such as news may vary
daily.

However, it suffices to compute TF and IDF approximately as follows: using hash features, we
no longer require building the bag of words. Every word produces a hash key which is the dimension
index of the word. The frequency is recorded in the dimension index of its hash key. Therefore,
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Algorithm Dim Pre TrainTest orgTrainSize newTrainSize Error %
28 748.30s 210.23s 423.29Mb 1393.65Mb 29.35%

RP 29 1079.30s 393.46s 423.29Mb 2862.90Mb 25.08%
210 1717.30s 860.95s 423.29Mb 5858.48Mb 19.86%
28 0s 22.82s NA NA 17.00%

HK 29 0s 24.19s NA NA 12.32%
210 0s 24.41s NA NA 9.93%

Table 3: Hash kernel vs. random projections with various feature dimensionalities on RCV1. RP:
random projections in Achlioptas (2003). HK: hash kernel. Dim: dimension of the new features.
Pre: preprocessing time. TrainTest: time to load data, train and test the model. orgTrainSize:
compressed original training feature file size. newTrainSize: compressed new training feature file
size. Error: misclassification rate. NA: not applicable. In hash kernel there is no preprocess step, so
there is no original/new feature files. Features for hash kernel are built up online via accessing the
string on disc. The disc access time is taken into account in TrainTest. Note that the TrainTest for
random projection time increases as the new feature dimension increases, whereas for hash kernel
the TrainTest is almost independent of the feature dimensionality.

Dim #Unique Collision % Error %
224 285614 0.82 5.586
222 278238 3.38 5.655
220 251910 12.52 5.594
218 174776 39.31 5.655
216 64758 77.51 5.763
214 16383 94.31 6.096

Table 4: Influence of new dimension on Reuters (RCV1) on collision rates (reported for both train-
ing and test set combined) and error rates. Note that there is no noticeable performance degradation
even for a 40% collision rate.

every article has a frequency count vector as TF. This TF is a much denser vector which requires no
knowledge of the vocabulary. IDF can be approximated by scanning a smaller part of the training
set.

A quantile-quantile plot in Figure 1 shows that this approximation is justified—the dependency
between the statistics on the subset (200k articles) and the full training set (800k articles) is perfectly
linear.

We compare the hash kernel with Leon Bottou’s Stochastic Gradient Descent SVM2 (BSGD),
Vowpal Wabbit (Langford et al., 2007) (VW) and Random Projections (RP) (Achlioptas, 2003). Our
hash scheme is generating features online. BSGD is generating features offline and learning them
online. VW uses BSGD’s preprocessed features and creates further features online. Caching speeds
up VW considerably. However, it requires one run of the original VW code for this purpose. RP
uses BSGD’s preprocessed features and then creates the new projected lower dimension features.
Then it uses BSGD for learning and testing. We compare these algorithms on RCV1 in Table 2.

2. Code can be found at http://leon.bottou.org/projects/sgd.
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(a) DF from part of data (b) DF from all data

(c) Quantile-Quantile plot

Figure 1: Quantile-quantile plot of the DF counts computed on a subset (200k documents) and the
full data set (800k documents). DF(t) is the number of documents in a collection containing word
t.

Table 2. RP is not included in this table because it would be intractable to run it with the same
feature dimensionality as HK for a fair comparison. As can be seen, the preprocessing time of
BSGD and VW is considerably longer compared to the time for training and testing, due to the TF-
IDF calculation which is carried out offline. For a fair comparison, we measure the time for feature
loading, training and testing together. It can also be seen that the speed of online feature generation
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HLF (228) HLF (224) HF no hash U base P base
error mem error mem error mem mem error error

L2 30.12 2G 30.71 0.125G 31.28 2.25G (219) 7.85G 99.83 85.05
L3 52.10 2G 53.36 0.125G 51.47 1.73G (215) 96.95G 99.99 86.83

Table 5: Misclassification and memory footprint of hashing and baseline methods on DMOZ. HLF:
joint hashing of labels and features. HF: hash features only. no hash: direct model (not implemented
as too large, hence only memory estimates—we have 1,832,704 unique words). U base: baseline of
uniform classifier. P base: baseline of majority vote. mem: memory used for the model. Note: the
memory footprint in HLF is essentially independent of the number of classes used.

HLF KNN Kmeans
228 224 S= 3% 6% 9% S= 3% 6% 9%

L2 69.88 69.29 50.23 52.59 53.81 42.29 42.96 42.76
L3 47.90 46.64 30.93 32.67 33.71 31.63 31.56 31.53

Table 6: Accuracy comparison of hashing, KNN and Kmeans. HLF: joint hashing of labels and
features. KNN: apply K Nearest Neighbor on sampled training set as search set. Kmeans: apply
Kmeans on sampled training set to do clustering and then take its majority class as predicted class.
S is the sample size which is the percentage of the entire training set.

is considerable compared to disk access. Table 2 shows that the test errors for hash kernel, BSGD
and VW are competitive.

In table 3 we compare hash kernel to RP with different feature dimensions. As we can see,
the error reduces as the new feature dimension increases. However, the error of hash kernel is
always much smaller (by about 10%) than RP given the same new dimension. An interesting thing
is that the new feature file created after applying RP is much bigger than the original one. This is
because the projection maps the original sparse feature to a dense feature. For example, when the
feature dimension is 210, the compressed new feature file size is already 5.8G. Hash kernel is much
more efficient than RP in terms of speed, since to compute a hash feature one requires only O(dnz)
hashing operations, where dnz is the number of non-zero entries. To compute a RP feature one
requires O(dn) operations, where d is the original feature dimension and and n is the new feature
dimension. And with RP the new feature is always dense even when n is big, which further increases
the learning and testing runtime. When dnz 5 d such as in text process, the difference is significant.
This is verified in our experiment (see in Table 3). For example, hash kernel (including Pre and
TrainTest) with 210 feature size is over 100 times faster than RP.

Furthermore, we investigate the influence of the new feature dimension on the misclassification
rate. As can be seen in Table 4, when the feature dimension decreases, the collision and the error
rate increase. In particular, a 224 dimension causes almost no collisions. Nonetheless, a 218 dimen-
sion which has almost 40% collisions performs equally well on the problem. This leads to rather
memory-efficient implementations.
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Data Algorithm Dim Pre TrainTest Error %

L2

RP 27 779.98s 1258.12s 82.06%
RP 28 1496.22s 3121.66s 72.66%
RP 29 2914.85s 8734.25s 62.75%
HK 27 0s 165.13s 62.28%
HK 28 0s 165.63s 55.96%
HK 29 0s 174.83s 50.98%

L3

RP 27 794.23s 18054.93s 89.46%
RP 28 1483.71s 38613.51s 84.06%
RP 29 2887.55s 163734.13s 77.25%
HK 27 0s 1573.46s 76.31%
HK 28 0s 1726.67s 71.93%
HK 29 0s 1812.98s 67.18%

Table 7: Hash kernel vs. random projections with various feature dimensionalities on Dmoz. RP:
random projections in Achlioptas (2003). HK: hash kernel. Dim: dimension of the new features.
Pre: preprocessing time—generation of the random projected features. TrainTest: time to load data,
train and test the model. Error: misclassification rate. Note that the TrainTest time for random
projections increases as the new feature dimension increases, whereas for hash kernel the TrainTest
is almost independent of the feature dimensionality. Moving the dimension from 28 to 29 the in-
creasing in processing time of RP is not linear—we suspect this is because with 28 the RP model
has 256×7100×8≈ 14MB, which is small enough to fit in the CPU cache (we are using a 4-cores
cpu with a total cache size of 16MB), while with 29 the model has nearly 28MB, no longer fitting
in the cache.

6.2 Dmoz Websites Multiclass Classification

In a second experiment we perform topic categorization using the DMOZ topic ontology. The task
is to recognize the topic of websites given the short descriptions provided on the webpages. To
simplify things we categorize only the leaf nodes (Top two levels: L2 or Top three levels: L3) as a
flat classifier (the hierarchy could be easily taken into account by adding hashed features for each
part of the path in the tree). This leaves us with 575 leaf topics on L2 and with 7100 leaf topics on
L3.

Conventionally, assuming M classes and l features, training M different parameter vectors w
requires O(Ml) storage. This is infeasible for massively multiclass applications. However, by
hashing data and labels jointly we are able to obtain an efficient joint representation which makes
the implementation computationally possible.

As can be seen in Table 5 joint hashing of features and labels is very attractive in items of mem-
ory usage and in many cases is necessary to make large multiclass categorization computationally
feasible at all (naive online SVM ran out of memory). In particular, hashing features only produces
worse results than joint hashing of labels and features. This is likely due to the increased colli-
sion rate: we need to use a smaller feature dimension to store the class dependent weight vectors
explicitly.
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Figure 2: Test accuracy comparison of KNN and Kmeans on Dmoz with various sample sizes. Left:
results on L2. Right: results on L3. Hash kernel (228) result is used as an upper bound.

Next we compare hash kernel with K Nearest Neighbor (KNN) and Kmeans. Running the
naive KNN on the entire training set is very slow.3 Hence we introduce sampling to KNN. We first
sample a subset from the entire training set as search set and then do KNN classification. To match
the scheme of KNN, we use sampling in Kmeans too. Again we sample from the entire training set
to do clustering. The number of clusters is the minimal number of classes which have at least 90%
of the documents. Each test example is assigned to one of the clusters, and we take the majority
class of the cluster as the predicted label of the test example. The accuracy plot in Figure 2 shows
that in both Dmoz L2 and L3, KNN and Kmeans with various sample sizes get test accuracies of
30% to 20% off than the upper bound accuracy achieved by hash kernel. The trend of the KNN and
Kmeans accuracy curve suggests that the bigger the sample size is, the less accuracy increment can
be achieved by increasing it. A numerical result with selected sample sizes is reported in Table 6.

We also compare hash kernel with RP with various feature dimensionality on Dmoz. Here RP
generates the random projected feature first and then does online learning and testing. It uses the
same 4-cores implementation as hash kernel does. The numerical result with selected dimensional-
ities is in Table 7. It can be seen that hash kernel is not only much faster but also has much smaller
error than RP given the same feature dimension. Note that both hash kernel and RP reduce the error
as they increase the feature dimension. However, RP can’t achieve competitive error to what hash
kernel has in Table 5, simply because with large feature dimension RP is too slow—the estimated
run time for RP with dimension 219 on dmoz L3 is 2000 days.

Furthermore we investigate whether such a good misclassification rate is obtained by predicting
well only on a few dominant topics. We reorder the topic histogram in accordance to ascending error
rate. Figure 3 shows that hash kernel does very well on the first one hundred topics. They correspond
to easy categories such as language related sets ”World/Italiano”,”World/Japanese”,”World/Deutsch”.

3. In fact the complexity of KNN isO(N×T ), where N,T are the size of the training set and the testing set. We estimate
the running time for the original KNN, in a batch processing manner ignoring the data loading time, is roughly 44
days on a PC with a 3.2GHz cpu.
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Figure 3: Left: results on L2. Right: results on L3. Top: frequency counts for topics as reported
on the training set (the test set distribution is virtually identical). We see an exponential decay in
counts. Bottom: log-counts and error probabilities on the test set. Note that the error is reasonably
evenly distributed among the size of the classes (besides a number of near empty classes which are
learned perfectly).

6.3 Biochemistry and Bioinformatics Graph Classification

For the final experiment we work with graphs. The benchmark data sets we used here contain three
real-world data sets: two molecular compounds data sets, Debnath et al. (1991) and PTC (Toivonen
et al., 2003), and a data set for protein function prediction task (DD) from Dobson and Doig (2003).
In this work we used the unlabeled version of these graphs, see, for example, Borgwardt et al.
(2007).

All these data sets are made of sparse graphs. To capture the structure of the graphs, we sam-
pled connected subgraphs with varying number of nodes, from n = 4 to n = 9. We used graph
isomorphism techniques, implemented in Nauty (McKay, 1984) for getting a canonically-labeled
isomorph of each sampled subgraph. The feature vector of each example (graph) is composed of
the number of times each canonical isomorph was sampled. Each graph was sampled 10000 times
for each of n= 4,5 . . .9. Note that the number of connected unlabeled graphs grows exponentially
fast with the number of nodes, so the sampling is extremely sparse for large values of n. For this
reason we normalized the counts so that for each data set each feature of !(x) satisfies 1≥ !(x)≥ 0.
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Data Sets RW SP GKS GK HK HKF
MUTAG 0.719 0.813 0.819 0.822 0.855 0.865
PTC 0.554 0.554 0.594 0.597 0.606 0.635
DD >24h >24h 0.745 >24h 0.799 0.841

Table 8: Classification accuracy on graph benchmark data sets. RW: random walk kernel, SP: short-
est path kernel, GKS = graphlet kernel sampling 8497 graphlets, GK: graphlet kernel enumerating
all graphlets exhaustively, HK: hash kernel, HKF: hash kernel with feature selection. ’>24h’ means
computation did not finish within 24 hours.

Feature All Selection
STATS ACC AUC ACC AUC
MUTAG 0.855 0.93 0.865 0.912
PTC 0.606 0.627 0.635 0.670
DD 0.799 0.81 0.841 0.918

Table 9: Non feature selection vs feature selection for hash kernel. All: all features. Selection:
feature selection; ACC: accuracy; AUC: Area under ROC.

We compare the proposed hash kernel (with/without feature selection) with random walk kernel,
shortest path kernel and graphlet kernel on the benchmark data sets. From Table 8 we can see that
the hash Kernel even without feature selection still significantly outperforms the other three kernels
in terms of classification accuracy over all three benchmark data sets.

The dimensionality of the canonical isomorph representation is quite high and many features
are extremely sparse, a feature selection step was taken that removed features suspected as non-
informative. To this end, each feature was scored by the absolute vale of its correlation with the
target. Only features with scores above median were retained. As can be seen in Table 9 feature
selection on hash kernel can furthermore improve the test accuracy and area under ROC.

7. Discussion

In this paper we showed that hashing is a computationally attractive technique which allows one to
approximate kernels for very high dimensional settings efficiently by means of a sparse projection
into a lower dimensional space. In particular for multiclass categorization this makes all the differ-
ence in terms of being able to implement problems with thousands of classes in practice on large
amounts of data and features.
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Abstract
In this paper, we introduce DL-Learner, a framework for learning in description logics and OWL.
OWL is the official W3C standard ontology language for the Semantic Web. Concepts in this
language can be learned for constructing and maintaining OWL ontologies or for solving prob-
lems similar to those in Inductive Logic Programming. DL-Learner includes several learning al-
gorithms, support for different OWL formats, reasoner interfaces, and learning problems. It is a
cross-platform framework implemented in Java. The framework allows easy programmatic access
and provides a command line interface, a graphical interface as well as a WSDL-based web service.
Keywords: concept learning, description logics, OWL, classification, open-source

1. Introduction

The Semantic Web grows steadily1 and contains knowledge from diverse areas such as science, mu-
sic, literature, geography, social networks, as well as from upper and cross domain ontologies2. The
underlying semantic technologies currently start to create substantial industrial impact in applica-
tion scenarios on and off the web, including knowledge management, expert systems, web services,
e-commerce, e-collaboration, etc. Since 2004, the Web Ontology Language OWL, which is based
on description logics (Baader et al., 2007), has been the W3C-recommended standard for Semantic
Web ontologies and is a key to the growth of the Semantic Web.

Within this field, there is a need for well-structured ontologies with large amounts of instance
data, since engineering such ontologies constitutes a considerable investment of resources. Nowa-
days, knowledge bases often provide large amounts of instance data without sophisticated schemata.
Methods for automated schema acquisition and maintenance are therefore sought (see, e.g., Buite-
laar et al. 2007). In particular, concept learning methods have attracted much interest, see, for
example, Esposito et al. (2004), Lehmann (2007), Lehmann and Hitzler (2008) and Lisi and Es-
posito (2008). DL-Learner provides an open source framework for such methods as we will briefly
describe in the sequel. Several learning algorithms have been implemented within this framework.
Outside of DL-Learner, there exist only non open source implementations of algorithms (YinYang,
DL-FOIL) to the best of our knowledge.

1. To give a rough estimate, the semantic index Sindice (http://sindice.com/) lists more than 10 billion entities
from more than 100 million web pages.

2. See, for example, http://tomgruber.org/writing/ontology-definition-2007.htm for a definition of ontol-
ogy in computer science.

c©2009 Jens Lehmann.



LEHMANN

!"#$%&'(&)*#+,-&).#/0#"&"1

!"#$%&'(
&)*(+),'$-)./'(01($2,3(
45678#$()09.&)*
#&)-(0$:,*,

2&3,"4"()5,#6%&/).#/0#"&"1

'(,+)&)1$0(%&)&*&.)3;
3<2=',33$,>&.?3
9.3&*&@(A)(1,*&@($(>,?9'(3;
9.3&*&@($.)'B$'(,+)&)1

7&38#"4"()*&,94-&).#/0#"&"1

:CD$&)*(+%,=(
!"#$65C$&)*(+%,=(
,99+.>&?,*($+(,3.)&)1

2&3,"4"():%(#,41;/).#/0#"&"1

*.9E0./)$+(%&)(?()*$,99+.,=F(3
(>*()0(0$D()(*&=$5+.1+,??&)1

<3(3

3<
9
9
.
+*
3

2
,
3(
0
$.
)

=.)%&1<+,*&.)$.9*&.)3.%%(+ .%%(+

Figure 1: The architecture of DL-Learner is based on four component types each of which can have
their own configuration options. A component manager can be used to create, combine,
and configure components.

2. Framework

DL-Learner consists of core functionality, which provides Machine Learning algorithms for solving
learning problems in OWL, support for different knowledge base formats, an OWL library, and
reasoner interfaces. There are several interfaces for accessing this functionality, a couple of tools
which use the DL-Learner algorithms, and a set of convenience scripts.

To be flexible and easily extensible, DL-Learner uses a component-based model. There are
four types of components: knowledge source, reasoning service, learning problem, and learning
algorithm. For each type, there are several implemented components and each component can have
its own configuration options as illustrated in Figure 1. Configuration options can be used to change
parameters/settings of a component.
Knowledge Sources integrate background knowledge. Almost all standard OWL formats are

supported through the OWL API,3 for example, RDF/XML, Manchester OWL Syntax, or Tur-
tle. DL-Learner supports the inclusion of several knowledge sources, since knowledge can be
widespread in the Semantic Web. In addition, DL-Learner facilitates the extraction of knowledge
fragments from SPARQL4 endpoints. This feature allows DL-Learner to scale up to very large
knowledge bases containing millions of axioms (cf. Hellmann et al., 2009).
Reasoner Components provide connections to existing or own reasoners. Two components

are the DIG 1.15 and OWL API reasoner interfaces, which allow to connect to all standard OWL
reasoners via an HTTP and XML-based mechanism or a Java interface, respectively. Furthermore,

3. Information about the OWL API can be found at http://owlapi.sourceforge.net.
4. The W3C SPARQL recommendation is available at http://www.w3.org/TR/rdf-sparql-query/.
5. Information about DIG can be found at http://dl.kr.org/dig/.
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DL-Learner offers its own approximate reasoner, which uses Pellet6 for bootstrapping and loading
the inferred model in memory. Afterwards, instance checks are performed very efficiently by using
a local closed world assumption (see Badea and Nienhuys-Cheng 2000 on why this assumption is
useful in description logics).
Learning Problems specify the problem type, which is to be solved by an algorithm. Currently,

three problem components are implemented: 1.) learning from positive and negative examples 2.)
positive-only learning and 3.) class axiom learning. The latter type is split into learning definitions
and super class axioms. Amongst other methods, the components provide efficient coverage checks
which can be used in the learning algorithms, for example, stochastic approaches for computing
coverage up to a desired accuracy with respect to a 95% confidence interval are available.
Learning Algorithm components provide methods to solve one or more specified learning

problem types. Apart from simple algorithms involving brute force or random guessing techniques,
DL-Learner comprises a number of sophisticated algorithms based on genetic programming with
a novel genetic operator (Lehmann, 2007), refinement operators for the description logic ALC
(Lehmann and Hitzler, 2008), an extended operator supporting many features of OWL including
datatype support, and an algorithm tailored for ontology engineering with a strong bias on short and
readable concepts. Some of those algorithms have shown to be superior to other description logic
learning systems and also superior to state-of-the-art ILP systems, for example, on the carcinogen-
esis problem.7

3. Implementation

The homepage of DL-Learner is http://dl-learner.org and contains up-to-date information
about documentation and development of the software. A manual,8 which complements the home-
page and describes how to run DL-Learner, is included in its release. For developers, the Javadoc
of DL-Learner is available online.9

The code base of DL-Learner consists of approximately 50,000 lines of code (excluding com-
ments) with its core, that is, the component framework itself, accounting for roughly 1,500 lines.
It is licensed under GPL 3. About 20 learning examples are included in the latest release (to be
precise: 132 if smaller variations of existing problems/configurations are counted). 27 unit tests
based on the JUnit framework are used to detect errors.

There are several interfaces available to access DL-Learner: To use components programmati-
cally, the core package, in particular the component manager, can be of service. Similar methods
are also available at the web service interface, which is based on WSDL. DL-Learner starts a web
service included in Java 6, that is, no further tools are necessary. For end users, a command line in-
terface is available. Settings are stored in conf files, which can then be executed in a similar fashion
to other ILP tools. A prototypical graphical user interface is equally available, which can create,
load, and save conf files. It provides widgets for modifying components and configuration options.
An advantage of the component-based architecture is that all the interfaces mentioned need not to
be changed, when new components are added or existing ones modified. This makes DL-Learner
easily extensible. Another means to access DL-Learner, in particular for ontology engineering, is

6. The Pellet homepage is http://clarkparsia.com/pellet/.
7. http://dl-learner.org/wiki/Carcinogenesis presents benchmark results.
8. The DL-Learner manual is available at http://dl-learner.org/files/dl-learner-manual.pdf.
9. The DL-Learner Javadoc is available at http://dl-learner.org/javadoc/.
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through plugins for the ontology editors OntoWiki10 and Protégé.11 The OntoWiki plugin is under
construction, but can be used in its latest SVN version. The Protégé 4 plugin is included in the
official Protégé plugin repository, that is, it is easy to install within Protégé.
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Abstract
A common problem of kernel-based online algorithms, such as the kernel-based Perceptron algo-
rithm, is the amount of memory required to store the online hypothesis, which may increase with-
out bound as the algorithm progresses. Furthermore, the computational load of such algorithms
grows linearly with the amount of memory used to store the hypothesis. To attack these problems,
most previous work has focused on discarding some of the instances, in order to keep the memory
bounded. In this paper we present a new algorithm, in which the instances are not discarded, but are
instead projected onto the space spanned by the previous online hypothesis. We call this algorithm
Projectron. While the memory size of the Projectron solution cannot be predicted before training,
we prove that its solution is guaranteed to be bounded. We derive a relative mistake bound for the
proposed algorithm, and deduce from it a slightly different algorithm which outperforms the Per-
ceptron. We call this second algorithm Projectron++. We show that this algorithm can be extended
to handle the multiclass and the structured output settings, resulting, as far as we know, in the first
online bounded algorithm that can learn complex classification tasks. The method of bounding the
hypothesis representation can be applied to any conservative online algorithm and to other online
algorithms, as it is demonstrated for ALMA2. Experimental results on various data sets show the
empirical advantage of our technique compared to various bounded online algorithms, both in terms
of memory and accuracy.
Keywords: online learning, kernel methods, support vector machines, bounded support set

1. Introduction

Kernel-based discriminative online algorithms have been shown to perform very well on binary
and multiclass classification problems (see, for example, Freund and Schapire, 1999; Crammer and
Singer, 2003; Kivinen et al., 2004; Crammer et al., 2006). Each of these algorithms works in rounds,
where at each round a new instance is provided. On rounds where the online algorithm makes a
prediction mistake or when the confidence in the prediction is not sufficient, the algorithm adds the
instance to a set of stored instances, called the support set. The online classification function is
defined as a weighted sum of kernel combination of the instances in the support set. It is clear that if
the problem is not linearly separable or the target hypothesis is changing over time, the classification
function will never stop being updated, and consequently, the support set will grow unboundedly.

∗. A preliminary version of this paper appeared in the Proceedings of the 25th International Conference on Machine
Learning under the title “The Projectron: a Bounded Kernel-Based Perceptron”.

†. Current affiliation: Toyota Technological Institute at Chicago, 6045 S Kenwood Ave., Chicago, IL 60637.

c©2009 Francesco Orabona, Joseph Keshet and Barbara Caputo.



ORABONA, KESHET AND CAPUTO

This leads, eventually, to a memory explosion, which limits the applicability of these algorithms
for those tasks, such as autonomous agents, for example, where data must be acquired continuously
over time.

Several authors have tried to address this problem, mainly by bounding a priori the size of
the support set with a fixed value, called a budget. The first algorithm to overcome the unlimited
growth of the support set was proposed by Crammer et al. (2003), and refined by Weston et al.
(2005). In these algorithms, once the size of the support set reaches the budget, an instance from the
support set that meets some criterion is removed, and replaced by the new instance. The strategy
is purely heuristic and no mistake bound is given. A similar strategy is also used in NORMA
(Kivinen et al., 2004) and SILK (Cheng et al., 2007). The very first online algorithm to have a fixed
memory budget and a relative mistake bound is the Forgetron algorithm (Dekel et al., 2007). A
stochastic algorithm that on average achieves similar performance to Forgetron, and with a similar
mistake bound was proposed by Cesa-Bianchi et al. (2006). Unlike all previous work, the analysis
presented in the last paper is within a probabilistic context, and all the bounds derived there are in
expectation. A different approach to address this problem for online Gaussian processes is proposed
in Csató and Opper (2002), where, in common with our approach, the instances are not discarded,
but rather projected onto the space spanned by the instances in the support set. However, in that
paper no mistake bound is derived and there is no use of the hinge loss, which often produces
sparser solutions. Recent work by Langford et al. (2008) proposed a parameter that trades accuracy
for sparseness in the weights of online learning algorithms. Nevertheless, this approach cannot
induce sparsity in online algorithms with kernels.

In this paper we take a different route. While previous work focused on discarding some of
the instances in order to keep the support set bounded, in this work the instances are not discarded.
Either they are projected onto the space spanned by the support set, or they are added to the support
set. By using this method, we show that the support set and, hence, the online hypothesis, is guar-
anteed to be bounded, although we cannot predict its size before training. Instead of using a budget
parameter, representing the maximum size of the support set, we introduce a parameter trading ac-
curacy for sparseness, depending on the needs of the task at hand. The main advantage of this setup
is that by using all training samples, we are able to provide an online hypothesis with high online
accuracy. Empirically, as suggested by the experiments, the output hypotheses are represented with
relatively small number of instances, and have high accuracy.

We start with the most simple and intuitive kernel-based algorithm, namely the kernel-based
Perceptron. We modify the Perceptron algorithm so that the number of stored samples needed to
represent the online hypothesis is always bounded. We call this new algorithm Projectron. The
empirical performance of the Projectron algorithm is on a par with the original Perceptron algo-
rithm. We present a relative mistake bound for the Projectron algorithm, and deduce from it a new
online bounded algorithm which outperforms the Perceptron algorithm, but still retains all of its
advantages. We call this second algorithm Projectron++. We then extend Projectron++ to the more
general cases of multiclass and structured output. As far as we know, this is the first bounded mul-
ticlass and structured output online algorithm, with a relative mistake bound.1 Our technique for
bounding the size of the support set can be applied to any conservative kernel-based online algo-
rithm and to other online algorithms, as we demonstrate for ALMA2 (Gentile, 2001). Finally, we
present some experiments with common data sets, which suggest that Projectron is comparable to

1. Note that converting the budget algorithms presented by other authors, such as the Forgetron, to the multiclass or the
structured output setting is not trivial, since these algorithms are inherently binary in nature.
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Perceptron in performance, but it uses a much smaller support set. Moreover, experiments with Pro-
jectron++ shows that it outperforms all other bounded algorithms, while using the smallest support
set. We also present experiments on the task of phoneme classification, which is considered to be
difficult and naturally with a relatively very high number of support vectors. When comparing the
Projectron++ algorithm to the Passive-Aggressive multiclass algorithm (Crammer et al., 2006), it
turns out that the cumulative online error and the test error, after online-to-batch conversion, of both
algorithms are comparable, although Projectron++ uses a smaller support set.

In summary, the contributions of this paper are (1) a new algorithm, called Projectron, which is
derived from the kernel-based Perceptron algorithm, which empirically performs equally well, but
has a bounded support set; (2) a relative mistake bound for this algorithm; (3) another algorithm,
called Projectron++, based on the notion of large margin, which outperforms the Perceptron algo-
rithm and the proposed Projectron algorithm; (4) the multiclass and structured output Projectron++
online algorithm with a bounded support set; and (5) an extension of our technique to other online
algorithms, exemplified in this paper for ALMA2.

The rest of the paper is organized as follows: in Section 2 we state the problem definition and
the kernel-based Perceptron algorithm. Section 3 introduces Projectron, along with its theoretical
analysis. Next, in Section 4 we derive Projectron++. Section 5 presents the multiclass and structured
learning variant of Projectron++. In Section 6 we apply our technique for another kernel-based
online algorithm, ALMA2. Section 7 describes experimental results of the algorithms presented, on
different data sets. Section 8 concludes the paper with a short discussion.

2. Problem Setting and the Kernel-Based Perceptron Algorithm

The basis of our study is the well known Perceptron algorithm (Rosenblatt, 1958; Freund and
Schapire, 1999). The Perceptron algorithm learns the mapping f : X → R based on a set of ex-
amples T = {(x1,y1),(x2,y2), . . .}, where xt ∈ X is called an instance and yt ∈ {−1,+1} is called
a label. We denote the prediction of the Perceptron algorithm as sign( f (x)) and we interpret | f (x)|
as the confidence in the prediction. We call the output f of the Perceptron algorithm a hypothe-
sis, and we denote the set of all attainable hypotheses by H . In this paper we assume that H is a
Reproducing Kernel Hilbert Space (RKHS) with a positive definite kernel function k : X ×X → R

implementing the inner product 〈·, ·〉. The inner product is defined so that it satisfies the reproducing
property, 〈k(x, ·), f (·)〉 = f (x).

The Perceptron algorithm is an online algorithm, where learning takes place in rounds. At each
round a new hypothesis function is estimated, based on the previous one. We denote the hypothesis
estimated after the t-th round by ft . The algorithm starts with the zero hypothesis, f0 = 0. At each
round t, an instance xt ∈ X is presented to the algorithm, which predicts a label ŷt ∈ {−1,+1} using
the current function, ŷt = sign( ft(xt)). Then, the correct label yt is revealed. If the prediction ŷt
differs from the correct label yt , the hypothesis is updated as ft = ft−1 + ytk(xt , ·), otherwise the
hypothesis is left intact, ft = ft−1. The hypothesis ft can be written as a kernel expansion according
to the representer theorem (Schölkopf et al., 2001),

ft(x) = !
xi∈St

"ik(xi,x), (1)

where "i = yi and St is defined to be the set of instances for which an update of the hypothesis
occurred, that is, St = {xi,0 ≤ i ≤ t | ŷi *= yi}. The set St is called the support set. The Perceptron
algorithm is summarized in Figure 1.
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Initialize: S0 = /0, f0 = 0
For t = 1,2, . . .
Receive new instance xt
Predict ŷt = sign( ft−1(xt))
Receive label yt
If yt *= ŷt
ft = ft−1+ ytk(xt , ·) (update the hypothesis)
St = St−1∪xt (add instance xt to the support set)

Else
ft = ft−1
St = St−1

Figure 1: The kernel-based Perceptron Algorithm.

Although the Perceptron algorithm is very simple, it produces an online hypothesis with good
performance. Our goal is to derive and analyze a new algorithm, which outputs a hypothesis that
attains almost the same performance as the Perceptron hypothesis, but can be represented using
many fewer instances, that is, an online hypothesis that is “close” to the Perceptron hypothesis but
represented by a smaller support set. Recall that the hypothesis ft is represented as a weighted sum
over all the instances in the support set. The size of this representation is the cardinality of the
support set, |St |.

3. The Projectron Algorithm

This section starts by deriving the Projectron algorithm, motivated by an example of a finite dimen-
sional kernel space. It continues with a description of how to calculate the projected hypothesis
and describes some other computational aspects of the algorithm. The section concludes with a
theoretical analysis of the algorithm.

3.1 Definition and Derivation

Let us first consider a finite dimensional RKHS H induced by a kernel such as the polynomial
kernel. SinceH is finite dimensional, there are a finite number of linearly independent hypotheses in
this space. Hence, any hypothesis in this space can be expressed using a finite number of examples.
We can modify the Perceptron algorithm to use only one set of independent instances as follows.
On each round the algorithm receives an instance and predicts its label. On a prediction mistake, we
check if the instance xt can be spanned by the support set, namely, for scalars di ∈ R,1≤ i≤ |St−1|,
not all zeros, such that

k(xt , ·) = !
xi∈St−1

dik(xi, ·) .

If we can find such scalars, the instance is not added to the support set, but instead, the coefficients
{"i} in the expansion Equation (1) are changed to reflect the addition of this instance to the support
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set. Namely, for every i
"i = yi+ ytdi .

On the other hand, if the instance and the support set are linearly independent, the instance is added
to the set with "t = yt as before. This technique reduces the size of the support set without changing
the hypothesis. A similar approach was used by Downs et al. (2001) to simplify SVM solutions.

Let us consider now the more elaborate case of an infinite dimensional RKHS H induced by a
kernel such as the Gaussian kernel. In this case, it is not possible to find a finite number of linearly
independent vectors which span the whole space, and hence there is no guarantee that the hypothesis
can be expressed by a finite number of instances. However, we can approximate the concept of linear
independence with a finite number of vectors (Csató and Opper, 2002; Engel et al., 2004; Orabona
et al., 2007).

In particular, let us assume that at round t of the algorithm there is a prediction mistake, and that
the mistaken instance xt should be added to the support set, St−1. Let Ht−1 be an RKHS which is
the span of the kernel images of the instances in the set St−1. Formally,

Ht−1 = span({k(x, ·)|x ∈ St−1}) . (2)

Before adding the instance to the support set, we construct two hypotheses: a temporary hypothesis,
f ′t , using the function k(xt , ·), that is, f ′t = ft−1 + ytk(xt , ·), and a projected hypothesis, f ′′t , that
is the projection of f ′t onto the space Ht−1. That is, the projected hypothesis is that hypothesis
from the space Ht−1 which is the closest to the temporary hypothesis. In a later section we will
describe an efficient way to calculate the projected hypothesis. Denote by #t the distance between
the hypotheses, #t = f ′′t − f ′t . If the norm of distance ‖#t‖ is below some threshold $, we use
the projected hypothesis as our next hypothesis, that is, ft = f ′′t , otherwise we use the temporary
hypothesis as our next hypothesis, that is, ft = f ′t . As we show in the following theorem, this strategy
assures that the maximum size of the support set is always finite, regardless of the dimension of the
RKHS H . Guided by these considerations we can design a new Perceptron-like algorithm that
projects the solution onto the space spanned by the previous support vectors whenever possible. We
call this algorithm Projectron. The algorithm is given in Figure 2.

The parameter $ plays an important role in our algorithm. If $ is equal to zero, we obtain
exactly the same solution as the Perceptron algorithm. In this case, however, the Projectron solution
can still be sparser when some of the instances are linearly dependent or when the kernel induces a
finite dimensional RKHS H . If $ is greater than zero we trade precision for sparseness. Moreover,
as shown in the next section, this implies a bounded algorithmic complexity, namely, the memory
and time requirements for each step are bounded. We analyze the effect of $ on the classification
accuracy in Subsection 3.3.

3.2 Practical Considerations

We now consider the problem of deriving the projected hypothesis f ′′t in a Hilbert spaceH , induced
by a kernel function k(·, ·). Recall that f ′t is defined as f ′t = ft + ytk(xt , ·). Denote by Pt−1 f ′t the
projection of f ′t ∈ H onto the subspace Ht−1 ⊆ H . The projected hypothesis f ′′t is defined as
f ′′t = Pt−1 f ′t . Schematically, this is depicted in Figure 3.
Expanding f ′t we have

f ′′t = Pt−1 f ′t = Pt−1 ( ft−1+ ytk(xt , ·)) .
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Initialize: S0 = /0, f0 = 0
For t = 1,2, . . .
Receive new instance xt
Predict ŷt = sign( ft−1(xt))
Receive label yt
If yt *= ŷt
Set f ′t = ft−1+ ytk(xt , ·) (temporary hypothesis)
Set f ′′t = f ′t projected onto the space Ht−1 (projected hypothesis)
Set #t = f ′′t − f ′t
If ‖#t‖ ≤ $

ft = f ′′t
St = St−1

Else
ft = f ′t
St = St−1∪xt (add xt to the support set)

Else
ft = ft−1
St = St−1

Figure 2: The Projectron Algorithm.

The projection is a linear operator, hence

f ′′t = ft−1+ ytPt−1k(xt , ·) . (3)

Recall that #t = f ′′t − f ′t . By substituting f ′′t from Equation (3) and f ′t we have

#t = f ′′t − f ′t = ytPt−1k(xt , ·)− ytk(xt , ·) . (4)

The projection of f ′t ∈ H onto a subspace Ht−1 ⊂ H is defined as the hypothesis in Ht−1 closest
to f ′t . Hence, let !x j∈St−1 d jk(x j, ·) be an hypothesis in Ht−1, where d = (d1, . . . ,d|St−1|) is a set of
coefficients, with di ∈ R. The closest hypothesis is the one for which it holds that

‖#t‖
2 =min

d

∥

∥

∥

∥

∥

!
x j∈St−1

d jk(x j, ·)− k(xt , ·)

∥

∥

∥

∥

∥

2

. (5)

Expanding Equation (5) we get

‖#t‖2 =min
d

(

!
xi,x j∈St−1

d jdik(x j,xi)−2 !
x j∈St−1

d jk(x j,xt)+ k(xt ,xt)
)

.
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δt

f ′′

t

f ′

t

ft−1
Ht−1

Figure 3: Geometrical interpretation of the projection of the hypothesis f ′′t onto the subspace Ht−1.

Let us define Kt−1 ∈ Rt−1×t−1 to be the matrix generated by the instances in the support set St−1,
that is, {Kt−1}i, j = k(xi,x j) for every xi,x j ∈ St−1. Let us also define kt ∈ Rt−1 to be the vector
whose i-th element is kti = k(xi,xt). We have

‖#t‖2 =min
d

(

dTKt−1d−2dTkt + k(xt ,xt)
)

. (6)

Solving Equation (6), that is, applying the extremum conditions with respect to d, we obtain

d! =K−1
t−1kt (7)

and, by substituting Equation (7) into Equation (6),

‖#t‖
2 = k(xt ,xt)−kTt d! . (8)

Furthermore, by substituting Equation (7) back into Equation (3) we get

f ′′t = ft−1+ yt !
x j∈St−1

d!
j k(x j, ·) . (9)

We have shown how to calculate both the distance #t and the projected hypothesis f ′′t . In summary,
one needs to compute d! according to Equation (7), and plug the result either into Equation (8) to
obtain #t , or into Equation (9) to obtain the projected hypothesis.

In order to make the computation more tractable, we need an efficient method to calculate the
matrix inversion K−1

t iteratively. The first method, used by Cauwenberghs and Poggio (2000) for
incremental training of SVMs, directly updates the inverse matrix. An efficient way to do this,
exploiting the incremental nature of the approach, is to recursively update the inverse matrix. Using
the matrix inversion lemma it is possible to show (see, e.g., Csató and Opper, 2002) that after the
addition of a new sample, K−1

t becomes

K−1
t =











0

K−1
t−1

...
0

0 · · · 0 0











+
1

‖#t‖2

[

d!

−1

]

[

d!T −1
]
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Input: new instance xt , K−1
t−1, and the support set St−1

- Set kt =
(

k(x1,xt),k(x2,xt), . . . ,k(x|St−1|,xt)
)

- Solve d! =K−1
t−1kt

- Set ‖#t‖2 = k(xt ,xt)−kTt d!

- The projected hypothesis is f ′′t = ft−1+ yt!x j∈St−1 d!
j k(x j, ·)

- Kernel inverse matrix for the next round

K−1
t =











0

K−1
t−1

...
0

0 · · · 0 0











+
1

‖#t‖2

[

d!

−1

]

[

d!T −1
]

Output: the projected hypothesis f ′′t , the measure #t and the kernel inverse
matrix K−1

t .

Figure 4: Calculation of the projected hypothesis f ′′t .

where d! and ‖#t‖2 are already evaluated during the previous steps of the algorithm, as given by
Equation (7) and Equation (8). Thanks to this incremental evaluation, the time complexity of the
linear independence check is O(|St−1|2), as one can easily see from Equation (7). Note that the
matrix Kt−1 can be safely inverted since, by incremental construction, it is always full-rank.

An alternative way to derive the inverse matrix is to use the Cholesky decomposition of Kt−1
and to update it recursively. This is known to be numerically more stable than directly updating the
inverse. In our experiments, however, we found out that the method presented here is as stable as
the Cholesky decomposition.

Overall, the time complexity of the algorithm is O(|St |2), as described above, and the space
complexity is O(|St |2), due to the storage of the matrix K−1

t , similar to the second-order Perceptron
algorithm (Cesa-Bianchi et al., 2005). A summary of the derivation of f ′′t , the projection of f ′t onto
the space spanned by St−1, is described in Figure 4.

3.3 Analysis

We now analyze the theoretical aspects of the proposed algorithm. First, we present a theorem
which states that the size of the support set of the Projectron algorithm is bounded.

Theorem 1 Let k :X ×X →R be a continuous Mercer kernel, with X a compact subset of a Banach
space. Then, for any training sequence T = {(xi,yi)}, i= 1,2, · · · and for any $> 0, the size of the
support set of the Projectron algorithm is finite.

Proof The proof of this theorem follows the same lines as the proof of Theorem 3.1 in Engel et al.
(2004). From the Mercer theorem it follows that there exists a mapping % : X → H ′, where H ′ is
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an Hilbert space, k(x,x′) = 〈%(x),%(x′)〉 and % is continuous. Given that % is continuous and that X
is compact, we obtain that %(X ) is compact. From the definition of #t in Equation (5) we get that
every time a new basis vector is added we have

$2 ≤ ‖#t‖2 =min
d

∥

∥

∥

∥

∥

!
x j∈St−1

d jk(x j, ·)− k(xt , ·)

∥

∥

∥

∥

∥

2

≤min
d j

∥

∥d jk(x j, ·)− k(xt , ·)
∥

∥

2

=min
d j

∥

∥d j%(x j)−%(xt)
∥

∥

2
≤

∥

∥%(x j)−%(xt)
∥

∥

2

for any 1 ≤ j ≤ |St−1|. Hence from the definition of packing numbers (Cucker and Zhou, 2007,
Definition 5.17), we get that the maximum size of the support set in the Projectron algorithm is
bounded by the packing number at scale $ of %(X ). This number, in turn, is bounded by the
covering number at scale $/2, and it is finite because the set is compact (Cucker and Zhou, 2007,
Proposition 5.18).

Note that this theorem guarantees that the size of the support set is bounded, however it does not
state that the size of the support set is fixed or that it can be estimated before training.

The next theorem provides a mistake bound. The main idea is to bound the maximum number
of mistakes of the algorithm, relative to any hypothesis g ∈ H , even chosen in hindsight. First, we
define the loss with a margin & ∈ R of the hypothesis g on the example (xt ,yt) as

"&(g(xt),yt) =max{0,&− ytg(xt)}, (10)

and we define the cumulative loss, D&, of g on the first T examples as

D& =
T

!
t=1

"&(g(xt),yt) .

Before stating the bound, we present a lemma that will be used in the rest of our proofs. We will use
its first statement to bound the scalar product between a projected sample and the competitor, and
its second statement to derive the scalar product between the current hypothesis and the projected
sample.

Lemma 2 Let (x̂, ŷ) be an example, with x̂ ∈ X and ŷ ∈ {+1,−1}. If we denote by f (·) an hypoth-
esis in H , and denote by q(·) any function in H , then the following holds

ŷ〈 f ,q〉 ≥ &− "&( f (x̂), ŷ)−‖ f‖ ·‖q− k(x̂, ·)‖ .

Moreover, if f (·) can be written as !m
i=1"ik(xi, ·) with "i ∈ R and xi ∈ X , i = 1, · · · ,m, and q(·) is

the projection of k(x̂, ·) onto the space spanned by k(xi, ·), i= 1, · · · ,m, then

ŷ〈 f ,q〉 = ŷ f (x̂) .

Proof The first inequality comes from an application of the Cauchy-Schwarz inequality and the
definition of the hinge loss in Equation (10). The second equality follows from the fact that 〈 f ,q−
k(x̂, ·)〉 = 0, because f (·) is orthogonal to the difference between k(x̂, ·) and its projection onto the
space in which f (·) lives.

With these definitions at hand, we can state the following bound for Projectron.
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Theorem 3 Let (x1,y1), · · · ,(xT ,yT ) be a sequence of instance-label pairs where xt ∈ X , yt ∈
{−1,+1}, and k(xt ,xt) ≤ 1 for all t. Assume that the Projectron algorithm is run with $ ≥ 0.
Then the number of prediction mistakes it makes on the sequence is bounded by

‖g‖2

(1−$‖g‖)2
+

D1
1−$‖g‖

+
‖g‖

1−$‖g‖

√

D1
1−$‖g‖

where g is an arbitrary function in H , such that ‖g‖ < 1
$ .

Proof Define the relative progress in each round as 't = ‖ ft−1−(g‖2−‖ ft −(g‖2, where ( is a
positive scalar to be optimized. We bound the progress from above and below, as in Gentile (2003).
On rounds where there is no mistake, 't equals 0. On rounds where there is a mistake there are
two possible updates: either ft = ft−1+ ytPt−1k(xt , ·) or ft = ft−1+ ytk(xt , ·). In the following we
start bounding the progress from below, when the update is of the former type. In particular we set
q(·) = Pt−1k(xt , ·) in Lemma 2 and use #t = ytPt−1k(xt , ·)− ytk(xt , ·) from Equation (4). Let )t be
an indicator function for a mistake on the t-th round, that is, )t is 1 if there is a mistake on round t
and 0 otherwise. We have

't = ‖ ft−1−(g‖2−‖ ft−(g‖2 = 2)tyt〈(g− ft−1,Pt−1k(xt , ·)〉− )2t ‖Pt−1k(xt , ·)‖2

≥ )t
(

2(−2("1(g(xt),yt)− )t‖Pt−1k(xt , ·)‖2−2(‖g‖ ·‖#t‖−2yt ft−1(xt)
)

. (11)

Moreover, on every projection update ‖#t‖≤ $, and ‖Pt−1k(xt , ·)‖≤ 1 by the theorem’s assumption,
so we have

't≥)t
(

2(−2("1(g(xt),yt)− )t−2$(‖g‖−2yt ft−1(xt)
)

.

We can further bound 't by noting that on every prediction mistake yt ft−1(xt)≤ 0. Overall we have

‖ ft−1−(g‖2−‖ ft −(g‖2 ≥ )t
(

2(−2("1(g(xt),yt)− )t−2$(‖g‖
)

. (12)

When there is an update without projection, similar reasoning yields that

‖ ft−1−(g‖2−‖ ft −(g‖2 ≥ )t
(

2(−2("1(g(xt),yt)− )t
)

,

hence the bound in Equation (12) holds in both cases.
We sum over t on both sides, remembering that )t can be upper bounded by 1. The left hand

side of the equation is a telescoping sum, hence it collapses to ‖ f0−(g‖2−‖ fT −(g‖2, which can
be upper bounded by (2‖g‖2, using the fact that f0 = 0 and that ‖ fT −(g‖2 is non-negative. Finally,
we have

(2‖g‖2+2(D1 ≥M (2(−2$(‖g‖−1) , (13)

whereM is the number of mistakes. The last equation implies a bound onM for any choice of (> 0,
hence we can take the minimum of these bounds. From now on we can suppose that M > D1

1−$‖g‖ .
In fact, ifM ≤ D1

1−$‖g‖ then the theorem trivially holds. The minimum of Equation (13) as a function
of ( occurs at

(∗ =
M(1−$‖g‖)−D1

‖g‖2
.
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By our hypothesis that M > D1
1−$‖g‖ we have that (

∗ is positive. Substituting (∗ into Equation (13)
we obtain

(D1−M(1−$‖g‖))2

‖g‖2
−M ≤ 0 .

Solving forM and overapproximating concludes the proof.

This theorem suggests that the performance of the Projectron algorithm is slightly worse than
that of the Perceptron algorithm. Specifically, if we set $= 0, we recover the best known bound for
the Perceptron algorithm (see for example Gentile, 2003). Hence the degradation in the performance
of Projectron compared to Perceptron is related to 1

1−$‖g‖ . Empirically, the Projectron algorithm and
the Perceptron algorithm perform similarly, for a wide range of settings of $.

4. The Projectron++ Algorithm

The proof of Theorem 3 suggests how to improve the Projectron algorithm to improve upon the
performance of the Perceptron algorithm, while maintaining a bounded support set. We can change
the Projectron algorithm so that an update takes place not only if there is a prediction mistake, but
also when the confidence of the prediction is low. We refer to this latter case as a margin error, that
is, 0 < yt ft−1(xt) < 1. This strategy is known to improve the classification rate but also increases
the size of the support set (Crammer et al., 2006). A possible solution to this obstacle is not to
update on every round in which a margin error occurs, but only when there is a margin error and the
new instance can be projected onto the support set. Hence, the update on round in which there is a
margin error would in general be of the form

ft = ft−1+ yt)tPt−1k(xt , ·) ,

with 0< )t ≤ 1. The last constraint comes from the proof of Theorem 3, where we upper bound )t
by 1. Note that setting )t to 0 is equivalent to leaving the hypothesis unchanged.

In particular, disregarding the loss term in Equation (11), the progress 't can be made positive
with an appropriate choice of )t . Whenever this progress is non-negative the worst-case number
of mistakes decreases, hopefully along with the classification error rate of the algorithm. With this
modification we expect better performance, that is, fewer mistakes, but without any increase of the
support set size. We can even expect solutions with a smaller support set, since new instances can
be added to the support set only if misclassified, hence having fewer mistakes should result in a
smaller support set. We name this algorithm Projectron++. The following theorem states a mistake
bound for Projectron++, and guides us in how to choose )t .

Theorem 4 Let (x1,y1), · · · ,(xT ,yT ) be a sequence of instance-label pairs where xt ∈ X , yt ∈
{−1,+1}, and k(xt ,xt) ≤ 1 for all t. Assume that Projectron++ is run with $ > 0. Then the
number of prediction mistakes it makes on the sequence is bounded by

‖g‖2

(1−$‖g‖)2
+

D1
1−$‖g‖

+
‖g‖

1−$‖g‖

√

max
(

0,
D1

1−$‖g‖
−B

)
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where g is an arbitrary function in H , such that ‖g‖ < 1
$ ,

0< )t <min







2
"1( ft−1(xt),yt)− ‖#t‖

$

‖Pt−1k(xt , ·)‖2
,1







and
B= !

{t:0<yt ft−1(xt)<1}
)t

(

2"1( ft−1(xt),yt)− )t‖Pt−1k(xt , ·)‖2−2
‖#t‖
$

)

> 0 .

Proof The proof is similar to the proof of Theorem 3, where the difference is that during rounds in
which there is a margin error we update the solution whenever it is possible to project ensuring an
improvement of the mistake bound. Assume that (≥ 1. On rounds when a margin error occurs, as
in Equation (11), we can write

't +2)t("1(g(xt),yt) ≥ )t
(

2(− )t‖Pt−1k(xt , ·)‖2−2(‖#t‖ ·‖g‖−2yt ft−1(xt)
)

> )t

(

2
(

1−
‖#t‖
$

)

− )t‖Pt−1k(xt , ·)‖2−2yt ft−1(xt)
)

= )t

(

2"1( ft−1(xt),yt)− )t‖Pt−1k(xt , ·)‖2−2
‖#t‖
$

)

, (14)

where we used the bounds on ‖g‖ and (. Let *t be the right hand-side of Equation (14). A sufficient
condition to have *t positive is

)t < 2
"1( ft−1(xt),yt)− ‖#t‖

$

‖Pt−1k(xt , ·)‖2
.

Constraining )t to be less than or equal to 1 yields the update rule in the theorem.
Let B= !{t:0<yt ft−1(xt)<1}*t . Similarly to the proof of Theorem 3, we have

(2‖g‖2+2(D1 ≥M (2(−2$(‖g‖−1)+B . (15)

Again, the optimal value of ( is

(∗ =
M(1−$‖g‖)−D1

‖g‖2
.

We can assume that M(1−$‖g‖)−D1 ≥ ‖g‖2. In fact, if M < ‖g‖2+D1
1−$‖g‖ , then the theorem trivially

holds. With this assumption, (∗ is positive and greater than or equal to 1, satisfying our initial
constraint on (. Substituting this optimal value of ( into Equation (15), we have

(D1−M(1−$‖g‖))2

‖g‖2
−M+B≤ 0 .

Solving forM concludes the proof.
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The proof technique presented here is very general, in particular it can be applied to the Passive-
Aggressive algorithm PA-I (Crammer et al., 2006). In fact, removing the projection step and up-
dating on rounds in which there is a margin error, with ft = ft−1+ yt)tk(xt , ·), we end up with the
condition 0 < )t < min

{

2 "1( ft−1(xt),yt)
‖k(xt ,·)‖2 ,1

}

. This rule generalizes the PA-I bound whenever R = 1
andC= 1, however the obtained bound substantially improves upon the original bound in Crammer
et al. (2006).

The theorem gives us some freedom for the choice of )t . Experimentally we have observed that
we obtain the best performance if the update is done with the following rule

)t =min







"1( ft−1(xt),yt)
‖Pt−1k(xt , ·)‖2

,2
"1( ft−1(xt),yt)− ‖#t‖

$

‖Pt−1k(xt , ·)‖2
,1







.

The added term in the minimum comes from ignoring the term −2 ‖#t‖$ and in finding the maximum
of the quadratic equation. Notice that the term ‖Pt−1k(xt , ·)‖2 in the last equation can be practically
computed as kTt d!, as can be derived using the same techniques presented in Subsection 3.2.

We note in passing that the condition on whether xt can be projected onto Ht−1 on margin error
may stated as "1( ft−1(xt),yt) ≥ ‖#t‖

$ . This means that if the loss is relatively large, the progress is
also large and the algorithm can afford “wasting” a bit of it for the sake of projecting.

The algorithm is summarized in Figure 2. The performance of the Projectron++ algorithm, the
Projectron algorithm and several other bounded online algorithms are compared and reported in
Section 7.

5. Extension to Multiclass and Structured Output

In this section we extend Projectron++ to the multiclass and the structured output settings (note that
Projectron can be generalized in a similar way). We start by presenting the more complex decision
problem, namely the structured output, and then we derive the multiclass decision problem as a
special case.

In structured output decision problems the set of possible labels has a unique and defined struc-
ture, such as a tree, a graph or a sequence (Collins, 2000; Taskar et al., 2003; Tsochantaridis et al.,
2004). Denote the set of all labels as Y = {1, . . . ,k}. Each instance is associated with a label from
Y . Generally, in structured output problems there may be dependencies between the instance and
the label, as well as between labels. Hence, to capture these dependencies, the input and the output
pairs are represented in a common feature representation. The learning task is therefore defined as
finding a function f : X ×Y → R such that

yt = argmax
y∈Y

f (xt ,y) . (16)

Let us generalize the definition of the RKHS H introduced in Section 2 to the case of structured
learning. A kernel function in this setting should reflect the dependencies between the instances
and the labels, hence we define the structured kernel function as a function on the domain of the
instances and the labels, namely, kS : (X × Y )2 → R. This kernel function induces the RKHS
H S, where the inner product in this space is defined such that it satisfies the reproducing property,
〈kS((x,y), ·), f 〉 = f (x,y).
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Initialize: S0 = /0, f0 = 0
For t = 1,2, . . .
Receive new instance xt
Predict ŷt = sign( ft−1(xt))
Receive label yt
If yt *= ŷt (prediction error)
Set f ′t = ft−1+ ytk(xt , ·)
Set f ′′t = Pt−1 f ′t
Set #t = f ′′t − f ′t
If ‖#t‖ ≤ $

ft = f ′′t
St = St−1

Else
ft = f ′t
St = St−1∪xt

Else If yt = ŷt and yt ft−1(xt) ≤ 1 (margin error)
Set #t = Pt−1k(xt , ·)− k(xt , ·)
If "1( ft−1(xt),yt) ≥ ‖#t‖

$ (check if the xt can be projected onto Ht−1)

Set )t =min
{

"1( ft−1(xt),yt)
‖Pt−1k(xt ,·)‖2 ,2

"1( ft−1(xt),yt)−‖#t‖
$

‖Pt−1k(xt ,·)‖2 ,1
}

Set ft = ft−1+ yt)tPt−1k(xt , ·)
St = St−1

Else
ft = ft−1
St = St−1

Else
ft = ft−1
St = St−1

Figure 5: The Projectron++ Algorithm.

As in the binary classification algorithm presented earlier, the structured output online algorithm
receives instances in a sequential order. Upon receiving an instance, xt ∈ X , the algorithm predicts a
label, y′t , according to Equation (16). After making its prediction, the algorithm receives the correct
label, yt . We define the loss suffered by the algorithm on round t for the example (xt ,yt) as

"S&( f ,xt ,yt) =max{0,&− f (xt ,yt)+max
y′t *=yt

f (xt ,y′t)},
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and the cumulative loss DS
& as

DS
& =

T

!
t=1

"S&( f ,xt ,yt) .

Note that sometimes it is useful to define & as a function & : Y ×Y → R describing the discrepancy
between the predicted label and the true label. Our algorithm can handle such a label cost function,
but we will not discuss this issue here (see Crammer et al., 2006, for further details).

As in the binary case, on rounds in which there is a prediction mistake, y′t *= yt , the algorithm
updates the hypothesis ft−1 by adding k((xt ,yt), ·)− k((xt ,y′t), ·) or its projection. When there is
a margin mistake, 0 < "S&( ft−1,xt ,yt) < &, the algorithm updates the hypothesis ft−1 by adding
)tPt−1 (k((xt ,yt), ·)− k((xt ,y′t), ·)), where 0< )t < 1 and will be defined shortly. Now, for the struc-
tured output case, #t is defined as

#t = k((xt ,yt), ·)− k((xt ,y′t), ·)−Pt−1
(

k((xt ,yt), ·)− k((xt ,y′t), ·)
)

.

The analysis of the structured output Projectron++ algorithm is similar to that provided for the
binary case. We can easily obtain the generalization of Lemma 2 and Theorem 4 as follows

Lemma 5 Let (x̂, ŷ) be an example, with x̂ ∈ X and ŷ ∈ Y . Denote by f (·) an hypothesis in H S.
Let q(·) ∈H S. Then the following holds for any y′ ∈ Y :

〈 f ,q〉 ≥ &− "S&( f , x̂, ŷ)−‖ f‖ ·
∥

∥q−
(

k((x̂, ŷ), ·)− k((x̂,y′), ·)
)
∥

∥ .

Moreover if f (·) can be written as !m
i=1"ik((xi,yi), ·) with "i ∈ R and xi ∈ X , i= 1, · · · ,m, and q is

the projection of k((x̂, ŷ), ·)− k((x̂,y′), ·) in the space spanned by k((xi,yi), ·), i= 1, · · · ,m, we have
that

〈 f ,q〉 = f (x̂, ŷ)− f (x̂,y′) .

Theorem 6 Let (x1,y1), · · · ,(xT ,yT ) be a sequence of instance-label pairs where xt ∈ X , yt ∈ Y ,
and ‖k((xt ,y), ·)‖ ≤ 1/2 for all t and y ∈ Y . Assuming that Projectron++ is run with $ > 0, the
number of prediction mistakes it makes on the sequence is bounded by

‖g‖2

(1−$‖g‖)2
+

DS
1

1−$‖g‖
+

‖g‖
1−$‖g‖

√

max
(

0,
DS
1

1−$‖g‖
−B

)

where g is an arbitrary function in H S, such that ‖g‖ < 1
$ ,

a = Pt−1
(

k((xt ,yt), ·)− k((xt ,y′t), ·)
)

0< )t < min







2
"S1( ft−1,xt ,yt)−

‖#t‖
$

‖a‖2
,1







B = !
{t:0<"S1( ft−1,xt ,yt)<1}

)t

(

2"S1( ft−1,xt ,yt)− )t‖a‖2−2
‖#t‖
$

)

> 0 .
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As in Theorem 4 there is some freedom in the choice of )t , and again we set it to

)t =min







"S1( ft−1,xt ,yt)
‖a‖2

,2
"S1( ft−1,xt ,yt)−

‖#t‖
$

‖a‖2
,1







.

In the multiclass decision problem case, the kernel k((x1,y1),(x2,y2)) is simplified to
#y1y2k(x1,x2), where #y1y2 is the Kronecker delta. This corresponds to the use of a different pro-
totype for each class. This simplifies the projection step, in fact k((xt ,yt), ·) can be projected only
onto the functions in St−1 belonging to yt , the scalar product with the other functions being zero.
So instead of storing a single matrix K−1

t−1, we need to store m matrices, where m is the number of
classes, each one being the inverse matrix of the Gram matrix of the functions of one class. This
results in improvements in both memory usage and computational cost of the algorithm. To see
this suppose that we have m classes, each with n vectors in the support set. Storing a single matrix
means having a space and time complexity of O(m2n2) (cf. Section 3), while in the second case the
complexity is O(mn2). We use this method in the multiclass experiments presented in Section 7.

6. Bounding Other Online Algorithms

It is possible to apply the technique in the basis of the Projectron algorithm to any conservative
online algorithm. A conservative online algorithm is an algorithm that updates its hypothesis only
on rounds on which it makes a prediction error. By applying Lemma 2 to a conservative algorithm,
we can construct a bounded version of it with worst case mistake bounds. As in the previous proofs,
the idea is to use Lemma 2 to bound the scalar product of the competitor and the projected function.
This yields an additional term which is subtracted from the margin & of the competitor.

The technique presented here can be applied to other online kernel-based algorithms. As an
example, we apply our technique to ALMA2 (Gentile, 2001). Again we define two hypotheses: a
temporary hypothesis f ′t , which is the hypothesis of ALMA2 after its update rule, and a projected
hypothesis, which is the hypothesis f ′t projected on the set Ht−1 as defined in Equation (2). Define
the projection error #t as #t = f ′t − f ′′t . The modified ALMA2 algorithm uses the projected hypoth-
esis f ′′t whenever the projection error is smaller than a parameter $, otherwise it uses the temporary
hypothesis f ′t . We can state the following bound

Theorem 7 Let (x1,y1), · · · ,(xT ,yT ) be a sequence of instance-label pairs where xt ∈ X , yt ∈
{−1,+1}, and k(xt ,xt) ≤ 1 for all t. Let ", B and C ∈ R+ satisfy the equation

C2+2(1−")BC = 1 .

Assume ALMA2(";B,C) projects every time the projection error ‖#t‖ is less than $ ≥ 0, then the
number of prediction mistakes it makes on the sequence is bounded by

D&

&−$
+
+2

2
+

√

+4

4
+

+2

&−$
D&++2

where &> $, += 1
C2(&−$)2 , and g is an arbitrary function in H , such that ‖g‖ ≤ 1.

Proof The proof follows the original proof presented in Gentile (2001). Specifically, according
to Lemma 2, one can replace the relation yt〈g,k(xt , ·)〉 ≥ &− "&(g(xt),yt) with yt〈g,Pt−1k(xt , ·)〉 ≥
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Data Set Samples Features Classes Kernel Parameters
a9a (Platt, 1999) 32561 123 2 Gaussian 0.04
ijcnn1 (Prokhorov, 2001) 49990 22 2 Gaussian 8
news20.binary (Keerthi et al., 2005) 19996 1355191 2 Linear -
vehicle (Duarte and Hu, 2004) 78823 100 2 Gaussian 0.125
synthetic (Dekel et al., 2007) 10000 2 2 Gaussian 1
mnist (Lecun et al., 1998) 60000 780 10 Polynomial 7
usps (Hull, 1994) 7291 256 10 Polynomial 13
timit (subset) (Lemel et al., 1986) ∼ 150000 351 39 Gaussian 80

Table 1: Data sets used in the experiments

&−$− "&(g(xt),yt), and further substitute &−$ for &.

7. Experimental Results

In this section we present experimental results that demonstrate the effectiveness of the Projec-
tron and the Projectron++ algorithms. We compare both algorithms to the Perceptron algorithm,
the Forgetron algorithm (Dekel et al., 2007) and the Randomized Budget Perceptron (RBP) algo-
rithm (Cesa-Bianchi et al., 2006). For Forgetron, we choose the state-of-the-art “self-tuned” variant,
which outperforms all of its other variants. We used the PA-I variant of the Passive-Aggressive algo-
rithm (Crammer et al., 2006) as a baseline algorithm, as it gives an upper bound on the classification
performance of the Projectron++ algorithm. All the algorithms were implemented in MATLAB us-
ing the DOGMA library (Orabona, 2009).

We tested the algorithms on several standard machine learning data sets:2 a9a, ijcnn1, news20.binary,
vehicle (combined), usps, mnist. We also used a synthetic dataset and the acoustic-phonetic dataset
timit. The synthetic dataset was built in the same way as in Dekel et al. (2007). It is composed of
10000 samples taken from two separate bi-dimensional Gaussian distributions. The means of the
positive and negative samples are (1,1) and (−1,−1), respectively, while the covariance matrices
for both are diagonal matrices with (0.2,2) as their diagonal. The labels are flipped with a proba-
bility of 0.1 to introduce noise. The list of the data sets, their characteristics and the kernels used,
are given in Table 1. The parameters of the kernels were selected to have the best performance
with the Perceptron and were used for all the other algorithms to result in a fair comparison. The
C parameter of PA-I was set to 1, to give an update similar to Perceptron and Projectron. All the
experiments were performed over five different permutations of the training set.
Experiments with one setting of $. In the first set of experiments we compared the online

average number of mistakes and the support set size of all algorithms. Both Forgetron and RBP
work by discarding vectors from the support set, if the size of the support set reaches the budget
size, B. Hence for a fair comparison, we set $ to some value and selected the budget sizes of
Forgetron and RBP to be equal to the final size of the support set of Projectron. In particular, in
Figure 6, we set $= 0.1 in Projectron and ended up with a support set of size 793, hence B= 793.
In Figure 6(a) the average online error rate for all algorithms on the a9a data set is plotted. Note
that Projectron closely tracks Perceptron. On the other hand Forgetron and RBP stop improving

2. Downloaded from http://www.sie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.
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Figure 6: Average online error (left) and size of the support set (right) for the different algorithms
on a9a data set as a function of the number of training samples (better viewed in color).
B is set to 793, $= 0.1.

after reaching the support set size B, around 3400 samples. Moreover, as predicted by its theoretical
analysis, Projectron++ achieves better results than Perceptron, even with fewer number of supports.

Figure 6(b) shows the growth of the support set as a function of the number of samples. While
for the PA-I and the Perceptron the growth is clearly linear, it is sub-linear for Projectron and Pro-
jectron++: they will reach a maximum size and then they will stop growing, as stated in Theorem 1.
Another important consideration is that Projectron++ outperforms Projectron both with respect to
the size of the support set and number of mistakes. Using our MATLAB implementation, the run-
ning times for this experiment are ∼ 35s for RBP and Forgetron, ∼ 40s for Projectron and Projec-
tron++, ∼ 130s for Perceptron, and ∼ 375s for PA-I. Hence Projectron and Projectron++ have a
running time smaller than Perceptron and PA-I, due to their smaller support sets.

The same behavior can be seen in Figure 7, for the synthetic data set. Here the gain in perfor-
mance of Projectron++ over Perceptron, Forgetron and RBP is even greater.
Experiments with a range of values for $ - Binary. To analyze in more detail the behavior of

our algorithms we decided to run other tests using a range of values of $. For each value we obtain
a different size of the support set and a different number of mistakes. We used the data to plot a
curve corresponding to the percentage of mistakes as a function of the support set size. The same
curve was plotted for Forgetron and RBP, where the budget size was selected as described before.
In this way we compared the algorithms along the continuous range of budget sizes, displaying the
trade-off between sparseness and accuracy. For the remaining experiments we chose not to show
the performance of Projectron, as it was always outperformed by Projectron++.

In Figure 8 we show the performance of the algorithms on different binary data sets: (a) ijcnn1,
(b) a9a, (c) news20.binary, and (d) vehicle (combined). Because Projectron++ used a different
support set size for each permutation of the training samples, we plotted five curves, one for each
of the five permutations. RBP and Forgetron have fixed budget sizes set in advance, hence for these
algorithms we just plotted standard deviation bars, that are very small so they can be hardly seen
in the figures. In all of the experiments Projectron++ outperforms Forgetron and RBP. One may
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Figure 7: Average online error (left) and size of the support set (right) for the different algorithms
on the synthetic data set as a function of the number of training samples (better viewed in
color). B is set to 103, $= 0.04.

note that there is a point in all the graphs where the performance of Projectron++ is better than
Perceptron, and has a smaller support set. Projectron++ gets closer to the classification rate of the
PA-I, without paying the price of a larger support set. Note that the performance of Projectron++
is consistently better than RBP and Forgetron, regardless of the kernel used, particularly, on the
database news20.binary, which is a text classification task with linear kernel. In this task the samples
are almost mutually orthogonal, so finding a suitable subspace on which to project is difficult.
Nevertheless Projectron++ succeeded in obtaining better performance. The reason is probably due
to the margin updates, which are performed without increasing the size of the solution. Note that
a similar modification would not be trivial in Forgetron and in RBP, because the proofs of their
mistake bounds strongly depend on the rate of growth of the norm of the solution.
Experiments with a range of values for $ - Multiclass. We have also considered multiclass

data sets, using the multiclass version of Projectron++. Due to the fact that there are no other
bounded online algorithms with a mistake bound for multiclass, we have extended RBP in the
natural manner to multiclass. In particular we used the max-score update in Crammer and Singer
(2003), for which a mistake bound exists, discarding a vector at random from the solution each time
a new instance is added and the number of support vectors is equal to the budget size. We name it
Multiclass Random Budget Perceptron (MRBP). It should be possible to prove a mistake bound for
this algorithm, extending the proof in Cesa-Bianchi et al. (2006). In Figure 9 we show the results
for Perceptron, Passive-Aggressive, Projectron++ and MRBP trained on (a) usps, and (b) mnist data
sets. The results confirm the findings found for the binary case.

The last data set used in our experiments is a corpus of continuous natural speech for the task of
phoneme classification. The data we used is a subset of the TIMIT acoustic-phonetic data set, which
is a phonetically transcribed corpus of high quality continuous speech spoken by North American
speakers (Lemel et al., 1986). The features were generated from nine adjacent vectors of Mel-
Frequency Cepstrum Coefficients (MFCC) along with their first and second derivatives. The TIMIT
corpus is divided into a training set and a test set in such a way that no speakers from the training set
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Figure 8: Average online error for the different algorithms as a function of the size of the support
set on different binary data sets.

appear in the test set (speaker independent). We randomly selected 500 training utterances from the
training set. The average online errors are shown in Figure 10 (a). We also tested the performance
of the algorithm on the proposed TIMIT core test set composed of 192 utterances, the results of
which are in Figure 10 (b). We used online-to-batch conversion (Cesa-Bianchi et al., 2004) to
give a bounded batch solution. We did not test the performance of MRBP on the test set because for
this algorithm the online-to-batch conversion does not produce a bounded solution. We compare the
batch solution to the online-to-batch conversion of the PA-I solution. The results of Projectron++ are
comparable to those of PA-I, while the former uses a smaller support set. These results also suggest
that the batch solution is stable when varying the value of $, as the difference in performance on
test set is less than 3%.
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Figure 9: Average online error for the different algorithms as a function of the size of the support
set on different multiclass data sets.
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Figure 10: Average online error (a) and test error (b) for the different algorithms as a function of
the size of the support set on a subset of the timit data set.

8. Discussion

This paper presented two different versions of a bounded online learning algorithm. The algorithms
depend on a parameter that allows one to trade accuracy for sparseness of the solution. The size
of the solution is always guaranteed to be bounded, although the size of this bound is unknown
before the training begins. Therefore, these algorithms solve the memory explosion problem of
the Perceptron and similar algorithms. Although the size of the support set cannot be determined
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before training, practically, for a given target accuracy, the size of the support sets of Projectron or
Projectron++ are much smaller than those of other budget algorithms such as Forgetron and RBP.

The first algorithm, Projectron, is based on the Perceptron algorithm. The empirical perfor-
mance of Projectron is comparable to that of Perceptron, but with the advantage of a bounded
solution. The second algorithm, Projectron++, introduces the notion of large margin and, for some
values of $, outperforms the Perceptron algorithm, while assuring a bounded solution. The ex-
perimental results suggest that Projectron++ outperforms other online bounded algorithms such as
Forgetron and RBP, with a similar hypothesis size.

There are two unique advantages of Projectron and Projectron++. First, these algorithms can
be extended to the multiclass and the structured output settings. Second, a standard online-to-batch
conversion can be applied to the online bounded solution of these algorithms, resulting in a bounded
batch solution. The major drawback of these algorithms is their time and space complexity, which
is quadratic in the size of the support set. Trying to overcome this acute problem is left for future
work.
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Abstract
Finite structures such as point patterns, strings, trees, and graphs occur as ”natural” representations
of structured data in different application areas of machine learning. We develop the theory of
structure spaces and derive geometrical and analytical concepts such as the angle between struc-
tures and the derivative of functions on structures. In particular, we show that the gradient of a
differentiable structural function is a well-defined structure pointing in the direction of steepest
ascent. Exploiting the properties of structure spaces, it will turn out that a number of problems
in structural pattern recognition such as central clustering or learning in structured output spaces
can be formulated as optimization problems with cost functions that are locally Lipschitz. Hence,
methods from nonsmooth analysis are applicable to optimize those cost functions.

Keywords: graphs, graph matching, learning in structured domains, nonsmooth optimization

1. Introduction

In pattern recognition and machine learning, it is common practice to represent data by feature
vectors living in a Banach space, because this space provides powerful analytical techniques for
data analysis, which are usually not available for other representations. A standard technique to
solve a learning problem in a Banach space is to set up a smooth error function, which is then
minimized by using local gradient information.

But often, the data we want to learn about have no natural representation as feature vectors and
are more naturally represented in terms of finite combinatorial structures such as, for example, point
patterns, strings, trees, lattices or graphs. Such learning problems arise in a variety of applications,
which range from predicting the biological activity of a given chemical structure over finding fre-
quent substructures of a data set of chemical compounds, and predicting the 3D-fold of a protein
given its amino sequence, to natural language parsing, to name just a few.

In many applications, the set X of finite combinatorial structures is equipped with a distance
function d : X ×X → R+, which is often provided by external knowledge. An example of such a
distance function is the edit distance on string, trees, or graphs (Levenshtein, 1966; Sanfeliu and Fu,
1983; Shapiro and Haralick, 1985; Shasha and Zhang, 1989; Zhang, 1996). The edit distance is ap-
plied to sequence alignment in bioinformatics (Gusfield, 1997), in chemoinformatics (Raymond and
Willett, 2002) by means of the maximum common subgraph isomorphism, and in computer vision
(Eshera and Fu, 1986; Myers, Wilson, and Hancock, 2000; Robles-Kelly and Hancock, 2005). Since

c©2009 Brijnesh J. Jain and Klaus Obermayer.
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distance spaces (X ,d) of structures often have less mathematical structure than Banach spaces, sev-
eral standard statistical pattern recognition techniques cannot be easily applied to (X ,d).

There are two main approaches that apply standard statistical pattern recognition techniques to a
given distance space (X ,d). The first approach directly operates on the space (X ,d). Examples are
the k-nearest neighbor classifier, the linear programming machine (Graepel, Herbrich, Bollmann-
Sdorra, and Obermayer, 1999), and pairwise clustering (Hofmann and Buhmann, 1997; Graepel and
Obermayer, 1999). These methods can cope with sets X that possess an arbitrary distance function
d as the sole mathematical structure on X . The problem is that many pattern recognition methods
require a space X with a richer mathematical structure. For example, large margin classifiers require
as mathematical structure a complete vector space in which distances and angles can be measured.
From an algorithmic point of view, many pattern recognition methods use local gradient information
to minimize some cost function. For these methods, Banach spaces are endowed with enough
structure to define derivatives and gradients.

The aim of the second approach is to overcome the lack of mathematical structure by embed-
ding a given distance space (X ,d) into a mathematically richer space (X ′,d′). Several methods
have been proposed, which mainly differ in the choice of the target space X ′ and to which ex-
tent the original distance function d is preserved. Typical examples are embeddings into Euclidean
spaces (Cox and Cox, 2000; Luo, Wilson, and Hancock, 2003; Minh and Hofmann, 2004), Hilbert
spaces (Gärtner, 2003; Hochreiter and Obermayer, 2004, 2006; Kashima, Tsuda, and Inokuchi,
2003; Lodhi, Saunders, Shawe-Taylor, Cristianini, and Watkins, 2002), Banach spaces (Hein, Bous-
quet, and Schölkopf, 2005; von Luxburg and Bousquet, 2004), and Pseudo-Euclidean spaces (Her-
brich, Graepel, Bollmann-Sdorra, and Obermayer, 1998; Goldfarb, 1985; Pekalska, Paclik, and
Duin, 2001).

During this transformation, one has to ensure that the relevant information of the original prob-
lem is preserved. Under the assumption that d is a reasonable distance function on X provided
by some external knowledge, we can preserve the relevant information by isometrically embed-
ding the original space (X ,d) into some target space (X ′,d′). Depending on the choice of the
target space this is only possible if the distance function d satisfies certain properties. Suppose that
S = {x1, . . . ,xk}⊆ X is a finite set and D= (di j) is a distance matrix with elements di j = d(xi,x j).
If d is symmetric and homogeneous, we can isometrically embed D into a Pseudo-Euclidean space
(Goldfarb, 1985). In the case that d is a metric, the elements of D can be isometrically embedded
into a Banach space. An isometric embedding of S into a Hilbert or Euclidean space is possible
only if the matrix D2 is of negative type (Schoenberg, 1937).1

Most standard learning methods have been developed in a Hilbert space or in a Euclidean space
equipped with a Euclidean distance. But distance matrices of a finite set of combinatorial structures
are often not of negative type and therefore an isometric embedding into a Hilbert space or Euclidean
space is not possible. Another common problem of most isometric embeddings is that they only
preserve distance relations and disregard knowledge about the inherent nature of the elements from
the original space. For example the inherent nature of graphs is that they consist of a finite set of
vertices together with a binary relation on that set. These information is lost, once we have settled
in the target space for solving a pattern recognition problem. But for some methods in pattern
recognition it is necessary to either directly access the original data or to recover the effects of the
operations performed in the target space. One example is the sample mean of a set of combinatorial

1. A symmetric matrixM is of negative type if xTMx<= 0 for all x with xT 1= 0.
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structures (Jain and Obermayer, 2008; Jiang, Münger, and Bunke, 2001), which is a fundamental
concept for several methods in pattern recognition such as principal component analysis and central
clustering (Gold, Rangarajan, and Mjolsness, 1996; Günter and Bunke, 2002; Lozano and Escolano,
2003; Jain and Wysotzki, 2004; Bonev, Escolano, Lozano, Suau, Cazorla, and Aguilar, 2007; Jain
and Obermayer, 2008). The sample mean of a set of vectors is the vector of sample means of
each component of those vectors. Similarly, a sample mean of a set of combinatorial structures
is a combinatorial structure composed of the sample means of the constituents parts the structure
is composed of. Another example is finding frequent substructures in a given set of combinatorial
structures (Dehaspe, Toivonen, and King, 1998; Yan and Han, 2002). For such problems a principled
framework is missing.

In this contribution, we present a theoretical framework that isometrically and isostructurally
embeds certain metric spaces (X ,d) of combinatorial structures into a quotient space (X ′,d′) of a
Euclidean vector space. Instead of discarding information about the inherent nature of the original
data, we can weaken the requirement that the embedding of (X ,d) into (X ′,d′) should be isometric
for all metrics. Here, we focus on metrics d that are related to the pointwise maximum of a set of
Euclidean distances. This restriction is acceptable from an application point of view, because we
can show that such metrics on combinatorial structures and their related similarity functions are a
common choice of proximity measure in a number of different applications (Gold, Rangarajan, and
Mjolsness, 1996; Holm and Sander, 1993; Caprara, Carr, Istrail, Lancia, and Walenz, 2004).

The quotient space (X ′,d′) preserves the distance relations and the nature of the original data.
The related Euclidean space provides the mathematical structure that gives rise to a rich arsenal
of learning methods. The goal of the proposed approach is to adopt standard learning methods
based on local gradient information to learning on structures in the quotient space X ′. In order to
do so, we need an approach that allows us to formally adopt geometrical and analytical concepts
for finite combinatorial structures. The proposed approach maps combinatorial structures to equiv-
alence classes of vectors, where the elements of the same equivalence class are different vector
representations of the same structure. Mapping a combinatorial structure to an equivalence class of
vectors rather than to a single vector provides a link to the geometry of Euclidean spaces and at the
same time preserves the nature of the original data. The resulting quotient set (the set of equiva-
lence classes) leads to the more abstract notion of T -space. Formally, a T -space XT over a vector
space X is a quotient set of X , where the equivalence classes are the orbits of the group action of
a transformation group T on X . We show that T -spaces encompass a variety of different classes
of combinatorial structures, which also includes vectors. Thus, the theory of T -spaces generalizes
the vector space concept to cope with combinatorial structures and aims at retaining the geometrical
and algebraic properties of a vector space to a certain extent.

We present case studies to illustrate that the theoretical framework can be applied to machine
learning applications.

This paper is organized as follows: Section 2 provides an overview about the basic idea of the
proposed approach. In Section 3, we study T -spaces XT over metric, normed, and inner product
vector spaces X . We show that the gradient of a smooth function on structures satisfies the necessary
condition of optimality and is a well-defined structure pointing in direction of steepest ascent. In
Section 4, we use the theory of T -spaces to formulate selected problems in structural pattern recog-
nition as continuous optimization problems. We show that the proposed cost functions are locally
Lipschitz and therefore nonsmooth on a set of Lebesgue measure zero. For this class of functions,
we can apply methods from nonsmooth optimization. As a case study, we discuss in Section 5 the
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Figure 1: Illustration of a sample meanX of the three graphs D = {X1,X2,X3}. Vertices and edges
of X that occur in all of the three example graphs from D are highlighted with bold
lines. All other vertices and edges ofX are annotated with the relative frequency of their
occurrence inD . By annotating the highlighted vertices and edges ofX with 1, we obtain
a weighted graph.

problem of determining a sample mean of a set of structures including its application to central
clustering. As structures we consider point patterns and attributed graphs. Section 6 concludes.
Technical parts and proofs have been delegated to the appendix.

2. An Example

The purpose of this section is to provide an overview about the basic idea of the proposed approach.
To this end, we consider the (open) problem of determining the sample mean of graphs as a sim-
ple introductory example. The concept of a sample mean is the theoretical foundation for central
clustering algorithms (see Section 4.3 and references therein).

A directed graph is a pair X = (V,E) consisting of a finite set V of vertices and a set E =
{(i, j) ∈V ×V : i '= j} of edges.

By G we denote the set of all directed graphs. Suppose that

D = (X1, . . . ,Xk)

is a collection of k not necessarily distinct graphs fromG . Our goal is to determine a sample mean of
X . Intuitively, a sample mean averages the occurrences of vertices and edges within their structural
context as illustrated in Figure 1.

As the sample mean of integers is not necessarily an integer, the sample mean of D is not
necessarily a directed graph from G (see Figure 1). Therefore, we extend the set G of directed
graphs to the set G [R] of weighted directed graphs. A weighted directed graph is a triple X =
(V,E,!) consisting of a directed graph (V,E) and a weight function ! : V ∪V → R such that each
edge has nonzero weight. A weighted directed graph X of order |V | = n is completely specified by
its weight matrix X = (xi j) with elements xi j = !(i, j) for all i, j ∈ {1, . . . ,n}.

The standard method

X =
1
k

k

"
i=1

Xi

to determine the sample mean X of D fails, because a well-defined addition of directed graphs
is unknown as indicated by Figure 2. Therefore, we consider an equivalent characterization of
the standard notion of sample mean. Following Jiang, Münger, and Bunke (2001), we adopt the
optimization formulation of the standard sample mean. For vectors, the sample mean minimizes the
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sum of squared Euclidean distances from the data points. In line with this formulation, we define a
sample mean of D as a global minimum of the cost function

F(X) =
k

"
i=1

D(X ,Xi)2, (1)

where D is some appropriate distance function on G [R] that measures structural consistent and
inconsistent parts of the graphs under consideration.

In principle, we could use any ”well-behaved” distance function.2 Here, we first consider dis-
tance functions on structures that generalize the Euclidean metric, because Euclidean spaces have a
rich repository of analytical tools. To adapt at least parts of these tools for structure spaces, it seems
to be reasonable to relate the distance function D in Equation (1) to the Euclidean metric. From an
application point of view, this restriction is acceptable for the following reasons: (i) Geometric dis-
tance functions on graphs and their related similarity functions are a common choice of proximity
measure in a number of different applications (Gold, Rangarajan, and Mjolsness, 1996; Holm and
Sander, 1993); and (ii) it can be shown that a number of structure-based proximity measures like,
for example, the maximum common subgraph (Raymond and Willett, 2002) or maximum contact
map overlap problem for protein structure comparison (Goldman, Istrail, and Papadimitriou, 1999)
can be related to an inner product and therefore to the Euclidean distance.

The geometric distance functions D we consider here are usually defined as the maximum of a
set of Euclidean distances. This definition implies that (i) the cost function F is neither differentiable
nor convex; (ii) the sample mean of graphs is not unique as shown in Figure 2; and (iii) determining
a sample mean of graphs is NP-complete, because evaluation of D is NP-complete. Thus, we are
faced with an intractable combinatorial optimization problem, where, at a first glance, a solution has
to be found from an uncountable infinite set. In addition, multiple local minima of the cost function
F complicates a characterization of a structural mean.

To deal with these difficulties, we embed graphs into a T -space as we will show shortly. The
basic idea is to view graphs as equivalence classes of vectors via their weight matrices, where the
elements of the same equivalence class are different vector representations of the same structure.
The resulting quotient set (the set of equivalence classes) leads to the more abstract notion of T -
space. Formally, a T -space XT over a vector space X is a quotient set of X , where the equivalence
classes are the orbits of the group action of a transformation group T on X . The theory of T -spaces
generalizes the vector space concept to cope with combinatorial structures and aims at retaining the
geometrical and algebraic properties of a vector space to a certain extent. In doing so, the T -space
concept not only clears the way to approach the structural version of the sample mean in a principled
way, but also generalizes standard techniques of learning in structured domains.

2.1 The Basic Approach

To construct T -spaces, we demand that all graphs are of bounded order n, where the bound n can
be chosen arbitrarily large. For a pattern recognition application this is not a serious restriction,
because we can assume that the data graphs of interest are of bounded order. In the second step, we
align each weighted directed graph X of order m< n to a graph X ′ of order n by adding p= n−m

2. As we will see later, a distance function is well-behaved if it is locally Lipschitz.
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Z

YX 2X 1

Figure 2: Illustration of one key problem in the domain of graphs: the lack of a well-defined ad-
dition. The graph X1 can be added to X2 with respect to D(X1,X2) in two different ways
as indicated by the highlighted subgraphs of Y and Z. As a consequence, Y and Z can be
regarded as two distinct sample means of X1 and X2.

isolated vertices. The weighted adjacency matrix of the aligned graph X ′ is then of the form

X ′ =

(
X 0m,p
0p,m 0p,p

)
,

where X is the weighted adjacency matrix of X , and 0m,p, 0p,m, 0p,p are padding zero matrices. By
G [R,n] we denote the set of weighted directed graphs of bounded order n.

For practical issues, it is important to note that restricting to structures of bounded order n and
alignment of structures are purely technical assumptions to simplify mathematics. For machine
learning problems, these limitations should have no practical impact, because neither the bound n
needs to be specified nor an alignment of all graphs to an identical order needs to be performed.
In a practical setting, we cancel out both technical assumptions by considering structure preserving
mappings between the vertices of X and Y . Thus, when applying the theory, all we actually require
is that the graphs are finite. We will return to this issue later, when we have provided the necessary
technicalities.

The positions of the diagonal elements of X determine an ordering of the vertices. Conversely,
different orderings of the vertices may result in different matrices. Since we are interested in the
structure of a graph, the ordering of its vertices does not really matter. Therefore, we consider two
matrices X and X ′ as being equivalent, denoted by X ∼ X ′, if they can be obtained from one another
by reordering the vertices. Mathematically, the equivalence relation can be written as

X ∼ X ′ ⇔ ∃P ∈ T : PTXP= X ′,

where T denotes the set of all (n×n)-permutation matrices.3 The set T together with the function
composition T ◦T ′ for all T,T ′ ∈ T forms an algebraic group. By [X ] we denote the equivalence
class of all matrices equivalent to X . Occasionally, we also refer to [X ] as the equivalence class of
the graph X .

There are n! different orderings of the vertices for an arbitrary graph X with n vertices. Each
of the n! orderings determines a weighted adjacency matrix. The equivalence class of X consist of
all its different matrix representation. Note that different orderings of the vertices may result in the
same matrix representation of the graph.

3. The letter T stands for transformation.
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Figure 3: Illustration of two graphs with all possible orderings of their vertices. The number at-
tached to the vertices represents their order (and are not attributes). The ordered graphs
are grouped together according to their matrix representations. All ordered graphs X1-
X6 yield the same weighted adjacency matrix. In the second row, the pairs (Y1,Y2),
(Y3,Y4), and (Y5,Y6) result in identical matrices.

Example 1 Consider the graphs X = X1 and Y = Y1 depicted in the first column of Figure 3.
The numbers annotated to the vertices represent an arbitrarily chosen ordering. Suppose that all
vertices and edges have attribute 1. Then the weighted adjacency matrices of X and Y given the
chosen ordering of their vertices are of the form

X =




1 1 1
1 1 1
1 1 1



 and Y =




1 0 1
0 1 1
1 1 1





The first and second row of Figure 3 show the 3!= 6 different orderings of X and Y , respectively.
The matrix representation of X is independent of its ordering, that is, each reordering of the

vertices of X results in the same matrix representation. Hence, the equivalence class of X consists
of the singleton X.

The 6 different orderings of graph Y result in three different matrix representations. The equiv-
alence class of Y is of the form

[Y ] =









1 0 1
0 1 1
1 1 1



 ,




1 1 1
1 1 0
1 0 1



 ,




1 1 0
1 1 1
0 1 1









,

where the first matrix refers to the ordering of Y = Y1 and Y2, the second to Y3 and Y4, and the
third to Y5 and Y6.

Since we may regard matrices as vectors, we can embed X into the vector space X = Rn×n as
the set [X ] of all vector representations of X . We call the quotient set

XT = X /∼ =
[

X∈X
[X ]

consisting of all equivalence classes T -space over the representation space X . Figure 4 depicts an
embedding of a graph into a vector space.
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2:

4

1
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41:

1
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      T
1     4

x

x’

ordering graph matrix vector embedding

1     2
x’ = (4, 1, 1, 2)      T

2     1

4     1

x = (2, 1, 1, 4 )

Figure 4: Illustration of an embedding of a graph of order 2. The attributes of the vertices are 2
and 4, and the attribute of the bidirectional edge is 1. Depending on the ordering of the
vertices, we obtain two different matrix representations. Stacking the columns of the
matrix to a 4-dimensional vector yields the vector representations x and x′. The plot in
the last column depicts both representation vectors by considering their first and fourth
dimension. Thus a graph is represented as a set of vectors in some vector space.

3. T -spaces

In this section, we formalize the ideas on T -spaces of the previous section. We consider a more
general setting in the sense that we include classes of finite structures other than directed graphs
with attributes from arbitrary vector spaces rather than weights from R. The chosen approach that
allows to formally adopt geometrical and analytical concepts makes use of the notion of r-structures.
We introduce r-structures in Section 3.1. Based on the notion of r-structures, we develop the theory
of T -spaces in Sections 3.2 and 3.3. For a detailed technical treatment of T -spaces we refer to
Appendix A and B. Finally, Section 3.4 considers optimization of locally Lipschitz functions on
T spaces.

3.1 Attributed r-Structures

A r-structure is a pair X = (P ,R ) consisting of a finite set P '= /0, and a subset R ⊆ P r. The
elements of P are the points of the r-structure X , the elements of R are its r-ary relations. A r-
structure with points P is said to be a r-structure on P . For convenience, we occasionally identify
the structure X on P with its relation R .

The following examples serve to indicate that several types of combinatorial structures can be
regarded as r-structures. We first show that graphs are 2-structures. For this, we use the following
notation: Given a finite set P of points, let

P [2] = {(p,q) : p,q ∈ P , p '= q}

be the set of tuples from P 2 without diagonal elements (p, p).

Example 2 (Graphs) Let P be a finite set of points, and let X = (P ,R ) be a 2-structure with
R ⊆ P 2.
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1. X is a directed graph if R ⊆ P [2].

2. X is a simple graph if R ⊆ P [2] such that (p,q) ∈ R implies (q, p) ∈ R .

3. X is a simple graph with loops if R ⊆ P 2 such that (p,q) ∈ R implies (q, p) ∈ R . Loops are
edges (p, p) with the same endpoints.

In a similar way, we can define further types of graphs such as, for example, trees, directed
acyclic graphs, complete graphs, and regular graphs as 2-structures by specifying the corresponding
properties on R .

The next example shows that elements of a set are 1-structures.

Example 3 (Set of Elements) Let P be a finite set of points. The elements E(P ) = (P ,R ) is a
1-structure with R = P , that is its relations are the elements of P .

To introduce analytical concepts to functions on r-structures, we shift from discrete to contin-
uous spaces by introducing attributes. Let A = R d denote the set of attributes. An A-attributed
r-structure is a triple X! = (P ,R ,!) consisting of a r-structure X = (P ,R ) and an attribution
! : P r → A with !(p) '= 0 if, and only if, p ∈ R . Besides the technical argument, attributions also
have a practical relevance, because they are often used to enhance descriptions of structured objects.
The next example collects some attributed structures.

Example 4 Let P be a finite set of order n.

• Attributed graphs: Let A = Rd. An attributed graph is an A-attributed 2-structure G! =
(P ,R ,!), where G = (P ,R ) is a simple graph with loops and ! : R → A is an attribution
that assigns each vertex (loop) and each edge a non-zero feature vector.

• Point patterns: Let A = R2. A point pattern is an A-attributed 1-structure P! = (P ,R ,!),
where E(P ) = (P ,R ) are the elements of P and ! : R → A is an attribution that assigns
each element p ∈ P its coordinates !(p).

The next example shows that vectors are attributed 1-structures. Hence, all results on r-structures
are also valid in vector spaces.

Example 5 Let A be a vector space. Suppose that P is of order n= 1. A vector is an A-attributed
1-structure x! = (P ,R ,!), where E(P ) = (P ,R ) is the single element of P and ! : R → A is
an attribution that maps a singleton to a vector. Hence, the set of all possible structures x! on P
reproduces the vector space A .

Note that we may assume without loss of generality that the attributes of r-relations from R are
nonzero, that is !(R ) ⊆ A \{0}. If the zero vector 0 is required as a valid attribute of a r-relation,
we can always change, for example, to the vector space A ′ = A×R and redefine ! as

!′ : P r → A×R, p .→
{

(0,0) : p ∈ P r \R
(!(p),1) : p ∈ R

.

An A-attributed r-structure X = (P ,R ,!) is completely specified by its matrix representation
X = (xp1...pr) with elements

xp1...pr = !(p1, . . . , pr)

2675



JAIN AND OBERMAYER

for all p= (p1, . . . , pr)∈P r. For example, the matrix representation of a simple graph is its ordinary
adjacency matrix.

Neither the ”nature” of the points P nor the particular form of the r-relations R of a given r-
structure X = (P ,R ,!) do really matter. What matters is the structure described by R . Suppose
that X is of order |P | = n. To abstract from the ”nature” of points, we choose Zn = {1, . . . ,n} as
our standard set of points. The particular form of R depends on the numbering of the points from
Zn. To abstract from the particular form of R , we identify sets of r-relations that can be obtained
from one another by renumbering the points. Mathematically, we can express these sets by means
of isomorphism classes. Two A-attributed r-structures X = (P ,R ,!) and X ′ = (P ′,R ′,!′) are
isomorphic, written as X / X ′ if there is a bijective mapping # : P → P ′ satisfying

1. p= (p1, . . . , pr) ∈ R ⇔ #(p) = (#(p1), . . . ,#(pr)) ∈ R ′

2. !(p) = !′ (#(p)) for all p ∈ R .

The isomorphism class [X ] of X consists of all A-attributed r-structures on P = Zn that are isomor-
phic to X . By S n,rA we denote the set of all A-attributed r-structures on P = Zn and by

[
S n,rA

]
the set

of all isomorphism classes of structures from S n,rA .
We can identify any r-structure X = (Zm,R ,!) of order m < n with a structure of order n by

adding q= n−m isolated points. The aligned structure is then of the form X ′ = (Zn,R ,!′), where

!′ (p) =

{
!(p) : p ∈ R
0 : otherwise .

Using alignment, we can regard S n,rA as the set of A-attributed r-structures of bounded order n.
Similarly, we may think of

[
S n,rA

]
as the set of abstract A-attributed r-structures of bounded order

n. Again recall that specifying a bound n and aligning smaller structures to structures of order n are
purely technical assumptions to simplify mathematics.

3.2 T -Spaces

Let X = Rn be the n-dimensional Euclidean vector space, and let T be a subgroup of the group of
all n×n permutation matrices. Then the binary operation

· : T ×X → X , (T,x) .→ Tx

is a group action of T on X . For x ∈ X , the orbit of x is denoted by

[x]T = {Tx : T ∈ T } .

If no misunderstanding can occur, we write [x] instead of [x]T .
A T -space over X is the orbit space XT = X /T of all orbits of x ∈ X under the action of T .

We call X the representation space of XT . By

µ : X → XT

we denote the membership function that sends vector representations to the structure they describe.
T -spaces are a convenient abstraction of r-structures in order to adopt geometrical and analytical

concepts. To see this, let A = Rd and let X = AN , where N = nr. Via the matrix representations,
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we can identify r-structures from S n,rA as vectors from X . Obviously, we have a relaxation in the
sense that S n,rA ⊆ X and

[
S n,rA

]
⊆ XT such that µ restricted on S

n,r
A sends vector representations to the

structures they represent. Note that there are structures in XT that are not well-defined r-structures
from

[
S n,rA

]
. Hence, care must be taken when applying T -spaces.

The following notations, definitions, and results are useful to simplify technicalities. We use
capital letters X ,Y,Z, . . . to denote the elements of XT . Suppose that X = µ(x) for some x∈ X . Then
we identify X with [x] and make use of sloppy notations like, for example, x ∈ X to denote x ∈ [x].4

Let f : X ×X → R be a symmetric function satisfying f (x,y) = f (y,x) for all x,y ∈ X . Then f
induces symmetric functions

F∗ : XT ×XT → R, (X ,Y ) .→max{ f (x,y) : x ∈ X ,y ∈ Y},
F∗ : XT ×XT → R, (X ,Y ) .→min{ f (x,y) : x ∈ X ,y ∈ Y} .

Since T is finite, the orbits [x] of x are finite. Hence, F∗ and F∗ assume an extremal value. We call
F∗ maximizer and F∗ minimizer of f on XT ×XT .

An inner product 〈·, ·〉 on X gives rise to a maximizer of the form

〈·, ·〉∗ : XT ×XT → R, (X ,Y ) .→max{〈x,y〉 : x ∈ X ,y ∈ Y} .

We call 〈·, ·〉∗ inner T -product induced by 〈·, ·〉. The inner T -product is not an inner product,
because the maximum-operator in the definition of 〈·, ·〉∗ does not preserve the bilinearity property
of an inner product. But we can show that an inner T -product satisfies some weaker properties.

1
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1

1

2

4

3     1

1     1

1     1

1     3

embedding

x

x’

y’

y

x  = (2, 1, 1, 4)      T

x’ = (4, 1, 1, 2)

y  = (3, 1, 1, 1)      T

y’ = (1, 1, 1, 3)      T

matrices vectorsgraphs

Y

      T
2     1

1     4

4     1

1     2
X

Figure 5: Illustration of two example graphs and their embeddings in a vector space (see Figure 4
for a detailed description).

Example 6 Consider the graphs X and Y from Figure 5. We have

〈X ,Y 〉∗ =
〈
x,y′

〉
=
〈
x′,y

〉
= 16.

4. The notation is sloppy, because X is an element in XT and not a set, whereas [x] is a set of equivalent elements from
X .
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Thus, to determine 〈X ,Y 〉∗, we select vector representations x̃ of X and ỹ of Y that have closest
angle and then evaluate 〈x̃, ỹ〉.

Any inner product space X is a normed space with norm ‖x‖ =
√
〈x,x〉 and a metric space with

metric d(x,y) = ‖x− y‖. The norm ‖·‖ and the metric d on X give rise to minimizers ‖·‖∗ of ‖·‖
and D∗ of d on XT .

Since elements from T preserve lengths and angles, we have

‖Tx‖ = ‖Tx−0‖ = ‖Tx−T0‖ = ‖x−0‖ = ‖x‖

for all T ∈ T . Hence, ‖X‖∗ is independent from the choice of vector representation. We call the
minimizer ‖·‖∗ the T -norm induced by the norm ‖·‖. A T -norm is related to an inner T -product in
the same way as a norm to an inner product. We have

1. 〈X ,X〉∗ = 〈x,x〉 for all x ∈ X .

2. ‖X‖∗ =
√
〈X ,X〉∗.

Note that a T -norm is not a norm, because a T -space has no well defined addition. But we can
show that a T -norm has norm-like properties.

Example 7 Consider the graphs X and Y from Figure 5. To determine their T -norm, it is sufficient
to compute the standard norm of an arbitrarily chosen vector representation. Hence, we have

‖X‖∗ = ‖x‖ =
∥∥x′

∥∥=
√
22,

‖Y‖∗ = ‖y‖ =
∥∥y′

∥∥=
√
12.

The minimizerD∗ of the Euclidean metric d(x,y) = ‖x− y‖ is also a metric. To distinguish from
ordinary metrics, we call the minimizer D∗ of a Euclidean metric d on X the T -metric induced by
d. We can express the metric D∗ in terms of 〈·, ·〉∗ as follows:

D∗(X ,Y )2 = ‖X‖2∗ −2〈X ,Y 〉∗+ ‖Y‖2∗ .

Example 8 Consider the graphs X and Y depicted in Figure 5. To determine D∗(X ,Y ), we select
vector representations x̃ of X and ỹ of Y that have minimal distance d(x̃, ỹ). Then we find that

D∗(X ,Y ) = d(x,y′) = d(x′,y) =
√
2.

3.3 Functions on T -Spaces

A T -function is a function of the form

F : XT → R,

where XT is a T -space over X . Instead of considering the T -function F , it is often more convenient
to consider its representation function

f : X → R, x .→ F ◦µ(x),
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which is invariant under transformations from elements of T .
Here, the focus is on T -functions that are locally Lipschitz. A T -function is locally Lipschitz

if, and only if, its representation function is locally Lipschitz. We refer to Appendix C for basic
definitions and properties from nonsmooth analysis of locally Lipschitz functions.

Suppose that F is a locally Lipschitz function with representation function f . By Rademacher’s
Theorem 23, f is differentiable almost everywhere. In addition, at non-differentiable points, f
admits the concept of generalized gradient. The concepts differentiability and gradient can be trans-
fered to T -spaces in a well-defined way. Assume that f is differentiable at some point x ∈ X with
gradient $ f (x). Then f is differentiable at all points Tx ∈ X with T ∈ T and the gradient of f at Tx
is of the form

$ f (Tx) = T$ f (x).

We say F is T -differentiable at X , if its representation function f is differentiable at an arbitrary
vector representation x ∈ X . The well-defined structure

$F(X) = µ( f (x))

is the T -gradient of F at X pointing in direction of steepest ascent.

3.4 Optimization of Locally Lipschitz T -Functions

A standard technique in machine learning and pattern recognition is to pose a learning problem as
an optimization problem. Here, we consider the problem of solving optimization problems of the
form

(P1)
minimize F : XT → R, X .→ "k

i=1Fi(X)

subject to X ∈UT

where the component functions Fi are locally Lipschitz T -functions and UT ⊂ XT is the feasible
set of admissible solutions. Then according to Prop. 21, the cost function F is also locally Lipschitz,
and we can rewrite (P1) to an equivalent optimization problem

(P2) minimize f : X → R, x .→ "k
i=1 fi(x)

subject to x ∈U

where the component functions fi are the representation functions of Fi and U ⊆ X is the feasible
set with µ(U) =UT . Hence, f is the representation function of the locally Lipschitz T -function F
and therefore also locally Lipschitz.

To minimize locally Lipschitz functions, the field of nonsmooth optimization offers a number
of techniques. A survey of classical methods can be found in Mäkelä and Neittaanmäki (1992);
Shor (1985). As an example, we describe subgradient methods, which are easy to implement and
well-suited to identify the difficulties arising in nonsmooth optimization. Algorithm 1 outlines the
basic procedure:
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Algorithm 1 (Basic Incremental Algorithm)
choose starting point x1 ∈U and set t := 0
repeat

set x̃t,1 := x1
for i= 1, . . . ,k do

direction finding:
determine dt,i ∈ X and %> 0 s.t. x̃t,i+%dt,i ∈U and

fi(x̃t,i+%dt,i) < fi(x̃t,i)

line search:
find step size %t,i > 0 such that x̃t,i+%t,idt,i ∈U and

%t,i ≈ argmin
%>0

fi(x̃t,i+%dt,i)

updating:
set x̃t,i+1 := x̃t,i+%t,idt,i

Set xt+1 := x̃t,k+1
Set t := t+1

until some termination criterion is satisfied

To explain the algorithm, we first consider the case that f is smooth and U = X . In the step
direction finding, we generate a descent direction by exploiting the fact that the direction opposite
to the gradient is locally the steepest descent direction. Line search usually employs some efficient
univariate smooth optimization method or polynomial interpolation. The necessary condition for
a local minimum yields a termination criterion. Now suppose that f is locally Lipschitz. Then f
admits a generalized gradient at each point. The generalized gradient coincides with the gradient
at differentiable points and is a convex set of subgradients at non-differentiable points. For more
details, we refer to Appendix C.

Subgradients, the elements of a generalized gradient, play a very important role in algorithms
for non-differentiable optimization. The basic idea of subgradient methods is to generalize the
methods for smooth problems by replacing the gradient by an arbitrary subgradient. In the direction
finding step, Algorithm 1 computes an arbitrary subgradient d ∈ & f (x) at the current point x. If
f is differentiable at x, then the subgradient d coincides with the gradient $ f (x). If in addition
d '= 0, then the opposite direction −d is the direction of steepest descent. On the other hand, if f
is not differentiable at x, then −d is not necessarily a direction of descent of f at x. But since f is
differentiable almost everywhere by Rademacher’s Theorem 23, the set of non-differentiable points
is a set of Lebesgue measure zero.

Line search uses predetermined step sizes %t,i, instead of an exact or approximate line search
as in the gradient method. One reason for this is that the direction −d computed in the direction
finding step is not necessarily a direction of descent. Thus, the viability of subgradient methods
depend critically on the sequence of step sizes. One common choice are step sizes that satisfy

'

"
t=0

%t = ' and
'

"
t=0

%2t < ',
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where %t = %t,1.
To formulate a termination criterion, we could—in principle—make use of the following nec-

essary condition of optimality.

Theorem 1 Let f : X → R be locally Lipschitz at its minimum (maximum) x ∈ R . Then

0 ∈ & f (x).

At non-differentiable points, however, an arbitrary subgradient provides no information about the
existence of the zero in the generalized gradient & f (x). Therefore, when assuming an instantly
decreasing step size, one reliable termination criterion stops the algorithm as soon as the step size
falls below a predefined threshold.

Since the subgradient method is not a descent method, it is common to keep track of the best
point found so far, which is the one with smallest function value. For further advanced and more so-
phisticated techniques to minimize locally Lipschitz functions, we refer to Mäkelä and Neittaanmäki
(1992); Shor (1985).

We conclude this section with a remark on determining intractable subgradients in a practical
setting.

3.4.1 APPROXIMATING SUBGRADIENTS

Nonsmooth optimization as discussed in Mäkelä and Neittaanmäki (1992); Shor (1985) assumes
that at each point x we can evaluate at least one subgradient y ∈ & f (x) and the function value f (x).
In principle, this should be no obstacle for the class of problems we are interested in. In a practical
setting, however, evaluating a subgradient as descent direction can be computationally intractable.
For example, the pattern recognition problems described later in Section 4.2-4.5 are all computa-
tionally efficient for structures like point patterns, but NP-hard for structures like graphs. A solution
to this problem is to approximate a subgradient by using polynomial time algorithms. An approx-
imated subgradient corresponds to a direction that is no longer a subgradient of the cost function.
In particular, at smooth points, an approximated (sub)gradient (hopefully) corresponds to a descent
direction close to the direction of steepest descent. We call Algorithm 1 an approximate incremen-
tal subgradient methods if the direction finding step produces directions that are not necessarily
subgradients of the corresponding component function fi.

We replace the subgradient by a computationally cheaper approximation as a direction of de-
scent. In a computer simulation, we show that determining a sample mean of weighted graph is
indeed possible when using approximate subgradient methods.

Suppose that XT is the T -space of simple weighted graphs over X = Rn×n, and let UT ⊆ XT
be the subset of weighted graphs with attributes from the interval [0,1]. Our goal is to determine a
sample mean of a collection of simple weighted graphs D = {X1, . . . ,Xk}⊆UT .

Given a representation x of X , the computationally intractable task is to find a representation xi
of Xi such that (x,xi) ∈ supp

(
d 2Xi |x

)
. This problem is closely related to the problem of computing

the distance D∗(X ,Xi), which is known to be an NP-complete graph matching problem. Hence,
in a practical setting, exact algorithms that guarantee to find a subgradient as descent direction are
useless for all but the smallest graphs. A solution to this problem is to approximate a subgradi-
ent by using polynomial time algorithms. An approximated subgradient corresponds to a direction
that is no longer a subgradient of the cost function. In particular, at smooth points, an approxi-
mated (sub)gradient (hopefully) corresponds to a descent direction close to the direction of steepest
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descent. We call Algorithm 1 an approximate incremental subgradient methods if the direction find-
ing step produces directions that are not necessarily subgradients of the corresponding component
function fi.

4. Pattern Recognition in T -Spaces

This section shows how the framework of T -spaces can be applied to solve problems in structural
pattern recognition. We first propose a generic scheme for learning in distance spaces. Based on
this generic scheme, we derive cost functions for determining a sample mean, central clustering,
learning large margin classifiers, supervised learning in structured input and/or output spaces, and
finding frequent substructures. Apart from the last problem, all other cost functions presented in this
section extend standard cost functions from the vector space formalism to T -spaces in the sense that
we recover the standard formulations when regarding vectors as r-structures.

4.1 A Generic Approach: Learning in Distance Spaces

Without loss of generality, we may assume that (XT ,D) is a distance space, where D is either
the metric D∗ induced by the Euclidean metric on X or another (not necessarily metric) distance
function that is more appropriate for the problem to hand. A generic approach to solve a learning
problem (P) in XT is as follows:

1. Transform (P) to an optimization problem, where the cost function F is a function defined on
XT .

2. Show that F is locally Lipschitz.

3. Optimize F using methods from nonsmooth optimization.

Since XT is a metric space over an Euclidean vector space, we can apply subgradient methods or
other techniques from nonsmooth optimization to minimize locally Lipschitz T -functions on XT .
If the cost function F depends on a distance measure D, we demand that D is locally Lipschitz to
ensure the locally Lipschitz property for F .

4.2 The Sample Mean of k-Structures

The sample mean of structures is a basic concept for a number of methods in statistical pattern
recognition. Examples include visualizing or comparing two populations of chemical graphs, and
central clustering of structures (Section 4.3).

We define a sample mean of the k elements X1, . . . ,Xk ∈ XT as a minimizer of

minimize F(X) = "k
i=1D(X ,Xi)2

subject to X ∈ XT
,

where D is a distance function on XT . If D is locally Lipschitz, then F is also locally Lipschitz by
Prop. 21.

First approaches to study averages of graphs have been pursued by Jiang, Münger, and Bunke
(2001). They considered the set median and generalized median of a sample of graphs as a discrete
optimization problem with a similar cost function as for the sample mean. To minimize the cost
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function, they applied a genetic algorithm to graphs with a small number of discrete attributes. In
this contribution, we shift the problem of determining a sample mean from discrete to continuous
optimization.

4.3 Central Clustering of k-Structures

Suppose that we are given a training sample X = {X1, . . . ,Xm} consisting of m structures Xi drawn
from the structure space XT . The aim of central clustering is to find k cluster centers Y = {Y1, . . . ,Yk}
⊆ XT such that the following cost function

F(M,Y ,X ) =
1
m

k

"
j=1

m

"
i=1

mi jD(Xi,Yj),

is minimized with respect to a given distortion measure D. The matrix M = (mi j) is a (m× k)-
membership matrix with elements mi j ∈ [0,1] such that " j mi j = 1 for all i= 1, . . . ,m.

If the distortion measure is locally Lipschitz, then F as a function of the cluster centers Yj is
locally Lipschitz by Prop. 21.

A number of central clustering algorithms for graphs have been devised recently (Gold, Ran-
garajan, and Mjolsness, 1996; Günter and Bunke, 2002; Lozano and Escolano, 2003; Jain and
Wysotzki, 2004; Bonev, Escolano, Lozano, Suau, Cazorla, and Aguilar, 2007). In experiments
it has been shown that the proposed methods converge to satisfactory solutions, although neither the
notion of cluster center nor the update rule of the cluster centers is well-defined. Because of these
issues one might expect that central clustering algorithm could be prone to oscillations halfway be-
tween different cluster centers of the same cluster. An explanation why this rarely occurs can now
be given. As long as the cost function is locally Lipschitz, almost all points are differentiable. For
these points the update rule is well-defined. Hence, it is very unlikely that the aforementioned oscil-
lations occur over a longer period of time, when using an optimization algorithm that successively
decreases the step size.

4.4 Large Margin Classifiers

Consider the function
hW,b : XT → R, X .→ 〈W,X〉∗+b,

where W ∈ XT is the weight structure and b ∈ R the bias. The discriminant hW,b implements a
two-category classifier in the obvious way: Assign an input structure X to the class labeled +1 if
hW,b(X) ≥ 0 and to −1 if hW,b(X) < 0.

Suppose that Z = {(X1,y1), . . . ,(Xk,yk)} is a training sample consisting of k training structures
Xi ∈ XT together with corresponding labels yi ∈ {±1}. We say, Z is T -separable if there exists a
W0 ∈ XT and b0 ∈ R with

h∗(X) = 〈W0,X〉∗+ b0 = y

for all (X ,y) ∈ Z.
To find an ”optimal” discriminant that correctly classifies the training examples, we construct

the cost function

F(W,b,!) =
1
2
‖W‖2∗−

k

"
i=1

!i (yi (〈W,Xi〉∗+ b)−1),
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where the !i ≥ 0 are the Lagrangian multipliers. The representation function of F is of the form

f (w,b,!) =
1
2
‖w‖2−

k

"
i=1

!iyi (si (w,b)−1),

where si(w,b) =maxT∈T 〈w,Txi〉+ b. The elements w ∈W and xi ∈ Xi are arbitrary. The first term
of f is smooth and convex (and therefore locally Lipschitz). The locally Lipschitz property and
convexity of the second term follows from the rules of calculus for locally Lipschitz functions (see
Section C) and Prop. 20. Hence, f is locally Lipschitz and convex.

The structurally linear discriminants sets the stage to (i) explore large margin classifiers in struc-
ture spaces and (ii) construct neural learning machines for adaptive processing of finite structures.
Subgradient methods for maximum margin learning has been applied in Ratliff, Bagnell, and Zinke-
vich (2006) for predicting structures rather than classes. Finally note that the inner T -product as a
maximizer of a set of similarities is not a kernel (Gärtner, 2005).

4.5 Supervised Learning

The next application example generalizes the problem of learning large margin classifiers for k-
structures by allowing T -spaces as input and as output space. Note that the in- and output spaces
may consist of different classes of k-structures, for example, the input patterns can be feature vectors
and the output space can be the domain of graphs.

Assume that we are given a a training sampleZ = {(X1,Y1), . . . ,(Xk,Yk)} consisting of k training
structures Xi drawn from some T -space XT over X together with corresponding output structures Yi
from a T ′-space YT ′ over Y . Given the training data Z, our goal is to find an unknown functional
relationship (hypothesis)

H : XT → YT

from a hypothesis space H that best predicts the output structures of unseen examples (X ,Y ) ∈
XT ×YT according to some cost function

F(H,Z) =
1
k

k

"
i=1

L(H(Xi),Yi),

where L : YT ×YT → R denotes the loss function.
The representation function of F is of the form

f (h,Z) =
1
k

k

"
i=1

!(h(xi),yi),

where ! : Y ×Y → R is the representation function of L, h : X → Y the representation function of
H, and xi ∈ Xi, yi ∈ Yi. We assume that the functions h have a parametric form and are therefore
uniquely determined by the value of their parameter vector (h. We make this dependence of h on (h
explicit by writing f ((h,Z) instead of f (h,Z).

The function f is locally Lipschitz if ! and h (as a function of (h) are locally Lipschitz. As
an example for a locally Lipschitz function f , we extend supervised neural learning machines to
k-structures:
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• Loss function: The loss
!(x,y) = D∗ (µ(x),µ(y))2

is locally Lipschitz as a function of x.

• Hypothesis space: Consider the set HNN of all functions g : X → Y that can be implemented
by a neural network. Suppose that all functions fromHNN are smooth. If dim(VY ) =M, then
g is of the form g = (g1, . . . ,gM), where the gi are the component functions of g. For each
component gi, the pointwise maximizer

hi(x) =max
T∈T

gi(Tx)

is locally Lipschitz. Hence, h= (h1, . . . ,hM) is locally Lipschitz.

Compared to common models in predicting structures as applied by Taskar (2004); Tsochan-
taridis, Hofmann, Joachims, and Altun (2004), the proposed approach differs in two ways: First,
the proposed cost function requires no indirection via a score function f : X ×Y → R to select the
prediction from Y by maximizing f for a given input from X . Second, the proposed approach sug-
gests a formulation that can be exploited to approximately solve discrete and continuous prediction
problems.

4.6 Frequent Substructures

Our aim is to find the most frequent substructure occurring in a finite data set D of k-structures. To
show how to apply the theory of T -spaces to this problem, we consider a simplified setting.

First we define what we mean by a substructure. A k-structure X ′ = (Zm,R ′,!′) is said to be a
substructure of a k-structure X = (Zn,R ,!), if there is an isomorphic embedding # : Zm → Zn.

Next, we restrict ourselves to k-structures with attributes from [0,1]⊆R for the sake of simplic-
ity. Let

BT =
{
X = (Zn,Ri,!) ∈ XT : !(X) ⊆ {0,1}

}
,

UT =
{
X = (Zn,Ri,!) ∈ XT : !(X) ⊆ [0,1]

}

be the set of all A-attributed k-structures X ∈ XT with attributes from {0,1} and [0,1], respectively.
Suppose that D = {X1, . . . ,Xk}⊆ BT is a set of k-structures.

The characteristic function of the i-th structure Xi ∈D

)i(X) =

{
1 : X is a substructure of Xi
0 : otherwise .

indicates whether the k-structure X is a substructure of Xi. We say X∗ is a maximal frequent sub-
structure of order m if it solves the following discrete problem

maximize F(X) = "k
i=1)i(X)

subject to |X | = m
X ∈ BT .

We cast the discrete to a continuous problem. For this, we define

Fi(X) =
〈X ,Xi〉∗

‖X‖2∗
.
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for all X ∈ UT . We have Fi(X) ∈ [0,1] with Fi(X) = 1 if, and only if, X is a substructure of Xi.
Consider for a moment the problem to maximize the criterion function

G(X) =
k

"
i=1

Fi(X).

The problem with this criterion function is that a maximizer X ∈ UT of G could be a k-structure
not occurring as a substructure in any of the k-structures from D . To fix this problem, we use the
soft-max function exp(*(Fi(X)−1))with control parameter *. In the limit *→', the i-th soft-max
function reduces to the characteristic function )i. Given a fixed *> 0, the soft-max formulation of
the frequent subgraph problem is of the form

maximize F*(X) = "k
i=1 exp{*(Fi(X)−1)}

subject to |X | = m
X ∈UT .

The representation function of F* is of the form

f*(x) =
k

"
i=1
exp

{
*

(
si(x)
‖x‖

−1
)}

,

where si(x) =maxT∈T 〈x,Txi〉. Applying the rules of calculus yields that f* is locally Lipschitz.
The common approach casts the frequent subgraph mining problem to a search problem in a

state space, which is then solved by a search algorithm (Dehaspe, Toivonen, and King, 1998; Han,
Pei, and Yin, 2000; Inokuchi, Washio, and Motoda, 2000; Kuramochi and Karypis, 2001; Yan and
Han, 2002). Here, we suggest a continuous cost function for the frequent subgraph mining problem
that can be solved using optimization based methods (see Section 3.4).

5. Experimental Results

To demonstrate the effectiveness and versatility of the proposed framework, we applied it to the
problem of determining a sample mean of randomly generated point patterns and weighted graphs
as well as to central clustering of letters and protein structures represented by graphs.

5.1 Sample Mean

To assess the performance and to investigate the behavior of the subgradient and approximated sub-
gradient method for determining a sample mean, we conducted an experiments on random graphs,
letter graphs, and chemical graphs. For computing approximate subgradients we applied the gradu-
ated assignment (GA) algorithm (see Appendix D). For data sets consisting of small graphs, we also
applied a depth first search (DF) algorithm that guarantees to return an exact subgradient.

5.1.1 DATA

Random Graphs. The first data set consists of randomly generated graphs. We sampled k graphs
by distorting a given initial graph according to the following scheme: First, we randomly generated
an initial graph M0 with 6 vertices and edge density 0.5. Next, we assigned a feature vector to
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depth-first graduated set
search assignment mean

Random Graphs 29.6 (± 5.3) 34.5 (± 6.6) 43.0 (± 7.5)
Letter Graphs 42.3 (± 10.1) 43.9 (± 11.1) 60.5 (± 16.6)
Molecules 262.2 (± 113.6) 338.0 (± 115.0)

Table 1: Average SSD of sample mean approximated by depth-first search and graduated assign-
ment. As reference value the average SSD of the set mean is shown in the last column.
Standard deviations are given in parentheses.

each vertex and edge of M0 drawn from a uniform distribution over [0,1]d (d = 3). Given M0, we
randomly generated k distorted graphs as follows: Each vertex and edge was deleted with 20%
probability. A new vertex was inserted with 10% probability and randomly connected to other
vertices with 50% probability. Uniform noise from [0,1]d with standard deviation + ∈ [0,1] was
imposed to all feature vectors. Finally, the vertices of the distorted graphs were randomly permuted.

We generated 500 samples each consisting of k = 10 graphs. For each sample the noise level
+ ∈ [0,1] was randomly prespecified.

Letter Graphs. The letter graphs were taken from the IAM Graph Database Repository. 5 The
graphs represent distorted letter drawings from the Roman alphabet that consist of straight lines
only. Lines of a letter are represented by edges and ending points of lines by vertices. Each vertex is
labeled with a two-dimensional vector giving the position of its end point relative to a reference co-
ordinate system. Edges are labeled with weight 1. We considered the 150 letter graphs representing
the capital letter A at a medium distortion level.

We generated 100 samples each consisting or k = 10 letter graphs drawn from a uniform distri-
bution over the data set of 150 graph letters representing letter A at a medium distortion level.

Chemical Graphs. The chemical compound database was taken from the gSpan site6. The data set
contains 340 chemical compounds, 66 atom types, and 4 types of bonds. On average a chemical
compound consists of 27 vertices and 28 edges. Atoms are represented by vertices and bonds
between atoms by edges. As attributes for atom types and type of bonds, we used a 1-to-k binary
encoding, where k = 66 for encoding atom types and k = 4 for encoding types of bonds.

We generated 100 samples each consisting of k = 10 chemical graphs drawn from a uniform
distribution over the data set of 340 chemical graphs.

5.1.2 EVALUATION PROCEDURE

As performance measure, we used the average sum-of-squared distances (SSD) of the sample mean
described in Section 4.2 averaged over all samples. The average SSD of the set mean graph serves
as our reference value. The set mean is an element from the set D itself that minimizes the SSD
over all structures from D .
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Algorithm 2 (K-Means for Structures)

initialize number k of clusters
initialize cluster centers Y1, . . . ,Yk
repeat

classify structures Xi according to nearest Yj
recompute Yj

until some termination criterion is satisfied

5.1.3 RESULTS

Table 1 shows the average SSD and its standard deviation. The results show that using exact sub-
gradients gives better approximations of the sample mean than using approximated subgradients.
Compared with the set median, the results indicate that the subgradient and approximated subgra-
dient method have found reasonable solutions in the sense that the resulting average SSD is lower.

5.2 Central Clustering

Based on the concept of sample mean for structures, we applied the structural versions of k-means
and simple competitive learning on four data sets in order to assess and compare the performance
of subgradient methods.

5.2.1 CENTRAL CLUSTERING ALGORITHMS FOR GRAPHS

We consider k-means and simple competitive learning in order to minimize the cluster objective
(see Section 4.2)7

F(M,Y ,X ) =
1
2

k

"
j=1

m

"
i=1

mi jD(Xi,Yj).

K-means for graphs. The structural version of k-means is outlined in Algorithm 2. This method
operates as the EM algorithm of standard k-means, where the chosen distortion measure in the E-
step is D to classify the structures Xi according to nearest cluster center Yj . In the M-step the basic
incremental subgradient method described in Algorithm 1 is applied to recompute the means.
Simple competitive learning. The structural version of simple competitive learning corresponds
to the basic incremental subgradient method described in Algorithm 1 for minimizing the cluster
objective F(X).

5.2.2 DATA

We selected four data sets described in Riesen and Bunke (2008). The data sets are publicly available
at the IAM Graph Database Repository. Each data set is divided into a training, validation, and a
test set. In all four cases, we considered data from the test set only. The description of the data

5. The repository can be found at http://www.iam.unibe.ch/fki/databases/iam-graph-database.
6. gSpan can be found at http://www.xifengyan.net/software/gSpan.htm.
7. We replaced the factor 1/m by the factor 1/2 for convenience of presentation of our results.
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data set #graphs) #(classes) avg(nodes) max(nodes) avg(edges) max(edges)
letter 750 15 4.7 8 3.1 6
grec 528 22 11.5 24 11.9 29
fingerprint 900 3 8.3 26 14.1 48
molecules 100 2 24.6 40 25.2 44

Table 2: Summary of main characteristics of the data sets used for central clustering.

sets are mainly excerpts from Riesen and Bunke (2008). Table 2 provides a summary of the main
characteristics of the data sets.
Letter Graphs. We consider all 750 graphs from the test data set representing distorted letter
drawings from the Roman alphabet that consist of straight lines only (A, E, F, H, I, K, L, M, N, T, V,
W, X, Y, Z). The graphs are uniformly distributed over the 15 classes (letters). The letter drawings
are obtained by distorting prototype letters at low distortion level. Lines of a letter are represented by
edges and ending points of lines by vertices. Each vertex is labeled with a two-dimensional vector
giving the position of its end point relative to a reference coordinate system. Edges are labeled with
weight 1. Figure 6 shows a prototype letter and distorted version at various distortion levels.

Figure 6: Example of letter drawings: Prototype of letter A and distorted copies generated by im-
posing low, medium, and high distortion (from left to right) on prototype A.

GREC Graphs. The GREC data set (Dosch and Valveny, 2006) consists of graphs representing
symbols from architectural and electronic drawings. We use all 528 graphs from the test data set
uniformly distributed over 22 classes. The images occur at five different distortion levels. In Figure
7 for each distortion level one example of a drawing is given. Depending on the distortion level,
either erosion, dilation, or other morphological operations are applied. The result is thinned to
obtain lines of one pixel width. Finally, graphs are extracted from the resulting denoised images
by tracing the lines from end to end and detecting intersections as well as corners. Ending points,
corners, intersections and circles are represented by vertices and labeled with a two-dimensional
attribute giving their position. The vertices are connected by undirected edges which are labeled as
line or arc. An additional attribute specifies the angle with respect to the horizontal direction or the
diameter in case of arcs.

Figure 7: GREC symbols: A sample image of each distortion level
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Fingerprint Graphs. We consider a subset of 900 graphs from the test data set representing fin-
gerprint images of the NIST-4 database (Watson and Wilson, 1992). The graphs are uniformly
distributed over three classes left, right, and whorl. A fourth class (arch) is excluded in order to
keep the data set balanced. Fingerprint images are converted into graphs by filtering the images and
extracting regions that are relevant (Neuhaus and Bunke, 2005). Relevant regions are binarized and
a noise removal and thinning procedure is applied. This results in a skeletonized representation of
the extracted regions. Ending points and bifurcation points of the skeletonized regions are repre-
sented by vertices. Additional vertices are inserted in regular intervals between ending points and
bifurcation points. Finally, undirected edges are inserted to link vertices that are directly connected
through a ridge in the skeleton. Each vertex is labeled with a two-dimensional attribute giving its
position. Edges are attributed with an angle denoting the orientation of the edge with respect to the
horizontal direction. Figure 8 shows fingerprints of each class.

Figure 8: Fingerprints: (a) Left (b) Right (c) Arch (d) Whorl. Fingerprints of class arch are not
considered.

Molecules. The mutagenicity data set consists of chemical molecules from two classes (mutagen,
non-mutagen). The data set was originally compiled by Kazius, McGuire, and Bursi (2005) and
reprocessed by Riesen and Bunke (2008). We consider a subset of 100 molecules from the test
data set uniformly distributed over both classes. We describe molecules by graphs in the usual way:
atoms are represented by vertices labeled with the atom type of the corresponding atom and bonds
between atoms are represented by edges labeled with the valence of the corresponding bonds. We
used a 1-to-k binary encoding for representing atom types and valence of bonds, respectively.

5.2.3 GENERAL EXPERIMENTAL SETUP

In all experiments, we applied k-means and simple competitive learning for graphs to the aforemen-
tioned data sets. We used the following experimental setup:
Performance measures. We used the following measures to assess the performance of an algorithm
on a data set: (1) error value of the cluster objective (see Section 4.2), (2) classification accuracy, and
(3) silhouette index. The silhouette index is a cluster validation index taking values from [−1,1].
Higher values indicate a more compact and well separated cluster structure. For more details we
refer to Theodoridis and Koutroumbas (2009).
Initialization of the clustering algorithms. The number k of centroids as shown in Table 3 was cho-
sen by compromising a satisfactory classification accuracy against the silhouette index. To initialize
both clustering algorithms, we used a modified version of the ”furthest first” heuristic (Hochbaum
and Shmoys, 1985). For each data set S , the first centroid Y1 is initialized to be a graph closest to
the sample mean of S . Subsequent centroids are initialized according to

Yi+1 = argmax
X∈S

min
Y∈Yi

D(X ,Y ),
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data set k measure km cl
letter 30

error 11.6 11.1
accuracy 0.86 0.90
silhouette 0.38 0.40

grec 33
error 32.7 27.6
accuracy 0.84 0.87
silhouette 0.40 0.42

fingerprint 60
error 1.88 1.30
accuracy 0.81 0.79
silhouette 0.32 0.34

molecules 10
error 56.0 53.8
accuracy 0.68 0.70
silhouette 0.04 0.05

Table 3: Results of k-means (km) and simple competitive learning (cl) on four data sets.

where Yi is the set of the first i centroids chosen so far.
Subgradient and graph distance calculations. For subgradient and graph distance calculations, we
applied a depth first search algorithm on the letter data set and the graduated assignment algorithm
(Gold and Rangarajan, 1996) on the grec, fingerprint, and molecule data set.

5.2.4 RESULTS

Table 3 summarizes the results. The first observation to be made is that simple competitive learning
performs slightly better than k-means with respect to all three performance measures. This is in
contrast to findings on standard k-means and simple competitive learning in vector spaces. The
second observation is that both k-means algorithms yield satisfying classification accuracies on
all data sets. This result shows that approximated subgradient methods can be applied to central
clustering in the domain of graphs.

5.3 Clustering Protein Structures

In our last experiment, we compared the performance of k-means and simple competitive learning
of graphs with hierarchical clustering applied on protein structures.

5.3.1 DATA: PROTEIN CONTACT MAPS

One common way to model the 3D structure of proteins are contact maps. A contact map is a graph
X = (V,E) with ordered vertex set. Vertices represent residues. Two vertices are connected by
an edge (contact) if the spatial distance of the corresponding residues is below some prespecified
threshold.
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ID domain ID domain ID domain ID domain

1 1b00A 11 4tmyB 21 2b3iA 31 1tri
2 1dbwA 12 1rn1A 22 2pcy 32 3ypiA
3 1nat 13 1rn1B 23 2plt 33 8timA
4 1ntr 14 1rn1C 24 1amk 34 1ydvA
5 1qmpA 15 1bawA 25 1aw2A 35 1b71A
6 1qmpB 16 1byoA 26 1b9bA 36 1bcfA
7 1qmpC 17 1byoB 27 1btmA 37 1dpsA
8 1qmpD 18 1kdi 28 1htiA 38 1fha
9 3chy 19 1nin 29 1tmhA 39 1ier
10 4tmyA 20 1pla 30 1treA 40 1rcd

Table 4: PDB domain names of the Skolnick test set and their assigned indexes (ID).

No Style Residues Seq. Sim. Proteins

1 alpha-beta 124 15-30% 1-14
2 beta 99 35-90% 15-23
3 alpha-beta 250 30-90% 24-34
4 170 7-70% 35-40

Table 5: Characteristic properties of the Skolnick test set as taken from Caprara and Lancia (2002).
Shown are the fold style, mean number of residues, and the range of similarity obtained
by sequence alignment of the protein domains.

We used the Skolnick test set consisting of 40 protein contact maps provided by Xie and Sahini-
dis (2007). Table 4 shows the PDB domain names of the test set and their assigned indexes.8 Table 5
describes characteristic properties of the protein domains. The characteristic feature of the Skolnick
data is that sequence similarity fails for correct categorization of the proteins as indicated by the
fourth column (Seq. Sim.) of Table 5. This motivates structural alignment for solving the Skolnick
clustering test.

5.3.2 ALGORITHMS

To cluster the contact maps, we minimized the cluster objective described in Section 4.3

F(M,Y ,X ) =
1
m

k

"
j=1

m

"
i=1

mi jD(Xi,Yj),

using the extensions of k-means and simple competitive learning. The chosen distance measure D
for both, the letter graphs and the contact maps, is the minimizer of the standard Euclidean metric.

8. The Protein Data Bank (PDB) is a repository for the 3D structures of proteins, nucleic acids, and other large biological
molecules.

2692



STRUCTURE SPACES

C ID Fold Superfamily Family

1 1-11 Flavodin-like Che Y-like Che Y-related
2 12-14 Microbial Microbial Fungi

ribonucl. ribonucl. ribonucl.
3 15-23 Cuperdoxin- Cuperdoxins Plastocyanim-like

like Plastoazurin-like
4 24-34 TIM-beta Triosephosphate Triosephosphate

alpha-barrel isomerase (TIM) isomerase (TIM)
5 35-40 Ferritin-like Ferritin-like Ferritin

Table 6: Clusters of Skolnick proteins detected by competitive learning and k-means. Shown are
the cluster memberships of the proteins via their indexes (ID) as assigned in Table 5.
The clusters perfectly agree with the fold, family, and superfamily according to SCOP
categories.

For letter graphs the underlying transformation set T is the set of all possible vertex permutations.
In the case of contact maps, the set T is the subset of all partial vertex permutations that preserve
the order of the vertices.

For subgradient and distance calculations, we used a combination of graduated assignment and
dynamic programming (Jain and Lappe, 2007).

5.3.3 RESULTS

Competitive learning and k-means both correctly categorized the 40 proteins in 5 clusters accord-
ing to the SCOP categories as shown in Table 6.9 This result was also achieved by previous ap-
proaches based on hierarchical clustering using pairwise similarity matrices (Xie and Sahinidis,
2007; Caprara and Lancia, 2002; Caprara, Carr, Istrail, Lancia, and Walenz, 2004).

Competitive learning and k-means require less pairwise structural alignments than pairwise clus-
tering. Pairwise clustering of 40 structures requires 780 structural alignments. In contrast, competi-
tive learning required 120 and k-means 440 structural alignments. One problem of central clustering
algorithms applied to contact maps is the increasing size of the cluster centers caused by the updat-
ing step. A solution to this problem is to restrict the vertices of a cluster center to those vertices that
occur in at least one cluster member. In doing so, spurious vertices of former cluster members are
removed.

The distinguishing feature of central clustering of structures is that we obtain prototypes for each
cluster. According to Jain and Obermayer (2009), the sample mean is equivalent to the multiple
alignment of proteins, which is like clustering an essential task in bioinformatics. Hence, central
clustering of protein structures can solve two tasks simultaneously, categorizing the proteins and
and multiple aligning cluster members, which is useful for protein structure classification, structure-
based function prediction, and highlighting structurally conserved regions of functional significance.

9. The Structural Classification of Proteins (SCOP) database is a largely manual classification of protein structural
domains based on similarities of their amino acid sequences and 3D structures.
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Figure 9: Shown are approximated sample means of the Che Y-like superfamily of cluster C1 (left)
and the Cuperdoxins superfamily family of cluster C3 (right). Diagonal elements show
the residues and off-diagonal elements the contacts. Darker shading refers to a higher
relative frequency of occurrence of residues/contacts over all cluster members.

Figure 9 shows approximations of sample means of the two largest clusters computed by competitive
learning.

6. Summary

In this contribution, we described a generic technique of how to generalize classical learning ap-
proaches and other problems from pattern recognition to structured domains. The proposed tech-
nique is based on the notion of T -space. A T -space is a quotient set of a metric vector space—the
representation space—with all the vectors identified that represent the same structure. The equiva-
lence classes of representation vectors are determined by the subgroup of homogeneous isometrics
T . This constructions turns out to be a convenient abstraction of combinatorial structures to for-
mally adopt geometrical and analytical concepts from vector spaces.

The metric of the representation space X induces a metric on the T -space. A norm on X
induces a T -norm on XT . The T -norm corresponds to the same geometric concept of length as the
standard norm. Thus, different vector representations of the same structure have the same length.
An inner product 〈·, ·〉 on X induces the inner T -product on XT , which is not bilinear but has the
same geometrical properties as 〈·, ·〉. In other words, the Cauchy-Schwarz inequality is valid for
structures. This result gives rise to a well-defined geometric concept of angle between structures.

The interplay of geometrical intuition, the algebraic group structure of the transformation set
T , and the link to the properties of a vector space via the membership function yields the well-
defined notions of T -differentiability and T -gradient that generalize the standard definitions of
differentiability and gradient of a smooth function at some point from a vector space. In particular,
the T -gradient of a T -function at a T -differentiable point is a well-defined structure pointing in
direction of steepest ascent and satisfies the necessary condition of optimality. Therefore, we can
apply local gradient information to minimize smooth T -functions.

One application of the theory of T -spaces are problems from structural pattern recognition.
For selected problems, we presented continuous optimization problems, where the cost functions
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defined on T -spaces are locally Lipschitz. Locally Lipschitz functions are nonsmooth on a set of
Lebesgue measure zero, but admit a generalized gradient at non-differentiable points. The field of
nonsmooth optimization provides techniques like the subgradient method to minimize this class of
nonsmooth functions.

As case studies, we considered the problem of computing a sample mean and central clustering
in the domain of graphs. The cost functions are locally Lipschitz, but computation of a subgradi-
ent is computationally intractable. To cope with the computational complexity, we suggested an
approximate subgradient method that chooses the opposite of a direction close to the generalized
gradient as descent direction. We illustrated that the proposed method is capable to minimize the
cost function of the case study. Even so the high computational complexity of deriving a subgra-
dient demands a reevaluation of existing nonsmooth optimization methods and asks for devising
algorithms that use approximations of the generalized gradient.

Appendix A. Introduction to T -spaces

This section formally introduces T − spaces and presents proofs.

A.1 T -spaces

Let X = Rn be the n-dimensional Euclidean vector space, and let T be a subgroup of the group of
all n×n permutation matrices. Then the binary operation

· : T ×X → X , (T,x) .→ Tx

is a group action of T on X . For x ∈ X , the orbit of x is denoted by

[x]T = {Tx : T ∈ T } .

If no misunderstanding can occur, we write [x] instead of [x]T .
A T -space over X is the orbit space XT = X /T of all orbits of x ∈ X under the action of T .

We call X the representation space of XT . By

µ : X → XT

we denote the membership function that sends vector representations to the structure they describe.
The following notations, definitions, and results are useful to simplify technicalities. We use

capital letters X ,Y,Z, . . . to denote the elements of XT . Suppose that X = µ(x) for some x∈ X . Then
we identify X with [x] and make use of sloppy notations like, for example, x ∈ X to denote x ∈ [x].10

By 0T we denote the T -zero of XT . It is easy to show that 0T has only the zero element 0 ∈ X
as its unique representation vector.

Proposition 2 Let XT be a T -space over the metric vector space X . Then µ−1 (0T ) = [0] ={0}.

Proof Follows directly from the fact that each T ∈ T is homogeneous and injective. !

A T -space XT has, in fact, a T -zero element, but it is unclear how to define an addition+ on XT
such that XT together with+ forms a group. The absence of an additive group structure is one of the

10. The notation is sloppy, because X is an element in XT and not a set, whereas [x] is a set of equivalent elements from
X .
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major reasons why analytical tools for structured data are extremely rare compared to the plethora
of powerful tools developed for feature vectors residing in some Banach space. To mitigate this
drawback of T -spaces XT , we exploit the vector space axioms of X via the membership function µ.

We say a membership function µ : X → XT is T -linear if

(TL1) [x+ y] ⊆ [x]⊕ [y] = {x′ + y′ : x′ ∈ [x],y′ ∈ [y]},

(TL2) [,x] = , [x] = {,x′ : x′ ∈ [x]}

for all x,y ∈ X , and for all , ∈ R. Note that for (TL1) we have a subset relation and for (TL2)
equality. This definition has a sound notation but appears to be independent on µ at first glance.
Since we identify the orbits [x] in X with the elements µ(x) of XT , we can rewrite (TL1) and (TL2)
by slight abuse of notation

µ(x+ y) ⊆ µ(x)⊕µ(y),
µ(,x) = ,µ(x).

Membership functions that are T -linear preserve enough structure to transfer some geometrical and
analytical concepts from X to XT .

In contrast to the standard definition of linearity, we only require a subset relation in (TL1)
rather than equality. The proof of Prop. 3 explains this issue.

Proposition 3 Let XT be a T -space over the Euclidean space X .Then the membership function
µ : X → XT is T -linear.

Proof Let z = x+ y, and let z′ ∈ [x+ y]. Then there is an element T ∈ T with z′ = Tz. Since T is
linear by assumption, we obtain

z′ = Tz= T (x+ y) = Tx+Ty ∈ [x]⊕ [y] .

This proves (TL1). The proof of (TL2) is similar. !

For an intuitive understanding it is sometimes more convenient to use the following notation

,X = µ(,x),
Xx+Yy = µ(x+ y).

It is important to note that the ’+’ symbol in Xx+Yy does not refer to some kind of addition in XT .
The notation Xx +Yy is simply an alternative and for our purposes more convenient way to refer to
the element µ(x+ y) ∈ XT .

We conclude this section with some further useful technical notations and results. Let X n be the
n-ary cartesian product of a metric vector space X . Any real-valued function f : X n → R induces
functions

F∗ : X n
T → R, (X1, . . . ,Xn) .→max{ f (x1, . . . ,xn) : xi ∈ Xi},

F∗ : X n
T → R, (X1, . . . ,Xn) .→min{ f (x1, . . . ,xn) : xi ∈ Xi} .

Since T is finite, the orbits [x] of x are finite. Hence, F∗ and F∗ assume an extremal value. We call
F∗ maximizer and F∗ minimizer of f on X n

T . Let F be either a maximizer or minimizer of f . The
support

supp(F |X1, . . . ,Xn)
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of F at (X1, . . . ,Xn) ∈ X n
T is the set of all elements (x1, . . . ,xn) ∈ -n

i=1Xi with f (x1 . . . ,xn) =
F(X1, . . . ,Xn). The next results shows a useful property of the support.

Proposition 4 Let F be the minimizer or maximizer of a function f : X n → R. Let X1, . . . ,Xn ∈
XT . Then for each xi ∈ Xi there are a x j ∈ Xj for all j ∈ {1, . . . ,n} \ {i} such that (x1, . . . ,xn) ∈
supp(F |X1, . . . ,Xn).

Proof Let xi ∈ Xi. Suppose that (x∗1, . . . ,x∗n) ∈ supp(F |X1, . . . ,Xn). Then there is a transformation
T ∈ T with Txi = x∗i . Since T is a group, the inverse T−1 exists. Hence, x j = T−1x∗j is an element
of Xj for all j '= i. We have

F(X1, . . . ,Xn) = f (x∗1, . . . ,x∗n) = f (Tx1, . . . ,Txn) = f (x1, . . . ,xn) .

This shows the assertion. !

A.2 Metric T -Spaces

Let XT be a T -space over the metric vector space (X ,d). The minimizer

D∗ : XT ×XT → R, (X ,Y ) .→min{d(x,y) : x ∈ X ,y ∈ Y} .

of the metric d is a distance measure on XT . Theorem 5 shows that D∗ is a metric.

Theorem 5 Let XT be a T -space over the metric space (X ,d). Then the minimizer D∗ of d is a
metric on XT .

Proof Let X , Y , Z ∈ XT .

1. We show D∗(X ,Y ) = 0⇔ X = Y . Let x ∈ X be a representation vector of X . According to
Prop. 4 there is a y ∈ Y such that (x,y) ∈ supp(D∗|x,y). We have

D∗(X ,Y ) = 0 ⇔ ∀x ∈ X ∃y ∈ Y d(x,y) = 0
⇔ ∀x ∈ X ∃y ∈ Y x= y
⇔ X = Y.

2. Symmetry D∗(X ,Y ) = D∗(Y,X) follows from symmetry of d.

3. We show D∗(X ,Z) ≤ D∗(X ,Y )+D∗(Y,Z). Let (x,y) ∈ supp(D∗|X ,Y ). There is a z ∈ Z such
that (y,z) ∈ supp(D∗|Y,Z). Then

D∗(X ,Y )+D∗(Y,Z) = d(x,y)+d(y,z)
≥ d(x,z)
≥min{d(x,z) : x ∈ X ,z ∈ Z}
= D∗(X ,Z).

!

Given the assumptions of Theorem 5, we call (XT ,D∗) metric T -space over (X ,d). A metric
space X is complete if every Cauchy sequence of points in X converges to a point from X . The next
result states that XT is complete if X is complete.
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Theorem 6 Any T -space over a complete metric vector space is a complete metric space.

Proof Let XT be a T -space over the complete metric space (X ,d). According to Theorem 5, XT is
a metric space with metric D∗. To show that XT is complete, consider an arbitrary Cauchy sequence
(Xi)i∈N in XT . We construct a Cauchy sequence (xk) such that (µ(xk)) is a subsequence of (Xi). For
any k> 0 there is a nk such that D∗(Xi,Xj) < 1/2k for all i, j> nk. For each k, there are xk ∈ Xnk and
xk+1 ∈ Xnk+1 with d (xk,xk+1) ≤ 1/2k. By the triangle inequality, we have

d(xi,x j) ≤
j−1

"
k=i

d(xk,xk+1) ≤
1
2i−1

for any i, j with i < j. Hence, (xk) is a Cauchy sequence in X and (µ(xk)) a subsequence of
(Xi). Since X is complete, (xk) converges to a limit point x ∈ X . By continuity of µ, we have
limk→'µ(xk) = µ(x), where µ(x) ∈ XT . Thus, the whole sequence (Xi) converges to µ(x). This
shows that XT is complete. !

A.3 T -Spaces over Normed Vector Spaces

Let XT be a T -space over the normed vector space (X ,‖·‖). As a normed vector space, X is a
metric space with metric d(x,y) = ‖x− y‖ for all x,y ∈ X . For any T ∈ T , we have

‖Tx‖ = ‖Tx−0‖ = ‖Tx−T0‖ = ‖x−0‖ = ‖x‖ .

Hence, the minimizer ‖·‖∗ and maximizer ‖·‖
∗ of ‖·‖ coincide, that is

‖X‖∗ = ‖X‖∗ = ‖x‖ (2)

for all X ∈ XT and for all x ∈ X .
We call the minimizer ‖·‖∗ the T -norm induced by the norm ‖·‖. Note that a T -norm is not a

norm, because a T -space has no well defined addition. But we can show that a T -norm has norm-
like properties. We use the notations ,X for µ(,X) and Xx+Yy for µ(x+y) as introduced in Section
3.2, p. 2696.

Proposition 7 Let (XT ,‖·‖∗) be a T -space over the normed space (X ,‖·‖). For all X ,Y ∈ XT , we
have

1. ‖X‖∗ = 0 if, and only if, X = 0T .

2. ‖,X‖∗ = |,|‖X‖∗ for all , ∈ R.

3. ‖Xx+Yy‖∗ ≤ ‖X‖∗ +‖Y‖∗ for all x ∈ X, y ∈ Y .

Proof Follows directly from first applying Equation (2) and then using the properties of the norm
‖·‖ defined on X . !

2698



STRUCTURE SPACES

A.4 T -Spaces over Inner Product Spaces

Let XT be a T -space over the inner product space (X ,〈·, ·〉), and let

〈·, ·〉∗ : XT ×XT → R, (X ,Y ) .→max{〈x,y〉 : x ∈ X ,y ∈ Y}

be the maximizer of the inner product 〈·, ·〉.
We call 〈·, ·〉∗ inner T -product induced by the inner product 〈·, ·〉. The inner T -product is not

an inner product, because the maximum-operator in the definition of 〈·, ·〉∗ does not preserve the
bilinearity property of an inner product. But we shall show later that an inner T -product satisfies
some weaker properties of an inner product.

Any inner product space X is a normed space with norm ‖x‖ =
√
〈x,x〉. The norm ‖·‖ on X in

turn gives rise to the T -norm ‖·‖∗ on XT . The next result shows that a T -norm is related to an inner
T -product in the same way as a norm to an inner product.

Proposition 8 Let (XT ,〈·, ·〉∗) be a T -space over the inner product space (X ,〈·, ·〉), and let X ∈XT .
Then

1. 〈X ,X〉∗ = 〈x,x〉 for all x ∈ X.

2. ‖X‖∗ =
√
〈X ,X〉∗.

Proof

1. X is the orbit of x under the group action T . The assertion follows from the fact that each
transformation T of T satisfies

〈Tx,Tx〉 = ‖Tx‖2 = ‖x‖2 = 〈x,x〉

for all x ∈ X .

2. Follows from the first part by taking the square root.

!

Using Prop. 8 the following operations to construct ‖·‖∗ commute

(X ,〈·, ·〉) 〈·,·〉∗−−−−→ (XT ,〈·, ·〉∗)

‖·‖=
√

〈·,·〉
:

:‖·‖∗=
√

〈·,·〉∗

(X ,‖·‖) −−−−→
‖·‖∗

(XT ,‖·‖∗) .

.

Next we show that an inner T -product satisfies some weaker properties related to an inner
product.

Proposition 9 Let X ,Y,Z ∈ XT , and let x ∈ X, y ∈ Y . Then

1. 〈X ,X〉∗ ≥ 0 with 〈X ,X〉∗ = 0 ⇔ X = 0T (positive definite)

2. 〈X ,Y 〉∗ = 〈Y,X〉∗ (symmetric)
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3. 〈,X ,Y 〉∗ = ,〈X ,Y 〉∗ for ,≥ 0 (positive homogeneous)

4. 〈Xx+Yy,Z 〉∗ ≤ 〈X ,Z 〉∗+〈Y,Z 〉∗ (sublinear)

Proof

1. Follows from Prop. 8 and the positive definiteness of 〈·, ·〉.

2. Follows from the symmetry of 〈·, ·〉.

3. Let ,≥ 0. Then

〈,X ,Y 〉∗ =max{〈,x,y〉 : x ∈ X ,y ∈ Y}
= ,max{〈x,y〉 : x ∈ X ,y ∈ Y}
= ,〈X ,Y 〉∗ .

4. LetW = Xx+Yy, and let (w,z) ∈ supp(〈·, ·〉∗ |W,Z). Since µ is T -linear by Prop. 3, we have
W ⊆ X⊕Y . Hence, there are x ∈ X and y ∈ Y such that w= x+ y. Thus,

〈W,Z〉 =〈w,z〉 = 〈x+ y,z〉 = 〈x,z〉+〈y,z〉 .

From 〈x,z〉 ≤ 〈X ,Z〉∗ and 〈y,z〉 ≤ 〈Y,Z〉∗ follows the assertion.

!

From the proof of Prop. 9 follows that T -linearity of the membership function partially pre-
serves the structure of X such that the inner T -product is a positive definite, symmetric, and sublin-
ear in both arguments.

Any inner product space (X ,〈·, ·〉) is a metric space with metric d(x,y) = ‖x− y‖. The metric d
induces a metric D∗ on XT . As for the T -norm, we want to express D∗ in terms of 〈·, ·〉∗.

Proposition 10 Let (XT ,〈·, ·〉∗) be a T -space over the inner product space (X ,〈·, ·〉). Then for all
X, Y ∈ XT , we have

D∗(X ,Y )2 = ‖X‖2∗ −2〈X ,Y 〉∗+ ‖Y‖2∗ .

ProofWe have

D∗(X ,Y )2 =min
{
‖x− y‖2 : x ∈ X ,y ∈ Y

}

=min{〈x− y,x− y〉 : x ∈ X ,y ∈ Y}

=min
{
‖x‖2−2〈x,y〉+‖y‖2 : x ∈ X ,y ∈ Y

}

= ‖x‖2−2max{〈x,y〉 : x ∈ X ,y ∈ Y}+‖y‖2

= ‖X‖2∗ −2〈X ,Y 〉∗+ ‖Y‖2∗ .

!

Next, we extend the Cauchy-Schwarz inequality.
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Theorem 11 Let (XT ,〈·, ·〉∗) be a T -space over the inner product space (X ,〈·, ·〉). Then
∣∣〈X ,Y 〉∗

∣∣≤ ‖X‖∗ ‖Y‖∗ .

for all X ,Y ∈ XT

Proof Let (x,y) ∈ supp(〈·, ·〉∗ |X ,Y ). Applying the conventional Cauchy-Schwarz inequality for
vectors and using Eq. (2) yields

∣∣〈X ,Y 〉∗
∣∣ = |〈x,y〉|≤ ‖x‖‖y‖ = ‖X‖∗ ‖Y‖∗ .

!

Using Theorem 11, we can show that the angle of structures has a geometrical meaning. For
two nonzero structures X and Y , the angle ( ∈ [0,.] between X and Y is defined (indirectly in terms
of its cosine) by

cos(=
〈X ,Y 〉∗

‖X‖∗ ‖Y‖∗
.

Theorem 11 implies that

−1≤
〈X ,Y 〉∗

‖X‖∗ ‖Y‖∗
≤ 1

and thus assures that this angle is well-defined. It is worthy to mention that 〈X ,Y 〉∗ has the same
geometrical properties as an inner product, although it does not satisfy the algebraic properties of an
inner product. Having the concept of an angle for structures, we can define structural orthogonality
in the usual way. Two nonzero structures X and Y , written as X ⊥ Y , are structurally orthogonal if
〈X ,Y 〉∗ = 0. Thus, Theorem 11 constitutes the starting point of a geometry of T -spaces, which we
do not further expand.

Appendix B. T -Mappings

This section studies differential and the local Lipschitz property of mappings on XT . The key result
of this section is that the concept of gradient and its generalizations from nonsmooth analysis can
be transferred in a well-defined manner to mappings on T -spaces. Basic definitions and results on
nonsmooth analysis of locally Lipschitz mappings are given in Appendix C.

B.1 Properties of T -Mappings

Let XT be a T -space over X and let Y be a set. A T -mapping is a mapping of the form F : XT → Y .
If Y is a subset of R, we also call F a T -function.

Instead of studying a T -mapping F directly, it is more convenient to consider its representation
mapping defined by

f : X → Y , x .→ F ◦µ(x).

Thus, we have to show that analyzing T -mappings is equivalent to analyzing their representation
mappings. For this we introduce the notion of T -invariant mapping. A T -invariant mapping is
a mapping f : X → Y that is constant on the orbits [x]T for all x ∈ X . Obviously, representation
mappings are T -invariant. In addition, we have the following universal properties:11

11. A universal property can be regarded as some abstract property which requires the existence of a unique mapping
under certain conditions.

2701



JAIN AND OBERMAYER

(UP1) Each mapping F : XT → Y has a unique representation f : X → Y with f = F ◦µ.

(UP2) Each T -invariant mapping f : X → Y can be lifted in the obvious way to a unique mapping
F : XT → Y with f = F ◦µ.

Hence, by (UP1) and (UP2) we may safely identify T -mappings with their representation mappings.
Next, we show that T -spaces over complete metric vector spaces are universal quotients with

respect to continuity, the Lipschitz property, and the local Lipschitz property. For this, we need
some additional results.

Proposition 12 Let (XT ,D∗) be a metric T -space over the metric space (X ,d). Then the member-
ship function µ : X → XT is a continuous map.

Proof Let (xi)i∈N be a sequence in X which converges to x ∈ X . Let (Xi) be the sequence in XT
with Xi = µ(xi) for all i ∈ N, and let X = µ(x). For any / > 0 there is a number n = n(/) with
D∗(Xi,X) ≤ d(xi,x) < / for all i> n. Hence, µ is continuous. !

A mapping f : X → Y between topological spaces is open if for any open setU ∈ X , the image
f (U) is open in Y .

Proposition 13 Let (XT ,D∗) be a metric T -space over the metric vector space (X ,d). Then µ :
X → XT is an open mapping.

Proof It is sufficient to show that for any x ∈ X and any open neighborhoodU of x there is an open
neighborhood VT of X = µ(x) such that VT ⊆ µ(U).

Let x ∈ X , and let U ⊆ X be an open set with x ∈ U. Then there is / > 0 such that the open
neighborhoodN (x,/) is contained inU. LetUT = µ(U) andVT = µ(N (x,/)). Clearly, X = µ(x)∈
VT ⊆UT . We show that VT is open. From D∗ (X ,µ(y)) ≤ d(x,y) < / for all y ∈ N (x,/) follows
VT ⊆ NT (X ,/). Now let Y ∈ NT (X ,/). For x, we can find a a y ∈ X with D∗(X ,Y ) = d(x,y) < /
by Prop. 4. Hence, y ∈N (x,/). This proves that NT (X ,/) = VT ⊆UT . !

The next result shows the aforementioned universal property of XT with respect to continuity,
the Lipschitz property, and the local Lipschitz property.

Proposition 14 Let X ,Y be complete metric vector spaces, and let XT be a metric T -space over X.
Suppose that f : X → Y is a T -invariant mapping. If f is continuous (Lipschitz, locally Lipschitz),
then f lifts to a unique continuous (Lipschitz, locally Lipschitz) mapping F : XT → Y with f (x) =
F(µ(x)) for all x ∈ X .

Proof By (UP2), the existence of such a T -mapping F implies uniqueness. Thus, it remains to show
that F preserves continuity and both Lipschitz properties. In the following let dX and dY denote the
metric of X and Y , resp., and let D∗ be the metric of XT induced by dX .
Continuity. Let U ⊆ Y open. Then V = f−1(U) is open in X , because f is continuous. From
Prop. 13 follows that VT = µ(V ) is open in XT . The assumption follows from the fact VT =
F−1(U).
Lipschitz property. Suppose there is a L≥ 0 such that

dY ( f (x), f (y)) ≤ L ·dX (x,y)
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for all x,y ∈ X . Let X ,Y ∈ XT . For (x,y) ∈ supp(D∗|X ,Y ) we have

dY (F(X),F(Y )) = dY ( f (x), f (y)) ≤ L ·dX (x,y) = L ·D∗(X ,Y ).

Since X and Y were chosen arbitrarily, F is Lipschitz.
Local Lipschitz property. Let X0 ∈ XT , and let x0 ∈ X . Since f is locally Lipschitz at x0, there is a
L≥ 0 such that

dY ( f (x), f (y)) ≤ L ·dX (x,y)

for all x,y from some neighborhood U = N (x0,/) in X . Since µ : X → XT is an open mapping,
there is an open neighborhood VT of X0 with VT ⊆ µ(U). Let X ,Y ∈ VT arbitrary. We choose
x,y,y′ ∈ µ−1(VT )⊆U with µ(x) = X , µ(y) = µ(y′) =Y , and (x,y)∈ supp(D∗|X ,Y ). From x,y′ ∈U
follows dX (x,y′) < / and from (x,y)∈ supp(D∗|X ,Y ) followsD∗(X ,Y ) = dX (x,y). Combining both
relations and using that D∗ is a minimizer of dX yields

D∗(X ,Y ) = dX (x,y) ≤ dX (x,y′) < /.

Hence, we have

dY (F(X),F(Y )) = dY ( f (x), f (y)) ≤ L ·dX (x,y) = L ·D∗(X ,Y ).

Since X ,Y ∈ VT were chosen arbitrarily, F is locally Lipschitz at X0. !

Now we want to study differential properties of T -mappings via their representation mappings.
Let XT be a T -space over the Euclidean space (X ,‖·‖) and let Y be another Euclidean space.
Suppose that f : X → Y is a T -mapping, which is differentiable at x̄ ∈ X . By

Df (x̄) : X → Y , x .→ Df (x̄)(x)

we denote the derivative of f at x̄.

Theorem 15 Let X and Y be Euclidean spaces, and let XT be a T -space over X . Suppose that
f : X → Y is a T -mapping, which is differentiable at x̄ ∈ X . Then f is differentiable at all points
x ∈ [x̄]. In addition, we have

D f (T x̄) = Df (x̄)◦T−1

for all T ∈ T .

Proof By ‖·‖X and ‖·‖Y we denote the norm defined on X and Y , respectively. Let x ∈ [x̄]. We
show that f is differentiable in x. Let T ∈ T with T x̄= x. For h '= 0, we define the mapping

r(h) =

∥∥ f (x+h)− f (x)−Df (x̄)
(
T−1h

)∥∥
Y

‖h‖X

=

∥∥ f (T x̄+TT−1h)− f (T x̄)−Df (x̄)
(
T−1h

)∥∥
Y

‖TT−1h‖X
.

We set h′ = T−1h and obtain

r(h) =
‖ f (T x̄+Th′)− f (T x̄)−Df (x̄)(h′)‖Y

‖Th′‖X

=
‖ f (T (x̄+h′))− f (T x̄)−Df (x̄)(h′)‖Y

‖Th′‖X
.
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Since f is T -invariant, we have f (T (x̄+h′)) = f (x̄+h′) and f (T x̄) = f (x̄). In addition, we have
‖Th′‖ = ‖h′‖, because T is an isometry. Thus,

r(h) =
‖ f (x̄+h′)− f (x̄)−Df (x̄)(h′)‖Y

‖h′‖X
.

Since f is differentiable in x̄, we have

lim
h→0

r(h) = lim
h′→0

r(h) = 0.

Hence, f is differentiable at x with derivative Df (x) = Df (T x̄) = Df (x̄)◦T−1. !

A T -mapping F : XT → Y is said to be T -differentiable at X̄ ∈ XT if its representation func-
tion is differentiable at an arbitrary vector representation of X̄ . From Theorem 15 follows that
differentiability of f at an arbitrary vector representation of X̄ implies differentiability at all vector
representations of X̄ . Hence, T -differentiability at X̄ ∈ XT is independent from the particular vector
representation of X̄ and therefore well-defined.

B.2 T -Differentiable Functions

In this section, we study differential properties of T -functions of the form F : XT → R.
Let f : X → R be the representation function of F . Suppose that f is differentiable at x ∈ X

with gradient $ f (x̄). Then, by Theorem 15, the T -function F is T -differentiable at X̄ = µ(x̄). We
call the structure

$F(X̄) = µ($ f (x̄)).

T -gradient of F at X̄ . We show that the T -gradient is well-defined, that is independent from the
particular choice of vector representation x̄ ∈ X̄ . To see this let T ∈ T be an arbitrary orthogonal
transformation from T . By Theorem 15, we have

$ f (T x̄) = $ f (x̄)T−1 = $ f (x̄)T ′,

where T ′ = T−1 is the transpose of T . From $ f (x̄)T ′ = T$ f (x̄) follows $ f (T x̄) = T$ f (x̄). Thus,
we have

µ($ f (T x̄)) = µ(T$ f (x̄)) = µ($ f (x̄))

showing that the T -gradient is well-defined.
The T -gradient induces the T -function

$F(X̄) : XT → R, X .→ 〈$F(X̄),X〉∗ .

We use this function for showing that the geometrical properties of a gradient also hold for a T -
gradient. For this, we define the directional T -derivative of F at X̄ along the direction V with
‖V‖∗ = 1 by

DVF(X̄) = 〈V,$F(X̄)〉∗ .

The first geometrical result shows that the T -gradient is a structure pointing to the direction of
steepest ascent.
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Proposition 16 Let f : X → R be a continuously differentiable representation function of a T -
function F : XT → R. Then for all X̄ ∈ XT \ {0T } and all V ∈ UT = {X ∈ X : ‖X‖∗ = 1}, we
have

$F(X̄)

‖$F(X̄)‖∗
= arg max

V∈UT

DVF(X̄).

Proof From the definition of the directional derivative and the implications of Theorem 11 follows

DVF(X̄) = 〈V,$F(X̄)〉∗ = ‖V‖∗ ‖$F(X̄)‖∗ cos!,

where ! is the angle between V and $F(X̄). Hence, the directional derivative DVF(X̄) becomes
maximal if V points to the same direction as $F(X̄). !

Next, we show that the necessary condition for optimality can be transferred to T -differentiable
T -functions.

Proposition 17 Let F : XT → R be a T -function with a partial differentiable representation func-
tion. If X ∈ XT is a local optimum of F, then we have

$F(X) = 0T .

Proof Let f : X → R be the representation function of F , and let x ∈ X be a vector representation of
X . Since f is partial differentiable, the gradient of f at x exists. By definition of the T -gradient, we
have

µ($ f (x)) = $F(X) = 0T .

From Prop. 2 follows that 0 is the unique vector representation of $F(X). Thus, any vector repre-
sentation x of X is a local optimum of the representation function f . Without loss of generality, we
assume that x∈ X is a local minimum. Then there is an open neighborhoodU of xwith f (x)≤ f (x′)
for all x′ ∈U. Since µ is an open mapping by Prop. 13, the setUT = µ(U) is an open neighborhood
of X . From the T -invariance of f follows that F(X) = f (x) ≤ f (x′) = F(X ′) for all X ′ ∈UT . This
shows that F is a local minimum. !

An immediate consequence of the proof is that if x is a local minimum (maximum) of the
representation function f then all x′ ∈ [x] are local minima (maxima).

B.3 Pointwise Maximizers

This section introduces and studies differential properties of pointwise maximizers and applies the
results to structural similarity and distance functions.

B.3.1 POINTWISE MAXIMIZERS

The pointwise maximizer of functions f1, . . . , fm :U → R defined on an open subset U ⊆ Rn is the
function f :U → R with

f (x) = max
1≤i≤m

fi(x).

We call the set supp( f ) = { fi : 1≤ i≤ m} the support of f , and its elements support functions.

Theorem 18 Let f :U → R be a pointwise maximizer with finite support supp( f ). We have:
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• If all fi ∈ supp( f ) are locally Lipschitz at x, then f is locally Lipschitz at x and

& f (x) ⊆ con{& fi(x) : fi ∈ supp( f )∧ fi(x) = f (x)} . (3)

• If all fi ∈ supp( f ) are regular at x, then f is regular at x and equality in (3) holds.

• If all fi ∈ supp( f ) are smooth at x, then f is regular at x and

& f (x) = con{$ fi(x) : fi ∈ supp( f )∧ fi(x) = f (x)} .

ProofMäkelä and Neittaanmäki (1992), Theorem 3.2.12 and Corollary 3.2.14. !

If all support functions of f ∗ are locally Lipschitz, then f ∗ is also locally Lipschitz and admits
a generalized gradient at any point from U. In addition, f ∗ is differentiable almost everywhere on
U by Rademacher’s Theorem (see Appendix, Theorem 23).

Similarly, we can define in the obvious way the pointwise minimizer of a finite set of functions.
According to Theorem 19, all statements made on pointwise maximizers carry over to pointwise
minimizers.

Theorem 19 If f be locally Lipschitz at x, then

& f (,x) = ,& f (x)

for all , ∈ R.

ProofMäkelä and Neittaanmäki (1992), Theorem 3.2.4. !

In the remainder of this section, we consider similarity and distance functions as examples of
pointwise maximizers and minimizers, respectively.

B.3.2 SIMILARITY FUNCTIONS: THE GENERAL CASE

We consider similarity functions of the form

S∗ : XT ×XT → R, (X ,Y ) .→ max
x∈X ,y∈Y

s(x,y)

that are maximizers of similarity functions s : X ×X → R. For a given Y ∈ XT , we define the
function

sY : X → R, x .→ S∗(µ(x),Y ).

The function sY represents S∗ (·,Y ) and is a pointwise maximizer with support

supp(sY ) = {sy : sy(·) = s(·,y), y ∈ Y}.

If the support functions of sY are locally Lipschitz, regular, or smooth, we can apply Theorem 18 to
show that sY is locally Lipschitz, admits a generalized gradient at each point of its domain, and is
differentiable almost everywhere.
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B.3.3 SIMILARITY FUNCTIONS: THE INNER T -PRODUCT

As a specific example of a similarity function as a pointwise maximizer, we consider the inner T -
product. Suppose that S∗ (·, ·) = 〈·, ·〉∗. For a fixed structure Y ∈ XT , the support of the pointwise
maximizer sY is of the form

supp(sY ) = {sy : sy(·) = 〈·,y〉, y ∈ Y},

As linear functions, these support functions sy are continuously differentiable. From Theorem 18
follows

• sY is locally Lipschitz and regular,

• the generalized gradient &sY (x) is the convex set

&sY (x) = con{y ∈ Y : (x,y) ∈ supp(sY |x)} .

The next statement follows directly from Prop. 9.

Proposition 20 The function sY : X → R is convex.

Proof From Prop. 9 follows that sy is positively homogeneous and sublinear. Hence, sY is convex.
!

B.3.4 DISTANCE FUNCTIONS: THE GENERAL CASE

Suppose that we are given an arbitrary distance function of the form

D∗ : XT ×XT → R, (X ,Y ) .→ min
x∈X ,y∈Y

d(x,y).

To apply the theorems on pointwise maximizers, we consider the function

D̂∗(X ,Y ) = −D∗(X ,Y ) = max
x∈X ,y∈Y

−d(x,y).

For a given Y ∈ XT , we define the function

d̂Y : X → R, x .→ D̂∗(µ(x),Y ).

The function d̂Y represents D̂∗ (·,Y ) and is a pointwise maximizer with support

supp
(
d̂Y
)

=
{
d̂y : d̂y(·) = −d (·,y), y ∈ Y

}
.

B.3.5 DISTANCE FUNCTIONS: THE METRIC D∗

Let D∗ be the metric on XT induced by a metric d on X of the form d(x,y) = ‖x− y‖. For a given
Y ∈ XT , we define the function

d̂Y : X → R, x .→ D̂∗(µ(x),Y ).

The function d̂Y represents D̂∗(·,Y ) and is a pointwise maximizer with support

supp
(
d̂Y
)

= {d̂y : y ∈ Y},

where d̂y(x) =−‖x− y‖ for all x ∈ X . The support functions of d̂Y are locally Lipschitz and regular
on X , and smooth on X \{y}. From Theorem 18 follows
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• d̂Y is locally Lipschitz and regular,

• the generalized gradient &d̂Y (x) is the convex set

&d̂Y (x) =






con
{
− (x−y)

‖x−y‖ : y ∈ Y ∧ (y,x) ∈ supp(d̂Y |x)
}

: x '= y

{y ∈ XT : ‖y‖ ≤ 1} : x= y.

As in the Euclidean space, the squared structural Euclidean metric D2∗ turns out to be more con-
venient thanD∗. As opposed to d̂Y , the support functions of the squared function d̂ 2Y are continuously
differentiable at all points from X . In particular, we have

• d̂ 2Y is locally Lipschitz and regular,

• the generalized gradient &d̂ 2Y (x) is the convex set

&d̂ 2Y (x) = con
{
−2(x− y) : y ∈ Y ∧ (y,x) ∈ supp

(
d̂ 2Y |x

)}
.

Appendix C. Locally Lipschitz Functions

We review some basic properties of locally Lipschitz functions and their generalized gradients.
Unless otherwise stated proofs can be found in Clarke (1990), Section 2.3. For a detailed treatment
to the first-order generalized derivative we refer to Clarke (1990); Mäkelä and Neittaanmäki (1992).

Let (X ,dX) and (Y ,dY ) be metric spaces, and let U ⊆ X be an open set. A map f : X → Y is
Lipschitz on U if there is a scalar L≥ 0 with

dY ( f (u), f (v)) ≤ L ·dX (u,v)

for all u,v∈U. We say that f is locally Lipschitz at u∈U if f is Lipschitz on some /-neighborhood
N (u,/) ⊆U of u.

Proposition 21 Let f ,g :U ⊆ X → R be locally Lipschitz at u, and let , ∈ R be a scalar. Then , f ,
f +g, and f ·g are locally Lipschitz at u. If g(u) '= 0, then f/g is locally Lipschitz at u.

Proposition 22 Let f : X → Y be locally Lipschitz at x, and let g : X → Z be locally Lipschitz at
y= f (x). Then h= g◦ f is locally Lipschitz at x.

Proof Let N(x,/x) ⊆ X , N(y,/y) ⊆ Y be neighborhoods of x and y satisfying the following proper-
ties: (i) f (N(x,/x)) ⊆ N(y,/y), (ii) there are Lx,Ly ≥ 0 such that dY ( f (u), f (v)) ≤ Lx ·dX (u,v) for
all u,v∈N(x,/x) and dZ (g(p),g(q))≤ Ly ·dY (p,q) for all p,q∈N(y,/y). For any u,v∈ X , we have

dZ (g◦ f (u),g◦ f (v)) ≤ LydY ( f (u), f (v)) ≤ LyLxdX (u,v) .

!

Theorem 23 (Rademacher) Let U ⊆ Rn be a nonempty open set, and let f : U → R be locally
Lipschitz. Then the set of points at which f is not differentiable has Lebesgue measure zero.
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The function f is directionally differentiable at x ∈U if the limit

f ′(x,d) = lim
t↓0

f (x+ td)− f (x)
t

exists for all directions d ∈Rn. In this case, the value f ′(x,d) is the directional derivative of f at x in
the direction d. We call the function f directionally differentiable if f is directionally differentiable
at all points x ∈U.

The generalized directional derivative of f at x ∈U in the direction d ∈ X is defined by

f ◦(x,d) = lim sup
t↓0,y→x

f (y+ td)− f (y)
t

,

where t ↓ 0 and y→ x are sequences such that y+ td is always in U.
We say f is regular at x ∈U if the following conditions are satisfied

1. f is directionally differentiable at x.

2. f ◦(x̄,d) = f ′(x,d) for all d ∈ Rn.

A function f is said to be smooth at x if f is continuously differentiable at x. We have the
following implications.

Proposition 24 Let f :U → R be a function. The following implications hold:

1. f is smooth at x, then f is locally Lipschitz, regular, continuous, and differentiable at x.

2. f is locally Lipschitz or differentiable at x, then f is continuous at x.

Proof

1. Smoothness implies differentiability and continuity are well-known results from analysis. The
locally Lipschitz property follows from Mäkelä and Neittaanmäki (1992), Lemma 3.1.6 and
regularity from Mäkelä and Neittaanmäki (1992), Theorem 3.2.2.

2. Both assertions are again well-known results from analysis.

!

The generalized gradient & f (x) of f at x is the set

& f (x) = {y ∈ X : f ◦(x,d) ≥ 〈y,d〉 for all d ∈ X } .

The elements of the set & f (x) are called subgradients of f at x.

Theorem 25 Let f :U → R be a function on the open subsetU. We have:

• If f is locally Lipschitz and differentiable at x, then

$ f (x) ∈ & f (x).

• If f is locally Lipschitz, regular, and differentiable at x, then

& f (x) = {$ f (x)} .

ProofMäkelä and Neittaanmäki (1992), Theorem 3.1.5, Theorem 3.1.7, and Theorem 3.2.4. !
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Appendix D. The Graduated Assignment Algorithm

We use the graduated assignment algorithm to approximate the NP-hard squared distanceD∗(X ,Y )2

between two weighted graphs and to determine a subgradient from the generalized gradient &d 2Y (see
Section B.3.5). According to Prop. 10, the squared distanceD∗(X ,Y )2 can be expressed by the inner
T -product. Here, we determine D∗(X ,Y )2 via 〈X ,Y 〉∗.

Let X and Y be weighted graphs with weighted adjacency matrices X = (xi j) and Y = (yi j).
Suppose that X and Y are of order n and m, respectively. Without loss of generality, we assume that
n < m. By 0 = 0n×m we denote the set of (n×m)-match matrices M = (mi j) with elements from
[0,1] such that each row sums to 1 and each column sums to n/m. Then we have

〈X ,Y 〉∗ =max
M∈0

〈
M′XM,Y

〉
,

where M′ denotes the transpose of M. To compute the inner T -product, graduated assignment
minimizes

F(M) = −
1
2
〈
M′XM,Y

〉
.

subject to M ∈ 0. Suppose that M0 is an optimal solution. Then 2(M′
0XM0−Y ) is a subgradient

from the generalized gradient &d 2Y (X).
The core of the algorithm implements a deterministic annealing process with annealing param-

eter T by the following iteration scheme

m(t+1)
i j = aib j exp

(

−
1
T

n

"
r=1

m

"
s=1

m(t)
rs
〈
xir,y js

〉
)

,

where t denotes the time step. The scaling factors ai, bi computed by Sinkhorn’s algorithm (Sinkhorn,
1964) enforce the constraints of the match matrix. The algorithm in detail is described in Gold, Ran-
garajan, and Mjolsness (1996).
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Abstract
We give new algorithms for learning halfspaces in the challenging malicious noise model, where
an adversary may corrupt both the labels and the underlying distribution of examples. Our algo-
rithms can tolerate malicious noise rates exponentially larger than previous work in terms of the
dependence on the dimension n, and succeed for the fairly broad class of all isotropic log-concave
distributions.

We give poly(n,1/!)-time algorithms for solving the following problems to accuracy !:

• Learning origin-centered halfspaces in Rn with respect to the uniform
distribution on the unit ball with malicious noise rate "=#(!2/ log(n/!)).
(The best previous result was #(!/(n log(n/!))1/4).)

• Learning origin-centered halfspaces with respect to any isotropic log-
concave distribution onRn with malicious noise rate "=#(!3/ log2(n/!)).
This is the first efficient algorithm for learning under isotropic log-concave
distributions in the presence of malicious noise.

We also give a poly(n,1/!)-time algorithm for learning origin-centered halfspaces under any
isotropic log-concave distribution on Rn in the presence of adversarial label noise at rate " =
#(!3/ log(1/!)). In the adversarial label noise setting (or agnostic model), labels can be noisy,
but not example points themselves. Previous results could handle " = #(!) but had running time
exponential in an unspecified function of 1/!.

Our analysis crucially exploits both concentration and anti-concentration properties of isotropic
log-concave distributions. Our algorithms combine an iterative outlier removal procedure using
Principal Component Analysis together with “smooth” boosting.
Keywords: PAC learning, noise tolerance, malicious noise, agnostic learning, label noise, half-
space learning, linear classifiers
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1. Introduction

A halfspace is a Boolean-valued function of the form f = sign($n
i=1wixi−%). Learning halfspaces

in the presence of noisy data is a fundamental problem in machine learning. In addition to its
practical relevance, the problem has connections to many well-studied topics such as kernel meth-
ods (Shawe-Taylor and Cristianini, 2000), cryptographic hardness of learning (Klivans and Sher-
stov, 2006), hardness of approximation (Feldman et al., 2006; Guruswami and Raghavendra, 2006),
learning Boolean circuits (Blum et al., 1997), and additive/multiplicative update learning algorithms
(Littlestone, 1991; Freund and Schapire, 1999).

Learning an unknown halfspace from correctly labeled (non-noisy) examples is one of the best-
understood problems in learning theory, with work dating back to the famous Perceptron algorithm
of the 1950s (Rosenblatt, 1958) and a range of efficient algorithms known for different settings
(Novikoff, 1962; Littlestone, 1987; Blumer et al., 1989; Maass and Turan, 1994). Much less is
known, however, about the more difficult problem of learning halfspaces in the presence of noise.

Important progress was made by Blum et al. (1997) who gave a polynomial-time algorithm for
learning a halfspace under classification noise. In this model each label is flipped independently
with some fixed probability; the noise does not affect the actual example points themselves, which
are generated according to an arbitrary probability distribution over Rn.

In the current paper we consider a much more challengingmalicious noisemodel. In this model,
introduced by Valiant (1985) (see also Kearns and Li 1993), there is an unknown target function f
and distribution D over examples. Each time the learner receives an example, independently with
probability 1−" it is drawn from D and labeled correctly according to f , but with probability " it
is an arbitrary pair (x,y) which may be generated by an omniscient adversary. The parameter " is
known as the “noise rate.”

Malicious noise is a notoriously difficult model with few positive results. It was already shown
by Kearns and Li (1993) that for essentially all concept classes, it is information-theoretically im-
possible to learn to accuracy 1− ! if the noise rate " is greater than !/(1+ !). Indeed, known
algorithms for learning halfspaces (Servedio, 2003; Kalai et al., 2008) or even simpler target func-
tions (Mansour and Parnas, 1998) with malicious noise typically make strong assumptions about
the underlying distribution D , and can learn to accuracy 1− ! only for noise rates " much smaller
than !.We describe the most closely related work that we know of in Section 1.2.

In this paper we consider learning under the uniform distribution on the unit ball in Rn, and
more generally under any isotropic log-concave distribution. The latter is a fairly broad class of dis-
tributions that includes spherical Gaussians and uniform distributions over a wide range of convex
sets. Our algorithms can learn from malicious noise rates that are quite high, as we now describe.

1.1 Main Results

Our first result is an algorithm for learning halfspaces in the malicious noise model with respect to
the uniform distribution on the n-dimensional unit ball:

Theorem 1 There is a poly(n,1/!)-time algorithm that learns origin-centered halfspaces to accu-
racy 1− ! with respect to the uniform distribution on the unit ball in n dimensions in the presence
of malicious noise at rate "=#(!2/ log(n/!)).

The condition on " is expressed using # and not O because we are showing that a weak upper
bound on the noise rate suffices to achieve accuracy 1− !.
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Via a more sophisticated algorithm, we can learn in the presence of malicious noise under any
isotropic log-concave distribution:

Theorem 2 There is a poly(n,1/!)-time algorithm that learns origin-centered halfspaces to accu-
racy 1−! with respect to any isotropic log-concave distribution over Rn and can tolerate malicious
noise at rate "=#(!3/ log2(n/!)).

We are not aware of any previous polynomial-time algorithms for learning under isotropic log-
concave distributions in the presence of malicious noise.

Finally, we also consider a related noise model known as adversarial label noise. In this model
there is a fixed probability distribution P over Rn×{−1,1} (i.e., over labeled examples) for which
a 1−" fraction of draws are labeled according to an unknown halfspace. The marginal distribution
over Rn is assumed to be isotropic log-concave; so the idea is that an “adversary” chooses an " frac-
tion of examples to mislabel, but unlike the malicious noise model she cannot change the (isotropic
log-concave) distribution of the actual example points in Rn. Learning with adversarial label noise
is clearly harder than with independent misclassification noise—the ability to choose which labels
to corrupt allows the adversary to coordinate their effects to an extent.

For the adversarial label noise model we prove:

Theorem 3 There is a poly(n,1/!)-time algorithm that learns origin-centered halfspaces to accu-
racy 1−! with respect to any isotropic log-concave distribution over Rn and can tolerate adversar-
ial label noise at rate "=#(!3/ log(1/!)).

1.2 Previous Work

Our work builds on a number of lines of research.

1.2.1 MALICIOUS NOISE

General-purpose tools developed by Kearns and Li (1993) (see also Kearns et al. 1994) directly
imply that halfspaces can be learned for any distribution over the domain in randomized poly(n,1/!)
time with malicious noise at a rate #(!/n); the algorithm repeatedly picks a random subsample of
the training data, hoping to miss all the noisy examples. Kannan (see Arora et al. 1993) devised
a deterministic algorithm with a #(!/n) bound that repeatedly exploits Helly’s Theorem to find
a group of n+ 1 examples that includes a noisy example, then removes the group. Kalai et al.
(2008) showed that the poly(n,1/!)-time averaging algorithm (Servedio, 2001) tolerates noise at a
rate #(!/

√
n) when the distribution is uniform. They also described an improvement to #̃(!/n1/4)

based on the observation that uniform examples will tend to be well-separated, so that pairs of
examples that are too close to one another can be removed.

1.2.2 ADVERSARIAL LABEL NOISE

Kalai, et al. showed that if the distribution over the instances is uniform over the unit ball, the
averaging algorithm tolerates adversarial label noise at a rate #(!/

√
log(1/!)) in poly(n,1/!) time.

(In that paper, learning in the presence of adversarial label noise was called “agnostic learning”.)
They also described an algorithm that fits low-degree polynomials that tolerates noise at a rate within
an additive ! of the accuracy, but in poly

(
n1/!4

)
time; for log-concave distributions, their algorithm
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took poly
(
nd(1/!)

)
time, for an unspecified function d. The latter algorithm does not require that the

distribution is isotropic, as ours does.

1.2.3 ROBUST PCA

Independently of this work, Xu et al. (2009) designed and analyzed an algorithm that performs prin-
cipal component analysis when some of the examples are corrupted arbitrarily, as in the malicious
noise model studied here. Also, the thesis of Brubaker (2009) presents a “Robust PCA” algorithm
which is a PCA variant aimed at ameliorating the effects of noisy examples.

1.3 Techniques

Here is a high-level description of the main techniques in our analysis.

1.3.1 OUTLIER REMOVAL

Consider first the simplest problem of learning an origin-centered halfspace with respect to the uni-
form distribution on the n-dimensional ball. A natural idea is to use a simple “averaging” algorithm
that takes the vector average of the positive examples it receives and uses this as the normal vector
of its hypothesis halfspace. Servedio (2001) analyzed this algorithm for the random classification
noise model, and Kalai et al. (2008) extended the analysis to the adversarial label noise model.

Intuitively the “averaging” algorithm can only tolerate low malicious noise rates because the
adversary can generate noisy examples which “pull” the average vector far from its true location.
Our main insight is that the adversary does this most effectively when the noisy examples are coor-
dinated to pull in roughly the same direction. We use a form of outlier detection based on Principal
Component Analysis to detect such coordination. This is done by computing the direction w of
maximal variance of the data set; if the variance in direction w is suspiciously large, we remove
from the sample all points x for which (w · x)2 is large. Our analysis shows that this causes many
noisy examples, and only a few non-noisy examples, to be removed.

We repeat this process until the variance in every direction is not too large. (This cannot take too
many stages since many noisy examples are removed in each stage.) While some noisy examples
may remain, we show that their scattered effects cannot hurt the algorithm much.

Thus, in a nutshell, our overall algorithm for the uniform distribution is to first do outlier re-
moval1 by an iterated PCA-type procedure, and then simply run the averaging algorithm on the
remaining “cleaned-up” data set.

1.3.2 EXTENDING TO LOG-CONCAVE DISTRIBUTIONS VIA SMOOTH BOOSTING

We are able to show that the iterative outlier removal procedure described above is useful for
isotropic log-concave distributions as well as the uniform distribution: if examples are removed
in a given stage, then many of the removed examples are noisy and only a few are non-noisy (the
analysis here uses concentration bounds for isotropic log-concave distributions). However, even if
there were no noise in the data, the average of the positive examples under an isotropic log-concave

1. We note briefly that the sophisticated outlier removal techniques of Blum et al. (1997) and Dunagan and Vempala
(2004) do not seem to be useful in our setting; those works deal with a strong notion of outliers, which is such that
no point on the unit ball can be an outlier if a significant fraction of points are uniformly distributed on the unit ball.
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distribution need not give a high-accuracy hypothesis. Thus the averaging algorithm alone will not
suffice after outlier removal.

To get around this, we show that after outlier removal the average of the positive examples gives
a (real-valued) weak hypothesis that has some nontrivial predictive accuracy. (Interestingly, the
proof of this relies heavily on anti-concentration properties of isotropic log-concave distributions!)
A natural approach is then to use a boosting algorithm to convert this weak learner into a strong
learner. This is not entirely straightforward because boosting “skews” the distribution of examples;
this has the undesirable effects of both increasing the effective malicious noise rate, and causing
the distribution to no longer be isotropic log-concave. However, by using a “smooth” boosting
algorithm (Servedio, 2003) that skews the distribution as little as possible, we are able to control
these undesirable effects and make the analysis go through. (The extra factor of ! in the bound of
Theorem 2 compared with Theorem 1 comes from the fact that the boosting algorithm constructs
“1/!-skewed” distributions.)

We note that our approach of using smooth boosting is reminiscent of earlier work (Servedio,
2002, 2003), but the current algorithm goes well beyond that. Servedio (2002) did not consider a
noisy scenario, and Servedio (2003) only considered the averaging algorithm without any outlier
removal as the weak learner (and thus could only handle quite low rates of malicious noise in our
isotropic log-concave setting).

1.3.3 TOLERATING ADVERSARIAL LABEL NOISE

Finally, our results for learning under isotropic log-concave distributions with adversarial label noise
are obtained using a similar approach. The algorithm here is in fact simpler than the malicious
noise algorithm: since the adversarial label noise model does not allow the adversary to alter the
distribution of the examples in Rn, we can dispense with the outlier removal and simply use smooth
boosting with the averaging algorithm as the weak learner. (This is why we get a slightly better
quantitative bound in Theorem 3 than Theorem 2).

1.3.4 ORGANIZATION

For completeness we review the precise definitions of isotropic log-concave distributions and the
various learning models in Section 2. We present the simpler and more easily understood uniform
distribution analysis in Section 3. We extend the algorithm and analysis to isotropic log-concave
distributions in Section 4. Learning with adversarial label noise is treated in Section 5. We conclude
in Section 6.

2. Definitions and Preliminaries

In this section, we provide some definitions and lemmas that will be used throughout the paper.

2.1 Learning with Malicious Noise

Given a probability distribution D over Rn, and a target function f : Rn → {−1,1}, we define the
oracle EX"( f ,D) as follows:

• with probability 1−" the oracle draws x according to D , and outputs (x, f (x)), and
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• with probability " the oracle outputs an arbitrary (x,y) pair. This “noisy” example can be
thought of as being generated adversarially and can depend on the state of the learning algo-
rithm and previous draws from the oracle.

Given a data set drawn from EX"( f ,D), we often refer to the examples (x, f (x)) (that came
from D) as “clean” examples and the remaining examples (x,y) as “dirty” examples.

For a set S of probability distributions and a set F of possible target functions, we say that
a learning algorithm A learns F to accuracy 1− ! with respect to S in the presence of malicious
noise at a rate " if the following holds: for any f ∈ F , and D ∈ S , given access to EX"( f ,D),
with probability at least 1/2, the output hypothesis h generated by A satisfies Prx∼D [h(x) (= f (x)]≤
!. (The probability of success may be amplified arbitrarily close to 1 using standard techniques
(Haussler et al., 1991).)

Since scaling x by a positive constant does not affect its classification by a linear classifier,
drawing examples uniformly from the unit ball is equivalent to drawing them uniformly from the
surface Sn−1 of the unit sphere. When this is the distribution, we may also assume w.l.o.g. that
even noisy examples (x,y) have x ∈ Sn−1—this is simply because a learning algorithm can trivially
identify and ignore any noisy example (x,y) that has ‖x‖ (= 1.

2.2 Log-concave Distributions

A probability distribution over Rn is said to be log-concave if its density function is exp(−&(x)) for
a convex function &.

A probability distribution over Rn is isotropic if the mean of the distribution is 0 and the covari-
ance matrix is the identity, that is, E[xix j] = 1 for i= j and 0 otherwise.

Isotropic log-concave (henceforth abbreviated i.l.c.) distributions are a fairly broad class of
distributions. It is well known that any distribution induced by taking a uniform distribution over
an arbitrary convex set and applying a suitable linear transformation to make it isotropic is then
isotropic and log-concave. For an excellent treatment on basic properties of log-concave distribu-
tions, see Lovász and Vempala (2007).

We will use the following facts:

Lemma 4 (Lovász and Vempala 2007) Let D be an isotropic log-concave distribution over Rn
and a∈ Sn−1 any direction. Then for x drawn according toD , the distribution of a ·x is an isotropic
log-concave distribution over R.

Lemma 5 (Lovász and Vempala 2007) Any isotropic log-concave distributionD overRn has light
tails,

Pr
x∼D

[||x|| > '
√
n] ≤ e−'+1.

If n= 1, the density of D is bounded:

Pr
x∼D

[x ∈ [a,b]] ≤ |b−a|.

3. The Uniform Distribution and Malicious Noise

In this section we prove Theorem 1. As described above, our algorithm first does outlier removal
using PCA and then applies the “averaging algorithm.”
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We may assume throughout that the noise rate " is smaller than some absolute constant, and
that the dimension n is larger than some absolute constant.

3.1 The Algorithm: Removing Outliers and Averaging

Consider the following Algorithm Amu:
Algorithm Amu:
1. Draw a sample S of m= poly(n/!) many examples from the malicious oracle.
2. Identify the direction w ∈ Sn−1 that maximizes

(2w
de f
= $

(x,y)∈S
(w ·x)2.

If (2w < 10m logm
n then go to Step 4 otherwise go to Step 3.

3. Remove from S every example that has (w ·x)2 ≥ 10logm
n . Go to Step 2.

4. For the examples S that remain let v= 1
|S| $(x,y)∈S yx and output the linear classifier hv defined

by hv(x) = sgn(v ·x).

We first observe that Step 2 can be carried out in polynomial time:

Lemma 6 There is a polynomial-time algorithm that, given a finite collection S of points in Rn,
outputs w ∈ Sn−1 that maximizes $x∈S(w ·x)2.

Proof. By applying Lagrange multipliers, we can see that the optimal w is an eigenvector of A =
$x∈S xxT . Further, if ) is the eigenvalue of w, then $x∈S(w · x)2 = wTAw = wT ()w) = ). The
eigenvector w with the largest eigenvalue can be found in polynomial time (see, e.g., Jolliffe 2002).

Before embarking on the analysis we establish a terminological convention. Much of our analy-
sis deals with high-probability statements over the draw of the m-element sample S; it is straightfor-
ward but quite cumbersome to explicitly keep track of all of the failure probabilities. Thus we write
“with high probability” (or “w.h.p.”) in various places below as a shorthand for “with probability at
least 1−1/poly(n/!).” The interested reader can easily verify that an appropriate poly(n/!) choice
of m makes all the failure probabilities small enough so that the entire algorithm succeeds with
probability at least 1/2 as required.

3.2 Properties of the Clean Examples

In this subsection we establish properties of the clean examples that were sampled in Step 1 of Amu.
The first says that no direction has much more variance than the expected variance of 1/n:

Lemma 7 W.h.p. over a random draw of ! clean examples Sclean, we have

max
a∈Sn−1

{
1
!

$
(x,y)∈Sclean

(a ·x)2
}

≤
1
n

+

√
O(n+ log!)

!
.

Proof. The proof uses standard tools from VC theory and is in Appendix A.
The next lemma says that in fact no direction has too many clean examples lying far out in that

direction:
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Lemma 8 For any ' > 0 and * > 1, if Sclean is a random set of ! ≥ O(1)·n2'2e'2n/2
(1+*) ln(1+*) clean examples

then w.h.p. we have

max
a∈Sn−1

1
!
|{x ∈ Sclean : (a ·x)2 > '2}| ≤ (1+*)e−'

2n/2.

Proof. In Appendix B.

3.3 What is Removed

In this section, we provide bounds on the number of clean and dirty examples removed in Step 3.
The first bound is a Corollary of Lemma 8.

Corollary 9 W.h.p. over the random draw of the m-element sample S, the number of clean examples
removed during any one execution of Step 3 in Amu is at most 6n logm.

Proof. Since the noise rate " is sufficiently small, w.h.p. the number ! of clean examples is at least
(say) m/2. We would like to apply Lemma 8 with *= 5!4n log! and '=

√
10logm

n , and indeed we
may do this because we have

O(1) ·n2'2e'2n/2

(1+*) ln(1+*)
≤
O(1) ·n(logm)m5

(1+*) ln(1+*)
≤ O

(
m
logm

)
≤
m
2
≤ !

for n sufficiently large. Since clean points are only removed if they have (a · x)2 > '2, Lemma 8
gives us that the number of clean points removed is at most

m(1+*)e−'
2n/2 ≤ 6m5n log(!)/m5 ≤ 6n logm.

The counterpart to Corollary 9 is the following lemma. It tells us that if examples are removed in
Step 3, then there must be many dirty examples removed. It exploits the fact that Lemma 7 bounds
the variance in all directions a, so that it can be reused to reason about what happens in different
executions of step 3.

Lemma 10 W.h.p. over the random draw of S, whenever Amu executes step 3, it removes at least
4m logm

n noisy examples from Sdirty, the set of dirty examples in S.

Proof. As stated earlier we may assume that " ≤ 1/4. This implies that w.h.p. the fraction "̂ of
noisy examples in the initial set S is at most 1/2. Finally, Lemma 7 implies that m= #̃(n3) suffices
for it to be the case that w.h.p., for all a ∈ Sn−1, for the original multiset Sclean of clean examples
drawn in step 1, we have

$
(x,y)∈Sclean

(a ·x)2 ≤ 2m
n

. (1)

We shall say that a random sample S that satisfies all these requirements is “reasonable”. We will
show that for any reasonable data set, the number of noisy examples removed during the execution
of step 3 of Amu is at least 4m logmn .
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If we remove examples using direction w then it means $(x,y)∈S(w · x)2 ≥ 10m logm
n . Since S is

reasonable, by (1) the contribution to the sum from the clean examples that survived to the current
stage is at most 2m/n so we must have

$
(x,y)∈Sdirty

(w ·x)2 ≥ 10m log(m)/n−2m/n> 9m log(m)/n.

Let us decompose Sdirty into N ∪ F where N (“near”) consists of those points x s.t. (w · x)2 ≤
10log(m)/n and F (“far”) is the remaining points for which (w · x)2 > 10log(m)/n. Since |N| ≤
|Sdirty| ≤ "̂m, (any dirty examples removed in earlier rounds will only reduce the size of Sdirty) we
have

$
(x,y)∈N

(w ·x)2 ≤ ("̂m)10log(m)/n

and so
|F|≥ $

(x,y)∈F
(w ·x)2 ≥ 9m log(m)/n− ("̂m)10log(m)/n≥ 4m log(m)/n

(the last line used the fact that "̂< 1/2). Since the points in F are removed in Step 3, the lemma is
proved.

3.4 Exploiting Limited Variance in Any Direction

In this section, we show that if all directional variances are small, then the algorithm’s final hypoth-
esis will have high accuracy.

We first recall a simple lemma which shows that a sample of “clean” examples results in a
high-accuracy hypothesis for the averaging algorithm:

Lemma 11 (Servedio 2001) Suppose x1, ...,xm are chosen uniformly at random from Sn−1, and
a target weight vector u ∈ Sn−1 produces labels y1 = sign(u · x1), ...,ym = sign(u · xm). Let v =
1
m $

m
t=1 ytxt . Then w.h.p. u ·v=#( 1√

n), while ||v− (u ·v)u|| = O(
√
log(n)/m).

Now we can state Lemma 12.

Lemma 12 Let S= Sclean∪Sdirty be the sample of m examples drawn from the noisy oracle EX"( f ,U).
Let

• S′clean be those clean examples that were never removed during step 3 of Amu,

• S′dirty be those dirty examples that were never removed during step 3 of Amu,

• "′ =
|S′dirty|

|S′clean∪S
′
dirty|

, that is, the fraction of dirty examples among the examples that survive step 3,
and

• +=
|Sclean−S′clean|
|S′clean∪S

′
dirty|

, the ratio of the number of clean points that were erroneously removed to the
size of the final surviving data set.
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Let S′ de f= S′clean∪S′dirty. Suppose that |S′|≥m/2 (i.e., fewer than half the total points were removed)
and that, for every direction w ∈ Sn−1 we have

(2w
de f
= $

(x,y)∈S′
(w ·x)2 ≤ 10m logm

n
.

Then w.h.p. over the draw of S, the halfspace with normal vector v de f= 1
|S′| $(x,y)∈S′ yx has error rate

O

(
√
"′ logm++

√
n+

√
n logn
m

)

.

Proof. The claimed bound is trivial unless "′ ≤ o(1)/ logm and + ≤ o(1)/
√
n, so we shall freely

use these bounds in what follows.
Let u be the unit length normal vector for the target halfspace. Let vclean be the average of all

the clean examples, v′dirty be the average of the dirty (noisy) examples that were not deleted (i.e., the
examples in S′dirty), and vdel be the average of the clean examples that were deleted. Then

v =
1

|S′clean∪S′dirty|
$

(x,y)∈S′clean∪S′dirty
yx

=
1

|S′clean∪S′dirty|

((

$
(x,y)∈Sclean

yx
)

+

(

$
(x,y)∈S′dirty

yx
)

−

(

$
(x,y)∈Sclean−S′clean

yx
))

v = (1−"′ ++)vclean+"′v′dirty−+vdel.

Let us begin by exploiting the bound on the variance in every direction to bound the length of
v′dirty. For any w ∈ Sn−1 we know that

$
(x,y)∈S′

(w ·x)2 ≤ 10m logm
n

, and hence $
(x,y)∈S′dirty

(w ·x)2 ≤ 10m logm
n

since S′dirty ⊆ S′. Since |S′dirty|≤ "′m, the fact that ||r||1 ≤
√
k||r||2 for any vector r ∈ Rk gives

$
(x,y)∈S′dirty

|w ·x|≤

√
10m|S′dirty| logm

n
.

Taking w to be the unit vector in the direction of v′dirty, we have ‖v′dirty‖ =

w ·v′dirty = w ·
1

|S′dirty|
$

(x,y)∈S′dirty
yx≤ 1

|S′dirty|
$

(x,y)∈S′dirty
|w ·x|≤

√
10m logm
|S′dirty|n

. (2)

Because the domain distribution is uniform, the error of hv is proportional to the angle between
v and u, in particular,

Pr[hv (= f ] =
1
,
arctan

(
||v− (v ·u)u||

u ·v

)
≤ (1/,)

||v− (v ·u)u||
u ·v . (3)
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We have that ||v− (v ·u)u|| equals

||(1−"′ ++)(vclean− (vclean ·u)u)+"′(v′dirty− (v′dirty ·u)u)−+(vdel− (vdel ·u)u)||
≤ 2||vclean− (vclean ·u)u||+"′||v′dirty||++||vdel||

where we have used the triangle inequality and the fact that +," are “small.” Lemma 11 lets us
bound the first term in the sum by O(

√
log(n)/m), and the fact that vdel is an average of vectors of

length 1 lets us bound the third by +. For the second term, Equation (2) gives us

"′‖v′dirty‖ ≤
√
10m("′)2 logm

|S′dirty|n
=

√
10m"′ logm

|S′|n
≤

√
20"′ logm

n
,

where for the last equality we used |S′|≥ m/2. We thus get

||v− (v ·u)u||≤ O
(√

log(n)/m
)

+
√
20"′ log(m)/n++. (4)

Now we consider the denominator of (3). We have

u ·v= (1−"′ ++)(u ·vclean)+"′u ·v′dirty−+u ·vdel.

Similar to the above analysis, we again use Lemma 11 (but now the lower bound u ·v≥#(1/
√
n)),

Equation (2), and the fact that ||vdel||≤ 1. Since + and "′ are “small,” we get that there is an absolute
constant c such that u ·v≥ c/

√
n−

√
20"′ log(m)/n−+. Combining this with (4) and (3), we get

Pr[hv (= f ] ≤
O

(√
logn
m

)
+

√
20"′ logm

n ++

,

(
c√
n −

√
20"′ logm

n −+

) = O

(√
n logn
m

+
√
"′ logm++

√
n

)

.

3.5 Proof of Theorem 1

By Corollary 9, w.h.p. each outlier removal stage removes at most 6n logm clean points.
Since, by Lemma 10, each outlier removal stage removes at least 4m logmn noisy examples, there

must be at most O(n/(logm)) such stages. Consequently the total number of clean examples re-
moved across all stages is O(n2). Since w.h.p. the initial number of clean examples is at least
3m/4, this means that the final data set (on which the averaging algorithm is run) contains at least
3m/4−O(n2) clean examples, and hence at least 3m/4−O(n2) examples in total. The condition
m/ n2 means that the number of surviving examples will be at least m/2. Consequently the value
of + from Lemma 12 after the final outlier removal stage (the ratio of the total number of clean
examples deleted, to the total number of surviving examples) is at most O(n2)

m .
The standard Hoeffding bound implies that w.h.p. the actual fraction of noisy examples in the

original sample S is at most "+
√
O(logm)/m. It is easy to see that w.h.p. the fraction of dirty

examples does not increase (since each stage of outlier removal removes more dirty points than
clean points, for a suitably large poly(n/!) value of m), and thus the fraction "′ of dirty examples
among the remaining examples after the final outlier removal stage is at most "+

√
O(logm)/m.

Applying Lemma 12, for a suitably large value m = poly(n/!), we obtain Pr[hv (= f ] ≤
O

(√
" logm

)
. Rearranging this bound, we can learn to accuracy ! even for " = #(!2/ log(n/!)).

This completes the proof of the theorem.
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4. Isotropic Log-concave Distributions and Malicious Noise

Our algorithm Amlc that works for arbitrary isotropic log-concave distributions uses smooth boost-
ing.

4.1 Smooth Boosting

A boosting algorithm uses a subroutine, called a weak learner, that is only guaranteed to output
hypotheses with a non-negligible advantage over random guessing.2 The boosting algorithm that we
consider uses a confidence-rated weak learner (Schapire and Singer, 1999), which predicts {−1,1}
labels using continuous values in [−1,1]. Formally, the advantage of a hypothesis h′ with respect to
a distribution D ′ is defined to be Ex∼D ′ [h′(x) f (x)], where f is the target function.

For the purposes of this paper, a boosting algorithm makes use of the weak learner, an example
oracle (possibly corrupted with noise), a desired accuracy !, and a bound - on the advantage of the
hypothesis output by the weak learner.

A boosting algorithm that is trying to learn an unknown target function f with respect to some
distribution D repeatedly simulates a (possibly noisy) example oracle for f with respect to some
other distribution D ′ and calls a subroutine Aweak with respect to this oracle, receiving a weak
hypothesis, which maps Rn to the continuous interval [−1,1].

After repeating this for some number of stages, the boosting algorithm combines the weak
hypotheses generated during its various calls to the weak learner into a final aggregate hypothesis
which it outputs.

Let D,D ′ be two distributions over Rn. We say that D ′ is (1/!)-smooth with respect to D if
D ′(E) ≤ (1/!)D(E) for all events E.

The following lemma from Servedio (2003) (similar results can be readily found elsewhere,
see, e.g., Gavinsky 2003) identifies the properties that we need from a boosting algorithm for our
analysis.

Lemma 13 (Servedio 2003) There is a boosting algorithm B and a polynomial p such that, for
any !,- > 0, the following properties hold. When learning a target function f using EX"( f ,D),
we have: (a) If each call to Aweak takes time t, then B takes time p(t,1/-,1/!). (b) The weak
learner is always called with an oracle EX"′( f ,D ′) where D ′ is (1/!)-smooth with respect to D
and "′ ≤ "/!. (c) Suppose that for each distribution EX"′( f ,D ′) passed to Aweak by B, the output
of Aweak has advantage -. Then the final output h of B satisfies Prx∈D [h(x) (= f (x)] ≤ !.

4.2 The Algorithm

Our algorithm for learning under isotropic log-concave distributions with malicious noise, Algo-
rithm Amlc, applies the smooth booster from Lemma 13 with the following weak learner, which we
call Algorithm Amlcw. (The value c0 is an absolute constant that will emerge from our analysis.)

2. For simplicity of presentation we ignore the confidence parameter of the weak learner in our discussion; this can be
handled in an entirely standard way.
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Algorithm Amlcw:
1. Draw m= poly(n/!) examples from the oracle EX"′( f ,D ′).
2. Remove all those examples (x,y) for which ||x|| >

√
3n logm.

3. Repeatedly
• find a direction (unit vector) w that maximizes $(x,y)∈S(w ·x)2 (see Lemma 6)

• if $(x,y)∈S(w ·x)2 ≤ c20m log
2(n/!) then move on to Step 4, and otherwise

• remove from S all examples (x,y) for which |w ·x| > c0 log(n/!), and iterate again.
4. Let v= 1

|S| $(x,y)∈S yx, and return h defined by h(x) = v·x
3n logm , if |v ·x|≤ 3n logm, and h(x) =

sgn(v ·x) otherwise.

4.3 The Key Claim: The Weak Learner is Effective

Our main task is to analyze the weak learner. Given the following Lemma, Theorem 2 will be an
immediate consequence of Lemma 13.

Lemma 14 Suppose Algorithm Amlcw is run using EX"′( f ,D ′) where f is an origin-centered half-
space, D ′ is (1/!)-smooth w.r.t. an isotropic log-concave distribution D , "′ ≤ "/!, and " ≤
#(!3/ log2(n/!)). Then w.h.p. the hypothesis h returned by Amlcw has advantage #

(
!2

n log(n/!)

)
.

Before proving Lemma 14, we need to prove some uniformity results on non-noisy examples
drawn from an isotropic, log-concave distribution. This will enable us to use outlier removal and
averaging to find a weak learner.

4.4 Lemmas in Support of Lemma 14

In this section, let us consider a single call to the weak learner with an oracle EX"′( f ,D ′) where D ′

is (1/!)-smooth with respect to an isotropic log-concave distribution D and "′ ≤ "/!. Our analysis
will follow the same basic steps as Section 3.

A preliminary observation is that w.h.p. all clean examples drawn in Step 1 of Algorithm Amlcw
have ‖x‖≤

√
3n logm; indeed, for any given draw of x fromD ′, the probability that ‖x‖>

√
3n logm

is at most e
!m3 by Lemma 5 together with the fact that D

′ is 1/!-smooth with respect to an i.l.c.
distribution. Therefore, w.h.p., only noisy examples are removed in Step 2 of the algorithm, and we
shall assume that the distributionsD andD ′ are in fact supported entirely on {x : ‖x‖≤

√
3n logm}.

This assumption affects us in two ways: first, it costs us an additional e
!m2 in the failure probability

analysis below (which is not a problem and is in fact swallowed up by our “w.h.p.” notation).
Second, it means that the overall 1−! accuracy bound we establish for the entire learning algorithm
may be slightly worse than the true value. This is because our final hypothesis may always be
wrong on the examples x that have ‖x‖ >

√
3n logm and are ignored in our analysis; however such

examples have probability mass at most e
m3 under the isotropic log-concave distribution D (again

by Lemma 5), and thus the additional accuracy cost is at most e
m3 . Since !/

e
m3 , this does not affect

the overall correctness of our analysis. Note that a consequence of this assumption is that we can
just take h(x) = v·x

3n logm .
The remarks about high-probability statements and failure probabilities from Section 3.1 ap-

ply here as well, and as in Section 3 we write “w.h.p.” as shorthand for “with probability 1−
1/poly(n/!).”
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We first show that the variance of D ′ in every direction is not too large:

Lemma 15 For any a ∈ Sn−1 we have Ex∼D ′ [(a ·x)2] = O(log2(1/!)).

Proof. For x chosen according to D , the distribution of a ·x is a unit variance log-concave distribu-
tion by Lemma 4. Thus, for any positive integer k,

Ex∼D ′ [(a ·x)2] ≤ k2+
.

$
i=k

(i+1)2 Pr
x∼D ′

[|a ·x| ∈ (i, i+1]]

≤ k2+
.

$
i=k

(i+1)2(1/!) Pr
x∼D

[|a ·x| ∈ (i, i+1]]

≤ k2+(1/!)
.

$
i=k

(i+1)2 Pr
x∼D

[|a ·x| > i]

≤ k2+(1/!)
.

$
i=k

(i+1)2e−i+1 ≤ k2+(1/!) ·/(k2e−k)

where the first inequality in the last line uses Lemmas 4 and 5.
Setting k = ln(1/!) completes the proof.

The following anticoncentration bound will be useful for proving that clean examples drawn
from D ′ tend to be classified correctly with a large margin.

Lemma 16 Let u ∈ Sn−1. Then
Ex∼D ′ [|u ·x|] ≥ !/8.

Proof. Clearly
Ex∼D ′ [|u ·x|] ≥ (!/4) Pr

x∼D ′
[|u ·x| > !/4].

But by Lemma 5,

Pr
x∼D ′

[|u ·x|≤ !/4] ≤
1
!
Pr
x∼D

[|u ·x|≤ !/4] ≤
!/2
!

= 1/2.

The next two lemmas are isotropic log-concave analogues of the uniform distribution Lemmas 7
and 8 respectively. The first one says that w.h.p. no direction a has much more variance than the
expected variance in any direction:

Lemma 17 W.h.p. over a random draw of ! clean examples Sclean from D ′, we have

max
a∈Sn−1

{
1
! $

(x,y)∈Sclean
(a ·x)2

}

≤ O(1)

(

log2
1
!

+
n3/2 log2 !√

!

)

.

Proof. By Lemma 15, for any a ∈ Sn−1 we have

Ex∼D ′ [(a ·x)2] =/(log2(1/!)).
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Since as remarked earlier we may assume D ′ is supported on {x : ‖x‖ ≤
√
3n logm}, we may apply

Lemmas 25 and 27 (see Appendix A) with functions fa defined by fa = (a·x)2
3n logm . This completes the

proof.

The second lemma says that for a sufficiently large clean data set, w.h.p. no direction has too
many examples lying too far out in that direction:

Lemma 18 For any '> 0 and *> 1, if Sclean is a set of ! ≥
O(1)!e'(n ln(e−'/!)+logm)

(1+*) ln(1+*) clean examples
drawn from D ′, then w.h.p. we have

max
a∈Sn−1

1
!
|{x ∈ Sclean : |a ·x| > '}| ≤ (1+*)

(
1
!

)
e−'+1.

Proof. Lemma 5 implies that for the original isotropic log-concave distribution D , we have

Pr
x∼D

[|a ·x| > '] ≤ e−'+1.

Since D ′ is (1/!)-smooth with respect to D , this implies that

Pr
x∼D ′

[|a ·x| > '] ≤
e−'+1

!
. (5)

In the proof of Lemma 8, we observed that the VC-dimension of

{{x : |a ·x| > '} : a ∈ Rn,' ∈ R}

is O(n), so applying Lemma 28 with (5) completes the proof of this lemma.

The following is an isotropic log-concave analogue of Corollary 9, establishing that not too
many clean examples are removed in the outlier removal step:

Corollary 19 W.h.p. over the random draw of the m-element sample S from EX"′( f ,D ′), the num-
ber of clean examples removed during any one execution of the outlier removal step (final substep
of Step 2) in Algorithm Amlcw is at most 6m!3/n4.

Proof. Since the true noise rate " is assumed sufficiently small, the value "′ ≤ "/! is at most !/4,
and thus w.h.p. the number ! of clean examples in S is at least (say) m/2. We would like to apply
Lemma 18 with *= (n/!)c0−4 and '= c0 log(n/!), and we may do this since we have

O(1)!e'
(
n ln

(
!e'

)
+ logm

)

(1+*) ln(1+*)
≤
O(1)!(n/!)c0n logm

(n/!)c0−4 logm
≤ O(1)n5/!3 0

m
2
≤ !

for a suitable fixed poly(n/!) choice of m. Since clean points are only removed if they have |a ·x|≥
', Lemma 18 gives us that the number of clean points removed is at most

m(1+*) ·
1
!
e−'+1 ≤ m

(6/!)(n/!)c0−4

(n/!)c0
≤ 6m!3/n4.

The following lemma is an analogue of Lemma 10; it lower bounds the number of dirty examples
that are removed in the outlier removal step.
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Lemma 20 W.h.p. over the random draw of S, any time Algorithm Amlcw executes the outlier re-
moval step it removes at least m

O(n) noisy examples.

Proof. Since our ultimate goal is only to prove that the algorithm succeeds for some "which is o(!),
we may assume without loss of generality that the original noise rate " is less than !/4. This means
that "′ < 1/4, and consequently a Chernoff bound gives that w.h.p. the fraction "̂′ of noisy examples
in S at the beginning of the weak learner’s training is at most 1/2. And Lemma 17 implies that for a
sufficiently large polynomial choice of m, we have that w.h.p. for all a ∈ Sn−1, the following holds
for all the clean examples in the data before any examples were removed:

$
(x,y)∈Sclean

(a ·x)2 ≤ cm log2(1/!) (6)

where c is an absolute constant. We say that a random sample that meets all these requirements is
“reasonable.” We now set the constant c0 that is used in the specification of Amlcw to be

√
2(c+1).

We will now show that, for any reasonable sample S, the number of noisy examples removed during
the first execution of the outlier removal step of Amlcw is at least m

O(n) .
If we remove examples using direction w then it means $x∈S(w ·x)2 ≥ c20m log

2(n/!). Since S
is reasonable, by (6) the contribution to the sum from the clean examples that have survived until
this point is at most cm log2(1/!) so we must have

$
(x,y)∈Sdirty

(w ·x)2 ≥ (c20− c)m log2(n/!).

Let Sdirty = N∪F where N is the examples (x,y) for which x satisfies (w ·x)2 ≤ c20 log
2(n/!) and F

is the other points. We have

$
(x,y)∈N

(w ·x)2 ≤ c20"̂′m log2(n/!).

and so, since ||x||≤
√
3n logm implies that (w ·x)2 ≤ 3n logm for all unit length w, we have

|F| ≥ $
(x,y)∈F

(w ·x)2
3n logm

= $
(x,y)∈Sdirty

(w ·x)2
3n logm

− $
(x,y)∈N

(w ·x)2
3n logm

≥
(c20− c)m log2(n/!)− c20"̂′m log

2(n/!)
3n logm

≥
m log2(n/!)
3n logm

≥
m

O(n)

where the next-to-last inequality uses "′ ≤ 1/2 and c0 =
√
2(c+1), and the final one uses m =

O(poly(n/!)). The points in F are precisely the ones that are removed, and thus the lemma is
proved.
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4.5 Proof of Lemma 14

We first note that Lemma 20 implies that w.h.p. the weak learner must terminate after at most O(n)
iterations of outlier removal.

Let u be the unit length normal vector of the separating halfspace for the target function f .
Recall that we have assumed without loss of generality that ||x||≤

√
3n logm for all x in the training

set, so that ||v||≤
√
3n logm, and thus the advantage of h with respect to D ′ can be expressed as

Ex∼D ′ [h(x) f (x)] = Ex∼D ′ [(v ·x) f (x)]
3n logm

(7)

and so we shall work on lower bounding Ex∼D ′ [(v ·x) f (x)].
As in the proof of Lemma 12, let

• Sclean be all of the clean examples in the initial sample S, and S′clean be those that are not
removed in any stage of outlier removal;

• Sdirty be all of the dirty examples in the initial sample S, and S′dirty be those that are not removed
in any stage of outlier removal;

• "′ =
|S′dirty|

|S′clean∪S
′
dirty|
, that is, the noise rate among the examples that survive until the end of training

of the weak learner, and

• +=
|Sclean−S′clean|
|S′clean∪S

′
dirty|

, the ratio of the number of clean points that were erroneously removed to the
size of the final surviving data set.

As before we write S′ for S′clean∪S′dirty. Also as before, let vclean be the average of all the clean
examples, v′dirty be the average of the dirty (noisy) examples that were not deleted, and vdel be the
average of the clean examples that were deleted. Then arguing exactly as before, we have

v= (1−"′ ++)vclean+"′v′dirty−+vdel.

The expectation of vclean will play a special role in the analysis:

v∗clean
de f
= Ex∼D ′ [ f (x)x].

Once again, we will demonstrate the limited effect of v′dirty by bounding its length. This time,
the outlier removal enforces the fact that, for any w ∈ Sn−1, we have

$
(x,y)∈S

(w ·x)2 ≤ c20m log2(n/!).

Applying this for the unit vector w in the direction of v′dirty as was done in Lemma 12, this implies

‖v′dirty‖ ≤ c0 log(n/!)
√

m
|S′dirty|

.

Next, let us apply this to bound an expression that captures the average harm done by v′dirty.
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|Ex∼D ′ [ f (x)(v′dirty ·x)]| = |v′dirty ·v∗clean|

≤ c0 log(n/!)
√

m
|S′dirty|

||v∗clean||. (8)

To show that vclean plays a relatively large role, it is helpful to lower bound the length of v∗clean.
We do this by lower bounding the length of its projection onto the unit normal vector u of the target
as follows:

v∗clean ·u= Ex∼D ′ [( f (x)x) ·u] = Ex∼D ′ [sgn(u ·x)(x ·u)] = Ex∼D ′ [|x ·u|] ≥ !/8,

by Lemma 16. Since u is unit length, this implies

||v∗clean||≥ !/8. (9)

Armed with this bound, we can now lower bound the benefit imparted by vclean:

Ez∼D ′ [ f (z)(vclean · z)] =
1

Sclean $
(x,y)∈Sclean

Ez∼D ′ [y f (z)(x · z)]

=
1

Sclean $
(x,y)∈Sclean

(yx) ·v∗clean.

Since E[(yx) ·v∗clean] = ||v∗clean||2, and (yx) ·v∗clean ∈ [−3n logm,3n logm], a Hoeffding bound implies
that w.h.p.

Ez∼D ′ [ f (z)(vclean · z)] ≥ ||v∗clean||2−O(n log3/2m)/
√
|Sclean|.

Since the noise rate "′ is at most "/! and " certainly less than !/4 as discussed above, another
Hoeffding bound gives that w.h.p. |Sclean| is at least m/2; thus for a suitably large polynomial choice
of m, using (9) we have

Ez∼D ′ [ f (z)(vclean · z)] ≥ ||v∗clean||2−O(n log3/2m)/
√
m/2≥

||v∗clean||2

2
. (10)

Now we are ready to put our bounds together and lower bound the advantage of v. We have

Ex∼D ′ [ f (x)(v ·x)] = (1−"′ ++)E[ f (x)(vclean ·x)]
+"′E[ f (x)(v′dirty ·x)]−+E[ f (x)(vdel ·x)].

We bound each of the three contributions in turn. First, using 1− "′ ≥ 1/2 and (10), we have
(1−"′ ++)E[ f (x)(vclean ·x)] ≥ ||v∗clean||2

4 .
Next, by (8), we have

|"′Ex∼D ′ [ f (x)(v′dirty ·x)]|≤ c0 log(n/!)
√
2"′||v∗clean||.

Since we may assume that "≤ c′!3/ log2(n/!) for as small a fixed constant c′ as we like (recall the
overall bound of Theorem 2), we get

c0 log(n/!)
√
2"′||v∗clean||≤ (!/64)||v∗clean||
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(for a suitably small constant choice of c′), and this is less than ||v∗clean||2
8 since ||v∗clean||≥ !/8.

Finally Corollary 19, together with the fact that there are at most O(n) iterations of outlier
removal and the final surviving data set is of size at least m/4, gives us that +≤ O(n)(6m!3/n4)

m/4 , which
(recalling that both vdel and all x in the support of D ′ have norm at most

√
3n logm) means that

|+E[ f (x)(vdel ·x)]| = o(!2).
Combining all these bounds, we get

Ex∼D ′ [ f (x)(v ·x)] ≥
||v∗clean||2

4
−

||v∗clean||2

8
−o(!2) ≥

!2

1024
by (9). Together with (7), the proof of Lemma 14 is completed.

5. Learning Under Isotropic Log-concave Distributions with Adversarial Label Noise

In this section, we consider the model where an adversary can change some class labels, but cannot
otherwise modify examples.

5.1 The Model

We now define the model of learning with adversarial label noise under isotropic log-concave dis-
tributions. In this model the learning algorithm has access to an oracle that provides independent
random examples drawn according to a fixed distribution P on Rn×{−1,1}, where

• the marginal distribution over Rn is isotropic log-concave, and

• there is a halfspace f such that Pr(x,y)∼P[ f (x) (= y] = ".

The parameter " is the noise rate. As usual, the goal of the learner is to output a hypothesis h
such that Pr(x,y)∼D [h(x) (= y] ≤ !; if an algorithm achieves this goal, we say it learns to accuracy
1− ! in the presence of adversarial label noise at rate ".

5.2 The Algorithm

Like the algorithm Amlc considered in the last section, the algorithm Aalc studied in this section
applies the smooth boosting algorithm of Lemma 13 to a weak learner that performs averaging. The
weak learner Aalcw behaves as follows:
Algorithm Aalcw:
1. Draw a set S of m examples according to P′ (the oracle for a modified distribution provided
by the boosting algorithm).

2. Remove all examples (x,y) such that ||x|| >
√
3n logm from S.

3. Let v = 1
|S| $(x,y)∈S yx. Return the confidence-rated classifier h defined by h(x) = v·x

3n logm if
|v ·x|≤ 3n logm, and h(x) = sgn(v ·x) otherwise.

5.3 Claim About the Weak Learner

As in the previous section, the heart of our analysis will be to analyze the weak learner. We omit
discussing the application of the smooth boosting algorithm here, as it is nearly identical to Section
4.
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Lemma 21 Suppose Algorithm Aalcw is run using P′ as the source of labeled examples, where P′

is a distribution that is (1/!)-smooth with respect to a joint distribution P on Rn× {−1,1} whose
marginal D ′ on Rn is isotropic and log-concave. Further, assume there exists a linear threshold
function f such that Pr(x,y)∼P′ [ f (x) (= y] ≤ "/! and " ≤ #( !3

log(1/!) ). Then with high probability,
Aalcw outputs a hypothesis with advantage #( !2

n log(n/!) ).

5.4 Lemmas in Support of Lemma 21

During this section, let us focus our attention on a single call to the weak learner. Let P′ be a
distribution as in Lemma 21 and let D ′ be the marginal on Rn. We observe that since P′ is (1/!)-
smooth with respect to P, the marginal D ′ of P′ is (1/!)-smooth with respect to the marginal D of
P.

As in Section 4, we may assume that the support of D ′ lies entirely on x such that ||x|| ≤√
3n logm (this negligibly affects the final bounds obtained in our analyses).
The following technical lemma will be used to limit the extent to which the distribution P′ can

concentrate a lot of noise in one direction.

Lemma 22 Let E be any event with positive probability under D ′, and let *=D ′(E). For any unit
length a ∈ Rn, Ex∼D ′ [|a ·x| | E] = O

(
log 1

*!

)
.

Proof. Let ' be such that Prx∼D ′ [|a ·x| > '] = *. By Lemmas 4 and 5, together with the fact that D ′

is (1/!) smooth with respect to D , we have

*≤
1
!
e−'+1

which implies '≤ 1+ ln
( 1
!*

)
.

Let F be the event that |a ·x| > '. We will show that Ex∼D ′ [|a ·x| | E] ≤ Ex∼D ′ [|a ·x| | F ], and
then bound Ex∼D ′ [|a · x| | F ]. If Pr[(E −F)∪ (F −E)] = 0, then, obviously, Ex∼D ′ [|a · x| | E] =
Ex∼D ′ [|a ·x| | F ]. Suppose Pr[(E−F)∪ (F−E)] > 0. Then

Ex∼D ′ [|a ·x| | E]

= Ex∼D ′ [|a ·x| | E ∩F ]Pr[E ∩F ]+Ex∼D ′ [|a ·x| | E−F ]Pr[E−F]

= Ex∼D ′ [|a ·x| | E ∩F ]Pr[E ∩F ]+Ex∼D ′ [|a ·x| | E−F ]Pr[F−E]

(because Pr[E] = Pr[F])
< Ex∼D ′ [|a ·x| | E ∩F ]Pr[E ∩F ]+Ex∼D ′ [|a ·x| | F−E]Pr[F−E],

because for every x ∈ E−F and every x′ ∈ F−E,

|a ·x|≤ '< |a ·x′|.

But

Ex∼D ′ [|a ·x| | E ∩F ]Pr[E ∩F ]+Ex∼D ′ [|a ·x| | F−E]Pr[F−E] = Ex∼D ′ [|a ·x| | F ],

so
Ex∼D ′ [|a ·x| | E] < Ex∼D ′ [|a ·x| | F ]. (11)
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Now, setting b= 3'4, we have

Ex∼D ′ [|a ·x| | F ] ≤
1

D ′(F)$i=b
(i+1) Pr

x∼D ′
[|a ·x| ∈ (i, i+1]]

≤
1

D ′(F)$i=b
(i+1)e−i+1

=
1

D ′(F)

(
O

(
e−bb
!

))

= O(b),

since D ′(F) =/(e−b/!). Combining with (11) completes the proof.

5.5 Proof of Lemma 21

Fix some halfspace f such that Pr(x,y)∼P[ f (x) (= y] = ", and let u be the unit normal vector of its
separating hyperplane.

Let P′ be the joint distribution given to Aalcw and let D ′ be its marginal on Rn. As noted in the
previous subsection, D ′ is (1/!)-smooth with respect to the original marginal distribution D of P.

First, we bound the advantage of the hypothesis h with respect to P′ in terms of the tendency of
h to agree with the best linear function f :

E(x,y)∼P′ [h(x)y] ≥ E(x,y)∼P′ [h(x) f (x)]−"= Ex∼D ′ [h(x) f (x)]−". (12)

Furthermore, as we have assumed without loss of generality that ||x||≤
√
3n logm for all exam-

ples in the training set, and therefore that ||v||≤
√
3n logm, we have

Ex∼D ′ [h(x) f (x)] = Ex∼D ′

[
f (x)(x ·v)
3n logm

]
(13)

so we will work on bounding Ex∼D ′ [ f (x)(x ·v)].
Let P′

clean be obtained by conditioning a random draw (x,y) from P′ on the event that f (x) = y.
Define P′

dirty analogously, and let D ′
clean and D ′

dirty be the corresponding marginals on Rn. Let

v∗dirty = E(x,y)∼P′dirty [yx]
v∗correct = Ex∼D ′ [ f (x)x].

Note that the linearity of expectation implies that

Ex∼D ′ [ f (x)(x ·v)] = (Ex∼D ′ [ f (x)(x)]) ·v= v∗correct ·v=
1
m $

(x,y)∈S
v∗correct · (yx). (14)

Equation (14) expresses Ex∼D ′ [ f (x)(x · v)], which is closely related to the advantage of h through
(13) and (12), as a sum of independent random variables, one for each example. We will bound
Ex∼D ′ [ f (x)(x ·v)] by bounding the expected effect of a random example on its value, and applying
a Hoeffding bound.
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Let "′ = Pr(x,y)∼P′ [ f (x) (= y]. Since P′ is 1/!-smooth with respect to P, we have "′ ≤ "/!. We
can rearrange the effect of a random example as follows

E(x,y)∼P′ [v∗correct · (yx)] = (1−"′)E(x,y)∼P′ [v∗correct · ( f (x)x)|y= f (x)]
+"′E(x,y)∼P′ [v∗correct · (− f (x)x)|y (= f (x)]

= (1−"′)E(x,y)∼P′ [v∗correct · ( f (x)x)|y= f (x)]
+"′E(x,y)∼P′ [v∗correct · ( f (x)x)|y (= f (x)]
−"′E(x,y)∼P′ [v∗correct · ( f (x)x)|y (= f (x)]
+"′E(x,y)∼P′ [v∗correct · (− f (x)x)|y (= f (x)]. (15)

Since

E(x,y)∼P′ [v∗correct · ( f (x)x)]
= "′E(x,y)∼P′ [v∗correct · ( f (x)x)|y (= f (x)]+(1−"′)E(x,y)∼P′ [v∗correct · ( f (x)x)|y= f (x)],

by replacing the first two terms of (15) with E(x,y)∼P′ [v∗correct · ( f (x)x)], we get

E(x,y)∼P′ [v∗correct · (yx)] = E(x,y)∼P′ [v∗correct · ( f (x)x)]
−"′E(x,y)∼P′ [v∗correct · ( f (x)x)|y (= f (x)]
+"′E(x,y)∼P′ [v∗correct · (− f (x)x)|y (= f (x)]

= E(x,y)∼P′ [v∗correct · ( f (x)x)]
−2"′E(x,y)∼P′ [v∗correct · ( f (x)x)|y (= f (x)].

Twice applying the linearity of expectation, we get

E(x,y)∼P′ [v∗correct · (yx)] = ||v∗correct||2−2"′E(x,y)∼P′ [v∗correct · ( f (x)x)|y (= f (x)]
= ||v∗correct||2−2"′vcorrect ·v∗dirty
≥ ||v∗correct||2−2"′||v∗correct|| · ||v∗dirty||

≥
1
2
||v∗correct||2−4("′)2||v∗dirty||2,

The last line follows from the fact that q2−qr ≥ (q2− r2)/2 for all real q,r.
So now our goals are a lower bound on ||v∗correct|| and an upper bound on ||v∗dirty||.
We can lower bound ||v∗correct|| essentially the same way we did before, by lower bounding its

projection onto the “target” normal vector u:

v∗correct ·u= E(x,y)∼P′ [( f (x)x) ·u] = E(x,y)∼P′ [sgn(u ·x)(x ·u)] = E(x,y)∼P′ [|x ·u|] ≥ !/16, (16)

by Lemma 16.
We upper bound ||v∗dirty|| as follows:

||v∗dirty||2 = v∗dirty ·Ex∼D ′
dirty

[− f (x)x]

= ||v∗dirty|| ·Ex∼D ′
dirty

[(
v∗dirty

||v∗dirty||

)

· (− f (x))x
]

≤ ||v∗dirty|| ·Ex∼D ′
dirty

[∣∣∣∣∣

(
v∗dirty

||v∗dirty||

)

·x

∣∣∣∣∣

]

≤ ||v∗dirty||O(log(1/("′!)))
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by Lemma 22. Thus ||v∗dirty||≤ O(log(1/("′!))).
Combining this with (16) and (14) we have that if

"′
√
log(1/("′!) ≤ c!2

for a suitably small constant c, then Ex∼D ′ [ f (x)(x · v)] is a sum of m i.i.d. random variables, each
with mean at least #(!2), and coming from an interval of length O(n logm). Applying the standard
Hoeffding bound, polynomially many examples suffice for Ex∼D ′ [ f (x)(x ·v)] ≥#(!2). Combining
with (13) and (12) completes the proof.

6. Conclusion

Our algorithms use boosting together with a confidence-rated weak learner that perform a simple
averaging of labeled examples. As shown in earlier work (Servedio, 2002, 2003) there are close
connections between such an approach and the Perceptron algorithm. It seems likely that the Per-
ceptron could be used as an alternative to boosting and averaging in our algorithms; it would be
interesting to see if a Perceptron-based approach has any theoretical or empirical advantages over
the algorithms we give in this paper.

More generally, there are relatively few algorithms for learning interesting classes of functions
in the presence of malicious noise. We hope that our results will help lead to the development of
more efficient algorithms for this challenging noise model.

As a challenge for future work, we pose the following question: do there exist computationally
efficient algorithms for learning halfspaces under arbitrary distributions in the presence of malicious
noise? As of now no better results are known for this problem than the generic conversions of Kearns
and Li (1993), which can be applied to any concept class. We feel that even a small improvement in
the malicious noise rate that can be handled for halfspaces would be a very interesting result.

Acknowledgments

We are grateful to the anonymous reviewers for their comments.

Appendix A. Proof of Lemma 7

Let us start with a couple of definitions and a couple of bounds from the literature.

Definition 23 (VC-dimension) A set F of {−1,1}-valued functions defined on a common domain
X shatters x1, ...,xd if every sequence y1, ...,yd ∈ {−1,1} of function values has a function f such
that f (x1) = y1, ..., f (xd) = yd. The VC-dimension of F is the size of the largest set shattered by F.

Definition 24 (pseudo-dimension) For a set F of real-valued functions defined on a common do-
main X, the pseudo-dimension of F is the VC-dimension of {sign( f (·)−%) : f ∈ F,% ∈ R}.

Lemma 25 (Pollard 1984; Talagrand 1994) Let F be a set of real-valued functions defined on a
common domain X taking values in [0,1], and let d be the pseudo-dimension of F. Let D be a
probability distribution over X. Then if x1, ...,xm are obtained by drawing m times independently
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according to D , for any 0> 0,

Pr

[

∃ f ∈ F,
1
m

m

$
s=1

f (xs) > ED [ f ]+ c
√
d+ log(1/0)

m

]

≤ 0,

where c> 0 is an absolute constant.

Lemma 26 (see Blumer et al. 1989) The VC-dimension of unions of two halfspaces is O(n).

Now, let us bound the pseudo-dimension of the class of functions that we need.

Lemma 27 Let Fn consist of the functions f from Rn to R which can be defined by f (x) = (a ·x)2
for some a ∈ Rn. The pseudo-dimension of Fn is at most O(n).

Proof. According to the definition, the pseudo dimension of Fn is the VC-dimension of the set Gn
of {−1,1}-valued functions ga,% defined by ga,%(x) = sign((a · x)2−%). Each ga,% is equivalent to
an OR of two halfspaces:

a ·x≥
√
% OR (−a) ·x≥

√
%.

Thus the VC-dimension ofGn is at most the VC-dimension of the class of all ORs of two halfspaces.
Applying Lemma 26 completes the proof.

Applying Lemmas 25 and 27, we obtain Lemma 7.

Appendix B. Proof of Lemma 8

We will use the following, which strengthens bounds like Lemma 25 when the expectations being
estimated are small. It differs frommost bounds of this type by providing an especially strong bound
on the probability that the estimates are much larger than the true expectations.

Lemma 28 (Bshouty et al. 2009) Suppose F is a set of {0,1}-valued functions with a common
domain X. Let d be the VC-dimension of F. Let D be a probability distribution over X. Choose
+> 0 and K ≥ 4. Then if

m≥
c
(
d log 1+ + log 10

)

+K logK
,

where c is an absolute constant, then

Pr
u∼Dm

[∃ f ∈ F, ED( f ) ≤ + but Êu( f ) > K+] ≤ 0,

where Êu( f ) = 1
m $

m
i=1 f (ui).

To prove Lemma 8, we first use the fact that, for any fixed a ∈ Sn−1 and '> 0, it is known (see
Kalai et al. 2008) that

Pr
x∈Sn−1

[|a ·x| > '] ≤ e−'
2n/2.

Further, as in the proof of Lemma 7, we have that

|a ·x| > ' if and only if a ·x> ' OR (−a) ·x> ',

so that the set of events whose probabilities we need to estimate is contained in the set of unions of
pairs of halfspaces. Applying Lemma 26 and Lemma 28 completes the proof.
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Abstract
We introduce the notion of reproducing kernel Banach spaces (RKBS) and study special semi-
inner-product RKBS by making use of semi-inner-products and the duality mapping. Properties of
an RKBS and its reproducing kernel are investigated. As applications, we develop in the framework
of RKBS standard learning schemes including minimal norm interpolation, regularization network,
support vector machines, and kernel principal component analysis. In particular, existence, unique-
ness and representer theorems are established.
Keywords: reproducing kernel Banach spaces, reproducing kernels, learning theory, semi-inner-
products, representer theorems

1. Introduction

Learning a function from its finite samples is a fundamental science problem. The essence in achiev-
ing this is to choose an appropriate measurement of similarities between elements in the domain of
the function. A recent trend in machine learning is to use a positive definite kernel (Aronszajn, 1950)
to measure the similarity between elements in an input space X (Schölkopf and Smola, 2002; Shawe-
Taylor and Cristianini, 2004; Vapnik, 1998; Xu and Zhang, 2007, 2009). Set Nn := {1,2, . . . ,n}
for n ∈ N. A function K : X ×X → C is called a positive definite kernel if for all finite subsets
x := {x j : j ∈ Nn}⊆ X the matrix

K[x] := [K(x j,xk) : j,k ∈ Nn] (1)

is hermitian and positive semi-definite. The reason of using positive definite kernels to measure
similarity lies in the celebrated theoretical fact due to Mercer (1909) that there is a bijective corre-
spondence between them and reproducing kernel Hilbert spaces (RKHS). An RKHS H on X is a
Hilbert space of functions on X for which point evaluations are always continuous linear function-
als. One direction of the bijective correspondence says that if K is a positive definite kernel on X
then there exists a unique RKHS H on X such that K(x, ·) ∈ H for each x ∈ X and for all f ∈ H

and y ∈ X
f (y) = ( f ,K(y, ·))H , (2)

c©2009 Haizhang Zhang, Yuesheng Xu and Jun Zhang.
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where (·, ·)H denotes the inner product on H . Conversely, if H is an RKHS on X then there is a
unique positive definite kernel K on X such that {K(x, ·) : x ∈ X}⊆H and (2) holds. In light of this
bijective correspondence, positive definite kernels are usually called reproducing kernels.

By taking f := K(x, ·) for x ∈ X in Equation (2), we get that

K(x,y) = (K(x, ·),K(y, ·))H , x,y ∈ X . (3)

Thus K(x,y) is represented as an inner product on an RKHS. This explains why K(x,y) is able to
measure similarities of x and y. The advantages brought by the use of an RKHS include: (1) the
inputs can be handled and explained geometrically; (2) geometric objects such as hyperplanes are
provided by the RKHS for learning; (3) the powerful tool of functional analysis applies (Schölkopf
and Smola, 2002). Based on the theory of reproducing kernels, many effective schemes have been
developed for learning from finite samples (Evgeniou et al., 2000; Micchelli et al., 2009; Schölkopf
and Smola, 2002; Shawe-Taylor and Cristianini, 2004; Vapnik, 1998). In particular, the widely
used regularized learning algorithm works by generating a predictor function from the training data
{(x j,y j) : j ∈ Nn}⊆ X×C as the minimizer of

min
f∈HK

!
j∈Nn

L( f (x j),y j)+µ‖ f‖2HK
, (4)

where HK denotes the RKHS corresponding to the positive definite kernel K, L is a prescribed loss
function, and µ is a positive regularization parameter.

This paper is motivated from machine learning in Banach spaces. There are advantages of
learning in Banach spaces over Hilbert spaces. Firstly, there is essentially only one Hilbert space
once the dimension of the space is fixed. This follows from the well-known fact that any two Hilbert
spaces overC of the same dimension are isometrically isomorphic. By contrast, for p '= q∈ [1,+"],
Lp[0,1] and Lq[0,1] are not isomorphic, namely, there does not exist a bijective bounded linear
mapping between them (see, Fabian et al., 2001, page 180). Thus, compared to Hilbert spaces,
Banach spaces possess much richer geometric structures, which are potentially useful for developing
learning algorithms. Secondly, in some applications, a norm from a Banach space is invoked without
being induced from an inner product. For instance, it is known that minimizing about the !p norm
on Rd leads to sparsity of the minimizer when p is close to 1 (see, for example, Tropp, 2006). In the
extreme case that # : Rd → [0,+") is strictly concave and µ> 0, one can show that the minimizer
for

min{#(x)+µ‖x‖!1 : x ∈ Rd} (5)

has at most one nonzero element. The reason is that the extreme points on a sphere in the !1 norm
must lie on axes of the Euclidean coordinate system. A detailed proof of this result is provided
in the appendix. Thirdly, since many training data come with intrinsic structures that make them
impossible to be embedded into a Hilbert space, learning algorithms based on RKHS may not work
well for them. Hence, there is a need to modify the algorithms by adopting norms in Banach spaces.
For example, one might have to replace the norm ‖ ·‖HK in (4) with that of a Banach space.

There has been considerable work on learning in Banach spaces in the literature. References
Bennett and Bredensteiner (2000); Micchelli and Pontil (2004, 2007); Micchelli et al. (2003); Zhang
(2002) considered the problem of minimizing a regularized functional of the form

!
j∈Nn

L($ j( f ),y j)+%(‖ f‖B), f ∈ B,
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where B is Banach space, $ j are in the dual B∗, y j ∈ C, L is a loss function, and % is a strictly
increasing nonnegative function. In particular, Micchelli et al. (2003) considered learning in Besov
spaces (a special type of Banach spaces). On-line learning in finite dimensional Banach spaces was
studied, for example, in Gentile (2001). Learning of an Lp function was considered in Kimber and
Long (1995). Classifications in Banach spaces, and more generally in metric spaces were discussed
in Bennett and Bredensteiner (2000), Der and Lee (2007), Hein et al. (2005), von Luxburg and
Bousquet (2004) and Zhou et al. (2002).

The above discussion indicates that there is a need of introducing the notion of reproducing
kernel Banach spaces for the systematic study of learning in Banach spaces. Such a definition is
expected to result in consequences similar to those in an RKHS. A generalization of RKHS to non-
Hilbert spaces using point evaluation with kernels was proposed in Canu et al. (2003), although the
spaces considered there might be too general to have favorable properties of an RKHS. We shall
introduce the notion of reproducing kernel Banach spaces in Section 2, and a general construction
in Section 3. It will become clear that the lack of an inner product may cause arbitrariness in the
properties of the associated reproducing kernel. To overcome this, we shall establish in Section 4
s.i.p. reproducing kernel Banach spaces by making use of semi-inner-products for normed vector
spaces first defined by Lumer (1961) and further developed by Giles (1967). Semi-inner-products
were first applied to machine learning by Der and Lee (2007) to develop hard margin hyperplane
classification in Banach spaces. Here the availability of a semi-inner-product enables us to study
basic properties of reproducing kernel Banach spaces and their reproducing kernels. In Section 5,
we shall develop in the framework of reproducing kernel Banach spaces standard learning schemes
including minimal norm interpolation, regularization network, support vector machines, and kernel
principal component analysis. Existence, uniqueness and representer theorems for the learning
schemes will be proved. We draw conclusive remarks in Section 6 and include two technical results
in Appendix.

2. Reproducing Kernel Banach Spaces

Without specifically mentioned, all vector spaces in this paper are assumed to be complex. Let X
be a prescribed input space. A normed vector space B is called a Banach space of functions on X
if it is a Banach space whose elements are functions on X , and for each f ∈ B , its norm ‖ f‖B in
B vanishes if and only if f , as a function, vanishes everywhere on X . By this definition, Lp[0,1],
1≤ p≤+", is not a Banach space of functions as it consists of equivalent classes of functions with
respect to the Lebesgue measure.

Influenced by the definition of RKHS, our first intuition is to define a reproducing kernel Banach
space (RKBS) as a Banach space of functions on X on which point evaluations are continuous linear
functionals. If such a definition was adopted then the first example that comes to our mind would
beC[0,1], the Banach space of continuous functions on [0,1] equipped with the maximum norm. It
satisfies the definition. However, since for each f ∈C[0,1],

f (x) = &x( f ), x ∈ [0,1],

the reproducing kernel forC[0,1]would have to be the delta distribution, which is not a function that
can be evaluated. This example suggests that there should exist a way of identifying the elements
in the dual of an RKBS with functions. Recall that two normed vector spaces V1 and V2 are said
to be isometric if there is a bijective linear norm-preserving mapping between them. We call such
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V1 and V2 an identification of each other. We would like the dual space B∗ of an RKBS B on X
to be isometric to a Banach space of functions on X . In addition to this requirement, later on we
will find it very convenient to jump freely between a Banach space and its dual. For this reason, we
would like an RKBS B to be reflexive in the sense that (B∗)∗ = B . The above discussion leads to
the following formal definition.

Definition 1 A reproducing kernel Banach space (RKBS) on X is a reflexive Banach space B of
functions on X for which B∗ is isometric to a Banach space B# of functions on X and the point
evaluation is continuous on both B and B#.

Several remarks are in order about this definition. First, whether B is an RKBS is independent
of the choice of the identification B# of B∗. In other words, if the point evaluation is continuous
on some identification B# then it is continuous on all the identifications. The reason is that any two
identifications of B∗ are isometric. Second, an RKHS H on X is an RKBS. To see this, we set

H # := { f̄ : f ∈H } (6)

with the norm ‖ f̄‖H # := ‖ f‖H , where f̄ denotes the conjugate of f defined by f̄ (x) := f (x), x ∈ X .
By the Riesz representation theorem (Conway, 1990), each u∗ ∈H ∗ has the form

u∗( f ) = ( f , f0)H , f ∈H

for some unique f0 ∈H and ‖u∗‖H ∗ = ‖ f0‖H . We introduce a mapping ' :H ∗ →H # by setting

'(u∗) := f0.

Clearly, ' so defined is isometric from H ∗ to H #. We conclude that an RKHS is a special RKBS.
Third, the identification B# of B∗ of an RKBS is usually not unique. However, since they are
isometric to each other, we shall assume that one of them has been chosen for an RKBS B under
discussion. In particular, the identification of H ∗ of an RKHS H will always be chosen as (6).
Fourth, for notational simplicity, we shall still denote the fixed identification of B∗ by B∗. Let us
keep in mind that originally B∗ consists of continuous linear functionals on B . Thus, when we shall
be treating elements in B∗ as functions on X , we actually think B∗ as its chosen identification. With
this notational convention, we state our last remark that if B is an RKBS on X then so is B∗.

We shall show that there indeed exists a reproducing kernel for an RKBS. To this end, we
introduce for a normed vector space V the following bilinear form on V ×V ∗ by setting

(u,v∗)V := v∗(u), u ∈V, v∗ ∈V ∗.

It is called bilinear for the reason that for all (,) ∈ C, u,v ∈V , and u∗,v∗ ∈V ∗ there holds

((u+)v,u∗)V = ((u,u∗)V +)(v,u∗)V

and
(u,(u∗ +)v∗)V = ((u,u∗)V +)(u,v∗)V .

Note that if V is a reflexive Banach space then for any continuous linear functional T on V ∗ there
exists a unique u ∈V such that

T (v∗) = (u,v∗)V , v∗ ∈V ∗.
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Theorem 2 Suppose that B is an RKBS on X. Then there exists a unique function K : X ×X → C
such that the following statements hold.
(a) For every x ∈ X, K(·,x) ∈ B∗ and

f (x) = ( f ,K(·,x))B , for all f ∈ B.

(b) For every x ∈ X, K(x, ·) ∈ B and

f ∗(x) = (K(x, ·), f ∗)B , for all f ∗ ∈ B∗. (7)

(c) The linear span of {K(x, ·) : x ∈ X} is dense in B , namely,

span{K(x, ·) : x ∈ X} = B. (8)

(d) The linear span of {K(·,x) : x ∈ X} is dense in B∗, namely,

span{K(·,x) : x ∈ X} = B∗. (9)

(e) For all x,y ∈ X
K(x,y) = (K(x, ·),K(·,y))B . (10)

Proof For every x ∈ X , since &x is a continuous linear functional on B , there exists gx ∈ B∗ such
that

f (x) = ( f ,gx)B , f ∈ B.

We introduce a function K̃ on X×X by setting

K̃(x,y) := gx(y), x,y ∈ X .

It follows that K̃(x, ·) ∈ B∗ for each x ∈ X , and

f (x) = ( f , K̃(x, ·))B , f ∈ B, x ∈ X . (11)

There is only one function on X×X with the above properties. Assume to the contrary that there is
another G̃ : X×X → C satisfying {G̃(x, ·) : x ∈ X}⊆ B∗ and

f (x) = ( f , G̃(x, ·))B , f ∈ B, x ∈ X .

The above equation combined with (11) yields that

( f , K̃(x, ·)− G̃(x, ·))B = 0, for all f ∈ B, x ∈ X .

Thus, K̃(x, ·)− G̃(x, ·) = 0 in B∗ for each x ∈ X . Since B∗ is a Banach space of functions on X , we
get for every y ∈ X that

K̃(x,y)− G̃(x,y) = 0,

that is, K̃ = G̃.
Likewise, there exists a unique K : X×X → C such that K(y, ·) ∈ B , y ∈ X and

f ∗(y) = (K(y, ·), f ∗)B , f ∗ ∈ B∗, y ∈ X . (12)
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Letting f := K(y, ·) in (11) yields that

K(y,x) = (K(y, ·), K̃(x, ·))B , x,y ∈ X , (13)

and setting f ∗ := K̃(x, ·) in (12) ensures that

K̃(x,y) = (K(y, ·), K̃(x, ·))B , x,y ∈ X .

Combining the above equation with (13), we get that

K̃(x,y) = K(y,x), x,y ∈ X .

Therefore, K satisfies (a) and (b) as stated in the theorem. Equation (10) in (e) is proved by letting
f ∗ = K(·,y) in (7). To complete the proof, we shall show (c) only, since (d) can be handled in a
similar way. Suppose that (8) does not hold. Then by the Hahn-Banach theorem, there exists a
nontrivial functional f ∗ ∈ B∗ such that

(K(x, ·), f ∗)B = 0, for all x ∈ X .

We get immediately from (12) that f ∗(x) = 0 for all x ∈ X . Since B∗ is a Banach space of functions
on X , f ∗ = 0 in B∗, a contradiction.

We call the function K in Theorem 2 the reproducing kernel for the RKBS B . By Theorem
2, an RKBS has exactly one reproducing kernel. However, different RKBS may have the same
reproducing kernel. Examples will be given in the next section. This results from a fundamental
difference between Banach spaces and Hilbert spaces. To explain this, we letW be a Banach space
and V a subset of W such that spanV is dense in W . Suppose that a norm on elements of V is
prescribed. IfW is a Hilbert space and an inner product is defined among elements in V , then the
norm extends in a unique way to spanV , and hence to the whole space W . Assume now that W
is only known to be a Banach space and V ∗ ⊆W ∗ satisfying spanV ∗ = W ∗ is given. Then even if
a bilinear form is defined between elements in V and those in V ∗, the norm may not have a unique
extension to the whole spaceW . Consequently, although we have at hand a reproducing kernel K
for an RKBS B , the relationship (13), and denseness conditions (8), (9), we still can not determine
the norm on B .

3. Construction of Reproducing Kernels via Feature Maps

In this section, we shall characterize reproducing kernels for RKBS. The characterization will at the
same time provide a convenient way of constructing reproducing kernels and their corresponding
RKBS. For the corresponding results in the RKHS case, see, for example, Saitoh (1997), Schölkopf
and Smola (2002), Shawe-Taylor and Cristianini (2004) and Vapnik (1998).

Theorem 3 Let W be a reflexive Banach space with dual space W ∗. Suppose that there exists
* : X →W , and *∗ : X →W ∗ such that

span*(X) =W , span*∗(X) =W ∗. (14)
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Then B := {(u,*∗(·))W : u ∈W } with norm

‖(u,*∗(·))W ‖B := ‖u‖W (15)

is an RKBS on X with the dual space B∗ := {(*(·),u∗)W : u∗ ∈W ∗} endowed with the norm

‖(*(·),u∗)W ‖B∗ := ‖u∗‖W ∗

and the bilinear form

((u,*∗(·))W ,(*(·),u∗)W )B := (u,u∗)W , u ∈W , u∗ ∈W ∗. (16)

Moreover, the reproducing kernel K for B is

K(x,y) := (*(x),*∗(y))W , x,y ∈ X . (17)

Proof We first show that B defined above is a Banach space of functions on X . To this end, we set
u ∈W and assume that

(u,*∗(x))W = 0, for all x ∈ X . (18)

Then by the denseness condition (14), (u,u∗)W = 0 for all u∗ ∈ W ∗, implying that u = 0. Con-
versely, if u = 0 in W then it is clear that (18) holds true. These arguments also show that the
representer u ∈ W for a function (u,*∗(·))W in B is unique. It is obvious that (15) defines a
norm on B and B is complete under this norm. Therefore, B is a Banach space of functions on X .
Similarly, so is B̃ := {(*(·),u∗)W : u∗ ∈W ∗} equipped with the norm

‖(*(·),u∗)W ‖B̃ := ‖u∗‖W ∗ .

Define the bilinear form T on B× B̃ by setting

T ((u,*∗(·))W ,(*(·),u∗)W ) := (u,u∗)W , u ∈W , u∗ ∈W ∗.

Clearly, we have for all u ∈W , u∗ ∈W ∗ that

|T ((u,*∗(·))W ,(*(·),u∗)W )|≤ ‖u‖W ‖u∗‖W ∗ = ‖(u,*∗(·))W ‖B ‖(*(·),u∗)W ‖B̃ .

Therefore, each function in B̃ is a continuous linear functional on B . Note that the linear mapping
u → (u,*∗(·))W is isometric from W to B . As a consequence, functions in B̃ exhaust all the
continuous linear functionals on B . We conclude that B∗ = B̃ with the bilinear form (16). Likewise,
one can show that B is the dual of B∗ by the reflexivity of W . We have hence proved that B is
reflexive with dual B∗.

It remains to show that point evaluations are continuous on B and B∗. To this end, we get for
each x ∈ X and f := (u,*∗(·))W , u ∈W that

| f (x)| = |(u,*∗(x))W |≤ ‖u‖W ‖*∗(x)‖W ∗ = ‖ f‖B‖*∗(x)‖W ∗ ,

which implies that &x is continuous on B . By similar arguments, it is continuous on B∗. Combining
all the discussion above, we reach the conclusion that B is an RKBS on X .
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For the function K on X ×X defined by (17), we get that K(x, ·) ∈ B and K(·,x) ∈ B∗ for all
x ∈ X . It is also verified that for f := (u,*∗(·))W , u ∈W

( f ,K(·,x))B = ((u,*∗(·))W ,(*(·),*∗(x))W )B = (u,*∗(x))W = f (x).

Similarly, for f ∗ := (*(·),u∗)W , u∗ ∈W ∗

(K(x, ·), f ∗)B = ((*(x),*∗(·))W ,(*(·),u∗)W )B = (*(x),u∗)W = f ∗(x).

These facts show that K is the reproducing kernel for B and complete the proof.

We call the mappings *,*∗ in Theorem 3 a pair of feature maps for the reproducing kernel K.
The spaces W , W ∗ are called the pair of feature spaces associated with the feature maps for K.
As a corollary to Theorem 3, we obtain the following characterization of reproducing kernels for
RKBS.

Theorem 4 A function K : X ×X → C is the reproducing kernel of an RKBS on X if and only if it
is of the form (17), whereW is a reflexive Banach space, and mappings * : X →W , *∗ : X →W ∗

satisfy (14).

Proof The sufficiency has been shown by the last theorem. For the necessity, we assume that K is
the reproducing kernel of an RKBS B on X , and set

W := B, W ∗ := B∗, *(x) := K(x, ·), *∗(x) := K(·,x), x ∈ X .

By Theorem 2,W ,W ∗,*,*∗ satisfy all the conditions.

To demonstrate how we get RKBS and their reproducing kernels by Theorem 3, we now present
a nontrivial example of RKBS. Set X := R, I := [− 1

2 ,
1
2 ], and p ∈ (1,+"). We make the convention

that q is always the conjugate number of p, that is, p−1+q−1 = 1. DefineW := Lp(I), W ∗ := Lq(I)
and * : X →W , *∗ : X →W ∗ as

*(x)(t) := e−i2+xt , *∗(x)(t) := ei2+xt , x ∈ R, t ∈ I.

For f ∈ L1(R), its Fourier transform f̂ is defined as

f̂ (t) :=
Z

R

f (x)e−i2+xtdx, t ∈ R,

and its inverse Fourier transform f̌ is defined by

f̌ (t) :=
Z

R

f (x)ei2+xtdx, t ∈ R.

The Fourier transform and the inverse Fourier transform can be defined on tempered distributions.
Since the Fourier transform is injective on L1(R) (see, Rudin, 1987, page 185), the denseness re-
quirement (14) is satisfied.
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By the construction described in Theorem 3, we obtain

B := { f ∈C(R) : supp f̂ ⊆ I, f̂ ∈ Lp(I)} (19)

with norm ‖ f‖B := ‖ f̂‖Lp(I), and the dual

B∗ := {g ∈C(R) : supp ĝ⊆ I, ĝ ∈ Lq(I)}

with norm ‖g‖B∗ := ‖ǧ‖Lq(I). For each f ∈ B and g ∈ B∗, we have

( f ,g)B =
Z

I

f̂ (t)ǧ(t)dt.

The kernel K for B is given as

K(x,y) = (*(x),*∗(y))W =
Z

I

e−i2+xtei2+ytdt =
sin+(x− y)
+(x− y)

= sinc(x− y).

We check that for each f ∈ B

( f ,K(·,x))B =
Z

I

f̂ (t)(K(·,x))ˇ(t)dt =
Z

I

f̂ (t)ei2+xtdt = f (x), x ∈ R

and for each g ∈ B∗

(K(x, ·),g)B =
Z

I

(K(x, ·))ˆ(t)ǧ(t)dt =
Z

I

ǧ(t)e−i2+xtdt = g(x), x ∈ R.

When p= q= 2, B reduces to the classical space of bandlimited functions.
In the above example, B is isometrically isomorphic to Lp(I). As mentioned in the introduction,

Lp(I)with different p are not isomorphic to each other. As a result, for different indices p the spaces
B defined by (19) are essentially different. However, we see that they all have the sinc function as
the reproducing kernel. In fact, if no further conditions are imposed on an RKBS, its reproducing
kernel can be rather arbitrary. We make a simple observation below to illustrate this.

Proposition 5 If the input space X is a finite set, then any nontrivial function K on X ×X is the
reproducing kernel of some RKBS on X.

Proof Let K be an arbitrary nontrivial function on X ×X . Assume that X = Nm for some m ∈ N.
Let d ∈ N be the rank of the matrix K[X ] as defined by (1). By elementary linear algebra, there exist
nonsingular matrices P,Q ∈ Cm×m such that the transpose (K[X ])T of K[X ] has the form

(K[X ])T = P
[
Id 0
0 0

]
Q= P

[
Id
0

][
Id 0

]
Q, (20)

where Id is the d×d identity matrix. For j ∈ Nm, let Pj be the transpose of the jth row of P
[
Id
0

]

and Qj the jth column of
[
Id 0

]
Q. Choose an arbitrary p ∈ (1,+"). Equation (20) is rewritten

as
K( j,k) = (Qj,Pk)l p(Nd), j,k ∈ Nm. (21)
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We setW := l p(Nd),W ∗ := lq(Nd) and *( j) := Qj, *∗( j) := Pj, j ∈ Nm. Since P,Q are nonsin-
gular, (14) holds true. Also, we have by (21) that

K( j,k) = (*( j),*∗(k))W , j,k ∈ Nm.

By Theorem 4, K is a reproducing kernel for some RKBS on X .

Proposition 5 reveals that due to the lack of an inner product, the reproducing kernel for a general
RKBS can be an arbitrary function on X×X . Particularly, it might be nonsymmetric or non-positive
definite. In order for reproducing kernels of RKBS to have desired properties as those of RKHS, we
may need to impose certain structures on RKBS, which in some sense are substitutes of the inner
product for RKHS. For this purpose, we shall adopt the semi-inner-product introduced by Lumer
(1961). A semi-inner-product possesses some but not all properties of an inner product. Hilbert
space type arguments and results become available with the presence of a semi-inner-product. We
shall introduce the notion of semi-inner-product RKBS.

4. S.i.p. Reproducing Kernel Banach Spaces

The purpose of this section is to establish the notion of semi-inner-product RKBS and study its prop-
erties. We start with necessary preliminaries on semi-inner-products (Giles, 1967; Lumer, 1961).

4.1 Semi-Inner-Products

A semi-inner-product on a vector space V is a function, denoted by [·, ·]V , from V ×V to C such
that for all x,y,z ∈V and $ ∈ C

1. [x+ y,z]V = [x,z]V +[y,z]V ,

2. [$x,y]V = $[x,y]V , [x,$y]V = $̄ [x,y]V ,

3. [x,x]V > 0 for x '= 0,

4. (Cauchy-Schwartz) |[x,y]V |2 ≤ [x,x]V [y,y]V .

The property that [x,$y]V = $̄ [x,y]V was not required in the original definition by Lumer (1961).
We include it here for the observation by Giles (1967) that this property can always be imposed.

It is necessary to point out the difference between a semi-inner-product and an inner product. In
general, a semi-inner-product [·, ·]V does not satisfy the conjugate symmetry [x,y]V = [y,x]V for all
x,y ∈V . As a consequence, there always exist x,y,z ∈V such that

[x,y+ z]V '= [x,y]V +[x,z]V .

In fact, a semi-inner-product is always additive about the second variable only if it degenerates to
an inner product. We show this fact below.

Proposition 6 A semi-inner-product [·, ·]V on a complex vector space V is an inner product if and
only if

[x,y+ z]V = [x,y]V +[x,z]V , for all x,y,z ∈V. (22)
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Proof Suppose that V has a semi-inner-product [·, ·]V that satisfies (22). It suffices to show that for
all x,y ∈V ,

[x,y]V = [y,x]V . (23)

Set $ ∈ C. By the linearity on the first and the additivity on the second variable, we get that

[x+$y,x+$y]V = [x,x]V +[$y,$y]V +$[y,x]V + $̄[x,y]V .

Since [z,z]V ≥ 0 for all z ∈V , we must have

$[y,x]V + $̄[x,y]V ∈ R.

Choosing $ = 1 yields that Im [y,x]V = − Im [x,y]V . And the choice $ = i results that Re [y,x]V =
Re [x,y]V . Therefore, (23) holds, which implies that [·, ·]V is an inner product on V .

It was shown in Lumer (1961) that a vector spaceV with a semi-inner-product is a normed space
equipped with

‖x‖V := [x,x]1/2V , x ∈V. (24)

Therefore, if a vector space V has a semi-inner-product, we always assume that its norm is induced
by (24) and call V an s.i.p. space. Conversely, every normed vector space V has a semi-inner-
product that induces its norm by (24) (Giles, 1967; Lumer, 1961). By the Cauchy-Schwartz in-
equality, if V is an s.i.p. space then for each x ∈ V , y→ [y,x]V is a continuous linear functional on
V . We denote this linear functional by x∗. Following this definition, we have that

[x,y]V = y∗(x) = (x,y∗)V , x,y ∈V. (25)

In general, a semi-inner-product for a normed vector space may not be unique. However, a
differentiation property of the norm will ensure the uniqueness. We call a normed vector space V
Gâteaux differentiable if for all x,y ∈V \{0}

lim
t∈R, t→0

‖x+ ty‖V −‖x‖V
t

exists. It is called uniformly Fréchet differentiable if the limit is approached uniformly on S(V )×
S(V ). Here, S(V ) := {u∈V : ‖u‖V = 1} is the unit sphere ofV . The following result is due to Giles
(1967).

Lemma 7 If an s.i.p. space V is Gâteaux differentiable then for all x,y ∈V with x '= 0

lim
t∈R, t→0

‖x+ ty‖V −‖x‖V
t

=
Re [y,x]
‖x‖V

. (26)

The above lemma indicates that a Gâteaux differentiable normed vector space has a unique
semi-inner-product. In fact, we have by (26) that

[x,y]V = ‖y‖V
(

lim
t∈R, t→0

‖y+ tx‖V −‖y‖V
t

+ i lim
t∈R, t→0

‖iy+ tx‖V −‖y‖V
t

)
, x,y ∈V \{0}. (27)
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For this reason, if V is a Gâteaux differentiable normed vector space we always assume that it is
an s.i.p. space with the semi-inner-product defined as above. Interested readers are referred to the
appendix for a proof that (27) indeed defines an s.i.p.

We shall impose one more condition on an s.i.p. space that will lead to a Riesz representation
theorem. A normed vector space V is uniformly convex if for all , > 0 there exists a & > 0 such
that

‖x+ y‖V ≤ 2−& for all x,y ∈ S(V ) with ‖x− y‖V ≥ ,.

The space Lp(-,µ), 1< p< +", on a measure space (-,F ,µ) is uniformly convex. In particular,
by the parallelogram law, any inner product space is uniformly convex. By a remark in Conway
(1990), page 134, a uniformly convex Banach space is reflexive. There is a well-known relationship
between uniform Fréchet differentiability and uniform convexity (Cudia, 1963). It states that a
normed vector space is uniformly Fréchet differentiable if and only if its dual is uniformly convex.
Therefore, if B is a uniformly convex and uniformly Fréchet differentiable Banach space then so
is B∗ since B is reflexive. The important role of uniform convexity is displayed in the next lemma
(Giles, 1967).

Lemma 8 (Riesz Representation Theorem) Suppose thatB is a uniformly convex, uniformly Fréchet
differentiable Banach space. Then for each f ∈ B∗ there exists a unique x ∈ B such that f = x∗,
that is,

f (y) = [y,x]B , y ∈ B.

Moreover, ‖ f‖B∗ = ‖x‖B .

The above Riesz representation theorem is desirable for RKBS. By Lemma 8 and the discussion
right before it, we shall investigate in the next subsection RKBS which are both uniformly convex
and uniformly Fréchet differentiable.

Let B be a uniformly convex and uniformly Fréchet differentiable Banach space. By Lemma 8,
x→ x∗ defines a bijection from B to B∗ that preserves the norm. Note that this duality mapping is
in general nonlinear. We call x∗ the dual element of x. Since B∗ is uniformly Fréchet differentiable,
it has a unique semi-inner-product, which is given by

[x∗,y∗]B∗ = [y,x]B , x,y ∈ B. (28)

We close this subsection with a concrete example of uniformly convex and uniformly Fréchet
differentiable Banach spaces. Let (-,F ,µ) be a measure space and B := Lp(-,µ) for some p ∈
(1,+"). It is uniformly convex and uniformly Fréchet differentiable with dual B∗ = Lq(-,µ). For
each f ∈ B , its dual element in B∗ is

f ∗ =
f̄ | f |p−2

‖ f‖p−2Lp(-,µ)

. (29)

Consequently, the semi-inner-product on B is

[ f ,g]B = g∗( f ) =

R

- f ḡ|g|p−2dµ
‖g‖p−2Lp(-,µ)

.

With the above preparation, we shall study a special kind of RKBS which have desired proper-
ties.
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4.2 S.i.p. RKBS

Let X be a prescribed input space. We call a uniformly convex and uniformly Fréchet differentiable
RKBS on X an s.i.p. reproducing kernel Banach space (s.i.p. RKBS). Again, we see immedi-
ately that an RKHS is an s.i.p. RKBS. Also, the dual of an s.i.p. RKBS remains an s.i.p. RKBS. An
s.i.p. RKBS B is by definition uniformly Fréchet differentiable. Therefore, it has a unique semi-
inner-product, which by Lemma 8 represents all the interaction between B and B∗. This leads to
a more specific representation of the reproducing kernel. Precisely, we have the following conse-
quences.

Theorem 9 Let B be an s.i.p. RKBS on X and K its reproducing kernel. Then there exists a unique
function G : X×X → C such that {G(x, ·) : x ∈ X}⊆ B and

f (x) = [ f ,G(x, ·)]B , for all f ∈ B, x ∈ X . (30)

Moreover, there holds the relationship

K(·,x) = (G(x, ·))∗, x ∈ X (31)

and
f ∗(x) = [K(x, ·), f ]B , for all f ∈ B, x ∈ X . (32)

Proof By Lemma 8, for each x ∈ X there exists a function Gx ∈ B such that f (x) = [ f ,Gx]B for
all f ∈ B . We define G : X ×X → C by G(x,y) := Gx(y), x,y ∈ X . We see that G(x, ·) = Gx ∈ B ,
x ∈ X , and there holds (30). By the uniqueness in the Riesz representation theorem, such a function
G is unique. To prove the remaining claims, we recall from Theorem 2 that the reproducing kernel
K satisfies for each f ∈ B that

f (x) = ( f ,K(·,x))B , x ∈ X . (33)
and

f ∗(x) = (K(x, ·), f ∗)B , x ∈ X . (34)
By (25), (30) and (33), we have for each x ∈ X that

( f ,(G(x, ·))∗)B = [ f ,G(x, ·)]B = f (x) = ( f ,K(·,x))B , f ∈ B.

The above equation implies (31). Equation (25) also implies that

(K(x, ·), f ∗)B = [K(x, ·), f ]B .

This together with equation (34) proves (32) and completes the proof.

We call the unique function G in Theorem 9 the s.i.p. kernel of the s.i.p. RKBS B . It coincides
with the reproducing kernel K when B is an RKHS. In general, when G = K in Theorem 9, we
call G an s.i.p. reproducing kernel. By (30), an s.i.p. reproducing kernel G satisfies the following
generalization of (3)

G(x,y) = [G(x, ·),G(y, ·)]B , x,y ∈ X . (35)
We shall give a characterization of an s.i.p. reproducing kernel in terms of its corresponding feature
map. To this end, for a mapping * from X to a uniformly convex and uniformly Fréchet differen-
tiable Banach spaceW , we denote by *∗ the mapping from X toW ∗ defined as

*∗(x) := (*(x))∗, x ∈ X .
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Theorem 10 LetW be a uniformly convex and uniformly Fréchet differentiable Banach space and
* a mapping from X toW such that

span*(X) =W , span*∗(X) =W ∗. (36)

Then B := {[u,*(·)]W : u ∈W } equipped with
[
[u,*(·)]W , [v,*(·)]W

]

B

:= [u,v]W (37)

and B∗ := {[*(·),u]W : u ∈W } with
[
[*(·),u]W , [*(·),v]W

]

B∗

:= [v,u]W

are uniformly convex and uniformly Fréchet differentiable Banach spaces. And B∗ is the dual of B
with the bilinear form

(
[u,*(·)]W , [*(·),v]W

)

B

:= [u,v]W , u,v ∈W . (38)

Moreover, the s.i.p. kernel G of B is given by

G(x,y) = [*(x),*(y)]W , x,y ∈ X , (39)

which coincides with its reproducing kernel K.

Proof We shall show (39) only. The other results can be proved using arguments similar to those
in Theorem 3 and those in the proof of Theorem 7 in Giles (1967). Let f ∈ B . Then there exists a
unique u ∈W such that f = [u,*(·)]W . By (38), for y ∈ X ,

f (y) = [u,*(y)]W = ([u,*(·)]W , [*(·),*(y)]W )B = ( f , [*(·),*(y)]W )B .

Comparing the above equation with (33), we obtain that

K(·,y) = [*(·),*(y)]W . (40)

On the other hand, by (37), for x ∈ X

f (x) = [u,*(x)]W = [[u,*(·)]W , [*(x),*(·)]W ]B ,

which implies that the s.i.p. kernel of B is

G(x, ·) = [*(x),*(·)]W . (41)

By (40) and (41),
K(x,y) = G(x,y) = [*(x),*(y)]W ,

which completes the proof.

As a direct consequence of the above theorem, we have the following characterization of s.i.p.
reproducing kernels.
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Theorem 11 A function G on X ×X is an s.i.p. reproducing kernel if and only if it is of the form
(39), where * is a mapping from X to a uniformly convex and uniformly Fréchet differentiable
Banach spaceW satisfying (36).

Proof The sufficiency is implied by Theorem 10. For the necessity, suppose that G is an s.i.p.
reproducing kernel for some s.i.p. RKBS B on X . We choose W = B and *(x) := G(x, ·). Then
G has the form (39) by equation (35). Moreover, by (8), span*(X) is dense in W . Assume that
span*∗(X) is not dense in W ∗. Then by the Hahn-Banach theorem and Lemma 8, there exists a
nontrivial f ∈ B such that [*∗(x), f ∗]B∗ = 0, x ∈ X . Thus, by (28) we get that

f (x) = [ f ,G(x, ·)]B = [ f ,*(x)]W = [*∗(x), f ∗]B∗ = 0, x ∈ X .

We end up with a zero function f , a contradiction. The proof is complete.

The mapping * and spaceW in the above theorem will be called a feature map and feature
space of the s.i.p. reproducing kernel G, respectively.

By the duality relation (31) and the denseness condition (9), the s.i.p kernel G of an s.i.p. RKBS
B on X satisfies

span{(G(x, ·))∗ : x ∈ X} = B∗. (42)

It is also of the form (35). By Theorem 11, G is identical with the reproducing kernel K for B if and
only if

span{G(x, ·) : x ∈ X} = B. (43)

If B is not a Hilbert space then the duality mapping from B to B∗ is nonlinear. Thus, it may not
preserve the denseness of a linear span. As a result, (43) would not follow automatically from
(42). Here we remark that for most finite dimensional s.i.p. RKBS, (42) implies (43). This is due
to the well-known fact that for all n ∈ N, the set of n× n singular matrices has Lebesgue measure
zero in Cn×n. Therefore, the s.i.p. kernel for most finite dimensional s.i.p. RKBS is the same as the
reproducing kernel. Nevertheless, we shall give an explicit example to illustrate that the two kernels
might be different.

For each p ∈ (1,+") and n ∈ N, we denote by !p(Nn) the Banach space of vectors in Cn with
norm

‖a‖!p(Nn) :=
(

!
j∈Nn

|a j|p
)1/p

, a= (a j : j ∈ Nn) ∈ Cn.

As pointed out at the end of Section 4.1, !p(Nn) is uniformly convex and uniformly Fréchet differ-
entiable. Its dual space is !q(Nn). To construct the example, we introduce three vectors in !3(N3)
by setting

e1 := (2,9,1), e2 := (1,8,0), e3 := (5,5,3).

By (29), their dual elements in !
3
2 (N3) are

e∗1 =
1

(738)1/3
(4,81,1), e∗2 =

1
(513)1/3

(1,64,0), e∗3 =
1

(277)1/3
(25,25,9).

It can be directly verified that {e1,e2,e3} is linearly independent but {e∗1,e∗2,e∗3} is not. Therefore,

span{e1,e2,e3} = !3(N3) (44)

2755



ZHANG, XU AND ZHANG

while
span{e∗1,e∗2,e∗3} ! !

3
2 (N3). (45)

With the above preparations, we let N3 be the input space, * the function from N3 to !3(N3)
defined by *( j) = e j, j ∈ N3, and B the space of all the functions *u := [*(·),u]!3(N3), u ∈ !3(N3),
on N3. By equation (44),

‖*u‖ := ‖u‖!3(N3), u ∈ !3(N3)

defines a norm on B . It is clear that point evaluations are continuous on B under this norm. Fur-
thermore, since the linear mapping *u → u∗ is isometrically isomorphic from B to !

3
2 (N3), B is a

uniformly convex and uniformly Fréchet differentiable Banach space. By this fact, we obtain that
B is an s.i.p. RKBS with semi-inner-product

[*u,*v]B = [v,u]!3(N3), u,v ∈ !3(N3). (46)

The above equation implies that the s.i.p. kernel G for B is

G( j,k) = [ek,e j]!3(N3), j,k ∈ N3. (47)

Recall that the reproducing kernel K for B satisfies the denseness condition (8). Consequently, to
show that G '= K, it suffices to show that

span{G( j, ·) : j ∈ N3} ! B. (48)

To this end, we notice by (45) that there exists a nonzero element v ∈ !3(N3) such that

[v,e j]!3(N3) = (v,e∗j)!3(N3) = 0, j ∈ N3.

As a result, the nonzero function *v satisfies by (46) and (47) that

[G( j, ·),*v]B = [*e j ,*v]B = [v,e j]!3(N3) = 0, j ∈ N3,

which proves (48), and implies that the s.i.p. kernel and reproducing kernel for B are different. By
(45), this is essentially due to the reason that the second condition of (36) is not satisfied.

4.3 Properties of S.i.p. Reproducing Kernels

The existence of a semi-inner-product makes it possible to study properties of RKBS and their re-
producing kernels. For illustration, we present below three of these properties.

4.3.1 NON-POSITIVE DEFINITENESS

An n× n matrix M over a number field F (C or R) is said to be positive semi-definite if for all
(c j : j ∈ Nn) ∈ Fn

!
j∈Nn

!
k∈Nn

c jckMjk ≥ 0.

We shall consider positive semi-definiteness of matricesG[x] as defined in (1) for an s.i.p. reproducing
kernel G on X .
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Let * : X →W be a feature map for G, that is, (39) and (36) hold. By properties 3 and 4 in the
definition of a semi-inner-product, we have that

G(x,x) ≥ 0, x ∈ X (49)

and
|G(x,y)|2 ≤ G(x,x)G(y,y), x,y ∈ X . (50)

Notice that if a complex matrix is positive semi-definite then it must be hermitian. Since a semi-
inner-product is in general not an inner product, we can not expect a complex s.i.p. kernel to be
positive definite. In the real case, inequalities (49) and (50) imply that G[x] is positive semi-definite
for all x ⊆ X with cardinality less than or equal to two. However, G[x] might stop being positive
semi-definite if x contains more than two points. We shall give an explicit example to explain this
phenomenon.

Set p ∈ (1,+") andW := !p(N2). We let X := R+ := [0,+") and *(x) = (1,x), x ∈ X . Thus,

*∗(x) =
(1,xp−1)

(1+ xp)
p−2
p

, x ∈ X .

Clearly, * satisfies the denseness condition (36). The corresponding s.i.p. reproducing kernel G is
constructed as

G(x,y) = [*(x),*(y)]W =
1+ xyp−1

(1+ yp)
p−2
p

, x,y ∈ X . (51)

Proposition 12 For the s.i.p. reproducing kernel G defined by (51), matrix G[x] is positive semi-
definite for all x= {x,y,z}⊆ X if and only if p= 2.

Proof If p= 2 thenW is a Hilbert space. As a result, G is a positive definite kernel. Hence, for all
finite subsets x⊆ X , G[x] is positive semi-definite.

Assume that G[x] is positive semi-definite for all x= {x,y,z}⊆ X . Choose x := {0,1, t} where
t is a positive number to be specified later. Then we have by (51) that

G[x] =





1 22/p−1
1

(1+ t p)1−2/p

1 22/p
1+ t p−1

(1+ t p)1−2/p

1
1+ t
21−2/p

1+ t p

(1+ t p)1−2/p




.

LetM be the symmetrization of G[x] given as

M =





1
1
2

+22/p−2
1
2

+
1

2(1+ t p)1−2/p
1
2

+22/p−2 22/p
1+ t
22−2/p

+
1+ t p−1

2(1+ t p)1−2/p
1
2

+
1

2(1+ t p)1−2/p
1+ t
22−2/p

+
1+ t p−1

2(1+ t p)1−2/p
1+ t p

(1+ t p)1−2/p




.
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Matrix M preserves the positive semi-definiteness of G[x]. Therefore, its determinant |M| must be
nonnegative. Through an analysis of the asymptotic behavior of the component of M as t goes to
infinity, we obtain that

|M| = −
t2

8

(
2
2
p −2

)2
+#(t), t > 0,

where # is a function satisfying that

lim
t→"

#(t)
t2

= 0.

Therefore, |M| being always nonnegative forces 2
2
p −2= 0, which occurs only if p= 2.

By Proposition 12, non-positive semi-definiteness is a characteristic of s.i.p. reproducing kernels
for RKBS that distincts them from reproducing kernels for RKHS.

4.3.2 POINTWISE CONVERGENCE

If fn converges to f in an s.i.p. RKBS with its s.i.p. kernel G then fn(x) converges to f (x) for any
x ∈ X and the limit is uniform on the set where G(x,x) is bounded. This follows from (30) and the
Cauchy-Schwartz inequality by

| fn(x)− f (x)| = |[ fn− f ,G(x, ·)]B |≤ ‖ fn− f‖B
√

[G(x, ·),G(x, ·)]B =
√
G(x,x)‖ fn− f‖B .

4.3.3 WEAK UNIVERSALITY

Suppose that X is metric space and G is an s.i.p. reproducing kernel on X . We say that G is uni-
versal if G is continuous on X ×X and for all compact subsets Z ⊆ X , span{G(x, ·) : x ∈ Z} is
dense in C(Z) (Micchelli et al., 2006; Steinwart, 2001). Universality of a kernel ensures that it can
approximate any continuous target function uniformly on compact subsets of the input space. This
is crucial for the consistence of the learning algorithms with the kernel. We shall discuss the case
when X is itself a compact metric space. Here we are concerned with the ability of G to approxi-
mate any continuous target function on X uniformly. For this purpose, we call a continuous kernel
G on a compact metric space X weakly universal if span{G(x, ·) : x ∈ X} is dense in C(X). We
shall present a characterization of weak universality. The results in the cases of positive definite
kernels and vector-valued positive definite kernels have been established respectively in Micchelli
et al. (2006) and Caponnetto et al. (2008).

Proposition 13 Let * be a feature map from a compact metric space X to W such that both * :
X →W and *∗ : X →W ∗ are continuous. Then the s.i.p. reproducing kernel G defined by (39) is
continuous on X×X, and there holds in C(X) the equality of subspaces

span{G(x, ·) : x ∈ X} = span{[u,*(·)]W : u ∈W }.

Consequently, G is weakly universal if and only if

span{[u,*(·)]W : u ∈W } =C(X).
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Proof First, we notice by

G(x,y) = [*(x),*(y)]W = (*(x),*∗(y))W , x,y ∈ X

that G is continuous on X ×X . Similarly, for each u ∈W , [u,*(·)]W = (u,*∗(·))W ∈C(X). Now
since

G(x, ·) = [*(x),*(·)]W ∈ {[u,*(·)]W : u ∈W },

we have the inclusion

span{G(x, ·) : x ∈ X}⊆ span{[u,*(·)]W : u ∈W }.

On the other hand, let u∈W . By denseness condition (36), there exists a sequence vn ∈ span{*(x) :
x ∈ X} that converges to u. Since G is continuous on the compact space X ×X , it is bounded.
Thus, by the property of pointwise convergence discussed before, [vn,*(·)]W converges inC(X) to
[u,*(·)]W . Noting that

[vn,*(·)]W ∈ span{G(x, ·) : x ∈ X}, n ∈ N,

we have the reverse inclusion

span{[u,*(·)]W : u ∈W }⊆ span{G(x, ·) : x ∈ X},

which proves the result.

We remark that in the case thatW is a Hilbert space, the idea in the above proof can be applied
to show with less effort the main result in Caponnetto et al. (2008) and Micchelli et al. (2006), that
is, for each compact subset Z ⊆ X

span{G(x, ·) : x ∈ Z} = span{[u,*(·)]W : u ∈W },

where the two closures are taken in C(Z). A key element missing in the Banach space is the
orthogonal decomposition in a Hilbert spaceW :

W = (span*(Z))⊕*(Z)⊥, Z ⊆ X .

For a normed vector space V , we denote for each A⊆V by A⊥ := {v∗ ∈V ∗ : (a,v∗)V = 0, a ∈ A},
and for each B ⊆ V ∗, ⊥B := {a ∈ V : (a,v∗)V = 0, v∗ ∈ B}. A Banach spaceW is in general not
the direct sum of span*(Z) and ⊥*∗(Z). In fact, closed subspaces inW may not always have an
algebraic complement unlessW is isomorphic to a Hilbert space (see, Conway, 1990, page 94).

Universality and other properties of s.i.p. reproducing kernels will be treated specially in future
work. One of the main purposes of this study is to apply the tool of s.i.p. reproducing kernels to
learning in Banach spaces. To be precise, we shall develop in the framework of s.i.p. RKBS several
standard learning schemes.
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5. Representer Theorems for Standard Learning Schemes

In this section, we assume that B is an s.i.p. RKBS on X with the s.i.p. reproducing kernel G defined
by a feature map* :X→W as in (39). We shall develop in this framework several standard learning
schemes including minimal norm interpolation, regularization network, support vector machines,
and kernel principal component analysis. For introduction and discussions of these widely used
algorithms in RKHS, see, for example, Cucker and Smale (2002), Evgeniou et al. (2000), Micchelli
and Pontil (2005), Schölkopf and Smola (2002), Shawe-Taylor and Cristianini (2004) and Vapnik
(1998).

5.1 Minimal Norm Interpolation

The minimal norm interpolation is to find, among all functions in B that interpolate a prescribed set
of points, a function with the minimal norm. Let x := {x j : j ∈ Nn} be a fixed finite set of distinct
points in X and set for each y := (y j : j ∈ Nn) ∈ Cn

Iy := { f ∈ B : f (x j) = y j, j ∈ Nn}.

Our purpose is to find f0 ∈ Iy such that

‖ f0‖B = inf{‖ f‖B : f ∈ Iy} (52)

provided that Iy is nonempty. Our first concern is of course the condition ensuring that Iy is
nonempty. To address this issue, let us recall the useful property of the s.i.p. reproducing kernel
G:

f (x) = [ f ,G(x, ·)]B = [G(·,x), f ∗]B∗ , x ∈ X , f ∈ B. (53)

Lemma 14 The set Iy is nonempty for any y ∈ Cn if and only if Gx := {G(·,x j) : j ∈ Nn} is linearly
independent in B∗.

Proof Observe that Iy is nonempty for any y ∈ Cn if and only if span{( f (x j) : j ∈ Nn) : f ∈ B} is
dense in Cn. Using the reproducing property (53), we have for each (c j : j ∈ Nn) ∈ Cn that

!
j∈Nn

c j f (x j) = !
j∈Nn

c j[ f ,G(x j, ·)]B =

[

!
j∈Nn

c jG(·,x j), f ∗
]

B∗

.

Thus,
!
j∈Nn

c j f (x j) = 0, for all f ∈ B

if and only if
!
j∈Nn

c jG(·,x j) = 0.

This implies that Gx is linearly independent in B∗ if and only if span{( f (x j) : j ∈ Nn) : f ∈ B} is
dense in Cn. Therefore, Iy is nonempty for any y ∈ Cn if and only if Gx is linearly independent.

We next show that the minimal norm interpolation problem in B always has a unique solution
under the hypothesis that Gx is linearly independent. The following useful property of a uniformly
convex Banach space is crucial (see, for example, Istrǎţescu, 1984, page 53).
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Lemma 15 If V is a uniformly convex Banach space, then for any nonempty closed convex subset
A⊆V and any x ∈V there exists a unique x0 ∈ A such that

‖x− x0‖V = inf{‖x−a‖V : a ∈ A}.

Proposition 16 If Gx is linearly independent in B∗, then for any y∈Cn there exists a unique f0 ∈ Iy
satisfying (52).

Proof By Lemma 14, Iy is nonempty. Note also that it is closed and convex. Since B is uniformly
convex, by Lemma 15, there exists a unique f0 ∈ Iy such that

‖ f0‖B = ‖0− f0‖B = inf{‖0− f‖B = ‖ f‖B : f ∈ Iy}.

The above equation proves the result.

We shall establish a representation of the minimal norm interpolator f0. For this purpose, a
simple observation is made based on the following fact connecting orthogonality with best approx-
imation in s.i.p. spaces (Giles, 1967).

Lemma 17 If V is a uniformly Fréchet differentiable normed vector space, then ‖x+$y‖V ≥ ‖x‖V
for all $ ∈ C if and only if [y,x]V = 0.

Lemma 18 If Iy is nonempty then f0 ∈ Iy is the minimizer of (52) if and only if

[g, f0]B = 0, for all g ∈ I0. (54)

Proof Let f0 ∈ Iy. It is obvious that f0 is the minimizer of (52) if and only if

‖ f0+g‖B ≥ ‖ f0‖B , g ∈ I0.

Since I0 is a linear subspace of B , the result follows immediately from Lemma 17.

The following result is of the representer theorem type. For the representer theorem in learning
with positive definite kernels, see, for example, Argyriou et al. (2008), Kimeldorf andWahba (1971)
and Schölkopf et al. (2001).

Theorem 19 (Representer Theorem) Suppose that Gx is linearly independent in B∗ and f0 is the
solution of the minimal norm interpolation (52). Then there exists c= (c j : j ∈ Nn) ∈ Cn such that

f ∗0 = !
j∈Nn

c jG(·,x j). (55)

Moreover, a function of the form in the right hand side above is the solution if and only if c satisfies
[
G(·,xk), !

j∈Nn

c jG(·,x j)
]

B∗

= yk, k ∈ Nn. (56)
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Proof Note that (54) is equivalent to f ∗0 ∈ I0
⊥ and that I0 = ⊥Gx. Therefore, f0 satisfies (54) if and

only if
f ∗0 ∈ (⊥Gx)⊥.

Recall a consequence of the Hahn-Banach theorem that in a reflexive Banach space B , for each
B⊆ B∗,

(⊥B)⊥ = spanB. (57)

By this fact, (55) holds true for some c ∈ Cn.
Suppose that f ∈ B is of the form f ∗ = ! j∈Nn c jG(·,x j) where c satisfies (56). Then f ∗ ∈

spanGx. By (57), f ∗ satisfies (54). Furthermore, (56) implies that

f (xk) = [ f ,G(xk, ·)]B = [G(·,xk), f ∗]B∗ =

[
G(·,xk), !

j∈Nn

c jG(·,x j)
]

B∗

= yk, k ∈ Nn. (58)

That is, f ∈ Iy. By Lemma 18, f = f0. On the other hand, f0 has the form (55). As shown in (58),
(56) is simply the interpolation condition that f0(xk) = yk, k ∈ Nn. Thus, it must be true. The proof
is complete.

Applying the inverse of the duality mapping to both sides of (55) yields a representation of
f0 in the space B . However, since the duality mapping is nonadditive unless B is an RKHS, this
procedure in general does not result in a linear representation.

We conclude that under the condition that Gx is linearly independent, the minimal norm inter-
polation problem (52) has a unique solution, and finding the solution reduces to solving the system
(56) of equations about c ∈ Cn. The solution c of (56) is unique by Theorem 19. Again, the dif-
ference from the result for RKHS is that (56) is often nonlinear about c since by Proposition 6 a
semi-inner-product is generally nonadditive about the second variable.

To see an explicit form of (56), we shall reformulate it in terms of the feature map * from X to
W . Let B and B∗ be identified as in Theorem 10. Then (56) has the equivalent form

[
*∗(xk), !

j∈Nn

c j*∗(x j)
]

B∗

= yk, k ∈ Nn.

In the particular case thatW = Lp(-,µ), p ∈ (1,+") on some measure space (-,F ,µ), andW ∗ =
Lq(-,µ), the above equation is rewritten as

Z

-
*∗(xk) !

j∈Nn

c j*∗(x j)
∣∣∣∣ !
j∈Nn

c j*∗(x j)
∣∣∣∣
q−2

dµ= yk
∥∥∥∥ !
j∈Nn

c j*∗(x j)
∥∥∥∥
q−2

Lq(-,µ)
, k ∈ Nn.

5.2 Regularization Network

We consider learning a predictor function from a finite sample data z := {(x j,y j) : j ∈ Nn}⊆ X×C
in this subsection. The predictor function will yield from a regularized learning algorithm. Let
L : C×C → R+ be a loss function that is continuous and convex with respect to its first variable.
For each f ∈ B , we set

Ez( f ) := !
j∈Nn

L( f (x j),y j) and Ez,µ( f ) := Ez( f )+µ‖ f‖2B ,
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where µ is a positive regularization parameter. The predictor function that we learn from the sample
data z will be the function f0 satisfying

Ez,µ( f0) = inf{Ez,µ( f ) : f ∈ B}. (59)

One can always make this choice as we shall prove that the minimizer of (59) exists and is unique.

Theorem 20 There exists a unique f0 ∈ B satisfying (59).

Proof We first show the existence. If f ∈ B satisfies ‖ f‖2B > 1
µEz,µ(0) then

Ez,µ( f ) ≥ µ‖ f‖2B > Ez,µ(0).

Thus
inf{Ez,µ( f ) : f ∈ B} = inf

{
Ez,µ( f ) : f ∈ B, ‖ f‖2B ≤

1
µ
Ez,µ(0)

}
.

Let
e := inf

{
Ez,µ( f ) : f ∈ B, ‖ f‖2B ≤

1
µ
Ez,µ(0)

}

and
A :=

{
f ∈ B : ‖ f‖2B ≤

1
µ
Ez,µ(0)

}
.

Then, there exists a sequence fk ∈ A, k ∈ N, such that

e≤ Ez,µ( fk) ≤ e+
1
k
. (60)

Since B is reflexive, A is weakly compact, that is, we may assume that there exists f0 ∈ A such that
for all g ∈ B

lim
k→"

[ fk,g]B = [ f0,g]B . (61)

In particular, the choice g := G(x j, ·), j ∈ Nn yields that fk(x j) converges to f0(x j) as k→ " for all
j ∈ Nn. Since the loss function L is continuous about the first variable, we have that

lim
k→"

Ez( fk) = Ez( f0).

Also, choosing g= f0 in (61) yields that

lim
k→"

[ fk, f0]B = ‖ f0‖2B .

By the above two equations, for each ,> 0 there exists some N such that for k ≥ N

Ez( f0) ≤ Ez( fk)+ ,

and
‖ f0‖2B ≤ ,‖ f0‖2B + |[ fk, f0]B |≤ ,‖ f0‖2B +‖ fk‖B‖ f0‖B , if f0 '= 0.

If f0 = 0, then trivially we have

‖ f0‖B ≤ ,‖ f0‖B +‖ fk‖B .
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Combining the above three equations, we get for k ≥ N that

Ez,µ( f0) ≤
1

(1− ,)2
Ez,µ( fk)+ ,.

By (60) and the arbitrariness of ,, we conclude that f0 is a minimizer of (59).
Since L is convex with respect to its first variable and ‖ · ‖2B is strictly convex, Ez,µ is strictly

convex on B . This implies the uniqueness of the minimizer.

In the rest of this subsection, we shall consider the regularization network in B , that is, the loss
function L is specified as

L(a,b) = |a−b|2, a,b ∈ C.

It is continuous and convex with respect to its first variable. Therefore, by Theorem 20, there is a
unique minimizer for the regularization network:

min
f∈B !j∈Nn

| f (x j)− y j|2+µ‖ f‖2B . (62)

We next consider solving the minimizer. To this end, we need the notion of strict convexity of
a normed vector space. We call a normed vector space V strictly convex if whenever ‖x+ y‖V =
‖x‖V +‖y‖V for some x,y '= 0, there must hold y= $x for some $> 0. Note that a uniformly convex
normed vector space is automatically strictly convex. The following result was observed in Giles
(1967).

Lemma 21 An s.i.p. space V is strictly convex if and only if whenever [x,y]V = ‖x‖V‖y‖V for some
x,y '= 0 there holds y= $x for some $> 0.

A technical result about s.i.p. spaces is required for solving the minimizer.

Lemma 22 Let V be a strictly convex s.i.p. space. Then for all u,v ∈V

‖u+ v‖2V −‖u‖2V −2Re [v,u]V ≥ 0.

Proof Assume that there exist u,v ∈V such that

‖u+ v‖2V −‖u‖2V −2Re [v,u]V < 0.

Then we have u,v '= 0. We proceed by the above inequality and properties of semi-inner-products
that

‖u‖2V = [u+ v− v,u]V = [u+ v,u]V − [v,u]V
= Re [u+ v,u]V − Re [v,u]V ≤ |[u+ v,u]V |− Re [v,u]V

≤ ‖u+ v‖V‖u‖V −
‖u+ v‖2V −‖u‖2V

2
.

The last inequality above can be simplified as

‖u+ v‖2V +‖u‖2V ≤ 2‖u+ v‖V‖u‖V .
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Thus, we must have

‖u+ v‖V = ‖u‖V and [u+ v,u]V = ‖u+ v‖V‖u‖V .

Applying the strict convexity of V and Lemma 21, we obtain that u+ v= u, namely, v= 0. This is
impossible.

Theorem 23 (Representer Theorem) Let f0 be the minimizer of (62). Then there exists some c ∈ Cn

such that
f ∗0 = !

j∈Nn

c jG(·,x j). (63)

If Gx is linearly independent then the right hand side of the above equation is the minimizer if and
only if

µck +
[
G(·,xk), !

j∈Nn

c jG(·,x j)
]

B∗

= yk, k ∈ Nn. (64)

Proof Let g ∈ B . Define the function % : R → R by %(t) := Ez,µ( f0+ tg), t ∈ R. We compute by
Lemma 7 that

%′(t) = 2Re !
j∈Nn

g(x j)( f0(x j)− y j + tg(x j))+2µRe [g, f0+ tg]B .

Since f0 is the minimizer, t = 0 is the minimum point of %. Hence %′(0) = 0, that is,

!
j∈Nn

g(x j) f0(x j)− y j +µ[g, f0]B = 0, for all g ∈ B.

The above equation can be rewritten as

!
j∈Nn

[ f0(x j)− y jG(·,x j),g∗]B∗ +µ[ f ∗0 ,g∗]B∗ = 0, for all g ∈ B,

which is equivalent to
µf ∗0 = !

j∈Nn

y j− f0(x j)G(·,x j). (65)

Therefore, f ∗0 has the form (63).
If Gx is linearly independent then f ∗0 = ! j∈Nn c jG(·,x j) satisfies (65) if and only if (64) holds.

Thus, it remains to show that condition (65) is enough to ensure that f0 is the minimizer. To this
end, we check that (65) leads to

Ez,µ( f0+g)−Ez,µ( f0) = µ‖ f0+g‖2B −µ‖ f0‖2B −2µRe [g, f0]B + !
j∈Nn

|g(x j)|2,

which by Lemma 22 is nonnegative. The proof is complete.

By Theorem 23, if Gx is linearly independent then the minimizer of (62) can be obtained by
solving (64), which has a unique solution in this case. Using the feature map, the system (64) has
the following form

µck +
[
*∗(xk), !

j∈Nn

c j*∗(x j)
]

B∗

= yk, k ∈ Nn.

As remarked before, this is in general nonlinear about c.
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5.3 Support Vector Machines

In this subsection, we assume that all the spaces are over the field R of real numbers, and consider
learning a classifier from the data z := {(x j,y j) : j ∈ Nn} ⊆ X × {−1,1}. We shall establish for
this task two learning algorithms in RKBS whose RKHS versions are well-known (Evgeniou et
al., 2000; Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004; Vapnik, 1998; Wahba,
1999).

5.3.1 SOFT MARGIN HYPERPLANE CLASSIFICATION

We first focus on the soft margin hyperplane classification by studying

inf
{
1
2
‖w‖2W +C‖.‖!1(Nn) : w ∈W , . := (. j : j ∈ Nn) ∈ Rn

+, b ∈ R
}

(66)

subject to
y j([*(x j),w]W +b) ≥ 1−. j, j ∈ Nn.

Here,C is a fixed positive constant controlling the tradeoff between margin maximization and train-
ing error minimization. If a minimizer (w0,.0,b0) ∈W ×Rn

+ ×R exists, the classifier is taken as
sgn([*(·),w0]W +b0).

Recall by Theorem 10 that functions in B∗ are of the form

f ∗ = [*(·),w]W , w ∈W (67)

and
‖ f ∗‖B∗ = ‖w‖W .

Introduce the loss function

Lb(a,y) :=max{1−ay−by,0}, (a,y) ∈ R×{−1,1}, b ∈ R,

and the error functional on B∗,

Eb,z,µ( f ∗) := µ‖ f ∗‖2B∗ + !
j∈Nn

Lb( f ∗(x j),y j), f ∗ ∈ B∗

where µ := 1/(2C). Then we observe that (66) can be equivalently rewritten as

inf{Eb,z,µ( f ∗) : f ∗ ∈ B∗, b ∈ R}. (68)

When b= 0, (68) is also called the support vector machine classification (Wahba, 1999).
If a minimizer ( f ∗0 ,b0) ∈ B∗ ×R for (68) exists then by (67), the classifier followed from (66)

will be taken as sgn( f ∗0 +b0). It can be verified that for every b ∈ R, Lb is convex and continuous
with respect to its first variable. This enables us to prove the existence of minimizers for (68) based
on Theorem 20.

Proposition 24 Suppose that {y j : j ∈ Nn} = {−1,1}. Then there exists a minimizer ( f ∗0 ,b0) ∈
B∗ ×R for (68). Moreover, the first component f ∗0 of the minimizer is unique.
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Proof The uniqueness of f ∗0 follows from the fact that Eb,z,µ is strictly convex with respect to its
first variable. It remains to deal with the existence. Let e be the infimum (68). Then there exists a
sequence ( f ∗k ,b∗k) ∈ B∗ ×R, k ∈ N such that

lim
k→"

Ebk,z,µ( f
∗
k ) = e. (69)

Since {y j : j ∈ Nn} = {−1,1}, {bk : k ∈ N} is bounded on R. We may hence assume that bk
converges to some b0 ∈ R. By Theorem 20, min{Eb0,z,µ( f ∗) : f ∗ ∈ B∗} has a unique minimizer f ∗0 .
The last fact we shall need is the simple observation that

max{1−ay−by,0}−max{1−ay−b′y,0}≤ |b−b′| for all a,b,b′ ∈ R and y ∈ {−1,1}.

Thus, we get for all k ∈ N that

Eb0,z,µ( f
∗
0 ) ≤ Eb0,z,µ( f

∗
k ) ≤ Ebk,z,µ( f

∗
k )+n|b0−bk|,

which together with (69) and lim
k→"

bk = b0 implies that ( f ∗0 ,b0) is a minimizer for (68).

Since the soft margin hyperplane classification (66) is equivalent to (68), we obtain by Proposi-
tion 24 that it has a minimizer (w0,.0,b0) ∈W ×Rn

+×R, where the first component w0 is unique.
We shall prove a representer theorem for f ∗0 using the following celebrated geometric conse-

quence of the Hahn-Banach theorem (see, Conway, 1990, page 111).

Lemma 25 Let A be a closed convex subset of a normed vector space V and b a point in V that is
not contained in A. Then there exist T ∈V ∗ and ( ∈ R such that

T (b) < (< T (a), for all a ∈ A.

Theorem 26 (Representer Theorem) Let f ∗0 be the minimizer of (68). Then f0 lies in the closed
convex cone coGz spanned by Gz := {y jG(x j, ·) : j ∈ Nn}, that is, there exist $ j ≥ 0 such that

f0 = !
j∈Nn

$ jy jG(x j, ·). (70)

Consequently, the minimizer w0 of (66) belongs to the closed convex cone spanned by y j*(x j),
j ∈ Nn.

Proof Assume that f0 /∈ coGz. By Lemmas 25 and 8, there exists g ∈ B and ( ∈ R such that for all
$≥ 0

[ f0,g]B < (< [$y jG(x j, ·),g]B = $y jg∗(x j), j ∈ Nn.

Choosing $ = 0 above yields that ( < 0. That $y jg∗(x j) > ( for all $ ≥ 0 implies y jg∗(x j) ≥ 0,
j ∈ Nn. We hence obtain that

[ f0,g]B < 0≤ y jg∗(x j), j ∈ Nn.

We choose f ∗ = f ∗0 + tg∗, t > 0. First, observe from y jg∗(x j) ≥ 0 that

1− y j f ∗(x j) ≤ 1− y j f ∗0 (x j), j ∈ Nn. (71)
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By Lemma 7,

lim
t→0+

‖ f ∗0 + tg∗‖2B∗ −‖ f ∗0 ‖2B∗

t
= 2[g∗, f ∗0 ]B∗ = 2[ f0,g]B < 0.

Therefore, there exists t > 0 such that ‖ f ∗‖2B∗ < ‖ f ∗0 ‖2B∗ . This combined with (71) implies that
Eb,z,µ( f ∗) < Eb,z,µ( f ∗0 ) for every b ∈ R, contradicting the hypothesis that f ∗0 is the minimizer.

To solve (68), by Theorem 26 one substitutes equation (70) into (68) to obtain a convex opti-
mization problem about $ j subject to the constraint that $ j ≥ 0, j ∈ Nn.

5.3.2 HARD MARGIN HYPERPLANE CLASSIFICATION

Consider in the feature spaceW the following hard margin classification problem

inf{‖w‖W : w ∈W , b ∈ R} (72)

subject to
y j([*(x j),w]W +b) ≥ 1, j ∈ Nn.

Provided that the minimizer (w0,b0) ∈W ×R exists, the classifier is sgn([*(·),w0]W +b0).
Hard margin classification in s.i.p. spaces was discussed in Der and Lee (2007). Applying

the results in our setting tells that if b is fixed then (72) has a unique minimizer w0 and w0 ∈
co{y j*(x j) : j ∈ Nn}. As a corollary of Proposition 24 and Theorem 26, we obtain here that if
{y j : j ∈ Nn} = {−1,1} then (72) has a minimizer (w0, b0), where w0 is unique and belongs to the
set co{y j*(x j) : j ∈ Nn}.

We draw the conclusion that the support vector machine classifications in this subsection all
reduce to a convex optimization problem.

5.4 Kernel Principal Component Analysis

Kernel principal component analysis (PCA) plays a foundational role in data preprocessing for
other learning algorithms. We shall present an extension of kernel PCA for RKBS. To this end, let
us briefly review the classical kernel PCA (see, for example, Schölkopf and Smola, 2002; Schölkopf
et al., 1998).

Let x := {x j : j ∈ Nn} ⊆ X be a set of inputs. We denote by d(w,V ) the distance from w ∈W

to a closed subspace V ofW . Fix m ∈ N. For each subspace V ⊆W with dimension dimV = m,
we define the distance from V to *(x) as

D(V,*(x)) :=
1
n !j∈Nn

(d(*(x j),V ))2.

Suppose that {u j : j ∈ Nm} is a basis for V . Then for each v ∈W the best approximation v0 in
V of v exists. Assume that v0 = ! j∈Nm $ ju j, $ j ∈ C, j ∈ Nm. By Lemma 17, the coefficients $ j’s
are uniquely determined by

[

uk,v− !
j∈Nm

$ ju j

]

W

= 0, k ∈ Nm. (73)
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In the case whenW is a Hilbert space, the system (73) of equations resulting from best approx-
imation is linear about $ j’s. This enables us to construct a unique m-dimensional subspace V0 ⊆W

such that
D(V0,*(x)) =min{D(V,*(x)) :V ⊆W subspace, dimV = m}. (74)

Let T be the compact operator onW determined by

(Tu,v)W =
1
n !j∈Nn

(u,*(x j))W (*(x j),v)W , u,v ∈W . (75)

We let v j, j ∈Nm be the unit eigenvectors of T corresponding to its first m largest eigenvalues. Then
v j’s form an orthonormal basis for V0 and are called the principal components of *(x). For each
x ∈ X , ((*(x),v j)W : j ∈ Nm) ∈ Cm is its new feature. Therefore, kernel PCA amounts to selecting
the new feature map from X to Cm. The dimension m is usually chosen to be much smaller than the
original dimension ofW . Moreover, by (74), the new features of x are expected to become sparser
under this mapping.

The analysis of PCA in Hilbert spaces breaks in s.i.p. spaces where (73) is nonlinear. To tackle
this problem, we suggest using a class of linear functionals to measure the distance between two
elements inW . Specifically, we choose B⊆W ∗ and set for all u,v ∈W

dB(u,v) :=

(

!
b∈B

|(u− v,b)W |2
)1/2

.

The idea is that if dB(u,v) is small for a carefully chosen set B of linear functionals then ‖u− v‖W
should be small, and vice versa. In particular, ifW is a Hilbert space and B is an orthonormal basis
for W then dB(u,v) = ‖u− v‖W . From the practical consideration, we shall use what we have at
hand, that is, *(x). Thus, we define for each u,v ∈W

d*(x)(u,v) :=

(

!
j∈Nn

∣∣[u− v,*(x j)]W
∣∣2

)1/2

.

This choice of distance is equivalent to mapping X into Cn by

*̃(x) := ([*(x),*(x j)]W : j ∈ Nn), x ∈ X .

Consequently, new features of elements in X will be obtained by applying the classical PCA to
*̃(x j), j ∈ Nn in the Hilbert space Cn.

In our method the operator T defined by (75) on Cn is of the form

Tu=
1
n !j∈Nn

(*̃(x j)∗u)*̃(x j), u ∈ Cn,

where *̃(x j)∗ is the conjugate transpose of *̃(x j). One can see that T has the matrix representation
Tu=Mxu, u ∈ Cn, where

Mx :=
1
n
(G[x]∗G[x])T .
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Let $k, k ∈ Nn, be the eigenvalues of Mx arranged in nondecreasing order. We find for each k ∈ Nm
the unit eigenvector (k := ((kj : j ∈ Nn) ∈ Cn corresponding to $k, that is,

Mx(k = $k(
k.

Vectors (k, k ∈ Nm, form an orthonormal sequence. The new feature for x ∈ X is hence

((*̃(x),(k)Cn : k ∈ Nm) ∈ Cm.

We compute explicitly that

(*̃(x),(k)Cn = !
j∈Nn

(kjG(x,x j), k ∈ Nm.

We remark that unlike the previous three learning algorithms, the kernel PCA presented here only
makes use of the kernel G and is independent of the semi-inner-product onW . The kernel trick can
hence be applied to this algorithm.

6. Conclusion

We have introduced the notion of reproducing kernel Banach spaces and generalized the corre-
spondence between an RKHS and its reproducing kernel to the setting of RKBS. S.i.p. RKBS were
specially treated by making use of semi-inner-products and the duality mapping. A semi-inner-
product shares many useful properties of an inner product. These properties and the general theory
of semi-inner-products make it possible to develop many learning algorithms in RKBS. As illus-
tration, we discussed in the RKBS setting the minimal norm interpolation, regularization network,
support vector machines, and kernel PCA. Various representer theorems were established.

This work attempts to provide an appropriate mathematical foundation of kernel methods for
learning in Banach spaces. Many theoretical and practical issues are left for future research. An im-
mediate challenge is to construct a class of useful RKBS and the corresponding reproducing kernels.
By the classical theory of RKHS, a function K is a reproducing kernel if and only if the finite matrix
(1) is always hermitian and positive semi-definite. This function property characterization brings
great convenience to the construction of positive definite kernels. Thus, we ask what characteristics
a function must possess so that it is a reproducing kernel for some RKBS. Properties of RKBS and
their reproducing kernels also deserve a systematic study. For the applications, we have seen that
minimum norm interpolation and regularization network reduce to systems of nonlinear equations.
Dealing with the nonlinearity requires algorithms specially designed for the underlying s.i.p. space.
On the other hand, support vector machines can be reformulated into certain convex optimization
problems. Finally, section 5.4 only provides a possible implementation of kernel PCA for RKBS.
We are interested in further careful analysis and efficient algorithms for these problems. We shall
return to these issues in future work.
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Appendix A.

In this appendix, we provide proofs of two results stated in the previous sections of this paper. The
first one is about the minimization problem (5) in the introduction.

Proposition 27 If # : Rd → [0,+") is strictly concave and µ> 0, then every minimizer of

min{#(x)+µ‖x‖!1 : x ∈ Rd} (76)

has at most one nonzero element.

Proof Assume to the contrary that x0 ∈ Rd is a minimizer of (76) with more than one nonzero
elements. Then x0 is not an extreme points of the sphere {x ∈ Rd : ‖x‖!1 = ‖x0‖!1}. In other words,
there exist two distinct vectors x1,x2 ∈ Rd and some $ ∈ (0,1) such that

x0 = $x1+(1−$)x2 and ‖x1‖!1 = ‖x2‖!1 = ‖x0‖!1 .

By the strict concavity of #, we get that

#(x0)+µ‖x0‖!1 > $#(x1)+(1−$)#(x2)+µ‖x0‖!1

= $(#(x1)+µ‖x1‖!1)+(1−$)(#(x2)+µ‖x2‖!1).

Therefore, we must have either

#(x0)+µ‖x0‖!1 > #(x1)+µ‖x1‖!1

or
#(x0)+µ‖x0‖!1 > #(x2)+µ‖x2‖!1 .

Either case contradicts the hypothesis that x0 is a minimizer of (76).

The second result confirms that (27) indeed defines a semi-inner-product.

Proposition 28 Let V be a normed vector space over C. If for all x,y ∈ V \ {0} the limit

lim
t∈R, t→0

‖x+ ty‖V −‖x‖V
t

exists then [·, ·]V :V ×V → C defined by

[x,y]V := ‖y‖V
(

lim
t∈R, t→0

‖y+ tx‖V −‖y‖V
t

+ i lim
t∈R, t→0

‖iy+ tx‖V −‖y‖V
t

)
if x,y '= 0 (77)

and [x,y]V := 0 if x= 0 or y= 0 is a semi-inner-product on V .
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Proof First, we obtain for x '= 0 that

[x,x]V = ‖x‖V
(

lim
t∈R, t→0

‖(1+ t)x‖V −‖x‖V
t

+ i lim
t∈R, t→0

‖(i+ t)x‖V −‖x‖V
t

)

= ‖x‖2V
(

lim
t∈R, t→0

|1+ t|−1
t

+ i lim
t∈R, t→0

|i+ t|−1
t

)

= ‖x‖2V (1+0) = ‖x‖2V > 0.

(78)

We then deal with the remaining three conditions of a semi-inner-product. Clearly, they are true
if one of the arguments involved is the zero vector. Let x,y,z ∈V \{0}. We start with the estimate:

Re [x+ y,z]V = ‖z‖V lim
t∈R, t→0+

‖z+ tx+ ty‖V −‖z‖V
t

≤ ‖z‖V lim
t∈R, t→0+

‖ z2 + tx‖V +‖ z2 + ty‖V −‖z‖V
t

= ‖z‖V
(

lim
t∈R, t→0+

‖ z2 + tx‖V −‖ z2‖V
t

+ lim
t∈R, t→0+

‖ z2 + ty‖V −‖ z2‖V
t

)

= ‖z‖V
(

lim
t∈R, t→0+

‖z+2tx‖V −‖z‖V
2t

+ lim
t∈R, t→0+

‖z+2ty‖V −‖z‖V
2t

)
.

The above equation implies that

Re [x+ y,z]V ≤ Re [x,z]V + Re [y,z]V . (79)

It can be easily verified that [−x,y]V = −[x,y]V . Replacing y with x+ y, and x with −x in the above
equation yields that

Re [y,z]V ≤ Re [−x,z]V + Re [x+ y,z]V = −Re [x,z]V + Re [x+ y,z]V . (80)

Combining (79) and (80), we get that Re [x+ y,z]V = Re [x,z]V + Re [y,z]V . Similar arguments lead
to that Im [x+ y,z]V = Im [x,z]V + Im [y,z]V . Therefore,

[x+ y,z]V = [x,z]V +[y,z]V . (81)

Next we see for all $ ∈ R\{0} that

[$x,y]V = ‖y‖V lim
t∈R, t→0

‖y+ t$x‖V −‖y‖V
t

= $‖y‖V lim
t∈R, t→0

‖y+ t$x‖V −‖y‖V
$t

= $[x,y]V .

It is also clear from the definition (77) that [ix,y]V = i[x,y]V . We derive from these two facts and
(81) for every $= (+ i), (,) ∈ R that

[$x,y]V = [(x+ i)x,y]V = [(x,y]V +[i)x,y]V = ([x,y]V + i[)x,y]V
= ([x,y]V + i)[x,y]V = ((+ i))[x,y]V = $[x,y]V .

(82)

We then proceed for $ ∈ C\{0} by (82) that

[x,$y]V = ‖$y‖V lim
t∈R, t→0

‖$y+ tx‖V −‖$y‖V
t

= ‖$y‖V |$| lim
t∈R, t→0

‖y+ t x$‖V −‖y‖V
t

= |$|2[
x
$
,y]V =

|$|2

$
[x,y]V = $ [x,y]V .

(83)
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Finally, we find some $ ∈ C such that |$| = 1 and $[x,y]V = |[x,y]V |, and then obtain by (82) and
(77) that

|[x,y]V | = $[x,y]V = [$x,y]V = ‖y‖V lim
t∈R, t→0+

‖y+ t$x‖V −‖y‖V
t

≤ ‖y‖V lim
t∈R, t→0+

‖y‖V + t‖$x‖V −‖y‖V
t

= ‖y‖V‖$x‖V = ‖x‖V‖y‖V .

By (78), the above inequality has the equivalent form

|[x,y]V |≤ [x,x]1/2V [y,y]1/2V . (84)

Combining Equations (78), (81), (82), (83), and (84) proves the proposition.
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Abstract

Many collective classification (CC) algorithms have been shown to increase accuracy when in-
stances are interrelated. However, CC algorithms must be carefully applied because their use of
estimated labels can in some cases decrease accuracy. In this article, we show that managing this
label uncertainty through cautious algorithmic behavior is essential to achieving maximal, robust
performance. First, we describe cautious inference and explain how four well-known families of
CC algorithms can be parameterized to use varying degrees of such caution. Second, we introduce
cautious learning and show how it can be used to improve the performance of almost any CC al-
gorithm, with or without cautious inference. We then evaluate cautious inference and learning for
the four collective inference families, with three local classifiers and a range of both synthetic and
real-world data. We find that cautious learning and cautious inference typically outperform less
cautious approaches. In addition, we identify the data characteristics that predict more substantial
performance differences. Our results reveal that the degree of caution used usually has a larger im-
pact on performance than the choice of the underlying inference algorithm. Together, these results
identify the most appropriate CC algorithms to use for particular task characteristics and explain
multiple conflicting findings from prior CC research.

Keywords: collective inference, statistical relational learning, approximate probabilistic infer-
ence, networked data, cautious inference

1. Introduction

Traditional methods for supervised learning assume that the instances to be classified are indepen-
dent of each other. However, in many classification tasks, instances can be related. For example,
hyperlinked web pages are more likely to have the same class label than unlinked pages. Such
autocorrelation (correlation of class labels among interrelated instances) exists in a wide variety
of data (Neville and Jensen, 2007; Macskassy and Provost, 2007), including situations where the
relationships are implicit (e.g., email messages between two people are likely to share topics).
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Collective classification (CC) is a method for jointly classifying related instances. To do so,
CC methods employ a collective inference algorithm that exploits dependencies between instances
(e.g., autocorrelation), enabling CC to often attain higher accuracies than traditional methods when
instances are interrelated (Neville and Jensen, 2000; Taskar et al., 2002; Jensen et al., 2004; Sen
et al., 2008). Several algorithms have been used for collective inference, including relaxation label-
ing (Chakrabarti et al., 1998), the iterative classification algorithm (ICA) (Lu and Getoor, 2003a),
loopy belief propagation (LBP) (Taskar et al., 2002), Gibbs sampling (Gibbs) (Jensen et al., 2004),
and variants of the weighted-vote relational neighbor algorithm (wvRN) (Macskassy and Provost,
2007).

During testing, all collective inference algorithms exploit relational features based on uncertain
estimation of class labels. This test-time label uncertainty can diminish accuracy due to two related
effects. First, an incorrectly predicted label during testing may negatively influence the predictions
of its linked neighbors, possibly leading to cascading inference errors (cf., Neville and Jensen,
2008). Second, the training process may learn a poor model for test-time inference, because of the
disparity between the training scenario (where labels are known and certain) and the test scenario
(where labels are estimated and hence possibly incorrect). As a result, while CC has many potential
advantages, in some cases CC’s label uncertainty may actually cause accuracy to decrease compared
to non-relational approaches (Neville and Jensen, 2007; Sen and Getoor, 2006; Sen et al., 2008).

In this article, we argue that managing this test-time label uncertainty through “cautious” al-
gorithmic behavior is essential to achieving maximal, robust performance. We describe two com-
plementary cautious strategies. Each addresses the fundamental problem of label uncertainty, but
separately targets the two manifestations of the problem described above. First, cautious infer-
ence is an inference process that attends to the uncertainty of its intermediate label predictions.
For example, existing algorithms such as Gibbs or LBP accomplish cautious inference by sampling
from or directly reasoning with the estimated label distributions. These techniques are cautious
because they prevent less certain label estimates from having substantial influence on subsequent
estimations. Alternatively, we show how variants of a simpler algorithm, ICA, can perform cautious
inference by appropriately favoring more certain information. Second, cautious learning refers to a
training process that ameliorates the aforementioned train/test disparity. In particular, we introduce
PLUL (Parameter Learning for Uncertain Labels), which uses standard cross-validation techniques,
but in a way that is new for CC and that leads to significant performance advantages. In particu-
lar, PLUL is cautious because it prevents the algorithm from learning a model from the (correctly
labeled) training set that overestimates how useful relational features will be when computed with
uncertain labels from the test set.

We consider four frequently-studied families of CC algorithms: ICA, Gibbs, LBP, and wvRN.
For each family, we describe algorithms that use varying degrees of cautious inference and explain
how they all (except for the relational-only wvRN) can also exploit cautious learning via PLUL.
We then evaluate the variants of these four families, with and without PLUL, over a wide range of
synthetic and real-world data sets. To broaden the evidence for our results, we evaluate three local
classifiers that are used by some of the CC algorithms, and also compare against a non-relational
baseline.

While recent CC studies describe complementary results and make some related comparisons,
they omit important variations that we consider here (see Section 3). Moreover, the scope and/or
methodology of previous studies leaves several important questions unanswered. For instance,
Gibbs is often regarded as one of the most accurate inference algorithms, and has been shown
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to work well for CC (Jensen et al., 2004; Neville and Jensen, 2007). If so, why did Sen et al.
(2008) find no significant difference between Gibbs and the much less sophisticated ICA? Second,
we earlier reported that ICAC (a cautious variant of ICA) outperforms both Gibbs and ICA on three
real-world data sets (McDowell et al., 2007a). Why would ICAC outperform Gibbs, and for what
data characteristics are ICAC’s gains significant? We answer these questions and more in Section 8.

We hypothesize that cautious CC algorithms will outperform more aggressive CC approaches
when there exists a high probability of an “incorrect relational inference”, which we define as a pre-
diction error that is due to reasoning with relational features (i.e., an error that does not occur when
relational features are removed). Two kinds of data characteristics increase the likelihood of such
errors. First, when the data characteristics lead to lower overall classification accuracy (e.g., when
the non-relational attributes are not highly predictive), then the computed relational feature values
will be less reliable. Second, when a typical relational link is highly predictive (e.g., as occurs when
the data exhibits high relational autocorrelation), then the potential effect of any incorrect predic-
tion is magnified. As the magnitude of either of these data set characteristics increases, cautious
algorithms should outperform more aggressive algorithms by an increasing amount.

Our contributions are as follows. First, we describe cautious inference and how four commonly-
used families of existing CC inference algorithms can exhibit more or less caution. Second, we
introduce cautious learning and explain how it can help compensate for the train/test disparity that
occurs when a CC algorithm uses estimated class labels during testing. Third, we identify the data
characteristics for which these cautious techniques should outperform more aggressive approaches,
as introduced in the preceding paragraph and discussed in more detail in Section 6. Our experi-
mental results confirm that cautious approaches typically do outperform less cautious variants, and
that these effects grow larger when there is a greater probability of incorrect relational inference.
Moreover, our results reveal that in most cases the degree of caution used has a larger impact on
performance than the choice of the underlying inference algorithm. In particular, the cautious algo-
rithms perform very similarly, regardless of whether ICAC or Gibbs or LBP is used, although our
results also confirm that, for some data characteristics, inference with LBP performs comparatively
poorly. These results suggest that in many cases the higher computational complexity of Gibbs and
LBP is unnecessary, and that the much faster ICAC should be used instead. Finally, our results and
analysis enable us to answer the previously mentioned questions regarding CC.

The next two sections summarize collective classification and related work. Section 4 then
explains why CC needs to be cautious and describes cautious inference and learning in more detail.
In Section 5, we describe how caution can be specifically used by the four families of CC inference
algorithms. Section 6 then describes our methodology and hypotheses. Section 7 presents our
results, which we discuss in Section 8. We conclude in Section 9.

2. Collective Classification: Description and Problem Definition

In this section, we first motivate and define collective classification (CC). We then describe different
approaches to CC, different CC tasks, and our assumptions for this article.

2.1 Problem Statement and Example

In many domains, relations exist among instances (e.g., among hyperlinked web pages, social net-
work members, co-cited publications). These relations may be helpful for classification tasks, such
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as predicting the topic of a publication or the group membership of a person (Koller et al., 2007).
More formally, we consider the following task (based on Macskassy and Provost, 2006):

Definition 1 (Classification of Graph-based Data) Assume we are given a graph G= (V,E,X ,Y,C)
where V is a set of nodes, E is set of (possibly directed) edges, each!xi ∈ X is an attribute vector for
node vi ∈V, each Yi ∈Y is a label variable for vi, and C is the set of possible labels. Assume further
that we are given a set of “known” values YK for nodesVK ⊂V, so that YK = {yi|vi ∈VK}. Then the
task is to infer YU , the values of Yi for the remaining nodes with “unknown” values (VU =V −VK),
or a probability distribution over those values.1

For example, consider the task of predicting whether a web page belongs to a professor or a stu-
dent. Conventional supervised learning approaches ignore the link relations and classify each page
using attributes derived from its content (e.g., words present in the page). We refer to this approach
as non-relational classification. In contrast, a technique for relational classificationwould explicitly
use the links to construct additional relational features for classification (e.g., for each page, includ-
ing as features the words from hyperlinked pages). This additional information can potentially in-
crease classification accuracy, though may sometimes decrease accuracy as well (Chakrabarti et al.,
1998). Alternatively, even greater (and usually more reliable) increases can occur when the class
labels of the linked pages are used instead to derive relevant relational features (Jensen et al., 2004).
However, using features based on these labels is challenging, because some or all of the labels are
initially unknown, and thus typically must be estimated and then iteratively refined in some way.
This process of jointly inferring the labels of interrelated nodes is known as collective classification
(CC).

Figure 1 summarizes an example execution of a simple CC algorithm, ICA, applied to the binary
web page classification task. Each step in the sequence displays a graph of four nodes, where each
node denotes a web page, and hyperlinks among them. Each node has a class label yi; the set of
possible class labels isC= {P,S}, denoting professors and students, respectively. Three nodes have
unknown labels (VU = {v1,v2,v4}) and one node has a known label (VK = {v3}). In the initial state
(step A), no label yi has yet been estimated for the nodes in VU , so each is set to missing (indicated
by a question mark). Each node has three binary attributes (represented by !xi). Nodes in VU also
have two relational features (one per class), represented by the vector !fi. Each feature denotes the
number of linked nodes (ignoring link direction) that have a particular class label.

In step B, some classifier (not shown) estimates class labels for nodes inVU using only the (non-
relational) attributes. These labels, along with the known label y3, are used in step C to compute
the relational feature value vectors. For instance, in step C, !f2 = (1 2) because v2 links to nodes
with one current P label and two current S labels. In step D, a classifier re-estimates the labels using
both attributes and relational features, which changes the predicted label of v2. In step E, relational
feature values are re-computed using the new labels. Steps D and E then repeat until a termination
criterion is satisfied (e.g., convergence, number of iterations).

This example exhibits how relational value uncertainty occurs with CC. For instance, the feature
vector !f1 is (1 0) in step C but later becomes (0 1). Thus, intermediate predictions use uncertain
label estimates, motivating the need to cautiously use such estimates.

1. VK may be empty. In addition, a separate training graph may be provided; see Section 2.3.
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Figure 1: Example operation of ICA, a simple CC algorithm. Each step (A thru E) shows a graph of
4 linked nodes (i.e., web pages). “Known” values are are shown in white text on a black
background; this includes all attribute values !xi and the class label y3 for v3. Estimated
values are shown instead with a white background.

2.2 Algorithms for Collective Inference

For some collective inference tasks, exact methods such as junction trees (Huang and Darwiche,
1996) or variable elimination (Zhang and Poole, 1996) can be applied. However, these methods
may be prohibitively expensive to use (e.g., summing over the remaining variable configurations is
intractable for modest-sized graphs). Some research has focused on methods that further factorize
the variables, and then apply an exact procedure such as belief propagation (Neville and Jensen,
2005), min-cut partition (Barzilay and Lapata, 2005), or methods for solving quadratic and linear
programs (Triebel et al., 2007). In this article, we consider only approximate collective inference
methods.

We consider three primary types of approximate collective inference algorithms, borrowing
some terminology from Sen et al. (2008):

• Local classifier-basedmethods. For these methods, inference is an iterative process whereby
a local classifier predicts labels for each node in VU using both attributes and relational fea-
tures (derived from the current label predictions), and then a collective inference algorithm
recomputes the class labels, which will be used in the next iteration. Examples of this type
of CC algorithm include ICA (used in the example above) and Gibbs. Local classifiers that
have been used include Naive Bayes (Jensen et al., 2004), relational probability trees (Neville
et al., 2003a), k-nearest neighbor (McDowell et al., 2007b), and logistic regression (Sen et al.,
2008). Typically, a supervised learner induces the local classifier from the training set using
both attributes and relational features.
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• Global formulation-based methods. These methods train a classifier that seeks to opti-
mize one global objective function, often based on a Markov random field (Dobrushin, 1968;
Besag, 1974). As above, the classifier uses both attributes and relational features for infer-
ence. Examples of these algorithms include loopy belief propagation and relaxation labeling.
These do not use a separate local classifier; instead, the entire algorithm is used for both train-
ing (e.g., to learn the clique potentials) and inference. See Taskar et al. (2002) and Sen et al.
(2008) for more details.

• Relational-only methods. Recently, Macskassy and Provost (2007) demonstrated that, when
some labels are known (i.e., |VK | > 0), algorithms that use only relational information can in
some cases perform very well. We consider several variants of the algorithm they described,
wvRNRL (weighted-vote relational neighbor, with relaxation labeling). This algorithm com-
putes a new label distribution for a node by averaging the current distributions of its neighbors.
It does not require any training.

With local classifier methods, learning the classifier can often be done in a single pass over the
data, does not require running collective inference, and in fact is independent of the collective infer-
ence procedure that will be used. In contrast, for global methods the local classifier and inference
algorithm are effectively unified. As a result, learning for a global method requires committing to
and actually executing a specific inference algorithm, and thus can be much slower than with a local
classifier-based method.

All of these algorithms jointly classify interrelated nodes using some iterative process. Those
that propagate from one iteration to the next a single label for each node are called hard-labeling
methods. Methods that instead propagate a probability distribution over the possible class labels
are called soft-labeling methods (cf., Galstyan and Cohen, 2007). All of the local classifier-based
methods that we examine are hard-labeling methods.2 Soft-labeling methods, such as variants of
relaxation labeling, are also possible but require that the local classifier be able to reason directly
with label distributions, which is more complex than the label aggregation for features typically
done with approaches like ICA or Gibbs. Section 6.6 provides more detail on these features.

2.3 Task Definitions and Focus

Collective classification has been applied to two types of inference tasks, namely the out-of-sample
task, where VK is empty, and the in-sample task, where VK is not empty. Both types of tasks
may emerge in real-world situations (Neville and Jensen, 2005). Prior work on out-of-sample tasks
(Neville and Jensen, 2000; Taskar et al., 2002; Sen and Getoor, 2006) assume that the algorithm is
also provided with a training graph GTr that is disjoint from the test graph G. For instance, a model
may be learned over the web-graph for one institution, and tested on the web-graph of another.

For in-sample tasks, where some labels in G are known, CC can be applied to the single graph
G (Macskassy and Provost, 2007; McDowell et al., 2007a; Sen et al., 2008; Gallagher et al., 2008);
within-network classification (Macskassy and Provost, 2006) involves training on the subsetGK ⊂G
with known labels, and testing by running inference over the entire graph. This task simulates, for
example, fraud detection in a single large telecommunication network where some entities/nodes are

2. We could also consider wvRNRL, which is a soft-labeling method, to be a local classifier-based method, albeit a
simple one that ignores attributes and does no learning. However, for explication we list relational-only methods as a
separate category in the list above because our results will show they often have rather different performance trends.
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known to be fraudulent. Another in-sample task (Neville and Jensen, 2007; Bilgic and Getoor, 2008;
Neville and Jensen, 2008) assumes a separate training graph GTr, where a model is learned from
GTr and inference is performed over the test graph G, which includes both labeled and unlabeled
nodes. For both tasks, predictive accuracy is measured only for the unlabeled nodes.

In Section 6, we will address three types of tasks (i.e., out-of-sample, sparse in-sample, and
dense in-sample). This is similar to the set of tasks addressed in some previous evaluations (e.g.,
Neville and Jensen, 2007, 2008; Bilgic and Getoor, 2008) and subsumes some others (e.g., Neville
and Jensen, 2000; Taskar et al., 2002; Sen and Getoor, 2006). We will not directly address the
within-network task, but the algorithmic trends observed from our in-sample evaluations should be
similar.3

2.4 Assumptions and Limitations

In this broad investigation on the utility of caution in collective classification, we make several
simplifying assumptions. First, we assume data is obtained passively rather than actively (Rattigan
et al., 2007; Bilgic and Getoor, 2008). Second, we assume that nodes are homogeneous (e.g., all
represent the same kind of object) rather than heterogeneous (Neville et al., 2003a; Neville and
Jensen, 2007). Third, we assume that links are not missing, and need not be inferred (Bilgic and
Getoor, 2008). Finally, we do not attempt to increase autocorrelation via techniques such as link
addition (Gallagher et al., 2008), clustering (Neville and Jensen, 2005), or problem transformation
(Tian et al., 2006; Triebel et al., 2007).

Our example in Figure 1 employs a simple relational feature (i.e., that counts the number of
linked nodes with a specific class label). However, several other types of relations exist. For ex-
ample, Gallagher and Eliassi-Rad (2008) describe a topology of feature types, including structural
features that are independent of node labels (e.g., the number of linked neighbors of a given node).
We focus on only three simple types of relational features (see Section 6.6), and leave broader in-
vestigations for future work. Likewise, for CC algorithms that learn, we assume that training is
performed just once, which differs from some prior work where the learned model is updated in
each iteration (Lu and Getoor, 2003b; Gurel and Kersting, 2005).

3. Related Work

Besag (1986) originally described the “Iterated Conditional Modes” (ICM) algorithm, which is a
version of the ICA algorithm that we consider. Several researchers have reported that employ-
ing inter-instance relations in CC algorithms can significantly increase predictive accuracy (e.g.,
Chakrabarti et al., 1998; Neville and Jensen, 2000; Taskar et al., 2002; Lu and Getoor, 2003a).
Furthermore, these algorithms have performed well on a variety of tasks, such as identifying secu-
rities fraud (Neville et al., 2005), ranking suspicious entities (Macskassy and Provost, 2005), and
annotating semantic web services (Heß and Kushmerick, 2004).

In each iteration, a CC algorithm predicts a class label (or a class distribution) for each node and
uses it to determine the next iteration’s predictions. Although using label predictions from linked
nodes (instead of using the larger number of attributes from linked nodes) encapsulates the influence
of a linked node and simplifies learning (Jensen et al., 2004), it can be problematic. For example,

3. Indeed, we performed additional experiments where we reproduced the synthetic data of Sen et al. (2008), but then
transformed the task from their within-network variant to a variant that uses a separate graph for training (as done in
this article), and obtained results similar to those they reported.
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iterating with incorrectly predicted labels can propagate and amplify errors (Neville and Jensen,
2007; Sen and Getoor, 2006; Sen et al., 2008), diminishing or even reducing accuracy compared
to non-relational approaches. In this article, we examine the data characteristics (and algorithmic
interactions) for which these issues are most serious and explain how cautious approaches can ame-
liorate them.

The performance of CC compared to non-relational learners depends greatly on the data char-
acteristics. First, for CC to improve performance, the data must exhibit relational autocorrelation
(Jensen et al., 2004; Neville and Jensen, 2005; Macskassy and Provost, 2007; Rattigan et al., 2007;
Sen et al., 2008), which is correlation among the labels of related instances (Jensen and Neville,
2002). Complex correlations can be exploited by some CC algorithms, capturing for instance the
notion “Professors primarily have out-links to Students.” In contrast, the simplest kind of corre-
lation is homophily (McPherson et al., 2001), in which links tend to connect nodes with the same
label. To facilitate replication, Appendix A defines homophily more formally.

A second data characteristic that can influence CC performance is attribute predictiveness. For
example, if the attributes are far less predictive than the selected relational features, then CC algo-
rithms should perform comparatively well vs. traditional algorithms (Jensen et al., 2004). Third,
link density plays a role (Jensen and Neville, 2002; Neville and Jensen, 2005; Sen et al., 2008); if
there are few relations among the instances, then collective classification may offer little benefit.
Alternatively, algorithms such as LBP are known to perform poorly when link density is very high
(Sen and Getoor, 2006). Fourth, an important factor is the labeled proportion (the proportion of test
nodes that have known labels). In particular, if some node labels are known (|VK | > 0), these labels
may help prevent CC estimation errors from cascading. In addition, if a substantial number of la-
bels are known, simpler relational-only algorithms may be the most effective. Although additional
data characteristics exist that can influence the performance of CC algorithms, such as degree of
disparity (Jensen et al., 2003) and assortativity (Newman, 2003; Macskassy, 2007), we concentrate
on these four in our later evaluations.

Compared to this article, prior studies provide complementary results and make some relevant
comparisons, but do not examine important variations that we consider here. For instance, Jensen
et al. (2004) only investigate a single collective inference algorithm, and Macskassy and Provost
(2007) focus on relational-only (univariate) algorithms. Sen et al. (2008) assess several algorithms
on real and synthetic data, but do not examine the impact of attribute predictiveness or labeled pro-
portion. Likewise, Neville and Jensen (2007) evaluate synthetic and real data, but vary data char-
acteristics (autocorrelation and labeled proportion) for only the synthetic data, do not consider ICA,
and consider LBP only for the synthetic data. In addition, only one of these prior studies (Neville
and Jensen, 2000) evaluates an algorithm related to ICAC, which is a simple cautious variant of ICA
that we show has promising performance. Moreover, these studies did not compare algorithms that
vary only in their degree of cautious inference, or use cautious learning.

4. Types of Caution in CC and Why Caution is Important

Section 3 described how collective classification exploits label predictions to try to increase ac-
curacy, but how iterating with incorrectly predicted labels can sometimes propagate and amplify
errors. To address this problem, we recently proposed the use of cautious inference for CC (Mc-
Dowell et al., 2007a). We defined an inference algorithm to be cautious if it sought to “explicitly
identify and preferentially exploit the more certain relational information.” In addition, we ex-
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plained that a variant of ICA that we here call ICAC is cautious because it selectively ignores class
labels that were predicted with less confidence by the local classifier. Previously, Neville and Jensen
(2000) introduced a simpler version4 of ICAC but compared it only with non-relational classifiers.
We showed that ICAC can outperform ICA and Gibbs, but did not identify the data conditions under
which such gains hold.

In this article, we expand our original notion of caution in two ways. First, we broaden our
idea of cautious inference to encompass several other existing CC inference techniques that seek
the same goal (managing prediction uncertainty). Recognizing the behavioral similarities between
these different algorithms helps us to better assess the strengths and weaknesses of each algorithm
for a particular data set. Second, we introduce cautious learning, a technique that ameliorates
prediction uncertainty even before inference is applied, which can substantially increase accuracy.
Below we detail these two types of caution.

• A CC algorithm exhibits cautious inference if its inference process attends to the uncertainty
of its intermediate label predictions. Usually, this uncertainty is approximated via the pos-
terior probabilities associated with each predicted label. For instance, a CC algorithm may
exercise cautious inference by favoring predicted information that has less uncertainty (higher
confidence). This is the approach taken by ICAC, which uses only the most certain labels at
the beginning of its operation, then gradually incorporates less certain predictions in later it-
erations. Alternatively, instead of always selecting the most likely class label for each node
(like ICA and ICAC), Gibbs re-samples the label of each node based on its estimated distribu-
tion. This re-sampling leads to more stochastic variability (and less influence) for nodes with
less certain predictions. Finally, soft-labeling algorithms like LBP, relaxation labeling, and
wvRNRL directly reason with the estimated label distributions. For instance, wvRNRL averages
the estimated distributions of a node’s linked neighbors, which gives more influence to more
certain predictions.

• A CC algorithm exhibits cautious learning if its training process is influenced by recogniz-
ing the disparity between the training set (where labels are known and certain) and the test
scenario (where labels may be estimated and hence incorrect). In particular, a relational fea-
ture may appear to be highly predictive of the class when examining the training set (e.g., to
learn conditional probabilities or feature weights), yet its use may actually decrease accuracy
if its value is often incorrect during testing. In response, one approach is to ensure that appro-
priate training parameters are cross-validated using the actual testing conditions (e.g., with
estimated test labels). We use PLUL to achieve this goal.

The next section describes how these general ideas can be applied. Later, our experimental
results demonstrate when they lead to significant performance improvements.

5. Applying Cautious Inference and Learning to Collective Classification

The previous section described two types of caution for CC. Each attempts to alleviate potential
estimation errors in labels during collective inference. Cautious inference and cautious learning
can often be combined, and at least one is used or is applicable to every CC algorithm known to

4. Their algorithm is like ICAC, except that it does not consider how to favor “known” labels from VK .
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us. In this section, we provide examples of how both types can be applied by describing specific
CC algorithms that exploit cautious inference (Sections 5.1-5.4), and by describing how PLUL can
complement these algorithms with cautious learning (Section 5.5). Section 5.6 then discusses the
computational complexity of these algorithms.

We describe and evaluate four families of CC inference algorithms: ICA, Gibbs, LBP, and
wvRN.5 Among local classifier-based algorithms, we chose ICA and Gibbs because both have been
frequently studied and often perform well. As a representative global formulation-based algorithm,
we chose LBP instead of relaxation labeling because previous studies (Sen and Getoor, 2007; Sen
et al., 2008) found similar performance, with in some cases a slight edge for LBP. Finally, we select
wvRN because it is a good relational-only baseline for CC evaluations (Macskassy and Provost,
2007).

Table 1 summarizes the four CC families that we consider. Within each family, each variant use
more cautious inference than the variant listed below it. Cautious variants of standard algorithms
are given a “C” subscript (e.g., ICAC), while non-cautious variants of standard algorithms are given
a “NC” subscript (e.g., GibbsNC). For the latter case, our intent is not to demonstrate large perfor-
mance “gains” for a standard algorithm vs. a new non-cautious variant, but to isolate the impact of
a particular cautious algorithmic behavior on performance. While the result may not be a theoret-
ically coherent algorithm (e.g., GibbsNC, unlike Gibbs, is not a MCMC algorithm), in every case
the resultant algorithm does perform well under data set situations where caution is not critical (see
Section 7). Thus, comparing the performance of the cautious vs. non-cautious variants allows us to
investigate the data characteristics for which cautious behavior is more important.6

5.1 ICA Family of Algorithms

Figure 2 displays pseudocode for ICA, ICAC, and ICAKn, depending on the setting of the parameter
AlgType. We describe each in turn.

5.1.1 ICA

In Figure 2, step 1 is a “bootstrap” step that predicts the class label yi of each node in VU using
only attributes (con f i records the confidence of this prediction, but ICA ignores this information).
The algorithm then iterates (step 2). During each iteration, ICA selects all available labels (step 3),
computes the relational features’ values based on these labels (step 4), and then re-predicts the class
label of each node using both attributes and relational features (step 5). After iterating, hopefully to
convergence, step 6 returns the final set of estimated class labels.
Types of Caution Used: Steps 3-4 of ICA use all available labels for feature computation (including
estimated, possibly incorrect labels) and step 5 picks the single most likely label for each node based
on the new predictions. In these steps, uncertainty in the predictions is ignored. Thus, ICA does not

5. Technically, wvRN by itself is a local classifier, not an inference algorithm, but for brevity we refer to the family of
algorithms based on this classifier (such as wvRNRL) as wvRN.

6. Section 7 shows that the non-cautious variants ICA, GibbsNC, and LBPNC perform similarly to each other. Thus, our
empirical results would change little if we compared all of the cautious algorithms against the more standard ICA.
However, the results for Gibbs and LBP would then concern performance differences between distinct algorithms,
due to conjectured but unconfirmed differences in algorithmic properties. By instead comparing Gibbs vs. GibbsNC
and LBP vs. LBPNC, we more precisely demonstrate that the cautious algorithms benefit from specifically identified
cautious behaviors.
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Name Cautious Inf.? Key Features Type Evaluated by?
Local classifier-based methods that iteratively classify nodes, yielding a final graph state
ICAC Favors more

conf. labels
Relational features depend only on
“more confident” estimated labels;
later iterations loosen confidence
threshold.

Hard Neville and Jensen (2000);
McDowell et al. (2007a)

ICAKn Favors known
labels

First iteration: rel. features depend
only on known labels. Later iterations:
use all labels.

Hard McDowell et al. (2007a)

ICA Not cautious Always use all labels, known and esti-
mated.

Hard Lu and Getoor (2003a); Sen
and Getoor (2006); Mc-
Dowell et al. (2007a,b)

Local classifier-based algorithms that compute conditional probabilities for each node
Gibbs Samples from

estimated
distribution

At each step, classifies using all neigh-
bor labels, then samples new la-
bels from the resultant distributions.
Records new labels to produce final
marginal statistics.

Hard Jensen et al. (2004); Neville
and Jensen (2007); Sen et al.
(2008)

GibbsNC Not cautious Like Gibbs, but always pick most
likely label instead of sampling.

Hard None, but very similar to
ICA.

Global formulation algorithms based on loopy belief propagation (LBP)
LBP Reasons with

estimated
distribution

Passes continuous-valued messages
between linked neighbors until con-
vergence.

Soft Taskar et al. (2002); Neville
and Jensen (2007); Sen et al.
(2008)

LBPNC Not cautious Like LBP, but each node always
chooses single most likely label to use
for next round of messages.

Hard —

Relational-only algorithms
wvRNRL Reasons with

estimated
distribution

Computes new distribution by aver-
aging neighbors’ label distributions;
combines old and new distributions
via relaxation labeling.

Soft Macskassy and Provost
(2007); Gallagher et al.
(2008)

wvRNICA+C Favors nodes
closer to known
labels

Initializes nodes in VU to missing.
Computes most likely label by averag-
ing neighbors’ labels, ignoring miss-
ing labels.

Hard Macskassy and Provost
(2007); similar to Galstyan
and Cohen (2007)

wvRNICA+NC Not cautious Like wvRNICA+C, but no missing la-
bels are used. Instead, initialize nodes
inVU by sampling from the prior label
distribution.

Hard —

Table 1: The ten collective inference algorithms considered in this article, divided into four fami-
lies. Hard/soft refers to hard-labeling and soft-labeling (see Section 2.2).

perform cautious inference. However, it may exploit cautious learning to learn the classifier models
that are used for inference (MA and MAR).

5.1.2 ICAC

In steps 3-4 of Figure 2, ICA assumes that the estimated node labels are all equally likely to be
correct. When AlgType instead selects ICAC, the inference becomes more cautious by only con-
sidering more certain estimated labels. Specifically, step 3 “commits” into Y ′ only the best m of
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ICA classify (V,E,X ,YK ,MAR,MA,n,AlgType)=
// V=nodes, E=edges, X=attribute vectors, YK=labels of known nodes (YK = {yi|vi ∈VK} )
//MAR=local classifier (uses attributes and relations),MA=classifier that uses only attributes
// n=# of iterations, AlgType=ICAC, ICAKn, or ICA

1 for each node vi ∈VU do // Bootstrap: estimate label yi for each node
(yi,con f i) ←MA(!xi) // using attributes only

2 for h = 0 to n do
3 // Select node labels to use for computing relational feature values, store in Y ′

if (AlgType = ICAC) // For ICAC: use known and m most confident
m← |VU | · (h/n) // estimated labels, gradually increase m
Y ′ ← YK ∪{yi|vi ∈VU ∧ rank(con f i) ≤ m}

else if (h = 0) and (AlgType = ICAKn)
Y ′ ← YK // For ICAKn(first iteration): use only known labels

else // For ICAKn (after first iteration) and ICA: use all
Y ′ ← YK ∪{yi|vi ∈VU} // labels (known and estimated)

4 for each node vi ∈VU do
!fi ← calcRelatFeats(V,E,Y ′) // Compute feature values, using labels selected above

5 for each node vi ∈VU do // Re-predict most likely label, using attributes
(yi,con f i) ←MAR(!xi,!fi) // and relational features

6 return {yi|vi ∈VU} // Return predicted class label for each node

Figure 2: Algorithm for ICA family of algorithms. We use n= 10 iterations.

the current estimated labels; other labels are considered missing and thus ignored in the next step.
Step 4 computes the relational features using only the committed labels, and step 5 classifies using
this information. Step 3 gradually increases the fraction of estimated labels that are committed per
iteration (e.g., if n=10, from 0%, 10%, 20%,..., up to 100%). Node label assignments committed in
an iteration h are not necessarily committed again in iteration h+1 (and may in fact change).

ICAC requires some kind of confidence measure (con f i in Figure 2) to determine the “best”m of
the current label assignments (those with the highest confidence “rank”). We adopt the approach of
Neville and Jensen (2000) and use the posterior probability of the most likely class for each node i as
con f i. In exploratory experiments, we found that alternative measures (e.g., probability difference
of the top two classes) produced similar results.
Types of Caution Used: ICAC favors more confident information by ignoring nodes whose labels
are estimated with lower confidence. Step 3 executes this preference, which affects the algorithm
in several ways. First, omitting the estimated labels for some nodes causes the relational feature
value computation in step 4 to ignore those less certain labels. Since this computation favors more
reliable label assignments, subsequent assignments should also be more reliable. Second, if any
node links only to nodes with missing labels, then the computed value of the relational features for
that node will also be missing; Section 6.5 describes how the classifier in Step 5 handles this case.
Third, recall that a realistic CC scenario’s test set may have links to nodes with known labels; these
nodes, represented by VK , provide the “most certain” labels and thus may aid classification. ICAC
exploits only these labels for iteration h= 0. In this case, step 3 ignores all estimated labels (every
estimate for VU ), but step 4 can still compute some relational feature values based on known labels
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Gibbs classify (V,E,X ,YK ,MAR,MA,n,nB,C,AlgType)=
// V=nodes, E=edges, X=attribute vectors, YK=labels of known nodes (YK = {yi|vi ∈VK} )
//MAR=local classifier (uses attributes and relations),MA=classifier that uses only attributes
// n=# of iterations, nB= “burn-in” iters.,C=set of class labels, AlgType=Gibbs or GibbsNC

1 for each node vi ∈VU do // Bootstrap: estimate label probs.!bi
!bi ←MA(!xi) // for each node, using attributes only

2 for each node vi ∈VU do // Initialize statistics
for each c ∈C

stats[i][c] ← 0
3 for h = 1 to n do // Repeat for n iterations

for each node vi ∈VU do
4 switch (AlgType):

case (Gibbs): yi ← sampleDist(!bi) // Sample next label from distribution
case (GibbsNC): yi ← argmaxc∈C bi(c) // Or, pick most likely label from dist.

5 if (h> nB) stats[i,yi] ← stats[i,yi]+1 // Record stats. on chosen label
6 Y ′ ← YK ∪{yi|vi ∈VU} // Compute feature values, using known

for each node vi ∈VU do // labels and labels chosen in step 4
!fi ← computeRelatFeatures(V,E,Y ′)

7 for each node vi ∈VU do // Re-estimate label probs., using
!bi ←MAR(!xi,!fi) // attributes and relational features

8 return stats // Return marginal stats. for each node

Figure 3: Algorithm for Gibbs sampling. Thousands of iterations are typically needed.

from VK . Thus, the known labels influence the first classification in step 5, before any estimated
labels are used, and in subsequent iterations. Finally, ICAC can also benefit from PLUL.

5.1.3 ICAKn

The above discussion highlighted two different effects from ICAC: favoring more confident esti-
mated labels vs. favoring known labels from VK . An interesting variant is to favor the known labels
in the first iteration (just like ICAC), but then use all labels for subsequent iterations (just like ICA).
We call this algorithm ICAKn (“ICA+Known”).
Types of Caution Used: ICAKn favors only known nodes. It is thus more cautious than ICA, but
less cautious than ICAC. It can also benefit from cautious learning via PLUL.

5.2 Gibbs Family of Algorithms

Figure 3 displays pseudocode for Gibbs sampling (Gibbs) and the non-cautious variant GibbsNC.
We describe each in turn.

5.2.1 Gibbs

In Figure 3, step 1 (bootstrapping) is identical to step 1 of the ICA algorithms, except that for each
node vi the classifier must output a distribution !xi containing the likelihood of each class, not just
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the most likely class. Step 2 initializes the statistics that will be used to compute the marginal class
probabilities for each node. In step 4, within the loop, the algorithm probabilistically samples the
current class label distribution of each node and assigns a single label yi based on this distribution.
This label is also recorded in the statistics during Step 5 (after the first nB iterations are ignored for
“burn-in”). Step 6 then selects all labels (known labels and those just sampled) and uses them to
compute the relational features’ values. Step 7 re-estimates the posterior class label probabilities
given these relational features. The process then repeats. When the process terminates, the statistics
recorded in step 5 approximate the marginal distribution of class labels, and are returned by step 8.
Types of Caution Used: Like ICAC,Gibbs is cautious in its use of estimated labels, but in a different
way. In particular, ICAC exercises caution in step 3 by ignoring (at least for some iterations) labels
that have lower confidence. In contrast, Gibbs exercises caution by sampling, in step 4, values from
each node’s predicted label distribution—causing nodes with lower prediction confidence to reflect
that uncertainty via higher fluctuation in their assigned labels, yielding less predictive influence on
their neighbors. Gibbs can also benefit from cautious learning via PLUL.

We expect Gibbs to perform better than ICAC, since it makes use of more information, but this
requires careful confirmation. In addition, Gibbs is considerably more time intensive than ICAC or
ICA (see Section 5.6).

5.2.2 GibbsNC
GibbsNC is identical to Gibbs except that instead of sampling in step 4, it always selects the most
likely label. This change makes GibbsNC deterministic (unlike Gibbs), and makes GibbsNC behave
almost identically to ICA. In particular, observe that after any number of iterations h (1 ≤ h ≤ n),
ICA and GibbsNC will have precisely the same set of current label assignments for every node.
However, ICA’s result is the final set of label assignments, whereas GibbsNC’s result is the marginal
statistics computed from these time-varying assignments. For a given data set, if ICA converges to
an an unchanging set of label assignments, then for sufficiently large n GibbsNC’s final result (in
terms of accuracy) will be identical to ICA’s. If, however, some nodes’ labels continue to oscillate
with ICA, then ICA and GibbsNC will have different results for some of those nodes.
Types of Caution Used: Just like ICA, GibbsNC uses all available labels for relational feature
computation, and always picks the single most likely label based on the new predictions. Thus,
GibbsNC does not perform cautious inference, though it can benefit from cautious learning to learn
the classifiersMA and MAR.

5.3 LBP Family of Algorithms

This section describes loopy belief propagation (LBP) and the non-cautious variant LBPNC.

5.3.1 LBP

LBP has been a frequently studied technique for performing approximate inference, and has been
used both in early work on CC (Taskar et al., 2002) and in more recent evaluations (Sen and Getoor,
2006; Neville and Jensen, 2007; Sen et al., 2008). Most works that study LBP for CC treat the
entire graph, including attributes, as a pairwise Markov random field (e.g., Sen and Getoor, 2006;
Sen et al., 2008) and then justify LBP as an example of a variational method (cf., Yedidia et al.,
2000). The basic inference algorithm is derived from belief propagation (Pearl, 1988), but applied
to graphs with cycles (McEliece et al., 1998; Murphy et al., 1999).

2790



CAUTIOUS COLLECTIVE CLASSIFICATION

LBP performs inference via passing messages from node to node. In particular, mi→ j(c) repre-
sents node vi’s assessment of how likely it is that node v j has a true label of class c. In addition,
!i(c) represents the “non-relational evidence” (e.g., based only on attributes) for vi having class c,
and "i j(c′,c) represents the “compatibility function” which describes how likely two nodes of class
c and c′ are linked together (in terms of Markov networks, this represents the potential functions
defined by the pairwise cliques of linked class nodes). Given these two sets of functions, Yedidia
et al. (2000) show the belief that node i has class c can be calculated as follows:

bi(c) = #!i(c)$
k∈Ni

mk→i(c) (1)

where # is a normalizing factor to ensure that %c∈C bi(c) = 1 and Ni is the neighborhood function
defined as:

Ni = {v j|∃(vi,v j) ∈ E} .

The messages themselves are computed recursively as:

m′
i→ j(c) = # %

c′∈C

(

!i(c′)"i j(c′,c) $
k∈Ni\ j

mk→i(c′)

)

. (2)

Observe that the message from i to j incorporates the beliefs of all the neighbors of i (Ni) except j
itself. m′

i→ j(c) is the “new” value of mi→ j(c) to be used in the next iteration.
For CC, we need a model that generalizes from the training nodes to the test nodes. The above

equations do not provide this, since they have node-specific potential functions (i.e., "i j is specific
to nodes i and j). Fortunately, we can represent each potential function as a log-linear combination
of generalizable features, as commonly done for such Markov networks (e.g., Della Pietra et al.,
1997; McCallum et al., 2000a). More specifically for CC, Taskar et al. (2002) used a log-linear
combination of functions that indicate the presence or absence of particular attributes or other fea-
tures. Several papers (e.g., Sen and Getoor, 2006; Sen et al., 2008) have described a general model
on how to accomplish this, but do not completely explain how to perform the computation. For a
slight loss in generality (e.g., assuming that our nodes are represented by a simple attribute vector),
we now describe how to perform LBP for CC on an undirected graph. In particular, let NA be the
number of attributes, Dh be the domain of attribute h, and wc,h,k be a learned weight indicating how
strongly a value of k for attribute h indicates that a given node has class c. In addition, let fi(h,k)=1
iff the hth attribute of node i is k (i.e., xih = k). Then

!i(c) = exp

(

%
h∈{1..NA}

%
k∈Dh

exp(wc,h,k) fi(h,k))

)

which is a special case of logistic regression. We likewise define similar learned weights of the
form wc,c′ that indicate how likely a node with label c is linked to a node with label c′, yielding the
compatibility function

"i j(c,c′) = exp(wc,c′) .
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LBP classify (V,E,X ,YK ,w,C,N,AlgType)=
// V=nodes, E=edges, X=attribute vectors, YK=labels of known nodes (YK = {yi|vi ∈VK} )
// w=learned params.,C=set of class labels, N=neighborhood funct., AlgType=LBP or LBPNC
1 for each (vi,v j) ∈ E such that v j ∈VU do // Initialize all messages

for each c ∈C do
if (vi ∈VK) // If class is known (yi), set message to its

mi→ j(c) ← # · exp(wyi,c) // final, class-specific value
else // Otherwise, message starts with same value

mi→ j(c) ← # // for every class, but will vary later
2 while (messages are still changing)
3 for each (vi,v j) ∈ E such that v j ∈VU do // Perform message passing

for each c ∈C do
m′
i→ j(c) ← #%c′∈C

(

!i(c′)exp(wc′,c)$k∈Ni\ j mk→i(c′)
)

4 for each (vi,v j) ∈ E such that v j ∈VU do
if (AlgType = LBP) // For LBP, copy new messages for use in

mi→ j(c) ← m′
i→ j(c) // next iteration

else
c′ ← argmaxc∈C(m′

i→ j(c)) // For LBPNC, select most likely label for node
for each c ∈C do // Treat selected label the same as a “known”

mi→ j(c) ← exp(wc′,c) // label for use in the next iteration
5 for each node vi ∈VU do // Compute final beliefs

for each c ∈C do
bi(c) ← #!i(c)$k∈Ni mk→i(c)

6 return {!bi} // Return final beliefs

Figure 4: Algorithm for loopy belief propagation (LBP). # is a normalization factor.

As desired, the compatibility function is now independent of specific node identifiers, that is, it
depends only upon the class labels c and c′, not i and j. We use conjugate gradient descent to learn
the weights (cf., Taskar et al., 2002; Neville and Jensen, 2007; Sen et al., 2008).

Finally, we must consider how to handle messages from nodes with a “known” class label.
Suppose node vi has known class yi. This is equivalent to having a node where the non-relational
evidence !i(c) = 1 if c is yi and zero otherwise. Since yi is known, node vi is not influenced by its
neighbors. In that case, using Equation 2 (with an empty neighborhood for the product) yields:

mi→ j(c) = # %
c′∈C

!i(c′)"i j(c′,c) = # ·"i j(yi,c) = # · exp(wyi,c) . (3)

Given these formulas, we can now present the complete algorithm in Figure 4. In Step 1, the
messages are initialized, using Equation 3 if vi is a known node; otherwise, each value is set to #
(creating a uniform distribution). Steps 2-4 performs message passing until convergence, based on
Equation 2. Finally, step 5 computes the final beliefs using Equation 1 and step 6 returns the results.
Types of Caution Used: Like Gibbs, LBP exercises caution by reasoning based on the estimated
label uncertainty, but in a different manner. Instead of sampling from the estimated distribution,
LBP in step 3 directly updates its beliefs using all of its current beliefs, so that the new beliefs
reflect the underlying uncertainty of the old beliefs. In particular, this uncertainty is expressed
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WVRN RL classify (V,YK ,n,C,!bprior,N,&)=
// V=nodes, YK=labels of known nodes (YK = {yi|vi ∈VK}), n=# of iterations
//C=set of class labels,!bprior=class priors, N=neighborhood funct., &=decay factor

1 for each node vi ∈VK do // Create belief vector for each known label
!bi ← makeBelie f sFromKnownClass(|C|,yi) // (all zeros except at index for class yi)

for each node vi ∈VU do // Create initial beliefs for unknown labels
!bi ←!bprior // (using class priors as initial setting)

2 for h = 0 to n do // Iteratively re-compute beliefs
3 for each node vi ∈VU do // Compute new distribution for each node

!b′i ← 1
|Ni| %v j∈Ni

!b j // by averaging neighbors’ distributions

4 for each node vi ∈VU do // Perform simulated annealing
!bi ← &h!b′i+(1−&h)!bi

5 return {!bi|vi ∈VU} // Return belief distribution for each node

Figure 5: Algorithm for wvRNRL. Based on Macskassy and Provost (2007), we use n = 100 itera-
tions with a decay factor of &= 0.99.

by the continuous-valued numbers that represent each message mi→ j. LBP can also benefit from
cautious learning with PLUL; in this case, PLUL influences the wc,h,k and wc,c′ weights that are
learned (see Section 6.4).

5.3.2 LBPNC

LBPNC is identical to LBP except that after the new messages are computed in step 3, in step 4
LBPNC picks the single most likely label c′ to represent the message from vi to v j. LBPNC then treats
c′ as equivalent to a “known” label yi for vi and re-computes the appropriate message mi→ j(c) using
Equation 3.
Types of Caution Used: Like ICA andGibbsNC, LBPNC is non-cautious because it uses all available
labels for relational feature computation and always picks the single most likely label based on the
new predictions. In essence, the “pick most likely” step transforms the soft-labeling LBP algorithm
into the hard-labeling LBPNC algorithm, removing cautious inference just as the “pick most likely”
step did for GibbsNC. However, LBPNC, like LBP, can still benefit from cautious learning with
PLUL.

5.4 wvRN Family of Algorithms

Figure 5 displays pseudocode for wvRNRL, a soft-labeling algorithm. For simplicity, we present the
related, hard-labeling variants wvRNICA+C and wvRNICA+NC separately in Figure 6. Each of these is
a relational-only algorithm; Section 7.9 will discuss variants that incorporate attribute information.

5.4.1 wvRNRL

wvRNRL(Weighted-Vote Relational Neighbor, with relaxation labeling) is a relational-only CC al-
gorithm that Macskassy and Provost (2007) argued should be considered as a baseline for all CC
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WVRN ICA classify (V,YK ,n,C,!bprior,N,AlgType)=
// V=nodes, YK=labels of known nodes (YK = {yi|vi ∈VK}), n=# of iters.,C=class labels
//!bprior=class priors, N=neighborhood function, AlgType=wvRNICA+C or wvRNICA+NC

1 for each node vi ∈VU do
switch (AlgType): // Set initial value for unknown labels...
case (wvRNICA+C): yi ← ′?′ // ...start labels as missing
case (wvRNICA+NC): yi ← sampleDist(!bprior) // ...or sample label from class priors

2 for h = 0 to n do // Iteratively re-label the nodes
3 for each node vi ∈VU do

N′
i ← {v j ∈ Ni|y j ,= ′?′ } // Find all non-missing neighbors
if (|N′

i | > 0) // New label is the most common label
y′i ← argmaxc∈C | {v j ∈ N′

i |y j = c} | // amongst those neighbors
else y′i = yi // If no such neighbors, keep same label

4 for each node vi ∈VU do // After all new labels are computed,
yi ← y′i // update to store the new labels

5 return {yi|vi ∈VU} // Return est. class label for each node

Figure 6: Algorithm for wvRNICA+C and wvRNICA+NC. This is a “hard labeling” version of wvRNRL;
each of the 5 steps corresponds to the same numbered step in Figure 5. We use n = 100
iterations.

evaluations. At each iteration, each node i updates its estimated class distribution by averaging the
current distributions of each of its linked neighbors. wvRNRL ignores all attributes (non-relational
features). Thus, wvRNRL is useful only if the test set links to some nodes with known labels to
“seed” the inference process. Macskassy and Provost showed that this simple algorithm can work
well if the nodes exhibit strong homophily and enough labels are known.

Step 1 of wvRNRL (Figure 5) initializes a belief vector for every node, using the known labels
for nodes in VK , and a class prior distribution for nodes in VU . For each node, step 3 averages the
current distributions of its neighbors, while step 4 performs simulated annealing to ensure conver-
gence. Step 5 returns the final beliefs. For simplicity, we omit edge weights from the algorithm’s
description, since our experiments do not use them.
Types of Caution Used: Since wvRNRL computes directly with the estimated label distributions, it
exercises cautious inference in the same manner as LBP. However, unlike the other CC algorithms,
it does not learn from a training set, and thus cautious learning with PLUL does not apply.

5.4.2 wvRNICA+C AND wvRNICA+NC

Figure 6 presents a hard-labeling alternative to wvRNRL. Each of the five steps mirror the corre-
sponding step in the description of wvRNRL. In particular, for node vi, step 3 computes the most
common label among the neighbors of vi (the hard-labeling equivalent of averaging the distribu-
tions), and step 4 commits the new labels without annealing.

However, with a hard-labeling algorithm, the initial labels for each node become very important.
The simplest approach would be to initialize every node to have the most common label from the
prior distribution. However, that approach could easily produce interlinked regions of labels that
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that were incorrect but highly self-consistent; leading to errors even when many known labels were
provided. Instead, Macskassy and Provost (2007) suggest initializing each node vi ∈VU to missing
(indicated in Figure 6 by a question mark), a value that is ignored during calculations. They call the
resulting algorithm wvRN-ICA; here we refer to it as wvRNICA+C. A missing label remains for node
vi after iteration h if during that iteration every neighbor of vi was also missing.

Alternatively, a simpler algorithm is to always compute with all neighbor labels (do not initialize
any to missing), but initialize each label in VU by sampling from the prior distribution. We call this
algorithm wvRNICA+NC. This process is the hard-labeling analogue of wvRNRL’s approach: instead
of initializing each node with the prior distribution, with wvRNICA+NC sampling initializes the entire
set so that it represents, in aggregate, the prior distribution.
Types of Caution Used: wvRNICA+NC always uses the estimated label of every node, without regard
for how certain that estimate is. Thus, it does not exhibit cautious inference. However, wvRNICA+C
does exhibit cautious inference, although this effect was not discussed by prior work with this
algorithm. In particular, during the first iteration wvRNICA+C uses only the certain labels from YK ,
since all nodes in YU are marked missing. These known labels are used to estimate labels for every
node in VU that is directly adjacent to some node in VK . In subsequent iterations, wvRNICA+C
uses both labels from YK and labels from YU that have been estimated so far. However, the labels
estimated so far are likely to be more reliable than later estimations, since the former labels are
from nodes that were closer to at least one known label. Thus, in a manner similar to ICAC’s
gradual commitment of labels based on confidence, wvRNICA+C gradually incorporates more and
more estimated labels into its computation, where more confident labels (those closer to known
nodes) are incorporated sooner. This effect causes wvRNICA+C to exploit estimated labels more
cautiously.

5.5 Parameter Learning for Uncertain Labels (PLUL)

CC algorithms typically train a local classifier on a fully-labeled training set, then use that local
classifier with some collective inference algorithm to classify the test set. Unfortunately, this results
in asymmetric training and test phases: since all labels are known in the training phase, the learning
process sees no uncertainty in relational feature values, unlike the reality of testing. Moreover,
the classifier’s training is unaffected by the type of collective inference algorithm used, and how
(if at all) that collective algorithm attempts to compensate for the uncertainty of estimated labels
during testing. Consequently, the learned classifier may tend to produce poor estimates of important
parameters related to the relational features (e.g., feature weights, conditional probabilities). Even
for CC algorithms that do not use a local classifier, but instead take a global approach that learns
over the entire training graph (as with LBP and relaxation labeling), the same fundamental problem
occurs: if autocorrelation is present, then parameters learned over the fully labeled training set tend
to overstate the usefulness of relational features for testing, where estimated labels must be used.

To address these problems, we developed PLUL (Parameter Learning for Uncertain Labels).
PLUL is based on standard cross-validation techniques for performing automated parameter tuning
(e.g., Kohavi and John, 1997). The key novelty is not in the cross-validation mechanism, but in the
selection of which parameters should be tuned and why. To use PLUL, we must first select or create
an appropriate parameter that controls the amount of impact that relational features have on the
resultant classifications. In principle, PLUL could search a multi-dimensional parameter space, but
for tractability we select a single parameter that affects all relational features. For instance, when
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PLUL learn (CCtype,P, l p,VTr,ETr,XTr,YTr,VH ,EH ,XH ,YH )=
//CCtype=CC alg. to use, P=set of parameter values to consider, l p=labeled proportion to use
// VTr,ETr,XTr,YTr = vertices, edges, attributes, and labels from training graph
// VH ,EH ,XH ,YH = vertices, edges, attributes, and labels from holdout graph

1 Y ′
H = keepSomeLabels(l p,YH) // Randomly select lp% of labels to keep; discard others

2 bestParam← /0 // Initialize variables to track best parameter so far
bestAcc←−1

3 for each p ∈ P do // Iterate over every parameter value
4 // Learn complete CC classifier from fully-labeled training data, influenced by p

cc= learn CC classi f ier(CCtype,VTr,ETr,XTr,YTr, p)
5 // Run CC on holdout graph (with some known labels Y ′

H ) and evaluate accuracy
acc← execute CC in f erence(cc,VH ,EH ,XH ,Y ′

H)

6 // Remember this parameter if it’s the best so far
if (acc> bestAcc)

bestParam← p
bestAcc← acc

7 return bestParam // Return best parameter found over the holdout graph

Figure 7: Algorithm for Parameter Learning for Uncertain Labels (PLUL). The holdout graph is
derived from the original training data and is disjoint from the graph that is used later for
testing.

using a k-nearest-neighbor rule as the local classifier, we employ PLUL to adjust the weight wR of
relational features in the node similarity function. PLUL performs automated tuning by repeatedly
evaluating different values of the selected parameter, as used by the local classifier, together with
the collective inference algorithm (or the entire learned model for LBP). For each parameter value,
accuracy is evaluated on a holdout set (a subset of the training set). PLUL then selects the parameter
value that yields the best accuracy to use for testing.

Figure 7 summarizes these key steps of PLUL and some additional details. First, note that
proper use of PLUL requires a holdout set that reflects the test set conditions. Thus, step 1 of the
algorithm removes some or all of the labels from the holdout set, leaving only the same percentage
of labels (lp%) that are expected in the test set. Second, running CC inference with a new parameter
value may require re-learning the local classifier (for ICA or Gibbs) or the entire learned model (for
LBP). This is shown in step 4 of Figure 7. Alternatively, for Naive Bayes or k-nearest-neighbor
local classifiers, the existing classifier can simply be updated to reflect the new parameter value.

We expect PLUL’s utility to vary based upon the fraction of known labels (lp) that are available
to the test set. If there are few such labels, there is more discrepancy between the training and test
environments, and hence more need to apply PLUL. However, if there are many such labels, then
PLUL may not be useful.

Because almost all CC algorithms learn parameters based in some way on relational features,
PLUL is widely applicable. In particular, Table 2 shows how we select an appropriate relational
parameter to apply PLUL for different CC algorithms. The top of the table describes how to apply
PLUL to a local classifier that is designed to be used with a CC algorithm like ICA or Gibbs. The
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Local Classifier (or CC
algorithm)

Parameter set by PLUL (per re-
lational feature)

Values tested by PLUL (default in
bold)

Naive Bayes (NB) Hyperparameter # for Dirichlet
prior

1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096

Logistic Regression (LR) Variance '2 of Gaussian prior 5, 10, 20, 40, 80, 160, 320, 640,
1280, 2560, 512

k-Nearest Neighbor (kNN) Weight wR 0.01, 0.03, 0.0625, 0.125, 0.25, 0.5,
0.75, 1.0, 2.0

LBP Variance '2 of Gaussian prior 5, 10, 20, 100, 200, 1000, 10000,
100000, 1000000

Table 2: The classifiers (NB, LR, and kNN) and CC algorithm (LBP) used in our experiments for
which PLUL can be applied to improve performance. The second column lists the key
relational parameters that we identified for PLUL to learn, while the last column shows
the values that PLUL considers in its cross-validation.

last row demonstrates how it can instead be applied to a global algorithm like LBP. For instance, for
the NB classifier, most previous research has used either no prior or a simple Laplacian (“add one”)
prior for each conditional probability. By instead using a Dirichlet prior (Heckerman, 1999), we can
adjust the “hyperparameter” # of the prior for each relational feature. Larger values of # translate to
less extreme conditional probabilities, thus tempering the impact of relational features. For the kNN
classifier, reducing the weight of relational features has a similar net effect. For the LR classifier
and the LBP algorithm, both techniques involve iterative MAP estimation. Increasing the value
of the variance of the Gaussian prior for relational features causes the corresponding parameter to
“fit” less closely to the training data, again making the algorithm more cautious in its use of such
relational features.

While the core mechanism of PLUL—cross-validation tuning—is common, techniques like
PLUL to explicitly compensate for the bias incurred from training on a fully-labeled set while
testing using estimated labels have not been previously used for CC. A possible exception is Lu and
Getoor (2003a), who appear to have used a similar technique to tune a relational parameter, but,
in contrast to this work, they did not discuss its need, the specific procedure, or the performance
impact.

PLUL attempts to compensate for the bias incurred from training on the correctly-labeled train-
ing set. Alternatively, Kou and Cohen (2007) describe a “stacked model” that learns based on
estimated, rather than true labels. While the original goal of this stacked approach was to produce a
more time-efficient algorithm, Fast and Jensen (2008) recently demonstrated that this technique, by
eliminating the bias between training and testing, does indeed reduce “inference bias.” This reduced
bias enables the stacked models to perform comparably to Gibbs sampling, even though the stacked
model is a simpler, non-iterative algorithm that consequently has higher learning bias. Interestingly,
Fast and Jensen (2008) note that the stacked model performs an “implicit weighting of local and
relational features,” as with PLUL. The stacked model accomplishes this by varying the learning
and inference procedure, whereas PLUL modifies only the learning procedure, and thus works with
any inference algorithm that relies on a learned model.
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5.6 Computational Complexity and the Cost of Caution

For learning and inference, all of the CC algorithms (variants of ICA, Gibbs, wvRN, and LBP)
use space that is linear in the number of nodes/instances (NI). ICA and Gibbs have significant
similarities, so we consider their time complexity first. For these two algorithms, the dominant
computation costs for inference stem from the time to compute relational features and the time to
classify each node with the local classifier. Typically, nodes are connected to a small number of
other instances, so the first cost is O(NI) per iteration. For the second cost, the time per iteration is
O(NI) for NB and LR, and O(N2I ) for kNN. However, the number of iterations varies significantly.
Based on previous work (Neville and Jensen, 2000; McDowell et al., 2007a), we set n = 10 for
variants of ICA; more iterations did not improve performance. In contrast, Gibbs typically requires
thousands of iterations.

Adding or removing cautious inference to ICA and Gibbs does not significantly change their
time complexity. In particular, GibbsNC has the same complexity as Gibbs. ICAC introduces an
additional cost, compared to ICA, of O(NIlogNI) per iteration to sort the nodes by confidence.
However, in practice classification time usually dominates. Therefore, the overall computational
cost per iteration for all variants of ICA and Gibbs are roughly the same, but the larger number of
iterations for variants of Gibbs makes them much more time-expensive than ICA, ICAKn, or ICAC.

LBP does not explicitly compute relational features, but its main loop iterates over all neighbors
of each node, thus again yielding a cost of O(NI) per iteration under the same assumptions as
above. We found that LBP inference was comparable in cost to that of ICA, which agrees with
Sen and Getoor (2007). However, training the LBP classifier is much more expensive than training
the other algorithms. ICA and Gibbs only require training the local classifier, which involves zero
to one passes over the data for kNN and NB, and a relatively simple optimization for LR. On the
other hand, training LBP with conjugate gradient requires executing LBP inference many times. We
found this training to be at least an order of magnitude slower than the other algorithms, as also
reported by Sen and Getoor (2007). LBPNC has the same theoretical and practical time results as
LBP.

wvRN is the simplest CC algorithm, since it requires no feature computation and the key step
of each iteration is a simple average over the neighbors of each node. As with previous algorithms,
assuming a small number of neighbors for each node yields a total time per iteration of O(NI). Prior
work (Macskassy and Provost, 2007) suggested using a somewhat larger number of iterations (100)
than with ICA. Nonetheless, in practice wvRN’s simplicity makes it the fastest algorithm.

Finally, all of the algorithms, except for wvRN, can be augmented with cautious learning via
PLUL. Executing PLUL requires repeatedly running the CC algorithm with different values of the
selected parameter. We used 9-13 different parameter values, and hence the cost of PLUL vs. not
using PLUL is about one order of magnitude.

6. Evaluation Methodology

This section describes our hypotheses and the method that we use to evaluate them.

6.1 Hypotheses

Table 3 summarizes our five hypotheses. As described in Section 1, we expect cautious behaviors
to be more important when there is a higher probability of incorrect relational inference. Thus, each
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Data characteristic Type of caution Hypothesis: relative gain of caution
considered will increase as value of characteristic...

Autocorrelation Inference ...increases (H1)
Attribute predictiveness Inference ...decreases (H2)
Link density Inference ...decreases (H3)
Labeled proportion Inference ...decreases (H4)
Labeled proportion Learning ...decreases (H5)

Table 3: The five hypotheses that we investigate.

hypothesis varies one data characteristic that impacts the likelihood of such errors. In particular,
hypotheses H1-H4 vary a data characteristic to measure the impact of cautious inference, which
Section 7 will evaluate for different pairs of cautious and non-cautious inference algorithms. We
define the “relative gain of cautious inference” as the difference between the accuracies of two such
algorithms (e.g., Gibbs vs. GibbsNC). Hypothesis H5 also varies a data characteristic, but does so
to measure the “relative gain of cautious learning” (i.e., comparing performance with vs. without
PLUL).

• H1: The relative gain of cautious inference increases with increasing autocorrelation.
Larger autocorrelation implies that relations are more predictive, and will be learned as such
by the classifier. This magnifies the impact that an error in a predicted label can have on
linked nodes. Therefore, we expect cautious inference algorithms to improve classification
by a greater margin in such cases.

• H2: The relative gain of cautious inference increases with decreasing attribute predic-
tiveness (ap). Decreased ap implies a greater potential of errors/uncertainty in the predicted
labels. The effect of cautiously using uncertain labels should be greater in such cases.

• H3: The relative gain of cautious inference increases with decreasing link density (ld).
When the number of links is high, a single mispredicted label has relatively little impact on
its neighbors. As the number of links decreases, however, a single misprediction can cause
larger relational feature uncertainty, increasing the need for caution.

• H4: The relative gain of cautious inference increases with decreasing labeled proportion
(lp). When lp is high, only a few of each node’s neighbors have estimated labels (most are
known with certainty). Consequently, there is less uncertainty in relational feature values, and
less need to use estimated labels cautiously.

• H5: The relative gain of cautious learning with PLUL increases with decreasing labeled
proportion(lp). As with H4, when lp is high there is less uncertainty in the relational features.
Thus there is less disparity between the fully correct training set (where classifier parameters
were learned) and the test set. Consequently, we expect PLUL, which compensates for any
such disparity, to matter less when lp is high.

6.2 Tasks

We will evaluate three general tasks (see Section 2.3):
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Parameter Abbrev. Values tested (defaults in bold)
Nodes per graph NI 250
Number of class labels NC 5
Number of attributes NA 10
Degree of homophily dh 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
Link density ld 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
Attribute predictiveness ap 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
Labeled proportion lp 0%, 10%, 20%, 40%, 50%, 60%, 80%

Table 4: Synthetic data parameters. Defaults were chosen based on averages from Cora and Cite-
seer, two commonly studied data sets for CC.

1. Out-of-sample task: Here the test set does not contain or link to any known nodes, as with
Neville and Jensen (2000), Taskar et al. (2002), and Sen and Getoor (2006).

2. Sparse in-sample task: Here some of the test nodes, but only a few, have known labels
(we use 10%). We focus particularly on this task, because some researchers argue that it
is the most realistic scenario, since often networks are large, and acquiring known labels is
expensive (Bilgic and Getoor, 2008). This was the primary scenario considered by the recent
work of McDowell et al. (2007a,b), Bilgic and Getoor (2008), and Gallagher et al. (2008).

3. Dense in-sample task: Here a substantial number of test nodes may have known labels (we
use 50%). This task was the one recently evaluated by Sen et al. (2008).

6.3 Data

We evaluate the hypotheses over both synthetic and real-world data sets, which we describe below.
We use the synthetic data to highlight how different data characteristics affect the relative gain of
cautious behaviors, then the real-world data sets to validate these findings.

6.3.1 SYNTHETIC DATA

We use a synthetic data generator (see Table 4) with two components: a Graph Generator and an
Attribute Generator. The Graph Generator has four inputs: NI (the number of nodes/instances), NC
(the number of classes), ld (the link density), and dh (the degree of homophily). For each link,
dh controls the probability that the linked nodes have the same class label; higher values yield
higher autocorrelation (see Appendix A for details). The final number of links is approximately
NI/(1− ld), and the final link degrees follow a power law distribution, which is common in real
networks (Bollobás et al., 2003). The Graph Generator is identical to that used by Sen et al. (2008);
see that article for more detail.

To make this a practical study, we chose default parameter values that mimic characteristics of
two frequently studied CC data sets, Cora and Citeseer (McDowell et al., 2007a; Neville and Jensen,
2007; Sen et al., 2008). In particular, NC=5 classes and Table 4 shows additional default values. We
chose NI=250 nodes, a smaller value than with Cora/Citeseer, to reduce CC execution time, but
larger values did not change the performance trends.
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The Attribute Generator generates 10 (NA) binary attributes. Our design for it is motivated by our
observations of common CC data sets. We found that, unlike synthetic models used in prior studies,
different attributes vary in their utility for class prediction. To simulate this, we associate each
attribute h with a particular class cm, where m= h mod NC, and vary the strength of each attribute’s
predictiveness based on the value of h. In particular, for node vi with class yi, the probability that
vi’s hth attribute xih has value 1 depends upon the class yi as follows:

P(xih = 1|yi = ck) =















0.15+(ap−0.15) · h
NA−1 if k = h mod NC

0.1 if k = (h−1) mod NC
0.05 if k = (h+1) mod NC
0.02 otherwise.

The first line indicates that, when yi (= ck) is the class associated with attribute h (i.e., k =
h mod NC), then P(xih = 1|yi = ck) ranges from 0.15 for h = 0 to ap (a constant representing the
strength of attribute predictiveness) for h= 9. As a result, each of the five classes has two attributes
associated with that class, but some classes have associated attributes that are more useful for pre-
diction. However, xih may also be 1 when yi is some other class besides an “associated class”; the
next three lines encode this class ambiguity. This ambiguity/noise is based on our observations of
Cora and Citeseer and is similar to the binomial distribution used by Sen et al. (2008).

Finally, we use a parameter for test set generation called lp (labeled proportion), which is the
proportion of test nodes with known labels. We use default values of lp=0%, lp=10%, and lp=50%
for the three tasks defined in Section 6.2. Nodes to be labeled are selected uniformly at random
from the test set until the desired value of lp is reached. In contrast, some real data sets are likely
to exhibit non-uniform clustering of known nodes. We conjecture that such data sets will have a
smaller “effective” lp, since each known node will have, on average, fewer direct connections to
unknown nodes. For instance, a data set with lp=10% may behave more like a data set with lp=5%
where the labels are more uniformly distributed. Such effects should be examined in future work.

6.3.2 “REAL-WORLD” DATA SETS

We consider the following five “real-world” data sets (see Table 5). “Real-world” is a somewhat
subjective term; however, all of the data sets are based on naturally arising networks and have been
used in some form for previous research on relational learning.

1. Cora (McCallum et al., 2000b): A collection of machine learning publications categorized
into seven classes. The relational links are (directed) citations.

2. Citeseer (Lu and Getoor, 2003a): A collection of research publications drawn from Cite-
Seer. The relational links are (directed) citations.

3. WebKB (Craven et al., 1998): A collection of web pages from four computer science de-
partments categorized into six classes (Faculty, Student, Staff, Course, ResearchProject, or
Other). “Other” is problematic because it is too general, representing 74% of the pages. Like
Taskar et al. (2002), we discarded all “Other” pages that did not have at least three outgoing
links, yielding a total of 1541 instances of which 30% are Other. The relational links are the
(directed) hyperlinks among these pages.

2801



MCDOWELL, GUPTA AND AHA

Cora CiteSeer WebKB HepTH Terror
Characteristics of entire graph
Instances/nodes 2708 3312 1541 2194 645
Attributes (non-relat. feats.) available 1433 3703 100 387 106
Attributes used (max) 100 100 100 100 100
Attributes used (default) 20 20 40 40 2
Link/relation directedness directed directed directed directed undirected
Type of relational features used in,out in,out in,out,co in,out linksto
Class labels 7 6 6 7 6
Total relational features used 14 12 18 14 6
Links per node 3.9 2.7 5.8(64.6) 8.9 9.8
Autocorrelation 0.88 0.83 0.30(0.53) 0.54 0.16
Characteristics of each test set (on average)
Instances/nodes 400 400 335-469 300 150
Number of folds 5 5 4 5 3
Links per node 2.7 2.7 5.7(61.0) 4.3 12.3
Approx. link density 0.23 0.23 0.64(0.97) 0.53 0.79
Autocorrelation 0.85 0.84 0.38(0.53) 0.64 0.24
Label consistency 0.78 0.75 0.21(0.90) 0.61 0.56
Approximate homophily 0.74 0.70 0.05(0.88) 0.54 0.47

Table 5: Summary of the five real-world data sets used. in and out features compute separate values
based on incoming or outgoing links, while linksto features make no such distinction. co
features are based on virtual co-citation links; nodes A and B are linked via a co link if
there exists some node C with outgoing links to both A and B. ForWebKB, the first statistic
listed is computed ignoring co-links, while the statistic in parentheses is computed using
only co-links. Label consistency is the percentage of links connecting nodes with the same
label; Appendix A defines this and approximate homophily. Section 6.9 describes the
“default” number of attributes used.

4. HepTH: A collection of journal articles in the field of theoretical high-energy physics, de-
rived from the Proximity Hep-Th database (http://kdl.cs.umass.edu/data/hepth). The original
data set did not have any single class label, but some pages were classified into topic sub-
types. Among pages with one such subtype, we selected all articles belonging to the six
most common subtypes, yielding 1404 articles. To create a more connected graph, we also
selected all articles with a date after 2001 that linked to at least two of the 1404 pre-selected
articles. There were 790 such articles, which we treated as having a class label of “Other.”
The relational links are the (directed) citations among all 2194 articles.

5. Terror (Zhao et al., 2006): A collection of terrorist incidents, drawn from the Profile in Ter-
ror project (http://profilesinterror.mindswap.org). The incidents are non-uniformly distributed
into six categories: Bombing (44%), WeaponAttack (38%), Kidnapping (14%), Arson (2%),
NBCRAttack (1%), and OtherAttack (1%). The relational links indicate (undirected) geo-
graphical co-location.

These data sets are intended to demonstrate CC performance on a range of data characteristics.
For instance, CC would be expected to be very helpful for Cora and CiteSeer, where autocorrelation
is high, but not very helpful for Terror.
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6.4 CC Algorithms

We evaluate the ten algorithms listed in Table 1, plus Content Only (CO), a non-relational baseline
that uses only attributes. For each of the four main sections in Table 1, there is one non-cautious
variant (ICA, GibbsNC, LBPNC, and wvRNICA+NC) and one or two cautious variants (ICAC, ICAKn,
Gibbs, LBP, wvRNRL, and wvRNICA+C). The wvRN algorithms also serve as a collective, relational-
only baseline.

Based on previous work (Neville and Jensen, 2000; McDowell et al., 2007a), the ICA-based
algorithms used n = 10 iterations; more iterations did not improve performance. For Gibbs, we
used 1500 iterations, with a random restart every 300 iterations, and ignored the first 100 iterations
after a restart for burn-in. Additional iterations did not improve performance. GibbsNC converged
in far fewer iterations because it does not sample and is deterministic; we used n= 50.

For LBP, we assumed that each parameter was a priori independent and had a zero-mean Gaus-
sian prior with a default uniform prior variance of '2 = 10, which is similar to the values reported
in previous work (e.g., Sen and Getoor 2006; Neville and Jensen 2007). We used MAP estimation
to estimate these parameters based on conjugate gradient. '2 controls how tightly the parameters fit
to the training data; Table 2 shows the alternative values of '2 considered by PLUL to constrain this
fitting for the relational parameters.

6.5 Classifiers

To account for possible variations in overall CC performance trends due to the effect of the un-
derlying classifier, we tested three local classifiers with each CC algorithm wherever applicable
(this excludes LBP and wvRN). Section 5.5 already described, for each classifier, the key relational
feature whose value is learned by PLUL; we now provide more detail on each classifier and its
application of PLUL.

The first classifier is Naive Bayes (NB). PLUL was used to learn # for the Dirichlet prior of
each relational feature. The second classifier is Logistic Regression (LR). We used MAP estimation
with Gaussian priors to learn the parameters for LR; PLUL learned an appropriate variance '2 for
the prior of each relational feature. The final classifier is k-Nearest Neighbor (kNN); we used k=11.
When computing similarity, attributes were assigned a weight of 1. PLUL learned the weight wR
for each relational feature. Weighted similarity was used for voting.

For each classifier, Table 2 shows the specific values considered by PLUL. The “default” value
shown (e.g., # = 1.0 for NB) was used in two ways. First, the default was used as the parameter
value for all attributes. Second, the default was used for a manual setting for the parameter value
for all relational features when PLUL is not being used. When PLUL was used, the learned value
was used instead for the relational features.

The ICAC algorithm requires a classifier that can ignore missing relational feature values. kNN
and NB can do this easily: kNN by dropping the feature from the similarity calculation and NB
by skipping the feature in probability computation. For LR, however, dealing with missing values
is a current research topic (e.g., Fung and Wrobel 1989), with typical techniques including mean
value substitution or multiple imputation. However, for CC the situation is less complex than the
more general case, because missing values occur only for the test set, only for relational features,
and typically only when all neighbors of a node have missing labels. Thus, we can learn several
LR classifiers: one that uses all relational features, and one for each combination of features that
may be missing simultaneously (for our data, this is at most 4). Experimentally, we found this
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to perform better than mean value substitution, though the difference was slight because missing
values were rare. These results are consistent with those of Saar-Tsechansky and Provost (2007) on
non-relational data. Section 7.8 discusses this effect in more detail.

6.6 Node Representation

Each node is represented by a set of (non-relational) attributes and relational features. Algorithms
based on LBP and wvRN reason directly with each individual link, and their algorithms thus di-
rectly define the effective relational features used. Approaches based on ICA and Gibbs, however,
use some kind of aggregation function to compute their relational feature values. We first describe
the possible aggregation functions for these features, then separately describe the complete repre-
sentation for the synthetic and real data.

6.6.1 RELATIONAL FEATURES CONSIDERED

We considered three different types of relational features:

• Count: This type represents the number of neighbors that belong to a particular class. For
each node i, there is one such feature fi(c) per class label c. The value of fi(c)=Neighborsi(c),
which is the number of nodes linked to node i that have a known or current estimated label of
c. For instance, in step C of Figure 1, f2(P) = 1 and f2(S) = 2.

• Proportion: This feature is like “count”, except that the feature value represents the propor-
tion of neighbors that have a particular label, rather than the raw number of such neighbors.
For this feature, fi(c) =Neighborsi(c)/Neighborsi(∗), where Neighborsi(∗) is the number of
nodes linked to node i that have any current label (known or estimated, but, for ICAC, exclud-
ing those nodes whose label was set to missing because of low confidence). If Neighborsi(∗)
is zero, then fi(c) is set to missing. For example, if proportion features were being used, then
the feature values for step C of Figure 1 would be f2(P) = 1/3 and f2(S) = 2/3.

• Multiset: Proportion and count features aggregate the labels of a node’s neighborhood to
produce a single numerical value for each possible label. During inference, this aggregate
value is then compared against the mean value from the training set (with NB or LR), or
compared against the aggregate values for nodes in the training set (with kNN). In contrast, a
“multiset” feature uses a single multiset to represent the current labels of a node’s neighbors.
For instance, if multiset features were used, then for step C of Figure 1, f2 = {P,S,S}. This
has the same information content as with count features, but can be exploited differently by
some local classifiers. In particular, during NB inference, each label in the multiset (excluding
missing labels) is separately used to update the conditional probability that a node has true
label c. This is the “independent value” approach introduced by Neville et al. (2003b) and
used by Neville and Jensen (2007). However, this approach does not directly apply to LR or
kNN.

6.6.2 SYNTHETIC DATA NODE REPRESENTATION

Each node is represented by ten binary attributes and some relational features. Because represen-
tation choices can affect how well a CC algorithm handles the uncertainty of estimated labels, for
each local classifier-based algorithm we considered count and proportion relational features, as well
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as multiset features when using NB. For each trial, we evaluated the two or three possible types of
relational features with cross-validation (evaluating accuracy on the holdout set), then selected the
feature type with the highest accuracy to use for testing. When PLUL was used, PLUL was also
applied to each feature type; the best performance (on the holdout set) reported by PLUL for each
feature type was then used for this feature selection. Section 7.8 describes which feature types were
chosen most often for each local classifier. Since there are 5 class labels for the synthetic data and
links are undirected, there were 5 relational features when using count or proportion features, and 1
relational feature (whose value is a multiset) when using multiset.

6.6.3 REAL-WORLD DATA NODE REPRESENTATION

For all five data sets we used binary attributes that indicated the presence or absence of a particular
word. For WebKB, these words were from the body of each HTML page; we selected the 100
most frequent such words, which was all that was available in our version of the data set. For
symmetry, and because adding more words had a small impact on performance, we likewise set
up the remaining data sets to select 100 words as attributes. For Cora and CiteSeer, these words
were taken from the body of the publications; as with previous work (McDowell et al., 2007a) we
selected the 100 words with the highest information gain in the training set to use. For Terror, the
words come from hand-written descriptions of each incident provided with the data set; we selected
the first 100 of the 106 available attributes. For HepTH, we selected, based on information gain, the
100 highest-scoring words from the article title or the name of the corresponding journal.

For relational features, we again considered the proportion, multiset, and count features, and
selected the best feature type using cross-validation as described above. All of the data sets except
Terror had directed links. For these data sets, we computed separate relational feature values based
on incoming and outgoing links. In addition, previous work has shown WebKB to have much
stronger autocorrelation based on co-citation links than on direct links (see Table 5). However,
using such links can sometimes be problematic. Thus, we evaluate two data sets: “WebKB” and
“WebKB+co”. For WebKB, algorithms use in and out links (“direct” links). For WebKB+co,
algorithms use in, out, and co-links, except wvRN uses only co-links, as suggested by Macskassy
and Provost (2007) (see Section 7.6).

6.7 Training/Test Splits Generation

For the synthetic data, we generate training, holdout, and test graphs that are disjoint. Likewise, for
WebKB, the data was already divided into four splits (one for each department) that can be used for
cross-validation.

For the other real data sets, we must manually construct training and test splits from the original
graph. Sen et al. (2008) suggest a technique based on snowball sampling that involves picking
a random starting node and iteratively growing a split around that node, where the class of the
next node to be selected is sampled from the overall class distribution. However, we found that
low graph connectivity often prevented the algorithm from producing a final subgraph whose class
distribution resembled the whole graph’s. Instead, we created the following technique, similarity-
driven snowball sampling: given the whole graph G, pick a random starting node and add it to the
split G1. At each step, consider the frontier F of G1 (all those nodes not in G1 that link to some node
in G1). Among all labels c that exist in F , select the class label c′ such that adding some node of
label c′ to G1 would maximize the similarity (inverse Euclidean distance) of the class distributions
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of G1 and G. Given this c′, randomly select some node in F of class c′ and add it to G1. Repeat this
random selection and insertion until G1 is of the desired size.

We run this algorithm in parallel for NS different subgraphs, using NS different seeds, and permit
each node to be inserted into only one subgraph. This results in NS disjoint splits that have similar
class distributions and that can be used forNS-fold cross validation. We setNS = 5 for Cora, Citeseer,
and HepTH, and NS = 3 for the smaller Terror.

Table 5 shows some of the characteristics of the generated test sets vs. the original, complete
graphs. In general, the autocorrelation and number of links per node are similar, indicating that the
sampling procedure did not dramatically change the average characteristics of the graph. While the
splitting procedure effectively removes links, the average degree of the test sets may still be greater
than with the original graph if high-degree subsets of the original are selected.

6.8 Test Procedure

We first consider the synthetic data. For each control condition (i.e., data generated with a combina-
tion of dh, ap, ld, and lp values, see Table 4) we ran 25 random trials. For each trial, we generated
training, holdout, and test data sets of 250 nodes each. All training is performed on the fully la-
beled training set. The holdout set, when not used for PLUL, was merged with the training set. We
measured classification accuracy on the test set, excluding all nodes with “known” labels.

For the real-world data sets, each experiment involves using all of the relational features shown
in Table 5 and a fixed number of attributes (NA). We vary NA from 2 to 100 (recall that for all data
sets 100 attributes were selected for experimentation). For each setting of NA, we perform NS-fold
cross-validation, where NS is 3, 4, or 5, depending on the data set. Each one of these 3 to 5 trials is
associated with one subgraph (the test set), and the remaining 2-4 subgraphs comprise the training
set. We then apply PLUL by training on half of the training set and using the other half as the
holdout set. After PLUL selects the best parameter setting, we re-train on the whole training set and
evaluate accuracy on the test set. If PLUL is not used, training likewise uses the whole training set.

We report results with accuracy in order to ease comprehension of the results and to facilitate
comparison with some of the most relevant related work (e.g., Sen et al., 2008; Macskassy and
Provost, 2007). Results with area under the ROC curve (AUC) for the majority class demonstrated
similar trends.

6.9 Statistical Analysis

We conducted two distinct types of analysis. First, to compare algorithms for a single control
condition, we used a one-tailed paired t-test accepted at the 95% confidence level. For every such
test each “test point” is the accuracy over a single trial’s test graph. For example, for the synthetic
data there are 25 trials for each control condition, and thus a single t-test compares 25 pairs of
accuracies (e.g., ICAC vs. ICA). In all cases the test graphs used by these t-tests are disjoint, for
both the synthetic and the real data.

Second, we performed linear regression slope tests. In particular, for hypotheses H1-H4, we
compared two algorithms (e.g., ICAC vs. ICA) for each independent variable X (e.g., ld) as follows:
For each trial, we computed the difference in the algorithms’ classification accuracies (e.g., for the
synthetic data, 225 such differences for 25 trials and 9 values of ld). We performed linear regression
(Y = a+ bX), where the accuracy difference is the dependent variable Y and X is the independent
variable (e.g., ld). The estimated value of slope b, when non-zero, indicates an increasing (+)
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or decreasing (−) trend. Regression produces a p value associated with the slope that indicates the
significance level for hypothesis testing; we accept when p< 0.05. For hypothesis H5, the equations
are the same but we compare a single CC algorithm with and without PLUL.

For the synthetic data, the analysis is straight-forward and we use the data generation parameters
dh, ap, ld, and lp as the independent variable for regression. Analysis for the real data sets requires
more explanation. For instance, each computed subgraph of a data set has similar autocorrelation,
so regression for H1 (where autocorrelation is the X value) cannot be performed on a single data
set. Instead, we combine the trials of all the real data sets into one analysis, where the indepen-
dent variable is the measured autocorrelation of the corresponding data set (we include WebKB,
but exclude WebKB+co because it’s not clear how to compute its autocorrelation with direct links
combined with co-citation links). In addition, our results show that when attribute predictiveness
is high, there is less need for caution. Thus, to prevent any interactions between autocorrelation
and caution from being obscured by high attribute predictiveness, we use fewer than 100 attributes
for these experiments. In particular, for each data set we evaluated the baseline CO algorithm with
varying numbers of attributes NA, and selected the number that yields an average accuracy closest
to 50%. Table 5 shows the resulting default number of attributes for each data set.

For H2 (attribute predictiveness), we can directly vary the number of attributes, so we can
perform regression for each data set separately. However, attribute predictiveness is typically not a
linear function of the number of attributes. Thus, for H2 we perform regression where the dependent
variable is the accuracy ofCO for each trial (as a surrogate for attribute predictiveness).

We do not directly evaluate H3 for the real data sets (see Section 7).
For H4 and H5 (varying labeled proportion), we directly vary lp, so we can compute separate

results for each data set. Moreover, lp is suitable for direct use as the dependent variable. As with
H1, we use the default number of attributes for each data set in order to avoid having high attribute
predictiveness obscure the interaction of caution and lp. We omit nonsensical points (e.g., wvRN
when lp=0%) from all of the analyses.

Finally, for each hypothesis we also perform a pooled analysis. For the synthetic data, this
involves pooling the results of all the cautious CC algorithms, then performing the slope regression
test. For the real-world data, we pool the results across both the CC algorithms and each of the real
data sets. In addition, to account for differences in the data sets, we perform a multiple regression
analysis that includes autocorrelation as one of the input variables (except for H1). In particular, we
fit the data to the line Y = a+ b1X1+ b2X2, where X1 is the variable in question (e.g., lp for H4 or
H5) and X2 is the autocorrelation of the data set. The X2 term factors out differences due only to
autocorrelation, thus making the other trends more clear. The p-value corresponding to b1 is then
used for hypothesis testing.

6.10 Implementation Validation

To validate the implementation of our algorithms, we replicated three different synthetic data gen-
erators: those used by Sen and Getoor (2006), Neville and Jensen (2007), and Sen et al. (2008).
We then replicated some of the experiments from these papers. While several of our CC algorithm
variants were not evaluated in any of these earlier papers, we were able to compare results for ICA,
Gibbs, and LBP, with the LR and NB classifiers as appropriate, and found very consistent results.
Section 8.4 discusses one exception.
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LBP is the most challenging algorithm to implement and to get to converge. To deal with
such problems, Sen et al. (2008) seeded LBP’s learning process with weights learned from ICA.
Alternatively, we found that seeding with values estimated from empirical counts over the data,
combined with limiting the maximum step size of the search to prevent oscillation, worked well.
With these enhancements, LBP achieved equivalent accuracy to that reported by Sen and Getoor
(2006), and, when PLUL was applied, significantly improved it for the cases of high homophily
and link density (where LBP’s accuracy had been very poor). In contrast, we found that LBP could
replicate the performance of Sen et al. (2008), but that in this case PLUL had little effect. Section 8.4
explains the data characteristics of that study (effectively high lp) that led to this result.

7. Evaluation Results

This section presents our experimental results. Section 7.1 presents a summary of the results, Sec-
tion 7.2 explains how we present the detailed results, and subsequent sections discuss these detailed
results for each hypothesis. We focus on the sparse in-sample task, so we accept a hypothesis if it
is confirmed, for the lp=10% case, by the pooled analysis on both the synthetic data and the real-
world data. Hypotheses H4-H5 involve varying lp; here we accept the hypothesis if confirmed on
both the synthetic and real data.

When a local classifier is needed, all results below use NB by default. We found that NB’s
performance was better or equivalent to that of LR and kNN in almost every case (see Section 8.4),
for both the synthetic and real data sets, and that using LR or kNN led to very similar performance
trends. Below we mention some of the results for LR and kNN; see the online appendix for more
detail. In addition, PLUL is used everywhere unless otherwise specified; see analysis and motivation
in Section 7.7.

7.1 Summary of Results

Tables 6-8 summarize our overall results for hypotheses H1-H5. Each table presents results for the
synthetic data on the left and (where applicable) for the real data sets on the right. Each reported
value represents the estimated slope of the line measuring the difference between a cautious and a
non-cautious CC algorithm as the corresponding x-parameter (e.g., autocorrelation) is varied (see
Section 6.9). Only values that were statistically different from zero are reported; otherwise a dash
is shown. Bold values indicate a significant slope that supports the corresponding hypothesis. For
instance, H2 predicted that caution becomes more important as attribute predictiveness decreases
(a negative slope). Thus, Table 7 shows a minus sign for the expected slope and all significant,
negative slopes are shown in bold. Where possible, we show separate results for the out-of-sample,
sparse in-sample, and dense in-sample tasks (using lp = 0%, 10%, and 50%). However, to simplify
the table the real-world data results for H2 are shown only with lp=10%; Section 7.4 describes other
results.

The tables show strong support for hypotheses H1, H2, and H4. In particular, we accept H1, H2,
and H4 because the pooled analyses find significant slopes in the expected direction; non-pooled re-
sults also demonstrate consistent support. Thus, the data support the claims that each cautious infer-
ence algorithm outperforms7 its non-cautious variant by increasing amounts when autocorrelation

7. Technically, the slope results don’t by themselves show that the cautious algorithms “outperform” the non-cautious
algorithms—only that the relative performance of the cautious algorithms is improving in the hypothesized direction.
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Syn. data Real-world data

Ex
pec
ted

slo
pe lp=

0%
lp=
10
%

lp=
50
%

lp=
0%

lp=
10
%

lp=
50
%

H1: auto-correlation
ICAC vs. ICA + +0.13 +0.13 +0.03 — +0.27 +0.15
ICAKn vs. ICA + n.a. +0.04 +0.02 n.a. +0.15 +0.13
Gibbs vs. GibbsNC + +0.18 +0.15 +0.03 +0.27 +0.25 +0.15
LBP vs. LBPNC + +0.10 +0.08 — — — —
wvRNRL vs. wvRNICA+NC + n.a. +0.43 — n.a. +0.41 +0.07
wvRNICA+C vs. wvRNICA+NC + n.a. +0.40 — n.a. +0.67 +0.10
Pooled + +0.13 +0.21 +0.01 +0.13 +0.30 +0.11

Table 6: Summary of results for hypothesis H1. All values shown represent a slope that is signifi-
cantly different from zero; values in bold support H1. For H1, at a given l p value all data
sets (except WebKB+co) are used to compute a single slope value by treating the auto-
correlation of the data set as the X value. All algorithms used PLUL where applicable.
“n.a.” indicates that the algorithm doesn’t make sense at lp=0%.

Syn. data Real-world data (l p= 10%)

Ex
pec
ted

slo
pe lp=

0%
lp=
10
%

lp=
50
%

Co
ra

Cit
eS
eer

He
pT
H
We
bK
B+
co

We
bK
B

Te
rro
r

H2: attribute predictiveness
ICAC vs. ICA - -0.10 -0.25 -0.12 -0.60 -0.61 -0.29 — — —
ICAKn vs. ICA - n.a. -0.06 -0.08 -0.14 — -0.16 — — —
Gibbs vs. GibbsNC - -0.09 -0.27 -0.14 -0.44 -0.50 — — — —
LBP vs. LBPNC - -0.12 -0.28 -0.05 -0.46 -0.35 — n.c. -0.29 —
Pooled - -0.10 -0.22 -0.10 -0.23 (over all real data and CC algs.)
H3: link density
ICAC vs. ICA - -0.08 -0.09 -0.03
ICAKn vs. ICA - n.a. +0.06 -0.02
Gibbs vs. GibbsNC - -0.09 -0.07 -0.04 (not evaluated)
LBP vs. LBPNC - +0.12 -0.23 -0.04
wvRNRL vs. wvRNICA+NC - n.a. -0.18 -0.05
wvRNICA+C vs. wvRNICA+NC - n.a. 0.11 -0.03
Pooled - — -0.07 -0.04

Table 7: Summary of results for hypotheses H2 and H3. As before, all values shown represent a
slope that is significantly different from zero; values in bold support the corresponding
hypothesis. All algorithms used PLUL where applicable. “n.c.” indicates where LBP did
not converge.

is higher (H1), attribute predictiveness is lower (H2), and/or the labeled proportion is lower (H4).
In addition, the data show consistent interactions among these factors. In particular, the strength of

However, the raw accuracies do show consistent performance gains for the cautious algorithms, so in this context the
slope results do show the cautious algorithms outperforming the others by increasing amounts.
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Syn. data Real-world data
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H4: labeled proportion (comparing cautious vs. non-cautious algorithm)

ICAC vs. ICA - -0.09 -0.11 -0.14 -0.05 — —- —
ICAKn vs. ICA - -0.02 -0.06 — -0.05 -0.29 — —
Gibbs vs. GibbsNC - -0.11 -0.14 -0.13 0.05 0.28 — —
LBP vs. LBPNC - -0.05 — — — n.c. — —
wvRNRL vs. wvRNICA+NC - -0.28 -0.37 -0.39 -0.18 — —- —
wvRNICA+C vs. wvRNICA+NC - -0.27 -0.36 -0.32 -0.15 -0.31 — +0.28
Pooled - -0.12 -0.07 (over all real data and CC algs.)

H5: labeled proportion (comparing with PLUL vs. without PLUL)

ICAC - -0.02 — — — — — —
ICAKn - -0.01 — — -0.02 — — —
ICA - — — — — -0.18 — —
Gibbs - -0.02 — — -0.04 — -0.07 —
LBP - -0.03 — — — n.c. — —
Pooled - -0.02 -0.01 (over all real data and CC algs.)

Table 8: Summary of results for hypotheses H4 and H5, which both vary the labeled proportion
(l p). As before, all values shown represent a slope that is significantly different from zero;
values in bold support the corresponding hypothesis. For H4, all algorithms used PLUL
where applicable.

the dependence (the magnitude of the slope) generally decreases as the labeled proportion increases
from 10% to 50% (Section 7.4 discusses the differences between lp=0% and 10% in more detail).

Table 7 shows weaker support for H3 (cautious inference gain increases as link density de-
creases). H3 is supported by most of the synthetic data cases and by the pooled analysis for lp=10%
and lp=50%, but the magnitude of the slopes indicates a weaker effect. Moreover, Section 7.5 exam-
ines these results more closely and proposes that a more appropriate hypothesis would state that the
cautious inference gain is greatest when link density is moderate. This conclusion is also tentatively
supported by a per-node degree analysis of the real data.

Table 8 also shows weaker support for H5. The synthetic data results supported H5 for every
algorithm except ICA. In addition, for 18 of the 29 possible cases shown for the real data sets,
the computed slope was negative, as predicted by H5. However, the magnitude of these slopes
indicate a weaker effect than with H1, H2, or H4. This decreased magnitude, in conjunction with
the smaller number of trials for the real data, leads to only 4 of those 18 slopes reaching statistical
significance. Nonetheless, by combining trials across algorithms and data sets, the pooled analysis
does find significant (but small) negative slopes for both the synthetic and real data, so we accept
H5. This indicates, as expected, that cautious learning with PLUL is most important when lp is
small; Section 7.7 also demonstrates that in this case PLUL can provide substantial performance
gains.
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In addition to these results for each hypothesis, regarding relative performance trends as data
characteristics vary, our results also show statistically significant differences between the cautious
and non-cautious algorithms for at least some of the data conditions. These differences are con-
sistent with the accepted hypotheses. For instance, using the default synthetic data characteristics,
each cautious algorithm showed a significant performance gain over its non-cautious variant, and
the amount of this gain increased as autocorrelation increased, attribute predictiveness decreased,
or labeled proportion decreased.

7.2 Explanation of Results Presentation

In the following sections, we present several figures that compare CC algorithmic performance. In
these figures some controllable parameter is the x-axis and the y-axis is the resultant accuracy for a
given algorithmic variant, averaged over all trials. For instance, Figure 8 plots accuracy vs. the de-
gree of homophily (dh). Each figure compares cautious and non-cautious variants of a particular CC
algorithm: ICA, Gibbs, LBP, or wvRN. In addition, for the CC algorithms that use a local classifier
(ICA and Gibbs), we often include results for the non-relational algorithmCO for comparison.

In each section below, we use these results to describe two kinds of analysis. First, we accept
or reject a hypothesis, based on the pooled regression slope test. This analysis confirms or fails to
confirm that the importance of the cautious techniques does change in the expected direction as some
data parameter varies, but does not evaluate how important the cautious techniques are in improving
performance. To answer the latter question, we report on a second analysis that evaluates, using
paired t-tests, whether the cautious techniques perform significantly better than the non-cautious
alternatives (see Section 6.9).

Each figure has embedded statistical information corresponding to some of these t-tests. In
particular, each non-cautious CC variant is plotted with a × marker, while cautious CC variants are
plotted with a triangle (where multiple cautious variants exist, two triangle orientations are used: /
and 0). For a particular x-value, if the plotted triangle is filled in (solid color), then that cautious
variant had accuracy that was significantly different from the accuracy of the corresponding non-
cautious variant. Hollow triangles instead indicate no significant difference. This notation does not
directly indicate other significance comparisons (e.g., between the two cautious variants ICAC and
ICAKn); where necessary we describe such results in the text. For example, in Figure 8, the graph in
the third column of the first row (LBP at lp=0%) shows that LBP significantly outperforms LBPNC
when dh=0.6 (note the filled triangle). However, for dh=0.5, LBP’s small gain is not statistically
significant (hollow triangle).

When lp=0%, ICAKn is equivalent to ICA, so results for ICAKn are not shown. Also, LBP with
WebKB+co did not converge due to the very high number of links, so results for that case are not
considered (cf., Taskar et al., 2002).

7.3 Result 1: The Relative Gain of Cautious Inference Increases with Increasing
Autocorrelation

Table 6 reports that for H1, for the sparse in-sample task (lp=10%), the pooled regression analyses
found all significant positive values for the slope B. Thus, we accept H1. In addition, all the non-
pooled analyses found significant positive values. The only exception was LBP on the real data sets,
which had a positive, non-significant slope (b= +0.03).
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Figure 8: Results for the synthetic data as the degree of homophily (dh) varies. Section 7.2 ex-
plains how filled triangles indicate statistical significance. Some of the gains are small
but consistent, leading to significance, as in the bottom right graph.

For lp=0% and lp=50%, the pooled analyses and most individual analyses show the same posi-
tive slopes (on the real data for ICAC vs. ICA at lp=0%, the slope was b= +0.11, but the p-value was
just over the significance threshold), as we also found with LR and kNN. The reduced significance
and magnitude of the slopes when lp=50% is also consistent with our expectations, since the overall
importance of caution should decrease as lp increases (see hypotheses H4 and H5). Section 7.4
explains more for the lp=0% case.

Figure 8 shows detailed performance trends for the synthetic data. Here each column presents
results for different variants of a single CC algorithm (ICA, Gibbs, LBP, and wvRN), and each row
shows results for a different value of lp. The x-axis varies homophily (which directly increases
autocorrelation) and the y-axis reports average accuracy.

This figure confirms that when homophily is very low, CC offers little gain, and thus the cau-
tious variants perform equivalently to the non-cautious variants (and, except for wvRN, to the non-
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Figure 9: Results for the synthetic data as attribute predictiveness (ap) varies.

relational baselineCO). As the strength of relational influence (as well as the potential for incorrect
relational inference) increases with higher homophily, the relative gain of the cautious methods in-
creases substantially (e.g., at lp=10%, gains for NB-based algorithms rise from 4-5% at dh=0.5 to
9-12% at dh=0.9). The gains from caution are statistically significant in most cases when dh≥0.3.
Results with LR and kNN show very similar trends (see online appendix).

Figure 8 also confirms that as lp increases, the cautious and non-cautious variants perform more
similarly. However, even for lp=50%, the cautious variants maintain a significant, though smaller,
advantage. In the other results discussed below, the same trend of very similar performances at
lp=50% was evident. Likewise, the graphs for lp=0% are similar to those for lp=10%. Thus, we
defer most results for lp=0% or 50% to the online appendix.

7.4 Result 2: The Relative Gain of Cautious Inference Increases as Attribute Predictiveness
(ap) Decreases

Table 7 reports that, for lp=10%, the regression analyses found all significant negative slopes (as
expected) for the synthetic data. Likewise, in almost all cases we found significant negative slopes
for the real data sets that have substantial autocorrelation (Cora, Citeseer, HepTH, and WebKB+co),
except for WebKB+co (which had very erratic performance with all the algorithms). We accept H2,
because the pooled analysis found negative slopes at lp=10% for both synthetic and real data; this
result also holds at lp=0% and 50%.

Figure 9 shows detailed performance trends for the synthetic data as the x-axis varies ap. For
instance, for lp=10%, when the attribute predictiveness (ap) is 0.6 (the default), ICAC and Gibbs
outperform their non-cautious variants by 6-7%. However, as ap decreases to 0.2, label uncertainty
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increases (as evidenced by the drop forCO), causing the relative gain of caution to increase to 20%.
LBP shows very similar results.

Results for lp=0% are mostly similar, but with an interesting twist. In this case, the relative
gain of cautious CC increases as ap decreases, as with lp=10%. However, this gain peaks at ap=0.2
or 0.3, then declines as ap continues to decrease. When attribute predictiveness is very low, and
there are no known labels to help seed the inference (i.e., lp=0%), then even the cautious algorithms
have difficulty exploiting relational information, and achieve accuracy only moderately above the
baseline CO. However, even in this case the cautious algorithms maintain some small, statistically
significant advantage over the their non-cautious variants (which at ap=0.1 do little better thanCO).
Also, observe that ICAC, Gibbs, and LBP all improve substantially for the lp=10% case (compared
to lp=0%), even though only ICAC explicitly favors the provided known labels in its inference
process. In this case, using caution appears to be the important performance factor, regardless of
what specific behavior provides that caution.

Figures 10 and 11 provide similar results for the real data sets with lp=10%, where the x-axis
is now the number of attributes used, which correlates with overall attribute predictiveness. In
general, the trends shown are similar to those already observed for the synthetic data. In particular,
the graphs for Cora, Citeseer, HepTH, and WebKB all follow the same pattern: cautious algorithms
outperform non-cautious algorithms more when the number of attributes is low (and cautious ICAC
outperforms the somewhat cautious ICAKn). Consistent with H1, the magnitude of these gains varies
with autocorrelation: larger for Cora and Citeseer, smaller for HepTH andWebKB, and non-existent
for Terror (where autocorrelation is very weak).

There are two exceptions to the similarities of these results with the synthetic data. First, for
some data sets Gibbs and/or LBP perform noticeably worse than ICAC; we discuss this separately in
Section 8.1. Second, WebKB+co shows fairly erratic performance for all algorithms except ICAKn.
In general, the co-citation links used by WebKB+co appear to be very informative (peak accuracy
is much higher than with WebKB), but also potentially misleading. This may be a function of the
WebKB graph structure: Table 5 shows that co-citation links have a very high label consistency
of 0.90 (implying that classifiers will learn a strong relational dependence), but this may be biased
by the presence of some very high degree nodes. During learning the co-citation links may appear
very informative on average, but this strong dependency may lead to mispredictions for low-degree
nodes, leading to the observed erratic behavior.

We now briefly return to the slope analysis of Table 7. For the synthetic data, the negative slopes
for H2 are significant in all cases, but generally largest for lp=10%. This behavior is consistent with
our previously discussed analyses of the synthetic data: when lp=0%, the performance of cautious
algorithms for very low ap is diminished, thus producing a smaller slope magnitude than when
lp=10%. On the other hand, the more general observation that caution is less useful when lp is high
explains why the magnitude of the slopes is less for lp=50% than for lp=10%. We found similar
trends for the real-world data sets: while Table 7 shows significant negative slopes for H2 for most
cases (excluding the erratic WebKB+co and the low autocorrelation Terror) when lp=10%, results
(not shown) with lp=0% or 50% indicate slopes of reduced magnitude and/or slopes that do not
reach statistical significance. However, in both cases the pooled analysis still indicates significant
negative slopes for H2 (-0.05 for lp=0% and -0.13 for lp=50%).
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Figure 10: Results for four of the real data sets as the number of attributes is varied. The x-axis
is not to scale; this is to improve readability and to yield a more linear curve for the
baseline CO algorithm, thus facilitating comparison with Figure 9. Because there are
only 3-5 trials for the real data, high variance sometimes causes substantial gains to not
be statistically significant.

7.5 Result 3: The More Cautious Algorithms Outperform Non-Cautious Algorithms when
Link Density (ld) is Moderate, But Have Mixed Results When ld is High

For the synthetic data, the results in Table 7 support H3 for all algorithms when lp=50%, for most
algorithms when lp=10%, and for only two algorithms when lp=0%. The pooled analysis finds,
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Figure 11: Results for the WebKB data sets as the number of attributes is varied. With WebKB+co,
LBP did not converge, so results are not shown.
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Figure 12: Results for the synthetic data as link density (ld) varies.

as expected, significant negative slopes for lp=10% and lp=50%. However, without corresponding
pooled results for the real data, we cannot accept H3. Moreover, the results we present below will
suggest a revision to H3.

Figure 12 shows the results as ld is varied, for lp=10%. When ld is low to moderate (up to
ld=0.6), the cautious algorithms consistently and significantly outperform their non-cautious vari-
ants. We had hypothesized that this advantage would decrease as link density increased, because
when the link graph is dense, the relational features are relatively unaffected by a few incorrect
labels, and thus using such labels cautiously matter less; Figure 12 generally reflects this trend. In
some cases the non-cautious algorithm even outperforms the cautious algorithm at very high ld. For
instance, at ld=0.9 ICA outperforms the more cautious ICAC (though not significantly). At such
high link density, simply using all available information with ICA may work better than ICAC’s
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cautious but partial use of estimated labels—provided that accuracy is high enough that errors are
few. In separate experiments we confirmed that if the attribute predictiveness (and thus accuracy)
was lower, ICAC maintained it’s advantage over ICA even when ld was very high.

While these results generally indicate, as expected, that the gain from caution decreases as ld
becomes high, closer examination indicates that this gain from caution peaks not at very low ld, but
at moderate ld. In particular, the gain from caution peaks when ld is 0.2 or 0.3 for ICAC, ICAKn,
or Gibbs, and when ld is 0.6 for wvRNRL and wvRNICA+C. In hindsight, this effect makes sense: as
the number of links decrease, there is less relational influence, and thus less probability of incorrect
relational influence, so caution matters less. Another effect is that with fewer links, there are fewer
opportunities for a cautious algorithm to favor one node’s predictions over another’s.

To further analyze these trends, we turn to the real data. We did not attempt to directly vary the
link density of the real data sets, because it’s not clear how to realistically add links to an existing
data set, as would be necessary to create a reasonable range of link densities for experimentation.
However, Table 9 examines our previous results for the real data sets, showing the amount of cau-
tious gain broken down by the link degree of each node. This approach does not directly correlate
to varying the overall link density, so our conclusions are tentative, but it does provide some insight.
We focus primarily on ICAC; trends with other algorithms were similar.

The results support our previous conjectures. In particular, the cautious gain generally decreases
for the highest link degrees, even going negative in some cases. Moreover, in most cases the cautious
gain also decreases for the lowest link degrees, resulting in a peak for the cautious gain (shown in
bold if present) at moderate link degrees. These effects generally hold true for the synthetic data
and for the real data sets that have substantial autocorrelation.

We now return to Figure 12 to consider a few possible exceptions. First, with LBP, accuracy
decreases with increasing ld, is erratic, and is sometimes better with LBPNC than with LBP. This is
not surprising: the short graph cycles caused by high ld produces great problems for LBP (e.g., Sen
and Getoor, 2006; Sen et al., 2008). Even these LBP accuracies are much better than those achieved
without PLUL (see Section 7.7).

Second, two of the cautious algorithms (ICAKn and wvRNICA+C) performed unexpectedly well,
continuing to significantly outperform the non-cautious variants (and even alternative cautious vari-
ants) at very high link density. Interestingly, these effects also occur with WebKB+co (see Fig-
ures 11 and 14), which has by far the highest link density of the real data sets.8 In addition, the
superior performance of ICAKn at high ld remains even when the local classifier is changed to LR
or kNN (see Figure 19 in the online appendix). We suspect that ICAKn’s advantage arises because it
both achieves a better starting point than ICA (by favoring known labels in its first iteration) and ex-
ploits more information than ICAC (by using all estimated labels in subsequent iterations—and when
ld is high using a few erroneous labels doesn’t harm performance). For wvRNICA+C, its advantage
over wvRNRL must arise from the key algorithmic difference: since wvRNICA+C is a hard-labeling
algorithm, it gives all labeled nodes equal weight in the neighborhood average that determines the
next label for a node. When link density is high, relying on this simple average may be better than
wvRNRL’s soft-labeling estimation, which implicitly gives more weight to nodes with more extreme

8. At first, these strong performances seem to conflict with Macskassy and Provost (2007), who generally find wvRNRL
outperforms wvRNICA+C. However, two-thirds of their data sets are variants of WebKB, but where all “Other”
pages have been removed from the classification task. This change makes the classification problem easier, and thus
may explain the discrepancy. In addition, on the only other data set used in that work and this article (Cora), our
performance trends are very similar.
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Degree 1-2 Degree 3-5 Degree 6-10 Degree 11-20
Synthetic data, using NB+ICAC
lp= 0% 5.5% 8.2 % 13.8% 8.2%
lp=10% 5.2% 9.7 % 8.6% 10.6%
lp=50% 2.2% 4.6 % 8.9% 7.3%
Average 4.3% 7.5 % 10.4% 8.7%
Synthetic data, using NB+Gibbs
lp= 0% 8.5% 13.6 % 18.6% 15.4%
lp=10% 6.3% 9.7% 12.7% 10.6%
lp=50% 2.5% 3.6% 7.4% 5.3%
Average 5.7% 9.0% 12.9% 10.5%
Real data with substantial autocorrelation, using NB+ICAC
Cora 7.9% 10.9% 10.5% -4.8%
Citeseer 15.8% 20.5% 14.6% -8.3%
WebKB+co 8.3% 9.8% 12.8% 10.0%
HepTH 1.2% -4.3% 3.3% 4.0%
Average 8.3% 9.2% 10.3% 0.2%
Other real data sets, using NB+ICAC
WebKB 5.8% 1.5% -4.8% -6.0%
Terror 2.4% -5.7% 0.0% 0.0%

Table 9: Per-node degree results showing the amount of gain from caution (ICAC vs. ICA or Gibbs
vs. GibbsNC). Each value indicates the average accuracy gain from caution for all nodes
in the test set within the given link degree range (nodes with degree greater than 20 were
rare, and ignored for simplicity). Within each row, a value is in bold if it represents a clear
peak, with monotonically decreasing accuracies to both the left and right of that value.
The synthetic data used the default settings. The real data sets used the default number of
attributes and lp=10%.

estimated distributions. In both cases, however, extending ld to even more extreme values (e.g.,
ld=0.95) does confirm the overall trend of the amount of cautious gain decreasing at high ld.

As expected, we found that these performance differences disappeared when many known labels
were provided. In particular, at high link density and lp=50%, there were only small differences
between ICAC, ICAKn, and ICA, or between wvRNRL, wvRNICA+C, and wvRNICA+NC. In addition,
when PLUL was used, even LBP and LBPNC performed on par with ICAC and Gibbs when lp=50%,
despite the challenges of LBP with high ld.

Overall, our results suggest that a more appropriate rendering of H3 should indicate that the
relative gain from caution will peak at some moderate value of ld, with the precise value depending
on the CC algorithm and the other data conditions. We leave confirmation of this revised hypothesis
to future work.

7.6 Result 4: The Relative Gain of Cautious Inference Increases as the Labeled Proportion
(lp) Decreases

Table 8 reports that, as lp varies, the regression analyses found all significant negative slopes (as
expected) for the synthetic data. Likewise, in almost all cases we found significant negative slopes
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Figure 13: Results for the synthetic data as the labeled proportion (lp) varies.

for the real data sets with substantial autocorrelation (all except Terror and WebKB). We accept H4,
because the pooled analyses find all negative, significant slopes.

For the real data, the exceptions to H4’s stated trend were primarily WebKB+co, which had
very erratic performance with all the algorithms, and WebKB, where none of the slopes attained
statistical significance. In addition, LBP had highly variable behavior so that only for Citeseer did
the slope approach statistical significance (p= .053, just over the threshold).

Figure 13, for the synthetic data, shows the performance of the cautious and non-cautious algo-
rithms converging as lp increases. The cautious algorithms maintain a significant advantage until
lp=80%. Observe that ICAKn’s curve lies between that of the more cautious ICAC and the non-
cautious ICA, while wvRNRL and wvRNICA+C obtain the same results with their two different ap-
proaches to caution.

Figure 14 shows results for the real data sets as lp is varied. This figure show results only
for wvRN, since results were previously presented for the other algorithms for varying numbers of
attributes, and the lp graphs don’t add additional insight for those algorithms.

The results in Figure 14 mirror those of the synthetic data, with a few exceptions. First,
wvRNICA+C does poorly on Terror, perhaps because of the low autocorrelation. Second, with We-
bKB+co, wvRNICA+C outperforms wvRNRL when lp is low, though the gains are not quite significant;
this effect was discussed in Section 7.5. Finally, the accuracy of wvRN for WebKB goes down with
increasing lp. WebKB with just direct links has some autocorrelation but very low label consistency
(see Table 5), because each node tends to link in certain patterns to nodes with a different label
from itself (cf., Macskassy and Provost, 2007). Algorithms based on wvRN assume homophily, not
such more complex forms of autocorrelation. Consequently, increasing lp only serves to reduce
accuracy below the majority class baseline. Running wvRN with only co-citation links, as done for
WebKB+co, works much better.

7.7 Result 5: The Relative Gain of Cautious Learning With PLUL Increases as the Labeled
Proportion (lp) Decreases

The previous results compared cautious vs. non-cautious variants of a particular CC algorithm, in
all cases using PLUL. We now justify the use of PLUL and examine its impact.

The bottom of Table 8 shows the regression slope results for H5, where the x-axis varies the
labeled proportion (lp), and each table row compares a single CC algorithmic variant when using
PLUL vs. not using PLUL. As expected, the slope analysis found all significant negative slopes for
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Figure 14: Results for variants of wvRN on the real data sets, as lp is varied. For the first WebKB
results, wvRN uses only co-citation links (unlike previous results with other algorithms,
where WebKB+co used direct links and co-links together; see Section 6.6.3). Recall
that filled triangles indicate statistical significance, but only for comparing the cautious
variant (here, wvRNRL or wvRNICA+C) vs. the non-cautious variant (wvRNICA+NC).

the synthetic data (with one exception where the p-value was close to the threshold), although the
magnitude of the slopes suggests a weak trend. For the real data sets, while 18 of the 29 possible
slopes were in the expected direction, only 4 of these slopes were statistically significant (recall that
the real data sets have available only 3-5 trials, making significance harder to achieve). However,
pooling the results across the data sets and algorithms yields a significant negative slope for both
the synthetic and real data, so we accept H5.

Thus, while the effect (as lp varies) is smaller than with previous hypotheses, H5 indicates the
PLUL provides the most gain when lp is small. To measure the magnitude of this gain, Table 10
shows the impact of PLUL when lp=0%. Each row shows the results for a different collective
algorithm. Results are given for each algorithm both with and without PLUL, along with the overall
gain from PLUL. Because PLUL interacts closely with the local classifier, we show results here for
NB, LR, and kNN for the CC algorithms that use a local classifier. CO and wvRN are unaffected by
PLUL, and thus are not shown.

In general, we found that PLUL improved performance, sometimes substantially, but the data
regions where such substantial gains occur vary by classifier and/or CC algorithm. For instance,
Column A of Table 10 shows results for the default synthetic data settings. Here, PLUL improves
performance for almost all algorithms. In particular, the gains range from -0.3% to 10.8%, with an
average of 4.0%, and are significant in 9 of the 14 cases. Column B shows results where the attribute
predictiveness is 0.3 (instead of the default 0.6). In this case, the gains due to PLUL are almost
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A.) Default settings B.) Low attr. predictiveness C.) High link density
With PLUL? PLUL With PLUL? PLUL With PLUL? PLUL
Yes No Gain Yes No Gain Yes No Gain

Using the NB local classifier
ICAC 78.9 77.8 1.1 58.2 52.5 5.7 80.6 72.0 8.6
ICA 72.3 72.6 -0.3 47.7 46.8 0.9 77.0 75.4 1.6
Gibbs 81.8 81.5 0.3 60.6 55.9 4.7 80.8 79.2 1.6
GibbsNC 71.8 71.1 0.7 46.7 46.0 0.7 76.4 74.2 2.2
Using the LR local classifier
ICAC 78.6 74.1 4.5 56.8 43.2 13.6 82.9 73.9 9.0
ICA 70.8 68.5 2.3 48.5 44.4 4.1 70.8 72.5 -1.7
Gibbs 76.5 72.9 3.6 52.3 50.8 1.5 77.6 77.8 -0.2
GibbsNC 70.3 65.3 5.0 48.4 43.2 5.2 71.4 71.3 0.1
Using the kNN local classifier
ICAC 74.1 69.0 5.1 51.4 39.2 12.2 78.5 65.4 13.1
ICA 71.7 64.2 7.5 48.4 41.0 7.4 75.2 74.7 0.5
Gibbs 73.9 70.0 3.9 54.4 48.1 6.3 80.3 79.7 0.6
GibbsNC 71.7 61.3 10.4 47.7 38.9 8.8 75.0 74.0 1.0
Using LBP
LBP 77.8 76.4 1.4 55.7 27.9 27.8 69.7 21.5 48.2
LBPNC 73.9 63.1 10.8 45.5 24.4 21.1 54.3 31.2 23.1

Table 10: Impact of PLUL on accuracy with the synthetic data, for CC algorithms where PLUL
applies, at lp=0%. Gains in bold are statisticaly significant.

all larger, ranging from 0.7% to 27.8% (average of 8.6%), and are significant in 11 of 14 cases.
These results are consistent with H2: when attributes are less predictive of the class label, cautious
techniques, including PLUL, become more important. Finally, column C shows results where the
link density is now 0.7 (instead of the default 0.2); here the gains due to PLUL are more varied.
For ICAC, PLUL remains important and matters even more than with the default data settings. We
conjecture that this is because with so many links, relational influence can spread very quickly in
the graph, and thus the PLUL process is very important to ensuring that ICAC’s confidence measure
selects the most reliable predictions during the first few iterations. Indeed, when lp is instead set
to 10% (thus providing more certain estimates for the early iterations), PLUL became much less
important for ICAC. LBP has known issues with high link density, but PLUL helps substantially to
ameliorate them. For the other algorithms, the increased link density leads to PLUL having a minor
impact, consistent with H3.

Table 11 shows similar results for the real data sets, where results for all six data sets have
been pooled together. Since we cannot directly vary link density, we instead show results with two
conditions. On the left is the “fewer attributes” case; here each data set uses its default number
of attributes, as explained in Section 6.9. On the right is the case where each data set uses 100
attributes.

Compared to results with the synthetic data, Table 11 shows less evidence for the effectiveness
of PLUL with the real data sets. While all algorithms show a gain from using PLUL, only about
half of the gains are statistically significant. To explain, consider that PLUL works best when the
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Fewer attributes(default) More attributes(100)
With PLUL? PLUL With PLUL? PLUL
Yes No Gain Yes No Gain

ICAC 56.8 56.1 0.7 68.6 68.1 0.5
ICA 54.5 52.3 2.2 65.7 64.9 0.8
Gibbs 53.5 50.1 3.4 67.0 66.1 0.9
GibbsNC 55.5 53.0 2.5 66.5 65.6 0.9
LBP 49.9 44.3 5.6 65.2 58.4 6.8
LBPNC 46.0 42.1 3.9 63.5 56.4 7.1

Table 11: Accuracy results showing the impact of using PLUL with the real data. Each value shows
results pooled over the six real data sets, at lp=0%, using NB where applicable. Gains in
bold are statistically significant.

holdout set used for learning is most similar to the test set. With the synthetic data, such similarity
is likely, because the two graphs are generated from the same distribution. However, with the real
data, splitting an arbitrary graph into multiple subgraphs, even while seeking to maintain similar
class distributions, may nonetheless produce subgraphs with important differences (e.g., in auto-
correlation), leading to sub-optimal parameter choices by PLUL. Future work is needed to explore
these issues.

Nonetheless, the evidence suggests that in most cases for the real and synthetic data PLUL
improves performance. Moreover, for every algorithm there was some type of data for which not
using PLUL led to very poor performance. Thus, applying PLUL in all of our other experiments
seemed advisable for maximizing performance and for ensuring the most equitable comparisons.

7.8 Choice of Relational Feature Types

Section 6.6 described how each trial selected a type of relational feature to use. For completeness,
Table 12 summarizes how often each type of feature was chosen. In general, the best feature type (as
chosen by cross-validation) varied based on the local classifier used and the data conditions. How-
ever, Table 12 shows that for NB, multiset features were dominant, especially for the more cautious
algorithms (chosen 76-96% of the time for ICAC and Gibbs). With kNN, proportion features were
dominant, while with LR count features were chosen most often but proportion features were also
fairly common, especially with high ld. These results suggest that an analyst should most likely use
multiset with NB, use proportion with kNN, and consider the data conditions to select a feature type
for LR.

The superiority of multiset features, when they were applicable, is interesting because they are
“cautious” features that simply ignore nodes with no known or predicted label (see Section 6.6.1).
Likewise, Section 6.5 reported that LR with ICAC performed best when missing feature values
were ignored (by using a separate classifier trained without the missing features). These results
are consistent with Saar-Tsechansky and Provost (2007), who found (for non-relational data) this
“reduced-feature model” approach to be superior to commonly used approaches based on imputa-
tion. For a non-relational setting, their results thus demonstrate the superiority of a more “cautious”
approach to handling missing values during testing. For relational domains, we could imagine tak-
ing this idea of ignoring missing/estimated values even further, e.g., using a classifier that ignored
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A.) ICAC B.) ICA C.) Gibbs
Mult. Count Prop. Mult. Count Prop. Mult. Count Prop.

Synthetic data, using the NB local classifier
Default 96% 0% 4% 72% 0% 28% 100% 0% 0%
Low ap 88% 0% 12% 20% 4% 76% 92% 0% 8%
High ld 48% 0% 52% 80% 0% 20% 96% 0% 4%
Average 77% 0% 23% 57% 1% 41% 96% 0% 4%
Synthetic data, using the LR local classifier
Default n.a. 92% 8% n.a. 80% 20% n.a. 80% 20%
Low ap n.a. 52% 48% n.a. 60% 40% n.a. 68% 32%
High ld n.a. 80% 20% n.a. 52% 48% n.a. 48% 52%
Average n.a. 75% 25% n.a. 64% 36% n.a. 65% 35%
Synthetic data, using the kNN local classifier
Default n.a. 0% 100% n.a. 0% 100% n.a. 0% 100%
Low ap n.a. 0% 100% n.a. 12% 88% n.a. 0% 100%
High ld n.a. 0% 100% n.a. 0% 100% n.a. 0% 100%
Average n.a. 0% 100% n.a. 4% 96% n.a. 0% 100%
Real data, using the NB local classifier
Cora 97.5% 2.5% 0.0% 70.0% 17.5% 12.5% 100.0% 0.0% 0.0%
Citeseer 92.5% 2.5% 5.0% 57.5% 32.5% 10.0% 100.0% 0.0% 0.0%
WebKB+co 84.4% 0.0% 15.6% 65.6% 34.4% 0.0% 71.9% 12.5% 15.6%
WebKB 53.1% 40.6% 6.3% 31.3% 56.3% 12.5% 75.0% 21.9% 3.1%
HepTH 85.0% 12.5% 2.5% 62.5% 25.0% 12.5% 70.0% 27.5% 2.5%
Terror 50.0% 8.3% 41.7% 50.0% 25.0% 25.0% 41.7% 16.7% 41.7%
Average 77.1% 11.1% 11.8% 56.1% 31.8% 12.1% 76.4% 13.1% 10.5%

Table 12: The relational feature type (multiset, count, or proportion) chosen by cross-validation.
For the synthetic data, results are shown with the default settings, with low attribute
predictiveness (ap=0.3), and with high link density (ld=0.7). For the real data, results are
shown averaged across all the data points shown in Figures 10 and 11.

the estimated label of a linked node but instead directly used its non-relational features. However,
Jensen et al. (2004) demonstrated that such an approach is generally inferior to the approaches we
consider in this article (label-based features with collective inference), because of the much larger
number of model parameters that must be learned for the former case.

7.9 Variants of wvRN

Most prior research involving wvRN has used wvRNRL, the variant suggested as a relational-only
baseline by Macskassy and Provost (2007). However, algorithms based on wvRN need not necessar-
ily be relational-only. For instance, Macskassy (2007) described a technique for adding additional
links to the graph between nodes that appeared similar based on their attributes. Alternatively, we
could imagine, for wvRNRL, initializing each node’s predicted label probabilities based upon the
output of an attribute-only local classifier (instead of using class priors as done in Figure 5). Unfor-
tunately, this idea does not work well for a “soft” algorithm such as wvRNRL, because after iterating
many times the current state is almost completely determined by the known labels, independent
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Figure 15: Results for the synthetic data where wvRNseed is added for comparison. Because of the
multiple possible comparisons, filled triangles are not used here to indicate statistical
significance.

of the starting state (Macskassy and Provost, 2005). While in principle this problem could be ad-
dressed via learning an appropriate decay parameter & and stopping point, this forfeits much of the
simplicity of wvRN.

In contrast to wvRNRL, with a hard-labeling algorithm such as wvRNICA+C, the initial conditions
do matter. In particular, we evaluated wvRNseed , an algorithm that behaves just like wvRNICA+C, ex-
cept that each node’s predicted label is initialized to the most likely label predicted by an attribute-
only NB classifier. Non-relational information thus “seeds” the inference process but is then not
explicitly used again. To the best of our knowledge, this algorithm has not been previously consid-
ered for CC.

Figure 15 shows a variety of results for the synthetic data; results with the real data showed
similar trends. Overall, wvRNseed outperforms wvRNRL (especially when lp is low), which is to be
expected since wvRNseed uses more information. wvRNseed generally underperforms ICAC, which
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is also to be expected since ICAC both uses predicted labels cautiously (while wvRNseed treats all
predictions equally) and continues to use both attribute and relational information after the first iter-
ation. The differences with ICAC are largest when dh is low (where wvRN’s homophily assumption
is violated) or when attribute predictiveness is high (since wvRNseed uses the attributes only at ini-
tialization). However, wvRNseed outperforms all of the other shown algorithms when link density is
high. This case is analogous to the results with ICAKn from Section 7.5: if accuracy and link density
are high (and homophily is present), then caution with relational information may not be necessary,
and this case shows that continuing to use non-relational information after initialization may also
not be necessary. Overall, the results indicate that wvRNseed is not likely to be a strong contender
as a general purpose CC algorithm, but they do demonstrate an effective way to add non-relational
information to wvRN-based algorithms.

7.10 Impact of the Default Values for Synthetic Data Generation

The synthetic data evaluated above was generated with the default parameters described in Table 4.
Conceivably, our choice of default values could have an important effect on the results. While our
evaluation of multiple real data sets has already helped to validate the synthetic data results, we also
carried out an extensive exploration with other default values. For instance, when varying ld, we
experimented with all combinations of ap= {0.4, 0.6, 0.8}, dh= {0.5, 0.7, 0.9}, and lp={0%, 10%,
50%}. For tractability, we only evaluated variants of ICA, since the above results show that ICAC
produced the best or nearly the best results for all synthetic and real data sets, and that other cautious
algorithms usually behaved like ICAC.

The trends were highly consistent with the results we report and agree with our accepted hy-
potheses. For instance, if the default ap is very high, the results for varying dh showed a much
smaller slope for the relative impact of cautious ICAC vs ICA. The only default value that notice-
ably changed any result was already reported in Section 7.5: when ap was small (e.g., 0.4), the
unusual advantage of ICA over ICAC observed at very high ld disappeared. Thus, we believe the
trends in our results are robust over a wide range of data characteristics.

8. Discussion

In this section we compare results with different families of algorithms, examine the overall effec-
tiveness of caution, and use our results to explain the findings of some previous research.

8.1 Comparisons Across Algorithmic Families

Section 7 focused on comparing cautious vs. non-cautious variants within the same algorithmic
family. We now briefly compare across these families. We focus on the algorithms that have been
most frequently used in previous work: ICA, Gibbs, LBP, and wvRNRL. We also include the less
studied ICAC, since our results show that it has very strong performance. We report specific results
for lp=10%; comparisons were similar for lp=0%, while all of the algorithms perform very similarly
when lp=50%.

wvRNRL’s performance depends on homophily, link density, and lp. In our study, wvRNRL was
thus competitive with the other CC algorithms when homophily and/or lp was high, or when the
attributes were not very predictive. On the other hand, wvRNRL requires that some labels are known
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in the test set, so it is not applicable when lp=0% (the out-of-sample task). wvRNseed would be an
alternative.

For the synthetic data, the cautious algorithms ICAC, Gibbs, and LBP had remarkably similar
performance. Among the three, Gibbs had a small but sometimes significant performance advan-
tage. For instance, across the results for varying dh at lp=10% shown in Figure 8, Gibbs outper-
formed ICAC by an average of 1.0% (significantly for dh≥0.6) and LBP by an average of 0.7%
(significantly for 0.4≤dh≤0.7). Neither ICAC nor LBP had consistent, significant gains over the
other, except that both Gibbs and ICAC had substantial, significant gains over LBP when attribute
strength was very low (gains of 5-8%) or when link density was high (gains of 14-25%). However,
all three algorithms did have substantial, significant gains vs. ICA, except for when dh was very low
or when ld was very high. For instance, across the various dh levels, Gibbs outperformed ICA by
0.9-11.2% (all significantly) except for a loss of 0.1% at dh=0.1. Thus, based on the synthetic data
results, ICAC, Gibbs, and LBP usually achieve similar accuracies, despite their use of very different
approaches to caution.

On the real data sets, ICAC, Gibbs, and LBP likewise performed similarly. However, there are
two kinds of differences that should be noted. First, there were a few data sets on which LBP and/or
Gibbs performed noticeably worse than ICAC. In particular, Gibbs has poor performance on HepTH
and WebKB+co. In both cases, this is likely due to issues of high link density (WebKB has very
many co-citation links; HepTH has fewer links but some nodes have very high degree). High link
density can lead to extreme probabilities, where Gibbs is known to perform poorly. While this
was not a particular problem with the synthetic data (perhaps because the training and test graphs
were more similar), NB is well known for producing polarized probabilities in some cases. PLUL
does help, for instance, improving performance on HepTH and WebKB+co by an average of 4%
and 15%, respectively, in Figures 10 and 11. Nonetheless, performance with Gibbs lags that of
ICAC or ICA, which are not so influenced by extreme probabilities. We experimented with more
and/or longer Gibbs chains but this did not improve performance. However, this is one case where
the LR classifier performed better than NB: it appears to produce less polarized probabilities than
NB, leading to improved performance with Gibbs (see Figures 24 and 27 in the online appendix).
Similarly, LBP, which struggles with high link density, also has problems with HepTH (and likely
would have low performance with WebKB+co, had it ever converged) and with Cora. Its difficulty
with Cora is surprising and possibly indicates that the conjugate gradient training did not perform
adequately, despite our attempts (cf., Sen et al., 2008). However, LBP did perform well on Citeseer,
which has similar characteristics.

Second, in contrast to the small advantage for Gibbs on the synthetic data, for the real data ICAC
holds a small advantage. For instance, in Figure 10, ICAC outperforms Gibbs on average by 1% for
Cora and 2.4% for Citeseer, though not significantly. For HepTH and WebKB+co, where Gibbs had
trouble, the gains averaged 5.4% and 21.0%, respectively, and were significant for HepTH when
the number of attributes was small. ICAC was also robust: it was the only algorithm to outperform
ICA on average for every real data set considered. Moreover, using results pooled over all six data
sets, ICAC had moderate gains vs. ICA, Gibbs, LBP, and wvRNRL, both at the default number of
attributes (where the gains were significant) and using 100 attributes for each data set. Comparing
to just Gibbs and LBP, ICAC had a pooled gain of 4.9% and 7.8%, respectively, with the default
number of attributes, and 1.8% and 4.5%, respectively, with 100 attributes.
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8.2 Cautious Behavior as a Predictor of Performance

The previous section identified some of the situations in which the algorithms performed similarly
or differently. However, if we exclude the extreme data conditions such as very low attribute predic-
tiveness or high link density, a more remarkable finding emerges: the amount of cautious inference
used by an algorithm strongly predicts its relative performance. This finding is especially inter-
esting because the precise type of cautious inference seems to matter little. On both the synthetic
and the real data sets, in most cases ICAC, Gibbs, and LBP perform alike, while the non-cautious
ICA, GibbsNC, and LBPNC also perform similarly to each other (and at lower accuracy levels than
the cautious algorithms). However, when many test labels are known (high lp), the need for caution
decreases, and the differences between these two groups greatly diminish.

This effect can also be seen in other CC variants. For instance, wvRNRL and wvRNICA+C perform
similarly, despite their very different approaches to caution, and they both outperform the non-
cautious wvRNICA+NC. Likewise, in almost every case the somewhat-cautious ICAKn attained an
accuracy between that of the more cautions ICAC and the non-cautious ICA.

Thus, the amount of cautious inference seems to be the biggest factor differentiating those algo-
rithms that use attributes, much more so than whether some kind of ICA or Gibbs or LBP is used.
Likewise, when attributes are not used, as with the variants of wvRN, caution also appears to be the
largest factor in predicting relative performance.

8.3 Limitations of Cautious Inference

While our results show that the cautious use of relational information can significantly boost perfor-
mance, adding more caution to an algorithm is not always beneficial. In particular, the most extreme
form of relational caution is to not use any relational information (i.e., CO), but that is seldom op-
timal. Instead, an algorithm must seek to cautiously avoid errors from noisy predictions while still
leveraging informative relations.

To illustrate these effects, Figure 16 shows accuracy results for three synthetic data conditions:
low attribute predictiveness (ap=0.3), the default settings, and high link density (ld=0.9). Here the x-
axis indicates the algorithm used, with the amount of relational caution used increasing to the right.
We focus on variants of ICA, but add three new algorithms for further analysis. ICA70 is just like
ICAC, except that it stops after it has “committed” and used the most certain 70% of the predicted
labels (i.e., after the iteration when h= 7 in Figure 2). ICA30 and ICA0 likewise stop after accepting
and using 30% and 0% of the predicted labels, respectively. Note that ICA0 is identical to ICAKn
during the very first iteration (when both use only the “known” labels for relational features), but
that ICA0 stops after that iteration, while ICAKn continues for 10 more iterations, using all available
predictions during those iterations.

For the default and low attribute predictiveness data conditions, the trends are very similar:
amongst ICA, ICAKn, and ICAC, the most cautious ICAC performs best. Adding more caution to
ICAC, however, consistently decreases performance, as ICA70, ICA30, and ICA0 use less and less
relational information, until the lowest performance is found with the non-relational CO. These
results make sense: for this data, relational links are informative, so completely ignoring any (or
all) of them is non-optimal. Indeed, using all of them without any caution (ICA) is much better than
cautiously ignoring all relations (CO), but the cautious algorithm that eventually uses all relations
(ICAC) performs best. Note that this property of (eventually) using all available relational informa-
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Figure 16: Accuracy as a function of the amount of relational caution used. ICA70, ICA30, and
ICA0 are (even more cautious) variants of ICAC that stop iterating before some of the
less certain relational information has been used.

tion is true of all of the more cautious algorithms that we considered in this article (ICAC, Gibbs,
LBP, wvRNRL, and wvRNICA+C).

The high link density case provides an interesting contrast. Here the general shape of the curve
is similar, but the peak performance is observed with ICAKn, not with the more cautious ICAC. This
effect was already discussed in Section 7.5: if the baseline accuracy is high and there are many
links, simply using all available information after the first iteration is best. Similarly, for situations
where caution is not very important (e.g., when lp is high), the curve would show similar results for
ICA, ICAKn, and ICAC. Thus, in most cases being cautious with relational information is best, but
the algorithm should eventually use all available information (relational and non-relational), and in
some cases using more caution may be less important or even harmful.

8.4 Explanation of Prior Results

Our investigation enables us to explain the questions from Section 1, among others:

1. Why did Sen et al. (2008) find no consistent difference between Gibbs and ICA? In con-
trast, Gibbs had worked well in other work, and in this article we found that Gibbs (and
ICAC) often significantly increases accuracy vs. ICA. However, our results and careful study
of Sen et al.’s methodology explains the discrepancy: to generate the test set, they used a
snowball sampling method that we found produces an effective labeled proportion (lp) of at
least 0.5—a region where the use of caution has little impact. Also, their study did not vary
attribute predictiveness, which we show is a significant factor in the relative performance of
more cautious CC algorithms.

2. Why did McDowell et al. (2007a) find that ICAC significantly outperforms Gibbs, even
though attribute predictiveness was high, while here we find that Gibbs performs on
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par or better than ICAC in such cases? To investigate, we re-ran our experiments from our
earlier paper, but with two variations informed by our now-refined understanding of CC. First,
we used PLUL with both the NB and kNN classifiers. Second, we changed the NB classifier
to use multiset relational features (instead of proportion), which use more information and
which Section 7.8 shows is the feature of choice when using NB (it didn’t apply for kNN).
With these enhancements, Gibbs’s relative performance improved, so that ICAC and Gibbs
both significantly outperformed ICA, but the results for Gibbs and ICAC did not significantly
differ. Thus, more careful learning and representation choices resolves the discrepancy. This
also suggests that not using PLUL could potentially have an important effect on performance
comparisons. As an additional example, Sen and Getoor (2006) experimented with a wide
range of link densities but did not use a technique like PLUL; our results suggest that using
PLUL could have significantly improved their results with LBP for high ld.

3. Why did Galstyan and Cohen (2007) find that a soft-labeling version of wvRN fails to
consistently outperform a hard “label propagation” (LP) version? Most authors have ex-
pected that, for relational-only classification, the soft-labeling algorithm that directly reasons
with probabilities (thus exercising cautious inference) should outperform a hard-labeling ver-
sion that only reasons with the single most likely label for each linked node. However, closer
examination of their LP algorithm reveals that it includes elements of caution. In particular,
after each iteration, LP labels a non-known node only if the estimated score for that node is
among the highest of any such nodes. Thus, in a way similar to wvRNICA+C, nodes that are
closest to known nodes are labeled first, and the algorithm effectively favors label information
that was either known or is closer to other known nodes. This cautious behavior enables LP
to be competitive with (and sometimes outperform) the soft-labeling algorithm.

4. Why did Sen et al. (2008) find that ICA and Gibbs perform better with LR than with NB,
while we find the reverse? We replicated the synthetic data of their paper, and reproduced
their results. A key point, however, is that Sen et al. used count relational features for both
NB and LR, while we used cross-validation on a holdout set to select the best relational
feature type (see Section 6.6). This procedure predominantly selected multiset features for
NB (see Section 7.8), which we found in separate experiments to consistently improve NB
performance compared to using count features. Consequently, in our results CC algorithms
that use NB almost always outperformed those that use LR. While not a focus of our work,
such differences can be seen in Table 10. The superior performance of multiset features also
confirms the finding of Neville et al. (2003b).

5. When will cautious algorithms outperform their aggressive variants? We found that us-
ing more cautious CC frequently and sometimes dramatically increased accuracy. In gen-
eral, cautious CC performs comparatively well whenever relational inference errors are more
likely. These errors occur more frequently when there is more uncertainty in the estimated
relational feature values (e.g., when the attribute predictiveness is low) or when the effect of
any such uncertainty is magnified (e.g., when autocorrelation is high). In some cases, such as
when the test set links to many known labels (high lp), using a more cautious CC algorithm
may be unnecessary. However, in many cases (and with most previous work) lp is small or
zero, and thus caution may be important.
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9. Conclusion

Collective classification’s greatest strength—making inferences based on the inferred labels of re-
lated nodes—can also be a significant weakness, since this use of uncertain labels may reduce ac-
curacy when the estimates are incorrect. In this article, we demonstrated that managing this estima-
tion uncertainty through “cautious” algorithmic behavior is essential to achieving maximal, robust
performance. We showed how varying degrees of cautious inference could be manifested in four
different collective inference families, and explained how to use cautious learning with PLUL to
further improve performance. Our experimental results with both synthetic and real-world data sets
showed that cautious algorithms did outperform their non-cautious variants. By exploring a wide
range of data, we identified some data characteristics for which this performance advantage grew
larger. In particular, cautious behavior is especially important when there is a higher probability of
incorrect relational inference—which occurs when autocorrelation is higher, when link density is
moderate, and/or when attribute predictiveness or the labeled proportion is lower. In addition, our
study enabled us to answer several important questions from previous work.

Across a wide range of data, we found that an algorithm’s degree of caution was a significant
predictor of relative performance—in most cases a more important one than the specific collective
inference algorithm used. This reinforces the fundamental importance of cautious behavior for CC.
However, the cautious CC algorithms were not always comparable. Gibbs and (especially) LBP
sometimes struggled (e.g., when the data had high link density). In contrast, ICAC was a very
reliable performer and almost always had maximal or near-maximal performance, especially for the
real-world data. This finding is interesting because this article is the first to consider ICAC in depth.
Moreover, ICAC is a simple modification to ICA, making it much more time-efficient than Gibbs or
LBP. This suggests that ICAC is a strong contender for general CC tasks, and should be used as a
baseline for future CC performance comparisons.

Regarding cautious learning, we found that PLUL generally increased accuracy, sometimes
substantially. Parameter tuning is known to be important for learning non-relational classifiers.
We show that it can be especially critical for CC due to CC’s reliance on uncertain labels during
testing. For example, further results showed that for the synthetic data when link density was high,
Gibbs+NB with a naive # (prior hyperparameter) of 1.0 attained 99% of the accuracy attainable
with any #—if most test labels were known (e.g., lp=80%). However, when lp=0% this strategy’s
accuracy was just 61% of optimal. Using PLUL to set # instead increased accuracy. In addition, our
results in Section 7.7 showed PLUL helping both cautious and non-cautious inference algorithms.
Thus, using PLUL for cautious learning improves performance, and adding cautious inference helps
even more.

Future work is needed to compare the algorithms considered here with alternative methods,
such as Markov Logic Networks (Richardson and Domingos, 2006) and the “ghost edge” approach
of Gallagher et al. (2008), and to compare PLUL to the alternative “stacked models” discussed in
Section 5.5. In addition, further studies to consider the effect of training set size, noise in the known
labels, and link uncertainty would be useful. Finally, techniques are needed to further improve the
performance of cautious inference on data with high link density or other extreme conditions.
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Appendix A. Measuring the Strength of Relational Dependence

Data sets used for CC are often measured for their autocorrelation. Alternatively, label consistency
is the percentage of links connecting nodes with the same label. A closely related measure is the
degree of homophily (dh) used by Sen et al. (2008). To see the difference, suppose that a data set
has five labels that occur with equal frequency. Sen et al. argue that, if dh is zero, the target of a link
from a node labeled A should be to another node labeled A 20% of the time (random chance), not
0% of the time (Sen, 2008). Thus, for a uniform class distribution, the actual probability of a link
connecting two nodes i and j of the same label is defined as:

label consistency= P(yi = y j|(i, j) ∈ E) = dh+
1−dh
|C|

. (4)

To facilitate comparison, we adopt this definition to generate synthetic data with varying levels
of dh. However, for real data sets, we can only directly compute label consistency. Thus, to facili-
tate comparison we also compute approximate homophily from the measured label consistency by
assuming a uniform distribution of labels and solving for dh using Equation 4.

Appendix B. Information on Additional Results

In Section 7, we omitted some results for alternate local classifiers (LR and kNN) and/or alternate
settings of lp, since they did not noticeably change our reported trends. These results are available
in an online appendix that accompanies this article on the JMLR website.
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Abstract
In the context of multiple hypothesis testing, the proportion !0 of true null hypotheses in the pool
of hypotheses to test often plays a crucial role, although it is generally unknown a priori. A testing
procedure using an implicit or explicit estimate of this quantity in order to improve its efficency is
called adaptive. In this paper, we focus on the issue of false discovery rate (FDR) control and we
present new adaptive multiple testing procedures with control of the FDR. In a first part, assuming
independence of the p-values, we present two new procedures and give a unified review of other
existing adaptive procedures that have provably controlled FDR. We report extensive simulation
results comparing these procedures and testing their robustness when the independence assumption
is violated. The new proposed procedures appear competitive with existing ones. The overall best,
though, is reported to be Storey’s estimator, albeit for a specific parameter setting that does not
appear to have been considered before. In a second part, we propose adaptive versions of step-up
procedures that have provably controlled FDR under positive dependence and unspecified depen-
dence of the p-values, respectively. In the latter case, while simulations only show an improvement
over non-adaptive procedures in limited situations, these are to our knowledge among the first the-
oretically founded adaptive multiple testing procedures that control the FDR when the p-values are
not independent.
Keywords: multiple testing, false discovery rate, adaptive procedure, positive regression depen-
dence, p-values

1. Introduction

The topic of multiple testing, which enjoys a long history in the statistics literature, has generated
a renewed, growing attention in the recent years, spurred by an increasing number of application
fields, in particular bioinformatics. For example, when processing microarray data, a common goal
is to detect which genes (among several ten of thousands) exhibit a significantly different level
of expression in two different experimental conditions. Each gene represents a “hypothesis” to
be tested in the statistical sense. The genes’ expression levels fluctuate naturally (not to speak of
other sources of fluctuation introduced by the experimental protocol), and, because the number
of candidate genes is large, it is important to control precisely what can be deemed a significant
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observed difference. Generally, it is assumed that the natural fluctuation distribution of a single
gene is known and the problem is to take into account the number of genes involved (for more
details, see for instance Dudoit et al., 2003).

1.1 Adaptive Multiple Testing Procedures

In this work, we focus on building multiple testing procedures with a control of the false discovery
rate (FDR). This quantity is defined as the expected proportion of type I errors, that is, the proportion
of true null hypotheses among all the null hypotheses that have been rejected (i.e., declared as false)
by the procedure. In their seminal work on this topic, Benjamini and Hochberg (1995) proposed
the celebrated linear step-up (LSU) procedure, which was proved to control the FDR under the
assumption of independence between the p-values. Later, it was proved (Benjamini and Yekutieli,
2001) that the LSU procedure still controls the FDR when the p-values have positive dependence
(or more precisely, a specific form of positive dependence called positive regression dependence
from a subset, PRDS). Under completely unspecified dependence, the same authors have shown
that the FDR control still holds if the threshold collection of the LSU procedure is divided by a
factor 1+ 1/2+ · · ·+ 1/m, where m is the total number of null hypotheses to test. More recently,
the latter result has been generalized (Blanchard and Fleuret, 2007; Blanchard and Roquain, 2008;
Sarkar, 2008a,b), by showing that there is in fact a family of step-up procedures (depending on the
choice of a kind of prior distribution) that control the FDR under unspecified dependence between
the p-values.

However, all of these procedures, which are built in order to control the FDR at a level ", can
be shown to have actually their FDR upper bounded by !0", where !0 is the proportion of true null
hypotheses in the initial pool. Therefore, when most of the hypotheses are false (i.e., !0 is small),
these procedures are inevitably conservative, since their FDR is in actuality much lower than the
fixed target ". In this context, the challenge of adaptive control of the FDR (e.g., Benjamini and
Hochberg, 2000; Black, 2004) is to integrate an estimation of the unknown proportion !0 in the
threshold of the previous procedures and to prove that the corresponding FDR is still rigorously
controlled by ".

Of course, adaptive procedures are of practical interest if it is expected that !0 is, or can be,
significantly smaller than 1. An example of such a situation occurs when using hierarchical pro-
cedures (e.g., Benjamini and Heller, 2007) which first selects some clusters of hypotheses that are
likely to contain false nulls, and then apply a multiple testing procedure on the selected hypotheses.
Since a large part of the true null hypotheses is expected to be false in the second step, an adaptive
procedure is needed in order to keep the FDR close to the target level.

A number of adaptive procedures have been proposed in the recent literature and can loosely be
divided into the following categories:

• plug-in procedures, where some initial estimator of !0 is directly plugged in as a multi-
plicative level correction to the usual procedures. In some cases (e.g., Storey’s estimator,
see Storey, 2002), the resulting plug-in adaptive procedure (or a variation thereof) has been
proved to control the FDR at the desired level (Benjamini et al., 2006; Storey et al., 2004). A
variety of other estimators of !0 have been proposed (e.g., Meinshausen and Rice, 2006; Jin
and Cai, 2007; Jin, 2008); while their asymptotic consistency (as the number of hypotheses
tends to infinity) is generally established, their use in plug-in adaptive procedures has not
always been studied.
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• two-stage procedures: in this approach, a first round of multiple hypothesis testing is per-
formed using some fixed algorithm, then the results of this first round are used in order to
tune the parameters of a second round in an adaptive way. This can generally be interpreted
as using the output of the first stage to estimate !0. Different procedures following this gen-
eral approach have been proposed (Benjamini et al., 2006; Sarkar, 2008a; Farcomeni, 2007);
more generally, multiple-stage procedures can be considered.

• one-stage procedures, which perform a single round of multiple testing (generally step-up or
step-down), based on a particular (deterministic) threshold collection that renders it adaptive
(Finner et al., 2009; Gavrilov et al., 2009).

In addition, some works (Genovese and Wasserman, 2004; Storey et al., 2004; Finner et al.,
2009) have studied the question of adaptivity to the parameter !0 from an asymptotic viewpoint. In
this framework, the more specific random effects model is—most generally, though not always—
considered, in which p-values are assumed independent, each hypothesis has a probability !0 of
being true, and all false null hypotheses share the same alternate distribution. The behavior of
different procedures is then studied under the limit where the number of tested hypotheses grows to
infinity. One advantage of this approach and specific model is that it allows to derive quite precise
results (see Neuvial, 2008, for a precise study of limiting behaviors of central limit type under
this model, including some of the new procedures introduced in the present paper). However, we
emphasize that in the present work our focus is decidedly on the nonasymptotic side, using finite
samples and arbitrary alternate hypotheses.

To complete this overview, let us also mention another interesting and different direction opened
up recently, that of adaptivity to the alternate distribution. If the alternate distributions are known
a priori, the optimal testing statistics are generally likelihood ratios between each null and each al-
ternate, which (possibly after standardization under the form of p-values) can be combined using a
multiple testing algorithm in order to control some measure of type I error while minimizing a mea-
sure of type II error (see, e.g., Spjøtvoll, 1972, Wasserman and Roeder, 2006, Genovese et al., 2006,
Storey, 2007, Roquain and van deWiel, 2009). In situations where the alternate is unknown, though,
one can hope to estimate, implicitly or explicitly, the alternate distributions from the observed data,
and consequently approximate the optimal test statistics and the associated multiple testing proce-
dure (Sun and Cai, 2007 proposed an asymptotically consistent approach to this end). Interestingly,
this point of view is also intimately linked to some traditional topics in statistical learning such as
classification and of optimal novelty detection (see, e.g., Scott and Blanchard, 2009). However, in
the present paper we will focus on adaptivity to the parameter !0 only.

1.2 Overview of this Paper

The contributions of the present paper are the following. A first goal of the paper is to introduce a
number of novel adaptive procedures:

1. We introduce a new one-stage step-up procedure that is more powerful than the standard LSU
procedure in a large range of situations, and provably controls the FDR under independence
(and in a nonasymptotic sense). This procedure is called one-stage adaptive, because the
estimation of !0 is performed implicitly.
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2. Based on this, we then build a new two-stage adaptive procedure, which is more powerful in
general than the procedure proposed by Benjamini et al. (2006), while provably controlling
the FDR under independence.

3. Under the assumption of positive or arbitrary dependence of the p-values, we introduce new
two-stage adaptive versions of known step-up procedures (namely, of the LSU under positive
dependence, and of the family of procedures introduced by Blanchard and Fleuret, 2007,
under unspecified dependence). These adaptive versions provably control the FDR and result
in an improvement of power over the non-adaptive versions in some situations (namely, when
the number of hypotheses rejected in the first stage is large, typically more than 60%).

A second goal of this work is to present a review of several existing adaptive step-up procedures
with provable FDR control under independence. For this, we present the theoretical FDR control as
a consequence of a single general theorem, which was first established by Benjamini et al. (2006).
Here, we give a short self-contained proof of this result that is of independent interest. The latter
is based on some tools introduced earlier (Blanchard and Roquain, 2008; Roquain, 2007), aimed at
unifying FDR control proofs. Related results and tools also appear independently in Finner et al.
(2009) and Sarkar (2008b).

A third goal is to compare both the existing and our new adaptive procedures in an extensive
simulation study under both independence and dependence, following the simulation model and
methodology used by Benjamini et al. (2006):

• Concerning the new one- and two- stage procedures with theoretical FDR control under in-
dependence, these are generally quite competitive in comparison to existing ones. However
we also report that the best procedure overall (in terms of power, among procedures that are
robust enough to the dependent case) appears to be the plug-in procedure based on the well-
known Storey estimator (Storey, 2002) used with the somewhat nonstandard parameter setting
#= " . This outcome was in part unexpected since to the best of our knowledge, this fact had
never been pointed out so far (the usual default recommended choice is # = 1

2 and turns out
to be very unstable in dependent situations); this is therefore an important conclusion of this
paper regarding practical use of these procedures.

• Concerning the new two-stage procedures with theoretical FDR control under dependence,
simulations show an (admittedly limited) improvement over their non-adaptive counterparts
in favorable situations which correspond to what was expected from the theoretical study
(i.e., large proportion of false hypotheses). The observed improvement is unfortunately not
striking enough to be able to recommend using these procedures in practice.

The paper is organized as follows: in Section 2, we introduce the mathematical framework,
and we recall the existing non-adaptive results for FDR control. In Section 3, we deal with the
setup of independent p-values. We expose our new procedures and review the existing ones, and
compare them theoretically and in a simulation study. The case of positive dependent and arbitrarily
dependent p-values is examined in Section 4 where we introduce our new adaptive procedures in
this context. A conclusion is given in Section 5. Section 6 and 7 contain proofs of the results and
lemmas, respectively. Some technical remarks and discussions of links to other work are gathered
at the end of each relevant subsection, and can be skipped by the non-specialist reader.
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2. Preliminaries

In this paper, we stick to the traditional statistical framework for multiple testing, which we first
briefly recall below.

2.1 Multiple Testing Framework

Let (X ,X,P) be a probability space; we aim at inferring a decision on P from an observation x in
X drawn from P . Let H be a finite set of null hypotheses for P, that is, each null hypothesis h ∈H
corresponds to some subset of distributions on (X ,X) and “P satisfies h” means that P belongs to
this subset of distributions. The number of null hypotheses |H | is denoted by m, where |.| is the car-
dinality function. The underlying probability P being fixed, we denote H0 = {h ∈H | P satisfies h}
the set of the true null hypotheses and m0 = |H0| the number of true null hypotheses. We let also
!0 := m0/m the proportion of true null hypotheses. We stress that H0, m0, and !0 are unknown and
implicitly depend on the unknown P . All the results to come are always implicitly meant to hold
for any generating distribution P .

We suppose further that there exists a set of p-value functions p = (ph,h ∈ H ), meaning that
each ph : (X ,X) #→ [0,1] is a measurable function and that for each h ∈H0, ph is bounded stochas-
tically by a uniform distribution, that is,

∀h ∈H0 , ∀t ∈ [0,1], P [ph ≤ t] ≤ t. (1)

Typically, each p-value is obtained from a statistic Z that has a known distribution P0 under the
corresponding null hypothesis. In this case, ph = $0(Z) satisfies (1) in general, where $0(z) =
P0([z,+%)). Here, we are however not concerned with how these p-values are precisely constructed
and only assume that they exist and are known (this is the standard setting in multiple testing).

2.2 Multiple Testing Procedure and Errors

A multiple testing procedure is a function

R : x ∈ X #→ R(x) ∈ P (H ),

such that for any h ∈H , the function x #→ 1{h ∈ R(x)} is measurable. It takes as input an observa-
tion x and returns a subset of H , corresponding to the rejected hypotheses. As it is commonly the
case, we will focus here on multiple testing procedure based on p-values, that is, we will implicitly
assume that R is of the form R(p).

A multiple testing procedure R can make two kinds of errors: a type I error occurs for h when
h is true and is rejected by R , that is, h ∈ H0 ∩R. Conversely, a type II error occurs for h when
h is false and is not rejected by R, that is h ∈ H c

0 ∩Rc. Following the Neyman-Pearson general
philosophy for hypothesis testing, the primary concern is to control the quantity of type I errors of
a testing procedure. For this, the most traditional way is to upper bound the “Family-wise error
rate” (FWER), which is the probability that one or more true null hypotheses are rejected. However,
procedures with a controlled FWER are (by definition) very “cautious” not to make even a single
error, and thus reject only few hypotheses. This conservative way of measuring the type I error for
multiple hypothesis testing can be a serious hindrance in practice, since it requires to collect large
enough data sets so that significant evidence can be found under this strict error control criterion.
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More recently, a more liberal measure of type I errors has been introduced in multiple testing (Ben-
jamini and Hochberg, 1995): the false discovery rate (FDR), which is the averaged proportion of
true null hypotheses in the set of all the rejected hypotheses:

Definition 1 (False discovery rate) The false discovery rate of a multiple testing procedure R for
a generating distribution P is given by

FDR(R) := E

[
|R∩H0|

|R|
1{|R| > 0}

]
. (2)

A classical aim, then, is to build procedures R with FDR upper bounded at a given, fixed level
". Of course, if we choose R= /0, meaning that R rejects no hypotheses, trivially FDR(R) = 0≤ " .
Therefore, it is desirable to build procedures R satisfying FDR(R) ≤ " while at the same time
having as few type II errors as possible. As a general rule, provided that FDR(R) ≤ ", we want
to build procedures that reject as many false hypotheses as possible. The absolute power of a
multiple testing procedure is defined as the average proportion of false hypotheses correctly rejected,
E

[∣∣R∩H c
0
∣∣]/

∣∣H c
0
∣∣ . Given two procedures R and R′ , a particularly simple sufficient condition for

R to be more powerful than R′ is when R′ if R′ ⊂ R holds pointwise. We will say in this case that R
is (uniformly) less conservative than R′ .

Remark 2 Throughout this paper we will use the following convention: whenever there is an in-
dicator function inside an expectation, this has logical priority over any other factor appearing in
the expectation. What we mean is that if other factors include expressions that may not be defined
(such as the ratio 0

0 ) outside of the set defined by the indicator, this is safely ignored. This results in
more compact notation, such as in Definition 1. Note also again that the dependence of the FDR on
the unknown P is implicit.

2.3 Self-Consistency, Step-Up Procedures, FDR Control and Adaptivity

We first define a general class of multiple testing procedures called self-consistent procedures (Blan-
chard and Roquain, 2008).

Definition 3 (Self-consistency, nonincreasing procedure) Let & : {0,1, . . . ,m}→ R+ , &(0) = 0 ,
be a nondecreasing function called threshold collection; a multiple testing procedure R is said to
satisfy the self-consistency condition with respect to & if the inclusion

R⊂ {h ∈H | ph ≤ &(|R|)}

holds almost surely. Furthermore, we say that R is nonincreasing if for all h ∈ H the function
ph #→ |R(p)| is nonincreasing, that is if |R| is nonincreasing in each p-value.

The class of self-consistent procedures includes well-known types of procedures, notably step-
up and step-down. The assumption that a procedure is nonincreasing, which is required in addition
to self-consistency in some of the results to come, is relatively natural as a lower p-value means we
have more evidence to reject the corresponding hypothesis. We will mainly focus on the step-up
procedure, which we define now. For this, we sort the p-values in increasing order using the notation
p(1) ≤ · · ·≤ p(m) and putting p(0) = 0 . This order is of course itself random since it depends on the
observation.
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Definition 4 (Step-up procedure) The step-up procedure with threshold collection & is defined as

R= {h ∈H | ph ≤ p(k)}, where k =max{0≤ i≤ m | p(i) ≤ &(i)}.

A trivial but important property of a step-up procedure is the following.

Lemma 5 The step-up procedure with threshold collection & is nonincreasing and self-consistent
with respect to & .

Therefore, a result valid for any nonincreasing self-consistent procedure w.r.t. & holds in particular
for the corresponding step-up procedure. This will be used extensively through the paper and thus
should be kept in mind by the reader.

Among all procedures that are self-consistent with respect to & , the step-up is uniformly less
conservative than any other (Blanchard and Roquain, 2008) and is therefore of primary interest.
However, to recover procedures of a more general form (including step-down for instance), the
statements of this paper will be preferably expressed in terms of self-consistent procedures when it
is possible.

Threshold collections are generally scaled by the target FDR level " . Once correspondingly
rewritten under the normalized form &(i) ="'(i)/m , we will call ' the shape function for threshold
collection & . In the particular case where the shape function ' is the identity function, the procedure
is called the linear step-up (LSU) procedure (at level ").

The LSU plays a prominent role in multiple testing for FDR control; it was the first procedure
for which FDR control was proved and it is probably the most widely used procedure in this context.
More precisely, when the p-values are assumed to be independent, the following theorem holds.

Theorem 6 Suppose that the family of p-values p = (ph,h ∈ H ) is independent. Then any nonin-
creasing self-consistent procedure with respect to threshold collection &(i) = "i/m has FDR upper
bounded by !0" , where !0 = m0/m is the proportion of true null hypotheses. (In particular, this
is the case for the linear step-up procedure.) Moreover, if the p-values associated to true null hy-
potheses are exactly distributed like a uniform distribution, the linear step-up procedure has FDR
exactly equal to !0" .

For the specific case of the LSU, the first part of this result was proved in the landmark paper
of Benjamini and Hochberg (1995); the second part was proved by Benjamini and Yekutieli (2001)
and Finner and Roters (2001). Benjamini and Yekutieli (2001) extended the first part by proving
that the LSU procedure still controls the FDR in the case of p-values with a certain form of pos-
itive dependence called positive regression dependence from a subset (PRDS). We skip a formal
definition for now (we will get back to this topic in Section 4). The extension of these results to
self-consistent procedures (in the independent as well as PRDS case) was established by Blanchard
and Roquain (2008) and Finner et al. (2009).

However, when no particular assumption is made on the dependence between the p-values,
it can be shown that the above FDR control does not hold in general. This situation is called
unspecified or arbitrary dependence. A modification of the LSU was first proposed by Benjamini
and Yekutieli (2001), and proved to have a controlled FDR under arbitrary dependence. This result
was extended by Blanchard and Fleuret (2007) and Blanchard and Roquain (2008) (see also a related
result of Sarkar, 2008a,b). Namely, it can be shown that self-consistent procedures (not necessarily
nonincreasing) based on a particular class of shape functions have controlled FDR:
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Theorem 7 Under unspecified dependence of the family of p-values p = (ph,h ∈ H ), let ' be a
shape function of the form:

'(r) =
Z r

0
ud((u), (3)

where ( is some fixed a priori probability distribution on (0,%). Then any self-consistent procedure
with respect to threshold collection &(i) = "'(i)/m has FDR upper bounded by "!0 .

To recap, in all of the above cases, the FDR is actually controlled at the level !0" instead of the
target ". Hence, a direct corollary of both of the above theorems is that the step-up procedure with
shape function '∗(x) = !−10 '(x) has FDR upper bounded by " in either of the following situations:

- '(x) = x when the p-value family is independent or PRDS,

- the shape function ' is of the form (3) when the p-values have unspecified dependence.

Since !0 ≤ 1, using '∗ always gives rise to a less conservative procedure than using ' (especially
when !0 is small). However, since !0 is unknown, the shape function '∗ is not directly accessible.
We therefore call the step-up procedure using '∗ the Oracle step-up procedure based on shape
function ' (in each of the above cases).

Simply put, the role of adaptive step-up procedures is to mimic the latter oracle in order to obtain
more powerful procedures. Adaptive procedures are often step-up procedures using the modified
shape function G' , where G is some estimator of !−10 :

Definition 8 (Plug-in adaptive step-up procedure) Given a level " ∈ (0,1), a shape function '
and an estimator G : [0,1]H → (0,%) of the quantity !−10 , the plug-in adaptive step-up procedure
of shape function ' and using estimator G (at level ") is defined as

R= {h ∈H | ph ≤ p(k)}, where k =max{0≤ i≤ m | p(i) ≤ "'(i)G(p)/m}.

The (data-dependent) function &(p, i) = "'(i)G(p)/m is called the adaptive threshold collection
corresponding to the procedure. In the particular case where the shape function ' is the identity
function on R+, the procedure is called an adaptive linear step-up procedure using estimator G
(and at level ").

Following the previous definition, an adaptive plug-in procedure is composed of two different
steps:

1. Estimate !−10 with an estimator G .

2. Take the step-up procedure of shape function G' .

A subclass of plug-in adaptive procedures is formed by so-called two-stage procedures, when the
estimatorG is actually based on a first, non-adaptive, multiple testing procedure. This can obviously
be possibly iterated and leads to multi-stage procedures. The distinction between generic plug-in
procedures and two-stage procedures is somewhat informal and generally meant only to provide
some kind of nomenclature between different possible approaches.

The main theoretical task is to ensure that an adaptive procedure of this type still correctly con-
trols the FDR. The mathematical difficulty obviously comes from the additional random variations
of the estimator G in the procedure.
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3. Adaptive Procedures with Provable FDR Control under Independence

In this section, we introduce two new adaptive procedures that provably control the FDR under
independence. The first one is one-stage and does not include an explicit estimator of !−10 , hence it
is not explicitly a plug-in procedure. We then propose to use this as the first stage in a new two-stage
procedure, which constitutes the second proposed method.

For clarity, we first introduce the new one-stage procedure; we then discuss several possible
plug-in procedures, including our new proposition and several procedures proposed by other au-
thors. FDR control for these various plug-in procedures can be studied under independence using
a general theoretical device introduced by Benjamini et al. (2006) which we reproduce here with
a self-contained and somewhat simplified proof. Finally, we compare these different approaches;
first with a theoretical study of the robustness under a very specific case of maximal dependence;
second by extensive simulations, where we inspect both the performance under independence and
the robustness under a wide range of positive correlations.

3.1 New Adaptive One-Stage Step-Up Procedure

We present here our first main contribution, a one-stage adaptive step-up procedure. This means
that the estimation step is implicitly included in the (deterministic) threshold collection.

Theorem 9 Suppose that the p-value family p = (ph,h ∈ H ) is independent and let # ∈ (0,1) be
fixed. Define the adaptive threshold collection

&(i) =min
(

(1−#)
"i

m− i+1
,#

)
. (4)

Then any nonincreasing self-consistent procedure with respect to & has FDR upper bounded by " .
In particular, this is the case of the corresponding step-up procedure, denoted by BR-1S-# .

The above result is proved in Section 6. Our proof is in part based on Lemma 1 of Benjamini
et al. (2006). Note that an alternate proof of Theorem 9 is established in Sarkar (2008b) without
using this lemma, while nicely connecting the FDR upper-bound to the false non-discovery rate.

3.1.1 COMPARISON TO THE LSU

Below, we will mainly focus on the choice #= " , leading to the threshold collection

&(i) = "min
(

(1−")
i

m− i+1
,1

)
. (5)

For i ≤ (m+ 1)/2, the threshold (5) is " (1−")i
m−i+1 , and thus our approach differs from the threshold

collection of the standard LSU procedure threshold by the factor (1−")m
m−i+1 .

It is interesting to note that the correction factor m
m−i+1 appears in Holm’s step-down procedure

(Holm, 1979) for FWER control. The latter is a well-known improvement of Bonferroni’s procedure
(which corresponds to the fixed threshold "/m), taking into account the proportion of true nulls, and
defined as the step-down procedure1 with threshold collection "/(m− i+ 1) . Here we therefore

1. The step-down procedure with threshold collection & rejects the hypotheses corresponding to the k smallest p-values,
where k =max{0≤ i≤ m | ∀ j ≤ i , p( j) ≤ &( j)}. It is self-consistent with respect to & but uniformly more conser-
vative than the step-up procedure with the same threshold collection, compare with Definition 4.
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prove that this correction is suitable as well for the linear step-up procedure, in the framework of
FDR control.

If r denotes the final number of rejections of the new one-stage procedure, we can interpret
the ratio (1−")m

m−r+1 between the adaptive threshold and the LSU threshold at the same point as an a
posteriori estimate for !−10 . In the next section we propose to use this quantity in a plug-in, two-
stage adaptive procedure.

As Figure 1 illustrates, our procedure is generally less conservative than the (non-adaptive)
linear step-up procedure (LSU). Precisely, the new procedure can only be more conservative than
the LSU procedure in the marginal case where the factor (1−")m

m−i+1 is smaller than one. This happens
only when the proportion of null hypotheses rejected by the LSU procedure is positive but less
than "+ 1/m (and even in this region the ratio of the two threshold collections is never less than
(1−") ). Roughly speaking, this situation with only few rejections can only happen if there are few
false hypotheses to begin with (!0 close to 1) or if the false hypotheses are very difficult to detect
(the distribution of false p-values is close to being uniform).

In the interest of being more specific, we briefly investigate this issue in the next lemma, con-
sidering the particular Gaussian random effects model (which is relatively standard in the multiple
testing literature, see, for example, Genovese and Wasserman, 2004) in order to give a quantitative
answer from an asymptotical point of view (when the number of tested hypotheses grows to infinity).
In the random effect model, hypotheses are assumed to be randomly true or false with probability
!0 , and the false null hypotheses share a common distribution P1 . Globally, the p-values then are
i.i.d. drawn according to the mixture distribution !0U [0,1]+ (1−!0)P1 .

0
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0.15

0.2

0 200 400 600 800 1000

LSU
AORC
BR-1S, #= "
BR-1S, #= 2"
BR-1S, #= 3"
FDR09-1/2
FDR09-1/3

Figure 1: For m = 1000 null hypotheses and " = 5%: comparison of the new threshold collection
BR-1S-# given by (4) to that of the LSU, the AORC and FDR09-) .
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Lemma 10 Consider the random effects model where the p-values are i.i.d. with common cumula-
tive distribution function t #→ !0t+(1−!0)F(t). Assume that the true null hypotheses are standard
Gaussian with zero mean and that the alternative hypotheses are standard Gaussian with mean
µ> 0 . In this case F(t) = $($

−1
(t)−µ) , where $ is the standard Gaussian upper tail function.

Assuming !0 < (1+")−1 , define

µ! =$
−1

("2)−$
−1

(
"−1−!0
1−!0

"2
)

.

Then if µ> µ∗ , the probability that the LSU rejects a proportion of null hypotheses less than 1/m+"
tends to 0 as m tends to infinity. On the other hand, if !0 > (1+")−1 , or µ<µ∗ , then this probability
tends to one.

Lemma 10 is proved in Section 6. Taking for instance in this lemma the values !0 = 0.5 and
" = 0.05, results in the critical value µ! , 1.51 . This lemma delineates clearly in a particular
case in which situation we can expect an improvement from the adaptive procedure BR-1S over the
standard LSU.

3.1.2 COMPARISON TO OTHER ADAPTIVE ONE-STAGE PROCEDURES

Very recently, other adaptive one-stage procedures with important similarities to BR-1S-# have been
proposed by other authors. (The present work was developed independently.)

Starting with some heuristic motivations, Finner et al. (2009) proposed the threshold collection
t(i) = "i

m−(1−")i , which they dubbed the asymptotically optimal rejection curve (AORC). However,
the step-up procedure using this threshold collection as is does not have controlled FDR (since
t(m) = 1 , the corresponding step-up procedure would always reject all the hypotheses), and several
suitable modifications were proposed by Finner et al. (2009), the simplest one being

t ′)(i) =min
(
t(i),)−1"i/m

)
,

which is denoted by FDR09-) in the following.
The theoretical FDR control proved in Finner et al. (2009) is studied asymptotically as the

number of hypotheses grows to infinity. In that framework, asymptotical control at level " is shown
to hold for any ) < 1. On Figure 1, we represented the thresholds BR-1S-# and FDR09-) for
comparison, for several choices of the parameters. The two families appear quite similar, initially
following the AORC curve, then branching out or capping at a point depending on the parameter.
One noticeable difference in the initial part of the curve is that while FDR09-) exactly coincides
with the AORC, BR-1S-# is arguably sligthly more conservative. This reflects the nature of the
corresponding theoretical result—nonasymptotic control of the FDR requires a somewhat more
conservative threshold as compared to the only asymptotic control of FDR-) . Additionally, we can
use BR-1S-# as a first step in a 2-step procedure, as will be argued in the next section.

The ratio between BR-1S-# and the AORC (before the capping point) is a factor which, assuming
"≥ (m+1)−1 , is lower bounded by (1−#)(1− 1

m+1) . This suggests that the value for # should be
kept small, this is why we propose #= " as a default choice.

Finally, the step-down procedure based on the AORC threshold collection (under the slightly
modified form t̃(i) = "i

m−(1−")i+1 , but with no further modification) is proposed and studied by
Gavrilov et al. (2009). Using specific properties of step-down procedures, these authors proved
the nonasymptotic FDR control of this procedure.
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3.2 Adaptive Plug-In Methods

In this section, we consider different adaptive step-up procedures of the plug-in type, that is, based
on an explicit estimator of !−10 . We first review a general method proposed by Benjamini et al.
(2006) in order to derive FDR control for such plug-in procedures (see also Theorem 4.3 of Finner
et al., 2009, for a similar result, as well as Theorem 3.3 of Sarkar, 2008b). We propose here a self-
contained proof of this result, which notably extends the original result from step-up procedures
to more general self-consistent procedures. Based on this result, we review the different plug-in
estimators considered by Benjamini et al. (2006) and add a new one to the lot, based on the one-
stage adaptive procedure introduced in the previous section.

Let us first introduce the following notation: for each h ∈ H , we denote by p−h the collection
of p-values p restricted to H \{h} , that is, p−h = (ph′ ,h′ .= h) . We also denote p0,h = (p−h,0) the
collection p where ph has been replaced by 0.

Theorem 11 (Benjamini, Krieger, Yekutieli 2006) Suppose that the p-value family p = (ph,h ∈
H ) is independent. Let G : [0,1]H → (0,%) be a measurable, coordinate-wise nonincreasing func-
tion. Consider a nonincreasing multiple testing procedure R which is self-consistent with respect to
the adaptive linear threshold collection &(p, i) = "G(p)i/m . Then the following holds:

FDR(R) ≤
"
m *

h∈H0

E [G(p0,h)] . (6)

In particular, if for any h ∈H0 , it holds that E [G(p0,h)] ≤ !−10 , then FDR(R) ≤ " .

The proof is given in Section 6. Since we assumedG to be nonincreasing, the quantityE [G(p0,h)]
in bound (6) is maximized when the p-values associated to true nulls have a uniform distribution
(ph excepted), while the p-values associated to false nulls are all set to zero. Following Finner
et al. (2009), this least favorable configuration for the distribution of p-values is referred to as the
Dirac-Uniform distribution and gives rise to the following corollary:

Corollary 12 Consider the same conditions as for Theorem 11, and assume moreover that G is
invariant by permutation of the p-values. Then it holds that

FDR(R) ≤ +(G,m)" ,

with +(G,m) = max
1≤m0≤m

{
m0
m

Ep∼DU(m,m0−1) [G(p)]
}

, where DU(m, j) is the distribution of p where

the j first p-values are independent uniform in [0,1] and the m− j others are identically equal to
zero.

(While the proof is standard, it is given for completeness in Section 6). The interest of the last
result is that for any choice of nonincreasing (permutation invariant) function G , it is possible in
principle to evaluate +(G,m) by a Monte Carlo method, namely by estimating the expected value of
G under the m− 1 possible least favorable configurations. This leads to a practical control of the
FDR valid for any value of m0, obtained by dividing the target level " by +(G,m) before applying
the procedure.

However, when m is large, this method can be computationally demanding, and a more con-
venient approach for practical use is to obtain explicit bounds for specific estimators. We now
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concentrate on this goal and apply the result of Theorem 11 (or alternatively of Corollary 12) to the
following estimators, depending on a fixed parameter # ∈ (0,1) or k0 ∈ {1, . . . ,m}:

[Storey-#] G1(p) =
(1−#)m

*h∈H 1{ph > #}+1
;

[Quant-
k0
m
] G2(p) =

(1− p(k0))m
m− k0+1

;

[BKY06-#] G3(p) =
(1−#)m

m− |R0(p)|+1
, where R0 is the standard LSU at level # ;

[BR-2S-#] G4(p) =
(1−#)m

m− |R′
0(p)|+1

, where R′
0 is BR-1S-# (see Theorem 9).

Above, the notation “Storey-#”, “Quant- k0m ”, “BKY06-#” and “BR-2S-#” refer to the plug-in adap-
tive linear step-up procedures associated to G1, G2, G3 and G4, respectively.

Estimator G1 is usally called modified Storey’s estimator and was initially introduced by Storey
(2002) from an heuristics on the p-values histogram (originally without the “+1”, hence the name
“modified”). Its intuitive justification is as follows: denoting by S# the set of p-values larger than the
threshold #, the average number of true nulls having a p-value in S# is m0(1−#). Hence, a natural
estimator of !−10 is (1− #)m/|S# ∩H0| ≥ (1− #)m/|S#| , G1(p) . In particular, we expect that
Storey’s estimator is generally an underestimate of !−10 , which is in accordance with the condition
of Theorem 11. A standard choice is # = 1/2 (as in the SAM software of Storey and Tibshirani,
2003). FDR control for the corresponding plug-in step-up procedure was proved by Storey et al.
(2004) (more precisely, for the modification &̃(p, i) =min("G1(p)i/m,#) ) and by Benjamini et al.
(2006).

Estimator G2 was introduced by Benjamini and Hochberg (2000) and Efron et al. (2001), from a
slope heuristics on the p-values c.d.f. Roughly speaking, G2 appears as Storey’s estimator with the
data-dependent parameter choice #= p(k0) , and can therefore be interpreted as the quantile version
of Storey’s estimator. A standard value for k0 is 0m/21, resulting in the so-called median adaptive
LSU (see Benjamini et al., 2006, and the references therein).

Estimator G3 was introduced by Benjamini et al. (2006) for the particular choice #= "/(1+").
More precisely, a slightly less conservative version, without the “+1” in the denominator, was used
in Benjamini et al. (2006). We forget about this refinement here, noting that it results only in a very
slight improvement.

Finally, the estimator G4 is new and follows exactly the same philosophy as G3, that is, uses
a step-up procedure as a first stage in order to estimate !−10 , but this time based on our adaptive
one-stage step-up procedure introduced in the previous section, rather than the standard LSU. Note
that since R′

0 is less conservative than R0 (except in marginal cases), we generally have G3 ≤ G4
pointwise and our estimator improves over the one of Benjamini et al. (2006).

These different estimators all satisfy the sufficient condition mentioned in Theorem 11, and we
thus obtain the following corollary:

Corollary 13 Assume that the family of p-values p= (ph,h ∈H ) is independent. For i= 1,2,3,4 ,
and any h ∈ H0 , it holds that E [Gi(p0,h)] ≤ !−10 . Therefore, the plug-in adaptive linear step-up
procedure at level " using estimator Gi has FDR smaller than or equal to " .
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The above result for G1, G2 and G3 (for the specific parameter setting # = "/(1+")) was
proved by Benjamini et al. (2006). In Section 6, we shortly reproduce their arguments, and prove
the result for G4.

To sum up, Corollary 13 states that under independence, for any # and k0, the plug-in adaptive
procedures Storey-#, Quant- k0m , BKY06-# and BR-2S-# all control the FDR at level ".

Remark 14 The result proved by Benjamini et al. (2006) is actually slightly sharper than Theorem
11. Namely, if G(·) is moreover supposed to be coordinate-wise left-continuous, it is possible to
prove that Theorem 11 still holds when p0,h in the RHS of (6) is replaced by the slightly better p̃h =
(p−h, p̃h(p−h)) , defined as the collection of p-values p where ph has been replaced by p̃h(p−h) =
max

{
p∈ [0,1]

∣∣ p≤ "|R(p−h, p)|G(p−h, p)
}
. This improvement then permits to get rid of the “+1”

in the denominator of G3 . Here, we opted for simplicity and a more straightforward statement,
noting that this improvement is not crucial.

Remark 15 The one-stage step-up procedure of Finner et al. (2009) (see previous discussion in Sec-
tion 3.1.2)—for which there is no result proving nonasymptotic FDR control up to our knowledge—
can also be interpreted intuitively as an adaptive version of the LSU using estimator G2 , where the
choice of parameter k0 is data-dependent. Namely, assume that we want to reject at least i null
hypotheses whenever p(i) is lower than the standard LSU threshold times the estimator G2 wherein
parameter k0 = i is used. This corresponds to the inequality p(i) ≤

k(1−p(i))
m−i+1 , which, solved in p(i) ,

gives the threshold collection of Finner et al. (2009). Remember from Section 3.1.2 that this thresh-
old collection must actually be modified in order to be useful, since it otherwise always leads to
reject all hypotheses. The modification leading to FDR09-) consists in capping the estimated !−10
at a level ) , that is, using min(),G2) instead of G2 in the above reasoning. In fact, the proof
of Finner et al. (2009) relies on a result which is essentially a reformulation of Theorem 11 for a
specific form of estimator.

Remark 16 The estimators Gi, i = 1,2,3,4 are not necessarily larger than 1, and to this extent
can in some unfavorable cases result in the final procedure being actually more conservative than
the standard LSU. This can only happen in the situation where either !0 is close to 1 (“sparse
signal”) or the alternative hypotheses are difficult to detect (“weak signal”); if such a situation is
anticipated, it is more appropriate to use the regular non-adaptive LSU.

For the Storey-# estimator, we can control precisely the probability that such an unfavorable
case arises by using Hoeffding’s inequality (Hoeffding, 1963): assuming the true nulls are i.i.d.
uniform on (0,1) and the false nulls i.i.d. of c.d.f. F(·), we write by definition of G1

P [G1(p) < 1] = P

[
1
m

m

*
h∈H

(1{ph > #}−P [ph > #]) > (1−!0)(F(#)−#)−m−1

]

≤ exp(−2(mc2+1)),

where we denoted c= (1−!0)(F(#)−#) , and assumed additionally c>m−1 . The behavior of the
bound mainly depends on c , which can get small only if !0 is close to 1 (sparse signal) or F(#) is
close to # (weak signal), illustrating the above point. In general, provided c > 0 does not depend
on m , the probability that the Storey procedure fails to outperform the LSU vanishes exponentially
as m tends to infinity.
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3.3 Theoretical Robustness of the Adaptive Procedures under Maximal Dependence

For the different procedures proposed above, the theory only provides the correct FDR control under
independence between the p-values. An important issue is to know how robust this control is when
dependence is present (as it is often the case in practice). However, the analytic computation of
the FDR under dependence is generally a difficult task, and this issue is often tackled empirically
through simulations in a pre-specified model (we will do so in Section 3.4).

In this short section, we present theoretical computations of the FDR for the previously intro-
duced adaptive step-up procedures, under the maximally dependent model where all the p-values
are in fact equal, that is ph ≡ p1 for all h ∈ H (and m0 = m). It corresponds to the case where we
perform m times the same test, with the same p-value. Albeit relatively trivial and limited, this case
leads to very simple FDR computations and provides at least some hints concerning the robustness
under dependence of the different procedures studied above.

Proposition 17 Suppose that we observe m identical p-values p = (p1, ..., pm) = (p1, ..., p1) with
p1 ∼U([0,1]) and assume m= m0. Then, the following holds:

FDR(BR-1S-#) =min
(
#,"(1−#)m

)
,

FDR(FDR09-)) = ")−1,

FDR(Storey-#) =min
(
#,"(1−#)m

)
+

(
"(1−#)(1+m−1)−#

)
+ ,

FDR(Quant-k0/m) =
"

(1+")− (k0−1)m−1 ,

FDR(BKY06-#) = FDR(BR-2S-#) = FDR(Storey-#).

Interestingly, the above proposition suggests specific choices of the parameters #, ) and k0 to
ensure control of the FDR at level " under maximal dependence:

• For BR-1S-#, putting #2 ="/("+m−1), Proposition 17 gives that FDR(BR-1S-#) = #when-
ever # ≤ #2. This suggests to take # = " , and is thus in accordance with the default choice
proposed in Section 3.1.

• For FDR09-), no choice of )< 1 will lead to the correct FDR control under maximal depen-
dence. However, the larger ) , the smaller the FDR in this situation. Note that FDR(FDR09- 12)=
2".

• For Storey-#, BKY06-# and BR-2S-#, putting #1 = "/(1+"+m−1), we have FDR= # for
#1 ≤ #≤ #2. This suggests to choose #= " within these three procedures. Furthermore, note
that the standard choice # = 1/2 for Storey-# leads to a very poor control under maximal
dependence: FDR(Storey- 12) =min("m,1)/2.

• For Quant-k0/m, we see that the value of k0 maximizing the FDR while maintaining it
below " is k0 = 0"m1+ 1. Remark also that the standard choice k0 = 0m/21 leads to
FDR(Quant-k0/m) = 2"/(1+2"+2m−1) , 2".

Nevertheless, we would like to underline that the above computations should be interpreted with
caution, as the maximal dependence case is very specific and cannot possibly give an accurate idea
of the behavior of the different procedures when the correlation between the p-values are strong
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but not equal to 1 . For instance, it is well-known that the LSU procedure has FDR far below "
for strong positive correlations, but its FDR is equal to " in the above extreme model (see Finner
et al., 2007, for a comprehensive study of the LSU under positive dependence). Conversely, the
FDR of some adaptive procedures can be higher under moderate dependence than under maximal
dependence. This behavior appears in the simulations of the next section, illustrating the complexity
of the issue.

3.4 Simulation Study

How can we compare the different adaptive procedures defined above? For a fixed #, it holds
pointwise that G1 ≥ G4 ≥ G3 , which shows that the adaptive procedure [Storey-#] is always less
conservative than [BR-2S-#], itself less conservative than [BKY06-#] (except in the marginal cases
where the one-stage adaptive procedure is more conservative than the standard step-up procedure,
as delineated earlier for example in Lemma 10). It would therefore appear that one should always
choose [Storey-#] and disregard the other ones. However, an important point made by Benjamini
et al. (2006) for introducing G3 as a better alternative to the (already known earlier) G1 is that, on
simulations with positively dependent test statistics, the plug-in procedure using G1 with # = 1/2
had very poor control of the FDR, while the FDR was still controlled for the plug-in procedure
based on G3. While the positively dependent case is not covered by the theory, it is of course very
important to ensure that a multiple testing procedure is sufficiently robust in practice so that the
FDR does not vary too much in this situation.

In order to assess the quality of our new procedures, we compare here the different methods
on a simulation study following the setting used by Benjamini et al. (2006). Let Xi = µi + ,i, for
i,1 ≤ i ≤ m, where , is a Rm-valued centred Gaussian random vector such that E(,2i ) = 1 and
for i .= j, E(,i, j) = -, where - ∈ [0,1] is a correlation parameter. Thus, when - = 0 the Xi’s
are independent, whereas when - > 0 the Xi’s are positively correlated (with a constant pairwise
correlation). For instance, the ,i’s can be constructed by taking ,i :=

√
- U +

√
1−- Zi, where Zi,

1≤ i≤ m andU are all i.i.d ∼N (0,1).
Considering the one-sided null hypotheses hi : “µi ≤ 0” against the alternatives “µi > 0” for

1 ≤ i ≤ m, we define the p-values pi = $(Xi), for 1 ≤ i ≤ m, where $ is the standard Gaussian
distribution tail. We choose a common mean µ̄ for all false hypotheses, that is, for i,1 ≤ i ≤ m0,
µi = 0 and for i,m0+1≤ i≤m, µi = µ̄ ; the p-values corresponding to the null means follow exactly
a uniform distribution.

Note that the case -= 1 and m=m0 (i.e., !0 = 1) corresponds to the maximally dependent case
studied in Section 3.3.

We compare the following step-up multiple testing procedures: first, the one-stage step-up pro-
cedures defined in Section 3.1:

- [BR08-1S-"] The new procedure of Theorem 9, with parameter #= " ,

- [FDR09-12 ] The procedure proposed in Finner et al. (2009) and described in Section 3.1.2,
with )= 1

2 .

Secondly, the adaptive plug-in step-up procedures defined in Section 3.2:

- [Median LSU] The procedure [Quant- k0m ] with the choice
k0
m = 1

2 ,

- [BKY06-"] The procedure [BKY06-#] with the parameter choice #= " ,
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- [BR08-2S-"] The procedure [BR08-2S-#] with the parameter choice #= " ,

- [Storey-#] With the choices #= 1/2 and #= " .

Finally, we used as oracle reference [LSU Oracle], the step-up procedure with the threshold collec-
tion &(i) = "i/m0, using “oracle” prior knowledge of !0.

The parameter choice # = " for [Storey-#] comes from the relationship (delineated in Sec-
tion 3.1) of G3,G4 to G1, and from the discussion of the maximally dependent case in Section 3.3.
Note that the procedure studied by Benjamini et al. (2006) is actually [BKY06-"/(1+")] in our
notation (up to a minor modification explained in Remark 14). Thefore, the procedure [BKY06-"]
used in our simulations is not srictly the same as in Benjamini et al. (2006), but it is very close.

The three most important parameters in the simulation are the correlation coefficient -, the
proportion of true null hypotheses !0, and the alternative mean µ̄ which represents the signal-to-
noise ratio, or how easy it is to distinguish alternative hypotheses. We present in Figures 2, 3,
and 4 results of the simulations for one varying parameter (!0, µ̄ and -, respectively), the others
being kept fixed. Reported are, for the different methods: the FDR, and the power relative to the
reference [LSU-Oracle]. Remember the absolute power is defined as the mean proportion of false
null hypotheses that are correctly rejected; for each procedure the relative power is the ratio of its
absolute power to that of [LSU-Oracle]. Each point is estimated by an average of 105 simulations,
with fixed parameters m= 100 and "= 5% .

3.4.1 UNDER INDEPENDENCE (-= 0)

Remember that under independence of the p-values, the procedure [LSU] has a FDR equal to "!0
and that the procedure [LSU Oracle] has a FDR equal to " (provided that " ≤ !0). The other
procedures have their FDR upper bounded by " (in an asymptotical sense only for [FDR09-12 ]).

The situation where the p-values are independent corresponds to the first row of Figures 2 and
3 and the leftmost point of each graph in Figure 4. It appears that in the independent case, the
following procedures can be consistently ordered in terms of (relative) power over the range of
parameters studied here:

[Storey-12 ] 4 [Storey-"] 4 [BR08-2S-"] 4 [BKY06-"],

the symbol “4” meaning “is (uniformly over our experiments) more powerful than”.
Next, the procedures [median-LSU] and [FDR09-12 ] appear both consistently less powerful than

[Storey-12 ], and [FDR09-
1
2 ] is additionally also consistently less powerful than [Storey-"]. Their re-

lation to the remaining procedures depends on the parameters; both [median-LSU] and [FDR09-12 ]
appear to be more powerful than the remaining procedures when !0 > 1

2 , and less efficient other-
wise. We note that [median-LSU] also appears to perform better when µ̄ is low (i.e., the alternative
hypotheses are harder to distinguish).

Concerning our one-stage procedure [BR08-1S-"], we note that it appears to be indistinguish-
able from its two-stage counterpart [BR08-2S-"] when !0 > 1

2 , and significantly less powerful
otherwise. This also corresponds to our expectations, since in the situation !0 < 1

2 , there is a much
higher likelihood that more than 50% hypotheses are rejected, in which case our one-stage threshold
family hits its “cap” at level " (see, e.g., Fig. 1; a similar qualitative explanation applies to under-
stand the behavior of [FDR09-12 ]). This is precisely to improve on this situation that we introduced
the two-stage procedure, and we see that the latter does in fact improve substantially the one-stage
version in that specific region.
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The fact that [Storey-12 ] is uniformly more powerful than the other procedures in the independent
case corroborates the simulations reported in Benjamini et al. (2006). Generally speaking, under
independence we obtain a less biased estimate for !−10 when considering Storey’s estimator based on
a “high” threshold like #= 1

2 . Namely, higher p-values are less likely to be “contaminated” by false
null hypotheses; conversely, if we take a lower threshold #, there will be more false null hypotheses
included in the set of p-values larger than # , leading to a pessimistic bias in the estimation of !−10 .
This qualitative reasoning is also consistent with the observed behavior of [median-LSU], since the
set of p-values larger than the median is much more likely to be “contaminated” when !0 < 1

2 .
However, the problem with [Storey-12 ] is that the corresponding estimation of !

−1
0 exhibits much

more variability than its competitors when there is a substantial correlation between the p-values. As
a consequence it is a very fragile procedure. This phenomenon was already pinpointed in Benjamini
et al. (2006) and we study it next.

3.4.2 UNDER POSITIVE DEPENDENCE (-> 0)

Under positive dependence, remember that it is known theoretically from Benjamini and Yekutieli
(2001) that the FDR of the procedure [LSU] (resp. [LSU Oracle]) is still bounded by "!0 (resp. "),
but without equality in general. However, we do not know from a theoretical point of view if the
adaptive procedures have their FDR upper bounded by ". In fact, it was pointed out by Farcomeni
(2007), in another work reporting simulations on adaptive procedures, that one crucial point to this
respect seems to be the variability of estimate of !−10 . Estimates of this quantity that are not robust
with respect to positive dependence will result in failures for the corresponding multiple testing
procedure.

The situation where the p-values are positively dependent corresponds to the second and third
rows (- = 0.2,0.5 , respectively) of Figures 2 and 3 and to all the graphs of Figure 4 (except the
leftmost points corresponding to -= 0).

The most striking fact is that [Storey-12 ] does not control the FDR at the desired level any longer
under positive dependence, and can even be off by quite a large factor. This is in accordance with
the experimental findings of Benjamini et al. (2006). Therefore, although this procedure was the
favorite in the independent case, it turns out to be not robust, which is very undesirable for practical
use where it is generally impossible to guarantee that the p-values are independent. The procedure
[median-LSU] appears to have higher power than the remaining ones in the situations studied in
Figure 3, especially with a low signal-to-noise ratio. Unfortunately, other situations appearing in
Figures 2 and 4 show that [median-LSU] can exhibit a poor FDR control in some parameter regions,
most notably when !0 is close to 1 and positive dependence is present (see, e.g., Figure 4, bottom
row). In a majority of practical situations, this is an important drawback since it is difficult to rule
out a priori that !0 is close to 1 (i.e., there is only a small proportion of false hypotheses), or that
dependence is present. Additionally, from the inspection of the behavior of the power of [median-
LSU] in Figures 2 and 4, it appears that the parameter setting !0 = 0.5 (which is the fixed value
used in Figure 3) is actually noticeably the most favorable for [median-LSU] under dependence.
For other values of !0, this procedure is often clearly outperformed in terms of power, in particular
by [Storey-"] and [BR-2S-"]. (At this point we have no satisfying explanation to this peculiar “peak
of power” at !0 = 0.5 observed specifically for the [median-LSU] procedure under dependence.) For
all of these reasons, our conclusion is that [median-LSU] is also not robust enough in general to be
reliable.
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FDR Relative power to [LSU-oracle]
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Figure 2: FDR and power relative to oracle as a function of the true proportion !0 of null hypothe-
ses . Target FDR is "= 5% , total number of hypotheses m= 100 . The mean for the al-
ternatives is µ̄= 3. From top to bottom: pairwise correlation coefficient - ∈ {0,0.2,0.5}.
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FDR Relative power to [LSU-oracle]
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Figure 3: FDR and power relative to oracle as a function of the common alternative hypothesis
mean µ̄ . Target FDR is " = 5% , total number of hypotheses m = 100 . The proportion
of true null hypotheses is !0 = 0.5. From top to bottom: pairwise correlation coefficient
- ∈ {0,0.2,0.5}.
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FDR Relative power to [LSU-oracle]
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Figure 4: FDR and power relative to oracle as a function of the pairwise correlation coefficient
- .Target FDR is "= 5% , total number of hypothesesm= 100 . The mean for the alterna-
tives is µ̄= 3. From top to bottom: proportion of true null hypotheses !0 ∈ {0.2,0.5,0.8}.

2857



BLANCHARD AND ROQUAIN

The other remaining procedures seem to exhibit a robust control of the FDR under dependence,
or at least their FDR appears to be very close to the target level (except for [FDR09-12 ] when - and
!0 are close to 1). For these procedures, it seems that the qualitative conclusions concerning power
comparison found in the independent case remain true. To sum up:

• the best overall procedure seems to be [Storey-"]: its FDR seems to be under or only slightly
over the target level in all situations, and it exhibits globally a power superior to other proce-
dures.

• then come in order of power, our two-stage procedure [BR08-2S-"], then [BKY06-"].

• like in the dependent case, [FDR09-12 ] ranks second when !0 > 1
2 but tends to perform no-

ticeably poorer if !0 gets smaller. Its FDR is also not controlled if very strong correlations
are present.

The overall conclusion we draw from these experiments is that for practical use, we recom-
mend in priority [Storey-"], then as close seconds [BR08-2S-"] or [FDR09-12 ] (the latter when it
is expected that !0 > 1/2 , and that there are no very strong correlations present). The procedu-
dre [BKY06-"] is also competitive but appears to be in most cases noticeably outperformed by the
above ones. These procedures all exhibit good robustness to dependence for FDR control as well as
comparatively good power. The fact that [Storey-"] performs so well and seems to hold the favorite
position has up to our knowledge not been reported before (it was not included in the simulations of
Benjamini et al., 2006) and came somewhat as a surprise to us.

Remark 18 As pointed out earlier, the fact that [FDR09- 12] performs sub-optimally for !0 < 1
2

appears to be strongly linked to the choice of parameter ) = 1
2 . Namely, the implicit estimator of

!−10 in the procedure is capped at ) (see Remark 15). Choosing a higher value for ) will reduce
the sub-optimality region but increase the variability of the estimate and thus decrease the overall
robustness of the procedure (if dependence is present; and also under independence if only a small
number m of hypotheses are tested, as for this procedure the convergence of the FDR towards its
asymptotically controlled value becomes slower as ) grows towards 1).

Remark 19 Another two-stage adaptive procedure was introduced in Sarkar (2008a), which is
very similar to a plug-in procedure using [Storey-#]. In fact, in the experiments presented in Sarkar
(2008a), the two procedures are almost equivalent, corresponding to #= 0.995 . We decided not to
include this additional procedure in our simulations to avoid overloading the plots. Qualitatively,
we observed that the procedures of Sarkar (2008a) or [Storey-0.995] are very similar in behavior
to [Storey- 12]: very performant in the independent case but very fragile with respect to deviations
from independence.

Remark 20 One could formulate the concern that the observed FDR control for [Storey-"] could
possibly fail with other parameters settings, for example when !0 and/or - are close to one. We
performed additional simulations to this respect (a more detailed report is available on the authors’
web pages), which we summarize briefly here. We considered the following cases: !0 = 0.95 and
varying - ∈ [0,1] ; -= 0.95 and varying !0 ∈ [0,1] ; finally (!0,-) varying both in [0.8,1]2 , using a
finer discretization grid to cover this region in more detail. In all the above cases Storey-" still had
its FDR very close to (or below) ". Note also that the case -, 1 and !0 , 1 is in accordance with
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the result of Section 3.3, stating that FDR(Storey-") = " when -= 1 and !0 = 1 . Finally, we also
performed additional experiments for different choices of the number of hypotheses to test (m= 20
and m= 104) and different choices of the target level ("= 10%,1%). In all of these cases were the
results qualitatively in accordance with the ones already presented here.

4. New Adaptive Procedures with Provable FDR Control under Arbitrary
Dependence

In this section, we consider from a theoretical point of view the problem of constructing multiple
testing procedures that are adaptive to !0 under arbitrary dependence conditions of the p-values. The
derivation of adaptive procedures that have provably controlled FDR under dependence appears to
have been only studied scarcely (see Sarkar, 2008a, and Farcomeni, 2007). Here, we propose to
use a two-stage procedure where the first stage is a multiple testing with either controlled FWER or
controlled FDR. The first option is relatively straightfoward and is intended as a reference. In the
second case, we use Markov’s inequality to estimate !−10 . Since Markov’s inequality is general but
not extremely precise, the resulting procedures are obviously quite conservative and are arguably
of a limited practical interest. However, we will show that they still provide an improvement, in a
certain regime, with respect to the (non-adaptive) LSU procedure in the PRDS case and with respect
to the family of (non-adaptive) procedures proposed in Theorem 7 in the arbitrary dependence case.

For the purposes of this section, we first recall the formal definition for PRDS dependence of
Benjamini and Yekutieli (2001):

Definition 21 (PRDS condition) Remember that a set D ⊂ [0,1]H is said to be nondecreasing if
for all x,y ∈ [0,1]H , if x ≤ y coordinate-wise, x ∈ D implies y ∈ D. Then, the p-value family p =
(ph,h ∈ H ) is said to be positively regression dependent on each one from H0 (PRDS on H0 in
short) if for any nondecreasing measurable set D ⊂ [0,1]H and for all h ∈ H0, the function u ∈
[0,1] #→ P [p ∈ D | ph = u] is nondecreasing.

On the one hand, it was proved by Benjamini and Yekutieli (2001) that the LSU still has controlled
FDR at level !0" (i.e., Theorem 6 still holds) under the PRDS assumption. On the other hand, under
totally arbitrary dependence this result does not hold, and Theorem 7 provides a family of threshold
collection resulting in controlled FDR at the same level in this case.

Our first result concerns a two-stage procedure where the first stage R0 is any multiple testing
procedure with controlled FWER, and where we (over-) estimate m0 via the straightforward estima-
tor (m− |R0|) . This should be considered as a form of baseline reference for this type of two-stage
procedure.

Theorem 22 Let R0 be a nonincreasing multiple testing procedure and assume that its FWER is
controlled at level "0 , that is, P [R0∩H0 .= /0] ≤ "0 . Then the adaptive step-up procedure R with
data-dependent threshold collection &(i) = "1(m− |R0|)−1'(i) has FDR controlled at level "0+"1
in either of the following dependence situations:

• the p-value family (ph,h ∈H ) is PRDS on H0 and the shape function is the identity function.

• the p-values have unspecified dependence and ' is a shape function of the form (3).

Here it is clear that the price for adaptivity is a certain loss in FDR control for being able to use the
information of the first stage. If we choose "0 = "1 = "/2 , then this procedure will outperform its
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non-adaptive counterpart (using the same shape function) only if there are more than 50% rejected
hypotheses in the first stage. Only if it is expected that this situation will occur does it make sense
to employ this procedure, since it will otherwise perform worse than the non-adaptive procedure.

Our second result is a two-stage procedure where the first stage has controlled FDR. First intro-
duce, for a fixed constant .≥ 2 , the following function: for x ∈ [0,1],

F.(x) =





1 if x≤ .−1

2.−1

1−
√
1−4(1−x).−1

otherwise .

If R0 denotes the first stage, we propose using F.(|R0|/m) as an (under-)estimation of !−10 at the
second stage. We obtain the following result:

Theorem 23 Let ' be a fixed shape function, and "0,"1 ∈ (0,1) such that "0 ≤ "1. Denote by
R0 the step-up procedure with threshold collection &0(i) = "0'(i)/m. Then the adaptive step-up
procedure R with data-dependent threshold collection &1(i) = "1'(i)F.(|R0|/m)/m has FDR upper
bounded by "1+."0 in either of the following dependence situations:

• the p-value family (ph,h ∈H ) is PRDS on H0 and the shape function is the identity function.

• the p-values have unspecified dependence and ' is a shape function of the form (3).

For instance, in the PRDS case, the procedure R of Theorem 23, used with . = 2, "0 = "/4
and "1 = "/2, corresponds to the adaptive linear step-up procedure at level "/2 with the following
estimator for !−10 :

1
1−

√
(2|R0|/m−1)+

,

where |R0| is the number of rejections of the LSU procedure at level "/4.
Whether in the PRDS or arbitrary dependence case, with the above choice of parameters, we

note that R is less conservative than the non-adaptive step-up procedure with threshold collection
&(i) = "'(i)/m if F2(|R0|/m) ≥ 2 or equivalently when R0 rejects more than F−1

2 (2) = 62,5% of
the null hypotheses. Conversely, R is more conservative otherwise, and we can lose up to a factor 2
in the threshold collection with respect to the standard one-stage version. Therefore, here again this
adaptive procedure is only useful in the cases where it is expected that a “large” proportion of null
hypotheses can easily be rejected. In particular, when we use Theorem 23 under unspecified depen-
dence, it is relevant to choose the shape function ' from a distribution ( concentrated on the large
numbers of {1, . . . ,m}. Finally, note that it is not immediate to see if this procedure will improve on
the one of Theorem 22. Namely, with the above choice of parameters, procedure of Theorem 22 has
the advantage of using a better estimator of !−10 of the form (1−x)−1 ≥ (1−

√
(2x−1)+)−1 in the

second round (with x = |R0|/m coming from the first round), but it has the drawback to use a first
round controlling the FWER at level "/2 which can be much more conservative than controlling
the FDR at level "/4.

To explore this issue, we performed the two above procedures, in a favorable situation where !0
is small. Namely, we considered the simulation setting of Section 3.4 with - = 0.1, m0 = 100 and
m= 1000 (hence !0 = 10%) and "= 5% . The common value µ̄ of the positive means varies in the
range [0,5] . Larger values of µ̄ correspond to a very large proportion of hypotheses that are easy to

2860



ADAPTIVE FDR CONTROL UNDER INDEPENDENCE AND DEPENDENCE

reject, which favors the first stage of the two above procedures. A positively correlated family of
Gaussians satisfies the PRDS assumption (see Benjamini and Yekutieli, 2001), so that we use the
identity shape function (linear step-up), and compare our procedures against the standard LSU. For
the FWER-controlled first stage of Theorem 22, we chose a standard Holm procedure (see Holm,
1979), which is a step-down procedure with threshold collection t(i) = "m/(m− i+1) . In Figure
5, we report the relative power to the oracle LSU, and the False Non-discovery Rate (FNR), which
is the converse of the FDR for type II errors, that is, the average of the ratio of non-rejected false
hypotheses over the total number of non-rejected hypotheses. Since we are in a situation where !0
is small, the FNR might actually be a more relevant criterion than the raw power: in this situation,
because of the small number of non-rejected hypotheses, two different procedures could have their
power very similar and close to 1, but noticeably different FNRs.

The conclusion is that there exists an (unfortunately relatively small) region where the adaptive
procedures improve over the standard LSU in terms of power. In terms of FNR, the improvement
is more noticeable and over a larger region. Finally, our two-stage adaptive procedure of Theorem
23 appears to outperform consistently the baseline of Theorem 22. These results are still unsatis-
fying to the extent that the adaptive procedure improves over the non-adaptive one only in a region
limited to some quite particular cases, and underperforms otherwise. Nevertheless, this demon-
strates theoretically the possibility of provably adaptive procedures under dependence. Again, this
theme appears to have been theoretically studied in only a handful of previous works until now, and
improving significantly the theory in this setting is still an open challenge.

Remark 24 Some theoretical results for two-stage procedures under possible dependence using a
first stage with controlled FWER or controlled FDR appeared earlier (Farcomeni, 2007). However,
it appears that in this reference, it is implicitly assumed that the two stages are actually independent,
because the proof relies on a conditioning argument wherein FDR control for the second stage still
holds conditionally on the first stage output. This is the case for example if the two stages are
performed on separate families of p-values corresponding to a new independent observation. Here
we specifically wanted to take into account that we use the same collection of p-values for the two
stages, and therefore that the two stages cannot assumed to be independent. In this sense the result
of Theorem 22 is novel with respect to that of Farcomeni (2007).

Remark 25 The theoretical problem of adaptive procedures under arbitrary dependence was also
considered by Sarkar (2008a) using two-stage procedures. However, the procedures proposed there
were reported not to yield any significant improvement over non-adaptive procedures.

5. Conclusion and Discussion

We proposed several adaptive multiple testing procedures that provably control the FDR under dif-
ferent hypotheses on the dependence of the p-values. Firstly, we introduced the one- and two-stage
procedures BR-1S and BR-2S and we proved their theoretical validity when the p-values are inde-
pendent. The procedure BR-2S is less conservative in general (except in marginal situations) than the
adaptive procedure proposed by Benjamini et al. (2006). Extensive simulations showed that these
new procedures appear to be robustly controlling the FDR even in a positive dependence situation,
which is a very desirable property in practice. This is an advantage with respect to the [Storey-12 ]
procedure, which is less conservative but breaks down under positive dependence. Moreover, our
simulations showed that the choice of parameter # = " instead of # = 1/2 in the Storey procedure
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Figure 5: Relative power to oracle and false non-discovery rate (FNR) of the different procedures,
as a function of the common alternative hypothesis mean µ̄ . Parameters are "= 5% , m=
1000 , !0 = 10% , -= 0.1 . “BR08-dep-Holm” corresponds to the procedure of Theorem
22 using "1 = "0 = "/2 and Holm’s step-down for the first step, and “BR08-dep” to
the procedure of Theorem 23 with . = 2, "0 = "/4 and "1 = "/2 . The shape function
' is the identity function. Each point is estimated by an average over 104 independent
repetitions.

resulted in a much more robust procedure under positive dependence, at the price of being slightly
more conservative. This fact is supported by a theoretical investigation of the maximally dependent
case. These properties do not appear to have been reported before, and put forward Storey-" as a
procedure of considerable practical interest.

Secondly, we presented what we think is among the first examples of adaptive multiple testing
procedures with provable FDR control in the PRDS case and under unspecified dependence. An
important difference with respect to earlier works on this topic is that the procedures we introduced
here are both theoretically founded and can be shown to improve over non-adaptive procedures in
certain (admittedly limited) circumstances. Although their interest at this point is mainly theoretical,
this shows in principle that adaptivity can improve performance in a theoretically rigorous way even
without the independence assumption.

The proofs of the results have been built upon the notion of self-consistency and other technical
tools introduced in a previous work (Blanchard and Roquain, 2008). We believe these tools allow
for a more unified approach than in the classical adaptive multiple testing literature, avoiding in
particular to deal explicitly with the reordered p-values, which can be somewhat cumbersome.

Another advantage of this approach is that it can be extended in a relatively straightforward
manner to the case of weighted FDR, that is, the quantity (2) where the cardinality measure |.| has
been replaced by a general measure W (R) = *h∈Rwh (with W (H ) = *h∈H wh = m). This allows
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in particular to recover results very similar to those of Benjamini and Heller (2007) and can also be
used to prove that a (generalized) Storey estimator can be used to control the weighted FDR. The
modifications needed to include this generalizations are relatively minor; we omit the details here
and refer the reader to Blanchard and Roquain (2008) to see how the case of weighted FDR can be
handled using the same technical tools.

There remains a vast number of open issues concerning adaptive procedures. We first want to
underline once more that the theory for adaptive procedures under dependence is still underdevel-
oped. It might actually be too restrictive to look for procedures having theoretically controlled FDR
uniformly over arbitrary dependence situations such as what we studied in Section 4. An interesting
future theoretical direction could be to prove that some of the adaptive procedures showing good
robustness in our simulations actually have controlled FDR under some types of dependence, at
least when the p-values are in some sense not too far from being independent.

6. Proofs

This section collects proofs for all the stated results, following their order of appearance in the text.

6.1 Proofs for Section 3

The following proofs use the notation p0,h and p−h defined at the beginning of Section 3.2.

6.1.1 PROOF OF THEOREM 9

Let R denote a nonincreasing self-consistent procedure with respect to & defined in (4). By defini-
tion, R satisfies

R⊂
{
h ∈H | ph ≤min

(
(1−#)

"|R|
m− |R|+1

,#

)}
.

Therefore, we have

FDR(R) = *
h∈H0

E

[
1{h ∈ R(p)}

|R(p)|

]

≤ *
h∈H0

E




1
{
ph ≤ (1−#) "|R(p)|

m−|R(p)|+1

}

|R(p)|





≤ *
h∈H0

E




1
{
ph ≤ (1−#) "|R(p)|

m−|R(p0,h)|+1

}

|R(p)|





= *
h∈H0

E



E




1
{
ph ≤ (1−#) "|R(p)|

m−|R(p0,h)|+1

}

|R(p)|

∣∣∣∣p−h









≤ (1−#)" *
h∈H0

E

[
1

m− |R(p0,h)|+1

]
,

The second inequality above comes from |R(p)| ≤ |R(p0,h)|, which itself holds because |R| is
coordinate-wise nonincreasing in each p-value. The last inequality is obtained with Lemma 27
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of Section 7 with U = ph, g(U) = |R(p−h,U)| and c = (1−#)"
m−|R(p0,h)|+1 , because the distribution of ph

conditionally on p−h is (by independence) identical to its marginal distribution, hence stochastically
lower bounded by a uniform variable on [0,1]; |R| is coordinate-wise nonincreasing; and because
p0,h depends only on the p-values of p−h. Finally, since the threshold collection of R is upper
bounded by #, we get

(1−#)E [m/(m− |R(p0,h)|+1)] ≤ EG1(p0,h),

where G1 is the Storey estimator with parameter #. We then use EG1(p0,h) ≤ !−10 (see proof of
Corollary 13) to conclude. !

6.1.2 PROOF OF LEMMA 10

DenoteG(t) = !0t+(1−!0)F(t) the c.d.f. of the p-values under the random effects mixture model.
Let us denote by t̂m the threshold of the LSU procedure. The proportion of rejected hypotheses from
the initial pool is then exactly Ĝm(t̂m) , where Ĝm is the empirical cdf of the p-values. It was proved
by Genovese and Wasserman (2002) under the random effects model, that as m tends to infinity
the LSU threshold t̂m converges in probability to t!, which is the largest point t ∈ [0,1] such that
G(t) = "−1t . Since Ĝm converges in probability uniformly to G , we deduce that the proportion
of rejected hypotheses converges to "−1t∗ in probability; hence, if t∗ > "2 , the probability that the
proportion of rejected hypotheses is less that "+1/m converges to zero; and conversely converges
to 1 if t∗ < "2 .

The definition of t∗ and the expression for G in the Gaussian mean shift model imply the fol-
lowing relation whenever t∗ > 0 :

µ=$
−1

(t!)−$
−1

(
"−1−!0
1−!0

t!
)

.

It is easily seen that if !0 < (1+")−1 , the quantity µ∗ in the statement of the lemma is well defined
and we have t∗ > "2 for µ> µ∗. This gives the first part of the result.

Conversely, if !0 > (1+")−1 we have t∗ = 0 , and if !0 < (1+")−1 but µ< µ∗ , we have
t∗ < "2 ; this leads to the second part of the result. !

6.1.3 PROOF OF THEOREM 11

By definition of self-consistency, the procedure R satisfies

R⊂ {h ∈H | ph ≤ "|R|G(p)/m}.

Therefore,

FDR(R) = *
h∈H0

E

[
1{h ∈ R(p)}

|R(p)|

]
≤ *

h∈H0

E

[
1{ph ≤ "|R(p)|G(p)/m}

|R(p)|

]
.

Since G is nonincreasing, we get:

FDR(R) ≤ *
h∈H0

E

[
1{ph ≤ "|R(p)|G(p0,h)/m}

|R(p)|

]

= *
h∈H0

E

[
E

[
1{ph ≤ "|R(p)|G(p0,h)/m}

|R(p)|

∣∣∣∣p−h
]]

≤
"
m *

h∈H0

EG(p0,h).
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The last step is obtained with Lemma 27 of Section 7 with U = ph, g(U) = |R(p−h,U)| and c =
"G(p0,h)/m, because the distribution of ph conditionally on p−h is (by independence) identical to its
marginal distribution, hence stochastically lower bounded by a uniform variable; |R| is coordinate-
wise nonincreasing; and p0,h depends only on the p-values of p−h. !

6.1.4 PROOF OF COROLLARY 12

Assuming H0 .= /0 without loss of generality, for h0 ∈ H0 we want to upper bound E [G(p0,h0)]
appearing in the bound of Theorem 11. Let p̃0,h0 denote the family of p-values p0,h0 where all p-
values ph , h∈H \H0 have been replaced by zero. SinceG is nonincreasing, we have E [G(p0,h0)]≤
E [G(p̃0,h0)] . Now, for any h ∈ H0 \ {h0} , denote p̃′0,h0 the family p̃0,h0 , where the variable ph
has been replaced by uh , an independent uniform variable on [0,1] . Since both ph and uh are
independent of the other p-values, ph is stochastically lower bounded by uh and G is nonincreasing,
we have

E
[
G(p̃0,h0)

∣∣p−h
]
≤ E

[
G(p̃′0,h0)

∣∣p−h
]
,

hence also in unconditional expectation. Iterating this reasoning in succession for all h∈H0 \{h0} ,
we have finally replaced p0,h0 by a family of m0−1 independent uniform variables and m−m0+1
zeros, while only increasing the expected value, so that (now using that G is permutation invariant)

E [G(p0,h0)] ≤ Ep∼DU(m,m0−1) [G(p)] ,

which, combined with (6), entails the desired result. !

6.1.5 PROOF OF COROLLARY 13

First, we prove that the sufficient condition of Theorem 11 holds for the nonincreasing estimatorsGi,
i= 1,3,4. To that end, we reproduce here without major changes the arguments used by Benjamini
et al. (2006). The bound for G1 is obtained using Lemma 30 (see below) with k=m0 and q= 1−#:
for all h ∈H0,

E [G1(p0,h)] ≤ m(1−#)E

[(

*
h′∈H0\{h}

1{ph′ > #}+1
)−1]

≤ !−10 .

The proof for G3 and G4 is deduced from the one of G1 because G3 and G4 are smaller than G1
pointwise.

Secondly, for G2 we use a somewhat more direct argument than Benjamini et al. (2006), namely
using Corollary 12 and proving that +(G2,m) ≤ 1. Take p ∼ DU(m,m0− 1). On the one hand, if
k0 ≤ m−m0+1, we have p(k0) = 0, and therefore !0G2(p) = !0m/(m− k0+1) ≤ 1 pointwise. On
the other hand, if k0 ≥ m−m0+2, we have p(k0) = q(k0−m+m0−1), where q(1) ≤ ... ≤ q(m0−1) are the
(m0−1) ordered p-values of p corresponding to uniform variables. Thus,

!0E [G2(p)] = m!0
1−E

[
q(k0−m+m0−1)

]

m− k0+1
= m!0

1− (k0−m+m0−1)/m0
m− k0+1

= 1.

6.1.6 PROOF OF PROPOSITION 17

Let us first consider adaptive one-stage procedures: for any step-up procedure R of threshold &(i) =
"'(i)/m we easily derive that the probability that R makes any rejection is

P [∃i | pi ≤ &(i)] = P [∃i | p1 ≤ &(i)] = P [p1 ≤ &(m)] = &(m),
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which is FDR(R) because m0 = m. The results for BR-1S-# and FDR09-) follow.
With the same reasoning, we find that for any plug-in adaptive linear step-up procedure R that

uses an estimator G(p),
FDR(R) = P [p1 ≤ "G(p)] . (7)

Next, for the Storey plug-in procedure, we have G1(p1, ..., p1) = (1−#)m/(m1{p1 > #}+ 1), so
that applying (7), we get

FDR(Storey-#) = P [p1 ≤ "G1(p)]
= P [p1 ≤ #, p1 ≤ "(1−#)m]+P [p1 > #, p1 ≤ "(1−#)m/(m+1)]

=min
(
#,"(1−#)m

)
+

(
"(1−#)m
m+1

−#

)

+

.

For the quantile procedure, we have

P [p1 ≤ "(1− p1)m/(m− k0+1)] = P [p1((1+")m− k0+1) ≤ "m] =
"

1+"− (k0−1)/m
.

For the BKY06 procedure, we simply remark that since the linear step-up procedure of level #
rejects all the hypotheses when p1 ≤ # and rejects no hypothesis otherwise, the estimator G1 and
G3 are equal in this case. The proof for BR-2S-# is similar. !

6.2 Proofs for Section 4

We begin with a technical lemma that will be useful for proving both Theorem 22 and 23. It is
related to techniques previously introduced by Blanchard and Roquain (2008).

Lemma 26 Assume R is a multiple testing procedure satisfying the self-consistency condition:

R⊂
{
h ∈H | ph ≤ "G(p)'(|R|)/m

}
,

where G(p) is a data-dependent factor. Then the following inequality holds:

FDR(R) ≤ "+E

[
|R∩H0|

|R|
1{|R| > 0}1

{
G(p) > !−10

}]
, (8)

under either of the following conditions:

• the p-value family (ph,h ∈ H ) is PRDS on H0 , R is nonincreasing and ' is the identity
function.

• the p-values have unspecified dependence and ' is a shape function of the form (3).

Proof. We have

FDR(R) = E

[
|R∩H0|

|R|
1{|R| > 0}

]

= E

[
|R∩H0|

|R|
1{|R| > 0}1

{
G≤ !−10

}]
+E

[
|R∩H0|

|R|
1{|R| > 0}1

{
G> !−10

}]

≤ *
h∈H0

E

[
1{ph ≤ "'(|R|)/m0}

|R|

]
+E

[
|R∩H0|

|R|
1{|R| > 0}1

{
G> !−10

}]
.
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The desired conclusion will therefore hold if we establish that for any h ∈H0 , and c> 0 :

E

[
1{ph ≤ c'(|R|)}

|R|

]
≤ c .

Under unspecified dependence, this is a direct consequence of Lemma 29 of Section 7 withU = ph
and V = '(|R|). For the PRDS case, we note that since |R(p)| is coordinate-wise nonincreasing in
each p-value, for any v > 0, D = {z ∈ [0,1]H | |R(z)| < v} is a measurable nondecreasing set, so
that the PRDS property implies that u #→ P [|R| < v | ph = u] is nondecreasing. This implies that
u #→ P [|R| < v | ph ≤ u] by the following argument (see also Lehmann, 1966, cited by Benjamini
and Yekutieli, 2001, and Blanchard and Roquain, 2008): putting += P [ph ≤ u | ph ≤ u′] ,

P
[
p ∈ D | ph ≤ u′

]
= E

[
P [p ∈ D | ph] | ph ≤ u′

]

= +E [P [p ∈ D | ph] | ph ≤ u]+ (1− +)E
[
P [p ∈ D | ph] | u< ph ≤ u′

]

≥ E [P [p ∈ D | ph] | ph ≤ u] = P [p ∈ D | ph ≤ u] .

We can then apply Lemma 28 of Section 7 withU = ph and V = |R|. !

6.2.1 PROOF OF THEOREM 22

By definition of a step-up procedure, the two-stage procedure R satisfies the assumption of Lemma
26 for G(p) = (1− |R0|

m )−1 , where R0 is the first stage with FWER controlled at level "0 . Further-
more, it is easy to check that |R| is nonincreasing as a function of each p-value (since |R0| is). Then,
we can apply Lemma 26, and from inequality (8) we deduce

FDR(R) ≤ "1+E

[
|R∩H0|

|R|
1
{
1−

|R0|
m

< !0

}]

≤ "1+P [R0∩H0 .= /0]

≤ "0+"1 .

In the case where R0 rejects all hypotheses, we assumed implicitly that the second stage also does.
!

6.2.2 PROOF OF THEOREM 23

Assume !0 > 0 (otherwise the result is trivial). By definition of a step-up procedure, the two-stage
procedure R satisfies the assumption of Lemma 26 for G(p) = F.(|R0|/m) , where R0 is the first
stage. Furthermore, it is easy to check that |R| is nonincreasing as a function of each p-value (since
|R0| is). Then, we can apply Lemma 26, and from inequality (8) we deduce

FDR(R) ≤ "1+E

[
|R∩H0|

|R|
1
{
F.(|R0|/m) > !−10

}]

≤ "1+m0E

[
1
{
F.(|R0|/m) > !−10

}

|R0|

]

.

For the second inequality, we have used the two following facts:
(i) F.(|R0|/m) > !−10 implies |R0| > 0,
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(ii) because of the assumption "0 ≤ "1 and F. ≥ 1 , the output of the second step is necessarily
a set containing at least the output of the first step. Hence |R|≥ |R0| .

Let us now concentrate on further bounding this second term. For this, first consider the gen-
eralized inverse of F. , F−1

. (t) = inf{x | F.(x) > t} . Since F. is a nondecreasing left-continuous
function, we have F.(x) > t ⇔ x > F−1

. (t) . Furthermore, the expression of F−1
. is given by:

∀t ∈ [1,+%),F−1
. (t) = .−1t−2− t−1+1 (providing in particular that F−1

. (!−10 ) > 1−!0). Hence

m0E

[
1
{
F.(|R0|/m) > !−10

}

|R0|

]

≤ m0E

[
1
{
|R0|/m> F−1

. (!−10 )
}

|R0|

]

≤
!0

F−1
. (!−10 )

P
[
|R0|/m≥ F−1

. (!−10 )
]
. (9)

Now, by assumption, the FDR of the first step R0 is controlled at level !0"0 , so that

!0"0 ≥ E

[
|R0∩H0|

|R0|
1{|R0| > 0}

]

≥ E

[
|R0|+m0−m

|R0|
1{|R0| > 0}

]

= E
[(
1+(!0−1)Z−1

)
1{Z > 0}

]
,

where we denoted by Z the random variable |R0|/m . Hence by Markov’s inequality, for all t >
1−!0,

P [Z ≥ t] ≤ P
[(
1+(!0−1)Z−1

)
1{Z > 0}≥ 1+(!0−1)t−1

]
≤

!0"0
1+(!0−1)t−1

;

choosing t = F−1
. (!−10 ) and using this into (9), we obtain

m0E

[
1
{
F.(|R0|/m) > !−10

}

|R0|

]

≤ "0
!20

F−1
. (!−10 )−1+!0

.

If we want this last quantity to be less than ."0 , this yields the condition F−1
. (!−10 ) ≥ .−1!20−

!0+ 1 , and this is true from the expression of F−1
. (note that this is how the formula for F. was

determined in the first place). !

7. Probabilistic Lemmas

The three following lemmas have been established in a previous work (see Blanchard and Roquain,
2008, Lemma 3.2).

Lemma 27 Let g : [0,1] → (0,%) be a nonincreasing function. Let U be a random variable which
is stochastically lower bounded by a uniform variable on [0,1], that is, ∀u ∈ [0,1], P [U ≤ u] ≤ u .
Then, for any constant c> 0, we have

E

[
1{U ≤ cg(U)}

g(U)

]
≤ c .
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Lemma 28 Let U,V be two nonnegative real variables. Assume the following:

1. U is stochastically lower bounded by a uniform variable on [0,1], that is, ∀u ∈ [0,1],
P [U ≤ u] ≤ u .

2. The conditional distribution of V given U ≤ u is stochastically decreasing in u, that is,

∀v≥ 0 , ∀0≤ u≤ u′ , P [V < v |U ≤ u] ≤ P
[
V < v |U ≤ u′

]
.

Then, for any constant c> 0, we have

E

[
1{U ≤ cV}

V

]
≤ c .

Lemma 29 Let U,V be two nonnegative real variables and ' be a function of the form (3). Assume
thatU is stochastically lower bounded by a uniform variable on [0,1], that is, ∀u∈ [0,1], P [U ≤ u]≤
u . Then, for any constant c> 0, we have

E

[
1{U ≤ c'(V )}

V

]
≤ c .

The following lemma was stated by Benjamini et al. (2006). It is a major point when we estimate
!−10 in the independent case. The proof is left to the reader.

Lemma 30 For any k≥ 2, q∈ (0,1] , let Y be a binomial random variable with parameters (k−1,q);
then the following holds:

E[1/(1+Y )] ≤ 1/kq.
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Abstract
Learning algorithms are based on samples which are often drawn independently from an identical
distribution (i.i.d.). In this paper we consider a different setting with samples drawn according to a
non-identical sequence of probability distributions. Each time a sample is drawn from a different
distribution. In this setting we investigate a fully online learning algorithm associated with a general
convex loss function and a reproducing kernel Hilbert space (RKHS). Error analysis is conducted
under the assumption that the sequence of marginal distributions converges polynomially in the
dual of a Hölder space. For regression with least square or insensitive loss, learning rates are given
in both the RKHS norm and the L2 norm. For classification with hinge loss and support vector
machine q-norm loss, rates are explicitly stated with respect to the excess misclassification error.

Keywords: sampling with non-identical distributions, online learning, classification with a general
convex loss, regression with insensitive loss and least square loss, reproducing kernel Hilbert space

1. Introduction

In the literature of learning theory, samples for algorithms are often assumed to be drawn indepen-
dently from an identical distribution. Here we consider a setting with samples drawn from non-
identical distributions. Such a framework was introduced in Smale and Zhou (2009) and Steinwart
et al. (2008) where online learning for least square regression and off-line support vector machines
are investigated. We shall follow this framework and study a kernel based online learning algorithm
associated with a general convex loss function. Our analysis can be applied for various purposes
including regression and classification.

1.1 Sampling with Non-identical Distributions

Let (X ,d) be a metric space called an input space for the learning problem. Let Y be a compact
subset of R (output space) and Z = X×Y .

In our online learning setting, at each step t = 1,2, . . ., a pair zt = (xt ,yt) is drawn from a
probability distribution !(t) on Z. The sampling sequence of probability distributions {!(t)}t=1,2,··· is
not identical. For convergence analysis, we shall assume that the sequence {!(t)

X }t=1,2,··· of marginal
distributions on X converges polynomially in the dual of the Hölder spaceCs(X) for some 0< s≤ 1.

c©2009 Ting Hu and Ding-Xuan Zhou.
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Here the Hölder space Cs(X) is defined to be the space of all continuous functions on X with the
norm ‖ f‖Cs(X) = ‖ f‖C(X) + | f |Cs(X) finite, where | f |Cs(X) := supx &=y

| f (x)− f (y)|
(d(x,y))s .

Definition 1 We say that the sequence {!(t)
X }t=1,2,··· converges polynomially to a probability distri-

bution !X in (Cs(X))∗ (0≤ s≤ 1) if there exist C > 0 and b> 0 such that

‖!(t)
X −!X‖(Cs(X))∗ ≤Ct−b, t ∈ N. (1)

By the definition of the dual space (Cs(X))∗, decay condition (1) can be expressed as
∣∣∣∣
Z

X
f (x)d!(t)

X −
Z

X
f (x)d!X

∣∣∣∣ ≤Ct−b‖ f‖Cs(X), ∀ f ∈Cs(X), t ∈ N. (2)

What measures quantitatively differences between our non-identical setting and the i.i.d. case is
the power index b. Its impact on performance of online learning algorithms will be studied in this
paper. The i.i.d. case corresponds to b= ".

We describe three situations in which decay condition (1) is satisfied. The first is when a distri-
bution !X is perturbed by some noise and the noise level decreases as t increases.

Example 1 Let {h(t)} be a sequence of bounded functions on X such that supx∈X |h(t)(x)| ≤Ct−b.
Then the sequence {!(t)

X }t=1,2,··· defined by d!
(t)
X = d!X +h(t)(x)d!X satisfies (1) for any 0≤ s≤ 1.

The proof follows from
∣∣R
X f (x)h(t)(x)d!X

∣∣ ≤ supx∈X |h(t)(x)|‖ f‖C(X) ≤Ct−b‖ f‖Cs(X). In this ex-
ample, h(t) is the density function of the noise distribution and we assume its bound (noise level) to
decay polynomially as t increases.

The second situation when decay condition (1) is satisfied is generated by iterative actions of an
integral operator associated with a stochastic density kernel. We demonstrate this situation by an
example on X = Sn−1, the unit sphere of Rn with n≥ 2. Let dS be the normalized surface element of
Sn−1. The corresponding space L2(Sn−1) has an orthonormal basis {Y!,k : !∈ Z+,k= 1, . . . ,N(n,!)}
with N(n,0) = 1 and N(n,!) = 2!+n−2

!
(!+n−3)!(n−2)!

(!−1)! . Here Y!,k is a spherical harmonic of order !

which is the restriction onto Sn−1 of a homogeneous polynomial in Rn of degree ! satisfying the
Laplace equation # f = 0. In particular, Y0,0 ≡ 1.

Example 2 Let X = Sn−1, 0< $< 1, and % ∈C(X×X) be given by

%(x,u) = 1+
"

&
!=1

N(n,!)

&
k=1

a!,kY!,k(x)Y!,k(u) where 0≤ a!,k ≤ $,
"

&
!=1

N(n,!)

&
k=1

a!,k‖Y!,k‖
2
C(X) < 1.

If h(1) is a square integrable density function on X and a sequence of density functions {h(t)} is
defined by

h(t+1)(x) =
Z

X
%(x,u)h(t)(u)dS(u), x ∈ X , t ∈ N,

then we know h(t) = Y0,0 + &"
!=1&

N(n,!)
k=1 at−1!,k 〈h

(1),Y!,k〉L2(Sn−1)Y!,k and ‖h(t) − Y0,0‖L2(Sn−1) ≤

$t−1‖h(1)‖L2(Sn−1). It follows that the sequence {!(t)
X = h(t)(x)dS}t=1,2,... of probability distribu-

tions on X converges polynomially to the uniform distribution d!X = dS on X and satisfies (1) for
any 0≤ s≤ 1.
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In general, if ' is a strictly positive probability distribution on X , and if % ∈C(X×X) is strictly
positive satisfying

R

X %(x,u)d'(u) = 1 for each x ∈ X , then the sequence {!(t)
X } defined by

!(t)
X (() =

Z

(

{
Z

X
%(x,u)d!(t−1)

X (x)
}
d'(u) on Borel sets (⊆ X

satisfies ‖!(t)
X −!X‖(C(X))∗ ≤ C$t for some (strictly positive) probability distribution !X on X and

constants C > 0,0 < $ < 1. Hence decay condition (1) is valid for any 0 ≤ s ≤ 1. For details, see
Smale and Zhou (2009).

The third situation to realize decay condition (1) is to induce distributions by dynamical systems.
Here we present a simple example.

Example 3 Let X = [−1/2,1/2] and for each t ∈ N, the probability distribution !(t)
X on X has sup-

port [−2−t ,2−t ] and uniform density 2t−1 on its support. Then with )0 being the delta distribution
at the origin, for each 0< s≤ 1 we have

∣∣∣∣
Z

X
f (x)d!(t)

X −
Z

X
f (x)d)0

∣∣∣∣ ≤ 2
t−1

Z 2−t

−2−t
| f (x)− f (0)|dx≤

(
2−s

)t
‖ f‖Cs(X).

Remark 2 Since ‖ f‖C(X) ≤ ‖ f‖Cs(X), we see from (2) that decay condition (1) with any 0 < s ≤ 1
is satisfied when this polynomial convergence requirement is valid in the case s = 0. This happens
in Examples 1 and 2. Note that when s = 0, the dual space (C(X))∗ is exactly the space of signed
finite measures on X. Each signed finite measure µ on X lies in (C(X))∗ ⊂ (Cs(X))∗ and satisfies
‖µ‖(Cs(X))∗ ≤ ‖µ‖(C(X))∗ ≤

R

X d|µ|.

1.2 Fully Online Learning Algorithm

In this paper we study a family of online learning algorithms associated with reproducing kernel
Hilbert spaces and a general convex loss function.

A reproducing kernel Hilbert space (RKHS) is induced by aMercer kernel K :X×X→Rwhich
is a continuous and symmetric function such that the matrix (K(xi,x j))!

i, j=1 is positive semidefinite
for any finite set of points {x1, · · · ,x!}⊂ X . The RKHS HK is the completion (Aronszajn, 1950) of
the span of the set of functions {Kx = K(x, ·) : x ∈ X} with the inner product given by 〈Kx,Ky〉K =
K(x,y).

Definition 3 We say that V :Y ×R → R+ is a convex loss function if for each y ∈Y , the univariate
function V (y, ·) : R → R+ is convex.

The convexity tells us (Rockafellar, 1970) that for each f ∈ R and y ∈ Y , the left derivative
lim)→0−(V (y, f + ))−V (y, f ))/) exists and is no more than the right derivative lim)→0+(V (y, f +
))−V (y, f ))/). An arbitrary number between them (which is a gradient) will be taken and denoted
as *V (y, f ) in our algorithm.

For the least square regression problem, we can take V (y, f ) = (y− f )2. For the binary classifi-
cation problem, we can take V (y, f ) = +(y f ) with + : R → R+ a convex function.

The online algorithm associated with the RKHS HK and the convex loss V is a stochastic gra-
dient descent method (Cesa-Bianchi et al., 1996; Kivinen et al., 2004; Smale and Yao, 2006; Ying
and Zhou, 2006; Ying, 2007).
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Definition 4 The fully online learning algorithm is defined by f1 = 0 and

ft+1 = ft −,t {*V (yt , ft(xt))Kxt +-t ft} , for t = 1,2, . . . , (3)

where -t > 0 is called the regularization parameter and ,t > 0 the step size.

In this fully online algorithm, the regularization parameter -t changes with the learning step t.
Throughout the paper we assume that -t+1 ≤ -t for each t ∈ N. When the regularization parameter
-t ≡ -1 does not change as the step t develops, we call scheme (3) partially online.

The goal of this paper is to investigate the fully online learning algorithm (3) when the sampling
sequence is not identical. We will show that learning rates in the non-identical setting can be the
same as those in the i.i.d. case when the power index b in polynomial decay condition (1) is large
enough, that is, {!(t)

X } converges fast to !X . When b is small, the non-identical effect becomes
crucial and the learning rates will depend essentially on b.

2. Error Bounds for Regression and Classification

As in the work on least square regression (Smale and Zhou, 2009), we assume for the sampling
sequence {!(t)}t=1,2,··· that the conditional distribution !(t)(y|x) of each !(t) at x ∈ X is independent
of t, denoted as !x.

Throughout the paper we assume independence of the sampling, that is, {zt = (xt ,yt)}t is a
sequence of samples drawn from the product probability space .t=1,2,···(Z,!(t)).

Error analysis will be conducted for fully online learning algorithm (3) under polynomial decay
condition (1) for the sequence of marginal distributions {!(t)

X }. Let ! be the probability distribution
on Z given by the marginal distribution !X and the conditional distributions !x. Essential difficulty
in our non-identical setting is caused by the deviation of {!(t)} from !.

The first novelty of our analysis is to deal with an error quantity #t involving !(t) −! (defined
by (15) below) which occurs only in the non-identical setting. This is handled for a general loss
function V and output space Y by Lemma 18 in Section 3 under decay condition (1) for marginal
distributions {!(t)

X } and Lipschitz s continuity of conditional distributions {!x : x ∈ X}.

Definition 5 We say that the set of distributions {!x : x∈ X} is Lipschitz s in (Cs(Y ))∗ if there exists
a constant C! ≥ 0 such that

‖!x−!u‖(Cs(Y ))∗ ≤C!(d(x,u))s, ∀x,u ∈ X . (4)

Notice that on the compact subset Y of R, the Hölder spaceCs(Y ) and its dual (Cs(Y ))∗ are well
defined. Each !x belongs to (Cs(Y ))∗.

The second novelty of our analysis is to show for the least square loss (described in Section
3) and binary classification that Lipschitz s continuity (4) of {!x : x ∈ X} is the same as requiring
f! ∈Cs(X) where f! is the regression function defined by

f!(x) =
Z

Y
yd!x(y), x ∈ X . (5)

Proposition 6 Let 0 < s ≤ 1. Condition (4) implies f! ∈ Cs(X) with | f!|Cs(X) ≤
C!(1+21−s)supy∈Y |y|. When Y = {1,−1}, f! ∈Cs(X) also implies (4) and C! ≤ | f!|Cs(X).
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The two-point nature of the output space Y for binary classification plays a crucial role in our
observation. The second statement of Proposition 6 is not true for general output space Y . Here is
one example.

Example 4 Let 0 < s ≤ 1 and Y = {1,−1,0}. Then condition (4) holds if and only if f! ∈Cs(X)
and f!,−1 ∈Cs(X) where f!,−1 is the function on X given by f!,−1(x) = !x({−1}).

Proofs of Proposition 6 and Example 4 will be given in the appendix.
Our third novelty is to understand some essential differences between our non-identical setting

and the classical i.i.d. setting by pointing out the key role played by the power index b of polynomial
decay condition ‖!(t)

X −!X‖(Cs(X))∗ ≤Ct−b in derived convergence rates in Theorems 7 and 10 for
regression and Theorem 11 for classification. Even for least square regression our result improves
the error analysis in Smale and Zhou (2009) where a stronger exponential decay condition ‖!(t)

X −
!X‖(Cs(X))∗ ≤C$t is assumed.

Our error bounds for fully online algorithm (3) are comparable with those for a batch learning
algorithm generated by the off-line regularization scheme in HK defined with a sample z := {zt =
(xt ,yt)}Tt=1 and a regularization parameter -> 0 as

fz,- = arg min
f∈HK

{
1
T

T

&
t=1

V (yt , f (xt))+
-
2
‖ f‖2K

}

. (6)

Let us demonstrate our error analysis by learning rates for regression with least square loss and
insensitive loss and for binary classification with hinge loss.

2.1 Learning Rates for Least Square Regression

Here we take Y = [−M,M] for someM > 0 and the least square loss V =Vls as Vls(y, f ) = (y− f )2.
Then the algorithm takes the form

ft+1 = ft −2,t
{

( ft(xt)− yt)Kxt +
-t
2
ft
}

, for t = 1,2, . . .

The following learning rates are derived by the procedure in Smale and Zhou (2009) where an
exponential decay condition is assumed. Here we only impose a much weaker polynomial decay
condition (1). We also assume the regularity condition (of order r > 0)

f! = LrK(g!) for some g! ∈ L2!X (X), (7)

where LK is the integral operator L2!X defined by

LK f (x) =
Z

X
K(x,v) f (v)d!X(v), x ∈ X

with LrK well-defined as a compact operator.

Theorem 7 Let 0< s≤ 1
2 and

1
2 < r ≤ 3

2 . Assume K ∈C2s(X ×X), regularity condition (7) for f!
and (1) with b> 2r+2

2r+1 for {!
(t)
X }. Take

-t = -1t−
1

2r+1 , ,t = ,1t−
2r
2r+1
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with -1,1 > 2r−1
4r+2 , then

IEz1,...,zT
(
‖ fT+1− f!‖K

)
≤ C̃T− 2r−1

4r+2 ,

where C̃ is a constant independent of T .

Denote the constant /=maxx∈X
√
K(x,x). From the reproducing property

〈Kx, f 〉K = f (x), x ∈ X , f ∈HK (8)

of the RKHS HK , we see that

‖ f‖C(X) ≤ /‖ f‖K , ∀x ∈ X , f ∈HK .

Most error analysis in the literature of least square regression (Zhang, 2004; De Vito et al., 2005;
Smale and Yao, 2006; Wu et al., 2007) is about the L2-norm ‖ fT+1− f!‖L2!X or risk in the i.i.d. case.
From a predictive viewpoint, in the non-identical setting, the error fT+1− f! should be measured
with respect to the distribution !(T )

X , not the limit !X . This can be done by bounding ‖ fT+1− f!‖C(X)

(since !(T )
X changes with T ), which follows from estimates for ‖ fT+1− f!‖K . So our bounds for the

error in the HK-norm provides useful predictive information about learning ability of fully online
algorithm (3) in the non-identical setting.

Remark 8 When X ⊂ Rn and K ∈C2m(X ×X) for some m ∈ N, we know from Zhou (2003, 2008)
and Theorem 7 that IEz1,...,zT

(
‖ fT+1− f!‖Cm(X)

)
=O(T− 2r−1

4r+2 ). So the regression function is learned
efficiently by the online algorithm not only in the usual L2!X space, but also strongly in the space
Cm(X) implying the learning of gradients (Mukherjee and Wu, 2006).

In the special case of r = 3
2 , the learning rate in Theorem 7 is IEz1,...,zT

(
‖ fT+1− f!‖K

)
=

O(T− 1
4 ), the same as those in the literature (Smale and Zhou, 2009; Tarrès and Yao, 2005; Smale and

Zhou, 2007). Here we assume polynomial convergence condition (1) with a large index b > 2r+2
2r+1 .

So the influence of the non-identical distributions {!(t)
X } does not appear in the learning rates (it is

involved in the constant C̃). Instead of refining the analysis for smaller b in Theorem 7, we shall
show the influence of the index b on learning rates by the settings of regression with insensitive loss
and binary classification.

2.2 Learning Rates for Regression with Insensitive Loss

A large family of loss functions for regression take the form V (y, f ) = %(y− f ) where % : R → R+

is an even, convex and continuous function satisfying %(0) = 0. One example is the 0-insensitive
loss (Vapnik, 1998) with 0≥ 0 where %(u) =max{|u|− 0,0}. We consider the case when 0= 0. In
this case the loss is called least absolute deviation or least absolute error in the literature of statistics
and finds applications in some important problems because of robustness.

Definition 9 The insensitive loss V =Vin is given by Vin(y, f ) = |y− f |.

Algorithm (3) now takes the form

ft+1 =

{
(1−,t-t) ft−,tKxt , if ft(xt) ≥ yt ,
(1−,t-t) ft +,tKxt , if ft(xt) < yt .

The following learning rates are new and will be proved in Section 5.
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Theorem 10 Let 0< s≤ 1
2 and K ∈C2s(X×X). Assume regularity condition (7) for f! with r> 1

2 ,
and polynomial convergence condition (1) for {!(t)

X }. Suppose that for each x ∈ X, !x is the uniform
distribution on the interval [ f!(x)− 1, f!(x) + 1]. If -1 ≤ (/‖g!‖L2!X )2/(1−2r)/2 and ,1 > 0, then
with a constant C̃ independent of T , when 1< r ≤ 3

2 we have

IEz1,...,zT
(
‖ fT+1− f!‖K

)
≤ C̃T−min{ 2r−16r+1 ,

b
2−

2
6r+1 } by taking -t = -1t−

2
6r+1 , ,t = ,1t−

4r
6r+1

and when 1
2 < r ≤ 1, we have

IEz1,...,zT
(
‖ fT+1− f!‖L2!X

)
≤ C̃T−min{ r

3r+2 ,
b
2−

1
3r+2 } with -t = -1t−

1
3r+2 , ,t = ,1t−

2r+1
3r+2 .

Again, when b> 4r+2
6r+1 , X ⊂ Rn and K ∈C2m(X ×X) for some m ∈ N, Theorem 10 tells us that

IEz1,...,zT
(
‖ fT+1− f!‖Cm(X)

)
= O(T− 2r−1

6r+1 ). So the regression function is learned efficiently by the
online algorithm not only with respect to the risk, but also strongly in the spaceCm(X) implying the
learning of gradients.

Consider the case r = 3
2 . When {!(i)

X } converges slowly with b < 4
5 , we see that

IEz1,...,zT
(
‖ fT+1− f!‖K

)
= O(T−( b2−

1
5 )) which heavily depends on the index b representing quan-

titatively the deviation of {!(t)
X } from !X . When b is large enough with b ≥ 4

5 , the learning rate
IEz1,...,zT

(
‖ fT+1− f!‖K

)
is of order T− 1

5 which is independent of b.
It would be interesting to extend Theorem 10 to situations when {!x : x ∈ X} are more general

bounded symmetric distributions.

2.3 Learning Rates for Binary Classification

The output space Y for the binary classification problem is Y = {1,−1} representing the set of two
classes. A binary classifier C : X → Y makes a prediction y= C (x) ∈ Y for each point x ∈ X .

A real valued function f : X → R can be used to generate a classifier C (x) = sgn( f (x)) where
sgn( f (x)) = 1 if f (x)≥ 0 and sgn( f (x)) =−1 if f (x) < 0. A classifying convex loss + :R → R+ is
often used for the real valued function f , to measure the local error +(y f (x)) suffered from the use
of sgn( f ) as a model for the process producing y at x ∈ X . Take V (y, f ) = +(y f ) in out setting. Off-
line classification algorithm (6) has been extensively studied in the literature. In particular, the error
analysis is well done when the sample z is assumed to be an identical and independent drawer from
a probability measure ! on Z. See, for example, Evgeniou et al. (2000), Steinwart (2002), Zhang
(2004) and Wu et al. (2007). Some analysis for off-line support vector machines with dependent
samples can be found in Steinwart et al. (2008).

When the sample size T is very large, algorithm (6) might be practically challenging. Then
online learning algorithms can be applied, which provide more efficient methods for classification.
These algorithms are generalizations of the perceptron which has a long history. The error analysis
for online algorithm (3) has also been conducted for classification in the i.i.d. setting, see, for
example, Cesa-Bianchi et al. (2004), Ying and Zhou (2006), Ying (2007) and Ye and Zhou (2007).

Here we are interested in the error analysis for fully online algorithm (3) in the non-identical
setting. The error is measured by the misclassification error R (C ) defined to be the probability of
the event {C (x) &= y} for a classifier C

R (C ) =
Z

X
!x(y &= C (x))d!X(x) =

Z

X
!x({−C (x)})d!X(x).
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The best classifier minimizing the misclassification error is called the Bayes rule (e.g., Devroye et
al. 1997) and can be expressed as fc = sgn( f!).

We are interested in the classifier sgn( fT+1) produced by the real valued function fT+1 using
fully online learning algorithm (3). So our error analysis aims at the excess misclassification error
R (sgn( fT+1))−R ( fc).

We demonstrate our error analysis by a result, proved in Section 5, for the hinge loss +(x) =
(1− x)+ =max{1− x,0}. For this loss, the online algorithm (3) can be expressed as f1 = 0 and

ft+1 =

{
(1−,t-t) ft , if yt ft(xt) > 1,
(1−,t-t) ft +,tytKxt , if yt ft(xt) ≤ 1.

Theorem 11 Let V (y, f ) = (1−y f )+ and K ∈C2s(X×X) for some 0< s≤ 1
2 . Assume f! ∈C

s(X)
and the triple (!X , fc,K) satisfies

inf
f∈HK

{‖ f − fc‖L1!X +
-
2
‖ f‖2K}≤D0-

1 ∀-> 0 (9)

for some 0< 1≤ 1 and D0 > 0. Take

-t = -1t−
1
4 ,,t = ,1t−( 12+

1
12 )

where -1 > 0 and 0< ,1 ≤ 1
2/2+-1

. If {!(t)
X }t=1,2,··· satisfies (1) with b> 1

2 , then

IEz1,...,zT (R (sgn( fT+1))−R ( fc)) ≤C1,s,bT−min{ 14 ,
1
8+

1
24 ,

b
2−

1
4 }, (10)

where C1,s,b =C,1,-1,/,D0,1,s is a constant depending on ,1,-1,/,D0,1,s and b.

In the i.i.d. case with b = ", the learning rate for fully online algorithm (3) we state in The-
orem 11 is of form O(T−min{ 14 ,

1
8+

1
24 }) which is better than that in Ye and Zhou (2007) of order

O(T−min{ 14 ,
1
8−

0
2 }) with an arbitrarily small 0> 0. This improvement is realized by technical novelty

in our error analysis, as pointed out in Remark 27. So even in the i.i.d. case, our learning rate for
fully online classification with the hinge loss under approximation error assumption (9) is the best
in the literature.

Let us discuss the role of the power index b for the convergence of {!(t)
X } to !X played in the

learning rate in Theorem 11. Consider the case 1≤ 3
5 . When b≥

1+1
2 meaning fast convergence of

{!(t)
X } to !X , learning rate (10) takes the form O(T− 1

4 ) which depends only on the approximation
ability of HK with respect to the function fc and !X . When 1

2 < b < 1+1
2 representing some slow

convergence of {!(t)
X } to !X , the learning rate takes the form O(T− 2b−1

4 ) which depends only on b.
When 1> 3

5 , learning rate (10) is of order T
−( 18+

1
24 ) for b> 3

4 + 1
12 (fast convergence of {!

(t)
X })

and of order T−( b2−
1
4 ) for 12 < b ≤ 3

4 + 1
12 (slow convergence of {!

(t)
X }). It would be interesting to

know how online learning algorithms adapt when the time dependent distribution drifts sufficiently
slowly (corresponding to very small b).
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2.4 Approximation Error Involving a General Loss

Condition (9) concerns the approximation of the function fc in the space L1!X by functions from the
RKHS HK . In particular, when HK is a dense subset of C(X) (i.e., K is a universal kernel), the
quantity on the left-hand side of (9) tends to 0 as -→ 0. So (9) is a reasonable assumption, which
can be characterized by an interpolation space condition (Smale and Zhou, 2003; Chen et al., 2004).

Assumptions like (9) are necessary to determine the regularization parameter for achieving
learning rate (10). This can be seen from the literature (Wu et al., 2007; Zhang, 2004; Caponnetto
et al., 2007) of off-line algorithm (6): learning rates are obtained by suitable choices of the regular-
ization parameter - ≡ -1 = -1(T ), according to the behavior of the approximation error estimated
from a priori conditions on the distribution ! and the space HK .

For a general loss function V , conditions like (9) can be stated as the approximation error or
regularization error.

Definition 12 The approximation error D(-) associated with the triple (K,V,!) is

D(-) = inf
f∈HK

{
E( f )−E( f V! )+

-
2
‖ f‖2K

}
, (11)

where we define the generalization error for f : X → R as

E( f ) =
Z

Z
V (y, f (x))d!=

Z

X

Z

Y
V (y, f (x))d!x(y)d!X

and fV! is a minimizer of E( f ).

The approximation error measures the approximation ability of the spaceHK with respect to the
learning process involving V and !. The denseness of HK in C(X) implies lim-→0D(-) = 0. A
natural assumption would be

D(-) ≤D0-
1 for some 0≤ 1≤ 1 and D0 > 0. (12)

Throughout the paper we assume for the general loss function V that ‖V‖ := supy∈Y V (y,0)+
sup{|V (y, f )−V (y,0)|/| f | : y ∈ Y, | f |≤ 1} < ".

Remark 13 SinceD(-)≤E(0)+0≤ ‖V‖ for any -> 0, we see that (12) always holds with 1= 0
and D0 = ‖V‖.

For the least square loss V (y, f ) = (y− f )2, the minimizer f V! of E( f ) is exactly the regression
function defined by (5) and approximation error (11) takes the fromD(-) = inf f∈HK{‖ f − f!‖2L2!X

+

-
2‖ f‖

2
K} which measures the approximation of f! in L2!X by functions from the RKHS HK .
For a general loss function V , the minimizer f V! of E( f ) is in general different from f!. More-

over, the approximation errorD(-) involves the approximation of f V! byHK in some function spaces
which need not be L2!X .

Example 5 For the hinge loss V (y, f ) = (1− y f )+, the minimizer fV! is the Bayes rule fV! = fc
(Devroye et al., 1997). Moreover the uniform Lipschitz continuity of V (·, f ) implies (Chen et al.,
2004)

E( f )−E( f V! ) =
Z

Z
+(y f (x))−+(y fc(x))d!≤

Z

X
| f (x)− fc(x)|d!X = ‖ f − fc‖L1!X .
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So approximation error (11) can be estimated by approximation in the space L1!X and condition (9)
implies (12).

Consider the insensitive loss V = Vin. We can easily see that for each x ∈ X , f Vin! (x) equals the
median of the probability distribution !x on Y . That is, f Vin! (x) is uniquely determined by

!x({y ∈ Y : y≤ f Vin! (x)}) ≥
1
2

and !x({y ∈ Y : y≥ f Vin! (x)}) ≥
1
2
.

When !x is symmetric about its mean f!(x), we have f Vin! (x) = f!(x).

Example 6 Let V =Vin, f! ∈C(X) and p≥ 1. If for each x ∈ X, the conditional distribution !x is
given by

d!x(y) =

{ p
2 |y− f!(x)|p−1dy, if |y− f!(x)|≤ 1,
0, if |y− f!(x)| > 1,

then we have

E( f )−E( f Vin! ) =
1

p+1
‖ f − f!‖p+1Lp+1!X

−
1

p+1

Z

{x∈X :| f (x)− f!(x)|>1}

| f (x)− f!(x)|p+1+ p− (1+ p)| f (x)− f!(x)|d!X .

It follows that

D(-) ≤ inf
f∈HK

{
‖ f − f!‖p+1Lp+1!X

+
-
2
‖ f‖2K

}
.

The conclusion of Example 6 will be proved in the appendix. The following general result
follows from the same argument as in Wu et al. (2006).

Proposition 14 If the loss function V satisfies |V (y, f1)−V (y, f2)|≤ | f1− f2|c for some 0 < c ≤ 1
and any y ∈ Y, f1, f2 ∈ R, then

D(-) ≤ inf
f∈HK

{‖ f − f V! ‖cL1!X
+
-
2
‖ f‖2K}≤ inf

f∈HK
{‖ f − f V! ‖cL2!X

+
-
2
‖ f‖2K}.

If the univariate function V (y, ·) is C1 and satisfies |*V (y, f1)− *V (y, f2)| ≤ | f1− f2|c for some
0< c≤ 1 and any y ∈ Y, f1, f2 ∈ R, then

D(-) ≤ inf
f∈HK

{‖ f − f V! ‖1+cL1+c!X
+
-
2
‖ f‖2K}≤ inf

f∈HK
{‖ f − f V! ‖1+cL2!X

+
-
2
‖ f‖2K}.

3. Key Analysis for the Fully Online Non-identical Setting

Learning rates for fully online learning algorithm (3) such as those stated in the last section for
regression and classification are obtained through analysis for approximation error and sample error.
The approximation error has been well understood (Smale and Zhou, 2003; Chen et al., 2004). The
sample error for (3) will be estimated in the following two sections. It is expressed as ‖ fT+1− f V-T ‖K
where f V-T is a regularizing function.

2882



ONLINE LEARNING WITH NON-IDENTICAL DISTRIBUTIONS

Definition 15 For -> 0 the regularizing function fV- ∈HK is defined by

fV- = arg inf
f∈HK

{
E( f )+

-
2
‖ f‖2K

}
. (13)

Observe that f V- is a sample-free limit of fz,- defined by (6). It is natural to expect that the
function fT+1 produced by online algorithm (3) approximates the regularizing function f V-T well.
This is actually the case. Our main result on sample error analysis estimates the difference fT+1−
f V-T in theHK-norm for quite general situations. The estimation follows from an iteration procedure,
developed for online classification algorithms in Ying and Zhou (2006), Ying (2007) and Ye and
Zhou (2007), together with some novelty provided in the proof of Theorem 26 in the next section.
It is based on a one-step iteration bounding ‖ ft+1− f V-t‖K in terms of ‖ ft− f V-t−1‖K . The goal of this
section is to present our key analysis for one-step iteration in tackling two barriers arising from the
fully online non-identical setting.

3.1 Bounding Error Term Caused by Non-identical Sequence of Distributions

The first part of our key analysis for one-step iteration is to tackle an extra error term #t caused by
the non-identical sequence of distributions when bounding ‖ ft+1− f V-t‖K by means of ‖ ft − f V-t‖K
with the fixed regularization parameter -t .

Lemma 16 Define { ft} by (3). Then we have

IEzt (‖ ft+1− f V-t‖
2
K) ≤ (1−,t-t)‖ ft − f V-t‖

2
K +2,t#t +,2t IEzt ‖*V (yt , ft(xt))Kxt +-t ft‖2K , (14)

where #t is defined by

#t =
Z

Z

{
V (y, f V-t (x))−V (y, ft(x))

}
d
[
!(t)−!

]
. (15)

Lemma 16 follows from the same procedure as in the proof of Lemma 3 in Ying and Zhou
(2006) and Ye and Zhou (2007). A crucial estimate is

〈*V (yt , ft(xt))Kxt +-t ft , f V-t − ft〉K ≤ [V (yt , f V-t (xt))+
-t
2
‖ f V-t‖

2
K ]− [V (yt , ft(xt))+

-t
2
‖ ft‖2K ].

When we take the expectation with respect to zt = (xt ,yt), we get
R

ZV (y, f V-t (x))d!
(t) (and

R

ZV (y, ft(x))d!(t)) on the right-hand side, not E( f V-t ) =
R

ZV (y, f V-t (x))d!. So compared with re-
sults in the i.i.d. case (Smale and Yao, 2006; Ying and Zhou, 2006; Ying, 2007; Tarrès and Yao,
2005; Ye and Zhou, 2007), an extra term #t involving the difference measure !(t)−! appears. This
is the first barrier we need to tackle here.

When V is the least square loss, it can be easily handled by assuming f! ∈Cs(X). In fact, from
V (y, f ) = (y− f )2, we see that

#t =
Z

X

{
Z

Y
[ f V-t (x))− ft(x)][ f V-t (x)+ ft(x)−2y]d!x(y)

}
d
[
!(t)
X −!X

]

=
Z

X
[ f V-t (x))− ft(x)][ f V-t (x)+ ft(x)−2 f!(x)]d

[
!(t)
X −!X

]
.

This together with the relation ‖hg‖Cs(X) ≤ ‖h‖Cs(X)‖g‖Cs(X) yields the following bound.
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Proposition 17 Let V (y, f ) = (y− f )2 and f! ∈Cs(X). Then we have

#t ≤
{
‖ f V-t‖Cs(X) +‖ ft‖Cs(X) +2‖ f!‖Cs(X)

}
‖!(t)

X −!X‖(Cs(X))∗‖ f V-t − ft‖Cs(X).

For a general loss function and output space, #t can be bounded under assumption (4). It is a
special case of the following general result when h= f V-t and g= ft .

Lemma 18 Let h,g ∈Cs(X). If (4) holds, then we have
∣∣∣∣
Z

Z
V (y,h(x))−V (y,g(x))d

[
!(t)−!

]∣∣∣∣

≤
{
Bh,g

(
‖h‖Cs(X) +‖g‖Cs(X)

)
+2C!B̃h,g

}
‖!(t)

X −!X‖(Cs(X))∗ ,

where Bh,g and B̃h,g are constants given by

Bh,g = sup
{
|*V (y, f )| : y ∈ Y, | f |≤max{‖h‖C(X),‖g‖C(X)}

}

and
B̃h,g = sup

{
‖V (·, f )‖Cs(Y ) : | f |≤max{‖h‖C(X),‖g‖C(X)}

}
.

Proof By decomposing the probability distributions on Z into marginal and conditional distribu-
tions, we see

Z

Z
V (y,h(x))−V (y,g(x))d

[
!(t)−!

]
=

Z

X

Z

Y
V (y,h(x))−V (y,g(x))d!x(y)d

[
!(t)
X −!X

]
.

By the definition of the norm in (Cs(X))∗, we obtain
∣∣∣∣
Z

Z
V (y,h(x))−V (y,g(x))d

[
!(t)−!

]∣∣∣∣ ≤ ‖!(t)
X −!X‖(Cs(X))∗‖J‖Cs(X),

where J is a function on X defined by

J(x) =
Z

Y
V (y,h(x))−V (y,g(x))d!x(y), x ∈ X .

The notion of Bh,g tells us that |V (y,h(x))−V (y,g(x))|≤Bh,g|h(x)−g(x)| for each y∈Y . Hence
‖J‖C(X) ≤ Bh,g‖h−g‖C(X).

To bound |J|Cs(X), let x,u ∈ X . We can decompose J(x)− J(u) as

J(x)− J(u) =
Z

Y
{[V (y,h(x))−V (y,g(x))]− [V (y,h(u))−V (y,g(u))]}d!x(y)

+
Z

Y
[V (y,h(u))−V (y,g(u))]d[!x−!u](y).

By the notion Bh,g, part of the first term above can be bounded as

|V (y,h(x))−V (y,h(u))|≤ Bh,g|h(x)−h(u)|≤ Bh,g|h|Cs(X)(d(x,u))s.
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The same bound holds for the other part of the first term. So we get
∣∣∣∣
Z

Y
{[V (y,h(x))−V (y,g(x))]− [V (y,h(u))−V (y,g(u))]}d!x(y)

∣∣∣∣

≤ Bh,g
{
|h|Cs(X) + |g|Cs(X)

}
(d(x,u))s.

For the other term of the expression for J(x)− J(u), we apply condition (4) to
∣∣∣∣
Z

Y
[V (y,h(u))−V (y,g(u))]d[!x−!u](y)

∣∣∣∣ ≤ ‖!x−!u‖(Cs(Y ))∗‖V (y,h(u))−V (y,g(u))‖Cs(Y )

and find that ∣∣∣∣
Z

Y
[V (y,h(u))−V (y,g(u))]d[!x−!u](y)

∣∣∣∣ ≤C!(d(x,u))s2B̃h,g.

Combining the above two bounds, we see that

|J|Cs(X) = sup
x &=u∈X

|J(x)− J(u)|
(d(x,u))s

≤ Bh,g
{
|h|Cs(X) + |g|Cs(X)

}
+2C!B̃h,g.

Then the desired bound follows and the lemma is proved.

3.2 Bounding Error Term Caused by Varying Regularization Parameters

The second part of our key analysis is to estimate the error term called drift error ‖ f V-t − f V-t−1‖K
caused by the change of the regularization parameter from -t−1 to -t in our fully online algorithm.
This is the second barrier we need to tackle here.

Definition 19 The drift error is defined as

dt = ‖ f V-t − f V-t−1‖K .

The drift error can be estimated by the approximation error, which has been studied for regres-
sion (Smale and Zhou, 2009) and for classification (Ye and Zhou, 2007).

Theorem 20 Let V be a convex loss function, fV- by (13) and µ> -> 0. We have

‖ f V- − f Vµ ‖K ≤
µ
2
(
1
-
−
1
µ
)(‖ f V- ‖K +‖ f Vµ ‖K) ≤

µ
2
(
1
-
−
1
µ
)

(√
2D(-)
-

+

√
2D(µ)
µ

)

.

In particular, if with some 0< 2≤ 1 we take -t = -1t−2 for t ≥ 1, then

dt+1 ≤ 2t
2
2−1

√
D(-1t−2)/-1.

Proof Taking derivative of the functional E( f )+ -
2‖ f‖

2
K at the minimizer f

+
- defined in (13), we

see that
Z

Z
*V (y, f V- (x))Kxd!+- f V- = 0.
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It follows that
f V- − f Vµ =

1
µ

Z

Z
*V (y, f Vµ (x))Kxd!−

1
-

Z

Z
*V (y, f V- (x))Kxd!.

Combining with the reproducing property (8), we know ‖ f V- − f Vµ ‖2K = 〈 f V- − f Vµ , f V- − f Vµ 〉K can be
expressed as

‖ f V- − f Vµ ‖2K =
1
µ

Z

Z
*V (y, f Vµ (x))

(
f V- − f Vµ

)
(x)d!−

1
-

Z

Z
*V (y, f V- (x))

(
f V- − f Vµ

)
(x)d!.

The convexity of the function V (y, ·) on R tells us that

*V (y, f Vµ (x))
(
f V- − f Vµ

)
(x) ≤V (y, f V- (x))−V (y, f Vµ (x))

and
*V (y, f V- (x))

(
f Vµ − f V-

)
(x) ≤V (y, f Vµ (x))−V (y, f V- (x)).

Hence
‖ f V- − f Vµ ‖2K ≤ (

1
-
−
1
µ
)(E( f Vµ )−E( f V- )).

¿From the definition of f Vµ , we see that E( f Vµ )+ µ
2‖ f

V
µ ‖

2
K− (E( f V- )+ µ

2‖ f
V
- ‖

2
K) ≤ 0. It follows

that
E( f Vµ )−E( f V- ) ≤

µ
2
(‖ f V- ‖

2
K−‖ f Vµ ‖2K) ≤

µ
2
‖ f V- − f Vµ ‖K(‖ f V- ‖K +‖ f Vµ ‖K).

Then the desired inequality follows.

4. Bounds for Sample Error in HK-norm

We are in a position to present our main result on the sample error measured with the HK-norm of
the difference fT+1− f V-T . This will be done by applying iteratively the key analysis in Lemma 16,
Lemma 18 and Theorem 20.

When applying Lemma 18, we need to bound ‖g‖Cs(X) in terms of ‖g‖K .

Definition 21 We say that the Mercer kernel K satisfies the kernel condition of order s if K ∈
Cs(X×X) and for some /2s > 0,

|K(x,x)−2K(x,u)+K(u,u)|≤ /22s(d(x,u))2s, ∀x,u ∈ X . (16)

When 0 < s ≤ 1
2 and K ∈ C2s(X ×X), (16) holds true. The following result follows directly

from Zhou (2003), Zhou (2008) and Smale and Zhou (2009).

Lemma 22 If K satisfies the kernel condition of order s with (16) valid, then we have

‖g‖Cs(X) ≤ (/+/2s)‖g‖K , ∀g ∈HK .

When using Lemma 16 and Lemma 18, we need incremental behaviors of the loss function V
to bound ‖ ft‖K .
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Definition 23 Denote

N(-) = sup
{
|*V (y, f )| : y ∈ Y, | f |≤max

{
/2‖V‖/-,/

√
2‖V‖/-

}}

and
Ñ(-) = sup

{
‖V (·, f )‖Cs(Y ) : y ∈ Y, | f |≤max

{
/2‖V‖/-,/

√
2‖V‖/-

}}
.

We say that V has incremental exponent p≥ 0 if for some N1 > 0 and -1 > 0 we have

N(-) ≤ N1(
1
-
)p and Ñ(-) ≤ N1(

1
-
)p+1 ∀0< -≤ -1. (17)

We say that *V is locally Lipschitz at the origin if

M0 := sup
{
|*V (y, f )−*V (y,0)|

| f |
: y ∈ Y, | f |≤ 1

}
< ". (18)

The following result can be proved by exactly the same procedure as those in Ying and Zhou
(2006), Ying (2007) and Ye and Zhou (2007).

Lemma 24 Assume that *V is locally Lipschitz at the origin. Define { ft} by (3). If

,t
(
/2(M0+2N(-t))+-t

)
≤ 1 (19)

for t = 1, . . . ,T , then we have

‖ ft‖K ≤
/‖V‖
-t

, t = 1, . . . ,T +1. (20)

For the insensitive loss, (18) is not satisfied, but *V (y, f ) is uniformly bounded by 1. For such
loss functions we can apply the following bound.

Lemma 25 Assume ‖*V (y, f )‖" := supy∈Y, f∈R |*V (y, f )| < ". Define { ft} by (3). If for some
-1,,1 > 0 and 2,$ > 0 with -+$ < 1, we take -t = -1t−2,,t = ,1t−$ with t = 1, . . . ,T , then we
have

‖ ft‖K ≤
CV,2,$

-t
, t = 1, . . . ,T +1, (21)

where CV,2,$ is the constant given by

CV,2,$ = /‖*V (y, f )‖"
{
-1,1+-1

(
22+2$/(-1,1)+

(
(1+$)/[e-1,1(1−22+$−1)]

) 1+$
1−2−$

)}
.

Proof By taking norms in (3) we see that

‖ ft+1‖K ≤ (1−,t-t)‖ ft‖K +,t/‖*V (y, f )‖".

By iterating and the choice f1 = 0 we find

‖ ft+1‖K ≤
t

&
i=1

.t
j=i+1(1−, j- j),i/‖*V (y, f )‖".
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But 1−, j- j ≤ exp
{
−, j- j

}
. It follows that

‖ ft+1‖K ≤
t

&
i=1

.t
j=i+1 exp

{

−
t

&
j=i+1

, j- j

}

,i/‖*V (y, f )‖".

Now we need the following elementary inequality with c> 0,q2 ≥ 0 and 0< q1 < 1:

t−1

&
i=1

i−q2 exp
{
−c

t

&
j=i+1

j−q1
}
≤



2
q1+q2

c
+

(
1+q2

ec(1−2q1−1)

) 1+q2
1−q1



 tq1−q2 . (22)

This elementary inequality can be found in, for example, Smale and Zhou (2009). Taking q2 =
$,q1 = 2+$ and c= -1,1 we know that ‖ ft+1‖K is bounded by

/‖*V (y, f )‖"
{
,1t−$+

(
22+2$/(-1,1)+

(
(1+$)/[e-1,1(1−22+$−1)]

) 1+$
1−2−$

)
t2

}
.

Then our desired bound holds true.

Now we can present our bound for the sample error ‖ fT+1− f V-T ‖K .

Theorem 26 Suppose the following assumptions hold:

1. the kernel K satisfies the kernel condition of order s (0< s≤ 1) with (16) valid.

2. V has incremental exponent p≥ 0 with (17) valid and *V satisfies (18).

3. {!(t)
X }t=1,2,··· converges polynomially to !X in (Cs(X))∗ with (1) valid.

4. the distributions {!x : x ∈ X} is Lipschitz s in (Cs(Y ))∗ with (4) valid.

5. the triple (K,V,!) has the approximation ability of power 0< 1≤ 1 stated by (12).

Take
-t = -1t−2,,t = ,1t−$ (23)

with some -1,,1 > 0 and 2,$ satisfying

0< 2<
2

5+4p−1
, (2p+1)2< $< 1−

2(3−1)
2

, ,1 ≤
1

/2M0+2/2N1-−p1 +-1
. (24)

Then we have
IEz1,z2,···,zT (‖ fT+1− f V-T ‖

2
K) ≤CK,V,!,b,1,sT−3 (25)

where the power index 3 is given by

3 :=min
{
2− 2(3−1)−2$,$− 2(2p+1),b− 2(2+ p)

}
, (26)

and CK,V,!,b,1,s is a constant independent of T given explicitly in the proof.
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Proof We divide the proof into four steps.
First we bound #t . Since -t and ,t take the form (23), we see from the lower bound for $ in

(24) that p2≤ (2p+1)2≤ $. Hence for t ∈ N,

,t(/
2(M0+2N(-t))+-t) ≤ ,1t−$(/2M0+2/2N1-−p1 t p2+-1t−2) ≤ ,1(/

2M0+2/2N1-−p1 +-1).

So the last restriction of (24) implies (19), and by Lemma 24, we know that (20) holds true.
Taking f = 0 in (13) yields

‖ f V-t‖
2
K ≤

2‖V‖
-t

, t = 1, . . . ,T.

Putting these bounds into the definition of constant Bh,g, B̃h,g, we see by the notion N(-) that

BfV-t , ft
≤ N(-t), B̃ fV-t , ft

≤ N(-t).

So by Lemma 18 and Lemma 22,

#t ≤ B∗
t :=

{
(/+/2s)(

√
2‖V‖/-t +/‖V‖/-t)N(-t)+2C!Ñ(-t)

}
‖!(t)

X −!X‖(Cs(X))∗ .

Putting this bound and (20) into (14) yields

IEz1,z2,···,zt (‖ ft+1− f V-t‖
2
K) ≤ (1−,t-t)IEz1,z2,···,zt−1

(
‖ ft − f V-t‖

2
K

)
+/2,2t (N(-t)+‖V‖)2+2,tB∗

t .

Next we derive explicit bounds for the one-step iteration.
Recall that dt = ‖ f V-t − f V-t−1‖K . It gives ‖ ft − f V-t‖

2
K ≤ ‖ ft − f V-t−1‖

2
K +2‖ ft − f V-t−1‖Kdt +d2t .

Take 4= 2+$
1−2(1−1)/2 . By the upper bound for $ in (24), we find 0< 4< 1.

Take A1 =
,1-

1+4(1−1)/2
1

21+24D4/2
0

> 0. Applying the elementary inequality

2ab= 2[
√
A1ab4/2][b1−4/2/

√
A1] ≤ A1a2b4+b2−4/A1 (27)

to a= ‖ ft − f V-t−1‖K and b= dt , we know that

IEz1,z2,···,zt−1
(
‖ ft − f V-t‖

2
K

)
≤ (1+A1d4t )IEz1,z2,···,zt−1

(
‖ ft − f V-t−1‖

2
K

)
+d2−4t /A1+d2t .

Using this bound and noticing the inequality (1−,t-t)(1+A1d4t ) ≤ 1+A1d4t −,t-t , we obtain

IEz1,z2,···,zt (‖ ft+1− f V-t‖
2
K) ≤ (1+A1d4t −,t-t)IEz1,z2,···,zt−1

(
‖ ft − f V-t−1‖

2
K

)

+d2−4t /A1+d2t +/2,2t (N(-t)+‖V‖)2+2,tB∗
t .

By Theorem 20, condition (12) for the approximation error yields

dt ≤ 2
√
D0-

(1−1)/2
1 (t−1)2(1−1)/2−1 ≤ A2t2(1−1)/2−1 where A2 = 4

√
D0-

(1−1)/2
1 .

Inserting the parameter form -t = -1t−2 into assumption (17) and applying condition (1), we
can bound B∗

t as

B∗
t ≤ A3t2(1+p)−b where A3 =

{
(/+/2s)(

√
2‖V‖/-1+/‖V‖/-1)+2C!/-1

}
N1-−p1 C.
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Therefore, for the one-step iteration, by denoting f V-1 as f
V
-0
when t = 1, we have for each t = 1, . . . ,T ,

IEz1,z2,···,zt (‖ ft+1− f V-t‖
2
K) ≤ (1+A1d4t −,t-t)IEz1,z2,···,zt−1

(
‖ ft − f V-t−1‖

2
K

)
+A4t−3̃, (28)

where
3̃=min

{
2− 2(2−1)−$, 2($− p2), $+b− 2(1+ p)

}

and
A4 = A2−42 /A1+A22+/2,21(N1-

−p
1 +‖V‖)2+2,1A3.

Then we iterate the above one-step analysis. Inserting the parameter forms for -t and ,t , we see
from the definition of the constant A1 that

1+A1d4t −,t-t ≤ 1+A1A42t4(2(1−1)/2−1)−,1-1t−2−$ = 1−
,1-1
2

t−2−$. (29)

So the one-step analysis (28) yields

IEz1,z2,···,zt (‖ ft+1− f V-t‖
2
K) ≤

(
1−

,1-1
2

t−2−$
)
IEz1,z2,···,zt−1

(
‖ ft − f V-t−1‖

2
K

)
+A4t−3̃.

Applying this bound iteratively for t = 1, . . . ,T implies

IEz1,z2,···,zT (‖ fT+1− f V-T ‖
2
K) ≤ A4

T

&
t=1

.T
j=t+1(1−

,1-1
2

j−2−$)t−3̃

+

{
.T
t=1(1−

,1-1
2

t−2−$)
}
‖ f1− f V-1‖

2
K .

Finally we bound the above expressions by two elementary inequalities. The first one is (22).
Applying this inequality with c= ,1-1

2 ,q1 = 2+$ and q2 = 3̃, since 1−u≤ e−u for any u≥ 0, the
first expression above can be bounded as

T

&
t=1

.T
j=t+1(1−

,1-1
2

j−2−$)t−3̃ ≤
T

&
t=1
exp

{

−
,1-1
2

T

&
j=t+1

j−2−$
}

t−3̃ ≤ A5T 2+$−3̃,

where A5 is the constant given by

A5 =
22+$+3̃+1

,1-1
+1+

(
2+23̃

e,1-1(1−22+$−1)

) 1+3̃
1−2−$

.

For the second expression above, we have

.T
t=1(1−

,1-1
2

t−2−$) ≤ exp

{

−
,1-1
2

T

&
j=1

t−2−$
}

≤ exp
{
−
,1-1
2

Z T+1

1
x−2−$dx

}

≤ exp
{

-1,1
2(1− 2−$)

}
exp

{
−

-1,1
2(1− 2−$)

(T +1)1−2−$
}

.
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Applying another elementary inequality

exp{−cx}≤
( a
ec

)a
x−a, ∀c,a,x> 0

with c= -1,1
2(1−2−$) , a= 2

1−2−$ and x= (T +1)1−2−$ yields

.T
t=1(1−

,1-1
2

t−2−$) ≤ exp
{

-1,1
2(1− 2−$)

}(
4

e-1,1

) 2
1−2−$

T−2.

The above two estimates give the desired bound (25) with 3= 3̃− 2−$ and the constantCK,V,!,b,1,s
given by

CK,V,!,b,1,s = A4A5+ exp
{

-1,1
2(1− 2−$)

}(
4

e-1,1

) 2
1−2−$ 2‖V‖

-1
.

This proves the theorem.

Remark 27 Some ideas in the above proof are from Ying and Zhou (2006), Ye and Zhou (2007) and
Smale and Zhou (2009). Two novel points are presented for the first time here. One is the bound for
#t , dealing with !

(t)
X −!X , given in the first step of our proof in order to tackle the technical difficulty

arising from the non-identical sampling process. The same difficulty for the least square regression
was overcome in Smale and Zhou (2009) by the special linear feature and explicit expressions
offered by the least square loss. The second technical novelty is to introduce a parameter A1 into
elementary inequality (27). With this parameter, we can bound 1+A1d4t −,t-t by 1− 1

2,t-t , shown
in (29). This improves the error bound even in the i.i.d. case presented in Ye and Zhou (2007) for
the fully online algorithm.

Let us discuss the role of parameters in Theorem 26. When 2 is small enough and b > 2
3 , fully

online algorithm (3) becomes very close to the partially online scheme with -t ≡ -1. By taking
$ = 2

3 , the rates in (25) are of order O(T−( 23−0)) with 0 arbitrarily small, which is a nice bound for
the sample error ‖ fT+1− f V-T ‖K . In this case, the difference between f

V
-T
and f V! , measured by the

approximation error, increases since -T = -1T−2. To estimate the total error between fT+1 and f V! ,
we should take a balance for the index 2 of the regularization parameter, as shown in Theorem 11.

For the insensitive loss, (18) is not satisfied. We can apply Lemma 25 and obtain bounds for
‖ fT+1− f V-T ‖K by the same proof as that for Theorem 26.

Proposition 28 Assume ‖*V (y, f )‖" < " and all the conditions of Theorem 26 except (18). Take
{-t ,,t} by (23) with the restriction (24) without the last inequality. Then the same convergence rate
(25) holds true with the power index 3 given by (26).

5. Bounds for Binary Classification and Regression with Insensitive Loss

We demonstrate how to apply Theorem 26 by deriving learning rates of fully online algorithm (3)
for binary classification and regression with insensitive loss.
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Theorem 29 Let V (y, f ) = +(y f ) where + : R → R+ is a convex function satisfying

|+′−(u)|≤ N+|u|p, +(u) ≤ N+up+1 ∀|u|≥ 1 (30)

for some p ≥ 0 and N+ > 0. Suppose M+ := sup{|+′−(u)−+′−(0)|/|u| : |u| ≤ 1} < ". Assume (16)
for K, (1) for {!(t)

X }, and (12) for (K,+,!). If f! ∈ Cs(X) and we choose {-t ,,t} as (23) with
0< 2< 2

5+10p−1 ,$= 2+2(2p−2+1)
3 and b> 2(2+ p), and ,1 < ,0, -1 ≤ /2(+(0)+‖+′−‖L"[−1,1])/2,

then we have

IEz1,...,zT
(
E( fT+1)−E( f V! )

)
≤ C̃+,1,2T

−min
{
2−2(5+10p−1)

6 , b−2(2+3p)2 ,21
}

,

where ,0 := 1
/2M++2/2N1-−p1 +-1

with N1 = (M++N+++(0)+‖+′−‖L"[−1,1])/2p(+(0)+‖+′−‖L"[−1,1])
p

and C̃+,1,2 is a constant depending on ,1,-1,/,D0,1,+,1 and s.

Proof By the bounds for ‖ f V-T ‖K and ‖ fT+1‖K , we know from (30) that

∣∣E( fT+1)−E( f V-T )
∣∣ =

∣∣∣∣
Z

Z
+(y fT+1(x))−+(y fV-T (x))d!

∣∣∣∣

≤ CK,+-
−p
T ‖ fT+1− f V-T ‖" ≤ /CK,+-

−p
T ‖ fT+1− f V-T ‖K ,

whereCK,+ is a constant depending on K and +.
It is easy to check that the loss V (y, f ) = +(y f ) satisfies (17) with incremental exponent p.
By Theorem 26 with 0< 2< 2

5+10p−1 ,$= 2+2(2p−2+1)
3 and b> 2(2+ p), we have

IEz1,z2,···,zT
(∥∥ fT+1− f V-T

∥∥
K

)
≤

√
CK,V,!,b,1,sT−min{[2−2(5+4p−1)]/6,[b−2(2+p)]/2}.

Also, we have E( f +-T )−E( f V! ) ≤D(-T ) ≤D0-
1
T . Thus we get a bound for the excess general-

ization error

IEz1,...,zT (E( fT+1)−E( f V! )) ≤ C̃+,1,2T−min{[2−2(5+10p−1)]/6,21,[b−2(2+3p)]/2},

where C̃+,1,2 = /CK,+-
−p
1

√
CK,V,!,b,1,s+D0-

1
1. This verifies the desired bound.

Theorem 29 yields concrete learning rates with various loss functions. When + is chosen to be
the hinge loss +(x) = (1− x)+, we can prove Theorem 11.

5.1 Proof of Theorem 11

When 0< s≤ 1
2 and K ∈C2s(X×X), (16) holds true.

The loss function +(x) = (1− x)+ satisfies +′−(x) = −1 for x ≤ 1 and 0 otherwise. It follows
that (17) holds true with p= 0 andM+ = 0. By Example 5, (9) implies (12).

Thus all conditions in Theorem 29 are satisfied and by taking p= 0 and 2= 1
4 , we have

IEz1,...,zT
(
E( fT+1)−E( f V! )

)
≤ C̃+,1,2T

−min
{
1
8+

1
24 ,

1
4 ,

b
2−

1
4

}

.
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An important relation concerning the hinge loss is the one (Zhang, 2004) between the excess
misclassification error and the excess generalization error given for any measurable function f :
X → R as

R (sgn( f ))−R ( fc) ≤ E( f )−E( fc).

Combining this relation with the above bound for the excess generalization error proves the conclu-
sion of Theorem 11.

Turn to the general loss +. We give an additional assumption that +′′(0) exists and is positive.
Under this assumption it was proved in Chen et al. (2004) and Bartlett et al. (2006) that there exists
a constant depending c+ only on + such that for any measurable function f : X → R,

R (sgn( f ))−R ( fc) ≤ c+
√
E( f )−E( f +! ).

Then Theorem 29 gives the following learning rate.

Corollary 30 Let + be a loss function such that +′′(0) exists and is positive. Under the assumptions
of Theorem 29, if 2= 2

5+10p+51 , we have

IEz1,...,zT (R (sgn( fT+1))−R ( fc)) ≤ C̃+,1T
−min{ 1

5+10p+51 , b4−
2+3p

10+20p+101},

where C̃+,1 is a constant independent of T .

As an example, the q-norm SVM loss +(x) = ((1−x)+)q with q> 1 satisfies +′′(0) > 0 and (17)
with p= q−1. So Corollary 30 yields the following rates.

Example 7 Let +(x) = ((1− x)+)q with q > 1. Under the assumptions of Theorem 29, if 2 =
2

10q−5+51 , $= 8q−6+41
10q−5+51 and b> 6q−2

10q−5+51 , then

IEz1,...,zT
(
R (sgn( fT+1))−R ( fc)

)
= O

(
T−min{ 1

10q−5+51 , b4−
3q−1

20q−10+101

)
.

Finally we verify the learning rates for regression with insensitive loss stated in Section 2.

5.2 Proof of Theorem 10

We need the regularizing function f Vls- defined by (13) with the least square loss V = Vls. It can be
found, for example, in Smale and Zhou (2007) that regularity condition (7) implies

‖ f Vls- − f!‖K ≤

(
-
2

)r− 1
2
‖g!‖L2!X , when

1
2

< r ≤
3
2

and
‖ f Vls- − f!‖L2!X ≤

(
-
2

)r
‖g!‖L2!X , when 0< r ≤ 1.

It follows that when - ≤ 2(/‖g!‖L2!X )2/(1−2r), we have ‖ f Vls- − f!‖C(X) ≤ 1. Thus by the special
form of the conditional distribution !x, we see from the conclusion of Example 6 with p = 1 that
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f Vin- = f Vls2- and bounds for ‖ f
Vin
- − f!‖K and ‖ f Vin- − f!‖L2!X follow. Moreover, condition (12) for

D(-) is valid with 1= 1.
Now we check other conditions of Proposition 28.
Condition (16) is valid because K ∈C2s(X×X) with 0< s≤ 1

2 .
By a simple computation, incremental condition (17) is verified with exponent p= 0.
Note that ‖ f!‖K ≤ /2r−1‖g!‖L2!X and ‖ f!‖Cs(X) ≤ (/+ /2s)‖ f!‖K . Then for any x,u ∈ X and

g ∈Cs(Y ), we see from the uniform distribution !x and !u that

∣∣∣∣
Z

Y
g(y)d(!x−!u)

∣∣∣∣ =
1
2

∣∣∣∣
Z f!(x)+1

f!(x)−1
g(y)dy−

Z f!(u)+1

f!(u)−1
g(y)dy

∣∣∣∣ ≤ ‖g‖C(Y )| f!(x)− f!(u)|

≤ ‖g‖C(Y )(/+/2s)/
2r−1‖g!‖L2!X (d(x,u))s.

This verifies Lipschitz s continuous condition (4) for {!x}with constantC! = (/+/2s)/2r−1‖g!‖L2!X .
Thus all conditions of Proposition 28 are satisfied and we obtain

IEz1,z2,···,zT (‖ fT+1− f Vin-T
‖2K) ≤CK,V,!,b,1,sT−3

where

3 :=min
{
2−22−2$,$− 2,b−22

}
.

Finally we get

IEz1,z2,···,zT (‖ fT+1− f!‖K) ≤
√
CK,V,!,b,1,sT−3/2+

(
-T+1
2

)r− 1
2
‖g!‖L2!X , when

1
2

< r ≤
3
2

and

IEz1,z2,···,zT (‖ fT+1− f!‖L2!X ) ≤ /
√
CK,V,!,b,1,sT−3/2+

(
-T+1
2

)r
‖g!‖L2!X , when 0< r ≤ 1.

Then our desired learning rates follow.
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A.1 Proof of Proposition 6

The first statement follows by taking g(y) = y on Y because

| f!(x)− f!(u)| =
∣∣∣∣
Z

Y
g(y)d(!x−!u)(y)

∣∣∣∣ ≤ ‖!x−!u‖(Cs(Y ))∗‖g‖Cs(Y )

and ‖g‖Cs(Y ) = ‖g‖C(Y ) + |g|Cs(Y ) ≤ supy∈Y |y|+21−s supy∈Y |y|. Actually the above estimates tell us
that f! is continuous and belongs to Cs(X) with | f!|Cs(X) ≤C!(1+21−s)supy∈Y |y|.

For the second statement, since Y = {1,−1}, we have f!(x) = !x({1})−!x({−1}). It follows
that for each y ∈ Y and x ∈ X , there holds !x({y}) =

1+y f!(x)
2 . So for any g ∈Cs(Y ) and x,u ∈ X ,

Z

Y
g(y)d(!x−!u)(y) = &

y∈Y
g(y)

y[ f!(x)− f!(u)]
2

= &
y∈Y

yg(y)
2

[ f!(x)− f!(u)].

Now the conclusion follows from
∣∣∣∣
Z

Y
g(y)d(!x−!u)(y)

∣∣∣∣ ≤ ‖g‖C(Y )| f!(x)− f!(u)|≤ | f!|Cs(X)(d(x,u))s‖g‖Cs(Y ).

This proves Proposition 6.

A.2 Proof of Example 4

For x ∈ X , we have !x({1}) = f!,−1(x)+ f!(x) and !x({0}) = 1−2 f!,−1(x)− f!(x). Hence for any
g ∈Cs(Y ),

Z

Y
g(y)d!x = f!,−1(x){g(1)−2g(0)+g(−1)}+ f!(x){g(1)−g(0)}+g(0)

and for u ∈ X ,
Z

Y
g(y)d(!x−!u) = [ f!,−1(x)− f!,−1(u)]{g(1)−2g(0)+g(−1)}+[ f!(x)− f!(u)]{g(1)−g(0)} .

Then our statement follows from the first part of Proposition 6. This proves the conclusion of
Example 4.

A.3 Proof of Example 6

Let x ∈ X . When f (x) ≥ f Vin! (x), we see from the explicit form of the insensitive loss Vin that
Z

Y
Vin(y, f (x))d!x(y)−

Z

Y
Vin(y, f Vin! (x))d!x(y)

=
Z

y≥ f (x)
f Vin! (x)− f (x)d!x+

Z

y≤ fVin! (x)
f (x)− f Vin! (x)d!x

+
Z

fVin! (x)<y< f (x)
f (x)+ f Vin! (x)−2yd!x.

It follows that

E( f )−E( f Vin! ) =
Z

X

{
| f (x)− f Vin! (x)|#x+2

Z

Ix
| f (x)− y|d!x

}
d!X (31)
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where
#x :=

∣∣∣!x
(
{y ∈ Y : y≤ f Vin! (x)}

)
−!x

(
{y ∈ Y : y> f Vin! (x)}

)∣∣∣

and Ix in the open interval between f Vin! (x) and f (x). The same relation (31) also holds when
f (x) < f Vin! (x).
Now we use the special assumption on the conditional distributions and see that the median and

mean of !x are equal: f Vin! (x) = f!(x) for each x ∈ X . Moreover, #x = 0 and when f!(x) ≤ f (x) ≤
f!(x)+1, we have

2
Z

Ix
| f (x)− y|d!x = 2

Z f (x)− f!(x)

0
( f (x)− f!(x)−u)

p
2
up−1du=

| f (x)− f!(x)|p+1

p+1
.

The same expression holds true when f!(x)−1≤ f (x) < f!(x). When | f (x)− f!(x)| > 1, since !x
vanishes outside [− f!(x)−1, f!(x)+1], we have 2

R

Ix | f (x)− y|d!x = | f (x)− f!(x)|− p
p+1 . There-

fore, (31) is the same as

E( f )−E( f Vin! ) =
Z

{x∈X :| f (x)− f!(x)|≤1}

| f (x)− f!(x)|p+1

p+1
d!X

+
Z

{x∈X :| f (x)− f!(x)|>1}
| f (x)− f!(x)|−

p
p+1

d!X .

This proves the desired expression for E( f )−E( f Vin! ) and hence the bound for D(-).
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Abstract
We describe, analyze, and experiment with a framework for empirical loss minimization with regularization.
Our algorithmic framework alternates between two phases. On each iteration we first perform an uncon-
strained gradient descent step. We then cast and solve an instantaneous optimization problem that trades off
minimization of a regularization term while keeping close proximity to the result of the first phase. This
view yields a simple yet effective algorithm that can be used for batch penalized risk minimization and on-
line learning. Furthermore, the two phase approach enables sparse solutions when used in conjunction with
regularization functions that promote sparsity, such as !1. We derive concrete and very simple algorithms
for minimization of loss functions with !1, !2, !2

2, and !! regularization. We also show how to construct ef-
ficient algorithms for mixed-norm !1/!q regularization. We further extend the algorithms and give efficient
implementations for very high-dimensional data with sparsity. We demonstrate the potential of the proposed
framework in a series of experiments with synthetic and natural data sets.
Keywords: subgradient methods, group sparsity, online learning, convex optimization

1. Introduction
Before we begin, we establish notation for the content of this paper. We denote scalars by lower case letters
and vectors by lower case bold letters, for example, w. The inner product of two vectors u and v is denoted
〈u,v〉. We use ‖x‖p to denote the p-norm of the vector x and ‖x‖ as a shorthand for ‖x‖2.

The focus of this paper is an algorithmic framework for regularized convex programming to minimize the
following sum of two functions:

f (w)+ r(w), (1)

where both f and r are convex bounded below functions (so without loss of generality we assume they are
into R+). Often, the function f is an empirical loss and takes the form "i∈S !i(w) for a sequence of loss
functions !i : Rn → R+, and r(w) is a regularization term that penalizes for excessively complex vectors, for
instance r(w) = #‖w‖p. This task is prevalent in machine learning, in which a learning problem for decision
and prediction problems is cast as a convex optimization problem. To that end, we investigate a general
and intuitive algorithm, known as forward-backward splitting, to minimize Eq. (1), focusing especially on
derivations for and use of non-differentiable regularization functions.

Many methods have been proposed to minimize general convex functions such as that in Eq. (1). One of
the most general is the subgradient method (see, e.g., Bertsekas, 1999), which is elegant and very simple. Let
$ f (w) denote the subgradient set of f at w, namely,

$ f (w) = {g | ∀v : f (v) ≥ f (w)+ 〈g,v−w〉} .

c©2009 John Duchi and Yoram Singer.
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Sub-gradient procedures then minimize the function f (w) by iteratively updating the parameter vector w

according to the update rule
wt+1 = wt −%tg

f
t ,

where %t is a constant or diminishing a step size and g
f
t ∈ $ f (wt) is an arbitrary vector from the subgradient

set of f evaluated at wt . A more general method than the above is the projected gradient method, which
iterates

wt+1 = &'

(

wt −%tg
f
t

)

= argmin
w∈'

{

∥

∥

∥
w− (wt −%tg

f
t )
∥

∥

∥

2

2

}

where &'(w) is the Euclidean projection of w onto the set '. Standard results (Bertsekas, 1999) show that
the (projected) subgradient method converges at a rate of O(1/(2), or equivalently that the error f (w)−
f (w") = O(1/

√
T ), given some simple assumptions on the boundedness of the subdifferential set and ' (we

have omitted constants dependent on ‖$ f‖ or dim(')).
If we use the subgradient method to minimize Eq. (1), the iterates are simply wt+1 = wt −%tg

f
t −%tg

r
t ,

where g
r
t ∈ $r(wt). A common problem in subgradient methods is that if r or f is non-differentiable, the

iterates of the subgradient method are very rarely at the points of non-differentiability. In the case of regu-
larization functions such as r(w) = ‖w‖1, however, these points (zeros in the case of the !1-norm) are often
the true minima of the function. Furthermore, with !1 and similar penalties, zeros are desirable solutions as
they tend to convey information about the structure of the problem being solved, and in the case of statistical
inference, can often yield the correct sparsity structure of the parameters (Zhao and Yu, 2006; Meinshausen
and Bühlmann, 2006).

There has been a significant amount of work related to minimizing Eq. (1), especially when the func-
tion r is a sparsity-promoting regularizer, and much of it stems from the machine learning, statistics, and
optimization communities. We can hardly do justice to the body of prior work, and we provide a few refer-
ences here to the research we believe is most directly related. The approach we pursue below is known as
forward-backward splitting in the optimization literature, which is closely related to the proximal method.

The forward-backward splitting method was first proposed by Lions and Mercier (1979) and has been ana-
lyzed by several researches in the context of maximal monotone operators in the optimization literature. Chen
and Rockafellar (1997) and Tseng (2000) give conditions and modifications of forward-backward splitting to
attain linear convergence rates. Combettes and Wajs (2005) give proofs of convergence for forward-backward
splitting in Hilbert spaces under asymptotically negligible perturbations, though without establishing strong
rates of convergence. Prior work on convergence of the method often requires an assumption of strong mono-
tonicity of the maximal monotone operators (equivalent to strong convexity of at least one of the functions
in Eq. (1)), and as far as we know, all analyses assume that f is differentiable with Lipschitz-continuous
gradient. The analyses have also been carried out in a non-stochastic and non-online setting.

More recently, Wright et al. (2009) suggested the use of the method for sparse signal reconstruction,
where f (w) = ‖y−Aw‖2, though they note that the method can apply to suitably smooth convex functions f .
Nesterov (2007) gives analysis of convergence rates using gradient mapping techniques when f has Lipschitz
continuous gradient, which was inspired by Wright et al. In the special case that r(w) = #‖w‖1, similar
methods to the algorithms we investigate have been proposed and termed iterative thresholding (Daubechies
et al., 2004) or truncated gradient (Langford et al., 2008) in signal processing and machine learning, but the
authors were apparently unaware of the connection to splitting methods.

Similar projected-gradient methods, when the regularization function r is no longer part of the objective
function but rather cast as a constraint so that r(w) ≤ #, are also well known (Bertsekas, 1999). In signal
processing, the problem is often termed as an inverse problem with sparsity constraints, see for example,
Daubechies et al. (2008) and the references therein. Duchi et al. (2008) give a general and efficient projected
gradient method for !1-constrained problems. We make use of one of Duchi et al.’s results in obtaining
an efficient algorithm for the case when r(w) = ‖w‖! (a setting useful for mixed-norm regularization).
There is also a body of literature on regret analysis for online learning and online convex programming with
convex constraints, which we build upon here (Zinkevich, 2003; Hazan et al., 2006; Shalev-Shwartz and
Singer, 2007). Learning sparse models generally is of great interest in the statistics literature, specifically in

2900



EFFICIENT LEARNING USING FORWARD BACKWARD SPLITTING

the context of consistency and recovery of sparsity patterns through !1 or mixed-norm regularization across
multiple tasks (Meinshausen and Bühlmann, 2006; Obozinski et al., 2008; Zhao et al., 2006).

In this paper, we describe a general gradient-based framework for online and batch convex programming.
To make our presentation a little simpler, we call our approach FOBOS, for FOrward-Backward Splitting.1
Our proofs are made possible through the use of “forward-looking” subgradients, and FOBOS is a distillation
of some the approaches mentioned above for convex programming. Our alternative view lends itself to unified
analysis and more general settings, efficient implementation, and provides a flexible tool for the derivation of
algorithms for old and new convex programming settings.

The paper is organized as follows. In the next section, we begin by introducing and formally defining
the method, giving some simple preliminary analysis. We follow the introduction by giving in Sec. 3 rates
of convergence for batch (offline) optimization. We then extend the results to stochastic gradient descent
and provide regret bounds for online convex programming in Sec. 4. To demonstrate the simplicity and
usefulness of the framework, we derive in Sec. 5 algorithms for several different choices of the regularizing
function r, though most of these results are known. We then extend these methods to be efficient in very high
dimensional learning settings where the input data is sparse in Sec. 6. Finally, we conclude in Sec. 7 with
experiments examining various aspects of the proposed framework, in particular the runtime and sparsity
selection performance of the derived algorithms.

2. Forward-Looking Subgradients and Forward-Backward Splitting
Our approach to Forward-Backward Splitting is motivated by the desire to have the iterates wt attain points
of non-differentiability of the function r. The method alleviates the problems of non-differentiability in
cases such as !1-regularization by taking analytical minimization steps interleaved with subgradient steps.
Put informally, FOBOS can be viewed as analogous to the projected subgradient method while replacing or
augmenting the projection step with an instantaneous minimization problem for which it is possible to derive
a closed form solution. FOBOS is succinct as each iteration consists of the following two steps:

wt+ 1
2

= wt −%tg
f
t , (2)

wt+1 = argmin
w

{

1
2

∥

∥

∥
w−wt+ 1

2

∥

∥

∥

2
+%t+ 1

2
r(w)

}

. (3)

In the above, g
f
t is a vector in $ f (wt) and %t is the step size at time step t of the algorithm. The actual value

of %t depends on the specific setting and analysis. The first step thus simply amounts to an unconstrained
subgradient step with respect to the function f . In the second step we find a new vector that interpolates
between two goals: (i) stay close to the interim vector wt+ 1

2
, and (ii) attain a low complexity value as

expressed by r. Note that the regularization function is scaled by an interim step size, denoted %t+ 1
2
. The

analyses we describe in the sequel determine the specific value of %t+ 1
2
, which is either %t or %t+1.

A key property of the solution of Eq. (3) is the necessary condition for optimality and gives the reason
behind the name FOBOS. Namely, the zero vector must belong to subgradient set of the objective at the
optimum wt+1, that is,

0 ∈ $

{

1
2

∥

∥

∥
w−wt+ 1

2

∥

∥

∥

2
+%t+ 1

2
r(w)

}∣

∣

∣

∣

w=wt+1

.

Since wt+ 1
2

= wt −%tg
f
t , the above property amounts to

0 ∈ wt+1 −wt +%tg
f
t +%t+ 1

2
$r(wt+1). (4)

1. An earlier draft of this paper referred to our algorithm as FOLOS, for FOrward LOoking Subgradients. In order not to confuse
readers of the early draft, we attempt to stay close to the earlier name and use the acronym FOBOS rather than Fobas.
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The property 0 ∈ wt+1 −wt +%tg
f
t +%t+ 1

2
$r(wt+1) implies that so long as we choose wt+1 to be the mini-

mizer of Eq. (3), we are guaranteed to obtain a vector g
r
t+1 ∈ $r(wt+1) such that

0 = wt+1 −wt +%tg
f
t +%t+ 1

2
g

r
t+1 .

The above equation can be understood as an update scheme where the new weight vector wt+1 is a linear
combination of the previous weight vector wt , a vector from the subgradient set of f evaluated at wt , and a
vector from the subgradient of r evaluated at the yet to be determined wt+1, hence the name Forward-Looking
Subgradient. To recap, we can write wt+1 as

wt+1 = wt −%t g
f
t −%t+ 1

2
g

r
t+1, (5)

where g
f
t ∈ $ f (wt) and g

r
t+1 ∈ $r(wt+1). Solving Eq. (3) with r above has two main benefits. First, from

an algorithmic standpoint, it enables sparse solutions at virtually no additional computational cost. Second,
the forward-looking gradient allows us to build on existing analyses and show that the resulting framework
enjoys the formal convergence properties of many existing gradient-based and online convex programming
algorithms.

3. Convergence Analysis of FOBOS

Upon first look FOBOS looks substantially different from sub-gradient and online convex programming meth-
ods. However, the fact that FOBOS actually employs a forward-looking subgradient of the regularization
function lets us build nicely on existing analyses. In this section we modify known results while using the
forward-looking property of FOBOS to provide convergence rate analysis for FOBOS. To do so we will set
%t+ 1

2
properly. As we show in the sequel, it is sufficient to set %t+ 1

2
to %t or %t+1, depending on whether we

are doing online or batch optimization, in order to obtain convergence and low regret bounds. We start with
an analysis of FOBOS in a batch setting. In this setting we use the subgradient of f , set %t+ 1

2
= %t+1 and

update wt to wt+1 as prescribed by Eq. (2) and Eq. (3).
Throughout the section we denote by w

" the minimizer of f (w) + r(w). In what follows, define
‖$ f (w)‖ ! sup

g∈$ f (w) ‖g‖. We begin by deriving convergence results under the fairly general assump-
tion (see, e.g., Langford et al. 2008 or Shalev-Shwartz and Tewari 2009) that the subgradients are bounded as
follows:

‖$ f (w)‖2 ≤ A f (w)+G2, ‖$r(w)‖2 ≤ Ar(w)+G2 . (6)

For example, any Lipschitz loss (such as the logistic loss or hinge loss used in support vector machines)
satisfies the above with A = 0 and G equal to the Lipschitz constant. Least squares estimation satisfies Eq. (6)
with G = 0 and A = 4. The next lemma, while technical, provides a key tool for deriving all of the convergence
results in this paper.

Lemma 1 (Bounding Step Differences) Assume that the norms of the subgradients of the functions f and r
are bounded as in Eq. (6):

‖$ f (w)‖2 ≤ A f (w)+G2, ‖$r(w)‖2 ≤ Ar(w)+G2 .

Let %t+1 ≤ %t+ 1
2
≤ %t and suppose that %t ≤ 2%t+ 1

2
. If we use the FOBOS update of Eqs. (2) and (3), then for

a constant c ≤ 4 and any vector w
",

2%t(1− cA%t) f (wt)+2%t+ 1
2
(1− cA%t+ 1

2
)r(wt+1)

≤ 2%t f (w")+2%t+ 1
2
r(w")+‖wt −w

"‖2 −‖wt+1 −w
"‖2 +7%t%t+ 1

2
G2 .
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Proof We begin with a few simple properties of the forward-looking subgradient steps before proceeding
with the core of the proof. Note first that for some g

f
t ∈ $ f (wt) and g

r
t+1 ∈ $r(wt+1), we have as in Eq. (5)

wt+1 −wt = −%tg
f
t −%t+ 1

2
g

r
t+1 . (7)

The definition of a subgradient implies that for any g
r
t+1 ∈ $r(wt+1) (and similarly for any g

f
t ∈ $ f (wt) with

f (wt) and f (w"))

r(w") ≥ r(wt+1)+
〈

g
r
t+1,w

" −wt+1
〉

⇒ −
〈

g
r
t+1,wt+1 −w

"
〉

≤ r(w")− r(wt+1). (8)

From the Cauchy-Shwartz Inequality and Eq. (7), we obtain
〈

g
r
t+1,(wt+1 −wt)

〉

=
〈

g
r
t+1,(−%tg

f
t −%t+ 1

2
g

r
t+1)

〉

≤ ‖gr
t+1‖‖%t+ 1

2
g

r
t+1 +%tg

f
t ‖ ≤ %t+ 1

2
‖gr

t+1‖2 +%t‖gr
t+1‖‖g

f
t ‖

≤ %t+ 1
2

(

Ar(wt+1)+G2)+%t
(

Amax{ f (wt),r(wt+1)}+G2) . (9)

We now proceed to bound the difference between w
" and wt+1, and using a telescoping sum we will even-

tually bound f (wt)+ r(wt)− f (w")− r(w"). First, we expand norm squared of the difference between wt
and wt+1,

‖wt+1 −w
"‖2 = ‖wt − (%tg

f
t +%t+ 1

2
g

r
t+1)−w

"‖2

= ‖wt −w
"‖2 −2

[

%t

〈

g
f
t ,wt −w

"
〉

+%t+ 1
2

〈

g
r
t+1,wt −w

"
〉

]

+‖%tg
f
t +%t+ 1

2
g

r
t+1‖2

= ‖wt −w
"‖2 −2%t

〈

g
f
t ,wt −w

"
〉

+‖%tg
f
t +%t+ 1

2
g

r
t+1‖2

−2%t+ 1
2

[〈

g
r
t+1,wt+1 −w

"
〉

−
〈

g
r
t+1,wt+1 −wt

〉]

. (10)

We can bound the third term above by noting that

‖%tg
f
t +%t+ 1

2
g

r
t+1‖2

= %2
t ‖g

f
t ‖2 +2%t%t+ 1

2

〈

g
f
t ,gr

t+1

〉

+%2
t+ 1

2
‖gr

t+1‖2

≤ %2
t A f (wt)+2%t%t+ 1

2
A max{ f (wt),r(wt+1)}+%2

t+ 1
2

Ar(wt+1)+4%2
t G2 .

We now use Eq. (9) to bound the last term of Eq. (10) and the above bound on %tg
f
t +%t+ 1

2
g

r
t+1 to get that

‖wt+1 −w
"‖2

≤ ‖wt −w
"‖2 −2%t

〈

g
f
t ,wt −w

"
〉

−2%t+ 1
2

〈

g
r
t+1,wt+1 −w

"
〉

+‖%tg
f
t +%t+ 1

2
g

r
t+1‖2

+2%t+ 1
2

(

%t+ 1
2

Ar(wt+1)+2%t A max{ f (wt),r(wt+1)}+2%tG2
)

≤ ‖wt −w
"‖2 +2%t ( f (w")− f (wt))+2%t+ 1

2
(r(w")− r(wt))+7%2

t G2

+%2
t A f (wt)+3%t%t+ 1

2
A max{ f (wt),r(wt)}+2%2

t+ 1
2

Ar(wt+1) (11)

≤ ‖wt −w
"‖2 +7%2

t G2

+2%t ( f (w")− (1− c%tA) f (wt))+2%t+ 1
2

(

r(w")− (1− c%t+ 1
2
A)r(wt+1)

)

. (12)

To obtain Eq. (11) we used the standard convexity bounds established earlier in Eq. (8). The final bound given
by Eq. (12) is due to the fact that 3A%t%t+ 1

2
≤ 6A%2

t and that for any a,b ≥ 0, max{a,b}≤ a+b. Rearranging
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the terms f (·) and r(·) yields the desired inequality.

The lemma allows a proof of the following theorem, which constitutes the basis for deriving concrete
convergence results for FOBOS. It is also demonstrates the ease of proving convergence results based on the
lemma and the forward looking property.

Theorem 2 Assume the following hold: (i) the norm of any subgradient from $ f and the norm of any sub-
gradient from $r are bounded as in Eq. (6), (ii) the norm of w

" is less than or equal to D, (iii) r(0) = 0, and
(iv) 1

2%t ≤ %t+1 ≤ %t . Then for a constant c ≤ 4 with w1 = 0 and %t+ 1
2

= %t+1,

T

"
t=1

[%t ((1− cA%t) f (wt)− f (w"))+%t ((1− cA%t)r(wt)− r(w"))] ≤ D2 +7G2
T

"
t=1

%2
t .

Proof Rearranging the f (w") and r(w") terms from the bound in Lemma 1, we sum the loss terms over t
from 1 through T and get a canceling telescoping sum:

T

"
t=1

[%t ((1− cA%t) f (wt)− f (w"))+%t+1 ((1− cA%t+1)r(wt+1)− r(w"))]

≤ ‖w1 −w
"‖2 −‖wT+1 −w

"‖2 +7G2
T

"
t=1

%2
t ≤ ‖w1 −w

"‖2 +7G2
T

"
t=1

%2
t . (13)

We now bound the time-shifted r(wt+1) terms by noting that

T

"
t=1

%t+1 ((1− cA%t+1)r(wt+1)− r(w"))

=
T

"
t=1

%t ((1− cA%t)r(wt)− r(w"))+%T+1 ((1− cA%T+1)r(wt+1)− r(w"))+%1r(w")

≥
T

"
t=1

%t ((1− cA%t)r(wt+1)− r(w"))+ r(w")(%1 −%T+1)

≥
T

"
t=1

%t ((1− cA%t)r(wt)− r(w")) . (14)

Finally, we use the fact that ‖w1−w
"‖= ‖w"‖≤D, along with with Eq. (13)) and Eq. (14) to get the desired

bound.

In the remainder of this section, we present a few corollaries that are consequences of the theorem. The
first corollary underscores that the rate of convergence in general is approximately 1/(2, or, equivalently,
1/
√

T .

Corollary 3 (Fixed step rate) Assume that the conditions of Thm. 2 hold and that we run FOBOS for a
predefined T iterations with %t = D√

7T G and that (1− cA D√
7T G ) > 0. Then

min
t∈{1,...,T}

f (wt)+ r(wt) ≤
1
T

T

"
t=1

f (wt)+ r(wt) ≤
3DG

√
T
(

1− cAD
G
√

7T

) +
f (w")+ r(w")

1− cAD
G
√

7T

.
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Proof Since we have %t = % for all t, the bound on the convergence rate from Thm. 2 becomes

%(1− cA%)T min
t∈{1,...,T}

[ f (wt)+ r(wt)− f (w")− r(w")]

≤ %(1− cA%)
T

"
t=1

[ f (wt)− f (w")]+ [r(wt)− r(w")] ≤ D2 +7G2T%2 .

Plugging in the specified value for % gives the bound.

Another direct consequence of Thm. 2 is convergence of the minimum over t when running FOBOS with
%t ) 1/

√
t or with non-summable step sizes decreasing to zero.

Corollary 4 (Convergence of decreasing step sizes) Assume that the conditions of Thm. 2 hold and the step
sizes %t satisfy %t → 0 and "!

t=1%t = !. Then

liminf
t→!

f (wt)+ r(wt)− ( f (w")+ r(w")) = 0.

Finally, when f and r are Lipschitz with Lipschitz constant G, we immediately have

Corollary 5 In addition to the conditions of Thm. 2, assume that the norm of any subgradient from $ f and
the norm of any subgradient from $r are bounded by G. Then

min
t∈{1,...,T}

( f (wt)+ r(wt))− ( f (w")+ r(w")) ≤
D2 +7G2"T

t=1%
2
t

2"T
t=1%t

. (15)

Bounds of the above form, where we obtain convergence for one of the points in the sequence w1, . . . ,wT
rather than the last point wT , are standard in subgradient optimization. The main reason that this weaker result
occurs is due to the fact that we cannot guarantee a strict descent direction when using arbitrary subgradients
(see, for example, Theorem 3.2.2 from Nesterov 2004). Another consequence of using non-differentiable
functions means that analyses such as those carried out by Tseng (2000) and Chen and Rockafellar (1997)
are difficult to apply, as the stronger rates rely on the existence and Lipschitz continuity of *f (w). However,
it is possible to show linear convergence rates under suitable smoothness and strong convexity assumptions.
When *f (w) is Lipschitz continuous, a more detailed analysis yields convergence rates of 1/( (namely, 1/T
in terms of number of iterations needed to be ( close to the optimum). A more complicated algorithm related
to Nesterov’s “estimate functions” (Nesterov, 2004) leads to O(1/

√
() convergence (Nesterov, 2007). For

completeness, we give a simple proof of 1/T convergence in Appendix C. Finally, the above proof can be
modified slightly to give convergence of the stochastic gradient method. In particular, we can replace g

f
t in

the iterates of FOBOS with a stochastic estimate of the gradient g̃
f
t , where E[g̃ f

t ] ∈ $ f (wt). We explore this
approach in slightly more depth after performing a regret analysis for FOBOS below in Sec. 4 and describe
stochastic convergence rates in Corollary 10.

We would like to make further comments on our proof of convergence for FOBOS and the assumptions
underlying the proof. It is often not necessary to have a Lipschitz loss to guarantee boundedness of the
subgradients of f and r, so in practice an assumption of bounded subgradients (as in Corollary 5 and in the
sequel for online analysis) is not restrictive. If we know that an optimal w

" lies in some compact set ' and
that '⊆ dom( f + r), then Theorem 24.7 of Rockafellar (1970) guarantees that $ f and $r are bounded. The
lingering question is thus whether we can guarantee that such a set ' exists and that our iterates wt remain
in '. The following simple setting shows that $ f and $r are indeed often bounded.

If r(w) is a norm (possibly scaled) and f is lower bounded by 0, then we know that r(w") ≤ f (w")+
r(w") ≤ f (w1)+ r(w1). Using standard bounds on norms, we get that for some +> 0

‖w"‖! ≤ +r(w") ≤ +( f (w1)+ r(w1)) = + f (w1) ,
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where for the last inequality we used the assumption that r(w1) = 0. Thus, we obtain that w
" lies in a

hypercube. We can easily project onto this box by truncating elements of wt lying outside it at any iteration
without affecting the bounds in Eq. (12) or Eq. (15). This additional Euclidean projection &' to an arbitrary
convex set ' with w

" ∈ ' satisfies ‖&'(wt+1)−w
"‖ ≤ ‖wt+1 −w

"‖. Furthermore, so long as ' is an
!p-norm ball, we know that

r(&'(wt+1)) ≤ r(wt+1) . (16)
Thus, looking at Eq. (11), we notice that r(w")− r(wt+1)≤ r(w")− r(&'(wt+1)) and the series of inequal-
ities through Eq. (12) still hold (so long as c%t+ 1

2
A ≤ 1, which it will if ' is compact so that we can take

A = 0). In general, so long as Eq. (16) holds and w
" ∈ ', we can project wt+1 into ' without affecting

convergence guarantees. This property proves to be helpful in the regret analysis below.

4. Regret Analysis of FOBOS

In this section we provide regret analysis for FOBOS in online settings. In an online learning problem, we
are given a sequence of functions ft : Rn → R. The learning goal is for the sequence of predictions wt
to attain low regret when compared to a single optimal predictor w

". Formally, let ft(w) denote the loss
suffered on the tth input loss function when using a predictor w. The regret of an online algorithm which
uses w1, . . . ,wt , . . . as its predictors w.r.t. a fixed predictor w

" while using a regularization function r is

R f+r(T ) =
T

"
t=1

[ ft(wt)+ r(wt)− ( ft(w")+ r(w"))] .

Ideally, we would like to achieve 0 regret to a stationary w
" for arbitrary length sequences.

To achieve an online bound for a sequence of convex functions ft , we modify arguments of Zinkevich
(2003). Using the bound from Lemma 1, we can readily state and prove a theorem on the online regret of
FOBOS. It is possible to avoid the boundedness assumptions in the proof of the theorem (getting a bound
similar to that of Theorem 2 but for regret), however, we do not find it significantly more interesting. Aside
from its reliance on Lemma 1, this proof is quite similar to Zinkevich’s, so we defer it to Appendix A.

Theorem 6 Assume that ‖wt −w
"‖ ≤ D for all iterations and the norm of the subgradient sets $ ft and $r

are bounded above by G. Let c > 0 an arbitrary scalar. Then, the regret bound of FOBOS with %t = c/
√

t
satisfies

R f+r(T ) ≤ 2GD+

(

D2

2c
+7G2c

)√
T .

The following Corollary is immediate from Theorem 6.

Corollary 7 Assume the conditions of Theorem 6 hold. Then, setting %t = D
4G

√
t , the regret of FOBOS is

R f+r(T ) ≤ 2GD+4GD
√

T .

We can also obtain a better regret bound for FOBOS when the sequence of loss functions ft(·) or the
function r(·) is strongly convex. As demonstrated by Hazan et al. (2006), with the projected gradient method
and strongly convex functions, it is possible to achieve regret on the order of O(logT ) by using the curvature
of the sequence of functions ft rather than simply using convexity and linearity as in Theorems 2 and 6. We
can extend these results to FOBOS for the case in which ft(w)+ r(w) is strongly convex, at least over the
domain ‖w−w

"‖ ≤ D. For completeness, we recap a few definitions and provide the logarithmic regret
bound for FOBOS. A function f is called H-strongly convex if

f (w) ≥ f (wt)+ 〈* f (wt),w−wt〉+
H
2
‖w−wt‖2.
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Thus, if r and the sequence of functions ft are strongly convex with constants Hf ≥ 0 and Hr ≥ 0, we have
H = Hf +Hr and H-strong convexity gives

ft(wt)− f (w")+ r(wt)− r(w") ≤
〈

g
f
t +g

r
t ,wt −w

"
〉

−
H
2
‖wt −w

"‖2 . (17)

We do not need to assume that both ft and r are strongly convex. We only need assume that at least one of
them attains a positive strong convexity constant. For example, if r(w) = #

2‖w‖2, then H ≥ # so long as
the functions ft are convex. With Eq. (17) in mind, we can readily build on Hazan et al. (2006) and prove a
stronger regret bound for the online learning case. The proof is similar to that of Hazan et al., so we defer it
also to Appendix A.

Theorem 8 Assume as in Theorem 6 that ‖wt −w
"‖ ≤ D and that $ ft and $r are bounded above by G.

Assume further that ft + r is H-strongly convex for all t. Then, when using step sizes %t = 1/Ht, the regret of
FOBOS is

R f+r(T ) = O
(

G2

H
logT

)

.

We now provide an easy lemma showing that for Lipschitz losses with !2
2 regularization, the boundedness

assumptions above hold. This, for example, includes the interesting case of support vector machines. The
proof is not difficult but relies tacitly on a later result, so we leave it to Appendix A.

Lemma 9 Let the functions ft be G-Lipschitz so that ‖$ ft(w)‖ ≤ G. Let r(w) = #
2‖w‖2. Then ‖w"‖ ≤ G/#

and the iterates wt generated by FOBOS satisfy ‖wt‖ ≤ G/#.

Using the regret analysis for online learning, we are able to return to learning in a batch setting and give
stochastic convergence rates for FOBOS. We build on results of Shalev-Shwartz et al. (2007) and assume as in
Sec. 3 that we are minimizing f (w)+ r(w). Indeed, suppose that on each step of FOBOS, we choose instead
of some g

f
t ∈ $ f (wt) a stochastic estimate of the gradient g̃

f
t where E[g̃ f

t ] ∈ $ f (wt). We assume that we still
use the true r (which is generally easy, as it is simply the regularization function). It is straightforward to use
theorems 6 and 8 above as in the derivation of theorems 2 and 3 from Shalev-Shwartz et al. (2007) to derive
the following corollary on the expected convergence rate of FOBOS as well as a guarantee of convergence
with high probability.

Corollary 10 Assume that the conditions on $ f , $r, and w
" hold as in the previous theorems and let FOBOS

be run for T iterations. Let s be an integer chosen uniformly at random from {1, . . . ,T}. If %t = D
4G

√
t , then

Es[ f (ws)+ r(ws)] ≤ f (w")+ r(w")+
2GD+4GD

√
T

T
.

With probability at least 1−,,

f (ws)+ r(ws) ≤ f (w")+ r(w")+
2GD+4GD

√
T

,T
.

If f + r is H-strongly convex and we choose %t ) 1/t, we have

Es[ f (ws)+ r(ws)] = f (w")+ r(w")+O
(

G2 logT
HT

)

and with probability at least 1−,,

f (ws)+ r(ws) = f (w")+ r(w")+O
(

G2 logT
H,T

)

.
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5. Derived Algorithms
In this section we derive a few variants of FOBOS by considering different regularization functions. The
emphasis of the section is on non-differentiable regularization functions, such as the !1 norm of w, which
lead to sparse solutions. We also derive simple extensions to mixed-norm regularization (Zhao et al., 2006)
that build on the first part of this section.

First, we make a few changes to notation. To simplify our derivations, we denote by v the vector wt+ 1
2

=

wt −%tg
f
t and let #̃ denote %t+ 1

2
·#. Using this newly introduced notation the problem given in Eq. (3) can

be rewritten as
minimize

w

1
2
‖w−v‖2 + #̃r(w). (18)

Let [z]+ denote max{0,z}. For completeness, we provide full derivations for all the regularization functions
we consider, but for brevity we do not state formally well established technical lemmas. We note that many
of the following results were given tacitly by Wright et al. (2009).

5.1 FOBOS with !1 Regularization

The update obtained by choosing r(w) = #‖w‖1 is simple and intuitive. First note that the objective is
decomposable as we can rewrite Eq. (18) as

minimize
w

n

"
j=1

(

1
2
(w j − v j)

2 + #̃|w j|
)

.

Let us focus on a single coordinate of w and for brevity omit the index j. Let w" denote the minimizer
of 1

2 (w− v)2 + #̃|w|. Clearly, w" · v ≥ 0. If it were not, then we would have w" · v < 0, however 1
2 v2 <

1
2 v2 −w" · v + 1

2 (w")2 < 1
2 (v−w")2 + #̃|w"|, contradicting the supposed optimality of w". The symmetry of

the objective in v also shows us that we can assume that v ≥ 0; we therefore need to minimize 1
2 (w−v)2 + #̃w

subject to the constraint that w ≥ 0. Introducing a Lagrange multiplier - ≥ 0 for the constraint, we have the
Lagrangian 1

2 (w− v)2 + #̃w−-w. By taking the derivative of the Langrangian with respect to w and setting
the result to zero, we get that the optimal solution is w" = v− #̃+-. If w" > 0, then from the complimentary
slackness condition that the optimal pair of w" and - must have w"-= 0 (Boyd and Vandenberghe, 2004) we
must have - = 0, and therefore w" = v− #̃. If v < #̃, then v− #̃ < 0, so we must have - > 0 and again by
complimentary slackness, w" = 0. The case when v ≤ 0 is analogous and amounts to simply flipping signs.
Summarizing and expanding notation, the components of the optimal solution w

" = wt+1 are computed from
wt+ 1

2
as

wt+1, j = sign
(

wt+ 1
2 , j

)[

|wt+ 1
2 , j|− #̃

]

+
= sign

(

wt, j −%tg f
t, j

)[∣

∣

∣
wt, j −%tg f

t, j

∣

∣

∣
−%t+ 1

2
·#
]

+
. (19)

Note that this update can lead to sparse solutions. Whenever the absolute value of a component of wt+ 1
2

is
smaller than #̃, the corresponding component in wt+1 is set to zero. Thus, Eq. (19) gives a simple online and
offline method for minimizing a convex f with !1 regularization.

Such soft-thresholding operations are common in the statistics literature and have been used for some
time (Donoho, 1995; Daubechies et al., 2004). Langford et al. (2008) recently proposed and analyzed the
same update, terming it the “truncated gradient.” The analysis presented here is different from the analysis in
the aforementioned paper as it stems from a more general framework. Indeed, as illustrated in this section,
the derivation and method is also applicable to a wide variety of regularization functions. Nevertheless, both
analyses merit consideration as they shed light from different angles on the problem of learning sparse models
using gradients, stochastic gradients, or online methods. This update can also be implemented very efficiently
when the support of g

f
t is small (Langford et al., 2008), but we defer details to Sec. 6, where we give a unified

view that facilitates efficient implementation for all the norm regularization functions we discuss.
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5.2 FOBOS with !2
2 Regularization

When r(w) = #
2 ‖w‖2

2, we obtain a very simple optimization problem,

minimize
w

1
2
‖w−v‖2 +

1
2
#̃‖w‖2,

where for conciseness of the solution we replace #̃ with 1
2 #̃. Differentiating the above objective and setting

the result equal to zero, we have w
" −v + #̃w" = 0, which, using the original notation, yields the update

wt+1 =
wt −%tg

f
t

1+ #̃
. (20)

Informally, the update simply shrinks wt+1 back toward the origin after each gradient-descent step. In Sec. 7
we briefly compare the resulting FOBOS update to modern stochastic gradient techniques and show that the
FOBOS update exhibits similar empirical behavior.

5.3 FOBOS with !2 Regularization

A lesser used regularization function is the !2 norm of the weight vector. By setting r(w) = #̃‖w‖ we obtain
the following problem,

minimize
w

1
2
‖w−v‖2 + #̃‖w‖. (21)

The solution of Eq. (21) must be in the direction of v and takes the form w
" = sv where s ≥ 0. To show that

this is indeed the form of the solution, let us assume for the sake of contradiction that w
" = sv+u where u is

in the null space of v (if u has any components parallel to v, we can add those to sv and obtain an orthogonal
u
′) and s may be negative. Since u is orthogonal to v, the objective function can be expressed in terms of s,

v, and u as
1
2
(1− s)2‖v‖2 +

1
2
‖u‖2 + #̃(‖v‖+‖u‖) ≥

1
2
(1− s)2‖v‖2 + #̃‖v‖.

Thus, u must be equal to the zero vector, u = 0, and we can write the optimization problem as

minimize
s

1
2
(1− s)2‖v‖2 + #̃s‖v‖ .

Next note that a negative value for s cannot constitute the optimal solution. Indeed, if s < 0, then

1
2
(1− s)2‖v‖2 + #̃s‖v‖ <

1
2
‖v‖2 .

This implies that by setting s = 0 we can obtain a lower objective function, and this precludes a negative
value for s as an optimal solution. We therefore end again with a constrained scalar optimization problem,
minimizes≥0

1
2 (1− s)2‖v‖2 + #̃s‖v‖. The Lagrangian of this problem is

1
2
(1− s)2‖v‖2 + #̃s‖v‖−-s ,

where -≥ 0. By taking the derivative of the Langrangian with respect to s and setting the result to zero, we
get that (s−1)‖v‖2 + #̃‖v‖−-= 0 which gives the following closed form solution: s = 1− #̃/‖v‖+-/‖v‖2.
Whenever s > 0 then the complimentary slackness conditions imply that -= 0 and s can be further simplified
and written as s = 1− #̃/‖v‖. The last expression is positive iff ‖v‖ > #̃. If ‖v‖ < #̃, then - must be positive
and complimentary slackness implies that s = 0.

Summarizing, the second step of the FOBOS update with !2 regularization amounts to

wt+1 =

[

1−
#̃

‖wt+ 1
2
‖

]

+

wt+ 1
2

=

[

1−
#̃

‖wt −%tg
f
t ‖

]

+

(wt −%tg
f
t ) .
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Thus, the !2 regularization results in a zero weight vector under the condition that ‖wt −%tg
f
t ‖ ≤ #̃. This

condition is rather more stringent for sparsity than the condition for !1 (where a weight is sparse based only
on its value, while here, sparsity happens only if the entire weight vector has !2-norm less than #̃), so it is
unlikely to hold in high dimensions. However, it does constitute a very important building block when using
a mixed !1/!2-norm as the regularization function, as we show in the sequel.

5.4 FOBOS with !! Regularization

We now turn to a less explored regularization function, the !! norm of w. This form of regularization is not
capable of providing strong guarantees against over-fitting on its own as many of the weights of w may not be
penalized. However, there are settings in which it is desirable to consider blocks of variables as a group, such
as !1/!! regularization. We continue to defer the discussion on mixing different norms and focus merely on
the !! norm as it serves as a building block. That is, we are interested in obtaining an efficient solution to the
following problem,

minimize
w

1
2
‖w−v‖2 + #̃‖w‖! . (22)

It is possible to derive an efficient algorithm for finding the minimizer of Eq. (22) using properties of the
subgradient set of ‖w‖!. However, a solution to the dual form of Eq. (22) is well established. Recalling
that the conjugate of the quadratic function is a quadratic function and the conjugate of the !! norm is the !1
barrier function, we immediately obtain that the dual of the problem given by Eq. (22) is

maximize
α

−
1
2
‖α−v‖2

2 s.t. ‖α‖1 ≤ #̃ . (23)

Moreover, the vector of dual variables α satisfies the relation α = v−w. Thus, by solving the dual form
in Eq. (23) we can readily obtain a solution for Eq. (22). The problem defined by Eq. (23) is equivalent to
performing Euclidean projection onto the !1 ball and has been studied by numerous authors. The solution
that we overview here is based on recent work of Duchi et al. (2008). The maximizer of Eq. (23), denoted
α

", is of the form
."

j = sign(v j) [|v j|−/]+ , (24)

where / is a non-negative scalar. Duchi et al. (2008) describe a linear time algorithm for finding /. We
thus skip the analysis of the algorithm and focus on its core properties that affect the solution of the original
problem Eq. (22). To find / we need to locate a pivot element in v, denoted by the 0th order statistic v(0)
(where v(1) is the largest magnitude entry of v), with the following property, v(0) is the smallest magnitude
element in v such that

"
j:|v j |>|v(0)|

(

|v j|− |v(0)|
)

< #̃ .

If all the elements in v (assuming that we have added an extra 0 element to handle the smallest entry of v)
satisfy the above requirement then the optimal choice for / is 0. Otherwise,

/=
1
0



 "
j:|v j |>|v(0)|

|v j|− #̃



 .

Thus, the optimal choice of / is zero when "n
j=1 |v j| ≤ #̃ (this is, not coincidentally, simply the subgradient

condition for optimality of the zero vector in Eq. (22)).
Using the linear relationship α = v−w ⇒ w = v−α along with the solution of the dual problem as

given by Eq. (24), we obtain the following solution for Eq. (22),

wt+1, j = sign
(

wt+ 1
2 , j

)

min
{∣

∣

∣
wt+ 1

2 , j

∣

∣

∣
, /
}

. (25)
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As stated above, / = 0 iff ‖wt+ 1
2
‖1 ≤ #̃ and otherwise / > 0 and can be found in O(n) steps. In words,

the components of the vector wt+1 are the result of capping all of the components of wt at / where / is
zero when the 1-norm of wt+ 1

2
is smaller than #̃. Interestingly, this property shares a duality resemblance

with the !2-regularized update, which results in a zero weight vector when the 2-norm (which is self-dual)
of v is less than #̃. We can exploit these properties in the context of mixed-norm regularization to achieve
sparse solutions for complex prediction problems, which we describe in the sequel and for which we present
preliminary results in Sec. 7. Before doing so, we present one more norm-related regularization.

5.5 FOBOS with Berhu Regularization:

We now consider a regularization function which is a hybrid of the !1 and !2 norms. Similar to !1 reg-
ularization, Berhu (for inverse Huber) regularization results in sparse solutions, but its hybridization with
!2

2 regularization prevents the weights from being excessively large. Berhu regularization (Owen, 2006) is
defined as

r(w) = #
n

"
j=1

b(w j) = #
n

"
j=1

[

|w j| [[|w j|≤ +]]+
w2

j + +2

2+
[[|w j| > +]]

]

.

In the above, [[·]] is 1 if its argument is true and is 0 otherwise. The positive scalar + controls the value
for which the Berhu regularization switches from !1 mode to !2 mode. Formally, when w j ∈ [−+,+], r(w)
behaves as !1, and for w j outside this region, the Berhu penalty behaves as !2

2. The Berhu penalty is convex
and differentiable except at 0, where it has the same subdifferential set as #‖w‖1.

To find a closed form update from wt+ 1
2

to wt+1, we minimize in each variable 1
2 (w− v)+ #̃b(w); the

derivation is fairly standard but technical and is provided in Appendix B. The end result is aesthetic and
captures the !1 and !2 regions of the Berhu penalty,

wt+1, j =



















0
∣

∣

∣
wt+ 1

2 , j

∣

∣

∣
≤ #̃

sign(wt+ 1
2 , j)

[

|wt+ 1
2 , j|− #̃

]

#̃< |wt+ 1
2 , j|≤ #̃+ +

wt+ 1
2 , j

1+#̃/+
++ #̃<

∣

∣

∣
wt+ 1

2 , j

∣

∣

∣

. (26)

Indeed, as Eq. (26) indicates, the update takes one of two forms, depending on the magnitude of the coordinate
of wt+ 1

2 , j. If |wt+ 1
2 , j| is greater than ++ #̃, the update is identical to the update for !2

2-regularization of Eq. (20),
while if the value is no larger than ++ #̃, the resulting update is equivalent to the update for !1-regularization
of Eq. (19).

5.6 Extension to Mixed Norms

We saw above that when using either the !2 or the !! norm as the regularization function, we obtain an all
zeros vector if ||wt+ 1

2
||2 ≤ #̃ or ||wt+ 1

2
||1 ≤ #̃, respectively. The zero vector does not carry any generalization

properties, which surfaces a concern regarding the usability of the these norms as a form of regularization.
This seemingly problematic phenomenon can, however, be useful in the setting we discuss now. In many
applications, the set of weights can be grouped into subsets where each subset of weights should be dealt
with uniformly. For example, in multiclass categorization problems each class r may be associated with a
different weight vector w

r. The prediction for an instance x is a vector
〈

w
1,x

〉

, . . . ,
〈

w
k,x

〉

where k is
the number of different classes. The predicted class is the index of the inner-product attaining the largest
of the k values, argmax j

〈

w
j,x

〉

. Since all the weight vectors operate over the same instance space, in
order to achieve a sparse solution, it may be beneficial to tie the weights corresponding to the same input
feature. That is, we would like to employ a regularization function that tends to zero the row of weights
w1

j , . . . ,wk
j simultaneously. In these circumstances, the nullification of the entire weight vector by !2 and !!

regularization becomes a powerful tool.
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Formally, let W represent a n× k matrix where the jth column of the matrix is the weight vector w
j

associated with class j. Thus, the ith row corresponds to the weight of the ith feature with respect to all
classes. The mixed !r/!s-norm (Obozinski et al., 2007) of W , denoted ‖W‖!r/!s , is obtained by computing the
!s-norm of each row of W and then applying the !r-norm to the resulting n dimensional vector, for instance,
‖W‖!1/!!

= "n
j=1 max j |Wi, j|. Thus, in a mixed-norm regularized optimization problem (such as multiclass

learning), we seek the minimizer of the objective function

f (W )+#‖W‖!r/!s .

Given the specific variants of various norms described above, the FOBOS update for the !1/!! and the !1/!2
mixed-norms is readily available. Let w̄

r denote the rth row of W . Analogously to the standard norm-based
regularization, we let V = Wt+ 1

2
be a shorthand for the result of the gradient step. For the !1,!p mixed-norm,

where p = 2 or p = !, we need to solve the problem

minimize
W

1
2
‖W −V‖2

Fr + #̃‖W‖!1/!2
≡ minimize

w̄1,...,w̄k

n

"
i=1

(

1
2
∥

∥w̄
i − v̄

i∥
∥

2
2 + #̃

∥

∥w̄
i∥
∥

p

)

, (27)

where v̄
i is the ith row of V . It is immediate to see that the problem given in Eq. (27) is decomposable into

n separate problems of dimension k, each of which can be solved by the procedures described in the prequel.
The end result of solving these types of mixed-norm problems is a sparse matrix with numerous zero rows.
We demonstrate the merits of FOBOS with mixed-norms in Sec. 7.

6. Efficient Implementation in High Dimensions
In many settings, especially online learning, the weight vector wt and the gradients g

f
t reside in a very high-

dimensional space, but only a relatively small number of the components of g
f
t are non-zero. Such settings

are prevalent, for instance, in text-based applications: in text categorization, the full dimension corresponds to
the dictionary or set of tokens that is being employed while each gradient is typically computed from a single
or a few documents, each of which contains words and bigrams constituting only a small subset of the full
dictionary. The need to cope with gradient sparsity becomes further pronounced in mixed-norm problems, as
a single component of the gradient may correspond to an entire row of W . Updating the entire matrix because
a few entries of g

f
t are non-zero is clearly undesirable. Thus, we would like to extend our methods to cope

efficiently with gradient sparsity. For concreteness, we focus in this section on the efficient implementation
of !1, !2, and !! regularization, recognizing that the extension to mixed-norms (as in the previous section) is
straightforward. The upshot of following proposition is that when g

f
t is sparse, we can use lazy evaluation of

the weight vectors and defer to later rounds the update of components of wt whose corresponding gradient
entries are zero. We detail this after the proposition, which is technical so the interested reader may skip the
proof to see the simple algorithms for lazy evaluation.

Proposition 11 Let wT be the end result of solving a succession of T self-similar optimization problems for
t = 1, . . . ,T ,

P .1 : wt = argmin
w

1
2
‖w−wt−1‖2 +#t‖w‖q . (28)

Let w
" be the optimal solution of the following optimization problem:

P .2 : w
" = argmin

w

1
2
‖w−w0‖2 +

(

T

"
t=1

#t

)

‖w‖q .

Then for q ∈ {1,2,!} the vectors wT and w
" are identical.

Proof It suffices to show that the proposition is correct for T = 2 and then use an inductive argument,
because the proposition trivially holds for T = 1. We provide here a direct proof for each norm separately by
examining the updates we derived in Sec. 5 and showing that w2 = w

".
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Note that the objective functions are separable for q = 1. Therefore, for !1-regularization it suffices to
prove the proposition for any component of the vector w. We omit the index of the component and denote by
w0,w1,w2,w3, . . . one coordinate of w along the iterations of P .1 and by w" the result for the same component
when solving P .2. We need to show that w" = w2. Expanding the !1-update of Eq. (19) over two iterations
we get the following,

w2 = sign(w1) [|w1|−#2]+ = sign(w1)
[∣

∣sign(w0) [|w0|−#1]+
∣

∣−#2
]

+ = sign(w0) [|w0|−#1 −#2]+ ,

where we used the positivity of | · |. Examining P .2 and using Eq. (19) again we get

w" = sign(w0) [|w0|−#1 −#2]+ .

Therefore, w" = w2 as claimed.
Next we prove the proposition for !2, returning to using the entire vector for the proof. Using the explicit

!2-update from Eq. (20), we can expand the norm of the vector w1 due to the program P .1 as follows,

‖w1‖ =

[

1−
#1

‖w0‖

]

+

‖w0‖ = [‖w0‖−#1]+ .

Similarly, we get that ‖w2‖ = [‖w1‖−#2]+. Combining the norm equalities we see that the norm of w2 due
to the succession of the two updates is

‖w2‖ =
[

[‖w0‖−#1]+ −#2
]

+ = [‖w0‖−#1 −#2]+ .

Computing directly the norm of w
" due to the update given by Eq. (20) yields

‖w"‖ =

[

1−
#1 +#2
‖w0‖

]

+

‖w0‖ = [‖w0‖−#1 −#2]+ .

Thus, w
" and w2 have the same norm. Since the update itself retains the direction of the original vector w0,

we get that w
" = w2 as needed.

We now turn to the most complicated update and proof of the three norms, the !! norm. We start by
recapping the programs P .1 and P .2 for T = 2 and q = !,

P .1 : w1 = argmin
w

{

1
2
‖w−w0‖2 +#1 ‖w‖!

}

(29)

w2 = argmin
w

{

1
2
‖w−w1‖2 +#2 ‖w‖!

}

, (30)

P .2 : w
" = argmin

w

{

1
2
‖w−v‖2

2 +(#1 +#2)‖w‖!

}

. (31)

We prove the equivalence of the two programs in two stages. First, we examine the case ‖w0‖1 > #1 +#2,
and then consider the complement case ‖w0‖1 ≤ #1 +#2. For concreteness and simplicity, we assume that
w0 1 0, since, clearly, the objective is symmetric in w0 and −w0. We thus can assume that all entries of
w0 are non-negative. In the proof we use the following operators: [v]+ now denotes the positive component
of each entry of v, min{v,/} denotes the component-wise minimum between the elements of v and /, and
likewise max{v,/} is the component-wise maximum. Starting with the case ‖w0‖1 > #1 +#2, we examine
Eq. (29). From Lagrange duality we know that that w1 = w0 −α1, where α1 is the solution of

minimize
α

1
2
‖α−w0‖2

2 s.t. ‖α‖1 ≤ #1 .

As described by Duchi et al. (2008) and reviewed above in Sec. 5, α1 = [w0 −/1]+ for some /1 ∈ R+. The
form of α1 readily translates to the following form for w1: w1 = w0 −α1 = min(w0,/1). Applying similar
reasoning to the second step of P .1 yields w2 = w1 −α2 = w0 −α1 −α2, where α2 is the minimizer of

1
2
‖α−w1‖2

2 =
1
2
‖α− (w0 −α1)‖2

2 s.t. ‖α‖1 ≤ #2 .
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Again, we have α2 = [w1 −/2]+ = [w0 −α1 −/2]+ for some /2 ∈ R+. The successive steps then imply that

w2 = min{w1,/2} = min{min{w0,/1},/2} .

We next show that regardless of the !1-norm of w0, /2 ≤ /1. Intuitively, if /2 > /1, the second minimiza-
tion step of P .1 would perform no shrinkage of w1 to get w2. Formally, assume for the sake of contradiction
that /2 > /1. Under this assumption, we would have that w2 = min{min{w0,/1},/2} = min{w0,/1} = w1.
In turn, we obtain that 0 belongs to the subgradient set of Eq. (30) when evaluated at w = w1, thus,

0 ∈ w1 −w1 +#2$‖w1‖! = #2$‖w1‖! .

Clearly, the set $‖w1‖! can contain 0 only when w1 = 0. Since we assumed that #1 < ‖w0‖1, and hence
that α1 2 w0 and α1 3= w0, we have that w1 = w0 −α1 3= 0. This contradiction implies that /2 ≤ /1.

We now examine the solution vectors to the dual problems of P .1, α1 and α2. We know that ‖α1‖1 =
#1 so that ‖w0 −α1‖1 > #2 and hence α2 is at the boundary ‖α2‖1 = #2 (see again Duchi et al. 2008).
Furthermore, the sum of the these vectors is

α1 +α2 = [w0 −/1]+ +
[

w0 − [w0 −/1]+ −/2
]

+ . (32)

Let v denote a component of w0 greater than /1. For any such component the right hand side of Eq. (32)
amounts to

[v− (v−/1)−/2]+ + [v−/1]+ = [/1 −/2]+ + v−/1 = v−/1 = [v−/1]+ ,

where we used the fact that /2 ≤ /1 to eliminate the term [/1 −/2]+. Next, let u denote a component of
w0 smaller than /1. In this case, the right hand side of Eq. (32) amounts to [u−0−/2]+ + 0 = [u−/2]+.
Recapping, the end result is that the vector sum α1 +α2 equals [w0 −/2]+. Moreover, α1 and α2 are in Rn

+
as we assumed that w0 1 0, and thus

‖ [w0 −/2]+ ‖1 = ‖α1 +α2‖1 = #1 +#2 . (33)

We now show that P .2 has the same dual solution as the sequential updates above. The dual of P .2 is

minimize
α

1
2
‖α−w0‖2

2 s.t. ‖α‖1 ≤ #1 +#2.

Denoting by α0 the solution of the above dual problem, we have w
" = w0 −α0 and α0 = [w0 −/]+ for

some / ∈ R+. Examining the norm of α0 we obtain that

‖α0‖1 =
∥

∥[w0 −/]+
∥

∥

1 = #1 +#2 (34)

because we assumed that ‖w0‖1 > #1 + #2. We can view the terms
∥

∥[w0 −/2]+
∥

∥

1 from Eq. (33) and
∥

∥[w0 −/]+
∥

∥

1 from Eq. (34) as functions of /2 and /, respectively. The functions are strictly decreasing
functions of / and /2 over the interval [0,‖w0‖!]. Therefore, they are invertible for 0 < #1 +#2 < ‖w0‖1.
Since

∥

∥[w0 −/]+
∥

∥

1 =
∥

∥[w0 −/2]+
∥

∥

1, we must have /2 = /. Recall that the solution of Eq. (31) is w
" =

min{w0,/}, and the solution of the sequential update induced by Eq. (29) and Eq. (30) is
min{min{w0,/1},/2} = min{w0,/2}. The programs P .1 and P .2 therefore result in the same vector
min{w0,/2} = min{w0,/} and their induced updates are equivalent.

We now examine the case when ‖w0‖1 ≤ #1 +#2. If the 1-norm of w0 is also smaller than #1, ‖w0‖1 ≤ #1,
then the dual solution for the first step of P .1 is α1 = w0, which makes w1 = w0−α1 = 0 and hence w2 = 0.
The dual solution for the combined problem is clearly α0 = w0; again, w

" = w0 −α0 = 0. We are thus left
with the case #1 < ‖w0‖1 ≤ #1 +#2. We straightforwardly get that the solution to Eq. (31) is w

" = 0. We
now prove that the iterated solution obtained by P .1 results in the zero vector as well. First, consider the
dual solution α1, which is the minimizer of ‖α−w0‖2 subject to ‖α‖1 ≤ #1. Since α1 = [w0 −/1]+ for

2914



EFFICIENT LEARNING USING FORWARD BACKWARD SPLITTING

some /1 ≥ 0, we know that each component of α1 is between zero and its corresponding component in w0,
therefore, ‖w0 −α1‖1 = ‖w0‖1 −‖α‖1 = ‖w0‖1 −#1 ≤ #2. The dual of the second step of P .1 distills to
the minimization 1

2‖α− (w0 −α1)‖2 subject to ‖α‖1 ≤ #2. Since we showed that ‖w0 −α‖1 ≤ #2, we get
α2 = w0 −α1. This means that /2 = 0. Recall that the solution of P .1 is min{w0,/2}, which amounts to
the zero vector when /2 = 0. We have thus showed that both optimization problems result in the zero vector.
This proves the equivalence of P .1 and P .2 for q = !.

The algorithmic consequence of Proposition 11 is that it is possible to perform a lazy update on each
iteration by omitting the terms of wt (or whole rows of the matrix Wt when using mixed-norms) that are
outside the support of g

f
t , the gradient of the loss at iteration t. However, we do need to maintain the

step-sizes used on each iteration and have them readily available on future rounds when we need to update
coordinates of w or W that were not updated in previous rounds. Let 1t denote the sum of the step sizes times
regularization multipliers #%t used from round 1 through t. Then a simple algebraic manipulation yields that
instead of solving

wt+1 = argmin
w

{

1
2
‖w−wt‖2

2 +#%t‖w‖q

}

repeatedly when wt is not being updated, we can simply cache the last time t0 that w (or a coordinate in w

or a row from W ) was updated and, when it is needed, solve

wt+1 = argmin
w

{

1
2
‖w−wt‖2

2 +(1t −1t0)‖w‖q

}

.

The advantage of the lazy evaluation is pronounced when using mixed-norm regularization as it lets us avoid
updating entire rows so long as the row index corresponds to a zero entry of the gradient g

f
t . We would like

to note that the lazy evaluation due to Proposition 11 includes as a special case the efficient implementation
for !1-regularized updates first outlined by Langford et al. (2008). In sum, at the expense of keeping a time
stamp t for each entry of w or row of W and maintaining a list of the cumulative sums 11,12, . . ., we can get
O(s) updates of w when the gradient g

f
t is s-sparse, that is, it has only s non-zero components.

7. Experiments
In this section we describe the results of experiments we performed whose goal are to demonstrate the merits
and underscore a few weaknesses of FOBOS. To that end, we also evaluate specific instantiations of FOBOS
with respect to several state-of-the-art optimizers and projected subgradient methods on different learning
problems. In the experiments that focus on efficiency and speed of convergence, we evaluate the methods
in terms of their number of operations, which is approximately the number of floating point operations each
method performs. We believe that this metric offers a fair comparison of the different algorithms as it lifts
the need to cope with specific code optimization such as cache locality or different costs per iteration of each
of the methods.

7.1 Sensitivity Experiments

We begin our experiments by performing a sensitivity analysis of FOBOS. We perform some of the analysis
in later sections during our comparisons to other methods, but we discuss the bulk of it here. We focus on
two tasks in our sensitivity experiments: minimizing the hinge loss (used in Support Vector Machines) with
!2

2 regularization and minimizing the !1-regularized logistic loss. These set the loss function f as

f (w) =
1
n

n

"
i=1

[1− yi 〈xi,w〉]+ +
#
2
‖w‖2

2 and f (w) =
1
n

n

"
i=1

log
(

1+ e−yi〈xi,w〉
)

+#‖w‖1

respectively. Note that both loss functions have subgradient sets bounded by 1
n "

n
i=1 ‖yixi‖2. Therefore, if all

the instances are of bounded norm, so are the subgradients of the empirical loss functions.
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Figure 1: Sensitivity of deterministic FOBOS to initial step size on logistic regression. Key is initial step size.
Left: %t ) 1/

√
t. Right: %t ) 1/t.

We perform analysis using dimensions d ∈ {50,100,200,400,800} and data set sizes n ∈ {200,400}. We
investigate the effect of correlation of the features xi j with one another by generating uncorrelated, moder-
ately correlated, and highly correlated features. Specifically, to generate feature vectors xi ∈ Rd , we sample
n random vectors zi ∼ N(0, I), zi ∈ Rd . We then construct a random covariance matrix 2 whose correla-
tions |0i j| = |2i j|/

√

2ii2 j j have mean .2 for the moderately correlated experiments and .3 for the highly
correlated experiments (on the highly correlated data, more than one-tenth of the features were more than
80% correlated). To get x, we then set xi = Lzi, where L is the Cholesky decomposition of 2 (the identity
in the uncorrelated case), and normalize xi to have ‖xi‖! = 1. We compared different stochastic gradient
estimators that were based on varying sample sizes: a single example, 10% of the training set, 20% of the
training set, and deterministic gradient using the entire data set. We also tested ten different initial step sizes.
However, we give in the graphs results for only a subset of the initial steps that reveals the overall dependency
on the step size. Further, we also checked three schemes for decaying the step size: %t ) 1/t, %t ) 1/

√
t, and

%t ) 1 (constant step size). We discuss the results attained by constant step sizes only qualitatively, though,
to keep the clarity of the figures. When %t was a constant we divided the initial step size by

√
T , the total

number of iterations being taken. We performed each experiment 10 times and averaged the results.
We distill the large number of experiments into a few figures here, deferring some of the analysis to the

sequel. Thus in this section we focus on the case when n = 400 and d = 800, since the experiments with other
training set sizes and dimensions gave qualitatively similar results. Most of the results in this section focus on
the consequences of the initial step size %1, though we also discuss different schedules of the learning rate and
the sample size for computing the subgradients. In each experiment, we set #= .25/

√
n, which in the logistic

case gave roughly 50% sparsity. Before our discussion, we note that we can bound the !2-norm of w
" for

both the logistic and the hinge loss. In the case of the logistic, we have #‖w"‖2 ≤ #‖w"‖1 ≤ f (0) = log2.
Similarly, for the hinge loss we have #

2 ‖w
"‖2

2 ≤ f (0) = 1. In both cases we can bound G by the norm of the
‖xi‖, which is in our settings approximately 9. Thus, looking at the bounds from Sec. 3 and Sec. 4, when
%t ) 1/

√
T , the initial step size amounts to %1 ≈ D/

√
7G ≈ 2.3 and when %t ) 1/

√
t, the initial step should

be %1 ≈ D/4G ≈ 1.5 for logistic regression. For the hinge loss, when %t ) 1/
√

t, and the initial step ends
being %1 ≈ D/4G ≈ .35. We see in the sequel that these approximate step sizes yield results competitive with
the best initial step sizes, which can be found only in hindsight.

We begin by considering the effect of initial step size for !1-regularized logistic regression. We plot
results for the moderately correlated data sets, as we investigate the effect of correlation later on. The results
are given in Figures 1 and 2, where we plot the objective value at each time step minus the optimal objective
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Figure 2: Sensitivity of stochastic FOBOS to initial step size on logistic regression. Key is initial step size.
Left: %t ) 1/

√
t. Right: %t ) 1/t.

value attained, f (wt)+ r(wt)− f (w")− r(w"). We plot the function values of the initial step size that was
chosen automatically, by estimating D and G as described above, in bold red in the figures. Interestingly, the
left side of Fig. 1 suggests that the best performing initial steps when %t ) 1/

√
t are near 1.5: %1 = 2.15 gives

good regret (we also saw that %1 = 4.6 performed well, but do not include it in the plot). In Fig. 2, we see
similar behavior for stochastic FOBOS when using 10% of the samples to estimate the gradient. Though we
do not plot these results, the stochastic case with constant step sizes also performs well when the step sizes
are %t ≈ 2.2/

√
T . The deterministic variant of FOBOS could not not take as many steps in the allotted time as

the stochastic versions, so its performance was not competitive. All methods are somewhat sensitive to initial
step size. Nonetheless, for these types of learning problems it seems plausible to estimate an initial step size
based on the arguments given in the previous paragraph, especially when using the step rate of %t ) 1/

√
t

that was suggested by the analysis in Sec. 4.
We performed similar experiments with the hinge loss with !2

2 regularization. As the objective is strongly
convex,2 our analysis from Sec. 4 and Theorem 8 suggests a step rate of %t = 1/#t. From the right plot in
Fig. 3, we see that the best performing step sizes where the two largest, which is consistent with our analysis
since 1/# = 80. For the the 1/

√
t steps, which we present on the left of Fig. 3 respectively, such initial step

sizes are too large. However, we can see again that the approximation suggested by our arguments above
gives good performance. In sum, it seems that while FOBOS and stochastic FOBOS are fairly sensitive to
initial step sizes and rate schedule, our theoretical results from the previous sections give relatively good
initial step size heuristics. We will see similar behavior in the sequel.

7.2 Comparison to Subgradient Optimizers

We now move on to the description of experiments using FOBOS to solve !2
2-regularized learning problems,

focusing on comparison to the state-of-the-art subgradient optimizer Pegasos (Shalev-Shwartz et al., 2007).
Pegasos was originally implemented and evaluated on Support Vector Machine (SVM) problems by using
the hinge-loss as the empirical loss function along with an !2

2 regularization term. Nonetheless, Pegasos can
be rather simply extended to the binary logistic loss function. We thus experimented with both the hinge and
logistic loss functions. To generate data for our experiments, we chose a vector w with entries distributed
normally with a zero mean and unit variance, while randomly zeroing 50% of the entries in the vector. The

2. We assume there is no bias term in the objective, since any optimization method must deal with this so we find it outside the scope
of the paper.
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Figure 3: Sensitivity of stochastic methods to initial step size on hinge loss minimization with !2
2-

regularization. Key is initial step size. Left: %t ) 1/
√

t. Right: %t ) 1/t.

examples xi ∈ Rd were also chosen at random with entries i.i.d. normally distributed. We also performed
experiments using correlated data. The results attained on correlated data were similar, so we do not report
them in our comparison to Pegasos. To generate target values, we set yi = sign(〈xi,w〉), and negated the
sign of 10% of the examples to add label noise. In all experiments, we used n = 1000 training examples of
dimension d = 400.

The graphs of Fig. 4 show (on a log-scale) the objective function, namely, the regularized empirical loss
of the algorithms, minus the optimal value of the objective function. These results were averaged over 20
independent runs of the algorithms. In all experiments with a regularization of the form 1

2#‖w‖2
2, we used

step sizes of the form %t = 1/(#t) to achieve the logarithmic regret bound of Sec. 4. The left graph of
Fig. 4 conveys that FOBOS performs comparably to Pegasos on hinge (SVM) loss. Both algorithms quickly
approach the optimal value. In this experiment we let both Pegasos and FOBOS employ a projection after each
gradient step onto a !2 norm ball in which w

" must lie (see Shalev-Shwartz et al. 2007 and the discussion
following the proof of Theorem 2). However, in the experiment corresponding to the right plot of Fig. 4, we
eliminated the additional projection step and ran the algorithms with the logistic loss. In this case, FOBOS
slightly outperforms Pegasos. We hypothesize that the slightly faster rate of FOBOS is due to the explicit
shrinkage that FOBOS performs in the !2

2 update (see Eq. (20) and Lemma 9).

7.3 Comparison to Other Methods for Smooth Problems

As mentioned in our discussion of related work, many methods have been proposed in the optimization and
machine learning literature for minimizing Eq. (1) when f is smooth, particularly when f has a Lipschitz-
continuous gradient. For the case of !1-regularized logistic regression, Koh et al. (2007) propose an efficient
interior point method. Tseng and Yun (2007) give analysis of a (block) coordinate descent method that
uses approximations to the Hessian matrix and an Armijo-type backtracking line search to solve non-smooth
regularized problems with smooth objectives; their method was noted to be effective for !1/!2-regularized
logistic regression, for example, by Meier et al. (2008). We also compare FOBOS and its stochastic variants to
the SPARSA method of Wright et al. (2009), which shares the same update as FOBOS but uses a simple line
search strategy to choose the its steps. Note that none of these methods apply when f is non-smooth. Lastly,
we compare FOBOS to projected-gradient methods. For !1-regularized problems, Duchi et al. (2008) show
how to compute projections to an !1-ball in linear time, and Schmidt et al. (2009) extend the method to show
that projection of a matrix W ∈ Rd×k to an !1/!2-constraint can be computed in O(dk) time. To compare
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Figure 4: Comparison of FOBOS with Pegasos on the SVM (left) and logistic regression (right). The right
hand side plot shows the performance of the algorithms without a projection step.

our methods to projected gradient methods, we first solve the regularized version of the problem. We then
constrain the norm of w or the mixed-norm of W to lie within a ball of radius #‖w"‖1 or #‖W "‖!1/!2

.
We compared FOBOS to each of the above methods on many different synthetic data sets, and we report

a few representative results. In our experiments, SPARSA seemed to outperform FOBOS and the projected
gradient methods when using full (deterministic) gradient information. The additional function evaluations
incurred by the line search in SPARSA seem to be insignificant to runtime, which is a plausible explanation
for SPARSA’s superior performance. We therefore do not report results for the deterministic versions of
FOBOS and projected gradient methods to avoid clutter in the figures.

In the first set of experiments, we compare FOBOS’s performance on !1-regularized logistic regression
to each of the above methods. That is, we set f (w) to be the average logistic loss and r(w) = #‖w‖1 and
use a data set with n = 1000 examples and d = 400 dimensions. We compare the performance of stochastic
FOBOS to the other algorithms in terms of two aspects. The first is the value of #, which we set to five
logarithmically spaced values that gave solution vectors w

" ranging from 100% non-zero entries to only 5%
non-zero entries. The second aspect is on the correlation of the features. We generated random data sets with
uncorrelated features, features that were on average 20% correlated with one another, and features that were
on average 30% correlated with one another. In the latter case about 350 pairs of features had above 80%
correlation (see the description of feature generation at the beginning of the section). We normalized each
example x to have features in the range [−1,1]. We assigned labels for each example by randomly choosing
a 50% sparse vector w, setting yi = sign(〈w,xi〉), and negating 5% of the y values.

The results comparing FOBOS to the other algorithms for different settings of the regularizer # are in
Fig. 5. The y-axis is f (wt)+r(wt)− f (w")−r(w"), the distance of the current value from the optimal value,
and the x-axis is the approximate number of operations (FLOPs) for each method. We used the approximation
we derived based on Corollary 7 in our earlier discussion of sensitivity to set the initial step size and used
%t ) 1/

√
t. Tseng and Yun’s method requires setting of constants for the backtracking-based line search.

We thus use the settings in Meier et al. (2008). In attempt to make the comparisons as fair as possible, we
used some of Tseng and Yun’s code yet reimplemented the method to take advantage of the specific structure
of logistic regression. Similarly, we used the line-search parameters in Wright et al.’s publicly available
Matlab code for SPARSA, though we slightly modified their code to handle arbitrary loss functions. From
the figure, we see that as # grows, yielding sparser solutions for w

", the performance of coordinate descent
and especially the interior point method start to degrade relative to the stochastic methods and SPARSA.

In our experiments we found that the stochastic methods were quite resilient to overly-large initial step-
sizes, as they quickly took a large number of steps. SPARSA employs an easy to implement and efficient
line search, and in general yielded good performance. The coordinate descent method, with its somewhat
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Figure 5: Performance of !1-regularized logistic regression methods with different settings of # on correlated
synthetic data. Left to right, top to bottom: w

" has 0% sparsity, w
" has 25% sparsity, w

" has 40%
sparsity, w

" has 70% sparsity, and w
" has 95% sparsity.
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Figure 6: Performance of !1-regularized logistic regression methods with different correlations on synthetic
data. Left: uncorrelated data. Right: highly correlated data.
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Figure 7: Performance of !1/!2-regularized multiclass logistic regression methods with different settings of
# on correlated synthetic data. Left: w

" has 60% sparsity. Right: w
" has 30% sparsity.

complicated backtracking line search, was difficult to implement correctly. Therefore, our experiments and
experience suggest that SPARSA is likely to be preferred for smooth problems. Nonetheless, stochastic
FOBOS quickly obtains a solution within about 10−2 of the optimal value. Since the regularized empirical
loss serves as a proxy for attaining good generalization performance, we found that in numerous cases this
accuracy sufficed to achieve competitive test loss.

In Fig. 6 we compare FOBOS to the other methods on data with uncorrelated, moderately correlated, and
very correlated features. These plots all have # set so that w

" has approximately 40% sparsity. From the
plots, we see that stochastic FOBOS and projected gradient actually perform very well on the more correlated
data, very quickly getting to within 10−2 of the optimal value, though after this they essentially jam. As in the
earlier experiments, SPARSA seems to perform quite well for these moderately sized experiments, though
the interior point method’s performance improves as the features become more correlated.
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Figure 8: Comparison test error rate of FOBOS, SPARSA, projected gradient, and coordinate descent on
MNIST digit recognition data set. Right: magnified view of left plot.

The last set of experiments with synthetic data sets was on mixed-norm-regularized multiclass logistic
regression. The objective that we used in this case is

1
n

n

"
i=1

log

(

1+ "
j 3=yi

e〈xi,w j−w
yi〉
)

+#‖W‖!1/!q . (35)

In the above equation q represents the norm over rows of the matrix W , and in our experiments it is either 1,
2, or ! (in this section, q = 2). The goal is to classify correctly examples whose labels are in {1, . . . ,k} while
jointly regularizing entries of the vectors w

j. We used n = 5000 datapoints of dimension d = 1000 with
k = 10 classes, meaning we minimize a loss over a matrix W ∈ Rd×k with 10000 parameters. To generate
data, we sample examples xi from a normal distribution with moderate correlation, randomly choose a matrix
W , and set yi = argmax j

〈

xi,w j〉 with 5% label noise. We show results in Fig. 7. In the three figures,
vary # to give solutions W " with roughly 60% zero rows, 30% zero rows, and completely non-sparse W ".
From the figures, it is apparent that the stochastic methods, both FOBOS and projected gradient, exhibit
very good initial performance but eventually lose to the coordinate descent method in terms of optimization
speed. As before, if one is willing to use full gradient information, SPARSA seems a better choice than the
deterministic counterpart of FOBOS and projected gradient algorithms. We thus again do not present results
for deterministic FOBOS without any line search.

7.4 Experiments with Real Data Sets

Though in the prequel we focus on optimization speed, the main goal in batch learning problems is attaining
good test-set error rates rather than rapid minimization of f (w) + r(w). In order to better understand the
merits of different optimization methods, we compared the performance of different optimizers on achieving
a good test-set error rate on different data sets. Nonetheless, for these tests the contours for the training
objective value were qualitatively very similar to the test-set error rate curves. We used the StatLog LandSat
Satellite data set (Spiegelhalter and Taylor, 1994), the MNIST handwritten digit database, and a sentiment
classification data set (Blitzer et al., 2007).

The MNIST database consists of 60,000 training examples and a 10,000 example test set with 10 classes.
We show average results over ten experiments using random 15,000 example subsamples of the training set.
For MNIST, each digit is a 28× 28 gray scale image z which is represented as a 282 = 784 dimensional
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Figure 9: Comparison of FOBOS and SPARSA on sentiment classification task.

vector. Direct linear classifiers do not perform well on this data set. Thus, rather than learning weights for
the original features, we learn the weights for a kernel machine with Gaussian kernels, where the value of the
jth feature for the ith example is

xi j = K(zi,z j) ! e−
1
2 ‖zi−z j‖2

.

We used !1/!2 regularization and compared FOBOS, SPARSA, coordinate descent, and projected gradient
methods on this test (as well as stochastic gradient versions of FOBOS and projected gradient). The results
for deterministic FOBOS and projected gradient were similar to SPARSA, so we do not present them. We also
experimented with stochastic group sizes of 100 and 200 examples for FOBOS, but the results were similar, so
we plot only the results from the 100 example runs. As before, we used the !1/!2 norm of the solution vectors
for FOBOS, SPARSA, and coordinate descent as the constrained value for the projected gradient method. For
each of the gradient methods, we estimated the diameter D and maximum gradient G as in the synthetic
experiments, which led us to use a step size of %t = 30/

√
t. The test set error rate as a function of number

of operations for each of the methods are shown in Fig. 8. From Fig. 8, it is clear that the stochastic gradient
methods (FOBOS and projected gradient) were significantly faster than any of the other methods. Before the
coordinate descent method has even visited every coordinate once, stochastic FOBOS (and similarly stochastic
projected gradient) have attained the minimal test-set error. The inferior performance of coordinate descent
and deterministic gradient methods can be largely attributed to the need to exhaustively scan the data set.
Even if we use only a subset of 15,000 examples, it takes a nontrivial amount of time to simply handle each
example. Moreover, the objective values attained during training are qualitatively very similar to the test loss,
so that stochastic FOBOS much more quickly reduces the training objective than the deterministic methods.

We also performed experiments on a data set that was very qualitatively different from the MNIST and
LandSAT data sets. For this experiment, we used the multi-domain sentiment data set of Blitzer et al. (2007),
which consists of product reviews taken from Amazon.com for many product types. The prediction task is
to decide whether an article is a positive or negative review. The features are bigrams that take values in
{0,1}, totalling about 630,000 binary features. In any particular example, at most a few thousand features
are non-zero. We used 10,000 examples in each experiment and performed 10 repetitions while holding
out 1000 of the examples as a test set and using 9000 of the examples for training. We used !1-regularized
logistic regression and set # = 3 · 10−5, which gave the best generalization performance and resulted in
roughly 5% non-zeros in the final vector w. We compare stochastic FOBOS to SPARSA in Fig. 9, since
the projected gradient method is much slower than FOBOS (detailed in the sequel). For FOBOS we use 900
examples to compute each stochastic gradient. We use two different initial step sizes, one estimated using
the approximation described earlier and a second where we scale it by 1/5. The left plot in Fig. 9 shows the
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Figure 10: Left: FOBOS sparsity and test error for LandSat data set with !1-regularization. Right: FOBOS
sparsity and test error for MNIST data set with !1/!2-regularization. Key is identical for both
plots.

training objective value as a function of the number of operations for each of the three methods as well as
error bars equal to the standard deviation of the objective. The right plot shows the error rates on the test
sets. The behavior in the experiment is similar to that in Fig. 8, where the stochastic methods very quickly
attain a small test error. Effectively, before SPARSA finishes two steps, the stochastic methods have arrived
at approximate solutions that attain the minimal test set error rates.

We now change our focus from training time to the attained sparsity levels for multiclass classification
with !1, !1/!2, and !1/!! regularization on MNIST and the StatLog LandSat data set. For the LandSat data
set we attempt to classify 3× 3 neighborhoods of pixels in a satellite image as a particular type of ground,
and we expanded the input 36 features into 1296 features by taking the product of all features.

In the left plot of Fig. 10, we show the test set error and sparsity level of W as a function of training time
(100 times the number of single-example gradient calculations) for the !1-regularized multiclass logistic loss
with 720 training examples. The green lines show results for using all 720 examples to calculate the gradient,
black using 20% of the examples, and blue using 10% of the examples to perform stochastic gradient. Each
used the same learning rate %t ) 1/

√
t, and the reported results are averaged over 5 independent runs with

different training data sets. The righthand figure shows a similar plot for training FOBOS on the MNIST
data set with !1/!2-regularization. The objective value in training has a similar contour to the test loss. As
expected, FOBOS with stochastic gradient descent gets to its minimum test classification error, and as the
training set size increases this behavior is consistent. However, the deterministic version increases the level
of sparsity throughout its run, while the stochastic-gradient version has highly variable sparsity levels and
does not give solutions as sparse as the deterministic counterpart. We saw similar behavior when using
stochastic versus deterministic projected gradient methods. The slowness of the deterministic gradient means
that we do not see the sparsification immediately in larger tests; nonetheless, for longer training times similar
sparsifying behavior emerges.

As yet, we do not have a compelling justification for the difference in sparsity levels between stochastic
and deterministic gradient FOBOS. We give here some intuitive arguments, leaving a more formal anal-
ysis to future work. We develop one possible explanation by exploring the effect of taking a stochastic
gradient step starting from the true solution vector w

". Consider !1-regularized FOBOS with regulariza-
tion multiplier #. Let g

f be the gradient of f (w"). For j such that w"
j > 0, we have g f

j = −#, for j
with w"

j < 0, g f
j = #, and for zero entries in w

", we have g f
j ∈ [−#,#]. The FOBOS step then amounts to
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w+
j = sign(w"

j)
[

|w"
j −%tg f

j |−%t#
]

+
, which by inspection simply yields w

". Now suppose that instead of

g
f , we use a stochastic estimate g̃

f of g
f . Then the probability that the update w+

j of w"
j is zero is

P

(∣

∣

∣
w"

j −%t g̃ f
j

∣

∣

∣
≤ %t#

)

= P

(

g̃ f
j ∈

[w"
j

%t
−#,

w"
j

%t
+#

])

.

When w"
j = 0, the probability is simply P(g̃ f

j ∈ [−#,#]), which does not change as a function of %t . However,
when w"

j > 0, we have E[g̃ f
j ] =−#, while w"

j/%t →! as %t shrinks (and analogously for w"
j < 0). In essence,

the probability of a non-zero parameter staying non-zero is high, however, the probability of a zero parameter
staying zero is constant. Intuitively, then, we expect that stochastic gradient descent will result in more
non-zero coefficients than the deterministic variant of FOBOS.

7.5 Experiments with Sparse Gradient Vectors

In this section, we consider the implications of Proposition 11 for learning with sparse data. We show that it
is much more efficient to use the updates described in Proposition 11 than to maintain !1-constraints on w as
in Duchi et al. (2008). Intuitively, the former requires rather simple bookkeeping for maintaining the sum 1t
discussed in Sec. 6, and it is significantly easier to implement and more efficient than Duchi et al.’s red-black
tree-based implementation. Indeed, whereas a red-black tree requires at least a thousand of lines of code for
its balancing, joining, and splitting operations, the efficient FOBOS updates require fewer than 100 lines of
code.

We simulated updates to a weight vector w with a sparse gradient g
f
t for different dimensions d of w ∈Rd

and different sparsity levels s for g
f
t with card(g f

t ) = s. To do so, we generate a completely dense w whose
!1-norm is at most a pre-specified value b and add a random vector g to w with s non-zeros. We then either
project w+g back to the constraint ‖w‖1 ≤ b using the algorithm of Duchi et al. (2008) or perform a FOBOS
update to w +g using the algorithm in Sec. 6. We chose # in the FOBOS update to give approximately the
same sparsity as the constraint on b. In Table 1 we report timing results averaged over 100 independent
experiments for different dimensions d of w and different cardinalities s of g. Though theoretically the
sparse FOBOS updates should have no dependence on the dimension d, we found that cache locality can play
a factor when performing updates to larger dimensional vectors. Nonetheless, it is clear from the table that the
efficient FOBOS step is on the order of ten to twenty times faster than its projected counterpart. Furthermore,
the sparse FOBOS updates apply equally as well to mixed norm regularization, and while there are efficient
algorithms for both projection to both !1/!2 and !1/!! balls (Schmidt et al., 2009; Quattoni et al., 2009), they
are more complicated than the FOBOS steps. Lastly, though it may be possible to extend the efficient data
structures of Duchi et al. (2008) to the !1/!2 case, there is no known algorithm for efficient projections with
sparse updates to an !1/!! constraint.

Dimension d s = 5000 s = 10000 s = 20000
Project FOBOS Project FOBOS Project FOBOS

5 ·104 0.72 0.07 2.12 0.12 4.53 0.23
2 ·105 0.80 0.10 2.06 0.16 5.09 0.34
8 ·105 0.86 0.15 2.22 0.17 5.34 0.39

3.2 ·106 1.07 0.13 2.75 0.16 6.31 0.52
6.4 ·106 1.20 0.10 2.83 0.29 6.62 0.48

Table 1: Comparison of the average time (in hundredths of a second) required to compute projection of w+g

onto an !1-constraint to the analogous update required by the FOBOS step.
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Figure 11: The sparsity patterns attained by FOBOS using mixed-norm and !1 regularization for a multiclass
logistic regression problem.

7.6 Effects of Regularization

Our final experiments focus mostly on sparsity recovery of the different regularizers and their effects on test-
set performance. While these are somewhat orthogonal to the previous experiments, we believe there is a
relative paucity of investigation of the effects of mixed-norm regularization on classifier performance.

As a verification experiment of FOBOS with a mixed-norm regularizer, we solved a multiclass logistic
regression problem whose objective is given in Eq. (35). To solve this task, we randomly generated a matrix
W of dimension 200× 30. The instances had d = 200 dimensions, the number of classes was k = 30, and
we zeroed out the first 100 rows of W . We next generated n = 1000 samples xi ∈ Rd with zero mean and
unit variance. We set yi = argmax j

〈

xi,w j〉 and added 10% label noise. We then used FOBOS to find an
approximate minimizer of the objective defined by Eq. (35).

To compare the effects of different regularizers, we minimized Eq. (35) using !1/!1, !1/!2, and !1/!!
regularization. We repeated the experiment 20 times with different randomly selected W that had the same
sparsity pattern. On the left side of Fig. 11 we illustrate the sparsity pattern (far left) of the weight vector
that generated the data and color-coded maps of the sparsity patterns learned using FOBOS with the different
regularization schemes. The colors indicate the fraction of times a weight of W was set to be zero. A white
color indicates that the weight was found (or selected) to be zero in all of the experiments while a black
color means that it was never zero. The regularization value # was set so that the learned matrix W would
have approximately 50% zero weights. From Fig. 11, we see that both !1/!2 and !1/!! were capable of
zeroing entire rows of parameters and often learned a sparsity pattern that was close to the sparsity pattern
of the matrix that was used to generate the examples. The standard !1 regularizer (far right) performed very
poorly in terms of structure recovery. In fact, the !1-regularizer did not yield a single row of zeros in any of
the experiments, underscoring one of the merits of using mixed-norm regularization in structured problems.
Quantitatively, 96.3% and 94.5% of the zero rows of W were correctly identified when using FOBOS with
!1/!2 and !1/!! regularization, respectively. In contrast, not one of the zero rows of W was identified correctly
as an all zero row using pure !1 regularization.

The right plot in Fig. 11 shows the sparsity levels (fraction of non-zero weights) achieved by FOBOS as
a function of the number of iterations of the algorithm. Each line represents a different synthetic experiment
as # is modified to give more or less sparsity to the solution vector w

". The results demonstrate that FOBOS
quickly selects the sparsity pattern of w

", and the level of sparsity persists throughout its execution. We
found this sparsity pattern common to all problems we tested, including mixed-norm problems. This is not
particularly surprising, as Hale et al. (2007) recently gave an analysis showing that after a finite number of
iterations, FOBOS-like algorithms attain the sparsity of the true solution w

".
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% Non-zero !1 Test !1/!2 Test !1/!! Test
5 .43 .29 .40
10 .30 .25 .30
20 .26 .22 .26
40 .22 .19 .22

Table 2: LandSat classification error versus sparsity

% Non-zero !1 Test !1/!2 Test !1/!! Test
5 .37 .36 .47
10 .26 .26 .31
20 .15 .15 .24
40 .08 .08 .16

Table 3: MNIST classification error versus sparsity

For comparison of the different regularization approaches, we report in Table 2 and Table 3 the test set
error as a function of row sparsity of the learned matrix W . For the LandSat data, we see that using the block
!1/!2 regularizer yields better performance for a given level of structural sparsity. However, on the MNIST
data the !1 regularization and the !1/!2 achieve comparable performance for each level of structural sparsity.
Moreover, for a given level of structural sparsity, the !1-regularized solution matrix W attains significantly
higher overall sparsity, roughly 90% of the entries of each non-zero row are zero. The different performance
on the different data sets might indicate that structural sparsity is effective only when the set of parameters
indeed exhibit natural grouping.

For our final experiment, we show the power of FOBOS with mixed-norm regularization in the context
of image compression. For this experiment, we represent each image as a set of patches where each patch is
in turn represented as a 79 dimensional vector as described by Grangier and Bengio (2008). The goal is to
jointly describe the set of patches by a single high-dimensional yet sparse set of dictionary features. Each of
the dictionary terms is also in R79. Let x j denote the jth patch of an image with k patches to be compressed
and ci be the ith dictionary vector from a dictionary of n vectors. The regularized objective is thus

1
2

k

"
j=1

∥

∥

∥

∥

∥

x j −
n

"
i=1

wi jci

∥

∥

∥

∥

∥

2

2

+#
n

"
i=1

‖w̄i‖q .

In our experiments, the number of dictionary vectors n was 1000 and the number of patches k was around 120
on average. We report results averaged over 100 different images. We experiment with the three settings for
q we have used in prior experiments, namely q ∈ {1,2,!}. In Fig. 12 we report the average reconstruction
error as a function of the fraction of dictionary vectors actually used. As one would expect, the mixed-norm
regularizers (!1/!2 and !1/!!) achieve lower reconstruction error as a function of dictionary sparsity than
strict !1-regularization. The !1/!2-regularization also gives a slight, but significant, reconstruction improve-
ment over !1/!!-regularization. We hypothesize that this is related to the relative efficiency of !1/!! as a
function of the geometry of the input space, as was theoretically discussed in Negahban and Wainwright
(2008). Further investigation is required to shed more light into this type of phenomenon, and we leave it for
future research.

8. Conclusions and Future Work
In this paper we analyzed a framework for online and batch convex optimization with a diverse class of regu-
larization functions. We provided theoretical justification for a type of convex programming method we call
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Figure 12: Image reconstruction error as a function of group sparsity.

FOBOS, which is known also as forward-backward splitting, iterative shrinkage and thresholding for the spe-
cial case of !1-regularized problems, or SPARSA. Specifically, we described both offline convergence rates
for arbitrary convex functions with regularization as well as regret bounds for online convex programming of
regularized losses. Our derivation includes as a corollary the case of !1 regularization, which was concretely
studied by Langford et al. (2008). Our approach provides a simple mechanism for solving online convex
programs with many regularization functions, giving sparsity in parameters and different types of block or
group regularization straightforwardly. Furthermore, the FOBOS framework is general and able to minimize
any convex subdifferentialable function f so long as the forward looking step of Eq. (3) can be computed.

We have also provided a good deal of empirical evaluation of the method in comparison to other modern
optimization methods for similar problems. Our practical experience suggests that for small to medium
problems, SPARSA is effective and simple to implement (as opposed to more complicated coordinate descent
methods), while for large scale problems, performing stochastic FOBOS is probably preferable. We have also
shown that FOBOS is efficient for online learning with sparse data.

A few directions for further research suggest themselves, but we list here only two. The first is the
question of whether we can modify the algorithm to work with arbitrary Bregman divergences of a function
h instead of squared Euclidean distance, that is, we would like to form a generalized FOBOS update which is
based on instantaneous optimization problems with Bregman divergences for convex differentiable h, where
Bh(u,v) = h(u)− h(v)−〈*h(v),u−v〉. We assume the generalized update would, loosely speaking, be
analogous to nonlinear projected subgradient methods and the mirror descent (see, e.g., Beck and Teboulle
2003). This might allow us to give bounds for our algorithms in terms of other dual norms, such as !1/!!
norms on the gradients or diameter of the space, rather than simply !2. We believe the attainment and rate of
sparsity when using stochastic gradient information, as suggested by the discussion of Fig. 10, merits deeper
investigation that will be fruitful and interesting.
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Appendix A. Online Regret Proofs
Proof of Theorem 6 Looking at Lemma 1, we immediately see that if ‖$ f‖ and ‖$r‖ are bounded by G,

ft(wt)− ft(w")+ r(wt+1)− r(w") ≤
1

2%t

(

‖wt −w
"‖2 −‖wt+1 −w

"‖2)+
7
2

G2%t . (36)

Now we use Eq. (36) to obtain that

R f+r(T ) =
T

"
t=1

( ft(wt)− ft(w")+ r(wt)− r(w"))+ r(wT+1)− r(w")− r(w1)+ r(w")

≤ GD+
T

"
t=1

1
2%t

(

‖wt −w
"‖2 −‖wt+1 −w

"‖2)+
7G2

2

T

"
t=1

%t

since r(w) ≤ r(0)+G‖w‖ ≤ GD. We can rewrite the above bound and see

R f+r(T ) ≤ GD+
1

2%1
‖w1 −w

"‖2 +
1
2

T

"
t=2

‖wt −w
"‖2

(

1
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−
1
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)

+
7G2

2
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2%1
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2

T

"
t=2
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1
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−
1
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+
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2
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"
t=1

%t ,

where we used again the bound on the distance of each wt to w
" for the last inequality. Lastly, we use the

fact that the sum 1
%1

+"T
t=2(

1
%t
− 1

%t−1
) telescopes and get that

R f+r(T ) ≤ GD+
D2

2%T
+

7G2

2

T

"
t=1

%t .

Setting %t = c/
√

t and recognizing that "T
t=1%t ≤ 2c

√
T concludes the proof.

Proof of Theorem 8 The proof builds straightforwardly on Theorem 1 from Hazan et al. (2006) and our
proof of Theorem 6. We sum Eq. (17) from t = 1 to T and get

R f+r(T ) ≤
T

"
t=1

(
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g
f
t +g

r
t ,wt −w

"
〉
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2
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"
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%t .

The second inequality follows from Eq. (36) and the third inequality from a rearrangement of the sum and
removal of the negative term (1/%T−1)‖wT −w

"‖2. Taking %t = 1
Ht , we see that 1/%t − 1/%t−1 −H =

Ht −H(t −1)−H = 0, so we can bound the regret by

R f+r(T ) ≤ 2GD+HD2 +
7G2

2

T−1

"
t=1

1
Ht

≤ 2GD+HD2 +
7G2

2H
(1+ logT ) = O

(

G2

H
logT

)

.
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Proof of Lemma 9 The triangle inequality implies that
∥

∥

∥

∥

∥

T

"
t=1

$ ft(wt)

∥

∥

∥

∥

∥

≤
T

"
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‖$ ft(wt)‖ ≤ T G .

Let g
"
t ∈ $ ft(w") be such that

0 =
T
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t=1

g
"
t +T#w" ∈

T

"
t=1

$ ft(w")+T$r(w")

so ‖w"‖ = ‖"T
t=1 g

"
t ‖/(T#) ≤ G/#.

For the second part, assume that w0 = 0, and for our induction that wt satisfies ‖wt‖ ≤ G/#. Then
computing the FOBOS update from Eq. (20),

‖wt+1‖ =
‖wt −%tg

f
t ‖

1+#%t
≤

‖wt‖+%t‖g f
t ‖

1+#%t
≤

G/#+%tG
1+#%t

=
G(1+#%t)

#(1+#%t)
.

Appendix B. Update for Berhu Regularization
Recalling the Berhu regularizer and combining it with Eq. (18) for one variable, we see that we want to
minimize

1
2
(w− v)2 + #̃b(w) =

1
2
(w− v)2 + #̃

[

|w| [[|w|≤ +]]+
w2 + +2

2+
[[|w| > +]]

]

.

First, if |v| ≤ #̃, then exactly reasoning to that for minimization of the !1-regularized minimization step
implies that the optimal solution is w = 0.

When |v|> #̃, there are two remaining cases to check. Let us assume without loss of generality that v > #̃.
It is immediate to verify that w ≥ 0 at the optimum. Now, suppose that v− #̃ ≤ +. Taking w = v− #̃ ≤ + (so
that w > 0) gives us that $b(w) = {#̃}. Thus, the subgradient set of our objective contains a single element,
w− v+ #̃$|w| = v− #̃− v+ #̃1 = 0. Therefore, when v− #̃≤ + the optimal value of w is v− #̃. The last case
we need to examine is when v− #̃ > +, which we as we show shortly puts the solution w" in the !2

2 realm of
b(w). By choosing w = v

1+ #̃
+

we get that,

w =
v

1+ #̃
+

=
v+
++ #̃

>
(++ #̃)+

++ #̃
= + .

Therefore, w > + and thus w is in the !2
2 region of the Berhu penalty b(w). Furthermore, for this choice of w

the derivative of the penalty is

w− v+ #̃
w
+

=
v+
++ #̃

− v+ #̃
v+

+(++ #̃)
=

v+
++ #̃

−
v(++ #̃)

++ #̃
+ #̃

v
++ #̃

= 0.

Combining the above results, inserting the conditions on the sign, and expanding v = wt+ 1
2 , j gives Eq. (26).
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Appendix C. Fast Convergence Rate for Smooth Objectives
In this appendix, we describe an analysis of FOBOS which yields an O(1/T ) rate of convergence when f has
Lipschitz-continuous gradient. Our analysis is by no means new. It is a distilled and simplified adaptation of
the analysis of Nesterov (2007) to our setting.

Throughout the appendix we assume that * f (w) is Lipschitz continuous with a constant L, that is,
‖* f (w)−* f (v)‖ ≤ L‖w−v‖. The fundamental theorem of calculus then readily implies that (Nesterov,
2004, Lemma 1.2.3)

| f (w)− f (v)−〈* f (v),w−v〉 |≤
L
2
‖w−v‖2 . (37)

To see that Eq. (37) holds, add and subtract 〈* f (v),w−v〉 to note that

f (w)− f (v) =
Z 1

0
〈* f (v + t(w−v)),w−v〉dt

= 〈* f (v),w−v〉+
Z 1

0
〈* f (v + t(w−v))−* f (v),w−v〉dt

which, by using Cauchy-Shwartz inequality, yields

| f (w)− f (v)−〈* f (v),w−v〉 | ≤
Z 1

0
|〈* f (v + t(w−v))−* f (v),w−v〉|dt

≤
Z 1

0
‖* f (v + t(w−v))−* f (v)‖‖w−v‖dt ≤

Z 1

0
tL‖w−v‖2dt =

L
2
‖w−v‖2 .

For the remainder of this section, we assume that f (w)+ r(w) is coercive, so that as ‖w‖→ !, f (w)+
r(w) → !. We thus have that the level sets of f (w)+ r(w) are bounded: ‖w−w

"‖ ≤ D for all w such that
f (w)+ r(w) ≤ f (0)+ r(0). Consider the “composite gradient mapping” (Nesterov, 2007)

m(v,w) = f (v)+ 〈* f (v),w−v〉+
L
2
‖w−v‖2 + r(w) . (38)

Before proceeding with the proof of fast convergence rate, we would like to underscore the equivalence of
the FOBOS update and the composite gradient mapping. Formally, minimizing m(v,w) with respect to w is
completely equivalent to taking a FOBOS step with %= 1/L and v = wt . To obtain the FOBOS update from
Eq. (38) we simply need to divide m(v,w) by L = 1/%, omit terms that solely depend on v = wt , and use
the fact that wt+ 1

2
= wt −%tg

f
t = v−*f (v)/L.

For notational convenience, let 3(w) = f (w) + r(w). Denote by w
+ the vector minimizing m(v,w).

Then from Eq. (37) we get that

3(w+) = f (w+)+ r(w+) ≤ f (v)+
〈

* f (v),w+ −v
〉

+
L
2
‖w+ −v‖2 + r(w+) = inf

w
m(v,w). (39)

Further, because f (v)+ 〈* f (v),w−v〉 ≤ f (w) for all w, we have

inf
w

m(v,w) ≤ inf
w

[

f (w)+
L
2
‖w−v‖2 + r(w)

]

= inf
w

[

3(w)+
L
2
‖w−v‖2

]

. (40)

Now we consider the change in function value from wt to wt+1 for the FOBOS update with %= 1/L. To
do this, we take an arbitrary optimal point w

" and restrict wt+1 to lie on the line between wt and w
", which

constrains the set of infimum values above and allows us to carefully control them. With this construction,
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along with Eqs. (39) and (40) we get that

3(wt+1) ≤ inf
w

[

3(w)+
L
2
‖w−wt‖2

]

≤ inf
.∈[0,1]

[

3(.w
" +(1−.)wt)+

L
2
‖.w

" +(1−.)wt −wt‖2
]

≤ inf
.∈[0,1]

[

.3(w")+(1−.)3(wt)+
.2L

2
‖w" −wt‖2

]

. (41)

The bound in Eq. (41) follows due to the convexity of 3. One immediate consequence of Eq. (41) is that
3(wt+1) ≤ 3(wt), since at .= 0 we obtain the same objective for 3. Thus, all iterates of the method satisfy
‖wt −w

"‖ ≤ D. We therefore can distill the bound to be

3(wt+1) ≤ inf
.∈[0,1]

[

3(wt)+.(3(w")−3(wt))+.2 LD2

2

]

.

The argument of the infimum of the equation above is a quadratic equation in .. We need to analyze two
possible cases for the optimal solution. In the first case when 3(wt)−3(w") > LD2, the optimal value of .
is 1 and 3(wt+1) ≤ 3(w")+ LD2/2. Therefore, we will never encounter again this case in future iterations.
The second occurs when 3(wt)−3(w")≤ LD2, so we have .= (3(wt)−3(w"))/LD2 ∈ [0,1], which yields

3(wt+1) ≤ 3(wt)−
(3(wt)−3(w"))2

2LD2 . (42)

To obtain the form of the convergence rate let us define the inverse residual value 0t = 1/(3(wt)−3(w")).
By analysing the rate at which 0t tends to infinity we obtain our desired convergence rate. From the definition
of 0t and the bound of Eq. (42) we get that

0t+1 −0t =
1

3(wt+1)−3(w")
−

1
3(wt)−3(w")

=
3(wt)−3(w")−3(wt+1)+3(w")

(3(wt+1)−3(w"))(3(wt)−3(w"))

= 0t0t+1(3(wt)−3(wt+1)) ≥ 0t0t+1
(3(wt)−3(w"))2

2LD2 =
0t0t+1

202
t LD2 ≥

1
LD2 ,

where the last inequality is due to the fact that 0t+1 ≥ 0t and therefore 0t0t+1/02
t ≥ 1. Summing the differ-

ences 0t+1 −0t from t = 0 through T −1, we get 0T ≥ T/2LD2. Thus, for t ≥ 1 we have

3(wt)−3(w") = 1/0t ≤
2LD2

t
.

To recap, by setting %= 1/L while relaying on the fact that f has Lipschitz continuous gradient with constant
L, we obtain a 1/T rate of convergence

f (wT )+ r(wT ) ≤ f (w")+ r(w")+
2LD2

T
.
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Abstract
Recommender systems are now popular both commercially and in the research community, where
many algorithms have been suggested for providing recommendations. These algorithms typically
perform differently in various domains and tasks. Therefore, it is important from the research
perspective, as well as from a practical view, to be able to decide on an algorithm that matches
the domain and the task of interest. The standard way to make such decisions is by comparing a
number of algorithms offline using some evaluation metric. Indeed, many evaluation metrics have
been suggested for comparing recommendation algorithms. The decision on the proper evaluation
metric is often critical, as each metric may favor a different algorithm. In this paper we review
the proper construction of offline experiments for deciding on the most appropriate algorithm. We
discuss three important tasks of recommender systems, and classify a set of appropriate well known
evaluation metrics for each task. We demonstrate how using an improper evaluation metric can lead
to the selection of an improper algorithm for the task of interest. We also discuss other important
considerations when designing offline experiments.
Keywords: recommender systems, collaborative filtering, statistical analysis, comparative studies

1. Introduction

Recommender systems can now be found in many modern applications that expose the user to a
huge collections of items. Such systems typically provide the user with a list of recommended
items they might prefer, or supply guesses of how much the user might prefer each item. These
systems help users to decide on appropriate items, and ease the task of finding preferred items in
the collection.

For example, the DVD rental provider Netflix1 displays predicted ratings for every displayed
movie in order to help the user decide which movie to rent. The online book retailer Amazon2
provides average user ratings for displayed books, and a list of other books that are bought by
users who buy a specific book. Microsoft provides many free downloads for users, such as bug
fixes, products and so forth. When a user downloads some software, the system presents a list

1. This can be found at www.netflix.com.
2. This can be found at www.amazon.com.
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of additional items that are downloaded together. All these systems are typically categorized as
recommender systems, even though they provide diverse services.

In the past decade, there has been a vast amount of research in the field of recommender sys-
tems, mostly focusing on designing new algorithms for recommendations. An application designer
who wishes to add a recommendation system to her application has a large variety of algorithms at
her disposal, and must make a decision about the most appropriate algorithm for her application.
Typically, such decisions are based on offline experiments, comparing the performance of a number
of candidate algorithms over real data. The designer can then select the best performing algorithm,
given structural constraints. Furthermore, most researchers who suggest new recommendation al-
gorithms also compare the performance of their new algorithm to a set of existing approaches. Such
evaluations are typically performed by applying some evaluation metric that provides a ranking of
the candidate algorithms (usually using numeric scores).

Many evaluation metrics have been used to rank recommendation algorithms, some measuring
similar features, but some measuring drastically different quantities. For example, methods such
as the Root of the Mean Square Error (RMSE) measure the distance between predicted preferences
and true preferences over items, while the Recall method computes the portion of favored items that
were suggested. Clearly, it is unlikely that a single algorithm would outperform all others over all
possible methods.

Therefore, we should expect different metrics to provide different rankings of algorithms. As
such, selecting the proper evaluation metric to use has a crucial influence on the selection of the
recommender system algorithm that will be selected for deployment. This survey reviews existing
evaluation metrics, suggesting an approach for deciding which evaluation metric is most appropriate
for a given application.

We categorize previously suggested recommender systems into three major groups, each cor-
responding to a different task. The first obvious task is to recommend a set of good (interesting,
useful) items to the user. In this task it is assumed that all good items are interchangeable. A
second, less discussed, although highly important task is utility optimization. For example, many
e-commerce websites use a recommender system, hoping to increase their revenues. In this case,
the task is to present a set of recommendations that will optimize the retailer revenue. Finally, a
very common task is the prediction of user opinion (e.g., rating) over a set of items. While this may
not be an explicit act of recommendation, much research in recommender systems focuses on this
task, and so we address it here.

For each such task we review a family of common evaluation metrics that measure the perfor-
mance of algorithms on that task. We discuss the properties of each such metric, and why it is most
appropriate for a given task.

In some cases, applying incorrect evaluation metrics may result in selecting an inappropriate
algorithm. We demonstrate this by experimenting with a wide collection of data sets, comparing a
number of algorithms using various evaluation metrics, showing that the metrics rank the algorithms
differently.

We also discuss the proper design of an offline experiment, explaining how the data should
be split, which measurements should be taken, how to determine if differences in performance are
statistically significant, and so forth. We also describe a few common pitfalls that may produce
results that are not statistically sound.

The paper is structured as follows: we begin with some necessary background on recommender
approaches (Section 2). We categorize recommender systems into a set of three tasks in Section 3.
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We then discuss evaluation protocols, including online experimentation, offline testing, and statis-
tical significance testing of results in Section 4. We proceed to review a set of existing evaluation
metrics, mapping them to the appropriate task (Section 5). We then provide (Section 6) some ex-
amples of applying different metrics to a set of algorithms, resulting in questionable rankings of
these algorithms when inappropriate measures are used. Following this, we discuss some addi-
tional relevant topics that arise (Section 7) and some related work (Section 8), and then conclude
(Section 9).

2. Algorithmic Approaches

There are two dominant approaches for computing recommendations for the active user—the user
that is currently interacting with the application and the recommender system. First, the collabora-
tive filtering approach (Breese et al., 1998) assumes that users who agreed on preferred items in the
past will tend to agree in the future too. Many such methods rely on a matrix of user-item ratings to
predict unknown matrix entries, and thus to decide which items to recommend.

A simple approach in this family (Konstan et al., 2006), commonly referred to as user based
collaborative filtering, identifies a neighborhood of users that are similar to the active user. This
set of neighbors is based on the similarity of observed preferences between these users and the
active user. Then, items that were preferred by users in the neighborhood are recommended to the
active user. Another approach (Linden et al., 2003), known as item based collaborative filtering
recommends items also prefered by users that prefer a particular active item to other users that
also prefer that active item. In collaborative filtering approaches, the system only has access to the
item and user identifiers, and no additional information over items or users is used. For example,
websites that present recommendations titled “users who preferred this item also prefer” typically
use some type of collaborative filtering algorithm.

A second popular approach is the content-based recommendation. In this approach, the system
has access to a set of item features. The system then learns the user preferences over features, and
uses these computed preferences to recommend new items with similar features. Such recommen-
dations are typically titled “similar items”. User’s features, if available, such as demographics (e.g.,
gender, age, geographic location) can also provide valuable information.

Each approach has advantages and disadvantages, and a multitude of algorithms from each
family, as well as a number of hybrid approaches have been suggested. This paper, though, makes no
distinction between the underlying recommendation algorithms when evaluating their performance.
Just as users should not need to take into account the details of the underlying algorithm when using
the resulting recommendations, it is inappropriate to select different evaluation metrics for different
recommendation approaches. In fact, doing so would make it difficult to decide which approach to
employ in a particular application.

3. Recommender Systems Tasks

Providing a single definition for recommender systems is difficult, mainly because systems with
different objectives and behaviors are grouped together under that name. Below, we categorize
recommender systems into three classes, based on the recommendation task that they are designed
for McNee et al. (2006). In fact, there have been several previous attempts to classify existing
recommenders (see, e.g., Montaner et al. 2003 and Schafer et al. 1999). We, however, are interested
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in the proper evaluation of such algorithms, and our classification is derived from that goal. While
there may be recommender systems that do not fit well into the classes that we suggest, we believe
that the vast majority of the recommender systems attempt to achieve one of these tasks, and can
thus be classified as we suggest.

3.1 Recommending Good Items

Perhaps the most common task of recommendation engines is to recommend good items to users
(Herlocker et al., 2004; McNee et al., 2006). Such systems typically present a list of items that the
user is predicted to prefer. The user can then select (add to the shopping basket, view, ...) one or
more of the suggested items. There are many examples of such systems. In the Amazon website,
for instance, when the user is looking at an item, the system presents below a list of other items that
the user may be interested in. Another example can be found in Netflix—when a user adds a movie
to her queue, the system displays a list of other recommended movies that the user may want to add
to the queue too. There are several considerations when creating recommendation lists. We identify
below two sub-tasks that comply with different requirements.

3.1.1 RECOMMENDING SOME GOOD ITEMS

In this sub-task, we make the assumption that there is a large number of good items that may appeal
to the user, and the user does not have enough resources (time, money) to select all items. In this
case we can only present a part of the preferred item set. Thus, it is likely that many preferred items
will be missing from the list. In this sub-task, it is more important not to present any disliked item
than to find all the good items.

This is typically the case in recommender systems that suggest media items, such as movies,
books, or news items. In all these cases the number of alternatives is huge, and the user cannot
possibly watch all the recommended movies, or read all the relevant books.

3.1.2 RECOMMENDING ALL GOOD ITEMS

A less popular case is when the system should recommend all important items. Examples of such
systems are recommenders that predict which scientific papers should be cited, or legal databases
(Herlocker et al., 2004; McNee et al., 2006), where it is important not to overlook any possible case.
In this sub-task, the system can present longer lists of items, trying to avoid missing a relevant item.

3.2 Optimizing Utility

With the rise of e-commerce websites, another recommendation task became highly important—
maximizing the profits of the website. Online retailers are willing to invest in recommender sys-
tems hoping to increase their revenue. There are many ways by which a recommender system can
increase revenue. The simplest way is through cross-selling; by suggesting additional items to the
users, we increase the probability that the user will buy more than he originally intended. In an
online news provider, where most revenue comes from display advertisements, the system can in-
crease profit by keeping the users in the website for longer time periods, as the performance of
an advertising campaign is often measured in terms of “x-minute reach,” which is the number of
consumers in a particular market that are exposed to the ad for x minutes. In such cases, it is in
the best interest of the system to suggest items in order to lengthen the session. In a subscription
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service, where revenue comes from users paying a regular subscription, the goal may be to allow
users to easily reach items of interest. In this case, the system should suggest items such that the
user reaches items of interest with minimal effort.

The utility function to be optimized can be more complicated, and in particular, may be a func-
tion of the entire set of recommendations and their presentation to the user. For example, in pay-
per-click search advertising, the system must recommend advertisements to be displayed on search
results pages. Each advertiser bids a fixed amount that is paid only when the user clicks on their
ad. If we wish to optimize the expected system profit, both the bids and the probability that the user
will click on each ad must be taken into account. This probability depends on the relevance of each
ad to the user and the placement of the different ads on the page. Since the different ads displayed
compete for the user’s attention, the utility function depends on the entire set of ads displayed, and
is not additive over the set (Gunawardana and Meek, 2008).

In all of these cases, it may be suboptimal to suggest items based solely on their predicted
rating. While it is certainly beneficial to recommend relevant items, other considerations are also
important. For example, in the e-commerce scenario, given two items that the system perceives
as equally relevant, suggesting the item with the higher profit can further increase revenue. In the
online news agency case, recommending longer stories may be beneficial, because reading them
will keep the user in the website longer. In the subscription service, recommending items that are
harder for the user to reach without the recommender system may be beneficial.

Another common practice of recommendation systems is to suggest recommendations that pro-
vide the most “value” to the user. For example, recommending popular items can be redundant, as
the user is probably already familiar with them. A recommendation of a preferred, yet unknown
item can provide a much higher value for the user.

Such approaches can be viewed as instances of providing recommendations that maximize some
utility function that assigns a value to each recommendation. Defining the correct utility function
for a given application can be difficult (Braziunas and Boutilier, 2005), and typically system design-
ers make simplifying assumptions about the user utility function. In the e-commerce case the utility
function is typically the profit resulting from recommending an item, and in the news scenario the
utility can be the expected time for reading a news item, but these choices ignore the effect of the
resulting recommendations on long-term profits. When we are interested in novel recommenda-
tions, the utility can be the log of the inverse popularity of an item, modeling the amount of new
information in a recommended item (Shani et al., 2005), but this ignores other aspects of user-utility
such as the diversity of recommendations.

In fact, it is possible to view many recommendation tasks, such as providing novel or serendipi-
tious recommendations as maximizing some utility function. Also, the “recommend good items” of
the previous section can be considered as optimizing for a utility function assigning a value of 1 to
each successful recommendation. In this paper, due to the popularity of the former task, we choose
to keep the two tasks distinct.

3.3 Predicting Ratings

In some cases, a system is required to predict the user ratings over a given set of items. For example,
in the Netflix website, when the user is browsing the list of new releases, the system assigns a
predicted rating for each movie. In CNET,3 a website offering electronic product reviews, users can

3. This can be found at www.cnet.com.
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search for, say, laptops that cost between $400 and $700. The system adds to some laptops in the
list an automatically computed rating, based on the laptop features.

It is arguable whether this task is indeed a recommendation task. However, many researchers in
the recommendations system community attempting to find good algorithms for this task. Examples
include the Netflix competition, which was warmly embraced by the research community, and the
numerous papers on predicting ratings on the Netflix or MovieLens4 data sets.

While such systems do not provide lists of recommended items, predicting that the user will rate
an item highly can be considered an act of recommendation. Furthermore, one can view a predicted
high rating as a recommendation to use the item, and a predicted low rating as a recommendation
to avoid the item. Indeed, it is common practice to use predicted ratings to generate a list of recom-
mendations. Below, we will present several arguments of cases where this common practice may be
undesirable.

4. Evaluation Protocols

We now discuss an experimental protocol for evaluating and choosing recommendation algorithms.
We review several requirements to ensure that the results of the experiments are statistically sound.
We also describe several common pitfalls in such experimental settings. This section reviews the
evaluation protocols in related areas such as machine learning and information retrieval, highlight-
ing practices relevant to evaluating recommendation systems. The reader is referred to publications
in these fields for more detailed discussions (Salzberg, 1997; Demšar, 2006; Voorhees, 2002a).

We begin by discussing online experiments, which can measure the real performance of the
system. We then argue that offline experiments are also crucial, because online experiments are
costly in many cases. Therefore, the bulk of the section discusses the offline experimental setting in
detail.

4.1 Online Evaluation

In the recommendation and utility optimization tasks, the designer of the system wishes to influence
the behavior of users. We are therefore interested in measuring the change in user behavior when
interacting with different recommendation systems. For example, if users of one system follow the
recommendations more often (in the case of the “recommend good items” task), or if the utility
gathered from users of one system exceeds utility gathered from users of the other system (in the
utility optimization task), then we can conclude that one system is superior to the other, all else
being equal. In the case of ratings prediction tasks, the goal is to provide information to support
user browsing and search. Once again, the value of such predictions can depend on a variety of
factors such as the user’s intent (e.g., how specific their information needs are, how much novelty
vs. how much risk they are seeking), the user’s context (e.g., what items they are already familiar
with, howmuch they trust the system), and the interface through which the predictions are presented.

For this reason, many real world systems employ an online testing system (Kohavi et al., 2009),
where multiple algorithms can be compared. Typically, such systems redirect a small percentage
of the traffic to each different recommendation engine, and record the users interactions with the
different systems. There are a few considerations that must be made when running such tests.
For example, it is important to sample (redirect) users randomly, so that the comparisons between

4. This can be found at www.movielens.org.

2940



A SURVEY OF EVALUATION METRICS OF RECOMMENDATION TASKS

alternatives are fair. It is also important to single out the different aspects of the recommenders.
For example, if we care about algorithmic accuracy, it is important to keep the user interface fixed.
On the other hand, if we wish to focus on a better user interface, it is best to keep the underlying
algorithm fixed.

However, in a multitude of cases, such experiments are very costly, since creating online testing
systems may require much effort. Furthermore, we would like to evaluate our algorithms before
presenting their results to the users, in order to avoid a negative user experience for the test users.
For example, a test system that provides irrelevant recommendations, may discourage the test users
from using the real system ever again. Finally, designers that wish to add a recommendation system
to their application before its deployment do not have an opportunity to run such tests.

For these reasons, it is important to be able to evaluate the performance of algorithms in an
offline setting, assuming that the results of these offline tests correlate well with the online behavior
of users.

4.2 Offline Experimental Setup

As described above, the goal of the offline evaluation is to filter algorithms so that only the most
promising need undergo expensive online tests. Thus, the data used for the offline evaluation should
match as closely as possible the data the designer expects the recommender system to face when
deployed online. Care must be exercised to ensure that there is no bias in the distributions of users,
items and ratings selected. For example, in cases where data from an existing system (perhaps a
system without a recommender) is available, the experimenter may be tempted to pre-filter the data
by excluding items or users with low counts, in order to reduce the costs of experimentation. In
doing so, the experimenter should be mindful that this involves a trade-off, since this introduces a
systematic bias in the data. If necessary, randomly sampling users and items may be a preferable
method for reducing data, although this can also introduce other biases into the experiment (e.g.,
this could tend to favor algorithms that work better with more sparse data).

In order to evaluate algorithms offline, it is necessary to simulate the online process where the
system makes predictions or recommendations, and the user corrects the predictions or uses the
recommendations. This is usually done by recording historical user data, and then hiding some
of these interactions in order to simulate the knowledge of how a user will rate an item, or which
recommendations a user will act upon.

There are a number of ways to choose the ratings/selected items to be hidden. Once again, it
is preferable that this choice be done in a manner that simulates the target application as closely as
possible. We discuss these concerns explicitly for the case of selecting used items for hiding in the
evaluation of recommendation tasks, and note that the same considerations apply when selecting
ratings to hide for evaluation of ratings prediction tasks.

Our goal is to simulate sets of past user selections that are representative of what the system will
face when deployed. Ideally, if we have access to time-stamps for user selections, we can randomly
sample test users, randomly sample a time just prior to a user action, hide all selections (of all
users) after that instant, and then attempt to recommend items to that user. This protocol requires
changing the set of given information prior to each recommendation, which can be computationally
quite expensive. A cheaper alternative is to sample a set of test users, then sample a single test time,
and hide all items after the sampled test time for each test user. This simulates a situation where
the recommender system is “trained” as of the test time, and then makes recommendations without
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taking into account any new data that arrives after the test time. Another alternative is to sample a
test time for each test user, and hide the test user’s items after that time, without maintaining time
consistency across users. This effectively assumes that it is the sequence in which items are selected,
and not the absolute times when they are selected that is important. A final alternative is to ignore
time; We sample a set of test users, then sample the number na of items to hide for each user a, then
sample na items to hide. This assumes that the temporal aspects of user selections are unimportant.
All three of the latter alternatives partition the data into a single training set and single test set. It is
important to select an alternative that is most appropriate for the domain and task of interest, rather
than the most convenient one.

A common protocol used in many research papers is to use a fixed number of known items or a
fixed number of hidden items per test user (so called “given n” or “all but n” protocols). This pro-
tocol is useful for diagnosing algorithms and identifying in which cases they work best. However,
when we wish to make decisions on the algorithm that we will use in our application, we must ask
ourselves whether we are truly interested in presenting recommendations for users who have rated
exactly n items, or are expected to rate exactly n items more. If that is not the case, then results
computed using these protocol have biases that make them difficult to use in predicting the outcome
of using the algorithms online.

The evaluation protocol we suggest above generates a test set (Duda and Hart, 1973) which is
used to obtain held-out estimates for algorithm performance, using performance measures which
we discuss below. Another popular alternative is to use cross-validation (Stone, 1974), where the
data is divided into a number of partitions, and each partition in turn is used as a test set. The
advantages of the cross-validation approach are to allow the use of more data in ranking algorithms,
and to take into account the effect of training set variation. In the case of recommender systems,
the held-out approach usually yields enough data to make reliable decisions. Furthermore, in real
systems, the problem of variation in training data is avoided by evaluating systems trained on the
historical data specific to the task at hand. In addition, there is a risk that since the results on the
different data partitions are not independent of each other, pooling the results across partitions for
ranking algorithms can lead to statistically unjustified decisions (Bengio and Grandvalet, 2004).

4.3 Making Reliable Choices

When choosing between algorithms, it is important that we can be confidant that the algorithm that
we choose will also be a good choice for the yet unseen data the system will be faced with in the
future. As we explain above, we should exercise caution in choosing the data so that it would be
most similar to the online application. Still, there is a possibility that the algorithm that performed
best on this test set did so because the test set was fortuitously suitable for that algorithm. To reduce
the possibility of such statistical mishaps, we must perform significance testing on the results.

Typically we compute a significance level or p-value—the probability that the obtained results
were due to luck. Generally, we will reject the null hypothesis that algorithm A is no better than
algorithm B if the p-value is above 0.05 (or below 95% confidence). That is, if the probability that
the observed ranking is achieved by chance exceeds 0.05. More stringent significance levels (e.g.,
0.01 or even lower) can be used in cases where the cost of making the wrong choice is higher.

In order to perform a significance test that algorithm A is indeed better than algorithm B, we
require the results of several independent experiments comparing A and B. The protocol we have
chosen in generating our test data ensures that we will have this set of results. Assuming that test
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users are drawn independently from some population, the performance measures of the algorithms
for each test user give us the independent comparisons we need. However, when recommendations
or predictions of multiple items are made to the same user, it is unlikely that the resulting per-item
performance metrics are independent. Therefore, it is better to compare algorithms on a per-user
case. Approaches for use when users have not been sampled independently also exist, and attempt
to directly model these dependencies (see, e.g., Larocque et al. 2007). Care should be exercised
when using such methods, as it can be difficult to verify that the modeling assumptions that they
depend on hold in practice.

Given such paired per-user performance measures for algorithms A and B the simplest test of
significance is the sign test (Demšar, 2006). In this test, we count the number of users for whom al-
gorithm A outperforms algorithm B (nA) and the number of users for whom algorithm B outperforms
algorithm A (nB). The probability that A is not truly better than B is estimated as the probability of
at least nA out of nA+nB 0.5-probability Binomial trials succeeding (that is, nA out of nA+nB fair
coin-flips coming up “heads”).

pr(successes≥ nA|A= B) = 0.5nA+nB
na+nB
!
k=nA

(nA+nB)!
k!(ni+nB− k)!

.

The sign test is an attractive choice due to its simplicity, and lack of assumptions over the
distribution of cases. Still this test may lead to mislabeling of significant results as insignificant
when the number of test points is small. In these cases, the more sophisticated Wilcoxon signed
rank test can be used (Demšar, 2006). As mentioned in Section 4.2, cross-validation can be used to
increase the amount of data, and thus the significance of results, but in this case the results obtained
on the cross-validated test sets are no longer independent, and care must be exercised to ensure that
our decisions account for this (Bengio and Grandvalet, 2004). Also, model-based approaches (e.g.,
Goutte and Gaussier, 2005) may be useful when the amount of data is small, but once again, care
must be exercised to ensure that the model assumptions are reasonable for the application at hand.

Another important consideration is the effect of evaluating multiple versions of algorithms. For
example, an experimenter might try out several variants of a novel recommender algorithm and
compare them to a baseline algorithm until they find one that passes a sign test at the p= 0.05 level
and therefore infer that their algorithm improves upon the baseline with 95% confidence. However,
this is not a valid inference. Suppose the experimenter evaluated ten different variants all of which
are statistically the same as the baseline. If the probability that any one of these trials passes the
sign test mistakenly is p= 0.05, the probability that at least one of the ten trials passes the sign test
mistakenly is 1− (1−0.05)20 = 0.40. This risk is colloquially known as “tuning to the test set” and
can be avoided by separating the test set users into two groups—a development (or tuning) set, and
an evaluation set. The choice of algorithm is done based on the development test, and the validity
of the choice is measured by running a significance test on the evaluation set.

A similar concern exists when ranking a number of algorithms, but is more difficult to circum-
vent. Suppose the best of N+ 1 algorithms is chosen on the development test set. We can have
a confidence 1− p that the chosen algorithm is indeed the best, if it outperforms the N other al-
gorithms on the evaluation set with significance 1− (1− p)1/N . This is known as the Bonferroni
correction, and should be used when pair-wise significant tests are used multiple times. Alterna-
tively, the Friedman test for ranking can be used (Demšar, 2006).
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5. Evaluating Tasks

An application designer that wishes to employ a recommendation system typically knows the pur-
pose of the system, and can map it into one of the tasks defined above—recommendation, utility
optimization, and ratings prediction. Given such a mapping, the designer must now decide which
evaluation metric to use in order to rank a set of candidate recommendation algorithms. It is impor-
tant that the metric match the task, to avoid an inappropriate ranking of the candidates.

Below we provide an overview of a large number of evaluation metrics that have been suggested
in the recommendation systems literature. For each such metric we identify its important properties
and explain why is it most appropriate for the given task. For each task we also explain a possible
evaluation scenario that can be used to evaluate the various algorithms.

5.1 Predicting Ratings

In this task, the system must provide a set of predicted ratings, and is evaluated on the accuracy of
these predictions. This is the most common scenario in the evaluation of regression and classifica-
tion algorithms in the machine learning and statistics literature (Duda and Hart, 1973; Stone, 1974;
Bengio and Grandvalet, 2004). Many evaluation metrics that originated in that literature have been
applied here.

Most notably, the Root of the Mean Square Error (RMSE) is a popular method for scoring
an algorithm. If pi, j is the predicted rating for user i over item j, and vi, j is the true rating, and
K = {(i, j)} is the set of hidden user-item ratings then the RMSE is defined as:

√

!(i, j)∈K(pi, j− vi, j)2

n
.

Other variants of this family are the Mean Square Error (which is equivalent to RMSE) and Mean
Average Error (MAE), and Normalized Mean Average Error (NMAE) (Herlocker et al., 2004).
RMSE tends to penalize larger errors more severely than the other metrics, while NMAE normalizes
MAE by the range of the ratings for ease of comparing errors across domains.

RMSE is suitable for the prediction task, because it measures inaccuracies on all ratings, either
negative or positive. However, it is most suitable for situations where we do not differentiate be-
tween errors. For example, in the Netflix rating prediction, it may not be as important to properly
predict the difference between 1 and 2 stars as between 2 and 3 stars. If the system predicts 2 instead
of the true 1 rating, it is unlikely that the user will perceive this as a recommendation. However, a
predicted rating of 3 may seem like an encouragement to rent the movie, while a prediction of 2 is
typically considered negative. It is arguable that the space of ratings is not truly uniform, and that it
can be mapped to a uniform space to avoid such phenomena.

5.2 Recommending Good Items

For the task of recommending items, typically we are only interested in binary ratings, that is,
either the item was selected (1) or not (0). Compared to ratings data sets, where users typically rate
only a very small number of items, making the data set extremely sparse, binary selection data sets
are dense, as each item was either selected or not by the user. An example of such data sets are
news story click streams, where we set a value of 1 for each item that was visited, and a value of 0
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Recommended Not recommended
Preferred True-Positive (tp) False-Negative (fn)
Not preferred False-Positive (fp) True-Negative (tn)

Table 1: Classification of the possible result of a recommendation of an item to a user.

elsewhere. The task is to provide, given an existing list of items that were viewed, a list of additional
items that the user may want to visit.

As we have explained above, these scenarios are typically not symmetric. We are not equally
interested in good and bad items; the task of the system is to suggest good items, not to discourage
the use of bad items. We can classify the results of such recommendations using Table 1.

We can now count the number of examples that fall into each cell in the table and compute the
following quantities:

Precision =
#tp

#tp+#fp
,

Recall (True Positive Rate) =
#tp

#tp+#fn
,

False Positive Rate (1 - Specificity) =
#fp

#fp+#tn
.

Typically we can expect a trade off between these quantities—while allowing longer recommenda-
tion lists typically improves recall, it is also likely to reduce the precision. In some applications,
where the number of recommendations that are presented to the user is not preordained, it is there-
fore preferable to evaluate algorithms over a range of recommendation list lengths, rather than using
a fixed length. Thus, we can compute curves comparing precision to recall, or true positive rate to
false positive rate. Curves of the former type are known simply as precision-recall curves, while
those of the latter type are known as a Receiver Operating Characteristic5 or ROC curves.

While both curves measure the proportion of preferred items that are actually recommended,
precision-recall curves emphasize the proportion of recommended items that are preferred while
ROC curves emphasize the proportion of items that are not preferred that end up being recom-
mended.

We should select whether to use precision-recall or ROC based on the properties of the domain
and the goal of the application; suppose, for example, that an online video rental service recom-
mends DVDs to users. The precision measure describes what proportion of their recommendations
were actually suitable for the user. Whether the unsuitable recommendations represent a small or
large fraction of the unsuitable DVDs that could have been recommended (that is, the false positive
rate) may not be as relevant.

On the other hand, consider a recommender system for an online dating site. Precision describes
what proportion of the suggested pairings for a user result in matches. The false positive rate
describes what proportion of unsuitable candidates are paired with the active user. Since presenting
unsuitable candidates can be especially undesirable in this setting, the false positive rate could be
the most important factor.

5. A reference to their origins in signal detection theory.
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Given two algorithms, we can compute a pair of such curves, one for each algorithm. If one
curve completely dominates the other curve, the decision about the winning algorithm is easy. How-
ever, when the curves intersect, the decision is less obvious, and will depend on the application in
question. Knowledge of the application will dictate which region of the curve the decision will be
based on. For example, in the “recommend some good items” task it is likely that we will prefer a
system with a high precision, while in the “recommend all good items” task, a higher recall rate is
more important than precision.

Measures that summarize the precision recall of ROC curve such as F-measure (Rijsbergen,
1979) and the area under the ROC curve (Bamber, 1975) are useful for comparing algorithms inde-
pendently of application, but when selecting an algorithm for use in a particular task, it is preferable
to make the choice based on a measure that reflects the specific needs at hand.

5.2.1 PRECISION-RECALL AND ROC FOR MULTIPLE USERS

When evaluating precision-recall or ROC curves for multiple test users, a number of strategies that
can be employed in aggregating the results. The simplest is to aggregate the hidden ratings from
the test set into a set of user-item pairs, generate a ranked list of user-item pairs by combining the
recommendation lists for the test users, and then compute the precision-recall or ROC curve on this
aggregated data.

This aggregation process assumes that we have a means of comparing recommendations made
to different users in order to combine the recommendation lists into a single ranked list. Computing
ROC curves in this manner treats the recommendations of different items to each user as being in-
dependent detection or classification tasks, and the resulting curve is termed a global ROC (GROC)
curve (Schein et al., 2002).

A second approach is to compute the precision and recall (or true positive rate and false positive
rate) at each recommendation list length N for each user, and then compute the average precision
and recall (or true positive rate and false positive rate) at each N(Sarwar et al., 2000). The resulting
curves are particularly valuable because they prescribe a value of N for each achievable precision
and recall (or true positive rate and false positive rate), and conversely, can be used to estimate
performance at a given N. Thus, this approach is useful in the “recommend some good items”
scenario, where one important decision is the length of the recommendation list, by comparing
performances along different candidate points along the curves. An ROC curve obtained in this
manner is termed a Customer ROC (CROC) curve (Schein et al., 2002).

A third approach is to compute a precision-recall curve (or ROC curve) for each user and then
average the resulting curves over users. This is the usual manner in which precision-recall curves
are computed in the information retrieval community, and in particular in the influential TREC
competitions (Voorhees, 2002b). This method is more relevant in the “recommend all good items”
sub-task, if the system provides the user with all available recommendations and the user then scans
the list linearly, marking each scanned item as relevant or not. The system can then compute the
precision of the items scanned so far, and use the precision recall curve to give the user an estimate
of what proportion of the good items have yet to be found.

5.3 Optimize Utility

Estimating the utility of a list of recommendations requires a model of the way users interact with
the recommendations. For example, if a movie recommender system presents the DVD cover im-
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ages of the top five recommendations prominently arranged horizontally across the top of the screen,
the user will probably observe them all and select the items of interest. However, if all the recom-
mendations are presented in a textual list several pages long, the user will probably scan down the
list and abandon their scan at some point. In the first case, utility delivered by the top five recom-
mendations actually selected would be a good estimate of expected utility, while in the second case,
we would have to model the way users scan lists.

The half-life utility score of Breese et al. (1998) suggested such a model. It postulates that the
probability that the user will select a relevant item drops exponentially down the list.

This approach evaluates an unbounded recommendation list, that potentially contains all the
items in the catalog. Given such a list we assume that the user looks at items starting from the top.
We then assume that an item at position k has a probability of 1

2(k−1)/("−1) of being viewed, where "
is a half life parameter, specifying the location of the item in the list with 0.5 probability of being
viewed.

In the binary case of the recommendation task the half-life utility score is computed by:

Ra = !
j

1
2(idx( j)−1)/("−1) ,

R =
!a Ra
!a Rmaxa

,

where the summation in the first equation is over the preferred items only, idx( j) is the index of
item j in the recommendation list, and Rmaxa is the score of the best possible list of recommendations
for user a.

More generally, we can plug any utility function u(a, j) that assigns a value to a user item pair
into the half-life utility score, obtaining the following formula:

Ra =!
j

u(a, j)
2(idx( j)−1)/("−1) .

Now, Rmaxa is the score for the list of the recommendation where all the observed items are ordered
by decreasing utility. In applications where the probability that a user will select the idxth item if it
is relevant is known, a further generalization would be to use these known probabilities instead of
the exponential decay.

5.4 Fixed Recommendations Lists

When users add movies to their queues in Netflix, the system presents a list of 10 movies that they
may like. However, when users choose to see recommendations (by clicking “movies that you will
love”) the system presents all the possible recommendations. If there are too many recommended
movies to fit a single page, the system allows the user to move to the next page of recommendations.

These two different usage scenarios illustrate a fundamental difference between recommenda-
tion applications—in the first, the system is allowed to show a small, fixed number of recommen-
dations. In the second, the system provides as many recommendations as it can. Even though
the two cases match a single task—the “recommend good items” task—there are several important
distinctions that arise. It is important to evaluate the two cases properly.

When the system is required to present a list with a small, fixed size, that is known a priori,
methods that present curves (precision-recall), or methods that evaluate the entire list (half-life
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utility score), become less appropriate. For example, a system may get a relatively high half-life
utility score, only due to items that fall outside the fixed list, while another system that selects all
the items in the list correctly, and uninteresting items elsewhere, might get a lower score. Precision-
recall curves are typically used to help us select the proper list length, where the precision and recall
reach desirable values.

Another important difference, is that for a small list, the order of items in the list is less impor-
tant, as we can assume that the user looks at all the items in the list. Moreover, may of these lists
are presented in a horizontal direction, which also reduces the importance of properly ordering the
items.

In these cases, therefore, a more appropriate way to evaluate the recommendation system should
focus on the first N movies only. In the “recommend good items” task this can be done, for example,
by measuring the precision at N—the number of items that are interesting out of the recommended
N items. In the “optimize utility” task, we can do so by measuring the aggregated utility (e.g., sum
of utility) of the items that are indeed interesting within the N recommendations.

A final case is when we have unlimited recommendation lists in the “recommend good items”
scenario, and we wish to evaluate the entire list. In this case, one can use the half-life utility score
with a binary utility of 1 when the (hidden) item was indeed selected by the user, and 0 otherwise.
In that case, the half-life utility score prefers a recommender system that places interesting items
closer to the head of the list, but provides an evaluation for the entire list in a single score.

6. Empirical Evaluation

In some cases, two metrics may provide a different ranking of two algorithms. When one metric
is more appropriate for the task at hand, using the other metric may result in selecting the wrong
algorithm. Therefore, it is important to choose the appropriate evaluation metric for the task at hand.

In this section we provide some empirical examples of the phenomenon we describe above,
that is, where different metrics rank algorithms differently. Below, we present examples where
algorithms are ranked differently by two metrics, one of which is more appropriate for the task of
interest.

6.1 Data Sets

We selected publicly available data sets which were naturally suited to the different recommendation
tasks we have described above. We begin by describing the properties of each data set we used.

6.1.1 PREDICTION TASK

For the prediction task we selected two data sets that contained ratings over items—the Netflix data
set and the BookCrossing data set. In both cases, the prediction task is quite natural. Users of both
systems may want to browse the collection of movies or books, and we would want to offer these
users an estimated rating for the presented items.
Netflix: In 2004, the online movie rental company Netflix6 announced a competition for im-

proving its recommendation system. For the purpose of the competition, Netflix has released a data
set containing 480,000 users ratings over 17,700 movies. Ratings are between 1 and 5 stars for each
movie. The data set is very sparse—users mostly rated a small fraction of the available movies. In

6. This can be found at www.netflix.com.
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our experiments, as we are working with simple algorithms, we have reduced the data set to users
who rated more than 100 movies, leaving us with 21,179 users, 17,415 movies, and 117 ratings per
user on average. Thus, our results are not comparable to results published in the online competition
scoreboard.
BookCrossing: The BookCrossing website7 allows a community of book readers to share their

interests in books, and to review and discuss books. Within that system users can provide ratings
on the scale of 1 to 10 stars. The specific data set that we used was collected by a 4 week crawl
during August and September 2004 (Ziegler et al., 2005). The data set contains 105,283 users and
340,556 books (we used just the subset containing explicit ratings). Average ratings for a user is
10. This data set is even more sparse than the Netflix data set that we used, as there are more items
and less ratings per user.

Both data sets share some common properties. First, people watch many movies and read many
books, compared with other domains. For example, most people experience with only a handful of
laptop computers, and so cannot form an opinion on most laptops. Ratings are also skewed towards
positive ratings in both cases, as people are likely to watch movies that they think they will like, and
even more so in the case of books, which require a heavier investment of time.

There are also some distinctions between the data sets. Some people feel compelled to share
their opinion about books and movies, without asking for a compensation. However, in the Netflix
domain, providing ratings makes it easier to navigate the system and rent movies. Therefore, all
users of Netflix have an incentive for providing ratings, while only people who like to share their
views of books use the BookCrossing system. We can therefore expect that the ratings of the
BookCrossing are less representative of the general population of book readers, than the ratings
of Netflix user from the general population of DVD renters.

6.1.2 RECOMMENDATION TASK

One instance of the “recommend good items” task is the case where, given a set of items that the
user has used (bought, viewed), we wish to recommend a set of items that are likely to be used.
Typically, data sets of usage are binary—an item was either used or wasn’t used by the user, and the
data set is not sparse, because every item is either used or not used by every user. We used here a
data set of purchases from supermarket retailer, and a stream of articles that were viewed in a news
website.
Belgian retailer: This data set was collected from an anonymous Belgian retail supermarket

store, collected over approximately 5 months, in three non-consecutive periods during 1999 and
2000. The data set is divided into baskets, and we cannot detect return users. There are 88,162
baskets, 16,470 distinct items, and 10 items in an average basket. We do not have access for item
prices or profits, so we cannot optimize the retailer revenue. Therefore the task is to recommend
more items that the user may want to add to the basket.
News click stream: This is a log of click-stream data of an Hungarian online news portal

(Bodon, 2003). The data contains 990,002 sessions, 41,270 news stories, and an average of 8
stories for session. The task is, given the news items that a user has read so far, recommend more
news items that the user will likely read.

7. This can be found at www.bookcrossing.com.
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6.1.3 OPTIMIZING UTILITY TASK

Ta-Feng supermarket: A natural example for an application where optimizing utility is important
is maximizing the revenues of a retail company. Such companies may provide recommendation for
items, hoping that customers following these recommendations will produce higher revenue. In this
case, a natural utility function is the revenue (or profit) from the purchase of an item. The Ta-Feng
data set (Hsu et al., 2004) contains transaction information collected over 4 months from November,
2000 to February, 2001. There are 32,266 users and 23,812 items, where the average number of
items bought by a user is 23. In this task, the utility function is the accumulated profit from selling
an item—taking into account both the quantity and the profit per item.

6.2 Recommendation Algorithms

As the focus of this survey is on the correct evaluation of recommender systems, and not on sophis-
ticated algorithms for computing recommendation lists, we limit ourselves to a set of very simple
collaborative filtering algorithms. We do this because collaborative filtering is by far the most pop-
ular recommendation approach, and because we do not believe that it is appropriate to select the
evaluation metric based on the recommendation approach (e.g., collaborative filtering vs. content
based).

Moreover, we carefully selected algorithms that are better suited for different tasks, so that
we could demonstrate that inappropriate choice of evaluation metric can lead to a bad choice of
algorithm. As the algorithms that we choose are computationally intensive, we reduced the size of
the data set in some cases, in order to reduce the computation time. This should not be done if it
was important to realistically simulate the online case. Below, we present the different algorithms
and our prior assumptions about their properties.

6.2.1 PEARSON CORRELATION

Typically, the input for a prediction task is a data set consisting of the ratings provided by n users for
m items, where vi, j is the rating of user i for item j. Given such a data set, the simplest collaborative
filtering method computes the similarity of the active user a to all other users i in the data set,
resulting in a score w(a, i). Then, the predicted rating pa, j for a over item j can be computed by:

pa, j = v̄a+#
n

!
i=1

w(a, i)(vi, j− v̄i). (1)

Perhaps the most popular method for computing the weights w(a, i) is by using the Pearson
correlation coefficient (Resnick and Varian, 1997):

w(a, i) =
! j(va, j− v̄a)(vi, j− v̄i)

√

! j(va, j− v̄a)2! j(vi, j− v̄i)2

where the summations are only over the items that both a and i have rated. To reduce the computa-
tional overhead, we use in Equation 1 a neighborhood of size N.

This method is specifically designed for the prediction task, as it computes only a predicted score
for each item of interest. However, in many cases people used this method for the recommendation
task. This is typically done by predicting the scores for all possible items, and then ordering the
items by decreasing predicted scores.
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This popular usage may not be appropriate. For example, in the movie domain people may
associate ratings with quality, as opposed to enjoyment, which is dependent on external factors
such as mood, time of day, and so forth. As such, 5 stars movies may be complicated, requiring a
substantial effort from the viewer. Thus, a user may rent many light effortless romantic comedies,
which may only get a score of 3 stars, and only a few 5 star movies. While it is difficult to measure
this effect without owning a rental store, we computed the average number of ratings for movies
with different average rating (Figure 6.2.1). This figure may suggest that movies with higher ratings
are not always watched more often than movies with lower ratings. If our assumption is true, a
system that recommends items to add to the rental queue by order of decreasing predicted rating,
may not do as well as a system that predicts the probability of adding a movie to the queue directly.

Figure 1: Computing the average number of ratings (popularity) of movies binned given their aver-
age ratings.

6.2.2 COSINE SIMILARITY

A second popular collaborative filtering method is the vector similarity metric (Salton, 1971) that
measures the cosine angle formed by the two ratings vectors:

w(a, i) = !
j∈Ia,i

va, j
√

!k ∈ Iav2a,k

vi, j
√

!k ∈ Iiv2i,k
.

When computing the cosine similarity, only positive ratings have a role, and negative ratings are
discarded. Thus, Ii is the set of items that user i has rated positively and Ia,i is the set of items that
both users rated positively. Also, the predicted score for a user is computed by:

pa, j = #
n

!
i=1

w(a, i)vi, j.

In the case of binary data sets, such as the usage data sets that we selected for the recommenda-
tion task, the vector similarity method becomes:

w(a, i) =
|Ia,i|

√

|Ia| ·
√

|Ii|
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where Ia is the set of items that a used, and Ia,i is the set of items that both a and i used. The resulting
aggregated score can be considered as a non-calibrated measurement of the conditional probability
pr( j|a)—the probability that user a will choose item j.

In binary usage data sets, the Pearson correlation method would compute similarity using all
the items, as each item always has a rating. Therefore, the system would use all the negative “did
not use” scores, which typically greatly outnumber the “used” scores. We can therefore expect that
Pearson correlation in these cases will result in lower accuracy.

6.2.3 ITEM TO ITEM

The above two methods focused on computing a similarity between users, but another possible
collaborative filtering alternative is to focus on the similarity between items. The simplest method
for doing so is to use the maximum likelihood estimate for the conditional probabilities of items.
Specifically, for the binary usage case, this translates to:

pr( j1| j2) =
|Jj1, j2 |
|Jj2 |

where Jj is the number of users who used item j, and Jj1, j2 is the number of users that used both j1
and j2. While this seems like a very simple estimation, similar estimations are successfully used in
deployed commercial applications (Linden et al., 2003).

Typically, an algorithm is given as an input a set of items, and needs to produce a list of recom-
mendations. In that case, we can compute for the conditional probability of each target item given
each observed item, and then aggregate the results over the set of given items. In many cases, choos-
ing the maximal estimate has given the best results (Kadie et al., 2002), so we aggregate estimations
using a max operator in our experiments.

6.2.4 EXPECTED UTILITY

As optimizing utilities is by far the least explored recommendation task, we choose here to propose
a new algorithm that is designed specifically for this task. Intuitively, if the task requires lists that
optimize a utility function u(a, j), an obvious method is to order the recommendation by decreasing
expected utility:

E[ j|a] = p̃r( j|a) · ũ(a, j)

where p̃r is a conditional probability estimate and ũ is a utility estimate.
One way to compute the two estimates is by using two different algorithms—a recommendation

algorithm for estimating p̃r and a prediction algorithm for estimating ũ, and then combining their
output.

6.3 Experimental Results

Below, we present several examples where different evaluation metrics rank two algorithms differ-
ently. We argue that in these cases, using an improper evaluation metric will lead to the selection of
an inferior algorithm.
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Netflix BookCrossing
Pearson 1.07 3.58
Cosine 1.90 4.5

Table 2: RMSE scores for Pearson correlation and Cosine similarity on the Netflix domain (ratings
from 1 to 5) and the BookCrossing domain (ratings from 1 to 10).

6.3.1 PREDICTION VS. RECOMMENDATION

We begin by comparing Pearson correlation and Cosine similarity collaborative filtering algorithms
over two tasks—the prediction task and the “recommend good items” task. Both algorithms used
neighborhoods consisting of the closest 25 users.

First we evaluated the algorithms in predicting ratings on the Netflix and BookCrossing data
sets, where we sampled 2000 test users and a randomly chosen number of test items per test user
on each data set. Given Table 2, the algorithm of choice is clear—on both data sets, the predictions
given by the Pearson correlation algorithm have lower RMSE scores, and the differences pass a sign
test with p< 0.0001.

We then evaluated the two algorithms on the recommendation task on the Belgian retailer and
news click stream data sets, where we again sampled 2000 test users and a randomly chosen number
of test items per test user on each data set. Let us now evaluate the two algorithms on recommen-
dation tasks. To do that, we computed precision-recall curves for the two algorithms on the Belgian
retailer data set and the news click stream data set. This was done by computing precision and
recall at 1, 3, 5, 10, 25, and 50 recommendations, and averaging the precisions and recalls at each
number of recommendations. As Figure 2 shows, in both cases the recommendation lists generated
by the Cosine similarity dominate the recommendation lists generated by the Pearson correlation
algorithm in terms of precision. In the Belgian retailer data, Cosine similarity also has better recall
than Pearson correlation across the board. On the news click stream data, Cosine similarity has
better recall than Pearson correlation for 1, 3, and 5, recommendations. All these comparisons were
significant according to a sign test with p< 0.0001. Therefore, in these cases, one would select the
Cosine algorithm as the most appropriate choice.

This experiment shows that an algorithm that is uniformly better at predicting ratings on ratings
data sets is not necessarily better at making recommendations on usage data sets. This suggests that
it is possible that an algorithm that is better at predicting ratings could be worse at predicting usage
in the same domain as well. An interesting experiment would be, given both ratings and usage
data over the same users and items, to see whether algorithms that generate recommendation lists
by decreasing order of predicted ratings do as well in the recommendation task over the usage data.
Unfortunately, we are unaware of any public data set that contains both types of information. Never-
theless, companies such as Amazon or Netflix collect data both of user purchases and of user ratings
over items. These companies can therefore make the appropriate decision for the recommendation
task at hand.

It is also possible that websites that support multiple recommendation tasks should use different
algorithms for the different tasks. For example, the Netflix website contains a prediction task (e.g.,
for new releases), and two recommendation tasks—a fixed list of recommendations when adding
items to the rental queue, and an unlimited list of recommendations in the “movie you will like”
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(a) Belgian retailer recommendations

(b) News click stream recommendations

Figure 2: Comparing recommendations generated by Pearson correlation and Cosine similarity. In
both cases, the recommendation list is ordered by decreasing predicted score.

section. It may well be that different algorithms that were trained over different data sets (ratings
vs. rentals) may rank differently in different tasks. Deciding on the best recommendation engine
based solely on RMSE in the prediction task may lead to worse recommendation lists in the two
other cases.
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6.3.2 RECOMMENDATION VS. UTILITY MAXIMIZATION

In many retail applications, where the retailer is interested in maximizing profits, people may still
train their algorithm on usage data solely, and evaluate them using recommendation oriented met-
rics, such as precision-recall. For example, even though a retailer website wishes to maximize its
profit, it may use a binary data set of items that were bought by users to generate recommendations
of the type “people who bought this item also bought ...”.

To evaluate the performance of such an approach, we used an item-item recommendation system
to generate recommendations for the Ta-Feng data set. Alternatively, one can order the items by
expected utility. To compute an estimate of expected utility, we interpreted the normalized predicted
score of each recommended item as the probability that the user would actually buy that item. In
the case where the recommender predicts numerical ratings, we normalize by the highest possible
rating and treat the result as a probability distribution. For example, if the highest rating is 5 and
the algorithm predicts a score of 4.5 for a specific user we assume the the probability that the user
will use the item is 0.9. We then use the average profit earned from each item to predict the profit
that would be obtained from each item if the active user bought it. Multiplying the probability that
the user would buy an item buy the profit that would result if the user bought the item yielded the
required estimate of expected utility.

We then evaluated the two algorithms by comparing their precision-recall curves, which are
shown in Figure 3. The curves were generated by evaluating precision and recall at 1, 3, 5, 10, 25,
and 50 recommendations, and averaging the precisions and recalls at each number of recommenda-
tions. The averages were computed over 2000 users, and the item-item recommender outperformed
the expected profit recommender in terms of both precision and recall at all points with p< 0.0001.

Figure 3: Comparing recommendations generated by the item-item recommender and the expected
profit recommender on the Ta-Feng data set.

We then measured an half-life utility score where the utility of a correct recommendation was
the profit from selling the correctly recommended item to the user. The results are shown in Table 3.
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Score
Item-Item 0.01
Exp. Profit 0.05

Table 3: Comparing item-item vs. expected utility recommendations on the Ta-Feng data set with
the half-life utility score. The utility of a correct recommendation was the profit from
selling that item to that user, while the half-life was 5. The trends were similar for other
choices of the half-life parameter.

Choosing a recommender based on classification performance would have resulted in an half-life
utility score (expected profit) that was 20% of what could have been achieved with the correct
choice. This difference is statistically significant with p< 0.001.

These results are, of course, not surprising—using a recommender that explicitly attempts to
optimize expected profit gives a better expected profit measure. However, occasionally people that
are interested in maximizing profit, providing maximum value to the users, or minimizing user
effort, use precision-recall to choose a recommendation algorithm.

7. Discussion

Above, we discussed the major considerations that one should make when deciding on the proper
evaluation metric for a given task. We now add some discussion, illustrating other conclusions that
can be derived, and illuminating some other relevant topics.

7.1 Evaluating Complete Recommender Systems

This survey focuses on the evaluation of recommendation algorithms. However, the success of a
recommendation system does not depend solely on the quality of the recommendation algorithm.
Such systems typically attempt to modify user behavior which is influenced by many other param-
eters, most notably, by the user interface. The success of the deployed system in influencing users
can be measured through the change in user behavior, such as the number of recommendations that
are followed, or the change in revenue.

Decisions about the interface by which users view recommendations are critical to the success
of the system. For example, recommendations can be located in different places in the page, can be
displayed horizontally or vertically, can be presented through images or text, and so forth. These
decisions can make a significant impact, no smaller than the quality of the underlying algorithm, on
the success of a system.

When the application is centered around the recommendation system, it is important to select
the user interface together with the recommendation algorithm. In other cases, the recommendation
system is only a supporting system for the application. For example, an e-commerce website is
centered around the item purchases, and a news website is centered around the delivery of news
stories. In both cases, a recommender system may be employed to help the users navigate, or to
increase sales. It is likely that the recommendations are not the major method for browsing the
collection of items.
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When the recommender system is only a supporting system, the designer of the application will
probably make the decision about the user interface without focusing on positioning recommenda-
tions where they have the most influence. In such cases, which we believe to be very common, the
developer of the recommender system is constrained by the pre-designed interface, and in many
cases can therefore only decide on the best recommendation algorithm, and in some cases perhaps
the length of the recommendation list. This paper is targeted at researchers and developers who are
making decisions about algorithms, not about the user interface. Designing a good user interface is
an interesting and challenging problem, but it is outside the scope of this survey (see, e.g., Pu and
Chen 2006).

7.2 Eliciting Utility Functions

A simple way to avoid the need to classify recommendation algorithms, is to assume that we are
always optimizing some utility function. This utility function can be the user utility for items (see,
e.g., Kumar et al. 1998, Price and Messinger 2005 and Hu and Pu 2009), or it can be the application
utility. We can then ask users about their true utility function, or design a utility function that
captures the goal of the application, and always choose the algorithm that maximizes this utility.

However, such a view is misleading; eliciting user utilities can be a very difficult task (see, e.g.,
Braziunas and Boutilier 2005, citealtChajewska and Huang 2008). For example, the value that the
user is willing to invest in a laptop depends on a multitude of elements, such as her income, her
technical knowledge, the intended use of the laptop and so forth. Indeed, eliciting such functions
is the focus of active research, for example by presenting users with forced choices. Therefore,
expecting that we will have access to a good estimate of the user utility function is unrealistic—
estimating this function may be no easier than coming up with good recommendations.

Furthermore, even when the application designer understands the application utility function,
gathering utilities from users may be very difficult. For example, in the Netflix domain, the business
model may be to keep the users subscribed. Therefore, the utility of an movie for a user (from
the website perspective) is not whether the user enjoys the movie, but rather whether the user will
maintain her subscription if the movie is suggested to her. Clearly, most users will not want to
answer such questions, and many may not know the answer themselves.

For this reason, when the utility function is unclear, the best we can do is to maximize the
number of useful items that we suggest to the user. As such, the recommendation task cannot be
viewed as a sub-task for utility optimization.

7.3 Implicit vs. Explicit ratings

Our classification of recommendation tasks sheds some light over another, commonly discussed
subject in recommender systems, namely, implicit ratings (Claypool et al., 2001; Oard and Kim,
1998). In many applications, people refer to data that was automatically collected, such as logs of
web browsing, or records of product purchases, as an implicit indication for positive opinions over
the items that were visited or purchased.

However, this perspective is appropriate only if the task is the prediction task, where we would
like to know whether the user will have a positive or negative opinion over certain items. If the
task is to recommend more items that the user may buy, given the items that the user has already
bought, purchase data becomes an explicit indication. In this case, using ratings that users provide
over items is an implicit indication to whether the user will buy the item.
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For example, a user may have a positive opinion over many laptop computers, and may rate
many laptops highly. However, most people buy only one laptop. In that case, recommending more
laptops, based on the co-occurring high ratings, will be inappropriate. However, if we predict the
probability of buying a laptop given that another laptop has already been bought, we can expect this
probability to be low, and the other laptop will not be recommended.

8. Related Work

In the past, different researchers discussed various topics relevant to the evaluation of recommender
systems.

Breese et al. (1998) were probably the first to provide a sound evaluation of a number of rec-
ommendation approaches over a collection of different data sets, setting the general framework of
evaluating algorithms on more than a single real world data set, and a comparison of several algo-
rithms in identical experiments. The practices that were illustrated in that paper are used in many
modern publications.

Herlocker et al. (2004) provide an extensive survey of possible metrics for evaluation. They
then compare a set of metrics, concluding that for some pairs of metrics, using both together will
give very little additional information compared to using just one.

Another interesting contribution of that paper is a classification of recommendation engines
from the user task perspective, namely, what are the reasons and motivations that a user has when
interacting with a recommender system. As they are interested in user tasks, and we are interested
in the system tasks, our classification is different, yet we share some similar tasks, such as the
“recommend some good items” and “recommend all good items” tasks.

Finally, their survey attempted to cover as many evaluation metrics and user task variations as
possible, we focus here on the appropriate metrics for the most popular recommendation tasks only.

Mcnee et al. (2003) explain why accuracy metrics alone are insufficient for selecting the correct
recommendation algorithm. For example, users may be interested in the serendipity of the rec-
ommended items. One way to model serendipity is through a utility function that assigns higher
values to “unexpected” suggestions. They also discuss the “usefulness” of recommendations. Many
utility functions, such as the inverse log of popularity (Shani et al., 2005) attempt to capture this
“usefulness”.

Ziegler et al. (2005) focus on another aspect of evaluation—considering the entire list together.
This would allow us to consider aspects of a set of recommendations, such as diversification between
items in the same list. Our suggested metrics consider only single items, and thus could not be
used to evaluate entire lists. It would be interesting to see more evaluation metrics that provide
observations over complete lists.

Celma and Herrera (2008) suggest looking at topological properties of the recommendation
graph—the graph that connects recommended items. They explain how by looking at the recom-
mendation graph one may understand properties such as the novelty of recommendations. It is still
unclear how these properties correlate with the true goal of the recommender system, may it be to
optimize revenue or to recommend useful items.

McLaughlin and Herlocker (2004) argue, as we do, that MAE is not appropriate for evaluating
recommendation tasks, and that ratings are not necessarily indicative of whether a user is likely to
watch a movie. The last claim can be explained by the way we view implicit and explicit ratings.
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Some researchers have suggested taking a more holistic approach, and considering the recom-
mendation algorithm within the complete recommendation system. For example, del Olmo and
Gaudioso (2008), suggest that systems be evaluated only after deployment, through counting the
number of successful recommendations. As we argue above, even in these cases, one is likely to
evaluate algorithms offline, to avoid presenting recommendations that have poor quality for users,
thus losing their trust.

9. Conclusion

In this paper we discussed how recommendation algorithms should be evaluated in order to select
the best algorithm for a specific task from a set of candidates. This is an important step in the
research attempt to find better algorithms, as well as in application design where a designer chooses
an existing algorithm for their application. As such, many evaluation metrics have been used for
algorithm selection in the past.

We review three core tasks of recommendation systems—the prediction task, the recommenda-
tion task, and the utility maximization task. Most evaluation metrics are naturally appropriate for
one task, but not for the others. We discuss for each task a set of metrics that are most appropriate
for selecting the best of the candidate algorithms.

We empirically demonstrate that in some cases two algorithms can be ranked differently by two
metrics over the same data set, emphasizing the importance of choosing the appropriate metric for
the task, so as not to choose an inferior algorithm.

We also describe the concerns that need to be addressed when designing offline and online
experiments. We outline a few important measurements that one must take in addition to the score
that the metric provides, as well as other considerations that should be taken into account when
designing experiments for recommendation algorithms.
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