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Abstract
Deep multi-layer neural networks have many levels of non-linearities allowing them to compactly
represent highly non-linear and highly-varying functions. However, until recently it was not clear
how to train such deep networks, since gradient-based optimization starting from random initial-
ization often appears to get stuck in poor solutions. Hinton et al. recently proposed a greedy
layer-wise unsupervised learning procedure relying on the training algorithm of restricted Boltz-
mann machines (RBM) to initialize the parameters of a deep belief network (DBN), a generative
model with many layers of hidden causal variables. This was followed by the proposal of another
greedy layer-wise procedure, relying on the usage of autoassociator networks. In the context of
the above optimization problem, we study these algorithms empirically to better understand their
success. Our experiments confirm the hypothesis that the greedy layer-wise unsupervised training
strategy helps the optimization by initializing weights in a region near a good local minimum, but
also implicitly acts as a sort of regularization that brings better generalization and encourages inter-
nal distributed representations that are high-level abstractions of the input. We also present a series
of experiments aimed at evaluating the link between the performance of deep neural networks and
practical aspects of their topology, for example, demonstrating cases where the addition of more
depth helps. Finally, we empirically explore simple variants of these training algorithms, such as
the use of different RBM input unit distributions, a simple way of combining gradient estimators to
improve performance, as well as on-line versions of those algorithms.
Keywords: artificial neural networks, deep belief networks, restricted Boltzmann machines, au-
toassociators, unsupervised learning

1. Introduction

Training deep multi-layered neural networks is known to be hard. The standard learning strategy—
consisting of randomly initializing the weights of the network and applying gradient descent using
backpropagation—is known empirically to find poor solutions for networks with 3 or more hidden
layers. As this is a negative result, it has not been much reported in the machine learning literature.
For that reason, artificial neural networks have been limited to one or two hidden layers.

However, complexity theory of circuits strongly suggests that deep architectures can be much
more efficient (sometimes exponentially) than shallow architectures, in terms of computational el-

c©2009 Hugo Larochelle, Yoshua Bengio, Jérôme Louradour and Pascal Lamblin.
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ements and parameters required to represent some functions (Bengio and Le Cun, 2007; Bengio,
2007). Whereas it cannot be claimed that deep architectures are better than shallow ones on every
problem (Salakhutdinov and Murray, 2008; Larochelle and Bengio, 2008), there has been evidence
of a benefit when the task is complex enough, and there is enough data to capture that complexity
(Larochelle et al., 2007). Hence finding better learning algorithms for such deep networks could be
beneficial.

An approach that has been explored with some success in the past is based on constructively
adding layers. Each layer in a multi-layer neural network can be seen as a representation of the input
obtained through a learned transformation. What makes a good internal representation of the data?
We believe that it should disentangle the factors of variation that inherently explain the structure of
the distribution. When such a representation is going to be used for unsupervised learning, we would
like it to preserve information about the input while being easier to model than the input itself. When
a representation is going to be used in a supervised prediction or classification task, we would like it
to be such that there exists a “simple” (i.e., somehow easy to learn) mapping from the representation
to a good prediction. To constructively build such a representation, it has been proposed to use
a supervised criterion at each stage (Fahlman and Lebiere, 1990; Lengellé and Denoeux, 1996).
However, as we discuss here, the use of a supervised criterion at each stage may be too greedy and
does not yield as good generalization as using an unsupervised criterion. Aspects of the input may
be ignored in a representation tuned to be immediately useful (with a linear classifier) but these
aspects might turn out to be important when more layers are available. Combining unsupervised
(e.g., learning about p(x)) and supervised components (e.g., learning about p(y|x)) can be be helpful
when both functions p(x) and p(y|x) share some structure.

The idea of using unsupervised learning at each stage of a deep network was recently put for-
ward by Hinton et al. (2006), as part of a training procedure for the deep belief network (DBN),
a generative model with many layers of hidden stochastic variables. Upper layers of a DBN are
supposed to represent more “abstract” concepts that explain the input observation x, whereas lower
layers extract “low-level features” from x. In other words, this model first learns simple concepts,
on which it builds more abstract concepts.

This training strategy has inspired a more general approach to help address the problem of train-
ing deep networks. Hinton (2006) showed that stacking restricted Boltzmann machines (RBMs)—
that is, training upper RBMs on the distribution of activities computed by lower RBMs—provides
a good initialization strategy for the weights of a deep artificial neural network. This approach can
be extended to non-linear autoencoders or autoassociators (Saund, 1989), as shown by Bengio et al.
(2007), and is found in stacked autoassociators network (Larochelle et al., 2007), and in the deep
convolutional neural network (Ranzato et al., 2007b) derived from the convolutional neural network
(LeCun et al., 1998). Since then, deep networks have been applied with success not only in clas-
sification tasks (Bengio et al., 2007; Ranzato et al., 2007b; Larochelle et al., 2007; Ranzato et al.,
2008), but also in regression (Salakhutdinov and Hinton, 2008), dimensionality reduction (Hinton
and Salakhutdinov, 2006; Salakhutdinov and Hinton, 2007b), modeling textures (Osindero and Hin-
ton, 2008), information retrieval (Salakhutdinov and Hinton, 2007a), robotics (Hadsell et al., 2008),
natural language processing (Collobert and Weston, 2008; Weston et al., 2008), and collaborative
filtering (Salakhutdinov et al., 2007).

In this paper, we discuss in detail three principles for training deep neural networks and present
experimental evidence that highlight the role of each in successfully training deep networks:
1. Pre-training one layer at a time in a greedy way;
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2. using unsupervised learning at each layer in a way that preserves information from the input
and disentangles factors of variation;

3. fine-tuning the whole network with respect to the ultimate criterion of interest.

The experiments reported here suggest that this strategy improves on the traditional random
initialization of supervised multi-layer networks by providing “hints” to each intermediate layer
about the kinds of representations that it should learn, and thus initializing the supervised fine-
tuning optimization in a region of parameter space from which a better local minimum (or plateau)
can be reached. We also present a series of experiments aimed at evaluating the link between the
performance of deep neural networks and aspects of their topology such as depth and the size of
the layers. In particular, we demonstrate cases where the addition of depth helps classification
error, but too much depth hurts. Finally, we explore simple variants of the aforementioned training
algorithms, such as a simple way of combining them to improve their performance, RBM variants
for continuous-valued inputs, as well as on-line versions of those algorithms.

2. Notations and Conventions

Before describing the learning algorithms that we will study and experiment with in this paper, we
first present the mathematical notation we will use for deep networks.

A deep neural network contains an input layer and an output layer, separated by l layers of
hidden units. Given an input sample clamped to the input layer, the other units of the network
compute their values according to the activity of the units that they are connected to in the layers
below. We will consider a particular sort of topology here, where the input layer is fully connected
to the first hidden layer, which is fully connected to the second layer and so on up to the output
layer.

Given an input x, the value of the j-th unit in the i-th layer is denoted ĥij(x), with i= 0 referring
to the input layer, i = l+ 1 referring to the output layer (the use of “ ̂ ” will become clearer in
Section 4). We refer to the size of a layer as |ĥi(x)|. The default activation level is determined by
the internal bias bij of that unit. The set of weightsW i

jk between ĥ
i−1
k (x) in layer i−1 and unit ĥij(x)

in layer i determines the activation of unit ĥij(x) as follows:

ĥij(x) = sigm
(
aij

)
where aij(x) = bij +!

k
W i

jkĥ
i−1
k (x) ∀i ∈ {1, . . . , l}, with ĥ0(x) = x (1)

where sigm(·) is the sigmoid squashing function: sigm(a) = 1
1+e−a (alternatively, the sigmoid could

be replaced by the hyperbolic tangent). Given the last hidden layer, the output layer is computed
similarly by

o(x) = ĥl+1(x) = f
(
al+1(x)

)
where al+1(x) = bl+1+Wl+1ĥl(x)

where the activation function f (·) depends on the (supervised) task the network must achieve. Typ-
ically, it will be the identity function for a regression problem and the softmax function

f j(a) = softmax j(a) =
ea j

!K
k=1 eak

(2)

for a classification problem, in order to obtain a distribution over the K classes.
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Figure 1: Illustration of a deep network and its parameters.

When an input sample x is presented to the network, the application of Equation 1 at each layer
will generate a pattern of activity in the different layers of the neural network. Intuitively, we would
like the activity of the first layer neurons to correspond to low-level features of the input (e.g.,
edge orientations for natural images) and to higher level abstractions (e.g., detection of geometrical
shapes) in the last hidden layers.

3. Deep Neural Networks

It has been shown that a “shallow” neural network with only one arbitrarily large hidden layer
could approximate a function to any level of precision (Hornik et al., 1989). Similarly, any Boolean
function can be represented by a two-layer circuit of logic gates. However, most Boolean functions
require an exponential number of logic gates (with respect to the input size) to be represented by
a two-layer circuit (Wegener, 1987). For example, the parity function, which can be efficiently
represented by a circuit of depth O(logn) (for n input bits) needs O(2n) gates to be represented by
a depth two circuit (Yao, 1985). What about deeper circuits? Some families of functions which can
be represented with a depth k circuit are such that they require an exponential number of logic gates
to be represented by a depth k− 1 circuit (Håstad, 1986). Interestingly, an equivalent result has
been proved for architectures whose computational elements are not logic gates but linear threshold
units (i.e., formal neurons) (Hastad and Goldmann, 1991). The machine learning literature also
suggests that shallow architectures can be very inefficient in terms of the number of computational
units (e.g., bases, hidden units), and thus in terms of required examples (Bengio and Le Cun, 2007;
Bengio et al., 2006). On the other hand, a highly-varying function can sometimes be represented
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compactly (with fewer parameters) through the composition of many non-linearities, that is, with a
deep architecture. When the representation of a concept requires an exponential number of elements
(more generally exponential capacity), for example, with a shallow circuit, the number of training
examples required to learn the concept may also be impractical. Smoothing the learned function by
regularization would not solve the problem here because in these cases the target function itself is
complicated and requires exponential capacity just to be represented.

3.1 Difficulty of Training Deep Architectures

Given a particular task, a natural way to train a deep network is to frame it as an optimization
problem by specifying a supervised cost function on the output layer with respect to the desired
target and use a gradient-based optimization algorithm in order to adjust the weights and biases
of the network so that its output has low cost on samples in the training set. Unfortunately, deep
networks trained in that manner have generally been found to perform worse than neural networks
with one or two hidden layers.

We discuss two hypotheses that may explain this difficulty. The first one is that gradient descent
can easily get stuck in poor local minima (Auer et al., 1996) or plateaus of the non-convex training
criterion. The number and quality of these local minima and plateaus (Fukumizu and Amari, 2000)
clearly also influence the chances for random initialization to be in the basin of attraction (via
gradient descent) of a poor solution. It may be that with more layers, the number or the width
of such poor basins increases. To reduce the difficulty, it has been suggested to train a neural
network in a constructive manner in order to divide the hard optimization problem into several
greedy but simpler ones, either by adding one neuron (e.g., see Fahlman and Lebiere, 1990) or one
layer (e.g., see Lengellé and Denoeux, 1996) at a time. These two approaches have demonstrated to
be very effective for learning particularly complex functions, such as a very non-linear classification
problem in 2 dimensions. However, these are exceptionally hard problems, and for learning tasks
usually found in practice, this approach commonly overfits.

This observation leads to a second hypothesis. For high capacity and highly flexible deep net-
works, there actually exists many basins of attraction in its parameter space (i.e., yielding different
solutions with gradient descent) that can give low training error but that can have very different gen-
eralization errors. So even when gradient descent is able to find a (possibly local) good minimum
in terms of training error, there are no guarantees that the associated parameter configuration will
provide good generalization. Of course, model selection (e.g., by cross-validation) will partly cor-
rect this issue, but if the number of good generalization configurations is very small in comparison
to good training configurations, as seems to be the case in practice, then it is likely that the training
procedure will not find any of them. But, as we will see in this paper, it appears that the type of
unsupervised initialization discussed here can help to select basins of attraction (for the supervised
fine-tuning optimization phase) from which learning good solutions is easier both from the point of
view of the training set and of a test set.

3.2 Unsupervised Learning as a Promising Paradigm for Greedy Layer-Wise Training

A common approach to improve the generalization performance of a learning algorithm which is
motivated by the Occam’s razor principle is the use of regularization (such as weight decay) that
will favor “simpler” models over more complicated ones. However, using generic priors such as the
!2 norm of the parameters conveys limited information about what the solution to a particular learn-
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ing task should be. This has motivated researchers to discover more meaningful, data-dependent
regularization procedures, which are usually based on unsupervised learning and normally adapted
to specific models.

For example, Ando and Zhang (2005) use “auxiliary tasks” designed from unlabelled data and
that are appropriate for a particular learning problem, to learn a better regularization term for linear
classifiers. Partial least squares (Frank and Friedman, 1993) can also be seen as combining unsuper-
vised and supervised learning in order to learn a better linear regression model when few training
data are available or when the input space is very high dimensional.

Many semi-supervised learning algorithms also involve a combination of unsupervised and su-
pervised learning, where the unsupervised component can be applied to additional unlabelled data.
This is the case for Fisher-kernels (Jaakkola and Haussler, 1999) which are based on a generative
model trained on unlabelled input data and that can be used to solve a supervised problem defined
for that input space. In all these cases, unsupervised learning can be seen as adding more constraints
on acceptable configurations for the parameters of a model, by asking that it not only describes well
the relationship between the input and the target but also contains relevant statistical information
about the structure of the input or how it was generated.

Moreover, there is a growing literature on the distinct advantages of generative and discrimi-
native learning. Ng and Jordan (2001) argue that generative versions of discriminative models can
be expected to reach their usually higher asymptotic out-of-sample classification error faster (i.e.,
with less training data), making them preferable in certain situations. Moreover, successful attempts
at exploring the space between discriminative and generative learning have been studied (Lasserre
et al., 2006; Jebara, 2003; Bouchard and Triggs, 2004; Holub and Perona, 2005).

The deep network learning algorithms that have been proposed recently and that we study in
this paper can be seen as combining the ideas of greedily learning the network to break down
the learning problem into easier steps, using unsupervised learning to provide an effective hint
about what hidden units should learn, bringing along the way a form of regularization that prevents
overfitting even in deep networks with many degrees of freedom (which could otherwise overfit).
In addition, one should consider the supervised task the network has to solve. The greedy layer-
wise unsupervised strategy provides an initialization procedure, after which the neural network is
fine-tuned to the global supervised objective. The general paradigm followed by these algorithms
(illustrated in Figure 2 and detailed in Appendix A) can be decomposed in two phases:

1. In the first phase, greedily train subsets of the parameters of the network using a layer-
wise and unsupervised learning criterion, by repeating the following steps for each layer
(i ∈ {1, . . . , l})

Until a stopping criteria is met, iterate through training database by

(a) mapping input training sample xt to representation ĥi−1(xt) (if i > 1) and hidden
representation ĥi(xt),

(b) updating parameters bi−1, bi and Wi of layer i using some unsupervised learning
algorithm.

Also, initialize (e.g., randomly) the output layer parameters bl+1,Wl+1.
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(d) Fine-tuning of whole
network

Figure 2: Unsupervised greedy layer-wise training procedure.

2. In the second and final phase, fine-tune all the parameters " of the network using backpropa-
gation and gradient descent on a global supervised cost functionC(xt ,yt ,"), with input xt and
label yt , that is, trying to make steps in the direction E

[
!C(xt ,yt ,")

!"

]
.

Regularization is not explicit in this procedure, as it does not come from a weighted term that
depends on the complexity of the network and that is added to the global supervised objective.
Instead, it is implicit, as the first phase that initializes the parameters of the whole network will
ultimately have an impact on the solution found in the second phase (the fine-tuning phase). Indeed,
by using an iterative gradual optimization algorithm such as stochastic gradient descent with early-
stopping (i.e., training until the error on a validation set reaches a clear minimum), the extent to
which the configuration of the network’s parameters can be different from the initial configuration
given by the first phase is limited. Hence, similarly to using a regularization term on the parameters
of the model that constrains them to be close to a particular value (e.g., 0 for weight decay), the first
phase here will ensure that the parameter solution for each layer found by fine-tuning will not be
far from the solution found by the unsupervised learning algorithm. In addition, the non-convexity
of the supervised training criterion means that the choice of initial parameter values can greatly
influence the quality of the solution obtained by gradient descent.

In the next two sections, we present a review of the two training algorithms that fall in paradigm
presented above and which are empirically studied in this paper, in Section 6.

4. Stacked Restricted Boltzmann Machine Network

Intuitively, a successful learning algorithm for deep networks should be one that discovers a mean-
ingful and possibly complex hidden representation of the data at its top hidden layer. However,
learning such non-linear representations is a hard problem. A solution, proposed by Hinton (2006),
is based on the learning algorithm of the restricted Boltzmann machine (RBM) (Smolensky, 1986),
a generative model that uses a layer of binary variables to explain its input data. In an RBM (see
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W
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ck x

Figure 3: Illustration of a restricted Boltzmann machine and its parameters. W is a weight matrix,
b is a vector of hidden unit biases, and c a vector of visible unit biases.

Figure 3 for an illustration), given an input x, it is easy to obtain a hidden representation for that
input by computing the posterior ĥ(x) over the layer of binary hidden variables h (we use the “̂”
symbol to emphasize that ĥ(x) is not a random variable but a deterministic representation of x).

Hinton (2006) argues that this representation can be improved by giving it as input to another
RBM, whose posterior over its hidden layer will then provide a more complex representation of
the input. This process can be repeated an arbitrary number of times in order to obtain ever more
non-linear representations of the input. Finally, the parameters of the RBMs that compute these rep-
resentations can be used to initialize the parameters of a deep network, which can then be fine-tuned
to a particular supervised task. This learning algorithm clearly falls in the paradigm of Section 3.2,
where the unsupervised part of the learning algorithm is that of an RBM. We will refer to deep
networks trained using this algorithm as stacked restricted Boltzmann machine (SRBM) networks.
For more technical details about the SRBM network, and how to train an RBM using the contrastive
divergence algorithm (CD-k), see Appendix B.

5. Stacked Autoassociators Network

There are theoretical results about the advantage of stacking many RBMs into a DBN: Hinton et al.
(2006) show that this procedure optimizes a bound on the likelihood of the input data when all
layers have the same size. An additional hypothesis to explain why this process provides a good
initialization for the network is that it makes each hidden layer compute a different, possibly more
abstract representation of the input. This is done implicitly, by asking that each layer captures fea-
tures of the input that help characterize the distribution of values at the layer below. By transitivity,
each layer contains some information about the input. However, stacking any unsupervised learning
model does not guarantee that the representations learned get increasingly complex or appropriate
as we stack more layers. For instance, many layers of linear PCA models could be summarized by
only one layer. However, there may be other non-linear, unsupervised learning models that, when
stacked, are able to improve the learned representation at the last layer added.

An example of such a non-linear unsupervised learning model is the autoassociator or autoen-
coder network (Cottrell et al., 1987; Saund, 1989; Hinton, 1989; Baldi and Hornik, 1989; DeMers
and Cottrell, 1993). Autoassociators are neural networks that are trained to compute a represen-
tation of the input from which it can be reconstructed with as much accuracy as possible. In this
paper, we will consider autoassociator networks of only one hidden layer, meaning that the hidden
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Figure 4: Illustration of an autoassociator and its parameters. W is the matrix of encoder weights
andW∗ the matrix of decoder weights. ĥ(x) is the code or representation of x.

representation of x is a code ĥ(x) obtained from the encoding function

ĥ j(x) = f (a j) where a j(x) = b j +!
k
Wjkxk . (3)

The input’s reconstruction is obtained from a decoding function, here a linear transformation
of the hidden representation with weight matrix W∗, possibly followed by a non-linear activation
function:

x̂k = g(âk) where âk = ck +!
j
W ∗

jkĥ j(x) .

In this work, we used the sigmoid activation function for both f (·) and g(·). Figure 4 shows an
illustration of this model.

By noticing the similarity between Equations 3 and 1, we are then able to use the training
algorithm for autoassociators as the unsupervised learning algorithm for the greedy layer-wise ini-
tialization phase of deep networks. In this paper, stacked autoassociators (SAA) networks will
refer to deep networks trained using the procedure of Section 3.2 and the learning algorithm of an
autoassociator for each layer, as described in Section 5.1.

Though these neural networks were designed with the goal of dimensionality reduction in mind,
the new representation’s dimensionality does not necessarily need to be lower than the input’s in
practice. However, in that particular case, some care must be taken so that the network does not
learn a trivial identity function, that is, finds weights that simply “copy” the whole input vector in
the hidden layer and then copy it again at the output. For example, a network with small weightsW jk
between the input and hidden layers (maintaining activations in the linear regime of the activation
function f ) and large weights W ∗

jk between the hidden and output layers could encode such an
uninteresting identity function. An easy way to avoid such a pathological behavior in the case
of continuous inputs is to set the weight matrices WT and W∗ to be the same. This adjustment
is motivated by its similarity with the parametrization of the RBM model and by an empirical
observation that WT and W∗ tend to be similar up to a multiplicative factor after training. In
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the case of binary inputs, if the weights are large, the input vector can still be copied (up to a
permutation of the elements) to the hidden units, and in turn these used to perfectly reconstruct the
input. Weight decay can be useful to prevent such a trivial and uninteresting mapping to be learned,
when the inputs are binary. We setWT =W∗ in all of our experiments. Vincent et al. (2008) have
an improved way of training autoassociators in order to produce interesting, non-trivial features in
the hidden layer, by partially corrupting the network’s inputs.

The reconstruction error of an autoassociator can be connected to the log-likelihood of an RBM
in several ways. Ranzato et al. (2008) connect the log of the numerator of the input likelihood with
a form of reconstruction error (where one replaces the sum over hidden unit configurations by a
maximization). The denominator is the normalization constant summing over all input configura-
tions the same expression as in the numerator. So whereas maximizing the numerator is similar to
minimizing reconstruction error for the training examples, minimizing the denominator means that
most input configurations should not be reconstructed well. This can be achieved if the autoassoci-
ator is constrained in such a way that it cannot compute the identity function, but only minimizes
the reconstruction for training examples.

Another connection between reconstruction error and log-likelihood of the RBM was made in
Bengio and Delalleau (2007). They consider a converging series expansion of the log-likelihood
gradient and show that whereas CD-k truncates the series by keeping the first 2k terms and then
approximates expectations by a single sample, reconstruction error is a mean-field approximation
of the first term in that series.

5.1 Learning in an Autoassociator Network

Training an autoassociator network is almost identical to training a standard artificial neural net-
work. Given a cost function, backpropagation is used to compute gradients and perform gradient
descent. However, autoassociators are “self-supervised”, meaning that the target to which the output
of the autoassociator is compared is the input that it was fed.

Previous work on autoassociators minimized the squared reconstruction error:

C(x̂,x) =!
k

(x̂k− xk)2 .

However, with squared reconstruction error and linear decoder, the “optimal codes” (the implicit
target for the encoder, irrespective of the encoder) are in the span of the principal eigenvectors of
the input covariance matrix. When we introduce a saturating non-linearity such as the sigmoid,
and we want to reconstruct values [0,1], the binomial KL divergence (also known as cross-entropy)
seems more appropriate:

C(x̂,x) = −!
k

(xk log(x̂k)+(1− xk) log(1− x̂k)) . (4)

It corresponds to the assumption that x̂ and x can be interpreted as factorized distributions over
binary units. It is well known that the cross-entropy −p log(q)− (1− p) log(1− q) between two
binary distributions parametrized by p and q is minimized when q = p (for a fixed p), making it
an appropriate cost function to evaluate the quality of a reconstruction. We used this cost function
in all the experiments with SAA networks. Appendix C details the corresponding autoassociator
training update.
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6. Experiments

In this section, we present several experiments set up to evaluate the deep network learning algo-
rithms that fall in the paradigm presented in the Section 3.2 and highlight some of their properties.
Unless otherwise stated, stochastic gradient descent was used for layer-wise unsupervised learning
(first phase of the algorithm) and global supervised fine-tuning (second phase of the algorithm).
The data sets were separated in disjoint training, validation and testing subsets. Model selection
consisted of finding the best values for the learning rates of layer-wise unsupervised and global su-
pervised learning as well as the number of unsupervised updates preceding the fine-tuning phase.
The number of epochs of fine-tuning was chosen using early-stopping based on the progression
of classification error on the validation set. All experiments correspond to classification problems.
Hence, to fine-tune the deep networks, we optimized the negative conditional log-likelihood of the
training samples’ target class (as given by the softmax output of the neural network).

The experiments are based on the MNIST data set1 (see Figure 5), a benchmark for handwritten
digit recognition, as well as variants of this problemwhere the input distribution has been made more
complex by inserting additional factors of variations, such as rotations and background images. The
input images are made of 28×28 pixels giving an input dimensionality of 784, the number of classes
is 10 (corresponding to the digits from 0 to 9) and the inputs were scaled between 0 and 1.

Successful applications of deep networks have already been presented on a large variety of
data, such as images of faces (Salakhutdinov and Hinton, 2008), real-world objects (Ranzato et al.,
2007a) as well as text data (Hinton and Salakhutdinov, 2006; Salakhutdinov and Hinton, 2007a;
Collobert andWeston, 2008; Weston et al., 2008), and on different types of problems such as regres-
sion (Salakhutdinov and Hinton, 2008), information retrieval (Salakhutdinov and Hinton, 2007a),
robotics Hadsell et al. (2008), and collaborative filtering (Salakhutdinov et al., 2007).

In Bengio et al. (2007), we performed experiments on two regression data sets, with non-image
continuous inputs (UCI Abalone, and a financial data set), demonstrating the use of unsupervised
(or partially supervised) pre-training of deep networks on these tasks. In Larochelle et al. (2007), we
studied the performance of several architectures on various data sets, including variations of MNIST
(with rotations, random background, and image background), and discrimination tasks between
wide and tall rectangles, and between convex and non-convex images. On these tasks, deep networks
compared favorably to shallow architectures.

Our focus is hence not on demonstrating their usefulness on a wide range of tasks, but on ex-
ploring their properties empirically. Such experimental work required several weeks of cumulative
CPU time, which restricted the number of data sets we could explore. However, by concentrat-
ing on the original MNIST data set and harder versions of it, we were able not only to confirm
the good performance of deep networks, but also to study practical variations, to help understand
the algorithms, and to discuss the impact on a deep network’s performance of stepping to a more
complicated problem.

6.1 Validating the Unsupervised Layer-Wise Strategy for Deep Networks

In this section, we evaluate the advantages brought by the unsupervised layer-wise strategy of Sec-
tion 3.2. We want to separate the different algorithmic concepts behind it, in order to understand
their contribution to the whole strategy. In particular, we pursue the following two questions:

1. This data set can be downloaded from http://yann.lecun.com/expdb/mnist/.
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Figure 5: Samples from the MNIST digit recognition data set. Here, a black pixel corresponds to
an input value of 0 and a white pixel corresponds to 1 (the inputs are scaled between 0
and 1).

1. To what extent does initializing greedily the parameters of the different layers help?

2. How important is unsupervised learning for this procedure?

To address these two questions, we will compare the learning algorithms for deep networks of
Sections 4 and 5 with the following algorithms.

6.1.1 DEEP NETWORK WITHOUT PRE-TRAINING

To address the first question above, we compare the greedy layer-wise algorithm with a more stan-
dard way to train neural networks: using standard backpropagation and stochastic gradient descent,
and starting at a randomly initialized configuration of the parameters. In other words, this variant
simply puts away the pre-training phase of the other deep network learning algorithms.

6.1.2 DEEP NETWORK WITH SUPERVISED PRE-TRAINING

To address the second question, we run an experiment with the following algorithm. We greedily
pre-train the layers using a supervised criterion (instead of the unsupervised one), before performing
as before a final supervised fine-tuning phase. Specifically, when greedily pre-training the param-
eters Wi and bi, we also train another set of weights Vi and biases ci which connect hidden layer
ĥi(x) to a temporary output layer as follows:

oi(x) = f
(
ci+Viĥi(x)

)
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where f (·) is the softmax function of Equation 2. This output layer can be trained using the same
cost as the global supervised cost. However, as this is a greedy procedure, only the parameters
Wi, bi, Vi and ci are updated, that is, the gradient is not propagated to the layers below. When
the training of a layer is finished, we can simply discard the parameters Vi and ci and move to
pre-training the next hidden layer, having initializedWi and bi.

6.1.3 STACKED LOGISTIC AUTOREGRESSION NETWORK

The second question aims at evaluating to what extent any unsupervised learning can help. We
already know that stacking linear PCA models is not expected to help improve generalization. A
slightly more complex yet very simple unsupervised model for data in [0,1] is the logistic autore-
gression model (see also Frey, 1998)

x̂k = sigm

(
bk +!

j $=k
Wk jx j

)
(5)

where the reconstruction x̂ is log-linear in the input x. The parameters W and b can be trained
using the same cost used for the autoassociators in Equation 4. This model can be used to initialize
the weights Wi and biases bi of the i-th hidden layer of a deep network. However, because W in
Equation 5 is square, the deep network will need to have hidden layers with the same size as the
input layer. Also, the weights on the diagonal ofW are not trained in this model, so we initialize
them to zero. The stacked logistic autoregression network will refer to deep networks using this
unsupervised layer-wise learning algorithm.

6.1.4 RESULTS

The results for all these deep networks are given in Table 1. We also give results for a “shallow”,
one hidden layer neural network, to validate the utility of deep architectures. Instead of the sigmoid,
this network uses hyperbolic tangent squashing functions, which are usually found to work better
for one hidden layer neural networks. The MNIST training set was separated into training (50,000)
and validation (10,000) sets. The test set has size 10,000. In addition to the hyperparameters
mentioned at the beginning of this section, the validation set was used also to select appropriate
decrease constants2 for the learning rates of the greedy and fine-tuning phases. The SRBM and
SAA networks had 500, 500 and 2000 hidden units in the first, second and third layers respectively,
as in Hinton et al. (2006) and Hinton (2006). In the pre-training phase of the SRBM and SAA
networks, when training the parameters of the i-th layer, the down-biases ck where set to be equal to
bi−1k (although similar results were obtained by using a separate set of biases ci−1k when the i−1-th
layer is the down-layer). For the deep networks with supervised or no pre-training, different sizes of
hidden layers were compared, including sizes similar to the stacked logistic autoregression network,
and to the SRBM and SAA networks. All deep networks had 3 hidden layers.

Overall, the models that use the unsupervised layer-wise procedure of Section 3.2 outperform
those that do not. We also observe a slight advantage in the performance of the SRBM network over
that of the SAA network (on the MNIST test set, differences of more than 0.1% are statistically
significant). The performance difference between the stacked logistic autoregressions network and

2. When using a decrease constant !, the learning rate for the t th update becomes !0
1+t" , where "0 is the initial learning

rate.
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Models Train. Valid. Test
SRBM (stacked restricted Boltzmann machines) network 0% 1.20% 1.20%
SAA (stacked autoassociators) network 0% 1.31% 1.41%
Stacked logistic autoregressions network 0% 1.65% 1.85%
Deep network with supervised pre-training 0% 1.74% 2.04%
Deep network, no pre-training 0.004% 2.07% 2.40%
Shallow network, no pre-training 0% 1.91% 1.93%

Table 1: Classification error on MNIST training, validation, and test sets, with the best hyperpa-
rameters according to validation error.

the deep network with supervised layer-wise pre-training particularly highlights the importance of
unsupervised learning. Indeed, even though supervised layer-wise pre-training explicitly trains the
hidden layers to capture non-linear information about the input, the overall procedure seems to be
too greedy with respect to the supervised task to be learned. On the other hand, even though logistic
autoregressions are simple log-linear models and their optimization is blind with respect to the
future usage of the weightsW as connections into non-linear hidden layers, the unsupervised nature
of training makes them still useful for improving generalization. As a point of comparison, besides
the deep networks, the best result on this data set reported for a learning algorithm that does not use
any prior knowledge about the task (e.g., image pre-processing like deskewing or subsampling) is
that of a support vector machine with a Gaussian kernel,3 with 1.4% classification error on the test
set.

At this point, it is clear that unsupervised layer-wise pre-training improves generalization. How-
ever, we could wonder whether it also facilitates the optimization problem of the global fine-tuning.
The results of Table 1 do not shed any light on this aspect. Indeed, all the networks, even those
without greedy layer-wise pre-training, perform almost perfectly on the training set. The explana-
tory hypothesis we evaluate here is that, without pre-training, the lower layers are initialized poorly,
but still allow the top two layers to learn the training set almost perfectly because the output layer
and the last hidden layer form a standard shallow but fat neural network. Consider the top two
layers of the deep network with pre-training: it presumably takes as input a better representation,
one that allows for better generalization. Instead, the network without pre-training sees a “random”
transformation of the input, one that preserves enough information about the input to fit the training
set, but that does not help to generalize. To test this hypothesis, we performed a second series of
experiments in which we constrain the top hidden layer to be small (20 hidden units).

The results (Table 2) clearly suggest that optimization of the global supervised objective is
made easier by greedy layer-wise pre-training. This result for supervised greedy pre-training is also
coherent with past experiments on similar greedy strategies (Fahlman and Lebiere, 1990; Lengellé
and Denoeux, 1996). Here, we have thus confirmed that it also applies to unsupervised greedy
pre-training. With no pre-training, training error degrades significantly when there are only 20
hidden units in the top hidden layer. In addition, the results obtained without pre-training were
found to have much larger variance than those with pre-training, indicating high sensitivity to initial

3. See http://yann.lecun.com/exdb/mnist/ for more details.
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Models Train. Valid. Test
SRBM network 0% 1.5% 1.5%
SAA network 0% 1.38% 1.65%
Deep network with supervised pre-training 0% 1.77% 1.89%
Deep network, no pre-training 0.59% 2.10% 2.20%
Shallow network, no pre-training 3.6% 4.77% 5.00%

Table 2: Classification error on MNIST training, validation, and test sets, with the best hyperpa-
rameters according to validation error, when the last hidden layer only contains 20 hidden
units

conditions: the unsupervised pre-training more consistently puts the parameters in a “good” basin
of attraction for the supervised gradient descent procedure.

Figures 6 and 7 show the sorts of first hidden layer features (weights going into different hidden
neurons) that are learned by the first (bottom) RBM and autoassociator respectively, before fine-
tuning. Both models were trained on the MNIST training set of Section 6.1 for 40 epochs, with 250
hidden units and a learning rate of 0.005. We see that they both learn visual features characterized
by local receptive fields, which ought to be useful to recognize more global shapes (though the
autoassociator also learns high frequency receptive fields that are spread over the whole image).
This is another account of how unsupervised greedy pre-training is able to help the optimization of
the network. Even if the supervised fine-tuning gradient at the first hidden layer is weak, we can see
that the first hidden layer appears to learn a relevant representation.

6.2 Exploring the Space of Network Architectures

An important practical aspect in using deep network is the choice the architecture or topology of
the network. Once we allow ourselves to consider an arbitrary number of hidden layers of arbitrary
sizes, some questions naturally arise. First, we would like to know how deep a neural network can
be made while still obtaining generalization gains, given a strategy for initializing its parameters
(randomly or with unsupervised greedy pre-training). We would also like to know, for a determined
depth, what type of architecture is more appropriate. Should the hidden layer’s size increase, de-
crease or stay the same from the first to the last? In this section, we explore those two questions
with experiments on the MNIST data set as well as a variant, taken from Larochelle et al. (2007),
where the digit images have been randomly rotated. This last data set, noted MNIST-rotation4 (see
Figure 8), contains much more intraclass variability, is much less well described by relatively well
separated class-specific clusters and corresponds to a much harder classification problem. The train-
ing, validation and test sets contain 10 000, 2 000 and 50 000 examples each. We also generated
sets of the same size for the MNIST data set. We refer to this version with a smaller training set by
MNIST-small.

4. This data set has been regenerated since Larochelle et al. (2007) and is available here: http://www.iro.umontreal.
ca/˜lisa/icml2007.
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Figure 6: Display of the input weights of a random subset of the hidden units, learned by an RBM
when trained on samples from the MNIST data set. The activation of units of the first
hidden layer is obtained by a dot product of such a weight “image” with the input image.
In these images, a black pixel corresponds to a weight smaller than −3 and a white pixel
to a weight larger than 3, with the different shades of gray corresponding to different
weight values uniformly between −3 and 3.
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Figure 7: Input weights of a random subset of the hidden units, learned by an autoassociator when
trained on samples from the MNIST data set. The display setting is the same as for
Figure 6.
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Figure 8: Samples from the MNIST-rotation data set. Here, a black pixel corresponds to an input
value of 0 and a white pixel corresponds to 1 (the inputs are scaled between 0 and 1).

6.2.1 NETWORK DEPTH

One can wonder whether a neural network can be made too deep, that is, whether having too many
hidden layers can worsen the generalization performance. Of course there are many reasons why this
may happen. When a neuron is added, more parameters are inserted in the mathematical formulation
of the model, giving it more degrees of freedom to fit the model and hence possibly making it able to
overfit. On the other hand, it is less clear to what extent the performance can worsen, since a neuron
added at the top layer of a neural network does not increase the capacity the same way a neuron
added “in parallel” in a given hidden layer. Also, in the case of an SRBM network, we can imagine
that as we stack RBMs, the representation at a hidden layer contains units that correspond to more
and more disentangled concepts of the input. Now, consider a hypothetical deep network where
the top-level stacked RBM has learned a representation made of units that are mostly independent.
An additional RBM stacked on this representation would have no statistical structure to learn. This
would initialize the weights of that new RBM to zero, which is particularly troublesome as the
representation at this level would then contain no information about the input. It is not clear if this
scenario is plausible, unlike in the case of independent component analysis, but if it were approached
the result would be detrimental to supervised classification performance. This particular situation is
not expected with stacked autoassociators, as it will always learn a representation from which the
previous layer can be reconstructed. Another reason why a deeper architecture could produce worse
results is simply that our algorithms for training a deep architecture can probably be improved. In
particular, note that the only joint training of all layers that we have done in our experiments, if any,
is at the supervised fine-tuning stage.
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Network MNIST-small MNIST-rotation
Type Depth classif. test error classif. test error
Neural network 1 4.14% ± 0.17 15.22 % ± 0.31
(random initialization, 2 4.03% ± 0.17 10.63% ± 0.27
+ fine-tuning) 3 4.24% ± 0.18 11.98 % ± 0.28

4 4.47 % ± 0.18 11.73 % ± 0.29

SAA network 1 3.87 % ± 0.17 11.43% ± 0.28
(autoassociator learning 2 3.38% ± 0.16 9.88 % ± 0.26
+ fine-tuning) 3 3.37% ± 0.16 9.22% ± 0.25

4 3.39% ± 0.16 9.20% ± 0.25

SRBM network 1 3.17 % ± 0.15 10.47 % ± 0.27
(CD-1 learning 2 2.74% ± 0.14 9.54 % ± 0.26
+ fine-tuning) 3 2.71% ± 0.14 8.80% ± 0.25

4 2.72% ± 0.14 8.83% ± 0.24

Table 3: Classification performance on MNIST-small and MNIST-rotation of different networks for
different strategies to initialize parameters, and different depths (number of layers).

Table 3 presents the classification performance obtained by the different deep networks with up
to 4 hidden layers on MNIST-small and MNIST-rotation. The hyperparameters of each layer were
separately selected with the validation set for all hidden layers, using the following greedy strategy:
for a network with l hidden layers, only the hyperparameters for the top layer were optimized,
the hyperparameters for the layers below being set to those of the best l− 1 layers deep network
according to the validation performance. We settled for this strategy because of the exponential
number of possible configurations of hyperparameters. For standard neural networks, we also tested
several random initializations of the weights. For SRBM as well as SAA networks, we tuned the
unsupervised learning rates and the number of updates. For MNIST-small, we used hidden layers
of 500 neurons, since the experiments by Hinton (2006) suggest that it is an appropriate choice. As
for MNIST-rotation, the size of each hidden layer had to be validated separately for each layer, and
we tested values among 500, 1000, 2000 and 4000.

Table 3 show that there is indeed an optimal number of hidden layers for the deep networks, and
that this optimum tends to be larger when unsupervised greedy layer-wise learning is used. For the
MNIST-small data set (Table 3), the gain in performance between 2 and 3 hidden layers for SRBM
and SAA networks is not statistically significant. However, for the MNIST-rotation data set, the
improvement from 2 to 3 hidden layers is clear. This observation is consistent with the increased
complexity of the input distribution and classification problem of MNIST-rotation, which should
require a more complex model. The improvement remains significant when fixing the network’s
hidden layers to the same size as in the experiments on MNIST-small, as showed in the results
of Table 4 where the number of units per hidden layer was set to 1000. We also compared the
performance of shallow and deep SRBM networks with roughly the same number of parameters.
With a shallow SRBM network, the best classification error achieved was 10.47%, with 4000 hidden
units (around 3.2×106 free parameters). With a 3-layers deep SRBM network, we reached 9.38%
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Network MNIST-rotation
Type Depth Layers width classif. test error
SRBM network 1 1k 12.44 % ± 0.29
(CD-1 learning 2 1k, 1k 9.98 % ± 0.26
+ fine-tuning) 3 1k, 1k, 1k 9.38% ± 0.25

Table 4: Classification performance on MNIST-rotation of different networks for different strate-
gies to initialize parameters, and different depths (number of layers). All hidden layers
have 1000 units.

classification error with 1000 units in each layer (around 2.8×106 parameters): better generalization
was achieved with deeper nets having less parameters.

6.2.2 TYPE OF NETWORK ARCHITECTURE

The model selection procedure of Section 6.2.1 works well, but is rather expensive. Every time one
wants to train a 4 hidden layer network, networks with 1, 2 and 3 hidden layers effectively have to
be trained as well, in order to determine appropriate hyperparameters for the lower hidden layers.
These networks can’t even be trained in parallel, adding to the computational burden of this model
selection procedure. Moreover, the optimal hidden layer size for a 1-hidden layer network could be
much bigger than necessary for a 4 hidden layer network, since a shallow network cannot rely on
other upper layers to increase its capacity.

Let us consider the situation where the number of hidden layers of a deep network has already
been chosen and good sizes of the different layers must be found. Because the space of such possible
choices is exponential in the number of layers, we consider here only three general cases where,
as the layer index increases, their sizes either increases (doubles), decreases (halves) or does not
change. We conducted experiments for all three cases and varied the total number of hidden neurons
in the network. The same hyperparameters as in the experiment of Table 3 had to be selected for
each network topologies, however a single unsupervised learning rate and number of updates were
chosen for all layers.5

We observe in Figures 9 and 10 that the architecture that most often is among the best performing
ones across the different sizes of network is the one with equal sizes of hidden layers. It should be
noted that this might be a consequence of using the same unsupervised learning hyperparameters
for each layer. It might be that the size of a hidden layer has a significant influence on the optimum
value for these hyperparameters, and that tying them for all hidden layers induces a bias towards
networks with equally-sized hidden layers. However, having untied hyperparameters would make
model selection too computationally demanding. Actually, even with tied unsupervised learning
hyperparameters, the model selection problem is already complex enough (and prone to overfitting
with small data sets), as is indicated by the differences in the validation and test classification errors
of Table 3.

5. We imposed this restriction because of the large number of experiments that would otherwise had been required.
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(a) SRBM network. (b) SAA network.

Figure 9: Classification performance on MNIST-small of 3-layer deep networks for three kinds of
architectures, as a function of the total number of hidden units. The three architectures
have increasing / constant / decreasing layer sizes from the bottom to the top layers.
Error-bars represent 95% confidence intervals.

(a) SRBM network. (b) SAA network.

Figure 10: Classification performance on MNIST-rotation of 3-layer deep networks for three kinds
of architectures. Same conventions as in Figure 9.

20



EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

7. Continuous-Valued Inputs

In this section, we wish to emphasize the importance of adapting the unsupervised learning algo-
rithms to the nature of the inputs. We will focus on the SRBM network because they rely on RBMs,
which are less simple to work with and adapt to the sorts of visible data we want to model. With
the binary units introduced for RBMs and DBNs in Hinton et al. (2006) one can “cheat” and handle
continuous-valued inputs by scaling them to the [0,1] interval and considering each input contin-
uous value as the probability for a binary random variable to take the value 1. This has worked
well for pixel gray levels, but it may be inappropriate for other kinds of input variables. Previ-
ous work on continuous-valued input in RBMs include Chen and Murray (2003), in which noise is
added to sigmoidal units, and the RBM forms a special form of diffusion network (Movellan et al.,
2002). Welling et al. (2005) also show how to derive RBMs from arbitrary choices of exponential
distributions for the visible and hidden layers of an RBM. We show here simple extensions of the
RBM framework in which only the energy function and the allowed range of values are changed.
As can be seen in Figures 11 and 12 and in the experiment of Section 7.3, such extensions have a
very significant impact on nature of the solution learned for the RBM’s weights and hence on the
initialization of a deep network and its performance.

7.1 Linear Energy: Exponential or Truncated Exponential

Consider a unit with value xk in an RBM, connected to units h of the layer above. p(xk|h) can
be obtained by considering the terms in the energy function that contain xk. These terms can be
grouped in xk(WT

·kh+ ck) when the energy function is linear in xk (as in Equation 7, appendix B),
whereW·k is the k-th column ofW. If we allow xk to take any value in interval I, the conditional
density of xk becomes

p(xk|h) =
exk(W

T
· jh+ck)1xk∈I

R
v e

v(WT
· jh+ck)1v∈Idv

.

When I = [0,#), this is an exponential density with parameter a(h) =WT
· jh+ ck, and the nor-

malizing integral, equal to −1
a(h) , only exists if a(h) < 0 ∀h. Computing the density, the expected

value ( −1
a(h) ) and sampling would all be easy, but since the density does not always exist it seems

more appropriate to let I be a closed interval, yielding a truncated exponential density. For sim-
plicity we consider the case I = [0,1] here, for which the normalizing integral, which always exists,
is

e−a(h)−1
a(h)

.

The conditional expectation of xk given h is interesting because it has a sigmoidal-like saturating
and monotone non-linearity:

E [xk|h] =
1

1− e−a(h)
− 1
a(h)

.

Note that E [xk|h] does not explode for a(h) near 0, but is instead smooth and in the interval
[0,1]. A sample from the truncated exponential is easily obtained from a uniform sample U , using
the inverse cumulative F−1 of the conditional density p(xk|h):

F−1(U) =
log(1−U× (1− ea(h)))

a(h)
.

21



LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 11: Input weights of a random subset of the hidden units, learned by an RBM with truncated
exponential visible units, when trained on samples from the MNIST data set. The top
and bottom images correspond to the same filters but with different color scale. On the
top, the display setup is the same as for Figures 6 and 7 and, on the bottom, a black and
white pixel correspond to weights smaller than −30 and larger than 30 respectively.

The contrastive divergence updates have the same form as for binary units of Equation 11,
since the updates only depend on the derivative of the energy with respect to the parameters. Only
sampling is changed, according to the unit’s conditional density. Figure 11 shows the filters learned
by an RBM with truncated exponential visible units, when trained on MNIST samples. Note how
these are strikingly different from those obtained with binomial units.
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7.2 Quadratic Energy: Gaussian Units

To obtain Gaussian-distributed units, one only needs to add quadratic terms to the energy. Adding
!k d2k x2k gives rise to a diagonal covariance matrix between units of the same layer, where xk is the
continuous value of a Gaussian unit and d2k is a positive parameter that is equal to the inverse of the
variance of xk. In this case the variance is unconditional, whereas the mean depends on the inputs
of the unit: for a visible unit xk with hidden layer h and inverse variance d2k ,

E [xk|h] =
a(h)
2d2k

.

The contrastive divergence updates are easily obtained by computing the derivative of the energy
with respect to the parameters. For the parameters in the linear terms of the energy function b, c
andW, the derivatives have the same form as for the case of binary units. For quadratic parameter
dk > 0, the derivative is simply 2dkx2k . Figure 12 shows the filters learned by an RBM with Gaussian
visible units, when trained on MNIST samples.

Gaussian units were previously used as hidden units of an RBM (with multinomial inputs)
applied to an information retrieval task (Welling et al., 2005). That same paper also shows how
to generalize RBMs to units whose marginal distribution is from any member of the exponential
family.

7.3 Impact on Classification Performance

In order to assess the impact of the choice for the visible layer distribution on the ultimate perfor-
mance of an SRBM network, we trained and compared different deep networks whose first level
RBM had binary, truncated exponential or Gaussian input units. These networks all had 3 hidden
layers, with 2000 hidden units for each of these layers. The hyperparameters that were optimized
are the unsupervised learning rates and number of updates as well as the fine-tuning learning rate.
Because the assumption of binary inputs is not unreasonable for the MNIST images, we conducted
this experiment on a modified and more challenging version of the data set where the background
contains patches of images downloaded from the Internet. Samples from this data set are shown in
Figure 13. This data set is part of a benchmark6 designed by Larochelle et al. (2007). The results
are given in Table 5, where we can see that the choice of the input distribution has a significant
impact on the classification performance of the deep network. As a comparison, a support vector
machine with Gaussian kernel achieves 22.61% error on this data set (Larochelle et al., 2007). Other
experimental results with truncated exponential and Gaussian input units are found in Bengio et al.
(2007).

8. Generating vs Encoding

Though the SRBM and SAA networks are similar in their motivation, there is a fundamental dif-
ference in the type of unsupervised learning used during training. Indeed, the RBM is based on
the learning algorithm of a generative model, which is trained to be able to generate data similar
to those found in the training set. On the other hand, the autoassociator is based on the learning
algorithm of an encoding model which tries to learn a new representation or code from which the
input can be reconstructed without too much loss of information.

6. The benchmark’s data sets can be downloaded from http://www.iro.umontreal.ca/˜lisa/icml2007.
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Figure 12: Input weights of a random subset of the hidden units, learned by an RBM with Gaussian
visible units, when trained on samples from the MNIST data set. The top and bottom
images correspond to the same filters but with different color scale. On top, the display
setup is the same as for Figures 6 and 7 and, on the bottom, a black and white pixel
correspond to weights smaller than −10 and larger than 10 respectively.
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Figure 13: Samples from the modified MNIST digit recognition data set with a background con-
taining image patches. Here, a black pixel corresponds to an input value of 0 and a white
pixel corresponds to 1 (the inputs are scaled between 0 and 1).

SRBM input type Train. Valid. Test
Bernoulli 10.50% 18.10% 20.29%
Gaussian 0% 20.50% 21.36%
Truncated exponential 0% 14.30% 14.34%

Table 5: Classification error on MNIST with background containing patches of images (see Fig-
ure 13) on the training, validation, and test sets, for different distributions of the input
layer for the bottom RBM. The best hyperparameters were selected according to the vali-
dation error.

It is not clear which of the two approaches (generating or encoding) is the most appropriate. The
advantage of a generative model is that the assumptions that are made are usually clear. However,
it is possible that the problem it is trying to solve is harder than it needs to be, since ultimately we
are only interested in coming up with good representations or features of the input. For instance, if
one is interested in finding appropriate clusters in a very high dimensional space, using a mixture of
Gaussians with full covariance matrix can quickly become too computationally intensive, whereas
using the simple k-means algorithm might do a good enough job. As for encoding models, they
do not require to be interpretable as a generative model and they can be more flexible because any
parametric or non-parametric form can be chosen for the encoder and decoder, as long as they are
differentiable.
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Another interesting connection between reconstruction error in autoassociators and CD in RBMs
was mentioned earlier: the reconstruction error can be seen as an estimator of the log-likelihood
gradient of the RBM which has more bias but less variance than the CD update rule (Bengio and
Delalleau, 2007). In that paper it is shown how to write the RBM log-likelihood gradient as a series
expansion where each term is associated with a sample of the contrastive divergence Gibbs chain.
Because the terms become smaller and converge to zero, this justifies taking a truncation of the
series as an estimator of the gradient. The reconstruction error gradient is a mean-field (i.e., biased)
approximation of the first term, whereas CD-1 is a sampling (i.e., high-variance) approximation of
the first two terms, and similarly CD-k involves the first 2k terms.

This suggests combining the reconstruction error and contrastive divergence for training RBMs.
During unsupervised pre-training, we can use the updates given by both algorithms and combine
them by associating a coefficient to each of them. This is actually equivalent to applying the updates
one after the other but using different learning rates for both. We tested this idea in the MNIST data
set split of Section 6.1, where we had to validate separately the learning rates for the RBM and
the autoassociator updates. This combination improved on the results of the SRBM and the SAA
networks, obtaining 1.02% and 1.09% on the validation and test set respectively. This improvement
was confirmed in a more complete experiment on 6 other folds with mutually exclusive test sets
of 10 000 examples, where the mixed gradient variant gave on average a statistically significant
improvement of 0.1% on a SRBM network. One possible explanation for the improvement brought
by this combination is that it uses a better trade-off between bias and variance in estimating the
log-likelihood gradient.

Another deterministic alternative to CD is mean-field CD (MF-CD) of Welling and Hinton
(2002), and is equivalent to the pseudocode code in Appendix B, with the statements h0 ∼ p(h|x0)
and v1 ∼ p(x|h0) changed to h0← sigm(b+Wv0) and v1← sigm(c+WTh0) respectively. MF-CD
can be used to test another way to change the bias/variance trade-off, either as a gradient estimator
alone, or by combining it to the CD-1 gradient estimate (in the same way we combined the au-
toassociator gradient with CD-1, previous paragraph). On the MNIST split of Section 6.1, SRBM
networks with MF-CD and combined CD-1/MF-CD7 achieved 1.26% and 1.17% on the test set
respectively. The improvement brought by combining MF-CD with CD-1 was not found to be
statistically significant, based on similar experiments on the 6 other folds.

This suggests that something else than the bias/variance trade-off is at play in the improvements
observed when combining CD-1 with the autoassociator gradient. A hypothesis that should be ex-
plored is that whereas there is no guarantee that an RBM will encode in its hidden representation
all the information in the input vector, an autoassociator is trying to achieve this. In fact an RBM
trained by maximum likelihood would be glad to completely ignore the inputs if these were inde-
pendent of each other. Minimizing the reconstruction error would prevent this, and may be useful in
the context where the representations are later used for supervised classification (which is the case
here).

9. Continuous Training of all Layers of a Deep Network

The layer-wise training algorithm for networks of depth l actually has l+1 separate training phases:
first the l phases for the unsupervised training of each layer, and then the final supervised fine-tuning
phase to adjust all the parameters simultaneously. One element that we would like to dispense with

7. The weight of the CD-1 and MF-CD gradient estimates was considered as a hyperparameter.
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is having to decide the number of unsupervised training iterations for each layer before starting the
fine-tuning. One possibility is then to execute all phases simultaneously, that is, train all layers
based on both their greedy unsupervised and global supervised gradients. The advantage is that we
can now have a single stopping criterion (for the whole network). However, computation time is
slightly greater, since we do more computations initially on the upper layers, which might be wasted
before the lower layers converge to a decent representation, but time is saved on optimizing hyper-
parameters. When this continuous training variant is used on the MNIST data set with the same
experimental setup as in Section 6.1, we reach 1.6% and 1.5% error on the test set respectively for
the SRBM network and the SAA network, so unsupervised learning still brings better generaliza-
tion in this setting. This variant may be more appealing for on-line training on very large data sets,
where one would never cycle back on the training data.

However, there seems to be a price to pay in terms of classification error, with this online variant.
In order to investigate what could be the cause, we experimented with a 2-phase algorithm designed
to shed some light on the contribution of different factors to this decrease. In the first phase, all
layers of networks were simultaneously trained according to their unsupervised criterion without
fine-tuning. The output layer is still trained according to the supervised criterion, however, unlike
in Section 6.1, the gradient is not backpropagated into the rest of the network. This allows us to
monitor the discriminative capacity of the top hidden layer. This first phase also enables us to
verify whether the use of the supervised gradient too early during training explains the decrease in
performance (recall the poor results obtained with purely supervised greedy layer-wise training).
Then, in the second phase, 2 options were considered:

1. fine-tune the whole network according to the supervised criterion and stop layer-wise unsu-
pervised learning;

2. fine-tune the whole network and maintain layer-wise unsupervised learning (as in the previous
experiment).

Figures 14(a) and 15(a) show examples of the progression of the test classification error for such
an experiment with the SRBM and SAA networks respectively. As a baseline for the second phase,
we also give the performance of the networks when unsupervised learning is stopped and only the
parameters of the output layer are trained. These specific curves do not correspond to the best values
of the hyperparameters, but are representative of the global picture we observed on several runs with
different hyperparameter values.

We observe that the best option is to perform fine-tuning without layer-wise unsupervised
learning, even when supervised learning is not introduced at the beginning. Also, though per-
forming unsupervised and supervised learning at the same time outperforms unsupervised learn-
ing without fine-tuning, it appears to yield over-regularized networks, as indicated by the asso-
ciated curves of the training negative log-likelihood of the target classes for both networks (see
Figures 14(b) and 15(b)). Indeed, we see that by maintaining some unsupervised learning, the net-
works are not able to optimize as well their supervised training objective. From other runs with
different learning rates, we have observed that this effect becomes less visible when the supervised
learning rate gets larger, which reduces the relative importance of the unsupervised updates. But
then the unsupervised updates usually bring significant instabilities in the learning process, making
even the training cost oscillate.

Another interesting observation is that, when layer-wise unsupervised learning is performed,
the classification error is less stable in an SRBM network than in an SAA network, as indicated by
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(a) SRBM network, test classification error curves (b) SRBM network, train NLL error curves.

Figure 14: Example of learning curves of the 2-phase experiment of Section 9. During the first
half of training, all hidden layers are trained according to CD and the output layer is
trained according to the supervised objective, for all curves. In the second phase, all
combinations of two possibilities are displayed: CD training is performed at all hidden
layers (“CD”) or not (“No CD”), and all hidden layers are fine-tuned according to the
supervised objective (“hidden supervised fine-tuning”) or not (“no hidden supervised
fine-tuning”).

(a) SAA network, test classification error curves (b) SAA network, train NLL error curves.

Figure 15: Same as Figure 14, but with autoassociators (“AA”) used for layer-wise unsupervised
learning.
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the dented learning curves in Figure 14(b), whereas the curves in Figure 15(b) are smoother. This
may be related to the better performance of the SAA network (1.5%) versus the SRBM network
(1.6%) when combining unsupervised and supervised gradients, in the experiment reported at the
beginning of this section. Autoassociator learning might hence be more appropriate here, possibly
because its training objective, that is, the discovery of a representation that preserves the information
in the input, is more compatible with the supervised training objective, which asks that the network
discovers a representation that is predictive of the input’s class. This hypothesis is related to the one
presented at the end of Section 8 regarding the apparent improvement brought by minimizing the
reconstruction error in addition to CD-1 updates.

These experiments show that one can eliminate the multiple unsupervised phases: each layer
can be pre-trained in a way that simply ignores what the layer above are doing. However, it appears
that a final phase involving only supervised gradient yields the best performance. A plausible ex-
planation of these results, and in particular the quick improvement when the unsupervised updates
are removed, is that the unsupervised pre-training brings the parameters near a good solution for the
supervised criterion, but far enough from that solution to yield a significantly higher classification
error. Note that in a setting where there is little labeled data but a lot of unlabelled examples, the
additional regularization introduced by maintaining some unsupervised learning might be beneficial
(Salakhutdinov and Hinton, 2007b).

10. Conclusion

In this paper, we discussed in detail three principles for training deep neural networks, which are
(1) pre-training one layer at a time in a greedy way (2) using unsupervised learning at each layer
in a way that preserves information from the input and disentangles factors of variation and (3)
fine-tuning the whole network with respect to the ultimate criterion of interest. We also presented
experimental evidence that supports the claim that they are key ingredients for reaching good re-
sults. Moreover, we presented a series of experimental results that shed some light on many aspects
of deep networks: confirming that the unsupervised procedure helps the optimization of the deep
architecture, while initializing the parameters in a region near which a good solution of the super-
vised task can be found. Our experiments showed cases where greater depth clearly helps, but too
much depth could be slightly detrimental. We found that CD-1 can be improved by combining it
with the gradient of reconstruction error, and that this is not just due to the use of a lower-variance
update. We showed that the choice of input distribution in RBMs could be important for continuous-
valued input and yielded different types of filters at the first layer. Finally we studied variants more
amenable to online learning in which we show that if different training phases can be combined, the
best results were obtained with a final fine-tuning phase involving only the supervised gradient.

There are many questions and issues that remain to be addressed and that we intend to in-
vestigate in future work. As pointed out in Section 8, the most successful unsupervised learning
approach seems to fall in between generative and encoding approaches. This raises questions about
what are the properties of a learning algorithm that learns good representations for deep networks.
Finding good answers to these questions would have a direct positive impact on the performance of
deep networks. Finally, better model selection techniques that would permit to reduce the number
of hyperparameters would be beneficial and will need to be developed for deep network learning
algorithms to become easier to use.
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Appendix A. Pseudocode for Greedy Layer-Wise Training Paradigm

Input: training set D = {(xt ,yt)}Tt=1, pre-training learning rate $pre-train and fine-tuning learning
rate $fine-tune

Initialize weightsWi
jk ∼U(−a−0.5,a−0.5) with a=max(|ĥi−1|, |ĥi|) and set biases bi to 0

% Pre-training phase
for i ∈ {1, . . . , l} do
while Pre-training stopping criterion is not met do
Pick input example xt from training set
ĥ0(xt) ← xt
for j ∈ {1, . . . , i−1} do
a j(xt) = b j +W jĥ j−1(xt)
ĥ j(xt) = sigm

(
a j(xt)

)

end for
Using ĥi−1(xt) as input example, update weightsWi and biases bi−1, bi with learning rate
$pre-train according to a layer-wise unsupervised criterion (see pseudocodes in appendices B
and C)

end while
end for

% Fine-tuning phase
while Fine-tuning stopping criterion is not met do
Pick input example (xt ,yt) from training set

% Forward propagation
ĥ0(xt) ← xt
for i ∈ {1, . . . , l} do
ai(xt) = bi+Wiĥi−1(xt)
ĥi(xt) = sigm

(
ai(xt)

)

end for
al+1(xt) = bl+1+Wl+1ĥl(xt)
o(xt) = ĥl+1(xt) = softmax

(
al+1(xt)

)

% Backward gradient propagation and parameter update
! logoyt (xt)
!al+1j (xt)

← 1yt= j−o j(xt) for j ∈ {1, . . . ,K}
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bl+1 ← bl+1+ $fine-tune
! logoyt (xt)
!al+1(xt)

Wl+1 ←Wl+1+ $fine-tune
! logoyt (xt)
!al+1(xt)

ĥl(xt)T

for i ∈ {1, . . . , l}, in decreasing order do
! logoyt (xt)
!ĥi(xt)

←
(
Wi+1)T ! logoyt (xt)

!ai+1(xt)
! logoyt (xt)
!aij(xt)

← ! logoyt (xt)
!ĥij(xt)

ĥij(xt)
(
1− ĥij(xt)

)
for j ∈ {1, . . . , |ĥi|}

bi ← bi+ $fine-tune
! logoyt (xt)

!ai

Wi ←Wi+ $fine-tune
! logoyt (xt)

!ai ĥi−1(xt)T
end for

end while
In the first step of the gradient computation, one has to be careful to compute the gradient

of the cost with respect to al+1(xt) at once, in order not to lose numerical precision during the
computation. In particular, computing ! logoyt (xt)

!o(xt) first, then !o(xt)
!al+1(xt)

and applying chain-rule, leads to
numerical instability and sometimes parameter value explosion (NaN).

Appendix B. Restricted Boltzmann Machines and Deep Belief Networks

In this section, we give a brief overview of restricted Boltzmann machines and deep belief networks.

B.1 Restricted Boltzmann Machine

A restricted Boltzmann machine is an energy-based generative model defined over a visible layer
v (sometimes called input) and a hidden layer h (sometimes called hidden factors or representa-
tion). Given an energy function energy(v,h) on the whole set of visible and hidden units, the joint
probability is given by

p(v,h) =
e−energy(v,h)

Z
(6)

where Z ensures that p(v,h) is a valid distribution and sums to one. See Figure 3 for an illustration
of an RBM.

Typically we take hi ∈ {0,1}, but other choices are possible. For now, we consider only binary
units, that is, vi ∈ {0,1} (the continuous case will be discussed in Section 7), where the energy
function has the form

energy(v,h) = −hTWv− cTv−bTh= −!
k
ckvk−!

j
b jh j−!

jk
Wjkvkh j . (7)

When considering the marginal distribution over v, we obtain a mixture distribution

p(v) =!
h
p(v,h) =!

h
p(v|h)p(h)

with a number of parameters linear in the number of hidden units H, while having a number of
components exponential in H. This is because h can take as many as 2H possible values. The 2H
distributions p(v|h) will in general be different, but they are tied. Though computing exactly the
marginal p(v) for large values of H is impractical, a good estimator of the log-likelihood gradient
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have been found with the contrastive divergence algorithm described in the next section. An impor-
tant property of RBMs is that the posterior distribution over one layer given the other is tractable
and fast to compute, as opposed to mixture models with very many components in general. Indeed
one can show that

p(v|h) ="
k
p(vk|h) where p(vk = 1|h) = sigm(ck +!

j
Wjkh j) , (8)

p(h|v) ="
j
p(h j|v) where p(h j = 1|v) = sigm(b j +!

k
Wjkvk) . (9)

Because of the particular parametrization of RBMs, inference of the “hidden factors” h given the
observed input vector v is very easy because those factors are conditionally independent given v. On
the other hand, unlike in many factor models (such as ICA Jutten and Herault, 1991; Comon, 1994;
Bell and Sejnowski, 1995 and sigmoidal belief networks Dayan et al., 1995; Hinton et al., 1995;
Saul et al., 1996), these factors are generally not marginally independent (when we integrate v out).
Notice the similarity between Equations 9 and 1, which makes it possible to relate the weights and
biases of an RBM with those of a deep neural network.

B.2 Learning in a Restricted Boltzmann Machine

To train an RBM, we would like to compute the gradient of the negative log-likelihood of the data
with respect to the RBM’s parameters. However, given an input example v0, the gradient with
respect to a parameter " in an energy-based model

%
%"

(− log p(v0)) = Ep(h|v0)
[
%energy(v0,h)

%"

]
−Ep(v,h)

[
%energy(v,h)

%"

]
(10)

necessitates a sum over all possible assignments for h (first expectation of Equation 10) and another
sum over all assignments for v and h (second expectation). The first expectation is not problematic
in an RBM because the posterior p(h|v0) and !energy(v0,h)

!" factorize. However, the second expectation
requires a prohibitive exponential sum over the possible configurations for v or h.

Fortunately, there exists an approximation for this gradient given by the contrastive divergence
(CD) algorithm (Hinton, 2002), which has been shown to work well empirically (Carreira-Perpiñan
and Hinton, 2005). There are two key elements in this approximation. First, consider that in order
to estimate the second term of Equation 10, we could replace the expectation by a unique evaluation
of the gradient !energy(v,h)!" at a particular pair of values (v,h). This pair should ideally be sampled
from the distribution p(v,h), which would make the estimation of the gradient unbiased. However,
sampling exactly from an RBM distribution is not as easy as in a directed graphical model. Instead,
we have to rely on sampling methods such as Markov Chain Monte Carlo methods. For an RBM,
we can use Gibbs sampling based on the conditional distributions of Equations 8 and 9, but this
method can be costly if the Markov chain mixes slowly. So the second key idea is to run only a few
iterations of Gibbs sampling and use the data sample v0 as the initial state for the chain at the visible
layer. It turns out that applying only one iteration of the Markov chain works well in practice. This
corresponds to the following sampling procedure:

v0
p(h0|v0)−→ h0

p(v1|h0)−→ v1
p(h1|x1)−→ h1

32



EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

where p(hi|vi)−→ and p(vi+1|hi)−→ represent the operations of sampling from p(hi|vi) and p(vi+1|hi) respec-
tively. Estimation of the gradient using the above sampling procedure is noted CD-1, with CD-k
referring to the contrastive divergence algorithm, performing k iterations of the Markov chain up
to vk. Training with CD-k has been shown to empirically approximate well training with the exact
log-likelihood gradient (Carreira-Perpiñan and Hinton, 2005). Furthermore, it can be shown that the
CD-k update is an unbiased estimator of the truncation of a series expansion of the log-likelihood
gradient (Bengio and Delalleau, 2007), where the truncated part of the series converges to 0 as k
increases.

Now let us consider the estimation of the gradient on a weightW jk. We have

%energy(v,h)
%Wjk

= −h jvk

which means that the CD-1 estimate of the gradient becomes

−Ep(h|v0) [h jv0k]+Ep(h|v1) [h1 jv1k] = −p(h j|v0)v0k + p(h j|v1)v1k . (11)

This is similar to what was presented in Hinton et al. (2006) except that we clarify here that we take
the expected value of h given v instead of averaging over samples. These estimators have the same
expected value because

Ep(v,h) [h jvk] = Ep(v)
[
Ep(h|v) [h jvk]

]
= Ep(v) [p(h j|v)vk] .

Using p(h|vk) instead of hk is also what is found in the Matlab code distributed with Hinton and
Salakhutdinov (2006). Note that it is still necessary to sample h0 ∼ p(h|v0) in order to sample v1,
but it is not necessary to sample h1. The above gradient estimator can then be used to perform
stochastic gradient descent by iterating through all vectors v0 of the training set and performing a
parameter update using that gradient estimator in an on-line fashion. Gradient estimators for the
biases bk and c j can as easily be derived from Equation 10.

Notice also that, even if v0 is not binary, the formula for the CD-1 estimate of the gradient
does not change and is still computed essentially in the same way: only the sampling procedure for
p(v|h) changes (see Section 7 for more details about dealing with continuous-valued inputs). The
CD-1 training update for a given training input is detailed by the pseudocode in the next section.

In our implementation of the greedy layer-wise initialization phase, we use the deterministic
sigmoidal outputs of the previous level as training vector for the next level RBM. By interpreting
these real-valued components as probabilities, learning such a distribution for binary inputs can be
seen as a crude “mean-field” way of dealing with probabilistic binary inputs (instead of summing
or sampling across input configurations).

B.3 Pseudocode for Contrastive Divergence (CD-1) Training Update

Input: training input x, RBM weightsWi and biases bi−1,bi and learning rate $
Notation: a∼ p(·) means set a equal to a random sample from p(·)

% Set RBM parameters
W←Wi, b← bi, c← bi−1
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% Positive phase
v0 ← x
ĥ0 ← sigm(b+Wv0)

% Negative phase
h0 ∼ p(h|v0) according to Equation 9
v1 ∼ p(v|h0) according to Equation 8
ĥ1 ← sigm(b+Wv1)

% Update
Wi ←Wi+ $

(
ĥ0

(
v0

)T− ĥ1
(
v1

)T
)

bi ← bi+ $
(
ĥ0− ĥ1

)

bi−1 ← bi−1+ $
(
v0−v1

)

B.4 Deep Belief Network

Wewish to make a quick remark on the distinction between the SRBM network and the more widely
known deep belief network (DBN) (Hinton et al., 2006), which is not a feed-forward neural network
but a multi-layer generative model. The SRBM network was initially derived (Hinton et al., 2006)
from the DBN, for which stacking RBMs also provides a good initialization.

A DBN is a generative model with several layers of stochastic units. It actually corresponds to
a sigmoid belief network (Neal, 1992) of l− 1 hidden layers, where the prior over its top hidden
layer hl−1 (second factor of Equation 12) is an RBM, which itself has a hidden layer hl . More
precisely, it defines a distribution over an input layer x and l layers of binary stochastic units hi as
follows:

p(x,h1, . . . ,hl) =

(
l−1

"
i=1

p(hi−1|hi)
)
p(hl−1,hl) (12)

where hidden units are conditionally independent given the units in the above layer

p(hi−1|hi) ="
k
p(hi−1k |hi) .

To process binary values, Bernoulli layers can be used, which correspond to equations

p(hi−1k = 1|hi) = sigm

(
bi−1k +!

j
W i

jkh
i
j

)

where h0 = x is the input. We also have

p(hl−1,hl) & e# j cl−1j hl−1j +#k blkh
l
k+# jkW l

jkh
l−1
j hlk (13)

for the top RBM. Note that Equation 13 can be obtained from Equations 6 and 7, by naming v as
hl−1, and h as hl .

We emphasize the distinction between hi and ĥi(x), where the former is a random variable and
the latter is the representation of an input x at the i-th hidden layer of the network obtained from the
repeated application of Equation 1.
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To train such a generative model, Hinton et al. (2006) proposed the pre-training phase of the
SRBM network. When all layers of a DBN have the same size, it was actually shown that this
initialization improves a lower bound on the likelihood of the data as the DBN is made deeper. After
this pre-training phase is over, Hinton et al. (2006) propose a variant of the Wake-Sleep algorithm
for sigmoid belief networks (Hinton et al., 1995) to fine-tune the generative model.

By noticing the similarity between the process of approximating the posterior p(hi|x) in a deep
belief network and computing the hidden layer representation of an input x in a deep network,
Hinton (2006) then proposed the use of the greedy layer-wise pre-training procedure for deep belief
networks to initialize a deep feed-forward neural network, which corresponds to the SRBM network
described in this paper.

Appendix C. Pseudocode of Autoassociator Training Update

Input: training input x, autoassociator weightsWi and biases bi−1,bi and learning rate $

% Set autoassociator parameters
W←Wi, b← bi, c← bi−1

% Forward propagation
a(x) ← b+Wx
h(x) ← sigm(a(x))
â(x) ← c+WTh(x)
x̂← sigm(â(x))

% Backward gradient propagation
!C(x̂,x)
!â(x) ← x̂−x
!C(x̂,x)
!ĥ(x)

←W !C(x̂,x)
!â(x)

!C(x̂,x)
!a j(x) ← !C(x̂,x)

!ĥ j(x)
ĥ j(x)

(
1− ĥ j(x)

)
for j ∈ {1, . . . , |ĥ(x)|}

% Update

Wi ←Wi− $

(
!C(x̂,x)
!a(x) x

T + ĥ(x) !C(x̂,x)
!â(x)

T
)

bi ← bi− $ !C(x̂,x)
!a(x)

bi−1 ← bi−1− $ !C(x̂,x)
!â(x)
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Abstract
A linear causal model with correlated errors, represented by a DAG with bi-directed edges, can
be tested by the set of conditional independence relations implied by the model. A global Markov
property specifies, by the d-separation criterion, the set of all conditional independence relations
holding in any model associated with a graph. A local Markov property specifies a much smaller set
of conditional independence relations which will imply all other conditional independence relations
which hold under the global Markov property. For DAGs with bi-directed edges associated with
arbitrary probability distributions, a local Markov property is given in Richardson (2003) which
may invoke an exponential number of conditional independencies. In this paper, we show that for
a class of linear structural equation models with correlated errors, there is a local Markov property
which will invoke only a linear number of conditional independence relations. For general linear
models, we provide a local Markov property that often invokes far fewer conditional independencies
than that in Richardson (2003). The results have applications in testing linear structural equation
models with correlated errors.
Keywords: Markov properties, linear causal models, linear structural equation models, graphical
models

1. Introduction

Linear causal models called structural equation models (SEMs) are widely used for causal reasoning
in social sciences, economics, and artificial intelligence (Goldberger, 1972; Bollen, 1989; Spirtes
et al., 2001; Pearl, 2000). One important problem in the applications of linear causal models is test-
ing a hypothesized model against the given data. While the conventional method involves maximum
likelihood estimation of the covariance matrix, an alternative approach has been proposed recently
which involves testing for the conditional independence relationships implied by the model (Spirtes
et al., 1998; Pearl, 1998; Pearl and Meshkat, 1999; Pearl, 2000; Shipley, 2000, 2003). The advan-
tages of using this new test method instead of the traditional global fitting test have been discussed
in Pearl (1998), Shipley (2000), McDonald (2002) and Shipley (2003). The method can be applied
in small data samples and it can test “local” features of the model.

To apply this test method, one needs to be able to identify the conditional independence rela-
tionships implied by an SEM. This can be achieved by representing the SEM with a graph called a
path diagram (Wright, 1934) and then reading independence relations from the path diagram. For
a linear SEM without correlated errors, the corresponding path diagram is a directed acyclic graph
(DAG). The set of all conditional independence relations holding in any model associated with a
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DAG, often called a global Markov property for the DAG, can be read by the d-separation crite-
rion (Pearl, 1988). However, it is not necessary to test for all the independencies implied by the
model as a subset of those independencies may imply all others. A local Markov property specifies
a much smaller set of conditional independence relations which will imply (using the laws of prob-
ability) all other conditional independence relations that hold under the global Markov property. A
well-known local Markov property for DAGs is that each variable is conditionally independent of
its non-descendants given its parents (Lauritzen et al., 1990; Lauritzen, 1996). Based on this local
Markov property, Pearl and Meshkat (1999) and Shipley (2000) proposed testing methods for linear
SEMs without correlated errors that involve at most one conditional independence test for each pair
of variables.

On the other hand, the path diagrams for linear SEMs with correlated errors are DAGs with
bi-directed edges (↔) where bi-directed edges are used to represent correlated errors. A DAG with
bi-directed edges is called an acyclic directed mixed graph (ADMG) in Richardson (2003). The
set of all conditional independence relations encoded in an ADMG can still be read by (a natural
extension of) the d-separation criterion (called m-separation in Richardson, 2003) which provides
the global Markov property for ADMGs (Spirtes et al., 1998; Koster, 1999; Richardson, 2003). A
local Markov property for ADMGs is given in Richardson (2003), which, in the worst case, may
invoke an exponential number of conditional independence relations, a sharp difference with the
local Markov property for DAGs, where only one conditional independence relation is associated
with each variable. Shipley (2003) suggested a method for testing linear SEMs with correlated
errors but the method may or may not, depending on the actual models, be able to find a subset of
conditional independence relations that imply all others.

In this paper, we seek to improve the local Markov property given in Richardson (2003) for
linear SEMs with correlated errors. The local Markov property in Richardson (2003) is applicable
for ADMGs associated with arbitrary probability distributions. Specifically, only semi-graphoid
axioms which must hold in all probability distributions (Pearl, 1988) are used in showing that the
set of conditional independence relations specified by the local Markov property will imply all those
specified by the global Markov property. On the other hand, in linear SEMs, variables are assumed
to have normal distributions, and it is known that normal distributions also satisfy the so-called
composition axiom. Therefore, in this paper, we look for local Markov properties for ADMGs
associated with probability distributions that satisfy the composition axiom. We will show that
for a class of ADMGs, the local Markov property will invoke only one conditional independence
relation for each variable, and therefore testing for the corresponding linear SEMs will involve at
most one conditional independence test for each pair of variables. For general ADMGs, we provide
a procedure that reduces the number of conditional independencies invoked by the local Markov
property given in Richardson (2003), and therefore reduces the complexity of testing linear SEMs
with correlated errors.

In the test of conditional independence relations, the efficiency of the test is influenced by the
size of the conditioning set (that is, the number of conditioning variables) with a small conditioning
set having advantage over a large one. The conditional independence relations invoked by the stan-
dard local Markov property for DAGs use a parent set as the conditioning set. Pearl and Meshkat
(1999) have shown for linear SEMs without correlated errors how to find a set of conditional inde-
pendence relations that may involve fewer conditioning variables. In this paper, we also generalize
this result to linear SEMs with correlated errors.
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The paper is organized as follows. In Section 2, we introduce linear SEMs, give basic notation
and definitions, and present the local Markov property developed in Richardson (2003). In Section
3, we show that for a class of ADMGs, there is a local Markov property for probability distributions
satisfying the composition axiom that invokes only a linear number of conditional independence
relations. We also show a local Markov property that may involve fewer conditioning variables.
In Section 4, we consider general ADMGs (for probability distributions satisfying the composition
axiom) and show a local Markov property that invokes fewer conditional independencies than that
in Richardson (2003). Section 5 concludes the paper.

2. Preliminaries and Motivation

In this section, we give basic definitions and introduce some relevant concepts.

2.1 Linear Causal Models

The SEM technique was developed by geneticists (Wright, 1934) and economists (Haavelmo, 1943)
for assessing cause-effect relationships from a combination of statistical data and qualitative causal
assumptions. It is an important causal analysis tool widely used in social sciences, economics, and
artificial intelligence (Goldberger, 1972; Duncan, 1975; Bollen, 1989; Spirtes et al., 2001). For a
review of SEMs and causality we refer to Pearl (1998).

In an SEM, the causal relationships among a set of variables are often assumed to be linear and
expressed by linear equations. Each equation describes the dependence of one variable in terms of
the others. For example, an equation

Y = aX+ ! (1)

represents that X may have a direct causal influence on Y and that no other variables have (direct)
causal influences on Y except those factors (represented by the error term ! traditionally assumed to
have normal distribution) that are omitted from the model. The parameter a quantifies the (direct)
causal effect of X on Y . An equation like (1) with a causal interpretation represents an autonomous
causal mechanism and is said to be structural.

As an example, consider the following model from Pearl (2000) that concerns the relations
between smoking (X) and lung cancer (Y ), mediated by the amount of tar (Z) deposited in a person’s
lungs:

X = !1,

Z = aX+ !2,

Y = bZ+ !3.

The model assumes that the amount of tar deposited in the lungs depends on the level of smoking
(and external factors) and that the production of lung cancer depends on the amount of tar in the
lungs but smoking has no effect on lung cancer except as mediated through tar deposits. To fully
specify the model, we also need to decide whether those omitted factors (!1, !2, !3) are correlated
or not. We may assume that no other factor that affects tar deposit is correlated with the omitted
factors that affect smoking or lung cancer (Cov(!1,!2) =Cov(!2,!3) = 0). However, there might be
unobserved factors (say some unknown carcinogenic genotype) that affect both smoking and lung
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Figure 1: Causal diagram illustrating the effect of smoking on lung cancer

cancer (Cov(!1,!3) "= 0), but the genotype nevertheless has no effect on the amount of tar in the
lungs except indirectly (through smoking). Often, it is illustrative to express our qualitative causal
assumptions in terms of a graphical representation, as shown in Figure 1.

We now formally define the model that we will consider in this paper. A linear causal model (or
linear SEM) over a set of random variablesV = {V1, . . . ,Vn} is given by a set of structural equations
of the form

Vj =!
i
c jiVi+ ! j, j = 1, . . . ,n, (2)

where the summation is over the variables in V judged to be immediate causes of V j. c ji, called a
path coefficient, quantifies the direct causal influence of Vi on V j. ! j’s represent “error” terms due
to omitted factors and are assumed to have normal distribution. We consider recursive models and
assume that the summation in (2) is for i< j, that is, c ji = 0 for i≥ j.

We denote the covariances between observed variables "i j = Cov(Vi,Vj), and between error
terms #i j =Cov(!i,! j). We denote the following matrices, $= ["i j], %= [#i j], and C = [ci j]. The
parameters of the model are the non-zero entries in the matricesC and%. A parameterization of the
model assigns a value to each parameter in the model, which then determines a unique covariance
matrix $ given by (see, for example, Bollen, 1989)

$= (I−C)−1%((I−C)t)−1.

The structural assumptions encoded in the model are the zero path coefficients and zero error
covariances. The model structure can be represented by a DAG G with (dashed) bi-directed edges
(an ADMG), called a causal diagram (or path diagram), as follows: the nodes ofG are the variables
V1, . . . ,Vn; there is a directed edge from Vi to Vj in G if Vi appears in the structural equation for V j,
that is, c ji "= 0; there is a bi-directed edge betweenVi andV j if the error terms !i and ! j have non-zero
correlation. For example, the smoking-and-lung-cancer SEM is represented by the causal diagram
in Figure 1, in which each directed edge is annotated by the corresponding path coefficient.

We note that linear SEMs are often used without explicit causal interpretation. A linear SEM in
which error terms are uncorrelated consists of a set of regression equations. Note that an equation as
given by (2) is a regression equation if and only if ! j is uncorrelated with each Vi (Cov(Vi,! j) = 0).
Hence, an equation in an SEM with correlated errors may not be a regression equation. Linear
SEMs provide a more powerful way to model data than the regression models taking into account
correlated error terms.

2.2 Model Testing and Markov Properties

One important task in the applications of linear SEMs is to test a model against data. One approach
for this task is to test for the conditional independence relationships implied by the model, which
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can be read from the causal diagram by the d-separation criterion as defined in the following.1 A
path between two vertices Vi and V j in an ADMG consists of a sequence of consecutive edges of
any type (directed or bi-directed). A vertex Vi is said to be an ancestor of a vertex V j if there is a
path Vi → · · ·→ V j. A non-endpoint vertex W on a path is called a collider if two arrowheads on
the path meet atW , that is, →W ←, ↔W ↔, ↔W ←, →W ↔; all other non-endpoint vertices
on a path are non-colliders, that is,←W →,←W ←,→W →,↔W →,←W ↔. A path between
vertices Vi and V j in an ADMG is said to be d-connecting given a set of vertices Z if

1. every non-collider on the path is not in Z, and

2. every collider on the path is an ancestor of a vertex in Z.

If there is no path d-connecting Vi and V j given Z, then Vi and V j are said to be d-separated given Z.
Sets X and Y are said to be d-separated given Z, if for every pair Vi, Vj, with Vi ∈ X and V j ∈ Y , Vi
and V j are d-separated given Z. Let I(X ,Z,Y ) denote that X is conditionally independent of Y given
Z. The set of all the conditional independence relations encoded by a causal diagram G is specified
by the following global Markov property.

Definition 1 (The Global Markov Property (GMP)) A probability distribution P is said to satisfy
the global Markov property for G if for arbitrary disjoint sets X ,Y,Z with X and Y being nonempty,

(GMP) X is d-separated from Y given Z in G=⇒ I(X ,Z,Y ).

The global Markov property typically involves a vast number of conditional independence relations
and it is possible to test for a subset of those independencies that will imply all others. A local
Markov property specifies a much smaller set of conditional independence relations which will
imply by the laws of probability all other conditional independence relations that hold under the
global Markov property. For example, a well-known local Markov property for DAGs is that each
variable is conditionally independent of its non-descendants given its parents. The causal diagram
for a linear SEM with correlated errors is an ADMG and a local Markov property for ADMGs is
given in Richardson (2003).

Note that in linear SEMs, the conditional independence relations will correspond to zero partial
correlations (Lauritzen, 1996):

&ViV j.Z = 0⇐⇒ I({Vi},Z,{V j}).

As an example, for the linear SEM with the causal diagram in Figure 2, if we use the local Markov
property in Richardson (2003), then we need to test for the vanishing of the following set of partial
correlations (for ease of notation, we write &i j.Z to denote &ViV j.Z):

{&21,&32.1,&43.2,&41.2,&54.3,&52.3,&51.3,&64.53,&62.53,&61.53,&64.3,&62.3,&61.3,&72.6543,
&71.6543,&72.643,&71.643,&75.4,&73.4,&72.4,&71.4}. (3)

The local Markov property in Richardson (2003) is valid for any probability distributions. In
fact, the equivalence of the global and local Markov properties is proved using the following so-
called semi-graphoid axioms (Pearl, 1988) that probabilistic conditional independencies must sat-
isfy:

1. The d-separation criterion was originally defined for DAGs (Pearl, 1988) but can be naturally extended for ADMGs
and is called m-separation in Richardson (2003).
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V5 V6 V7

V3 V4

V1 V2

Figure 2: A causal diagram

• Symmetry
I(X ,Z,Y ) ⇐⇒ I(Y,Z,X).

• Decomposition
I(X ,Z,Y ∪W ) =⇒ I(X ,Z,Y ) & I(X ,Z,W ).

• Weak Union
I(X ,Z,Y ∪W ) =⇒ I(X ,Z∪W,Y ).

• Contraction
I(X ,Z,Y ) & I(X ,Z∪Y,W ) =⇒ I(X ,Z,Y ∪W ).

where X , Y , Z, andW are disjoint sets of variables.
On the other hand, in linear SEMs the variables are assumed to have normal distributions, and

normal distributions also satisfy the following composition axiom:

• Composition
I(X ,Z,Y ) & I(X ,Z,W ) =⇒ I(X ,Z,Y ∪W ).

Therefore, we expect a local Markov property for linear SEMs to invoke fewer conditional inde-
pendence relations than that for arbitrary distributions. In this paper, we will derive reduced local
Markov properties for linear SEMs by making use of the composition axiom. As an example, for
the linear SEM in Figure 2, a local Markov property which we will present in this paper (see Sec-
tion 3.3) says that we only need to test for the vanishing of the following set of partial correlations:

{&21,&32,&43,&41,&54,&52,&51.3,&64,&62,&61.3,&75,&73,&71,&72.4}.

The number of tests needed and the size of the conditioning set Z are both substantially reduced
compared with (3), thus leading to a more economical way of testing the given model.

2.3 A Local Markov Property for ADMGs

In this section, we describe the local Markov property for ADMGs associated with arbitrary proba-
bility distributions presented in Richardson (2003). In this paper, this Markov property will be used
as an important tool to prove the equivalence of our local Markov properties and the global Markov
property.

First, we define some graphical notations. For a vertex X in an ADMG G, paG(X) ≡ {Y |Y → X
in G} is the set of parents of X . spG(X) ≡ {Y |Y ↔ X in G} is the set of spouses of X . anG(X) ≡

46



MARKOV PROPERTIES FOR LINEAR CAUSAL MODELS WITH CORRELATED ERRORS

V5 V6 V7

V3 V4

V8 V9

V1 V2
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V3 V4

V89

V1 V2

(a) (b)

Figure 3: An ADMG and its compressed graph

{Y |Y → · · ·→ X in G or Y = X} is the set of ancestors of X . And deG(X) ≡ {Y |Y ← · · ·← X in
G or Y = X} is the set of descendants of X . These definitions will be applied to sets of vertices, so
that, for example, paG(A) ≡ ∪X∈ApaG(X), spG(A) ≡ ∪X∈AspG(X), etc.

Definition 2 (C-component) A c-component of G is a maximal set of vertices in G such that any
two vertices in the set are connected by a path on which every edge is of the form↔; a vertex that
is not connected to any bi-directed edge forms a c-component by itself.

For example, the ADMG in Figure 3 (a) is composed of 6 c-components {V1}, {V2}, {V3}, {V4},
{V5,V6,V7} and {V8,V9}. The district of X in G is the c-component of G that includes X . Thus,

disG(X) ≡ {Y |Y ↔ · · ·↔ X in G or Y = X}.

For example, in Figure 3 (a), we have disG(V5) = {V5,V6,V7} and disG(V8) = {V8,V9}. A set A is
said to be ancestral if it is closed under the ancestor relation, that is, if anG(A) = A. Let GA denote
the induced subgraph of G on the vertex set A, formed by removing from G all vertices that are not
in A, and all edges that do not have both endpoints in A.

Definition 3 (Markov Blanket)2 If A is an ancestral set in an ADMG G, and X is a vertex in A
that has no children in A then theMarkov blanket of vertex X with respect to the induced subgraph
on A, denoted mb(X ,A) is defined to be

mb(X ,A) ≡ paGA (disGA(X))∪ (disGA(X)\{X}) .

For example, for an ancestral set A= anG({V5,V6}) = {V1,V2,V3,V4,V5,V6} in Figure 3 (a), we have

mb(V5,A) = {V3,V4,V6}.

An ordering (≺) on the vertices of G is said to be consistent with G if X ≺Y ⇒Y /∈ anG(X). Given
a consistent ordering ≺, let preG,≺(X) ≡ {Y |Y ≺ X or Y = X}.

Definition 4 (The Ordered Local Markov Property (LMP,≺)) A probability distribution P sat-
isfies the ordered local Markov property for G with respect to a consistent ordering ≺, if, for any X
and ancestral set A such that X ∈ A⊆ preG,≺(X),

(LMP,≺) I({X},mb(X ,A),A\ (mb(X ,A)∪{X})). (4)

2. The definition of Markov blanket here follows that in Richardson (2003) and is compatible with that in Pearl (1988).
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Theorem 5 (Richardson, 2003) If G is an ADMG and≺ is a consistent ordering, then a probability
distribution P satisfies the ordered local Markov property for G with respect to ≺ if and only if P
satisfies the global Markov property for G.

We will write (GMP)⇐⇒ (LMP,≺) to denote the equivalence of the two Markov properties. There-
fore the (smaller) set of conditional independencies specified in the ordered local Markov prop-
erty will imply all other conditional independencies which hold under the global Markov prop-
erty. It is possible to further reduce the number of conditional independence relations in the or-
dered local Markov property. An ancestral set A, with X ∈ A ⊆ preG,≺(X) is said to be maxi-
mal with respect to the Markov blanket mb(X ,A) if, whenever there is a set B such that A ⊆ B ⊆
preG,≺(X) and mb(X ,A) =mb(X ,B), then A = B. For example, suppose that we are given an or-
dering ≺: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V5 ≺ V6 ≺ V7 ≺ V8 ≺ V9 for the graph G in Figure 3 (a). While an
ancestral set A = anG({V3,V6,V7}) = {V1,V2,V3,V4,V6,V7} is maximal with respect to the Markov
blanket mb(V7,A) = {V4,V6}, an ancestral set A′ = anG({V6,V7}) = {V2,V4,V6,V7} is not. It was
shown that we only need to consider ancestral sets A which are maximal with respect to mb(X ,A) in
the ordered local Markov property (Richardson, 2003). Thus, we will consider only maximal ances-
tral sets A when we discuss (LMP,≺) for the rest of this paper. The following lemma characterizes
maximal ancestral sets.

Lemma 6 (Richardson, 2003) Let X be a vertex and A an ancestral set in G with consistent ordering
≺ such that X ∈ A⊆ preG,≺(X). The set A is maximal with respect to the Markov blanket mb(X,A)
if and only if

A= preG,≺(X)\deG(h(X ,A))

where
h(X ,A) ≡ spG

(
disGA(X)

)
\
(
{X}∪mb(X ,A)

)
.

Even though we only consider maximal ancestral sets, the ordered local Markov property may
still invoke an exponential number of conditional independence relations. For example, for a vertex
X , if disG(X) ⊆ preG,≺(X) and disG(X) has a clique of n vertices joined by bi-directed edges, then
there are at least O(2n−1) different Markov blankets.

It should be noted that only the semi-graphoid axioms were used to prove Theorem 5 on the
equivalence of the two Markov properties and no assumptions about probability distributions were
made. Next we will show that the ordered local Markov property can be further reduced if we use
the composition axiom in addition to the semi-graphoid axioms. The local Markov properties we
obtained (in Sections 3 and 4) are not restricted to linear causal models in that they are actually valid
for any probability distributions that satisfy the composition axiom.

3. Markov Properties for ADMGs without Directed Mixed Cycles

In this section, we introduce three local Markov properties for a class of ADMGs and show that they
are equivalent to the global Markov property. Also, we discuss related work in maximal ancestral
graphs and chain graphs. First, we give some definitions.

Definition 7 (Directed Mixed Cycle) A path is said to be a directed mixed path from X to Y if
it contains at least one directed edge and every edge on the path is either of the form Z ↔W, or
Z →W with W between Z and Y . A directed mixed path from X to Y together with an edge Y → X
or Y ↔ X is called a directed mixed cycle.
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X Y
Z W

Figure 4: Directed mixed cycles

For example, the path X → Z↔W →Y ↔ X in the graph in Figure 4 forms a directed mixed cycle.
In this section, we will consider only ADMGs without directed mixed cycles.

Definition 8 (Compressed Graph) Let G be an ADMG. The compressed graph of G is defined to be
the graph G′ =(V ′,E ′), V ′ = {VC |C is a c-component of G}, E ′ = {VCi →VC j | there is an edge X→
Y in G such that X ∈Ci,Y ∈C j}.

Figure 3 shows an ADMG and its compressed graph. If there exists a directed mixed cycle in an
ADMG G, there will be a cycle or a self-loop in the compressed graph of G. For example, if for two
vertices X and Y in a c-component C of G there exists an edge X → Y , then the compressed graph
of G contains a self-loop !

VC. The following proposition holds.

Proposition 9 Let G be an ADMG. The compressed graph of G is a DAG if and only if G has no
directed mixed cycles.

3.1 The Reduced Local Markov Property

In this section, we introduce a local Markov property for ADMGs without directed mixed cycles
which only invokes a linear number of conditional independence relations and show that it is equiv-
alent to the global local Markov property.

Definition 10 (The Reduced Local Markov Property (RLMP)) Let G be an ADMG without di-
rected mixed cycles. A probability distribution P is said to satisfy the reduced local Markov property
for G if

(RLMP) ∀X ∈V, I({X},paG(X),V \ f(X ,G)) (5)

where f(X ,G) ≡ paG(X)∪deG({X}∪ spG(X)).

The reduced local Markov property states that a variable is independent of the variables that are
neither its descendants nor its spouses’ descendants given its parents.

Theorem 11 If a probability distribution P satisfies the composition axiom and an ADMG G has
no directed mixed cycles, then

(GMP)⇐⇒ (RLMP).

Proof: (GMP) =⇒ (RLMP)
We need to prove that any variable X is d-separated from V \ f(X ,G) given paG(X) in G with no
directed mixed cycle. Consider a vertex ' ∈ V \ f(X ,G). We will show that there is no path d-
connecting X and ' given paG(X). There are four possible cases for any path between X and '.
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1. X ← ( · · ·'

2. X → · · ·→ )←∗ · · ·'

3. X ↔ *←∗ · · ·'

4. X ↔ *→ · · ·→ )←∗ · · ·'

A symbol ∗ serves as a wildcard for an end of an edge. For example, ←∗ represents both ← and
↔. In case 1, ( ∈ paG(X). In case 2, the collider ) is not an ancestor of a vertex in paG(X) (other-
wise, there would be a cycle). In cases 3 and 4, neither * nor ) is an ancestor of a vertex in paG(X)
(otherwise, there would be directed mixed cycles). In any case, the path is not d-connecting given
paG(X). !

Proof: (RLMP) =⇒ (GMP)
We will show that for some consistent ordering ≺, (RLMP) =⇒ (LMP,≺). Then, by Theorem 5,
we have (RLMP) =⇒ (GMP).

We construct a consistent ordering with the desired property as follows.

1. Construct the compressed graph G′ of G.

2. Let ≺′ be any consistent ordering on G′. Construct a consistent ordering ≺ from ≺′ by
replacing each VC (corresponding to each c-component C of G) in ≺′ with the vertices in C
(the ordering of the vertices in C is arbitrary).

We now prove that (RLMP) =⇒ (LMP,≺). Assume that a probability distribution P satisfies
(RLMP). Consider the set of conditional independence relations invoked by (LMP,≺) for each vari-
able X given in (4). First, observe that for any vertex Y in disGA(X), we have

A\ (paG(Y )∪{Y}∪ spG(Y )) ⊆V \ f(Y,G),

since

A\ (paG(Y )∪{Y}∪ spG(Y ))

= A\
((
paG(Y )∪{Y}∪ spG(Y )

)
∪

(
deG({Y}∪ spG(Y ))\ ({Y}∪ spG(Y ))

))
(6)

= A\ f(Y,G).

The equality (6) holds since the vertices in deG({Y}∪ spG(Y ))\ ({Y}∪ spG(Y )) do not appear in A
(because of the way ≺ is constructed, no descendant of disGA(X) is in A). Thus, by (5), for all Y in
disGA(X), we have

I({Y},paG(Y ),A\ (paG(Y )∪{Y}∪ spGA(Y ))).

Let S1 = paG(disGA(X))\paG(Y ) and S2 = A\ (mb(X ,A)∪{X}). It follows that

S1 ⊆ A\ (paG(Y )∪{Y}∪ spG(Y )) and
S2 ⊆ A\ (paG(Y )∪{Y}∪ spG(Y )).
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Also, we have

S1∩S2 = /0,

since S1 ⊆mb(X ,A). Therefore, for Y ∈ disGA(X),

I({Y},paG(Y ),S1∪S2) by decomposition
I({Y},paG(Y )∪S1,S2) by weak union
I(disGA(X),paG(disGA(X)),A\ (mb(X ,A)∪{X})) by composition
I({X},paG(disGA(X))∪ (disGA(X)\{X}),
A\ (mb(X ,A)∪{X})) by weak union.

Thus, we have

I({X},mb(X ,A),A\ (mb(X ,A)∪{X}))

by the definition of the Markov blanket of X with respect to A. !
As an example, consider the ADMG G in Figure 3 (a) which has no directed mixed cycles. The

graph in Figure 3 (b) is the compressed graph G′ of G described in the proof. From the ordering
≺′: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V567 ≺ V89, we obtain the ordering ≺: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V5 ≺ V6 ≺
V7 ≺ V8 ≺ V9. The ordered local Markov property (LMP,≺) involves the following conditional
independence relations:

I({V2}, /0,{V1}), I({V3},{V1},{V2}),
I({V4},{V2},{V1,V3}), I({V5},{V3},{V1,V2,V4}),
I({V6},{V3,V4,V5},{V1,V2}), I({V6},{V4},{V1,V2,V3}),
I({V7},{V3,V4,V5,V6},{V1,V2}), I({V7},{V4,V6},{V1,V2,V3}),
I({V7},{V4},{V1,V2,V3,V5}), I({V8},{V6},{V1,V2,V3,V4,V5,V7}),
I({V9},{V2,V6,V7,V8},{V1,V3,V4,V5}), I({V9},{V2,V7},{V1,V3,V4,V5,V6}). (7)

(RLMP) invokes the following conditional independence relations:

I({V1}, /0,{V2,V4,V6,V7,V8,V9}), I({V2}, /0,{V1,V3,V5}),
I({V3},{V1},{V2,V4,V6,V7,V8,V9}), I({V4},{V2},{V1,V3,V5}),
I({V5},{V3},{V1,V2,V4,V7,V9}), I({V6},{V4},{V1,V2,V3}),
I({V7},{V4},{V1,V2,V3,V5}), I({V8},{V6},{V1,V2,V3,V4,V5,V7}),
I({V9},{V2,V7},{V1,V3,V4,V5,V6}) (8)

which, by Theorem 11, imply all the conditional independence relations in (7).
For the special case of graphs containing only bi-directed edges,3 Kauermann (1996) provides

a local Markov property for probability distributions obeying the composition axiom as follows:

∀X ∈V, I({X}, /0,V \ ({X}∪ spG(X))). (9)

3. Kauermann (1996) actually used undirected graphs with dashed edges which are Markov equivalent to graphs with
only bi-directed edges (see Richardson, 2003, for discussions).
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Since a graph containing only bi-directed edges is a special case of ADMGs without directed mixed
cycles, the reduced local Markov property (RLMP) is applicable, and it turns out that (RLMP)
reduces to (9) for graphs containing only bi-directed edges. Therefore (RLMP) includes the local
Markov property given in Kauermann (1996) as a special case.

3.2 The Ordered Reduced Local Markov Property

The set of zero partial correlations corresponding to a conditional independence relation I(X ,Z,Y )
is

{&ViV j.Z = 0 | Vi ∈ X ,Vj ∈ Y}.

Although (RLMP) gives only a linear number of conditional independence relations, the number of
zero partial correlations may be larger than that invoked by (LMP,≺) in some cases. For example,
12 conditional independence relations in (7) involve 37 zero partial correlations while 9 conditional
independence relations in (8) involve 41 zero partial correlations. In this section, we will show an
ordered local Markov property such that at most one zero partial correlation is invoked for each pair
of variables.

Definition 12 (C-ordering) Let G be an ADMG. A consistent ordering ≺ on the vertices of G is
said to be a c-ordering if all the vertices in each c-component of G are consecutively ordered in ≺.

For example, the orderingV1≺V2≺V3≺V4≺V5≺V6≺V7≺V8≺V9 is a c-ordering on the vertices
of G in Figure 3 (a). The following holds.

Proposition 13 There exists a c-ordering on the vertices of G if G does not have directed mixed
cycles.

We can easily construct a c-ordering from the compressed graph of G. We introduce the following
Markov property.

Definition 14 (The Ordered Reduced Local Markov Property (RLMP,≺c)) Let G be an ADMG
without directed mixed cycles and≺c be a c-ordering on the vertices of G. A probability distribution
P is said to satisfy the ordered reduced local Markov property for G with respect to ≺c if

(RLMP,≺c) ∀X ∈V, I({X},paG(X),preG,≺c(X)\ ({X}∪paG(X)∪ spG(X))). (10)

The ordered reduced local Markov property states that a variable is independent of its predecessors,
excluding its spouses, in a c-ordering given its parents. We now establish the equivalence of (GMP)
and (RLMP,≺c).

Theorem 15 If a probability distribution P satisfies the composition axiom and an ADMG G has
no directed mixed cycles, then for a c-ordering ≺c on the vertices of G,

(GMP)⇐⇒ (RLMP,≺c).
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Proof: (GMP) =⇒ (RLMP,≺c)
The set preG,≺c(X) does not include any descendant of disG(X) since ≺c is a c-ordering. We have

preG,≺c(X)\ ({X}∪paG(X)∪ spG(X))

= preG,≺c(X)\
((

{X}∪paG(X)∪ spG(X)
)
∪

(
deG({X}∪ spG(X))\ ({X}∪ spG(X))

))

= preG,≺c(X)\ f(X ,G)

⊆V \ f(X ,G).

Hence, (RLMP,≺c) follows from (RLMP). !

Proof: (RLMP,≺c) =⇒ (GMP)
We will show that (RLMP,≺c) =⇒ (LMP,≺c). Assume that a probability distribution P satisfies
(RLMP,≺c). Let g(Y ) = preG,≺c(Y ) \ ({Y}∪ paG(Y )∪ spG(Y )). Consider the set of conditional
independence relations invoked by (LMP,≺c) for each variable X given in (4) where A is maximal.
By (10), for all Y in disGA(X), we have

I(Y,paG(Y ),g(Y )). (11)

Let S1 = paG(disGA(X))\paG(Y ) and S2 = A\ (mb(X ,A)∪{X}). We have that

S1 ⊆ g(Y ).

Note that S2 \g(Y ) may be non-empty. Let S3 = S2 \g(Y ). It suffices to show that

I(Y,paG(Y ),S3),

which implies I(Y,paG(Y ),S2) by composition. Then, the rest of the proof would be identical to that
of Theorem 11.

We first characterize the vertices in S3. We will show that

S3 = (preG,≺c(X)\preG,≺c(Y ))\ spG(disGA(X)). (12)

By Lemma 6, we have

S2 = preG,≺c(X)\
(
deG(h(X ,A))∪mb(X ,A)∪{X}

)
.

Since ≺c is a c-ordering, no descendant of disG(X) will appear in A. Hence,

S2 = preG,≺c(X)\
(
spG(disGA(X))∪paG(disGA(X))

)
.

To identify some common elements of S2 and g(Y ), we will reformulate S2 and g(Y ) as follows.

S2 =
(
B\paG(disGA(X))

)
∪

(
(disG(X)∩preG,≺c(X))\ spG(disGA(X))

)
,

g(Y ) =
(
B\paG(Y )

)
∪

(
(disG(X)∩preG,≺c(Y ))\ ({Y}∪ spG(Y ))

)
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where B = preG,≺c(X) \ disG(X). This can be verified by noting that A1 = A2 \ (A3∪A4) = (A11 \
A2)∪(A12\A3) if A1 =A11∪A12,A11∩A12 = /0,A2⊆A11,A3⊆A12. From paG(Y )⊆ paG(disGA(X)),
it follows that B\paG(disGA(X)) ⊆ B\paG(Y ) and

S3 =S2 \g(Y )

=
(
(disG(X)∩preG,≺c(X))\ spG(disGA(X))

)

\
(
(disG(X)∩preG,≺c(Y ))\ ({Y}∪ spG(Y ))

)
.

We can rewrite the first part of this expression as follows.

(disG(X)∩preG,≺c(X))\ spG(disGA(X))

=
(
(disG(X)∩preG,≺c(Y ))\ spG(disGA(X))

)

∪
(
(preG,≺c(X)\preG,≺c(Y ))\ spG(disGA(X))

)
.

From (disG(X)∩preG,≺c(Y ))\ spG(disGA(X)) ⊆ (disG(X)∩preG,≺c(Y ))\ ({Y}∪ spG(Y )), (12) fol-
lows. Thus, the vertices in S3 are those in the set preG,≺c(X) \ preG,≺c(Y ) and not in the set
spG(disGA(X)).

Now we are ready to prove I(Y,paG(Y ),S3). For any Z ∈ S3, we have Y ≺ Z and Z /∈ spG(Y ).
Hence,

I({Z},paG(Z),g(Z)),
I({Z},paG(Z),{Y}∪ (paG(Y )\paG(Z))) by decomposition,
I({Z},paG(Z)∪paG(Y ),{Y}) by weak union,
I({Y},paG(Y ),paG(Z)\paG(Y )) by paG(Z)\paG(Y )) ⊆ g(Y ),(11)
and decomposition,

I({Y},paG(Y ),{Z}) by contraction and decomposition.

Therefore, by composition, I(Y,paG(Y ),S3) holds. !
(RLMP,≺c) invokes one zero partial correlation for each pair of nonadjacent variables. For

example, for the ADMG G in Figure 3 (a) and a c-ordering≺c:V1 ≺V2 ≺V3 ≺V4 ≺V5 ≺V6 ≺V7 ≺
V8 ≺V9, (RLMP,≺c) invokes the following conditional independence relations:

I({V2}, /0,{V1}), I({V3},{V1},{V2}),
I({V4},{V2},{V1,V3}), I({V5},{V3},{V1,V2,V4}),
I({V6},{V4},{V1,V2,V3}), I({V7},{V4},{V1,V2,V3,V5}),
I({V8},{V6},{V1,V2,V3,V4,V5,V7}), I({V9},{V2,V7},{V1,V3,V4,V5,V6}) (13)

which involve 25 zero partial correlations while (7) involve 37 zero partial correlations.

3.3 The Pairwise Markov Property

In this section, we give a pairwise Markov property which specifies conditional independence re-
lations between pairs of variables and show that it is equivalent to the global Markov property. In
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previous sections, we focused on minimizing the number of zero partial correlations. We now take
into account the size of the conditioning set Z in each zero partial correlation &XY.Z . When the
size of paG(X) for a vertex X in (RLMP,≺c) is large, it might be advantageous to use a different
conditioning set with smaller size (if the equivalence of the Markov properties still holds). Pearl
and Meshkat (1999) introduced a pairwise Markov property for DAGs (without bi-directed edges)
which may involve fewer conditioning variables and thus lead to more economical tests. The result
can be easily generalized to ADMGs with no directed mixed cycles.

Let d(X ,Y ) denote the shortest distance between two vertices X and Y , that is, the number of
edges in the shortest path between X and Y . Two vertices X and Y are nonadjacent if X and Y are
not connected by a directed nor a bi-directed edge.

Definition 16 (The Pairwise Markov Property (PMP,≺c)) Let G be an ADMG without directed
mixed cycles and ≺c be a c-ordering on the vertices of G. A probability distribution P is said to
satisfy the pairwise Markov property for G with respect to ≺c if for any two nonadjacent vertices
Vi,Vj,Vj ≺c Vi

(PMP,≺c) I({Vi},Zi j,{Vj})

where Zi j is any set of vertices such that Zi j d-separates Vi fromV j and ∀Z ∈ Zi j,d(Vi,Z) < d(Vi,Vj).

Note that, in ADMGs with no directed mixed cycles, there always exists such a Zi j for any two
nonadjacent vertices. For example, the parent set of Vi always satisfies the condition for Zi j. If
the empty set d-separates Vi from V j, then the empty set is defined to satisfy the condition for Zi j.
Therefore we can always choose a Zi j with the smallest size, providing a more economical way to
test zero partial correlations.

Theorem 17 If a probability distribution P satisfies the composition axiom and an ADMG G has
no directed mixed cycles, then

(GMP)⇐⇒ (PMP,≺c).

Proof: Noting that two vertices X and Y are adjacent if X ← Y , X → Y or X ↔ Y , the proof of
Theorem 1 by Pearl and Meshkat (1999) is directly applicable to ADMGs and it effectively proves
that (RLMP,≺c)⇐⇒ (PMP,≺c). We do not reproduce the proof here. !

As an example, for the ADMG G in Figure 3 (a) and a c-ordering≺c:V1 ≺V2 ≺V3 ≺V4 ≺V5 ≺
V6 ≺V7 ≺V8 ≺V9, the following conditional independence relations (for convenience, we combine
the relations for each vertex that have the same conditioning set) can be given by (PMP,≺c):

I({V2}, /0,{V1}), I({V3}, /0,{V2}),
I({V4}, /0,{V3,V1}), I({V5}, /0,{V4,V2}),
I({V5},{V3},{V1}), I({V6}, /0,{V3,V1}),
I({V6},{V4},{V2}), I({V7}, /0,{V5,V3,V1}),
I({V7},{V4},{V2}), I({V8},{V6},{V7,V5,V4,V2}),
I({V8}, /0,{V3,V1}), I({V9},{V2,V7},{V6,V4}),
I({V9}, /0,{V5,V3,V1})

which involve the same number of zero partial correlations as (13) but involve smaller conditioning
sets than those in (13).
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3.4 Relation to Other Work

In this section, we contrast the class of ADMGs without directed mixed cycles to maximal ancestral
graphs and chain graphs in terms of Markov properties.

3.4.1 MAXIMAL ANCESTRAL GRAPHS

It is easy to see that an ADMG without directed mixed cycles is a maximal ancestral graph (MAG)
(Richardson and Spirtes, 2002). An ADMG is said to be ancestral if, for any edge X ↔ Y , X is not
an ancestor of Y (and vice versa). Note that an edge X ↔Y and a directed path from X to Y (or Y to
X) form a directed mixed cycle. Hence, an ADMG without directed mixed cycles is ancestral. An
ancestral graph is said to be maximal if, for any pair of nonadjacent vertices X and Y , there exists a
set Z ⊆V \{X ,Y} that d-separates X from Y . From Theorem 17, it follows that an ADMG without
directed mixed cycles is maximal. On the other hand, there exist MAGs which have directed mixed
cycles (see Figure 4). Thus, the class of ADMGs without directed mixed cycles is a strict subclass
of MAGs.

Richardson and Spirtes (2002, p.979) showed the following pairwise Markov property for a
MAG G:

I({Vi},anG({Vi,Vj})\{Vi,Vj},{V j})

for any two nonadjacent vertices Vi and V j. Richardson and Spirtes (2002) proved that this pairwise
Markov property implies the global Markov property assuming a Gaussian parametrization. This
does not trivially imply our results in Section 3.3 and our results cannot be considered as a special
case of the results on MAGs. The two pairwise Markov properties involve two different forms of
conditioning sets. The pairwise Markov property for MAGs involves considerably larger condition-
ing sets than our pairwise Markov property: the conditioning set includes all ancestors of Vi and V j,
which is undesirable for our purpose of using the zero partial correlations to test a model.

Also, it should be stressed that our results do not depend on a specific parameterization. We only
require the composition axiom to be satisfied. In contrast, Richardson and Spirtes (2002) consider
only Gaussian parameterizations. It requires further study whether the pairwise Markov property
for MAGs can be generalized to the class of distributions satisfying the composition axiom.

In the next section, we consider general ADMGs and try to eliminate redundant conditional
independence relations from (LMP,≺). The class of MAGs is clearly a (strict) subclass of ADMGs.
Hence, given a MAG, we have two options: either we use the result in the next section or the
pairwise Markov property for MAGs. Although the pairwise Markov property for MAGs gives
fewer zero partial correlations (one for each nonadjacent pair of vertices), it is possible that in some
cases we are better off using the result in the next section (because of the cost incurred by the large
conditioning sets in the pairwise Markov property for MAGs). An example of this situation will be
given in the next section.

Richardson and Spirtes (2002) also proved that for a Gaussian distribution encoded by a MAG
all the constraints on the distribution (that is, on the covariance matrix) are implied by the vanishing
partial correlations given by the global Markov property. Hence, this also holds in a linear SEM
represented by an ADMG without directed mixed cycles which is a special type of MAG.
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3.4.2 CHAIN GRAPHS

The graph that results from replacing bi-directed edges with undirected edges in an ADMG without
directed mixed cycles is a chain graph. The class of chain graphs has been studied extensively (see
Lauritzen, 1996, for a review).

Some Markov properties have been proposed for chain graphs. The first Markov property for
chain graphs has been proposed by Lauritzen and Wermuth (1989) and Frydenberg (1990). An-
dersson et al. (2001) have introduced another Markov property. These two Markov properties do
not correspond to the Markov property for ADMGs. Let G be an ADMG without directed mixed
cycles and G′ be the chain graph obtained by replacing bi-directed edges with undirected edges. In
general, the set of conditional independence relations given by the Markov property for G is not
equivalent to that given by either of the two Markov properties for chain graphs. However, there
are other Markov properties for chain graphs that correspond to the Markov property for ADMGs
without directed mixed cycles (Cox and Wermuth, 1993; Wermuth and Cox, 2001, 2004).4

4. Markov Properties for General ADMGs

When an ADMG G has directed mixed cycles, (RLMP), (RLMP,≺c), and (PMP,≺c) are no longer
equivalent to (GMP) while (LMP,≺) still is. In this section, we show that the number of conditional
independence relations given by (LMP,≺) for an arbitrary ADMG that might have directed mixed
cycles can still be reduced. We introduce a procedure to reduce (LMP,≺). We then give an example
to illustrate the procedure.

4.1 Reducing the Ordered Local Markov Property

First, we introduce a lemma that gives a condition by which a conditional independence relation
renders another conditional independence relation redundant.

Lemma 18 Given an ADMG G, a consistent ordering ≺ on the vertices of G and a vertex X,
assume that a probability distribution P satisfies the global Markov property for GpreG,≺(X)\{X}. Let
A = preG,≺(X) and A′ be a maximal ancestral set with respect to mb(X ,A′) such that X ∈ A′ ⊂ A,
A′∩disGA(X) = disGA′ (X) and paG(disGA(X)\disGA′ (X)) ⊆ mb(X ,A′). Then,

I({X},mb(X ,A),A\ (mb(X ,A)∪{X})) (14)

implies
I({X},mb(X ,A′),A′ \ (mb(X ,A′)∪{X})).

We define rdG,≺(X) to be the set of all A′ satisfying this condition.

Proof: First, we show the relationships among A,disGA(X), mb(X ,A) and A′,disGA′ (X), mb(X ,A′).
By Lemma 6, we have

A′ = A\deGA(h(X ,A′)) (15)

where
h(X ,A′) ≡ spGA

(
disGA′ (X)

)
\
(
{X}∪mb(X ,A′)

)
.

4. In their terminology, ADMGs without directed mixed cycles correspond to chain graphs with dashed arrows and
dashed edges.
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Figure 5: The relationship between A and A′ that satisfy the conditions in Lemma 18. The induced
subgraph GA is shown. The vertices of GA are decomposed into two disjoint subsets
deGA(T ) and A′.

disGA′ (X) and h(X ,A′) are subsets of disGA(X). Since disGA′ (X)⊆ {X}∪mb(X ,A′) (by the definition
of the Markov blanket), disGA′ (X)∩h(X ,A′) = /0. Thus, we can decompose the set disGA(X) into 3
disjoint subsets as follows.

disGA(X) = disGA′ (X)∪h(X ,A′)∪B (16)

where
B≡ disGA(X)\

(
disGA′ (X)∪h(X ,A′)

)
.

We have

A′∩disGA(X) = A′∩
(
disGA′ (X)∪h(X ,A′)∪B

)

= disGA′ (X)∪B

since disGA′ (X) ⊆ A′,B ⊆ A′ and A′ ∩ h(X ,A′) = /0. From the assumption in Lemma 18 that A′ ∩
disGA(X) = disGA′ (X), it follows that B= /0. Thus, from (16), we have

disGA(X)\disGA′ (X) = h(X ,A′). (17)

Let T = disGA(X)\disGA′ (X) = h(X ,A′). Then,

mb(X ,A) =mb(X ,A′)∪T ∪paG(T )
=mb(X ,A′)∪T (18)

since paG(T ) ⊆mb(X ,A′) by our assumption. Thus A decomposes into

A= A′∪deGA(T ) (19)
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V6 V7 V8

V3 V4

V9 V5

V1 V2

V678

V3 V4

V9

V1 V2

(a) (b)
V5

Figure 6: (a) An ADMG with directed mixed cycles (b) Illustration of the procedureGetOrdering.
The modified graph after the first step is shown.

since deGA(T ) ⊆ A and (15).
The key relationships among A,disGA(X),mb(X ,A) and A′,disGA′ (X),mb(X ,A′) are given by

(17)–(19). Figure 5 shows these relationships. We are now ready to prove that I({X},mb(X ,A′),A′\
(mb(X ,A′)∪ {X})) can be derived from I({X},mb(X ,A),A \ (mb(X ,A)∪ {X})). From (18) and
(19), it follows that

A\ (mb(X ,A)∪{X}) = (A′∪deGA(T ))\ (mb(X ,A′)∪{X}∪T ).

Since A′ ∩ deGA(T ) = /0,(mb(X ,A′)∪ {X})∩ T = /0,mb(X ,A′)∪ {X} ⊆ A′ and T ⊆ deGA(T ), we
have

A\ (mb(X ,A)∪{X}) =
(
A′ \ (mb(X ,A′)∪{X})

)
∪

(
deGA(T )\T

)
. (20)

Plugging (18) and (20) into (14), we get

I
(
{X},mb(X ,A′)∪T,

(
A′ \ (mb(X ,A′)∪{X})

)
∪

(
deGA(T )\T

))
.

From the decomposition axiom, it follows that

I({X},mb(X ,A′)∪T,A′ \ (mb(X ,A′)∪{X})). (21)

The last step is to remove T from the conditioning set to obtain I({X},mb(X ,A′),A′\(mb(X ,A′)∪
{X})). We claim that

I(T,mb(X ,A′),A′ \ (mb(X ,A′)∪{X})). (22)

We first argue that T is d-separated from A′ \ (mb(X ,A′)∪{X}) given mb(X ,A′). Consider a vertex
t ∈ T and a vertex ' ∈ A′ \ (mb(X ,A′)∪{X}). Note that for any bi-directed edge t ↔ ( in GA, ( is
either in T or disGA′ (X). There are only four possible cases for any path in GA from t to '.

1. t ← * · · ·'

2. t → · · ·→ *←∗ · · ·'
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3. t ↔↔ · · ·↔ )← * · · ·'

4. t ↔↔ · · ·↔ )→ · · ·→ *←∗ · · ·'

In case 1, * ∈ mb(X ,A′) since paG(T ) ⊆ mb(X ,A′). Thus, the path is not d-connecting. In case
2, * is a descendant of t. Since mb(X ,A′) does not contain any descendant of t, the path is not
d-connecting. Case 3 is similar to case 1, but there are one or more bi-directed edges after t. ) is
either in T or disGA′ (X). It follows that * ∈ mb(X ,A′), so the path is not d-connecting. Case 4 is
similar to case 2, but there are one or more bi-directed edges after t. If ) is in T , the argument for
case 2 can be applied. If ) is in disGA′ (X), then ) ∈ mb(X ,A′), which implies that the path is not
d-connecting. This establishes that T is d-separated from A′ \ (mb(X ,A′)∪ {X}) given mb(X ,A′).
By the assumption that P satisfies the global Markov property for GpreG,≺(X)\{X}, (22) holds. Finally,
from (21),(22) and the contraction axiom, it follows that I({X},mb(X ,A′),A′ \ (mb(X ,A′)∪{X})).
!

For example, consider the ADMG G in Figure 2 and a consistent ordering V1 ≺ V2 ≺ V3 ≺
V4 ≺ V5 ≺ V6 ≺ V7. Assume that the global Markov property for GpreG,≺(V6) is satisfied. Let A =
{V1,V2,V3,V4,V5,V6,V7} and A′ = {V1,V2,V3,V4,V6,V7}. Then, disGA(V7)= {V5,V6,V7}, disGA′ (V7)=
{V6,V7}, A′∩disGA(V7) = {V6,V7}= disGA′ (V7) and paG(disGA(V7)\disGA′ (V7)) = {V3}⊆ {V3,V4,V6}
= mb(V7,A′). Thus, I({V7},{V3,V4,V6}, {V1,V2}) follows from I({V7}, {V3,V4,V5,V6}, {V1,V2}).
Note that in the proof of Lemma 18, the composition axiom is not used. Thus, Lemma 18 can be
used to reduce the ordered local Markov property for ADMGs associated with an arbitrary prob-
ability distribution. Also, note that the condition that P satisfies the global Markov property for
GpreG,≺(X)\{X} is always satisfied in a recursive application of this lemma in Theorem 21.

We now introduce a key concept in eliminating redundant conditional independence relations
from (LMP,≺).

Definition 19 (C-ordered Vertex) Given a consistent ordering ≺ on the vertices of an ADMG G,
a vertex X is said to be c-ordered in ≺ if

1. all vertices in disG(X)∩preG,≺(X) are consecutive in ≺ and

2. for any two vertices Y and Z in disG(X)∩preG,≺(X), there is no directed edge between Y and
Z.

If no bi-directed edge is connected to X , then X is defined to be c-ordered. For example, consider
the ADMG G in Figure 6 (a). ≺: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V5 ≺ V6 ≺ V7 ≺ V8 ≺ V9 is a consistent
ordering on the vertices of G. V1,V2, . . . ,V8 are c-ordered in ≺ but V9 is not since V5 and V9 are not
consecutive in ≺.

The key observation, which will be proved, is that c-ordered vertices contribute to eliminating
many redundant conditional independence relations invoked by the ordered local Markov property
(LMP,≺). We provide two procedures. The first procedure ReduceMarkov in Figure 7 constructs
a list of conditional independence relations in which some redundant conditional independence
relations from (LMP,≺) are not included (all the conditional independence relations identified by
Lemma 18 are not included). ReduceMarkov takes as input a fixed ordering ≺. The second
procedureGetOrdering in Figure 9 gives a good ordering that might have many c-ordered vertices.

We first describe the procedure ReduceMarkov. Given an ADMG G and a consistent ordering
≺, ReduceMarkov gives a set of conditional independence relations which will be shown to be
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procedure ReduceMarkov
INPUT: An ADMG G and a consistent ordering ≺ on the vertices of G
OUTPUT: A set of conditional independence relations S
S← /0
for i= 1, . . . ,n do
Ii ← /0
if Vi is c-ordered in ≺ then
for nonadjacent V j ≺Vi do
Ii ← Ii∪ I({Vi},Zi j,{Vj}) where Zi j is any set of vertices such that Zi j d-separates
Vi from V j and ∀Z ∈ Zi j,d(Vi,Z) < d(Vi,Vj)
end for
else
for all maximal ancestral sets A with respect to mb(Vi,A) such that
Vi ∈ A⊆ preG,≺(Vi), A /∈ rdG,≺(Vi) do
Ii ← Ii∪ I({Vi},mb(Vi,A),A\ (mb(Vi,A)∪{Vi}))
end for
end if
S← S∪ Ii
end for

Figure 7: A procedure to generate a reduced set of conditional independence relations for an
ADMG G and a consistent ordering ≺

equivalent to the global Markov property for G. For each vertex Vi, ReduceMarkov generates a
set of conditional independence relations. If Vi is c-ordered, the relations that correspond to the
pairwise Markov property are generated. Otherwise, the relations that correspond to the ordered
local Markov property are generated, and Lemma 18 is used to remove some redundant relations.
The output S= ReduceMarkov(G,≺) can be described as follows:

S=
[

X :X is c-ordered in ≺

( [

Y :Y≺X
I
(
{X},ZXY ,{Y}

))[

[

X :X is not c-ordered in ≺

( [

all maximal sets A
with respect to mb(X ,A):

X∈A⊆preG,≺(X),
A/∈rdG,≺(X)

I
(
{X},mb(X ,A),A\ (mb(X ,A)∪{X})

))
(23)

where ZXY is any set of vertices such that ZXY d-separates X from Y and ∀Z ∈ ZXY , d(X ,Z) <
d(X ,Y ).

If a vertex X is c-ordered, O(n) conditional independence relations (or zero partial correla-
tions) are added to S. Otherwise, O(2n) conditional independence relations may be added to S
and O(n2n) zero partial correlations may be invoked. Furthermore, a c-ordered vertex typically in-
volves a smaller conditioning set. I({X},ZXY ,{Y}) has the conditioning set |ZXY |≤ |paG(X)| while
I({X},mb(X ,A),A\ (mb(X ,A)∪{X})) has the conditioning set |mb(X ,A)|≥ |paG(X)|.

We now prove that the conditional independence relations produced by ReduceMarkov can
derive all the conditional independence relations invoked by the global Markov property.
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Definition 20 (S-Markov Property (S-MP,≺)) Let G be an ADMG and ≺ be a consistent or-
dering on the vertices of G. Let S be the set of conditional independence relations given by
ReduceMarkov(G,≺). A probability distribution P is said to satisfy the S-Markov property for
G with respect to ≺, if

(S-MP,≺) P satisfies all the conditional independence relations in S.

Theorem 21 Let G be an ADMG and ≺ be a consistent ordering on the vertices of G. Let S
be the set of conditional independence relations given by ReduceMarkov(G,≺). If a probability
distribution P satisfies the composition axiom, then

(GMP)⇐⇒ (S-MP,≺).

Proof: (GMP) =⇒ (S-MP,≺) since every conditional independence relation in (S-MP,≺) corre-
sponds to a valid d-separation. We show (S-MP,≺) =⇒ (GMP). Without any loss of generality,
let ≺: V1 ≺ . . . ≺ Vn. The proof is by induction on the sequence of ordered vertices. Suppose that
(S-MP,≺)=⇒ (GMP) holds forV1, . . .Vi−1. Let Si−1 = I1∪ . . .∪ Ii−1. Then, by the induction hypoth-
esis, Si−1 contains all the conditional independence relations invoked by (LMP,≺) for V1, . . .Vi−1.
If Vi is not c-ordered, Ii = I({Vi},mb(Vi,A),A \ (mb(Vi,A)∪ {Vi})) for all maximal ancestral sets
A such that Vi ∈ A ⊆ preG,≺(Vi), A /∈ rdG,≺(Vi). The conditional independence relations invoked
by (LMP,≺) with respect to Vi and any A ∈ rdG,≺(Vi) can be derived from other conditional inde-
pendence relations by Lemma 18. Thus, Si = Si−1 ∪ Ii contains all the conditional independence
relations invoked by (LMP,≺) for V1, . . .Vi, which implies (GMP). If Vi is c-ordered, applying the
arguments in the proof of (GMP)⇐⇒ (PMP,≺c), we have

I({Vi},paG(Vi),preG,≺(Vi)\ ({Vi}∪paG(Vi)∪ spG(Vi))).

By the induction hypothesis and the definition of a c-ordered vertex, we have for all V j ∈ disG(Vi)∩
preG,≺(Vi)

I({V j},paG(Vj),preG,≺(Vj)\ ({V j}∪paG(Vj)∪ spG(Vj))).

By the arguments in the proof of (GMP)⇐⇒ (RLMP,≺c), we have for all maximal ancestral sets A
such that Vi ∈ A⊆ preG,≺(Vi)

I({Vi},mb(Vi,A),A\ (mb(Vi,A)∪{Vi})).

Therefore, Si = Si−1∪ Ii derives all the conditional independence relations invoked by (GMP). !
As we have seen earlier, the number of zero partial correlations critically depends on the number

of c-ordered vertices in a given ordering. This motivates us to find the ordering with the most c-
ordered vertices. An obvious way of finding this ordering is to explore the space of all the consistent
orderings. However, this exhaustive search may become infeasible as the number of vertices grows.
We propose a greedy algorithm to get an ordering that has a large number of c-ordered vertices. The
basic idea is to first find a large c-component in which many vertices can be c-ordered and place the
vertices consecutively in the ordering, then repeating this until we cannot find a set of vertices that
can be c-ordered. To describe the algorithm, we define the following notion, which identifies the
largest subset of a c-component that can be c-ordered.
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V1 V2 V3 V4

W

Figure 8: The c-component {V1,V2,V3,V4} has the root set {V1,V2}

Definition 22 (Root Set) The root set of a c-component C, denoted rt(C) is defined to be the set
{Vi ∈C | there is no V j ∈C such that a directed path V j → . . . →Vi exists in G}.

For example, the c-component {V1,V2,V3,V4} in Figure 8 has the root set {V1,V2}. V3 and V4 are
not in the root set since there are paths V2 → V3 and V1 →W → V4. The root set has the following
properties.

Proposition 23 Let ≺ be a consistent ordering on the vertices of an ADMG G and C be a c-
component of G. If the vertices in rt(C) are consecutive in ≺, then all the vertices in rt(C) are
c-ordered in ≺.

Proof: Assume that the vertices in rt(C) are consecutive in ≺. Then, for X ∈ rt(C), disG(X)∩
preG,≺(X)⊆ rt(C). Thus, there is no directed edge between any two vertices in disG(X)∩preG,≺(X).
!

Proposition 24 Let ≺ be a consistent ordering on the vertices of an ADMG G and C be a c-
component of G. If a vertex X in C is c-ordered in ≺, then X ∈ rt(C).

Proof: Assume that X is c-ordered in ≺. Suppose for a contradiction that X /∈ rt(C). Then, there
exists an ancestor Y of X in C. If there exists a vertex Z such that Z /∈ C, Y → · · · → Z → · · · →
X . Then, the first condition of a c-ordered vertex is violated. Otherwise, the second condition is
violated. !

Proposition 23 and 24 imply that the root set of a c-component is the largest subset of the c-
component that can be c-ordered in a consistent ordering. If G does not have directed mixed cycles,
rt(C) =C for every c-componentC.

The procedureGetOrdering in Figure 9 is our proposed greedy algorithm that generates a good
consistent ordering for G. In Step 1, it searches for the largest root set M and then merges all the
vertices inM to one vertexVM modifying edges accordingly. Then, it repeats the same operation for
the modified graph until there is no root set that contains more than one vertex. Since the vertices
in a root set are merged at each iteration, the modified graph is acyclic as otherwise there would be
a directed path between two vertices in the root set, which contradicts the condition of a root set.
After Step 1, we can easily obtain a consistent ordering for the original graph from the modified
graph.

4.2 An Example

We show the application of the procedures ReduceMarkov and GetOrdering by considering the
ADMG G in Figure 6 (a). First, we apply GetOrdering to get a consistent ordering on the vertices
V of G. In Step 1, we first look for the largest root set. The c-component {V6,V7,V8} has the largest
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procedure GetOrdering
INPUT: An ADMG G
OUTPUT: A consistent ordering ≺ on V
Step 1:
G′ ← G (V ′ is the set of vertices of G)
while (there is a c-componentC of G′ such that |rt(C)| > 1) do
M← /0
for each c-component C of G′ do
if |rt(C)| > |M| then
M← rt(C)
end if
end for
Add a vertex VM to G′

V ′\M
Draw an edge VM ← X (respectively VM → X , VM ↔ X) if there is
Y ← X (respectively Y → X , Y ↔ X) in G′ such that Y ∈M,X ∈V ′ \M
Let G′ be the resulting graph
end while
Step 2:
Let ≺′ be any consistent ordering on V ′. Construct a consistent ordering ≺ from ≺′ by replacing
each VS ∈V ′ \V with the vertices in S (the ordering of the vertices in S is arbitrary)

Figure 9: A greedy algorithm to generate a good consistent ordering on the vertices of an ADMG
G

root set {V6,V7,V8}. Then, the vertices in {V6,V7,V8} are merged into a vertex V678. Figure 6 (b)
shows the modified graph G′ after the first iteration of the while loop. In the next iteration, we find
that every c-component has the root set of size 1. Note that for C = {V5,V9}, rt(C) = {V5,V9} in
G but rt(C) = {V5} in G′. Thus, Step 1 ends. In Step 2, from G′ in Figure 6 (b), we can obtain
an ordering ≺′: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V5 ≺ V678 ≺ V9. This is converted to a consistent ordering
≺:V1 ≺V2 ≺V3 ≺V4 ≺V5 ≺V6 ≺V7 ≺V8 ≺V9 for G.

With the ordering ≺, we now apply ReduceMarkov to obtain a set of conditional indepen-
dence relations that can derive those invoked by the global Markov property. It is easy to see that
the vertices V1, . . . ,V8 are c-ordered in ≺. Thus, the following conditional independence relations
corresponding to the pairwise Markov property are added to the set S (initially empty).

I({V2}, /0,{V1}), I({V3}, /0,{V2}),
I({V4}, /0,{V3,V1}), I({V5}, /0,{V4,V3,V2,V1}),
I({V6}, /0,{V5,V4,V2}), I({V6},{V3},{V1}),
I({V7}, /0,{V5,V4,V2}), I({V7},{V3},{V1}),
I({V8}, /0,{V6,V3,V1}), I({V8},{V4},{V2}). (24)
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V9 is not c-ordered in ≺ since V5 is not adjacent in ≺. Thus, we use the ordered local Markov
property (LMP,≺) for V9. The maximal ancestral sets that we need to consider are

A1 = anG({V6,V8,V9}) = {V1,V2,V3,V4,V5,V6,V7,V8,V9} and
A2 = anG({V4,V6,V9}) = {V1,V2,V3,V4,V6,V7,V9}.

The corresponding conditional independence relations are

I({V9},{V7,V5},{V8,V6,V4,V3,V2,V1}), (25)
I({V9},{V7},{V6,V4,V3,V2,V1}). (26)

However, it turns out that A2 ∈ rdG,≺(V9) and (26) is not added to S. We check the condition of
Lemma 18. The global Markov property for GpreG,≺(V8) is satisfied by (24). Also,

disGA1 (V9) = {V5,V9},
disGA2 (V9) = {V9},

A2∩disGA1 (V9) = {V9} = disGA2 (V9),
paG(disGA1 (V9)\disGA2 (V9)) = /0⊆ {V7} =mb(V9,A2).

Therefore, the condition of Lemma 18 is satisfied and it follows that (26) is redundant. To see
how much we reduced the testing requirements, the conditional independence relations invoked by
(LMP,≺) are shown below.

I({V2}, /0,{V1}), I({V3},{V1},{V2}),
I({V4},{V2},{V3,V1}), I({V5}, /0,{V4,V3,V2,V1}),
I({V6},{V3},{V5,V4,V2,V1}), I({V7},{V3},{V5,V4,V2,V1}),
I({V7},{V6,V3},{V5,V4,V2,V1}), I({V8},{V5,V4},{V6,V3,V2,V1}),
I({V8},{V7,V5,V4,V3},{V2,V1}), I({V8},{V7,V6,V5,V4,V3},{V2,V1}),
I({V9},{V7},{V6,V4,V3,V2,V1}), I({V9},{V7,V5},{V8,V6,V4,V3,V2,V1}). (27)

S invokes 26 zero partial correlations while (LMP,≺) invokes 39. Also, S involves much smaller
conditioning sets. We have at most one vertex in each conditioning set in (24) and two vertices in
(25) while 23 zero partial correlations in (27) involve more than 2 vertices in the conditioning set.

The ADMGG in this example turns out to be a MAG. As we discussed in Section 3.4.1, we have
two options: either we use the constraints in (24) and (25) or the constraints given by the pairwise
Markov property for MAGs. In this example, both sets of constraints involve the same number
of zero partial correlations. However, the pairwise Markov property for MAGs involves much
larger conditioning sets. For example, the pairwise Markov property for MAGs gives the following
conditional independence relation for the pair V6 and V8: I({V8},{V5,V4,V3,V2,V1},{V6}). Our
method uses an empty set as the conditioning set for the pair. Hence, in this example, we are better
off using the constraints in (24) and (25).

4.3 Comparison of (LMP,≺) and (S-MP,≺)

From (23), it is clear that (S-MP,≺) invokes fewer conditional independence relations than (LMP,≺)
if there are c-ordered vertices in≺. But how much more economical is (S-MP,≺) than (LMP,≺) and
for what type of graphs is the reduction large?
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For simplicity, we will compare the number of conditional independence relations rather than
zero partial correlations and ignore the reduction done by Lemma 18. For now assume

S=
[

X :X is c-ordered in ≺
I({X},paG(X),preG,≺(X)\ ({X}∪paG(X)∪ spG(X)))

[

[

X :X is not c-ordered in ≺

( [

all maximal sets A
with respect to mb(X ,A):

X∈A⊆preG,≺(X)

I
(
{X},mb(X ,A),A\ (mb(X ,A)∪{X})

))
.

Let M(X ,≺) be the number of different Markov blankets of a vertex X , that is,
M(X ,≺) =

∣∣∣{disGA(X) | A is an ancestral set such that X ∈ A ⊆ preG,≺(X)}
∣∣∣, and C(≺) be the

set of vertices that are c-ordered in ≺. Then, (LMP,≺) lists +X∈VM(X ,≺) conditional indepen-
dence relations and (S-MP,≺) lists |C(≺)|++X /∈C(≺)M(X ,≺) conditional independence relations.
Hence, the difference in the number of conditional independence relations between (LMP,≺) and
(S-MP,≺) is

!
X∈C(≺)

(
M(X ,≺)−1

)
.

This difference is large when |C(≺)| or M(X ,≺) for each X is large.
The size of C(≺) depends on the number of directed mixed cycles. From Definition 19, it

follows that C(≺) is large if there are a small number of directed mixed cycles. Note that a directed
mixed cycle such as that in Figure 4 induces the violation of the first condition in Definition 19 and
a directed mixed cycle of the form ' ↔

→ ( induces the violation of the second condition in Definition
19.

M(X ,≺) depends on the structure of disG(X)∩ preG,≺(X). We will reformulate M(X ,≺) to
show the properties that affect M(X ,≺). LetG↔,dis(X ,≺)= (V ′,E ′)whereV ′ = disG(X)∩preG,≺(X)
and E ′ = {Vi ↔ Vj | Vi ↔ Vj in GV ′}. For example, for an ADMG G in Figure 8 and an ordering
V1 ≺ V2 ≺ V3 ≺ V4, G↔,dis(V3,≺) is V1 ↔ V2 ↔ V3. Let G↔,dis(X ,≺)S be the induced subgraph of
G↔,dis(X ,≺) on a set S ⊆ disG(X)∩preG,≺(X). Then, M(X ,≺) =

∣∣∣{S | S ⊆ disG(X) ∩ preG,≺(X)

such that G↔,dis(X ,≺)S is a connected component of G↔,dis(X ,≺)S ∪ (anG(S) ∩ disG(X) ∩ preG,≺(X))}
∣∣∣

that is, M(X ,≺) corresponds to a set of subsets S of disG(X)∩preG,≺(X) satisfying two conditions:
(i) G↔,dis(X ,≺)S is connected; and (ii) for all Y ∈

(
anG(S)∩disG(X)∩preG,≺(X)

)
\S, there is no

path from Y to any vertices in S. The condition (i) implies that M(X ,≺) will be large if the ver-
tices in disG(X)∩ preG,≺(X) are connected by many bi-directed edges. The condition (ii) implies
that M(X ,≺) will be large if there are few directed mixed cycles. Note that for ADMGs without
directed mixed cycles, (ii) trivially holds since

(
anG(S)∩ disG(X)∩ preG,≺(X)

)
\ S = /0. For ex-

ample, consider a subset of vertices {V1, . . . ,Vk} in an ADMG with edges Vi ↔ Vk, i = 1, . . . ,k−1,
which has no directed mixed cycles. Then, for an ordering V1 ≺ . . . ≺ Vk, M(Vk,≺) = 2k−1. Also,
consider a subset of vertices {V1, . . . ,Vk} in an ADMG with edges V1 ↔

→ V2 ↔
→ · · · ↔

→ Vk, which has
k−1 directed mixed cycles. Then, M(Vk,≺) = 1. Hence, it is clear that M(X ,≺) is large if

1. the set disG(X)∩preG,≺(X) is large,

2. there are many bi-directed edges connecting vertices in disG(X)∩preG,≺(X), and
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X Y

V

W

Z

Figure 10: An example ADMG for which using (S-MP,≺) is most beneficial. There is no directed
mixed cycle and each c-component is a clique joined by bi-directed edges.

3. there are few directed mixed cycles.

Thus, (LMP,≺) will invoke a large number of conditional independence relations for an ADMG
with few directed mixed cycles and large c-components with many bi-directed edges. For such an
ADMG, +X∈C(≺)

(
M(X ,≺)−1

)
, the reduction made by (S-MP,≺), is also large. An extreme case

is an ADMG that has no directed mixed cycles and each c-component of which is a clique joined
by bi-directed edges. An example of such an ADMG is given in Figure 10. For this ADMG and
an ordering W ≺ V ≺ X ≺ Y ≺ Z, (LMP,≺) invokes M(W,≺)+M(V,≺)+M(X ,≺)+M(Y,≺)+
M(Z,≺) = 1+1+1+2+4= 9 conditional independence relations while (S-MP,≺) invokes |C(≺
)| = n= 5 conditional independence relations. If we enlarge the clique joined by bi-directed edges
such that it contains k vertices, then (LMP,≺) invokes 2++k−1

i=0 2i = 1+2k conditional independence
relations while (S-MP,≺) invokes k+2.

In general, although (S-MP,≺) greatly reduces (LMP,≺), it may still invoke an exponential num-
ber of conditional independence relations if there exist directed mixed cycles.

5. Conclusion and Discussion

We present local Markov properties for ADMGs representing linear SEMs with correlated errors.
The results have applications in testing linear SEMs against the data by testing for zero partial
correlations implied by the model. For general linear SEMs with correlated errors, we provide a
procedure that lists a subset of zero partial correlations that will imply all other zero partial correla-
tions implied by the model. In particular, for a class of models whose corresponding path diagrams
contain no directed mixed cycles, this subset invokes one zero partial correlation for each pair of
variables.

In general, our procedure may invoke an exponential number of zero partial correlations if the
path diagram G satisfies all of the following properties: (i) G has large c-components; (ii) the
vertices in each c-component are heavily connected by bi-directed edges; and (iii) G has directed
mixed cycles. If one of these properties is not satisfied, then the number of zero partial correlations
derived by our method is typically not exponential.

For the class of MAGs, which is a strict superclass of ADMGs without directed mixed cycles,
one might use the pairwise Markov property for MAGs given in Richardson and Spirtes (2002)
instead of our results in Section 4. However, when the two approaches give a similar number of
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constraints, it may be better to use our approach since it may use smaller conditioning sets as shown
in the example in Section 4.2.

The potential advantages of testing linear SEMs based on vanishing partial correlations over
the classical test method based on maximum likelihood estimation of the covariance matrix have
been discussed in Pearl (1998), Shipley (2000), McDonald (2002) and Shipley (2003). The results
presented in this paper provide a theoretical foundation for the practical applications of this test
method in linear SEMs with correlated errors. How to implement this test method in practice still
needs further study as it requires multiple testing of hypotheses about zero partial correlations (Ship-
ley, 2000; Drton and Perlman, 2007). We also note that, in linear SEMs without correlated errors,
all the constraints on the covariance matrix are implied by vanishing partial correlations. This also
holds in linear SEMs with correlated errors that are represented by ADMGs without directed mixed
cycles. However, it is possible that linear SEMs with correlated errors represented by ADMGs with
directed mixed cycles may imply constraints on the covariance matrix that are not implied by zero
partial correlations.

Although the intended application is in linear SEMs, the local Markov properties presented
in the paper are valid for ADMGs associated with any probability distributions that satisfy the
composition axiom. For example, any probability distribution that is faithful5 to some DAG or
undirected graph (and the marginals of the distribution) satisfies the composition axiom.

Model debugging for ADMGs using vanishing partial correlations is another area of current
research. In this model debugging problem, the goal is to modify a graph based on the pattern of re-
jected hypotheses. The properties of ADMGs presented in this paper may facilitate the development
of a new model debugging method.

Acknowledgments

We thank the anonymous reviewers for helpful comments. This research was partly supported by
NSF grant IIS-0347846.

References

S.A. Andersson, D. Madigan, and M.D. Perlman. Alternative Markov properties for chain graphs.
Scandinavian Journal of Statistics, 28:33–86, 2001.

K.A. Bollen. Structural Equations with Latent Variables. John Wiley, New York, 1989.

D.R. Cox and N. Wermuth. Linear dependencies represented by chain graphs. Statistical Science,
8(3):204–218, 1993.

M. Drton and M.D. Perlman. Multiple testing and error control in gaussian graphical model selec-
tion. Statistical Science, 22(3):430–449, 2007.

O.D. Duncan. Introduction to Structural Equation Models. Academic Press, New York, 1975.

M. Frydenberg. The chain graph markov property. Scandinavian Journal of Statistics, 17:333–353,
1990.
5. A probability distribution P is said to be faithful to a graph G if all the conditional independence relations embedded
in P are encoded in G (via the global Markov property).

68



MARKOV PROPERTIES FOR LINEAR CAUSAL MODELS WITH CORRELATED ERRORS

A.S. Goldberger. Structural equation models in the social sciences. Econometrica: Journal of the
Econometric Society, 40:979–1001, 1972.

T. Haavelmo. The statistical implications of a system of simultaneous equations. Econometrica, 11:
1–12, 1943. Reprinted in D.F. Hendry and M.S. Morgan (Eds.), The Foundations of Econometric
Analysis, Cambridge University Press, 477–490, 1995.

G. Kauermann. On a dualization of graphical Gaussian models. Scandinavian Journal of Statistics,
23:105–116, 1996.

J.T.A. Koster. On the validity of the Markov interpretation of path diagrams of gaussian structural
equations systems with correlated errors. Scandinavian Journal of Statistics, 26:413–431, 1999.

S.L. Lauritzen. Graphical Models. Clarendon Press, Oxford, 1996.

S.L. Lauritzen and N.Wermuth. Graphical models for association between variables, some of which
are qualitative and some quantitative. Annals of Statistics, 17:31–57, 1989.

S.L. Lauritzen, A.P. Dawid, B.N. Larsen, and H.G. Leimer. Independence properties of directed
Markov fields. Networks, 20:491–505, 1990.

R.P. McDonald. What can we learn from the path equations?: Identifiability, constraints, equiva-
lence. Psychometrika, 67(2):225–249, 2002.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, NY, 2000.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo, CA, 1988.

J. Pearl. Graphs, causality, and structural equation models. Socioligical Methods and Research, 27:
226–284, 1998.

J. Pearl and P. Meshkat. Testing regression models with fewer regressors. In Proceedings of AI-
STAT, pages 255–259. 1999.

T. Richardson. Markov properties for acyclic directed mixed graphs. Scandinavian Journal of
Statistics, 30(1):145–157, 2003.

T. Richardson and P. Spirtes. Ancestral graphMarkov models. Annals of Statistics, 30(4):962–1030,
2002.

B. Shipley. A new inferential test for path models based on directed acyclic graphs. Structural
Equation Modeling, 7:206–218, 2000.

B. Shipley. Testing recursive path models with correlated errors using d-separation. Structural
Equation Modeling, 10:214–221, 2003.

P. Spirtes, T. Richardson, C. Meek, R. Scheines, and C. Glymour. Using path diagrams as a struc-
tural equation modeling tool. Socioligical Methods and Research, 27:182–225, 1998.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, Cambridge,
MA, 2001.

69



KANG AND TIAN

N. Wermuth and D.R. Cox. Graphical models: overview. International Encyclopedia of the Social
and Behavioral Sciences, 9:6379–6386, 2001.

N. Wermuth and D.R. Cox. Joint response graphs and separation induced by triangular systems.
Journal of the Royal Statistical Society B, 66:687–717, 2004.

S. Wright. The method of path coefficients. Ann. Math. Statist., 5:161–215, 1934.

70



Journal of Machine Learning Research 10 (2008) 71-106 Submitted 4/08; Revised 10/08; Published 1/09

An Analysis of Convex Relaxations for MAP Estimation of Discrete
MRFs

M. Pawan Kumar∗ PAWAN@ROBOTS.OX.AC.UK
Dept. of Engineering Science
University of Oxford
Parks Road, Oxford, OX1 3PJ
United Kingdom

Vladimir Kolmogorov VNK@ADASTRAL.UCL.AC.UK
Dept. of Computer Science
University College London
Martlesham Heath, IP5 3RE
United Kingdom

Philip H.S. Torr PHILIPTORR@BROOKES.AC.UK
Dept. of Computing
Oxford Brookes University
Wheatley, Oxford, OX33 1HX
United Kingdom

Editor:Martin Wainwright

Abstract
The problem of obtaining the maximum a posteriori estimate of a general discrete Markov random
field (i.e., a Markov random field defined using a discrete set of labels) is known to be NP-hard.
However, due to its central importance in many applications, several approximation algorithms have
been proposed in the literature. In this paper, we present an analysis of three such algorithms based
on convex relaxations: (i) LP-S: the linear programming (LP) relaxation proposed by Schlesinger
(1976) for a special case and independently in Chekuri et al. (2001), Koster et al. (1998), and Wain-
wright et al. (2005) for the general case; (ii) QP-RL: the quadratic programming (QP) relaxation of
Ravikumar and Lafferty (2006); and (iii) SOCP-MS: the second order cone programming (SOCP) re-
laxation first proposed by Muramatsu and Suzuki (2003) for two label problems and later extended
by Kumar et al. (2006) for a general label set.

We show that the SOCP-MS and the QP-RL relaxations are equivalent. Furthermore, we prove
that despite the flexibility in the form of the constraints/objective function offered by QP and SOCP,
the LP-S relaxation strictly dominates (i.e., provides a better approximation than) QP-RL and SOCP-
MS. We generalize these results by defining a large class of SOCP (and equivalent QP) relaxations
which is dominated by the LP-S relaxation. Based on these results we propose some novel SOCP
relaxations which define constraints using random variables that form cycles or cliques in the graph-
ical model representation of the random field. Using some examples we show that the new SOCP
relaxations strictly dominate the previous approaches.
Keywords: probabilistic models, MAP estimation, discrete MRF, convex relaxations, linear pro-
gramming, second-order cone programming, quadratic programming, dominating relaxations
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1. Introduction

Discrete random fields are a powerful tool to obtain a probabilistic formulation for various applica-
tions in computer vision and related areas (Boykov et al., 2001; Cohen, 1986). Hence, developing
accurate and efficient algorithms for performing inference on a given discrete random field is of
fundamental importance. In this work, we will focus on the problem of maximum a posteriori
(MAP) estimation. MAP estimation is a key step in obtaining the solutions to many applications
such as stereo, image stitching and segmentation (Szeliski et al., 2006). Furthermore, it is closely
related to many important Combinatorial Optimization problems such as MAXCUT (Goemans and
Williamson, 1995), multi-way cut (Dalhaus et al., 1994), metric labelling (Boykov et al., 2001;
Kleinberg and Tardos, 1999) and 0-extension (Boykov et al., 2001; Karzanov, 1998).

Given data D, a discrete random field models the distribution (i.e., either the joint or the con-
ditional probability) of a labelling for a set of random variables. Each of these variables v =
{v0,v1, · · · ,vn−1} can take a label from a discrete set l = {l0, l1, · · · , lh−1}. A particular labelling
of variables v is specified by a function f whose domain corresponds to the indices of the random
variables and whose range is the index of the label set, that is,

f : {0,1, · · · ,n−1}→ {0,1, · · · ,h−1}.

In other words, random variable va takes label l f (a). For convenience, we assume the model to be a
Markov random field (MRF) while noting that all the results of this paper also apply to conditional
random fields (CRF).

An MRF specifies a neighbourhood relationshipE between the random variables, that is, (a,b)∈
E if, and only if, va and vb are neighbouring random variables. Within this framework, the joint
probability of a labelling f given data D is specified as

Pr( f ,D|!) =
1

Z(!)
exp(−Q( f ,D;!)).

Here ! represents the parameters of the MRF and Z(!) is a normalization constant which ensures
that the probability sums to one (known as the partition function). Assuming a pairwise MRF (i.e.,
an MRF with maximum clique size of 2 according to the neighbourhood relationship E), the energy
Q( f ,D;!) is given by

Q( f ,D;!) = !
va∈v

!1a; f (a) + !
(a,b)∈E

!2ab; f (a) f (b).

The term !1a; f (a) is called a unary potential since its value depends on the labelling of one random
variable at a time. Similarly, !2ab; f (a) f (b) is called a pairwise potential as it depends on a pair of
random variables. Note that the assumption of pairwise MRF is not a severe restriction as any MRF
can be converted into an equivalent (i.e., representing the same probability distribution) pairwise
MRF, for example, see Yedidia et al. (2001). For further simplicity of notation, we assume that
!2ab; f (a) f (b) = w(a,b)d( f (a), f (b)) where w(a,b) is the weight that indicates the strength of the
pairwise relationship between variables va and vb, with w(a,b) = 0 if (a,b) /∈ E , and d(·, ·) is a
distance function on the labels.1 As will be seen later, this formulation of the pairwise potentials
would allow us to concisely describe our results.

1. The pairwise potentials for any MRF can be represented in the form !2ab;i j = w(a,b)d(i, j). This can be achieved by
using a larger set of labels l̂= {l0;0, · · · , l0;h1 , · · · , ln−1;h1} such that the unary potential of va taking label lb;i is !1a;i if
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We note that a subclass of this problem where w(a,b) ≥ 0 and the distance function d(·, ·) is a
semi-metric or a metric has been well-studied in the literature (Boykov et al., 2001; Chekuri et al.,
2001; Kleinberg and Tardos, 1999). However, we will focus on the general MAP estimation problem.
In other words, unless explicitly stated, we do not place any restriction on the form of the unary and
pairwise potentials.

The problem of MAP estimation for a discrete MRF is well known to be NP-hard in general. Since
it plays a central role in several applications, many approximate algorithms have been proposed in
the literature. In this work, we analyze three such algorithms which are based on convex relaxations.
Specifically, we consider: (i) LP-S, the linear programming (LP) relaxation of Chekuri et al. (2001),
Koster et al. (1998), Schlesinger (1976), and Wainwright et al. (2005); (ii) QP-RL, the quadratic
programming (QP) relaxation of Ravikumar and Lafferty (2006); and (iii) SOCP-MS, the second
order cone programming (SOCP) relaxation of Kumar et al. (2006) and Muramatsu and Suzuki
(2003). In order to provide an outline of these relaxations, we formulate the problem of MAP
estimation as an Integer Program (IP).

1.1 Integer Programming Formulation

We define a binary variable vector x of length nh. We denote the element of x at index a · h+ i as
xa;i where va ∈ v and li ∈ l. These elements xa;i specify a labelling f such that

xa;i =
{

1 if f (a) = i,
−1 otherwise.

We say that the variable xa;i belongs to variable va since it defines whether the variable va takes the
label li. Let X = xx%. We refer to the (a · h+ i,b · h+ j)th element of the matrix X as Xab;i j where
va,vb ∈ v and li, l j ∈ l. Clearly the sum of the unary potentials for a labelling specified by x is given
by

!
va,li

!1a;i
(1+ xa;i)

2
.

Similarly the sum of the pairwise potentials for a labelling x is given by

!
(a,b)∈E ,li,l j

!2ab;i j
(1+ xa;i)

2
(1+ xb; j)

2
= !

(a,b)∈E ,li,l j

!2ab;i j
(1+ xa;i+ xb; j +Xab;i j)

4
.

Hence, the following IP finds the labelling with the minimum energy, that is, it is equivalent to the
MAP estimation problem:

IP: x∗ = argminx"va,li !
1
a;i

(1+xa;i)
2 +"(a,b)∈E ,li,l j !

2
ab;i j

(1+xa;i+xb; j+Xab;i j)
4

s.t. x ∈ {−1,1}nh, (1)
"li∈l xa;i = 2−h, (2)
X= xx%. (3)

a= b and " otherwise. In other words, a variable va can only take labels from the set {la;0, · · · , la;h−1} since all other
labels will result in an energy value of ". The pairwise potential for variables va and vb taking labels la;i and lb; j
respectively can then be represented in the form w(a,b)d(a; i,b; j) where w(a,b) = 1 and d(a; i,b; j) = !2ab;i j . Note
that using a larger set of labels l̂ will increase the time complexity of MAP estimation algorithms, but does not affect
the analysis presented in this paper.
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Constraints (1) and (3) specify that the variables x and X are binary such that Xab;i j = xa;ixb; j. We
will refer to them as the integer constraints. Constraint (2), which specifies that each variable
should be assigned only one label, is known as the uniqueness constraint. Note that one uniqueness
constraint is specified for each variable va. Solving the above IP is in general NP-hard. It is therefore
common practice to obtain an approximate solution using convex relaxations. We describe four such
convex relaxations below.

1.2 Linear Programming Relaxation

The LP relaxation, proposed by Schlesinger (1976) for a special case (where the pairwise potentials
specify a hard constraint, that is, they are either 0 or #) and independently in Chekuri et al. (2001),
Koster et al. (1998), and Wainwright et al. (2005) for the general case, is given as follows:

LP-S: x∗ = argminx"va,li !
1
a;i

(1+xa;i)
2 +"(a,b)∈E ,li,l j !

2
ab;i j

(1+xa;i+xb; j+Xab;i j)
4

s.t. x ∈ [−1,1]nh,X ∈ [−1,1]nh×nh,
"li∈l xa;i = 2−h,

"l j∈lXab;i j = (2−h)xa;i, (4)
Xab;i j = Xba; ji, (5)

1+ xa;i+ xb; j +Xab;i j ≥ 0. (6)

In the above relaxation, which we call LP-S, only those elements Xab;i j of X are used for which
(a,b) ∈ E and li, l j ∈ l. Unlike the IP, the feasibility region of the above problem is relaxed such
that the variables xa;i and Xab;i j lie in the interval [−1,1]. Further, the constraint (3) is replaced
by Equation (4) which is called the marginalization constraint (Wainwright et al., 2005). One
marginalization constraint is specified for each (a,b) ∈ E and li ∈ l. Constraint (5) specifies that
X is symmetric. Constraint (6) ensures that !2ab;i j is multiplied by a number between 0 and 1 in
the objective function. These constraints (5) and (6) are defined for all (a,b) ∈ E and li, l j ∈ l.
The formulation of the LP-S relaxation presented here uses a slightly different notation to the ones
described in Kolmogorov (2006) and Wainwright et al. (2005). However, it can easily be shown
that the two formulations are equivalent by using the variables y and Y instead of x and X such that
ya;i = 1+xa;i

2 ,Yab;i j =
1+xa;i+xb; j+Xab;i j

4 . Throughout this paper, we will make use of the variables x and
X instead of y and Y. As will be seen in the subsequent sections, this would allow us to concisely
describe our results. Note that the above constraints are not exhaustive, that is, it is possible to
specify other constraints for the problem of MAP estimation (e.g., see § 1.3 and 1.5).

1.2.1 PROPERTIES OF THE LP-S RELAXATION

• Since the LP-S relaxation specifies a linear program it can be solved in polynomial time. A
labelling f can then be obtained by rounding the (possibly fractional) solution of the LP-S.

• Using the rounding scheme of Kleinberg and Tardos (1999), the LP-S provides a multiplicative
bound2 of 2 when the pairwise potentials form a Potts model (Chekuri et al., 2001).

2. Consider a set of optimization problems A and a relaxation scheme defined over this set A . In other words, for every
optimization problem A ∈ A , the relaxation scheme provides a relaxation B ∈ B of A. Let eA denote the optimal value
of the optimization problem A. Further, let êA denote the value of the objective function of A at the point obtained
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• Using the rounding scheme of Chekuri et al. (2001), LP-S obtains a multiplicative bound of
2+

√
2 for truncated linear pairwise potentials.

• LP-S provides a multiplicative bound of 1 when the energy function Q(·,D;!) of the MRF is
submodular (Schlesinger and Flach, 2000) (also see Ishikawa 2003 and Schlesinger and Flach
2006 for the st-MINCUT graph construction for minimizing submodular energy functions).

• The LP-S relaxation provides the same optimal solution for all reparameterizations ! of !
(Kolmogorov, 2006; Werner, 2007).3

We note here that, although the LP-S relaxation can be solved in polynomial time, the state of
the art Interior Point algorithms can only handle up to a few thousand variables and constraints. In
order to overcome this deficiency several efficient algorithms have been proposed in the literature for
(approximately) solving the Lagrangian dual of LP-S (Kolmogorov, 2006; Komodakis et al., 2007;
Schlesinger and Giginyak, 2007a,b; Wainwright et al., 2005; Werner, 2007). Recently, efficient
methods have also been devised for solving the primal problem directly (Ravikumar et al., 2008).

1.3 Quadratic Programming Relaxation

We now describe the QP relaxation for the MAP estimation IP which was proposed by Ravikumar
and Lafferty (2006). To this end, it would be convenient to reformulate the objective function of the
IP using a vector of unary potentials of length nh (denoted by !̂1) and a matrix of pairwise potentials
of size nh× nh (denoted by !̂2). The element of the unary potential vector at index (a · h+ i) is
defined as

!̂1a;i = !1a;i− !
vc∈v
!
lk∈l

|!2ac;ik|,

where va ∈ v and li ∈ l. The (a · h+ i,b · h+ j)th element of the pairwise potential matrix !̂2 is
defined such that

!̂2ab;i j =
{

"vc∈v"lk∈l |!
2
ac;ik|, if a= b, i= j,

!2ab;i j otherwise,

where va,vb ∈ v and li, l j ∈ l. In other words, the potentials are modified by defining a pairwise
potential !̂2aa;ii and subtracting the value of that potential from the corresponding unary potential !1a;i.
The advantage of this reformulation is that the matrix !̂2 is guaranteed to be positive semidefinite,
that is, !̂2 ' 0. This can be seen by observing that for any vector z ∈ Rnh the following holds true:

z%!̂2z = !
(a,b)∈E

!
li,l j∈l

(
|!2ab;i j|z2a;i+ |!2ab;i j|z2b; j +2!2ab;i jza;izb; j

)
,

= !
(a,b)∈E

!
li,l j∈l



|!2ab;i j|
(
za;i+

!2ab;i j
|!2ab;i j|

zb; j

)2


 ,

≥ 0.
by rounding the optimal solution of its relaxation B. The relaxation scheme is said to provide a multiplicative bound
of # for the set A if, and only if, the following condition is satisfied: E(êA) ≤ #eA,∀A ∈ A , where E(·) denotes the
expectation of its argument under the rounding scheme employed.

3. A parameter ! is called a reparameterization of ! (denoted by ! ≡ !) if and only if Q( f ,D;!) = Q( f ,D;!) for all
labellings f .
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Using the fact that for xa;i ∈ {−1,1},
(
1+ xa;i
2

)2
=
1+ xa;i
2

,

it can be shown that the following is equivalent to the MAP estimation problem (Ravikumar and
Lafferty, 2006):

QP-RL: x∗ = argminx
( 1+x
2

)%
!̂
1+

(1+x
2

)%
!̂
2 ( 1+x

2
)
, (7)

s.t. "li∈l xa;i = 2−h,∀va ∈ v, (8)
x ∈ {−1,1}nh, (9)

where 1 is a vector of appropriate dimensions whose elements are all equal to 1. It is worth noting
that, although !̂1 and !̂2 define the same energy for a labelling f as the original parameter !, they
are not a valid reparameterization of ! since they contain non-zero pairwise potentials of the form
!̂2aa;ii. By relaxing the feasibility region of the above problem to x ∈ [−1,1]nh, the resulting QP can
be solved in polynomial time since !̂2 ' 0 (i.e., the relaxation of the QP (7)-(9) is convex). We call
the above relaxation QP-RL. Note that in Ravikumar and Lafferty (2006), the QP-RL relaxation was
described using the variable y = 1+x

2 . However, the above formulation can easily be shown to be
equivalent to the one presented in Ravikumar and Lafferty (2006).

In Ravikumar and Lafferty (2006), the authors proposed a rounding scheme for QP-RL (different
from the ones used in Chekuri et al. 2001 and Kleinberg and Tardos 1999) that provides an additive
bound4 of S4 for the MAP estimation problem, where

S= !
(a,b)∈E

!
li,l j∈l

|!2ab;i j|,

that is, S is the sum of the absolute values of all pairwise potentials (Ravikumar and Lafferty, 2006).
Under their rounding scheme, this bound can be shown to be tight5 using a random field defined over
two random variables which specifies uniform unary potentials and Ising model pairwise potentials
(see Fig. 2(a)). Further, they also proposed an efficient iterative procedure for solving the QP-RL
relaxation approximately. However, unlike LP-S, no multiplicative bounds have been established
for the QP-RL formulation for special cases of the MAP estimation problem.

1.4 Semidefinite Programming Relaxation

The SDP relaxation of the MAP estimation problem replaces the non-convex constraint X= xx% by
the convex semidefinite constraint X− xx% ' 0 (de Klerk et al., 2004; Goemans and Williamson,
1995; Lasserre, 2001) which can be expressed as

(
1 x%
x X

)
' 0,

4. A relaxation scheme defined over the set of optimization problems A is said to provide an additive bound of $ for
A if, and only if, the following holds true: E(êA) ≤ eA +$,∀A ∈ A . Here eA is the optimal value of A and êA is the
value obtained by rounding the solution of B.

5. The multiplicative bound specified by a relaxation scheme defined over the set of optimization problems A is said
to be tight if, and only if, there exists an A ∈ A such that E(êA) = #eA. Similarly, the additive bound specified by a
relaxation scheme defined over A is said to be tight if, and only if, there exists an A ∈ A such that E(êA) = eA+$.
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using Schur’s complement (Boyd and Vandenberghe, 2004). Further, like LP-S, it relaxes the integer
constraints by allowing the variables xa;i and Xab;i j to lie in the interval [−1,1] with Xaa;ii = 1 for all
va ∈ v, li ∈ l. Note that the value of Xaa;ii is derived using the fact that Xaa;ii = x2a;i. Since xa;i can only
take the values −1 or 1 in the MAP estimation IP, it follows that Xaa;ii = 1. The SDP relaxation is a
well-studied approach which provides accurate solutions for the MAP estimation problem (e.g., see
Wainwright and Jordan 2004). However, due to its computational inefficiency, it is not practically
useful for large scale problems with nh> 1000. See however Olsson et al. (2007), Schellewald and
Schnorr (2003) and Torr (2003).

1.5 Second Order Cone Programming Relaxation

We now describe the SOCP relaxation that was proposed by Muramatsu and Suzuki (2003) for the
MAXCUT problem (i.e., MAP estimation with h= 2) and later extended for a general label set (Kumar
et al., 2006). This relaxation, which we call SOCP-MS, is based on the technique of Kim and Kojima
(2000). For completeness we first describe the general technique of Kim and Kojima (2000) and
later show how SOCP-MS can be derived using it.

1.5.1 SOCP RELAXATIONS

In Kim and Kojima (2000), the authors observed that the SDP constraint X−xx% ' 0 can be further
relaxed to second order cone (SOC) constraints. Their technique uses the fact that the Frobenius
inner product of two semidefinite matrices is non-negative. For example, consider the inner prod-
uct of a fixed matrix C = UU% ' 0 with X− xx% (which, by the SDP constraint, is also positive
semidefinite). The non-negativity of this inner product can be expressed as an SOC constraint as
follows:

C• (X−xx%) ≥ 0,
⇒‖(U)%x‖2 ≤ C•X.

Hence, by using a set of matrices S = {Ck|Ck = Uk(Uk)% ' 0,k = 1,2, . . . ,nC}, the SDP constraint
can be further relaxed to nC SOC constraints,that is,

⇒‖(Uk)%x‖2 ≤ Ck •X,k = 1, · · · ,nC.

It can be shown that, for the above set of SOC constraints to be equivalent to the SDP constraint,
nC = #. However, in practice, we can only specify a finite set of SOC constraints. Each of these
constraints may involve some or all variables xa;i and Xab;i j. For example, if Ckab;i j = 0, then the kth
SOC constraint will not involve Xab;i j (since its coefficient will be 0).

1.5.2 THE SOCP-MS RELAXATION

Consider a pair of neighbouring variables va and vb, that is, (a,b) ∈ E , and a pair of labels li and
l j. These two pairs define the following variables: xa;i, xb; j, Xaa;ii = Xbb; j j = 1 and Xab;i j = Xba; ji
(since X is symmetric). For each such pair of variables and labels, the SOCP-MS relaxation specifies
two SOC constraints which involve only the above variables (Kumar et al., 2006; Muramatsu and
Suzuki, 2003). In order to specify the exact form of these SOC constraints, we need the following
definitions.
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Using the variables va and vb (where (a,b) ∈ E) and labels li and l j, we define the submatrices
x(a,b,i, j) and X(a,b,i, j) of x and X respectively as:

x(a,b,i, j) =
(

xa;i
xb; j

)
,X(a,b,i, j) =

(
Xaa;ii Xab;i j
Xba; ji Xbb; j j

)
.

The SOCP-MS relaxation specifies SOC constraints of the form:

‖(UkMS)%x(a,b,i, j)‖2 ≤ CkMS •X(a,b,i, j), (10)

for all pairs of neighbouring variables (a,b)∈E and labels li, l j ∈ l. To this end, it uses the following
two matrices:

C1MS =
(
1 1
1 1

)
,C2MS =

(
1 −1
−1 1

)
.

In other words SOCP-MS specifies a total of 2|E |h2 SOC constraints. Note that both the matricesC1MS
and C2MS defined above are positive semidefinite, and hence can be written as C1MS = U1MS(U1MS)%
and C2MS = U2MS(U2MS)% where

U1MS =
(
0 1
0 1

)
and U2MS =

(
0 −1
0 1

)
,

Substituting these matrices in inequality (10) we see that the constraints defined by the SOCP-MS
relaxation are given by

‖(U1MS)%x(a,b,i, j)‖2 ≤ C1MS •X(a,b,i, j),

‖(U2MS)%x(a,b,i, j)‖2 ≤ C2MS •X(a,b,i, j),

⇒
∣∣∣∣

∣∣∣∣

(
0 0
1 1

)(
xa;i
xb; j

)∣∣∣∣

∣∣∣∣
2
=

(
1 1
1 1

)
•
(

Xaa;ii Xab;i j
Xba; ji Xbb; j j

)
,

∣∣∣∣

∣∣∣∣

(
0 0
−1 1

)(
xa;i
xb; j

)∣∣∣∣

∣∣∣∣
2
=

(
1 −1
−1 1

)
•
(

Xaa;ii Xab;i j
Xba; ji Xbb; j j

)
,

⇒ (xa;i+ xb; j)2 ≤ Xaa;ii+Xbb; j j +Xab;i j +Xba; ji,
(xa;i− xb; j)2 ≤ Xaa;ii+Xbb; j j−Xab;i j−Xba; ji,

⇒ (xa;i+ xb; j)2 ≤ 2+2Xab;i j,
(xa;i− xb; j)2 ≤ 2−2Xab;i j.

The last expression is obtained using the fact that X is symmetric and Xaa;ii = 1, for all va ∈ v and
li ∈ l. Hence, in the SOCP-MS formulation, the MAP estimation IP is relaxed to

SOCP-MS: x∗ = argminx"va,li !
1
a;i

(1+xa;i)
2 +"(a,b)∈E ,li,l j !

2
ab;i j

(1+xa;i+xb; j+Xab;i j)
4

s.t. x ∈ [−1,1]nh,X ∈ [−1,1]nh×nh,
"li∈l xa;i = 2−h,

(xa;i− xb; j)2 ≤ 2−2Xab;i j, (11)
(xa;i+ xb; j)2 ≤ 2+2Xab;i j, (12)

Xab;i j = Xba; ji. (13)
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We refer the reader to Kumar et al. (2006) and Muramatsu and Suzuki (2003) for details. The
SOCP-MS relaxation yields the supremum and infimum for the elements of the matrix X using
constraints (11) and (12) respectively, that is,

(xa;i+ xb; j)2

2
−1≤ Xab;i j ≤ 1−

(xa;i− xb; j)2

2
.

These constraints are specified for all (a,b) ∈ E and li, l j ∈ l. When the objective function of SOCP-
MS is minimized, one of the two inequalities would be satisfied as an equality. This can be proved
by assuming that the value for the vector x has been fixed. Hence, the elements of the matrix X
should take values such that it minimizes the objective function subject to the constraints (11) and
(12). Clearly, the objective function would be minimized when Xab;i j equals either its supremum or
infimum value, depending on the sign of the corresponding pairwise potential !2ab;i j, that is,

Xab;i j =

{
(xa;i+xb; j)2

2 −1 if !2ab;i j > 0,
1− (xa;i−xb; j)2

2 otherwise.

Similar to the LP-S and QP-RL relaxations defined above, the SOCP-MS relaxation can also be solved
in polynomial time. To the best our knowledge, no bounds have been established for the SOCP-MS
relaxation in earlier work. Our recent work (Kumar and Torr, 2008) provides an efficient approach
for solving general SOCP relaxations of the MAP estimation problem for discrete MRF.

2. Comparing Relaxations

In order to compare the relaxations described above, we require the following definitions. We say
that a relaxation A dominates (Chekuri et al., 2001) the relaxation B (alternatively, B is dominated
by A) if and only if

min
(x,X)∈F (A)

e(x,X;!) ≥ min
(x,X)∈F (B)

e(x,X;!),∀!,

where F (A) and F (B) are the feasibility regions of the relaxations A and B respectively. The
term e(x,X;!) denotes the value of the objective function at (x,X) (i.e., the energy of the possibly
fractional labelling (x,X)) for the MAP estimation problem defined over the MRF with parameter !.
Thus the optimal value of the dominating relaxation A is always greater than or equal to the optimal
value of relaxation B. We note here that the concept of domination has been used previously by
Chekuri et al. (2001) (to compare LP-S with the linear programming relaxation of Kleinberg and
Tardos 1999).

Relaxations A and B are said to be equivalent if A dominates B and B dominates A, that is, their
optimal values are equal to each other for all MRFs. A relaxation A is said to strictly dominate
relaxation B if A dominates B but B does not dominate A. In other words there exists at least one
MRF with parameter ! such that

min
(x,X)∈F (A)

e(x,X;!) > min
(x,X)∈F (B)

e(x,X;!).

Note that, by definition, the optimal value of any relaxation would always be less than or equal to
the energy of the optimal (i.e., the MAP) labelling. Hence, the optimal value of a strictly dominating
relaxation A is closer to the optimal value of the MAP estimation IP compared to that of relaxation
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B. In other words, A provides a tighter lower bound for MAP estimation than B and, in that sense,
is a better relaxation than B. It is worth noting that the concept of domination (or strict domination)
does not apply to the final solutions obtained by rounding the possibly fractional solutions of the
relaxation. In other words, it is possible for a relaxation B which is strictly dominated by a relaxation
A to provide a better final (integer) solution than A. However, the concept of domination provides
an intuitive measure for comparing relaxations. One may also argue that if a dominating relaxation
provides worse final solutions, then the deficiency of the method may be rooted in the rounding
technique used.

We now describe two special cases of domination which are used extensively in the remainder
of this paper.

Case I: Consider two relaxations A and B which share a common objective function. For ex-
ample, the objective functions of the LP-S and the SOCP-MS relaxations described in the previous
section have the same form. Further, let A and B differ in the constraints that they specify such that
F (A) ⊆ F (B), that is, the feasibility region of A is a subset of the feasibility region of B.

Given two such relaxations, we claim that A dominates B. This can be proved by contradiction:
assume that A does not dominate B then, by definition of domination, there exists at least one
parameter ! for which B provides a greater value of the objective function than A. Let an optimal
solution of A be (xA,XA). Similarly, let (xB,XB) be an optimal solution of B. By our assumption,
the following holds true:

e(xA,XA;!) < e(xB,XB;!). (14)

However, since F (A) ⊆ F (B) it follows that (xA,XA) ∈ F (B). Hence, from Equation (14), we see
that (xB,XB) cannot be an optimal solution of B. This proves our claim.

We can also consider a case where F (A) ⊂ F (B), that is, the feasibility region of A is a strict
subset of the feasibility region of B. Using the above argument we see that A dominates B. Further,
assume that there exists a parameter ! such that the intersection of the set of all optimal solutions of
A and the set of all optimal solutions of B is null. In other words if (xB,XB) is an optimal solution
of B then (xB,XB) /∈ F (A). Clearly, if such a parameter ! exists then A strictly dominates B.

Note that the converse is not true, that is, if A dominates (or strictly dominates) B it does not
necessarily imply that F (A)⊆ F (B) (or F (A)⊂ F (B)). In other words, the concept of domination
is related to the value of the objective function and not to the feasibility region. In Section 5, we
will consider some examples of relaxations which can be related through the concept of domination
despite the fact that their feasibility regions are not subsets (or supersets) of each other.

Case II: Consider two relaxations A and B such that they share a common objective function.
Further, let the constraints of B be a subset of the constraints of A. We claim that A dominates B.
This follows from the fact that F (A) ⊆ F (B) and the argument used in Case I above.

2.1 Our Results

We prove that LP-S strictly dominates SOCP-MS (see Section 3). Further, in Section 4, we show that
QP-RL is equivalent to SOCP-MS. This implies that LP-S strictly dominates the QP-RL relaxation.
In Section 5 we generalize the above results by proving that a large class of SOCP (and equivalent
QP) relaxations is dominated by LP-S. Based on these results, we propose a novel set of constraints
which result in SOCP relaxations that dominate LP-S, QP-RL and SOCP-MS. These relaxations in-
troduce SOC constraints on cycles and cliques formed by the neighbourhood relationship of the
MRF.
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A preliminary version of this article has appeared as Kumar et al. (2007).

3. LP-S vs. SOCP-MS

We now show that for the MAP estimation problem the linear constraints of LP-S, that is,

x ∈ [−1,1]nh,X ∈ [−1,1]nh×nh, (15)
"li∈l xa;i = 2−h, (16)

"l j∈lXab;i j = (2−h)xa;i, (17)
Xab;i j = Xba; ji, (18)

1+ xa;i+ xb; j +Xab;i j ≥ 0. (19)

are stronger than the SOCP-MS constraints, that is,

x ∈ [−1,1]nh,X ∈ [−1,1]nh×nh,
"li∈l xa;i = 2−h,

(xa;i− xb; j)2 ≤ 2−2Xab;i j, (20)
(xa;i+ xb; j)2 ≤ 2+2Xab;i j, (21)

Xab;i j = Xba; ji.

In other words the feasibility region of LP-S is a strict subset of the feasibility region of SOCP-MS
(i.e., F (LP-S) ⊂ F (SOCP-MS)). This in turn would allow us to prove the following Theorem.
Theorem 1: The LP-S relaxation strictly dominates the SOCP-MS relaxation.
Proof: The LP-S and the SOCP-MS relaxations differ only in the way they relax the non-convex

constraint X= xx%. While LP-S relaxes X= xx% using the marginalization constraint (17), SOCP-
MS relaxes it to constraints (20) and (21). The SOCP-MS constraints provide the supremum and
infimum of Xab;i j as

(xa;i+ xb; j)2

2
−1≤ Xab;i j ≤ 1−

(xa;i− xb; j)2

2
.

Consider a pair of neighbouring variables va and vb and a pair of labels li and l j. Recall that SOCP-
MS specifies the constraints (20) and (21) for all such pairs of random variables and labels, that is,
for all xa;i,xb; j,Xab;i j such that (a,b) ∈ E and li, l j ∈ l. In order to prove this Theorem we use the
following two Lemmas.
Lemma 3.1: If xa;i, xb; j and Xab;i j satisfy the LP-S constraints, that is, constraints (15)-(19), then

|xa;i− xb; j|≤ 1−Xab;i j.

The above result holds true for all (a,b) ∈ E and li, l j ∈ l.
Proof: From the LP-S constraints, we get

1+ xa;i
2

= !
lk∈l

1+ xa;i+ xb;k +Xab;ik
4

,

1+ xb; j
2

= !
lk∈l

1+ xa;k + xb; j +Xab;k j
4

. (22)
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Therefore,

|xa;i− xb; j| = 2
∣∣∣1+xa;i2 − 1+xb; j

2

∣∣∣ ,

= 2
∣∣∣
(
1+xa;i
2 − 1+xa;i+xb; j+Xab;i j

4

)
−

(
1+xb; j
2 − 1+xa;i+xb; j+Xab;i j

4

)∣∣∣ ,

≤ 2
(
1+xa;i
2 − 1+xa;i+xb; j+Xab;i j

4

)
+2

(
1+xb; j
2 − 1+xa;i+xb; j+Xab;i j

4

)
,

= 1−Xab;i j.

Note that the inequality holds since both the expressions in the parentheses, that is,
(
1+ xa;i
2

−
1+ xa;i+ xb; j +Xab;i j

4

)
,

(
1+ xb; j
2

−
1+ xa;i+ xb; j +Xab;i j

4

)
,

are non-negative, as follows from equations (19) and (22).
Using the above Lemma, we get

(xa;i− xb; j)2 ≤ (1−Xab;i j)(1−Xab;i j), (23)
⇒ (xa;i− xb; j)2 ≤ 2(1−Xab;i j), (24)
⇒ (xa;i− xb; j)2 ≤ 2−2Xab;i j. (25)

Inequality (24) is obtained using the fact that −1 ≤ Xab;i j ≤ 1 and hence, 1−Xab;i j ≤ 2. Using
inequality (23), we see that the necessary condition for the equality to hold true is (1−Xab;i j)(1−
Xab;i j) = 2− 2Xab;i j, that is, Xab;i j = −1. Note that inequality (25) is equivalent to the SOCP-MS
constraint (20). Thus LP-S provides a smaller supremum of Xab;i j when Xab;i j > −1.
Lemma 3.2: If xa;i, xb; j and Xab;i j satisfy the LP-S constraints then

|xa;i+ xb; j|≤ 1+Xab;i j.

This holds true for all (a,b) ∈ E and li, l j ∈ l.
Proof: According to constraint (19),

−(xa;i+ xb; j) ≤ 1+Xab;i j. (26)

Using Lemma 3.1, we get the following set of inequalities:

|xa;i− xb;k|≤ 1−Xab;ik, lk ∈ l,k .= j.

Adding the above set of inequalities, we get

"lk∈l,k '= j |xa;i− xb; j|≤ "lk∈l,k '= j(1−Xab;ik),
⇒ "lk∈l,k '= j(xa;i− xb;k) ≤ "lk∈l,k '= j(1−Xab;ik),
⇒ (h−1)xa;i−"lk∈l,k '= j xb;k ≤ (h−1)−"lk∈l,k '= jXab;ik,
⇒ (h−1)xa;i+(h−2)+ xb; j ≤ (h−1)+(h−2)xa;i+Xab;i j.

The last step is obtained using constraints (16) and (17), that is,

!
lk∈l

xb;k = (2−h),!
lk∈l

Xab;ik = (2−h)xa;i.
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Rearranging the terms, we get
(xa;i+ xb; j) ≤ 1+Xab;i j. (27)

Thus, according to inequalities (26) and (27)

|xa;i+ xb; j|≤ 1+Xab;i j.

Using the above Lemma, we obtain

(xa;i+ xb; j)2 ≤ (1+Xab;i j)(1+Xab;i j),
⇒ (xa;i+ xb; j)2 ≤ 2+2Xab;i j.

where the necessary condition for the equality to hold true is 1+Xab;i j = 2 (i.e., Xab;i j = 1). Note that
the above constraint is equivalent to the SOCP-MS constraint (21). Together with inequality (25),
this proves that the LP-S relaxation provides smaller supremum and larger infimum of the elements
of the matrix X than the SOCP-MS relaxation. Thus, F (LP-S) ⊂ F (SOCP-MS).

One can also construct a parameter ! for which the set of all optimal solutions of SOCP-MS do
not lie in the feasibility region of LP-S. In other words the optimal solutions of SOCP-MS belong to
the non-empty set F (SOCP-MS)−F (LP-S), for example, see Fig. 1. Using the argument of Case I
in Section 2, this implies that LP-S strictly dominates SOCP-MS.

Note that the above Theorem does not apply to the variation of SOCP-MS described in Kumar
et al. (2006) and Muramatsu and Suzuki (2003) which include triangular inequalities (Chopra and
Rao, 1993). However, since triangular inequalities are linear constraints, LP-S can be extended to
include them. The resulting LP relaxation would strictly dominate the SOCP-MS relaxation with
triangular inequalities.

4. QP-RL vs. SOCP-MS

We now prove that QP-RL and SOCP-MS are equivalent (i.e., their optimal values are equal for MAP
estimation problems defined over all MRFs). Specifically, we consider a vector x which lies in the
feasibility regions of the QP-RL and SOCP-MS relaxations, that is, x ∈ [−1,1]nh. For this vector, we
show that the values of the objective functions of the QP-RL and SOCP-MS relaxations are equal.
This would imply that if x∗ is an optimal solution of QP-RL for some MRF with parameter ! then
there exists an optimal solution (x∗,X∗) of the SOCP-MS relaxation. Further, if eQ and eS are the
optimal values of the objective functions obtained using the QP-RL and SOCP-MS relaxation, then
eQ = eS.
Theorem 2: The QP-RL relaxation and the SOCP-MS relaxation are equivalent.
Proof: Recall that the QP-RL relaxation is defined as follows:

QP-RL: x∗ = argminx
( 1+x
2

)%
!̂
1+

(1+x
2

)%
!̂
2 ( 1+x

2
)
,

s.t. "li∈l xa;i = 2−h,∀va ∈ v,
x ∈ {−1,1}nh,

where the unary potential vector !̂1 and the pairwise potential matrix !̂2 ' 0 are defined as

!̂1a;i = !1a;i− !
vc∈v
!
lk∈l

|!2ac;ik|, (28)
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(a) (b) (c)

Figure 1: (a) An example MRF defined using two neighbouring random variables. Note that the
observed nodes are not shown for the sake of clarity of the image. Each random variable
can take one of two labels, represented by the branches (i.e., the horizontal lines) of the
trellises (i.e., the vertical lines) on top of the variables. The value of the unary potential
!1a;i is shown next to the ith branch of the trellis on top of va. For example, !1a;0 = 10
(shown next to the lower branch of the trellis on top of va) and !1b;1 = 3 (shown next to
the upper branch of the trellis on top of vb). The pairwise potential !2ab;i j is shown next to
the connection between the ith and jth branches of the trellises on top of va and vb respec-
tively. For example, !2ab;00 = −10 (shown next to the bottom-most connection between
the two trellises) and !2ab;01 = −5 (shown next to the diagonal connection between the
two trellises). (b) The optimal solution obtained using the LP-S relaxation. The value of
xa;i is shown next to the ith branch of the trellis on top of va. Similarly, the value of Xab;i j
is shown next to the connection between the ith and jth branches of the trellises on top
of va and vb respectively. Note that the value of the objective function for the optimal
solution is 6. (c) A feasible solution of the SOCP-MS relaxation which does not belong
to the feasibility region of LP-S and has an objective function value of 2. It follows that
the optimal solution of SOCP-MS would lie in F (SOCP-MS)−F (LP-S) and have a value
of at most 2. Together with Lemmas 3.1 and 3.2, this proves that LP-S strictly dominates
SOCP-MS.

!̂2ab;i j =
{

"vc∈v"lk∈l |!
2
ac;ik|, if a= b, i= j,

!2ab;i j otherwise. (29)

Here, the terms !1a;i and !2ac;ik are the (original) unary potentials and pairwise potentials for the given
MRF. Consider a feasible solution x of the QP-RL and the SOCP-MS relaxations. Further, let X be
the solution obtained when minimizing the objective function of the SOCP-MS relaxation whilst
keeping x fixed. We prove that the value of the objective functions for both relaxations at the above
feasible solution is the same by equating the coefficient of !1a;i and !2ab;i j for all va ∈ v, (a,b) ∈ E
and li, l j ∈ l in both formulations. Using Equation (28), we see that !1a;i is multiplied by

1+xa;i
2 in the

objective function of the QP-RL. Similarly, !1a;i is multiplied by
1+xa;i
2 in the SOCP-MS relaxation.

Therefore the coefficients of !1a;i in both relaxations are equal for all va ∈ v and li ∈ l.
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We now consider the pairwise potentials, that is, !2ab;i j and show that their coefficients are the
same when obtaining the minimum of the objective function. We consider the following two cases.

Case I: Let !2ab;i j = !2ba; ji ≥ 0. Using Equation (29) we see that, in the QP-RL relaxation, !2ab;i j+
!2ba; ji is multiplied by the following term:

(
1+ xa;i
2

)2
+

(
1+ xb; j
2

)2
+2

(
1+ xa;i
2

)(
1+ xb; j
2

)
− 1+ xa;i

2
−
1+ xb; j
2

. (30)

In the case of SOCP-MS relaxation, since !2ab;i j ≥ 0, the minimum of the objective function is ob-
tained by using the minimum value that Xab;i j would take given the SOC constraints. Since X is
symmetric, we see that !2ab;i j +!2ba; ji is multiplied by the following term:

1+xa;i+xb; j+inf{Xab;i j}
2

= 1+xa;i+xb; j+(xa;i+xb; j)2/2−1
2 , (31)

where the infimum of Xab;i j is defined by constraint (21) in the SOCP-MS relaxation. It can easily be
verified that the terms (30) and (31) are equal.

Case II: Now consider the case where !2ab;i j = !2ba; ji < 0. In the QP-RL relaxation, the term
!2ab;i j +!2ba; ji is multiplied by

1+ xa;i
2

+
1+ xb; j
2

+2
(
1+ xa;i
2

)(
1+ xb; j
2

)
−

(
1+ xa;i
2

)2
−

(
1+ xb; j
2

)2
. (32)

In order to obtain the minimum of the objective function, the SOCP-MS relaxation uses the maximum
value that Xab;i j would take given the SOC constraints. Thus, !2ab;i j +!2ba; ji is multiplied by

1+xa;i+xb; j+sup{Xab;i j}
2

= 1+xa;i+xb; j+1−(xa;i−xb; j)2/2
2 , (33)

where the supremum of Xab;i j is defined by constraint (20). Again, the terms (32) and (33) can be
shown to be equivalent.

Theorems 1 and 2 prove that the LP-S relaxation strictly dominates the QP-RL and SOCP-MS
relaxations. A natural question that now arises is whether the additive bound of QP-RL (proved
by Ravikumar and Lafferty 2006) is applicable to the LP-S and SOCP-MS relaxations. Our next
Theorem answers this question in an affirmative. To this end, we use the rounding scheme proposed
by Ravikumar and Lafferty (2006) to obtain the labelling f for all the random variables of the given
MRF. This rounding scheme is summarized below:

• Pick a variable va which has not been assigned a label.

• Assign the label li to va (i.e., f(a) = i) with probability 1+xa;i
2 .

• Continue till all variables have been assigned a label.

Recall that "h−1
i=0

1+xa;i
2 = 1 for all va ∈ v. Hence, once va is picked it is guaranteed to be assigned a

label. In other words the above rounding scheme terminates after n = |v| steps. To the best of our
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knowledge, this additive bound was previously known only for the QP-RL relaxation (Ravikumar
and Lafferty, 2006).
Theorem 3: For the above rounding scheme, LP-S and SOCP-MS provide the same additive

bound as the QP-RL relaxation of Ravikumar and Lafferty (2006), that is, S
4 where

S = "(a,b)∈E "li,l j∈l |!
2
ab;i j| (i.e., the sum of the absolute values of all pairwise potentials). Fur-

thermore, this bound is tight.
Proof: The QP-RL and SOCP-MS relaxations are equivalent. Thus the above Theorem holds

true for SOCP-MS. We now consider the LP-S relaxation (Chekuri et al., 2001; Koster et al., 1998;
Schlesinger, 1976; Wainwright et al., 2005). We denote the energy of the optimal labelling as e∗.
Recall that eL denotes the optimal value of the LP-S which is obtained using possibly fractional
variables (x∗,X∗). Clearly, eL ≤ e∗. The energy of the labelling x̂, obtained after rounding the
solution of the LP-S relaxation, is represented by the term êL,

Using the above notation, we now show that the LP-S relaxation provides an additive bound of
S
4 for the above rounding scheme. We first consider the unary potentials and observe that

E
(
!1a;i

(
1+ x̂a;i
2

))
= !1a;i

(1+ x∗a;i
2

)
,

where E(·) denotes the expectation of its argument under the above rounding scheme. Similarly, for
the pairwise potentials,

E
(
!2ab;i j

(
1+ x̂a;i
2

)(
1+ x̂b; j
2

))
= !2ab;i j

(1+ x∗a;i+ x∗b;i j + x∗a;ix∗b; j
4

)
.

We analyze the following two cases:
(i) !2ab;i j ≥ 0: Using the fact that X∗

ab;i j ≥ |x∗a;i+ x∗b; j|−1 (see Lemma 3.2), we get

1+ x∗a;i+ x∗b; j + x∗a;ix∗b; j− (1+ x∗a;i+ x∗b; j +X∗
ab;i j)

= x∗a;ix∗b; j−X∗
ab;i j

≤ x∗a;ix∗b; j +1− |x∗a;i+ x∗b; j|
≤ 1,

where the equality holds when x∗a;i = x∗b; j = 0. Therefore,

E
(
!2ab;i j

(
1+ x̂a;i
2

)(
1+ x̂b; j
2

))
≤ !2ab;i j

(1+ x∗a;i+ x∗b;i j +X∗
ab;i j)

4
+

|!2ab;i j|
4

.

(ii) !2ab;i j < 0: Using the fact that X∗
ab;i j ≤ 1− |x∗a;i− x∗b; j| (see Lemma 3.1), we get

1+ x∗a;i+ x∗b; j + x∗a;ix∗b; j− (1+ x∗a;i+ x∗b; j +X∗
ab;i j)

≥ x∗a;ix∗b; j−1+ |x∗a;i− x∗b; j|
≥ −1,

where the equality holds when x∗a;i = x∗b; j = 0. Therefore,

E
(
!2ab;i j

(
1+ x̂a;i
2

)(
1+ x̂b; j
2

))
≤ !2ab;i j

(1+ x∗a;i+ x∗b;i j +X∗
ab;i j)

4
+

|!2ab;i j|
4

.
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Summing the expectation of the unary and pairwise potentials for all va ∈ v, (a,b) ∈ E and li, l j ∈ l,
we get

e∗ ≤ E(êL) ≤ eL+
S
4
≤ e∗ +

S
4
,

which proves the additive bound for LP-S.

(a) (b)

Figure 2: An example MRF for proving the tightness of the LP-S additive bound of S4 . (a) The MRF
consisting of two random variables va and vb. The potentials are shown similar to Fig. 1.
Note that the unary potentials are uniform while the pairwise potentials form an Ising
model. (b) An optimal solution of the LP-S relaxation for the MRF shown in (a). The
values of the variables xa;i are shown next to the ith branch of the trellis of va. Note that
all variables xa;i have been assigned to 0. The values of the variables Xab;i j are shown next
to the connection between the ith and jth branch of the trellises of va and vb. Note that
Xab;i j = −1 if !2ab;i j > 0 and Xab;i j = 1 otherwise.

This additive bound can indeed be shown to be tight by using the following simple example.
Consider an instance of the MAP estimation problem for an MRF defined on two variables v =
{va,vb} each of which can take one of two labels from the set l = {l0, l1}. Let the unary and
pairwise potentials be as defined in Fig. 2(a), that is, the unary potentials are uniform and the
pairwise potentials follow the Ising model. Note that this MRF is a chain of size 2 and can thus, be
solved exactly using the LP-S relaxation (Chekuri et al., 2001; Wainwright and Jordan, 2003) (i.e.,
the optimal value of the objective function of the LP-S relaxation is exactly equal to the energy of
the MAP estimate). However, our aim is to show that for a particular randomized rounding scheme
the MRF in Fig. 2(a) offers an example of tightness for the additive bound.

An optimal solution of the LP-S relaxation is given in Fig. 2(b). Clearly, e∗ = 2 (e.g., for the
labelling f = {0,0} or f = {1,1}) while E(êL) = 2+ 2

4 = e∗+ S
4 . Thus the additive bounds obtained

for the LP-S, QP-RL and SOCP-MS algorithms are the same. In fact, one can construct arbitrarily
large MRFs (i.e., MRF defined over a large number of variables) with uniform unary potentials and
Ising model pairwise potentials for which the bound can be shown to be tight.

The above bound was proved for the case of binary variables (i.e., h = 2) by Hammer and Kalan-
tari (1987) using a slightly different rounding scheme. Our result can be viewed as a generalization
of this for any arbitrary number of labels. The above Theorem proves a tight additive bound using
a simple rounding scheme. However, using this rounding scheme in practical applications may not
be desirable as it generates an independent random number for rounding the fractional labelling of
each random variable. We note here that better bounds can be obtained for some special cases of
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the MAP estimation problem using the LP-S relaxation together with more clever rounding schemes
(such as those described in Chekuri et al. 2001 and Kleinberg and Tardos 1999).

5. QP and SOCP Relaxations over Trees and Cycles

We now generalize the results of Theorem 1 by defining a large class of SOCP relaxations which
is dominated by LP-S. Specifically, we consider the SOCP relaxations which relax the non-convex
constraint X= xx% using a set of second order cone (SOC) constraints of the form

||(Uk)%x||≤ Ck •X,k = 1, · · · ,nC (34)

where Ck = Uk(Uk)% ' 0, for all k = 1, · · · ,nC. In order to make the proofs of the subsequent
Theorems easier, we make two assumptions. However, the Theorems would hold true even without
these assumptions as discussed below.

Assumption 1: We assume that the integer constraints

x ∈ {−1,+1}nh,X ∈ {−1,+1}nh×nh, (35)

are relaxed to
x ∈ [−1,+1]nh,X ∈ [−1,+1]nh×nh, (36)

with Xaa;ii = 1, for all va ∈ v, li ∈ l. The constraints (36) provide the convex hull for all the points
defined by the integer constraints (35). Recall that the convex hull of a set of points is the smallest
convex set which contains all the points. We now discuss how the above assumption is not restrictive
with respect to the results that follow. Let A be a relaxation which contains constraints (36). Using A
it is possible to obtain another relaxation B by substituting constraints (36) by some other relaxation
of the integer constraints. By the definition of convex hull, it would follow that F (A) ⊂ F (B).
In other words A dominates B (see Case I in Section 2). Hence, if A is dominated by the LP-S
relaxation, then LP-S would also dominate B.

Assumption 2: We assume that the set of constraints (34) contains all the constraints specified
in the SOCP-MS relaxation. Recall that for a given pair of neighbouring random variables, that is,
(a,b) ∈ E , and a pair of labels li, l j ∈ l, SOCP-MS specifies SOC constraints using two matrices (say
C1 and C2) which are 0 everywhere except for the following 2×2 submatrices:

(
C1aa;ii C1ab;i j
C1ba; ji C1bb; j j

)
=

(
1 1
1 1

)
,

(
C2aa;ii C2ab;i j
C2ba; ji C2bb; j j

)
=

(
1 −1
−1 1

)
. (37)

In the case where a given relaxation A does not contain the SOCP-MS constraints, we can define a
new relaxation B. This new relaxation B is obtained by adding all the SOCP-MS constraints to A.
By definition, B dominates A (although not necessarily strictly, see Case II in Section 2). Hence, if
B is dominated by the LP-S relaxation then it follows that LP-S would also dominate A. Hence, our
assumption about including the SOCP-MS constraints is not restrictive for the results presented in
this section.

Note that each SOCP relaxation belonging to this class would not include the marginalization
constraints. Hence, it would define an equivalent QP relaxation (similar to the equivalent QP-RL
relaxation defined by the SOCP-MS relaxation). By definition of equivalent relaxations, all these QP
relaxations will also be dominated by LP-S. Before we begin to describe our results in detail, we
need to set up some notation as follows.
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5.1 Notation

(a) (b) (c)

Figure 3: (a) An example MRF defined over four variables which form a cycle. (b) The set E k

specified by the matrix Ck shown in Equation (39), that is, Ek = {(a,b),(b,c),(c,d)}. (c)
The set V k = {a,b,c,d}. See text for definitions of these sets.

We consider an SOC constraint which is of the form described in Equation (34), that is,

||(Uk)%x||≤ Ck •X, (38)

where k ∈ {1, · · · ,nC}. In order to help the reader understand the notation better, we use an example
MRF shown in Fig. 3(a). This MRF is defined over four variables v = {va,vb,vc,vd} (connected to
form a cycle of length 4), each of which take a label from the set l = {l0, l1}. For this MRF we
specify a constraint using a matrix Ck ' 0 which is 0 everywhere, except for the following 4× 4
submatrix: 



Ckaa;00 Ckab;00 Ckac;00 Ckad;00
Ckba;00 Ckbb;00 Ckbc;00 Ckbd;00
Ckca;00 Ckcb;00 Ckcc;00 Ckcd;00
Ckda;00 Ckdb;00 Ckdc;00 Ckdd;00



 =





2 1 1 0
1 2 1 1
1 1 2 1
0 1 1 2



 . (39)

Using the SOC constraint shown in Equation (38) we define the following sets:

• The set Ek is defined such that (a,b) ∈ Ek if, and only if, it satisfies the following conditions:

(a,b) ∈ E ,

∃li, l j ∈ l such that Ckab;i j .= 0.

Recall thatE specifies the neighbourhood relationship for the given MRF. In other words E k is
the subset of the edges in the graphical model of the MRF such thatCk specifies constraints for
the random variables corresponding to those edges. For the example MRF (shown in Fig. 3(a))
and Ck matrix (in Equation 39), the set Ek obtained is shown in Fig. 3(b).

• The set V k is defined as a ∈ V k if, and only if, there exists a vb ∈ v such that (a,b) ∈ Ek. In
other words V k is the subset of hidden nodes in the graphical model of the MRF such that Ck

specifies constraints for the random variables corresponding to those hidden nodes. Fig. 3(c)
shows the set V k for our example SOC constraint.
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• The set T k consists of elements a; i ∈ T k which satisfy

a ∈V k, li ∈ l,
∃b ∈V k, l j ∈ l, such thatCkab;i j .= 0.

In other words the set T k consists of the set of indices for the vector x which are constrained
by inequality (38), that is, the coefficient of xa;i where a; i ∈ T k are non-zero in the LHS of
inequality (38). Note that in Equation (39) the constraint is specified using only the label l0
for all the random variables v. Thus the set T k is given by

T k = {(a;0),(b;0),(c;0),(d;0)}.

For each set T k we define three disjoint subsets of T k×T k as follows.

• The set T k
0 is defined as

T k
0 = {(a; i,b; j)|(a; i,b; j) ∈ T k×T k,(a,b) ∈ E ,(a,b) /∈ Ek}.

Note that by definition Ckab;i j = 0 if (a; i,b; j) ∈ T k
0 . Thus T k

0 indexes the elements of matrix
X which are not constrained by inequality (38) but are present in the set T k×T k. For the
matrix Ck in Equation (39), the set T k

0 is given by

T k
0 = {(a;0,d;0)}.

• The set T k
1 is defined as

T k
1 = {(a; i,b; j)|(a; i,b; j) ∈ T k×T k,(a,b) /∈ E}.

In other words the set T k
1 indexes the elements of matrix X which are constrained by in-

equality (38) but do not belong to any pair of neighbouring random variables. Note that the
variables Xab;i j such that (a; i,b; j) ∈ T k

1 were not present in the LP-S relaxation. For the
matrix Ck in Equation (39), the set T k

1 is given by

T k
1 = {(a;0,c;0),(b;0,d;0)}.

• The set T k
2 is defined as

T k
2 = {(a; i,b; j)|(a; i,b; j) ∈ T k×T k,(a,b) ∈ Ek}.

In other words the set T k
2 indexes the elements of matrix X which are constrained by in-

equality (38) and belong to a pair of neighbouring random variables. For the matrix Ck in
Equation (39), the set T k

2 is given by

T k
2 = {(a;0,b;0),(b;0,c;0)(c;0,d;0)}.

Note that T k
0

ST k
1

ST k
2 = T k×T k. For a given set of pairwise potentials !2ab;i j we define

two disjoint sets of T k
2 as follows.
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• The set T k
2+ corresponds to non-negative pairwise potentials, that is,

T k
2+ = {(a; i,b; j)|(a; i,b; j) ∈ T k

2 ,!2ab;i j ≥ 0},

Thus the set T k
2+ indexes the elements of matrix X which belong to T k

2 and are multiplied by
a non-negative pairwise potential in the objective function of the relaxation.

• The set T k
2− corresponds to negative pairwise potentials, that is,

T k
2− = {(a; i,b; j)|(a; i,b; j) ∈ T k

2 ,!2ab;i j < 0},

Thus the set T k
2− indexes the elements of matrix X which belong to T k

2 and are multiplied
by a negative pairwise potential in the objective function of the relaxation. Note that T k

2 =
T k
2+

ST k
2−. For the purpose of illustration let us assume that, for the example MRF in Fig. 3(a),

!2ab;00 ≥ 0 while !2bc;00 < 0 and !2cd;00 < 0. Then,

T k
2+ = {(a;0,b;0)},

T k
2− = {(b;0,c;0),(c;0,d;0)},

We also define a weighted graph Gk = (V k,Ek) whose vertices are specified by the set V k and
whose edges are specified by the set Ek. The weight of an edge (a,b) ∈ Ek is given by w(a,b).
Recall that w(a,b) specifies the strength of the pairwise relationship between two neighbouring
variables va and vb. Thus, for our example SOC constraint, the vertices of this graph are given in
Fig. 3(c) while the edges are shown in Fig. 3(b). This graph can be viewed as a subgraph of the
graphical model representation for the given MRF.

Further, we define the submatrices xkT and XkT of x and X respectively such that

xkT = {xa;i|a; i ∈ T k},
XkT = {Xab;i j|(a; i,b; j) ∈ T k×T k}.

For our example, these submatrices will be given by

xkT =





xa;0
xb;0
xc;0
xd;0



 ,XkT =





Xaa;00 Xab;00 Xac;00 Xad;00
Xba;00 Xbb;00 Xbc;00 Xbd;00
Xca;00 Xcb;00 Xcc;00 Xcd;00
Xda;00 Xdb;00 Xdc;00 Xdd;00



 .

Using the above notation, we are now ready to describe our results in detail.

5.2 QP and SOCP Relaxations over Trees

We begin by considering those relaxations where the SOC constraints are defined such that the
graphs Gk = (V k,Ek) form trees. For example, the graph Gk defined by the SOC constraint in
Equation (39) forms a tree as shown in Fig. 3(b). We denote such a relaxation, which specifies SOC
constraints only over trees, by SOCP-T. Note that SOCP-MS (and hence, QP-RL) can be considered
a special case of this class of relaxations where the number of vertices in each tree is equal to two
(since the constraints are defined for all (a,b) ∈ E).
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We will remove this restriction by allowing the number of vertices in each tree to be arbitrarily
large (i.e., between 1 and n). We consider one such tree G= (V,E). Note that for a given relaxation
SOCP-T, there may be several SOC constraints defined using this tree G (or its subtrees). Without
loss of generality, we assume that the constraints

||(Uk)%x||≤ Ck •X,k = 1, · · · ,n′C,

are defined on the tree G. In other words,

Gk ⊆ G,k = 1, · · · ,n′C,

where Gk ⊆G implies that Gk is a subtree of G. In order to make the notation less cluttered, we will
drop the superscript k from the sets defined in the previous section (since we will consider only
one tree G in our analysis).

We will now show that SOCP-T is dominated by the LP-S relaxation. This result is independent
of the choice of the tree G and matrices Ck. To this end, we define the term e1(xT ) for a given value
of xT as

e1(xT ) = !
(a;i)∈T

(
!1a;i+ !

(b; j)∈T

!2ab;i j
2

)
xa;i.

Further, for a fixed xT we also define the following two terms:

eS2(xT ) = min
(xT ,XT )∈F (SOCP-T)

!
(a;i,b; j)∈T2

!2ab;i jXab;i j,

eL2(xT ) = min
(xT ,XT )∈F (LP-S)

!
(a;i,b; j)∈T2

!2ab;i jXab;i j,

where F (SOCP-T) and F (LP-S) are the feasibility regions of SOCP-T and LP-S respectively. We use
the notation (xT ,XT ) ∈ F (SOCP-T) loosely to mean that we can obtain a feasible solution (x,X) of
SOCP-T such that the values of the variables xa;i where a; i ∈ T and Xab;i j where (a; i,b; j) ∈ T ×T
are equal to the values specified by xT and XT . The notation (xT ,XT ) ∈ F (LP-S) is used similarly.
Note that for a given xT the possible values of XT are constrained such that (xT ,XT ) ∈ F (SOCP-T)
and (xT ,XT ) ∈ F (LP-S) (in the case of SOCP-T and LP-S respectively). Hence different values of
xT will provide different values of eS2(xT ) and eL2(xT ).

The contribution of the tree G to the objective function of SOCP-T and LP-S is given by

eS =min
xT

e1(xT )
2

+
eS2(xT )
4

,

eL =min
xT

e1(xT )
2

+
eL2(xT )
4

,

respectively. Assuming that the trees G do not overlap, the total value of the objective function
would simply be the sum of eS (for SOCP-T) or eL (for LP-S) over all trees G. However, since we use
an arbitrary parameter ! in our analysis, it follows that the results do not depend on this assumption
of non-overlapping trees. In other words if two trees G1 and G2 share an edge (a,b) ∈ E then we
can simply consider two MAP estimation problems defined using arbitrary parameters !1 and !2
such that !1+!2 = !. We can then add the contribution of G1 for the MAP estimation problem with
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parameter !1 to the contribution of G2 for the MAP estimation problem with parameter !2. This
would then provide us with the total contribution of G1 and G2 for the original MAP estimation
defined using parameter !.

Using the above argument it follows that if, for all G and for all !, the following holds true:

e1(xT )
2 + eS2(xT )

4 ≤ e1(xT )
2 + eL2(xT )

4 ,∀xT ∈ [−1,1]|T |

⇒ eS2(xT ) ≤ eL2(xT ),∀xT ∈ [−1,1]|T |, (40)

then LP-S dominates SOCP-T (since this would imply that eS ≤ eL, for all G and for all !). This is
the condition that we will use to prove that LP-S dominates all SOCP relaxations whose constraints
are defined over trees. To this end, we define a vector $= {$k,k = 1, · · · ,n′C} of non-negative real
numbers such that

!
k
$kCkab;i j = !2ab;i j,∀(a; i,b; j) ∈ T2.

Due to the presence of the matrices Ck defined in Equation (37) (which result in the SOCP-MS
constraints for all (a,b)∈E and li, l j ∈ l), such a vector$would always exist for any MRF parameter
!. We denote the matrix "k$kCk by C. Clearly, C' 0, and hence can be written as C= UU%.

Using the constraints ||(Uk)%x||2 ≤ Ck •XT together with the fact that $k ≥ 0, we get the fol-
lowing inequality:6

"k$k||(Uk)%x||2 ≤ "k$kCk •X,

⇒ ||U%x||2 ≤ C•X,

⇒ ||U%x||2 ≤ "a;i∈T Caa;iiXaa;ii+"(a;i,b; j)∈T1Cab;i jXab;i j +"(a;i,b; j)∈T2Cab;i jXab;i j,
⇒ ‖U%x‖2−"a;i∈T Caa;ii−"(a;i,b; j)∈T1Cab;i jXab;i j ≤ "(a;i,b; j)∈T2 !

2
ab;i jXab;i j,

(41)

where the last expression is obtained using the fact that Cab;i j = !2ab;i j for all (a; i,b; j) ∈ T2 and
Xaa;ii = 1 for all va ∈ v and li ∈ l. Note that the above inequality provides a lower bound of eS2(xT ).
Another lower bound of eS2(xT ) is provided by the constraints that−1≤Xab;i j ≤ 1 for all (a; i,b; j)∈
T2. Since the objective function being minimized contains eS2(xT ), it follows that in the absence of
any other constraints (which is our assumption) eS2(xT ) would be equal to the maximum of the two
lower bounds, that is,

max

{

!
(a;i,b; j)∈T2

−|!2ab;i jXab;i j|,‖U%x‖2− !
a;i∈T

Caa;ii− !
(a;i,b; j)∈T1

Cab;i jXab;i j

}
.

The first expression is obtained by substituting the following values for Xab;i j where (a; i,b; j) ∈ T2:

Xab;i j =
{

−1 if !2ab;i j ≥ 0,
1 otherwise,

while the second expression is the LHS of inequality (41). Clearly, if eS2(xT ) is equal to the first
expression then eL2(xT ) ≥ eS2(xT ), that is, LP-S dominates SOCP-T. In what follows, we will only

6. Note that there are no terms corresponding to (a; i,b; j) ∈ T0 in inequality (41) since Cab;i j = 0 if (a; i,b; j) ∈ T0. In
other words, Xab;i j vanishes from the above inequality if (a; i,b; j) ∈ T0.
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consider the non-trivial case when

eS2(xT ) = min !
(a;i,b; j)∈T2

!2ab;i jXab;i j,

= ‖U%x‖2− !
a;i∈T

Caa;ii− !
(a;i,b; j)∈T1

Cab;i jXab;i j. (42)

For the LP-S relaxation, from Lemmas 3.1 and 3.2, we obtain the following value of eL2(xT ):

|xa;i+ xb; j|−1≤ Xab;i j ≤ 1− |xa;i− xb; j|,
⇒ eL2(xT ) =min"(a;i,b; j)∈T2 !

2
ab;i jXab;i j,

= "(a;i,b; j)∈T2+ !
2
ab;i j(|xa;i+ xb; j|)−"(a;i,b; j)∈T2− !

2
ab;i j(|xa;i− xb; j|)−

"(a;i,b; j)∈T2 |!
2
ab;i j|. (43)

We are now ready to prove one of our main results which generalizes Theorems 1 and 2. However,
before proceeding with the proof, we note that our result can also be obtained using the moment
constraints of Wainwright and Jordan (2003) (which imply that LP-S provides the exact solution for
the MAP estimation problems defined over tree-structured random fields). However, as will be seen
shortly, the proof presented here allows us to generalize our results to certain cycles.
Theorem 4: SOCP relaxations (and the equivalent QP relaxations) which define constraints only

using graphs G= (V,E) which form (arbitrarily large) trees are dominated by the LP-S relaxation.
Proof: We begin by assuming that d(i, j) ≥ 0 for all li, l j ∈ l and later drop this constraint on

the distance function.7 We will show that for any arbitrary tree G and any matrix C, the value of
eL2(xT ) is greater than the value of eS2(xT ) for all xT . This would prove inequality (40) which in turn
would show that the LP-S relaxation dominates SOCP-T (and the equivalent QP relaxation which we
call QP-T) whose constraints are defined over trees.

It is assumed that we do not specify any additional constraints for all the variables Xab;i j where
(a; i,b; j)∈ T1 (i.e., for Xab;i j not belonging to any of our trees). In other words these variables Xab;i j
are bounded only by the relaxation of the integer constraint, that is, −1 ≤ Xab;i j ≤ +1. Thus in
Equation (42) the minimum value of the RHS (which is equal to the value of eS2(xT )) is obtained by
using the following value of Xab;i j where (a; i,b; j) ∈ T1:

Xab;i j =
{

1 if Cab;i j ≥ 0,
−1 otherwise.

Substituting these values in Equation (42) we get

eS2(xT ) = ||U%x||2−"a;i∈T Caa;ii−"(a;i,b; j)∈T1 |Cab;i j|,
⇒ eS2(xT ) = "a;i∈T Caa;iix2a;i+"(a;i,b; j)∈T1Cab;i jxa;ixb; j +"(a;i,b; j)∈T2 !

2
ab;i jxa;ixb; j

−"a;i∈T Caa;ii−"(a;i,b; j)∈T1 |Cab;i j|,

where the last expression is obtained using the fact that C = U%U. Consider the term
"(a;i,b; j)∈T1Cab;i jxa;ixb; j which appears in the RHS of the above equation. For this term, clearly

7. Recall that d(·, ·) is a distance function on the labels. Together with the weights w(·, ·) defined over neighbouring
random variables, it specifies the pairwise potentials as !2ab;i j = w(a,b)d(i, j).
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the following holds true

!
(a;i,b; j)∈T1

Cab;i jxa;ixb; j ≤ !
(a;i,b; j)∈T1

|Cab;i j|
2

(x2a;i+ x2b; j), (44)

since for all (a; i,b; j) ∈ T1
Cab;i j ≤ |Cab;i j|,

xa;ixb; j ≤
(x2a;i+x2b; j)

2 .

Inequality (44) provides us with an upper bound on the value of eS2(xT ) as follows:

eS2(xT ) ≤ "a;i∈T Caa;iix2a;i+"(a;i,b; j)∈T1
|Cab;i j|
2 (x2a;i+ x2b; j)+"(a;i,b; j)∈T2 !

2
ab;i jxa;ixb; j

−"a;i∈T Caa;ii−"(a;i,b; j)∈T1 |Cab;i j|. (45)

Note that in order to prove inequality (40), that is,

eS2(xT ) ≤ eL2(xT ),∀xT ∈ [−1,1]|T |,

it would be sufficient to show that eL2(xT ) specified in Equation (43) is greater than the RHS of
inequality (45) (since the RHS of inequality (45) is greater than eS2(xT )). We now simplify the two
infimums eL2(xT ) and eS2(xT ) as follows.
LP-S Infimum: Let za;i =

√
|xa;i|(1− |xa;i|). From Equation (43), we see that the infimum

provided by the LP-S relaxation is given by

"(a;i,b; j)∈T2+ !
2
ab;i j(|xa;i+ xb; j|)−"(a;i,b; j)∈T2− !

2
ab;i j(|xa;i− xb; j|)−"(a;i,b; j)∈T2 |!

2
ab;i j|

= −"(a;i,b; j)∈T2+ |!
2
ab;i j|(1− |xa;i+ xb; j|+ xa;ixb; j)

−"(a;i,b; j)∈T2− |!
2
ab;i j|(1− |xa;i− xb; j|− xa;ixb; j)

+"(a;i,b; j)∈T2 !
2
ab;i jxa;ixb; j

≥−"(a;i,b; j)∈T2 |!
2
ab;i j|(1− |xa;i|)(1− |xb; j|)−2"(a;i,b; j)∈T2 |!

2
ab;i j|za;izb; j +

+"(a;i,b; j)∈T2 !
2
ab;i jxa;ixb; j. (46)

The last expression is obtained using the fact that

(1− |xa;i+ xb; j|+ xa;ixb; j) ≤ (1− |xa;i|)(1− |xb; j|)+2za;izb; j,
(1− |xa;i− xb; j|− xa;ixb; j) ≤ (1− |xa;i|)(1− |xb; j|)+2za;izb; j.

SOCP Infimum: From inequality (45), we see that the infimum provided by the SOCP-T relax-
ation is given by

"a;i∈T Caa;iix2a;i+"(a;i,b; j)∈T1
|Cab;i j|
2 (x2a;i+ x2b; j)+"(a;i,b; j)∈T2 !

2
ab;i jxa;ixb; j

−"a;i∈T Caa;ii−"(a;i,b; j)∈T1 |Cab;i j|

= −"a;i∈T Caa;ii(1− x2a;i)−"(a;i,b; j)∈T1 |Cab;i j|(1−
x2a;i
2 − x2b; j

2 )

+"(a;i,b; j)∈T2 !
2
ab;i jxa;ixb; j

≤ −"a;i∈T Caa;ii(1− |xa;i|)2−"(a;i,b; j)∈T1 |Cab;i j|(1− |xa;i|)(1− |xb; j|)
−2"a;i∈T Caa;iiz2a;i−2"(a;i,b; j)∈T1 |Cab;i j|za;izb; j

+"(a;i,b; j)∈T2 !
2
ab;i jxa;ixb; j. (47)
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(a) (b)

Figure 4: (a) An example subgraph G which forms a tree. The weights of the edges and corre-
sponding elements of the vector m are also shown. (b) An example subgraph G which
forms an even cycle where all weights are positive. The elements of s are defined using
the {+1,−1} assignments of the vertices.

The last expression is obtained using

1− x2a;i ≥ (1− |xa;i|)2+2z2a;i,

1− x2a;i
2 − x2b; j

2 ≥ (1− |xa;i|)(1− |xb; j|)+2za;izb; j.

In order to prove the Theorem, we use the following two Lemmas.
Lemma 5.1: The following inequality holds true for any matrix C' 0:

"a;i∈T Caa;ii(1− |xa;i|)2+"(a;i,b; j)∈T1 |Cab;i j|(1− |xa;i|)(1− |xb; j|)
≥ "(a;i,b; j)∈T2 |!

2
ab;i j|(1− |xa;i|)(1− |xb; j|).

In other words, the first term in the RHS of inequality (46) exceeds the sum of the first two terms in
the RHS of inequality (47).
Proof: The proof relies on the fact that C is positive semidefinite. We construct a vector m =

{ma,a = 1, · · · ,n} where n is the number of variables. Let p(a) denote the parent of a non-root
vertex a of tree G (where the root vertex can be chosen arbitrarily). The vector m is defined such
that

ma =






0 if a does not belong to tree G,
1 if a is the root vertex of G,

−mp(a) if w(a, p(a)) > 0,
mp(a) if w(a, p(a)) < 0.

Here w(·, ·) are the weights provided for a given MRF. Fig. 4(a) shows an example of a graph which
forms a tree together with the corresponding elements ofm. Using the vectorm, we define a vector
s of length nh (where h= |l|) such that sa;i = 0 if a; i /∈ T and sa;i = ma(1− |xa;i|) otherwise. Since
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C is positive semidefinite, we get

s%Cs≥ 0
⇒ "a;i∈T Caa;ii(1− |xa;i|)2+"(a;i,b; j)∈T1mambCab;i j(1− |xa;i|)(1− |xb; j)

+"(a;i,b; j)∈T2mamb!2ab;i j(1− |xa;i|)(1− |xb; j) ≥ 0,
⇒ "a;i∈T Caa;ii(1− |xa;i|)2+"(a;i,b; j)∈T1mambCab;i j(1− |xa;i|)(1− |xb; j)

≥ "(a;i,b; j)∈T2 |!
2
ab;i j|(1− |xa;i|)(1− |xb; j),

⇒ "a;i∈T Caa;ii(1− |xa;i|)2+"(a;i,b; j)∈T1 |Cab;i j|(1− |xa;i|)(1− |xb; j|)
≥ "(a;i,b; j)∈T2 |!

2
ab;i j|(1− |xa;i|)(1− |xb; j|).

Lemma 5.2: The following inequality holds true for any matrix C' 0:

!
a;i∈T

Caa;iiz2a;i+ !
(a;i,b; j)∈T1

|Cab;i j|za;izb; j ≥ !
(a;i,b; j)∈T2

|!2ab;i j|za;izb; j.

In other words the second term in the RHS of inequality (46) exceeds the sum of the third and fourth
terms in inequality (47).
Proof: Similar to Lemma 5.1, we construct a vector s of length nh such that sa;i = 0 if a; i /∈ T

and sa;i = maza;i otherwise. The proof follows by observing that s%Cs≥ 0.
Using the above two Lemmas, we see that the sum of the first two terms of inequality (46)

exceed the sum of the first four terms of inequality (47). Further, the third and the fifth terms of
inequalities (46) and (47) are the same. Since inequality (46) provides the lower limit of eL2(xT )
and inequality (47) provides the upper limit of eS2(xT ), it follows that eL2(xT ) ≥ eS2(xT ) for all xT ∈
[−1,1]|T |. Using condition (40), this proves the Theorem.

The proofs of Lemmas 5.1 and 5.2 make use of the fact that for any neighbouring random
variables va and vb (i.e., (a,b) ∈ E), the pairwise potentials !2ab;i j have the same sign for all li, l j ∈ l.
This follows from the non-negativity property of the distance function. However, Theorem 4 can be
extended to the case where the distance function does not obey the non-negativity property. To this
end, we define a parameter ! which satisfies the following condition:

Q( f ,D;!) = Q( f ,D;!),∀ f .

Such a parameter ! is called the reparameterization of ! (i.e., ! ≡ !). Note that there exist several
reparameterizations of any parameter !. We are interested in a parameter ! which satisfies

!
li,l j∈l

|!2ab;i j| = | !
li,l j∈l

!2ab;i j|,∀(a,b) ∈ E . (48)

It can easily be shown that such a reparameterization always exists. Specifically, consider the gen-
eral form of reparameterization described by Kolmogorov (2006), that is,

!
1
a;i = !1a;i+Mba;i,

!
2
ab;i j = !2ab;i j−Mba;i−Mab; j.

Clearly one can set the values of the terms Mba;i and Mab; j such that Equation (48) is satisfied.
Further, the optimal value of LP-S for the parameter ! is equal to its optimal value obtained using !.
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For details, we refer the reader to Kolmogorov (2006). Using this parameter !, we obtain an LP-S
infimum which is similar in form to the inequality (46) for any distance function (i.e., without the
positivity constraint d(i, j) ≥ 0 for all li, l j ∈ l). This LP-S infimum can then be easily compared
to the SOCP-T infimum of inequality (47) (using slight extensions of Lemmas 5.1 and 5.2), thereby
proving the results of Theorem 4 for a general distance function. We omit details.

As an upshot of the above Theorem, we see that the feasibility region of LP-S is always a
subset of the feasibility region of SOCP-T (for any general set of trees and SOC constraints), that is,
F (LP-S) ⊂ F (SOCP-T). This implies that F (LP-S) ⊂ F (QP-T), where QP-T is the equivalent QP
relaxation defined by SOCP-T.

We now show how the above proof can be generalized to certain cycles. To the best of our
knowledge, the alternative proof in Wainwright and Jordan (2003) cannot be trivially extended to
these cases.

5.3 QP and SOCP Relaxations over Cycles

We now prove that the above result also holds true when the graph G forms an even cycle, that is,
cycles with even number of vertices, whose weights are all non-negative or all non-positive provided
d(i, j) ≥ 0, for all li, l j ∈ l.

Theorem 5: When d(i, j) ≥ 0 for all li, l j ∈ l, the SOCP relaxations which define constraints
only using non-overlapping graphs G which form (arbitrarily large) even cycles with all positive or
all negative weights are dominated by the LP-S relaxation.

Proof: It is sufficient to show that Lemmas 5.1 and 5.2 hold for a graph G= (V,E) which forms
an even cycle. We first consider the case where !2ab;i j > 0. Without loss of generality, we assume that
V = {1,2, . . . , t} (where t is even) such that (i, i+1) ∈ E for all i= 1, · · · , t−1. Further, (t,1) ∈ E
thereby forming an even cycle. We construct a vector m of size n such that ma = −1a if a ∈V and
ma = 0 otherwise. When !2ab;i j < 0, we define a vector m such that ma = 1 if a ∈ V and ma = 0
otherwise. Fig. 4(b) shows an example of a graph G which forms an even cycle together with the
corresponding elements of m. Using m, we construct a vector s of length nh (similar to the proofs
of Lemmas 5.1 and 5.2). Lemmas 5.1 and 5.2 follow from the fact that s%Cs≥ 0. We omit details.

It is worth noting that the feasibility region of the above SOCP relaxation (with SOC constraints
defined using some special form of cycles) is not a subset of the LP-S relaxation. However, we
are still able to show that LP-S dominates such an SOCP relaxation. The above Theorem helps
illustrate the difference between comparing the feasibility regions of relaxations and the employing
the concept of domination. Specifically, if the feasibility region of relaxation A is a subset of the
feasibility region of relaxation B, then B dominates A. However, the converse of the above statement
is not true.

Theorem 5 can be proved for cycles of any length whose weights are all negative by a similar
construction. Further, it also holds true for odd cycles (i.e., cycles of odd number of variables) which
have only one positive or only one negative weight. However, as will be seen in the next section,
unlike trees it is not possible to extend these results for any general cycle.
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6. Some Useful SOC Constraints

We now describe two SOCP relaxations which include all the marginalization constraints specified
in LP-S. Note that the marginalization constraints can be incorporated within the SOCP framework
but not in the QP framework.

6.1 The SOCP-C Relaxation

The SOCP-C relaxation (where C denotes cycles) defines second order cone (SOC) constraints using
positive semidefinite matrices C such that the graph G (defined in § 5.1) form cycles. Let the
variables corresponding to vertices of one such cycle G of length c be denoted as vC = {vb|b ∈
{a1,a2, · · · ,ac}}. Further, let lC = {l j| j ∈ {i1, i2, · · · , ic}} ∈ lc be a set of labels for the variables vC.
The SOCP-C relaxation specifies the following constraints:

• The marginalization constraints, that is,

!
l j∈l

Xab;i j = (2−h)xa;i,∀(a,b) ∈ E , li ∈ l.

• A set of SOC constraints
||U%x||≤ C•X, (49)

such that the graph G defined by the above constraint forms a cycle. The matrix C is 0
everywhere except the following elements:

Cak,al ,ik,il =
{

%c if k = l,
Dc(k, l) otherwise.

Here Dc is a c× c matrix which is defined as follows:

Dc(k, l) =






1 if |k− l| = 1,
(−1)c−1 if |k− l| = c−1,
0 otherwise,

and %c is the absolute value of the smallest eigenvalue of Dc.

In other words the submatrix of C defined by vC and lC has diagonal elements equal to %c and off-
diagonal elements equal to the elements of Dc. As an example we consider two cases when c = 3
and c= 4. In these cases the matrix Dc is given by

D3 =




0 1 1
1 0 1
1 1 0



 and D4 =





0 1 0 −1
1 0 1 0
0 1 0 1
−1 0 0 1



 ,

respectively, while %3 = 1 and %4 =
√
2. Clearly, C = U%U ' 0 since its only non-zero submatrix

%cI+Dc (where I is a c×c identity matrix) is positive semidefinite. This allows us to define a valid
SOC constraint as shown in inequality (49). We choose to define the SOC constraint (49) for only
those set of labels lC which satisfy the following:

!
(ak,al)∈E

Dc(k, l)!2akal ;ikil ≥ !
(ak,al)∈E

Dc(k, l)!2akal ; jk jl ,∀{ j1, j2, · · · , jc}.
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Note that this choice is motivated by the fact that the variables Xakal ;ikil corresponding to these sets
vC and lC are assigned trivial values by the LP-S relaxation in the presence of non-submodular terms
(see example below), that is,

Xakal ;ikil =
{

−1 if !2akal ;ikil ≥ 0,
1 otherwise.

In order to avoid this trivial solution, we impose the SOC constraint (49) on them.
Since marginalization constraints are included in the SOCP-C relaxation, the value of the objec-

tive function obtained by solving this relaxation would at least be equal to the value obtained by the
LP-S relaxation (i.e., SOCP-C dominates LP-S, see Case II in Section 2). We can further show that
in the case where |l| = 2 and the constraint (49) is defined over a frustrated cycle8 SOCP-C strictly
dominates LP-S. One such example is given below. Note that if the given MRF contains no frustrated
cycle, then it can be solved exactly using the method described by Hammer et al. (1984).

(a) (b) (c)

Figure 5: An example MRF defined over three random variables v = {va,vb,vc} shown as unfilled
circles. Each of these variables can take one of two labels from the set l= {l0, l1} which
are shown as branches (i.e., the horizontal lines) of trellises (i.e., the vertical lines) on
top of the random variables. The unary potentials are shown next to the corresponding
branches. The pairwise potentials are shown next to the edges connecting the branches of
two neighbouring variables. Note that the pairwise potentials defined for (a,b) and (a,c)
form a submodular Ising model (in (a) and (b) respectively). The pairwise potentials
defined for (b,c) are non-submodular (in (c)). In other words, the above MRF defines a
frustrated cycle.

Example: We consider a frustrated cycle and show that SOCP-C strictly dominates LP-S. Specif-
ically, we consider an MRF with v = {va,vb,vc} and l = {l0, l1}. The neighbourhood of this MRF
is defined such that the variables form a cycle of length 3, that is, E = {(a,b),(b,c),(c,a)}. We
define a frustrated cycle which consists of all 3 variables of this MRF using the unary and pairwise
potentials shown in Fig. 5, that is, the unary potentials are uniform and the pairwise potentials define
only one non-submodular term (between the vertices b and c). Clearly, the energy of the optimal
labelling for the above problem is 4. The value of the objective function obtained by solving the
LP-S relaxation is 3 at an optimal solution shown in Fig. 6.

8. A cycle is called frustrated if it contains an odd number of non-submodular terms.
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(a) (b) (c)

Figure 6: An optimal solution provided by the LP-S relaxation for the MRF shown in Fig. 5. The
value of variable xa;i is shown next to the ith branch of the trellis on top of va. In this
optimal solution, all such variables xa;i are equal to 0. The value of the variable Xab;i j is
shown next to the connection joining the ith and the jth branch of the trellises on top of va
and vb respectively. Note that Xab;i j = −1 when !2ab;i j > 0 and Xab;i j = 1 otherwise. This
provides us with the minimum value of the objective function of LP-S, that is, 3.

(a) (b) (c)

Figure 7: An optimal solution provided by the SOCP-C relaxation for the MRF shown in Fig. 5. This
optimal solution provides us with the optimal value of 3.75 which greater than the LP-S
optimal value for the solution shown in Fig. 6. Note that the optimal solution of LP-S
does not belong to the feasibility region of SOCP-C as it violates constraint (50). This
example proves that SOCP-C strictly dominates LP-S.

The LP-S optimal solution is no longer feasible when the SOCP-C relaxation is used. Specifically,
the constraint

(xa;0+ xb;1+ xc;1)2 ≤ 3+2(Xab;01+Xac;01+Xbc;11), (50)

is violated. In fact, the value of the objective function obtained using the SOCP-C relaxation is 3.75.
Fig. 7 shows an optimal solution of the SOCP-C relaxation for the MRF in Fig. 5. The above example
can be generalized to a frustrated cycle of any length. This proves that SOCP-C strictly dominates
the LP-S relaxation (and hence, the QP-RL and SOCP-MS relaxations).

The constraint defined in Equation (49) is similar to the (linear) cycle inequality constraints
(Chopra and Rao, 1993) which are given by

!
k,l
Dc(k, l)Xakal ;ikil ≥ 2− c.
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We believe that the feasibility region defined by cycle inequalities is a strict subset of the feasibility
region defined by Equation (49). In other words a relaxation defined by adding cycle inequalities to
LP-S would strictly dominate SOCP-C. We are not aware of a formal proof for this. We now describe
the SOCP-Q relaxation.

6.2 The SOCP-Q Relaxation

In the previous section we saw that LP-S dominates SOCP relaxations whose constraints are defined
on trees. However, the SOCP-C relaxation, which defines its constraints using cycles, strictly dom-
inates LP-S. This raises the question whether matrices C, which result in more complicated graphs
G, would provide an even better relaxation for the MAP estimation problem. In this section, we
answer this question in an affirmative. To this end, we define an SOCP relaxation which specifies
constraints such that the resulting graph G form a clique. We denote this relaxation by SOCP-Q
(where Q indicates cliques).

The SOCP-Q relaxation contains the marginalization constraint and the cycle inequalities (de-
fined above). In addition, it also defines SOC constraints on graphs G which form a clique. We
denote the variables corresponding to the vertices of clique G as vQ = {vb|b∈ {a1,a2, · · · ,aq}}. Let
lQ = {l j| j ∈ {i1, i2, · · · , iq}} be a set of labels for these variables vQ. Given this set of variables vQ
and labels lQ, we define an SOC constraint using a matrixC of size nh×nhwhich is zero everywhere
except for the elementsCakal ;ikil = 1. Clearly, C is a rank 1 matrix with eigenvalue 1 and eigenvector
u which is zero everywhere except uak;ik = 1 where vak ∈ vQ and lik ∈ lQ. This implies that C ' 0,
which enables us to obtain the following SOC constraint:

(

!
k
xak;ik

)2

≤ q+!
k,l
Xakal ;ikil . (51)

We choose to specify the above constraint only for the set of labels lQ which satisfy the following
condition:

!
(ak,al)∈E

!2akal ;ikil ≥ !
(ak,al)∈E

!2akal ; jk jl ,∀{ j1, j2, · · · , jq}.

Again, this choice is motivated by the fact that the variables Xakal ;ikil corresponding to these sets vQ
and lQ are assigned trivial values by the LP-S relaxation in the presence of non-submodular pairwise
potentials.

When the clique contains a frustrated cycle, it can be shown that SOCP-Q dominates the LP-S
relaxation (similar to SOCP-C). Further, using a counter-example, it can proved that the feasibility
region given by cycle inequalities is not a subset of the feasibility region defined by constraint (51).
One such example is given below.

Example: We present an example to prove that the feasibility region given by cycle inequalities
is not a subset of the feasibility region defined by the SOC constraint

(

!
k
xak;ik

)2

≤ q+!
k,l
Xakal ;ikil , (52)

which is used in SOCP-Q. Note that it would be sufficient to provide a set of variables (x,X) which
satisfy the cycle inequalities but not constraint (52).
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(a) (b) (c)

(d) (e) (f)

Figure 8: An infeasible solution for SOCP-Q. The value of the variable xa;i is shown next to the
ith branch of the trellis on top of va. The value of Xab;i j is shown next to the connection
between the ith and the jth branches of the trellises on top of vb and vb respectively. It can
easily be verified that these variables satisfy all cycle inequalities. However, they do not
belong to the feasibility region of SOCP-Q since they violate constraint (53).

To this end, we consider an MRF defined over the random variables v = {va,vb,vc,vd} which
form a clique of size 4 with respect to the neighbourhood relationship E , that is,

E = {(a,b),(b,c),(c,d),(a,d),(a,c),(b,d)}.

Each of these variables takes a label from the set l = {l0, l1}. Consider the set of variables (x,X)
shown in Fig. 8 which do not belong to the feasibility region of SOCP-Q. It can be easily shown
that these variables satisfy all the cycle inequalities (together with all the constraints of the LP-S
relaxation). However, (x,X) defined in Fig. 8 does not belong to the feasibility region of the SOCP-
Q relaxation since it does not satisfy the following SOC constraint:

(

!
va∈v

xa;0

)2

≤ 4+2

(

!
(a,b)∈E

Xab;00

)
. (53)

7. Discussion

We presented an analysis of approximate algorithms for MAP estimation which are based on convex
relaxations. The surprising result of our work is that despite the flexibility in the form of the objec-
tive function/constraints offered by QP and SOCP, the LP-S relaxation dominates a large class of QP
and SOCP relaxations. It appears that the authors who have previously used SOCP relaxations in the
combinatorial optimization literature (Muramatsu and Suzuki, 2003) and those who have reported
QP relaxation in the machine learning literature (Ravikumar and Lafferty, 2006) were unaware of
this result. However, our results do not discourage future research on SOCP based relaxations.
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On the contrary, we have proposed two new SOCP relaxations (SOCP-C and SOCP-Q) and presented
some examples to prove that they provide a better approximation than LP-S. We also believe that
SOC constraints are easier to obtain (using the method of Kim and Kojima 2000) than LP con-
straints. An interesting direction for future research would be to determine the best SOC constraints
for a given MAP estimation problem (e.g., with truncated linear/quadratic pairwise potentials).
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Abstract
We continue our recent study on constructing a refinement kernel for a given kernel so that the re-
producing kernel Hilbert space associated with the refinement kernel contains that with the original
kernel as a subspace. To motivate this study, we first develop a refinement kernel method for learn-
ing, which gives an efficient algorithm for updating a learning predictor. Several characterizations
of refinement kernels are then presented. It is shown that a nontrivial refinement kernel for a given
kernel always exists if the input space has an infinite cardinal number. Refinement kernels for trans-
lation invariant kernels and Hilbert-Schmidt kernels are investigated. Various concrete examples
are provided.
Keywords: reproducing kernels, reproducing kernel Hilbert spaces, learning with kernels, refine-
ment kernels, translation invariant kernels, Hilbert-Schmidt kernels

1. Introduction

In our recent work (Xu and Zhang, 2007), we studied characterizations of a refinable kernel which
offers a convenient way of enlarging its reproducing kernel Hilbert space (RKHS). Appropriately
expanding a given RKHS is needed in learning theory when the given space is not adequate for a
specific purpose. We will discuss this point in depth later. With a refinable kernel, a wavelet-like
kernel or a kernellet was introduced in Xu and Zhang (2007). As pointed out there, the refinable
kernel leaves out two important classes of kernels. Neither the Gaussian kernels nor kernels having
finite dimensional feature spaces are refinable. Due to important applications of these classes of
kernels, there is a need to develop a general method of enlarging a RKHS besides the particular one
given by a refinable kernel. It is this need that leads to the study presented in this paper of refinement
kernels for a given kernel.

We first review necessary notions related to kernels. Let X be a nonempty prescribed set called
an input space. For n ∈ N, we let Nn := {1,2, . . . ,n}. A kernel K on X is a function from X ×X
to the field C of complex numbers such that for any finite set of inputs x := {x j : j ∈ Nn} ⊆ X the
matrix

K[x] := [K(x j,xk) : j,k ∈ Nn] (1)

is hermitian and positive semi-definite. Kernels are important in learning theory as they are used
to measure the similarity between inputs in X (Evgeniou et al., 2000; Schölkopf and Smola, 2002;
Shawe-Taylor and Cristianini, 2004; Vapnik, 1998). A reproducing kernel Hilbert space (RKHS) on
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X is a Hilbert space of functions on X for which point evaluations are continuous linear functionals
(Aronszajn, 1950).

There is a bijective correspondence between the set of kernels on X and that of reproducing
kernel Hilbert spaces (RKHS) on X . In particular, for each kernel K on X there is a unique RKHS
HK such that

K(·,x) ∈ HK , for all x ∈ X (2)

and for all f ∈ HK there holds

f (x) = ( f ,K(·,x))HK , x ∈ X , (3)

where (·, ·)HK denotes the inner product on HK . Moreover, the linear span of {K(·,x) : x ∈ X} is
dense in HK , namely,

HK = span{K(·,x) : x ∈ X}, (4)

and the inner product on HK is determined by

(K(·,y),K(·,x))HK = K(x,y), x,y ∈ X . (5)

Conversely, for each RKHSH on X there exists exactly one kernel K on X such that (2) and (3) hold
true with HK replaced by H . Equation (3) is interpreted as that a function in HK can be reproduced
through its inner product with the kernel K. For this reason, K is often called the reproducing kernel
of HK .

The main purpose of this study is to investigate kernels K and G on X so that

HK $ HG (6)

in the sense that HK ⊆ HG and for all f ,g ∈ HK , ( f ,g)HK = ( f ,g)HG . For an existing kernel K, we
call a kernel G satisfying (6) a refinement kernel for K. If in addition, HG contains HK as a proper
subspace, then we call G a nontrivial refinement kernel for K. The inclusion (6) was first considered
by Aronszajn (1950). It was proved there that (6) holds true if and only if L := G−K remains a
kernel on X and HK ∩HL = {0}.

Our interest in refinement kernels is motivated by the widely used regularized learning algo-
rithm, which and its variations have attracted much attention in the literature (see, for example,
Bousquet and Elisseeff, 2002; Cucker and Smale, 2002; Micchelli and Pontil, 2005a,b; Mukherjee
et al., 2006; Schölkopf and Smola, 2002; Smale and Zhou, 2003; Steinwart and Scovel, 2005; Vap-
nik, 1998; Wahba, 1999; Walder et al., 2006; Ying and Zhou, 2007; Zhang, 2004, and the references
cited therein). The algorithm aims at inferring from a finite set of training data z := {(x j,y j) : j ∈
Nm} ⊆ X ×C a function f0 on X so that f0(x) would yield a meaningful output of an input x ∈ X .
For a positive regularization parameter µ and the norm ‖ ·‖HK on HK , we set for each f ∈ HK

EK,µ( f ) := !
j∈Nm

| f (x j)− y j|2+µ‖ f‖2HK
.

The learning algorithm then outputs a predictor f0 as the minimizer of an error functional:

f0 = min
f∈HK

EK,µ( f ). (7)
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The behavior of the predictor f0 depends on the choice of the regularization parameter µ and as well
as the RKHS. We will not consider the choice of µ in this paper. Rather, we will focus on the issue
of expanding the RKHS associated with the original kernel K.

There are two possible situations where one may desire to find a nontrivial refinement kernel G
for K in (7). The first happens when the predictor f0 obtained from (7) does not work in a satis-
factory way. One may hence be forced to replace K with a kernel G hoping that the corresponding
learning algorithm would yield a better predictor. This is possible only if HG is larger than HK . In
other words, if the current RKHS underfits, then a refinement kernel may lead to a better predictor.
The second situation occurs when the old training data z is expanded to be a new training data by
adding to z more new samples from X×C. Since more information is available as the training data
is increased, it is reasonable for people to expect a better predictor, which could be achieved by
searching in a larger RKHS. This accounts for another reason one might want to find a refinement
kernel for K.

In a recent paper (Xu and Zhang, 2007), we introduced a method of updating kernels via a
composition of the kernel with a bijective mapping ! of the input space. Specifically, with a selected
positive constant ", we define for a kernel K on X a new kernel

G(x,y) := "K(!(x),!(y)), x,y ∈ X (8)

and call K a !-refinable kernel if (8) gives a nontrivial refinement kernel G for K. Various character-
izations and many examples of refinable kernels were provided in Xu and Zhang (2007). The work
was motivated by refinable functions in the context of wavelet analysis (Daubechies, 1992). As men-
tioned earlier, a purpose of the current study is to resolve two remaining questions in Xu and Zhang
(2007). One is that a kernel is never refinable if it has a finite dimensional feature space. The other
is that the commonly used Gaussian kernels are not refinable either. On the other hand, we know
that kernels with a finite dimensional feature space, such as finite dot-product kernels (FitzGerald et
al., 1995), and Gaussian kernels are important in learning (Micchelli and Pontil, 2005a; Schölkopf
and Smola, 2002; Steinwart and Scovel, 2005; Walder et al., 2006). We would like to find non-
trivial refinement kernels for them by considering general methods of updating kernels besides the
particular one (8).

We organize this paper in six sections. Before delving into technical analysis of refinement
kernels, we further motivate our study by proposing a refinement kernel method for learning in the
next section. In Section 3, we present three basic characterizations of a refinement kernel. The
first characterization is due to Aronszajn (1950), the second comes from a modification of a result
in Xu and Zhang (2007) and the third result which is completely new serves as a base for further
study in the remaining sections. We discuss in Section 4 the existence of a refinement kernel, and
desired properties of kernels preserved by a refinement process. In particular, it will be shown that a
nontrivial refinement kernel always exists if the input space contains infinite elements. In Sections
5 and 6, we study refinement kernels for translation invariant kernels and Hilbert-Schmidt kernels,
respectively.

2. A Refinement Kernel Method for Learning

This section is devoted to development of learning algorithms based on refinement kernels. Suppose
that a learning algorithmwith kernelK has been given, that is, we have had a minimizer in the RKHS
HK . But somehow we find that the minimizer is not good enough for a specific purpose. We then

109



XU AND ZHANG

want to make a new search for a new minimizer in a larger RKHS HG, where G is a refinement
kernel for K. We will demonstrate how a new search is done by making use of the previously
computed results for the kernel K and the corresponding minimizer. We will refer to the methods
described in this section as refinement kernel methods for learning.

For simplicity of presentation, we work only with real numbers in this section. Let K be a kernel
on the input space X and z := {(x j,y j) : j ∈ Nm}⊆ X ×R a finite set of sample data. We return to
the learning algorithm described in the introduction which has the form

min
f∈HK

{
!
j∈Nm

| f (x j)− y j|2+µ‖ f‖2HK

}
. (9)

The representer theorem (Kimeldorf and Wahba, 1971; Schölkopf et al., 2001; Schölkopf and
Smola, 2002) in learning theory ensures that the minimizer f0 ∈ HK of (9) has the form

f0 = !
j∈Nm

c jK(·,x j).

In the above equation the vector c := [c j : j ∈ Nm]T satisfies the linear system

(µIm+K[x])c= y, (10)

where Im denotes the m×m identity matrix, x := [x j : j ∈ Nm]T and y := [y j : j ∈ Nm]T .
Suppose that the minimizer f0 is not satisfactory and we need to have a new search in a larger

RKHS. We assume that a refinement kernel G for K has been chosen and the training data z has
been expanded to z∪ z′, where z′ := {(x′k,y′k) : k ∈ Nq}⊆ X ×R. A new predictor can be obtained
as the minimizer of

min
g∈HG

{
!
j∈Nm

|g(x j)− y j|2+ !
k∈Nq

|g(x′k)− y′k|2+µ‖g‖2HG

}
. (11)

The purpose of this section is to develop an algorithm for efficiently solving (11) by using the
existing information of the original minimization (9).

We proceed it in two steps.

2.1 Fixed Training Data

In this subsection, we assume that the training data set remains unchanged. Suppose that f0 has
been obtained, that is, linear system (10) has been solved, and one wishes to refine the kernel K in
(9) to improve the predictor f0. We consider a refinement kernel G for K for which the orthogonal
complement of HK in HG is finite dimensional. We see from Aronszajn (1950) that there exist
linearly independent functions # j, j ∈ Np, on X , none of which lies in HK such that the kernel
L := G−K has the form

L(x,y) := !
j∈Np

# j(x)# j(y), x,y ∈ X .

For instance, if K is the Gaussian kernel on Rd then L can be chosen as a finite dot-product kernel

!
n∈Z+

an(x,y)n, x,y ∈ Rd
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or a finite complex sinusoid kernel

!
n∈Zd

bnei(n,x−y), x,y ∈ Rd ,

where a and b are a nonnegative function onZ+ := N∪{0} andZd , respectively, with finite supports.
Using the refinement kernel G, we shall obtain a new predictor g0 in a larger RKHS HG that is

the minimizer of
min
g∈HG

{
!
j∈Nm

|g(x j)− y j|2+µ‖g‖2HG

}
.

By the representer theorem, the predictor g0 is of the form

g0 = !
j∈Nm

d jG(·,x j),

where d := [d j : j ∈ Nm]T satisfies

(µIm+K[x]+L[x])d= y. (12)

Suppose that the computational results in solving (10) have been stored. Since in general K[x]
is a dense positive semi-definite matrix, linear system (10) is usually solved by the Cholesky factor-
ization method (Golub and van Loan, 1996). The method works at a cost of O(m3) multiplications
of real numbers. We hence assume that we have obtained the Cholesky factorization of µIm+K[x].
The decomposition (12) enables us to solve a linear system whose coefficient matrix is µIm +K[x]
using only O(m2) multiplications.

Now we have to solve the new linear system (12). Instead of spending another O(m3) multi-
plications, we wish to make use of the stored computational results from solving (10) to reduce the
computational complexity in solving (12). Specifically, for each j ∈ Np, we let # j(x) := [# j(xk) :
k ∈ Nm]T and let e j denote the vector satisfying

(µIm+K[x])e j = # j(x). (13)

We also need the vector
$ := [−# j(x)T c : j ∈ Np] (14)

and the p× p matrix B defined by

B jk := # j(x)T ek, j,k ∈ Np. (15)

Since by (13) there holds for each j,k ∈Np that B jk = eTj (µIm+K[x])ek and µIm+K[x] is symmetric
and strictly positive definite, B is symmetric and positive semi-definite. As a consequence, Ip +B
is invertible and we are allowed to introduce another vector % := [% j : j ∈ Np]T ∈ Rp as the unique
solution of

(Ip+B)%= $. (16)

Proposition 1 If vectors e j ∈ Rm, j ∈ Np are defined by (13), c ∈ Rm by (10) and % ∈ Rp by (16),
then the solution d of linear system (12) is given by

d= c+ !
j∈Np

% je j. (17)
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If N (d) denotes the number of multiplications required for computing d, then

N (d) = O(pm2+ p2m+ p3).

Proof Let d′ := d− c. It is clear by (10) and (12) that d satisfies (12) if and only if

(µIm+K[x])d′ +L[x]d= 0. (18)

To prove the first statement of this proposition, it suffices to show that the vector d defined by
(17) satisfies Equation (18). We denote by & the left-hand side of (18). Substituting (17) into the
left-hand side of (18) and noting that L[x] = ' j∈Np# j(x)# j(x)T , we obtain that

&= !
j∈Np

% j# j(x)+ !
j∈Np

# j(x)[# j(x)T c+ !
k∈Np

%k# j(x)T ek].

By using (14) and (15), we have that

&= !
j∈Np

# j(x)
[
% j−$ j + !

k∈Np

B jk%k

]
. (19)

Noting that % satisfies linear system (16) we observe for all j ∈ Np that

% j−$ j + !
k∈Np

B jk%k = 0.

Combining this equation with (19) yields that & = 0. That is, the vector d defined by (17) satisfies
Equation (18).

To prove the second statement, we make use of the assumption that the result of the Cholesky
factorization of µIm +K[x] has been computed and stored and we enumerate the additional num-
ber of multiplications required for computing the solution d. Solving p linear systems (13) needs
O(pm2) number of multiplications. Computing vector $ and matrix B requires pm and p(p+1)

2 m
multiplications respectively. Solving (16) costs O(p3) multiplications and finally, computing d by
(17) requires pm multiplications. Summing these costs together yields the number of multiplica-
tions required to solve (12).

We remark that in applications, the number m of sample data is much larger than the number
p of the dimension of the difference space HL. Therefore, under the condition p) m, we know
from Proposition 1 that computing the solution d of the linear system (12) requires O(m2) additional
number of multiplications. This is a big saving in comparison to O(m3) number of multiplications if
the linear system (12) is solved directly by the Cholesky factorization without using the refinement
kernel method. In other words, the use of the refinement kernel method reduces the number of
multiplications from O(m3) to O(m2).

Moreover, we observe that most of the computational costs are used for solving (13), which is
clearly independent of the output y. Therefore, if x remains fixed for different applications, which
is the case in many practical scenarios such as image analysis and processing of signals of the same
size, then (13) can be calculated in advance and stored for repeated use. Taking this advantage, we
only need O(m) additional number of multiplications to solve (12) in order to obtain an updated
predictor.
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2.2 Expanded Training Data

We assume in this subsection that the training data z has been expanded to z∪ z′ while the kernel K
remains the same. A new predictor f1 ∈ HK is obtained by solving the minimization problem

min
f∈HK

!
j∈Nm

| f (x j)− y j|2+ !
k∈Nq

| f (x′k)− y′k|2+µ‖ f‖2HK
. (20)

The predictor f1 can be written in terms of the kernel K. To this end, we introduce two vectors

x′ := [x′k : k ∈ Nq]T , y′ := [y′k : k ∈ Nq]T ,

and matrices
K[x,x′] := [K(x j,x′k) : j ∈ Nm,k ∈ Nq], K[x′,x] := K[x,x′]T .

For notational simplicity, we also set A := µIm +K[x], B := µIq +K[x′] and C := K[x,x′]. By the
representer theorem, the minimizer f1 of (20) is given by

f1 = !
j∈Nm

d jK(·,x j)+ !
k∈Nq

d′kK(·,x′k),

where d := [d j : j ∈ Nm]T and d′ := [d′k : k ∈ Nq]T satisfy
[

A C
CT B

][
d
d′

]
=

[
y
y′

]
. (21)

The above linear system generally cost O((m+q)3) number of multiplications to solve by using the
Cholesky factorization. With the known Cholesky factorization of µIm+K[x], we propose a method
to solve system (21) with reduction in the computational costs.

To solve system (21), we first find the m×q matrixM that satisfies

AM =C. (22)

Note that [
A 0
0 B−CTM

]
=

[
Im 0

−CTA−1 Iq

][
A C
CT B

][
Im −A−1C
0 Iq

]
.

Thus B−CTM is symmetric and strictly positive definite. Consequently, we can solve the following
system for a unique vector ( ∈ Rq

(B−CTM)(=CT c−y′ (23)

by using again the Cholesky factorization.

Proposition 2 The solution d, d′ for linear system (21) is given as

d := c+M(, d′ := −(. (24)

Moreover, if N (d,d′) denotes the number of multiplications required for computing both d and d′,
then

N (d,d′) = O(qm2+q2m+q3).
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Proof The first statement of this theorem follows by a direct computation using (10), (21), (22) and
(23).

We now count the number of multiplications used for computing both d and d′. Computing
matrix M by solving the matrix Equation (22) needs O(qm2) number of multiplications. Finding
( from the system (23) takes up O(q2m+ q3) number of multiplications. Computing d and d′ by
using (24) costs O(qm) number of multiplications. Summing all these costs up proves the second
part of this proposition.

We remark that under the assumption that q) m, we only need additional O(m2) number of
multiplications to solve system (21) based on the known Cholesky factorization of matrix A from
solving (10). Since (22) is independent of outputs, making use of this feature, if the inputs x, x′
remain unchanged in different applications, the computational costs can be further reduced as we
have mentioned at the end of the last subsection.

2.3 The General Case

We now return to the general case where we have both a refinement kernel G for K such that HG−K
is p-dimensional, and an expanded training data z∪ z′. To make use of the computational result in
solving (10) to compute the minimizer of (11), we divide the updating process into two steps. In
step one, we fix the training data to be z and refine the kernel K to G. We then solve the system
using the method described in Section 2.1. In step two, we fix the kernel to be G and expand z
to z∪ z′ and solve the problem described in Section 2.2 with K replaced by G. Under reasonable
hypotheses, the number of multiplications is O(m2). We state this result in the next proposition.

Proposition 3 If p) m and q) m then the number of multiplications required for computing the
minimizer of (11) using the algorithm described above is given by O(m2).

The refinement kernel learning method allows us to reduce the number of multiplications from
O(m3) to O(m2) by using the known Cholesky factorization of the matrix corresponding to the old
kernel K.

Here we focus on the computational complexity of the refinement kernel method for the regu-
larized learning algorithm in order to motivate the study of the refinement kernel. Although con-
vergence and consistency of the refinement kernel method, and extensions of the method to other
learning algorithms such as support vector machines are important, they are not the focus of this
paper. They will be addressed in different occasions. The rest of this paper will be devoted to
theoretical analysis of refinement kernels such as characterizations, existence and constructions.

3. Characterizations of Refinement Kernels

We present in this section several characterizations of refinement kernels. We begin with a review
of a well-known characterization from Aronszajn (1950).

Lemma 4 Let K,G be kernels on X. Then G is a refinement kernel for K if and only if L := G−K
is a kernel on X and HK ∩HL = {0}. If G is a refinement kernel for K then HL is the orthogonal
complement of HK in HG, and G is a nontrivial refinement kernel for K if and only if L is not the
zero kernel.
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Proof This is a direct consequence of Property 7 on page 345 and the theorem on page 353 of
Aronszajn (1950).

In general, the conditions in the characterization presented in Lemma 4 are not easy to verify.
Aiming at a characterization convenient for use, we next characterize refinement kernels in terms of
feature maps for kernels, since most kernels are identified with their feature maps. A feature map
for a kernel K on X is a mapping ) from X to a Hilbert space W over C such that

K(x,y) = ()(x),)(y))W , x,y ∈ X . (25)

The Hilbert space W is called a feature space for K. It is well-known that K is a kernel on X if
and only if it can be represented as (25) for some mapping ) : X → W (Schölkopf and Smola,
2002). We denote by )(X) the image of X under the mapping ), by span)(X) the closure of the
linear span of )(X) in W , and by P! the orthogonal projection from W to span)(X). There is
a well-known characterization (Micchelli and Pontil, 2005a; Opfer, 2006; Schölkopf and Smola,
2002; Shawe-Taylor and Cristianini, 2004; Xu and Zhang, 2007) of the RKHS HK of K in terms of
its feature maps.

Lemma 5 If K is a kernel on X represented as (25) by a feature map ) from X to W , then HK =
{()(·),u)W : u ∈ W } with the inner product

(()(·),u)W ,()(·),v)W )HK = (P!v,P!u)W , u,v ∈ W . (26)

We shall always assume in the application of Lemma 5 that

span)(X) = W (27)

since (25) remains valid if we replace W there with span)(X). Convenience which results from
this assumption is that P! in (26) would become the identity operator on W .

We next state a characterization of refinement kernels in terms of their feature maps. Recall that
we call a linear operator T from Hilbert spaceW1 to Hilbert spaceW2 isometric if for each u∈ W1,
‖Tu‖W2 = ‖u‖W1 . A linear operator T from Hilbert space W1 to Hilbert space W2 is called an
isomorphism if it is a bijective isometric linear mapping fromW1 toW2. If there is an isomorphism
from W1 to W2, we say that W1 is isomorphic to W2.

Theorem 6 Suppose that K is a kernel on X with a feature map ) : X → W satisfying (27) and G
is a kernel on X with a feature map )′ : X → W ′ that satisfies

span)′(X) = W ′.

Then G is a refinement kernel for K if and only if there exists a bounded linear operator T :W ′ →W
such that

T)′(x) =)(x), x ∈ X (28)

and the adjoint operator T ∗ : W → W ′ of T is isometric. Moreover, G is a nontrivial refinement
kernel for K if and only if T in (28) is not injective.
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Proof The proof for the case when W ′ = W and G is given by (8) can be found in Xu and Zhang
(2007) (see Theorems 6, 7 therein). Based on Lemma 5, the arguments used there can be extended
in a direct way to prove the general result described here.

We now explain how the general context of Theorem 6 allows us to refine kernels with a finite
dimensional feature space while the refinement approach (8) does not. Suppose that K has the
feature map representation (25) and G is given by (8). Then it can be seen that G has the form

G(x,y) = ("1/2)(!(x)),"1/2)(!(y)))W , x,y ∈ X

with the feature space W . By Theorem 6, G is a nontrivial refinement kernel for K if and only if
there exists a bounded linear operator T :W → W such that

"1/2T)(!(x)) =)(x), x ∈ X ,

its adjoint T ∗ is isometric from W to W , and T is not injective. By the latter two conditions, W
must be isomorphic to a proper subspace of itself. This is impossible if W is finite dimensional.
Therefore, we can not get a nontrivial refinement kernel by (8) if W is of finite dimension. On the
other hand, by considering a general refinement process

G(x,y) = ()′(x),)′(y))W ′ , x,y ∈ X ,

we have the freedom to chooseW ′ different fromW . The fact thatW is finite dimensional actually
makes it easier to find W ′ such that W is isomorphic to a proper subspace of W ′. Examples of
nontrivial refinement kernels for kernels with a finite dimensional feature space will be provided in
Section 6.

Our next task is to present a characterization of refinement kernels in terms of their feature
spaces defined by finite positive Borel measures. This result is crucial for our discussion later on
translation invariant kernels and Hilbert-Schmidt kernels. Suppose that Y is a topological space and
denote by B(Y ) the set of finite positive Borel measures on Y . For each * ∈ B(Y ) and p ∈ [1,++)
we let Lp(Y,*) denote the space of Borel measurable functions f on Y such that

Z

Y
| f (,)|pd*(,) < ++.

In particular, L2(Y,*) is a Hilbert space with the inner product

( f ,g)L2(Y,") :=
Z

Y
f (,)g(,)d*(,), f ,g ∈ L2(Y,*).

For two measures *1,*2 ∈B(Y ), *1 is said to be absolutely continuouswith respect to *2, denoted as
*1) *2, if for each Borel subsetV ⊆Y with *2(V ) = 0, we have *1(V ) = 0. By the Radon-Nikodym
theorem (see, for example, Rudin, 1987, page 121), if *1 ) *2 then there exists a nonnegative
h ∈ L1(Y,*2) such that there holds for each Borel subset V ⊆ Y

*1(V ) =
Z

Y
h(,)-V (,)d*2(,),

where -V denotes the characteristic function ofV . We sometimes write the function h satisfying the
above equation as d*1/d*2.
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For µ,. ∈ B(Y ), we let

/ :=
µ+.
2

+
|µ−.|
2

,

where |µ− .| denotes the total variation measure of µ− .. For the definition and properties of
total variations of signed measures, see Rudin (1987, page 116). We remark that |µ− .| ∈ B(Y )
and µ(V ),.(V ) ≤ /(V ) for all Borel subsets V of Y . It follows that µ,. are absolutely continuous
with respect to /. We assume that a function 0 : X ×Y → C has the property that for each x ∈ X ,
0(x, ·) ∈ L2(Y,/) and

span{0(x, ·) : x ∈ X} = L2(Y,/). (29)

Lemma 7 If 0 : X×Y →C satisfies 0(x, ·)∈ L2(Y,/) for each x∈ X and condition (29), then 0(x, ·)
lies in L2(Y,µ) and L2(Y,.) for all x∈ X, and span{0(x, ·) : x∈ X} is dense in L2(Y,µ) and L2(Y,.).

Proof We present only the case for µ since the case for . can be similarly handled. Since µ) /,
we may introduce a function hµ := dµ/d/. By the fact that µ(V ) ≤ /(V ) for each Borel V ⊆ Y , hµ
is less than or equal to 1 almost everywhere on Y with respect to /. For x ∈ X , the assumption that
0(x, ·) ∈ L2(Y,/) implies that it is Borel measurable. We also verify that

Z

Y
|0(x,,)|2dµ(,) =

Z

Y
|0(x,,)|2hu(,)d/(,) ≤

Z

Y
|0(x,,)|2d/(,) < ++.

This yields that 0(x, ·) ∈ L2(Y,µ) for all x ∈ X .
Now we assume that f ∈ L2(Y,µ) is orthogonal to 0(x, ·) for each x ∈ X , that is,

Z

Y
0(x,,) f (,)dµ(,) = 0, x ∈ X .

In the above equation, we substitute dµ(,) = hµ(,)d/(,) to obtain that
Z

Y
0(x,,) f (,)hµ(,)d/(,) = 0, x ∈ X . (30)

The function f hµ belongs to L2(Y,/) since hµ is less than or equal to 1 almost everywhere on Y
with respect to /. Thus, by condition (29), Equation (30) implies that f hµ = 0 with respect to /.
We then observe for each Borel subset V ⊆ Y that

Z

V
| f (,)|dµ(,) =

Z

V
| f (,)|hµ(,)d/(,) = 0.

This ensures that f vanishes almost everywhere onY with respect to µ. We conclude that span{0(x, ·) :
x ∈ X} is dense in L2(Y,µ).

By virtue of the above lemma, we introduce two kernels Kµ,K# by setting for all x,y ∈ X

Kµ(x,y) := (0(x, ·),0(y, ·))L2(Y,µ), K#(x,y) := (0(x, ·),0(y, ·))L2(Y,#). (31)

By Lemmas 5 and 7, functions in Hµ := HKµ have the form

f$,µ(x) := (0(x, ·), f )L2(Y,µ), x ∈ X , f ∈ L2(Y,µ)
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and the inner product on Hµ is given by

( f$,µ,g$,µ)Hµ = (g, f )L2(Y,µ), f ,g ∈ L2(Y,µ).

Similar results hold for H# := HK! .
We shall characterize the relation Hµ $ H# in terms of a relation of the measures µ,.. To this

end, we write µ$ . to indicate that µ) ., and dµ/d. equals 0 or 1 almost everywhere with respect
to ., that is,

.

(
Y \

{
x ∈ Y : dµ

d.
(x) = 0 or 1

})
= 0.

Note that µ$ . if and only if there exists a Borel subset E ⊆ Y such that µ(Y \E) = 0 and for each
Borel subset V ⊆ E, µ(V ) = .(V ).

Theorem 8 Suppose that 0 : X×Y →C satisfies (29) and Kµ,K# are defined by (31). ThenHµ$H#

if and only if µ$ .. If µ$ . then K# is a nontrivial refinement kernel for Kµ if and only if

.(Y )−µ(Y ) > 0.

Proof Suppose that Hµ $ H#. Hence, by Lemma 5, for each f ∈ L2(Y,µ) there exists some g ∈
L2(Y,.) such that Z

Y
0(x,,) f (,)dµ(,) =

Z

Y
0(x,,)g(,)d.(,) (32)

and Z

Y
| f (,)|2dµ(,) =

Z

Y
|g(,)|2d.(,). (33)

With the derivatives hu := dµ/d/ and h# := d./d/, Equation (32) is rewritten as
Z

Y
0(x,,) f (,)hµ(,)d/(,) =

Z

Y
0(x,,)g(,)h#(,)d/(,).

This together with the density condition (29) implies that f hµ = gh# almost everywhere on Y with
respect to /. Thus for each f ∈ L2(Y,µ) there exists some g∈ L2(Y,.) satisfying for all BorelV ⊆Y
that Z

V
f (,)dµ(,) =

Z

V
f (,)hµ(,)d/(,) =

Z

V
g(,)h#(,)d/(,) =

Z

V
g(,)d.(,). (34)

We claim that µ) .. We assume to the contrary that there exists a Borel set V ⊆ Y for which
.(V ) = 0 and µ(V ) > 0. Letting f = -V in (34) yields µ(V ) = 0, a contradiction. Set h := dµ/d..
By (34), the function g satisfying (32) and (33) can be taken as g := f h. With this choice, we obtain
from (33) for each f ∈ L2(Y,µ) that

Z

Y
| f (,)|2h(,)d.(,) =

Z

Y
| f (,)|2h2(,)d.(,).

The above equation implies that h equals 1 or 0 almost everywhere on Y with respect to .. Conse-
quently, µ$ ..

Conversely, we suppose that µ$ . and proceed the proof by using Theorem 6. To this end, we
set E := {x ∈ Y : dµd#(x) = 1} and introduce a linear operator T : L2(Y,.) → L2(Y,µ) by

T f := f-E , f ∈ L2(Y,.).
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By the hypothesis µ$ ., we have that µ(Y \E) = 0. This guarantees that for each x ∈ X , T0(x, ·) =
0(x, ·) in L2(Y,µ). Note that for g ∈ L2(Y,µ) and f ∈ L2(Y,.),

Z

Y
g(,)(T f )(,)dµ(,) =

Z

Y
g(,) f (,)-E(,)dµ(,) =

Z

E
g(,) f (,)dµ(,)

=
Z

E
g(,) f (,)d.(,) =

Z

Y
g(,)-E(,) f (,)d.(,).

This ensures that the adjoint T ∗ : L2(Y,µ) → L2(Y,.) of T is given by T ∗g= g-E , for g ∈ L2(Y,µ).
Moreover, it can be verified that

Z

Y
|(T ∗g)(,)|2d.(,) =

Z

Y
|g(,)-E(,)|2d.(,) =

Z

E
|g(,)|2d.(,).

Since dµ/d.= 1 on E and µ(Y \E) = 0, we get that
Z

E
|g(,)|2d.(,) =

Z

E
|g(,)|2 dµ

d.
(,)d.(,) =

Z

E
|g(,)|2dµ(,) =

Z

Y
|g(,)|2dµ(,).

Combining the above two equations yields that T ∗ is isometric. By Theorem 6, K# is a refinement
kernel for Kµ.

If µ$ . then K# is a nontrivial refinement kernel for Kµ if and only if the operator T is not
injective, that is, there exists f ∈ L2(Y,.) such that

‖ f‖L2(Y,#) > 0 but ‖T f‖L2(Y,µ) = 0.

This is equivalent to that
Z

Y
| f (,)|2d.(,) > 0 but

Z

E
| f (,)|2d.(,) = 0.

Clearly, such an f exists if and only if .(Y \E) > 0. Because

.(Y )−µ(Y ) = .(Y )−µ(E) = .(Y )−.(E) = .(Y \E),

we conclude the second statement of the theorem.

4. Existence of Refinement Kernels

With characterizations in Lemma 4 and Theorem 6, we shall consider existence of nontrivial refine-
ment kernels and properties of kernels preserved by the refinement process. We let CX denote the
space of all the complex-valued functions on X .

Lemma 9 A kernel K on X does not have a nontrivial refinement kernel if and only if HK = CX .

Proof If HK = CX then since for all kernels G on X , HG ⊆ CX , K does not have a nontrivial
refinement kernel. Conversely, if HK ,= CX then we choose an arbitrary function 1 ∈ CX \HK and
define the kernel

G(x,y) := K(x,y)+1(x)1(y), x,y ∈ X .
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It is clear that L := G−K is a kernel on X since it has a feature map 1 : X → C. Moreover,
HL = span{1}, which does not have a nontrivial intersection with HK . By Lemma 4, G is a non-
trivial refinement kernel for K.

According to Lemma 9, one may expect that every kernel has a nontrivial refinement kernel
since in general it should be impossible to impose an inner product on CX so that it becomes a
RKHS. Our next two results confirm this expectation.

Proposition 10 If the input space X has a finite cardinality, then a kernel K on X has a nontrivial
refinement kernel if and only if K[X ] is singular.

Proof By Lemma 9, it suffices to show that HK = CX if and only if the matrix K[X ] is invertible.
Suppose that the cardinality of X is n and X = {x j : j ∈ Nn}. Assume that K[X ] is invertible. Then
for each function 1 ∈ CX there exists a unique vector [c j : j ∈ Nn] ∈ Cn such that

!
k∈Nn

ckK(x j,xk) = 1(x j), j ∈ Nn,

which implies that 1 = 'k∈Nn ckK(·,xk). By (4), we have 1 ∈ HK , thereby proving that HK = CX .
Conversely, suppose thatHK = CX . For each j ∈Nn, we introduce a function 1 j ∈CX by setting for
each l ∈Nn, 1 j(xl) := & j,l , where & denotes the Kronecker delta function. By (4) and the assumption
that HK = CX , there exists a vector [c j,k : k ∈ Nn] ∈ Cn such that

!
k∈Nn

c j,kK(xl,xk) = 1 j(xl) = & j,l , j, l ∈ Nn.

That is, [c j,k : j,k ∈ Nn] is the inverse of the transpose of K[X ]. Therefore, the matrix K[X ] is invert-
ible. The proof is complete.

Theorem 11 If the input space X has an infinite cardinality, then every kernel on it has a nontrivial
refinement kernel.

Proof According to Lemma 9, it suffices to show that there does not exist a kernel K on X such that
HK contains every function on X . We prove this by contradiction. Assume that there were a kernel K
on X such that HK = CX . Since X has a countable subset of distinct points xn, n ∈ N, we may define
a fixed function f ∈ CX by setting f (x j) := j for each j ∈ N and f (x) := 0 for x ∈ X \{x j : j ∈ N}.
By (3), we would have for each n ∈ N that

n= | f (xn)| = |( f ,K(·,xn))HK |≤ ‖ f‖HK‖K(·,xn)‖HK . (35)

Note that
‖K(·,xn)‖HK =

√
K(xn,xn), n ∈ N. (36)

Combining (35) and (36) yields that

lim
n→%

K(xn,xn) = ++. (37)
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However, again by (3) for the function g ∈ CX defined by g(x) := K(x,x), x ∈ X , we observe for
each n ∈ N that

K(xn,xn) = |g(xn)| = |(g,K(·,xn))HK |
≤ ‖g‖HK‖K(·,xn)‖HK = ‖g‖HK

√
K(xn,xn).

This implies that
K(xn,xn) ≤ ‖g‖2HK

, n ∈ N,

which contradicts (37). The contradiction proves the desired result.

In the rest of this section, we show that the refinement process preserves the strictly positive
definiteness, the continuity and the universality of the original kernel. A kernel K on X is said to
be strictly positive definite if for any finite inputs x := {x j : j ∈ Nn}⊆ X the matrix K[x] defined by
(1) is strictly positive definite. Strictly positive definite kernels are important to the minimum norm
interpolation in RKHS.

Proposition 12 If K is a strictly positive definite kernel on X and G is a refinement kernel for K,
then G is also strictly positive definite.

Proof By Lemma 4, if G is a refinement kernel for K then G−K remains a kernel on X . As a
consequence, we have for all x := {x j : j ∈ Nn}⊆ X that

G[x] = K[x]+ (G−L)[x].

Since K[x] is strictly positive definite and (G−L)[x] is positive semi-definite,G[x] is strictly positive
definite.

The next kernel property that we consider is continuity. Suppose that the input space X is a
topological space. We call a kernel on X a continuous kernel if it is at the same time a continuous
function on X ×X . Given a continuous kernel K on X , can we find a nontrivial refinement kernel
G for K that is also continuous? Assuming that X is a metric space with an infinite cardinality,
the answer to this question is positive. Recall the Tietze extension theorem in topology (see, for
example, Munkres, 2000, page 219), which states that a continuous function defined on a closed
subspace of X can be extended to a continuous function on X .

Theorem 13 If X is a metric space with an infinite cardinality, then every continuous kernel on X
has a nontrivial continuous refinement kernel.

Proof If the topology on X is discrete then any function on X is continuous. In this case, the result
holds true by Theorem 11.

Now we suppose that X has an accumulation point x0. In other words, there exists a sequence
of distinct points xn ∈ X , n ∈ N that converges to x0 and none of the points is the same as x0. By the
arguments used in the proof of Lemma 9, it suffices to prove that there is not a continuous kernel K
on X for which HK contains all the continuous functions on X . Suppose to the contrary that there is
such a kernel K. Then we introduce a sequence of nonnegative numbers by setting

cn := ‖K(·,xn)−K(·,xn+1)‖HK , n ∈ N.
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For each n ∈ N, we define a function 1n on the closed set {xn,xn+1} as 1n(xn) := 1, 1n(xn+1) := 0.
The function 1n is continuous on {xn,xn+1}. Therefore, by the Tietze extension theorem, it can be
extended to a continuous function on X . As a consequence, for each n ∈ N, cn is positive since
otherwise we would get by (3) for each f ∈C(X) ⊆ HK that f (xn) = f (xn+1). By (5), we have that

cn =
√
K(xn,xn)+K(xn+1,xn+1)−K(xn,xn+1)−K(xn+1,xn), n ∈ N.

Since K is continuous and xn converges to x0, cn converges to zero as n tends to infinity.
SetZ := {xn : n∈N}∪{x0}. ThenZ is a closed subspace of X . We define a continuous function

f on Z by

f (x) :=
{ √c2n−1, x= x2n−1, n ∈ N,
0, otherwise.

By the Tietze extension theorem, f can be extended to a continuous function on X , which we still
denote by f . By the assumption that C(X) ⊆ HK , f ∈ HK . We now obtain by the reproducing
property (3) for each n ∈ N that

√c2n−1 = | f (x2n−1)− f (x2n)| = |( f ,K(·,x2n−1)−K(·,x2n))HK |
≤ ‖ f‖HK‖K(·,x2n−1)−K(·,x2n)‖HK = ‖ f‖HKc2n−1.

Thus we get that

‖ f‖HK ≥
1

√c2n−1
, n ∈ N,

which contradicts the fact that cn converges to zero. This contradiction implies that HK can not
contain the spaceC(X).

The result in Theorem 13 remains valid if we only assume that X is a normal topological space
(see, Munkres, 2000, page 195).

The last kernel property with which we are concerned is universality (Micchelli et al., 2003,
2006; Steinwart, 2001). Suppose that X is a locally compact Hausdorff space. We say that a function
K : X ×X → C is a universal kernel if it is a continuous kernel on X and for all compact subsets
Z ⊆ X , span{K(·,x) : x ∈ Z} is dense in the Banach spaceC(Z) of the continuous functions on Z.
Universal kernels were extensively studied in Micchelli et al. (2006). They are those kernels that
can be used to approximate any continuous target function uniformly on a compact input space.

Proposition 14 If K is a universal kernel on X, then any continuous refinement kernel for K is
universal.

Proof Suppose that K is a universal kernel on X and G is a continuous refinement kernel for K.
Assume that K and G have feature maps ) : X → W and )′ : X → W ′, respectively. By Theorem 4
in Micchelli et al. (2006), G is universal if and only if for all compact Z ⊆ X , span{()′(·),u′)W ′ :
u′ ∈ W ′} is dense in C(Z). Let Z be a compact subset of X . Since K is universal, Theorem 4 in
Micchelli et al. (2006) ensures that

span{()(·),u)W : u ∈ W } =C(Z). (38)
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By Theorem 6, there exists a bounded linear operator T :W ′ → W that satisfies (28). We hence get
for each u ∈ W that

()(·),u)W = (T)′(·),u)W = ()′(·),T ∗u)W ′ .

Therefore, there holds

{()(·),u)W : u ∈ W }⊆ {()′(·),u′)W ′ : u′ ∈ W ′}.

The above inclusion together with (38) proves that G is also universal.

By Theorems 11 and 13, it is reasonable to conjecture that there exist nontrivial refinement
kernels for most kernels used in machine learning. To verify this conjecture and present concrete
examples, we shall discuss refinement kernels for translation invariant kernels and Hilbert-Schmidt
kernels in the next two sections.

5. Refinement of Translation Invariant Kernels

In this section, we specify our input space as Rd , d ∈ N and investigate refinement kernels for
translation invariant kernels onRd . The presentation of this section is organized into six subsections.
We discuss in the first subsection the notion of translation invariant kernels. In Section 5.2 we
establish various characterizations of refinement for general translation invariant kernels. We then
consider several types of specific translation invariant kernels. Specifically, refinement of B-spline
kernels, radial kernels and periodic kernels is studied in Sections 5.3, 5.4 and 5.5, respectively.
Finally in Section 5.6, we deal with refinement through an expanding matrix.

5.1 Translation Invariant Kernels

A kernel K on Rd is said to be translation invariant if for all a ∈ Rd ,

K(x−a,y−a) = K(x,y), x,y ∈ Rd . (39)

For each a ∈ Rd we introduce the translation operator 2a by setting for all functions f on Rd

2a f := f (·−a).

It can be seen by (3) and (39) that a translation invariant kernel K onRd satisfies for all a,b,x,y∈Rd

that
2aK(·,x) = K(·−a,x) = K(·,x+a) (40)

and
(2aK(·,y),2bK(·,x))HK = (K(·,y+a),K(·,x+b))HK = K(x+b,y+a). (41)

Recall that B(Rd) denotes the set of all the finite positive Borel measures on Rd . It was estab-
lished by Bochner in Bochner (1959) that K is a continuous translation invariant kernel on Rd if and
only if there exists a µ∈ B(Rd) such that

K(x,y) =
Z

Rd
ei(x−y,&)dµ(,), x,y ∈ Rd ,
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where (·, ·) denotes the standard inner product on Rd . This result is referred to as the Bochner
theorem. We present below a characterization of translation invariant kernels in terms of their
RKHS. To this end, we call a linear operator from a Hilbert space W to itself an isomorphism on
W if it is isomorphic from W to W .

Proposition 15 A kernel K on Rd is translation invariant if and only if for each a ∈ Rd , 2a is an
isomorphism on HK .

Proof Suppose that K is a translation invariant kernel on Rd . Set a ∈ Rd , f ∈ HK and H :=
span{K(·,x) : x ∈ Rd}. By (4), H is a dense subspace of HK . Thus there exists a sequence of
functions fn ∈ H , n ∈ N that converges to f in HK . By (40) and (41), 2a fn ∈ H and ‖2a fn‖HK =
‖ fn‖HK for each n ∈ N. The latter implies that 2a fn form a Cauchy sequence in HK . Let g be their
limit in HK . We have that ‖g‖HK = ‖ f‖HK . To prove that 2a is isometric on HK , it remains to prove
that g= 2a f . To this end, we verify for each x ∈ Rd by (3), (40) and (41) that

g(x) = (g,K(·,x))HK = lim
n→%

(2a fn,K(·,x))HK

= lim
n→%

( fn,K(·,x−a))HK = ( f ,K(·,x−a))HK = f (x−a).

Similarly, it can be proved that 2−a fn converges to 2−a f , implying that 2−a f ∈ HK . Since 2a2−a f =
f , 2a is surjective from HK to HK . This together with 2a being isometric shows that it is an isomor-
phism on HK .

Conversely, suppose that for each a ∈ Rd , 2a is an isomorphism on HK . This implies that the
adjoint operator 2∗a of 2a is identified with 2−a (see, Conway, 1990, page 32). It follows for each
x,y ∈ Rd that 2aK(·,y),2−aK(·,x) ∈ HK and

(2aK(·,y),K(·,x))HK = (K(·,y),2−aK(·,x))HK

= (K(·,y),K(·+a,x))HK = K(x,y+a).

On the other hand, we have by (5) that

(2aK(·,y),K(·,x))HK = (K(·−a,y),K(·,x))HK = K(x−a,y).

Combining the above two equations, we obtain that K(x− a,y) = K(x,y+ a) for all a,x,y ∈ Rd .
Replacing y with y−a yields (39).

5.2 Characterizations

Suppose that K is a continuous translation invariant kernel on Rd . We are interested in constructing
refinement kernels for K that are continuous and translation invariant as well. Specifically, with a
different measure µ′ ∈ B(Rd) we introduce a new kernel

G(x,y) :=
Z

Rd
ei(x−y,&)dµ′(,), x,y ∈ Rd

and characterize G being a refinement kernel for K in terms of a relation between µ and µ′.
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Theorem 16 There holds HK $ HG if and only if µ$ µ′. Moreover, if µ$ µ′ then G is a nontrivial
refinement kernel for K if and only if

µ′(Rd)−µ(Rd) > 0.

Proof We prove this result by employing Theorem 8 with Y := Rd . To this end, we introduce a
mapping 0 : Rd ×Rd → C by setting 0(x,,) := ei(x,&), for x,, ∈ Rd . One can see that K can be
represented by

K(x,y) =
Z

Rd
0(x,,)0(y,,)dµ(,), x,y ∈ Rd

and likewise
G(x,y) =

Z

Rd
0(x,,)0(y,,)dµ′(,), x,y ∈ Rd .

Note also that for any / ∈ B(Rd), span{0(x, ·) : x ∈ Rd} is dense in L2(Rd ,/). Thus, the result of
this theorem is an immediate consequence of Theorem 8.

We next characterize the inclusionHK $HG by using the structure ofHK andHG. Let us prepare
for this analysis by recalling some basic facts about Borel measures on Rd . Suppose .,/ ∈ B(Rd).
If there is a Borel subset V ⊆ Rd such that for each Borel U ⊆ Rd , .(U) = .(U ∩V ), we say that
. is concentrated on V . We call . a singular measure with respect to / if there exist disjoint Borel
subsets U,V of Rd such that / is concentrated on U and . is concentrated on V . The Lebesgue
decomposition theorem (see, for example, Rudin, 1987, page 121) asserts that for two measures
.,/ ∈ B(Rd), there exist two unique measures .c,.s ∈ B(Rd) with .c being absolutely continuous
with respect to/ and .s being singular with respect to/ such that . has the Lebesgue decomposition
with respect to /

.= .c+.s.

The Lebesgue decomposition of measures with respect to the Lebesgue measure leads to a
decomposition of the corresponding continuous translation invariant kernel. Specifically, for a con-
tinuous translation invariant kernel K on Rd , we have the Lebesgue decomposition

K = Kc+Ks, (42)

where
Kc(x,y) =

Z

Rd
ei(x−y,&)dµc(,), Ks(x,y) =

Z

Rd
ei(x−y,&)dµs(,), x,y ∈ Rd .

Likewise, for a continuous translation invariant kernel G on Rd , we also have its Lebesgue decom-
position

G= Gc+Gs, (43)

where
Gc(x,y) =

Z

Rd
ei(x−y,&)dµ′c(,), Gs(x,y) =

Z

Rd
ei(x−y,&)dµ′s(,), x,y ∈ Rd .

In the above equations, the measures µc,µ′c are absolutely continuous with respect to the Lebesgue
measure and µs,µ′s are singular with respect to the Lebesgue measure. By the Radon-Nikodym
theorem, there exist nonnegative functions k,g ∈ L1(Rd) such that

Kc(x,y) =
Z

Rd
ei(x−y,&)k(,)d,, Gc(x,y) =

Z

Rd
ei(x−y,&)g(,)d,, x,y ∈ Rd . (44)
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The next task is to characterize HK $ HG in terms of k,g,µs,µ′s. We start with a simple obser-
vation. We associate with each # ∈ L1(Rd) a finite Borel measure µ' on Rd defined on each Borel
subset V ⊆ Rd by

µ'(V ) :=
Z

V
#(,)d,.

Lemma 17 If L is a continuous translation invariant kernel on Rd with a Lebesgue decomposition
L= Lc+Ls, thenHL is equal to the orthogonal direct sum ofHLc andHLs , namely, HL = HLc

LHLs .

Proof By Lemma 4, it suffices to show that HLc ∩HLs = {0}. We assume that

Lc(x,y) =
Z

Rd
ei(x−y,&)l(,)d,, Ls(x,y) =

Z

Rd
ei(x−y,&)d*(,), x,y ∈ Rd ,

where l ∈ L1(Rd) is nonnegative and * ∈ B(Rd) is singular with respect to the Lebesgue measure.
Suppose that f ∈ HLc ∩HLs . By Lemma 5, there exists g ∈ L2(Rd ,µl) and h ∈ L2(Rd ,*) such that

f (x) =
Z

Rd
ei(x,&)g(,)l(,)d,=

Z

Rd
ei(x,&)h(,)d*(,), x ∈ Rd .

Define the Borel measure µh," on each Borel set V ⊆ Rd by

µh,"(V ) :=
Z

V
h(,)d*(,).

By the uniqueness of Fourier transforms (Grafakos, 2004), the two Borel measures µgl , µh," are
identical. However, µgl is absolutely continuous with respect to the Lebesgue measure while µh,"
is singular with respect to the Lebesgue measure. Therefore, we must have µgl = µh," = 0. Conse-
quently, f = 0. The proof is complete.

The next result allows us to identify the inclusion HK $ HG with two independent inclusions
HKc $ HGc and HKs $ HGs .

Proposition 18 Suppose that K and G are continuous translation invariant kernels on Rd defined
by (42) and (43). Then HK $ HG if and only if HKc $ HGc and HKs $ HGs .

Proof Suppose that HKc $ HGc and HKs $ HGs . Let f be an arbitrary function in HK . By Lemma
17, there exists fc ∈ HKc and fs ∈ HKs such that f = fc+ fs and

‖ f‖2HK
= ‖ fc‖2HKc

+‖ fs‖2HKs
.

By the assumption, fc ∈ HGc , fs ∈ HGs and

‖ fc‖HGc
= ‖ fc‖HKc

, ‖ fs‖HGs
= ‖ fs‖HKs

.

Lemma 17 asserts that HG = HGc
LHGs . As a result, we get that f ∈ HG and

‖ f‖2HG
= ‖ fc‖2HGc

+‖ fs‖2HGs
= ‖ fc‖2HKc

+‖ fs‖2HKs
= ‖ f‖2HK

.
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Therefore, we have proved that HK $ HG.
Conversely, we assume that G is a refinement kernel for K. Suppose that f ∈ HKc . By Lemma

17, f ∈ HK and ‖ f‖HK = ‖ f‖HKc
. By the assumption and Lemma 17, there exist two functions

gc ∈ HGc and gs ∈ HGs such that f = gc+gs and

‖ f‖2HK
= ‖ f‖2HG

= ‖gc‖2HGc
+‖gs‖2HGs

.

To obtain that f ∈ HGc and ‖ f‖HKc
= ‖ f‖HGc

, it suffices to show that gs = 0. Arguments similar to
those used in the proof of Lemma 17 serve this purpose. Since f is an arbitrary function in HKc , we
obtain that HKc $ HGc . Likewise, one can show that HKs $ HGs . The proof is thus complete.

We next consider HKc $ HGc . For a nonnegative function f on Rd , we let 3 f := {x ∈ Rd :
f (x) > 0}. We write k$ g to mean that g= k almost everywhere on3k with respect to the Lebesgue
measure.

Theorem 19 There holds HKc $ HGc if and only if k$ g. Moreover, if k$ g then Gc is a nontrivial
refinement kernel for Kc if and only if

Z

Rd
(g(,)− k(,))d,> 0. (45)

Proof The proof for this result when Gc has the form "Kc(2·,2·) for some positive constant " was
provided in Xu and Zhang (2007), Theorem 23. Arguments similar to those in Xu and Zhang (2007)
can prove the general result described here. We give a different proof below based on Theorem 16.

By Theorem 16, HKc $ HGc if and only if µk ) µg and dµk/dµg equals 1 almost everywhere on
3k and equals 0 almost everywhere elsewhere. Therefore, HKc $ HGc if and only if for each Borel
V ⊆3k Z

V
k(,)d,=

Z

V
g(,)d,.

Clearly, the above equation holds for all BorelV ⊆3k if and only if k$ g. The second statement of
the result follows from the observation that the right hand side of (45) is equal to µg(Rd)−µk(Rd).

We are ready to present a characterization of HK $ HG in terms of conditions on k,g,µs,µ′s.

Theorem 20 Let K and G be continuous translation invariant kernels on Rd defined by (42) and
(43). Then HK $ HG if and only if k $ g and µs $ µ′s. The refinement kernel G is nontrivial for K if
and only if there holds (45) or µ′s(Rd)−µs(Rd) > 0.

Proof The result of this theorem follows directly from Proposition 18 and Theorems 19, 16.

The next result is a direct consequence of Theorem 19. Suppose that k ∈ L1(Rd) is positive
almost everywhere on Rd and define

K(x,y) :=
Z

Rd
ei(x−y,&)k(,)d,, x,y ∈ Rd . (46)

Corollary 21 For k ∈ L1(Rd) positive almost everywhere on Rd , define K as in (46). Suppose that
G is a continuous translation invariant kernel on Rd with a Lebesgue decomposition (43). Then
HK $ HG if and only if Gc = K. The kernel G is a nontrivial refinement kernel for K if and only if
Gc = K and Gs ,= 0.

127



XU AND ZHANG

5.3 B-spline Kernels

Our next example is concerned with the B-spline kernel. For a nontrivial compactly supported
function f0 ∈ L2(Rd) such that

f0(−x) = f0(x), x ∈ Rd , (47)

we define recursively

fn(x) :=
Z

Rd
fn−1(x− y) f0(y)dy, x ∈ Rd , n ∈ N.

For each odd integer p ∈ N, we let

K(x,y) := fp(x− y), x,y ∈ Rd . (48)

In the next proposition, we show that K is a kernel on Rd and characterize refinement kernels for K.
To this end, we need the Fourier transform f̂ of a function f ∈ L1(Rd) defined as

f̂ (,) :=
Z

Rd
f (x)e−i(x,&)dx, , ∈ Rd .

By a standard approximation process (Grafakos, 2004), the Fourier transform can be extended to be
a bounded operator on L2(Rd).

Proposition 22 For each odd integer p∈N, K defined by (48) is a kernel onRd . Moreover, suppose
that G is a continuous translation invariant kernel on Rd with a Lebesgue decomposition (43). Then
G is a refinement kernel for K if and only if Gc = K.

Proof Since f0 is compactly supported, f0 ∈ L1(Rd). By the Schwartz inequality and by induction,
we have that fp ∈ L1(Rd). By the Fourier transform of convolutions, we know that

( fp)ˆ= (( f0)ˆ)p+1.

Condition (47) ensures that ( f0)ˆ is real on Rd . Since p is odd, ( fp)ˆ is nonnegative. By the Bochner
theorem, to prove that K is a kernel on Rd , it suffices to show that (( f0)ˆ)p+1 ∈ L1(Rd). This is clear
since (( f0)ˆ)2 ∈ L1(Rd) and ( f0)ˆ is bounded.

Since f0 is compactly supported, by the Paley-Wiener theorem (see, for example, Gasquet and
Witomski, 1999, page 293), ( f0)ˆ is real-analytic on Rd . Also, it is nontrivial since f0 is assumed
to be nontrivial. By Corollary 21, to conclude our second statement it suffices to point out the
well-known fact that the zeros of a nontrivial real-analytic function on Rd form a set of Lebesgue
measure zero in Rd .

A particular example of (48) are the B-spline kernels (see, for example, Schölkopf and Smola,
2002, page 98, and the references therein), which are defined as (48) by f0 that is the characteristic
function of a ball in Rd centered at the origin.
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5.4 Radial Kernels

We next turn to the radial kernels on Rd . They are kernels of the form

K(x,y) := r(‖x− y‖), x,y ∈ Rd , (49)

where r is a function on R+ := [0,++) and ‖ ·‖ denotes the standard Euclidean norm on Rd . It was
proved in Schoenberg (1938) that the function K in the form (49) with a continuous function r on
R+ defines a kernel on Rd for all d ∈ N if and only if there exists some µ∈ B(R+) such that

r(t) :=
Z

R+

e−(t
2
dµ(4), t ∈ R+. (50)

Theorem 23 Suppose that K is a nontrivial radial kernel defined by (49), (50) with µ({0}) = 0.
Then a continuous translation invariant kernel G on Rd with a Lebesgue decomposition (43) is a
refinement kernel for K if and only if Gc = K.

Proof We prove this theorem by applying Corollary 21 with identifying the function k ∈ L1(Rd)
that is positive almost everywhere.

Recalling that for all 4> 0 there holds

exp
(
−4‖x− y‖2

)
=

1
(25)d

Z

Rd

(5
4

)d/2
ei(x−y,&)e−

‖"‖2
4# d,, x,y ∈ Rd ,

by the hypothesis that µ({0}) = 0, we have for all x,y ∈ Rd that

K(x,y) =
Z

(0,+%)

1
(25)d

Z

Rd

(5
4

)d/2
ei(x−y,&)e−

‖"‖2
4# d,dµ(4).

Define
k(,) :=

Z

(0,+%)

1
(25)d

(5
4

)d/2
e−

‖"‖2
4# dµ(4), , ∈ Rd .

It can be verified by the Fubini theorem (see, Rudin, 1987, page 164) that
Z

Rd
k(,)d,=

Z

(0,+%)
dµ(4)

Z

Rd

1
(25)d

(5
4

)d/2
e−

‖"‖2
4# d,=

Z

(0,+%)
dµ(4) = µ(R+).

Therefore, k is a nontrivial function in L1(Rd). Again, by the Fubini theorem we get that

K(x,y) =
Z

Rd
ei(x−y,&)k(,)d,, x,y ∈ Rd .

Thus, to conclude the result of this theorem by Corollary 21, it remains to show that k is positive
almost everywhere on Rd . To this end, we observe that the function

1(t) :=
Z

(0,+%)

1
(25)d

(5
4

)d/2
e−

t
4# dµ(4), t > 0

belongs to C%(0,++) and satisfies for each nonnegative integer j that (−1) j1( j)(t) > 0, for t > 0.
In other words, 1 is completely monotonic in (0,++) and is hence real-analytic on the interval (see,
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Widder, 1941, pages 145–146). Consequently, k = 1(‖ · ‖2) is real-analytic on Rd \ {0}. This to-
gether with ‖k‖L1(Rd) > 0 proves that k is almost everywhere positive on Rd . The proof is complete.

We remark that if µ({0}) > 0 then K is the sum of a constant kernel and a radial kernel satisfying
the hypothesis of the last theorem. Note that a constant kernel is defined by a singular Borel measure.
Therefore, by Theorems 20 and 23, a continuous kernel G with a Lebesgue decomposition (43) is a
refinement kernel for K if and only if Gc = K−µ({0}) and µ′s({0}) = µ({0}) since µ′s and µmust
agree at the origin.

As a direct consequence of Theorem 23, we have the following result about the Gaussian kernels

G((x,y) := exp
(
−4‖x− y‖2

)
, x,y ∈ Rd , 4> 0.

Corollary 24 A continuous translation invariant kernel G on Rd with a Lebesgue decomposition
(43) is a refinement kernel for the Gaussian kernel G( if and only if Gc = G(. It is a nontrivial
refinement kernel for G( if and only if Gc = G( and Gs ,= 0.

The corollary above suggests that we may refine the Gaussian kernel G( by adding to it a kernel
Gs defined by a singular measure on Rd . The RKHS for a Gaussian kernel has been well understood
(see, for example, Walder et al., 2006). In particular, we can see by Lemma 5 that

HG# :=
{
f ∈ L2(Rd) :

Z

Rd
| f̂ (,)|2e

‖"‖2
4# d,< ++

}
, (51)

and the inner product on HG# is given as

( f ,g)HG#
=

1
(25)d

(4
5

)d/2 Z

Rd
f̂ (,)ĝ(,)e

‖"‖2
4# d,.

By (51), HG# ⊆ HG#′ for 4< 4′. However, since functions with a continuous compactly supported
Fourier transform are contained in HG# and are dense in HG#′ , HG# is dense in HG#′ . But, HG# is
not closed under the norm of HG#′ . Therefore, there does not exist 4

′ with 4< 4′ such that G(′ is a
refinement kernel for G(.

5.5 Periodic Kernels

We now investigate kernels defined by continuous periodic functions and their refinement. For this
purpose, we recall the Fourier coefficients of a function f ∈ L2([0,25]d)which are defined by setting
for each n ∈ Zd

cn( f ) :=
1

(25)d
Z

[0,2)]d
f (x)e−i(n,x)dx.

A function f on Rd is called 25-periodic if for all n ∈ Zd , f = f (·+25n).

Proposition 25 Let f be a continuous 25-periodic function on Rd . Then K(x,y) := f (x−y) defines
a kernel on Rd if and only if f := [cn( f ) : n ∈ Zd ] ∈ !1(Zd) and f≥ 0.
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Proof If f ∈ !1(Zd) and f ≥ 0, then we define the Borel measure µ that is supported on Zd with
µ(n) := cn( f ), n ∈ Zd . By the Fourier series expansion of f , we get that

K(x,y) = f (x− y) = !
n∈Zd

cn( f )ei(n,x−y) =
Z

Rd
ei(x−y,&)dµ(,), x,y ∈ Rd .

By the Bochner theorem, K is a kernel on Rd .
Conversely, if K is a kernel on Rd , then again by the Bochner theorem, there is a µ∈ B(Rd)

such that
f (x) =

Z

Rd
ei(x,&)dµ(,), x ∈ Rd . (52)

Since f is 25-periodic, we have for each n ∈ Zd that
Z

Rd
ei(x,&)dµ(,) =

Z

Rd
ei(x,&)ei2)(n,&)dµ(,), x ∈ Rd .

By the uniqueness of Fourier transforms, there holds for almost every , ∈ Rd with respect to µ that
ei2)(n,&) = 1, for n∈Zd . Note that this equation holds for all n∈Zd if and only if ,∈Zd . Therefore,
µ(Rd \Zd) = 0. Consequently, by (52) we obtain that

f (x) = !
n∈Zd

µ({n})ei(n,x), x ∈ Rd .

It is implied that cn( f ) = µ({n}), n ∈ Zd . Since µ is finite and positive, f ∈ !1(Zd) and f≥ 0.

By the last proposition, for c := [cn : n∈Zd ]∈ !1(Zd) with cn ≥ 0 for each n∈Zd , we introduce
kernel

fc(x− y) := !
n∈Zd

cnei(n,x−y), x,y ∈ Rd , (53)

and set 3c := {n ∈ Zd : cn > 0}. The function c ∈ !1(Zd) will be viewed at the same time as a Borel
measure on Zd whose measure on n ∈ Zd is defined to be cn.

Proposition 26 Suppose that a,b ∈ !1(Zd) with an,bn ≥ 0 for each n ∈ Zd and define fa, fb as in
(53). Then H fa $ H fb if and only if

3a ⊆3b and for all n ∈3a, an = bn. (54)

If H fa $ H fb then fb is a nontrivial refinement kernel for fa if and only if 3a is a proper subset of
3b.

Proof By Theorem 20, H fa $ H fb if and only if a $ b. We now show that a $ b is equivalent to
(54).

Suppose that condition (54) holds. By 3a ⊆3b we have that a) b. The derivative c := da/db
is given by

cn :=

{ an
bn

, n ∈3a,

0, otherwise.
(55)
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Therefore, a$ b.
Conversely, suppose that a $ b. Since a) b, we have 3a ⊆ 3b. Also, since the derivative

c := da/db given by (55) is equal to 1 or 0 almost everywhere with respect to b, we have an = bn
for each n ∈3a. Hence, (54) holds.

5.6 Refinement via an Expanding Matrix

To close this section, we consider a special refinement process in the sense of refinable kernels
introduced in Xu and Zhang (2007). The translation invariant kernels Kc defined by (44) via a non-
negative function k ∈ L1(Rd) are of special interest. We call them translation invariant kernels of
continuous type. Next, we consider updating kernels of this type through an expanding matrix. Let
D be a d× d real matrix with determinant detD bigger than 1. Such a matrix is called expanding.
Refinable functions with respect to an expanding matrix and the corresponding wavelets were stud-
ied by many authors (see, for example, Chen et al., 2003, 2007; Daubechies, 1992; Goodman and
Lee, 1994; Jia, 1999; Jia et al., 1999; Micchelli and Sauer, 1997; Micchelli and Xu, 1994; Wang,
2002, and the references cited therein). In particular, the interesting relation between wavelets and
tiling was investigated in Wang (2002). For a continuous translation invariant kernel Kc defined by
(44), we consider a refinement kernel Gc having the form

Gc(x,y) = "Kc(Dx,Dy), x,y ∈ Rd . (56)

We are interested in characterizingHKc $ HGc in terms of k, " and D. A special case of this problem
when D is the dilation matrix 2I was studied in Xu and Zhang (2007).

Theorem 27 Suppose that Kc is defined by (44) via a nonnegative k ∈ L1(Rd) and Gc is given by
(56). Then, HKc $ HGc if and only if for almost every , ∈3k,

k(,) =
"

detD
k((DT )−1,).

If HKc $ HGc then Gc is a nontrivial refinement kernel for Kc if and only if
Z

*k\(DT )−1*k
k(,)d,> 0. (57)

Proof Through a change of variables, we obtain from (56) that

Gc(x,y) =
"

detD

Z

Rd
ei(x−y,&)k((DT )−1,)d,, x,y ∈ Rd .

We then identify the nonnegative function g ∈ L1(Rd) in the definition (44) of the translation invari-
ant kernel Gc of continuous type as follows

g(,) =
"

detD
k((DT )−1,), , ∈ Rd .

The first statement of this theorem now follows directly from the first statement of Theorem 19.
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If HKc $ HGc , by the first statement of this theorem, we have that
Z

Rd
g(,)d,=

Z

Rd
k(,)d,+

Z

Rd\*k

"
detD

k((DT )−1,)d,.

Using this identity, we observe that inequality (45) is equivalent to inequality
Z

Rd\*k
k((DT )−1,)d,> 0.

By a change of variables, we find that the inequality above is equivalent to inequality (57).

Along this direction, we present a corollary to Proposition 26.

Corollary 28 Let D be an invertible matrix in Zd×d , fa a kernel defined as in (53) and G defined
as G(x,y) = " fa(Dx−Dy) for some positive constant ". Then G is a refinement kernel for fa if and
only if 3a ⊆ DT3a and for each n ∈3a, an = "a(DT )−1n.

We shall see in the next section that Proposition 26 and Corollary 28 are special instances of
refinement of Hilbert-Schmidt kernels.

6. Refinement of Hilbert-Schmidt Kernels

We characterize in this section refinement kernels for two types of Hilbert-Schmidt kernels. As
special examples, we study refinement of the Bergman kernels, the Szegö kernels, the Schoenberg
kernels, and kernels having finite dimensional feature spaces.

Let a be a nonnegative function on N and set an := a(n), n ∈ N. We denote by !2a(N) the set of
functions f on N such that 'n∈N an| fn|2 < ++. It is a Hilbert space with the inner product

( f ,g)!2a(N) := !
n∈N

an fngn, f ,g ∈ !2a(N).

Suppose that we have a sequence of functions 0n on the input space X , n ∈ N such that for each
x ∈ X the function )(x) on N defined as

)(x)(n) := 0n(x), n ∈ N (58)

belongs to !2a(N). The Hilbert-Schmidt kernel Ka associated with a is given as

Ka(x,y) := ()(x),)(y))!2a(N) = !
n∈N

an0n(x)0n(y), x,y ∈ X . (59)

The Mercer theorem (see, for example, Cucker and Smale, 2002; Hochstadt, 1973; Mercer, 1909;
Sun, 2005) in the theory of reproducing kernels indicates that (59) represents a large class of kernels.
Hilbert-Schmidt kernels are a key element of recent studies Opfer (2006) and Rakotomamonjy and
Canu (2005).

The support of a function a onN, denoted as suppa, is the set of n∈N for which an ,= 0. Let a,b
be two nonnegative functions on N. Set c := max{a,b} and assume that the sequence 0n satisfies
for each x ∈ X that )(x) ∈ !2c(N) and

span{)(x) : x ∈ X} = !2c(N).
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We shall consider the inclusionHKa $HKb . For this purpose, we make the convention that whenever
we write a $ b for two functions a,b on N, it means that suppa ⊆ suppb and an = bn for each
n ∈ suppa.

Theorem 29 There holds HKa $ HKb if and only if a$ b. Moreover, if a$ b then Kb is a nontrivial
refinement kernel for Ka if and only if suppa is a proper subset of suppb.

Proof This theorem is proved by using Theorem 8 with an identification of measures µ and .. We
introduce three nonnegative functions ã, b̃, c̃ in !1(N) by setting for n ∈ N

ãn :=
{ an

n2cn
, n ∈ suppa,

0, otherwise,
b̃n :=

{
bn
n2cn

, n ∈ suppb,
0, otherwise,

and
c̃n :=

{ 1
n2 , n ∈ suppc,
0, otherwise.

We also define a function 0 : X×N → C by

0(x,n) := n
√
cn0n(x), x ∈ X , n ∈ N.

It is observed that c̃= (ã+ b̃)/2+ |ã− b̃|/2, 0(x, ·) ∈ !2c̃(N) for all x ∈ X and span{0(x, ·) : x ∈ X}
is dense in !2c̃(N). Moreover,

Ka(x,y) = (0(x, ·),0(y, ·))!2ã(N), Kb(x,y) = (0(x, ·),0(y, ·))!2b̃(N), x,y ∈ X .

Let Y := N. We identify measures µ,. ∈ B(Y ) with ã and b̃, respectively, such that

Ka(x,y) =
Z

Y
0(x,,)0(y,,)dµ(,), Kb(x,y) =

Z

Y
0(x,,)0(y,,)d.(,), x,y ∈ X .

Note that µ$ . is equivalent to a $ b. The result of this theorem now follows immediately from
Theorem 8.

One can see that Proposition 26 may be viewed as a corollary of Theorem 29. We next present
two more concrete applications of Theorem 29.

For the first example, we assume R ∈ (0,++] and specify our input space X to be {z ∈ C : |z| <
R1/2}. Here we make the convention that if R = ++ then X := C. For two nonnegative functions
a,b defined on N satisfying

max
{
limsup
n→%

n
√
an, limsup

n→%

n
√
bn

}
≤ 1
R

, (60)

we define the kernels

Ka(,,() := !
n∈N

an,n−1(n−1, Kb(,,() := !
n∈N

bn,n−1(n−1, ,,( ∈ X . (61)

Classical kernels such as the Bergman kernels and the Szegö kernels (see, for example, Saitoh,
1988) have the above form.
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Proposition 30 Suppose that a,b are nonnegative functions defined onN satisfying (60) and kernels
Ka,Kb are defined in (61). Then HKa $ HKb if and only if a$ b, and the refinement is nontrivial if
and only if suppa is a proper subset of suppb.

Proof We define a sequence of functions 0n, n ∈ N on the input space X by setting

0n(,) := ,n−1, , ∈ X .

Let c :=max{a,b}. Condition (60) ensures that ) defined by (58) with the 0n defined above satis-
fies the condition that )(,) ∈ !2c(N) for each , ∈ X . It is clear that span{)(,) : , ∈ X} is dense in
!2c(N). The result of this proposition follows directly from Theorem 29.

Our second example concerns the Schoenberg kernels (Schoenberg, 1942) on the unit sphere Sd
inRd+1. We shall need the ultraspherical polynomials Pdn , n∈Z+. When d= 1, P1n is the Chebyshev
polynomial of degree n (Rivlin, 1990) and for d > 1, Pdn is determined by

1
(1−2zt+ z2)(d−1)/2 = !

n∈Z+

Pdn (t)zn, |z| < 1, t ∈ [−1,1].

For a nonnegative function h defined on N satisfying the conditions

!
n∈N

hnPdn−1(1) < ++, (62)

we introduce a Schoenberg kernel on Sd by setting

Sh(x,y) := !
n∈N

hnPdn−1((x,y)), x,y ∈ Sd , (63)

where (·, ·) denotes the inner product on Rd+1.

Theorem 31 Suppose that a and b are two nonnegative functions defined on N satisfying the con-
dition (62) and Sa and Sb are the corresponding Schoenberg kernels on Sd defined as in (63). Then,
HSa $ HSb if and only if a$ b. If a$ b then Sb is a nontrivial refinement kernel for Sa if and only if
suppa is a proper subset of suppb.

Proof We shall write the kernels Sa,Sb in the form of Hilbert-Schmidt kernels and then apply
Theorem 29. To this end, we recall some basic facts of spherical harmonics (Stein and Weiss,
1971). For each n ∈ Z+ we let Hn be the set of all homogeneous harmonic polynomials of total
degree n on Rd+1 restricted to Sd . We consider Hn as a subspace of L2(Sd ,/) where / is the
Lebesgue measure on Sd . Let dn denote the dimension of Hn and {Y nj : j ∈ Ndn} an orthonormal
basis for Hn. If n ,= n′ then Hn is orthogonal to Hn′ (Stein and Weiss, 1971). For each n ∈ Z+, there
exists a positive constant cn such that

Pdn ((x,y)) = cn !
j∈Ndn

Y nj (x)Y nj (y), x,y ∈ Sd . (64)

By Equations (63) and (64), we have that

Sa(x,y) = !
n∈N

ancn−1 !
j∈Ndn−1

Y n−1j (x)Y n−1j (y), x,y ∈ Sd
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and
Sb(x,y) = !

n∈N
bncn−1 !

j∈Ndn−1

Y n−1j (x)Y n−1j (y), x,y ∈ Sd .

The result of this theorem hence follows immediately from Theorem 29 and the orthogonality of
Y nj .

We now return to general Hilbert-Schmidt kernels defined by a sequence of functions 0n on X
and investigate the case when 0n’s are coupled. We shall work in the Hilbert space !2(N) under the
assumption that )(x) ∈ !2(N) for each x ∈ X and

span{)(x) : x ∈ X} = !2(N). (65)

For each bounded, positive, and self-adjoint linear operator C on !2(N), we denote by !2C(N) the
Hilbert space completed upon the linear space !2(N) under the inner product

(u,v)!2C(N) := (Cu,v)!2(N), u,v ∈ !2(N).

Note that !2C(N) is a Hilbert space of equivalent classes. In other words, two elements u,v ∈ !2(N)
are identical in !2C(N) if and only if u−v∈ kerC := {x∈ !2(N) :Cx= 0}. For two bounded, positive
and self-adjoint linear operators A,B from !2(N) to itself, we introduce two kernels by setting

KA(x,y) := ()(x),)(y))!2A(N), KB(x,y) := ()(x),)(y))!2B(N), x,y ∈ X .

Before delving into conditions equivalent toHKA $ HKB , we review necessary results from func-
tional analysis. For each bounded, positive and self-adjoint linear operator C on !2(N), we let PC,⊥
denote the orthogonal projection from !2(N) to the orthogonal complement (kerC)⊥ of kerC. Note
that u ∈ !2(N) satisfies (Cu,u)!2(N) = 0 if and only if u ∈ kerC. Moreover, for each u ∈ !2(N) there
holds that

(Cu,u)!2(N) = (CPC,⊥u,PC,⊥u)!2(N).

Thus C is a bijective mapping from (kerC)⊥ to ranC. We denote by C̃−1 its inverse from ranC to
(kerC)⊥.

Our characterization of HKA $ HKB is as follows.

Theorem 32 Suppose that A,B are bounded, positive and self-adjoint linear operators from !2(N)
to itself. Then, HKA $ HKB if and only if ranA⊆ ranB and for each v ∈ ranA,

PA,⊥B̃−1v= Ã−1v. (66)

Proof By Lemma 5, HKA $ HKB if and only if for each u ∈ !2(N) there exists v ∈ !2(N) such that

()(x),Au)!2(N) = ()(x),Bv)!2(N), x ∈ X (67)

and
(Au,u)!2(N) = (Bv,v)!2(N). (68)

By the density assumption (65), (67) is equivalent to that

Au= Bv. (69)
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Suppose that HKA $ HKB . Then for each u ∈ !2(N) there exists v ∈ !2(N) satisfying (68) and
(69). By (69), we have that ranA⊆ ranB. Let u ∈ (kerA)⊥. Then v in (69) can be taken as B̃−1Au.
Similarly, if we choose u′ ∈ (kerA)⊥ and let v′ := B̃−1Au′ then (67) and (69) hold true with u,v
replaced by u′,v′. Since HKA is a subspace of HKB , we have

(Au′,u)!2(N) = (()(x),Au)!2(N),()(x),Au′)!2(N))HKA
= (()(x),Bv)!2(N),()(x),Bv′)!2(N))HKB
= (Bv′,v)!2(N).

By the above equation and (69), we get that

(Au′,PA,⊥B̃−1Au)!2(N) = (Au′, B̃−1Au)!2(N) = (Bv′,v)!2(N) = (Au′,u)!2(N).

Note that the above equation is true for all u,u′ ∈ (kerA)⊥. Thus there must hold

PA,⊥B̃−1Au= u= Ã−1Au.

Since A is surjective from (kerA)⊥ onto ranA, we obtain (66) for each v ∈ ranA.
Conversely, suppose that ranA⊆ ranB and there holds for each v ∈ ranA Equation (66). There-

fore, for each u ∈ (kerA)⊥ there exists v ∈ !2(N) satisfying (69). Moreover, we calculate by (66)
that

(Bv,v)!2(N) = (Bv,PB,⊥v)!2(N) = (Bv, B̃−1Au)!2(N) = (Au, B̃−1Au)!2(N)
= (Au,PA,⊥B̃−1Au)!2(N) = (Au, Ã−1Au)!2(N) = (Au,u)!2(N).

Thus (68) holds true. We hence prove that HKA $ HKB .

To close this section, as an application of Theorem 32, we consider kernels of finite dimensional
feature spaces. Let n ≤ m be two positive integers and A,B hermitian and strictly positive definite
matrices of sizes n×n and m×m, respectively. Suppose that 0 j, j ∈ Nm form a sequence of linearly
independent functions on X . The kernels we consider are

GA(x,y) := !
j,k∈Nn

A jk0k(x)0 j(y), GB(x,y) := !
j,k∈Nm

B jk0k(x)0 j(y), x,y ∈ X . (70)

We remark that a kernel has a finite dimensional feature space if and only if its RKHS has finite
dimension. It was proven in Aronszajn (1950) that a RKHS is finite dimensional if and only if
its reproducing kernel has the form of (70). The following corollary is a direct consequence of
Theorem 32.

Corollary 33 Let kernels GA,GB be defined by (70). Then HGA $ HGB if and only if B−1 is an
augmentation of A−1, namely, B−1

jk = A−1
jk , j,k ∈ Nn. In particular, if GA,GB have the form

GA(x,y) := !
j∈Nn

a j0 j(x)0 j(y), GB(x,y) := !
k∈Nm

bk0k(x)0k(y), x,y ∈ X

for some positive constants a j,bk then HGA $ HGB if and only if a j = b j for each j ∈ Nn. In both
cases, if HGA $ HGB then GB is a nontrivial refinement kernel for GA if and only if m> n.
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Abstract
Subgroup analysis is an integral part of comparative analysis where assessing the treatment effect
on a response is of central interest. Its goal is to determine the heterogeneity of the treatment effect
across subpopulations. In this paper, we adapt the idea of recursive partitioning and introduce
an interaction tree (IT) procedure to conduct subgroup analysis. The IT procedure automatically
facilitates a number of objectively defined subgroups, in some of which the treatment effect is
found prominent while in others the treatment has a negligible or even negative effect. The standard
CART (Breiman et al., 1984) methodology is inherited to construct the tree structure. Also, in order
to extract factors that contribute to the heterogeneity of the treatment effect, variable importance
measure is made available via random forests of the interaction trees. Both simulated experiments
and analysis of census wage data are presented for illustration.
Keywords: CART, interaction, subgroup analysis, random forests

1. Introduction

In comparative studies where two or more treatments are compared, subgroup analysis emerges after
the overall assessment of the treatment effect and plays an important role in determining whether
and how the treatment effect (i.e., comparison among treatments) varies across subgroups induced
by covariates. In designed clinical trials, for example, practitioners and regulatory agencies are keen
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to know if there are subgroups of trial participants who are more (or less) likely to be helped (or
harmed) by the intervention under investigation. Subgroup analysis helps explore the heterogeneity
of the treatment effect and extract the maximum amount of information from the available data.
According to a survey conducted by Assmann et al. (2000), 70% of trials published over a three-
month period in four leading medical journals involved subgroup analyses.

The research questions in subgroup analysis can be either pre-planned or raised in a post-hoc
manner. If there is a prior hypothesis of the treatment effect being different in particular subgroups,
then this hypothesis and its assessment should be part of the planned study design (CPMP, 1995).
At the same time, subgroup analysis is also often used for post-hoc exploratory identification of
unusual or unexpected results (Chow and Liu, 2004). Suppose, for example, that it is of interest
to investigate whether the treatment effect is consistent among three age groups: young, middle-
aged, and older individuals. The evaluation is formally approached by means of an interaction test
between treatment and age. If the resulting test is significant, multiple comparisons are then used
to find out further details about the magnitude and direction of the treatment effect within each age
group. To ensure a valid experimentwise false positive rate, adjustment methods such as Bonferroni
typed correction are often applied.

Limitations of traditional subgroup analysis have been extensively noted (see, e.g., Assmann et
al., 2000, Sleight, 2000, and Lagakos, 2006). First of all, the subgroups themselves, as well as the
number of subgroups to be examined, are specified by the investigator beforehand in the current
practice of subgroup analysis, which renders subgroup analysis a highly subjective process. Even
for the field expert, it is a daunting task to determine which specific subgroups should be used in
subgroup analysis. The subjectivity may lead directly to dubious results and willful manipulations.
For example, one may fail to identify a subgroup of great prospective interest or intentionally avoid
reporting subgroups where the investigational treatment is found unsuccessful or even potentially
harmful. Reliance on such analyses is likely to be erroneous and harmful. Moreover, significance
testing is the main approach in subgroup analysis. Because there is no general guideline for se-
lecting the number of subgroups, one has to examine numerous plausible possibilities to have a
thorough assessment of the treatment effect. However, a large number of subgroups inevitably
causes concerns related to multiplicity and lack of power.

In this paper, we propose a data-driven tree procedure, labelled as “interaction trees” (IT), to
explore the heterogeneity structure of the treatment effect across a number of subgroups that are
objectively defined in a post hoc manner. The tree method, also called recursive partitioning, was
first proposed by Morgan and Sonquist (1963). By recursively bisecting the predictor space, the hi-
erarchical tree structure partitions the data into meaningful groups and makes available a piecewise
approximation of the underlying relationship between the response and its associated predictors.
The applications of tree models have been greatly advanced in various fields especially since the
development of CART (classification and regression trees) by Breiman et al. (1984). Their pruning
idea for tree size selection has become and remains the current standard in constructing tree models.

The remainder of the paper is organized as follows. In Section 2, the IT procedure is presented
in detail. Section 3 contains simulation studies designed for assessing the proposed method. In
Section 4, we apply the IT procedure to analyze a wage data set, in which the goal is to determine
whether or not women are underpaid or overpaid as compared to their male counterparts and, if so,
by what amount. Section 5 concludes the paper with a brief discussion.
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2. Tree-Structured Subgroup Analysis

We consider a study designed to assess a binary treatment effect on a continuous response or output
while adjusting or controlling for a number of covariates. Suppose that the data available contain n
i.i.d. observations {(yi, trti,xi) : i = 1, . . . ,n}, where yi is the continuous response; trti is the binary
treatment indicator taking values 1 or 0; and xi = (xi1, . . . ,xip)′ is the associated p-dimensional
covariate vector where its components can be of mixed types, that is, categorical or continuous. Our
goal in subgroup analysis is to find out whether there exist subgroups of individuals in which the
treatment shows heterogeneous effects, and if so, how the treatment effect varies across them.

Applying a tree procedure to guide the subgroup analysis is rather intuitive. First, subgroup
analysis essentially involves the interaction between the treatment and the covariates. The tree
algorithm is known as an excellent tool for exploring interactions. As a matter of fact, the first im-
plementation of decision trees is referred to as Automatic Interaction Detection (AID; Morgan and
Sonquist, 1963). However, tree methods handle interactions implicitly. It is often hard to determine
whether or not interaction really exists among variables for a given tree structure. We shall seeks
ways that enable us to explicitly assess the interaction between the treatment and the covariates.
Secondly, the hierarchical binary tree structure naturally groups data in an optimal way. By recur-
sively partitioning the data into two subgroups that show the greatest heterogeneity in treatment
effect, we are able to optimize the subgroup analysis and make it more efficient in representing the
heterogeneity structure of the treatment effect. Thirdly, the tree procedure is objective, data-driven,
and automated. The grouping strategy and the number of subgroups are automatically determined
by the procedure. The proposed method would result in a set of objectively recognized and mutu-
ally exclusive subgroups, ranking from the most effective to the least effective in terms of treatment
effect. To the best of our knowledge, Negassa et al. (2005) and Su et al. (2008), who studied tree-
structured subgroup analysis in the context of censored survival data, are the only previous works
along similar lines to our proposal.

To construct the IT model, we follow the CART (Breiman et al., 1984) convention, which
consists of three major steps: (1) growing a large initial tree; (2) a pruning algorithm; and (3)
a validation method for determining the best tree size. Once a final tree structure is obtained, the
subgroups are naturally induced by its terminal nodes. To achieve better efficiency, an amalgamation
algorithm is used to merge terminal nodes that show homogenous treatment effects. In addition, we
adopt the variable importance technique in the context of random forest to extract covariates that
exhibit important interactions with the treatment.

2.1 Growing a Large Initial Tree

We start with a single split, say s, of the data. This split is induced by a threshold on a predictor X .
If X is continuous, then the binary question whether X ≤ c is considered. Observations answering
“yes” go to the left child node tL and observations answering “no” go to the right child node tR.
If X is nominal with r distinct categories C = {c1, . . . ,cr}, then the binary question becomes “Is
X ∈ A?” for any subset A ⊂ C. When X has many distinct categories, one may place them into
order according to the treatment effect estimate within each category and then proceed as if X is
ordinal. This strategy helps reduce the computational burden. A theoretical justification is provided
by Theorem 1 in the appendix.

For a given node t, a split s yields the following 2×2 table:
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child node
treatment tL tR

1 µL1 ȳL1 s21 n1 µR1 ȳR1 s22 n2
0 µL0 ȳL0 s23 n3 µR0 ȳR0 s24 n4

Here, {µL1 , ȳL1 ,s21,n1} are the population mean, the sample mean, the sample variance, and the sample
size for the treatment 1 group in the left child node tL, respectively. Similar notation applies to the
other quantities. To evaluate the heterogeneity of the treatment effect between tL and tR, we compare
(µL1−µL0) with (µR1 −µR0 ) so that the interaction between split s and treatment is under investigation.

A natural measure for assessing the interaction is given by

t(s) =
(ȳL1− ȳL0)− (ȳR1 − ȳR0 )

!̂ ·
√
1/n1+1/n2+1/n3+1/n4

, (1)

where !̂2 = "4i=1wis2i is a pooled estimator of the constant variance, and wi = (ni−1)/"4j=1(n j−
1). For a given split s, G(s) = t2(s) converges to a #2(1) distribution. We will use G(s) as the
splitting statistic, while remaining aware that the sign of t(s) supplies useful information regarding
the direction of the comparison.

The best split s! is the one that yields the maximum G statistic among all permissible splits.
That is,

G(s!) =max
s

G(s).

The data in node t are then split according to the best split s!. The same procedure is applied to split
both child nodes: tL and tR. Recursively doing so results in a large initial tree, denoted by T0.

Remark 1: It can be easily seen that t(s) given in (1) is equivalent to the t test for testing H0 : $= 0
in the following threshold model

yi = %0+%1 · trti+& · z(s)i + $ · trti · z(s)i + 'i, (2)

where z(s)i = 1{Xi≤c} is the binary variable associated with split s. This observation sheds light on ex-
tensions of the proposed method to situations involving different types of responses and multi-level
treatments. Note that inclusion of both trti and z

(s)
i in model (2) is important to assure the corre-

spondence between the regression coefficient $ and the interaction, that is, $= (µL1−µL0)−(µR1−µR0 ).

Remark 2: In constructing the large initial tree T0, a terminal node is declared when any one of
the following conditions is met: the node gets pure in the sense that all the covariates have the same
values; the total number of observations in the node is less than some preset minimum node size;
the depth of the node is greater than some preset maximum tree depth; for all permissible splits,
the minimum of (n1,n2,n3,n4) is below some preset threshold. The last condition is particularly
useful in preventing the “end-cut preference” problem as discussed in CART (Breiman et al., 1984,
pp. 313–317). For this purpose, the threshold can be set adaptively with respect to the depth of the
node, following the suggestion of Torgo (2001).
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2.2 Pruning

The final tree could be any subtree of T0. To narrow down the choices, Breiman et al. (1984)
proposed a pruning algorithm which results in a sequence of optimally pruned subtrees by iteratively
truncating the “weakest link” of T0. In the following, we briefly describe an interaction-complexity
pruning procedure, which is analogous to the split-complexity pruning algorithm in LeBlanc and
Crowley (1993). We refer the reader to their paper for a detailed description.

To evaluate the performance of an interaction tree T , we define an interaction-complexity mea-
sure:

G!(T ) = G(T )−(· | T − T̃ |, (3)

where G(T ) = "h∈T−T̃ G(h) measures the overall amount of interaction in T ; the total number of
internal nodes |T − T̃ | corresponds to the complexity of the tree; and the complexity parameter
(≥ 0 acts as a penalty for each added split. Given a fixed (, a tree with larger G!(T ) is preferable.

Start with T0. For any internal node h of T0, calculate g(h) = G(Th)/ | Th − T̃h |, where Th
is the branch with h as root and |Th− T̃h| denotes the number of internal nodes of Th. Then, the
node h! with smallest g(h!) is the “weakest link,” in the sense that h! becomes ineffective first as
( increases. Next, let T1 be the subtree after pruning off the branch Th! from T0, and subsequently
apply the same procedure to prune T1. Repeating this procedure yields a nested sequence of subtrees
TM ≺ · · ·≺ Tm≺ Tm−1≺ · · ·≺ T1≺ T0, where TM is the null tree with the root node only and≺means
“is a subtree of”.

2.3 Selecting the Best-Sized Subtree

The final tree will be selected from the nested subtree sequence {Tm :m= 0,1, . . . ,M}, again, based
on the maximum interaction-complexity measure G!(Tm) given in (3). For tree size determination
purposes, ( is suggested to be fixed within the range 2 ≤ ( ≤ 4, where ( = 2 is in the spirit of
the Akaike information criterion (AIC; Akaike, 1973) and ( = 4 corresponds roughly to the 0.05
significance level on the #2(1) curve. Another choice is (= ln(n), citing the Bayesian information
criterion (BIC; Schwarz, 1978).

To overcome the over-optimism due to greedy search, an “honest” estimate of the goodness-of-
split measure G(Tm) is needed. This can be achieved by a validation method. If the sample size
is large, G(Tm) can be recalculated using an independent subset of the data (termed the validation
sample). If the sample size is small or moderate, one has to resort to techniques such as v-fold
cross-validation or bootstrapping methods in order to validate G(Tm). The bootstrap method used
in LeBlanc and Crowley (1993), for example, can be readily adapted to interaction trees.

Remark 3: As another alternative, one referee suggested the use of in-sample BIC to determine
the optimally-sized subtree, which can be promising, although further research effort is needed to
determine the effective degrees of freedom (see, e.g., Ye, 1998, and Tibshirani and Knight, 1999)
associated with interaction trees.

2.4 Summarizing the Terminal Nodes

The total number of subgroups, which could be further reduced, corresponds to the automatically
selected best tree size. Existence of the overall interaction between the treatment and the covariates
can be roughly assessed by inspecting whether a null final tree structure is obtained. Unlike con-
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ventional subgroup analysis, the subgroups obtained from the IT procedure are mutually exclusive.
Due to the subjectivity in determining the subgroups and multiplicity emerging from significance
testings across subgroups, it is generally agreed that subgroup analysis should be regarded as ex-
ploratory and hypothesis-generating. As recommended by Lagakos (2006), it is best not to present
p-values for within-subgroup comparisons, but rather to give an estimate of the magnitude of the
treatment difference. To summarize the terminal nodes, one can compute the average responses
for both treatments within each terminal node, as well as their relative differences or ratios and the
associated standard errors. If, however, one would like to perform some formal statistical testings,
then it is important to conduct these tests based on yet another independent sample. To do so, one
partitions the data into three sets: the learning sample L1, the validation sample L2, and the test
sample L3. The best IT structure will be developed using L1 and L2, and then reconfirmed using
the test sample L3.

It happens often that the treatment shows homogeneous effects for entirely different causal rea-
sons in terminal nodes stemming from different branches. In this case, a merging scheme analogous
to the approach of Ciampi et al. (1986) can be useful to further bring down the number of final sub-
groups. A smaller number of subgroups are easier to summarize and comprehend and more efficient
to represent the heterogeneity structure for the treatment effect. It also ameliorates the multiplicity
issue in within-subgroup comparisons. In this scheme, one computes the t statistic in equation (1)
between every pair of the terminal nodes. The pair showing the least heterogeneity in treatment
effect are then merged together. The same procedure is executed iteratively until all the remaining
subgroups display outstanding heterogeneity. In the end, one can sort the final subgroups based on
the strength of the treatment effect, from the most effective to the least effective.

Remark 4: The hierarchical tree structure is appealing mainly because of its easy interpretability.
Apparently the merging scheme would invalidate the tree structure, yet lead to better interpretations.
It is noteworthy that this merging scheme contributes additional optimism to the results. Thus, we
suggest that amalgamation be executed with data (L1+L2) that pool the learning sample L1 and the
validation sample L2 together, so that the resultant subgroups can be validated using the test sample
L3.We shall illustrate this scheme with an example presented in Section 4.

2.5 Variable Importance Measure via Random Forests

Variable importance measure is another attractive feature offered by recursive partitioning. In the
context of subgroup analysis, a covariate is called an effect-modifier of the treatment if it strongly
interacts with the treatment. Variable importance measure helps answer questions such as which
features or predictors are important in modifying the treatment effect. This issue cannot be fully
addressed by simply examining the splitting variables shown in a single final IT structure, as an im-
portant variable can be completely masked by other correlated ones. While there are many methods
available for extracting variable importance information, we propose an algorithm analogous to the
procedure used in random forests (Breiman, 2001), which is among the newest and most promising
developments in this regards.
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Algorithm 1: Computing Variable Importance Measure via Random Forests.

Initialize all V j’s to 0.
For b= 1,2, . . . ,B, do

• Generate bootstrap sample Lb and obtain the out-of-bag sample L −Lb.
• Based on Lb, grow a large IT tree Tb by searching over m0 randomly selected
covariates at each split.
• Send L −Lb down Tb to compute G(Tb).
• For all covariates X j, j = 1, . . . , p, do

◦ Permute the values of X j in L −Lb.
◦ Send the permuted L −Lb down to Tb to compute G j(Tb).

◦ Update V j ←Vj +
G(Tb)−G j(Tb)

G(Tb)
.

• End do.

End do.
Average V j ←Vj/B.

Let Vj denote the importance measure of the j-th covariate or feature X j for j = 1, . . . , p. We
construct random forests of IT trees by taking B bootstrap samples Lb, b = 1, . . . ,B. This is done
by searching over only a subset of randomly selected m0 covariates at each split. For each IT tree
Tb, the b-th out-of-bag sample (denoted as L −Lb), which contains all observations that are not
in Lb, is sent down Tb to compute the interaction measure G(Tb). Next, the values of the j-th
covariate in L −Lb are randomly permuted. The permuted out-of-bag sample is then sent down Tb
to recompute G j(Tb). The relative difference between G(Tb) and G j(Tb) is recorded. The procedure
is repeated for B bootstrap samples. As a result, the importance measure V j is the average of the
relative differences over all B bootstrap samples. The whole procedure is summarized in Algorithm
1.

The variable importance technique in random forests has been increasingly studied in its own
right and applied as a tool for variable selection in various fields. This method generally belongs
to the “cost-of-exclusion” (Kononenko and Hong, 1997) feature selection category, in which the
importance or relevance of a feature is determined by the difference in some model performance
measure with and without the given feature included in the modeling process. In Algorithm 1,
random forests make available a flexible modeling process while exclusion of a given feature is
carried out by permutating its values.

3. Simulated Studies

This section contains simulated experiments designed to investigate the performance of the IT pro-
cedure. We generate data from six models outlined in Table 1. Each data set consists of a contin-
uous response Y , a binary treatment, and four covariates X1–X4 simulated from a discrete uniform
distribution over (0.02,0.04, . . . ,1.00). However, only a subset of the covariates interact with the
treatment.
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Error
Model Form Distribution
A Y = 2+2 · trt+2Z1+2Z2+ ' N (0,1)
B Y = 2+2 · trt+2Z1+2Z2+2 · trt ·Z1Z2+ ' N (0,1)
C Y = 2+2 · trt+2Z1+2Z2+2 · trt ·Z1+2 · trt ·Z2+ ' N (0,1)
D Y = 10+10 · trt · exp{(X1−0.5)2+(X2−0.5)2}+ ' N (0,1)
E Y = 2+2 · trt+2Z1+2Z2+2 · trt ·Z1+2 · trt ·Z2+ ' Unif(−

√
3,
√
3)

F Y = 2+2 · trt+2Z1+2Z2+2 · trt ·Z1+2 · trt ·Z2+ ' exp(1)

Table 1: Models used for assessing the performance of the IT procedure. Note that Z1 = 1{X1≤0.5}
and Z2 = 1{X2≤0.5}.

Specifically, Model A is a plain additive model with no interaction. It helps assess the type I
error or false positive rate when using the IT procedure. Model B involves a second-order interaction
between the treatment and two terms of thresholds, both at 0.5, on X1 and X2. If the IT procedure
works, a tree structure with three terminal nodes should be selected. In Model C, the two thresholds,
each interacting with the treatment, are present in an additive manner. Model D involves interaction
of complex forms other than cross-products. A large tree is expected in order to represent the
interaction structure in this case. Models E and F are similar to Model C, but with different error
distributions. They are useful in evaluating the robustness of the IT procedure to deviations from
normality.

Only one set of sample sizes is reported: 800 observations in the learning sample L1 and 400
observations in the validation sample L2. Each model is examined for 200 simulation runs and four
choices of (, {2,3,4, ln(400)}, are considered for determining the best tree structure. The relative
frequencies of the final tree sizes selected by the IT procedure are presented in Table 2. The expected
final tree size for each model is highlighted in boldface. Note that both X1 and X2, but neither X3
nor X4, are actually involved in models B-F. To address the variable selection issue, we count the
frequency of “hits” (i.e., the final tree selected by the IT procedure is split by X1 and X2 and only by
them). The results are presented in the last column of Table 2.

We first examine the results for Model A, which involves no interaction. The IT procedure
correctly selects the null tree structure at least 83.5% of the time. When ( = ln(n), the percentage
of correct selections becomes 98.5%. The 98.5% of correct selections yields an empirical size of
100%-98.5% = 1.5%, which is well within the acceptable level. This implies that the chance for the
IT procedure to extract an unsolicited interactions is really small. For models B-F, the IT procedure
also successfully identifies the true final tree structure and selects the desired splitting variables a
majority of the time. Moreover, from results for models E and F, it seems rather robust against
deviations from normality. When comparing different complexity parameters, we see that (= ln(n)
provides the best selection. This is mainly because of the large sample size and relatively strong
signals considered in our simulation configuration (see, e.g., McQuarrie and Tsai, 1998).

To evaluate the proposed variable importance technique, we generate a data set containing 1,200
observations from each model. Then a total number of 500 random interaction trees with m0 = 1 are
used to compute the variable importance. In Figure 1, graphs A-I, B-I, . . ., F-I display the resultant
importance scores for models A-F, respectively. For comparison, we also apply a simple feature
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Complexity Final Tree Size
Model ( 1 2 3 4 5 6 ≥ 7 Hits
A 2 83.5 5.0 2.5 2.5 2.0 0.5 4.0 83.5

3 94.0 3.5 0.5 0.5 1.0 0.5 0.0 94.0
4 97.5 2.5 0.0 0.0 0.0 0.0 0.0 97.5

ln(n) 98.5 1.5 0.0 0.0 0.0 0.0 0.0 98.5

B 2 0.0 0.0 67.0 9.0 9.0 2.5 12.5 77.5
3 0.0 0.0 83.0 6.5 5.5 1.0 4.0 90.0
4 0.0 0.0 89.0 6.5 3.0 1.0 0.5 95.0

ln(n) 1.0 0.0 91.5 6.5 2.0 0.0 0.0 97.5

C 2 0.0 0.0 0.0 66.5 10.5 9.5 13.5 77.5
3 0.0 0.0 0.0 82.5 7.5 6.0 4.0 90.5
4 0.0 0.0 0.0 88.0 6.5 4.5 1.0 95.0

ln(n) 0.0 0.0 0.0 94.0 4.0 1.5 0.5 98.5

D 2 0.0 0.0 0.0 0.0 13.0 10.5 76.5 66.5
3 0.0 0.0 0.0 0.5 24.5 16.0 59.0 83.5
4 0.0 0.0 0.0 0.5 35.5 18.5 45.5 91.5

ln(n) 0.0 0.0 2.0 3.5 54.0 16.0 24.5 96.0

E 2 0.0 0.0 0.0 74.0 12.0 6.0 8.0 82.0
3 0.0 0.0 0.0 88.5 7.5 3.5 0.5 93.0
4 0.0 0.0 0.0 93.5 5.0 1.0 0.5 97.5

ln(n) 0.0 0.0 0.0 97.0 2.5 0.0 0.5 98.5

F 2 0.0 0.0 0.0 67.5 13.0 8.0 11.5 76.5
3 0.0 0.0 0.0 84.5 7.0 4.5 4.0 91.0
4 0.0 0.0 0.0 90.0 7.5 1.5 1.0 96.5

ln(n) 0.0 0.0 0.0 95.0 4.5 0.5 0.0 99.0

Table 2: Relative frequencies (in percentages) of the final tree size identified by the interaction tree
(IT) procedure in 200 runs.

selection approach, in which the importance of a covariate, say, X , is determined by the p-value for
testing H0 : %3 = 0 in the interaction model y= %0+%1x+%2 trt+%3 trt · x+ '. In Figure 1, graphs
A-II, B-II, . . ., F-II depict the resulting logworths for models A-F, where the logworth is defined as
minus base 10 logarithm of the p-value. Both methods are able to pick up important variables in
many cases. Nevertheless, the latter approach is focused on cross-product and first-order interac-
tions only, which accounts for its failure in models B and D. In Figure B-II, it fails to identify X1
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Figure 1: Variable Importance via Random Forests and Feature Selection for the Six Simulation
Models. With a data set consisting of 1200 observations generated from Model A, Graph
A-I plots the variable importance score computed from 500 random interaction trees
while Graph A-II plots the logworth of the p-value from the simple feature selection
method. Note that logworth = − log10(p-value). Similar methods were used to make
other graphs.

and mistakenly selects X4. In Figure D-II, none of the covariates are found important.

Remark 5: Comparatively, the random forest approach facilitates better comprehensive evaluation
by automatically taking into consideration interactions of higher orders and complex forms. As
pointed out by an anonymous reviewer, some other feature selection methods such as the wrapper
and/or embedded algorithms can be adopted to detect interactions. It would be interesting in future
research to have a more comprehensive study in comparing various algorithms with the variable
importance measure obtained from random forests.
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Name Type Levels Description
X1 age continuous 70 age
X2 workclass categorical 4 class of worker
X3 education ordinal 16 education levels
X4 marital categorical 7 marital status
X5 industry1 categorical 22 major industry
X6 occupation2 categorical 13 major occupation
X7 race categorical 5 race
X8 union categorical 2 member of a labor union
X9 fulltime categorical 6 full or part time employment
X10 tax.status categorical 6 tax filer status
X11 household.sum3 categorical 7 detailed household summary
X12 n.emplyee ordinal 7 number of persons worked for employer
X13 country.birth categorical 39 country of birth
X14 citizenship categorical 7 US citizen or not
X15 self.employed categorical 3 own business or self employed
X16 weeks.worked continuous 53 weeks worked in year
1The specific levels for industry (X5): 1 - Agriculture; 2 - Business and repair services; 3 -
Communications; 4 - Construction; 5 - Education; 6 - Entertainment; 7 - Finance insurance and
real estate; 8 - Forestry and fisheries; 9 - Hospital services; 10 - Manufacturing-durable goods; 11 -
Manufacturing-nondurable goods; 12 - Medical except hospital; 13 - Mining; 14 - Other professional
services; 15 - Personal services except private HH; 16 - Private household services; 17 - Public
administration; 19 - Retail trade; Social services; 20 - Transportation; 21 - Utilities and sanitary
services; 22 - Wholesale trade.
2The specific levels for occupation (X6): 1- Adm support including clerical; 2 - Executive admin
and managerial; 3 - Farming forestry and fishing; 4 - Handlers equip cleaners etc; 5 - Machine
operators assmblrs & inspctrs; 6 - Other service; 7 - Precision production craft & repair; 8 - Private
household services; 9 - Professional specialty; 10 - Protective services; 11 - Sales; 12 - Technicians
and related support; 13 - Transportation and material moving.
3The specific levels for household.sum (X11): 1 - Child 18 or older; 2 - Child under 18 never
married; 3 - Group Quarters, Secondary individual; 4 - Householder; 5 - Nonrelative of householder;
6 - Other relative of householder; 7 - Spouse of householder.

Table 3: Variable Description for the Census Wage Data.

4. An Example - The CPS Data

Society has long been arguing for pay equality between women and men. Although the pay gap has
narrowed, according to current statistics, gaps between the two sexes still exist. For example, the
Bureau of Labor Statistics of the U.S. Department of Labor, in 2004, the most recent year for which
statistics are available, reported that women’s median weekly earnings were only 80 percent that of
men. This represents an improvement over 1979, when women brought home only 62 percent of
earnings compared to their male counterparts. A public policy advocate would be very interested
in specific subgroups of the working population where the pay gap between sexes is still dominant.
Traditional statistical methods consider simple cross tabulations according to a number of variables.
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Figure 2: Tree size selection for the CPS data (the plot of G!(Tm) vs. tree size).

The quest becomes complicated when there are a large number of classification variables to choose
from, which motivates the IT procedure.

We extract data from the Current Population Survey (CPS) database, which can be accessed at
(http://www.census.gov/cps/). The CPS is a national monthly survey of approximately 60,000
households conducted by the U.S. Census Bureau for the Bureau of Labor Statistics. Information
collected in the survey includes employment status, hours worked and income from work as well
as a number of demographic characteristics of the household members. From the CPS 1995 March
Supplement, we compile a data set, which contains 16,602 individuals with no missing value in-
volved. We use hourly wages in U.S. dollars as a measure of pay. Besides gender, there are a total
of 16 demographical covariates included. A brief description for these covariates is given in Table
3. Several of them are nominal with many levels. We only list detailed codings for those variables
appearing in the final tree structure.

To apply IT, we take a logarithmic transformation on wage. Then, we randomly divide the
entire data (denoted as L) into three sets with a ratio of approximately 2: 1: 1. A large initial tree
with 33 terminal nodes is constructed and pruned using data in L1. Sending the validation sample
L2 down each subtree, Figure 2 depicts the resultant G!(Tm) score versus the subtree size. It can
be seen that the four choices of complexity parameter (= 2,3,4, and ln(n) yield the best tree sizes
of 23, 10, 9, and 9, respectively. For the sake of illustration, the best tree structure with 9 terminal
nodes as well as some related summary statistics are given in Figure 3. To merge those terminal
nodes among which the wage discrepancies due to gender are not significantly different, we run the
amalgamation algorithm with the pooled data (L1+L2). It results in four final subgroups, which are
then ranked as I-IV according to the ratio of women versus men in terms of average wage. In Group
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Figure 3: The best-sized interaction tree for the CPS data selected by BIC. For each internal node
denoted by a box, the splitting rule is given inside the box. Observations satisfying the
condition go to the left node while observations not satisfying the condition go the right
node. To the left of each internal node is the t(s) test statistic recomputed using L3.
Terminal nodes are denoted by circles and ranked with Roman numerals on the left. The
node size (i.e., number of individuals) is given inside the circle and the ratio of average
wages for males versus females is given underneath, both based on the entire data set L .

I, women are most underpaid compared to men. In Group II, women are somewhat underpaid, etc.
This specification was also made available to each terminal node in Figure 3.

Table 4 summarizes the final four subgroups. For each subgroup, the number of men and
women, as well as their average wages, are computed based on the whole data L . The two-sample
t test for comparing the average wages between men and women is also presented. This test was
computed by using the test sample L3. Since there are four tests performed, one may compare the
resultant p-values with 0.05/4 = 0.0125 by applying the Bonferroni-typed adjustment to the joint
significant level ) = 0.05. As a result, Groups I, II, and IV, each marked with an asterisk, show
significant differences in wage between men and women.

Figure 3 indicates that the wage disparity between men and women varies with their occupation
(X5), industry of the job (X6), household compositional situation (X11), and age (X1). For both
Groups I and II, which constitute the majority of the population, women are paid significantly less
than men. It is particularly pronounced in Group I, where the average wage of men is $12.29 per
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Figure 4: Variable importance measures for the CPS Data: (a), via random forests of interaction
trees; (b), based on the p-value associated with the interaction terms in an interaction
model that includes the treatment and the covariate only. Note that the logworth is
− log10(p-value). The sixteen covariates are age (X1), workclass (X2), education (X3),
marital (X4), industry (X5), occupation (X6), race (X7), union (X8), fulltime (X9),
tax.status (X10), household.sum (X11), n.employee (X12), country.birth (X13),
citizenship (X14), self.employed (X15), and weeks.worked (X16).

hour while the average wage of women is only $8.03 per hour. Interestingly the IT tree has also
identified a subgroup, Group IV, in which men are underpaid compared to women. This occurs
in the following industries (X5): 1 - Agriculture; 6 - Entertainment; 8 - Forestry and fisheries; 9 -
Hospital services.

Finally, Figure 4(a) displays the computed variance importance scores for each of the 16 covari-
ates. In this calculation, B= 2,000 bootstrap samples are used and the number of randomly selected
variables, m0, is set at 4 when splitting data. It can be seen that industry (X5) and household.sum
(X11) stand out as the most important factors that contribute to the pay gap between males and fe-
males, followed by occupation (X6), tax.status (X10), marital (X4), and then age X1. This find-
ing is consistent with the tree structure in Figure 3, except for that tax.status (X10) and marital
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Male Female Two-Sample t Test
size average size average (computed from the test sample)

Node (n1) wage (ȳ1) (n0) wage (ȳ0) t p-value
I 3220 12.29 1311 8.03 13.449 < 0.0001!

II 3800 10.11 5326 8.25 7.678 < 0.0001!

III 449 8.08 946 9.15 −0.306 0.7598
IV 501 9.43 1049 11.76 −5.560 < 0.0001!

Table 4: Summary statistics for the four final subgroups of the CPS data. Note that (n1, ȳ1,n0, ȳ0)
are computed using the whole data. The two-sample t test statistics are calculated from
the test sample L3. The associated p-values are obtained for two-sided tests.

(X4) have been masked out. The simple feature selection technique is also used to determine the
importance of each covariate. Figure 4(b) depicts the resulting logworths. While both plots show
some similarities, one should keep in mind that evaluation based on the latter approach is rather
restrictive.

5. Discussion

In data analysis, it is important to distinguish two types of interactions. If there is no directional
change in terms of the comparison, that is, (µL1 −µL0) · (µR1 −µR0 ) > 0, the interaction is said to be
quantitative; otherwise, it is termed as qualitative. The presence of qualitative interactions causes
more concerns than quantitative ones (see, e.g., Gail and Simon, 1985). The results from the IT
procedure can help to address this issue. For instance, the qualitative interaction in the the CPS
example is obviously present among the final four subgroups.

The proposed IT procedure is applicable to a number of different areas. For example, the IT
structure can help identify the most and least effective subgroups for the investigational medicine.
If the new medicine shows an overall effect that is significant, and, if even in the least effective
subgroup under examination, it does not present any harmful side effects, then its release may be
endorsed without reservation. In trials where the proposed compound is not found to be significantly
effective, the tree-structured subgroup analysis may identify sub-populations that contribute to the
failure of the compound. Information gained in this manner could provide the basis for establish-
ing inclusion/exclusion criteria in future trials, and as such, could be of considerable value to the
existing efforts in synthesizing compounds to fight deadly diseases such as cancer and HIV/AIDS.
We believe that efforts along these lines make subgroup analysis an efficient and valuable tool for
research in many application fields.
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Appendix A. Categorical Splits

The following theorem provides motivation and justification for the computationally efficient strat-
egy of “ordinalizing” categorical covariates in interaction trees as discussed in Section 2.1. It is
analogous to Theorem 9.6 of CART (Breiman et al., 1984, pp. 274–278) yet makes a stronger
statement.

Consider splits based on a categorical covariate X , whose possible values range over a finite
set C = {c1, . . . ,cr}. Then any subset A ⊂ C, together with its complement A′ = C−A, induces a
partition of the data into tL = {(yi, trti,xi) : xil ∈ A} and tR = {(yi, trti,xi) : xil ∈ A′} . In the setting
of interaction trees, the splitting rule seeks an optimal partition (A+A′) to maximize the differ-
ence in treatment effect between two child nodes

{
(µL1−µL0)− (µR1 −µR0 )

}2
, where µL1 = µA1 =

E (y |xil ∈ A, trti = 1) denotes the treatment mean in the left child node, and a similar definition
applies for the other µ’s. For the sake of convenience, we assume (µL1 −µL0) > (µR1 −µR0 ) so that an
optimal split maximizes (µL1−µL0)− (µR1 −µR0 ).

Theorem 1. Let µck = E(y |X = c, trt = k) for any element c ∈C and k = 0,1. If (A+A′) forms
an optimal partition of C, then we have

µc11−µc10 ≥ µc21−µc20,

for any element c1 ∈ A and c2 ∈ A′.

Proof. Define
d1 =min

c∈A
(µc1−µc0) and d2 =max

c∈A′
(µc1−µc0) .

Accordingly, it suffices to show that d1 ≥ d2.
To proceed, let

A1 = {c ∈ A : µc1−µc0 = d1}
A2 =

{
c ∈ A′ : µc1−µc0 = d2

}

A3 = {c ∈ A : µc1−µc0 > d1}
A4 =

{
c ∈ A′ : µc1−µc0 < d2

}
.

Thus A = A1+A3 and A′ = A2+A4. We reserve a generic notation d = µ1−µ0 for the treatment
effect. Define

di = !
c∈Ai

(µc1−µc0) Pr{X j = c},

di j = !
c∈Ai∪A j

(µc1−µc0) Pr{X j = c},

di jk = !
c∈Ai∪A j∪Ak

(µc1−µc0) Pr{X j = c}.

for i += j += k = 1,2,3,4. We also introduce notation Qi = Pr{X j ∈ Ai} for i = 1,2,3,4. It can be
verified that

di j =
diQi+d jQ j

Qi j
with Qi j = Qi+Q j
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and
di jk =

diQi+d jQ j +dkQk

Qi jk
with Qi jk = Qi+Q j +Qk.

Since partition (A+ A′) provides an optimal partition, d13 − d24 > 0 reaches the maximum
among all possible partitions. In particular, for partition (A3+A′

3), we have d13−d24 ≥ d3−d124,
which can be shown equivalent to

d1 ≥ (1−Q3)d13+Q3 d24, (4)

by first plugging in the following two relationships

d3 =
Q13d13−Q1d1

Q3

d124 =
Q24d24+d1Q1

Q124

and then simplifying. Similarly, for partition (A′
4+A4), we can establish

Q4 d13+(1−Q4)d24 ≥ d2 (5)

starting with d13−d24 ≥ d123−d4.
Now suppose that d2 ≥ d1. It follows from (5) and (4) that

Q4 d13+(1−Q4)d24 ≥ d2 ≥ d1 ≥ (1−Q3)d13+Q3 d24
=⇒ {Q4 d13+(1−Q4)d24}−{(1−Q3)d13+Q3 d24} ≥ d2−d1
=⇒ Q12(d24−d13) ≥ d2−d1, since 1−Q3−Q4 = Q1+Q2 = Q12.

However, 0> d24−d13 leads to 0> d2−d1, which contradicts the condition d1 ≤ d2. Thus we must
have d1 > d2.

The theorem also holds in extreme cases such as d1 = d3 or d2 = d4, etc. The proofs are omitted.
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Abstract
In this paper, we introduce PEBL, a Python library and application for learning Bayesian network
structure from data and prior knowledge that provides features unmatched by alternative software
packages: the ability to use interventional data, flexible specification of structural priors, modeling
with hidden variables and exploitation of parallel processing.
PEBL is released under the MIT open-source license, can be installed from the Python Package
Index and is available at http://pebl-project.googlecode.com.
Keywords: Bayesian networks, python, open source software

1. Introduction

Bayesian networks (BN) have become a popular methodology in many fields because they can
model nonlinear, multimodal relationships using noisy, inconsistent data. Although learning the
structure of BNs from data is now common, there is still a great need for high-quality open-source
software that can meet the needs of various users. End users require software that is easy to use;
supports learning with different data types; can accommodate missing values and hidden variables;
and can take advantage of various computational clusters and grids. Researchers require a frame-
work for developing and testing new algorithms and translating them into usable software. We have
developed the Python Environment for Bayesian Learning (PEBL) to meet these needs.

2. PEBL Features

PEBL provides many features for working with data and BNs; some of the more notable ones are
listed below.

2.1 Structure Learning

PEBL can load data from tab-delimited text files with continuous, discrete and class variables and
can perform maximum entropy discretization. Data collected following an intervention is important
for determining causality but requires an altered scoring procedure (Pe’er et al., 2001; Sachs et al.,
2002). PEBL uses the BDe metric for scoring networks and handles interventional data using the
method described by Yoo et al. (2002).

c©2009 Abhik Shah and Peter Woolf.
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[data]
filename = mydata.txt
[learner]

from pebl import data, result type = greedy.GreedyLearner
from pebl.learner.greedy import GreedyLearner numtasks = 10
from pebl.taskcontroller.xgrid import XgridController [taskcontroller]

type=xgrid.XgridController
dataset = data.fromfile(’mydata.txt’) [xgrid]
runner = XgridController(’grid.com’, ’pass’) controller = grid.com
learners = [GreedyLearner(dataset) for i in range(10)] password = pass
results = runner.run(learners) [result]
result.merge(results).tohtml(’./myoutput’) output = ./myoutput

(a) Python script (b) PEBL configuration file

Figure 1: Two ways of using PEBL: with a Python script and a configuration file. Both methods
create 10 greedy learners with default parameters and run them on an Apple Xgid. The Python
script can be typed in an interactive shell, run as a script or included as part of a larger application.

PEBL can handle missing values and hidden variables using exact marginalization and Gibbs
sampling (Heckerman, 1998). The Gibbs sampler can be resumed from a previously suspended
state, allowing for interactive inspection of preliminary results or a manual strategy for determining
satisfactory convergence.

A key strength of Bayesian analysis is the ability to use prior knowledge. PEBL supports struc-
tural priors over edges specified as ’hard’ constraints or ’soft’ energy matrices (Imoto et al., 2003)
and arbitrary constraints specified as Python functions or lambda expressions.

PEBL includes greedy hill-climbing and simulated annealing learners and makes writing cus-
tom learners easy. Efficient implementaion of learners requires careful programming to eliminate
redundant computation. PEBL provides components to alter, score and rollback changes to BNs in
a simple, transactional manner and with these, efficient learners look remarkably similar to pseu-
docode.

2.2 Convenience and Scalability

PEBL includes both a library and a command line application. It aims for a balance between ease of
use, extensibility and performance. The majority of PEBL is written in Python, a dynamically-typed
programming language that runs on all major operating systems. Critical sections use the numpy
library (Ascher et al., 2001) for high-performance matrix operations and custom extensions written
in ANSI C for portability and speed.

PEBL’s use of Python makes it suitable for both programmers and domain experts. Python pro-
vides interactive shells and notebook interfaces and includes an extensive standard library and many
third-party packages. It has a strong presence in the scientific computing community (Oliphant,
2007). Figure 1 shows a script and configuration file example that showcase the ease of using PEBL.
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BANJO BNT Causal Explorer Deal LibB PEBL
Latest Version 2.0.1 1.04 1.4 1.2-25 2.1 0.9.10
License Academic 1 GPL Academic 1 GPL Academic 1 MIT
Scripting Language Matlab 2 Matlab Matlab R N/A Python
Application Yes No No No Yes Yes
Interventional Data No Yes No No No Yes
DBN Yes Yes No No No No
Structural Priors Yes 3 No No No No Yes
Missing Data No Yes No No Yes Yes
Parallel Execution No No No No No Yes
1 Custom academic, non-commercial license; not OSI approved.
2 Via a Matlab-Java bridge.
3 Only constraints/hard-priors supported.

Table 1: Comparing the features of popular Bayesian network structure learning software.

While many tasks related to Bayesian learning are embarrassingly parallel in theory, few soft-
ware packages take advantage of it. PEBL can execute learning tasks in parallel over multiple pro-
cessors or CPU cores, an Apple Xgrid,1 an IPython cluster2 or the Amazon EC2 platform.3 The
EC2 platform is especially attractive for scientists because it allows one to rent processing power
on an on-demand basis and execute PEBL tasks on them.

With appropriate configuration settings and the use of parallel execution, PEBL can be used
for large learning tasks. Although PEBL has been tested successfully with data sets with 10000
variables and samples, BN structure learning is a known NP-Hard problem (Chickering et al., 1994)
and analysis using data sets with more than a few hundred variables is likely to result in poor results
due to poor coverage of the search space.

3. PEBL Development

The benefits of open source software derive not just from the freedoms afforded by the software
license but also from the open and collaborative development model. PEBL’s source code repository
and issue tracker are hosted at Google Code and freely available to all. Additionally, PEBL includes
over 200 automated unit tests and mandates that every source code submission and resolved error
be accompanied with tests.

4. Related Software

While there are many software tools for working with BNs, most focus on parameter learning and
inference rather than structure learning. Of the few tools for structure learning, few are open-source
and none provide the set of features included in PEBL. As shown in Table 1, the ability to handle
interventional data, model with missing values and hidden variables, use soft and arbitrary priors
and exploit parallel platforms are unique to PEBL. PEBL, however, does not currently provide any

1. Grid computing solution by Apple, Inc. http://www.apple.com/server/macosx/technology/xgrid.html.
2. Cluster of Python interpreters (http://ipython.scipy.org).
3. A pay-per-use, on-demand computing platform by Amazon, Inc. (http://aws.amazon.com).
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features for inference or learning Dynamic Bayesian Networks (DBN). Despite its use of optimized
matrix libraries and custom C extension modules, PEBL can be an order of magnitude or more
slower than software written in Java or C/C++; the ability to use a wider range of data and priors,
the parallel processing features and the ease-of-use, however, should make it an attractive option for
many users.

5. Conclusion and Future Work

We have developed a library and application for learning BNs from data and prior knowledge. The
set of features found in PEBL is unmatched by alternative packages and we hope that our open
development model will convince others to use PEBL as a platform for BN algorithms research.
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Abstract
We study the properties of the agnostic learning framework of Haussler (1992) and Kearns, Schapire,
and Sellie (1994). In particular, we address the question: is there any situation in which member-
ship queries are useful in agnostic learning?

Our results show that the answer is negative for distribution-independent agnostic learning and
positive for agnostic learning with respect to a specific marginal distribution. Namely, we give a
simple proof that any concept class learnable agnostically by a distribution-independent algorithm
with access to membership queries is also learnable agnostically without membership queries. This
resolves an open problem posed by Kearns et al. (1994). For agnostic learning with respect to the
uniform distribution over {0,1}n we show a concept class that is learnable with membership queries
but computationally hard to learn from random examples alone (assuming that one-way functions
exist).
Keywords: agnostic learning, membership query, separation, PAC learning

1. Introduction

The agnostic framework (Haussler, 1992; Kearns et al., 1994) is a natural generalization of Valiant’s
PAC learning model (Valiant, 1984). In this model no assumptions are made on the labels of the
examples given to the learning algorithm, in other words, the learning algorithm has no prior beliefs
about the target concept (and hence the name of the model). The goal of the agnostic learning
algorithm for a concept class C is to produce a hypothesis h whose error on the target concept is
close to the best possible by a concept from C . This model reflects a common empirical approach
to learning, where few or no assumptions are made on the process that generates the examples
and a limited space of candidate hypothesis functions is searched in an attempt to find the best
approximation to the given data.

Designing algorithms that learn efficiently in this model is notoriously hard and very few pos-
itive results are known (Kearns et al., 1994; Lee et al., 1995; Goldman et al., 2001; Gopalan et al.,
2008; Kalai et al., 2008a,b). Furthermore, strong computational hardness results are known for ag-
nostic learning of even the simplest classes of functions such as parities, monomials and halfspaces
(Håstad, 2001; Feldman, 2006; Feldman et al., 2006; Guruswami and Raghavendra, 2006) (albeit
only for proper learning). Reductions from long-standing open problems for PAC learning to ag-

∗. Parts of this work are published in the Proceedings of 18th Annual Conference on Learning Theory, 2008.
†. Part of the work done while the author was at Harvard University supported by grants from the National Science
Foundation NSF-CCF-04-32037 and NSF-CCF-04-27129.
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nostic learning of simple classes of functions provide another indication of the hardness of agnostic
learning (Kearns et al., 1994; Kalai et al., 2008a; Feldman et al., 2006).

A membership oracle allows a learning algorithm to obtain the value of the unknown target
function f on any point in the domain. It can be thought of as modeling the access to an expert or
ability to conduct experiments. Learning with membership queries in both PAC and Angluin’s exact
models (Angluin, 1988) was studied in numerous works. For example monotone DNF formulas,
finite automata and decision trees are only known to be learnable with membership queries (Valiant,
1984; Angluin, 1988; Bshouty, 1995). It is well-known and easy to prove that the PAC model
with membership queries is strictly stronger than the PAC model without membership queries (if
one-way functions exist).

Membership queries are also used in several agnostic learning algorithms. The first one is
the famous algorithm of Goldreich and Levin (1989) introduced in a cryptographic context (even
before the definition of the agnostic learning model). Their algorithm learns parities agnostically
with respect to the uniform distribution using membership queries. Kushilevitz and Mansour (1993)
used this algorithm to PAC learn decision trees and it has since found numerous other significant
applications. More efficient versions of this algorithm were also given by Levin (1993), Bshouty,
Jackson, and Tamon (2004) and Feldman (2007). Recently, Gopalan, Kalai, and Klivans (2008)
gave an elegant algorithm that learns decision trees agnostically over the uniform distribution and
uses membership queries.

1.1 Our Contribution

In this work we study the power of membership queries in the agnostic learning model. The ques-
tion of whether or not membership queries can aid in agnostic learning was first asked by Kearns
et al. (1994) who conjectured that the answer is no. To the best of our knowledge, the question has
not been addressed prior to our work. We present two results on this question. In the first result we
prove that every concept class learnable agnostically with membership queries is also learnable ag-
nostically without membership queries (see Th. 6 for a formal statement). This proves the conjecture
of Kearns et al. (1994). The reduction we give modifies the distribution of examples and therefore
is only valid for distribution-independent learning, that is, when a single learning algorithm is used
for every distribution over the examples. The simple proof of this result explains why the known
distribution-independent agnostic learning algorithm do not use membership queries (Kearns et al.,
1994; Kalai et al., 2008a,b).

The proof of this result also shows equivalence of two standard agnostic models: the one in
which examples are labeled by an unrestricted function and the one in which examples come from
a joint distribution over the domain and the labels.

Our second result is a proof that there exists a concept class that is agnostically learnable with
membership queries over the uniform distribution on {0,1}n but hard to learn in the same setting
without membership queries (see Th. 8 for a formal statement). This result is based on the most basic
cryptographic assumption, namely the existence of one-way functions. Note that an unconditional
separation of these two models would imply NP "= P. Cryptographic assumptions are essential
for numerous other hardness results in learning theory (cf., Kearns and Valiant, 1994; Kharitonov,
1995). Our construction is based on the use of pseudorandom function families, list-decodable
codes and a variant of an idea from the work of Elbaz, Lee, Servedio, and Wan (2007). Sections 4.1
and 4.2 describe the technique and its relation to prior work in more detail.
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This results is, perhaps, unsurprising since agnostic learning of parities with respect to the uni-
form distribution from random examples only is commonly considered hard and is known to be
equivalent to learning of parities with random noise (Feldman et al., 2006), a long standing open
problem which itself is equivalent to decoding of random linear codes, a long-standing open prob-
lem in coding theory. The best known algorithm for this problem runs in time O(2n/ logn) (Blum
et al., 2003; Feldman et al., 2006). If one assumes that learning of parities with noise is intractable
then it immediately follows that membership queries are provably helpful in agnostic learning over
the uniform distribution on {0,1}n. The goal of our result is to replace this assumption by a possi-
bly weaker and more general cryptographic assumption. It is known that if learning of parities with
noise is hard then one-way functions exist (Blum et al., 1993) but, for all we know, it is possible that
the converse is not true. The proof of our result however is substantially less straightforward than
one might expect (and than the analogous separation for PAC learning). Here the main obstacle is
the same as in proving positive results for agnostic learning: the requirements of the model impose
severe limits on concept classes for which the agnostic guarantees can be provably satisfied.

1.2 Organization

Following the preliminaries, our first result is described in Section 3. The second result appears in
Section 4.

2. Preliminaries

Let X denote the domain or the input space of a learning problem. The domain of the problems
that we study is {0,1}n, or the n-dimensional Boolean hypercube. A concept over X is a {−1,1}
function over the domain and a concept class C is a set of concepts over X . The unknown function
f ∈ C that a learning algorithm is trying to learn is referred to as the target concept.
A parity function is a function equal to the XOR of some subset of variables. For a Boolean

vector a ∈ {0,1}n we define the parity function !a(x) = (−1)a·x = (−1)⊕i≤naixi . We denote the
concept class of parity functions {!a | a ∈ {0,1}n} by PAR. A k-junta is a function that depends
only on k variables.

A representation class is a concept class defined by providing a specific way to represent each
function in the concept class. In fact all the classes of functions that we discuss are representation
classes. We often refer to a representation class simply as concept class when the representation
is implicit in the description of the class. For a representation class F , we say that an algorithm
outputs f ∈ F if the algorithm outputs f in the representation associated with F .

2.1 PAC Learning Model

The learning models discussed in this work are based on Valiant’s well-known PAC model (Valiant,
1984). In this model, for a concept f and distribution D over X , an example oracle EX(D, f ) is the
oracle that, upon request, returns an example 〈x, f (x)〉 where x is chosen randomly with respect to
D. For "≥ 0 we say that a function g "-approximates a function f with respect to distribution D if
PrD[ f (x) = g(x)] ≥ 1−". In the PAC learning model the learner is given access to EX(D, f ) where
f is assumed to belong to a fixed concept class C .
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Definition 1 For a representation class C , we say that an algorithm Alg PAC learns C , if for every
" > 0, # > 0, f ∈ C , and distribution D over X, Alg, given access to EX(D, f ), outputs, with
probability at least 1−#, a hypothesis h that "-approximates f .

The learning algorithm is efficient if its running time and the time to evaluate h are polynomial
in 1/",1/# and the size $ of the learning problem. Here by the size we refer to the maximum
description length of an element in X (e.g., n when X = {0,1}n) plus the maximum description
length of an element in C in the representation associated with C .

An algorithm is said to weakly learn C if it produces a hypothesis h that ( 12−
1

p(!))-approximates
f for some polynomial p(·).

2.2 Agnostic Learning Model

The agnostic learning model was introduced by Haussler (1992) and Kearns et al. (1994) in order
to model situations in which the assumption that examples are labeled by some f ∈ C does not
hold. In its least restricted version the examples are generated from some unknown distribution A
over X ×{−1,1}. The goal of an agnostic learning algorithm for a concept class C is to produce a
hypothesis whose error on examples generated from A is close to the best possible by a concept from
C . Class C is referred to as the touchstone class in this setting. More generally, the model allows
specification of the assumptions made by a learning algorithm by describing a set A of distributions
over X × {−1,1} that restricts the distributions over X × {−1,1} seen by a learning algorithm.
Such A is referred to as the assumption class. Any distribution A over X×{−1,1} can be described
uniquely by its marginal distribution D over X and the expectation of b given x. That is, we refer to
a distribution A over X×{−1,1} by a pair (DA,%A) where DA(z) = Pr〈x,b〉∼A[x= z] and

%A(z) = E〈x,b〉∼A[b | z= x].

Formally, for a Boolean function h and a distribution A= (D,%) over X×{−1,1}, we define

&(A,h) = Pr〈x,b〉∼A[h(x) "= b] = ED[|%(x)−h(x)|/2] .

Similarly, for a concept class C , define

&(A,C ) = inf
h∈C

{&(A,h)} .

Kearns et al. (1994) define agnostic learning as follows.

Definition 2 An algorithm Alg agnostically learns a representation class C by a representation
class H assuming A if for every "> 0,#> 0, A∈ A , Alg given access to examples drawn randomly
from A, outputs, with probability at least 1−#, a hypothesis h ∈ H such that &(A,h)≤ &(A,C )+".

The learning algorithm is efficient if it runs in time polynomial 1/", log(1/#) and $ (the size of
the learning problem). If H = C then, by analogy with the PAC model, the learning is referred to
as proper. We drop the reference to H to indicate that C is learnable by some representation class.

A number of special cases of the above definition are commonly considered (and often referred
to as the agnostic learning model). In fully agnostic learning A is the set of all distributions over
X ×{−1,1}. Another version assumes that examples are labeled by an unrestricted function. That
is, the set A contains distribution A= (D, f ) for every Boolean function f and distribution D. Note
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that access to random examples from A = (D, f ) is equivalent to access to EX(D, f ). Following
Kearns et al. (1994), we refer to this version as agnostic PAC learning. Theorem 6 implies that
these versions are essentially equivalent. In distribution-specific versions of this model for every
(D,%) ∈ A , D equals to some fixed distribution known in advance.

We also note that the agnostic PAC learning model can also be thought of as a model of adver-
sarial classification noise. By definition, a Boolean function g differs from some function f ∈ C
on &(g,C ) fraction of the domain. Therefore g can be thought of as f corrupted by noise of rate
&D( f ,C ). Unlike in the random classification noise model, the points on which a concept can be
corrupted are unrestricted and therefore the noise is referred to as adversarial.

2.2.1 UNIFORM CONVERGENCE

A natural approach to agnostic learning is to first draw a sample of fixed size and then choose a
hypothesis that best fits the observed labels. The conditions in which this approach is successful
were studied in works of Dudley (1978), Pollard (1984), Haussler (1992), Vapnik (1998) and others.
They give a number of conditions on the hypothesis class H that guarantee uniform convergence
of empirical error to the true error. That is, existence of a function mH (",#) such that for every
distribution A over examples, every h ∈ H , " > 0, # > 0, the empirical error of h on sample of
mH (",#) examples randomly chosen from A is, with probability at least 1−#, within " of &(A,h).
We denote the empirical error of h on sample S by &(S,h). In the Boolean case, the following result
of Vapnik and Chervonenkis (1971) will be sufficient for our purposes.

Theorem 3 Let H be a concept class over X of VC dimension d. Then for every distribution A over
X ×{−1,1}, every h ∈ H , "> 0, #> 0, and sample S of size m= O((d log(d/")+ log(1/#))/"2)
randomly drawn with respect to A,

Pr[|&(A,h)−&(S,h)|≥ "] ≤ #.

In fact a simple uniform convergence result based on the cardinality of the function class follows
easily from Chernoff bounds (Haussler, 1992). That is Theorem 3 holds for m = O(log |H |/"2 ·
log(1/#)). This result would also be sufficient for our purposes but might give somewhat weaker
bounds.

2.3 Membership Queries

Amembership oracle for a function f is the oracle that, given any point z∈ {0,1}n, returns the value
f (z) (Valiant, 1984). We denote it by MEM( f ). We refer to agnostic PAC learning with access to
MEM( f ), where f is the unknown function that labels the examples, as agnostic PAC+MQ learning.
Similarly, one can extend the definition of a membership oracle to fully agnostic learning. For a
distribution A over X ×{−1,1}, let MEM(A) be the oracle that, upon query z, returns b ∈ {−1,1}
with probability PrA[(x,b) | x = z]. We say that MEM(A) is persistent if given the same query the
oracle responds with the same label. When learning with persistent membership queries the learning
algorithm is allowed to fail with some negligible probability over the answers of MEM(A). This is
necessary to account for probability that the answers of MEM(A) might be not “representative” of
A (a more formal argument can be found for example in the work of Goldman et al. 2001).
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2.4 List-Decodable Codes

As we have mentioned earlier, agnostic learning can be seen as recovery of an unknown concept
from possibly malicious errors. Therefore, encoding of information that allows recovery from er-
rors, or error-correcting codes, can be useful in the design of agnostic learning algorithms. In our
construction we will use binary list-decodable error-correcting codes. A list-decodable code is a
code that allows recovery from errors when the number of errors is larger than the distance of the
code, and hence there is more than one valid way to decode the corrupted encoding, each giving a
different message (see for example the book of van Lint 1998). List-decoding of the code gives the
list of all the messages corresponding to the valid ways to decode the corrupt encoding. Formally,
let C : {0,1}u → {0,1}v be a binary code of message length u and block length v. Our construction
requires efficient encoding and efficient list-decoding from 1/2−' fraction of errors for a '> 0 that
we will define later. Specifically,

• Efficient encoding algorithm. For any z ∈ {0,1}u and j ≤ v, C(z) j (the jth bit of C(z)) is
computable in time polynomial in u and logv.

• Efficient list-decoding from (1/2−'′)v errors in time polynomial in u and 1/'′ for any '′ ≥ '.
That is, an algorithm that given oracle access to the bits of string y ∈ {0,1}v, produces the list
of all messages z such that Pr j∈[v][C(z) j "= y j] ≤ 1/2− '′ (in time polynomial in u and 1/'′).

Our main result is achieved using the Reed-Solomon code concatenated with the Hadamard
code for which the list-decoding algorithm was given by Guruswami and Sudan (2000). Their code
has the desired properties for v = O(u2/'4). In the description of our construction, for simplicity,
we use the more familiar but exponentially longer Hadamard code.

2.4.1 HADAMARD CODE

The Hadamard code encodes a vector a ∈ {0,1}n as the values of the parity function !a on all the
points in {0,1}n (that is the length of the encoding is 2n). It is convenient to describe list-decoding
of the Hadamard code using Fourier analysis over {0,1}n that is commonly used in the context of
learning with respect to the uniform distribution (Linial, Mansour, and Nisan, 1993). We now briefly
review a number of simple facts on the Fourier representation of functions over {0,1}n and refer the
reader to a survey by Mansour (1994) for more details. In the discussion below all probabilities and
expectations are taken with respect to the uniform distributionU unless specifically stated otherwise.

Define an inner product of two real-valued functions over {0,1}n to be 〈 f ,g〉 = Ex[ f (x)g(x)].
The technique is based on the fact that the set of all parity functions {!a(x)}a∈{0,1}n forms an or-
thonormal basis of the linear space of real-valued functions over {0,1}n with the above inner prod-
uct. This fact implies that any real-valued function f over {0,1}n can be uniquely represented as
a linear combination of parities, that is f (x) = (a∈{0,1}n f̂ (a)!a(x). The coefficient f̂ (a) is called
Fourier coefficient of f on a and equals Ex[ f (x)!a(x)]; a is called the index of f̂ (a). We say that
a Fourier coefficient f̂ (a) is )-heavy if | f̂ (a)| ≥ ). Let L2( f ) = Ex[( f (x))2]1/2. Parseval’s identity
states that

(L2( f ))2 = Ex[( f (x))2] =!
a
f̂ 2(a) .

Let A= (U,%) be a distribution over {0,1}n×{−1,1} with uniform marginal distribution over
{0,1}n. Fourier coefficient %̂(a) can be easily related to the error of !a(x) on A. That is,

Pr〈x,b〉∼A[b "= !a(x)] = (1− %̂(a))/2. (1)
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Therefore, both list-decoding of the Hadamard code and agnostic learning of parities amount to
finding the largest (within 2") Fourier coefficient of %(x). The first algorithm for this task was
given by Goldreich and Levin (1989). Given access to a membership oracle, for every " > 0 their
algorithm can efficiently find all "-heavy Fourier coefficients.

Theorem 4 (Goldreich and Levin, 1989) There exists an algorithm GL that for every distribution
A = (U,%) and every ",# > 0, given access to MEM(A), GL(",#) returns, with probability at least
1−#, a set of indices T ⊆ {0,1}n that contains all a such that |%̂(a)|≥ " and for all a ∈ T , |%̂(a)|≥
"/2. Furthermore, the algorithm runs in time polynomial in n,1/" and log(1/#).

Note that by Parseval’s identity, the condition |%̂(a)| ≥ "/2 implies that there are at most 4/"2
elements in T .

2.5 Pseudo-random Function Families

A key part of our construction in Section 4 will be based on the use of pseudorandom functions
families defined by Goldreich, Goldwasser, and Micali (1986).

Definition 5 A function family F = {Fn}"n=1 where Fn = {*z}z∈{0,1}n is a pseudorandom function
family of Boolean functions over {0,1}n if

• There exists a polynomial time algorithm that for every n, given z ∈ {0,1}n and x ∈ {0,1}n
computes *z(x).

• Any adversary M whose resources are bounded by a polynomial in n can distinguish between
a function *z (where z ∈ {0,1}n is chosen randomly and kept secret) and a totally random
function from {0,1}n to {−1,1} only with negligible probability. That is, for every proba-
bilistic polynomial time M with an oracle access to a function from {0,1}n to {−1,1} there
exists a negligible function +(n),

|Pr[M#z(1n) = 1]−Pr[M$(1n) = 1]|≤ +(n),

where *z is a function randomly and uniformly chosen from Fn and , is a randomly chosen
function from {0,1}n to {−1,1}. The probability is taken over the random choice of *z or ,
and the coin flips of M.

Results of Håstad et al. (1999) and Goldreich et al. (1986) give a construction of pseudorandom
function families based on the existence of one-way functions.

3. Distribution-Independent Agnostic Learning

In this section we show that in distribution-independent agnostic learning membership queries do
not help. In addition, we prove that fully agnostic learning is equivalent to agnostic PAC learning.
Our proof is based on two simple observations about agnostic learning via empirical error mini-
mization. Values of the unknown function on points outside of the sample can be set to any value
without changing the best fit by a function from the touchstone class. Therefore membership queries
do not make empirical error minimization easier. In addition, points with contradicting labels do
not influence the complexity of empirical error minimization since any function has the same error
on pairs of contradicting labels. We will now provide the formal statement of this result.
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Theorem 6 Let Alg be an algorithm that agnostically PAC+MQ learns a concept class C in time
T ($,",#) and outputs a hypothesis in a representation class H ($,"). Then C is (fully) agnostically
learnable by H ($,"/2) in time T ($,"/2,#/2)+O(d · log(d/")+ log(1/#))/"2), where d is the VC
dimension of H ($,"/2)∪C .
Proof Let A= (D,%) be a distribution over X ×{−1,1}. Our reduction works as follows. Start by
drawing m examples from A for m to be defined later. Denote this sample by S. Let S′ be S with all
contradicting pairs of examples removed, that is for each example 〈x,1〉 we remove it together with
one example 〈x,−1〉. Every function has the same error rate of 1/2 on examples in S\S′. Therefore
for every function h,

&(S,h) =
&(S′,h)|S′|+ |S\S′|/2

|S| = &(S′,h)
|S′|
m

+
m− |S′|
2m

(2)

and hence
&(S,C ) = &(S′,C)

|S′|
m

+
m− |S′|
2m

. (3)

Let f (x) denote the function equal to b if 〈x,b〉 ∈ S′ and equal to 1 otherwise. Let US′ denote
the uniform distribution over S′. Given the sample S′ we can easily simulate the example oracle
EX(US′ , f ) and MEM( f ). We run Alg("/2,#/2) with theses oracles and denote its output by h.
Note, that this simulates A in the agnostic PAC+MQ setting over distribution (US′ , f ).

By the definition ofUS′ , for any Boolean function g(x),

PrUS′ [ f (x) "= g(x)] =
1
|S′|

∣∣{x ∈ S′ | f (x) "= g(x)}
∣∣ = &(S′,g) .

That is, the error of any function g on US′ is exactly the empirical error of g on sample S′. Thus
&((US′ , f ),h) = &(S′,h) and &((US′ , f ),C ) = &(S′,C ). By the correctness of Alg, with probability
at least 1−#/2, &(S′,h) ≤ &(S′,C )+ "/2. By Equations (2) and (3) we thus obtain that

&(S,h) = &(S′,h)
|S′|
m

+
m− |S′|
2m

≤ (&(S′,C )+
"
2
)
|S′|
m

+
m− |S′|
2m

= &(S,C )+
"
2
|S′|
m

.

Therefore &(S,h) ≤ &(S,C ) + "/2. We can apply the VC dimension-based uniform convergence
results for H ($,"/2)∪C (Theorem 3) to conclude that for

m("/4,#/4) = O
(
d log(d/")+ log(1/#)

"2

)
,

with probability at least 1−#/2, &(A,h)≤&(S,h)+ %
4 and &(S,C )+ %

4 ≤&(A,C ). Finally, we obtain
that with probability at least 1−#,

&(A,h) ≤ &(S,h)+
"
4
≤ &(S,C )+

3"
4

≤ &(A,C )+ ".

It easy to verify that the running time and hypothesis space of this algorithm are as claimed.

Note that if Alg is efficient then d($,"/2) is polynomial in $ and 1/" and, in particular, the
obtained algorithm is efficient. In addition, in place of VC-dim one can use the uniform convergence
result based on the cardinality of the hypothesis space. The description length of a hypothesis output
by Alg is polynomial in $ and 1/" and hence in this case a polynomial number of samples will be
required to simulate Alg.
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Remark 7 We note that while this proof is given for the strongest version of agnostic learning
in which the error of an agnostic algorithm is bounded by &(A,C )+ ", it can be easily extended
to weaker forms of agnostic learning, such as algorithms that only guarantee error bounded by
- ·&(A,C )+.+ " for some - ≥ 1 and . ≥ 0. This is true since the reduction adds at most "/2 to
the error of the original algorithm.

4. Learning with Respect to the Uniform Distribution

In this section we show that when learning with respect to the uniform distribution over {0,1}n,
membership queries are helpful. Specifically, we show that if one-way functions exist, then there
exists a concept class C that is not agnostically PAC learnable (even weakly) with respect to the
uniform distribution but is agnostically learnable over the uniform distribution given membership
queries. Our agnostic learning algorithm is successful only when " ≥ 1/p(n) for a polynomial p
fixed in advance (the definition of C depends on p). While this is slightly weaker than required
by the definition of the model it still exhibits the gap between agnostic learning with and without
membership queries. We remark that a number of known PAC and agnostic learning algorithms are
efficient only for restricted values of " (O’Donnell and Servedio, 2006; Gopalan et al., 2008; Kalai
et al., 2008a).

Theorem 8 For every polynomial p(·), there exists a concept class C p over {0,1}n such that,

1. there exists no efficient algorithm that weakly PAC learns C p with respect to the uniform
distribution over {0,1}n;

2. there exists a randomized algorithm AgnLearn that for every distribution A = (U,%) over
{0,1}n×{−1,1} and every "≥ 1/p(n),#> 0, given access to MEM(A), with probability at
least 1− #, finds h such that &(A,h) ≤ &(A,C p

n )+ ". The probability is taken over the coin
flips of MEM(A) and AgnLearn. AgnLearn runs in time polynomial in n and log(1/#).

4.1 Background

We first show why some of the known separation results will not work in the agnostic setting. It is
well-known that the PAC model with membership queries is strictly stronger than the PAC model
without membership queries (under the same cryptographic assumption). The separation result is
obtained by using a concept class C that is not PAC learnable and augmenting each concept f ∈ C
with the encoding of f in a fixed part of the domain. This encoding is readable using membership
queries and therefore an MQ algorithm can “learn” the augmented C by querying the points that
contain the encoding. On the other hand, with overwhelming probability this encoding will not be
observed in random examples and therefore does not help learning from random examples. This
simple approach would fail in the agnostic setting. The unknown function might be random on
the part of the domain that contains the encoding and equal to a concept from C elsewhere. The
agreement of the unknown function with a concept from C is almost 1 but membership queries on
the points of encoding will not yield any useful information.

A similar problem arises with encoding schemes used in the separation results of Elbaz et al.
(2007) and Feldman and Shah (2009). There too the secret encoding can be rendered unusable by a
function that agrees with a concept in C on a significant fraction of the domain.
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4.2 Outline

We start by presenting some of the intuition behind our construction. As in most other separation
results our goal is to create a concept class that is not learnable from uniform examples but includes
an encoding of the unknown function that is readable using membership queries. We first note that
in order for this approach to work in the agnostic setting the secret encoding has to be “spread”
over at least 1− 2" fraction of {0,1}n. To see this let f be a concept and let S ⊆ {0,1}n be the
subset of the domain where the encoding of f is contained. Assume, for simplicity, that without the
encoding the learning algorithm cannot predict f on S = {0,1}n \S with any significant advantage
over random guessing. Let f ′ be a function equal to f on S and truly random on S. Then

Pr[ f = f ′] ≈ (|S|+ |S|/2)/2n = 1/2+
|S|
2n+1

.

On the other hand, f ′ does not contain any information about the encoding of f and therefore, by
our assumption, no efficient algorithm can produce a hypothesis with advantage significantly higher
than 1/2 on both S and S. This means that the error of any efficient algorithm will be higher by at
least |S|/2n+1 than the best possible. To ensure that |S|/2n+1 ≤ ", we need |S|≥ (1−2")2n.

Another requirement that the construction has to satisfy is that the encoding of the secret has to
be resilient to almost any amount of noise. In particular, since the encoding is a part of the function,
we also need to be able to reconstruct an encoding that is close to the best possible. An encoding
with this property is in essence a list-decodable binary code. In order to achieve the strongest
separation result we will use the code of Guruswami and Sudan (2000) that is the concatenation
of Reed-Solomon code with the binary Hadamard code. However, to simplify the presentation, we
will use the more familiar binary Hadamard code in our construction. In Section 4.6 we provide the
details on the use of the Guruswami-Sudan code in place of the Hadamard code.

The Hadamard code is equivalent to encoding a vector a ∈ {0,1}n as the values of the parity
function !a on all points in {0,1}n. That is, n bit vector a is encoded into 2n bits given by !a(x) for
every x ∈ {0,1}n. This might appear quite inefficient since a learning algorithm will not be able to
read all the bits of the encoding. However the Goldreich-Levin algorithm provides an efficient way
to recover the indices of all the parities that agree with a given function with probability significantly
higher than 1/2 (Goldreich and Levin, 1989). Therefore the Hadamard code can be decoded by
reading the code in only a polynomial number of (appropriately-chosen) locations.

The next problem that arises is that the encoding should not be readable from random examples.
As we have observed earlier, we cannot simply “hide” it on a negligible fraction of the domain.
Specifically, we need to make sure that our Hadamard encoding is not recoverable from random
examples. Our solution to this problem is to use a pseudo-random function to make values on
random examples indistinguishable from random coin flips in the following manner. Let a∈ {0,1}n
be the vector we want to encode and let *d : {0,1}n → {−1,1} be a pseudo-random function from
some pseudorandom function family F = {*b}b∈{0,1}n . We define a function g : {0,1}n×{0,1}n→
{−1,1} as

g(z,x) = *d(z)⊕!a(x)

(⊕ is simply the product in {−1,1}). The label of a random point (z,x) ∈ {0,1}2n is a XOR of a
pseudorandom bit with an independent bit and therefore is pseudorandom. Values of a pseudoran-
dom function b on any polynomial set of distinct points are pseudorandom and therefore random
points will have pseudorandom labels as long as their z parts are distinct. In a sample of polynomial
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in n size of random and uniform points from {0,1}2n this happens with overwhelming probabil-
ity and therefore g(z,x) is not learnable from random examples. On the other hand, for a fixed z,
*d(z)⊕!a(x) gives a Hadamard encoding of a or its negation. Hence it is possible to find a using
membership queries with the same prefix. A construction based on a similar idea was used by Elbaz
et al. (2007) in their separation result.

Finally, the problem with the construction we have so far is that while a membership query
learning algorithm can find the secret a, it cannot predict g(z,x) without knowing d. This means
that we also need to provide d to the learning algorithm. It is tempting to use the Hadamard code
to encode d together with a. However, a bit of the encoding of d is no longer independent of *d ,
and therefore the previous argument does not hold. We are unaware of any constructions of pseudo-
random functions that would remain pseudorandom when the value of the function is “mixed” with
the description of the function (see the work of Halevi and Krawczyk (2007) for a discussion of this
problem). An identical problem also arises in the construction of Elbaz et al. (2007). They used
another pseudorandom function *d1 to “hide” the encoding of d, then used another pseudorandom
function *d2 to “hide” the encoding of d1 and so on. The fraction of the domain used up for the
encoding of di is becoming progressively smaller as i grows. In their construction a PAC learning
algorithm can recover as many of the encodings as is required to reach accuracy ". This method
would not be effective in our case. First, in the agnostic setting all the encodings but the one using
the largest fraction of the domain can be “corrupted”. This makes the largest encoding unrecover-
able and implies that the best " achievable is at most half of the fraction of the domain used by the
largest encoding. In addition, in the agnostic setting the encoding of d i for every odd i can be com-
pletely “corrupted” making all the other encodings unrecoverable. To solve these problems in our
construction we split the domain into p equal parts and on part i we use a pseudorandom function
*di to “hide” the encoding of d j for all j < i. In Figure 1 we provide a schematic view of a concept
that we construct (for p= 4).

Figure 1: Structure of a concept in C p
n for p= 4. Arrow from part i to part j indicates that the secret

key to part j is encoded using the Hadamard code in part i.

The crucial property of this construction is that the unknown concept can be “recovered” on
all but one part of the domain. Specifically, the only part where the unknown concept cannot be
“recovered” agnostic is the part i such for all j > i agreement of the target function with every
gd ∈ C p

n on part j is close to 1/2 and hence d j cannot be recovered. Therefore, by making the
number of parts p larger than 1/", we can make sure that there exists an efficient algorithm that
finds a hypothesis with the error within " of the optimum.
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4.3 The Construction

Wewill now describe the construction formally and give a proof of its correctness. Let p= p(n) be a
polynomial, let ! = log p(n) (we assume for simplicity that p(n) is a power of 2) and letm= !+n · p.
We refer to an element of {0,1}m by triple (k,z,x) where k ∈ [p], z ∈ {0,1}n, and

x= (x1,x2, . . . ,xp−1) ∈ {0,1}n×(p−1).

Here k indexes the encodings, z is the input to the k-th pseudorandom function and x is the input to
a parity function on n(p−1) variables that encodes the secret keys for all pseudorandom functions
used for encodings 1 through k−1. Formally, let

d = (d1,d2, . . . ,dp−1)

be a vector in {0,1}n×(p−1) (where each di ∈ {0,1}n) and for k ∈ [p] let

d(k) = (d1,d2, . . . ,dk−1,0n, . . . ,0n).

Let F = {*y}y∈{0,1}∗ be a pseudorandom function family (Definition 5). We define gd : {0,1}m →
{−1,1} as follows:

gd(k,z,x) = *dk(z)⊕!d(k)(x) .

Finally, we define
C p
n =

{
gd | d ∈ {0,1}n×(p−1)

}
.

4.4 Hardness of Learning C p
n From Random Examples

We start by showing that C p
n is not agnostically learnable from random and uniform examples only.

In fact, we will show that it is not even weakly PAC learnable. Our proof is similar to the proof by
Elbaz et al. (2007) who show that the same holds for the concept class they define.

Theorem 9 There exists no efficient algorithm that weakly PAC learns C p
n with respect to the uni-

form distribution over {0,1}m.

Proof In order to prove the claim we show that a weak PAC learning algorithm for C p
n can be

used to distinguish a pseudorandom function family from a truly random function. A weak learning
algorithm for C p

n implies that every function in C p
n can be distinguished from a truly random function

on {0,1}m. If, on the other hand, in the computation of gd(k,z,x)we used a truly random function in
place of each *dk(z) then the resulting labels would be truly random and, in particular, unpredictable.

Formally, let Alg be a weak learning algorithm for C p
n that, with probability at least 1− #,

produces a hypothesis with error of at most 1/2− 1/q(m) and runs in time t(m,1/#) for some
polynomials t(·, ·) and q(·). Our concept class C p

n uses numerous pseudorandom functions from Fn
and therefore we use a so-called “hybrid” argument to show that one can replace a single *dk(z)
with a truly random function to cause Alg to fail.

For 0≤ i≤ p, let O(i) denote an oracle randomly chosen according to the following procedure.
First choose randomly and uniformly *d1 ,*d2 , . . . ,*di ∈ Fn and then choose randomly and uniformly
,i+1,,i+2, . . . ,,p from the set of all Boolean functions over {0,1}n. Upon request such an oracle
returns an example 〈(k,z,x),b〉 where (k,z,x) is chosen randomly and uniformly from {0,1}m and

b=
{

*dk(z)⊕!d(k)(x) 0≤ k ≤ i,
,k(z) i< k ≤ p.
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We note that in order to simulate such an oracle it is not needed to explicitly choose ,i+1,,i+2, . . . ,,p
(and, indeed that would not be possible in polynomial time). Instead their values can be generated
upon request by flipping a fair coin. This means that for every i, O(i) can be chosen and then
simulated in time polynomial in m and the number of examples requested. Let M(i) denote the
algorithm that performs the following steps.

• Choose O(i) randomly according to the above procedure.

• Simulate Alg with random examples from O(i) and #= 1/2. Let h be the output of Alg.

• Produce an estimate ẽh of the error of h on distribution defined by O(i) that, with probability
at least 7/8, is within 1/(3q(m)) of the true error. Chernoff bounds imply that this can be
done using an empirical estimate on O(q2(m)) random samples.

• Output 1 if ẽh ≤ 1/2−2/(3q(m)) and 0 otherwise.

We denote by #i the probability thatM(i) outputs 1. The probability is taken over all the random
choices made by M(i): the random choice and simulation of O(i), the coin flips of Alg and the
estimation of the error of h.

Claim 10 #p−#0 ≥ 1/4.

Proof To see this we first observe that O(0) is defined using p truly random functions and there-
fore, the probability that there exists a hypothesis of size at most t(m,2) that has error less than
1/2− 1/3q(m) is some negligible function +(n). In particular, the error of the hypothesis pro-
duced by Alg is at least 1/2− 1/3q(m) (with probability at least 1− +(n)). This means that
ẽh ≤ 1/2− 2/(3q(m)) only if the estimation fails. By the definition of our error estimation pro-
cedure, this happens with probability at most 1/8 and therefore #0 ≤ 1/8++(n). On the other hand,
O(p) is equivalent to EX(U,gd) for some randomly chosen d. This implies that with probability at
least 1/2, Alg outputs a hypothesis with error of at most 1/2− 1/q(m). With probability at least
7/8, ẽh ≤ 1/2−2/(3q(m)), and hence #p ≥ 7/16. This implies our claim.

We now describe our distinguisher M#, where * denotes the function given to M as an oracle.
Let O#(i) denote the example oracle generated by using * in place of *di in the definition of O(i).
That is, first choose randomly and uniformly *d1 ,*d2 , . . . ,*di−1 ∈ Fn and then choose randomly and
uniformly ,i+1,,i+2, . . . ,,p from the set of all Boolean functions over {0,1}n. Upon request O#(i)
returns an example 〈(k,z,x),b〉 where (k,z,x) is chosen randomly and uniformly from {0,1}m and

b=






*dk(z)⊕!d(k)(x) k < i,
*(z)⊕!d(k)(x) k = i,
,k(z) k > i.

Similarly, we denote byM#(i) the algorithm that is the same asM(i) but chooses a randomO#(i) in
place of O(i). The distinguishing test M# chooses a random i ∈ [p] and runs M#(i).

We first observe that if * is chosen randomly from Fn then choosing and simulating a random
O#(i) is equivalent to choosing and simulating a random O(i). Therefore for every i ∈ [p],M#(i) is
equivalent toM(i). This implies that in this caseM# will output 1 with probability

1
p !i∈[p]

#i.
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On the other hand, if * is chosen randomly from the set of all Boolean function over {0,1}n
then O#(i) is equivalent to O(i−1). Therefore in this caseM# will output 1 with probability

1
p !i∈[p]

#i−1.

Therefore, by Claim 10 this implies that the difference in the probability that M outputs 1 in these
two cases is

1
p !i∈[p]

#i−
1
p !i∈[p]

#i−1 =
1
p
(#p−#0) ≥ 1/(4p),

that is, non-negligible.
The efficiency ofM follows readily from the efficiency of Alg and the efficiency of the steps we

described. This gives us the contradiction to the pseudorandomness property of function family F .

4.5 Agnostic Learning of C p
n with Membership Queries

We now describe a (fully) agnostic learning algorithm for C p
n that uses membership queries and is

successful for any "≥ 1/p(n).

Theorem 11 There exists a randomized algorithm AgnLearn that for every distribution A= (U,%)
over {0,1}m× {−1,1} and every " ≥ 1/p(n),# > 0, given access to MEM(A), with probability at
least 1− #, finds h such that &(A,h) ≤ &(A,C p

n )+ ". The probability is taken over the coin flips of
MEM(A) and AgnLearn. AgnLearn runs in time polynomial in m and log(1/#).

Proof Let ge for e=(e1,e2, . . . ,ep−1)∈ {0,1}(p−1)×n be the function for which &(A,ge)=&(A,C p
n ).

The goal of our algorithm is to find the largest j such that on random examples from the j-th part
of the domain (i.e., for k= j) A agrees with the encoding of e( j) = (e1,e2, . . . ,e j−1,0n, . . . ,0n) with
probability at least 1/2+ "/4. Using Goldreich-Levin algorithm such j can be used to recover e( j)
and therefore will allow us to reconstruct ge on all points (k,z,x) for k < j. For points with k ≥ j,
our hypothesis will be either constant 1 or constant -1, whichever has the higher agreement with A.
This guarantees that the error on this part is at most 1/2. By the definition of j, ge has error of at
least 1/2−"/4−1/(2p)≥ 1/2−" on this part of the domain and therefore our hypothesis has error
close to that of ge.

We now describe AgnLearn formally. For every i ∈ [p] and y ∈ {0,1}n, let Ai,y be A restricted to
points in {0,1}m with prefix i,y. That is A= (U(p−1)×n,%i,y)where %i,y(x)≡ %(i,y,x) andU(p−1)×n is
the uniform distribution over {0,1}(p−1)×n. Note that MEM(Ai,y) can be simulated using MEM(A):
when queried on a point x ∈ {0,1}(p−1)×n MEM(Ai,y) returns the answer of MEM(A) on point
(i,y,x). Further, for each vector d ∈ {0,1}(p−1)×n and b ∈ {−1,1}, let hd,i,b be defined as

hd,i,b(k,z,x) =
{

*dk(z)⊕!d(k)(x) k < i,
b k ≥ i.

(4)

(Here *dk is an element of the pseudorandom function family Fn used in the construction.)
AgnLearn performs the following steps.
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1. Initializes H = {h1,h−1}, where h1 ≡ 1 and h−1 ≡−1.

2. For each 2≤ i≤ p:

(a) Chooses r independent random and uniform points in {0,1}n, for r to be defined later.
Denote the obtained set of points by Yi.

(b) For each y ∈ Yi:
i. Runs GL("/4,1/2) over {0,1}(p−1)×n using MEM(Ai,y). Let T denote the set of
indices of heavy Fourier coefficients returned by GL.

ii. For each vector d ∈ T and b ∈ {−1,1} adds hd,i,b to the set of hypotheses H.

3. For each h ∈H, estimates &(A,h) to within accuracy "/8 and with overall confidence 1−#/2
using the empirical error on random samples from A. Chernoff bounds imply that this can be
done using samples of size O(log(|H|/#)/"2). Denote the estimate obtained for a hypothesis
hd,i,b ∈ H by &̃d,i,b.

4. Returns h ∈ H with the lowest empirical error.

Claim 12 For r = O(log(1/#)/"), with probability at least 1− #, AgnLearn returns h such that
&(A,h) ≤ &(A,C p

n )+ ".

Proof We show that in the set H of hypotheses considered by AgnLearn there will be a hypothesis
h′ such that &(A,h′) ≤ &(A,ge) + 3"/4 (with sufficiently high probability). The estimates of the
error of each hypothesis are within "/8 of the true error and therefore the hypothesis h with the
smallest empirical error will satisfy

&(A,h) ≤ &(A,h′)+ "/4≤ &(A,ge)+ " .

For i ∈ [p], denote
&i = PrA[b "= ge(k,z,x) | k = i]

(here and below by probability with respect to A we mean that a labeled example 〈(k,z,x),b〉 is
chosen randomly according to A). By the definition,

1
p !i∈[p]

&i = &(A,ge). (5)

Let j be the largest i ∈ [p] that satisfies &i ≤ 1/2− "/4. If j is undefined (when no i satisfies the
condition) then by Equation (5), &(A,ge) > 1/2− "/4. Either h1 or h−1 has error of at most 1/2 on
A and therefore there exists h′ ∈ H such that &(A,h′) ≤ &(A,ge)+3"/4.

We can now assume that j is well-defined. For i ∈ [p] and y ∈ {0,1}n denote

&i,y = PrA[b "= ge(k,z,x) | k = i, z= y] = Pr〈x,b〉∼Ai,y [b "= ge(i,y,x)].

The function ge( j,y,x) equals *d j(y) ·!e( j)(x). If *d j(y) = 1 then by Equation (1) and the definition
of A j,y,

& j,y =
1− %̂ j,y(e( j))

2
,
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and therefore %̂ j,y(e( j)) = 1−2& j,y. If *d j(y) = −1 then

& j,y = 1−
1− %̂ j,y(e( j))

2
=
1+ %̂ j,y(e( j))

2

and thus %̂ j,y(e( j)) = −(1−2& j,y). In either case

|%̂ j,y(e( j))|≥ 1−2& j,y. (6)

By the definition,
Ey∈{0,1}n [&i,y] = &i.

This implies that for a randomly and uniformly chosen y, with probability at least "/4, & j,y ≤
1/2− "/8. This is true since otherwise

& j ≥ (1− "
4
)(
1
2
− "
8
) >

1
2
− "
4

,

contradicting the choice of j.
Together with Equation (6) we obtain that for a randomly chosen y, with probability at least

"/4, |%̂ j,y(e( j))| ≥ "/4. In this case, by Theorem 4, GL("/4,1/2) with access to MEM(A j,y) will
return e( j) with probability at least 1/2 (possibly, among other vectors). This means that e( j) will
be found with probability at least "/8. By taking r = 8ln(2/#)/" we ensure that AgnLearn finds
e( j) with probability at least 1−#/2.

Now let b j be the constant with the lowest error on examples from A for which k ≥ j, that is

b j = sign(EA[b | k ≥ j]).

Clearly, the error of b j on A when k ≥ j is at most 1/2. By the definition of he( j), j,b j (Equation 4),
he( j), j,b j equals ge on points for which k < j and equals b j on the rest of the domain. Therefore

&(A,he( j), j,b j) =
j−1
p
PrA[b "= ge(k,z,x) | k < j]+

p− j+1
p

PrA[b "= b j | k ≥ j]

≤ 1
p

(

!
i< j

&i+
p− j+1

2

)
.

On the other hand, by the properties of j, for all i> j, &i ≥ 1/2− "/4 and thus

&(A,ge) =
1
p

(

!
i∈[p]

&i

)
≥ 1
p

(

!
i< j

&i+(p− j)
(
1
2
− "
4

))
.

By combining these equations we obtain that

&(A,he( j), j,b j)−&(A,ge) ≤
1
2p

+
"
4
≤ 3"
4

.

As noted before, this implies the claim.
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Given Claim 12, we only need to check that the running time of AgnLearn is polynomial in m
and log(1/#). By Parseval’s identity there are O(1/"2) elements in each set of vectors returned by
GL and r = 8ln(2/#)/". Therefore the efficiency of GL implies that H is found in polynomial time
and the size of H is O(p · log(1/#)/"3). This implies that the error estimation step of AgnLearn
takes polynomial time.

Remark 13 In Theorem 11 we assumed that MEM(A) is not persistent. If MEM(A) is persistent
then executions of GL for different y’s are not completely independent and GL might fail with some
negligible probability. A simple and standard modification of the analysis (as in the work of Bshouty
et al. (2004) for example) can be used to show that the probability of failure of AgnLearn in this
case is negligible. This implies that AgnLearn agnostically learns C p

n from persistent membership
queries.

4.6 Bounds on "

In Theorem 11 C p
n is defined over {0,1}m for m = n · p(n)+ log p(n) and is learnable agnostically

for any "≥ 1/p(n). This means that this construction cannot achieve dependence on " beyond 1/m.
To improve this dependence we use a more efficient list-decodable code in place of the Hadamard
code. Specifically, we need a list-decodable codeC : {0,1}u→ {0,1}v that can be list-decoded from
(1/2− '′)v errors in time polynomial in u and 1/'′ for any '′ ≥ "/8. Guruswami and Sudan (2000)
gave a list-decoding algorithm for the Reed-Solomon code concatenated with the Hadamard code
that has the desired properties for v= O(u2/"4). Note that this is exponentially more efficient than
the Hadamard code for which v = 2u. In fact for this code we can afford to read the whole corrupt
message in polynomial time. This means that we can assume that the output of the list-decoding
algorithm is exact (and not approximate as in the case of list-decoding using the Hadamard code
using the Goldreich-Levin algorithm).

In our construction u = n(p(n)− 1). To apply the above code we index a position in the code
using logv=O(log(n/")) bits. Further we can use pseudorandom functions over {0,1}n/2 instead of
{0,1}n in the definition of C p

n . We would then obtain that the dimension of C p
n is m= n/2+ logv+

log p(n) ≤ n for any polynomial p(n) and " ≥ 1/p(n). This implies that our learning algorithm is
successful for every "≥ 1/p(n) ≥ 1/p(m). It is easy to verify that Theorems 9 and 11 still hold for
this variant of the construction and imply Theorem 8.

5. Discussion

Our results clarify the role of membership queries in agnostic learning. They imply that in order to
extract any meaningful information from membership queries the learner needs to have significant
prior knowledge about the distribution of examples. Specifically, either the set of possible classifica-
tion functions has to be restricted (as in the PAC model) or the set of possible marginal distributions
(as in distribution-specific agnostic learning).

A interesting result in this direction would be a demonstration that membership queries are
useful for distribution-specific agnostic learning of a natural concept class such as halfspaces.

Finally, we would be interested to see a proof that membership queries are useful in distribution-
specific agnostic learning that places no restriction on ".
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Abstract

Most classification methods assume that the samples are drawn independently and identically from
an unknown data generating distribution, yet this assumption is violated in several real life prob-
lems. In order to relax this assumption, we consider the case where batches or groups of samples
may have internal correlations, whereas the samples from different batches may be considered to
be uncorrelated. This paper introduces three algorithms for classifying all the samples in a batch
jointly: one based on a probabilistic formulation, and two based on mathematical programming
analysis. Experiments on three real-life computer aided diagnosis (CAD) problems demonstrate
that the proposed algorithms are significantly more accurate than a naive support vector machine
which ignores the correlations among the samples.

Keywords: batch-wise classification, support vector machine, linear programming, machine
learning, statistical methods, unconstrained optimization

1. Introduction

Most classification systems assume that the data used to train and test the classifier are drawn from
an independent and identically distributed underlying distribution. For example, samples are clas-
sified one at a time in a support vector machine (SVM), thus the classification of a particular test
sample does not depend on the features from any other test sample. Nevertheless, this assumption
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Figure 1: Two pulmonary emboli (blood clots) as they are detected by the Candidate Generation
algorithm in a CT image. The candidates are shown as five circles for the left embolus &
six circles for the right embolus. The disease status of spatially overlapping or proximate
candidates is highly correlated.

is commonly violated in many real-life problems where sub-groups of samples have a high degree
of correlation amongst both their features and their labels.

A sample problem with the characteristics described above is computer aided diagnosis (CAD),
where the goal is to detect structures of interest to physicians in medical images: for example, to
identify potentially malignant tumors in computed tomography (CT) scans, X-ray images, etc. In an
almost universal paradigm for CAD algorithms, this problem is addressed by a three-stage system:
(1) identification of potentially unhealthy candidates regions of interest (ROI) from a medical image,
(2) computation of descriptive features for each candidate, and (3) classification of each candidate
(e.g., normal or diseased) based on its features.

Figure 1 displays a CT image of a lung showing circular marks that point to potential diseased
candidate regions that are detected by a CAD algorithm. There are five candidates on the left and six
candidates on the right (marked by circles) in Figure 1. Descriptive features are extracted for each
candidate and each candidate region is classified as normal or abnormal. In this setting, correlations
exist among the candidates belonging to the same batch (image, in the case of CAD) both in the
training data set and in the unseen testing data. Further, the level of correlation is a function of
the pairwise distance between candidates: the disease status (class-label) of a candidate is highly
correlated with the status of other spatially proximate candidates, but the correlations decrease as the
distance is increased. Most conventional CAD algorithms classify one candidate at a time, ignoring
the correlations amongst the candidates in an image. By explicitly accounting for the correlation
structure between the labels of the test samples, classification accuracy can be improved.

In this paper, we present two large margin classifiers and a batch-wise version of logistic re-
gression that take into account the local correlations among samples in a batch. We use the term
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batch-wise classification to mean training and testing classifiers in batches or groups (i.e., samples
in the same batch are learned and classified collectively). Our experiments on three real CAD prob-
lems show that indeed incorporating the local dependencies among samples within a batch improve
the classification accuracy significantly compared to standard SVMs.

Beyond the domain of CAD applications, our algorithms are quite general and may be used
for batch-wise classification problems in many other contexts. In general, the proposed classifiers
can be used whenever data samples are presented in independent batches. In the CAD example, a
batch corresponds to an image and strong correlations among candidate samples are based on spatial
proximity within an image. A similar relationship structure is true with geographical classification
of regions in satellite images; an image would be a batch and spatial proximity corresponds to
correlations among the pixel instances. In other contexts, a batch may correspond to data from the
same hospital, the patients treated by the same doctor or nurse, etc. In non-medical contexts, a batch
can be transactions from the same person, or documents from the same author. Another example
is in credit card transaction approval where a single transaction has to be classified by taking into
account both the entire set of available training transactions and other transactions made by the same
person recently during the testing phase. In this credit card example, it might be preferable to test
the recent transaction of this same person as a batch collectively rather than singly.

1.1 Related Work

We are not aware of previous work that exploit internal correlations among the samples to improve
the performance of standard classifiers (such as, SVM). However, there exist classification algo-
rithms that incorporate special relationships among the samples (the Markov property) into their
model formulation. In natural language processing (NLP), conditional random fields (CRF) (Laf-
ferty et al., 2001) and recently maximum margin Markov (MMM) networks (Taskar et al., 2004)
are used to identify part-of-speech information about words by using the context of nearby words.
CRF are also used in similar applications in spoken word recognition. For images, Markov random
fields (MRF) (Besag, 1974; Geman and Geman, 1984) are applied to capture correlation among
neighborhood pixels.

However, while these Markov models are also fairly general algorithms, they are both compu-
tationally demanding and are not easy to implement for problems where the relationship structure
among the samples is in any form other than a linear chain (as in the text and speech processing ap-
plications). Certainly, their application would be difficult in many large-scale medical applications
where run time requirements would be quite severe. For example, in the CAD applications shown
in our experiments, the run-time of the testing phase usually has to be less than a second in order
that the end user’s (radiologist’s) time would not be wasted.

Our algorithm is also related to the multiple instance learning (MIL) problem, where one is
given bags (batches) of samples; class labels are provided only for the bags, not for the individual
samples. A bag is labeled positive if we know that at least one sample from it is positive, and a
negative bag is known to not contain any positive sample. In this manner, the MIL problem also
encodes a form of prior knowledge about correlations between the labels of the training instances.

There are two differences between our algorithm and MIL. First, we want to classify each in-
stance (candidate) in our algorithm; unlike MIL, we are not only trying to label a bag of related
instances. Second, unlike the MIL problem which treats all the instances in a bag as equally re-
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lated to each other, we account for more fine grained differences in the level of correlation between
samples (via the similarity matrix R).

Local learning algorithms such as, Wu and Schlkopf (2007) and Bottou and Vapnik (1992), also
capture the correlation among data points. However, one major difference between our method
and local learning based methods is that our methods build a global classifier that combines the
global information extracted from the entire training data with the additional side-information ex-
tracted from correlations in the same batch, whereas the local learning algorithms rely on the local
information only. Another major difference is that local learning algorithms classify a particular
point based on its neighbors in the feature space, therefore the captured correlation is limited to the
neighbors of that particular point. On the other hand, the methods that we propose in this paper can
incorporate any type of correlation information that is not fully encoded in the features. The same
difference is also valid between our method and semi-supervised algorithms such as, Vural et al.
(2008) and Zhou et al. (2003) that exploit the idea of using local information in semi-supervised
learning. The graph based semi-supervised algorithms such as, Krishnapuram et al. (2005) and Zhu
et al. (2003), can be considered to be related to the methods introduced in this paper in the sense
that they build weighted graphs based on the correlation among data points. However, the targeted
problems in semi-supervised learning and this paper are substantially different. In semi-supervised
learning problems, the goal is to make use of unlabeled data to improve classification accuracy. In
our methods, on the other hand, we investigate the relations among the data points that are in the
same batch only. These data points may not constitute a neighborhood in the feature space and
every data point is labeled in our problem.

1.2 Organization of the Paper

After briefly describing the notation in Section 2, we build two SVM based methods for classifying
batches of correlated samples in Section 3. We also provide a probabilistic interpretation of our
approach in Section 4.

Unlike the previous methods such as CRF, MMM and MRF, the proposed algorithms are easy
to implement for arbitrary relationships between samples, and further we are able to run these fast
enough to be viable in commercial CAD products. In Section 5, we provide experimental evidence
from three different CAD problems to show that the proposed algorithms are more accurate in terms
of the metrics appropriate to CAD as compared to a naive SVM which is routinely used for these
problems as the state-of-the-art in the current literature and commercial products. We conclude with
a review of our contributions in Section 6.

2. Notations

Throughout this paper, we will use the following notations. The capital letters shown in bold font
represent matrices whereas lower case letters in bold correspond to vectors. The notation A ∈ Rm×n

will signify a real m× n matrix. For such a matrix, A′ will denote the transpose of A and Ai will
denote the i-th row of A. All vectors will be column vectors.

For x ∈ Rn, ‖x‖p denotes the p-norm, p = 1,2,!. A vector of ones in a real space of arbitrary
dimension will be denoted by e. Thus, for e ∈ Rm and y ∈ Rm, e′y is the sum of the components of
y. A vector of zeros in a real space of arbitrary dimension will be denoted by 0. The identity matrix
of arbitrary dimension will be denoted by I. A separating hyperplane, with respect to two given
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point sets A and B, is a plane that attempts to separate Rn into two half spaces such that each open
half space contains points mostly of A or B.

3. A Mathematical Programming Approach

In this section, we formulate the problem of learning for batch-wise prediction as an SVM-like
mathematical program.

3.1 Standard Support Vector Machine

In a standard SVM hyperplane classifier, f (x) = x′w− " is learned from the training instances
individually, ignoring the correlations among them. Consider the problem of classifying m points in
the n-dimensional real space Rn, represented by the m×nmatrix A, according to class membership
of each point xi (ith row of A) in the classes A+, A− as specified by a given m×m diagonal matrix
D with +1 or −1 along its diagonal. The standard 1-norm support vector machine with a linear
kernel (Vapnik, 1995; Bradley and Mangasarian, 1998) is given by the following linear program
with parameter #> 0:

min
(w,!,",v)∈Rn+1+m+n

#e′$+ e′v (1)

s.t. D(Aw− e")+$≥ e
v≥ w≥−v
$≥ 0

where, $ ∈ Rm is a vector of slack variables, # is the cost parameter, and at a solution, v = |w| is
the absolute value of w. We used the 1-norm linear programming formulation instead of the more
popular 2-norm quadratic programming (QP) formulation since the 1-norm formulation is known to
produce solutions that depend on fewer features. In other words, by solving the 1-norm formulation,
an implicit feature selection is obtained automatically. This is an advantage in CAD applications
because the initial pool typically contains a large set of experimental features, although often only
a small subset of these features is typically found to be very useful for the classification task at
the end of design (i.e., training) stage. It is important to note that all the batch-based classifica-
tion approaches presented in this paper are equally applicable even when the standard QP SVM
formulation is considered.

3.2 Batch Support Vector Machine

The idea in our model is to encode that the classification of any sample (i.e., data point) depends on
two factors: (a) the features that encode information about each candidate sample in a batch; and (b)
additional side-information—not already fully encoded in the features—that is available to describe
the level of correlations among the set of samples within a batch.1

Let the covariance matrixR j represent the correlations among the samples withing the jth batch.
As mentioned above, in CAD applications, R j can be defined in terms of Sj, the matrix of Euclidean
distances between candidates inside a medical image (from a patient) as:

1. We define a batch to be a set of possibly correlated samples that occur together naturally, for example, the set of all
candidate locations from the image of the same patient.
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R j
pq =

{
0 , p= q

exp(−%S jpq) ,o.w.

with % > 0 as a model parameter. Accordingly, B j ∈ Rm j×n represents the m j training points
that belong to the jth batch and the labels of these training points are represented by the m j×m j
diagonal matrix D j with positive or negative ones along its diagonal. Using the new notations, the
standard SVM set of constraints: D(Aw− e")+$≥ e can be presented as:

D j(B jw− e")+$ j ≥ e, for j = 1, . . . ,k. (2)

Here, k is defined as the number of batches in A and the vector of slack variables, $, in Equation
(1) corresponds to $= [$1

′
,$2

′
, . . . ,$k

′
]′ . In Equation (2), every data point in B j sets a constraint on

w and " independently, that is, the ith constraint is set by only the ith data point, B j
i , ignoring the

correlations between B j
i and the rest of the samples in B j. Therefore, we modify the standard SVM

set of constraints in order to take into account the correlations among samples in the same batches,
using the R j matrix as:

D j [(I+&R j)(B jw− e")
]
+$ j ≥ e, for j = 1, . . . ,k. (3)

Here, & is a parameter that helps us control the contribution of the correlation information en-
coded by R j. We can find the optimum value of & by tuning over a validation set. However, we also
present a method where we can learn & automatically in Section 3.3.

In Equation (3), the class membership prediction for any single sample in batch j is a weighted
average of the batch members’ prediction vector B jw− e", and the weighting coefficients depend
on the pairwise similarity between samples. Using constraints (3) in the SVM formulation (1), we
obtain the optimization problem for learning BatchSVM with parameters # and &:

min
(w,!,",v)∈Rn+1+m+n

#e′$+ e′v (4)

s.t. D j [(&R j + I
)
(B jw− e")

]
+$ j ≥ e, for j = 1, . . . ,k
v≥ w≥−v
$≥ 0.

When &= 0, the constraints in Equation (4) become standard SVM constraints. Therefore, if the
information provided in R j matrix does not help our algorithm improve the accuracy performance
of SVM, we expect our method to turn into the standard SVM.

Unlike standard SVMs, the hyperplane ( f (x) =w′x−") produced by BatchSVM is not the final
decision function. We refer to f (x) as a pre-classifier that will be used in the next stage to make
the final decision on a batch of instances. While testing an arbitrary data point x ji in batch B j, the
BatchSVM algorithm accounts for the pre-classifier prediction w′x jp− " for every member in the
batch. The final prediction f̂ (x ji ) is given by:

sign( f̂ (x ji )) = sign(w′x ji − e"+&R j
i
[
B jw− e"

]
). (5)

Consider the two dimensional example in Figure 2, showing batches of training points. The data
points that belong to the same batch are indicated by the elliptical boundaries in the figure. Figure
2b displays the correlations amongst the training points given in Figure 2a using an edge.
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Figure 2: An illustrative example for batch learning. a) Training data points are displayed in
batches. b) Relations within training points are displayed as a linked graph. c) Classifier
produced by SVM. d) Pre-classifier produced by BatchSVM. Unlike standard SVMs,
the hyperplane, f (x), produced by BatchSVM (preclassifier) is not the decision function.
Instead, the decision of each test sample xi, is based on a weighted average of the f (x)
values for the points linked to xi.

In Figure 2c, the hyperplane fsvm(x) is the final decision function for standard SVM and gives
the results displayed in Table 1 where we observe that the fourth and the seventh instances are
misclassified. In Figure 2d, the pre-classifier produced by BatchSVM, fbatch(x) gives the results
displayed in the fifth column of Table 1 for the training data. If this pre-classifier were to be con-
sidered as the decision function, then three training points would be misclassified. However, during
batch-testing (Equation 5), the predictions of those points are corrected as seen in the sixth column
of Table 1.
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Point Batch Label SVM Pre-classifier Final classifier
1 1 + 0.2826 0.1723 0.1918
2 1 + 0.2621 0.1315 0.2122
3 1 - -0.2398 0.0153 -0.0781
4 1 + -0.3188 -0.0259 0.2909
5 1 - -0.4787 -0.0857 -0.0276
6 2 + 0.2397 0.0659 0.0372
7 2 - 0.2329 0.0432 -0.0888
8 2 + 0.1490 0.0042 0.0680
9 2 - -0.2525 -0.0752 -0.1079
10 2 - -0.2399 -0.1135 -0.1671

Table 1: Outputs of the classifier produced by SVM, pre-classifier and the final classifier produced
by BatchSVM. The outputs are calculated for the data points presented in Figure 2. The
first column of the table indicates the order of the data points as they are presented in
Figure 2a and the second column specifies the corresponding labels. Misclassified points
are displayed in bold. Notice that the combination of the pre-classifier outputs at the final
stage corrects the mistakes.

3.3 A Faster Proximal Batch Approach

Support vector machines are known to be slow to train. In Fung and Mangasarian (2001), Fung
and Mangasarian introduced proximal support vector machine which is a fast and simple algorithm
for generating a linear or nonlinear classifier that merely requires the solution of a single system of
linear equations. To yield a faster training method, we present a batch approach to proximal support
vector machine in this section.

Similar to the proximal support vector machine formulation (PSVM) in Fung and Mangasarian
(2001), we can slightly modify the set of inequalities (3) and consider a Gaussian prior (instead
of a Laplacian) for both the error vector $ and the regularization term, to obtain the following
unconstrained formulation:

min
(w,!)∈Rn+1

#
1
2

k

!
j=1

‖e−D j [(&R j + I
)
(B jw− e")

]
‖2+

1
2
(w′w+ "2). (6)

Note that formulation (6) is a strongly convex (quadratic) unconstrained optimization problem
and it has a unique solution. Then, obtaining the solution to formulation (6) requires only solving
a single system of linear equations; therefore, it should be substantially faster than the linear pro-
gramming approach of the standard QP approach while maintaining approximate accuracy results
(Fung and Mangasarian, 2001). Moreover, this simple formulation allows us to introduce a very
small modification to learn the parameter & in a very simple but effective manner:

min
(w,!,#)∈Rn+1+1

#
1
2

k

!
j=1

‖e−D j [(&R j + I
)
(B jw− e")

]
‖2+

1
2
(w′w+ "2+&2). (7)
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This formulation is strongly convex in all its variables (w,",&) and it has a unique solution as well.
The optimization problem (7) can be solved in many different ways, however we chose to use
an alternating optimization approach similar to the one used in Fung et al. (2004), since it suits
the structure of the problem perfectly and it converged rapidly in our experiments. It took nine
iterations on average for the algorithm to converge in our experiments. The alternate optimization
method used can be summarized as follows:

0 initialization: Given an initial &0, the parameter #, the training data A =
Sk
j=1B j and the

corresponding labels D.

1. Solve optimization problem (6) for &= &i−1 obtain wi and "i.

2. For the obtained wi and "i, solve the following linear system of equations:

&i =
−'k

j=1M j

2'k
j=1N j

where

M j = S j ′Z jS j +2e′D jR jS j , for S j =
(
B jw− e"

)
and Z j = (R j ′ +R j),

N j = Y j ′Y j + 1
$ , for Y

j = R j (B jw− e"
)
.

This is an iterative method with two steps. At the first step, it finds the optimum values of w
and " (wopt ,"opt) for a given &. At the second step, for the given wopt and "opt , it finds the optimum
value of & (&opt), which will be used at the first leg of the next iteration. Appendix A.2 provides
a derivation of the update equations. Initially, we assign a random value for &, the procedure is
repeated until it converges to the global optimum solution for w, " and &.

4. A Probabilistic Batch Classification Model

Let x ji ∈ Rn represent the n features for the ith candidate in the jth image, and let w ∈ Rn be the
weight parameters and " ∈ R1 be the offset of some hyperplane classifier. Traditionally, classifiers
label samples one at a time (i.e., independently) based only on the features that describe a given
sample x ji :

z ji = w′x ji − " = (x ji )′w− " ,z ji ∈ R1.

For example, in logistic regression, the posterior probability of the sample x ji belonging to class
+1 is obtained using the sigmoid function P(y ji = 1|x ji ) = 1

1+exp(−w′x ji+!)
.

We claim that z ji is only a noisy observation of the underlying, unobserved variable u
j
i ∈ R1

that actually influences classification (as opposed to the traditional classification approach, where
classification directly depends on z ji ). Beside the features x

j
i that are available to influence the

classification of a sample point (via u ji ), we have side information about the extent of correlation
amongst the quantities u ji . We mathematically model the side information as an a-priori guess or
intuition about u ji even before we observe any x

j
i (therefore before z

j
i ).
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For example, in the context of CAD, features describe the shape, size, texture, and intensity
profile of a candidate (sample) in an image. However, besides the above information encoded in the
form of features that describe each candidate, we also know that correlation amongst the samples in
an image (batch) purely based on the proximity of the spatial locations of samples in the jth image.
In CAD applications, this spatial adjacency induces correlations in the predictions for the labels,
but in other applications the nature of side-information that accounts for the correlations would be
different. Nevertheless, in general (in a domain independent way) we model this side-information
as a Gaussian prior on u ji .

P(u j ∈ Rn j) = N(u j|0,R j) (8)

where n j is the number of the candidates in the jth image, and the covariance matrix R j encodes
the correlations. As mentioned above, in CAD applications, R j can be defined in terms of S, the
matrix of Euclidean distances between candidates inside a medical image (from a patient) as R j =
exp(−%S), with %> 0 as a model parameter.

Having defined a prior, next we define the likelihood as follows:

P(z ji |u
j
i ) = N(z ji |u

j
i ,(

2). (9)

After observing x ji and therefore z
j
i , we can modify our prior intuition about u j in (8), based on our

observations from (9) to obtain the Bayesian posterior:

P(u j|z j) = N
(
u j|(R j−1(2+ I)−1z j;(R j−1+ 1

%2 I)
−1

)
(10)

The class-membership prediction for the ith candidate in the jth image is controlled exclusively by
u ji . Let B j ∈ Rm j×n represent the m j training points that belong to the jth batch. Exact compu-
tation of the integral required for P(y j = 1|B j,w,",%,(2) is analytically infeasible because of the
nonlinear sigmoid terms. However, by using the maximum-a-posteriori (MAP) estimate of u ji , the
prediction probability for class label, y ji is then determined approximately as:

P(y ji = 1|B j,w,",%,(2) ≈ 1/
(
1+ exp

(
−V j

i [B jw− e"]
))

,

where

V j =
[
R j−1(2+ I

]−1
.

(11)

Note, however, that for each batch j, the probabilistic method requires calculating two matrix
inversions to compute

(
R j−1(2+ I

)−1
. Hence, training and testing using this method can be time

consuming for large batch sizes. On the other hand,
(
R j&+ I

)
that we introduced in Equation (3) is

relatively less time consuming to compute.
In general,

(
R j−1(2+ I

)−1
'=

(
R j&+ I

)
. However, the intuition behind both are similar: the

class prediction for each sample is a weighted sum of the prediction values of the test sample and
the samples that are correlated with the test instance. In the appendix A.1, we show that when (
is small and we are considering a least squared loss function as in Section 3.3, the constraint (3)
results in an approximation to the following constraint:

D j
[(
R j−1(2+ I

)−1
(B jw− e")

]
+$ j ≥ e, for j = 1, . . . ,k (12)
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when the sum of the labels of neighboring data points according to each row of R j is the same
or they have similar values. Note that, this is particularly true when R j only contains information
about correlations for a constant number of nearest neighbors for each sample (k-nearest neighbors)
and when the assumption that neighboring segments should have similar labels holds.

4.1 Learning in this Model

For batch-wise prediction using (11), w,% and (2 can be learned from a set of N training images
via maximum-a-posteriori (MAP) estimation of w and maximum-likelihood estimation of %,(2 as
follows:

[ŵ, "̂, %̂, (̂2] = argmaxw,!,&,%2 P(w))N
j=1P(y j|B j,w,",%,(2)

where, P(y j|B j,w,",%,(2) is defined as in (11) and P(w)may be assumed to be GaussianN(w|0,*).
The regularization parameter * is typically chosen by cross-validation. General purpose numerical
optimizers such as conjugate gradient algorithms may be used for the above optimization problem.

4.2 Intuition about Batch Classification

Equations (10) and (11) imply that E[u j|z j] = (R j−1(2+ I)−1z j. In other words, the class mem-
bership prediction for any single sample is a weighted average of the noisy prediction quantity z j
(distance to the hyperplane), where the weighting coefficients depend on the pairwise Euclidean
distances between samples. Hence, the intuition presented above is that we predict the classes for
all the n j candidates in the jth image together, as a function of the features for all the candidates in
the batch (here a batch corresponds to an image from a patient). In every test image, each of the
candidates is classified using the features from all the samples in the image. Note that although we
classify each instance in a batch at the same time, our algorithm outputs a class for each instance
and the class membership for these samples need not be the same.

5. Experiments

In this section, we compare regular SVM, probabilistic batch learning (BatchProb), and BatchSVM.
Note that in order to make the comparison consistent, BatchProb was implemented by using the
same linear programming formulation as BatchSVM but using Equation (12) instead of Equation
(3). We also compare PSVM based techniques introduced in Section 3: (1) the proximal ver-
sion of batch learning presented in (6) where & is determined as a parameter via cross-validation
(BatchPSVM−cv), and (2) the alternating optimization method presented in (7), where & is learned
automatically (BatchPSVM− learned).

5.1 Implementation Details

We present the details of the similarity function that we used in our experiments and how we tuned
the parameters of our methods in the next sections.

5.1.1 THE SIMILARITY FUNCTION

As mentioned earlier, the matrix R j represents the level of correlation between all pairs of candi-
dates from a batch (an image in our case) and it is a function of the pairwise-similarity between
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the candidates. One needs to produce the R j matrix using the appropriate similarity metric that
represents the pairwise-similarities the best for a particular application.

In our CAD applications, we have used the Euclidean distances between candidates inside a
medical image as our similarity metric to define the covariance matrix R j. Let rp and rq represent
the coordinates of two candidates, B j

p and B j
q on the jth image. For our experiments, we used the

Euclidean distance between rp and rq to define the pairwise-similarity, s(p,q), between B j
p and B j

q
as following:

s(p,q) = e−
‖rp−rq‖2

!2 .

If the matrices s(p,q) are sparse, it aids the computational efficiency of our algorithms, both in
terms of memory use and speed of implementation. Note also that the matrix is naturally sparse, due
to the rapid decrease of the exponential function. Nevertheless, to make the implementation stable
and memory efficient (by avoiding storing all the elements of these matrices), we found it useful
to discretize the continuous similarity function, s(p,q) to the binary similarity function, s∗(p,q) by
applying a threshold as following:

s∗(p,q) =
{
0 s(p,q) < e−4,
1 s(p,q) ≥ e−4. (13)

In all experiments, we set the threshold at e−4 to provide us with a similarity of one if the neighbor
is at a 95% confidence level of belonging to the same density as the candidate assuming that the
neighborhood is a Gaussian distribution with mean equal to the candidate and variance +2 = 1

& .
Each element of the matrix R is given by:

Rpq = s∗(p,q).

In order to observe the effects of binarization of the R matrix, we also run experiments on
BatchSVM without applying the threshold in Equation (13), that is, R = s(p,q). We refer to this
version of BatchSVM as BatchSVMcont in our experiments.

5.1.2 PARAMETER TUNING

All our parameters in these experiments are tuned by 10-fold patient cross-validation on the training
data (i.e., the training data is split into ten folds). During cross-validation, a range of parameters
(&,(,+) were evaluated for the proposed methods. In BatchPSVM− learned, the parameter & is
learned automatically through equation (7).

5.2 Evaluation Method

As we explained earlier, R used in the proposed methods is produced from the spatial locations
of the candidates. These spatial locations can be considered as extra information provided to our
methods. In order to make fair comparisons between our methods and standard SVM and PSVM, we
added the spatial locations (x,y,z coordinates of the candidates in 3D image) to the feature vectors
of the candidates.

Receiver Operating Characteristic (ROC) plots are used to study the classification accuracy of
these techniques on three CAD applications for detecting pulmonary embolism, colon cancer, and
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PE Colon Lung
train test train test train test

SVM 16.87 0.00 7.22 0.00 1.58 0.00
BatchProb 19.26 4.71 105.14 18.63 46.42 30.02
BatchSVM 11.39 0.23 13.45 0.91 11.73 2.81
BatchSVMcont 13.42 0.74 61.09 5.93 14.69 3.01
PSVM 0.22 0.00 0.13 0.00 0.05 0.00
BatchPSVM− cv 1.02 0.23 3.67 0.89 4.80 2.82
BatchPSVM− learned 1.39 0.33 4.08 0.89 5.44 2.79

Table 2: Training and testing times for each classifier are displayed in seconds.

lung cancer. In clinical practice, CAD systems are evaluated on the basis of a somewhat domain-
specific metric: to maximize the fraction of positives that are correctly identified by the system
while displaying at most a clinically acceptable number of false-marks per image. We report this
domain-specific metric in an ROC plot, where the y-axis is a measure of sensitivity and the x-axis is
the number of false-marks per patient (in our case, per image is also per patient). Sensitivity is the
number of patients diagnosed as having the disease divided by the number of patients that has the
disease. High sensitivity and low false-marks are desired. All classification algorithms are trained
on a training data set and evaluated on a sequestered (held-out) test set.

The area under the ROC curve is a commonly used criteria to evaluate the performance of an
algorithm. Table 3 displays the area under the ROC curve of each classifier. It is important to
note that the areas under the curve presented in Table 3 are calculated considering the entire false
positive range which tends to underestimate the superiority of our proposed approach with respect
to traditional approaches around the range of false positives acceptable for CAD applications.

PSVM, BatchPSVM− cv and BatchPSVM− learned algorithms require solving a set of linear
equations while training, therefore we expect them to be faster than the other methods mentioned
in this paper, namely SVM, BatchProb and BatchSVM. In order to compare the time performances
of the methods, we measured the CPU time consumed by each classifier. Table 2, displays the
training and testing times required by the algorithms. The training times obtained for the parametric
methods (SVM, BatchProb, BatchSVM, PSVM and BatchPSVM− cv) are the total times divided
by the number of cross-validations to find the best value of &. On the other hand, the training time
for BatchPSVM− learned is the total time divided by the number of iterations that BatchPSVM−
learned required while converging to the optimum value of &. We measured the training times this
way to be able to make a fair comparison between the algorithms.

We ran our experiments on an Intel Pentium 4 CPU with 2.8 GHz clock frequency and 1GB
RAM and the algorithms were implemented in Matlab.

5.3 Data Sources and Domain Description

When searching for descriptive features, researchers often deploy a large amount of experimental
image features to describe the identified candidates, which consequently introduces irrelevant or
redundant features. The initial large set of features is based on medically relevant characteristics:
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Figure 3: Experimental results for PE data. ROC curves obtained by (a) SVM, BatchProb,
BatchSVM and BatchSVMcont (b) PSVM, BatchPSVM− cv and BatchPSVM− learned

the pixel intensity descriptive statistics, texture, contrast, 2D and 3D shape descriptors, and the
location of the corresponding structure.

5.3.1 EXAMPLE: PULMONARY EMBOLISM

Pulmonary embolism (PE), a potentially life-threatening condition, is a result of underlying venous
thromboembolic disease. An early and accurate diagnosis is the key to survival. Computed to-
mography angiography (CTA) has emerged as an accurate diagnostic tool for PE. However, there
are hundreds of CT slices in each CTA study. Manual reading is laborious, time consuming and
complicated by various PE look-alikes (false positives) including respiratory motion artifact, flow-
related artifact, streak artifact, partial volume artifact, stair step artifact, lymph nodes, vascular
bifurcation among many others (Masutani et al., 2002; Wittram et al., 2004). Several CAD systems
are developed to assist radiologists in this process by helping them detect and characterize emboli
in an accurate, efficient and reproducible way (Quist et al., 2004; Zhou et al., 2003).

We have collected 72 cases with 242 PEs marked by expert chest radiologists at four different
institutions (two North American sites and two European sites). For our experiments, they were
randomly divided into two sets: a training and a testing set. The training set was used to train and
validate the classifiers and consists of 48 cases with 173 PEs and a total of 3655 candidates. The
testing set consists of 24 cases with 69 true PEs out of a total of 1857 candidates. This set was only
used to evaluate the performance of the final system. A combined total of 70 features were extracted
to describe the shape, texture, size and intensity profile of each candidate.

5.3.2 EXAMPLE: COLON CANCER DETECTION

Colorectal cancer is the third most common cancer in both men and women. It is estimated that in
2004, nearly 147,000 cases of colon and rectal cancer will be diagnosed in the US, and more than
56,730 people would die from colon cancer (Jemal et al., 2004). In over 90% of the cases colon
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Figure 4: Experimental results for Colon Cancer data. ROC curves obtained by (a)
SVM, BatchProb, BatchSVM and BatchSVMcont (b) PSVM, BatchPSVM − cv and
BatchPSVM− learned

cancer progressed rapidly is from local (polyp adenomas) to advanced stages (colorectal cancer),
which has very poor survival rates. However, identifying (and removing) lesions (polyp) when still
in a local stage of the disease, has very high survival rates, thus illustrating the critical need for early
diagnosis. The sizes of a polyp in the colon can vary from 1mm all the way up to 10cm. Most polyps
no matter how small they are, are represented by two candidates; one obtained from the prone view
and the other one from the supine view. Moreover, for large polyps or so called masses a typical
candidate generation algorithm generates several candidates across the polyp surface. Therefore
most polyps in the training data are inherently represented by multiple candidates.

For the sake of clinical acceptability, it is sufficient to detect one of these candidates during
classification. Unlike a standard classification algorithm where the emphasis is to accurately classify
each and every candidate, here we seek to classify at least one of the candidates representing a polyp
accurately. The database of high-resolution CT images used in this study were obtained from seven
different sites across US, Europe and Asia. The 188 patients were randomly partitioned into a
training and a test set. The training set consists of 65 cases containing 127 volumes. Fifty polyps
were identified in this set out of a total of 6748 candidates. The testing set consists of 123 cases
containing 237 volumes. There are 103 polyps in this set from a total of 12984 candidates. A total of
75 features were extracted to describe the shape, size, texture and intensity profile of each candidate.

5.3.3 EXAMPLE: LUNG CANCER

LungCAD is a computer aided detection system for detecting potentially cancerous pulmonary nod-
ules from thin slice multi-detector computed tomography (CT) scans. The final output of LungCAD
is provided by a classifier that classifies a set of candidates as positive or negative. This is a very
hard classification problem: most patient lung CTs contain a few thousand structures (candidates),
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Figure 5: Experimental results for Lung Cancer data. ROC curves obtained by (a)
SVM, BatchProb, BatchSVM and BatchSVMcont (b) PSVM, BatchPSVM − cv and
BatchPSVM− learned

and only a few (≤ 5 on average) of which are potential nodules that should be identified as positive
by LungCAD, all within the run-time requirements of completing the classification on-line during
the time the physician completes their manual review.

The training set consists of 60 patients. The number of candidates labeled as nodules in the train-
ing set are 157 and the total number of candidates is 9987. The testing set consists of 26 patients. In
this testing set, there are 79 candidates labeled as nodules out of 6159 generated candidates. A total
of 15 features were used to describe the shape, size, texture and intensity profile of each candidate
region.

5.4 Discussion and Results

In our experiments, we would like to find out whether the batch methods are better than the stan-
dard SVM, whether BatchSVM is better than BatchProb in terms of accuracy and speed, whether
BatchPSVM is as accurate as BatchSVM, whether BatchPSVM is faster than BatchSVM, and
whether the automated tuning works by comparing BatchPSVM− learned with BatchPSVM− cv.

5.4.1 SVM VERSUS BATCH METHODS

Figures 3, 4, and 5 show the ROC curves for pulmonary embolism, colon cancer, and lung cancer
data respectively. In our medical applications high-sensitivity is critical as early detection of lung
and colon cancer is believed to greatly improve the chances of successful treatment (Bogoni et al.,
2005). Furthermore, high specificity is also critical, as a large number of false positives will vastly
increase physician load and lead (ultimately) to loss of physician confidence.

In Figure 3a, corresponding to the comparison of the ROC curves on the PE data set, we observe
that standard SVM can only achieve 53% sensitivity for six false positives. However, BatchSVM
achieves 80% with a remarkable improvement of 27%. BatchProb also outperforms SVM with a
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PE Colon Lung
SVM 0.79 0.91 0.98
BatchProb 0.83 0.98 0.99
BatchSVM 0.89 0.96 0.99
BatchSVMcont 0.88 0.95 0.99
PSVM 0.77 0.91 0.99
BatchPSVM− cv 0.82 0.96 0.99
BatchPSVM− learned 0.83 0.96 0.99

Table 3: Area under the ROC curves for each classifier. (Best in bold).

64% sensitivity. As seen from the figure, the two proposed methods are substantially more accurate
than standard SVMs at any specificity level. When we compare the performances of PSVM and
BatchPSVM− learned in Figure 3b, we observe that the proposed batch method (BatchPSVM−
learned) dominates over PSVM. However, they do not improve the accuracy of PSVM as much as
BatchProb and BatchSVM do.

Colon cancer data is a relatively easier data set than pulmonary embolism since standard SVM
can achieve 54.5% sensitivity at one false positive level as illustrated in Figure 4a. However,
BatchSVM improved SVM’s performance to 84% sensitivity for the same number of false posi-
tives. Note that BatchProb improved the sensitivity further, giving 89.6% for the same specifity.
In one to ten false positives region which constitutes the region of interest in our applications, our
proposed methods outperform standard SVM significantly. PSVM’s performance is substantially
worse than that of our proposed batch methods, BatchPSVM− cv and BatchPSVM− learned.

Although SVM is very accurate for the lung cancer application, Figure 5a shows that BatchProb
and BatchSVM could still improve SVM’s performance further. BatchProb method is superior to
the other methods at two and three false positives per image. Both BatchProb and BatchSVM
outperform SVM in the 2-6 false positives per image region, which is the region of interest for
commercial clinical lung CAD systems. All three of the methods are comparable at other specificity
levels. On the other hand, we observe in Figure 5b that BatchPSVM−cv and BatchPSVM− learned
methods did not achieve significant improvements, yet they are still comparable to PSVM.

When we consider the area under the ROC curve for each of the methods in Table 3, we observe
that our proposed methods are better than SVM and PSVM in every case except one where PSVM
performs the same as our proposed methods in the lung cancer data.

In order to understand if the proposed methods are statistically significantly better than standard
SVM and PSVM, we applied Z-test to compare the areas under the ROC curves derived from the
same set of patients as explained in Hanley and McNeil (1983). The corresponding P-values that
indicate the level of confidence of the paired comparisons are presented in Table 4. The smaller the
P-values, the higher the level of confidence. Looking at the results in Table 4, we can say that the
improvements provided by the proposed methods are statistically significant for PE and Colon data
sets.
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SVM vs
BatchProb

SVM vs
BatchSVM

PSVM vs
BatchPSVM− cv

PSVM vs
BatchPSVM− learned

PE 0.05 0.01 0.06 0.05
Colon 0.01 0.01 0.05 0.05
Lung 0.81 0.81 1 1

Table 4: P-values that indicate the confidence level of significance when the proposed algorithms
are compared to SVM and PSVM in terms of the area under the ROC curves.

5.4.2 BatchSVM VERSUS BatchProb

As we discussed in Section 3, BatchProb requires calculating two matrix inversions, which can be
time consuming for large sizes of batches, whereas BatchSVM avoids matrix inversions, therefore
BatchSVM should be faster than BatchProb in both training and testing. As expected, our experi-
ments show us that BatchSVM is faster than BatchProb in every case. Note that the difference in run
times is significant for testing in PE and Colon data sets, where BatchSVM is twenty times faster
than BatchProb. On the other hand, BatchProb produced a better ROC curve in Colon data set.
Therefore, although BatchProb is slow compared to BatchSVM, it may be preferable with respect
to accuracy depending on the application.

5.4.3 BatchPSVM− learned VERSUS BatchPSVM− cv

BatchPSVM−cv requires cross-validated tuning over the parameter & to achieve the optimum accu-
racy. One problem with tuning is that we can only tune the parameter in a limited range. Therefore
a good guess of the range of the parameter values is crucial. Another problem is that we can only
tune the parameter over discrete values which may not include the best parameter value. One way
to obtain a close approximation of the best parameter value is to divide the range of the parameter
into small steps. However this method will increase the training time since cross-validation will be
repeated as many times as the possible parameter values (in our experiments, we cross-validated
& over 21 values). On the other hand, automated tuning (BatchPSVM− learned) is quite feasible
and avoids the problems stated above. In our experiments, BatchPSVM− learned was able to au-
tomatically converge to the optimum value of & in only nine iterations on average while producing
comparable ROC plots with cross-validated tuning (BatchPSVM−cv) as seen in Figures 3b, 4b and
5b. The optimum & values obtained by cross-validated tuning and automated tuning are presented in
Table 5. As observed in the table, the optimum & values found by both algorithms are very similar.

When we compare the twomethods with respect to training times, we observe that BatchPSVM−
cv is faster than BatchPSVM− learned for a fixed value of &. However, since we repeated cross-
validation 21 times for BatchPSVM− cv and BatchPSVM− learned required nine iterations on
average, BatchPSVM− learned is actually faster than BatchPSVM− cv in overall while training.

5.4.4 BatchPSVM VERSUS BatchSVM

BatchSVM results in a linear programming problem, whereas BatchPSVM requires solving a set
of linear equations. Therefore, we expect BatchPSVM to be faster than BatchSVM while train-
ing. Experimental results on training times displayed in Table 2 confirm that it takes less time for
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PE Colon Lung
BatchPSVM− cv 1 0.6 0.1
BatchPSVM− learned 1.11 0.68 0.03

Table 5: & values obtained by BatchPSVM− cv and BatchPSVM− learned.

BatchPSVM in the training phase. However, despite the training time performance, BatchSVM
produced better ROC curves than that of BatchPSVM in PE and lung cancer data sets as illustrated
in Figures 3 and 5 respectively. The area under the ROC curve produced by BatchSVM is also
better than BatchPSVM for these two data sets. For Colon data set, in Figure 4b, we observe that
BatchPSVM− cv and BatchSVM performed slightly better than BatchSVM− learned where both
achieve 86% sensitivity at one false positive level. Furthermore, the total area under the ROC curves
produced by BatchSVM and BatchPSVM are the same (0.96). From the experimental results, we
can draw the conclusion that BatchPSVM is a fast alternative to BatchSVM and can be preferable
in some applications.

6. Conclusions

Three related algorithms have been proposed for classifying batches of correlated data samples. Al-
though primarily motivated by real-life CAD applications, the problem occurs commonly in many
situations; our algorithms are sufficiently general to be applied in other contexts. Experimental re-
sults indicate that the proposed method can substantially improve the diagnosis of (a) early stage
cancer in the Lung & Colon, and (b) pulmonary embolisms (which may result in strokes). With the
increasing adoption of these systems in routine clinical practice, these experimental results demon-
strate the potential of our methods to impact a large cross-section of the population.

In this paper, we validated the improvement in diagnosis sensitivity that batch-wise classifica-
tion provides to CAD problems. The algorithms presented here are general and can be applied to
other domains. In other domains, one may apply other similarity metric appropriate for the appli-
cation. For data with no clear batch information, clustering can be performed to create the batches.
Extending the batch algorithms to other data and automatically learning the similarity metric are
topics for future work.
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Appendix A.

In this section, we present the connection between Equations (3) and (12), and the derivation steps
for automatically tuning the parameters in BatchPSVM.
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A.1 Connection between Equations (3) and (12)

We will show the connection between the optimization problems that result by considering the
constraints (3) and (12) by proving that the resulting objective functions are closely related to each
other.

First, let us show that the inverse
(
I+R j−1(2

)−1
that appears in Equation (12) can be approx-

imated by the expression I−(2R j−1.
By replacing A= (2R j−1, in the identity:

(I+A)−1 = I−A+A2−A3+ . . .+,∀A

we have:
(
I+R j−1(2

)−1
= I−(2R j−1+(4R j−1R j−1− . . .

where the terms (4R j−1R j−1−(6R j−1R j−1R j−1+ . . . can be ignored if ( is sufficiently small.
Then, we have: (

I+R j−1(2
)−1 ∼= I−(2R j−1

= −(2R j−1 (I+&R j)
(14)

where &= −1
%2 provided that ( '= 0.

Let us recall that the quadratic unconstrained objective function that results from the constraint
(12) is:

min
(w,!,#)∈Rn+1+1

#
1
2
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!
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∥∥∥∥e−D
j
[(
(2R j−1+ I

)−1
(B jw− e")

]∥∥∥∥
2
+
1
2
(w′w+ "2+&2) (15)

and that the quadratic unconstrained objective function that results from the constraint (3) is given
by:

min
(w,!,#)∈Rn+1+1

#
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k
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∥∥e−D j [(&R j + I
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2
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Next, we will show that the objective functions (15) and (16) are related to each other under
certain assumptions. In order to ease the notation, let’s now define

g(w,") =
k

!
j=1

∥∥∥∥e−D
j
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(2R j−1+ I

)−1
(B jw− e")
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.

Then if (2 is small we have from (14) that:
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where , = max j{
∥∥∥(2R j−1

∥∥∥
2
}, then, if ( is small we can conclude that f (w,") is approximately

a “good” upper bound for g(w,"). Furthermore if h(w,",&) = w′w+ "2 + &2,then F(w,",&) =
# 12 f (w,")+ 1

2h(w,",&) is also a “good” upper bound for G(w,",&) = # 12g(w,")+ 1
2h(w,",&).

So intuitively, sinceG(w,",&) and F(w,",&) are non-negative convex quadratic functions, mini-
mizing F(w,",&) should provide good approximate solutions to the problem of minimizingG(w,",&).

Let us assume now that the number of neighboring points that affect the classification for every
point is more or less constant. This is true when R is binary and calculated only for the k nearest
neighbors or when the rows of R are normalized and approximately true when R is defined as
in (13). This is equivalent to assuming that the summation of all the rows of R is constant, or
equivalently, for every batch j:

− 1
(2
R je≈ ke

where k is a constant. hence:

f (w,") =
k

!
j=1

∥∥ke−D j [(&R j + I
)
(B jw− e")

]∥∥2 .

Then, solving the problem:
minw,!,#F(w,",&)

is equivalent to solving the proximal batch formulation presented in Equation (7) for some # = #̄
(the constant k only rescales the problem in the variables w and ").

A.2 Derivation for Automatically Tuning the Parameters in BatchPSVM

The optimization problem in (7) is a bi-convex problem and can be solved in an iterative fashion
with two steps. At the first step, we find the optimum values of w and " (wopt ,"opt) for a given &. At
the second step, for wopt and "opt held fixed, we find the optimum value of & (&opt), which will be
used at the first leg of the next iteration.

A.2.1 OPTIMIZING FOR w AND " WITH & FIXED

Given & is held fixed, we can optimize (7) with respect to w and ", and rewrite the equation as
follows:

min
(w,!)∈Rn+1

1
2
µ

k

!
j=1
x′P jx+q jx+K1,

where

x=
[
w

!

]
,

P j =
[

1
µI+#

2B j ′R j ′R jB j+#B j ′(R j ′+R j)B j+B j ′B j −#2B j ′R j ′R je−#B j ′(R j ′+R j)e−B j ′e

−#2e′R j ′R jB j−#e′(R j ′+R j)B j−e′B j #2e′R j ′R je+#e′(R j ′+R j)e+e′e+ 1
µ

]
,

q j = 2
[

−#e′D jR jB j−e′D jB j

−#e′D jR je+e′D je

]
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and K1 is a constant term with respect to w and ".
After taking the derivative of the objective function with respect to x and equating to zero, we

can obtain the solution as following:

x= −(
k

!
j=1
P j)−1(

k

!
j=1
q j)

A.2.2 OPTIMIZING FOR & WITH w AND " FIXED

When w and " have fixed values, we can rewrite Equation (7) considering & is the only variable as
following:

min
(w,!)∈Rn+1

1
2
µ

k

!
j=1

&2N j +&M j +K2

where K2 is a constant with respect to & and

N j = w′B j ′R j ′R jB jw−w′B j ′R j ′R je"− "e′R j ′R jB jw+ "2e′R j ′R je+ 1
µ

and

M j = −e′D jR jB jw+ e′D jR je"−w′B j ′R j ′D j ′e+w′B j ′R j ′B jw−w′B j ′R j ′e"
+"e′R j ′D j ′e− "e′R j ′B jw+ "e′R j ′e"+w′B j ′R jB jw−w′B j ′R je"
−"e′R jB jw+ "e′R je

.

M j can be further simplified as:

M j = w′B j ′(R j ′ +R j)B jw−w′B j ′(R j ′ +R j)e"− "e′(R j ′ +R j)B jw
+"e′(R j ′ +R j)e"−2e′D jR jB jw+2e′D jR je"

using the property that A′ = A, if A is a scalar.
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Abstract
The accuracy of k-nearest neighbor (kNN) classification depends significantly on the metric used
to compute distances between different examples. In this paper, we show how to learn a Maha-
lanobis distance metric for kNN classification from labeled examples. The Mahalanobis metric
can equivalently be viewed as a global linear transformation of the input space that precedes kNN
classification using Euclidean distances. In our approach, the metric is trained with the goal that
the k-nearest neighbors always belong to the same class while examples from different classes are
separated by a large margin. As in support vector machines (SVMs), the margin criterion leads to a
convex optimization based on the hinge loss. Unlike learning in SVMs, however, our approach re-
quires no modification or extension for problems in multiway (as opposed to binary) classification.
In our framework, the Mahalanobis distance metric is obtained as the solution to a semidefinite
program. On several data sets of varying size and difficulty, we find that metrics trained in this
way lead to significant improvements in kNN classification. Sometimes these results can be further
improved by clustering the training examples and learning an individual metric within each cluster.
We show how to learn and combine these local metrics in a globally integrated manner.
Keywords: convex optimization, semi-definite programming, Mahalanobis distance, metric learn-
ing, multi-class classification, support vector machines

1. Introduction

One of the oldest and simplest methods for pattern classification is the k-nearest neighbors (kNN)
rule (Cover and Hart, 1967). The kNN rule classifies each unlabeled example by the majority
label of its k-nearest neighbors in the training set. Despite its simplicity, the kNN rule often yields
competitive results and in certain domains, when cleverly combined with prior knowledge, it has
significantly advanced the state-of-the-art (Belongie et al., 2002; Simard et al., 1993).

By the very nature of its decision rule, the performance of kNN classification depends crucially
on the way that distances are computed between different examples. When no prior knowledge
is available, most implementations of kNN compute simple Euclidean distances (assuming the ex-
amples are represented as vector inputs). Unfortunately, Euclidean distances ignore any statistical
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regularities that might be estimated from a large training set of labeled examples. Ideally, one would
like to adapt the distance metric to the application at hand. Suppose, for example, that we are using
kNN to classify images of faces by age and gender. It can hardly be optimal to use the same distance
metric for age and gender classification, even if in both tasks, distances are computed between the
same sets of extracted features (e.g., pixels, color histograms).

Motivated by these issues, a number of researchers have demonstrated that kNN classification
can be greatly improved by learning an appropriate distance metric from labeled examples (Chopra
et al., 2005; Goldberger et al., 2005; Shalev-Shwartz et al., 2004; Shental et al., 2002). This is
the so-called problem of distance metric learning. Recently, it has been shown that even a simple
linear transformation of the input features can lead to significant improvements in kNN classification
(Goldberger et al., 2005; Shalev-Shwartz et al., 2004). Our work builds in a novel direction on the
success of these previous approaches.

In this paper, we show how to learn a Mahalanobis distance metric for kNN classification. The
algorithm that we propose was described at a high level in earlier work (Weinberger et al., 2006)
and later extended in terms of scalability and accuracy (Weinberger and Saul, 2008). Intuitively, the
algorithm is based on the simple observation that the kNN decision rule will correctly classify an ex-
ample if its k-nearest neighbors share the same label. The algorithm attempts to increase the number
of training examples with this property by learning a linear transformation of the input space that
precedes kNN classification using Euclidean distances. The linear transformation is derived by min-
imizing a loss function that consists of two terms. The first term penalizes large distances between
examples in the same class that are desired as k-nearest neighbors, while the second term penalizes
small distances between examples with non-matching labels. Minimizing these terms yields a linear
transformation of the input space that increases the number of training examples whose k-nearest
neighbors have matching labels. The Euclidean distances in the transformed space can equivalently
be viewed as Mahalanobis distances in the original space. We exploit this equivalence to cast the
problem of distance metric learning as a problem in convex optimization.

Our approach is largely inspired by recent work on neighborhood component analysis (Gold-
berger et al., 2005) and metric learning in energy-based models (Chopra et al., 2005). Despite
similar goals, however, our method differs significantly in the proposed optimization. We formulate
the problem of distance metric learning as an instance of semidefinite programming. Thus, the op-
timization is convex, and its global minimum can be efficiently computed. There have been other
studies in distance metric learning based on eigenvalue problems (Shental et al., 2002; De Bie et al.,
2003) and semidefinite programming (Globerson and Roweis, 2006; Shalev-Shwartz et al., 2004;
Xing et al., 2002). These previous approaches, however, essentially attempt to learn distance metrics
that cluster together all similarly labeled inputs, even those that are not k-nearest neighbors. This
objective is far more difficult to achieve than what we propose. Moreover, it does not leverage the
full power of kNN classification, whose accuracy does not require that all similarly labeled inputs
be tightly clustered.

There are many parallels between our method and classification by support vector machines
(SVMs)—most notably, a convex objective function based on the hinge loss, and the potential to
work in nonlinear feature spaces by using the “kernel trick”. In light of these parallels, we describe
our approach as large margin nearest neighbor (LMNN) classification. Our framework can be
viewed as the logical counterpart to SVMs in which kNN classification replaces linear classification.

Our framework contrasts with classification by SVMs, however, in one intriguing respect: it
requires no modification for multiclass problems. Extensions of SVMs to multiclass problems typi-
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cally involve combining the results of many binary classifiers, or they require additional machinery
that is elegant but non-trivial (Crammer and Singer, 2001). In both cases the training time scales at
least linearly in the number of classes. By contrast, our framework has no explicit dependence on
the number of classes.

We also show how to extend our framework to learn multiple Mahalanobis metrics, each of
them associated with a different class label and/or region of the input space. The multiple metrics
are trained simultaneously by minimizing a single loss function. While the loss function couples
metrics in different parts of the input space, the optimization remains an instance of semidefinite
programming. The globally integrated training of local distance metrics distinguishes our approach
from earlier work on discriminant adaptive kNN classification (Hastie and Tibshirani, 1996)

Our paper is organized as follows. Section 2 introduces the general problem of distance metric
learning for kNN classification and reviews previous approaches that motivated our work. Section 3
describes our model for LMNN classification and formulates the required optimization as an in-
stance of semidefinite programming. Section 4 presents experimental results on several data sets.
Section 5 discusses several extensions to LMNN classification, including iterative re-estimation of
target neighbors, locally adaptive Mahalanobis metrics in different parts of the input space, and
“kernelization” of the basic algorithm. Section 6 describes faster implementations for training and
testing in LMNN classification using ball trees. Section 7 concludes by summarizing our main con-
tributions and sketching several directions of ongoing research. Finally, appendix A describes the
special-purpose solver that we implemented for large scale problems in LMNN classification.

2. Background

In this section, we introduce the general problem of distance metric learning (section 2.1) and review
a number of previously studied approaches. Broadly speaking, these approaches fall into three
categories: eigenvector methods based on second-order statistics (section 2.2), convex optimizations
over the space of positive semidefinite matrices (section 2.3), and fully supervised algorithms that
directly attempt to optimize kNN classification error (section 2.4) .

2.1 Distance Metric Learning

We begin by reviewing some basic terminology. A mappingD : X ×X →!+
0 over a vector space X

is called ametric if for all vectors ∀!xi,!x j,!xk ∈ X , it satisfies the properties:

1. D(!xi,!x j)+D(!x j,!xk) ≥ D(!xi,!xk) (triangular inequality).

2. D(!xi,!x j) ≥ 0 (non-negativity).

3. D(!xi,!x j) = D(!x j,!xi) (symmetry).

4. D(!xi,!x j) = 0 ⇐⇒ !xi =!x j (distinguishability).

Strictly speaking, if a mapping satisfies the first three properties but not the fourth, it is called a
pseudometric. However, to simplify the discussion in what follows, we will often refer to pseudo-
metrics as metrics, pointing out the distinction only when necessary.

We obtain a family of metrics over X by computing Euclidean distances after performing a
linear transformation!x′ = L!x. These metrics compute squared distances as:

DL(!xi,!x j) = ‖L(!xi−!x j)‖22, (1)
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where the linear transformation in Eq. (1) is parameterized by the matrix L. It is simple to show
that Eq. (1) defines a valid metric if L is full rank and a valid pseudometric otherwise.

It is common to express squared distances under the metric in Eq. (1) in terms of the square
matrix:

M= L,L. (2)

Any matrixM formed in this way from a real-valued matrix L is guaranteed to be positive semidefi-
nite (i.e., to have no negative eigenvalues). In terms of the matrixM, we denote squared distances by

DM(!xi,!x j) = (!xi−!x j),M(!xi−!x j), (3)

and we refer to pseudometrics of this form as Mahalanobis metrics. Originally, this term was
used to describe the quadratic forms in Gaussian distributions, where the matrixM played the role
of the inverse covariance matrix. Here we allow M to denote any positive semidefinite matrix.
The distances in Eq. (1) and Eq. (3) can be viewed as generalizations of Euclidean distances. In
particular, Euclidean distances are recovered by settingM to be equal to the identity matrix.

A Mahalanobis distance metric can be parameterized in terms of the matrix L or the matrixM.
Note that the matrix L uniquely defines the matrixM, while the matrixM defines L up to rotation
(which does not affect the computation of distances). This equivalence suggests two different ap-
proaches to distance metric learning. In particular, we can either estimate a linear transformation L,
or we can estimate a positive semidefinite matrixM. Note that in the first approach, the optimiza-
tion is unconstrained, while in the second approach, it is important to enforce the constraint that
the matrix M is positive semidefinite. Though generally more complicated to solve a constrained
optimization, this second approach has certain advantages that we explore in later sections.

Many researchers have proposed ways to estimate Mahalanobis distance metrics for the purpose
of computing distances in kNN classification. In particular, let {(!xi,yi)}ni=1 denote a training set of
n labeled examples with inputs !xi ∈ !d and discrete (but not necessarily binary) class labels yi ∈
{1,2, . . . ,C}. For kNN classification, one seeks a linear transformation such that nearest neighbors
computed from the distances in Eq. (1) share the same class labels. We review several previous
approaches to this problem in the following section.

2.2 Eigenvector Methods

Eigenvector methods have been widely used to discover informative linear transformations of the
input space. As discussed in section 2.1, these linear transformations can be viewed as inducing a
Mahalanobis distance metric. Popular eigenvector methods for linear preprocessing are principal
component analysis, linear discriminant analysis, and relevant component analysis. These methods
differ in the way that they use labeled or unlabeled data to derive linear transformations of the input
space. These methods can also be “kernelized” to work in a nonlinear feature space (Müller et al.,
2001; Schölkopf et al., 1998; Tsang et al., 2005), though we do not discuss such formulations here.

2.2.1 PRINCIPAL COMPONENT ANALYSIS

We briefly review principal component analysis (PCA) (Jolliffe, 1986) in the context of distance
metric learning. Essentially, PCA computes the linear transformation !xi → L!xi that projects the
training inputs {!xi}ni=1 into a variance-maximizing subspace. The variance of the projected inputs
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can be written in terms of the covariance matrix:

C=
1
n

n

"
i=1

(!xi−!µ),(!xi−!µ),

where!µ= 1
n "i!xi denotes the sample mean. The linear transformation L is chosen to maximize the

variance of the projected inputs, subject to the constraint that L defines a projection matrix. In terms
of the input covariance matrix, the required optimization is given by:

max
L
Tr(L,CL) subject to: LL, = I. (4)

The optimization in Eq. (4) has a closed-form solution; the standard convention equates the rows
of L with the leading eigenvectors of the covariance matrix. If L is a rectangular matrix, the linear
transformation projects the inputs into a lower dimensional subspace. If L is a square matrix, then
the transformation does not reduce the dimensionality, but this solution still serves to rotate and
re-order the input coordinates by their respective variances.

Note that PCA operates in an unsupervised setting without using the class labels of training
inputs to derive informative linear projections. Nevertheless, PCA still has certain useful properties
as a form of linear preprocessing for kNN classification. For example, PCA can be used for “de-
noising”: projecting out the components of the bottom eigenvectors often reduces kNN error rate.
PCA can also be used to accelerate neighbor nearest computations in large data sets. The linear
preprocessing from PCA can significantly reduce the amount of computation either by explicitly
reducing the dimensionality of the inputs, or simply by re-ordering the input coordinates in terms
of their variance (as discussed further in section 6).

2.2.2 LINEAR DISCRIMINANT ANALYSIS

We briefly review linear discriminant analysis (LDA) (Fisher, 1936) in the context of distance metric
learning. Let #c denote the set of indices of examples in the cth class (with yi = c). Essentially,
LDA computes the linear projection!xi → L!xi that maximizes the amount of between-class variance
relative to the amount of within-class variance. These variances are computed from the between-
class and within-class covariance matrices, defined by:

Cb =
1
C

C

"
c=1

!µc!µ,c , (5)

Cw =
1
n

C

"
c=1
"
i∈#c

(!xi−!µc)(!xi−!µc),,

where!µc denotes the sample mean of the cth class; we also assume that the data is globally centered.
The linear transformation L is chosen to maximize the ratio of between-class to within-class vari-
ance, subject to the constraint that L defines a projection matrix. In terms of the above covariance
matrices, the required optimization is given by:

max
L

Tr
(

L,CbL
L,CwL

)

subject to: LL, = I. (6)

The optimization in Eq. (6) has a closed-form solution; the standard convention equates the rows
of L with the leading eigenvectors of C−1

w Cb.
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LDA is widely used as a form of linear preprocessing for pattern classification. Unlike PCA,
LDA operates in a supervised setting and uses the class labels of the inputs to derive informative
linear projections. Note that the between-class covariance matrix Cb in Eq. (5) has at most rank C ,
where C is the number of classes. Thus, up to C linear projections can be extracted from the
eigenvalue problem in LDA. Because these projections are based on second-order statistics, they
work well to separate classes whose conditional densities are multivariate Gaussian. When this
assumption does not hold, however, LDA may extract spurious features that are not well suited to
kNN classification.

2.2.3 RELEVANT COMPONENT ANALYSIS

Finally, we briefly review relevant component analysis (RCA) (Shental et al., 2002; Bar-Hillel et al.,
2006) in the context of distance metric learning. RCA is intermediate between PCA and LDA
in its use of labeled data. Specifically, RCA makes use of so-called “chunklet” information, or
subclass membership assignments. A chunklet is essentially a subset of a class. Inputs in the same
chunklet belong to the same class, but inputs in different chunklets do not necessarily belong to
different classes. Essentially, RCA computes the linear projection!xi → L!xi that “whitens” the data
with respect to the averaged within-chunklet covariance matrix. In particular, let #" denote the
set of indices of examples in the "th chunklet, and let!µ" denote the mean of these examples. The
averaged within-chunklet covariance matrix is given by:

Cw =
1
n

L

"
l=1
"
i∈#l

(!xi−!µl)(!xi−!µl),.

RCA uses the linear transformation!xi →L!xi with L=C−1/2
w . This transformation acts to normalize

the within-chunklet variance. An unintended side effect of this transformation may be to amplify
noisy directions in the data. Thus, it is recommended to de-noise the data by PCA before computing
the within-chunklet covariance matrix.

2.3 Convex Optimization

Recall that the goal of distance metric learning can be stated in two ways: to learn a linear trans-
formation !xi → L!xi or, equivalently, to learn a Mahalanobis metric M = LL,. It is possible to
formulate certain types of distance metric learning as convex optimizations over the cone of pos-
itive semidefinite matrices M. In this section, we review two previous approaches based on this
idea.

2.3.1 MAHALANOBIS METRIC FOR CLUSTERING

A convex objective function for distance metric learning was first proposed by Xing et al. (2002).
The goal of this work was to learn aMahalanobis metric for clustering (MMC) with side-information.
MMC shares a similar goal as LDA: namely, to minimize the distances between similarly labeled in-
puts while maximizing the distances between differently labeled inputs. MMC differs from LDA in
its formulation of distance metric learning as an convex optimization problem. In particular, whereas
LDA solves the eigenvalue problem in Eq. (6) to compute the linear transformation L, MMC solves
a convex optimization over the matrix M = L,L that directly represents the Mahalanobix metric
itself.
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To state the optimization for MMC, it is helpful to introduce further notation. From the class
labels yi, we define the n× n binary association matrix with elements yi j =1 if yi= y j and yi j =0
otherwise. In terms of this notation, MMC attempts to maximize the distances between pairs of
inputs with different labels (yi j = 0), while constraining the sum over squared distances of pairs of
similarly labeled inputs (yi j = 1). In particular, MMC solves the following optimization:

Maximize "i j(1− yi j)
√

DM(!xi,!x j) subject to:
(1) "i j yi jDM(!xi,!x j) ≤ 1

(2) M. 0.

The first constraint is required to make the problem feasible and bounded; the second constraint
enforces that M is a positive semidefinite matrix. The overall optimization is convex. The square
root in the objective function ensures that MMC leads to generally different results than LDA.

MMC was designed to improve the performance of iterative clustering algorithms such as k-
means. In these algorithms, clusters are generally modeled as normal or unimodal distributions.
MMC builds on this assumption by attempting to minimize distances between all pairs of similarly
labeled inputs; this objective is only sensible for unimodal clusters. For this reason, however, MMC
is not especially appropriate as a form of distance metric learning for kNN classification. One of the
major strengths of kNN classification is its non-parametric framework. Thus a different objective
for distance metric learning is needed to preserve this strength of kNN classification—namely, that
it does not implicitly make parametric (or other limiting) assumptions about the input distributions.

2.3.2 ONLINE LEARNING OF MAHALANOBIS DISTANCES

Convex optimizations over the cone of positive semidefinite matrices have also been proposed for
perceptron-like approaches to distance metric learning. The Pseudometric Online Learning Algo-
rithm (POLA) (Shalev-Shwartz et al., 2004) combines ideas from convex optimization and large
margin classification. Like LDA and MMC, POLA attempts to learn a metric that shrinks distances
between similarly labeled inputs and expands distances between differently labeled inputs. POLA
differs from LDA and MMC, however, in explicitly encouraging a finite margin that separates dif-
ferently labeled inputs. POLA was also conceived in an online setting.

The online version of POLA works as follows. At time t, the learning environment presents a
tuple (!xt ,!x′t ,yt), where the binary label yt indicates whether the two inputs !xt and !x′t belong to the
same (yt =1) or different (yt =−1) classes. From streaming tuples of this form, POLA attempts to
learn a Mahalanobis metricM and a scalar threshold b such that similarly labeled inputs are at most
a distance of b−1 apart, while differently labeled inputs are at least a distance of b+1 apart. These
constraints can be expressed by the single inequality:

yt
[

b−
(

!xt −!x′t
),M

(

!xt −!x′t
)

]

≥ 1. (7)

The distance metricM and threshold b are updated after each tuple (!ut ,!vt ,yt) to correct any violation
of this inequality. In particular, the update computes a positive semidefinite matrixM that satisfies
(7). The required optimization can be performed by an alternating projection algorithm, similar to
the one described in appendix A. The algorithm extends naturally to problems with more than two
classes.
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POLA can also be implemented on a data set of fixed size. In this setting, pairs of inputs are
repeatedly processed until no pair violates its margin constraints by more than some constant $> 0.
Moreover, as in perceptron learning, the number of iterations over the data set can be bounded above
(Shalev-Shwartz et al., 2004).

In many ways, POLA exhibits the same strengths and weaknesses as MMC. Both algorithms
are based on convex optimizations that do not have spurious local minima. On the other hand,
both algorithms make implicit assumptions about the distributions of inputs and class labels. The
margin constraints enforced by POLA are designed to learn a distance metric under which all pairs
of similarly labeled inputs are closer than all pairs of differently labeled inputs. This type of learning
may often be unrealizable, however, even in situations where kNN classification is able to succeed.
For this reason, a different framework is required to learn distance metrics for kNN classification.

2.4 Neighborhood Component Analysis

Recently, Goldberger et al. (2005) considered how to learn a Mahalnobis distance metric especially
for kNN classification. They proposed a novel supervised learning algorithm known as Neigh-
borhood Component Analysis (NCA). The algorithm computes the expected leave-one-out clas-
sification error from a stochastic variant of kNN classification. The stochastic classifier uses a
Mahalanobis distance metric parameterized by the linear transformation!x→ L!x in Eqs. (1–3). The
algorithm attempts to estimate the linear transformation L that minimizes the expected classification
error when distances are computed in this way.

The stochastic classifier in NCA is used to label queries by the majority vote of nearby training
examples, but not necessarily the k nearest neighbors. In particular, for each query, the reference
examples in the training set are drawn from a softmax probability distribution that favors nearby
examples over faraway ones. The probability of drawing !x j as a reference example for !xi is given
by:

pi j =

{

exp(−‖Lxi−Lx j‖2)
"k /=i exp(−‖Lxi−Lxk‖2)

if i /= j
0 if i= j.

(8)

Note that there is no free parameter k for the number of nearest neighbors in this stochastic classifier.
Instead, the scale of L determines the size of neighborhoods from which nearby training examples
are sampled. On average, though, this sampling procedure yields similar results as a deterministic
kNN classifier (for some value of k) with the same Mahalanobis distance metric.

Under the softmax sampling scheme in Eq. (8), it is simple to compute the expected leave-one-
out classification error on the training examples. As in section 2.3.1, we define the n×n binary
matrix with elements yi j = 1 if yi = y j and yi j = 0 otherwise. The expected error computes the
fraction of training examples that are (on average) misclassified:

%NCA = 1−
1
n"i j

pi jyi j. (9)

The error in Eq. (9) is a continuous, differentiable function of the linear transformation L used to
compute Mahalanobis distances in Eq. (8).

Note that the differentiability of Eq. (9) depends on the stochastic neighborhood assignment
of the NCA decision rule. By contrast, the leave-one-out error of a deterministic kNN classifier is
neither continuous nor differentiable in the parameters of the distance metric. For distance metric
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learning, the differentiability of Eq. (9) is a key advantage of stochastic neighborhood assignment,
making it possible to minimize this error measure by gradient descent. It would be much more
difficult to minimize the leave-one-out error of its deterministic counterpart.

The objective function for NCA differs in one important respect from other algorithms reviewed
in this section. Though continuous and differentiable with respect to the parameters of the distance
metric, Eq. (9) is not convex, nor can it be minimized using eigenvector methods. Thus, the op-
timization in NCA can suffer from spurious local minima. In practice, the results of the learning
algorithm depend on the initialization of the distance metric.

The linear transformation in NCA can also be used to project the inputs into a lower dimensional
Euclidean space. Eqs. (8–9) remain valid when L is a rectangular as opposed to square matrix.
Lower dimensional projections learned by NCA can be used to visualize class structure and/or to
accelerate kNN search.

Recently, Globerson and Roweis (2006) proposed a related model known as Metric Learning
by Collapsing Classes (MLCC). The goal of MLCC is to find a distance metric that (like LDA)
shrinks the within-class variance while maintaining the separation between different classes. MLCC
uses a similar rule as NCA for stochastic classification, so as to yield a differentiable objective
function. Compared to NCA, MLCC has both advantages and disadvantages for distance metric
learning. The main advantage is that distance metric learning in MLCC can be formulated as a
convex optimization over the space of positive semidefinite matrices. The main disadvantage is
that MLCC implicitly assumes that the examples in each class have a unimodal distribution. In
this sense, MLCC shares the same basic strengths and weaknesses of the methods described in
section 2.3.

3. Model

The model we propose for distance metric learning builds on the algorithms reviewed in section 2.
In common with all of them, we attempt to learn a Mahalanobis distance metric of the form in
Eqs. (1–3). Other key aspects of our model build on the particular strengths of individual ap-
proaches. As in MMC (see section 2.3.1), we formulate the parameter estimation in our model
as a convex optimization over the space of positive semidefinite matrices. As in POLA (see sec-
tion 2.3.2), we attempt to maximize the margin by which the model correctly classifies labeled
examples in the training set. Finally, as in NCA (see section 2.4), our model was conceived specif-
ically to learn a Mahalanobis distance metric that improves the accuracy of kNN classification.
Indeed, the three essential ingredients of our model are (i) its convex loss function, (ii) its goal
of margin maximization, and (iii) the constraints on the distance metric imposed by accurate kNN
classification.

3.1 Intuition and Terminology

Our model is based on two simple intuitions (and idealizations) for robust kNN classification: first,
that each training input !xi should share the same label yi as its k nearest neighbors; second, that
training inputs with different labels should be widely separated. We attempt to learn a linear trans-
formation of the input space such that the training inputs satisfy these properties. In fact, these
objectives are neatly balanced by two competing terms in our model’s loss function. Specifically,
one term penalizes large distances between nearby inputs with the same label, while the other term
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penalizes small distances between inputs with different labels. To make precise these relative no-
tions of “large” and “small”, however, we first need to introduce some new terminology.

Learning in our framework requires auxiliary information beyond the label yi of each input!xi in
the training set. Recall that the goal of learning is to estimate a distance metric under which each
input !xi has k nearest neighbors that share its same label yi. We facilitate this goal by identifying
target neighbors for each input!xi at the outset of learning. The target neighbors of!xi are those that
we desire to be closest to !xi; in particular, we attempt to learn a linear transformation of the input
space such that the resulting nearest neighbors of!xi are indeed its target neighbors. We emphasize
that target neighbors are fixed a priori and do not change during the learning process. This step
significantly simplifies the learning process by specifying a priori which similarly labeled inputs to
cluster together. In many applications, there may be prior knowledge or auxiliary information (e.g.,
a similarity graph) that naturally identifies target neighbors. In the absence of prior knowledge, the
simplest prescription is to compute the k nearest neighbors with the same class label, as determined
by Euclidean distance. This was done for all the experiments in this paper. We use the notation j!i
to indicate that input!x j is a target neighbor of input!xi. Note that this relation is not symmetric: j!i
does not imply i! j.

For kNN classification to succeed, the target neighbors of each input!xi should be closer than all
differently labeled inputs. In particular, for each input !xi, we can imagine the target neighbors as
establishing a perimeter that differently labeled inputs should not invade. We refer to the differently
labeled inputs in the training set that invade this perimeter as impostors; the goal of learning (roughly
speaking) is to minimize the number of impostors.

In fact, to increase the robustness of kNN classification, we adopt an even more stringent goal
for learning—namely to maintain a large (finite) distance between impostors and the perimeters
established by target neighbors. By maintaining a margin of safety around the kNN decision bound-
aries, we ensure that the model is robust to small amounts of noise in the training inputs. This
robustness criterion also gives rise to the name of our approach: large margin nearest neighbor
(LMNN) classification.

In mathematical terms, impostors are defined by a simple inequality. For an input!xi with label yi
and target neighbor!x j, an impostor is any input!xl with label!yl /=!yi such that

‖L(!xi−!xl)‖2 ≤ ‖L(!xi−!x j)‖2+1. (10)

In other words, an impostor !xl is any differently labeled input that invades the perimeter plus unit
margin defined by any target neighbor!x j of the input!xi.

Figure 1 illustrates the main idea behind LMNN classification. Before learning, a training input
has both target neighbors and impostors in its local neighborhood. During learning, the impostors
are pushed outside the perimeter established by the target neighbors. After learning, there exists
a finite margin between the perimeter and the impostors. The figure shows the idealized scenario
where kNN classification errors in the original input space are corrected by learning an appropriate
linear transformation.

3.2 Loss Function

With the intuition and terminology from the previous section, we can now construct a loss function
for LMNN classification. The loss function consists of two terms, one which acts to pull target
neighbors closer together, and another which acts to push differently labeled examples further apart.
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Figure 1: Schematic illustration of one input’s neighborhood before training (left) versus after train-
ing (right). The distance metric is optimized so that: (i) its k=3 target neighbors lie within
a smaller radius after training; (ii) differently labeled inputs lie outside this smaller radius
by some finite margin. Arrows indicate the gradients on distances arising from different
terms in the cost function.

These two terms have competing effects, since the first is reduced by shrinking the distances between
examples while the second is generally reduced by magnifying them. We discuss each term in turn.

The first term in the loss function penalizes large distances between each input and its target
neighbors. In terms of the linear transformation L of the input space, the sum of these squared
distances is given by:

%pull(L)="
j!i

‖L(!xi−!x j)‖2. (11)

The gradient of this term generates a pulling force that attracts target neighbors in the linearly
transformed input space. It is important that Eq. (11) only penalizes large distances between inputs
and their target neighbors; in particular, it does not penalize large distances between all similarly
labeled inputs. We purposefully do not penalize the latter because accurate kNN classification does
not require that all similarly labeled inputs be tightly clustered. Our approach is distinguished
in this way from many previous approaches to distance metric learning; see section 2. By only
penalizing large distances between neighbors, we build models that leverage the full power of kNN
classification.

The second term in the loss function penalizes small distances between differently labeled exam-
ples. In particular, the term penalizes violations of the inequality in Eq. (10). To simplify notation,
we introduce a new indicator variable yil =1 if and only if yi=yl , and yil =0 otherwise. In terms of
this notation, the second term of the loss function %push is given by:

%push(L)= "
i, j!i

"
l
(1− yil)

[

1+‖L(!xi−!x j)‖2−‖L(!xi−!xl)‖2
]

+ (12)

where the term [z]+ =max(z,0) denotes the standard hinge loss. The hinge loss monitors the in-
equality in Eq. (10). If the inequality does not hold (i.e., the input!xl lies a safe distance away from
!xi), then its hinge loss has a negative argument and makes no contribution to the overall loss func-
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tion. The (sub-)gradient of Eq. (12) generates a pushing force that repels imposters away from the
perimeter established by each example’s k nearest (similarly labeled) neighbors; see Fig. 1.

The choice of unit margin is an arbitrary convention that sets the scale for the linear transforma-
tion L (which enters every other term in the loss function). If a margin c>0 was enforced instead
of the unit margin, the loss function would be minimized by the same linear transformation up to an
overall scale factor

√
c.

Finally, we combine the two terms %pull(L) and %push(L) into a single loss function for distance
metric learning. The two terms can have competing effects—to attract target neighbors on one hand,
to repel impostors on the other. A weighting parameter µ∈ [0,1] balances these goals:

%(L) = (1−µ)%pull(L)+µ%push(L). (13)

Generally, the parameter µ can be tuned via cross validation, though in our experience, the results
from minimizing the loss function in Eq. (13) did not depend sensitively on the value of µ. In
practice, the value µ= 0.5 worked well.

The competing terms in Eq. (13) are analogous to those in the loss function for learning in SVMs
(Schölkopf and Smola, 2002). In both loss functions, one term penalizes the norm of the “parame-
ter” vector (i.e., the weight vector of the maximum margin hyperplane, or the linear transformation
in the distance metric), while the other incurs the hinge loss. Just as the hinge loss in SVMs is only
triggered by examples near the decision boundary, the hinge loss in Eq. (13) is only triggered by
differently labeled examples that invade each other’s neighborhoods. Both loss functions in SVMs
and LMNN can be rewritten to depend on the input vectors only through their inner products. Work-
ing with the inner product matrix directly allows the application of the kernel trick; see section 5.3.
Finally, as in SVMs, we can formulate the minimization of the loss function in Eq. (13) as a convex
optimization. This last point will be developed further in section 3.4.

Our framework for distance metric learning provides an alternative to the earlier approach of
NCA (Goldberger et al., 2005) described in section 2.4. We briefly compare the two approaches at
a high level. Both LMNN and NCA are designed to learn a Mahalanobis distance metric over the
input space that improves kNN classification at test time. Though test examples are not available
during training, the learning algorithms for LMNN and NCA are based on training in “simulated”
test conditions. Neither approach directly minimizes the leave-one-out error1 for kNN classification
over the training set. The leave-one-out error is a piecewise constant but non-smooth function of the
linear transformation L, making it difficult to minimize directly. NCA uses stochastic neighborhood
assignment to construct a smooth loss function, thus circumventing this problem. LMNN uses the
hinge loss to construct an upper bound on the leave-one-out error for kNN classification; this up-
per bound is continuous and similarly well behaved for standard gradient-based methods. In NCA,
it is not necessary to select a fixed number k of target neighbors in advance of the optimization.
Because the objective function for NCA is not convex, however, the initial conditions for the Maha-
lanobis metric implicitly favor the preservation of certain neighborhoods over others. By contrast,
in LMNN, the target neighborhoods must be explicitly specified. A potential advantage of LMNN
is that the required optimization can be formulated as an instance of semidefinite programming.
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Figure 2: A toy data set for distance metric learning, with n = 2000 data points sampled from
a bi-modal distribution. Within each mode, examples from two classes are distributed
in alternating vertical stripes. The figure shows the dominant axis extracted by several
different algorithms for distance metric learning. Only NCA and LMNN reduce the 1-NN
classification error on this data set; the other algorithms actually increase the error by
focusing on global versus local distances.

3.3 Local Versus Global Distances

We emphasize that the loss function for LMNN classification only penalizes large distances between
target neighbors as opposed to all examples in the same class. The toy data set in Fig. 2 illustrates
the potential advantages of this approach. The data was generated by sampling n=2000 data points
from two classes in a zebra striped pattern; additionally, the data for each class was generated in two
sets of stripes displaced by a large horizontal offset. As a result, this data set has the property that
within-class variance is much larger in the horizontal direction than the vertical direction; however,
local class membership is much more reliably predicted by examples that are nearby in the vertical
direction.

Algorithms such as LMNN and NCA perform very differently on this data set than algorithms
such as LDA, RCA, and MCC. In particular, LMNN and NCA adapt to the local striped structure
in the data set and learn distance metrics that significantly reduce the kNN error rate. By contrast,
LDA, RCA, and MCC attempt to shrink distances between all examples in the same class and
actually increase the kNN error rate as a result. Though this data set is especially contrived, it
illustrates in general the problems posed by classes with multimodal support. Such classes violate a
basic assumption behind metric learning algorithms that attempt to shrink global distances between
all similarly labeled examples.

1. This is the number of training examples that would have been mislabeled by kNN classification if their label was in
fact unknown.
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3.4 Convex Optimization

The loss function in Eq. (13) is not convex in the matrix elements of the linear transformation L.
To minimize this loss function, one straightforward approach is gradient descent in the elements
of L. However, such an approach is prone to being trapped in local minima. The results of this
form of gradient descent will depend in general on the initial estimates for L. Thus they may not be
reproducible across different problems and applications.

We can overcome these difficulties by reformulating the optimization of Eq. (13) as an instance
of semidefinite programming (Boyd and Vandenberghe, 2004). A semidefinite program (SDP) is
a linear program that incorporates an additional constraint on a symmetric matrix whose elements
are linear in the unknown variables. This additional constraint requires the matrix to be positive
semidefinite, or in other words, to only have nonnegative eigenvalues. This matrix constraint is
nonlinear but convex, so that the overall optimization remains convex. There exist provably efficient
algorithms to solve SDPs (with polynomial time convergence guarantees).

We begin by reformulating Eq. (13) as an optimization over positive semidefinite matrices.
Specifically, as described in Eq. (2), we work in terms of the new variable M = L,L. With this
change of variable, we can rewrite the squared distances that appear in the loss function using
Eq. (3). Recall that DM(!xi,!x j) denotes the squared distance with respect to the Mahalanobis met-
ric M. As shown in section 2.1, this distance is equivalent to the Euclidean distance after the
mapping!xi → L!xi. Substituting Eq. (3) into Eq. (13), we obtain the loss function:

%(M)=(1−µ) "
i, j!i

DM(!xi,!x j)+µ"
i, j!i
"
l
(1− yil) [1+DM(!xi,!x j)−DM(!xi,!xl)]+ . (14)

With this substitution, the loss function is now expressed over positive semidefinite matricesM. 0,
as opposed to real-valued matrices L. Note that the constraint M . 0 must be added to the opti-
mization to ensure that we learn a well-defined pseudometric.

The loss function in Eq. (14) is a piecewise linear, convex function of the elements in the matrix
M. In particular, the first term in the loss function (penalizing large distances between target neigh-
bors) is linear in the elements of M, while the second term (penalizing impostors) is derived from
the convex hinge loss. To formulate the optimization of Eq. (14) as an SDP, however, we need to
convert it into a more standard form.

An SDP is obtained by introducing slack variables which mimic the effect of the hinge loss. In
particular, we introduce nonnegative slack variables {&i jl} for all triplets of target neighbors ( j! i)
and impostors!xl . The slack variable &i jl≥0 is used to measure the amount by which the large margin
inequality in Eq. (10) is violated. Using the slack variables to monitor these margin violations, we
obtain the SDP:

Minimize (1−µ)"i, j!i(!xi−!x j),M(!xi−!x j)+µ"i, j!i,l(1− yil)&i jl subject to:
(1) (!xi−!xl),M(!xi−!xl)− (!xi−!x j),M(!xi−!x j) ≥ 1−&i jl
(2) &i jl ≥ 0
(3) M. 0.

While SDPs in this form can be solved by standard solver packages, general-purpose solvers
tend to scale poorly in the number of constraints. For this work, we implemented our own special-
purpose solver, exploiting the fact that most of the slack variables {&i jl} never attain positive values.
The slack variables {&i jl} are sparse because most inputs!xi and!xl are well separated relative to the
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distance between !xi and any of its target neighbors !x j. Such triplets do not incur a positive hinge
loss, resulting in very few active constraints in the SDP. Thus, a great speedup can be achieved
by solving an SDP that only monitors a fraction of the margin constraints, then using the resulting
solution as a starting point for the actual SDP of interest.

Our solver was based on a combination of sub-gradient descent in both the matrices L andM,
the latter used mainly to verify that we had reached the global minimum. We projected updates inM
back onto the positive semidefinite cone after each step. Alternating projection algorithms provably
converge (Vandenberghe and Boyd, 1996), and in this case our implementation2 worked much faster
than generic solvers. For a more detailed description of the solver please see appendix A.

3.5 Energy Based Classification

The matrix M that minimizes the loss function in Eq. (14) can be used as a Mahalanobis distance
metric for kNN classification. However, it is also possible to use the loss function directly as a
so-called “energy-based” classifier. This use is inspired by previous work on energy-based models
(Chopra et al., 2005).

Energy-based classification of a test example is done by considering it as an extra training ex-
ample and computing the loss function in Eq. (14) for every possible label yt . In particular, for a test
example!xt with hypothetical label yt , we locate k (similarly labeled) target neighbors (as determined
by Euclidean distance to!xt or other a priori considerations) and then compute both terms in Eq. (14)
given the already estimated Mahalanobis metric M. For the first term, we accumulate the squared
distances to the k target neighbors of !xt . For the second term, we accumulate the hinge loss over
all impostors (i.e., differently labeled examples) that invade the perimeter around !xt as determined
by its target neighbors; we also accumulate the hinge loss for differently labeled examples whose
perimeters are invaded by !xt . Finally, the test example is classified by the hypothetical label that
minimizes the combination of these terms:

yt = argminyt

{

(1−µ)"
j!t

DM(!xt ,!x j)+µ "
j!t,l

(1−ytl) [1+DM(!xt ,!x j)−DM(!xt ,!xl)]+

+µ "
i, j!i

(1−yit) [1+DM(!xi,!x j)−DM(!xi,!xt)]+

}

. (15)

Note that the relation j! t in this criterion depends on the value of yt . As shown in Fig. 3, energy-
based classification with this assignment rule generally leads to further improvements in test error
rates. Often these improvements are significantly beyond those already achieved by adopting the
Mahalanobis distance metricM for kNN classification.

4. Results

We evaluated LMNN classification on nine data sets of varying size and difficulty. Some of these
data sets were derived from collections of images, speech, and text, yielding very high dimensional
inputs. In these cases, we used PCA to reduce the dimensionality of the inputs before training
LMNN classifiers. Pre-processing the inputs with PCA helped to reduce computation time and
avoid overfitting. Table 1 compares the different data sets in detail.

2. A matlab implementation is currently available at http://www.weinbergerweb.net/Downloads/LMNN.html.
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Figure 3: Training and test results on the five largest data sets, preprocessed in different ways, and
using different variants of kNN classification. We compared principal component analysis
(pca), linear discriminant analysis (lda), relevant component analysis (rca), large margin
nearest neighbor classification (lmnn), lmnn with multiple passes (mp-lmnn), lmnn with
multiple metrics (mm-lmnn), multi-class support vector machines (svm), lmnn classifica-
tion with the energy based decision rule (lmnn (energy)). All variations of lmnn, rca and
lda were applied after pre-processing with pca for general noise reduction. See text and
Table 1 for details. The lmnn results consistently outperform pca and lda. The multiple
metrics version of lmnn (mm-lmnn) is comparable with multiclass svm on most data sets
(with 20news and yaleFaces as only exceptions).

Experimental results were obtained by averaging over multiple runs on randomly generated
70/30 splits of each data set. This procedure was followed with two exceptions: no averaging was
done for the Isolet and MNIST data sets, which have pre-defined training/test splits. For all exper-
iments reported in this paper, the number of target neighbors k was set to k=3, and the weighting
parameter µ in Eqs. (14-15) was set to µ=0.5. Though we experimented with different settings, the
results from LMNN classification appeared fairly insensitive to the values of these parameters.

The main results on the five largest data sets are shown in Fig. 3. (See Table 1 for a complete
listing of results, including those for various extensions of LMNN classification described in sec-
tion 5.) All training error rates reported are leave-one-out estimates. To break ties among different
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classes from the kNN decision rule, we repeatedly reduced the neighborhood size, ultimately clas-
sifying (if necessary) by just the k=1 nearest neighbor. We begin by reporting overall trends, then
discuss the results on individual data sets in more detail.

The first general trend is that LMNN classification using Mahalanobis distances consistently
improves on kNN classification using Euclidean distances. In general, the Mahalanobis metrics
learned by semidefinite programming led to significant improvements in kNN classification, both in
training and testing.

A second general trend is that the energy-based decision rule described in section 3.5 leads
to further improvements over the (already improved) results from kNN classification using Maha-
lanobis distances. In particular, better performance was observed on most of the large data sets. The
results are shown in Fig. 3.

A third general trend is that LMNN classification works better with PCA than LDA when
some form of dimensionality reduction is required for preprocessing. Table 1 shows the results of
LMNN classification on inputs whose dimensionality was reduced by LDA. While pre-processing
by LDA helps on some data sets (e.g., wine, yale faces), it generally leads to worse results than pre-
processing by PCA. On some data sets, moreover, it leads to drastically worse results (e.g., olivetti
faces, MNIST). Consequently we used PCA as a pre-processing step for all subsequent experiments
throughout this paper.

A fourth general trend is that LMNN classification yields larger improvements on larger data
sets. Though we do not have a formal analysis that accounts for this observation, we can provide
the following intuitive explanation. One crucial aspect of the optimization in LMNN classification
is the choice of the target neighbors. In all of our experiments, we chose the target neighbors based
on Euclidean distance in the input space (after dimensionality reduction by PCA or LDA). This
choice was a simple heuristic used in the absence of prior knowledge. However, the quality of this
choice presumably depends on the sample density of the data set. In particular, as the sample density
increases, we suspect that more reliable discriminative signals can be learned from target neighbors
chosen in this way. The experimental results bear this out.

Finally, we compare our results to those of competing methods. We take multi-class SVMs
(Crammer and Singer, 2001) as providing a fair representation of the state-of-the-art. On each data
set (except MNIST), we trained multi-class SVMs using linear, polynomial and RBF kernels and
chose the best kernel with cross validation. On MNIST, we used a non-homogeneous polynomial
kernel of degree four, which gave us our best results, as also reported in LeCun et al. (1995). The
results of the energy-based LMNN classifier are very close to those of state-of-the-art multi-class
SVMs: better on some data sets, worse on others. However, consistent improvement over multi-
class SVMs was obtained by a multiple-metric variant of LMNN, discussed in section 5.2. This
multi-metric extension outperformed SVMs on three of the five large data sets; see Fig. 3. On the
only data set with a large performance difference, 20-newsgroups, the multi-class SVMs benefited
from training in the original d= 20000 dimensional input space, whereas the LMNN classifiers
were trained only on the input’s leading d=200 principal components. Based on these results, in
section 7, we suggest some applications that seem particularly well suited to LMNN classification,
though poorly suited to SVMs. These are applications with moderate input dimensionality, but large
numbers of classes.

To compare with previous work, we also evaluated RCA (Shental et al., 2002), LDA (Fisher,
1936) and NCA (Goldberger et al., 2005) on the same data sets. For NCA and RCA, we used the
code provided by the authors; however, the NCA code ran out of memory on the larger data sets.
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Table 1 shows the results of all algorithms on small and larger data sets. LMNN outperforms these
other methods for distance metric learning on the four largest data sets. In terms of running times,
RCA is by far the fastest method (since its projections can be computed in closed form), while
NCA is the slowest, mainly due to the O(n2) normalization of its softmax probability distributions.
Although the optimization in LMNN naively scales as O(n2), in practice it can be accelerated by
various efficiency measures: Appendix A discusses our semidefinite programming solver in detail.
We did also include the results of MCC (Xing et al., 2002); however, the code provided by the
authors could only handle a few of the small data sets. As shown in Table 1, on those data sets it
resulted in classification rates generally higher than NCA.

The results of experiments on particular data sets provide additional insight into the performance
of LMNN classification versus competing methods. We give a more detailed overview of these
experiments in what follows.

4.1 Small Data Sets with Few Classes

The wine, iris, and bal data sets are small in size, with less than 500 training examples. Each of these
data sets has three classes. The data sets are available from the UCI Machine Learning Repository.3
On data sets of this size, a distance metric can be learned in a matter of seconds. The results in
Table 1 were averaged over 100 experiments with different random 70/30 splits of each data set.

On these data sets, LMNN classification improves on kNN classification with a Euclidean dis-
tance metric. These results could potentially be improved further with better measures against
overfitting (such as regularization). Table 1 also compares the results from LMNN classification to
other competing methods. Here, the results are somewhat variable; compared to NCA, RCA, LDA,
and multiclass SVMs, LMNN fares better in some cases, worse in others. We mainly report these
results to facilitate direct comparisons with previously published work. However, the small size of
these data sets makes it difficult to assess the significance of these results. Moreover, these data sets
do not represent the regime in which we expect LMNN classification to be most useful.

4.2 Face Recognition

The Olivetti face recognition data set4 contains 400 grayscale images of 40 subjects in 10 differ-
ent poses. We downsampled the images to 38× 31 pixels and used PCA to further reduce the
dimensionality, projecting the images into the subspace spanned by the first 200 eigenfaces (Turk
and Pentland, 1991). Training and test sets were created by randomly sampling 7 images of each
subject for training and 3 images for testing. The task involved 40-way classification—essentially,
recognizing a face from an unseen pose. Table 1 shows the improvements due to LMNN classi-
fication. Fig. 4 illustrates the improvements more graphically by showing how the k= 3 nearest
neighbors change as a result of learning a Mahalanobis metric. (Although the algorithm operated
on downsampled, projected images, for clarity the figure shows the original images.)

The (extended) Yale face data set contains n = 2414 frontal images of 38 subjects. For each
subject, there are 64 images taken under extreme illumination conditions. (A few subjects are
represented with fewer images.) As for the Olivetti data set, we preprocessed the images by down-
sampling and projecting them onto their leading 200 principal components. To reduce the impact of
the very high variance in illumination, we followed the standard practice of discarding the leading 5

3. Available at http://www.ics.uci.edu/$\sim$mlearn/MLRepository.html.
4. Available at http://www.uk.research.att.com/facedatabase.html.
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eigenvectors. Results from LMNN classification were averaged over 10 runs of 70/30 splits. Each
split was obtained by randomly selecting 45 images of each subject for training and 19 images for
testing. This protocol ensured that the training examples were evenly distributed across the rela-
tively large number of classes. To guard against overfitting, we employed a validation set consisting
of 30% of the training data and stopped the training early when the lowest classification error on the
validation set was reached. On this data set, Fig. 3 shows that the LMNN metric outperforms the
Euclidean metric and even improves on multiclass SVMs. (Particularly effective on this data set,
though, is the simple strategy of LDA.)
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Figure 4: Test images from the Olivetti face recognition data set (top row). The middle row shows
images from the same class that were among the 3-NN under the learned Mahalanobis
metric (after training) but not among the original 3-NN under the Euclidean metric (before
training). The bottom row shows impostors under the Euclidean metric that were no
longer inside the local neighborhoods under the Mahalanobis metric.

4.3 Spoken Letter Recognition

The Isolet data set from the UCI Machine Learning Repository contains 6238 examples and 26
classes corresponding to letters of the alphabet. We reduced the input dimensionality (originally at
617) by projecting the data onto its leading 172 principal components—enough to account for 95%
of its total variance. On this data set, Dietterich and Bakiri report test error rates of 4.2% using
nonlinear backpropagation networks with 26 output units (one per class) and 3.3% using nonlinear
backpropagation networks with a 30-bit error correcting code (Dietterich and Bakiri, 1995). LMNN
with energy-based classification obtains a test error rate of 3.4%.

4.4 Letter Recognition

The letter recognition data set was also taken from the UCI Machine Learning Repository. It con-
tains randomly distorted images of the 26 letters in the English alphabet in 20 different fonts. The
features consist of 16 attributes, such as height, width, correlations of axes and others.5 It is inter-

5. Full details on the data set can be found at http://www.ics.uci.edu/$\sim$mlearn/databases/
letter-recognition/letter-recognition.names.
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esting that LMNN with energy-based classification significantly outperforms other variants of kNN
classification on this data set.
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Figure 5: Images from the MNIST data set, along with nearest neighbors before and after training.

4.5 Text Categorization

The 20-newsgroups data set consists of posted articles from 20 newsgroups, with roughly 1000
articles per newsgroup. We used the 18828-version of the data set6 in which cross-postings are
removed and some headers stripped out. The data set was tokenized using the rainbow package
(McCallum, 1996). Each article was initially represented by a word-count vector for the 20,000 most
common words in the vocabulary. These word-count vectors were then reduced in dimensionality
by projecting them onto their leading 200 principal components. The results in Fig. 3 were obtained
by averaging over 10 runs with 70/30 splits for training and test data. The best result for LMMN
on this data set improved significantly over kNN classification using Euclidean distances and PCA
(with 14.98% versus 48.57% and 18.22% test error rates). LMNN was outperformed by multiclass
SVM (Crammer and Singer, 2001), which obtained a 8.0% test error rate using a linear kernel and
20000 dimensional inputs.7

4.6 Handwritten Digit Recognition

The MNIST data set of handwritten digits8 has been extensively benchmarked (LeCun et al., 1995).
We deskewed the original 28×28 grayscale images, then reduced their dimensionality by projecting
them onto their leading 164 principal components (enough to capture 95% of the data’s overall

6. Available at http://people.csail.mit.edu/jrennie/20Newsgroups/.
7. Results vary from previous work (Weinberger et al., 2006) due to different pre-processing.
8. Available at http://yann.lecun.com/exdb/mnist/.
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Table 1: Results and statistics from all experiments. The data sets are sorted by largest to small-
est from left to right. The table shows data statistics and error rates from different vari-
ants of LMNN training (single-pass, multi-pass, multi-metric), testing (kNN decision rule,
energy-based classification), and preprocessing (PCA, LDA). Results from RCA, NCA
and multiclass support vector machines (SVMs) are also provided for comparison. See
section 5 for discussion of multi-pass and multi-metric LMNN training.
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Figure 6: The relative change of the 3-NN classification error after multiple runs of LMNN over a
single run of LMNN.

variance). Energy-based LMNN classification yielded a test error rate at 1.4%, cutting the baseline
kNN error rate by over one-third. Other comparable benchmarks (LeCun et al., 1995) (not exploiting
additional prior knowledge) include multilayer neural nets at 1.6% and SVMs at 1.2%. Fig. 5
shows some digits whose nearest neighbor changed as a result of learning, from a mismatch using
Euclidean distances to a match using Mahalanobis distances. Table 1 reveals that the LMNN error
can be further reduced by learning a different distance metric for each digit class. This is discussed
further in section 5.2.

5. Extensions

In this section, we investigate four extensions designed to improve LMNN classification. Section 5.1
examines the impact of multiple consecutive applications of LMNN on one data set. Section 5.2
shows how to learn multiple (locally linear) metrics instead of a single global metric. Section 5.3
discusses how to “kernelize” the algorithm for LMNN classification and reviews complementary
work by Torresani and Lee (2007). Finally, section 5.4 investigates the use of LMNN as a method
for supervised dimensionality reduction.

5.1 Multi-pass LMNN

One potential weakness of LMNN is that target neighbors must be a priori specified. In the ab-
sence of prior knowledge, a default choice is to use Euclidean distances to determine target nearest
neighbors. While the target nearest neighbors are fixed during learning, however, the actual nearest
neighbors may change as a result of the linear transformation of the input space. These changes
suggest an iterative approach, in which the Mahalanobis distances learned in one application (or
“pass”) of LMNN are used to determine the target nearest neighbors in a subsequent run of the al-
gorithm. More formally, let Lp be the transformation matrix obtained from the pth pass of LMNN.
For the (p+1)th pass, we can assign target neighbors using the Euclidean distance metric after the
linear transformation!xi → LpLp−1...L1L0!xi (with L0 = I).

To evaluate this approach, we performed multiple passes of LMNN on all the data sets from
Table 1. The parameter k was set to k= 3. Figure 6 shows the relative improvements in kNN classi-
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Figure 7: A synthetic data set to illustrate the potential of multiple metrics. The data set consists
of inputs sampled from two concentric circles, each of which defines a different class
membership. LMNN training was used to estimate one global metric, as well as multiple
local metrics. Left: a single linear metric cannot model the non-linear decision boundary.
The leave-one-out (LOO) error is 100%. Middle: if the data set is divided into two
clusters (by k-means), and a local metric learned within each cluster, the error rate drops
drastically. Right: the use of three metrics reduces the LOO-error on the training set to
zero. The principal directions of individual distance metrics are indicated by arrows.

fication error rates on the five largest data sets. (Here, a value of one indicates that multiple passes
of LMNN did not change the error rate, while a value less than one indicates an improvement.)
On these data sets, multiple passes of LMMN were generally helpful, sometimes significantly im-
proving the results. On smaller data sets, though, the multi-pass strategy seemed prone to overfit.
Table 1 shows the absolute results on all data sets from multiple passes of LMNN (indicated by
MP-LMNN).

A better strategy for choosing target neighbors remains an open question. This aspect of LMNN
classification differs significantly from NCA, which does not require the choice of target neighbors.
In fact, NCA also determines the effective neighborhood size as part of its optimization. On the
other hand, the optimization in NCA is not convex; as such, the initial conditions implicitly specify
a basin of attraction that determines the final result. In LMNN classification, the target neighbors
are fixed in order to obtain a convex optimization. This trade-off is reminiscent of other convex
relaxations of computationally hard problems in machine learning.

5.2 Multi-metric LMNN

On some data sets, a global linear transformation of the input space may not be sufficiently powerful
to improve kNN classification. Figure 7 shows an example of a synthetic data set for which a single
metric is not sufficient. The data set consists of inputs sampled from two concentric circles, each
of which defines a different class membership. Global linear transformations cannot improve the
accuracy of kNN classification of this data set. In general, highly nonlinear multiclass decision
boundaries may not be well modeled by a single Mahalanobis distance metric.
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In these situations, one useful extension of LMNN is to learn multiple locally linear transforma-
tions instead of a single global linear transformation. In this section, we show how to learn different
Mahalanobis distance metrics for different examples in the input space. The idea of learning locally
linear distance metrics for kNN classification is at least a decade old (Hastie and Tibshirani, 1996).
It has also been explored more recently in the context of metric learning for semi-supervised clus-
tering (Bilenko et al., 2004). The novelty of our approach lies in learning these metrics specifically
to maximize the margin of correct kNN classification. As a first step, we partition the training data
into disjoint clusters using k-means, spectral clustering (Shi and Malik, 2000), or label information.
(In our experience, the latter seems to work best.) We then learn a Mahalanobis distance metric for
each cluster. While the training procedure couples the distance metrics in different clusters, the op-
timization remains a convex problem in semidefinite programming. The globally integrated training
of local distance metrics also distinguishes our approach from earlier work (Hastie and Tibshirani,
1996).

Before developing this idea more formally, we first illustrate its potential in a toy setting—
namely, on the data set in Fig. 7. For this data set, LMNN training was used to estimate one global
metric, as well as multiple local metrics (as described below). Cluster boundaries in the input space
were determined by the k-means algorithm. We measured the leave-one-out (LOO) training error
(with k = 1 nearest neighbors) after learning one, two and three metrics. With one metric, the error
was 100%; with two metrics, it dropped to 21%; finally, with three metrics, it vanished altogether.
The figure illustrates how the multiple metrics adapt to the local structure of the class decision
boundaries.

In order to learn different Mahalanobis metrics in different parts of the input space, we minimize
a variation of the objective function in Eq. (14). We denote the different metrics by M1, . . . ,Mc,
where c is the number of clusters. If we partition the training examples by their class labels, then
c also coincides with the number of classes; this was done for the remaining experiments in this
section. In this case, as the cluster that contains !xi is indexed by its label yi, we can refer to its
metric asMyi . We further define the cluster-dependent distance between two vectors!xi and!x j as:

D̂(!xi,!x j) = (!xi−!x j),My j(!xi−!x j). (16)

Note that this cluster-dependent measure of distance D̂(!xi,!x j) is not symmetric with respect to its
input arguments. In a slight abuse of terminology, however, we will continue to refer to Eq. (16)
as a distance metric; the symmetry is not required for its use in kNN classification. To learn these
metrics from data, we solve a modified version of the original SDP:

Minimize (1−µ)"i, j!i(!xi−!x j),My j(!xi−!x j)+µ" j!i,l(1− yil)&i jl
subject to:

(1) (!xi−!xl),Myl (!xi−!xl)− (!xi−!x j),My j(!xi−!x j) ≥ 1−&i jl
(2) &i jl ≥ 0
(3) Mi . 0 for i= 1, . . . ,c.

Note that all the matrices Mi are learned simultaneously by solving a single SDP. This ap-
proach ensures the consistency of distance computations in different clusters: for example, the
distance from a test example to training examples with different labels. The integrated learning
of different metrics is necessary to calibrate these distances on the same scale; if the metrics were
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learned independently, then the distances computed by different metrics could not be meaningfully
compared—obviously, a crucial requirement for kNN classification.

!"#$%

$&"%

'($%

)$*#%

Figure 8: Multiple local distance metrics learned for a data set consisting of handwritten digits four,
two, one and zero.

Fig. 8 illustrates the multiple metrics learned from an image data set of four different hand-
written digits: zero, one, four, and two. The plot shows the first two principal components of the
data. Only these principal components were used in training in order to yield an easily visualized
solution. The solution can be visualized by illustrating the metrics as ellipsoids centered at the class
means. The ellipsoids show the effect on a unit circle of each local linear transformation learned by
LMNN. The line inside each ellipsoid indicates its principal axis.

We experimented with this multi-metric version of LMNN on all of the data sets from section 4.
To avoid overfitting, we held out 30% of each data set’s training examples and used them as a
validation set. We learned one metric per class. To speed up training, we initialized the multi-metric
optimization by setting each class-dependent metric to the solution from LMNN classification with
a single global distance metric. Table 1 reports the error rates and other results from all these
experiments (under “MM-LMNN”). The training times for MM-LMNN include the time required
to compute the initial metric settings from the optimization in Eq. (14).

Fig. 9 shows the relative improvement in 3-NN classification error rates from multi-metric
LMNN over standard LMNN on the five largest data sets. The multiple metrics variant improves
over standard LMNN on every data set. The best result occurs on the MNIST handwritten digits
data set, where MM-LMNN obtained a 1.18% kNN classification error rate, slightly outperform-
ing multi-class SVMs. However, the improvement from multi-metric LMNN is not as consistently
observed when the energy-based decision rule is used for classification.
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Figure 9: Relative improvement in k−NN classification error rates using multiple metrics over error
rates using a single metric.

5.3 Kernel Version

LMNN can also be extended by using kernel methods (Schölkopf and Smola, 2002) to work in
a nonlinear feature space, as opposed to the original input space. The idea of learning a kernel
matrix has been explored in other contexts (Kwok and Tsang, 2003; Lanckriet et al., 2004; Varma
and Ray, 2007), particularly large margin classification by support vector machines. This idea for
LMNN has been investigated in detail by Torresani and Lee (2007). The “kernel trick” is used to
map the inputs !xi into higher (possibly infinite) dimensional feature vectors '(!xi). To avoid the
computational cost of working directly with these feature vectors, they are only accessed through
their inner products, which are pre-computed and stored in the kernel matrix:

Ki j ='(!xi),'(!x j).

Note how in Eq. (14), the inputs!xi are only accessed in terms of the distances in Eq. (3). Torresani
and Lee (2007) considered Mahalanobis metrics of the formM= "lmAlm'(!xl)'(!xm),, where the
matrix A is constrained to be positive semidefinite. They showed that the gradient of Eq. (14) with
respect to the matrix A can be written entirely in terms of the elements of the kernel matrix. Thus,
a “kernelized” version of LMNN can be implemented efficiently in the same way as kernel PCA
(Schölkopf et al., 1998), without ever working directly in the high dimensional feature space.

Torresani and Lee (2007) show that the kernelized version of LMNN can lead to significant
further improvements, but at the cost of increased computation. The increased computation is due
to the size of the matrix that must be learned in this setting: the matrixA has O(n2) elements instead
ofO(d2). (However, the kernel version could require less computation in applications where n< d.)
More details on the kernelized version of LMNN can be found in their paper.

5.4 Dimensionality Reduction

Often it is useful to generate low dimensional representations of high dimensional data. These rep-
resentations can be used to visualize the data and/or to accelerate algorithms whose time complexity
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scales with the input dimensionality. In section 6, for example, we will investigate how to accel-
erate the kNN search in LMNN classification by mapping the training data into a low dimensional
subspace.

Low dimensional representations of inputs can be derived from the linear transformation !xi →
L!xi in LMNN classification. This can be done in two ways. The first way is to project the trans-
formed inputs onto their leading principal components. Note that if the inputs are whitened prior to
optimizing Eq. (13), then these principal components are given simply by the leading eigenvectors
of the square matrix L. Another way to derive low dimensional representations is to build this goal
explicitly into the optimization for LMNN classification. In particular, we can attempt to minimize
Eq. (13) with respect to L (rather than with respect toM= L,L) and constrain L to be rectangular
of size r× d, where r is the desired output dimensionality (presumed to be much smaller than the
input dimensionality, d). The optimization in terms of L is not convex, but in practice (Torresani and
Lee, 2007), it does not appear to suffer from very poor local minima. In the following section, we
use and compare both these methods to build efficient tree data structures for LMNN classification.

6. Metric Trees

One inherent disadvantage of kNN search is its relatively high computational complexity at test
time. The simplest brute-force way to locate a test example’s nearest neighbors is to compute its
distance to all the training examples. Such a naı̈ve implementation has a test time-complexity of
O(nd), where n is the number of training examples, and d is the input dimensionality.

One way to accelerate kNN search is to rotate the input space such that the coordinate axes are
aligned with the data’s principal components. Such a rotation sorts the input coordinates by de-
creasing variance; see Section 2.2.1. This ordering can be used to prune unnecessary computations
in kNN search. In particular, for any test example, a nearest neighbor query consists of computing
the distance to each training example and comparing this distance to the k closest examples already
located. The distance computation to a particular training example can be aborted upon determin-
ing that it lies further away than the k closest examples already located. When the coordinate axes
are aligned with the principal components, this determination can often be made after examining
just a few of the leading, load-bearing dimensions. We have used this optimization in our baseline
implementation of kNN search.

Generally there are two major approaches to gain additional speed-ups. The first approach is
to reduce the input dimensionality d. The Johnson-Lindenstrauss Lemma (Dasgupta and Gupta,
1999) states that n points can be mapped into a space of dimensionality O( log(n)%2 ) such that the
distances between any two points changes only by a factor of (1± %). Thus we can often reduce
the dimensionality of the input data without distorting the nearest neighbor relations. (Note also
that for kNN classification, we may tolerate inexact nearest neighbor computations if they do not
lead to significant errors in classification.) The second approach to speed up kNN search is to build
a sophisticated tree-based data structure for storing training examples. Such a data structure can
reduce the nearest neighbor test time complexity in practice toO(d logn) (Beygelzimer et al., 2006).
This latter method works best for low dimensional data. Fig. 10 compares a baseline implementation
of kNN search versus one based on ball trees (Liu et al., 2005; Omohundro, 1987). Note how the
speed-up from the ball trees is magnified by dimensionality reduction of the inputs.
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Figure 10: Relative speed-up for 3NN classification obtained from different orthogonal projections
of MNIST handwritten digits onto their leading principal components. For these exper-
iments, the d = 784 dimensional inputs from the raw images were projected onto the
number of principal components shown on the x-axis. The figure compares the speed-
ups when ball trees are used (blue) versus when ball trees are not used (red) in the lower
dimensional space. Note how the gains from ball trees diminish with increasing dimen-
sionality. All the NN computations in these experiments were accelerated by aligning
the coordinate axes along principal components, as described in section 6.

In this section, we explore the use of ball trees for LMNN classification and dimensionality re-
duction. We find that ball trees can be used for both faster training and testing of LMNN classifiers.

6.1 Review of Ball Trees

Several authors have proposed tree-based data structures to speed up kNN search. Examples are
kd-trees (Friedman et al., 1977), ball trees (Liu et al., 2005; Omohundro, 1987) and cover-trees
(Beygelzimer et al., 2006). All these data structures exploit the same idea: to partition the input
space data into hierarchically nested bounding regions. The bounding regions are set up to guarantee
that the distance from a test example to a training example inside the bounding region is at least as
large as the distance from the test example’s to the region’s boundary. Thus, for each test example,
the training examples inside the bounding region can be ruled out as k nearest neighbors if k training
examples have already been found that are closer than the region’s boundary. In this case, the
kNN search can proceed without explicitly computing the distances to training examples in the
bounding region. This “pruning” of distance computations often leads to a significant speedup in
kNN computation time.

We experimented with ball trees (Liu et al., 2005), in which the bounding regions are hyper-
spheres. Fig. 11 illustrates the basic idea behind ball trees. If a set S of training examples is
encapsulated inside a ball with center !c and radius r, such that ∀!x ∈ S : ‖!x−!c‖ ≤ r, then for any
test example!xt we can bound the distance to any training example inside the ball by the following
expression:

∀!xi ∈ S ‖!xt −!xi‖ ≥max(‖!xt −!c‖2− r,0). (17)

Ball trees exploit this inequality to build a hierarchical data structure. The data structure is based
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!c r ‖!xt − !c‖ − r
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‖!xt − !xj‖

Figure 11: The basic idea behind ball trees: for any training example!xi inside the ball we can bound
the distance ‖!xt −!xi‖2 from below using (17). If another training example !x j outsider
the ball is already known to be closer than this bound to the test example !xt , then the
training examples inside the ball can be ruled out as nearest neighbors.

on recursively splitting the training examples into two disjoint sets. The sets are encapsulated by
hyperspheres (or “balls”) which may be partially overlapping. The training examples are recursively
divided into smaller and smaller sets until no leaf set contains more than some predefined number
of examples.

From this hierarchical data structure, the k-nearest neighbors of a test example can be found by
a standard depth-first tree-based search. Recall that each node in the tree has an associated hyper-
sphere that encloses the training examples stored by its descendants. The kNN search proceeds by
traversing the tree and computing a test example’s distance to the center of each node’s hypersphere.
The tree is traversed by greedily descending sub-trees in order of this distance. Before descending
a subtree, however, Eq. (17) is checked to determine whether training examples in the subtree lie
further away than the currently estimated k-nearest neighbors. If this is true, the sub-tree is pruned
from the search without further computation. When a leaf node is reached, all the training examples
at the leaf node are compared to the currently estimated k-nearest neighbors, and the estimates are
updated as necessary. Note that ball trees support exact queries for kNN search.

As pointed out earlier, and as illustrated by Fig. 10, ball trees yield the largest gains in kNN
search time for low dimensional data. When the data is high dimensional, the search is plagued
by the so-called “curse of dimensionality” (Indyk and Motwani, 1998). In particular, the distances
between high dimensional points tend to be more uniform, thereby reducing the opportunities for
pruning subtrees in the depth-first search.

6.2 Ball Trees for LMNN Training

The most computationally intensive part of LMNN training is computing the gradient of the penalty
for margin violations in Eq. (12). The gradient computation requires a search over all pairs of
differently labeled examples to determine if any of them are “impostors” (see section 3.1) that incur
margin violations. The solver described in appendix A reduces the number of these searches by
maintaining an active list of previous margin violations. Nevertheless, this search scales O(n2d),
which is very computationally intensive for large data sets.

Ball trees can be used to further speed up the search for impostors. Recall how impostors were
defined in section 3.1. For any training example !xi, and for any similarly labeled example !x j that
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Figure 12: The relative speed-up obtained using ball trees to search for margin violations. The
speed-up was measured on the MNIST data set of handwritten digits, with inputs of
varying dimensionality derived from PCA. Note how the gains from ball trees diminish
with increasing input dimensionality.

is one of its target k-nearest neighbors (with j ! i), the impostors consist of all differently labeled
examples !xl (with yil = 0) that satisfy Eq. (10). Ball trees can be used to search for all training
examples that meet this criterion. As in their use for kNN search, many subtrees in the depth-first
search for impostors can be pruned: if for some ball the lower bound distances between examples
is already greater than the right hand side of Eq. (10), then all the examples stored in the subtree
can be ruled out as impostors. Note that for each training example !xi, we only need to search for
impostors among other training examples !xl that have a different class label (with yil = 0). Thus,
we build one ball tree data structure per class and perform a separate search for impostors in each
class.

Fig. 12 shows the relative speed-up when ball trees are used to search for margin violations
in LMNN classification. The figure shows results from experiments with the MNIST images of
handwritten digits. For these experiments, the images were projected into subspaces of varying
dimensionality using PCA. The gains from ball trees in this context are significant, though not as
dramatic as those in Fig. 10 for simple kNN search. The lesser gains for LMNN classification can be
attributed to the minimum enforced margin of unit distance, which sometimes causes a high number
of sub-trees to be traversed. This effect is controlled by the relative magnitude of the unit margin; it
can be partially offset by scaling the input data by a constant factor before training.

6.3 Ball Trees for LMNN Testing

Ball trees can also be used to accelerate kNN search at test time. We have observed earlier, though,
that the speed-up from ball trees diminishes quickly as the input dimensionality increases; see
Fig. 10. If very fast kNN classification using ball trees is desired on a large data set, then often
it is necessary to work with a lower dimensional representation of the training examples.

The most commonly used methods for dimensionality reduction in ball trees are random pro-
jections and PCA. Neither of these methods, however, is especially geared to preserve the accuracy
of kNN classification. There is an inherent trade-off between dimensionality reduction and nearest
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Figure 13: Graph of kNN classification error (with k = 3) on different low dimensional representa-
tions of the MNIST data set; see text for details. The speed-up from ball-trees is shown
at the top of the graph.

neighbor preservation. Nearest neighbor relationships can change when the training examples are
projected into a lower dimensional space, resulting in significantly worse kNN classification.

In this section, we explore how the distance metric learned for LMNN classification can be used
for more effective dimensionality reduction in ball trees. In section 5.4, we described two different
ways to derive low dimensional representations for LMNN classification. The first computed a
low-rank approximation to the (generally full rank) matrix L; the second directly learned a low-
rank rectangular matrix L by optimizing the non-convex loss function in Eq. (13). For shorthand,
we refer to these approaches for dimensionality reduction as LMNN-S and LMNN-R, denoting
whether a square (S) or rectangular (R) matrix is learned to minimize the LMNN cost function.
Fig. 13 shows the results of kNN classification from both these methods on the MNIST data set of
handwritten digits. For these experiments, the raw MNIST images (of size 28× 28) were projected
onto their 350 leading principal components before any training for LMNN classification. Also
shown in the figure are the results from further dimensionality reduction using PCA, as well as
the baseline kNN error rate in the original (high dimensional) input space. The square matrix in
LMNN-S was of size 350×350, and for dimensionality reduction, the data was projected onto the
r leading eigenvectors of linear transformation L. The rectangular matrix in LMNN-R was of size
r×350, where r varied from 15 to 50. The speed-up from ball trees is shown at the top of the graph.
The amount of speed-up depends significantly on the amount of dimensionality reduction, but very
little on the particular method of dimensionality reduction.

The results show that LMNN can be used effectively for dimensionality reduction. For example,
LMNN-R achieves a kNN test error rate of 2.38% in 15 dimensions, only slightly higher than the
baseline error rate of 2.33% in the original input space. In this space, moreover, ball trees yield a
15x speedup over baseline kNN search. In 25 dimensions, the LMNN-R error rate drops further to
1.76% while still yielding a 5.7x speed-up. Of the three methods compared in Fig. 13, LMNN-R is
the most effective. In fact, though working in many fewer dimensions, LMNN-R obtains results very
close to the best results reported in section 4. It is interesting that LMNN-R outperforms LMNN-S,
though (as expected) their results converge as the rectangular matrix in LMNN-R becomes more
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square. These results show that aggressive dimensionality reduction can be combined with highly
accurate kNN classification.

7. Discussion

In this paper, we have introduced a new framework for large margin nearest neighbor (LMNN)
classification. From labeled training examples, we have shown how to learn a Mahalanobis dis-
tance metric for kNN classification. The required optimization was formulated as an instance of
semidefinite programming. Our framework makes no parametric assumptions about the structure or
distribution of the data and scales naturally to problems with large number of classes. On multiple
data sets, we have demonstrated that we can significantly improve the accuracy of kNN classifica-
tion by learning a metric in this way. We have also shown that an alternative energy-based decision
rule typically leads to further improvements over traditional kNN classification.

Beyond the basic framework for LMNN classification, we described several useful and comple-
mentary extensions. These included: iterative re-estimation of target neighbor assignments, globally
integrated learning of multiple locally linear metrics, kernel methods for LMNN classification, low-
rank distance metrics for dimensionality reduction, and ball trees for more efficient gradient com-
putations (in training) and kNN search (in testing). These extensions can be adapted and combined
to meet the demands of particular applications. For example, to build a highly accurate classifier
without regard to the actual computation at test time, our results suggest to train multiple locally
linear metrics. At the other extreme, to build a kNN classifier that is as fast as possible at test time,
our results suggest to combine low-rank distance metrics with ball trees.

Taken as a whole, our results demonstrate the promise and widespread applicability of LMNN
classification. Perhaps the greatest promise lies in problems with very large numbers of classes, such
as face and identity recognition. The number of classes in these problems can be in the hundreds,
thousands, or more. Nearest neighbor methods handle this regime more transparently than other
leading methods, such as SVMs. The ideas behind LMNN classification have also been extended by
others in various ways (Torresani and Lee, 2007; Kumar et al., 2007). In the appendix, we describe
a simple solver that scales well to problems with tens of thousands of examples. A MATLAB
implementation of the algorithm is also freely available with this paper.

Future work will concentrate on several open problems. The improved performance with mul-
tiple metrics suggests that LMNN classification could benefit from even more adaptive transfor-
mations of the input space. It would also be useful to study LMMN classification in the semi-
supervised, transductive setting, where only a few labeled inputs are available for training but the
unlabeled test set is known in advance. Finally, for many real-world applications in computer vision
and information retrieval, the data sets can be much larger than the ones we have studied. For very
large data sets, our current implementation for LMNN does not scale as well as simpler eigenvector
methods such as PCA, LDA, and RCA. It remains an interesting challenge to scale LMNN to even
larger data sets with millions or more training examples.
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Appendix A. Solver

We implemented our own special-purpose solver for large-scale problems in LMNN classification.
Our solver was designed to exploit the particular structure of the cost function in Eq. (13). The solver
iteratively re-estimates the Mahalanobis distance metric as it attempts to minimize the cost function
for LMNN classification. The amount of computation is minimized by careful book-keeping from
one iteration to the next. The speed-ups from these optimizations enabled us to work comfortably
on data sets with up to n=60,000 training examples.

Our solver implements an iterative sub-gradient projection method to optimize Eq. (14) in terms
of the positive semidefinite matrixM. We refer to theMahalanobis distance metric at the tth iteration
asMt and to its squared Mahalanobis distance in Eq. (3) as Dt . At each iteration, the optimization
takes a step along the sub-gradient to reduce the loss function and then projectsMt onto the feasible
set. In our case, the feasible set is the cone of all positive semidefinite matrices S+. The following
sections derive the gradient and describe the projection onto S+.

It is worth emphasizing that although we can phrase the optimization of Eq. (14) as a semidef-
inite program (by introducing nonnegative slack variables to model the hinge loss), in practice our
large-scale solver works directly to minimize Eq. (14). The hinge losses that appear in this loss
function are not differentiable at all points. Nevertheless, because the loss function is convex, we
can compute its sub-gradient and use standard hill-climbing algorithms to find its minimum. It
has been shown that such sub-gradient methods converge to the correct solution, provided that the
gradient step-size is sufficiently small (Boyd and Vandenberghe, 2004).

A.1 Gradient Computation

The gradient computation can be done most efficiently by careful book-keeping from one iteration
to the next. As simplifying notation, let Ci j=(!xi−!x j)(!xi−!x j),. It is straightforward to express the
distances, as defined in Eq. (3), in terms of this notation. In particular, at the tth iteration, we have
Dt(!xi,!x j) = tr(MtCi j). Consequently, we can rewrite the loss function in Eq. (14) as:

%(Mt) = (1−µ) "
i, j!i

tr(MtCi j)+µ "
j!i,l

(1− yil) [1+ tr(MtCi j)−tr(MtCil)]+ (18)

Note that Eq. (18) is piecewise linear with respect toMt . Let us define a set of triples N t , such that
(i, j, l) ∈ N t if and only if the indices (i, j, l) trigger the hinge loss in the second part of Eq. (18).
With this definition, we can write the gradient Gt of %(Mt) as:

Gt =
(%
Mt

= (1−µ) "
i, j!i

Ci j +µ "
(i, j,l)∈N t

(Ci j−Cil) .

Computing the gradient requires computing the outer products in Ci j; it thus scales quadratically in
the input dimensionality. As the setNt is potentially very large, a naı̈ve computation of the gradient
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would be extremely expensive. However, we can exploit the fact that the gradient contribution from
each active triplet (i, j, l) does not depend on the degree of its margin violation. Thus, the changes
in the gradient from one iteration to the next are determined entirely by the differences between
the sets Nt and Nt+1. We can use this fact to derive an extremely efficient update that relates the
gradient Gt+1 at iteration t + 1 from the gradient Gt at iteration t. The update simply subtracts
the contributions from triples that are no longer active and adds the contributions of those that just
became active:

Gt+1 =Gt −µ"
(i, j,l)∈Nt−Nt+1

(Ci j−Cil)+µ"
(i, j,l)∈Nt+1−Nt

(Ci j−Cil) . (19)

For small gradient step sizes, the set Nt changes very little from one iteration to the next. In this
case, computing the right hand side of Eq. (19) is extremely fast.

To accelerate the solver even further, we adopt an active set method. Note that computing the
set Nt at each iteration requires checking every triplet (i, j, l) with j! i for a potential margin
violation. This computation scales as O(nd2+ kn2d), making it impractical for large data sets. To
avoid this computational burden, we exploit the fact that the great majority of triples do not incur
margin violations: in particular, for each training example, only a very small fraction of differently
labeled examples typically lie nearby in the input space. Consequently, a useful approximation is to
check only a subset of likely triples for margin violations per gradient computation. We initialize
the training procedure by checking all triples and maintaining an active list of those with margin
violations; however, a full re-check is only made every 10-20 iterations, depending on fluctuations
of the set Nt . For intermediate iterations, we only check for margin violations from among those
active triples accumulated over previous iterations. When the optimization converges, we verify that
the working set Nt does contain all active triples that incur margin violations. This final check is
needed to ensure convergence to the correct minimum. If the check is not satisfied, the optimization
restarts with the newly expanded active set.

A.2 Projection

The minimization of Eq. (18) must enforce the constraint that the matrixMt remains positive semi-
definite. To enforce this constraint, we projectMt onto the cone of all positive semidefinite matrices
S+ after each gradient step. This projection is computed from the diagonalization of Mt . Let
Mt = V)V, denote the eigendecomposition of Mt , where V is the orthonormal matrix of eigen-
vectors and ) is the diagonal matrix of corresponding eigenvalues. We can further decompose
)= )−+)+, where )+ =max(),0) contains all the positive eigenvalues and )−=min(),0) con-
tains all the negative eigenvalues. The projection of Mt onto the cone of positive semidefinite
matrices is given by:

PS (Mt)=V)+V,. (20)

The projection effectively truncates any negative eigenvalues from the gradient step, setting them
equal to zero.

A.3 Algorithm

Our gradient projection algorithm combined the update rules for the gradient in Eq. (19) and the
projection in Eq. (20). A simplified pseudo-code implementation is shown in Algorithm 1. We
denote the gradient step-size by *> 0. In practice, it worked best to start with a small value of
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*. Then, at each iteration, we increased * by a factor of 1.01 if the loss function decreased and
decreased * by a factor of 0.5 if the loss function increased.

Algorithm 1 A simple gradient projection pseudo-code implementation.
1: M0 := I {Initialize with the identity matrix}
2: t :=0{Initialize counter}
3: N (0),N0 := {}{Initialize active sets}
4: G0 := (1−µ)"i, j!iCi j{Initialize gradient}
5: while (not converged) do
6: if mod(t,someconstant) = 0 ∨ (almost converged){we used someconstant=10} then
7: compute Nt+1 exactly
8: N (t+1) :=N (t) ∪ Nt+1{Update active set}
9: else
10: compute Nt+1 ≈Nt+1∩N (t){ Only search active set}
11: N (t+1) :=N (t) {Keep active set untouched}
12: end if
13: Gt+1 :=Gt −µ"(i, j,l)∈Nt−Nt+1 (Ci j−Cil)+µ"(i, j,l)∈Nt+1−Nt (Ci j−Cil)
14: Mt+1 := PS (Mt−*Gt+1){Take gradient step and project onto SDP cone}
15: t := t+1
16: end while
17: OutputMt
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Abstract
Penalization procedures often suffer from their dependence on multiplying factors, whose optimal
values are either unknown or hard to estimate from data. We propose a completely data-driven cali-
bration algorithm for these parameters in the least-squares regression framework, without assuming
a particular shape for the penalty. Our algorithm relies on the concept of minimal penalty, recently
introduced by Birgé and Massart (2007) in the context of penalized least squares for Gaussian ho-
moscedastic regression. On the positive side, the minimal penalty can be evaluated from the data
themselves, leading to a data-driven estimation of an optimal penalty which can be used in practice;
on the negative side, their approach heavily relies on the homoscedastic Gaussian nature of their
stochastic framework.

The purpose of this paper is twofold: stating a more general heuristics for designing a data-
driven penalty (the slope heuristics) and proving that it works for penalized least-squares regression
with a random design, even for heteroscedastic non-Gaussian data. For technical reasons, some
exact mathematical results will be proved only for regressogram bin-width selection. This is at
least a first step towards further results, since the approach and the method that we use are indeed
general.
Keywords: data-driven calibration, non-parametric regression, model selection by penalization,
heteroscedastic data, regressogram

1. Introduction

In the last decades, model selection has received much interest, commonly through penalization.
In short, penalization chooses the model minimizing the sum of the empirical risk (how well the
algorithm fits the data) and of some measure of complexity of the model (called penalty); see FPE
(Akaike, 1970), AIC (Akaike, 1973), Mallows’Cp orCL (Mallows, 1973). Many other penalization
procedures have been proposed since, among which Rademacher complexities (Koltchinskii, 2001;
Bartlett et al., 2002), local Rademacher complexities (Bartlett et al., 2005; Koltchinskii, 2006),
bootstrap penalties (Efron, 1983), resampling and V -fold penalties (Arlot, 2008b,c).

Model selection can target two different goals. On the one hand, a procedure is efficient (or
asymptotically optimal) when its quadratic risk is asymptotically equivalent to the risk of the oracle.

c©2009 Sylvain Arlot and Pascal Massart.
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On the other hand, a procedure is consistent when it chooses the smallest true model asymptotically
with probability one. This paper deals with efficient procedures, without assuming the existence of
a true model.

A huge amount of literature exists about efficiency. First Mallows’ Cp, Akaike’s FPE and AIC
are asymptotically optimal, as proved by Shibata (1981) for Gaussian errors, by Li (1987) under
suitable moment assumptions on the errors, and by Polyak and Tsybakov (1990) under sharper
moment conditions, in the Fourier case. Non-asymptotic oracle inequalities (with some leading
constant C > 1) have been obtained by Barron et al. (1999) and by Birgé and Massart (2001) in
the Gaussian case, and by Baraud (2000, 2002) under some moment assumptions on the errors. In
the Gaussian case, non-asymptotic oracle inequalities with leading constantCn tending to 1 when n
tends to infinity have been obtained by Birgé and Massart (2007).

However, from the practical point of view, both AIC and Mallows’ Cp still present serious
drawbacks. On the one hand, AIC relies on a strong asymptotic assumption, so that for small sample
sizes, the optimal multiplying factor can be quite different from one. Therefore, corrected versions
of AIC have been proposed (Sugiura, 1978; Hurvich and Tsai, 1989). On the other hand, the optimal
calibration of Mallows’ Cp requires the knowledge of the noise level !2, assumed to be constant.
When real data are involved, !2 has to be estimated separately and independently from any model,
which is a difficult task. Moreover, the best estimator of !2 (say, with respect to the quadratic error)
quite unlikely leads to the most efficient model selection procedure. Contrary to Mallows’ Cp, the
data-dependent calibration rule defined in this article is not a “plug-in” method; it focuses directly
on efficiency, which can improve significantly the performance of the model selection procedure.

Existing penalization procedures present similar or stronger drawbacks than AIC and Mallows’
Cp, often because of a gap between theory and practice. For instance, oracle inequalities have only
been proved for (global) Rademacher penalties multiplied by a factor two (Koltchinskii, 2001),
while they are used without this factor (Lozano, 2000). As proved by Arlot (2007, Chapter 9), this
factor is necessary in general. Therefore, the optimal calibration of these penalties is really an issue.
The calibration problem is even harder for local Rademacher complexities: theoretical results hold
only with large calibration constants, particularly the multiplying factor, and no optimal values are
known. One of the purposes of this paper is to address the issue of optimizing the multiplying factor
for general-shape penalties.

Few automatic calibration algorithms are available. The most popular ones are certainly cross-
validation methods (Allen, 1974; Stone, 1974), in particularV -fold cross-validation (Geisser, 1975),
because these are general-purpose methods, relying on a widely valid heuristics. However, their
computational cost can be high. For instance, V -fold cross-validation requires the entire model
selection procedure to be performed V times for each candidate value of the constant to be cali-
brated. For penalties proportional to the dimension of the models, such as Mallows’ Cp, alternative
calibration procedures have been proposed by George and Foster (2000) and by Shen and Ye (2002).

A completely different approach has been proposed by Birgé and Massart (2007) for calibrating
dimensionality-based penalties. Since this article extends their approach to a much wider range of
applications, let us briefly recall their main results. In Gaussian homoscedastic regression with a
fixed design, assume that each model is a finite-dimensional vector space. Consider the penalty
pen(m) = KDm, where Dm is the dimension of the model m and K > 0 is a positive constant, to
be calibrated. First, there exists a minimal constant Kmin, such that the ratio between the quadratic
risk of the chosen estimator and the quadratic risk of the oracle is asymptotically infinite if K <
Kmin, and finite if K > Kmin. Second, when K = K! := 2Kmin, the penalty KDm yields an efficient
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model selection procedure. In other words, the optimal penalty is twice the minimal penalty. This
relationship characterizes the “slope heuristics” of Birgé and Massart (2007).

A crucial fact is that the minimal constant Kmin can be estimated from the data, since large
models are selected if and only if K < Kmin. This leads to the following strategy for choosing
K from the data. For every K ≥ 0, let m̂(K) be the model selected by minimizing the empirical
risk penalized by pen(Dm) = KDm. First, compute Kmin such that Dm̂(K) is “huge” for K < Kmin
and “reasonably small” when K ≥ Kmin; explicit values for “huge” and “small” are proposed in
Section 3.3. Second, define m̂ := m̂(2Kmin). Such a method has been successfully applied for
multiple change points detection by Lebarbier (2005).

From the theoretical point of view, the issue for understanding and validating this approach is
the existence of a minimal penalty. This question has been addressed for Gaussian homoscedastic
regression with a fixed design by Birgé and Massart (2001, 2007) when the variance is known, and
by Baraud et al. (2007) when the variance is unknown. Non-Gaussian or heteroscedastic data have
never been considered. This article contributes to fill this gap in the theoretical understanding of
penalization procedures.

The calibration algorithm proposed in this article relies on a generalization of Birgé and Mas-
sart’s slope heuristics (Section 2.3). In Section 3, the algorithm is defined in the least-squares
regression framework, for general-shape penalties. The shape of the penalty itself can be estimated
from the data, as explained in Section 3.4.

The theoretical validation of the algorithm is provided in Section 4, from the non-asymptotic
point of view. Non-asymptotic means in particular that the collection of models is allowed to depend
on n: in practice, it is usual to allow the number of explanatory variables to increase with the number
of observations. Considering models with a large number of parameters (for example of the order
of a power of the sample size n) is also necessary to approximate functions belonging to a general
approximation space. Thus, the non-asymptotic point of view allows us not to assume that the
regression function is described with a small number of parameters.

The existence of minimal penalties for heteroscedatic regression with a random design (The-
orem 2) is proved in Section 4.3. In Section 4.4, by proving that twice the minimal penalty has
some optimality properties (Theorem 3), we extend the so-called slope heuristics to heteroscedatic
regression with a random design. Moreover, neither Theorem 2 nor Theorem 3 assume the data to
be Gaussian; only mild moment assumptions are required.

For proving Theorems 2 and 3, each model is assumed to be the vector space of piecewise con-
stant functions on some partition of the feature space. This is indeed a restriction, but we conjecture
that it is mainly technical, and that the slope heuristics remains valid at least in the general least-
squares regression framework. We provide some evidence for this by proving two key concentration
inequalities without the restriction to piecewise constant functions. Another argument supporting
this conjecture is that recently several simulation studies have shown that the slope heuristics can be
used in several frameworks: mixture models (Maugis and Michel, 2008), clustering (Baudry, 2007),
spatial statistics (Verzelen, 2008), estimation of oil reserves (Lepez, 2002) and genomics (Villers,
2007). Although the slope heuristics has not been formally validated in these frameworks, this ar-
ticle is a first step towards such a validation, by proving that the slope heuristics can be applied
whatever the shape of the ideal penalty.

This paper is organized as follows. The framework and the slope heuristics are described in
Section 2. The resulting algorithm is defined in Section 3. The main theoretical results are stated in
Section 4. All the proofs are given in Appendix A.
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2. Framework

In this section, we describe the framework and the general slope heuristics.

2.1 Least-squares Regression

Suppose we observe some data (X1,Y1), . . .(Xn,Yn)∈ X ×R, independent with common distribution
P, where the feature space X is typically a compact set of Rd . The goal is to predict Y given X ,
where (X ,Y ) ∼ P is a new data point independent of (Xi,Yi)1≤i≤n. Denoting by s the regression
function, that is s(x) = E [Y | X = x ] for every x ∈ X , we can write

Yi = s(Xi)+!(Xi)"i (1)

where ! : X %→ R is the heteroscedastic noise level and "i are i.i.d. centered noise terms, possibly
dependent on Xi, but with mean 0 and variance 1 conditionally to Xi.

The quality of a predictor t : X %→ Y is measured by the (quadratic) prediction loss

E(X ,Y )∼P [#(t,(X ,Y )) ] =: P#(t) where #(t,(x,y)) = (t(x)− y)2

is the least-squares contrast. The minimizer of P#(t) over the set of all predictors, called Bayes
predictor, is the regression function s. Therefore, the excess loss is defined as

!(s, t ) := P#(t )−P#(s) = E(X ,Y )∼P (t(X)− s(X))2 .

Given a particular set of predictors Sm (called a model), we define the best predictor over Sm as

sm := argmin
t∈Sm

{P#(t)} ,

with its empirical counterpart
ŝm := argmin

t∈Sm
{Pn#(t)}

(when it exists and is unique), where Pn = n−1$n
i=1 %(Xi,Yi). This estimator is the well-known empir-

ical risk minimizer, also called least-squares estimator since # is the least-squares contrast.

2.2 Ideal Model Selection

Let us assume that we are given a family of models (Sm)m∈Mn , hence a family of estimators (ŝm)m∈Mn
obtained by empirical risk minimization. The model selection problem consists in looking for some
data-dependent m̂ ∈ Mn such that !(s, ŝm̂ ) is as small as possible. For instance, it would be conve-
nient to prove some oracle inequality of the form

!(s, ŝm̂ ) ≤C inf
m∈Mn

{!(s, ŝm )}+Rn

in expectation or on an event of large probability, with leading constantC close to 1 and Rn = o(n−1).
General penalization procedures can be described as follows. Let pen : Mn %→ R+ be some

penalty function, possibly data-dependent, and define

m̂ ∈ arg min
m∈Mn

{crit(m)} with crit(m) := Pn#(ŝm)+pen(m) . (2)
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Since the ideal criterion crit(m) is the true prediction error P#( ŝm ), the ideal penalty is

penid(m) := P#(ŝm)−Pn#(ŝm) .

This quantity is unknown because it depends on the true distribution P. A natural idea is to choose
pen(m) as close as possible to penid(m) for every m ∈ Mn. We will show below, in a general setting,
that when pen is a good estimator of the ideal penalty penid, then m̂ satisfies an oracle inequality
with leading constantC close to 1.

By definition of m̂,

∀m ∈ Mn, Pn#(ŝm̂) ≤ Pn#(ŝm)+pen(m)−pen(m̂) .

For every m ∈ Mn, we define

p1(m) = P(#(ŝm)− #(sm)) p2(m) = Pn (#(sm)− #(ŝm)) %(m) = (Pn−P)(#(sm))

so that

penid(m) = p1(m)+ p2(m)−%(m)
and !(s, ŝm ) = Pn#(ŝm)+ p1(m)+ p2(m)−%(m)−P#(s) .

Hence, for every m ∈ Mn,

!(s, ŝm̂ )+(pen−penid)(m̂) ≤ !(s, ŝm )+(pen−penid)(m) . (3)

Therefore, in order to derive an oracle inequality from (3), it is sufficient to show that for every
m ∈ Mn, pen(m) is close to penid(m).

2.3 The Slope Heuristics

If the penalty is too big, the left-hand side of (3) is larger than !(s, ŝm̂ ) so that (3) implies an oracle
inequality, possibly with large leading constant C. On the contrary, if the penalty is too small, the
left-hand side of (3) may become negligible with respect to !(s, ŝm̂ ) (which would makeC explode)
or—worse—may be nonpositive. In the latter case, no oracle inequality may be derived from (3).
We shall see in the following that !(s, ŝm̂ ) blows up if and only if the penalty is smaller than some
“minimal penalty”.

Let us consider first the case pen(m) = p2(m) in (2). Then, E [crit(m) ] = E [Pn#(sm ) ] =
P#(sm ), so that m̂ approximately minimizes its bias. Therefore, m̂ is one of the more complex
models, and the risk of ŝm̂ is large. Let us assume now that pen(m) = Kp2(m). If 0< K < 1, crit(m)
is a decreasing function of the complexity of m, so that m̂ is again one of the more complex models.
On the contrary, if K > 1, crit(m) increases with the complexity of m (at least for the largest mod-
els), so that m̂ has a small or medium complexity. This argument supports the conjecture that the
“minimal amount of penalty” required for the model selection procedure to work is p2(m).

In many frameworks such as the one of Section 4.1, it turns out that

∀m ∈ Mn, p1(m) ≈ p2(m) .

Hence, the ideal penalty penid(m) ≈ p1(m)+ p2(m) is close to 2p2(m). Since p2(m) is a “minimal
penalty”, the optimal penalty is close to twice the minimal penalty:

penid(m) ≈ 2penmin(m) .
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This is the so-called “slope heuristics”, first introduced by Birgé and Massart (2007) in a Gaussian
homoscedastic setting. Note that a formal proof of the validity of the slope heuristics has only been
given for Gaussian homoscedastic least-squares regression with a fixed design (Birgé and Massart,
2007); up to the best of our knowledge, the present paper yields the second theoretical result on the
slope heuristics.

This heuristics has some applications because the minimal penalty can be estimated from the
data. Indeed, when the penalty smaller than penmin, the selected model m̂ is among the more com-
plex. On the contrary, when the penalty is larger than penmin, the complexity of m̂ is much smaller.
This leads to the algorithm described in the next section.

3. A Data-driven Calibration Algorithm

Now, a data-driven calibration algorithm for penalization procedures can be defined, generalizing a
method proposed by Birgé and Massart (2007) and implemented by Lebarbier (2005).

3.1 The General Algorithm

Assume that the shape penshape :Mn %→ R+ of the ideal penalty is known, from some prior knowl-
edge or because it had first been estimated, see Section 3.4. Then, the penalty K! penshape provides
an approximately optimal procedure, for some unknown constant K! > 0. The goal is to find some
K̂ such that K̂ penshape is approximately optimal.

Let Dm be some known complexity measure of the model m ∈ Mn. Typically, when the models
are finite-dimensional vector spaces, Dm is the dimension of Sm. According to the “slope heuris-
tics” detailed in Section 2.3, the following algorithm provides an optimal calibration of the penalty
penshape.

Algorithm 1 (Data-driven penalization with slope heuristics)

1. Compute the selected model m̂(K) as a function of K > 0

m̂(K) ∈ arg min
m∈Mn

{
Pn#(ŝm)+K penshape(m)

}
.

2. Find K̂min > 0 such that Dm̂(K) is “huge” for K < K̂min and “reasonably small” for K > K̂min.

3. Select the model m̂ := m̂
(
2K̂min

)
.

A computationally efficient way to perform the first step of Algorithm 1 is provided in Sec-
tion 3.2. The accurate definition of K̂min is discussed in Section 3.3, including explicit values for
“huge” and “reasonably small”). Then, once Pn#( ŝm ) and penshape(m) are known for every m∈ Mn,
the complexity of Algorithm 1 is O(Card(Mn)2) (see Algorithm 2 and Proposition 1). This can be
a decisive advantage compared to cross-validation methods, as discussed in Section 4.6.

3.2 Computation of ( m̂(K))K≥0
Step 1 of Algorithm 1 requires to compute m̂(K) for every K ∈ (0,+&). A computationally efficient
way to perform this step is described in this subsection.
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We start with some notations:

∀m ∈ Mn, f (m) = Pn#( ŝm ) g(m) = penshape(m)

and ∀K ≥ 0, m̂(K) ∈ arg min
m∈Mn

{ f (m)+Kg(m)} .

Since the latter definition can be ambiguous, let us choose any total ordering+ onMn such that g is
non-decreasing, which is always possible if Mn is at most countable. Then, m̂(K) is defined as the
smallest element of

E(K) := arg min
m∈Mn

{ f (m)+Kg(m)}

for +. The main reason why the whole trajectory ( m̂(K))K≥0 can be computed efficiently is its
particular shape.

Indeed, the proof of Proposition 1 shows that K %→ m̂(K) is piecewise constant, and non-
increasing for +. Then, the whole trajectory ( m̂(K))K≥0 can be summarized by

• the number of jumps imax ∈
{
0, . . . ,Card(Mn)−1

}
,

• the location of the jumps: an increasing sequence of nonnegative reals (Ki)0≤i≤imax+1, with
K0 = 0 and Kimax+1 = +&,

• a non-increasing sequence of models (mi)0≤i≤imax ,
with ∀i ∈ {0, . . . , imax } , ∀K ∈ [Ki,Ki+1) , m̂(K) = mi .

Algorithm 2 (Step 1 of Algorithm 1) For every m ∈ Mn, define f (m) = Pn#( ŝm ) and g(m) =
penshape(m). Choose + any total ordering on Mn such that g is non-decreasing.

• Init: K0 := 0, m0 := argminm∈Mn { f (m)} (when this minimum is attained several times, m0
is defined as the smallest one with respect to +).

• Step i, i≥ 1: Let

G(mi−1) :=
{
m ∈ Mn s.t. f (m) > f (mi−1) and g(m) < g(mi−1)

}
.

If G(mi−1) = /0, then put Ki = +&, imax = i−1 and stop. Otherwise,

Ki := inf
{
f (m)− f (mi−1)
g(mi−1)−g(m)

s.t. m ∈ G(mi−1)
}

(4)

and mi :=min
'
Fi with Fi := arg min

m∈G(mi−1)

{
f (m)− f (mi−1)
g(mi−1)−g(m)

}
.

Proposition 1 (Correctness of Algorithm 2) If Mn is finite, Algorithm 2 terminates and imax ≤
Card(Mn)−1. With the notations of Algorithm 2, let m̂(K) be the smallest element of

E(K) := arg min
m∈Mn

{ f (m)+Kg(m)} with respect to + .

Then, (Ki)0≤i≤imax+1 is increasing and ∀i ∈ {0, . . . , imax−1}, ∀K ∈ [Ki,Ki+1), m̂(K) = mi.

It is proved in Section A.2. In the change-point detection framework, a similar result has been
proved by Lavielle (2005).

Proposition 1 also gives an upper bound on the computational complexity of Algorithm 2; since
the complexity of each step is O(CardMn), Algorithm 2 requires less than O(imaxCardMn) ≤
O((CardMn)2) operations. In general, this upper bound is pessimistic since imax , CardMn.
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(a) One clear jump.
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(b) Two jumps, two values for K̂min.

Figure 1: Dm̂(K) as a function of K for two different samples. Data are simulated according to
(1) with n = 200, Xi ∼ U([0,1]), "i ∼ N (0,1), s(x) = sin('x) and ! ≡ 1. The models
(Sm)m∈Mn are the sets of piecewise constant functions on regular partitions of [0,1], with
dimensions between 1 and n/(ln(n)). The penalty shape is penshape(m) = Dm and the
dimension threshold is Dthresh = 19 ≈ n/(2ln(n)). See experiment S1 by Arlot (2008c,
Section 6.1) for details.

3.3 Definition of K̂min
Step 2 of Algorithm 1 estimates K̂min such that K̂min penshape is the minimal penalty. The purpose of
this subsection is to define properly K̂min as a function of (m̂(K))K>0.

According to the slope heuristics described in Section 2.3, K̂min corresponds to a “complexity
jump”. If K < K̂min, m̂(K) has a large complexity, whereas if K > K̂min, m̂(K) has a small or medium
complexity. Therefore, the two following definitions of K̂min are natural.

Let Dthresh be the largest “reasonably small” complexity, meaning the models with larger com-
plexities should not be selected. When Dm is the dimension of Sm as a vector space, Dthresh (
n/(ln(n)) or n/(ln(n))2 are natural choices since the dimension of the oracle is likely to be of order
n! for some ) ∈ (0,1). Then, define

K̂min := inf
{
K > 0 s.t. Dm̂(K) ≤ Dthresh

}
. (5)

With this definition, Algorithm 2 can be stopped as soon as the threshold is reached.
Another idea is that K̂min should match with the largest complexity jump:

K̂min := Kijump with ijump = arg max
i∈{ 0,...,imax−1}

{
Dmi+1 −Dmi

}
. (6)

In order to ensure that there is a clear jump in the sequence (Dmi)i≥0, it may be useful to add a few
models of large complexity.

As an illustration, we compared the two definitions above (5 and 6) on 1000 simulated samples.
The exact simulation framework is described below Figure 1. Three cases occured:

1. There is one clear jump. Both definitions give the same value for K̂min. This occured for about
85% of the samples; an example is given on Figure 1a.
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2. There are several jumps corresponding to close values of K. Definitions (5) and (6) give
slightly different values for K̂min, but the selected models m̂

(
2K̂min

)
are equal. This occured

for about 8.5% of the samples.

3. There are several jumps corresponding to distant values of K. Definitions (5) and (6) strongly
disagree, giving different selected models m̂

(
2K̂min

)
at final. This occured for about 6.5%

of the samples; an example is given on Figure 1b.

The only problematic case is the third one, in which an arbitrary choice has to be made between
definitions (5) and (6).

With the same simulated data, we have compared the prediction errors of the two methods by
estimating the constantCor that would appear in some oracle inequality,

Cor :=
E [!(s, ŝm̂ ) ]

E
[
infm∈Mn {!(s, ŝm )}

] .

With definition (5) Cor ≈ 1.88; with definition (6) Cor ≈ 2.01. For both methods, the standard error
of the estimation is 0.04. As a comparison, Mallows’ Cp with a classical estimator of the variance
!2 has an estimated performanceCor ≈ 1.93 on the same data.

The overall conclusion of this simulation experiment is that Algorithm 1 can be competitive with
Mallows’ Cp in a framework where Mallows’ Cp is known to be optimal. Definition (5) for K̂min
seems slightly more efficient than (6), but without convincing evidence. Indeed, both definitions
depend on some arbitrary choices: the value of the threshold Dthresh in (5), the maximal complexity
among the collection of models (Sm)m∈Mn in (6). When n is small, say n= 200, choosing Dthresh is
tricky since n/(2ln(n)) and

√
n are quite close. Then, the difference between (5) and (6) is likely

to come mainly from the particular choice Dthresh = 19 than from basic differences between the two
definitions.

In order to estimate K̂min as automatically as possible, we suggest to combine the two definitions;
when the selected models m̂(2K̂min) differ, send a warning to the final user advising him to look at
the curve K %→ Dm̂(K) himself; otherwise, remain confident in the automatic choice of m̂(2K̂min).

3.4 Penalty Shape

For using Algorithm 1 in practice, it is necessary to know a priori, or at least to estimate, the optimal
shape penshape of the penalty. Let us explain how this can be achieved in different frameworks.

The first example that comes to mind is penshape(m) = Dm. It is valid for homoscedastic least-
squares regression on linear models, as shown by several papers mentioned in Section 1. Indeed,
when Card(Mn) is smaller than some power of n, Mallows’ Cp penalty—defined by pen(m) =
2E
[
!2(X)

]
n−1Dm—is well known to be asymptotically optimal. For larger collections Mn, more

elaborate results (Birgé and Massart, 2001, 2007) have shown that a penalty proportional to
ln(n)E

[
!2(X)

]
n−1Dm and depending on the size of Mn is asymptotically optimal.

Algorithm 1 then provides an alternative to plugging an estimator of E
[
!2(X)

]
into the above

penalties. Let us detail two main advantages of our approach. First, we avoid the difficult task of
estimating E

[
!2(X)

]
without knowing in advance some model to which the true regression func-

tion belongs. Algorithm 1 provides a model-free estimation of the factor multiplying the penalty.
Second, the estimator !̂2 of E

[
!2(X)

]
with the smallest quadratic risk is certainly far from be-

ing the optimal one for model selection. For instance, underestimating the multiplicative factor is
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well-known to lead to poor performances, whereas overestimating the multiplicative factor does not
increase much the prediction error in general. Then, a good estimator of E

[
!2(X)

]
for model se-

lection should overestimate it with a probability larger than 1/2. Algorithm 1 satisfies this property
automatically because K̂min so that the selected model cannot be too large.

In short, Algorithm 1 with penshape(m) = Dm is quite different from a simple plug-in version of
Mallows’ Cp. It leads to a really data-dependent penalty, which may perform better in practice than
the best deterministic penalty K!Dm.

In a more general framework, Algorithm 1 allows to choose a different shape of penalty penshape.
For instance, in the heteroscedastic least-squares regression framework of Section 2.1, the optimal
penalty is no longer proportional to the dimension Dm of the models. This can be shown from
computations made by (Arlot, 2008c, Proposition 1) when Sm is assumed to be the vector space of
piecewise constant functions on a partition ( I" )"∈#m of X :

E [penid(m) ] = E [ (P−Pn)#( ŝm ) ] ≈ 2
n !"∈#m

E
[
!(X)2

∣∣ X ∈ I"
]

. (7)

An exact result has been proved by Arlot (2008c, Proposition 1). Moreover, Arlot (2008a) gave an
example of model selection problem in which no penalty proportional to Dm can be asymptotically
optimal.

A first way to estimate the shape of the penalty is simply to use (7) to compute penshape, when
both the distribution of X and the shape of the noise level ! are known. In practice, one has seldom
such a prior knowledge.

We suggest in this situation to use resampling penalties (Efron, 1983; Arlot, 2008c), or V-fold
penalties (Arlot, 2008b) which have much smaller computational costs. Up to a multiplicative factor
(automatically estimated by Algorithm 1), these penalties should estimate correctly E [penid(m) ] in
any framework. In particular, resampling and V -fold penalties are asymptotically optimal in the
heteroscedastic least-squares regression framework (Arlot, 2008b,c).

3.5 The General Prediction Framework

Section 2 and definition of Algorithm 1 have restricted ourselves to the least-squares regression
framework. Actually, this is not necessary at all to make Algorithm 1 well-defined, so that it can
naturally be extended to the general prediction framework. More precisely, the (Xi,Yi) can be as-
sumed to belong to X ×Y for some general Y , and # : S×(X ×Y ) %→ [0;+&) any contrast function.
In particular, Y = {0,1} leads to the binary classification problem, for which a natural contrast
function is the 0–1 loss #(t;(x,y)) = t(x)(=y. In this case, the shape of the penalty penshape can for
instance be estimated with the global or local Rademacher complexities mentioned in Section 1.

However, a natural question is whether the slope heuristics of Section 2.3, upon which Algo-
rithm 1 relies, can be extended to the general framework. Several concentration results used to prove
the validity of the slope heuristics in the least-squares regression framework in this article are valid
in a general setting including binary classification. Even if the factor 2 coming from the closeness of
E [ p1 ] and E [ p2 ] (see Section 2.3) may not be universally valid, we conjecture that Algorithm 1 can
be used in other settings than least-squares regression. Moreover, as already mentioned at the end
of Section 1, empirical studies have shown that Algorithm 1 can be successfully applied to several
problems, with different shapes for the penalty. To our knowledge, to give a formal proof of this
fact remains an interesting open problem.
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4. Theoretical Results

Algorithm 1 mainly relies on the “slope heuristics”, developed in Section 2.2. The goal of this
section is to provide a theoretical justification of this heuristics.

It is split into two main results. First, Theorem 2 provides lower bounds onDm̂ and the risk of ŝm̂
when the penalty is smaller than penmin(m) := E [ p2(m) ]. Second, Theorem 3 is an oracle inequality
with leading constant almost one when pen(m) ≈ 2E [ p2(m) ], relying on (3) and the comparison
p1 ≈ p2.

In order to prove both theorems, two probabilistic results are necessary. First, p1, p2 and %
concentrate around their expectations; for p2 and %, it is proved in a general framework in Ap-
pendix A.6. Second, E [ p1(m) ] ≈ E [ p2(m) ] for every m ∈ Mn. The latter point is quite hard to
prove in general, so that we must make an assumption on the models. Therefore, in this section,
we restrict ourselves to the regressogram case, assuming that for every m ∈ Mn, Sm is the set of
piecewise constant functions on some fixed partition ( I" )"∈#m of X . This framework is described
precisely in the next subsection. Although we do not consider regressograms as a final goal, the
theoretical results proved for regressograms help to understand better how to use Algorithm 1 in
practice.

4.1 Regressograms

Let Sm be the the set of piecewise constant functions on some partition (I")"∈#m of X . The empirical
risk minimizer ŝm on Sm is called a regressogram. Sm is a vector space of dimensionDm =Card(*m),
spanned by the family ( I!)"∈#m . Since this basis is orthogonal in L2(µ) for any probability measure
µ on X , computations are quite easy. In particular, we have:

sm = !
"∈#m

+" I! and ŝm = !
"∈#m

+̂" I! ,

where

+" := EP [Y | X ∈ I" ] +̂" :=
1
np̂" !Xi∈I!

Yi p̂" := Pn(X ∈ I") .

Note that ŝm is uniquely defined if and only if each I" contains at least one of the Xi. Otherwise, ŝm
is not uniquely defined and we consider that the model m cannot be chosen.

4.2 Main Assumptions

In this section, we make the following assumptions. First, each model Sm is a set of piecewise
constants functions on some fixed partition (I")"∈#m of X . Second, the family (Sm)m∈Mn satisfies:

(P1) Polynomial complexity of Mn: Card(Mn) ≤ cM n!M .

(P2) Richness of Mn: ∃m0 ∈ Mn s.t. Dm0 ∈ [
√
n,crich

√
n ].

Assumption (P1) is quite classical for proving the asymptotic optimality of a model selection pro-
cedure; it is for instance implicitly assumed by Li (1987) in the homoscedastic fixed-design case.
Assumption (P2) is merely technical and can be changed if necessary; it only ensures that (Sm)m∈Mn
does not contain only models which are either too small or too large.
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For any penalty function pen :Mn %→ R+, we define the following model selection procedure:

m̂ ∈ arg min
m∈Mn,min!∈"m{ p̂! }>0

{Pn#(ŝm)+pen(m)} . (8)

Moreover, the data (Xi,Yi)1≤i≤n are assumed to be i.i.d. and to satisfy:

(Ab) The data are bounded: ‖Yi‖$ ≤ A< &.

(An) Uniform lower-bound on the noise level: !(Xi) ≥ !min > 0 a.s.

(Apu) The bias decreases as a power of Dm: there exist some ++,C+ > 0 such that

!(s,sm ) ≤C+D−%+
m .

(ArX" ) Lower regularity of the partitions for L(X): Dmmin"∈#m {P(X ∈ I" )}≥ cXr,".

Further comments are made in Sections 4.3 and 4.4 about these assumptions, in particular about
their possible weakening.

4.3 Minimal Penalties

Our first result concerns the existence of a minimal penalty. In this subsection, (P2) is replaced by
the following strongest assumption:

(P2+) ∃c0,crich > 0 s.t. ∀l ∈ [
√
n,c0n/(crich ln(n)) ], ∃m ∈ Mn s.t. Dm ∈ [ l,crichl ].

The reason why (P2) is not sufficient to prove Theorem 2 below is that at least one model of
dimension of order n/ ln(n) should belong to the family (Sm )m∈Mn

; otherwise, it may not be possible
to prove that such models are selected by penalization procedures beyond the minimal penalty.

Theorem 2 Suppose all the assumptions of Section 4.2 are satisfied. Let K ∈ [0;1), L > 0, and
assume that an event of probability at least 1−Ln−2 exists on which

∀m ∈ Mn, 0≤ pen(m) ≤ KE [Pn (#(sm)− #(ŝm)) ] . (9)

Then, there exist two positive constants K1, K2 such that, with probability at least 1−K1n−2,

Dm̂ ≥ K2n ln(n)−1 ,

where m̂ is defined by (8). On the same event,

!(s, ŝm̂ ) ≥ ln(n) inf
m∈Mn

{!(s, ŝm )} . (10)

The constants K1 and K2 may depend on K, L and constants in (P1), (P2+), (Ab), (An), (Apu)
and (ArX" ), but do not depend on n.
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This theorem thus validates the first part of the heuristics of Section 2.3, proving that a minimal
amount of penalization is required; when the penalty is smaller, the selected dimension Dm̂ and the
quadratic risk of the final estimator !(s, ŝm̂ ) blow up. This coupling is quite interesting, since the
dimension Dm̂ is known in practice, contrary to !(s, ŝm̂ ). It is then possible to detect from the data
whether the penalty is too small, as proposed in Algorithm 1.

The main interest of this result is its combination with Theorem 3 below. Nevertheless Theo-
rem 2 is also interesting by itself for understanding the theoretical properties of penalization pro-
cedures. Indeed, it generalizes the results of Birgé and Massart (2007) on the existence of minimal
penalties to heteroscedastic regression with a random design, even if we have to restrict to regres-
sograms. Moreover, we have a general formulation for the minimal penalty

penmin(m) := E [Pn (#(sm)− #(ŝm)) ] = E [ p2(m) ] ,

which can be used in frameworks situations where it is not proportional to the dimension Dm of the
models (see Section 3.4 and references therein).

In addition, assumptions (Ab) and (An) on the data are much weaker than the Gaussian ho-
moscedastic assumption. They are also much more realistic, and moreover can be strongly relaxed.
Roughly speaking, boundedness of data can be replaced by conditions on moments of the noise,
and the uniform lower bound !min is no longer necessary when ! satisfies some mild regularity
assumptions. We refer to Arlot (2008c, Section 4.3) for detailed statements of these assumptions,
and explanations on how to adapt proofs to these situations.

Finally, let us comment on conditions (Apu) and (ArX" ). The upper bound (Apu) on the bias oc-
curs in the most reasonable situations, for instance when X ⊂ Rk is bounded, the partition ( I" )"∈#m
is regular and the regression function s is )-Hölderian for some ) > 0 (++ depending on ) and
k). It ensures that medium and large models have a significantly smaller bias than smaller ones;
otherwise, the selected dimension would be allowed to be too small with significant probability. On
the other hand, (ArX" ) is satisfied at least for “almost regular” partitions ( I" )"∈#m , when X has a
lower bounded density w.r.t. the Lebesgue measure on X ⊂ Rk.

Theorem 2 is stated with a general formulation of (Apu) and (ArX" ), instead of assuming for
instance that s is )-Hölderian and X has a lower bounded density w.r.t Leb, in order to point out
the generality of the “minimal penalization” phenomenon. It occurs as soon as the models are not
too much pathological. In particular, we do not make any assumption on the distribution of X itself,
but only that the models are not too badly chosen according to this distribution. Such a condition
can be checked in practice if some prior knowledge on L(X) is available; if part of the data are
unlabeled—a usual case,—classical density estimation procedures can be applied for estimating
L(X) from unlabeled data (Devroye and Lugosi, 2001).

4.4 Optimal Penalties

Algorithm 1 relies on a link between the minimal penalty pointed out by Theorem 2 and some op-
timal penalty. The following result is a formal proof of this link in the framework we consider:
penalties close to twice the minimal penalty satisfy an oracle inequality with leading constant ap-
proximately equal to one.

Theorem 3 Suppose all the assumptions of Section 4.2 are satisfied together with

257



ARLOT AND MASSART

(Ap) The bias decreases like a power of Dm: there exist +− ≥ ++ > 0 and C+,C− > 0 such that

C−D−%−
m ≤ !(s,sm ) ≤C+D−%+

m .

Let % ∈ (0,1), L > 0, and assume that an event of probability at least 1−Ln−2 exists on which for
every m ∈ Mn,

(2−%)E [Pn (#(sm)− #(ŝm)) ] ≤ pen(m) ≤ (2+%)E [Pn (#(sm)− #(ŝm)) ] . (11)

Then, for every 0< ,<min{++;1}/2, there exist a constant K3 and a sequence "n tending to
zero at infinity such that, with probability at least 1−K3n−2,

Dm̂ ≤ n1−&

and !(s, ŝm̂ ) ≤
(
1+%
1−%

+ "n

)
inf

m∈Mn
{!(s, ŝm )} , (12)

where m̂ is defined by (8). Moreover, we have the oracle inequality

E [!(s, ŝm̂ ) ] ≤
(
1+%
1−%

+ "n

)
E
[
inf

m∈Mn
{!(s, ŝm )}

]
+
A2K3
n2

.

The constant K3 may depend on L,%,, and the constants in (P1), (P2), (Ab), (An), (Ap) and
(ArX" ), but not on n. The term "n is smaller than ln(n)−1/5; it can be made smaller than n−' for any
% ∈ (0;%0(+−,++)) at the price of enlarging K3.

This theorem shows that twice the minimal penalty penmin pointed out by Theorem 2 satis-
fies an oracle inequality with leading constant almost one. In other words, the slope heuristics of
Section 2.3 is valid. The consequences of the combination of Theorems 2 and 3 are detailed in
Section 4.5.

The oracle inequality (12) remains valid when the penalty is only close to twice the minimal one.
In particular, the shape of the penalty can be estimated by resampling as suggested in Section 3.4.

Actually, Theorem 3 above is a corollary of a more general result stated in Appendix A.3,
Theorem 5. If

pen(m) ≈ KE [Pn (#(sm)− #(ŝm)) ] (13)

instead of (11), under the same assumptions, an oracle inequality with leading constant C(K)+ "n
instead of 1+ "n holds with large probability. The constant C(K) is equal to (K− 1)−1 when K ∈
(1,2] and to C(K) = K−1 when K > 2. Therefore, for every K > 1, the penalty defined by (13) is
efficient up to a multiplicative constant. This result is new in the heteroscedastic framework.

Let us comment the additional assumption (Ap), that is the lower bound on the bias. Assum-
ing !(s,sm ) > 0 for every m ∈ Mn is classical for proving the asymptotic optimality of Mallows’
Cp (Shibata, 1981; Li, 1987; Birgé and Massart, 2007). (Ap) has been made by Stone (1985) and
Burman (2002) in the density estimation framework, for the same technical reasons as ours. As-
sumption (Ap) is satisfied in several frameworks, such as the following: (I")"∈#m is “regular”, X
has a lower-bounded density w.r.t. the Lebesgue measure on X ⊂ Rk, and s is non-constant and
)-hölderian (w.r.t. ‖·‖$), with

+1 = k−1+)−1− (k−1)k−1)−1 and +2 = 2)k−1 .
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We refer to Arlot (2007, Section 8.10) for a complete proof.
When the lower bound in (Ap) is no longer assumed, (12) holds with two modifications in its

right-hand side (for details, see Arlot, 2008c, Remark 9): the inf is restricted to models of dimen-
sion larger than ln(n)(1 , and there is a remainder term ln(n)(2n−1, where #1,#2 > 0 are numerical
constants. This is equivalent to (12), unless there is a model of small dimension with a small bias.
The lower bound in (Ap) ensures that it cannot happen. Note that if there is a small model close to
s, it is hopeless to obtain an oracle inequality with a penalty which estimates penid, simply because
deviations of penid around its expectation would be much larger than the excess loss of the oracle.
In such a situation, BIC-like methods are more appropriate; for instance, Csiszár (2002) and Csiszár
and Shields (2000) showed that BIC penalties are minimal penalties for estimating the order of a
Markov chain.

4.5 Main Theoretical and Practical Consequences

The slope heuristics and the correctness of Algorithm 1 follow from the combination of Theorems 2
and 3.

4.5.1 OPTIMAL AND MINIMAL PENALTIES

For the sake of simplicity, let us consider the penalty KE [ p2(m) ] with any K > 0; any penalty close
to this one satisfies similar properties. At first reading, one can think of the homoscedastic case
where E [ p2(m) ] ≈ !2Dmn−1; one of the novelties of our results is that the general picture is quite
similar.

According to Theorem 3, the penalization procedure associated with KE [ p2(m) ] satisfies an
oracle inequality with leading constant Cn(K) as soon as K > 1, and Cn(2) ≈ 1. Moreover, results
proved by Arlot (2008b) imply that Cn(K) ≥ C(K) > 1 as soon as K is not close to 2. Therefore,
K = 2 is the optimal multiplying factor in front of E [ p2(m) ].

When K< 1, Theorem 2 shows that no oracle inequality can hold with leading constantCn(K) <
ln(n). SinceCn(K)≤ (K−1)−1< ln(n) as soon asK> 1+ln(n)−1, K= 1 is the minimal multiplying
factor in front of E [ p2(m) ]. More generally, penmin(m) := E [ p2(m) ] is proved to be a minimal
penalty.

In short, Theorems 2 and 3 prove the slope heuristics described in Section 2.3:

“optimal” penalty≈ 2×“minimal” penalty .

Birgé and Massart (2007) have proved the validity of the slope heuristics in the Gaussian ho-
moscedastic framework. This paper extends their result to a non-Gaussian and heteroscedastic
setting.

4.5.2 DIMENSION JUMP

In addition, Theorems 2 and 3 prove the existence of a crucial phenomenon: there exists a “di-
mension jump”—complexity jump in the general framework—around the minimal penalty. Let us
consider again the penalty KE [ p2(m) ]. As in Algorithm 1, let us define

m̂(K) ∈ arg min
m∈Mn

{Pn#( ŝm )+KE [ p2(m) ]} .
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A careful look at the proofs of Theorems 2 and 3 shows that there exist constants K4,K5 > 0 and an
event of probability 1−K4n−2 on which

∀0< K < 1− 1
ln(n)

, Dm̂(K) ≥
K5n

(ln(n))2
and ∀K > 1+

1
ln(n)

, Dm̂(K) ≤ n1−& . (14)

Therefore, the dimension Dm̂(K) of the selected model jumps around the minimal value K = 1, from
values of order n(ln(n))−2 to n1−&.

Let us know explain why Algorithm 1 is correct, assuming that penshape(m) is close toE [ p2(m) ].
With definition (5) of K̂min and a threshold Dthresh ( n(ln(n))−3, (14) ensures that

1− 1
ln(n)

≤ K̂min ≤ 1+
1

ln(n)

with a large probability. Then, according to Theorem 3, the output of Algorithm 1 satisfies an oracle
inequality with leading constantCn tending to one as n tends to infinity.

4.6 Comparison with Data-splitting Methods

Tuning parameters are often chosen by cross-validation or by another data-splitting method, which
suffer from some drawbacks compared to Algorithm 1.

First,V -fold cross-validation, leave-p-out and repeated learning-testing methods require a larger
computation time. Indeed, they need to perform the empirical risk minimization process for each
model several times, whereas Algorithm 1 only needs to perform it once.

Second, V -fold cross-validation is asymptotically suboptimal when V is fixed, as shown by
(Arlot, 2008b, Theorem 1). The same suboptimality result is valid for the hold-out, when the size of
the training set is not asymptotically equivalent to the sample size n. On the contrary, Theorems 2
and 3 prove that Algorithm 1 is asymptotically optimal in a framework including the one used by
(Arlot, 2008b, Theorem 1) for proving the suboptimality of V -fold cross-validation. Hence, the
quadratic risk of Algorithm 1 should be smaller, within a factor -> 1.

Third, hold-out with a training set of size nt ∼ n, for instance nt = n−
√
n or nt = n(1− ln(n)−1),

is known to be unstable. The final output m̂ strongly depends on the choice of a particular split of
the data. According to the simulation study of Section 3.3, Algorithm 1 is far more stable.

To conclude, compared to data splitting methods, Algorithm 1 is either faster to compute, more
efficient in terms of quadratic risk, or more stable. Then, Algorithm 1 should be preferred each
time it can be used. Another approach is to use aggregation techniques, instead of selecting one
model. As shown by several results (see for instance Tsybakov, 2004; Lecué, 2007), aggregating
estimators built upon a training simple of size nt ∼ n can have an optimal quadratic risk. Moreover,
aggregation requires approximately the same computation time as Algorithm 1, and is much more
stable than the hold-out. Hence, it can be an alternative to model selection with Algorithm 1.

5. Conclusion

This paper provides mathematical evidence that the method introduced by Birgé and Massart (2007)
for designing data-driven penalties remains efficient in a non-Gaussian framework. The purpose of
this conclusion is to relate the slope heuristics developed in Section 2 to the well known Mallows’
Cp and Akaike’s criteria and to the unbiased estimation of the risk principle.
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Let us come come back to Gaussian model selection in order to explain how to guess what is
the right penalty from the data themselves. Let #n be some empirical criterion (for instance the
least-squares criterion as in this paper, or the log-likelihood criterion), (Sm )m∈Mn

be a collection of
models and for every m ∈ Mn sm be some minimizer of t %→ E [#n (t ) ] over Sm (assuming that such
a point exists). Minimizing some penalized criterion

#n ( ŝm )+pen(m)

over Mn amounts to minimize

b̂m− v̂m+pen(m) ,

where ∀m ∈ Mn, b̂m = #n (sm )− #n (s) and v̂m = #n (sm )− #n ( ŝm ) .

The point is that b̂m is an unbiased estimator of the bias term !(s,sm ). Having concentration ar-
guments in mind, minimizing b̂m− v̂m + pen(m) can be conjectured approximately equivalent to
minimize

!(s,sm )−E [ v̂m ]+pen(m) .

Since the purpose of model selection is to minimize the risk E [!(s, ŝm ) ], an ideal penalty would be

pen(m) = E [ v̂m ]+E [!(sm, ŝm ) ] .

In Gaussian least-squares regression with a fixed design, the models Sm are linear and E [ v̂m ] =
E [!(sm, ŝm ) ] is explicitly computable if the noise level is constant and known; this leads to Mal-
lows’Cp penalty. When #n is the log-likelihood,

E [ v̂m ] ≈ E [!(sm, ŝm ) ] ≈ Dm

2n
asymptotically, where Dm stands for the number of parameters defining model Sm; this leads to
Akaike’s Information Criterion (AIC). Therefore, bothMallows’Cp and Akaike’s criterion are based
on the unbiased (or asymptotically unbiased) risk estimation principle.

This paper goes further in this direction, using that E [ v̂m ] ≈ E [!(sm, ŝm ) ] remains a valid ap-
proximation in a non-asymptotic framework. Then, a good penalty becomes 2E [ v̂m ] or 2v̂m, having
in mind concentration arguments. Since v̂m is the minimal penalty, this explains the slope heuristics
(Birgé and Massart, 2007) and connects it to Mallows’Cp and Akaike’s heuristics.

The second main idea developed in this paper is that the minimal penalty can be estimated from
the data; Algorithm 1 uses the jump of complexity which occurs around the minimal penalty, as
shown in Sections 3.3 and 4.5.2. Another way to estimate the minimal penalty when it is (at least
approximately) of the form )Dm is to estimate ) by the slope of the graph of #n ( ŝm ) for large
enough values of Dm; this method can be extended to other shapes of penalties, simply by replacing
Dm by some (known!) function f (Dm ).

The slope heuristics can even be combined with resampling ideas, by taking a function f built
from a randomized empirical criterion. As shown by Arlot (2008a), this approach is much more
efficient than the rougher choice f (Dm ) = Dm for heteroscedastic regression frameworks. The
question of the optimality of the slope heuristics in general remains an open problem; nevertheless,
we believe that this heuristics can be useful in practice, and that proving its efficiency in this paper
helps to understand it better.
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Let us finally mention that contrary to Birgé and Massart (2007), we assume in this paper
that the collection of models Mn is “small”, that is Card(Mn) grows at most like a power of n.
For several problems, such that complete variable selection, larger collections of models have to
be considered; then, it is known from the homoscedastic case that the minimal penalty is much
larger than E [ p2(m) ]. Nevertheless, Émilie Lebarbier has used the slope heuristics with f (Dm ) =
Dm

(
2.5+ ln

(
n
Dm

))
for multiple change-points detection from n noisy data, using the results by

Birgé and Massart (2007) in the Gaussian case.
Let us now explain how we expect to generalize the slope heuristics to the non-Gaussian het-

eroscedastic case whenMn is large. First, group the models according to some complexity indexCm
such as their dimensions Dm; for C ∈

{
1, . . . ,nk

}
, define S̃C =

S
Cm=C Sm. Then, replace the model

selection problem with the family (Sm)m∈Mn by a “complexity selection problem”, that is model
selection with the family

(
S̃C
)

1≤C≤nk
. We conjecture that this grouping of the models is sufficient

to take into account the richness of Mn for the optimal calibration of the penalty. A theoretical
justification of this point could rely on the extension of our results to any kind of model, since S̃C is
not a vector space in general.
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Appendix A. Proofs

This appendix is devoted to the proofs of the results stated in the paper. Proposition 1 is proved in
Section A.2; Theorem 3 is proved in Sections A.3 and A.4; Theorem 2 is proved in Section A.5; the
remaining sections are devoted to probabilistic results used in the main proofs and technical proofs.

A.1 Conventions and Notations

In the rest of the paper, L denotes a universal constant, not necessarily the same at each occurrence.
When L is not universal, but depends on p1, . . . , pk, it is written Lp1,...,pk . Similarly, L(SH2) (resp.
L(SH5)) denotes a constant allowed to depend on the parameters of the assumptions made in Theo-
rem 2 (resp. Theorem 5), including (P1) and (P2). We also make use of the following notations:

• ∀a,b ∈ R, a∧ b is the minimum of a and b, a∨ b is the maximum of a and b, a+ = a∨ 0 is
the positive part of a and a− = a∧0 is its negative part.

• ∀I" ⊂ X , p" := P(X ∈ I") and !2" := E
[
(Y − sm(X))2

∣∣∣ X ∈ I"
]
.

• Since E [ p1(m) ] is not well-defined (because of the event
{
min"∈#m { p̂" } = 0

}
), we have to

take the following convention

p1(m) = p̃1(m) := !
"∈#m s.t. p̂!>0

p"
(
+"− +̂"

)2
+ !

"∈#m s.t. p̂!=0
p"!2" .
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Remark that p1(m) = p̃1(m) when min"∈#m { p̂" } > 0), so that this convention has no conse-
quences on the final results (Theorems 2 and 5).

A.2 Proof of Proposition 1

First, since Mn is finite, the infimum in (4) is attained as soon as G(mi−1) 4= /0, so that mi is well
defined for every i≤ imax. Moreover, by construction, g(mi) decreases with i, so that all themi ∈ Mn
are different; hence, Algorithm 2 terminates and imax+1≤ Card(Mn). We now prove by induction
the following property for every i ∈ {0, . . . , imax }:

Pi : Ki < Ki+1 and ∀K ∈ [Ki,Ki+1), m̂(K) = mi .

Notice also that Ki can always be defined by (4) with the convention inf /0= +&.

A.2.1 P0 HOLDS TRUE
By definition of K1, it is clear that K1 > 0 (it may be equal to +& if G(m0) = /0). For K = K0 = 0,
the definition of m0 is the one of m̂(0), so that m̂(K) = m0. For K ∈ (0,K1), Lemma 4 shows that
either m̂(K) = m̂(0) = m0 or m̂(K) ∈ G(0). In the latter case, by definition of K1,

f (m̂(K))− f (m0)
g(m0)−g(m̂(K))

≥ K1 > K

hence
f (m̂(K))+Kg(m̂(K)) > f (m0)+Kg(m0)

which is contradictory with the definition of m̂(K). Therefore, P0 holds true.

A.2.2 Pi ⇒ Pi+1 FOR EVERY i ∈ {0, . . . , imax−1}

Assume that Pi holds true. First, we have to prove that Ki+2 > Ki+1. Since Kimax+1 = +&, this is
clear if i = imax−1. Otherwise, Ki+2 < +& and mi+2 exists. Then, by definition of mi+2 and Ki+2
(resp. mi+1 and Ki+1), we have

f (mi+2)− f (mi+1) = Ki+2(g(mi+1)−g(mi+2)) (15)
f (mi+1)− f (mi) = Ki+1(g(mi)−g(mi+1)) . (16)

Moreover, mi+2 ∈ G(mi+1) ⊂ G(mi), and mi+2 ≺ mi+1 (because g is non-decreasing). Using again
the definition of Ki+1, we have

f (mi+2)− f (mi) > Ki+1(g(mi)−g(mi+2)) (17)

(otherwise, we would have mi+2 ∈ Fi+1 and mi+2 ≺ mi+1, which is not possible). Combining the
difference of (17) and (16) with (15), we have

Ki+2(g(mi+1)−g(mi+2)) > Ki+1(g(mi+1)−g(mi+2)) ,

hence Ki+2 > Ki+1, since g(mi+1) > g(mi+2).
Second, we prove that m̂(Ki+1) = mi+1. From Pi, we know that for every m ∈ Mn, for every

K ∈ [Ki,Ki+1), f (mi)+Kg(mi) ≤ f (m)+Kg(m). Taking the limit when K tends to Ki+1, it follows
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that mi ∈ E(Ki+1). By (16), we then have mi+1 ∈ E(Ki+1). On the other hand, if m ∈ E(Ki+1),
Lemma 4 shows that either f (m) = f (mi) and g(m) = g(mi) orm∈G(mi). In the first case,mi+1≺m
(because g is non-decreasing). In the second one, m ∈ Fi+1, so mi+1 + m. Since m̂(Ki+1) is the
smallest element of E(Ki+1), we have proved that mi+1 = m̂(Ki+1).

Last, we have to prove that m̂(K) = mi+1 for every K ∈ (K1,K2). From the last statement of
Lemma 4, we have either m̂(K) = m̂(K1) or m̂(K1) ∈ G(m̂(K)). In the latter case (which is only
possible if Ki+2 < &), by definition of Ki+2,

f (m̂(K))− f (mi+1)
g(mi+1)−g(m̂(K))

≥ Ki+2 > K

so that
f (m̂(K))+Kg(m̂(K)) > f (mi+1)+Kg(mi+1)

which is contradictory with the definition of m̂(K).

Lemma 4 With the notations of Proposition 1 and its proof, if 0 ≤ K < K ′, m ∈ E(K) and m′ ∈
E(K′), then one of the two following statements holds true:

(a) f (m) = f (m′) and g(m) = g(m′).

(b) f (m) < f (m′) and g(m) > g(m′).

In particular, either m̂(K) = m̂(K′) or m̂(K′) ∈ G(m̂(K)).

Proof By definition of E(K) and E(K ′),

f (m)+Kg(m) ≤ f (m′)+Kg(m′) (18)
f (m′)+K′g(m′) ≤ f (m)+K′g(m) . (19)

Summing (18) and (19) gives (K ′−K)g(m′) ≤ (K′−K)g(m) so that

g(m′) ≤ g(m) . (20)

Since K ≥ 0, (18) and (20) give f (m)+Kg(m) ≤ f (m′)+Kg(m), that is

f (m) ≤ f (m′) . (21)

Moreover, (21) and (19) imply g(m) = g(m′), hence f (m′) ≤ f (m), that is f (m) = f (m′) by
(21). Similarly, (18) and (20) show that f (m) = f (m′) imply g(m) = g(m′). In both cases, (a) is
satisfied. Otherwise, f (m) < f (m′) and g(m) > g(m′), that is the (b) statement.

The last statement follows by taking m = m̂(K) and m′ = m̂(K′), because g is non-decreasing,
so that the minimum of g in E(K) is attained by m̂(K).
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A.3 A General Oracle Inequality

First of all, let us state a general theorem, from which Theorem 3 is an obvious corollary.

Theorem 5 Suppose all the assumptions of Section 4.2 are satisfied together with

(Ap) The bias decreases like a power of Dm: there exist +− ≥ ++ > 0 and C+,C− > 0 such that

C−D−%−
m ≤ !(s,sm ) ≤C+D−%+

m .

Let L,.,c1,C1,C2 ≥ 0, c2 > 1 and assume that an event of probability at least 1−Ln−2 exists
on which, for every m ∈ Mn such that Dm ≥ ln(n)),

E [c1P(#(ŝm)− #(sm))+ c2Pn (#(sm)− #(ŝm)) ]
≤ pen(m) ≤ E [C1P(#(ŝm)− #(sm))+C2Pn (#(sm)− #(ŝm)) ] .

(22)

Then, for every 0< ,<min{++;1}/2, there exist a constant K3 and a sequence "n tending to
zero at infinity such that, with probability at least 1−K3n−2,

Dm̂ ≤ n1−&

and !(s, ŝm̂ ) ≤
[
1+(C1+C2−2)+

(c1+ c2−1)∧1 + "n

]
inf

m∈Mn
{!(s, ŝm )} (23)

where m̂ is defined by (8). Moreover, we have the oracle inequality

E [!(s, ŝm̂ ) ] ≤
[
1+(C1+C2−2)+

(c1+ c2−1)∧1 + "n

]
E
[
inf

m∈Mn
{!(s, ŝm )}

]
+
A2K3
n2

. (24)

The constant K3 may depend on L, ,, ., c1, c2, C1, C2 and constants in (P1), (P2), (Ab), (An),
(Ap) and (ArX" ), but not on n. The term "n is smaller than ln(n)−1/5; it can be made smaller than
n−' for any % ∈ (0;%0(+−,++)) at the price of enlarging K3.

The particular form of condition (22) on the penalty is motivated by the fact that the ideal shape
of penalty E [penid(m) ] (or equivalently E [2p2(m) ]) is unknown in general. Then, it has to be
estimated from the data, for instance by resampling. Under the assumptions of Theorem 5, Arlot
(2008b,c) has proved that resampling and V -fold penalties satisfy condition (22) with constants
c1+ c2 = 2− %n, C1+C2 = 2+ %n (for some absolute sequence %n tending to zero at infinity), and
some numerical constant .> 0. Then, Theorem 5 shows that such a penalization procedure satisfies
an oracle inequality with leading constant tending to 1 asymptotically.

The rationale behind Theorem 5 is that if pen(m) is close to c1p1(m)+c2p2(m), then crit(m) ≈
!(s,sm )+ c1p1(m)+(c2−1)p2(m). When c1 = c2 = 1, this is exactly the ideal criterion !(s, ŝm ).
When c1+ c2 = 2 with c1 ≥ 0 and c2 > 1, we obtain the same result because p1(m) and p2(m) are
quite close, at least when Dm is large enough. The closeness between p1 and p2 is the keystone of
the slope heuristics. Notice that if maxm∈MnDm ≤ K′

3(ln(n))−1n (for some constant K ′
3 depending

only on the assumptions of Theorem 3, as K3), one can replace the condition c2 > 1 by c1+ c2 > 1
and c1,c2 ≥ 0 .
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A.4 Proof of Theorem 5

This proof is similar to the one of Arlot (2008c, Theorem 1). We give it for the sake of completeness.
From (3), we have for each m ∈ Mn such that An(m) :=min"∈#m {np̂" } > 0

!(s, ŝm̂ )−
(
pen′id(m̂)−pen(m̂)

)
≤ !(s, ŝm )+

(
pen(m)−pen′id(m)

)
. (25)

with pen′id(m) := p1(m)+ p2(m)− %(m) = pen(m)+ (P−Pn)#(s) and %(m) := (Pn−P)(#(sm )−
#(s)). It is sufficient to control pen−pen′id for every m ∈ Mn.

We will thus use the concentration inequalities of Section A.6 with x= # ln(n) and #= 2+)M .
Define Bn(m) =min"∈#m {np" }, and /n the event on which

• for every m ∈ Mn, (22) holds

• for every m ∈ Mn such that Bn(m) ≥ 1, (31) and (32) hold:

p̃1(m) ≥ E [ p̃1(m) ]−L(SH5)

[
ln(n)2√
Dm

+ e−LBn(m)
]

E [ p2(m) ]

p̃1(m) ≤ E [ p̃1(m) ]+L(SH5)

[
ln(n)2√
Dm

+
√
Dme−LBn(m)

]
E [ p2(m) ]

• for every m ∈ Mn such that Bn(m) > 0, (33), (30) and 28 hold:

p̃1(m) ≥
(

1
2+(#+1)Bn(m)−1 ln(n)

−
L(SH5) ln(n)2√

Dm

)
E [ p2(m) ]

|p2(m)−E [ p2(m) ]|≤
L(SH5) ln(n)√

Dm
[!(s,sm )+E [ p2(m) ] ]

∣∣∣%(m)
∣∣∣≤

!(s,sm )√
Dm

+L(SH5)
ln(n)√
Dm

E [ p2(m) ]

From Proposition 11 (for p̃1), Proposition 10 (for p2) and Proposition 8 (for %(m)),

P(/n ) ≥ 1−L !
m∈Mn

n−2−!M ≥ 1−LcM n
−2 .

For every m ∈ Mn such that Dm ≤ LcXr,!n ln(n)
−1, (ArX" ) implies that Bn(m) ≥ L−1 ln(n) ≥ 1. As

a consequence, on /n, if ln(n)7 ≤ Dm ≤ LcXr,!n ln(n)
−1:

max
{
|p̃1(m)−E [ p̃1(m) ]| , |p2(m)−E [ p2(m) ]| ,

∣∣∣%(m)
∣∣∣
}
≤
L(SH5)E [!(s,sm )+ p2(m) ]

ln(n)

Using (34) (in Proposition 12) and the fact that Bn(m) ≥ L−1 ln(n),

(c1+ c2)
(
1− %̃n

)

2
≤ E [pen(m) ] ≤

(C1+C2)
(
1+ %̃n

)

2
E [ p̃1(m)+ p2(m) ]
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with 0 ≤ %̃n ≤ L ln(n)−1/4. We deduce: if n ≥ L(SH5), for every m ∈ Mn such that ln(n)7 ≤ Dm ≤
LcXr,!n ln(n)

−1, on /n,

[
(c1+ c2−2)−−

L(SH5)

ln(n)1/4

]
p1(m) ≤ (pen−pen′id)(m)

≤
[
(C1+C2−2)+ +

L(SH5)

ln(n)1/4

]
p1(m) .

We need to assume that n is large enough in order to upper bound E [ p2(m) ] in terms of p1(m),
since we only have

p1(m) ≥
[
1−

L(SH5)

ln(n)1/4

]

+
E [ p2(m) ]

in general. Combined with (25), this gives: if n≥ L(SH5),

!(s, ŝm̂ ) ln(n)5≤Dm̂≤LcXr,!
n ln(n)−1 ≤

[
1+(C1+C2−2)+

(c1+ c2−1)∧1 +
L(SH5)

ln(n)1/4

]

× inf
m∈Mn s.t. ln(n)7≤Dm≤L#M ,cXr,!

n ln(n)−1
{!(s, ŝm )} .

We now use Lemmas 6 and 7 below to control on /n the dimensions of the selected model m̂
and the oracle model m! ∈ argminm∈Mn {!(s, ŝm )}.

The result follows since L(SH5) ln(n)−1/4 ≤ "n = ln(n)−1/5 for n ≥ L(SH5). We finally remove
the condition n≥ n0 = L(SH5) by choosing K3 = L(SH5) such that K3n−20 ≥ 1.

A.4.1 CLASSICAL ORACLE INEQUALITY

Since (23) holds true on /n,

E [!(s, ŝm̂ ) ] = E [!(s, ŝm̂ ) *n ]+E
[
!(s, ŝm̂ ) *c

n

]

≤ [2,−1+ "n ]E
[
inf

m∈Mn
{!(s, ŝm )}

]
+A2K3P(/c

n )

which proves (24).

Lemma 6 (Control on the dimension of the selected model) Let c > 0 and ) > (1−++ )+ /2.
Then, if n≥ L(SH5),c,!, on the event /n defined in the proof of Theorem 5,

ln(n)7 ≤ Dm̂ ≤ n1/2+! ≤ cn ln(n)−1 .

Lemma 7 (Control on the dimension of the oracle model) Define the oracle model m! ∈
argminm∈Mn {!(s, ŝm )}. Let c > 0 and ) > (1−++ )+ /2. Then, if n ≥ L(SH5),c,!, on the event
/n defined in the proof of Theorem 5,

ln(n)7 ≤ Dm" ≤ n1/2+! ≤ cn ln(n)−1 .
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A.4.2 PROOF OF LEMMA 6

By definition, m̂ minimizes crit(m) over Mn. It thus also minimizes

crit′(m) = crit(m)−Pn#(s) = !(s,sm )− p2(m)+%(m)+pen(m)

over Mn.

1. Lower bound on crit′(m) for small models: let m ∈ Mn such that Dm < ( ln(n))7. We then
have

!(s,sm ) ≥C− ( ln(n))−7%− from (Ap)
pen(m) ≥ 0

p2(m) ≤ L(SH5)

√
ln(n)
n

+L(SH5)
Dm

n
≤ L(SH5)

√
ln(n)
n

from (29)

and from (28) (in Proposition 8),

%(m) ≥−LA

√
!(s,sm ) ln(n)

n
+LA

ln(n)
n

≥−LA

√
ln(n)
n

.

We then have
crit′(m) ≥ L(SH5) ( ln(n))−L$− .

2. Lower bound for large models: let m ∈ Mn such that Dm ≥ n1/2+!. From (22) and (29) (in
Proposition 10),

pen(m)− p2(m) ≥ (c2−1)E [ p2(m) ]−LA

√
ln(n)
n

≥ (c2−1)!2minDm

n
−LA

√
ln(n)
n

and from (26),

%(m) ≥−L(SH5)

√
ln(n)
n

.

Hence, if Dm ≥ n1/2+! and n≥ L(SH5),!

crit′(m) ≥ pen(m)+%(m)− p2(m) ≥ L(SH5),!n−1/2+! .

3. There exists a better model for crit(m): from (P2), there exists m0 ∈ Mn such that
√
n ≤

Dm0 ≤ crich
√
n. If moreover n≥ Lcrich,!, then

ln(n)7 ≤
√
n≤ Dm0 ≤ crich

√
n≤ n1/2+! .

By (35) in Lemma 13, An(m0) ≥ 1 with probability at least 1−Ln−2.
Using (Ap),

!(s,sm0 ) ≤C+c%+
richn

−%+/2
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so that, when n≥ L(SH5),

crit′(m0) ≤ !(s,sm0 )+
∣∣∣%(m)

∣∣∣+pen(m)

≤ L(SH5)

(
n−%+/2+n−1/2

)
.

If n≥ L(SH5),!, this upper bound is smaller than the previous lower bounds for small and large
models.

A.4.3 PROOF OF LEMMA 7

Recall that m! minimizes !(s, ŝm ) = !(s,sm )+ p1(m) over m ∈ Mn, with the convention !(s, ŝm ) =
& if An(m) = 0.

1. Lower bound on !(s, ŝm ) for small models: let m ∈ Mn such that Dm < ( ln(n))7. From (Ap),
we have

!(s, ŝm ) ≥ !(s,sm ) ≥C− ( ln(n))−7%− .

2. Lower bound on !(s, ŝm ) for large models: let m ∈ Mn such that Dm > n1/2+!. From (33),
for n≥ L(SH5),!,

p̃1(m) ≥




1

2+(#+1)
(
cXr,"
)−1

ln(n)
−
L(SH5),!

n1/4



E [ p̃2(m) ]

so that !(s, ŝm ) ≥ p̃1(m) ≥ L(SH5),!n−1/2+! .

3. There exists a better model for !(s, ŝm ): let m0 ∈ Mn be as in the proof of Lemma 6 and
assume that n≥ Lcrich,!. Then,

p1(m0) ≤ L(SH5)E [ p2(m) ] ≤ L(SH5)n−1/2

and the arguments of the previous proof show that

!(s, ŝm0 ) ≤ L(SH5)

(
n−%+/2+n−1/2

)

which is smaller than the previous upper bounds for n≥ L(SH5),!.

A.5 Proof of Theorem 2

Similarly to the proof of Theorem 5, we consider the event /′
n, of probability at least 1−LcM n

−2,
on which:

• for every m ∈ Mn, (9) (for pen), (33) (for p̃1), (29)–(30) (for p2, with x = # ln(n) and 0 =√
ln(n)/n) and (26)–(28) (for %, with x= # ln(n) and ,=

√
ln(n)/n) hold true.

• for every m ∈ Mn such that Bn(m) ≥ 1, (31) and (32) hold (for p̃1).
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A.5.1 LOWER BOUND ON Dm̂

By definition, m̂ minimizes

crit′(m) = crit(m)−Pn#(s) = !(s,sm )− p2(m)+%(m)+pen(m)

over m ∈ Mn such that An(m) ≥ 1. As in the proof of Theorem 5, we define c= LcXr,! > 0 such that
for every model of dimension Dm ≤ cn ln(n)−1, Bn(m) ≥ L−1 ln(n) ≥ 1. Let c′ = min(c,c0) and
d ∈ (0,1) a constant to be chosen later.

1. Lower bound on crit′(m) for “small” models: assume that m ∈ Mn and Dm ≤ dc′n ln(n)−1.
Then, !(s,sm )+pen(m) ≥ 0 and from (26),

%(m) ≥−LA

√
ln(n)
n

.

If Dm ≥ ln(n)4, (30) implies that

p2(m) ≤
(
1+

L(SH2)

ln(n)

)
E [ p2(m) ] ≤

L(SH2)Dm

n
≤
c′dL(SH2)

ln(n)
.

On the other hand, if Dm < ln(n)4, (29) implies that

p2(m) ≤ L(SH2)

√
ln(n)
n

.

We then have
crit′(m) ≥−dL(SH2) ( ln(n))−1 .

2. There exists a better model for crit(m): let m1 ∈ Mn such that

ln(n)4 ≤ c′dn
crich ln(n)

≤ Dm1 ≤
c′n
ln(n)

≤ n .

From (P2+), this is possible as soon as n≥ Lcrich,c′,d . By (35) in Lemma 13, An(m0) ≥ 1 with
probability at least 1−Ln−2.
We then have

!(s,sm1 ) ≤ L(SH2),c′ ln(n)%+n−%+ by (Ap)

p2(m1) ≥
(
1−

L(SH2)

ln(n)

)
E [ p2(m1) ] by (30)

pen(m1) ≤ KE [ p2(m1) ] by (9)
∣∣∣%(m1)

∣∣∣≤ LA

√
ln(n)
n

by (26)

so that

crit′(m1) ≤ L(SH2),c′ ln(n)%+n−%+ +
(
K−1+

L(SH2)

ln(n)

)
E [ p2(m1) ]+LA

√
ln(n)
n

≤
(K−1+L(SH2)(ln(n))−1)!2minc′

2ln(n)
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if n≥ L(SH2),c′ .

We now choose d such that the constant dL(SH2) appearing in the lower bound on crit′(m) for
“small” models is smaller than (1−K−L(SH2)(ln(n))−1)!2minc′/2, that is d ≤ L(SH2),c′ . Then,
we assume that n≥ n0 = L(SH2),c′,d = L(SH2). Finally, we remove this condition as before by
enlarging K1.

A.5.2 RISK OF Dm̂

The proof of (10) is quite similar to the one of Lemma 7. First, for every model m ∈ Mn such that
An(m) ≥ 1 and Dm ≥ K2n ln(n)−1, we have

!(s, ŝm ) ≥ p̃1(m) ≥ L(SH2)K2 ln(n)−2 by (33) .

Then, the model m0 ∈ Mn defined previously satisfies An(m) ≥ 1, and

!(s, ŝm0 ) ≤ L(SH2)

(
n−%+/2+n−1/2

)
.

If n≥ L(SH2), the ratio between these two bounds is larger than ln(n), so that (10) holds.

A.6 Concentration Inequalities Used in the Main Proofs

In this section, we no longer assume that each model is the set of piecewise constant functions on
some partition of X . First, we control %(m) with general models and bounded data.

Proposition 8 Assume that ‖Y‖$ ≤ A < &. Then for all x ≥ 0, on an event of probability at least
1−2e−x:

∀,> 0,
∣∣∣%(m)

∣∣∣≤ ,!(s,sm )+
(
4
,

+
8
3

)
A2x
n

. (26)

If moreover

Q(p)
m :=

nE [ p2(m) ]
Dm

> 0 , (27)

on the same event,

∣∣∣%(m)
∣∣∣≤

!(s,sm )√
Dm

+
20
3

A2

Q(p)
m

E[p2(m)]√
Dm

x . (28)

Remark 9 (Regressogram case) If Sm is the set of piecewise constant functions on some partition
( I" )"∈#m of X ,

Q(p)
m =

1
Dm

!
"∈#m

!2" ≥ (!min )2 > 0 .

Then, we derive a concentration inequality for p2(m) in the regressogram case from a general
result by Boucheron and Massart (2008).

Proposition 10 Let Sm be the model of piecewise constant functions associated with the partition
( I" )"∈#m . Assume that ‖Y‖$ ≤ A and define p2(m) = Pn (#(sm)− #(ŝm)).
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Then, for every x ≥ 0, there exists an event of probability at least 1− e1−x on which for every
0 ∈ (0;1),

|p2(m)−E [ p2(m) ]|≤ L
[
0!(s,sm )+

A2
√
Dm

√
x

n
+
A2x
0n

]
(29)

for some absolute constant L. If moreover !(X) ≥ !min > 0 a.s., we have on the same event:

|p2(m)−E [ p2(m) ]|≤ L√
Dm

[
!(s,sm )+

A2E [ p2(m) ]
!2min

(√
x+ x

)]
. (30)

Finally, we recall a concentration inequality for p1(m) proved by (Arlot, 2008b, Proposition 9).
Its proof is particular to the regressogram case.

Proposition 11 (Proposition 9, Arlot 2008b) Let #> 0 and Sm be the model of piecewise constant
functions associated with the partition ( I" )"∈#m . Assume that ‖Y‖$ ≤ A<&, !(X) ≥ !min > 0 a.s.
and min"∈#m {np" }≥ Bn > 0. Then, if Bn ≥ 1, on an event of probability at least 1−Ln−(,

p̃1(m) ≥ E [ p̃1(m) ]−LA,+min,(

[
ln(n)2√
Dm

+ e−LBn
]

E [ p2(m) ] (31)

p̃1(m) ≤ E [ p̃1(m) ]+LA,+min,(

[
ln(n)2√
Dm

+
√
Dme−LBn

]
E [ p2(m) ] . (32)

If we only have a lower bound Bn > 0, then, with probability at least 1−Ln−(,

p̃1(m) ≥
(

1
2+(#+1)B−1

n ln(n)
−
LA,+min,( ln(n)2√

Dm

)
E [ p2(m) ] . (33)

A.7 Additional Results Needed

A crucial result in the proofs of Theorems 5 and 2 is that p1(m) and p2(m) are close in expectation;
the following proposition was proved by Arlot (2008b, Lemma 7).

Proposition 12 (Lemma 7, Arlot 2008b) Let Sm be a model of piecewise constant functions adapted
to some partition ( I" )"∈#m . Assume that min"∈#m {np" }≥ B> 0. Then,

(
1− e−B

)2E [ p2(m) ] ≤ E [ p̃1(m) ]

≤
[
2∧
(
1+5.1×B−1/4

)
+(B∨1)e−(B∨1 )

]
E [ p2(m) ] .

(34)

Finally, we need the following technical lemma in the proof of the main theorems.

Lemma 13 Let (p")"∈#m be non-negative real numbers of sum 1, (np̂")"∈#m a multinomial vector
of parameters (n;(p")"∈#m). Then, for all #> 0,

min
"∈#m

{np̂" }≥
min"∈#m {np" }

2
−2(#+1) ln(n) (35)

with probability at least 1−2n−(.
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Proof By Bernstein inequality (Massart, 2007, Proposition 2.9), for all 1 ∈ *m,

P
(
np̂" ≥ (1−0)np"−

√
2npx− x

3

)
≥ 1− e−x .

Take x = (#+ 1) ln(n) above, and remark that
√
2npx ≤ np

2 + x. The union bound gives the result
since Card(*m) ≤ n.

A.8 Proof of Proposition 8

Since ‖Y‖$ ≤ A, we have ‖s‖$ ≤ A and ‖sm‖$ ≤ A. In fact, everything happens as if Sm∪{s} was
bounded by A in L$.

We have

%(m) =
1
n

n

!
i=1

(#(sm,(Xi,Yi))− #(s,(Xi,Yi))−E [#(sm,(Xi,Yi))− #(s,(Xi,Yi))])

and assumptions of Bernstein inequality (Massart, 2007, Proposition 2.9) are fulfilled with

c=
8A2

3n
and v=

8A2!(s,sm )
n

since
‖#(sm,(Xi,Yi))− #(s,(Xi,Yi))−E [#(sm,(Xi,Yi))− #(s,(Xi,Yi))]‖$ ≤ 8A2

and

var(#(sm,(Xi,Yi))− #(s,(Xi,Yi))) ≤ E
[
(#(sm,(Xi,Yi))− #(s,(Xi,Yi)))2

]

≤ 8A2!(s,sm )

because ‖sm− s‖$ ≤ 2A and

(#(t, ·)− #(s, ·))2 = (t(X)− s(X))2 (2(Y − s(X))− t(X)+ s(X))2

and E
[
(Y − s(X))2

∣∣ X ] ≤ (2A)2

4
= A .

We obtain that, with probability at least 1−2e−x,

∣∣∣%(m)
∣∣∣≤

√
2vx+ c=

√
16A2!(s,sm )x

n
+
8A2x
3n

and (26) follows since 2
√
ab ≤ a,+ b,−1 for all , > 0. Taking , = D−1/2

m ≤ 1 and using Q(p)
m

defined by (27), we deduce (28).

273



ARLOT AND MASSART

A.9 Proof of Proposition 10

We apply here a result by Boucheron and Massart (2008, Theorem 2.2 in a preliminary version), in
which it is only assumed that # takes its values in [0;1]. This is satisfied when ‖Y‖$ ≤ A = 1/2.
When A 4= 1/2, we apply this result to (2A)−1Y and recover the general result by homogeneity.

First, we recall this result in the bounded least-squares regression framework. For every t : X %→
R and "> 0, we define

d2(s, t) = 2!(s, t ) and w(") =
√
2" .

Let 2m belong to the class of nondecreasing and continuous functions f : R+ %→ R+ such that x %→
f (x)/x is nonincreasing on (0;+&) and f (1)≥ 1. Assume that for every u∈ Sm and !> 0 such that
2m(!) ≤

√
n!2,

√
nE
[

sup
t∈Sm,d(u,t)≤+

|#n(u)− #n(t)|
]
≤ 2m(!) . (36)

Let "!,m be the unique positive solution of the equation
√
n"2!,m = 2m(w("!,m)) .

Then, there exists some absolute constant L such that for every real number q≥ 2 one has

‖p2(m)−E[p2(m)]‖q ≤
L√
n

[√
2q
(√

!(s,sm )∨ "!,m

)
+q

2√
n

]
. (37)

Using now that Sm is the set of piecewise constant functions on some partition ( I" )"∈#m of X ,
we can take

2m(!) = 3
√
2
√
Dm×! in (36). (38)

The proof of this statement is made below. Then, "!,m = 6
√
Dmn−1/2.

Combining (37) with the classical link between moments and concentration (see for instance
Arlot, 2007, Lemma 8.9), the first result follows. The second result is obtained by taking 0=D−1/2

m ,
as in Proposition 8.

A.9.1 PROOF OF (38)

Let u ∈ Sm and d(u, t) =
√
2‖u(X)− t(X)‖2 for every t : X %→ R. Define 3 : R+ %→ R+ by

3(!) = E
[

sup
d(u,t)≤+, t∈Sm

|(Pn−P)(#(u, ·)− #(t, ·))|
]

.

We are looking for some nondecreasing and continuous function 2m : R+ %→ R+ such that 2m(x)/x
is nonincreasing, 2m(1) ≥ 1 and for every u ∈ Sm,

∀!> 0 such that 2m(!) ≤
√
n!2 , 2m(!) ≥

√
n3(!) .

We first look at a general upperbound on 3.
Assume that u = sm. If this is not the case, the triangular inequality shows that 3general u ≤

23u=sm . Let us write
t = !

"∈#m
t" I! u= sm = !

"∈#m
+" I! .
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A.9.2 COMPUTATION OF P(#(t, ·)− #(sm, ·))

for some general t ∈ Sm:

P(#(t, ·)− #(sm, ·)) = E
[
(t(X)−Y )2− (sm(X)−Y )2

]

= E
[
(t(X)− sm(X))2

]
+2E [(t(X)− sm(X))(sm(X)− s(X))]

= E
[
(t(X)− sm(X))2

]

= !
"∈#m

p"(t"−+")2

since for every 1 ∈ *m, E [s(X) | X ∈ I" ] = +".

A.9.3 COMPUTATION OF Pn(#(t, ·)− #(sm, ·))

for some general t ∈ Sm: with ,i = Yi− sm(Xi), we have

Pn(#(t, ·)− #(sm, ·)) =
1
n

n

!
i=1

[
(t(Xi)−Yi)2− (u(Xi)−Yi)2

]

=
1
n

n

!
i=1

(t(Xi)−u(Xi))2−
2
n

n

!
i=1

[(t(Xi)−u(Xi)),i]

=
1
n

n

!
i=1
!
"∈#m

(t"−u")2 Xi∈I! −
2
n

n

!
i=1
!
"∈#m

(t"−u") Xi∈I!,i .

A.9.4 BACK TO (Pn−P)

We sum the two inequalities above and use the triangular inequality:

|(Pn−P)(#(t, ·)− #(u, ·))|≤

∣∣∣∣∣
1
n

n

!
i=1
!
"∈#m

(t"−u")2( Xi∈I! − p")

∣∣∣∣∣

+

∣∣∣∣∣
2
n

n

!
i=1
!
"∈#m

(t"−u") Xi∈I!,i

∣∣∣∣∣

≤ 2A
n !

"∈#m

[
(
√
p" |t"−u"|)

∣∣$n
i=1( Xi∈I! − p")

∣∣
√p"

]

+
2
n !"∈#m

[
(
√
p" |t"−u"|)

∣∣$n
i=1 Xi∈I!,i

∣∣
√p"

]

since |t"−u"|≤ 2A for every t ∈ Sm.
We now assume that d(u, t) ≤ ! for some !> 0, that is

d(u, t)2 = 2 !
"∈#m

p"(t"−u")2 ≤ !2 .
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From Cauchy-Schwarz inequality, we obtain for every t ∈ Sm such that d(u, t) ≤ !

|(Pn−P)(#(t, ·)− #(u, ·))|≤ 2A!√
2n

√√√√ !
"∈#m

(
$n
i=1( Xi∈I! − p")

)2

p"

+
√
2!
n

√√√√ !
"∈#m

(
$n
i=1 Xi∈I!,i

)2

p"

A.9.5 BACK TO 3

The upper bound above does not depend on t, so that the left-hand side of the inequality can be
replaced by a supremum over { t ∈ Sm s.t. d(u, t) ≤ !}. Taking expectations and using Jensen’s
inequality (

√
· being concave), we obtain an upper bound on 3:

3(!) ≤ 2A!√
2n

√√√√ !
"∈#m

E
[(
$n
i=1( Xi∈I! − p")

)2

p"

]
+

√
2!
n

√√√√ !
"∈#m

E
[(
$n
i=1 Xi∈I!,i

)2

p"

]
(39)

For every 1 ∈ *m, we have

E
(

n

!
i=1

( Xi∈I! − p")

)2
=

n

!
i=1

E
(

Xi∈I! − p"
)2 = np" (1− p" ) (40)

which simplifies the first term. For the second term, notice that

∀i 4= j, E
[

Xi∈I! X j∈I!,i, j
]
= E

[
Xi∈I!,i

]
E
[

X j∈I!, j
]

and ∀i, E
[

Xi∈I!,i
]
= E

[
Xi∈I!E

[
,i | Xi∈I!

]]
= 0

since ,i is centered conditionally to Xi∈I! . Then,

E
(

n

!
i=1

Xi∈I!,i

)2
=

n

!
i=1

E
[

Xi∈I!,
2
i
]
≤ np" ‖,‖2$ ≤ np"(2A)2 . (41)

Combining (39) with (40) and (41), we deduce that

3(!) ≤ 2A!√
2
√
n

√
Dm−1+

2
√
2A!√
n

√
Dm ≤ 3A

√
2
√
Dm√
n

×! .

As already noticed, we have to multiply this bound by 2 so that it is valid for every u ∈ Sm and not
only u= sm.

The resulting upper bound (multiplied by
√
n) has all the desired properties for 2m since

6A
√
2
√
Dm = 3

√
2Dm ≥ 1. The result follows.
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Abstract
We start by showing that in an active learning setting, the Perceptron algorithm needs !( 1

"2
) labels

to learn linear separators within generalization error ". We then present a simple active learning
algorithm for this problem, which combines a modification of the Perceptron update with an adap-
tive filtering rule for deciding which points to query. For data distributed uniformly over the unit
sphere, we show that our algorithm reaches generalization error " after asking for just Õ(d log 1" )
labels. This exponential improvement over the usual sample complexity of supervised learning had
previously been demonstrated only for the computationally more complex query-by-committee al-
gorithm.
Keywords: active learning, perceptron, label complexity bounds, online learning

1. Introduction

In many machine learning applications, unlabeled data is abundant but labeling is expensive. This
distinction is not captured in standard models of supervised learning, and has motivated the field
of active learning, in which the labels of data points are initially hidden, and the learner must pay
for each label it wishes revealed. If query points are chosen randomly, the number of labels needed
to reach a target generalization error ", at a target confidence level 1− #, is similar to the sample
complexity of supervised learning. The hope is that there are alternative querying strategies which
require significantly fewer labels.

An early dramatic demonstration of the potential of active learning was Freund et al.’s analysis
of the query-by-committee (QBC) learning algorithm (Freund et al., 1997). The analysis is with
respect to the selective sampling model: the learner observes a stream of unlabeled data and makes
spot decisions about whether or not to ask for each point’s label. The paper showed that if the data
is drawn uniformly from the surface of the unit sphere in Rd , and the hidden labels correspond

c©2009 Sanjoy Dasgupta, Adam Tauman Kalai and Claire Monteleoni.
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perfectly to a homogeneous (i.e., through the origin) linear separator from this same distribution,
then it is possible to achieve generalization error " after seeing Õ(d" log

1
" ) points and requesting just

Õ(d log 1" ) labels:
1 an exponential improvement over the usual Õ(d" ) sample complexity of learning

linear separators in a supervised setting. (An !(d log 1" ) label complexity can be seen to be optimal
by counting the number of spherical caps of radius " that can be packed onto the surface of the
unit sphere in Rd .) This remarkable result is tempered somewhat by the complexity of the QBC
algorithm, which involves random sampling from intermediate version spaces; the complexity of
the update step scales (polynomially) with the number of updates performed.

In this paper, we show how a simple modification of the perceptron update can be used to
achieve the same sample complexity bounds (within Õ factors), under the same streaming model
and the same uniform input distribution. Unlike QBC, we do not assume a distribution over target
hypotheses, and our algorithm does not need to store previously seen data points, only its current
hypothesis. Moreover, in addition to requiring only one-at-a-time access to examples (as opposed
to batch data access), neither our algorithm’s memory usage, nor its computation time per example,
scales with the number of seen examples.2

Our algorithm has the following structure.

Set initial hypothesis v0 ∈ Rd.
For t = 0,1,2, . . ..

Receive unlabeled point xt.
Make a prediction SGN(vt · xt).
Filtering step: Decide whether to ask for xt’s label.
If label yt is requested:
Update step: Set vt+1 based on vt ,xt ,yt.
Adjust filtering rule.

else: vt+1 = vt.

UPDATE STEP.

The regular perceptron update, whose convergence behavior was first analyzed by Rosenblatt (1958),
consists of the following simple rule:

if (xt ,yt) is misclassified, then vt+1 = vt + ytxt .

It turns out that this update cannot yield an error rate better than !(1/
√
lt), where lt is the number

of labels queried up to time t, no matter what filtering scheme is used.

Theorem 1 Consider any sequence of data points x0,x1,x2, . . .∈Rd which is perfectly classified by
some linear separator u ∈ Rd. Suppose that perceptron updates are used, starting with an initial
hypothesis v0. Let kt be the number of updates performed upto time t, let vt be the hypothesis at
time t, and let $t be the angle between u and vt . Then for any t ≥ 0, if $t+1 ≤ $t then sin$t ≥
1/(5

√

kt +‖v0‖2).

This holds regardless of how the data is produced. When the points are distributed uniformly over
the unit sphere, $t ≥ sin$t (for $t ≤ %

2 ) is proportional to the error rate of vt . In other words, the

1. In this paper, the Õ notation is used to suppress multiplicative terms in logd, log log 1" and log
1
# .

2. See Monteleoni (2006) for an extended discussion of learning with online constraints.
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error rate is !(1/
√
kt), which in turn is !(1/

√
lt), since each update must be triggered by a label.

As we will shortly see, the reason for this slow rate is that the magnitude of the perceptron update
is too large for points near the decision boundary of the current hypothesis.

So instead we use a variant of the update rule, originally due to Motzkin and Schoenberg (1954):

if (xt ,yt) is misclassified, then vt+1 = vt −2(vt · xt)xt

(where xt is assumed normalized to unit length). Note that the update can also be written as
vt+1 = vt + 2yt |vt · xt |xt , since updates are only made on mistakes, in which case yt (= SGN(vt · xt),
by definition. Thus we are scaling the standard perceptron’s additive update by a factor of 2|vt · xt |
to avoid oscillations caused by points close to the half-space represented by the current hypothesis.
Motzkin and Schoenberg (1954) introduced this rule, in the context of solving linear inequalities,
and called it the “Reflexion” method, due to certain geometric properties it has, which we will dis-
cuss later. Hampson and Kibler (1999) subsequently applied it to learning linear separators, in an
analysis framework that differs from ours. The same rule, but without the factor of two, has been
used in previous work (Blum et al., 1996) on learning linear classifiers from noisy data, in a batch
setting. We are able to show that our formulation has the following generalization performance in a
supervised (non-active) setting.

Theorem 2 Pick any #,"> 0. Consider a stream of data points xt drawn uniformly at random from
the surface of the unit sphere inRd, and corresponding labels yt that are consistent with some linear
separator. When the modified Perceptron algorithm (Figure 2) is applied to this stream of data, then
with probability 1−#, after O(d(log 1" + log 1#)) mistakes, its generalization error is at most ".

This contrasts favorably with the Õ( d"2 ) mistake bound of the Perceptron algorithm, and a more
recent variant, on the same distribution (Baum, 1997; Servedio, 1999). Meanwhile, in terms of
lower bounds, Theorem 1 also applies in the supervised case, and gives a lower bound on the
number of mistakes (updates) made by the standard perceptron. Finally, there is the question of
how many samples are needed in the supervised setting (as opposed to the number of mistakes). For
data distributed uniformly over the unit sphere, this is known to be &̃(d" ) (lower bound, Long, 1995,
and upper bound, Long, 2003).

FILTERING STEP.

Given the limited information the algorithm keeps, a natural filtering rule is to query points xt when
|vt · xt | is less than some threshold st . The choice of st is crucial. If it is too large, then only a
miniscule fraction of the points queried will actually be misclassified (and thus trigger updates)—
almost all labels will be wasted. On the other hand, if st is too small, then the waiting time for
a query might be prohibitive, and when an update is actually made, the magnitude of this update
might be tiny.

Therefore, we set the threshold adaptively: we start st high, and keep dividing it by two until we
reach a level where there are enough misclassifications amongst the points queried. By wrapping
this filtering strategy around the modified Perceptron update, we get an active learning algorithm
(Figure 4) with the following label complexity guarantee.

Theorem 3 Pick any #,"> 0. Consider a stream of data points xt drawn uniformly at random from
the surface of the unit sphere inRd, and corresponding labels yt that are consistent with some linear
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separator. With probability 1− #, if the active modified Perceptron algorithm (Figure 4) is given a
stream of Õ(d" log

1
" ) such unlabeled points, it will request Õ(d log 1" ) labels, make Õ(d log 1" ) errors

(on all points, labeled or not), and have final error ≤ ".

The proofs of Theorems 1 through 3 are in Sections 4 through 6, respectively.

2. Related Work

Much of the early theory work on active learning was in the query learning model, in which the
learner has the ability to synthesize arbitrary data points and request their labels. See Angluin
(2001) for an excellent survey of this area. In this paper, we consider a different setting, in which
(1) there is an underlying joint distribution over data points and labels, (2) the learner has access to
(unlabeled) data points drawn at random from this distribution, and (3) the learner is able to request
labels only for points obtained in this way, not for arbitrary points. This framework for active
learning was originally introduced by Cohn, Atlas, and Ladner (1994),3 along with a simple and
elegant querying algorithm. Unless we specify otherwise, we will use the term selective sampling
to denote the framework. In this work, we focus on the realizable setting: the hypothesis class
which we consider for learning contains a classifier with zero error on the data distribution.4 Our
contribution to active learning is for online learning of linear separators through the origin, under
the uniform distribution.

Several methods for learning linear separators (or their probabilistic analogues) in the selective
sampling framework, have been proposed in the literature. Some have been shown to work rea-
sonably well in practice, for example Lewis and Gale’s sequential algorithm for text classification
(Lewis and Gale, 1994), which has batch access to the remaining unlabeled data points at each it-
eration. Several of these are similar in spirit to our approach, in that they query points with small
margins, such as Tong and Koller’s active learning algorithms that use a support vector machine
(SVM) as the underlying classifier (Tong and Koller, 2001).

On the theoretical side, there have been some encouraging upper bounds on label complexity;
however, some of the schemes achieving them have not yet been proven efficient. Dasgupta (2005)
provided a result for learning general hypothesis classes, in a non-Bayesian, realizable setting. For
homogeneous half-spaces with data distributed uniformly on the sphere, this result implies an upper
bound on label complexity of Õ(d log2(1" )). Balcan, Beygelzimer, and Langford (2006) provided
a technique for learning general hypothesis classes, in a non-Bayesian, agnostic setting, for which
they showed a label complexity upper bound of Õ(d2 log 1" ) for learning linear separators under
the uniform input distribution.5 Both of these results rely on schemes that are computationally
prohibitive, requiring exponential storage and/or computation.

The literature contains several active learning algorithms that are both feasible to implement
(at least in special cases) and have label complexity guarantees, although none of them is quite as
simple as the algorithm we present in this paper. We have already discussed the label complexity
upper bound attained by Freund et al. (1997) for the Query By Committee algorithm of Seung et al.
(1992). More recently, it was shown how to efficiently implement this scheme for linear separators
under certain prior distributions, and the empirical results were encouraging (Gilad-Bachrach et al.,

3. The conference version dates back to NIPS 1989, with a superset of the coauthors.
4. The agnostic setting removes this assumption.
5. This bound was further tightened to Õ(d1.5 log 1" ), in Balcan et al. (2007), and this scheme has also been analyzed by
Hanneke (2007), who introduced a new label complexity measure.
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2005). Cesa-Bianchi et al. (2003) provided regret bounds on a selective sampling algorithm for
learning linear thresholds from a stream of iid examples corrupted by random class noise whose
rate scales with the examples’ margins. For half-spaces under the uniform input distribution, in
the realizable setting, the algorithm of Balcan et al. (2006) can be implementated efficiently, as
shown by Balcan et al. (2007), which analyzed various margin-based techniques for active learning,
matching our label complexity bound in the same setting. Dasgupta, Hsu, and Monteleoni (2007)
recently gave an active learning algorithm for general concept classes in the non-Bayesian, agnostic
setting (a generalization of the original selective sampling algorithm of Cohn et al. 1994) which, for
half-spaces under the uniform input distribution, in the realizable case, has a label complexity upper
bound of Õ(d1.5 log 1" ).

Cesa-Bianchi et al. (2004) analyzed an algorithm which conforms to roughly the same template
as ours but differs in both the update and filtering rule—it uses the regular perceptron update and
it queries points xt according to a fixed, randomized rule which favors small |vt · xt |. The authors
make no distributional assumptions on the input and they show that in terms of worst-case hinge-
loss bounds, their algorithm does about as well as one which queries all labels. The actual fraction
of points queried varies from data set to data set. In contrast, our objective is to achieve a target
generalization error with minimum label complexity, although we also obtain a mistake bound (on
both labeled and unlabeled points) under our distributional assumption.

It is known that active learning does not always give a large improvement in the sample complex-
ity of learning linear separators. For instance, in our setting, in which data is distributed uniformly
over the unit sphere, Dasgupta (2004) showed that if the target linear separator is allowed to be non-
homogeneous, then the number of labels required to reach error " is !(1" ), no matter what active
learning scheme is used. This lower bound also applies to learning homogeneous linear separators
with respect to an arbitrary distribution. In the fully agnostic setting, Kääriäinen (2006) provided a
lower bound of !('

2

"2 ), where ' is the error rate of the best hypothesis in the concept class.

3. Preliminaries

In our model, all data xt lie on the surface of the unit ball in Rd , which we denote by S:

S=
{

x ∈ R
d ∣

∣ ‖x‖ = 1
}

.

Their labels yt are either −1 or +1, and the target function is a half-space u · x ≥ 0 represented
by a unit vector u ∈ Rd which classifies all points perfectly, that is, yt(u · xt) > 0 for all t, with
probability one.

For any vector v ∈ Rd , we define v̂= v
‖v‖ to be the corresponding unit vector.

Our lower bound (Theorem 1) is distribution-free; thereafter we will assume that the data points
xt are drawn independently from the uniform distribution over S.

Under the uniform input distribution, any hypothesis v ∈ Rd has error

"(v) = Px∈S[SGN(v · x) (= SGN(u · x)] =
arccos(u · v̂)

%
.

We will refer to the error rate of a hypothesis v as its generalization error, since in the realizable
case the target itself has zero error.
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Figure 1: The projection of the error region (t onto the plane defined by u and vt .

For a hypothesis vt , we will denote the angle between u and vt by $t , and we will define the error
region of vt as (t = {x ∈ S |SGN(vt · x) (= SGN(u · x)}. Figure 1 provides a schematic of the projection
of the error region onto the plane defined by u and vt .

We will use the termmargin, in the context of learning half-spaces, to denote simply the distance
from an example to the separator in question, as opposed to the standard use of this term (as the
minimum over examples of this distance with respect to the target separator). For example, we will
denote the margin of x with respect to v as |x · v|.

We will use a few useful inequalities for $ on the interval (0, %2 ].

4
%2

≤
1− cos$

$2
≤

1
2
, (1)

2
%
$≤ sin$ ≤ $. (2)

Equation (1) can be verified by checking that for $ in this interval, 1−cos$$2 is a decreasing function,
and evaluating it at the endpoints.

We will also make use of the following lemma.

Lemma 4 For any fixed unit vector a and any )≤ 1,

)
4
≤ Px∈S

[

|a · x|≤
)√
d

]

≤ ).

The proof is deferred to the appendix.

4. A Lower Bound for the Perceptron Update

Consider an algorithm of the following form:
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Pick some v0 ∈ Rd.
Repeat for t = 0,1,2, . . .:

Get some (x,y) for which y(vt · x) ≤ 0.
vt+1 = vt + yx

On any update,
vt+1 ·u= vt ·u+ y(x ·u). (3)

Thus, if we assume for simplicity that v0 · u ≥ 0 (we can always just start count when this first
occurs) then vt · u ≥ 0 always, and $t , the angle between u and vt is always acute. Since ‖u‖ = 1,
the following holds:

‖vt‖cos$t = vt ·u.

The update rule also implies

‖vt+1‖2 = ‖vt‖2+1+2y(vt · x). (4)

Thus ‖vt‖2 ≤ t+ ‖v0‖2 for all t. In particular, this means that Theorem 1 is an immediate conse-
quence of the following lemma.

Lemma 5 Assume v0 ·u≥ 0 (i.e., start count when this first occurs). Then

$t+1 ≤ $t ⇒ sin$t ≥min
{

1
3
,
1

5‖vt‖

}

.

Proof Figure 1 shows the unit circle in the plane defined by u and vt . The dot product of any
point x ∈ Rd with either u or vt depends only upon the projection of x into this plane. The point is
misclassified when its projection lies in the shaded region. For such points, y(u · x) is at most sin$t
(point (i)) and y(vt · x) is at least −‖vt‖sin$t (point (ii)).

Combining this with Equations (3) and (4), we get

vt+1 ·u ≤ vt ·u+ sin$t ,
‖vt+1‖2 ≥ ‖vt‖2+1−2‖vt‖sin$t .

To establish the lemma, we first assume $t+1 ≤ $t and sin$t ≤ 1
5‖vt‖ , and then conclude that sin$t ≥

1
3 .

$t+1 ≤ $t implies

cos2 $t ≤ cos2$t+1 =
(u · vt+1)2

‖vt+1‖2
≤

(u · vt + sin$t)2

‖vt‖2+1−2‖vt‖sin$t
.

The final denominator is positive since sin$t ≤ 1
5‖vt‖ . Rearranging,

(‖vt‖2+1−2‖vt‖sin$t)cos2 $t ≤ (u · vt)2+ sin2 $t +2(u · vt)sin$t ,

and using ‖vt‖cos$t = (u · vt):

(1−2‖vt‖sin$t)cos2 $t ≤ sin2 $t +2‖vt‖sin$t cos$t .
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Inputs: dimensionality d and budget on number of updates
(mistakes) M.

Let v1 = x1y1 for the first example (x1,y1).
For t = 1 to M:
Let (xt ,yt) be the next example with y(x · vt) < 0.
vt+1 = vt −2(vt · xt)xt

Figure 2: The (non-active) modified Perceptron algorithm. The standard Perceptron update, vt+1 =
vt +ytxt , is in the same direction (note yt = −SGN(vt ·xt)) but different magnitude (scaled
by a factor of 2|vt · xt |).

Again, since sin$t ≤ 1
5‖vt‖ , it follows that (1−2‖vt‖sin$t)≥

3
5 and that 2‖vt‖sin$t cos$t ≤

2
5 . Using

cos2 = 1− sin2, we then get
3
5
(1− sin2 $t) ≤ sin2 $t +

2
5
,

which works out to sin2 $t ≥ 1
8 , implying sin$t >

1
3 .

The problem is that the perceptron update can be too large. In R2 (e.g., Figure 1), when $t is
tiny, the update will cause vt+1 to overshoot the mark and swing too far to the other side of u, unless
‖vt‖ is very large: to be precise, we need ‖vt‖ = !( 1

sin$t ). But ‖vt‖ grows slowly, at best at a rate
of

√
t. If sin$t is proportional to the error of vt , as in the case of data distributed uniformly over

the unit sphere, this means that the perceptron update cannot stably maintain an error rate ≤ " until
t =!( 1"2 ).

5. The Modified Perceptron Update

We now describe a modified Perceptron algorithm. Unlike the standard Perceptron, it ensures that
vt ·u is increasing, that is, the error of vt is monotonically decreasing. Another difference from the
standard update (and other versions) is that the magnitude of the current hypothesis, ‖vt‖, is always
1, which is convenient for the analysis.

The modified Perceptron algorithm is shown in Figure 2. We now show that the norm of vt stays
at one. Note that ‖v1‖ = 1 and

‖vt+1‖2 = ‖vt‖2+4(vt · xt)2‖xt‖2−4(vt · xt)2 = 1

by induction. In contrast, for the standard perceptron update, the magnitude of vt increases steadily.
With the modified update, the error can only decrease, because vt ·u only increases:

vt+1 ·u= vt ·u−2(vt · xt)(xt ·u) = vt ·u+2|vt · xt ||xt ·u|. (5)

The second equality follows from the fact that vt misclassified xt . Thus vt · u is increasing, and
the increase can be bounded from below by showing that |vt · xt ||xt · u| is large. This is a different
approach from previous analyses.
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Hampson and Kibler (1999) previously used this update for learning linear separators, calling it
the “Reflection” method, based on the “Reflexion” method due to Motzkin and Schoenberg (1954).
These names are likely due to the following geometric property of this update:

xt · vt+1 = xt · vt−2(xt · vt)(xt · xt) = −(xt · vt).

In general, one can consider modified updates of the form vt+1 = vt−*(vt ·xt)xt , which corresponds
to the “Relaxation” method of solving linear inequalities (Agmon, 1954; Motzkin and Schoenberg,
1954). When * (= 2, the vectors vt no longer remain of fixed length; however, one can verify that
their corresponding unit vectors v̂t satisfy

v̂t+1 ·u= (v̂t ·u+*|v̂t · xt ||xt ·u|)/
√

1−*(2−*)(v̂t · xt)2,

and thus any choice of * ∈ [0,2] guarantees non-increasing error. Blum et al. (1996) used *= 1 to
guarantee progress in the denominator (their analysis did not rely on progress in the numerator) as
long as v̂t · u and (v̂t · xt)2 were bounded away from 0. Their approach was used in a batch setting
as one piece of a more complex algorithm for noise-tolerant learning. In our sequential framework,
we can bound |v̂t · xt ||xt · u| away from 0 in expectation, under the uniform distribution, and hence
the choice of *= 2 is most convenient, but *= 1 would work as well. Although we do not further
optimize our choice of the constant *, this choice itself may yield interesting future work, perhaps
by allowing it to be a function of the dimension.

5.1 Analysis of (Non-Active) Modified Perceptron

How large do we expect |vt ·xt | and |u ·xt | to be for an error (xt ,yt)? As we shall see, in d dimensions,
one expects each of these terms to be on the order of d−1/2 sin$t , where sin$t =

√

1− (vt ·u)2.
Hence, we might expect their product to be about (1− (vt · u)2)/d, which is how we prove the
following lemma.

Note, we have made little effort to optimize constant factors.

Lemma 6 For any vt , with probability at least 13 ,

1− vt+1 ·u≤ (1− vt ·u)
(

1−
1
50d

)

.

There exists a constant c> 0, such that with probability at least 6364 , for any vt ,

1− vt+1 ·u≤ (1− vt ·u)
(

1−
c
d

)

.

Proof We show only the first part of the lemma. The second part is quite similar. We will argue
that each of |vt · xt |,|u · xt | is “small” with probability at most 1/3. This means, by the union bound,
that with probability at least 1/3, they are both sufficiently large.

The error rate of vt is $t/%, where cos$t = vt · u. Also define the error region (t =
{x ∈ S |SGN(vt · x) (= SGN(u · x)}. By Lemma 4, for an x drawn uniformly from the sphere,

Px∈S
[

|vt · x|≤
$t

3%
√
d

]

≤
$t
3%

.
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Using P[A|B] ≤ P[A]/P[B], we have,

Px∈S
[

|vt · x|≤
$t

3%
√
d

∣

∣

∣

∣

x ∈ (t

]

≤
Px∈S[|vt · x|≤ $t

3%
√
d ]

Px∈S[x ∈ (t ]
≤
$t/(3%)
$t/%

=
1
3
.

Similarly for |u · x|, and by the union bound the probability that x ∈ (t is within margin $
3%

√
d from

either u or v is at most 23 . Since the updates only occur if x is in the error region, we now have a
lower bound on the expected magnitude of |vt · x||u · x|:

Px∈S
[

|vt · x||u · x|≥
$2t

(3%
√
d)2

∣

∣

∣

∣

x ∈ (t

]

≥
1
3
.

Hence, we know that with probability at least 1/3, |vt · x||u · x| ≥ 1−(vt ·u)2
100d , since $2t ≥ sin2 $t =

1− (vt ·u)2 and (3%)2 < 100. In this case,

1− vt+1 ·u ≤ 1− vt ·u−2|vt · xt ||u · xt |

≤ 1− vt ·u−
1− (vt ·u)2

50d

= (1− vt ·u)
(

1−
1+ vt ·u
50d

)

,

where the first inequality is by application of (5).

Finally, we give a high-probability bound, that is, Theorem 2, stated here with proof.

Theorem 7 With probability 1−# with respect to the uniform distribution on the unit sphere, in the
supervised, realizable setting, after M = O(d(log 1" + log 1#)) mistakes, the generalization error of
the modified Perceptron algorithm is at most ".

Proof By the above lemma, we can conclude that, for any vector vt ,

E[1− vt+1 ·u] ≤ (1− vt ·u)
(

1−
1

3(50d)

)

.

This is because with ≥ 1/3 probability it goes down by a factor of 1− 1
50d and with the remaining

≤ 2/3 probability it does not increase. Hence, afterM mistakes,

E[1− vM ·u] ≤ (1− v1 ·u)
(

1−
1

150d

)M
≤

(

1−
1

150d

)M
,

since v1 ·u≥ 0. By Markov’s inequality,

P

[

1− vM ·u≥
(

1−
1

150d

)M
#−1

]

≤ #.

Finally, using (1) and cos$M = vM ·u, we see P[ 4%2$
2
M ≥ (1− 1

150d )
M#−1]≤ #. UsingM= 150d log 1

"#

gives P[$M% ≥ "] ≤ #, as required.

The additional factor of 1" in the bound on unlabeled samples (Õ(d" log
1
" )) follows by upper

bounding the number of unlabeled samples until an update: when the hypothesis has error rate ",
the waiting time (in samples) until an update is 1" , in expectation.
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Figure 3: The active learning rule is to query for labels on points x in L which is defined by the
threshold st on |vt · x|.

6. An Active Modified Perceptron

The ideal objective in designing an active learning rule that minimizes label complexity would
be to query for labels only on points in the error region, (t . However without knowledge of u,
the algorithm is unaware of the location of (t . The intuition behind our active learning rule is
to approximate the error region, given the information the algorithm does have: vt . As shown in
Figure 3, the labeling region L is simply formed by thresholding the margin of a candidate example
with respect to vt .

The active version of the modified Perceptron algorithm is shown in Figure 4. The algorithm is
similar to the algorithm of the previous section, in its update step. For its filtering rule, we maintain
a threshold st and we only ask for labels of examples with |vt · x| ≤ st . Approximating the error
region is achieved by choosing the threshold, st , adaptively, so as to manage the tradeoff between
L being too large, causing many labels to be wasted without hitting (t (and thus yielding updates),
and L only containing points with very small margins with respect to vt , since our update step will
make very small updates on such points. We decrease the threshold adaptively over time, starting at
s1 = 1/

√
d and reducing it by a factor of two whenever we have a run of labeled examples on which

we are correct.
For Theorem 3, we select values of R,L that yield " error with probability at least 1− #. The

idea of the analysis is as follows:

Definition 7 We say the tth update is “good” if,

1− vt+1 ·u≤ (1− vt ·u)
(

1−
c
d

)

.

(The constant c is from Lemma 6.)

1. (Lemma 8) First, we argue that st is not too small (we do not decrease st too quickly). As-
suming this is the case, then 2 and 3 hold.

2. (Lemma 10) We query for labels on at least an expected 1/32 of all errors. In other words,
some errors may go undetected because we do not ask for their labels, but the number of
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Inputs: Dimensionality d, maximum number of labels L,
and patience R.
v1 = x1y1 for the first example (x1,y1).
s1 = 1/

√
d

For t = 1 to L:
Wait for the next example x : |x · vt |≤ st and query its label.
Call this labeled example (xt ,yt).
If (xt · vt)yt < 0, then:
vt+1 = vt −2(vt · xt)xt
st+1 = st

else:
vt+1 = vt
If predictions were correct on R consecutive labeled
examples (i.e., (xi · vi)yi ≥ 0 ∀i ∈ {t−R+1, t−R+2, . . . , t}),
then set st+1 = st/2, else st+1 = st.

Figure 4: An active version of the modified Perceptron algorithm.

mistakes total should not be much more than 32 times the number of updates we actually
perform.

3. (Lemma 11) Each update is good (Definition 7) with probability at least 1/2.

4. (Theorem 3) Finally, we conclude that we cannot have too many label queries, updates, or
total errors, because half of our updates are good, 1/32 of our errors are updates, and about
1/R of our labels are updates.

We first lower-bound st with respect to our error, showing that, with high probability, the thresh-
old st is never too small.

Lemma 8 With probability at least 1−L
(3
4
)R, we have:

st ≥
√

1− (u · vt)2
16d

for t = 1,2, . . . ,L, simultaneously. (6)

Before proving this lemma, it will be helpful to show the following lemma. As before, let us define
(t = {x ∈ S|(x · vt)(x ·u) < 0}.

Lemma 9 For any ) ∈
(

0,
√

1−(u·vt)2
4d

]

,

Pxt∈S
[

xt ∈ (t
∣

∣ |xt · vt | < )
]

≥
1
4
.

Proof Let x be a random example from S such that |x · vt | < ) and, without loss of generality,
suppose that 0 ≤ x · vt ≤ ). Then we want to calculate the probability we err, that is, u · x < 0. We

292



ANALYSIS OF PERCEPTRON-BASED ACTIVE LEARNING

can decompose x= x′+(x ·vt)vt where x′ = x− (x ·vt)vt is the component of x orthogonal to vt , that
is, x′ · vt = 0. Similarly for u′ = u− (u · vt)vt . Hence,

u · x= (u′ +(u · vt)vt) · (x′ +(x · vt)vt) = u′ · x′ +(u · vt)(x · vt).

In other words, we err iff u′ · x′ < −(u · vt)(x · vt). Using u · vt ∈ [0,1] and since x · vt ∈
[0,

√

(1− (u · vt)2)/(4d)], we conclude that if

u′ · x′ < −
√

1− (u · vt)2
4d

, (7)

then we must err. Also, let x̂′ = x′
‖x′‖ be the unit vector in the direction of x

′. It is straightforward
to check that ‖x′‖ =

√

1− (x · vt)2. Similarly, for u we define û′ = u′√
1−(u·vt)2

. Substituting these

into (7), we must err if, û′ · x̂′ < −1/
√

4d(1− (x · vt))2, and since
√

1− (x · vt)2 ≥
√

1−1/(4d), it
suffices to show that,

Px∈S

[

û′ · x̂′ <
−1

√

4d(1−1/(4d))

∣

∣

∣

∣

∣

0≤ x · vt ≤ )

]

≥
1
4
.

What is the probability that this happens? Well, one way to pick x ∈ S would be to first pick x · vt
and then to pick x̂′ uniformly at random from the set S′ = {x̂′ ∈ S|x̂′ · vt = 0}, which is a unit sphere
in one fewer dimensions. Hence the above probability does not depend on the conditioning. By
Lemma 4, for any unit vector a ∈ S′, the probability that |û′ · a| ≤ 1/

√

4(d−1) is at most 1/2,
so with probability at least 1/4 (since the distribution is symmetric), the signed quantity û′ · x̂′ <
−1/

√

4(d−1) < −1/
√

4d(1−1/(4d)).

We are now ready to prove Lemma 8.
Proof [of Lemma 8] Suppose that condition (6) fails to hold for some t’s. Let t be the smallest
number such that (6) fails. By our choice of s1, clearly t > 1. Moreover, since t is the smallest such
number, and u · vt is increasing, it must be the case that st = st−1/2, that is we just saw a run of R
labeled examples (xi,yi), for i= t−R, . . . , t−1, with no mistakes, vi = vt , and

si = 2st <
√

1− (u · vt)2
4d

=

√

1− (u · vi)2
4d

. (8)

Such an event is highly unlikely, however, for any t. In particular, from Lemma 9, we know that the
probability of (8) holding for any particular i and the algorithm not erring is at most 3/4. Thus the
chance of having any such run of length R is at most L(3/4)R.

Lemma 9 also tells us something interesting about the fraction of errors that we are missing
because we do not ask for labels. In particular,

Lemma 10 Given that st ≥
√

(1− (u · vt)2)/(16d), upon the tth update, each erroneous example
is queried with probability at least 1/32, that is,

Px∈S
[

|x · vt |≤ st
∣

∣x ∈ (t
]

≥
1
32

.
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Proof Using Lemmas 9 and 4, we have

Px∈S [x ∈ (t ∧ |x · vt |≤ st ] ≥ Px∈S

[

x ∈ (t ∧ |x · vt |≤
√

1− (u · vt)2
16d

]

≥
1
4
Px∈S

[

|x · vt |≤
√

1− (u · vt)2
16d

]

≥
1
64

√

1− (u · vt)2 =
1
64
sin$t

≥
$t
32%

.

For the last inequality, we have used (2). However, Px∈S[x ∈ (t ] = $t/%, so we are querying an error
x ∈ (t with probability at least 1/32, that is, the above inequality implies,

Px∈S
[

|x · vt |≤ st
∣

∣ x ∈ (t
]

=
Px∈S [x ∈ (t ∧ |x · vt |≤ st ]

Px∈S[x ∈ (t ]
≥
$t/(32%)
$t/%

=
1
32

.

Next, we show that the updates are likely to make progress.

Lemma 11 Assuming that st ≥
√

(1− (u · vt)2)/(16d), a random update is good with probability
at least 1/2, that is,

Pxt∈S
[

(1− vt+1 ·u) ≤ (1− vt ·u)
(

1−
c
d

)
∣

∣

∣
|x · vt |≤ st ∧ xt ∈ (t

]

≥
1
2
.

Proof By Lemma 10, each error is queried with probability 1/32. On the other hand, by Lemma 6
of the previous section, 63/64 of all errors are good. Since we are querying at least 2/64 fraction of
all errors, at least half of our queried errors must be good.

We now have the pieces to guarantee the convergence rate of the active algorithm, thereby proving
Theorem 3. This involves bounding both the number of labels that we query as well as the number
of total errors, which includes updates as well as errors that were never detected.

Theorem 3 With probability 1−# with respect to the uniform distribution on the unit sphere, in the
realizable setting, using L = O

(

d log
( 1
"#

)

(log d# + log log 1" )
)

labels and making a total number of
errors of O

(

d log
( 1
"#

)

(log d# + log log 1" )
)

, the final error of the active modified Perceptron algorithm
will be ", when run with the above L and R= O(log d# + log log 1" ).

Proof Let U be the number of updates performed. We know, by Lemma 8 that with probability
1−L(34)

R,

st ≥
sin$t
4
√
d
≥

$t
2%

√
d

(9)

for all t. Again, we have used (2). By Lemma 11, we know that for each t which is an update, either
(9) fails or

E[1−u · vt+1|vt ] ≤ (1−u · vt)
(

1−
c
2d

)

.
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Hence, afterU updates, using Markov’s inequality,

P
[

1−u · vL ≥
4
#

(

1−
c
2d

)U
]

≤
#
4

+L
(

3
4

)R
.

In other words, with probability 1− #
4 −L(34)

R, we also have

U ≤
2d
c
log

4
#(1−u · vL)

≤
2d
c
log

%2

#$2L
= O

(

d log
1
#"

)

,

where for the last inequality we used (1). In total, L ≤ R
(

U+ log2 1sL
)

. This is because once
every R labels we either have at least one update or we decrease sL by a factor of 2. Equivalently,
sL ≤ 2U−L/R. Hence, with probability 1− #

4 −L(34)
R,

$L
2%

√
d
≤ sL ≤ 2O(d log 1

#" )−L/R.

Working backwards, we choose L/R = &(d log 1
"#) so that the above expression implies

$L
% ≤ ", as

required. We choose

R= 10log
2L
#R

=&

(

log
d log 1

"#

#

)

= O
(

log
d
#

+ log log
1
"

)

.

The first equality ensures that L(34)
R ≤ #

4 . Hence, for the L and R chosen in the theorem, with
probability 1− 3

4#, we have error
$L
% < ". Finally, either condition (9) fails or each error is queried

with probability at least 132 . By the multiplicative Chernoff bound, if there were a total of E > 64U
errors, with probability ≥ 1− #

4 , at least E/64 >U would have been caught and used as updates.
Hence, with probability at most 1−#, we have achieved the target error using the specified number
of labels and observing the specified number of errors.

7. Discussion and Conclusions

In the evolving theory of active learning, the most concrete, nontrivial scenario in which active
learning has been shown to give an exponential improvement in sample complexity is that of learn-
ing a linear separator for data distributed uniformly over the unit sphere. In this paper, we have
demonstrated that this particular case can be solved by a much simpler algorithm than was pre-
viously known. Table 1 summarizes our contributions in context. We report bounds for all the
algorithms with respect to our setting: learning homogeneous half-spaces when the data distribu-
tion is uniform on the unit sphere and separable through the origin, although a few of the algorithms
were designed for more general distributions. This paper gives the lower bounds stated for Percep-
tron, and provides an algorithm that attains the upper bounds in the bottom row. While we list a
host of results for comparison, it is important to note that the algorithm of Dasgupta (2005) has not
shown to be efficiently implementable, and that we state bounds for this realizable problem, even
though the algorithm of Balcan et al. (2007) can handle certain types of noise, and A2 (Balcan et al.,
2006) and the algorithm of Dasgupta et al. (2007) were designed to handle the agnostic setting.
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Samples Mistakes Labels Noise tolerance

PAC bounds Õ( d" ), !( d" )

Perceptron Õ( d
"3

), !( 1
"2

) Õ( d
"2

), !( 1
"2

) !( 1
"2

) Unknown

D’05 Õ( d" log
2 1
" ) Õ(d log2 1" ) Õ(d log2 1" ) No

A2 Õ( d
1.5
" log

1
" ) Õ(d1.5 log 1" ) Õ(d1.5 log 1" ) Yes

DHM’07 Õ( d
1.5
" log

1
" ) Õ(d1.5 log 1" ) Õ(d1.5 log 1" ) Yes

QBC Õ( d" log
1
" ) Õ(d log 1" ) Õ(d log 1" ) No

BBZ’07 Õ( d" log
1
" ) Õ(d log 1" ) Õ(d log 1" ) Yes

Our algorithm Õ( d" log
1
" ) Õ(d log 1" ) Õ(d log 1" ) Unknown

Table 1: Results in context, for learning half-spaces through the origin. The last column indicates
whether each algorithm has been proved to exhibit some noise tolerance when used for
active learning.
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In all these papers, the uniform distribution of data has consistently proved amenable to analysis.
This is an impressive distribution to learn against because it is difficult in some ways—most of the
data is close to the decision boundary, for instance—but a more common assumption would be to
make the two classes Gaussian, or to merely stipulate that they are separated by a margin. As a
modest step towards relaxing this distributional assumption, we can show an (at most) polynomial
dependence of the label complexity on + (Monteleoni, 2006), when the input distribution is +-similar
to uniform, a setting studied in Freund et al. (1997).

Our algorithm is in some ways fine-tuned for linearly-separable data that are distributed uni-
formly; for instance, in the choice of the parameters R and s1. An immediate open problem is
therefore the following:

1. Design a version of the algorithm that is sensible for general data distributions which may not
be linearly separable.

2. What types of noise can be tolerated by this scheme?

3. For what distributions can its label complexity be analyzed?

A step towards the practical realization of our algorithm is the work of Monteleoni and Kääriäinen
(2007), which applies a version of it to an optical character recognition problem.
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Appendix A. Proof of Lemma 4

Proof [Lemma 4] Let r = )/
√
d and let Ad be the area of a d-dimensional unit sphere, that is, the

surface of a (d+1)-dimensional unit ball. Then

Px [|a · x|≤ r] =
R r
−r Ad−2(1− z2) d−22 (1− z2)−1/2dz

Ad−1
=
2Ad−2
Ad−1

Z r

0
(1− z2)(d−3)/2dz.

First observe,

r(1− r2)(d−3)/2 ≤
Z r

0
(1− z2)(d−3)/2dz≤ r. (10)

For x ∈ [0,0.5], 1− x≥ 4−x. Hence, for 0≤ r ≤ 2−1/2,

(1− r2)(d−3)/2 ≥ 4−r
2((d−3)/2) ≥ 2−r

2d .
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So we can conclude that the integral of (10) is in [r/2,r] for r ∈ [0,1/
√
d]. The ratio 2Ad−2/Ad−1

can be shown to be in the range [
√

d/3,
√
d] by straightforward induction on d, using the definition

of the , function, and the fact that Ad−1 = 2%d/2/,(d/2).
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M. Kääriäinen. Active learning in the non-realizable case. In Proc. 17th International Conference
on Algorithmic Learning Theory, 2006.

D.D. Lewis and W.A. Gale. A sequential algorithm for training text classifiers. In Proc. of SIGIR-
94, 17th ACM International Conference on Research and Development in Information Retrieval,
1994.
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Abstract
We address the problem of improving the reliability of independence-based causal discovery al-
gorithms that results from the execution of statistical independence tests on small data sets, which
typically have low reliability. We model the problem as a knowledge base containing a set of inde-
pendence facts that are related through Pearl’s well-known axioms. Statistical tests on finite data
sets may result in errors in these tests and inconsistencies in the knowledge base. We resolve these
inconsistencies through the use of an instance of the class of defeasible logics called argumentation,
augmented with a preference function, that is used to reason about and possibly correct errors in
these tests. This results in a more robust conditional independence test, called an argumentative
independence test. Our experimental evaluation shows clear positive improvements in the accuracy
of argumentative over purely statistical tests. We also demonstrate significant improvements on the
accuracy of causal structure discovery from the outcomes of independence tests both on sampled
data from randomly generated causal models and on real-world data sets.
Keywords: independence-based causal discovery, causal Bayesian networks, structure learning,
argumentation, reliability improvement

1. Introduction and Motivation

Directed graphical models, also called Bayesian networks, can be used to represent the probability
distribution of a domain. This makes them a useful and important tool for machine learning where
a common task is inference, that is, predicting the probability distribution of a variable of interest
given some other knowledge, usually in the form of values of other variables in the domain. An
additional use of Bayesian networks comes by augmenting them with causal semantics that repre-
sent cause and effect relationships in the domain. The resulting networks are called causal. An
important problem is inferring the structure of these networks, a process that is sometimes called
causal discovery, which can provide insights into the underlying data generation process.

Two major classes of algorithms exist for learning the structure of Bayesian networks. One
class contains so-called score-based methods, which learn the structure by conducting a search in
the space of all structures in an attempt to find the structure of maximum score. This score is usually
penalized log-likelihood, for example, the Bayesian Information Criterion (BIC) or the (equivalent)
Minimum Description Length (MDL). A second class of algorithms works by exploiting the fact
that a causal Bayesian network implies the existence of a set of conditional independence statements
between sets of domain variables. Algorithms in this class use the outcomes of a number of condi-
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tional independences to constrain the set of possible structures consistent with these to a singleton
(if possible) and infer that structure as the only possible one. As such they are called constraint-
based or independence-based algorithms. In this paper we address open problems related to the
latter class of algorithms.

It is well-known that independence-based algorithms have several shortcomings. A major one
has to do with the effect that unreliable independence information has on the their output. In general
such independence information comes from two sources: (a) a domain expert that can provide his
or her opinion on the validity of certain conditional independences among some of the variables,
sometimes with a degree of confidence attached to them, and/or (b) statistical tests of independence,
conducted on data gathered from the domain. As expert information is often costly and difficult to
obtain, (b) is the most commonly used option in practice. A problem that occurs frequently however
is that the data set available may be small. This may happen for various reasons: lack of subjects
to observe (e.g., in medical domains), an expensive data-gathering process, privacy concerns and
others. Unfortunately, the reliability of statistical tests significantly diminishes on small data sets.
For example, Cochran (1954) recommends that Pearson’s !2 independence test be deemed unreli-
able if more than 20% of the cells of the test’s contingency table have an expected count of less
than 5 data points. Unreliable tests, besides producing errors in the resulting causal model struc-
ture, may also produce cascading errors due to the way that independence-based algorithms work:
their operation, including which test to evaluate next, typically depends on the outcomes of previous
ones. Thus a single error in a statistical test can be propagated by the subsequent choices of tests
to be performed by the algorithm, and finally when the edges are oriented. Therefore, an error in
a previous test may have large (negative) consequences in the resulting structure, a property that is
called instability in Spirtes et al. (2000). One possible method for addressing the effect of multiple
errors in the construction of a causal model through multiple independence tests is the Bonferroni
correction (Hochberg, 1988; Abdi, 2007), which works by dividing the type I error probability " of
each test by the number of such tests evaluated during the entire execution of the causal learning
algorithm. As a result, the collective type I error probability (of all tests evaluated) is ", that is, 0.05
typically. However, this may make the detection of true dependences harder, as now larger data sets
would be required to reach the adjusted confidence threshold of each test. The types of adjustments
that may be appropriate for each case to tests that may be dependent is an open problem and the
subject of current research in statistics (Benjamini and Hochberg, 1995; Benjamini and Yekutieli,
2001; Storey, 2002).

In this paper we present and evaluate a number of methods for increasing the reliability of inde-
pendence tests for small data sets. A result of this is the improvement in reliability of independence-
based causal discovery algorithms that use these data sets, as we demonstrate in our experiments.
We model this setting as a knowledge base whose contents are propositions representing condi-
tional independences that may contain errors. Our main insight is to recognize that the outcomes
of independence tests are not themselves independent but are constrained by the outcomes of other
tests through Pearl’s well-known properties of the conditional independence relation (Pearl, 1988;
Dawid, 1979). These can therefore be seen as integrity constraints that can correct certain inconsis-
tent test outcomes, choosing instead the outcome that can be inferred by tests that do not result in
contradictions. We illustrate this by an example.
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Example 1. Consider an independence-based knowledge base that contains the following proposi-
tions, obtained through statistical tests on data.

({0}⊥⊥{1} | {2}) (1)
({0} "⊥⊥{3} | {2}) (2)

({0}⊥⊥{3} | {1,2}) (3)

where (X⊥⊥Y | Z) denotes conditional independence of the set of variables X with Y conditional
on set Z, and (X "⊥⊥Y | Z) denotes conditional dependence. Suppose that (3) is in fact wrong. Such
an error can be avoided if there exists a constraint involving these independence propositions. For
example, suppose that we also know that the following rule holds in the domain (this is an instance
of an application of the Contraction and Decomposition axioms, described later in Section 2):

({0}⊥⊥{1} | {2})∧ ({0} "⊥⊥{3} | {2}) =⇒ ({0} "⊥⊥{3} | {1,2}). (4)

Rule (4), together with independence proposition (1) and dependence proposition (2), contradict
independence proposition (3), resulting in an inconsistent knowledge base. If Rule (4) and propo-
sitions (1) and (2) are accepted, then proposition (3) must be rejected (and its value reversed),
correcting the error in this case. The framework presented in the rest of the paper provides a prin-
cipled approach for resolving such inconsistencies.

The situation described in the previous example, while simple, illustrates the general idea that
we will use in the rest of the paper: the set of independences and dependences used in a causal dis-
covery algorithm form a potentially inconsistent knowledge base, and making use of general rules,
derived from axioms and theorems that we know hold in the domain, helps us correct certain out-
comes of statistical tests. In this way we will be able to improve the reliability of causal discovery
algorithms that use them to derive causal models. To accomplish this we use the framework of argu-
mentation, which provides a sound and elegant way of resolving inconsistencies in such knowledge
bases, including ones that contain independences.

The rest of the paper is organized as follows. The next section introduces our notation and def-
initions. Section 3 presents the argumentation framework and its extension with preferences, and
describes our approach for applying it to represent and reason in knowledge bases containing inde-
pendence facts that may be inconsistent. Section 4 introduces the argumentative independence test,
implemented by the top-down algorithm introduced in Section 5. We then present an approximation
for the top-down algorithm in Section 6 that reduces its time complexity to polynomial. We experi-
mentally evaluate our approach in Section 7, and conclude with a summary and possible directions
of future research in Section 8. Most of the proofs are presented in detail in Appendices A and B,
which contain proofs for the computability (termination) and the validity (no AIT test can return
a dependence and an independence result at the same time) of AIT, respectively. Note that, as our
main goal in this paper is to address the problem of robust causal learning and not necessarily to
advance the theory of argumentation itself, our exposition in the rest of the paper is geared toward
causality theorists and practitioners. As this community may be unfamiliar with the theory and
methods of the argumentation framework, we have included a self-contained discussion that covers
the basic definitions and theorems of argumentation theory in some detail.
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2. Notation and Preliminaries

In this work we denote random variables with capitals (e.g., X ,Y,Z) and sets of variables with bold
capitals (e.g., X,Y,Z). In particular, we denote by V = {1, . . . ,n} the set of all n variables in the
domain, naming the variables by their indices in V; for instance, we refer to the third variable in
V simply by 3. We assume that all variables in the domain are discrete following a multinomial
distribution or are continuous following a Gaussian distribution. We denote the data set by D and its
size (number of data points) by N. We use the notation (X⊥⊥Y |Z) to denote that the variables in set
X are (jointly) independent of those in Y conditional on the values of the variables in Z, for disjoint
sets of variables X, Y, and Z, while (X "⊥⊥Y | Z) denotes conditional dependence. For the sake of
readability, we slightly abuse this notation and use (X⊥⊥Y | Z) as shorthand for ({X}⊥⊥{Y} | {Z}).

A Bayesian network (BN) is a directed graphical model which represents the joint probability
distribution over V. Each node in the graph represents one of the random variables in the domain.
The structure of the network implicitly represents a set of conditional independences on the domain
variables. Given the structure of a BN, the set of independences implied by it can be identified
by a process called d-separation (Pearl, 1988); the latter follows from the local Markov property
that states that each node in the network is conditionally independent of all its non-descendants in
the graph given its parents. All independences identified by d-separation are implied by the model
structure. If, in addition, all remaining triplets (X,Y,Z) correspond to dependencies, we say that the
BN is directed graph-isomorph (abbreviated DAG-isomorph) or simply causal (as defined by Pearl,
1988). The concept of DAG-isomorphism is equivalent to a property called Faithfulness in Spirtes
et al. (2000). A graphG is said to be faithful to some distribution if exactly those independences that
exist in the distribution and no others are returned by the process of d-separation on G. In this paper
we assume Faithfulness. For learning the structure of the Bayesian network of a domain we make
use of the PC algorithm (Spirtes et al., 2000), which is only able to correctly identify the structure
under the assumption of causal sufficiency. We therefore also assume causal sufficiency. A domain
is causally sufficient if it does not contain any hidden or latent variables.

As mentioned above, independence-based algorithms operate by conducting a series of condi-
tional independence queries. For these we assume that an independence-query oracle exists that
is able to provide such information. This approach can be viewed as an instance of the statistical
query oracle theory of Kearns and Vazirani (1994). In practice such an oracle does not exist, but
can be implemented approximately by a statistical test evaluated on the data set (for example, this
can be Pearson’s conditional independence !2 (chi-square) test (Agresti, 2002), Wilk’s G2 test, a
mutual information test etc.). In this work we used Wilk’s G2 test (Agresti, 2002). To determine
conditional independence between two variables X and Y given a set Z from data, the statistical
test G2 (and many other independence tests based on hypothesis testing, for example, the !2 test)
uses the values in the contingency table (a table containing the data point counts for each possible
combination of the variables that participate in the test) to compute a test statistic. For a given value
of the test statistic, the test then computes the likelihood of obtaining that or a more extreme value
by chance under the null hypothesis, which in our case is that the two variables are conditionally
independent. This likelihood, called the p-value of the test, is then returned. The p-value of a test
equals the probability of falsely rejecting the null hypothesis (independence). Assuming that the
p-value of a test is p(X ,Y | Z), the statistical test concludes independence if and only if p(X ,Y | Z)
is greater than a threshold ", that is,

(X⊥⊥Y | Z) ⇐⇒ p(X ,Y | Z) > ".
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(Symmetry) (X⊥⊥Y | Z) ⇐⇒ (Y⊥⊥X | Z)
(Decomposition) (X⊥⊥Y∪W | Z) =⇒ (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)
(Weak Union) (X⊥⊥Y∪W | Z) =⇒ (X⊥⊥Y | Z∪W) (5)
(Contraction) (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z∪Y) =⇒ (X⊥⊥Y∪W | Z)
(Intersection) (X⊥⊥Y | Z∪W)∧ (X⊥⊥W | Z∪Y) =⇒ (X⊥⊥Y∪W | Z)

(Symmetry) (X⊥⊥Y | Z) ⇐⇒ (Y⊥⊥X | Z)
(Composition) (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z) =⇒ (X⊥⊥Y∪W | Z)

(Decomposition) (X⊥⊥Y∪W | Z) =⇒ (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)
(Intersection) (X⊥⊥Y | Z∪W)∧ (X⊥⊥W | Z∪Y) =⇒ (X⊥⊥Y∪W | Z)
(Weak Union) (X⊥⊥Y∪W | Z) =⇒ (X⊥⊥Y | Z∪W) (6)
(Contraction) (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z∪Y) =⇒ (X⊥⊥Y∪W | Z)

(Weak Transitivity) (X⊥⊥Y | Z)∧ (X⊥⊥Y | Z∪ !) =⇒ (X⊥⊥! | Z) ∨ (!⊥⊥Y | Z)
(Chordality) ("⊥⊥# | !∪$) ∧ (!⊥⊥$ | "∪#) =⇒ ("⊥⊥# | !) ∨ ("⊥⊥# | $)

Common values in statistics for " are 0.05 and 0.01, corresponding to confidence thresholds (1−")
of 0.95 and 0.99 respectively. The value 0.10 for " is also sometimes used, depending on the
application, while values as low as 0.005 and 0.001 are sometimes used for structure learning.

The conditional independences and dependences of a domain are connected through a set of
general rules, introduced in Pearl (1988) and shown boxed in Eq. (5). These can be seen as con-
straints in a meta-space representing all possible independences in the domain. More specifically,
let us imagine a meta-space of binary variables, each corresponding to the truth value of the in-
dependence of a triplet (X,Y | Z) (e.g., true for independence and false for dependence). Each
point in this space corresponds to a conditional independence assignment to all possible triplets in
the domain. In this conceptual space not all points are tenable; in particular the set of rules of Eq. (5)
constrain the truth values of independences corresponding to triplets. For domains for which there
exists a faithful Bayesian network a more relaxed set of properties hold, shown boxed in Eq. (6)
where ",#,$ and % correspond to single variables. In both sets of axioms, the property of Intersec-
tion holds if the probability distribution of the domain is positive, meaning that every assignment
to all variables in the domain has a non-zero probability. Eq. (6) were first introduced by Dawid
(1979) in a slightly different form and independently re-discovered by Pearl and Paz (1985).

Note that the axioms of Eq. (5) are necessarily incomplete; Studený (1991) showed that there is
no finite axiomatization of the conditional independence relation in general. The implication of this
is that there may be some inconsistencies involving some set of independences and dependences
that no method can detect and resolve.

In the next section we describe the argumentation framework, which allows one to make ben-
eficial use of these constraints. This is followed by its application to our problem of answering
independence queries from knowledge bases that contain sets of potentially inconsistent indepen-
dence propositions.

3. The Argumentation Framework

There exist two major approaches for reasoning with information contained in inconsistent knowl-
edge bases such as those containing independence statements that were described in the previous
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section. These two distinct approaches correspond to two different attitudes: One is to resolve the
inconsistencies by removing a subset of propositions such that the resulting KB becomes consistent;
this is called belief revision in the literature (Gärdenfors, 1992; Gärdenfors and Rott, 1995; Shapiro,
1998; Martins, 1992). A potential shortcoming (Shapiro, 1998) of belief revision stems from the fact
that it removes propositions, which discards potentially valuable information. In addition, an erro-
neous modification of the KB (such as the removal of a proposition) may have unintended negative
consequences if later more propositions are inserted in the KB. A second approach to inconsistent
KBs is to allow inconsistencies but to use rules that may be possibly contained in it to deduce which
truth value of a proposition query is “preferred” in some way. One instance of this approach is
argumentation (Dung, 1995; Loui, 1987; Prakken, 1997; Prakken and Vreeswijk, 2002), which is
a sound approach that allows inconsistencies but uses a proof procedure that is able to deduce (if
possible) that one of the truth values of certain propositions is preferred over its negation. Argu-
mentation is a reasoning model that belongs to the broader class of defeasible logics (Pollock, 1992;
Prakken, 1997). Our approach uses the argumentation framework of Amgoud and Cayrol (2002)
that considers preferences over arguments, extending Dung’s more fundamental framework (Dung,
1995). Preference relations give an extra level of specificity for comparing arguments, allowing a
more refined form of selection between conflicting propositions. Preference-based argumentation
is presented in more detail in Section 3.2.

We proceed now to describe the argumentation framework.

Definition 1. An argumentation framework is a pair 〈A ,R 〉, where A is a set of arguments and R is
a binary relation representing a defeasibility relationship between arguments, that is, R ⊆ A ×A .
(a,b) ∈ R or equivalently “a R b” reads that argument a defeats argument b. We also say that a
and b are in conflict.

An example of the defeat relation R is logical defeat, which occurs when an argument contra-
dicts another logically.

The elements of the argumentation framework are not propositions but arguments. Given a po-
tentially inconsistent knowledge base K = 〈&,'〉 with a set of propositions & and a set of inference
rules ', arguments are defined formally as follows.

Definition 2. An argument over knowledge base 〈&,'〉 is a pair (H,h) where H ⊆ & such that:

• H is consistent,

• H ,! h,

• H is minimal (with respect to set inclusion).

H is called the support and h the conclusion or head of the argument.

In the above definition ,! stands for classical logical inference over the set of inference rules'.
Intuitively an argument (H,h) can be thought as an “if-then” rule, that is, “if H then h.” In incon-
sistent knowledge bases two arguments may contradict or defeat each other. The defeat relation is
defined through the rebut and undercut relations, defined as follows.

Definition 3. Let (H1,h1), (H2,h2) be two arguments.

• (H1,h1) rebuts (H2,h2) iff h1 ≡ ¬h2.
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Algorithm 1 Recursive computation of acceptable arguments: AccR = F (A ,R ,S)
1: S′ ←− S∪{a ∈ A | a is defended by S}
2: if S= S′ then
3: return S′
4: else
5: return F (A ,R ,S′)

• (H1,h1) undercuts (H2,h2) iff ∃h ∈ H2 such that h≡ ¬h1.

If (H1,h1) rebuts or undercuts (H2,h2) we say that (H1,h1) defeats (H2,h2).

(The symbol “≡” stands for logical equivalence.) In other words, (H1,h1) R (H2,h2) if and
only if (H1,h1) rebuts or undercuts (H2,h2).

The objective of argumentation is to decide on the acceptability of a given argument. There are
three possibilities: an argument can be accepted, rejected, or neither. This partitions the space of
arguments A in three classes:

• The class AccR of acceptable arguments. Intuitively, these are the “good” arguments. In the
case of an inconsistent knowledge base, these will be inferred from the knowledge base.

• The class RejR of rejected arguments. These are the arguments defeated by acceptable ar-
guments. When applied to an inconsistent knowledge base, these will not be inferred from
it.

• The class AbR of arguments in abeyance. These arguments are neither accepted nor rejected.

The semantics of acceptability proposed by Dung (1995) dictates that an argument should be
accepted if it is not defeated, or if it is defended by acceptable arguments, that is, each of its defeaters
is itself defeated by an acceptable argument. This is formalized in the following definitions.

Definition 4. Let 〈A ,R 〉 be an argumentation framework, and S ⊆ A . An argument a is defended
by S if and only if ∀b, if (b R a) then ∃c ∈ S such that (c R b).

Dung characterizes the set of acceptable arguments by a monotonic function F , that is, F (S)⊆
F (S∪ T ) for some S and T . Given a set of arguments S ⊆ A as input, F returns the set of all
arguments defended by S:

Definition 5. Let S⊆ A . Then F (S) = {a ∈ A | a is defended by S}.

Slightly overloading our notation, we define F (∅) to contain the set of arguments that are not
defeated by any argument in the framework.

Definition 6. F (∅) = {a ∈ A | a is not defeated by any argument in A}.

Dung proved that the set of acceptable arguments is the least fix-point of F , that is, the smallest
set S such that F (S) = S.

Theorem 7 (Dung 1995). Let 〈A ,R 〉 be an argumentation framework. The set of acceptable argu-
ments AccR is the least fix-point of the function F .
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Dung also showed that if the argumentation framework 〈A ,R 〉 is finitary, that is, for each ar-
gument A there are finitely many arguments that defeat A, the least fix-point of function F can be
obtained by iterative application of F to the empty set. We can understand this intuitively: From our
semantics of acceptability it follows that all arguments in F (∅) are accepted. Also, every argument
in F (F (∅))must be acceptable as well since each of its arguments is defended by acceptable argu-
ments. This reasoning can be applied recursively until a fix-point is reached. This happens when the
arguments in S cannot be used to defend any other argument not in S, that is, no additional argument
is accepted. This suggests a simple algorithm for computing the set of acceptable arguments. Algo-
rithm 1 shows a recursive procedure for this, based on the above definition. The algorithm takes as
input an argumentation framework 〈A ,R 〉 and the set S of arguments found acceptable so far, that
is, S= ∅ initially.

Let us illustrate these ideas with an example.

Example 2. Let 〈A ,R 〉 be an argumentation framework defined by A = {a,b,c} and R = {(a,b),
(b,c)}. The only argument that is not defeated is a, and therefore F (∅) = {a}. Argument b is
defeated by the acceptable argument a, so b cannot be defended and is therefore rejected, that is,
b ∈ RejR . Argument c, though defeated by b, is defended by (acceptable argument) a which defeats
b, so c is acceptable. The set of acceptable arguments is therefore AccR = {a,c} and the set of
rejected arguments is RejR = {b}.

The bottom-up approach of Algorithm 1 has the disadvantage that it requires the computation
of all acceptable arguments to answer the acceptability status of a single one. In practice, and in
particular in the application of argumentation to independence tests, the entire set of acceptable
arguments is rarely needed. An alternative is to take a top-down approach (Amgoud and Cayrol,
2002; Dung, 1995; Toni and Kakas, 1995; Kakas and Toni, 1999) that evaluate the acceptability of
some input argument by evaluating (recursively) the acceptability of its attackers. Below we present
an alternative algorithm, called the top-down algorithm, for deciding the acceptability of an input
argument. This algorithm is a version of the dialog tree algorithm of Amgoud and Cayrol (2002),
where details unnecessary for the current exposition are not shown. This algorithm is provably
equivalent to Algorithm 1 (whenever it is given the same input it is guaranteed to produce the
same output), but it is considerably more efficient (as shown later in Section 5.2). We sketch the
algorithm here and show a concrete version using the preference-based argumentation framework
in Section 3.2.

Given an input argument a, the top-down algorithm employs a goal-driven approach for an-
swering whether a is accepted or not. Its operation is guided by the same acceptability semantics as
those used for Algorithm 1. Let us denote the predicates A(a) ≡ (a ∈ AccR ), R(a) ≡ (a ∈ RejR ),
and Ab(a) ≡ (a ∈ AbR ). Then, the acceptability semantics are as follows.

Algorithm 2 Top-down computation of acceptable arguments: top-down(A ,R ,a)
1: defeaters← set of arguments in A that defeat a according to R .
2: for d ∈ defeaters do
3: if top-down(A ,R ,d) = accepted then
4: return rejected
5: return accepted
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(Acceptance) A node is accepted iff it has no defeaters or all its defeaters are rejected:

A(a) ⇐⇒ ∀b ∈ defeaters(a),R(b).

(Rejection) A node is rejected iff at least one of its defeaters is accepted:

R(a) ⇐⇒ ∃b ∈ defeaters(a),A(b). (7)

(Abeyance) A node is in abeyance iff its not accepted nor rejected:

Ab(a) ⇐⇒ ¬A(a)∧¬R(a).

The logic of these equations can be easily implemented with a recursive algorithm, shown in Algo-
rithm 2. The algorithm, given some input argument a, loops over all defeaters of a and responds
rejected if any of its defeaters is accepted (line 4). If execution reaches the end of the loop at line
5 then that means that none of its defeaters was accepted, and thus the algorithm accepts the input
argument a. We can represent the execution of the top-down algorithm graphically by a tree that
contains a at the root node, and all the defeaters of a node as its children. A leaf is reached when a
node has no defeaters. In that case the loop contains no iterations and line 5 is reached trivially.

Unfortunately, the top-down algorithm, as shown in Algorithm 2, will fail to terminate when a
node is in abeyance. This is clear from the following lemma (proved formally in Appendix A but
reproduced here to aid our intuition).

Lemma 8. For every argument a,

Ab(a) =⇒ ∃b ∈ attackers(a),Ab(b).

(An attacker is a type of defeater; it is explained in detail in the next section. For the follow-
ing discussion the reader can substitute “attacker” with “defeater” in the lemma above.) From this
lemma we can see that, if an argument is in abeyance, its set of defeaters must contain an argument
in abeyance and thus the recursive call of the top-down algorithm will never terminate, as there will
always be another defeater in abeyance during each call. While there are ways to overcome this
difficulty in the general case, we can prove that using the preference-based argumentation frame-
work (presented later in the paper) and for the particular preference relation introduced for deciding
on independence tests (c.f. Section 3.3), no argument can be in abeyance and thus the top-down
algorithm always terminates. A formal proof of this is presented later in Section 5.

We conclude the section by proving that the top-down algorithm is equivalent to the bottom-up
algorithm of Algorithm 1 that is, given the same input as Algorithm 1 it is guaranteed to produce
the same output. The proof assumes no argument is in abeyance. This assumption is satisfied for
argumentation in independence knowledge bases (c.f. Theorem 20, Section 5).

Theorem 9. Let a be an argument in the argumentation framework 〈A ,R 〉, and let F be the set of
acceptable arguments output by Algorithm 1. Assuming a is not in abeyance,

top-down(A ,R ,a) = accepted ⇐⇒ a ∈ F (8)
top-down(A ,R ,a) = rejected ⇐⇒ a /∈ F . (9)
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Proof According to Theorem 7, the fix point of function F returned by Algorithm 1 contains
the set of arguments considered acceptable by the acceptability semantics of Dung. As the top-
down algorithm is a straightforward implementation of Dung’s acceptability semantics expressed
by Eq. (7), the double implication of Eq. (8) must follow. To prove Eq. (9) we can prove the
equivalent expression with both sides negated, that is,

top-down(A ,R ,a) "= rejected ⇐⇒ a ∈ F .

Since a is not in abeyance, if the top-down algorithm does not return rejected it must return
accepted. The double implication is thus equivalent to Eq. (8), which was proved true.

3.1 Argumentation in Independence Knowledge Bases

We can now apply the argumentation framework to our problem of answering queries from knowl-
edge bases that contain a number of potentially inconsistent independences and dependencies and a
set of rules that express relations among them.

Definition 10. An independence knowledge base (IKB) is a knowledge base 〈&,'〉 such that its set
of propositions & contains independence propositions of the form (X⊥⊥Y | Z) or (X "⊥⊥Y | Z) for
X, Y and Z disjoint subsets of V, and its set of inference rules ' is either the general set of axioms
shown in Eq. (5) or the specific set of axioms shown in Eq. (6).

For IKBs, the set of arguments A is obtained in two steps. First, for each proposition ( ∈
& (independence or dependence) we add to A the argument ({(},(). This is a valid argument
according to Definition 2 since its support {(} is (trivially) consistent, it (trivially) implies the head
(, and it is minimal (the pair (∅,() is not a valid argument since ∅ is equivalent to the proposition
true which does not entail ( in general). We call arguments of the form ({(},() propositional
arguments since they correspond to single propositions. The second step in the construction of
the set of arguments A concerns rules. Based on the chosen set of axioms (general or directed)
we construct an alternative, logically equivalent set of rules '′, each member of which is single-
headed, that is, contains a single proposition as the consequent, and decomposed, that is, each of its
propositions is an independence statement over single variables (the last step is justified by the fact
that typical algorithms for causal learning never produce nor require the evaluation of independence
between sets).

To construct the set of single-headed rules we consider, for each axiom, all possible contraposi-
tive versions of it that have a single head. To illustrate, consider the Weak Transitivity axiom

(X⊥⊥Y | Z)∧ (X⊥⊥Y | Z∪ $) =⇒ (X⊥⊥$ | Z) ∨ ($⊥⊥Y | Z)

from which we obtain the following set of single-headed rules:

(X⊥⊥Y | Z)∧ (X⊥⊥Y | Z∪ $)∧ (X "⊥⊥$ | Z) =⇒ ($⊥⊥Y | Z)
(X⊥⊥Y | Z)∧ (X⊥⊥Y | Z∪ $)∧ ($ "⊥⊥Y | Z) =⇒ (X⊥⊥$ | Z)
(X⊥⊥Y | Z∪ $)∧ ($ "⊥⊥Y | Z)∧ (X "⊥⊥$ | Z) =⇒ (X "⊥⊥Y | Z)

(X⊥⊥Y | Z)∧ ($ "⊥⊥Y | Z)∧ (X "⊥⊥$ | Z) =⇒ (X "⊥⊥Y | Z∪ $).
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To obtain decomposed rules we apply the Decomposition axiom to every single-headed rule to
produce only propositions over singletons. To illustrate, consider the Intersection axiom:

(X⊥⊥Y | Z∪W)∧ (X⊥⊥W | Z∪Y) =⇒ (X⊥⊥Y∪W | Z).

In the above the consequent coincides with the antecedent of the Decomposition axiom, and we thus
replace the Intersection axiom with a decomposed version:

(X⊥⊥Y | Z∪W)∧ (X⊥⊥W | Z∪Y) =⇒ (X⊥⊥Y | Z)∧ (X⊥⊥W | Z).

Finally, note that it is easy to show that this rule is equivalent to two single-headed rules, one
implying (X⊥⊥Y | Z) and the other implying (X⊥⊥W | Z).

The result of the application of the above procedures is a set of single-headed, decomposed
rules '′. We construct, for each such rule ()1 ∧)2 . . .∧)n =⇒ *) ∈ '′ and for each subset of
& that matches exactly the set of antecedents, that is, each subset {*1,*2 . . . ,*n} of & such that
)1 ≡ *1,)2 ≡ *2 . . . )n ≡ *n, the argument ({*1∧*2∧ . . .∧*n},*), and add it to A .1

IKBs can be augmented with a set of preferences that allow one to take into account the relia-
bility of each test when deciding on the truth value of independence queries. This is described in
the next section.

3.2 Preference-based Argumentation Framework

Following Amgoud and Cayrol (2002), we now refine the argumentation framework of Dung (1995)
for cases where it is possible to define a preference order + over arguments.

Definition 11. A preference-based argumentation framework (PAF) is a triplet 〈A ,R ,+〉 where A
is a set of arguments, R ⊆ A ×A is a binary relation representing a defeat relationship between
pairs of arguments, and + is a (partial or total) order over A .

For the case of inconsistent knowledge bases, preference + over arguments follows the prefer-
ence , over their support, that is, stronger support implies a stronger argument, which is given as a
partial or total order over sets of propositions. Formally:

Definition 12. Let K = 〈&,'〉 be a knowledge base, , be a (partial or total) order on subsets of
& and (H,h), (H ′,h′) two arguments over K . Argument (H,h) is ,-preferred to (H ′,h′) (denoted
(H,h) 3" (H ′,h′)) if and only if H is preferred to H ′ with respect to ,.

In what follows we overload our notation by using , to denote either the ordering over arguments
or over their supports.

An important sub-class of preference relations is the strict and transitive preference relation,
defined as follows.

Definition 13. We say that preference relation , over arguments is strict if the order of arguments
induced by it is strict and total, that is, for every pair of arguments a and b,

(
a3" b

)
⇐⇒ ¬

(
b3" a

)
.

1. This is equivalent to propositionalizing the set of rules, which are first-order (the rules of Eqs. (5) and (6) are univer-
sally quantified over all sets of variables, and thus are the rules in !′). As this may be expensive (exponential in the
number of propositions), in practice it is not implemented in this way; instead, appropriate rules are matched on the
fly during the argumentation inference process.
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Definition 14. We say that preference relation , over arguments is transitive if, for every three
arguments a, b and c, (

a3" b
)
∧

(
b3" c

)
=⇒

(
a3" c

)
.

The importance of the properties of strictness and transitivity will become clear later when we
talk about the correctness of the argumentative independence test (defined later in Section 4).

We now introduce the concept of attack relation, a combination of the concepts of defeat and
preference relation.

Definition 15. Let 〈A ,R ,,〉 be a PAF, and a, b ∈ A be two arguments. We say b attacks a if and
only if b R a and ¬(a3" b).

We can see that the attack relation is a special case of the defeat relation and therefore the
same conclusions apply; in particular Theorem 7, which allows us to compute the set of acceptable
arguments of a PAF using Algorithm 1 or Algorithm 2.

In Sections 3.3 and 4 below, we apply these ideas to construct an approximation to the independence-
query oracle that is more reliable than a statistical independence test.

3.3 Preference-based Argumentation in Independence Knowledge Bases

We now describe how to apply the preference-based argumentation framework of Section 3.2 to
improve the reliability of conditional independence tests conducted on a (possibly small) data set.
A preference-based argumentation framework has three components. The first two, namely A and
R , are identical to the general argumentation framework. We now describe how to construct the
third component, namely the preference order , over subsets H of &, in IKBs. We define it using a
belief estimate -(H) that all propositions in H are correct,

H 3" H ′ ⇐⇒ -(H) > -(H ′)∨
[
-(H) = -(H ′)∧ f (H,H ′)

]
. (10)

That is, H is preferred over H ′ if and only if its belief of correctness is higher than that of H ′ or,
in the case that these beliefs are equal, we break the tie using predicate f . For that we require that

∀H,H ′ ⊆ A , such that H "= H ′, f (H,H ′) = ¬ f (H ′,H). (11)

In addition, we require that f be transitive, that is, f (H,H ′)∧ f (H ′,H ′′) =⇒ f (H,H ′′). This implies
that the preference relation , is transitive, which is a necessary condition for proving a number of
important theorems in Appendix A. In our implementation we resolved ties by assuming an arbitrary
order of the variables in the domain, determined at the beginning of the algorithm and maintained
fixed during its entire execution. Based on this ordering, f (H,H ′) resolved ties by the lexicographic
order of the variables in H and H ′. By this definition, our f is both non-commutative and transitive.

Before we define -(H) we first show that ,, as defined by Eqs. (10) and (11) and for any defi-
nition of -(H), satisfies two important properties, namely strictness (Definition 13) and transitivity
(Definition 14). We do this in the following two lemmas.

Lemma 16. The preference relation for independence knowledge bases defined by Equations (10)
and (11) is strict.
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Proof

H 3" H ′

⇐⇒ -(H) > -(H ′)∨
[
-(H) = -(H ′)∧ f (H,H ′)

]
[By Eq. (10)]

⇐⇒ -(H) ≥ -(H ′)∧
[
-(H) > -(H ′)∨ f (H,H ′)

]
[Distributivity of ∨ over ∧]

⇐⇒ ¬
{
-(H ′) > -(H)∨

[
-(H ′) ≥ -(H)∧ f (H ′,H)

]}
[Double negation and Eq. (11)]

⇐⇒ ¬
{[
-(H ′) > -(H)∨-(H ′) ≥ -(H)

]
∧

[
-(H ′) > -(H)∨ f (H ′,H)

]}

⇐⇒ ¬
{
-(H ′) ≥ -(H)∧

[
-(H ′) > -(H)∨ f (H ′,H)

]}

⇐⇒ ¬
{[
-(H ′) > -(H)∨-(H ′) = -(H)

]
∧

[
-(H ′) > -(H)∨ f (H ′,H)

]}

⇐⇒ ¬
{
-(H ′) > -(H)∨

[
-(H ′) = -(H)∧ f (H ′,H)

]}
[Common factor -(H ′) > -(H)]

⇐⇒ ¬(H ′ 3" H) [Again by Eq. (10)]

Lemma 17. The preference relation defined by Equations (10) and (11) is transitive.

Proof

H 3" J ∧ J3" K

⇐⇒
{
-(H) > -(J) ∨

[
-(H) = -(J) ∧ f (H,J)

]}

∧
{
-(J) > -(K) ∨

[
-(J) = -(K) ∧ f (J,K)

]}
[By Eq. (10)]

⇐⇒
[
-(H) > -(J) ∧ -(J) > -(K)

]
[Case A]

∨
[
-(H) > -(J) ∧ -(J) = -(K) ∧ f (J,K)

]
[Case B]

∨
[
-(H) = -(J) ∧ f (H,J) ∧ -(J) > -(K)

]
[Case C]

∨
[
-(H) = -(J) ∧ f (H,J) ∧ -(J) = -(K) ∧ f (J,K)

]
[Case D]

To complete the proof we show that each of the cases A, B, C and D implies H 3" K.

(Case A) -(H) > -(J) ∧ -(J) > -(K) =⇒ -(H) > -(K) =⇒ H 3" K.

(Case B) -(H) > -(J) ∧ -(J) = -(K) ∧ f (J,K) =⇒ -(H) > -(K) =⇒ H 3" K.

(Case C) -(H) = -(J) ∧ f (H,J) ∧ -(J) > -(K) =⇒ -(H) > -(K) =⇒ H 3" K.

(Case D)

-(H) = -(J) ∧ f (H,J) ∧ -(J) = -(K) ∧ f (J,K) =⇒ -(H) = -(K) ∧ f (H,K)
=⇒ H 3" K,

due to the transitivity of predicate f .
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We now return to the computation of -(H). We estimate the belief -(H) that a set of proposi-
tions H is correct by assuming independence among these propositions.2 Overloading notation and
denoting by -(h) the probability of an individual proposition h being correct, the probability of all
elements in H being correct under this assumption of independence is

-(H) = !
h∈H

-(h). (12)

The belief that a proposition stating independence is correct can be computed in different ways,
depending on the particular choice of independence oracle chosen. In this paper we use Wilk’s G2
test, but the resulting belief can be easily adapted to any other independence oracle that produces
p-values. We hope that the following discussion serves as a starting point for others to adapt it to
other types of independence oracles.

As discussed in Section 2, the p-value p(X ,Y | Z) computed by this test is the probability of
error in rejecting the null hypothesis (conditional independence in our case) and assuming that X
and Y are dependent. Therefore, the probability of a test returning dependence of being correct is

-D(X "⊥⊥Y | Z) = 1− p(X ,Y | Z)

where the subscript D indicates that this expression is valid only for dependencies. Formally, the
error of falsely rejecting the null hypothesis is called a type I error. To determine the preference
of a test returning independence we can, in principle, use this procedure symmetrically: use the
probability of error in falsely accepting the null hypothesis (again, this is conditional independence),
called a type II error, which we denote by #(X ,Y | Z). In this case we can define the preference of
independence (X⊥⊥Y | Z) as the probability of correctly assuming independence by

-I(X⊥⊥Y | Z) = 1−#(X ,Y | Z)

where again the subscript I indicates that it is valid only for independences. Unfortunately value of
# cannot be obtained without assumptions, because it requires the computation of the probability of
the test statistic under the hypothesis of dependence, and there are typically an infinite number of
dependent models. In statistical applications, the # value is commonly approximated by assuming
one particular dependence model if prior knowledge about that is available. In the absence of such
information however in this paper we estimate it using a heuristic function of the p-value, assuming
the following heuristic constraints on #:

#(X ,Y | Z) =






1 if p(X ,Y | Z) = 0
"− #

2+|Z| if p(X ,Y | Z) = 1
" if p(X ,Y | Z) = ".

The first constraint (for p(X ,Y | Z) = 0) corresponds to the intuition that when the p-value of
the test is close to 0, the test statistic is very far from its value under the model that assumes inde-
pendence, and thus we would give more preference to the “dependence” decision. The intuition for

2. The assumption of independence is a heuristic, and is made mainly due to the difficulty of determining the dependence
between two or more statistical tests evaluated on the same data set. Other possible ways of defining the preference
of a set of propositions are possible. The problem of dealing with multiple tests is an open problem and an area of
active research in statistics; see Section 1 for a discussion.
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Figure 1: Preference functions -I(h) and -D(h) for statements of independence and dependence
respectively, as functions of the p-value of test h.

the second case (p(X ,Y | Z) = 1) is reversed—when the value of the statistic is very close to the
expected one under independence then independence is preferred. The value of the second case is
tempered by the number of variables in the conditioning set. This reflects the practical consideration
that, as the number 2+ |Z| of variables involved in the test increases, given a fixed data set, the dis-
criminatory power of the test diminishes as |Z|→.. The third case causes the two functions -I and
-D to intersect at p-value ". This is due to fairness: in the absence of non-propositional arguments
(i.e., in the absence of inference rules in our knowledge base), the independence decisions of the
argumentation framework should match those of the purely statistical tests, that is, “dependence”
if and only if (p-value ≤ "). If instead we chose a different intersection point, then the resulting
change in the outcome of tests may have been simply due to bias in the independence decision that
favors dependence or independence, that is, equivalent to an arbitrary change of the threshold of the
statistical test, and the comparison of the statistical and the new test based on argumentation would
not be a fair one. The remaining values of # are approximated by linear interpolation among the
above points. The result is summarized in Fig. 1, which depicts preference functions -D and -I with
respect to the p-value of the corresponding statistical test.

Let us illustrate how the preference-based argumentation can be used to resolve the inconsisten-
cies of Example 1.

Example 3. In example 1 we considered an IKB with the following propositions

(0⊥⊥1 | 2) (13)
(0 "⊥⊥3 | 2) (14)

(0⊥⊥3 | {1,2}) (15)
(0⊥⊥1 | 2)∧ (0 "⊥⊥3 | 2) =⇒ (0 "⊥⊥3 | {1,2}). (16)
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Following the IKB construction procedure described in the previous section, propositions (13),
(14) and (15) correspond to the following arguments, respectively:

({
(0⊥⊥1 | 2)

}
,(0⊥⊥1 | 2)

)

({
(0 "⊥⊥3 | 2)

}
,(0 "⊥⊥3 | 2)

)

({
(0⊥⊥3 | {1,2})

}
,(0⊥⊥3 | {1,2})

)
(17)

while rule (16) corresponds to the argument
({

(0⊥⊥1 | 2),(0 "⊥⊥3 | 2)
}

,(0 "⊥⊥3 | {1,2})
)

. (18)

Let us extend this IKB with the following preference values for its propositions and rule.

Pref [(0⊥⊥1 | 2)] = 0.8
Pref [(0 "⊥⊥3 | 2)] = 0.7

Pref [(0⊥⊥3 | {1,2})] = 0.5.

According to Definition (12), the preference of each argument ({(},() is equal to the preference
value of {(} which is equal to the preference of (, as it contains only a single proposition. Thus,

Pref
[({

(0⊥⊥1 | 2)
}

,(0⊥⊥1 | 2)
)]

= 0.8

Pref
[({

(0 "⊥⊥3 | 2)
}

,(0 "⊥⊥3 | 2)
)]

= 0.7

Pref
[({

(0⊥⊥3 | {1,2})
}

,(0⊥⊥3 | {1,2})
)]

= 0.5.

The preference of argument (18) equals the preference of the set of its antecedents, which, according
to Eq. (12), is equal to the product of their individual preferences, that is,

Pref
[({

(0⊥⊥1 | 2),(0 "⊥⊥3 | 2)
}

,(0 "⊥⊥3 | {1,2})
)]

= 0.8×0.7= 0.56.

Proposition (15) and rule (16) contradict each other logically, that is, their corresponding ar-
guments (17) and (18) defeat each other. However, argument (18) is not attacked as its preference is
0.56 which is larger than 0.5, the preference of its defeater argument (17). Since no other argument
defeats (18), it is acceptable, and (17), being attacked by an acceptable argument, must be rejected.
We therefore see that using preferences the inconsistency of Example 1 has been resolved in favor
of rule (16).

Let us now illustrate the defend relation, that is, how an argument can be defended by some other
argument. The example also illustrates an alternative resolution for the inconsistency of Example 1,
this time in favor of the independence proposition (15).

Example 4. Let us extend the IKB of Example 3 with two additional independence propositions and
an additional rule. The new propositions and their preference are:

Pref [(0⊥⊥4 | {2,3})] = 0.9
Pref [(0⊥⊥3 | {2,4})] = 0.8
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and the new rule is:

(0⊥⊥4 | {2,3})∧ (0⊥⊥3 | {2,4}) =⇒ (0⊥⊥3 | 2).

This rule is an instance of the Intersection axiom followed by Decomposition.
The corresponding arguments and preferences are:

Pref
[({

(0⊥⊥4 | {2,3})
}

,(0⊥⊥4 | {2,3})
)]

= 0.9

Pref
[({

(0⊥⊥3 | {2,4})
}

,(0⊥⊥3 | {2,4})
)]

= 0.8

corresponding to the two propositions, and

Pref
[({

(0⊥⊥4 | {2,3}),(0⊥⊥3 | {2,4})
}

,(0⊥⊥3 | 2)
)]

= 0.9×0.8= 0.72 (19)

corresponding to the rule.
As in Example 3, argument (17) is attacked by argument (18). Let us represent this graphically

using an arrow from argument a to argument b to denote that a attacks b, that is,

Argument (18) −→ Argument (17).

If the IKB was as in Example 3, (18) would had been accepted and (17) would have been
rejected. However, the additional argument (19) now defeats (undercuts) (18) by logically contra-
dicting its antecedent (0 "⊥⊥3 | 2). Since the preference of (19), namely 0.72, is larger than that of
(18), namely 0.56, (19) attacks (18). Therefore, (19) defends all arguments that are attacked by
argument (18), and in particular (17). Graphically,

Argument (19) −→ Argument (18) −→ Argument (17).

Note this is not sufficient for accepting (17) as it has not been proved that its defender (19) is
itself acceptable. We leave the proof of this as an exercise for the reader.

4. The Argumentative Independence Test (AIT)

The independence-based preference argumentation framework described in the previous section
provides a semantics for the acceptance of arguments consisting of independence propositions.
However, what we need is a procedure for a test of independence that, given as input a triplet
( = (X ,Y | Z) responds whether X is independent or dependent of Y given Z. In other words,
we need a semantics for the acceptance of propositions, not arguments. Let us consider the two
propositions related to the input triplet ( = (X ,Y | Z), proposition (( = true), abbreviated (t,
and proposition (( = false), abbreviated (f, that correspond to independence (X⊥⊥Y | Z) and
dependence (X "⊥⊥Y | Z) of (, respectively. The basic idea for deciding on the independence or de-
pendence of input triplet ( is to define a semantics for the acceptance or rejection of propositions (t

and (f based on the acceptance or rejection of their respective propositional arguments ({(t},(t)
and ({(f},(f). Formally,

(X "⊥⊥Y | Z) is accepted iff ({(X "⊥⊥Y | Z)},(X "⊥⊥Y | Z)) is accepted, and
(X⊥⊥Y | Z) is accepted iff ({(X⊥⊥Y | Z)},(X⊥⊥Y | Z)) is accepted. (20)

317



BROMBERG AND MARGARITIS

Based on this semantics over propositions, we decide on the dependence or independence of
triplet ( as follows:

(t = (X⊥⊥Y | Z) is accepted =⇒ (X⊥⊥Y | Z)
(f = (X "⊥⊥Y | Z) is accepted =⇒ (X "⊥⊥Y | Z). (21)

We call the test that determines independence in this manner theArgumentative Independence
Test or AIT. For the above semantics to be well-defined, a triplet ( must be either independent
or dependent, that is, not both or neither. For that, exactly one of the antecedents of the above
implications of Eq. (21) must be true. Formally,

Theorem 18. For any input triplet ( = (X ,Y | Z), the argumentative independence test (AIT) de-
fined by Eqs. (20) and (21) produces a non-ambiguous decision, that is, it decides ( evaluates to
either independence or dependence, but nor both or neither.

For that to happen, one and only one of its corresponding propositions (t or (f must be ac-
cepted. A necessary condition for this is given by the following theorem.

Theorem 19. Given a PAF 〈A ,R ,,〉 with a strict and transitive preference relation ,, every propo-
sitional argument ({(t},(t) ∈ A and its negation ({(f},(f) satisfy

({(t},(t) is accepted iff ({(f},(f) is rejected.

The above theorem is not sufficient because the propositions may still be in abeyance, but this
possibility is ruled out for strict preference relations by Theorem 20, presented in the next section.

The formal proofs of Theorems 18, 19 and 20 are presented in Appendix B. We now illustrate
the use of AIT with an example.

Example 5. We consider an extension of Example 3 to illustrate the use of the AIT to decide on
the independence or dependence of input triplet (0,3 | {1,2}). According to Eq. (20) the decision
depends on the status of the two propositional arguments:

({(0 "⊥⊥3 | {1,2})},(0 "⊥⊥3 | {1,2})), and (22)
({(0⊥⊥3 | {1,2})},(0⊥⊥3 | {1,2})). (23)

Argument (23) is equal to argument (17) of Example 3 that was proved to be rejected in that
example. Therefore, according to Theorem 19, its negated propositional argument Eq. (22) must be
accepted, and we can conclude that triplet (0,3 | {1,2}) corresponds to a dependence, that is, we
conclude that (0 "⊥⊥3 | {1,2}).

5. The Top-down AIT Algorithm

We now discuss in more detail the top-down algorithm which is used to implement the argumen-
tative independence test, introduced in Section 3. We start by simplifying the recursion of Eq. (7)
that determines the state (accepted, rejected, or in abeyance) of an argument a. We then explain the
algorithm and analyze its computability (i.e., prove that its recursive execution is always finite) and
its time complexity.

To simplify the recursion Eq. (7) we use the following theorem (proved in Appendix B).
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Theorem 20. Let 〈A ,R ,,〉 be a PAF with a strict preference relation ,. Then no argument a ∈ A
is in abeyance.

This theorem reduces the number of states of each argument to two, that is, an argument can
be either accepted or not accepted (rejected). We will use the name of the argument a to denote
the predicate “a is accepted” and its negation ¬a to denote the predicate “a is rejected.” With this
notation, the above theorem, and the fact that we have extended the semantics of acceptability from
the defeat to the attack relation (using preferences), the recursion of Eq. (7) can be expressed as
follows

a ⇐⇒ ∀b ∈ attackers(a), ¬b
¬a ⇐⇒ ∃b ∈ attackers(a), b

or, equivalently,

a ⇐⇒
^

b∈attackers(a)
¬b

¬a ⇐⇒
_

b∈attackers(a)
b.

Finally, we notice that the second formula is logically equivalent to the first (simply negating
both sides of the double implication recovers the first). Therefore, the Boolean value of the dialog
tree for a can be computed by the simple expression

a ⇐⇒
^

b∈attackers(a)
¬b. (24)

To illustrate, consider an attacker b of a. If b is rejected, that is, ¬b, the conjunction on the right
cannot be determined without examining the other attackers of a. Only when all attackers of a are
known to be rejected can the value of a be determined, that is, accepted. Instead, if b is accepted,
that is, b, the state of ¬b is false and the conjunction can be immediately evaluated to false, that
is, a is rejected regardless of the acceptability of any other attackers.

An iterative version of the top-down algorithm is shown in Algorithm 3. We assume that the
algorithm can access a global PAF 〈A ,R ,,〉, with arguments in A defined over a knowledge base
K = 〈&,'〉. Given as input a triplet t = (X ,Y | Z), if the algorithm returns true (false) then we
conclude that t is independent (dependent). It starts by creating a root node u for the propositional
argument U of proposition t = true (lines 1–6). According to Eqs. (20) and (21), the algorithm
then decides true ifU is accepted (line 22). Otherwise, the algorithm returns false (line 23). This
is because in this case, according to Theorem 19, the negation of propositional argumentU must be
accepted.

Algorithm 3 is an iterative version of a tree traversal algorithm. It maintains a queue of the
nodes that have not been expanded yet. A node is expanded when its children are added to the tree.
In the algorithm, this is done in the loop of lines 17 to 21, which uses subroutine getAttackers of
Algorithm 5 to obtain all attackers of an argument. This subroutine finds all attackers of the input
argument a in a backward-chaining fashion, that is, given an argument a= (H,h), it searches for all
rules in the knowledge base K whose consequent matches the negation of some proposition in the
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Algorithm 3 independent(triplet t).
1: ftrue ← proposition (t = true) /* Creates independence proposition (t = true). */
2: Utrue ← ({ ftrue}, ftrue)
3: utrue ← node for argumentUtrue

4: utrue.parent ← nil
5: u.STATE← nil
6: f ringe← [u] /* Initialize with u (root). */
7: /* Create global rejected node, denoted by /. */
8: /← node with no argument and state rejected
9: while f ringe "= ∅ do
10: u← dequeue( f ringe)
11: attackers← getAttackers(u.argument)
12: if (attackers= ∅) then
13: u.STATE← accepted
14: if sendMsg(/,u) = terminate then break
15: attackers← sort attackers in decreasing order of preference.
16: /* Enqueue attackers after decomposing them. */
17: for each A ∈ attackers do
18: a← node for argument A
19: a.parent ← u
20: a.STATE← nil
21: enqueue a in f ringe /* See details in text. */
22: if (u.STATE= accepted) then return true
23: if (u.STATE= rejected) then return false

Algorithm 4 sendMsg(Node c,Node p).
1: /* Try to evaluate node p given new information in c.STATE */
2: if p "= nil then
3: if c.STATE= accepted then p.STATE← rejected
4: else if (∀ children q of p, q.STATE "= rejected) then p.STATE← accepted
5: /* If p was successfully evaluated, try to evaluate its parent by sending message upward. */
6: if p.STATE "= nil then
7: return sendMsg(p, p.parent)
8: else
9: return continue
10: else
11: return terminate /* The root node has been evaluated. */

support H (undercutters), or the negation of its head h (rebutters). Every node maintains a three-
valued state variable STATE ∈ {nil,accepted,rejected}. The nil state denotes that the value of
the node is not yet known, and a node is initialized to this state when it is added to the tree.

The algorithm recurses down the dialog tree until a node is found that has no attackers (line 12).
Such a node is accepted in line 13, that is, the conjunction of Eq. (24) is trivially true, and its STATE
is propagated upwards toward the root to the parent using subroutine sendMsg (Algorithm 4). Every
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Algorithm 5 Finds all attackers of input argument a in knowledge base K = 〈&,'〉:
getAttackers(a= (H,h))
1: attackers← ∅
2: /* Get all undercutters or rebutters of a. */
3: for all propositions * ∈ H ∪{h} do
4: /* Get all defeaters of proposition *. */
5: for all rules ()1∧)2 . . .∧)n =⇒ ¬*) ∈' do
6: /* Find all propositionalizations of the rule whose consequent matches ¬*. */
7: for all subsets {*1,*2 . . . ,*n} of & s.t. )1 ≡ *1,)2 ≡ *2 . . . )n ≡ *n do
8: d← ({*1∧*2 . . .*n},¬*) /* Create defeater. */
9: /* Is the defeater an attacker? */
10: if ¬(a3" d) then
11: attackers← attackers∪{d}
12: return attackers

time a node receives a message from a child, if the message is accepted, the node is rejected (line
3 of Algorithm 4), otherwise the node is accepted if all its children has been evaluated to rejected
(line 4 of Algorithm 4). The subroutine sendMsg then proceeds recursively by forwarding a message
to the parent whenever a node has been evaluated (line 7). If the root is reached and evaluated, the
message is sent to its parent, which is nil. In this case, the subroutine returns the special keyword
terminate back to the caller, indicating that the root has been evaluated and thus the main algorithm
(Algorithm 3) can terminate. The caller can be either the subroutine sendMsg, in which case it
pushes the returned message up the method-calling stack, or the top-down algorithm in line 14, in
which case its “while” loop is terminated.

An important part of the algorithm is yet underspecified, namely the order in which the attackers
of a node are explored in the tree (i.e., the priority with which nodes are enqueued in line 21). This
affects the order of expansion of the nodes in the dialog tree. Possible orderings are depth-first,
breadth-first, iterative deepening, as well as informed searches such as best-first when a heuristic
is available. In our experiments we used iterative deepening because it combines the benefits of
depth-first and breadth-first search, that is, small memory requirements on the same order as depth-
first search (i.e., on the order of the maximum number of children a node can have) but also the
advantage of finding the shallowest solution like breadth-first search. We also used a heuristic for
enqueuing the children of a node. According to iterative deepening, the position in the queue of the
children of a node is specified relative to other nodes, but not relative to each other. We therefore
specified the relative order of the children according to the value of the preference function: children
with higher preference are enqueued first (line 15 of the top-down algorithm), and thus, according
to iterative deepening, would be dequeued first.

5.1 Computability of the Top-Down Algorithm

An open question is whether the top-down algorithm is computable, that is, whether it always ter-
minates. In this section we prove that it is. To prove this we need to show that under certain general
conditions the acceptability of an argument a can always be determined, that is, that the algorithm
always terminates. This is proved by the following theorem.
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Theorem 21. Given an arbitrary triplet t = (X ,Y | Z), and a PAF 〈A ,R ,,〉 with a strict preference
relation ,, Algorithm 3 with input t over 〈A ,R ,,〉 terminates.

The proof consists on showing that the path from the root a to any leaf is always finite. For that,
the concept of an attack sequence is needed.

Definition 22. An attack sequence is a sequence 〈a1,a2, . . . ,an〉 of n arguments such that for every
2≤ i≤ n, ai attacks ai−1.

By the manner in which the top-down algorithm constructs the dialog tree it is clear that any path
from the root to a leaf is an attack sequence. It therefore suffices to show that any such sequence is
finite. This is done by the following theorem.

Theorem 23. Every attack sequence 〈a1,a2, . . . ,an〉 in a PAF 〈A ,R ,,〉 with strict , and finite A is
finite.

Intuitively, if the preference relation is strict then an element can attack its predecessor in the
sequence but not vice versa. Since the set of arguments A is finite, the only way for an attack
sequence to be infinite is to contain a cycle. In that case, an argument would be attacking at least
one of its predecessors, which cannot happen in a PAF with a strict preference relation. We present
formal proofs of Theorems 21 and 23 in Appendix A.

We thus arrived at the important conclusion that, under a strict preference function and a finite
argument set, the state of any argument is computable. As we showed in Section 3.3, the preference
function for independence knowledge bases is strict, and thus the computability of the top-down
algorithm is guaranteed.

5.2 Computational Complexity of the Top-Down Algorithm

Since Algorithm 3 is a tree traversal algorithm, its time complexity can be obtained by techniques
contained in standard algorithmic texts, for example, Cormen et al. (2001). The actual performance
depends on the tree exploration procedure. In our case we used iterative deepening due to its linear
memory requirements in d, where d is the smallest depth at which the algorithm terminates. Iterative
deepening has a worst-time time complexity of O(bd), where b is an upper bound on the dialog tree
branching factor. Therefore, for a constant b > 1 the execution time is exponential in d in the
worst case. Furthermore, for the case of independence tests, b itself may also be exponential in n
(the number of variables in the domain). This is because the inference rules of Eqs. (5) and (6)
are universally quantified, and therefore their propositionalization (lines 7–11 of Algorithm 5), may
result in an exponential number of rules with the same consequent (attackers). A tighter bound may
be possible but, lacking such a bound, we introduce in the next section an approximate top-down
algorithm, which reduces the running time to polynomial. As we show in our experiments, the use
of this approximation does not appreciably affect the accuracy improvement due to argumentation.

6. The Approximate Top-Down AIT Algorithm

As the top-down algorithm has a theoretically exponential running time in the worst case, we hereby
present a practical polynomial-time approximation of the top-down algorithm. We make use of
two approximations: (a) To address the exponential behavior due to the depth of the dialog tree
we apply a cutoff depth d for the process of iterative deepening. (b) To address the potentially
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exponential size of the branching factor b (which equals the maximum number of defeaters of
any argument appearing in the dialog tree) we limit the number of defeaters of each node—thus
bounding the number of its attackers/children—to a polynomial function of n (the domain size)
during the propositionalization process of Algorithm 5 (lines 7–11). Let (H,h) be an argument and
let * ∈ H ∪ {h} be one of its propositions, as in line 3 of Algorithm 5. The set of attackers &$ of
(H,h) consists of all rules {*1∧*2 . . .∧*k =⇒ ¬*} of &, for some constant upper bound k on the
size of their support. If *= (X,Y |Z) and *i = (Xi,Yi |Zi) for all 1≤ i≤ k, then our approximation
generates and uses a subset of &$ in the dialog tree such that

|X|− c ≤ |Xi| ≤ |X|+ c
|Y|− c ≤ |Yi| ≤ |Y|+ c (25)
|Z|− c ≤ |Zi| ≤ |Z|+ c

where | · | denotes set cardinality, and c is a user-specified integer parameter that defines the approx-
imation. We call this the approximate top-down algorithm. The computational complexity of the
approximate top-down algorithm is polynomial in n, as shown in the next section.

6.1 Test Complexity of the Approximate Top-Down Algorithm

In this section we prove that the number of statistical tests required by the Approximate Top-Down
algorithm is polynomial in n. As described in the previous section, the approximate algorithm
generates a bounded number of attackers for each proposition in the argument corresponding to
some node in the dialog tree. A bound on the number of the possible attackers can be defined by
the approximation of Eq. (25). These equations dictate that the size of each possible set Xi in some
proposition (Xi,Yi | Zi) of some attacker of proposition (X,Y | Z) is between |X|+ c and |X|− c
(inclusively). As the number of elements that can be members of Xi is bounded by n (the domain
size), this produces at most n2c+1 possible instantiations for setXi. Similarly, the number of possible
instantiations for Yi and Zi is also n2c+1. Therefore, an upper bound for the number of matches to
some proposition in the antecedent of an attacking rule isO(n6c+3) for some constant c. As there are
r rules in the rule set and up to k propositions in each rule for some constants r and k (for example,
r = 5 and k = 3 for Eq. (5) and r = 8 and k = 4 for Eq. (6)), an upper bound on the number of
children of a node in the dialog tree is O(rkn6c+3), and thus an upper bound on the number of nodes
in the dialog tree of depth d is O((rk)dnd(6c+3)). As we demonstrate in our experiments, this is a
rather loose upper bound and the performance of the approximate top-down algorithm is reasonable
in practice, but it does serve to show that the theoretical worst-case performance is polynomial in n.
In the experiments shown in the next section we used c= 1 and d = 3.

7. Experimental Results

We conducted experiments on sampled and real-world data sets for the purpose of (a) evaluating
the accuracy improvement of the argumentative test (both the exact and approximate versions) over
its statistical counterpart; (b) demonstrating the performance improvements that can be achieved by
the approximate version compared to the exact counterpart, without significant reduction in accu-
racy improvement; and (c) evaluating the improvements that result by the use of the argumentative
framework for causal discovery. We address these issues below.
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7.1 Comparative Evaluation of Bottom-Up, Exact Top-Down, and Approximate Top-Down
Argumentative Tests

In this section we demonstrate that the argumentation approach, implemented either by the (exact)
bottom-up or the exact top-down algorithm (Algorithm 3), improves the accuracy of independence
tests on small data sets. We also show that the approximate top-down algorithm (see Section 6)
has accuracy performance improvements similar to its exact counterpart but significantly better
execution times (orders of magnitude), that make it more practical and usable for larger domains.
As the output of the bottom-up algorithm is guaranteed to be equal to the exact top-down algorithm
as Theorem 9 of Section 3, we omit accuracy results for the bottom-up algorithm here.

As the exact algorithm is impractical for large domains, for the present comparison we sampled
data sets from two randomly generated Bayesian networks with n = 8 nodes. The networks were
generated using BNGenerator (Ide et al., 2002), a publicly available Java package, with maximum
degree per node 0 equal to 3 and 7 to evaluate the performance in sparsely as well as densely
connected domains. A large data set D was sampled from each network and our experiments were
conducted on subsets of it containing an increasing number of data points N. This was done in order
to assess the accuracy on varying conditions of reliability, as the reliability of a test varies (typically
increases) with the amount of data available. To reduce variance, each experiment was repeated for
ten data subsets of equal size, obtained by permuting the data points of D randomly and using the
first N of them as input to our algorithms.

We first compare the accuracy of argumentative tests versus their purely statistical counterparts
(i.e., the G2 test) on several data sets sampled from randomly generated Bayesian networks. Sam-
pled data experiments have the advantage of a more precise estimation of the accuracy since the
underlying model is known. We present experiments for two versions of the exact top-down argu-
mentative test, one using Pearl’s general axioms of of Eq. (5), denoted AITt-G, and another that
uses Pearl’s “directed” axioms of Eq. (6), denoted AITt-D, as well as two versions of the approxi-
mate top-down argumentative test, denoted ÂITt-G and ÂITt-D respectively. We abbreviate purely
statistical independence tests as SIT.

We report the estimated accuracy, which, for each data set, is calculated by comparing the
result of a number of conditional independence tests (SITs or AITs) on data with the true value of
independence, computed by querying the underlying model for the conditional independence of the
same test using d-separation. Since the number of possible tests is exponential, we estimated the
independence accuracy by randomly sampling a set T of 1,000 triplets (X ,Y,Z), evenly distributed
among all possible conditioning set sizes m ∈ {0, . . . ,n− 2}, that is, 1000/(n− 1) tests for each
m. The independence or dependence value of the triplets (in the true, underlying model) were
not controlled, but left to be decided randomly. This resulted in a non-uniform distribution of
dependencies and independences. For instance, in the experiments shown next (n= 8, 0= 3,7), the
average proportion of independences vs. dependencies was 36.6% to 63.4% respectively for 0= 3,
and 11.4% to 88.6% respectively for 0 = 7. Denoting a triplet in T by t, by Itrue(t) the result of a
test on t performed on the underlying model, and by Idata-Y (t) the results of performing a test on t
of type Y on data, for Y equal to SIT, AITt-G, AITt-D, ÂITt-G, or ÂITt-D, the estimated accuracy
of test type Y is defined as

âccdataY =
1
|T |

∣∣∣∣
{
t ∈ T | Idata-Y (t) = Itrue(t)

}∣∣∣∣.
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Figure 2: Accuracy comparison of statistical tests (SIT) vs. exact and approximate argumentative
tests for domain size n= 8 and maximum degree per node 0= 3,7. The histograms show
the absolute value of the accuracy while the line curves show the difference between SIT
and the argumentative tests. 95% confidence intervals are also shown for the line graphs.
Top row: General axioms. Bottom row: Directed axioms.

Figure 2 (top row) shows a comparison of the SIT with the exact and approximate top-down
argumentative test over the general axioms for data set with increasing number of data points. The
figure shows two plots for 0= 3,7 of the mean values (over runs for ten different data sets) of âccdataSIT ,
âccdataAITt-G, and âcc

data
ÂITt-G

(histograms) and the difference between the accuracies of the AIT tests
and the statistical one (line graphs) for various data set sizes N. A positive value of the difference
corresponds to an improvement of the argumentative test over SIT. The plots also show the statistical
significance of this difference with 95% confidence intervals (error bars), that is, the interval around
the mean value that has a 0.95 probability of containing the true difference. The figure demonstrates
that there exist modest but consistent and statistically significant improvements in the accuracy
of both the exact and approximate argumentative tests over the statistical test. We can observe
improvements over the entire range of data set sizes in both cases with maximum improvements of
up to 9% and 6% for the exact and approximate cases respectively (at 0= 3 and N = 600).

In certain situations where the experimenter knows that the underlying distribution belongs to
the class of Bayesian networks, it is appropriate to use the specific axioms of Eq. (6) instead of the
general axioms of Eq. (5). The bottom row of Figure 2 presents the same comparison as the top
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row but for the exact and approximate argumentative tests AITt-D and ÂITt-D that use the directed
axioms instead of the general ones. As in the case for AIT using the general axioms, we can observe
statistically significant improvements over the entire range of data set sizes in both cases. In this
case however, the improvements are larger, with maximum increases in the accuracy of the exact
and approximate test of up to 13% and 9% respectively (again for 0= 3 and N = 600).
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Figure 3: Accuracy comparison of SIT vs. exact (AITt-G) and approximate (ÂITt-G) argumen-
tative tests over the general axioms for increasing conditioning set sizes. The six plots
correspond to maximum degrees per node 0 = 3,7, and data set sizes N = 160,900 and
5000.
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Figure 4: Same as Figure 3 but for AIT using the directed axioms instead of the general ones.

We also evaluated the accuracy of these tests for increasing conditioning set sizes. Figures 3
and 4 show a comparison of the SIT with the exact and approximate top-down argumentative test
using the general and directed axioms respectively, for accuracies over increasing conditioning set
size for data sizes N = 160,900, and 5000 (different rows). We can observe statistically significant
improvements over the entire range of conditioning set sizes in all twelve graphs. Except in one
case (directed axioms, N = 5000, 0= 3), all graphs show an upward trend in accuracy for increasing
conditioning set size, representing a positive impact of the argumentative approach that increases
with a decrease in test reliability, that is, increasing conditioning set size.
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We also compared the execution times of the bottom-up, exact top-down and approximate top-
down algorithms on the same data sets. To run the bottom-up algorithm we generated the set of
all propositional arguments possible, that is, arguments of the form ({(},(), by iterating over all
possible triplets (X,Y | Z), and inserted them in the knowledge base together with their preference,
as described in Section 3.1. Similarly, for the set of axioms that we used in each case, that is,
either the general (Eq. (5)) or the specific ones (Eq. (6)), we iterated over all possible matches
of each rule, inserting the corresponding (single-headed and decomposed) instantiated rule in the
knowledge base again together with its preference. The reason for including all propositional and
rule-based arguments in our IKB is to allow the argumentation framework to consider all possible
arguments in favor of or against an independence query. We compared the bottom-up algorithm
AITb, the exact top-down algorithms AITt, and the approximate top-down algorithm ÂITt. For
this, we measured the time it takes to discover the structure of a Bayesian networks using three
versions of the PC algorithm (Spirtes et al., 2000), each using one of the three argumentative tests
AITb, AITt, or ÂITt to conduct the independence tests. As usual, we consider two versions of each
test AITb, AITt, and ÂITt, one that uses the general axioms of Eq. (5), that is, AITb-G, AITt-G,
and ÂITt-G, respectively, and one that uses the specific axioms of Eq. (6) (applicable to Bayesian
networks), that is, AITb-D, AITt-D, and ÂITt-D, respectively. The data sets used are the same as
the ones used in the accuracy comparisons above.

Figure 5 plots the execution time of argumentative tests AITb-G vs. AITt-G vs. ÂITt-G (top
row) and AITb-D vs. AITt-D vs. ÂITt-D (bottom row) for tests that were conducted by the PC
algorithm while learning the structure. Note that both the x and y-axes are plotted in log-scale. We
can observe improvements in the execution time of the exact top-down algorithm over that of the
bottom-up algorithm of an order of magnitude over the entire range of data set sizes in all four
plots. We can also see improvement of a similar order between the exact and approximate top-
down argumentative algorithms. For instance, for the general axioms and 0 = 3 (top-left plot), the
execution time for N = 5000 is 2749 seconds for the bottom-up against 107 seconds for the exact
top-down and 15 seconds for the approximate top-down algorithm. We see even more pronounced
execution time improvements when using the directed axioms (bottom row of Fig. 5).

The execution-time results demonstrate that the exact top-down algorithm performs significantly
better than the bottom-up algorithm, while producing the exact same output (according to Theorem
9 of Section 3). This implies a clear advantage of using the top-down over the bottom-up algorithm.
Furthermore, we also saw that the approximate top-down algorithm performs similarly in terms of
accuracy improvement while having polynomial worst-case execution time and in practice being
several orders of magnitude faster than the exact top-down algorithm, which is exponential in the
worst-case. As in the next two sections we continue our evaluation on domains significantly larger
than the n = 8 variables that we examined here, it would be difficult or impractical for the exact
algorithms to be employed. For these reasons in the following experiments we use the more practical
approximate algorithm, which can be applied to larger domains.

7.2 Causal Discovery in Larger Domains

We also conducted experiments that demonstrate the performance of the approximate top-down al-
gorithm by (a) showing its applicability to large domains, and (b) demonstrating positive improve-
ments in accuracy of argumentative tests on the learning of the structure of Bayesian networks, the
main problem faced by causal discovery algorithms. In the following experiments we used the PC
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Figure 5: Execution time comparison for the PC algorithm when it uses the bottom-up and ex-
act top-down and approximate top-down argumentative tests to learn the structure of a
Bayesian network from data sampled from Bayesian models with domain size n = 8,
maximum degrees 0= 3,7. The bars show the absolute value of the running time using a
logarithmic scale. Top row: general axioms. Bottom row: directed axioms.

algorithm. We compared the true structure of the underlying model to the resulting structure of the
PC algorithm when it uses SITs as independence tests, denoted PC-SIT, and its output when it uses
argumentative independence tests, denoted PC-ÂITt-D, when using the directed axioms.

We evaluated the resulting networks by their ability to accurately represent the true indepen-
dences in the domain, calculated by comparing the results (true or false) of a number of condi-
tional tests conducted using d-separation on the output networks (PC-SIT or PC-ÂITt-D). Denoting
by T this set of 2,000 triplets, by t ∈ T a triplet, by Itrue(t) the result of a test performed on the un-
derlying model, and by IPC-Y (t) the result of performing a d-separation test on the network output
by the PC algorithm using the Y test, Y equal to SIT or ÂITt-D, the estimated accuracy is defined
as

âccPCY =
1
|T |

∣∣∣∣
{
t ∈ T | IPC-Y (t) = Itrue(t)

}∣∣∣∣. (26)

We considered data sampled from randomly generated Bayesian networks of sizes n= 24, and
maximum degrees 0 = 3,7. For each network we sampled ten data sets, and, for each data set, we
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Figure 6: Comparison of statistical tests (SIT) vs. approximate argumentative tests on the directed
axioms (ÂITt-D) for data sets sampled from Bayesian models for domain size n= 24 and
maximum degrees 0= 3,7.

conducted experiments on subsets of D containing an increasing number of data points. We report
the average over the ten data sets of the estimated accuracy calculated using Eq. (26), for Y = SIT
or ÂITt-D, as well as the difference between the average accuracies including the 95% confidence
interval for the difference.
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Figure 7: Execution times for the PC algorithm using the approximate argumentative test on the
directed axioms (ÂITt-D) on data sets sampled from Bayesian models for domain size
n = 24 and maximum degrees 0 = 3,7. For the approximate AIT test we limited the
depth of the dialog tree to 3 and its the branching factor as described in Section 6.

Figure 6 shows a comparison of the argumentative tests ÂITt-D using the directed axioms with
the corresponding SIT. The figure shows two plots for different values of 0 of the mean values (over
runs for ten different data sets) of âccPCSIT and âcc

PC
ÂITt-D

(histograms), the difference between these
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averages (line graph), and the 95% confidence intervals for the difference (error bars), for different
data set sizes N. As usual, a positive value of the difference corresponds to an improvement of
ÂITt-D over SIT. As in practically all experiments so far, we have statistically significant improve-
ments over the entire range of data set sizes, with maximum improvements of up to 20% for 0= 3,
N = 25000, and 0= 7, N = 900. The corresponding execution times for the entire PC algorithm are
shown in Fig. 7. We can make two observations from this graph. One, the cost is significantly lower
for sparse domains, which benefits real-world application domains that are sparse. The second ob-
servation is that the execution time scales linearly with the number of data points; this exhibits the
same behavior as the use of a SIT test in PC, as each test needs to scan the data set once to compute
the contingency table and relevant test statistics.

In summary, these results demonstrate that the approximate argumentative test is practical for
larger domains and can result in positive, statistically significant accuracy improvements when used
for causal discovery. However, the cost of AIT for large data sets, although not prohibitive, can be
non-negligible. Therefore the accuracy benefits of AIT vs. a SIT must be carefully weighed off the
ability of the user to expend the extra computation. Note that the practicality of the approximate
algorithm also depends on the parameters used (the cutoff depth of iterative deepening and the
branching factor limit—see Section 6); different parameter values or alternative ways of limiting
the size of the dialog tree may be needed for even larger domains.

7.3 Real-world and Benchmark Data Experiments

While the sampled data set studies of the previous section have the advantage of a more controlled
and systematic study of the performance of the algorithms, experiments on real-world data are
necessary for a more realistic assessment. In this section we present experiments on a number of
real-world and benchmark data sets obtained from the UCI machine learning repository (D. J. New-
man and Merz, 1998) and the Knowledge Discovery Data repository (Hettich and Bay, 1999). As
in the sampled data case of the previous section, for each data set D, we conducted experiments
on subsets of D containing an increasing number of data points N to assess the performance of the
independence tests on varying conditions of reliability. Again, to reduce variance we repeated each
experiment ten times, each time choosing a different randomly selected data subset of equal size.

Because for real-world data sets the underlying model is unknown, we could only be sure the
general axioms of Eq. (5) apply. We therefore only used these axioms in this section. Also, as
mentioned in the previous section, because some of the data sets have much larger domains (e.g.,
the alarm data set contains 37 variables), and given the exponential nature of the exact algorithms
we could only perform experiments for the approximate version of the argumentative test. For
these reasons, in the following experiments we only report the accuracy of ÂITt-G, the approximate
argumentative independence test defined over the general axioms. Unfortunately, for real-world data
the underlying model is typically unknown and therefore it is impossible to know the true value of
any independence. We therefore approximate it by a statistical test on the entire data set, and limit
the size of the data set subsets that we use up to a third of the size of the entire data set. This
corresponds to the hypothetical scenario that a much smaller data set is available to the researcher,
allowing us to evaluate the improvement of argumentation under these more challenging situations.
Again, as in the previous two sections, for comparison we sampled 2,000 triplets and calculated the
accuracy as a fraction of tests correct, where for the true value of independences and dependences
we used the method just described.
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Figure 8: Difference in the mean value of the accuracy ÂITt-G with the mean value of the accuracy
of SIT for a number of real-world data sets. The error bars denote the 95% confidence
interval of the difference.

Figure 8 and Table 1 show the result of our comparison between the argumentative test ÂITt-G
and statistical test SIT for real-world data sets. In the table, the best-performing method is shown
in bold. The figure contains 6 plots, one for each data set, depicting the difference between the
mean value of the accuracy of ÂITt-G and that of SIT, where as usual a positive value denotes an
improvement of ÂITt-G over SIT. While in a few cases the average difference is negative (e.g., data
set cmc, N = 40), in each case the negative value is not statistically significant as the confidence in-
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Data set car cmc flare2 letterRecognition nursery alarm
Domain size 7 10 13 17 9 37
Data set size 1730 1475 1067 20002 12962 20003

SIT 80.1 77.8 77.0 47.9 83.3 76.7
N = 40 ÂITt-G 80.1 77.5 77.1 47.8 83.8 76.7

ÂITt-G−SIT 0.0 ± 0.7 -0.3 ± 0.6 0.1 ± 0.3 -0.1 ± 0.2 0.4 ± 0.1 0.0 ± 0.4
Runtime of ÂITt-G (ms) 0.56 1.07 2.61 4.19 0.88 52.06

SIT 86.7 84.1 85.5 50.7 86.1 84.3
N = 240 ÂITt-G 88.6 84.7 86.9 51.0 87.2 85.1

ÂITt-G−SIT 1.9 ± 0.6 0.5 ± 1.2 1.3 ± 0.8 0.2 ± 0.4 1.1 ± 0.4 0.8 ± 0.3
Runtime of ÂITt-G (ms) 1.37 5.19 8.73 90.50 1.84 202.05

SIT 55.8 88.5 88.6
N = 600 ÂITt-G 57.3 89.3 89.8

ÂITt-G−SIT 1.5 ± 0.5 0.8 ± 0.1 1.2 ± 0.4
Runtime of ÂITt-G (ms) 575.53 4.37 547.77

SIT 63.3 89.7 90.8
N = 1200 ÂITt-G 64.3 91.2 92.0

ÂITt-G−SIT 1.0 ± 0.3 1.5 ± 0.3 1.2 ± 0.4
Runtime of ÂITt-G (ms) 2008.76 14.05 1151.05

SIT 73.8 94.1 95.2
N = 3500 ÂITt-G 76.5 95.4 96.3

ÂITt-G−SIT 2.6 ± 0.7 1.3 ± 0.3 1.1 ± 0.3
Runtime of ÂITt-G (ms) 24540.51 76.48 3895.2

Table 1: Average accuracies (in percentage) of SIT and ÂITt-G, their differences (denoted
ÂITt-G− SIT in the table), the 95% confidence interval for the difference, and the av-
erage runtime per test (in ms) for ÂITt-G for several real-world and benchmark data
sets. For each data set the table shows these quantities for number of data points
N = 40,240,600,1200,3500. The best performing algorithm (ÂITt-G or SIT, with re-
spect to accuracy) is indicated in bold. Empty cells correspond to cases where one third of
the data set was smaller than the value of N in that column.

terval contains a portion of the positive half-plane. The figure demonstrates a clear advantage of the
argumentative approach, with all data sets reaching statistically significant positive improvements
in accuracy of up to 3% and all confidence intervals covering positive values either partially or
completely. The table also shows the average execution time (in ms) for the ÂITt-G tests evaluated.

8. Conclusion

We presented a framework for addressing one of the most important problems of independence-
based structure discovery algorithms, namely the problem of unreliability of statistical independence
tests. Our main idea was to recognize the existence of interdependences among the outcomes of
conditional independence tests—in the form of Pearl’s axiomatic characterization of the conditional
independence relation—that can be seen as integrity constraints and exploited to correct unreliable
statistical tests. We modeled this setting as a knowledge base containing conditional independences
that are potentially inconsistent, and used the preference-based argumentation framework to rea-
son with and resolve these inconsistencies. We presented in detail how to apply the argumentation
framework to independence knowledge bases and how to compute the preference among the inde-
pendence propositions. We also presented a number of algorithms, both exact and approximate,
for implementing statistical testing using this framework. We analyzed the approximate algorithm
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and proved that is has polynomial worst-case execution time. We also experimentally verified that
its accuracy improvement is close to the exact one while providing orders of magnitude faster ex-
ecution, making possible its use for causal discovery in large domains. Overall, our experimental
evaluation demonstrated statistically significant improvements in the accuracy of causal discovery
for the overwhelming majority of sampled, benchmark and real-world data sets.

Appendix A. Computability of the Argumentative Independence Test

In this appendix we prove that the argumentative test terminates, a property that we call its com-
putability. Some of the theorems and lemmas presented are not original work but adaptations of
well known properties of relations. We include them to allow a complete exposition of the proof of
computability, given by Theorem 21. We first introduce some notation. We denote independence
propositions (e.g., (X⊥⊥Y | Z)) by ( and their negation (e.g., (X "⊥⊥Y | Z)) by ¬(. We abbreviate
their corresponding propositional arguments ({(},() and ({¬(},¬() by a% and a¬%, respectively,
and we will refer to a¬% as the negation of a% (and vice versa). Also, we use the predicates A(a),
R(a), Ab(a) to denote the fact the argument a is accepted, rejected, or in abeyance, respectively.

For completeness we repeat here the definition of strict and transitive preference relation.

Definition 13. We say preference relation , over arguments is strict if the ordering of arguments
induced by it is strict and total, that is, for every pair of arguments a and b,

a3" b ⇐⇒ ¬
(
b3" a

)
. (27)

Definition 14. We say that preference relation , over arguments is transitive if, for every three
arguments a, b and c, (

a3" b
)
∧

(
b3" c

)
=⇒

(
a3" c

)
.

Lemma 24. A strict preference relation , satisfies the condition that for every pair of arguments
such that a defeats b and b defeats a, it is the case that a attacks b or b attacks a, that is, at least
one of a and b attacks the other.

Proof We prove by contradiction: Let us assume that a defeats b and b defeats a but neither a
attacks b nor b attacks a. By definition of the attack relation (Definition 15),

¬
(
a attacks b

)
=⇒ ¬

(
¬(b3" a)

)
=⇒ b3" a

and
¬

(
b attacks a

)
=⇒ ¬

(
¬(a3" b)

)
=⇒ a3" b.

However, this is a contradiction since, by assumption, the preference ordering is strict, and therefore
it cannot be true that both a3" b and b3" a are true at the same time.

Lemma 25. A strict preference , satisfies the condition that for every pair a and b of arguments, it
is not the case that both a attacks b and b attacks a, that is, there can be no mutual attack.

Proof We prove by contradiction. Let us consider two mutually attacking arguments a and b. By
the definition of the attack relation, and because , is a total order, we have that

a attacks b =⇒ ¬(b3" a) =⇒
(
a3" b∨a≡" b

)
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and
b attacks b =⇒ ¬(a3" b) =⇒

(
b3" a∨b≡" a

)

where a ≡" b means a is equally preferable to b. However, equality of preference is not possible
in a strict preference relation. Therefore it must be the case that a3" b and b3" a, which is a
contradiction of Eq. (27), again due to strictness.

We next prove that no argument is in abeyance if the preference relation over arguments is strict.
For that, we first prove that an argument in abeyance is always attacked by at least another argument
in abeyance.

Lemma 8. For every argument a,

Ab(a) =⇒ ∃b ∈ attackers(a),Ab(b).

Proof By definition, an argument a is in abeyance if it is neither accepted nor rejected. Applying
the definitions of acceptance and rejection and manipulating the Boolean formulae we obtain,

Ab(a) ⇐⇒ ¬A(a)∧¬R(a)
⇐⇒ ¬

(
∀b ∈ attackers(a),R(b)

)
∧¬

(
∃b ∈ attackers(a),A(b))

)

⇐⇒
(
∃b ∈ attackers(a),¬R(b)

)
∧

(
∀b ∈ attackers(a),¬A(b))

)

⇐⇒
(
∃b ∈ attackers(a),(A(b)∨Ab(b))

)
∧

(
∀b ∈ attackers(a),¬A(b))

)

⇐⇒
(
∃b ∈ attackers(a),Ab(b)

)
∧

(
∀b ∈ attackers(a),¬A(b))

)

=⇒ ∃b ∈ attackers(a),Ab(b).

Definition 22. An attack sequence is a sequence 〈a1,a2, . . . ,an〉 of n arguments such that for every
2≤ i≤ n, ai attacks ai−1.

Lemma 26. Let 〈A ,R ,,〉 be a PAF with a strict and transitive preference relation ,. Then, no
argument can appear more than once in any attack sequence, that is, for every attack sequence
〈a1,a2, . . . ,an〉 and every pair of integers i, j ∈ [1,n] such that i "= j, ai "= a j.

Proof
We first note that by definition of the attack relation, it must be the case that for any two con-

secutive arguments ai, ai+1, it is true that ¬(ai 3" ai+1). Since , is strict, this is equivalent to
ai+1 3" ai (c.f. Eq. (27)). That is,

an 3" an−1 3" . . . 3" a2 3" a1 (28)

We now assume, for contradiction, there exists an argument a! that appears twice in the attack
sequence at indexes i! and j!, that is,

∃ i!, j! ∈ [1,n], i! "= j!, such that ai! = a j! = a!.
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Since no argument defeats itself, it cannot attack itself, and thus the smallest possible attack
sequence with a repeated argument must have at least length 3. From this fact, Eq. (28), and tran-
sitivity, there must exist an argument b "= a! such that a! 3" b3" a!. This last fact implies that
a! 3" b and b3" a! must hold, which contradicts strictness (Eq. (27)).

A corollary of this lemma is the following theorem.

Theorem 23. Every attack sequence 〈a1,a2, . . . ,an〉 in a PAF 〈A ,R ,,〉 with strict and transitive ,,
and finite A is finite.

Proof Follows directly from Lemma 26 and the fact that A is finite.

We can now prove the main result of this section in the following theorem.

Theorem 21. Given an arbitrary triplet t = (X ,Y | Z), and a PAF 〈A ,R ,,〉 with a strict and
transitive preference relation ,, and finite arguments set A , the top-down algorithm of Algorithm 3
run for input t over 〈A ,R ,,〉 terminates.

Proof In the tree traversed by the top-down algorithm, any path from the root to a leaf is an attack
sequence. Since for strict and transitive ,, and finite A each such sequence is finite, the algorithm
always terminates.

Appendix B. Validity of the Argumentative Independence Test

In this section we prove the property of the argumentative independence test of deciding that an
input triplet (X ,Y | Z) evaluates to either independence or dependence, but not both or neither. We
call this property the validity of the test.

We start we proving that under the assumption of a strict and transitive preference relation, no
argument is in abeyance.

Theorem 20. Let 〈A ,R ,,〉 be a PAF with a strict and transitive preference relation ,. Then no
argument a ∈ A is in abeyance.

Proof Let us assume, for contradiction, that there is an argument a in abeyance. From Lemma 8,
not only a has an attacker in abeyance, say argument b, but b also has an attacker in abeyance, and
so on. That is, we can construct an attack sequence starting at a that contains only arguments in
abeyance. Moreover, this sequence must be infinite, since the lemma assures as we always have at
least one attacker in abeyance. This is in direct contradiction with Theorem 23.

Corollary 27. For every argument a in a PAF 〈A ,R ,,〉 with strict and transitive ,,

A(a) ⇐⇒ ¬R(a).

We now prove a number of lemmas that hold only for the sub-class of propositional arguments
(arguments whose support contains only one proposition, equal to the head of that argument). We
start with a lemma that demonstrates that it cannot be the case that an attacker of a propositional
argument a% and an attacker of its negation a¬% do not attack each other. The former must attack
the latter or vice versa.
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Lemma 28. Let 〈A ,R ,,〉 be a PAF with a strict preference relation ,, a% ∈ A be a propositional
argument, and a¬% its negation. For every pair of arguments b and c that attacks a% and a¬%
respectively,

(b attacks c)∨ (c attacks b).

Proof Since a% and a¬% are propositional arguments, their support contains the head and only the
head, and thus any defeater (i.e., rebutter or undercutter) must have as head ¬( and (, respectively,
that is, the head of b must be ¬( and the head of c must be (. Thus, b rebuts (and thus defeats) c
and vice versa. The lemma then follows directly from Lemma 24.

Lemma 29. Let 〈A ,R ,,〉 be a PAF with a strict preference relation ,, and a% and a¬% be a propo-
sitional argument and its negation. Then,

R(a%) =⇒ ¬R(a¬%).

Proof By assumption, R(a%). We assume, for contradiction, that R(a¬%). Therefore, by the defi-
nition of rejection, ∃b ∈ attackers(a%) such that A(b), and ∃c ∈ attackers(a¬%) such that A(c). By
Lemma 28 b attacks c or c attacks b. In either case, an accepted argument is attacking an accepted
argument, which contradicts the definition of acceptance.

Lemma 30. Given a PAF 〈A ,R ,,〉with a strict preference relation ,, every propositional argument
a% ∈ A satisfies

A(a%) =⇒ ¬A(a¬%)

Proof We prove by contradiction. Let us assume that both a% and a¬% are accepted. Since a%
and a¬% are propositional arguments, they defeat each other. Then, by Lemma 24 a% attacks a¬% or
vice versa. In either case an accepted argument has an accepted attacker, which is a contradiction.

We now prove Theorem 19 that was introduced in Section 4, reproduced here for convenience.
Theorem 19. Given a PAF 〈A ,R ,,〉 with a strict and transitive preference relation ,, every propo-
sitional argument a% ∈ A and its negation a¬% satisfy

A(a%) ⇐⇒ R(a¬%).

Proof The ( =⇒ ) direction follows from Lemma 30 and Theorem 20. The (⇐=) direction follows
from Lemma 29 and Theorem 20.

In Section 4 we defined the following semantics for deciding on the dependence or independence
of an input triplet (X ,Y | Z):

({(X "⊥⊥Y | Z)},(X "⊥⊥Y | Z)) is accepted ⇐⇒ (X "⊥⊥Y | Z) is accepted =⇒ (X "⊥⊥Y | Z)
({(X⊥⊥Y | Z)},(X⊥⊥Y | Z)) is accepted ⇐⇒ (X⊥⊥Y | Z) is accepted =⇒ (X⊥⊥Y | Z) (29)

where acceptance is defined over an independence-based PAF as defined in Section 3.3. For this
argumentative test of independence to be valid, its decision must be non-ambiguous, that is, it must
decide either independence or dependence, but not both or neither. For that, exactly one of the
antecedents of the above implications must be true. Formally:
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Theorem 18. For any input triplet ( = (X ,Y | Z), the argumentative independence test defined by
Eq. (29) produces a non-ambiguous decision, that is, it decides that ( evaluates to either indepen-
dence or dependence, but not both or neither.

Proof Let us denote (X⊥⊥Y | Z) by (t and (X "⊥⊥Y | Z) by (f. Since strictness and transitivity of
the independence preference relation hold (proved in Section 3.3, lemmas 16 and 17 respectively),
Theorems 19 and 20 hold as well. From Theorem 20 we know that neither of the propositional ar-
guments is in abeyance. Thus, since a%t corresponds to the negation of a%f it follows from Theorem
19 that exactly one of them is accepted.
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Abstract
In this paper, we study low-rank matrix nearness problems, with a focus on learning low-rank
positive semidefinite (kernel) matrices for machine learning applications. We propose efficient
algorithms that scale linearly in the number of data points and quadratically in the rank of the input
matrix. Existing algorithms for learning kernel matrices often scale poorly, with running times that
are cubic in the number of data points. We employ Bregman matrix divergences as the measures
of nearness—these divergences are natural for learning low-rank kernels since they preserve rank
as well as positive semidefiniteness. Special cases of our framework yield faster algorithms for
various existing learning problems, and experimental results demonstrate that our algorithms can
effectively learn both low-rank and full-rank kernel matrices.
Keywords: kernel methods, Bregman divergences, convex optimization, kernel learning, matrix
nearness

1. Introduction

Underlying many machine learning algorithms is a measure of distance, or divergence, between
data objects. A number of factors affect the choice of the particular divergence measure used: the
data may be intrinsically suited for a specific divergence measure, an algorithm may be faster or
easier to implement for some measure, or analysis may be simpler for a particular measure. For
example, the KL-divergence is popular when the data is represented as discrete probability vectors
(i.e., non-negative vectors whose sum is 1), and the !1-norm distance is often used when sparsity is
desired.

When measuring the divergence between matrices, similar issues must be considered. Typically,
matrix norms such as the Frobenius norm are used, but these measures are not appropriate for all
problems. Analogous to the KL-divergence for vectors, when the matrices under consideration are
positive semidefinite (i.e., they have non-negative eigenvalues), then one may want to choose a
divergence measure that is well-suited to such matrices; positive semidefinite (PSD) matrices arise
frequently in machine learning, in particular with kernel methods. Existing learning techniques
involving PSD matrices often employ matrix norms, but their use requires an additional constraint
that the matrix stay positive semidefinite, which ultimately leads to algorithms involving expensive
eigenvector computation. Kernel alignment, a measure of similarity between PSD matrices used
in some kernel learning algorithms (Cristianini et al., 2002), also requires explicit enforcement of
positive definiteness. On the other hand, the twomain divergences used in this paper are defined only
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over the cone of positive semidefinite matrices, and our algorithms lead to automatic enforcement
of positive semidefiniteness.

This paper focuses on kernel learning using two divergence measures between PSD matrices—
the LogDet divergence and the von Neumann divergence. Our kernel learning goal is to find a
PSD matrix which is as close as possible (under the LogDet or von Neumann divergence) to some
input PSD matrix, but which additionally satisfies linear equality or inequality constraints. We
argue that these two divergences are natural for problems involving positive definite matrices. First,
they have several properties which make optimization computationally efficient and useful for a
variety of learning tasks. For example, the LogDet divergence has a scale-invariance property which
makes it particularly well-suited to machine learning applications. Second, these divergences arise
naturally in several problems; for example, the LogDet divergence arises in problems involving
the differential relative entropy between Gaussian distributions while the von Neumann divergence
arises in quantum computing and problems such as online PCA.

One of the key properties that we demonstrate and exploit is that, for low-rank matrices, the
divergences enjoy a range-space preserving property. That is, the LogDet divergence between two
matrices is finite if and only if their range spaces are identical, and a similar property holds for the
von Neumann divergence. This property leads to simple projection-based algorithms for learning
PSD (or kernel) matrices that preserve the rank of the input matrix—if the input matrix is low-rank
then the resulting learned matrix will also be low-rank. These algorithms are efficient; they scale
linearly with the number of data points n and quadratically with the rank of the input matrix. The
efficiency of the algorithms arises from new results developed in this paper which demonstrate that
Bregman projections for these matrix divergences can be computed in time that scales quadratically
with the rank of the input matrix. Our algorithms stand in contrast to previous work on learning
kernel matrices, which scale as O(n3) or worse, relying on semidefinite programming or repeated
eigenvector computation. We emphasize that our methods preserve rank, so they can learn low-rank
kernel matrices when the input kernel matrix has low rank; however our methods do not decrease
rank so they are not applicable to the non-convex problem of finding a low-rank solution given a
full (or higher) rank input kernel matrix.

One special case of our method is the DefiniteBoost optimization problem from Tsuda et al.
(2005); our analysis shows how to improve the running time of their algorithm by a factor of n,
from O(n3) time per projection to O(n2). This projection is also used in online-PCA (Warmuth
and Kuzmin, 2006), and we obtain a factor of n speedup for that problem as well. In terms of
experimental results, a direct application of our techniques is in learning low-rank kernel matrices
in the setting where we have background information for a subset of the data; we discuss and
experiment with learning low-rank kernel matrices for classification and clustering in this setting,
demonstrating that we can scale to large data sets. We also discuss the use of our divergences for
learning Mahalanobis distance functions, which allows us to move beyond the transductive setting
and generalize to new points. In this vein, we empirically compare our methods to existing metric
learning algorithms; we are particularly interested in large-scale applications, and discuss some
recent applications of the algorithms developed in this paper to computer vision tasks.

2. Background and Related Work

In this section, we briefly review relevant background material and related work.
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2.1 Kernel Methods

Given a set of training points a1, ...,an, a common step in kernel algorithms is to transform the data
using a nonlinear function !. This mapping, typically, represents a transformation of the data to a
higher-dimensional feature space. A kernel function " gives the inner product between two vectors
in the feature space:

"(ai,a j) = !(ai) ·!(a j).

It is often possible to compute this inner product without explicitly computing the expensive map-
ping of the input points to the higher-dimensional feature space. Generally, given n points ai, we
form an n× n matrix K, called the kernel matrix, whose (i, j) entry corresponds to "(ai,a j). In
kernel-based algorithms, the only information needed about the input data points is the inner prod-
ucts; hence, the kernel matrix provides all relevant information for learning in the feature space. A
kernel matrix formed from any set of input data points is always positive semidefinite. See Shawe-
Taylor and Cristianini (2004) for more details.

2.2 Low-Rank Kernel Representations and Kernel Learning

Despite the popularity of kernel methods in machine learning, many kernel-based algorithms scale
poorly; low-rank kernel representations address this issue. Given an n× n kernel matrix K, if the
matrix is of low rank, say r < n, we can represent the kernel matrix in terms of a factorization
K = GGT , with G an n× r matrix.

In addition to easing the burden of memory overhead fromO(n2) storage toO(nr), this low-rank
decomposition can lead to improved efficiency. For example, Fine and Scheinberg (2001) show that
SVM training reduces from O(n3) to O(nr2) when using a low-rank decomposition. Empirically,
the algorithm in Fine and Scheinberg (2001) outperforms other SVM training algorithms in terms
of training time by several factors. In clustering, the kernel k-means algorithm (Dhillon et al., 2004)
has a running time of O(n2) per iteration, which can be improved to O(nrc) time per iteration with
a low-rank kernel representation, where c is the number of desired clusters. Low-rank kernel rep-
resentations are often obtained using incomplete Cholesky decompositions (Fine and Scheinberg,
2001). Recently, work has been done on using labeled data to improve the quality of low-rank
decompositions (Bach and Jordan, 2005).

Low-rank decompositions have also been employed for solving a number of other machine
learning problems. For example, in Kulis et al. (2007b), low-rank decompositions were employed
for clustering and embedding problems. In contrast to work in this paper, their focus was on using
low-rank decompositions to develop algorithms for such problems as k-means and maximum vari-
ance unfolding. Other examples of using low-rank decompositions to speed up machine learning
algorithms include Weinberger et al. (2006) and Torresani and Lee (2006).

In this paper, our focus is on using distance and similarity constraints to learn a low-rank kernel
matrix. In related work, Lanckriet et al. (2004) have studied transductive learning of the kernel
matrix and multiple kernel learning using semidefinite programming. In Kwok and Tsang (2003),
a formulation based on idealized kernels is presented to learn a kernel matrix when some labels
are given. Another recent paper (Weinberger et al., 2004) considers learning a kernel matrix for
nonlinear dimensionality reduction; like much of the research on learning a kernel matrix, they
use semidefinite programming and the running time is at least cubic in the number of data points.
Our work is closest to that of Tsuda et al. (2005), who learn a (full-rank) kernel matrix using von
Neumann divergence under linear constraints. However, our framework is more general and our
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emphasis is on low-rank kernel learning. Our algorithms are more efficient than those of Tsuda
et al.; we use exact instead of approximate projections to speed up convergence, and we consider
algorithms for the LogDet divergence in addition to the von Neumann divergence. For the case
of the von Neumann divergence, our algorithm also corrects a mistake in Tsuda et al. (2005); see
Appendix B for details.

An earlier version of our work appeared in Kulis et al. (2006). In this paper, we substantially
expand on the analysis of Bregman matrix divergences, giving a formal treatment of low-rank Breg-
man matrix divergences and proving several new properties. We also present further algorithmic
analysis for the LogDet and von Neumann algorithms, provide connections to semidefinite pro-
gramming and metric learning, and present additional experiments, including ones on much larger
data sets.

3. Optimization Framework

We begin with an overview of the optimization framework applied to the problem studied in this
paper. We introduce Bregman matrix divergences—the matrix divergence measures considered in
this paper—and discuss their properties. Then we overview Bregman’s method, the optimization
algorithm that is used to learn low-rank kernel matrices.

3.1 Bregman Matrix Divergences

To measure the nearness between two matrices, we will use Bregman matrix divergences, which
are generalizations of Bregman vector divergences. Let # be a real-valued strictly convex function
defined over a convex set S = dom(#) ⊆ Rm such that # is differentiable on the relative interior of
S. The Bregman vector divergence (Bregman, 1967) with respect to # is defined as

D!(x,y) = #(x)−#(y)− (x−y)T$#(y).

For example, if #(x) = xTx, then the resulting Bregman divergence is D!(x,y) = ‖x−y‖22. An-
other example is #(x) = %i(xi logxi− xi), where the resulting Bregman divergence is the (unnor-
malized) relative entropy D!(x,y) = KL(x,y) = %i(xi log xiyi − xi+ yi). Bregman divergences gen-
eralize many properties of squared loss and relative entropy. See Censor and Zenios (1997) for more
details.

We can naturally extend this definition to real, symmetric n×n matrices, denoted by Sn. Given
a strictly convex, differentiable function & : Sn → R, the Bregman matrix divergence is defined to be

D"(X ,Y ) = &(X)−&(Y )− tr(($&(Y ))T (X−Y )),

where tr(A) denotes the trace of matrix A. Examples include &(X) = ‖X‖2F , which leads to the
well-known squared Frobenius norm ‖X −Y‖2F . In this paper, we will extensively study two less
well-known divergences. Let & be the entropy of the eigenvalues of a positive definite matrix.
Specifically, if X has eigenvalues '1, ...,'n, let &(X) = %i('i log'i−'i), which may be expressed
as &(X) = tr(X logX−X), where logX is the matrix logarithm.1 The resulting Bregman divergence
is

DvN(X ,Y ) = tr(X logX−X logY −X+Y ), (1)

1. If X = V!V T is the eigendecomposition of the positive definite matrix X , the matrix logarithm can be written as
V log!V T , where log! is the diagonal matrix whose entries contain the logarithm of the eigenvalues. The matrix
exponential can be defined analogously.
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and we call it the von Neumann divergence. This divergence is also called quantum relative entropy,
and is used in quantum information theory (Nielsen and Chuang, 2000). Another important matrix
divergence arises by taking the Burg entropy of the eigenvalues, that is, &(X) =−%i log'i, or equiv-
alently as &(X) = − logdetX . The resulting Bregman divergence over positive definite matrices is

D!d(X ,Y ) = tr(XY−1)− logdet(XY−1)−n, (2)

and is commonly called the LogDet divergence (we called it the Burg matrix divergence in Kulis
et al. (2006)). For now, we assume that X is positive definite for both divergences; later we will
discuss extensions when X is positive semidefinite, that is, low-rank.

3.2 Properties

It is important to justify the use of the divergences introduced above for kernel learning, so we now
discuss some important properties of the divergences.

The most obvious computational benefit of using the divergences for kernel learning arises from
the fact that they are defined only over positive definite matrices. Because of this, our algorithms
will not need to explicitly constrain our learned matrices to be positive definite, which in turn leads
to efficient algorithms. Beyond automatic enforcement of positive definiteness, we will see later
that the divergences have a range-space preserving property, which leads to further computational
benefits.

Appendix A covers some important properties of the divergences. Examples include the scale-
invariance of the LogDet divergence (D!d(X ,Y )=D!d((X ,(Y )) and, more generally, transformation-
invariance (D!d(X ,Y ) = D!d(MTXM,MTYM) for any square, non-singular M), which are useful
properties for learning algorithms. For instance, if we have applied a linear kernel over a set of
data vectors, scale-invariance implies that we can scale all the features of our data vectors, and our
learned kernel will simply be scaled by the same factor. Similarly, if we scale each of the features in
our data vectors differently (for example, if some features are measured in feet and others in meters
as opposed to all features measured in feet), then the learned kernel will be scaled by an appropriate
diagonal transformation. Note that this natural property does not hold for loss functions such as the
Frobenius norm distance.

Another critical property concerns generalization to new points. Typically kernel learning algo-
rithms work in the transductive setting, meaning that all of the data is given up-front, with some of
it labeled and some unlabeled, and one learns a kernel matrix over all the data points. If some new
data point is given, there is no way to compare it to existing data points, so a new kernel matrix must
be learned. However, as has recently been shown in Davis et al. (2007), we can move beyond the
transductive setting when using the LogDet divergence, and can evaluate the kernel function over
new data points. A similar result can be shown for the von Neumann divergence. We overview this
recent work in Section 6.1, though the main focus in this paper remains in the transductive setting.

Furthermore, both the LogDet divergence and the von Neumann divergence have precedence in
a number of areas. The von Neumann divergence is used in quantum information theory (Nielsen
and Chuang, 2000), and has been employed in machine learning for online principal component
analysis (Warmuth and Kuzmin, 2006). The LogDet divergence is called Stein’s loss in the statistics
literature, where it has been used as a measure of distance between covariance matrices (James and
Stein, 1961). It has also been employed in the optimization community; the updates for the BFGS
and DFP algorithms (Fletcher, 1991), both quasi-Newton algorithms, can be viewed as LogDet
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optimization programs. In particular, the update to the approximation of the Hessian given in these
algorithms is the result of a LogDet minimization problem with linear constraints (given by the
secant equation).

For all three divergences introduced above, the generating convex function of the Bregman ma-
trix divergence can be viewed as a composition &(X) = (#◦')(X), where '(X) is the function that
lists the eigenvalues in algebraically decreasing order, and # is a strictly convex function defined
over vectors (Dhillon and Tropp, 2007). In general, every such # defines a Bregman matrix di-
vergence over real, symmetric matrices via the eigenvalue mapping. For example, if #(x) = xTx,
then the resulting composition (#◦')(X) is the squared Frobenius norm. We call such divergences
spectral Bregman matrix divergences.

Consider a spectral Bregman matrix divergence D"(X ,Y ), where & = # ◦'. We now show an
alternate expression for D"(X ,Y ) based on the eigenvalues and eigenvectors of X and Y , which will
prove to be useful when motivating extensions to the low-rank case.

Lemma 1 Let the eigendecompositions of X and Y be V)V T and U*UT respectively, and assume
that # is separable, that is, &(X) = (#◦')(X) = %i#i('i). Then

D"(X ,Y ) =!
i, j

(vTi u j)2(#i('i)−# j(+ j)− ('i−+ j)$# j(+ j)).

Proof We have

D"(X ,Y ) = &(X)−&(Y )− tr((X−Y )T ($&(Y )))
= !

i
#i('i)−!

j
# j(+ j)− tr((V)V T −U*UT )T ($&(Y )))

= !
i, j

(vTi u j)2#i('i)−!
i, j

(vTi u j)2# j(+ j)− tr((V)V T −U*UT )T ($&(Y ))).

The second line above uses the separability of #, while the third line uses the fact that %i(vTi u j)2 =
% j(vTi u j)2 = 1. We can express $&(Y ) as:

$&(Y ) =U




$#1(+1) 0 . . .

0 $#2(+2) . . .
...

... . . .



UT ,

and so we have tr(U*UT$&(Y )) = % j + j$# j(+ j) = %i, j(vTi u j)2+ j$# j(+ j). Finally, the term
tr(V)V T$&(Y )) can be expanded as %i, j(vTi u j)2'i$# j(+ j). Putting this all together, we have:

D"(X ,Y ) = !
i, j

(vTi u j)2(#i('i)−# j(+ j)−$# j(+ j) · ('i−+ j)).

Note that each of the divergences discussed earlier—the squared Frobenius divergence, the
LogDet divergence, and the von Neumann divergence—arise from separable convex functions. Fur-
thermore, in these three cases, the functions #i do not depend on i (so we denote #= #1 = . . . = #n)
and the corollary below follows:
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Corollary 2 Given X =V)V T and Y =U*UT , the squared Frobenius, von Neumann and LogDet
divergences satisfy:

D"(X ,Y ) =!
i, j

(vTi u j)2D!('i,+ j). (3)

This formula highlights the connection between a separable spectral matrix divergence and the
corresponding vector divergence. It also illustrates how the divergence relates to the geometrical
properties of the argument matrices as represented by the eigenvectors.

3.3 Problem Description

We now give a formal statement of the problem that we study in this paper. Given an input kernel
matrix X0, we attempt to solve the following for X :

minimize D"(X ,X0)
subject to tr(XAi) ≤ bi, 1≤ i≤ c,

rank(X) ≤ r,
X ( 0. (4)

Any of the linear inequality constraints tr(XAi) ≤ bi may be replaced with equalities. The above
problem is clearly non-convex in general, due to the rank constraint. However, when the rank of
X0 does not exceed r, then this problem turns out to be convex when we use the von Neumann and
LogDet matrix divergences. This is because these divergences restrict the search for the optimal X
to the linear subspace of matrices that have the same range space as X0. The details will emerge
in Section 4. Another advantage of using the von Neumann and LogDet divergences is that the al-
gorithms used to solve the minimization problem implicitly maintain the positive semidefiniteness
constraint, so no extra work needs to be done to enforce positive semidefiniteness. This is in con-
trast to the squared Frobenius divergence, where the positive semidefiniteness constraint has to be
explicitly enforced.

Though it is possible to handle general linear constraints of the form tr(XAi) ≤ bi, we will
focus on two specific types of constraints, which will be useful for our kernel learning applications.
The first is a distance constraint. The squared Euclidean distance in feature space between the jth
and the kth data points is given by X j j +Xkk− 2X jk. The constraint X j j +Xkk− 2X jk ≤ bi can be
represented as tr(XA) ≤ bi, where Ai = zizTi , and zi( j) = 1, zi(k) = −1, and all other entries 0
(equivalently, zi = e j − ek). The second type of constraint has the form X jk ≤ bi, which can be
written as tr(XAi) ≤ bi using Ai = 1

2(e jeTk +ekeTj ) (we maintain symmetry of Ai).
For the algorithms developed in Section 5, we will assume that the matrices Ai in (4) are rank

one (so Ai = zizTi ) and that r = rank(X0) (we briefly discuss extensions to higher-rank constraints
in Section 6.2.2). In this case, we can write the optimization problem as:

minimize D"(X ,X0)
subject to zTi Xzi ≤ bi, 1≤ i≤ c,

rank(X) ≤ r,
X ( 0. (5)
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Furthermore, we assume that there exists a feasible solution to the above problem; we discuss an
extension to the infeasible case involving slack variables in Section 6.2.1. Note that in this case, we
assume bi ≥ 0, as otherwise there cannot be a feasible solution.

The key application of the above optimization problem is in learning a kernel matrix in the
setting where we have side information about some of the data points (e.g., labels or constraints),
and we want to learn a kernel matrix over all the data points in order to perform classification,
regression, or semi-supervised clustering. We will also discuss other applications throughout the
paper.

3.4 Bregman Projections

Consider the convex optimization problem (4) presented above, but without the rank constraint (we
will see how to handle the rank constraint later). To solve this problem, we use the method of
Bregman projections (Bregman, 1967; Censor and Zenios, 1997). Suppose we wish to minimize
D"(X ,X0) subject to linear equality and inequality constraints. The idea behind Bregman projec-
tions is to choose one constraint per iteration, and perform a projection so that the current solution
satisfies the chosen constraint. Note that the projection is not an orthogonal projection, but rather
a Bregman projection, which is tailored to the particular function that is being minimized. In the
case of inequality constraints, an appropriate correction is also enforced. This process is then re-
peated by cycling through the constraints (or employing a more sophisticated control mechanism).
This method may also be viewed as a dual coordinate ascent procedure that optimizes the dual with
respect to a single dual variable per iteration (with all other dual variables remaining fixed). Un-
der mild conditions, it can be shown that the method of cyclic Bregman projections (or a control
mechanism that visits each constraint infinitely often) converges to the globally optimal solution;
see Censor and Zenios (1997) and Dhillon and Tropp (2007) for more details.

Now for the details of each iteration. For an equality constraint of the form tr(XAi) = bi, the
Bregman projection of the current iterate Xt may be computed by solving:

minimizeX D"(X ,Xt)
subject to tr(XAi) = bi. (6)

Introduce the dual variable (i, and form the Lagrangian L(X ,(i) = D"(X ,Xt)+(i(bi− tr(XAi)).
By setting the gradient of the Lagrangian (with respect to X and (i) to zero, we can obtain the
Bregman projection by solving the resulting system of equations simultaneously for (i and Xt+1:

$&(Xt+1) = $&(Xt)+(iAi (7)
tr(Xt+1Ai) = bi.

For an inequality constraint of the form tr(XAi) ≤ bi, let ,i ≥ 0 be the corresponding dual vari-
able. To maintain non-negativity of the dual variable (which is necessary for satisfying the KKT
conditions), we can solve (7) for (i and perform the following update:

(′
i =min(,i,(i), ,i ← ,i−(′

i. (8)

See Appendix B for a discussion on why the dual variable corrections are needed. Clearly the update
guarantees that ,i ≥ 0. Finally, update Xt+1 via

$&(Xt+1) = $&(Xt)+(′
iAi. (9)
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Note that (8) may be viewed as a correction step that follows the projection given by (7). Both of
our algorithms in Section 5 are based on this method, which iteratively chooses a constraint and
performs a Bregman projection until convergence. The main difficulty lies in efficiently solving the
nonlinear system of equations given in (7).

In the case where Ai = zizTi , by calculating the gradient for the LogDet and von Neumann
matrix divergences, respectively, (7) simplifies to:

Xt+1 =
(
X−1
t −(iziz

T
i
)−1

Xt+1 = exp(log(Xt)+(izizTi ), (10)

subject to zTi Xt+1zi = bi. In (10), exp and log denote the matrix exponential and matrix logarithm,
respectively. As we will see, for the von Neumann and LogDet divergences, these projections can
be computed very efficiently (and are thus more desirable than other methods that involve multiple
constraints at a time).

4. Bregman Divergences for Rank-Deficient Matrices

As given in (1) and (2), the von Neumann and LogDet divergences are undefined for low-rank
matrices. For the LogDet divergence, the convex generating function &(X) = − logdetX is infinite
when X is singular, that is, its effective domain is the set of positive definite matrices. For the von
Neumann divergence the situation is somewhat better, since one can define &(X) = tr(X logX −X)
via continuity for rank-deficient matrices.

The key to using these divergences in the low-rank setting comes from restricting the convex
function & to the range spaces of the matrices. We motivate our approach using Corollary 2, before
formalizing it in Section 4.2. Subsequently, we discuss the computation of Bregman projections for
low-rank matrices in Section 4.3.

4.1 Motivation

If X and Y have eigendecompositions X =V)V T and Y =U*UT , respectively, then whenever X or
Y is of low-rank, some eigenvalues 'i of X or + j of Y are equal to zero. Consequently, if we could
apply Corollary 2, the D!('i,+ j) terms that involve zero eigenvalues need careful treatment. More
specifically, for the von Neumann divergence we have:

D!('i,+ j) = 'i log'i−'i log+ j−'i++ j. (11)

Using the convention that 0 log0 = 0, D!('i,+ j) equals 0 when both 'i and + j are 0, but is infinite
when + j is 0 but 'i is non-zero. Similarly, with the LogDet divergence, we have

D!('i,+ j) =
'i
+ j

− log 'i
+ j

−1. (12)

In cases where 'i = 0 and + j += 0, or 'i += 0 and + j = 0, D!('i,+ j) is infinite.
For finiteness of the corresponding matrix divergence we require that vTi u j = 0 whenever

D!('i,+ j) is infinite so a cancellation will occur (via appropriate continuity arguments) and the
divergence will be finite. This leads to properties of rank-deficient X and Y that are required for
the matrix divergence to be finite. The following observations are discussed more formally in Sec-
tion 4.2.
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Observation 1 The von Neumann divergence DvN(X ,Y ) is finite iff range(X)⊆ range(Y ).

The term 'i log+ j from (11) is −- if + j = 0 but 'i += 0. By using Corollary 2 and distributing
the (vTi u j)2 term into the scalar divergence, we obtain: 'i(vTi u j)2 log+ j. Thus, if vTi u j = 0 when
+ j = 0, then 'i(vTi u j)2 log+ j = 0 (using 0log0= 0), and the divergence is finite. When + j = 0, the
corresponding eigenvector u j is in the null space of Y ; therefore, for finiteness of the divergence,
every vector u j in the null space of Y is orthogonal to any vector vi in the range space of X . This
implies that the null space of Y contains the null space of X or, equivalently, range(X) ⊆ range(Y ).

Observation 2 The LogDet divergence D!d(X ,Y ) is finite iff range(X) = range(Y ).

To show the observation, we adopt the conventions that log 00 = 0 and 0
0 = 1 in (12), which

follow by continuity assuming that the rate at which the numerator and denominator approach zero
is the same. Then, distributing the (vTi u j)2 term intoD!, we have that vi and u j must be orthogonal
whenever 'i = 0,+ j += 0 or 'i += 0,+ j = 0. This in turn says that: a) every vector u j in the null space
of Y must be orthogonal to every vector vi in the range space of X and, b) every vector vi in the null
space of X must be orthogonal to every vector u j in the range space of Y . It follows that the range
spaces of X and Y are equal.

Assuming the eigenvalues of X and Y are listed in non-increasing order, we can write the low-
rank equivalent of (3) simply as:

D"(X ,Y ) = !
i, j≤r

(vTi u j)2D!('i,+ j),

where r = rank(X).
If we now revisit our optimization problem formulated in (4), where we aim to minimize

D"(X ,X0), we see that the LogDet and von Neumann divergences naturally maintain rank con-
straints if the problem is feasible. For the LogDet divergence, the equality of the range spaces of
X and X0 implies that when minimizing D"(X ,X0), we maintain rank(X) = rank(X0), assuming
that there is a feasible X with a finite D"(X ,X0). Similarly, for the von Neumann divergence, the
property that range(X) ⊆ range(X0) implies rank(X) ≤ rank(X0).

4.2 Formalization Via Restrictions on the Range Space

The above section demonstrated informally that for D"(X ,Y ) to be finite the range spaces of X and
Y must be equal for the LogDet divergence, and the range space of X must be contained in the range
space of Y for the von Neumann divergence.

We now formalize the generalization to low-rank matrices. LetW be an orthogonal n×r matrix,
such that its columns span the range space of Y . We will use the following simple and well known
lemma later on:

Lemma 3 Let Y be a symmetric n× n matrix with rank(Y ) ≤ r, and let W be an n× r column
orthogonal matrix (W TW = I) with range(Y ) ⊆ range(W ). Then Y =WW TYWW T .

Proof ExtendW to a full n×n orthogonal matrix and denote it byW f . Notice that the last (n− r)
rows ofW T

f Y and the last (n− r) columns of YW f consist of only zeros. It follows that the matrix
Y1 =W T

f YWf contains only zeros except for the r× r sub-matrix in the top left corner, which coin-
cides with Ŷ =W TYW . Observe that Y =W fY1W T

f =WŶW T =WW TYWW T to finish the proof.
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We are now ready to extend the domain of the von Neumann and LogDet divergences to low-
rank matrices.

Definition 4 Consider the positive semidefinite n× n matrices X and Y that satisfy range(X) ⊆
range(Y ) when considering the von Neumann divergence, and range(X) = range(Y ) when consid-
ering the LogDet divergence. Let W be an n× r column orthogonal matrix such that range(Y ) ⊆
range(W ) and define:

D"(X ,Y ) = D",W (X ,Y ) = D"(W TXW,W TYW ), (13)

where D" is either the von Neumann or the LogDet divergence.

The first equality in (13) implicitly assumes that the right hand side is not dependent on the choice
ofW .

Lemma 5 In Definition 4, D",W (X ,Y ) is independent of the choice of W.

Proof All the n× r orthogonal matrices with the same range space as W can be expressed as a
product WQ, where Q is an r× r orthogonal matrix. Introduce X̂ =W TXW and Ŷ =W TYW and
substituteWQ in place ofW in (13):

D",WQ(X ,Y ) = D"((WQ)TX(WQ),(WQ)TY (WQ))
= D"(QT X̂Q,QT ŶQ)
= D"(X̂ ,Ŷ ) = D",W (X ,Y ).

The first equality is by Definition 4, and the third follows from the fact that the von Neumann and
the LogDet divergences are invariant under any orthogonal similarity transformation2 (see Proposi-
tion 11 in Appendix A).

We now show that Definition 4 is consistent with Corollary 2, demonstrating that our low-rank
formulation agrees with the informal discussion given earlier.

Theorem 6 Let the positive semidefinite matrices X and Y have eigendecompositions X =V)V T ,
Y =U*UT and let range(X) ⊆ range(Y ). Let the rank of Y equal r. Assuming that the eigenvalues
of X and Y are sorted in non-increasing order, that is, '1 ≥ '2 ≥ ... ≥ 'r and +1 ≥ +2 ≥ ... ≥ +r,
then

DvN(X ,Y ) = !
i, j≤r

(vTi u j)2('i log'i−'i log+ j−'i++ j).

Proof Denote the upper left r× r submatrices of ) and * by )r and *r respectively, and the
corresponding reduced eigenvector matrices for X and Y by Vr and Ur. PickingW in (13) to equal
Ur, we get:

DvN(X ,Y ) = DvN(UT
r XUr,UT

r YUr) = DvN((UT
r Vr))r(V T

r Ur),*r).

The arguments on the right hand side are r× r matrices and *r is not rank-deficient. We can now
apply Corollary 2 to get the result.

2. In fact, in the case of the LogDet divergence we have invariance under any invertible congruence transformation, see
Proposition 12 in Appendix A.
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Theorem 7 Let the positive semidefinite matrices X and Y have eigendecompositions X =V)V T ,
Y =U*UT , and let range(X) = range(Y ) and assume that the eigenvalues of X and Y are sorted in
decreasing order. Then:

D!d(X ,Y ) = !
i, j≤r

(vTi u j)2
(
'i
+ j

− log 'i
+ j

−1
)

.

Proof Similar to the proof of Theorem 6. Note that the range spaces must coincide in this case,
because the determinant of XY−1 should not vanish for the restricted transformations, which agrees
with the range(X) = range(Y ) restriction.

We next show that the optimization problem and Bregman’s projection algorithm for low-rank ma-
trices can be cast as a full rank problem in a lower dimensional space, namely the range space. This
equivalence implies that we do not have to rederive the convergence proofs and other properties of
Bregman’s algorithm in the low-rank setting.

Consider the optimization problem (4) for low-rank X0, and denote a suitable orthogonal matrix
as required in Definition 4 byW . The matrix of the eigenvectors of the reduced eigendecomposition
of X0 is a suitable choice. Consider the following matrix mapping:

M −→ M̂ =W TMW.

By Lemma 3, the mapping is one-to-one on the set of symmetric matrices with range space con-
tained in range(W ). We now apply the mapping to all matrices in the optimization problem (4) to
obtain:

minimize D"(X̂ , X̂0)
subject to tr(X̂ Âi) ≤ bi, 1≤ i≤ c

rank(X̂) ≤ r
X̂ ( 0. (14)

The rank constraint is automatically satisfied when rank(X0)= r and the problem is feasible. Clearly,
X̂ ( 0 if and only if X ( 0. By Definition 4, D"(X̂ , X̂0) =D"(X ,X0). Finally, the next lemma verifies
that the constraints are equivalent as well.

Lemma 8 Given a column orthogonal n× r matrix W satisfying range(X) ⊆ range(W ), it follows
that tr(X̂ Âi) = tr(XAi), where X̂ =W TXW, Âi =W TAiW.

Proof Choose a reduced rank-r eigendecomposition of X to be V)V T such that the columns of V
form an orthogonal basis of range(W ). Note that ) will be singular when rank(X) is less than r.
There exists an r× r orthogonal Q that satisfiesW =VQ, and so:

tr(X̂ Âi) = tr((W TXW )(W TAiW )) = tr(QTV TV)V TVQQTV TAiVQ)
= tr(VQQT)QQTV TAi) = tr(V)V TAi) = tr(XAi).

If we assume that the optimization problem (4) has a (rank-deficient) solution with finite divergence
measure, then the corresponding full-rank optimization problem (14) also has a solution. Con-
versely, by Lemma 3, for a solution X̂ of (14), there is a unique solution of (4), namely X =WX̂W T

(with finite D"(X ,X0)) that satisfies the range space restriction.
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4.3 Bregman Projections for Rank-deficient Matrices

Lastly, we derive the explicit updates for Bregman’s algorithm in the low-rank setting. From now
on we omit the constraint index for simplicity. Recall (7), which we used to calculate the projection
update for Bregman’s algorithm and apply it to the mapped problem (14):

$&(X̂t+1) = $&(X̂t)+(Â
tr(X̂t+1Â) = b.

In case of the von Neumann divergence this leads to the update X̂t+1 = exp(log(X̂t)+(Â). The dis-
cussion in Section 4.2 and induction on t implies that Xt+1 =WX̂t+1W T (withW as in Definition 4),
or explicitly:

Xt+1 =W exp(log(W TXtW )+((W TAW ))W T .

If we chooseW =Vt from the reduced eigendecomposition Xt =Vt)tV T
t , then the update is written

as:
Xt+1 =Vt exp(log()t)+(V T

t AVt)V T
t , (15)

which we will use in the von Neumann kernel learning algorithm. Note that the limit of exp(log(Xt+
.I)+(A) as . approaches zero yields the same formula, which becomes clear if we apply a basis
transformation that puts Xt in diagonal form.

The same argument applies to the Bregman projection for the LogDet divergence. In this case
we arrive at the update:

Xt+1 =Vt((V T
t XtVt)−1−((V T

t AVt))−1V T
t , (16)

using Lemma 3 and the fact that range(Xt+1) = range(Xt). The right hand side of (16) can be
calculated without any eigendecomposition as we will show in Section 5.1.1.

5. Algorithms

In this section, we derive efficient algorithms for solving the optimization problem (5) for low-rank
matrices using the LogDet and von Neumann divergences.

5.1 LogDet Divergence

We first develop a cyclic projection algorithm to solve (5) when the matrix divergence is the LogDet
divergence.

5.1.1 MATRIX UPDATES

Consider minimizing D!d(X ,X0), the LogDet divergence between X and X0. As given in (16), the
projection update rule for low-rank X0 and a rank-one constraint matrix A= zzT is:

Xt+1 =Vt((V T
t XtVt)−1−((V T

t zzTVt))−1V T
t ,

where the eigendecomposition of Xt isVt)tV T
t . Recall the Sherman-Morrison inverse formula (Sher-

man and Morrison, 1949; Golub and Van Loan, 1996):

(A+uvT )−1 = A−1− A−1uvTA−1

1+vTA−1u
.
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Applying this formula to the middle term of the projection update, we arrive at a simplified expres-
sion for Xt+1:

Xt+1 = Vt
(
V T
t XtVt +

(V T
t XtVtV T

t zzTVtV T
t XtVt

1−(zTVtV T
t XtVtV T

t z

)
V T
t

= Vt
(
)t +

()tV T
t zzTVt)t

1−(zTVt)tV T
t z

)
V T
t

= Vt)tV T
t +

(Vt)tV T
t zzTVt)tV T

t
1−(zTXtz

= Xt +
(XtzzTXt
1−(zTXtz

. (17)

Since Xt+1 must satisfy the constraint, i. e., tr(Xt+1zzT ) = zTXt+1z = b, we can solve the following
equation for (:

zT
(
Xt +

(XtzzTXt
1−(zTXtz

)
z = b. (18)

Let p= zTXtz. Note that in the case of distance constraints, p is the distance between the two data
points. When p += 0, elementary arguments reveal that there is exactly one solution for ( provided
that b += 0. The unique solution, in this case, can be expressed as:

(=
1
p
− 1
b
. (19)

If we let
/= (/(1−(p), (20)

then our matrix update is given by

Xt+1 = Xt +/XtzzTXt . (21)

This update is pleasant and surprising; usually the projection parameter for Bregman’s algo-
rithm does not admit a closed form solution (see Section 5.2.2 for the case of the von Neumann
divergence). In the case where p= 0, (18) rewrites to b= p/(1−(p), which has a solution if and
only if b= 0 (while ( is arbitrary). It follows that z is in the null space of Xt , and by (17), Xt+1 = Xt .

The following lemma confirms the expectation that we remain in the positive semidefinite cone
and that the range space is unchanged.

Lemma 9 Given a positive semidefinite matrix Xt , the matrix Xt+1 from the update in (21) is positive
semidefinite with range(Xt+1) = range(Xt), assuming that (6) is feasible.

Proof Factor the positive semidefinite matrix Xt as GGT , where G is an n× r matrix and r =
rank(Xt). The LogDet update produces:

Xt+1 = GGT +/GGTzzTGGT = G(I+/GTzzTG)GT .

We deduce immediately that range(Xt+1) ⊆ range(G) = range(Xt).
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In order to prove that Xt+1 is positive semidefinite and that the range space does not shrink,
it suffices to show that all eigenvalues of /GTzzTG are strictly larger than −1, implying that I+
/GTzzTG remains positive definite. The only non-zero eigenvalue of the rank-one /GTzzTG
equals tr(/GTzzTG) = /zTGGTz = /p. According to (19) and (20) we calculate /p= b

p −1, and
noting that b, p> 0 completes the proof.

The update for Xt+1 can alternatively be written using the pseudoinverse (Golub and Van Loan,
1996):

Xt+1 = (X†t −(Ãi)†,

where Ãi =WW TAiWW T for an orthogonal matrixW satisfying range(W ) = range(Xt).3

Lemma 10 Let Ãi =WW TAiWW T and W be an orthogonal n× r matrix such that range(W ) =
range(Xt). Then the following updates are equivalent:

a) Xt+1 = W ((W TXtW )−1−((W TAiW ))−1W T

b) Xt+1 = (X†t −(Ãi)†

Proof Since range(W ) = range(Xt), by Lemma 3 we have X̂t =W TXtW and Xt =WX̂tW T , where
X̂t is an invertible r× r matrix. Note thatWX̂−1

t W T satisfies the properties required for the Moore-
Penrose pseudoinverse, for example:

Xt(WX̂−1
t W T )Xt =WX̂tW TWX̂−1

t W TWX̂tW T =WX̂tW T = Xt .

Thus X†t =WX̂−1
t W T and we finish the proof by rewriting:

(X†t −(Ãi)† = (WX̂−1
t W T −(WW TAiWW T )† =

(
W (X̂−1

t −(W TAiW )W T )†

= W ((W TXtW )−1−((W TAiW ))−1W T .

5.1.2 UPDATE FOR THE FACTORED MATRIX

A naive implementation of the update given in (21) costs O(n2) operations per iteration. However,
we can achieve a more efficient update for low-rank matrices by working on a suitable factored
form of the matrix Xt resulting in an O(r2) algorithm. Both the reduced eigendecomposition and
the Cholesky factorization are possible candidates for the factorization; we prefer the latter because
the resulting algorithm does not have to rely on iterative methods.

The positive semidefinite rank-r matrix Xt can be factored as GGT , where G is an n× r matrix,
and thus the update can be written as:

Xt+1 = G(I+/GTzzTG)GT .

The matrix I + /z̃iz̃Ti , where z̃i = GTz, is an r× r matrix. To update G for the next iteration,
we factor this matrix as LLT ; then our new G is updated to GL. Since I+ /z̃iz̃Ti is a rank-one

3. In Kulis et al. (2006), we had inadvertently used Ai instead of Ãi.
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Algorithm 1 CHOLUPDATEMULT((,x,B). Right multiplication of a lower triangular r× r matrix
B with the Cholesky factor of I+(xxT in O(r2) time.
Input: (,x,B, with I+(xxT ( 0, B is lower triangular
Output: B← BL, with LLT = I+(xxT

1: (1 = (
2: for i= 1 to r do
3: t = 1+(ix2i
4: hi =

√
t

5: (i+1 = (i/t
6: t = Bii
7: s= 0
8: Bii = Biihi
9: for j = i−1 downto 1 do
10: s= s+ tx j+1
11: t = Bi j
12: Bi j = (Bi j +( j+1x js)h j
13: end for
14: end for

perturbation of the identity, this update can be done in O(r2) time using a standard Cholesky rank-
one update routine.

To increase computational efficiency, we note that G = G0B, where B is the product of all the
L matrices from every iteration and X0 = G0GT

0 . Instead of updating G explicitly at each iteration,
we simply update B to BL. The matrix I + /GTzzTG is then I + /BTGT

0 zzTG0B. In the case
of distance constraints, we can compute GT

0 z in O(r) time as the difference of two rows of G0.
The multiplication update BL appears to have O(r3) complexity, dominating the run time. In the
next section we derive an algorithm that combines the Cholesky rank-one update with the matrix
multiplication into a single O(r2) routine.

5.1.3 FAST MULTIPLICATION WITH A CHOLESKY UPDATE FACTOR

We efficiently combine the Cholesky rank-one update with the matrix multiplication in
CHOLUPDATEMULT given by Algorithm 1. A simple analysis of this algorithm reveals that it
requires 3r2+ 2r floating point operations (flops). This is opposed to the usual O(r3) time needed
by matrix multiplication. We devote this section to the development of this fast multiplication algo-
rithm.

Recall the algorithm used for the Cholesky factorization of an r× r matrix A (see Demmel,
1997, page 78):
for j = 1 to r do
l j j = (a j j−%

j−1
k=1 l

2
jk)
1/2

for i= j+1 to r do
li j = (ai j−%

j−1
k=1 likl jk)/l j j

end for
end for
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We will derive a corresponding algorithm in a manner similar to Demmel (1997), while exploit-
ing the special structure present in our problem. Let us denote Ir +(1xxT by A ((1 = () and write
it as a product of three block matrices:

A=





√
1+(1x21 0
#1x1√
1+#1x21

x2:r Ir−1




[
1 0
0 Ã22

]


√
1+(1x21

#1x1√
1+#1x21

xT
2:r

0 Ir−1



 .

It follows that Ã22+ #21x
2
1

1+#1x21
x2:rxT

2:r = A22 = Ir−1+(1x2:rxT
2:r, leading to:

Ã22 = Ir−1+
(1

1+(1x21
x2:rx

T
2:r.

Introduce (2 = #1
1+#1x21

and proceed by induction. We extract the following algorithm which calcu-
lates L satisfying LLT = A:
for j = 1 to r do
t = 1+( jx2j
l j j =

√
t

( j+1 = ( j/t
t = ( jx j/l j j
for i= j+1 to r do
li j = txi

end for
end for
The above algorithm uses 12r

2+ 13
2 r flops to calculate L, while

1
2r
3+O(r2) are needed for the

general algorithm. However, we do not necessarily have to calculate L explicitly, since the param-
eters (i together with x implicitly determine L. Notice that the cost of calculating (1,(2, . . . ,(r is
linear in r.

Next we show how to calculate uTL for a given vector u without explicitly calculating L and
arrive at an O(r) algorithm for this vector-matrix multiplication. The elements of vT = uTL are
equal to:

v1 = u1
√
1+(1x21+

(2√
1+(1x21

x1(u2x2+u3x3+ . . .urxr)

v2 = u2
√
1+(2x22+

(3√
1+(2x22

x2(u3x3+ . . .urxr)

...
vr−1 = ur−1

√
1+(r−1x2r−1+

(r√
1+(r−1x2r−1

xr−1urxr

vr = ur
√
1+(rx2r .

We can avoid the recalculation of some intermediate results if we evaluate vr first, followed by
vr−1 up to v1. This strategy leads to the following algorithm:
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Algorithm 2 Learning a low-rank kernel matrix in LogDet divergence under distance constraints.
Input: G0: input kernel factor matrix, that is, X0 = G0GT

0 , r: desired rank, {Ai}ci=1: distance
constraints, where Ai = (ei1 − ei2)(ei1 − ei2)T

Output: G: output low-rank kernel factor matrix, that is, X = GGT

1: Set B= Ir, i= 1, and , j = 0 ∀ constraints j.
2: repeat
3: vT = G0(i1, :)−G0(i2, :)
4: w = BTv
5: (=min

(
,i, 1

‖w‖22
− 1

bi

)

6: ,i ← ,i−(
7: /= (/(1−(‖w‖22)
8: Call CHOLUPDATEMULT(/,w,B) to factor I+/wwT = LLT and update B← BL.
9: Set i←mod(i+1,c).
10: until convergence of ,
11: return G= G0B

vr = ur
√
1+(rx2r

s = 0;
for j = r−1 downto 1 do
s= s+u j+1x j+1
t =

√
1+( jx2j

v j = u jt+( j+1x js/t
end for
Exactly 11r−6 flops are required by the above algorithm, and therefore we can readily multiply

an r× r matrix by L using 11r2−6r flops. Even fewer flops are sufficient to implement the matrix
multiplication if we observe that the square root expression above is repeatedly calculated for each
row, since it depends only on x j and ( j. Additionally, when multiplying with a lower triangular ma-
trix, the presence of zeros allows further simplifications. Taking these considerations into account
we arrive at the previously presented Algorithm 1, which uses exactly 3r2+2r flops.

5.1.4 KERNEL LEARNING ALGORITHM

We are now ready to present the overall algorithm for distance inequality constraints using the
LogDet divergence, see Algorithm 2. As discussed in the previous section, every projection can
be done in O(r2) time. Thus, cycling through all c constraints requires O(cr2) time, but the total
number of Bregman iterations may be large. The only dependence on the number of data points n
occurs in steps 3 and 11. The last step, multiplying G= G0B, takes O(nr2) time.

As discussed earlier, convergence is guaranteed since we have mapped the original low-rank
problem into a full-rank problem in a lower-dimensional space. Convergence can be checked by
using the dual variables ,. The cyclic projection algorithm can be viewed as a dual coordinate ascent
algorithm, thus convergence can be measured as follows: after cycling through all constraints, we
check to see how much , has changed after a full cycle. At convergence, this change (as measured
with a vector norm) should be small.
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5.2 Von Neumann Divergence

In this section we develop a cyclic projection algorithm to solve (5) when the matrix divergence is
the von Neumann divergence.

5.2.1 MATRIX UPDATES

Consider minimizing DvN(X ,X0), the von Neumann divergence between X and X0. Recall the pro-
jection update (15) for constraint i:

Xt+1 =Vt exp(log()t)+(V T
t zzTVt)V T

t .

If the eigendecomposition of the exponent log()t)+(V T
t zzTVt isUt*t+1UT

t , then the eigendecom-
position of Xt+1 is given by Vt+1 = VtUt and )t+1 = exp(*t+1). This special eigenvalue problem
(diagonal plus rank one update) can be solved in O(r2) time; see Golub (1973), Gu and Eisenstat
(1994) and Demmel (1997). This means that the matrix multiplication Vt+1 = VtUt becomes the
most expensive step in the computation, yielding O(nr2) complexity.

We reduce this cost by modifying the decomposition slightly. Let Xt = VtWt)tW T
t V T

t be the
factorization of Xt , where Wt is an r× r orthogonal matrix, initially W0 = Ir, while Vt and )t are
defined as before. The matrix update becomes

Xt+1 =VtWt exp(log)t +(W T
t V T

t zzTVtWt)W T
t V T

t ,

yielding the following formulae:

Vt+1 =Vt , Wt+1 =WtUt , )t+1 = exp(*t+1),

where log)t +(W T
t V T

t zzTVtWt =Ut*t+1UT
t . For a general rank-one constraint the productV T

t z is
calculated in O(nr) time, but for distance constraints O(r) operations are sufficient. The calculation
ofW T

t V T
t z and computing the eigendecompositionUt*t+1UT

t will both takeO(r2) time. The matrix
product WtUt appears to cost O(r3) time, but in fact a right multiplication by UT

t can be approxi-
mated very accurately in O(r2 logr) and even in O(r2) time using the fast multipole method—see
Barnes and Hut (1986) and Greengard and Rokhlin (1987).

Since we repeat the above update calculations until convergence, we can avoid calculating the
logarithm of )t at every step by maintaining *t = log)t throughout the algorithm.

5.2.2 COMPUTING THE PROJECTION PARAMETER

In the previous section, we assumed that the projection parameter ( has already been calculated. In
contrast to the LogDet divergence, this parameter does not have a closed form solution. Instead, we
must compute ( by solving the nonlinear system of equations given by (7).

In the von Neumann case and in the presence of distance constraints, the problem amounts to
finding the unique root of the function

f (() = zTVtWt exp(*t +(W T
t V T

t zzTVtWt)W T
t V T

t z−b.

It can be shown that f (() is monotone in (, see Sustik and Dhillon (2008).
Using the approach from the previous section, f (() can be computed in O(r2) time. One nat-

ural choice to find the root of f (() is to apply Brent’s general root finding method (Brent, 1973),
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Algorithm 3 Learning a low-rank kernel matrix in von Neumann matrix divergence under distance
constraints.
Input: V0,)0: input kernel factors, i. e., X0 = V0)0V T

0 , r: rank of desired kernel matrix, {Ai}ci=1:
distance constraints, where Ai = (ei1 − ei2)(ei1 − ei2)T

Output: V,): output low-rank kernel factors, i. e., X =V)V T

1: SetW = Ir, *= log)0, i= 1, and , j = 0 ∀ constraints j.
2: repeat
3: vT =V0(i1, :)−V0(i2, :)
4: w =W Tv
5: Call ZEROFINDER(*,w,bi) to determine (.
6: /=min(,i,()
7: ,i ← ,i−/.
8: Compute eigendecomposition of *+/wwT =U*̃UT , *← *̃.
9: UpdateW ←WU .
10: i= mod (i+1,c)
11: until convergence of ,
12: return V =V0W , )= exp(*)

which does not need the calculation of the derivative of f ((). We have built an even more efficient
custom root finder that is optimized for this problem. We rarely need more than six evaluations per
projection to accurately compute (. A more detailed description of our root finder is beyond the
scope of this paper, see Sustik and Dhillon (2008) for details.

5.2.3 KERNEL LEARNING ALGORITHM

The algorithm for distance inequality constraints using the von Neumann divergence is given as
Algorithm 3. By using the fast multipole method every projection can be done in O(r2) time. Note
that the asymptotic running time of this algorithm is the same as the LogDet divergence algorithm,
although the root finding step makes Algorithm 3 slightly slower than Algorithm 2.

5.3 Limitations of our Approach

We conclude this section by briefly mentioning some limitations of our approach. First, though we
are able to learn low-rank kernel matrices in our framework, the initial kernel matrix must be low-
rank. As a result, we cannot use our methods to reduce the dimensionality of our data. Secondly, the
method of Bregman projections may require iterating many cycles through all constraints to reach
convergence. Although we have heavily optimized each iteration in this paper, it may be beneficial
to search for an algorithm with faster convergence.

6. Discussion

We now further develop several aspects of the algorithms presented in the previous section. In
particular, we discuss ways to move beyond the transductive setting in our framework for learning
kernels, we briefly overview some generalizations of the problem formulation, we highlight how
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special cases of our method are related to existing techniques, and we briefly analyze connections
between our approach and semidefinite programming.

6.1 Handling New Data Points

The kernel learning algorithms of Section 5 are restricted to learning in the transductive setting; that
is, we assume that we have all the data points up front, but labels or other forms of supervision are
only available for some of the data points. This approach suffers when new, unseen data points are
added, since this would require re-learning the entire kernel matrix.

Though we do not consider this situation in depth in the current paper, we can circumvent it.
When learning a kernel matrix minimizing either the LogDet divergence or the von Neumann di-
vergence, the range space restriction implies that the learned kernel K has the form K =G0BBTGT

0 ,
where B is r× r and the input kernel is K0 = G0GT

0 . We can view the matrix B as a linear transfor-
mation applied to our input data vectors G0 and therefore we can apply this linear transformation
to new points. In particular, recent work (Davis et al., 2007) has shown that the learning algorithms
considered in this paper can equivalently be viewed as learning a Mahalanobis distance function
given constraints on the data, which is simply the Euclidean distance after applying a linear trans-
formation over the input data.

Since our algorithms can be viewed as Mahalanobis distance learning techniques, it is natural to
compare against other existing metric learning algorithms. Such methods include metric learning by
collapsing classes (MCML) (Globerson and Roweis, 2005), large-margin nearest neighbor metric
learning (LMNN) (Weinberger et al., 2005), and many others. In the experimental results section,
we provide some results comparing our algorithms with these existing methods.

6.2 Generalizations

There are several simple ways to extend the algorithms developed in Section 5. In this section,
we introduce slack variables and discuss more general constraints than the distance constraints
discussed earlier.

6.2.1 SLACK VARIABLES

In many cases, especially if the number of constraints is large, no feasible solution will exist to
the Bregman divergence optimization problem given in (4). When no feasible solution exists, a
common approach is to incorporate slack variables, which allows constraints to be violated but
penalizes such violations.

There are many ways to introduce slack variables into the optimization problem (4). We add
a new vector variable b with coordinates representing perturbed right hand sides of the linear con-
straints, and use the corresponding vector divergence to measure the deviation from the original
constraints described by the input vector b0. The resulting optimization problem is as follows:

minimizeX ,b D"(X ,X0)+ 0D!(b,b0)
subject to tr(XAi) ≤ eTi b, 1≤ i≤ c

X ( 0. (22)

Note that we use D!(b,b0) as the penalty for constraints as it is computationally simple; other
choices of constraint penalty are possible, as long as the resulting objective function is convex.
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The 0 > 0 parameter governs the tradeoff between satisfying the constraints and minimizing the
divergence between X and X0. Note that we have also removed the implicit rank constraint for
simplicity.

We form the Lagrangian to solve the above problem; recall the similar system of equations (7)
in Section 3.4. Define L(Xt+1,bt+1,(i) = D"(Xt+1,Xt)+ 0D!(bt+1,bt)+(i(eTi bt+1− tr(Xt+1Ai)),
and set the gradients to zero with respect to Xt+1, bt+1 and (i to get the following update equations:

$&(Xt+1) = $&(Xt)+(iAi,

$#(bt+1) = $#(bt)−
(i
0

ei,

tr(Xt+1Ai) = eTi bt+1. (23)

In particular, for the LogDet divergence we arrive at the following updates:

X−1
t+1 = X−1

t −(iAi, eTi bt+1 =
0eTi bt

0+(ieTi bt
, tr(Xt+1Ai)−eTi bt+1 = 0.

Assuming Ai = zizTi , we can still compute (i in closed form as

(i =
0

0+1

(
1
p
− 1
bi

)
, where p= zTi Xtzi,bi = eTi bt .

The ith element of bt is updated to 0bi/(0+(ibi) and the matrix update is calculated as in the
non-slack case.

In case of the von Neumann divergence the update rules turn out to be:

logXt+1 = logXt +(iAi, eTi bt+1 = eTi bte−
!i
" , tr(Xt+1Ai)−eTi bt+1 = 0.

The projection parameter (i is not available in closed form, instead we calculate it as the root of the
non-linear equation:

log tr(exp(logXt +(iAi)Ai)+
(i
0
− logeTi bt = 0.

The scale invariance of the LogDet divergence implies that D!d(b,b0) = D!d(b/b0,1) where the
division is elementwise and therefore we implicitly measure “relative” error, that is the magnitude
of the coordinates of vector b0 are naturally taken into account. For the von Neumann divergence
scale invariance does not hold, but one may alternatively use DvN(b/b0,1) as the penalty function.

6.2.2 OTHER CONSTRAINTS

In earlier sections, we focused on the case of distance constraints. We now briefly discuss general-
izing to other constraints.

When the constraints are similarity constraints (i.e., K jl ≤ bi), the updates can be easily modi-
fied. As discussed earlier, we must retain symmetry of the Ai constraint matrices, so for similarity
constraints, we require Ai = 1

2(e jeTl +eleTj ). Notice that the constraint matrix now has rank two.
This complicates the algorithms slightly; for example, with the LogDet divergence, the Sherman-
Morrison formula must be applied twice, leading to a more complicated update rule (albeit one that
still has a closed-form solution and can be computed in O(r2) time).
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Other constraints are possible as well; for example, one could incorporate distance constraints
such as ‖a j−ak‖22 ≤ ‖al −am‖22, or further similarity constraints such as K jk ≤ Klm. These are
sometimes referred to as relative comparison constraints, and are useful in ranking algorithms
(Schultz and Joachims, 2003); for these also, the cost per projection remains O(r2). Finally, ar-
bitrary linear constraints can also be applied, the cost per projection update will then be O(nr).

6.3 Special Cases

If we use the von Neumann divergence, let r = n, and set bi = 0 for all constraints, we exactly
obtain the DefiniteBoost optimization problem from Tsuda et al. (2005). In this case, our algorithm
computes the projection update in O(n2) time. In contrast, the algorithm from Tsuda et al. (2005)
computes the projection in a more expensive manner in O(n3) time. Another difference with our
approach is that we compute the exact projection, whereas Tsuda et al. (2005) compute an approx-
imate projection. Though computing an approximate projection may lead to a faster per-iteration
cost, it takes many more iterations to converge to the optimal solution. We illustrate this further in
the experimental results section.

The online-PCA problem discussed in Warmuth and Kuzmin (2006) employs a similar update
based on the von Neumann divergence. As with the DefiniteBoost algorithm, the projection is not
an exact Bregman projection; however, the projection can be computed in the same way as in our
von Neumann kernel learning projection. As a result, the cost of an iteration of online-PCA can be
improved from O(n3) to O(n2) with our approach.

Another special case is the nearest correlation matrix problem (Higham, 2002) that arises in
financial applications. A correlation matrix is a positive semidefinite matrix with unit diagonal. For
this case, we set the constraints to be Kii = 1 for all i. Our algorithms from this paper give new
divergence measures and methods for finding low-rank correlation matrices. Previous algorithms
scale cubically in n, whereas our method scales linearly with n and quadratically with r for low-rank
correlation matrices.

Our formulation can also be employed to solve a problem similar to that of Weinberger et al.
(2004). The enforced constraints on the kernel matrix (centering and isometry) are linear, and thus
can be encoded into our framework. The only difference is that Weinberger et al. maximize the
trace of K, whereas we minimize a matrix divergence. Comparisons between these approaches is a
potential area of future research.

6.4 Connections to Semidefinite Programming

In this section, we present a connection between minimizing the LogDet divergence and the solution
to a semidefinite programming problem (SDP). As an example, we consider the min-balanced-cut
problem.

Suppose we are given an n-vertex graph, whose adjacency matrix is A. Let L= diag(Ae)−A be
the Laplacian of A, where e is the vector of all ones. The semidefinite relaxation to the minimum
balanced cut problem (Lang, 2005) results in the following SDP:
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min
X

tr(LX)

subject to diag(X) = e

tr(XeeT ) = 0
X ( 0.

Let L† denote the pseudoinverse of the Laplacian, and let V be an orthonormal basis for the
range space of L. Let r denote the rank of L; it is well known that n− r equals the number of
connected components of the graph. Consider the LogDet divergence between X and .L†:

D!d(X ,.L†) = D!d(V TXV,V T (.L†)V )
= tr(V TXV (V T (.L†)V )−1)− logdet(V TXV (V T (.L†)V )−1)− r

= tr
(
V TXV

(
1
.
V TLV

))
− logdet

(
V TXV

(
1
.
V TLV

))
− r

=
1
.
tr(LX)− logdet

(
1
.
V TXVV TLV

)
− r

=
1
.
tr(LX)− logdet(V TXVV TLV )− r− log(.−r).

The fourth line uses Lemma 8 to replace tr(V TXV ( 1$V
TLV )) with 1

$ tr(LX). If we aim to minimize
this divergence, we can drop the last two terms, as they are constants. In this case, we have:

argminXD!d(X ,.L†) = argminX
1
.
tr(LX)− logdet(V TXVV TLV )

= argminX tr(LX)− . logdet(V TXVV TLV ).

As . becomes small, the tr(LX) term dominates the objective function.
Now consider the constraints from the min balanced cut SDP. The diag(X) = e constraint

is exactly the constraint from the nearest correlation matrix problem (that is, Xii = 1 for all i).
The X ( 0 constraint is implicitly satisfied when LogDet is used, leaving the balancing constraint
eTXe = 0. Recall that null(X) = null(L†), and from standard spectral graph theory, that Le = 0.
Therefore L†e = 0, which further implies

eTL†e = 0⇒ eTXe = 0

by the fact that the LogDet divergence preserves the range space of L†. Thus, the null space restric-
tion in LogDet divergence naturally yields the constraint eTXe = 0 and so the min balanced cut
SDP problem on A is equivalent (for sufficiently small .) to finding the nearest correlation matrix to
.L† under the LogDet divergence.

Many other semidefinite programming problems can be solved in a similar manner to the one
given above for the min balanced cut problem. It is beyond the scope of this paper to determine
the practicality of such an optimization method; our aim here is simply to demonstrate an intriguing
relationship between semidefinite programming and minimizing the LogDet divergence. For further
information on this relationship, see Kulis et al. (2007a).
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6.5 Changing the Range Space

The key property of the LogDet and von Neumann divergences which allow the algorithms to learn
low-rank kernel matrices is their range space preservation property, discussed in Section 4. While
this property leads to efficient algorithms for learning low-rank kernel matrices, it also forces the
learned matrices to maintain the range space of the input matrix, which is a limitation of our method.

Allowing the range space to change is potentially a very useful tool, but is still an open research
question. One possibility worth exploring is to augment the input matrix X0 with a matrix capturing
the complementary space, that is, the input would be X0+ .N, where N captures the null space of
X0. Even if there does not exist a solution to the optimization problem of minimizing D"(X ,X0),
there is always a solution to minimizing D"(X ,X0+ .N). Details of this approach are to be pursued
as future work.

A related approach to circumvent this problem is to apply an appropriate kernel function over
the input data, the result of which is that the algorithm learns a non-linear transformation of the data
over the input space. Recently, Davis et al. (2007) discussed how one can generalize to new data
points with the LogDet divergence even after applying such a kernel function, making this approach
practical in many situations.

7. Experiments

In this section, we present a number of results using our algorithms, and provide references to recent
work which has applied our algorithms to large-scale learning tasks. We first begin with the basic
algorithm, and present results on transductive learning—the scenario where all data is provided
upfront but labels are available for only a subset of the data—and clustering. We then discuss some
results comparing our methods to existing metric learning algorithms.

We run the kernel learning algorithms in MATLAB, with some routines written in C and com-
piled with the MEX compiler. An efficient implementation of the special matrix multiplication
appearing in step 9 of Algorithm 3 could achieve further run-time improvements. Unfortunately, an
efficient and accurate implementation—based on the fast multipole method—is not readily avail-
able.

7.1 Transductive Learning and Clustering Results

To show the effectiveness of our algorithms, we present results from clustering as well as classifi-
cation. We consider several data sets from real-life applications:

1. Digits: a subset of the Pendigits data from the UCI repository that contains handwritten
samples of the digits 3, 8, and 9. The raw data for each digit is 16-dimensional; this subset
contains 317 digits and is a standard data set for semi-supervised clustering (e.g., see, Bilenko
et al., 2004).

2. GyrB: a protein data set: a 52 × 52 kernel matrix among bacteria proteins, containing three
bacteria species. This matrix is identical to the one used to test the DefiniteBoost algorithm
in Tsuda et al. (2005).

3. Spambase: a data set from the UCI repository containing 4601 email messages, classified as
spam or not spam—1813 of the emails are spam (39.4 percent). This data has 57 attributes.
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4. Nursery: data set developed to rank applications for nursery schools. This set contains
12960 instances with 8 attributes, and 5 class labels.

For classification, we compute accuracy using a k-nearest neighbor classifier (k = 5) that com-
putes distance in the feature space, with a 50/50 training/test split and two-fold cross validation.
Our results are averaged over 20 runs. For clustering, we use the kernel k-means algorithm and
compute accuracy using the Normalized Mutual Information (NMI) measure, a standard technique
for determining quality of clusters, which measures the amount of statistical information shared by
the random variables representing the cluster and class distributions (Strehl et al., 2000). If C is
the random variable denoting the cluster assignments of the points, and K is the random variable
denoting the underlying class labels on the points then the NMI measure is defined as:

NMI =
I(C;K)

(H(C)+H(K))/2

where I(X ;Y ) =H(X)−H(X |Y ) is the mutual information between the random variables X and Y ,
H(X) is the Shannon entropy of X , and H(X |Y ) is the conditional entropy of X given Y (Cover and
Thomas, 1991). The normalization by the average entropy ofC and K makes the value of NMI stay
between 0 and 1.

We consider two different experiments, each with their own constraint selection procedure. One
experiment is to learn a kernel matrix only using constraints. In this case, we generate constraints
from some target kernel matrix, and judge performance on the learned kernel matrix as we provide
an increasing number of constraints. This setup was employed for the GyrB data set allowing us to
compare to the methods and results of Tsuda et al. (2005). Constraints were generated randomly as
follows: two data points are chosen at random and a distance constraint is constructed as follows.
If the data points are in the same class, the constraint is of the form d(i, j) ≤ b, where b is the
corresponding distance between points i and j from the original kernel matrix, and if the data points
are from different classes, then the constraint is of the form d(i, j) ≥ b.

For the remaining data sets, we were interested in adding supervised class information to im-
prove an existing low-rank kernel matrix. In this case, we took our initial low-rank kernel to be a
linear kernel over the original data matrix and we added constraints of the form d(i, j) ≤ (1− .)b
for same class pairs and d(i, j) ≥ (1+ .)b for different class pairs (b is the original distance and
. = .25). This is very similar to “idealizing” the kernel, as in Kwok and Tsang (2003). Our con-
vergence tolerance was set to 10−3, and we incorporated slack variables for the larger data sets
Spambase and Nursery (the smaller data sets did not require slack variables to converge). Note
that there are other methods for choosing constraints; for example, instead of using (1− .)b for the
right-hand side for same class pairs, one could instead choose a global value u for all same class
constraints (and analogously for different class pairs).

We first show that the low-rank kernels learned by our algorithms attain good clustering and
classification accuracies. We ran our algorithms on the Digits data set to learn a rank-16 kernel
matrix using randomly generated constraints. The Gram matrix of the original Digits data was
used as our initial (rank-16) kernel matrix. The left plot of Figure 1 shows clustering NMI values
with increasing constraints. Adding just a few constraints improves the results significantly, and
both of the kernel learning algorithms perform comparably. Classification accuracy using the k-
nearest neighbor method was also computed for this data set: marginal classification accuracy gains
were observed with the addition of constraints (an increase from 94 to 97 percent accuracy for
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Figure 1: (Left) Normalized Mutual Information results of clustering the Digits data set—both
algorithms improve with a small number of constraints (Right) Percentage of constraints
satisfied (to a tolerance of 10−3) in Bregman’s algorithm as a function of the number of
cycles, using the LogDet divergence
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Figure 2: Classification accuracy (left) and convergence (right) on the GyrB data set

both divergences). We also recorded convergence data on Digits in terms of the number of cycles
through all constraints; for the von Neumann divergence, convergence was attained in 11 cycles for
30 constraints and in 105 cycles for 420 constraints, while for the LogDet divergence, between 17
and 354 cycles were needed for convergence. This experiment highlights how our algorithm can
use constraints to learn a low-rank kernel matrix. It is noteworthy that the learned kernel performs
better than the original kernel for clustering as well as classification. Furthermore, in the right
plot of Figure 1, we plot the number of constraints satisfied within a tolerance of 10−3 (300 total
constraints) as a function of the number of cycles through all constraints, when using the LogDet
divergence. Similar results are obtained with the von Neumann divergence. The number of cycles
required for convergence to high accuracy can potentially be large, but for typical machine learning
tasks, high accuracy solutions are not necessary and low to medium accuracy solutions can be
achieved much faster.
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Figure 3: Clustering accuracy on Spambase (left) and Nursery (right)

As a second experiment, we performed experiments on GyrB and comparisons to the Definite-
Boost algorithm of Tsuda et al. (2005) (modified to correctly handle inequality constraints). Using
only constraints, we attempt to learn a kernel matrix that achieves high classification accuracy. In
order to compare to DefiniteBoost, we learned a full-rank kernel matrix starting from the scaled
identity matrix as in Tsuda et al. (2005). In our experiments, we observed that using approximate
projections—as done in DefiniteBoost—considerably increases the number of cycles needed for
convergence. For example, starting with the scaled identity as the initial kernel matrix and 100
constraints, it took our von Neumann algorithm only 11 cycles to converge, whereas it took 3220
cycles for the DefiniteBoost algorithm to converge. Since the optimal solutions are the same for
approximate versus exact projections, we converge to the same kernel matrix as DefiniteBoost but
in far fewer iterations. Furthermore, our algorithm has the ability to learn low-rank kernels (as in the
case of the Digits example). Figure 2 depicts the classification accuracy and convergence of our
LogDet and von Neumann algorithms on this data set. The slow convergence of the DefiniteBoost
algorithm did not allow us to run it with a larger set of constraints. For the LogDet and the von Neu-
mann exact projection algorithms, the number of cycles required for convergence never exceeded
600 on runs of up to 1000 constraints on GyrB. The classification accuracy on the original matrix is
.948, and so our learned kernels achieve even higher accuracy than the target kernel with a sufficient
number of constraints. These results highlight that excellent classification accuracy can be obtained
using a kernel that is learned using only distance constraints. Note that the starting kernel was the
identity matrix, and so did not encode any domain information.

On the larger data sets Spambase and Nursery, we found similar improvements in clustering
accuracy while learning rank-57 and rank-8 kernel matrices, respectively, using the same setup as
in the Digits experiment. Figures 3 and 4 show the clustering accuracy and convergence on these
data sets. Note that both data sets are too large for DefiniteBoost to handle, and furthermore, storing
the full kernel matrix would require significant memory overhead (for example, MATLAB runs out
of memory while attempting to store the full kernel matrix for Nursery); this scenario highlights
the memory overhead advantage of using low-rank kernels. We see that on the Spambase data
set, the LogDet divergence algorithm produces clustering accuracy improvements with very little
supervision, but the number of cycles to converge is much larger than the von Neumann algorithm
(for 500 constraints, the von Neumann algorithm requires only 29 cycles to converge). The slower
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Figure 4: Convergence on Spambase (left) and Nursery (right)
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Figure 5: Classification error rates for k-nearest neighbor classification via different learned metrics
over UCI data sets. The von Neumann and LogDet algorithms are competitive with ex-
isting state of the art metric learning methods, and significantly outperform the baseline.

convergence of the LogDet divergence algorithm is a topic of future work—note, however, that even
though the number of cycles for LogDet to converge is higher than for von Neumann, the overall
running time is often lower due to the efficiency of each LogDet iteration and the lack of a suitable
implementation of the fast multiple method. On the Nursery data set, both algorithms perform
similarly in terms of clustering accuracy, and the discrepancy in terms of cycles to converge between
the algorithms is less drastic. We stress that other methods for learning kernel matrices, such as
using the squared Frobenius norm in place of the LogDet or von Neumann divergences, would
lead to learning full-rank matrices and would require significantly more memory and computational
resources.
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7.2 Metric Learning and Large-Scale Experiments

We now move beyond the transductive setting in order to compare with existing metric learning
algorithms. As briefly discussed in Section 6.1, learning a low-rank kernel with the same range
space as the input kernel is equivalent to learning a linear transformation of the input data, so we
now compare against some existing methods for learning linear transformations. In particular, we
compare against two popular Mahalanobis metric learning algorithms: metric learning by collapsing
classes (MCML) (Globerson and Roweis, 2005) and large-margin nearest neighbor metric learning
(LMNN) (Weinberger et al., 2005). As a baseline, we consider the squared Euclidean distance.

For each data set, we use two-fold cross validation to learn a linear transformation of our training
data. This transformation is used in a k-nearest neighbor classifier on our test data, and the resulting
error is reported. For the LogDet and von Neumann algorithms, we cross-validate the 0 parameter
and use the constraint selection procedure described in Davis et al. (2007). In particular, we generate
constraints of the form d(i, j)≤ u for same-class pairs and d(i, j)≥ ! for different-class pairs, where
u and ! are chosen based on the 5th and 95th percentile of all distances in the training data. We
randomly choose 40c2 constraints, where c is the number of classes in the data.

We ran on a number of standard UCI data sets to compare with existing methods. In Figure 5,
we display k-NN accuracy (k = 4) over five data sets. Overall, we see that both the LogDet and von
Neumann algorithms compare favorably with existing methods.

In terms of large-scale experiments, we also ran on the MNIST data set, a handwritten digits
data set. This data has 60,000 training points and 10,000 test points. After deskewing the images
and performing dimensionality reduction to the first 100 principal components of MNIST, we ran
our methods successfully with 10,000 and 100,000 constraints, chosen as in the metric learning
experiments above. The baseline error for a 1-nearest neighbor search over the top 100 principal
components after deskewing is 2.35%. For 10,000 constraints, the LogDet algorithm ran in 4.8
minutes and achieved a test error of 2.29%, while the von Neumann algorithm ran in 7.7 minutes
and achieved 2.30% error. For 100,000 constraints, LogDet ran in 11.3 minutes and achieved an
error of 2.18% while von Neumann ran in 71.4 minutes and achieved an error of 2.17%.

Finally, we note that our methods have recently been applied to very large problems in the
computer vision domain. We refer the reader to Jain et al. (2008), which adapts the algorithms
discussed in this paper to three large-scale vision experiments: human body pose estimation, feature
indexing for 3-d reconstruction, and object classification. For pose estimation, the size of the data
was 500,000 images and for feature indexing, there were 300,000 image patches. These experiments
validate the use of our methods on large-scale data, and also demonstrate that they can be used to
outperform state of the art methods in computer vision.

8. Conclusions

In this paper, we have developed algorithms for using Bregman matrix divergences for low-rank
matrix nearness problems. In particular, we have developed a framework for using the LogDet
divergence and the von Neumann divergence when the initial matrices are low-rank; this is achieved
via a restriction of the range space of the matrices. Unlike previous kernel learning algorithms,
which have running times that are cubic in the number of data points, our resulting algorithms are
efficient—both algorithms have running times linear in the number of data points and quadratic
in the rank of the kernel. Furthermore, our algorithms can be used in conjunction with a number
of kernel-based learning algorithms that are optimized for low-rank kernel representations. The
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experimental results demonstrate that our algorithms are effective in learning low-rank and full-
rank kernels for classification and clustering problems on large-scale data sets that arise in diverse
applications.

There is still much to be gained from studying these divergences. Algorithmically, we have
considered only projections onto a single constraint, but it is worth pursuing other approaches to
solve the optimization problems such as methods that optimize with respect to multiple constraints
simultaneously. We discussed how the LogDet divergence exhibits connections to Mahalanobis
metric learning and semidefinite programming, and there is significant ongoing work in these areas.
Finally, we hope that our framework will lead to new insights and algorithms for other machine
learning problems where matrix nearness problems need to be solved.

Acknowledgments

This research was supported by NSF grant CCF-0431257, NSF Career Award ACI-0093404, and
NSF-ITR award IIS-0325116. We thank Koji Tsuda for the protein data set and Kilian Weinberger
for the image deskewing code.

Appendix A. Properties of Bregman Matrix Divergences

In this section, we highlight some important properties of Bregman matrix divergences.

Proposition 11 Let Q be a square, orthogonal matrix, that is, QTQ = QQT = I. Then for all
spectral Bregman matrix divergences, D"(QTXQ,QTYQ) = D"(X ,Y ).

Proof This follows from Lemma 1 by observing that if X =V)V T andY =U*UT , the ith eigenvec-
tor of QTXQ is QTvi and the jth eigenvector of QTYQ is QTu j. The eigenvalues remain unchanged
by the orthogonal similarity transformation. Thus, the term ((QTvi)T (QTu j))2 in Lemma 1 simpli-
fies to (vTi u j)2 using the fact that QQT = I.

Proposition 12 Let M be a square, non-singular matrix, and let X and Y be n×n positive definite
matrices. Then D!d(MTXM,MTYM) = D!d(X ,Y ).

Proof First observe that if X is positive definite, thenMTXM is positive definite. Then:

D!d(MTXM,MTYM) = tr(MTXM(MTYM)−1)− logdet(MTXM(MTYM)−1)−n
= tr(MTXMM−1Y−1M−T )−logdet(MTXMM−1Y−1M−T )−n
= tr(XY−1)− logdet(XY−1)−n
= D!d(X ,Y )

Note that, as a corollary, we have that the LogDet divergence is scale-invariant, that is, D!d(X ,Y ) =
D!d(cX ,cY ), for any positive scalar c. Furthermore, this proposition may be extended to the case
when X and Y are positive semidefinite, using the definition of the LogDet divergence for rank-
deficient matrices.
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Proposition 13 Let Y be a positive definite matrix, and let X be any positive semidefinite matrix.
Then D!d(X ,Y ) = DvN(I,Y− 1

2XY− 1
2 ) = D!d(Y− 1

2XY− 1
2 , I)

Proof The first equality by expanding the definition of the von Neumann divergence:

DvN(I,Y− 1
2XY− 1

2 ) = tr(I log I− I log(Y− 1
2XY− 1

2 )− I+Y− 1
2XY− 1

2 )

= tr(Y− 1
2XY− 1

2 )− tr(log(Y− 1
2XY− 1

2 ))− tr(I)
= tr(XY−1)− logdet(Y− 1

2XY− 1
2 )−n

= tr(XY−1)− logdet(XY−1)−n
= D!d(X ,Y ),

where we have used the fact that tr(logA) = logdet(A). The second equality follows by applying
Proposition 12 to D!d(X ,Y ) withM = Y− 1

2 .

Appendix B. Necessity of Dual Variable Corrections

In Section 3.4, we presented the method of Bregman projections and showed that, in the presence of
inequality constraints, a dual variable correction is needed to guarantee convergence to the globally
optimal solution. In some recent machine learning papers such as Tsuda et al. (2005), this correction
has been omitted from the algorithm. We now briefly demonstrate why such corrections are needed.

A very simple example illustrating the failure of Bregman projections without corrections is in
finding of the nearest 2×2 (positive definite) matrix X to the identity matrix that satisfies a single
linear constraint:

minimizeX D"(X , I)
subject to X11+X22−2X12 ≥ 1

X ( 0.

The starting (identity) matrix satisfies the linear constraint, but a single projection step (to the cor-
responding equality constraint) without corrections will produce a suboptimal matrix, regardless of
the divergence used. On the other hand, employing corrections leads to (′

i = 0, and the input matrix
remains unchanged.

It is also not sufficient to repeatedly perform Bregman projections only on violated constraints
(without any corrections) until all constraints are satisfied—this approach is used by Tsuda et al.
(2005). To demonstrate this more involved case, we consider an example over vectors, where the
goal is to minimize the relative entropy to a given vector x0 under linear constraints. Note that the
argument carries over to the matrix case, but is more difficult to visualize.

minimizex KL(x,x0)
subject to xT [

0.0912 0.9385 −0.4377
]
≥ 0.0238

xT [
0.6020 0.6020 −0.4377

]
≥ 0.2554

xT [
1 1 1

]
= 1. (24)
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Figure 6: Termination points for the relative entropy example described by (24). The shaded re-
gions illustrate the hyperplanes associated with the two inequality constraints of the op-
timization problem. The optimal solution is the maximum entropy vector xopt =

[1
3
1
3
1
3
]
,

but without corrections we arrive at x2 =
[1
5
7
15

1
3
]
after two projection steps starting from

x0 = [0.1 0.1 0.8].

In the above problem, KL(x,x0) refers to the relative entropy, defined earlier. The first two
constraints are linear inequality constraints while the third constraint forces x to remain on the unit
simplex so that it is a probability vector. Let x0 equal [0.1 0.1 0.8]. If we process the constraints in
the above order without corrections, after two projection steps (one projection onto each of the first
two constraints), we arrive at the vector

[1
5

7
15

1
3
]
,

which satisfies all three constraints. Therefore this vector is returned as the optimal solution if
no corrections are applied. In comparison, a proper execution of Bregman’s algorithm employing
corrections arrives at [1

3
1
3

1
3
]
,

which is the maximum entropy vector. It is also worth noting that if we project to the second
constraint first, then we arrive at the optimal solution immediately. By appropriately modifying the
constraints and the starting point in this example, the incorrect algorithm can be made to converge
arbitrarily close to [0 0 1], a minimum entropy vector, thus drastically demonstrating the necessity
of dual variable corrections.
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Abstract
This paper gives a survey of contrast set mining (CSM), emerging pattern mining (EPM), and sub-
group discovery (SD) in a unifying framework named supervised descriptive rule discovery. While
all these research areas aim at discovering patterns in the form of rules induced from labeled data,
they use different terminology and task definitions, claim to have different goals, claim to use dif-
ferent rule learning heuristics, and use different means for selecting subsets of induced patterns.
This paper contributes a novel understanding of these subareas of data mining by presenting a uni-
fied terminology, by explaining the apparent differences between the learning tasks as variants of
a unique supervised descriptive rule discovery task and by exploring the apparent differences be-
tween the approaches. It also shows that various rule learning heuristics used in CSM, EPM and SD
algorithms all aim at optimizing a trade off between rule coverage and precision. The commonali-
ties (and differences) between the approaches are showcased on a selection of best known variants
of CSM, EPM and SD algorithms. The paper also provides a critical survey of existing supervised
descriptive rule discovery visualization methods.
Keywords: descriptive rules, rule learning, contrast set mining, emerging patterns, subgroup
discovery

1. Introduction

Symbolic data analysis techniques aim at discovering comprehensible patterns or models in data.
They can be divided into techniques for predictive induction, where models, typically induced from
class labeled data, are used to predict the class value of previously unseen examples, and descriptive
induction, where the aim is to find comprehensible patterns, typically induced from unlabeled data.
Until recently, these techniques have been investigated by two different research communities: pre-
dictive induction mainly by the machine learning community, and descriptive induction mainly by
the data mining community.
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Data mining tasks where the goal is to find humanly interpretable differences between groups
have been addressed by both communities independently. The groups can be interpreted as class
labels, so the data mining community, using the association rule learning perspective, adapted as-
sociation rule learners like Apriori by Agrawal et al. (1996) to perform a task named contrast set
mining (Bay and Pazzani, 2001) and emerging pattern mining (Dong and Li, 1999). On the other
hand, the machine learning community, which usually deals with class labeled data, was challenged
by, instead of building sets of classification/prediction rules (e.g., Clark and Niblett, 1989; Cohen,
1995), to build individual rules for exploratory data analysis and interpretation, which is the goal of
the task named subgroup discovery (Wrobel, 1997).

This paper gives a survey of contrast set mining (CSM), emerging pattern mining (EPM), and
subgroup discovery (SD) in a unifying framework, named supervised descriptive rule discovery.
Typical applications of supervised descriptive rule discovery include patient risk group detection
in medicine, bioinformatics applications like finding sets of overexpressed genes for specific treat-
ments in microarray data analysis, and identifying distinguishing features of different customer seg-
ments in customer relationship management. The main aim of these applications is to understand
the underlying phenomena and not to classify new instances. Take another illustrative example,
where a manufacturer wants to know in what circumstances his machines may break down; his
intention is not to predict breakdowns, but to understand the factors that lead to them and how to
avoid them.

The main contributions of this paper are as follows. It provides a survey of supervised de-
scriptive rule discovery approaches addressed in different communities, and proposes a unifying
supervised descriptive rule discovery framework, including a critical survey of visualization meth-
ods. The paper is organized as follows: Section 2 gives a survey of past research done in the main
supervised descriptive rule discovery areas: contrast set mining, emerging pattern mining, subgroup
discovery and other related approaches. Section 3 is dedicated to unifying the terminology, defini-
tions and the heuristics. Section 4 addresses visualization as an important open issue in supervised
descriptive rule discovery. Section 5 provides a short summary.

2. A Survey of Supervised Descriptive Rule Discovery Approaches

Research on finding interesting rules from class labeled data evolved independently in three distinct
areas—contrast set mining, mining of emerging patterns and subgroup discovery—each area using
different frameworks and terminology. In this section, we provide a survey of these three research
areas. We also discuss other related approaches.

2.1 An Illustrative Example

Let us illustrate contrast set mining, emerging pattern mining and subgroup discovery using data
from Table 1, a very small, artificial sample data set,1 adapted from Quinlan (1986). The data set
contains the results of a survey on 14 individuals, concerning the approval or disapproval of an
issue analyzed in the survey. Each individual is characterized by four attributes—Education (with
values primary school, secondary school, or university), MaritalStatus (single, married,
or divorced), Sex (male or female), and HasChildren (yes or no)—that encode rudimentary
information about the sociodemographic background. The last column Approved is the designated

1. Thanks to Johannes Fürnkranz for providing this data set.
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Education Marital Status Sex Has Children Approved
primary single male no no
primary single male yes no
primary married male no yes
university divorced female no yes
university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes
primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male no yes

Table 1: A sample database.

Marital Stat

0.357
14.0

Sex

0.600
5.0

single

no

1.000
3.0

male

yes

0.000
2.0

female

yes

0.000
4.0

married

Has Childre

0.400
5.0

divorced

yes

0.000
3.0

no

no

1.000
2.0

yes

Figure 1: A decision tree, modeling the data set shown in Table 1.

class attribute, encoding whether the individual approved or disapproved the issue. Since there is
no need for expert knowledge to interpret the results, this data set is appropriate for illustrating
the results of supervised descriptive rule discovery algorithms, whose task is to find interesting
patterns describing individuals that are likely to approve or disapprove the issue, based on the four
demographic characteristics.

The task of predictive induction is to induce, from a given set of training examples, a domain
model aimed at predictive or classification purposes, such as the decision tree shown in Figure 1, or
a rule set shown in Figure 2, as learned by C4.5 and C4.5rules (Quinlan, 1993), respectively, from
the sample data in Table 1.

Sex = female → Approved = yes
MaritalStatus = single AND Sex = male → Approved = no
MaritalStatus = married → Approved = yes
MaritalStatus = divorced AND HasChildren = yes → Approved = no
MaritalStatus = divorced AND HasChildren = no → Approved = yes

Figure 2: A set of predictive rules, modeling the data set shown in Table 1.
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MaritalStatus = single AND Sex = male → Approved = no
Sex = male → Approved = no
Sex = female → Approved = yes
MaritalStatus = married → Approved = yes
MaritalStatus = divorced AND HasChildren = yes → Approved = no
MaritalStatus = single → Approved = no

Figure 3: Selected descriptive rules, describing individual patterns in the data of Table 1.

In contrast to predictive induction algorithms, descriptive induction algorithms typically result
in rules induced from unlabeled examples. E.g., given the examples listed in Table 1, these al-
gorithms would typically treat the class Approved no differently from any other attribute. Note,
however, that in the learning framework discussed in this paper, that is, in the framework of su-
pervised descriptive rule discovery, the discovered rules of the form X → Y are induced from class
labeled data: the class labels are taken into account in learning of patterns of interest, constraining
Y at the right hand side of the rule to assign a value to the class attribute.

Figure 3 shows six descriptive rules, found for the sample data using the Magnum Opus (Webb,
1995) software. Note that these rules were found using the default settings except that the critical
value for the statistical test was relaxed to 0.25. These descriptive rules differ from the predictive
rules in several ways. The first rule is redundant with respect to the second. The first is included as
a strong pattern (all 3 single males do not approve) whereas the second is weaker but more general
(4 out of 7 males do not approve, which is not highly predictive, but accounts for 4 out of all 5
respondents who do not approve). Most predictive systems will include only one of these rules,
but either may be of interest to someone trying to understand the data, depending upon the specific
application. This particular approach to descriptive pattern discovery does not attempt to second
guess which of the more specific or more general patterns will be the more useful.

Another difference between the predictive and the descriptive rule sets is that the descriptive rule
set does not include the pattern that divorcees without children approve. This is because, while the
pattern is highly predictive in the sample data, there are insufficient examples to pass the statistical
test which assesses the probability that, given the frequency of respondents approving, the apparent
correlation occurs by chance. The predictive approach often includes such rules for the sake of
completeness, while some descriptive approaches make no attempt at such completeness, assessing
each pattern on its individual merits.

Exactly which rules will be induced by a supervised descriptive rule discovery algorithm de-
pends on the task definition, the selected algorithm, as well as the user-defined constraints concern-
ing minimal rule support, precision, etc. In the following section, the example set of Table 1 is used
to illustrate the outputs of emerging pattern and subgroup discovery algorithms (see Figures 4 and 5,
respectively), while a sample output for contrast set mining is shown in Figure 3 above.

2.2 Contrast Set Mining

The problem of mining contrast sets was first defined by Bay and Pazzani (2001) as finding con-
trast sets as “conjunctions of attributes and values that differ meaningfully in their distributions
across groups.” The example rules in Figure 3 illustrate this approach, including all conjunctions
of attributes and values that pass a statistical test for productivity (explained below) with respect to
attribute Approved that defines the ‘groups.’
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2.2.1 CONTRAST SET MINING ALGORITHMS

The STUCCO algorithm (Search and Testing for Understandable Consistent Contrasts) by Bay and
Pazzani (2001) is based on the Max-Miner rule discovery algorithm (Bayardo, 1998). STUCCO
discovers a set of contrast sets along with their supports2 on groups. STUCCO employs a number
of pruning mechanisms. A potential contrast set X is discarded if it fails a statistical test for inde-
pendence with respect to the group variable Y . It is also subjected to what Webb (2007) calls a test
for productivity. Rule X → Y is productive iff

∀Z ⊂ X : confidence(Z→ Y ) < confidence(X → Y )

where confidence(X →Y ) is a maximum likelihood estimate of conditional probability P(Y |X), es-
timated by the ratio count(X ,Y )

count(X) , where count(X ,Y ) represents the number of examples for which both
X and Y are true, and count(X) represents the number of examples for which X is true. Therefore a
more specific contrast set must have higher confidence than any of its generalizations. Further tests
for minimum counts and effect sizes may also be imposed.

STUCCO introduced a novel variant of the Bonferroni correction for multiple tests which ap-
plies ever more stringent critical values to the statistical tests employed as the number of conditions
in a contrast set is increased. In comparison, the other techniques discussed below do not, by de-
fault, employ any form of correction for multiple comparisons, as result of which they have high
risk of making false discoveries (Webb, 2007).

It was shown by Webb et al. (2003) that contrast set mining is a special case of the more general
rule learning task. A contrast set can be interpreted as the antecedent of rule X → Y , and group Gi
for which it is characteristic—in contrast with group Gj—as the rule consequent, leading to rules of
the form ContrastSet→Gi. A standard descriptive rule discovery algorithm, such as an association-
rule discovery system (Agrawal et al., 1996), can be used for the task if the consequent is restricted
to a variable whose values denote group membership.

In particular, Webb et al. (2003) showed that when STUCCO and the general-purpose descrip-
tive rule learning systemMagnumOpus were each run with their default settings, but the consequent
restricted to the contrast variable in the case of Magnum Opus, the contrasts found differed mainly
as a consequence only of differences in the statistical tests employed to screen the rules.

Hilderman and Peckham (2005) proposed a different approach to contrast set mining called
CIGAR (ContrastIng Grouped Association Rules). CIGAR uses different statistical tests to STUCCO
or Magnum Opus for both independence and productivity and introduces a test for minimum sup-
port.

Wong and Tseng (2005) have developed techniques for discovering contrasts that can include
negations of terms in the contrast set.

In general, contrast set mining approaches require discrete data, which is in real world appli-
cations frequently not the case. A data discretization method developed specifically for set mining
purposes is described by Bay (2000). This approach does not appear to have been further used by
the contrast set mining community, except for Lin and Keogh (2006), who extended contrast set
mining to time series and multimedia data analysis. They introduced a formal notion of a time
series contrast set along with a fast algorithm to find time series contrast sets. An approach to quan-
titative contrast set mining without discretization in the preprocessing phase is proposed by Simeon

2. The support of a contrast set ContrastSet with respect to a group Gi, support(ContrastSet,Gi), is the percentage of
examples in Gi for which the contrast set is true.
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and Hilderman (2007) with the algorithm Gen QCSets. In this approach, a slightly modified equal
width binning interval method is used.

Common to most contrast set mining approaches is that they generate all candidate contrast sets
from discrete (or discretized) data and later use statistical tests to identify the interesting ones. Open
questions identified by Webb et al. (2003) are yet unsolved: selection of appropriate heuristics for
identifying interesting contrast sets, appropriate measures of quality for sets of contrast sets, and
appropriate methods for presenting contrast sets to the end users.

2.2.2 SELECTED APPLICATIONS OF CONTRAST SET MINING

The contrast mining paradigm does not appear to have been pursued in many published applications.
Webb et al. (2003) investigated its use with retail sales data. Wong and Tseng (2005) applied contrast
set mining for designing customized insurance programs. Siu et al. (2005) have used contrast set
mining to identify patterns in synchrotron x-ray data that distinguish tissue samples of different
forms of cancerous tumor. Kralj et al. (2007b) have addressed a contrast set mining problem of
distinguishing between two groups of brain ischaemia patients by transforming the contrast set
mining task to a subgroup discovery task.

2.3 Emerging Pattern Mining

Emerging patterns were defined by Dong and Li (1999) as itemsets whose support increases sig-
nificantly from one data set to another. Emerging patterns are said to capture emerging trends in
time-stamped databases, or to capture differentiating characteristics between classes of data.

2.3.1 EMERGING PATTERN MINING ALGORITHMS

Efficient algorithms for mining emerging patterns were proposed by Dong and Li (1999) and Fan
and Ramamohanarao (2003). When first defined by Dong and Li (1999), the purpose of emerging
patterns was “to capture emerging trends in time-stamped data, or useful contrasts between data
classes”. Subsequent emerging pattern research has largely focused on the use of the discovered
patterns for classification purposes, for example, classification by emerging patterns (Dong et al.,
1999; Li et al., 2000) and classification by jumping emerging patterns3 (Li et al., 2001). An ad-
vanced Bayesian approach (Fan and Ramamohanara, 2003) and bagging (Fan et al., 2006) were
also proposed.

From a semantic point of view, emerging patterns are association rules with an itemset in rule
antecedent, and a fixed consequent: ItemSet→D1, for given data set D1 being compared to another
data set D2.

The measure of quality of emerging patterns is the growth rate (the ratio of the two supports).
It determines, for example, that a pattern with a 10% support in one data set and 1% in the other
is better than a pattern with support 70% in one data set and 10% in the other (as 101 > 70

10 ). From
the association rule perspective, GrowthRate(ItemSet,D1,D2) = confidence(ItemSet→D1)

1−confidence(ItemSet→D1) . Thus it can
be seen that growth rate provides an identical ordering to confidence, except that growth rate is
undefined when confidence = 1.0.

3. Jumping emerging patterns are emerging patterns with support zero in one data set and greater then zero in the other
data set.
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MaritalStatus = single AND Sex = male → Approved = no
MaritalStatus = married → Approved = yes
MaritalStatus = divorced AND HasChildren = yes → Approved = no

Figure 4: Jumping emerging patterns in the data of Table 1.

Some researchers have argued that finding all the emerging patterns above a minimum growth
rate constraint generates too many patterns to be analyzed by a domain expert. Fan and Ramamoha-
narao (2003) have worked on selecting the interesting emerging patterns, while Soulet et al. (2004)
have proposed condensed representations of emerging patterns.

Boulesteix et al. (2003) introduced a CART-based approach to discover emerging patterns in
microarray data. The method is based on growing decision trees from which the emerging patterns
are extracted. It combines pattern search with a statistical procedure based on Fisher’s exact test to
assess the significance of each emerging pattern. Subsequently, sample classification based on the
inferred emerging patterns is performed using maximum-likelihood linear discriminant analysis.

Figure 4 shows all jumping emerging patterns found for the data in Table 1 when using a min-
imum support of 15%. These were discovered using the Magnum Opus software, limiting the con-
sequent to the variable approved, setting minimum confidence to 1.0 and setting minimum support
to 2.

2.3.2 SELECTED APPLICATIONS OF EMERGING PATTERNS

Emerging patterns have been mainly applied to the field of bioinformatics, more specifically to
microarray data analysis. Li et al. (2003) present an interpretable classifier based on simple rules that
is competitive to the state of the art black-box classifiers on the acute lymphoblastic leukemia (ALL)
microarray data set. Li and Wong (2002) have focused on finding groups of genes by emerging
patterns and applied it to the ALL/AML data set and the colon tumor data set. Song et al. (2001) used
emerging patterns together with unexpected change and the added/perished rule to mine customer
behavior.

2.4 Subgroup Discovery

The task of subgroup discovery was defined by Klösgen (1996) and Wrobel (1997) as follows:
“Given a population of individuals and a property of those individuals that we are interested in, find
population subgroups that are statistically ‘most interesting’, for example, are as large as possible
and have the most unusual statistical (distributional) characteristics with respect to the property of
interest”.

2.4.1 SUBGROUP DISCOVERY ALGORITHMS

Subgroup descriptions are conjunctions of features that are characteristic for a selected class of
individuals (property of interest). A subgroup description can be seen as the condition part of a rule
SubgroupDescription→Class. Therefore, subgroup discovery can be seen as a special case of a
more general rule learning task.

Subgroup discovery research has evolved in several directions. On the one hand, exhaustive
approaches guarantee the optimal solution given the optimization criterion. One system that can
use both exhaustive and heuristic discovery algorithms is Explora by Klösgen (1996). Other algo-
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Sex = female → Approved = yes
MaritalStatus = married → Approved = yes
MaritalStatus = divorced AND HasChildren = no → Approved = yes
Education = university → Approved = yes
MaritalStatus = single AND Sex = male → Approved = no

Figure 5: Subgroup descriptions induced by Apriori-SD from the data of Table 1.

rithms for exhaustive subgroup discovery are the SD-Map method by Atzmüller and Puppe (2006)
and Apriori-SD by Kavšek and Lavrač (2006). On the other hand, adaptations of classification rule
learners to perform subgroup discovery, including algorithm SD by Gamberger and Lavrač (2002)
and algorithm CN2-SD by Lavrač et al. (2004b), use heuristic search techniques drawn from classi-
fication rule learning coupled with constraints appropriate for descriptive rules.

Relational subgroup discovery approaches have been proposed by Wrobel (1997, 2001) with
algorithm Midos, by Klösgen and May (2002) with algorithm SubgroupMiner, which is designed
for spatial data mining in relational space databases, and by Železný and Lavrač (2006) with the
algorithm RSD (Relational Subgroup Discovery). RSD uses a propositionalization approach to
relational subgroup discovery, achieved through appropriately adapting rule learning and first-order
feature construction. Other non-relational subgroup discovery algorithms were developed, including
an algorithm for exploiting background knowledge in subgroup discovery (Atzmüller et al., 2005a),
and an iterative genetic algorithm SDIGA by del Jesus et al. (2007) implementing a fuzzy system
for solving subgroup discovery tasks.

Different heuristics have been used for subgroup discovery. By definition, the interestingness
of a subgroup depends on its unusualness and size, therefore the rule quality evaluation heuristics
needs to combine both factors. Weighted relative accuracy (WRAcc, see Equation 2 in Section 3.3)
is used by algorithms CN2-SD, Apriori-SD and RSD and, in a different formulation and in dif-
ferent variants, also by MIDOS and EXPLORA. Generalization quotient (qg, see Equation 3 in
Section 3.3) is used by the SD algorithm. SubgroupMiner uses the classical binominal test to verify
if the target share is significantly different in a subgroup.

Different approaches have been used for eliminating redundant subgroups. Algorithms CN2-SD,
Apriori-SD, SD and RSD use weighted covering (Lavrač et al., 2004b) to achieve rule diversity.
Algorithms Explora and SubgroupMiner use an approach called subgroup suppression (Klösgen,
1996). A sample set of subgroup describing rules, induced by Apriori-SD with parameters support
set to 15% (requiring at least 2 covered training examples per rule) and confidence set to 65%, is
shown in Figure 5.

2.4.2 SELECTED APPLICATIONS OF SUBGROUP DISCOVERY

Subgroup discovery was used in numerous real-life applications. The applications in medical do-
mains include the analysis of coronary heart disease (Gamberger and Lavrač, 2002) and brain is-
chaemia data analysis (Kralj et al., 2007b,a; Lavrač et al., 2007), as well as profiling examiners for
sonographic examinations (Atzmüller et al., 2005b). Spatial subgroup mining applications include
mining of census data (Klösgen et al., 2003) and mining of vegetation data (May and Ragia, 2002).
There are also applications in other areas like marketing (del Jesus et al., 2007; Lavrač et al., 2004a)
and analysis of manufacturing shop floor data (Jenkole et al., 2007).
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2.5 Related Approaches

Research in some closely related areas of rule learning, performed independently from the above
described approaches, is outlined below.

2.5.1 CHANGE MINING

The paper by Liu et al. (2001) on fundamental rule changes proposes a technique to identify the
set of fundamental changes in two given data sets collected from two time periods. The proposed
approach first generates rules and in the second phase it identifies changes (rules) that can not be
explained by the presence of other changes (rules). This is achieved by applying statistical !2 test
for homogeneity of support and confidence. This differs from contrast set discovery through its
consideration of rules for each group, rather than itemsets. A change in the frequency of just one
itemset between groups may affect many association rules, potentially all rules that have the itemset
as either an antecedent or consequent.

Liu et al. (2000) and Wang et al. (2003) present techniques that identify differences in the
decision trees and classification rules, respectively, found on two different data sets.

2.5.2 MINING CLOSED SETS FROM LABELED DATA

Closed sets have been proven successful in the context of compacted data representation for asso-
ciation rule learning. However, their use is mainly descriptive, dealing only with unlabeled data. It
was recently shown that when considering labeled data, closed sets can be adapted for classification
and discrimination purposes by conveniently contrasting covering properties on positive and nega-
tive examples (Garriga et al., 2006). The approach was successfully applied in potato microarray
data analysis to a real-life problem of distinguishing between virus sensitive and resistant transgenic
potato lines (Kralj et al., 2006).

2.5.3 EXCEPTION RULE MINING

Exception rule mining considers a problem of finding a set of rule pairs, each of which consists
of an exception rule (which describes a regularity for fewer objects) associated with a strong rule
(description of a regularity for numerous objects with few counterexamples). An example of such
a rule pair is “using a seat belt is safe” (strong rule) and “using a seat belt is risky for a child”
(exception rule). While the goal of exception rule mining is also to find descriptive rules from
labeled data, in contrast with other rule discovery approaches described in this paper, the goal of
exception rule mining is to find “weak” rules—surprising rules that are an exception to the general
belief of background knowledge.

Suzuki (2006) and Daly and Taniar (2005), summarizing the research in exception rule mining,
reveal that the key concerns addressed by this body of research include interestingness measures,
reliability evaluation, practical application, parameter reduction and knowledge representation, as
well as providing fast algorithms for solving the problem.

2.5.4 IMPACT RULES, BUMP HUNTING, QUANTITATIVE ASSOCIATION RULES

Supervised descriptive rule discovery seeks to discover sets of conditions that are related to devia-
tions in the class distribution, where the class is a qualitative variable. A related body of research
seeks to discover sets of conditions that are related to deviations in a target quantitative variable.
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Contrast Set Mining Emerging Pattern Mining Subgroup Discovery Rule Learning
contrast set itemset subgroup description rule condition

groups G1, . . .Gn data sets D1 and D2 class/propertyC class/concept Ci
attribute-value pair item logical (binary) feature condition
examples in groups transactions in data sets examples of examples of

G1, . . .Gn D1 and D2 C and C C1 . . .Cn
examples for which transactions containing subgroup of instances covered examples
the contrast set is true the itemset

support of contrast set on Gi support of EP in data set D1 true positive rate true positive rate
support of contrast set on Gj support of EP in data set D2 false positive rate false positive rate

Table 2: Table of synonyms from different communities, showing the compatibility of terms.

Such techniques include Bump Hunting (Friedman and Fisher, 1999), Quantitative Association
Rules (Aumann and Lindell, 1999) and Impact Rules (Webb, 2001).

3. A Unifying Framework for Supervised Descriptive Rule Induction

This section presents a unifying framework for contrast set mining, emerging pattern mining and
subgroup discovery, as the main representatives of supervised descriptive rule discovery approaches.
This is achieved by unifying the terminology, the task definitions and the rule learning heuristics.

3.1 Unifying the Terminology

Contrast set mining (CSM), emerging pattern mining (EPM) and subgroup discovery (SD) were
developed in different communities, each developing their own terminology that needs to be clar-
ified before proceeding. Below we show that terms used in different communities are compatible,
according to the following definition of compatibility.

Definition 1: Compatibility of terms. Terms used in different communities are compatible if they
can be translated into equivalent logical expressions and if they bare the same meaning, that is, if
terms from one community can replace terms used in another community.

Lemma 1: Terms used in CSM, EPM and SD are compatible.
Proof The compatibility of terms is proven through a term dictionary, whose aim is to translate all
the terms used in CSM, EPM and SD into the terms used in the rule learning community. The term
dictionary is proposed in Table 2. More specifically, this table provides a dictionary of equivalent
terms from contrast set mining, emerging pattern mining and subgroup discovery, in a unifying ter-
minology of classification rule learning, and in particular of concept learning (considering class Ci
as the concept to be learned from the positive examples of this concept, and the negative examples
formed of examples of all other classes).

3.2 Unifying the Task Definitions

Having established a unifying view on the terminology, the next step is to provide a unifying view
on the different task definitions.
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CSM A contrast set mining task is defined as follows (Bay and Pazzani, 2001). Let A1, A2, . . . ,
Ak be a set of k variables called attributes. Each Ai can take values from the set {vi1, vi2, . . . ,
vim}. Given a set of user defined groups G1, G2, . . . , Gn of data instances, a contrast set is
a conjunction of attribute-value pairs, defining a pattern that best discriminates the instances
of different user-defined groups. A special case of contrast set mining considers only two
contrasting groups (G1 and G2). In such cases, we wish to find characteristics of one group
discriminating it from the other and vice versa.

EPM An emerging patterns mining task is defined as follows (Dong and Li, 1999). Let I = {i1, i2,
. . . , iN} be a set of items (note that an item is equivalent to a binary feature in SD, and an
individual attribute-value pair in CSM). A transaction is a subset T of I. A dataset is a set
D of transactions. A subset X of I is called an itemset. Transaction T contains an itemset
X in a data set D, if X ⊆ T . For two data sets D1 and D2, emerging pattern mining aims at
discovering itemsets whose support increases significantly from one data set to another.

SD In subgroup discovery, subgroups are described as conjunctions of features, where features
are of the form Ai = vi j for nominal attributes, and Ai > value or Ai ≤ value for continuous
attributes. Given the property of interest C, and the population of examples of C and C, the
subgroup discovery task aims at finding population subgroups that are as large as possible and
have the most unusual statistical (distributional) characteristics with respect to the property
of interestC (Wrobel, 1997).

The definitions of contrast set mining, emerging pattern mining and subgroup discovery appear
different: contrast set mining searches for discriminating characteristics of groups called contrast
sets, emerging pattern mining aims at discovering itemsets whose support increases significantly
from one data set to another, while subgroup discovery searches for subgroup descriptions. By us-
ing the dictionary from Table 2 we can see that the goals of these three mining tasks are very similar,
it is primarily the terminology that differs.

Definition 2: Compatibility of task definitions. Definitions of different learning tasks are compat-
ible if one learning task can be translated into another learning task without substantially changing
the learning goal.

Lemma 2: Definitions of CSM, EPM and SD tasks are compatible.

Proof To show the compatibility of task definitions, we propose a unifying table (Table 3) of task
definitions, allowing us to see that emerging pattern mining task EPM(D1,D2) is equivalent to
CSM(Gi,Gj). It is also easy to show that a two-group contrast set mining task CSM(Gi,Gj) can be
directly translated into the following two subgroup discovery tasks: SD(Gi) forC =Gi andC =Gj,
and SD(Gj) forC = Gj and C = Gi.
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Contrast Set Mining Emerging Pattern Mining Subgroup Discovery Rule Learning
Given Given Given Given

examples in G1 vs. Gj transactions in D1 and D2 in examples C examples inCi
from G1, . . .Gi from D1 and D2 fromC andC fromC1 . . .Cn

Find Find Find Find
ContrastSetik → Gi ItemSet1k → D1 SubgrDescrk →C {RuleCondik →Ci}
ContrastSet jl → Gj ItemSet2l → D2

Table 3: Table of task definitions from different communities, showing the compatibility of task
definitions in terms of output rules.

Having proved that the subgroup discovery task is compatible with a two-group contrast set
mining task, it is by induction compatible with a general contrast set mining task, as shown below.

CSM(G1, . . .Gn)
for i=2 to n do
for j=1, j! i to n-1 do

SD(C = Gi vs.C = Gj)

Note that in Table 3 of task definitions column ‘Rule Learning’ again corresponds to a concept
learning task instead of the general classification rule learning task. In the concept learning setting,
which is better suited for the comparisons with supervised descriptive rule discovery approaches,
a distinguished class Ci is learned from examples of this class, and examples of all other classes
C1, . . . , Ci−1, Ci+1, CN are merged to form the set of examples of class Ci. In this case, induced
rule set {RuleCondik → Ci} consists only of rules for distinguished class Ci. On the other hand,
in a general classification rule learning setting, from examples of N different classes a set of rules
would be learned {. . . , RuleCondik →Ci, RuleCondik+1 →Ci, . . . , RuleCond jl →Cj, . . . , Default},
consisting of sets of rules of the form RuleCondik →Ci for each individual class Ci, supplemented
by the default rule.

While the primary tasks are very closely related, each of the three communities has concen-
trated on different sets of issues around this task. The contrast set discovery community has paid
greatest attention to the statistical issues of multiple comparisons that, if not addressed, can result in
high risks of false discoveries. The emerging patterns community has investigated how supervised
descriptive rules can be used for classification. The contrast set and emerging pattern communi-
ties have primarily addressed only categorical data whereas the subgroup discovery community has
also considered numeric and relational data. The subgroup discovery community has also explored
techniques for discovering small numbers of supervised descriptive rules with high coverage of the
data.

3.3 Unifying the Rule Learning Heuristics

The aim of this section is to provide a unifying view on rule learning heuristics used in different
communities. To this end, we first investigate the rule quality measures.

Most rule quality measures are derived by analyzing the covering properties of the rule and the
class in the rule consequent considered as positive. This relationship can be depicted by a confusion

388



SUPERVISED DESCRIPTIVE RULE DISCOVERY

predicted
actual # of positives # of negatives

# of positives p= |TP(X ,Y )| p= |FN(X ,Y )| P
# of negatives n= |FP(X ,Y )| n= |TN(X ,Y )| N

p+n p+n P+N

Table 4: Confusion matrix: TP(X ,Y ) stands for true positives, FP(X ,Y ) for false positives,
FN(X ,Y ) for false negatives and TN(X ,Y ) for true negatives, as predicted by rule X → Y .

matrix (Table 4, see, e.g., Kohavi and Provost, 1998), which considers that rule R = X → Y is
represented as (X ,Y ), and defines p as the number of true positives (positive examples correctly
classified as positive by rule (X ,Y )), n as the number of false positives, etc., from which other
covering characteristics of a rule can be derived: true positive rate TPr(X ,Y ) = p

P and false positive
rate FPr(X ,Y ) = n

N .

CSM Contrast set mining aims at discovering contrast sets that best discriminate the instances
of different user-defined groups. The support of contrast set X with respect to group Gi,
support(X ,Gi), is the percentage of examples in Gi for which the contrast set is true. Note
that support of a contrast set with respect to group G is the same as true positive rate in the
classification rule and subgroup discovery terminology, that is, support(X ,Gi) = count(X ,Gi)

|Gi| =

TPr(X ,Gi). A derived goal of contrast set mining, proposed by Bay and Pazzani (2001), is to
find contrast sets whose support differs meaningfully across groups, for δ being a user-defined
parameter.

SuppDiff (X ,Gi,Gj) = |support(X ,Gi)− support(X ,Gj)|≥ δ.

EPM Emerging pattern mining aims at discovering itemsets whose support increases significantly
from one data set to another Dong and Li (1999), where support of itemset X in data set D
is computed as support(X ,D) = count(X ,D)

|D| , for count(X ,D) being the number of transactions
in D containing X . Suppose we are given an ordered pair of data sets D1 and D2. The
GrowthRate of an itemset X from D1 to D2, denoted as GrowthRate(X ,D1,D2), is defined as
follows:

GrowthRate(X ,D1,D2) =
support(X ,D1)
support(X ,D2)

. (1)

Definitions of special cases of GrowthRate(X ,D1,D2) are as follows, if support(X ,D1) = 0
then GrowthRate(X ,D1,D2) = 0, if support(X ,D2) = 0 then GrowthRate(X ,D1,D2) = ".

SD Subgroup discovery aims at finding population subgroups that are as large as possible and have
the most unusual statistical (distributional) characteristics with respect to the property of in-
terest (Wrobel, 1997). There were several heuristics developed and used in the subgroup
discovery community. Since they follow from the task definition, they try to maximize sub-
group size and the distribution difference at the same time. Examples of such heuristics are
the weighted relative accuracy (Equation 2, see Lavrač et al., 2004b) and the generalization
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Contrast Set Mining Emerging Pattern Mining Subgroup Discovery Rule Learning
SuppDiff (X ,Gi,Gj) WRAcc(X ,C) Piatetski-Shapiro heuristic

leverage
GrowthRate(X ,D1,D2) qg(X ,C) odds ratio for g= 0

accuracy/precision, for g= p

Table 5: Table of relationships between the pairs of heuristics, and their equivalents in classification
rule learning.

quotient (Equation 3, see Gamberger and Lavrač, 2002) , for g being a user-defined parameter.

WRAcc(X ,C) =
p+n
P+N

·

(

p
p+n

−
P

P+N

)

, (2)

qg(X ,C) =
p

n+g
. (3)

Let us now investigate whether the heuristics used in CSM, EPM and SD are compatible, using
the following definition of compatibility.

Definition 3: Compatibility of heuristics.
Heuristic function h1 is compatible with h2 if h2 can be derived from h1 and if for any two rules R
and R′, h1(R) > h1(R′) ⇔ h2(R) > h2(R′).

Lemma 3: Definitions of CSM, EPM and SD heuristics are pairwise compatible.
Proof The proof of Lemma 3 is established by proving two sub-lemmas, Lemma 3a and Lemma 3b,
which prove the compatibility of two pairs of heuristics, whereas the relationships between these
pairs is established through Table 5, and illustrated in Figures 6 and 7.

Lemma 3a: The support difference heuristic used in CSM and the weighted relative accuracy
heuristic used in SD are compatible.
Proof Note that, as shown below, weighted relative accuracy (Equation 2) can be interpreted in
terms of probabilities of rule antecedent X and consequent Y (class C representing the property of
interest), and the conditional probability of class Y given X , estimated by relative frequencies.

WRAcc(X ,Y ) = P(X) · (P(Y |X)−P(Y )).

From this equation we see that, indeed, when optimizing weighted relative accuracy of rule X →Y ,
we optimize two contrasting factors: rule coverage P(X) (proportional to the size of the subgroup),
and distributional unusualness P(Y |X)−P(Y ) (proportional to the difference of the number of posi-
tive examples correctly covered by the rule and the number of positives in the original training set).
It is straightforward to show that this measure is equivalent to the Piatetski-Shapiro measure, which
evaluates the conditional (in)dependence of rule consequent and rule antecedent as follows:

PS(X ,Y ) = P(X ·Y )−P(X) ·P(Y ).
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Weighted relative accuracy, known from subgroup discovery, and support difference between
groups, used in contrast set mining, are related as follows:4

WRAcc(X ,Y ) =
= P(X) · [P(Y |X)−P(Y )] = P(Y ·X)−P(Y ) ·P(X)
= P(Y ·X)−P(Y ) · [P(Y ·X)+P(Y ·X)]
= (1−P(Y )) ·P(Y ·X)−P(Y ) ·P(Y ·X)
= P(Y ) ·P(Y ) ·P(X |Y )−P(Y ) ·P(Y ) ·P(X |Y )
= P(Y ) ·P(Y ) · [P(X |Y )−P(X |Y )]
= P(Y ) ·P(Y ) · [TPr(X ,Y )−FPr(X ,Y )].

Since the distribution of examples among classes is constant for any data set, the first two factors
P(Y ) and P(Y ) are constant within a data set. Therefore, when maximizing the weighted relative
accuracy, one is maximizing the second factor TPr(X ,Y )−FPr(X ,Y ), which actually is support
difference when we have a two group contrast set mining problem. Consequently, for C = G1, and
C = G2 the following holds:

WRAcc(X ,C) =WRAcc(X ,G1) = P(G1) ·P(G2) · [support(X ,G1)− support(X ,G2)].

Lemma 3b: The growth rate heuristic used in EPM and the generalization quotient heuristic used
in SD are compatible.
Proof Equation 1 can be rewritten as follows:

GrowthRate(X ,D1,D2) =
support(X ,D1)
support(C,D2)

=

=
count(X ,D1)
count(X ,D2)

·
|D2|
|D1|

=
p
n
·
N
P

.

Since the distribution of examples among classes is constant for any data set, the quotient NP is
constant. Consequently, the growth rate is the generalization quotient with g = 0, multiplied by a
constant. Therefore, the growth rate is compatible with the generalization quotient.

GrowthRate(X ,C,C) = q0(X ,C) ·
N
P

.

The lemmas prove that heuristics used in CSM and EPM can be translated into heuristics used in
SD and vice versa. In this way, we have shown the compatibility of CSM and SD heuristics, as well
as the compatibility of EPM and SD heuristics. While the lemmas do not prove direct compatibility
of CSM and EPM heuristics, they prove that heuristics used in CSM and EPM can be translated into
two heuristics used in SD, both aiming at trading-off between coverage and distributional difference.

4. Peter A. Flach is acknowledged for having derived these equations.
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Figure 6: Isometrics for qg. The dotted lines show the isometrics for a selected g> 0, while the full
lines show the special case when g= 0, compatible to the EPM growth rate heuristic.

Figure 7: Isometrics for WRAcc, compatible to the CSM support difference heuristic.

Table 5 provides also the equivalents of these heuristics in terms of heuristics known from
the classification rule learning community, details of which are beyond the scope of this paper
(an interested reader can find more details on selected heuristics and their ROC representations in
Fürnkranz and Flach, 2003).

Note that the growth rate heuristic from EPM, as a special case of the generalization quotient
heuristic with g= 0, does not consider rule coverage. On the other hand, its compatible counterpart,
the generalization quotient qg heuristic used in SD, can be tailored to favor more general rules by
setting the g parameter value, as for a general g value, the qg heuristic provides a trade-off between
rule accuracy and coverage. Figure 65 illustrates the qg isometrics, for a general g value, as well as
for value g= 0.

Note also that standard rule learners (such as CN2 by Clark and Niblett, 1989) tend to generate
very specific rules, due to using accuracy heuristic Acc(X ,Y ) = p+n

P+N or its variants: the Laplace
and the m-estimate. On the other hand, the CSM support difference heuristic and its SD counterpart
WRAcc both optimize a trade-off between rule accuracy and coverage. The WRAcc isometrics are
plotted in Figure 7.6

3.4 Comparison of Rule Selection Mechanisms

Having established a unifying view on the terminology, definitions and rule learning heuristics, the
last step is to analyze rule selection mechanisms used by different algorithms. The motivation for
rule selection can be either to find only significant rules or to avoid overlapping rules (too many
too similar rules), or to avoid showing redundant rules to the end users. Note that rule selection is
not always necessary and that depending on the goal, redundant rules can be valuable (e.g., clas-

5. This figure is due to Gamberger and Lavrač (2002).
6. This figure is due to Fürnkranz and Flach (2003).
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sification by aggregating emerging patterns by Dong et al., 1999). Two approaches are commonly
used: statistic tests and the (weighted) covering approach. In this section, we compare these two
approaches.

Webb et al. (2003) show that contrast set mining is a special case of the more general rule
discovery task. However, an experimental comparison of STUCCO, OPUS AR and C4.5 has shown
that standard rule learners return a larger set of rules compared to STUCCO, and that some of them
are also not interesting to end users. STUCCO (see Bay and Pazzani 2001 for more details) uses
several mechanisms for rule pruning. Statistical significance pruning removes contrast sets that,
while significant and large, derive these properties only due to being specializations of more general
contrast sets: any specialization is pruned that has a similar support to its parent or that fails a !2
test of independence with respect to its parent.

In the context of OPUS AR, the emphasis has been on developing statistical tests that are robust
in the context of the large search spaces explored in many rule discovery applications Webb (2007).
These include tests for independence between the antecedent and consequent, and tests to assess
whether specializations have significantly higher confidence than their generalizations.

In subgroup discovery, the weighted covering approach (Lavrač et al., 2004b) is used with the
aim of ensuring the diversity of rules induced in different iterations of the algorithm. In each iter-
ation, after selecting the best rule, the weights of positive examples are decreased according to the
number of rules covering each positive example rule count(e); they are set to w(e) = 1

rule count(e) .
For selecting the best rule in consequent iterations, the SD algorithm (Gamberger and Lavrač, 2002)
uses—instead of the unweighted qg measure (Equation 3)—the weighted variant of qg defined in
Equation 4, while the CN2-SD (Lavrač et al., 2004b) and APRIORI-SD (Kavšek and Lavrač, 2006)
algorithms use the weighted relative accuracy (Equation 2) modified with example weights, as de-
fined in Equation 5, where p′ = #TP(X ,Y )w(e) is the sum of the weights of all covered positive
examples, and P′ is the sum of the weights of all positive examples.

q′g(X ,Y ) =
p′

n+g
, (4)

WRAcc′(X ,Y ) =
p′ +n
P′ +N

·

(

p′

p′ +n
−

P
P+N

)

. (5)

Unlike in the sections on the terminology, task definitions and rule learning heuristics, the com-
parison of rule pruning mechanisms described in this section does not result in a unified view;
although the goals of rule pruning may be the same, the pruning mechanisms used in different
subareas of supervised descriptive rule discovery are—as shown above—very different.

4. Visualization

Webb et al. (2003) identify a need to develop appropriate methods for presenting contrast sets to
end users, possibly through contrast set visualization. This open issue, concerning the visualization
of contrast sets and emerging patterns, can be resolved by importing some of the solutions proposed
in the subgroup discovery community. Several methods for subgroup visualization were developed
by Wettschereck (2002), Wrobel (2001), Gamberger et al. (2002), Kralj et al. (2005) and Atzmüller
and Puppe (2005). They are here illustrated using the coronary heart disease data set, originally
analyzed by Gamberger and Lavrač (2002). The visualizations are evaluated by considering their
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Figure 8: Subgroup visualization by pie charts. Figure 9: Subgroup visualization by box plots.

intuitiveness, correctness of displayed data, usefulness, ability to display contents besides the nu-
merical properties of subgroups, (e.g., plot subgroup probability densities against the values of an
attribute), and their extensibility to multi-class problems.

4.1 Visualization by Pie Charts

Slices of pie charts are the most common way of visualizing parts of a whole. They are widely used
and understood. Subgroup visualization by pie chart, proposed by Wettschereck (2002), consists
of a two-level pie for each subgroup. The base pie represents the distribution of individuals in
terms of the property of interest of the entire example set. The inner pie represents the size and the
distribution of individuals in terms of the property of interest in a specific subgroup. An example of
five subgroups (subgroups A1, A2, B1, B2, C1), as well as the base pie “all subjects” are visualized
by pie charts in Figure 8.

The main weakness of this visualization is the misleading representation of the relative size
of subgroups. The size of a subgroup is represented by the radius of the circle. The faultiness
arises from the surface of the circle which increases with the square of its radius. For example, a
subgroup that covers 20% of examples is represented by a circle that covers only 4% of the whole
surface, while a subgroup that covers 50% of examples is represented by a circle that covers 25%
of the whole surface. In terms of usefulness, this visualization is not very handy since—in order to
compare subgroups—one would need to compare sizes of circles, which is difficult. The comparison
of distributions in subgroups is also not straightforward. This visualization also does not show the
contents of subgroups. It would be possible to extend this visualization to multi-class problems.

4.2 Visualization by Box Plots

In subgroup visualization by box plots, introduced by Wrobel (2001), each subgroup is represented
by one box plot (all examples are also considered as one subgroup and are displayed in the top
box). Each box shows the entire population; the horizontally stripped area on the left represents
the positive examples and the white area on the right-hand side of the box represents the negative
examples. The grey area within each box indicates the respective subgroup. The overlap of the grey
area with the hatched area shows the overlap of the group with the positive examples. Hence, the
more to the left the grey area extends the better. The less the grey area extends to the right of the
hatched area, the more specific a subgroup is (less overlap with the subjects of the negative class).
Finally, the location of the box along the X-axis indicates the relative share of the target class within
each subgroup: the more to the right a box is placed, the higher is the share of the target value within
this subgroup. The vertical line (in Figure 9 at value 46.6%) indicates the default accuracy, that is,
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the number of positive examples in the entire population. An example box plot visualization of five
subgroups is presented in Figure 9.

On the negative side, the intuitiveness of this visualization is relatively poor since an extensive
explanation is necessary for understanding it. It is also somewhat illogical since the boxes that are
placed more to the right and have more grey color on the left-hand side represent the best subgroups.
This visualization is not very attractive since most of the image is white; the grey area (the part of
the image that really represents the subgroups) is a relatively tiny part of the entire image. On the
positive side, all the visualized data are correct and the visualization is useful since the subgroups
are arranged by their confidence. It is also easier to contrast the sizes of subgroups compared to
their pie chart visualization. However, this visualization does not display the contents of the data. It
would also be difficult to extend this visualization to multi-class problems.

4.3 Visualizing Subgroup Distribution w.r.t. a Continuous Attribute

The distribution of examples w.r.t. a continuous attribute, introduced by Gamberger and Lavrač
(2002) and Gamberger et al. (2002), was used in the analysis of several medical domains. It is
the only subgroup visualization method that offers an insight of the visualized subgroups. The
approach assumes the existence of at least one numeric (or ordered discrete) attribute of expert’s
interest for subgroup analysis. The selected attribute is plotted on the X-axis of the diagram. The
Y-axis represents the target variable, or more precisely, the number of instances belonging to target
property C (shown on the Y+ axis) or not belonging to C (shown on the Y− axis) for the values of
the attribute on the X-axis. It must be noted that both directions of the Y-axis are used to indicate
the number of instances. The entire data set and two subgroups A1 and B2 are visualized by their
distribution over a continuous attribute in Figure 10.

This visualization method is not completely automatic, since the automatic approach does not
provide consistent results. The automatic approach calculates the number of examples for each value
of the attribute on the X-axis by moving a sliding window and counting the number of examples in
that window. The outcome is a smooth line. The difficulty arises when the attribute from the X-axis
appears in the subgroup description. In such a case, a manual correction is needed for this method
to be realistic.

This visualization method is very intuitive since it practically does not need much explanation.
It is attractive and very useful to the end user since it offers an insight in the contents of displayed

Figure 10: Subgroup visualization w.r.t. a continuous attribute. For clarity of the picture, only the
positive (Y+) side of subgroup A1 is depicted.
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Figure 11: Representation of subgroups in
the ROC space.

all
A2

C1

B1

B2

A1

Figure 12: Subgroup visualization by bar
charts.

examples. However, the correctness of displayed data is questionable. It is impossible to generalize
this visualization to multi-class problems.

4.4 Representation in the ROC Space

The ROC (Receiver Operating Characteristics) (Provost and Fawcett, 2001) space is a 2-dimensional
space that shows classifier (rule/rule set) performance in terms of its false positive rate (FPr) plotted
on the X-axis, and true positive rate (TPr) plotted on the Y-axis. The ROC space is appropriate for
measuring the success of subgroup discovery, since subgroups whose TPr

FPr tradeoffs are close to the
main diagonal (line connecting the points (0, 0) and (1, 1) in the ROC space) can be discarded
as insignificant (Kavšek and Lavrač, 2006); the reason is that the rules with the TPr

FPr ration on the
main diagonal have the same distribution of covered positives and negatives (TPr= FPr) as the
distribution in the entire data set. An example of five subgroups represented in the ROC space is
shown in Figure 11.

Even though the ROC space is an appropriate rule visualization, it is usually used just for the
evaluation of discovered rules. The ROC convex hull is the line connecting the potentially optimal
subgroups. The area under the ROC convex hull (AUC, area under curve) is a measure of quality of
the resulting ruleset.7

This visualization method is not intuitive to the end user, but is absolutely clear to every machine
learning expert. The displayed data is correct, but there is no content displayed. An advantage of this
method compared to the other visualization methods is that it allows the comparison of outcomes
of different algorithms at the same time. The ROC space is designed for two-class problems and is
therefore inappropriate for multi-class problems.

4.5 Bar Charts Visualization

The visualization by bar charts was introduced by Kralj et al. (2005). In this visualization, the
purpose of the first line is to visualize the distribution of the entire example set. The area on the
right represents the positive examples and the area on the left represents the negative examples of the
target class. Each following line represents one subgroup. The positive and the negative examples
of each subgroup are drawn below the positive and the negative examples of the entire example set.
Subgroups are sorted by the relative share of positive examples (precision).

7. Note that in terms of TPrFPr ratio optimality, two subgroups (A1 and B2) are suboptimal, lying below the ROC convex
hull.
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An example of five subgroups visualized by bar charts is shown in Figure 12. It is simple, un-
derstandable and shows all the data correctly. This visualization method allows simple comparison
between subgroups and is therefore useful. It is relatively straight-forward to understand and can be
extended to multi-class problems. It does not display the contents of data, though.

4.6 Summary of Subgroup Visualization Methods

In this section, we (subjectively) compare the five different subgroup visualization methods by con-
sidering their intuitiveness, correctness of displayed data, usefulness, ability to ability to display
contents besides the numerical properties of subgroups, (e.g., plot subgroup probability densities
against the values of an attribute), and their extensibility to multi-class problems. The summary of
the evaluation is presented in Table 6.

Continuous
Pie chart Box plot attribute ROC Bar chart

Intuitiveness + - + +/- +
Correctness - + - + +
Usefulness - + + + +
Contents - - + - -
Multi-class + - - - +

Table 6: Our evaluation of subgroup visualization methods.

Two visualizations score best in Table 6 of our evaluation of subgroup visualization methods:
the visualization of subgroups w.r.t. a continuous attribute and the bar chart visualization. The
visualization of subgroups w.r.t. a continuous attribute is the only visualization that directly shows
the contents of the data; its main shortcomings are the doubtful correctness of the displayed data
and its difficulty to be extended to multi-class problems. It also requires a continuous or ordered
discrete attribute in the data. The bar chart visualization combines the good properties of the pie
chart and the box plot visualization. In Table 6, it only fails in displaying the contents of the data.
By using the two best visualizations, one gets a very good understanding of the mining results.

To show the applicability of subgroup discovery visualizations for supervised descriptive rule
discovery, the bar visualizations of results of contrast set mining, jumping emerging patterns and
subgroup discovery on the survey data analysis problem of Section 2 are shown in Figures 13, 14
and 15, respectively.
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Positives Rule

→Approved=yes

MaritalStatus=single AND Sex=male Approved=no→

Sex=male Approved=no→

Sex=female Approved=yes→

MaritalStatus=married Approved=yes→

MaritalStatus=divorced AND HasChildren=yes Approved=no→

MaritalStatus=single Approved=no→

Figure 13: Bar visualization of contrast sets of Figure 3.
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→Approved=yes

MaritalStatus=single AND Sex=male Approved=no→

MaritalStatus=married Approved=yes→

MaritalStatus=divorced AND HasChildren=yes Approved=no→

Figure 14: Bar visualization of jumping emerging patterns of Figure 4.
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0.00
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→Approved=yes

MaritalStatus=married Approved=yes→

MaritalStatus=divorced AND HasChildren=no Approved=yes→

Sex=female Approved=yes→

Education=university Approved=yes→

Figure 15: Bar visualization of subgroups of Figure 5 of individuals who have approved the issue.

5. Conclusions

Patterns in the form of rules are intuitive, simple and easy for end users to understand. Therefore, it
is not surprising that members of different communities have independently addressed supervised
descriptive rule induction, each of them solving similar problems in similar ways and developing
vocabularies according to the conventions of their respective research communities.

This paper sheds a new light on previous work in this area by providing a systematic compari-
son of the terminology, definitions, goals, algorithms and heuristics of contrast set mining (CSM),
emerging pattern mining (EPM) and subgroup discovery (SD) in a unifying framework called su-
pervised descriptive rule discovery. We have also shown that the heuristics used in CSM and EPM
can be translated into two well-known heuristics used in SD, both aiming at trading-off between
coverage and distributional difference. In addition, the paper presents a critical survey of exist-
ing visualization methods, and shows that some methods used in subgroup discovery can be easily
adapted for use in CSM and EPM.
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subgroup discovery applied to brain ischaemia data. In Proceedings of the 11th Pacific-Asia
Conference on Advances in Knowledge Discovery and Data Mining : (PAKDD-07), pages 579–
586, 2007b.

Nada Lavrač, Bojan Cestnik, Dragan Gamberger, and Peter A. Flach. Decision support through
subgroup discovery: Three case studies and the lessons learned. Machine Learning Special issue
on Data Mining Lessons Learned, 57(1-2):115–143, 2004a.
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Abstract

This paper proposes the application of particle swarm optimization (PSO) to the problem of full
model selection, FMS, for classification tasks. FMS is defined as follows: given a pool of pre-
processing methods, feature selection and learning algorithms, to select the combination of these
that obtains the lowest classification error for a given data set; the task also includes the selection
of hyperparameters for the considered methods. This problem generates a vast search space to be
explored, well suited for stochastic optimization techniques. FMS can be applied to any classifi-
cation domain as it does not require domain knowledge. Different model types and a variety of
algorithms can be considered under this formulation. Furthermore, competitive yet simple models
can be obtained with FMS. We adopt PSO for the search because of its proven performance in
different problems and because of its simplicity, since neither expensive computations nor com-
plicated operations are needed. Interestingly, the way the search is guided allows PSO to avoid
overfitting to some extend. Experimental results on benchmark data sets give evidence that the
proposed approach is very effective, despite its simplicity. Furthermore, results obtained in the
framework of a model selection challenge show the competitiveness of the models selected with
PSO, compared to models selected with other techniques that focus on a single algorithm and that
use domain knowledge.

Keywords: full model selection, machine learning challenge, particle swarm optimization, exper-
imentation, cross validation

1. Introduction

Model selection is the task of picking the model that best describes a data set (Hastie et al., 2001).
Since the phrase describing a data set can be interpreted in several different ways, the model
selection task can denote diverse related problems, including: variable and feature selection (Bengio
and Chapados, 2003; Guyon et al., 2006a; Guyon and Elisseeff, 2003), system identification (Voss
and Feng, 2002; Nelles, 2001), parameter-hyperparameter optimization (Guyon et al., 2006b; Kim
et al., 2002; Hastie et al., 2001; Cawley and Talbot, 2007b; Escalante et al., 2007), and discretization
(Boullé, 2007; Hue and Boullé, 2007). In this paper we give a broader interpretation to this task
and call it full model selection (FMS). The FMS problem consists on the following: given a pool of
preprocessing methods, feature selection and learning algorithms, select the combination of these
that obtains the lowest classification error for a given data set. This task also includes the selection
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of hyperparameters for the considered methods, resulting in a vast search space that is well suited
for stochastic optimization techniques.

Adopting a broader interpretation to the model selection problem allows us to consider different
model types and a variety of methods, in contrast to techniques that consider a single model type
(i.e., either learning algorithm or feature selection method, but not both) and a single method (e.g.,
neural networks). Also, since neither prior domain knowledge nor machine learning knowledge is
required, FMS can be applied to any classification problem without modification. This is a clear
advantage over ad-hoc model selection methods that perform well on a single domain or that work
for a fixed algorithm. This will help users with limited machine learning knowledge, since FMS
can be seen as a black-box tool for model selection. Machine learning experts can also benefit
from this approach. For example, several authors make use of search strategies for the selection of
candidate models (Lutz, 2006; Boullé, 2007; Reunanen, 2007; Wichard, 2007), the FMS approach
can be adopted for obtaining such candidate models.

One could expect a considerable loss of accuracy by gaining generality. However, this is not
the case of the proposed approach since in international competitions it showed comparable per-
formance to other techniques that were designed for a single algorithm (i.e., doing hyperparameter
optimization) and to methods that took into account domain knowledge (Guyon et al., 2008). The
main drawback is the computational cost to explore the vast search space, particularly for large
data sets. But, we can gain efficiency without a significant loss in accuracy, by adopting a random
subsampling strategy, see Section 4.3. The difficult interpretability of the selected models is an-
other limitation of the proposed approach. However, naive users may accept to trade interpretably
for ease-of-use, while expert users may gain insight in the problem at hand by analyzing the struc-
ture of the selected model (type of preprocessing chosen, number of features selected, linearity or
non-linearity of the predictor).

In this paper, we propose to use particle swarm optimization (PSO) for exploring the full-models
search space. PSO is a bio-inspired search technique that has shown comparable performance to that
of evolutionary algorithms (Angeline, 1998; Reyes and Coello, 2006). Like evolutionary algorithms,
PSO is useful when other techniques such as gradient descend or direct analytical discovery are
not applicable. Combinatoric and real-valued optimization problems in which the optimization
surface possesses many locally optimal solutions, are well suited for swarm optimization. In FMS it
must be found the best combination of methods (for preprocessing, feature selection and learning)
and simultaneously optimizing real valued functions (finding pseudo-optimal parameters for the
considered methods), in consequence, the application of PSO is straightforward.

The methodological differences between swarm optimization and evolutionary algorithms have
been highlighted by several authors (Angeline, 1998; Kennedy and Eberhart, 1995, 2001). However
a difference in performance has not been demonstrated in favor of either method. Such demonstra-
tion would be a difficult task because no black-box stochastic optimization algorithm can outper-
form another over all optimization problems, not even over random search (Wolpert and Macready,
1997; van den Bergh, 2001). We selected PSO instead of evolutionary algorithms because of its
simplicity and generality as no important modification was made for applying it to FMS. PSO is
easier to implement than evolutionary algorithms because it only involves a single operator for up-
dating solutions. In contrast, evolutionary algorithms require a particular representation and specific
methods for cross-over, mutation, speciation and selection. Furthermore, PSO has been found to be
very effective in a wide variety of applications, being able to produce good solutions at a very low
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computational cost (Gudise and Venayagamoorthy, 2003; Hernández et al., 2004; Xiaohui et al.,
2003; Yoshida et al., 2001; Robinson, 2004; Kennedy and Eberhart, 2001; Reyes and Coello, 2006).

PSO is compared to pattern search (PS) in order to evaluate the added value of using the swarm
strategy instead of another intensive search method. We consider PS among other search techniques
because of its simplicity and proved performance in model selection (Momma and Bennett, 2002;
Bi et al., 2003; Dennis and Torczon, 1994). Cross validation (CV) is used in both techniques for
assessing the goodness of models. Experimental results in benchmark data give evidence that both
PSO and PS are effective strategies for FMS. However, it was found that PSO outperforms PS,
showing better convergence behavior and being less prone to overfitting. Furthermore, the proposed
method was evaluated in the context of a model selection competition in which several specialized
and prior-knowledge based methods for model selection were used. Models selected with PSOwere
always among the top ranking models through the different stages of the challenge (Guyon et al.,
2006c, 2007, 2008; Escalante et al., 2007). During the challenge, our best entry was ranked 8th over
all ranked participants, 5th among the methods that did not use domain knowledge and 2nd among
the methods that used the software provided by the organizers (Guyon et al., 2006c, 2007, 2008).
In this paper we outperform the latter entry while reducing the computational burden by using a
subsampling strategy; our best entry is currently the top-ranked one among models that do not use
prior domain knowledge and 2nd over all entries, see Section 4.3.

PSO has been widely used for parameter selection in supervised learning (Kennedy and Eber-
hart, 1995, 2001; Salerno, 1997; Gudise and Venayagamoorthy, 2003). However, parameter selec-
tion is related with the first level of inference in which, given a learning algorithm, the task is to find
parameters for such algorithm in order to describe the data. For example, in neural networks the
adjustment of weights between units according to some training data is a parameter selection prob-
lem. Hyperparameter optimization, on the other hand, is related with the second level of inference,
that is, finding parameters for the methods that in turn should determine parameters for describ-
ing the data. In the neural network example, selecting the optimal number of units, the learning
rate, and the number of epochs for training the network is a hyperparameter optimization problem.
FMS is capable of operating across several levels of inference by simultaneously performing feature
selection, preprocessing and classifier selection, and hyperparameter optimization for the selected
methods. PSO has been used for hyperparameter optimization by Voss and Feng (2002), however
they restricted the problem to linear systems for univariate data sets, considering one hundred data
observations. In this paper we are going several steps further: we applied PSO for FMS considering
non-linear models in multivariate data sets with a large number of observations.

Parallel to this work, Gorissen et al. used genetic algorithms for meta-model selection in regres-
sion tasks (Gorissen, 2007; Gorissen et al., 2008), a similar approach that emerged totally indepen-
dently to our proposal. One should note, however, that this method has been used for a different task
in low dimensional data sets; most results are reported for 2D data. Even with this dimensionality
the method has been run for only a few iterations with a small population size. Their use of a genetic
algorithm required the definition of specific operators for each of the considered models. Gorissen et
al. considered seven different models (including neural networks and kernel methods) that required
of 18 different genetic operators for creation, mutation and cross-over (Gorissen, 2007; Gorissen
et al., 2008). Additionally, general operators for speciation and selection were also defined. In the
present work a single operator was used for updating solutions, regardless of the considered models.
This clearly illustrates the main advantage of PSO over genetic algorithms, namely generality and
simplicity.
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The main contribution of this work is experimental: we provide empirical evidence indicating
that by using PSO we were able to perform intensive search over a huge space and succeeded in
selecting competitive models without significantly overfitting. This is due to the way the search is
guided in PSO: performing a broad search around promising solutions but not overdoing in terms of
really fine optimization. This sort of search is known to help avoiding overfitting by undercomput-
ing (Dietterich, 1995). Experimental results supported by some a posteriori analysis give evidence
of the validity of our approach. The way we approached the model selection problem and the use of
a stochastic-search strategy are also contributions. To the best of our knowledge there are no similar
works that consider the FMS problem for classification tasks.

The rest of this paper is organized as follows. In the next section we describe the general PSO
algorithm. In Section 3, we describe the application of PSO to FMS. Section 4 presents experimental
results in benchmark data; comparing the performance of PSO to that of PS in FMS and analyzing
the performance of PSO under different parameter settings; also, are described the results obtained
in the framework of a model selection competition. In Section 5, we analyze mechanisms in PSMS
that allow to select competitive models without overfitting the data. Finally, in Section 6, we present
the conclusions and outline future research directions.

2. Particle Swarm Optimization (PSO)

PSO is a population-based search algorithm inspired by the behavior of biological communities
that exhibit both individual and social behavior; examples of these communities are flocks of birds,
schools of fishes and swarms of bees. Members of such societies share common goals (e.g., find-
ing food) that are realized by exploring its environment while interacting among them. Proposed by
Kennedy and Eberhart (1995), PSO has become an established optimization algorithm with applica-
tions ranging from neural network training (Kennedy and Eberhart, 1995; Salerno, 1997; Kennedy
and Eberhart, 2001; Gudise and Venayagamoorthy, 2003; Engelbrecht, 2006) to control and engi-
neering design (Hernández et al., 2004; Xiaohui et al., 2003; Yoshida et al., 2001; Robinson, 2004).
The popularity of PSO is due in part to the simplicity of the algorithm (Kennedy and Eberhart, 1995;
Reyes and Coello, 2006; Engelbrecht, 2006), but mainly to its effectiveness for producing good re-
sults at a very low computational cost (Gudise and Venayagamoorthy, 2003; Kennedy and Eberhart,
2001; Reyes and Coello, 2006). Like evolutionary algorithms, PSO is appropriate for problems with
immense search spaces that present many local minima.

In PSO each solution to the problem at hand is called a particle. At each time t, each particle,
i, has a position xti =< xti,1,xti,2, . . . ,xti,d > in the search space; where d is the dimensionality of the
solutions. A set of particles S = {xt1,xt2, . . . ,xtm} is called a swarm. Particles have an associated
velocity value that they use for flying (exploring) through the search space. The velocity of particle
i at time t is given by vti =< vti,1,vti,2, . . . ,vti,d >, where vti,k is the velocity for dimension k of particle
i at time t. Particles adjust their flight trajectories by using the following updating equations:

vt+1i, j =W × vti, j + c1× r1× (pi, j− xti, j)+ c2× r2× (pg, j− xti, j), (1)

xt+1i, j = xti, j + vt+1i, j (2)

where pi, j is the value in dimension j of the best solution found so far by particle i; pi =<
pi,1, . . . , pi,d > is called personal best. pg, j is the value in dimension j of the best particle found
so far in the swarm (S); pg =< pg,1, . . . , pg,d > is considered the leader particle. Note that through
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pi and pg each particle i takes into account individual (local) and social (global) information for up-
dating its velocity and position. In that respect, c1,c2 ∈ R are constants weighting the influence of
local and global best solutions, respectively. r1,r2 ∼ U [0,1] are values that introduce randomness
into the search process. W is the so called inertia weight, whose goal is to control the impact of the
past velocity of a particle over the current one, influencing the local and global exploration abilities
of the algorithm. This is one of the most used improvements of PSO for enhancing the rate of con-
vergence of the algorithm (Shi and Eberhart, 1998, 1999; van den Bergh, 2001). For this work we
considered an adaptive inertia weight specified by a tripletW= (wstart ,wf ,wend); where wstart and
wend are the initial and final values for W , respectively, and wf indicates the fraction of iterations
in whichW is decreased. Under this settingW is decreased byW =W −wdec from iteration t = 1
(whereW = wstart) up to iteration t = I×wf (after whichW = wend); where wdec = wstart−wend

I×wf
and

I is the maximum number of iterations. This setting allows us to explore a large area at the start of
the optimization, whenW is large, and to slightly refine the search later by using a smaller inertia
weight (Shi and Eberhart, 1998, 1999; van den Bergh, 2001).

An adaptiveW can be likened to the temperature parameter in simulated annealing (Kirkpatrick
et al., 1983); this is because, in essence, both parameters influence the global and local exploration
abilities of their respective algorithms, although in different ways. A constant W is analogous to
the momentum parameter p in gradient descend with momentum term (Qian, 1999), where weights
are updated by considering both the current gradient and the weight change of the previous step
(weighed by p). Interestingly, the inertia weight is also similar to the weight-decay constant (!)
used in machine learning to prevent overfitting. In neural networks the weights are decreased by
(1− !) in each learning step, which is equivalent to add a penalty term into the error function that
encourages the magnitude of the weights to decay towards zero (Bishop, 2006; Hastie et al., 2001);
the latter penalizes complex models and can be used to obtain sparse solutions (Bishop, 2006).

The pseudo code of the PSO algorithm considered in this work is shown in Algorithm 1; default
recommended values for the FMS problem are shown as well (these values are based on the analysis
of Section 2.1 and experimental results from Section 4.2). The swarm is randomly initialized,
considering restrictions on the values that each dimension can take. Next, the goodness of each
particle is evaluated and pg, p1,...,m are initialized. Then, the iterative PSO process starts, in each
iteration: i) the velocities and positions of each particle in every dimension are updated according to
Equations (1) and (2); ii) the goodness of each particle is evaluated; iii) pg and p1,...,m are updated,
if needed; and iv) the inertia weight is decreased. This process is repeated until either a maximum
number of iterations is reached or a minimum fitness value is obtained by a particle in the swarm
(we used the first criterion for FMS); eventually, an (locally) optimal solution is found.

A fitness function is used to evaluate the aptitude (goodness) of candidate solutions. The def-
inition of a specific fitness function depends on the problem at hand; in general it must reflect the
proximity of the solutions to the optima. A fitness function F : "→ R, where " is the space of
particles positions, should return a scalar fxi for each particle position xi, indicating how far particle
i is from the optimal solution to the problem at hand. For FMS the goal is to improve classification
accuracy of full models. Therefore, any function F , which takes as input a model and returns an
estimate of classification performance, is suitable (see Section 3.3).

Note that in Equation (1) every particle in the swarm knows the best position found so far by
any other particle within the swarm, that is pg. Under this formulation a fully-connected swarm-
topology is considered in which every member knows the leader particle. This topology has shown
to converge faster than any other topology (Kennedy and Mendes, 2002; Reyes and Coello, 2006;
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Algorithm 1 Particle swarm optimization.
Require: [Default recommended values for FMS]
– c1,c2: individual/social behavior weights; [c1 = c2 = 2]
– m: swarm size; [m= 5]
– I: number of iterations; [I= 50]
– F("→ R): fitness function; [F("→ R) = 2−fold CV BER ]
–W: Inertia weightW = (1.2, 0.5, 0.4)
Set decrement factor forW (wdec = wstart−wend

I×wf
)

Initialize swarm (S= {x1,x2, . . . ,xm})
Compute fx1,...,m = F(x1,...,m) (Section 3.3)
Locate leader (pg) and set personal bests (p1,...,m = x1,...,m)
t = 1
while t < I do
for all xi ∈ S do
Calculate velocity vi for xi(Equation (1))
Update position of xi (Equation (2))
Compute fxi = F(xi)
Update pi (if necessary)

end for
Update pg (if necessary)
if t < 'I×wf ( then
W =W −wdec

end if
t++

end while
return pg

Kennedy and Eberhart, 2001; Engelbrecht, 2006). With this topology, however, the swarm is prone
to converge to local minima. We tried to overcome this limitation by using the adaptive inertia
weight,W .

2.1 PSO Parameters

Selecting the best parameters (W,c1,c2,m, I) for PSO is another model selection task. In the ap-
plication of PSO for FMS we are dealing with a very complex problem lying in the third level
of inference. Fortunately, several empirical and theoretical studies have been performed about the
parameters of PSO from which useful information can be obtained (Shi and Eberhart, 1998, 1999;
Kennedy and Mendes, 2002; Reyes and Coello, 2006; Ozcan and Mohan, 1998; Clerc and Kennedy,
2002; van den Bergh, 2001). In the rest of this section the PSO parameters are analyzed in order
to select appropriate values for FMS. Later on, in Section 4.2, results of experiments with PSO for
FMS under different parameter settings are presented.
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We will start analyzing c1,c2 ∈ R, the weighting factors for individual and social behavior. It
has been shown that convergence is guaranteed1 for PSO under certain values of c1,c2 (van den
Bergh, 2001; Reyes and Coello, 2006; Ozcan and Mohan, 1998; Clerc and Kennedy, 2002). Most
convergence studies have simplified the problem to a single one-dimensional particle, setting # =
c1× r1+ c2× r2, and pg and pi constant (van den Bergh, 2001; Reyes and Coello, 2006; Ozcan and
Mohan, 1998; Clerc and Kennedy, 2002). A complete study including the inertia weight is carried
out by van den Bergh (2001). In agreement with this study the value # < 3.8 guarantees eventual
convergence of the algorithm when the inertia weightW is close to 1.0. For the experiments in this
work it was fixed c1 = c2 = 2, with these values we have #< 3.8 with high probability P(#< 3.8)≈
0.9, given the uniformly distributed numbers r1,r2 (van den Bergh, 2001). The configuration c1 =
c2 = 2 also has been proven, empirically, to be an effective choice for these parameters (Kennedy
and Eberhart, 1995; Shi and Eberhart, 1998, 1999; Kennedy and Mendes, 2002).

Note, however, the restriction that W remains close to 1.0. In our experiments we considered
a value ofW = 1.2 at the beginning of the search, decreasing it during 50% (i.e., wf = 0.5) of the
PSO iterations up to the valueW = 0.4. In consequence, it is possible that at the end of the search
process the swarm may show divergent behavior. In practice, however, the latter configuration for
W resulted very useful for FMS, see Section 4. This selection ofW should not be surprising since
even the configuration W = (1,1,0) has obtained better results than using a fixed W in empirical
studies (Shi and Eberhart, 1998). Experimental results with different configurations ofW for FMS
give evidence that the configuration we selected can provide better models than using constantW,
see Section 4.2; although further experiments need to be performed in order to select the best W
configuration for FMS.

With respect to m, the size of the swarm, experimental results suggest that the size of the popu-
lation does not damage the performance of PSO (Shi and Eberhart, 1999), although slightly better
results have been obtained with a large value of m, (Shi and Eberhart, 1999). Our experimental
results in Section 4.2 confirm that the selection of m is not crucial, although (contrary to previous
results) slightly better models are obtained by using a small swarm size. The latter is an important
result for FMS because using a small number of particles reduces the number of fitness function
evaluations, and in consequence the computational cost of the search.

Regarding the number of iterations, to the best of our knowledge, there is no work on the subject.
This is mainly due to the fact that this issue depends mostly on the complexity of the problem at
hand and therefore a general rule cannot be derived. For FMS the number of iterations should not be
large to avoid oversearching (Dietterich, 1995). For most experiments in this paper we fixed I= 100.
However, experimental results in Section 4.2 show that by running PSO for a smaller number of
iterations is enough to obtain models of the same, and even better, generalization performance. This
gives evidence that early stopping can be an useful mechanism to avoid overfitting, see Section 5.

3. Particle Swarm Model Selection

Since one of the strong advantages of PSO is its simplicity, its application to FMS is almost di-
rect. Particle swarm full model selection (hereafter PSMS, that is the application of PSO to FMS) is

1. Note that in PSO we say that the swarm converges iff limt→infpgt = p, where p is an arbitrary position in the search
space and t indexes iterations of PSO. Since p refers to an arbitrary position, this definition does not mean either
convergence to local or global optimum, but convergence to the global best position in the swarm (van den Bergh,
2001; Reyes and Coello, 2006; Engelbrecht, 2006).
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ID Object name F Hyperparameters Description
1 Ftest FS fmax, wmin, pval , f drmax Feature ranking according the F-statistic
2 Ttest FS fmax, wmin, pval , f drmax Feature ranking according the T-statistic
3 aucfs FS fmax, wmin, pval , f drmax Feature ranking according to the AUC criterion
4 odds-ratio FS fmax, wmin, pval , f drmax Feature ranking according to the odds ratio statistic
5 relief FS fmax, wmin, knum Relief ranking criterion
6 rffs FS fmax, wmin Random forest used as feature selection filter
7 svcrfe FS fmax Recursive feature elimination filter using svc
8 Pearson FS fmax, wmin, pval , f drmax Feature ranking according to the Pearson correlation coef.
9 ZFilter FS fmax, wmin Feature ranking according to a heuristic filter
10 gs FS fmax Forward feature selection with Gram-Schmidt orth.
11 s2n FS fmax, wmin Signal-to-noise ratio for feature ranking
12 pc− extract FS fmax Extraction of features with PCA
1 normalize Pre center Normalization of the lines of the data matrix
2 standardize Pre center Standardization of the features
3 shi f t− scale Pre takelog Shifts and scale data
1 bias Pos none Finds the best threshold for the output of the classifiers

Table 1: Feature selection (FS), preprocessing (Pre) and postprocessing (Pos) objects available in
CLOP. A brief description of the methods and their hyperparameters is presented.

described by the pseudocode in Algorithm 1, in this section are presented additional details about
PSMS: first we describe the pool of methods considered in this work; then, we describe the rep-
resentation of particles and the fitness function used; finally, we briefly discuss complexity is-
sues. The code of PSMS is publicly available from the following website http://ccc.inaoep.
mx/˜hugojair/code/psms/.

3.1 The Challenge Learning Object Package

In order to implement PSMS we need to define the models search space. For this purpose we con-
sider the set of methods in a machine learning toolbox from which full models can be generated.
Currently, there are several machine learning toolboxes, some of them publicly available (Franc and
Hlavac, 2004; van der Heijden et al., 2004; Wichard and Merkwirth, 2007; Witten and Frank, 2005;
Saffari and Guyon, 2006; Weston et al., 2005); even there is a track of this journal (JMLR) dedi-
cated to machine learning software. This is due to the increasing interest from the machine learning
community in the dissemination and popularization of this research field (Sonnenburg, 2006). The
Challenge Learning Object Package2 (CLOP) is one of such development kits distributed under the
GNU license (Saffari and Guyon, 2006; Guyon et al., 2006c, 2007, 2008). CLOP is aMatlabR tool-
box with implementations of feature-variable selection methods and machine learning algorithms
(CLOP also includes the PSMS implementation used in this work). The list of available prepro-
cessing, feature selection and postprocessing methods in the CLOP toolbox is shown in Table 1; a
description of the learning algorithms available in CLOP is presented in Table 2. One should note
that this version of CLOP includes the methods that best performed in a model selection competition
(Guyon et al., 2008; Cawley and Talbot, 2007a; Lutz, 2006).

2. See http://clopinet.com/CLOP/.
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ID Object name Hyperparameters Description
1 zarbi none Linear classifier
2 naive none Naı̈ve Bayes
3 klogistic none Kernel logistic regression
4 gkridke none Generalized kridge (VLOO)
5 logitboost units number, shrinkage, depth Boosting with trees (R)
6 neural units number, shrinkage, maxiter, balance Neural network (Netlab)
7 svc shrinkage, kernel parameters (coef0, degree, gamma) SVM classifier
8 kridge shrinkage, kernel parameters (coef0, degree, gamma) Kernel ridge regression
9 rf units number, balance, mtry Random forest (R)
10 lssvm shrinkage, kernel parameters (coef0, degree, gamma), balance Kernel ridge regression

Table 2: Available learning objects with their respective hyperparameters in the CLOP package.

In consequence, for PSMS the pool3 of methods to select from are those methods described in
Tables 1 and 2. In CLOP a typical model consists of the chain, which is a grouping object that
allows us to perform serial concatenation of different methods. A chain may include combinations
of (several/none) feature selection algorithm(s) followed by (several/none) preprocessing method(s),
in turn followed by a learning algorithm and finally (several/none) postprocessing algorithm(s). For
example, the model given by:
chain{gs( fmax= 8),standardize(center=1),neural(units=10,s=0.5,balance=1,iter=10)}
uses gs for feature selection, standardization of data and a balanced neural network classifier with
10 hidden units, learning rate of 0.5, and trained for 10 iterations. In this work chain objects that
include methods for preprocessing, feature selection and classification are considered full-models.
Specifically, we consider models with at most one feature selection method, but allowing to perform
preprocessing before feature selection and viceversa, see Section 3.2. The bias method was used
as postprocessing in every model tested to set an optimal threshold in the output of the models in
order to minimize their error. The search space in FMS is given by all the possible combinations of
methods and hyperparameters; an infinite search space due to the real valued parameters.

3.2 Representation

In PSO each potential solution to the problem at hand is considered a particle. Particles are rep-
resented by their position, which is nothing but a d−dimensional numerical vector (d being the
dimensionality of the solution). In FMS potential solutions are full-models, in consequence, for
PSMS we need a way to codify a full-model by using a vector of numbers. For this purpose we
propose the representation described in Equation (3), the dependence on time (t) is omitted for
clarity.

xi =< xi,pre,yi,1...Npre ,xi, f s,yi,1,...Nf s ,xi,sel,xi,class,yi,1,...Nclass > (3)

where xi,pre ∈ {1, . . . ,8} represents a combination of preprocessing methods. Each combination is
represented by a binary vector of size 3 (i.e., the number of preprocessing methods considered),
there are 23 = 8 possible combinations. Each element of the binary vector represents a single pre-
processing method; if the value of the kth element is set to 1 then the preprocessing method with ID
= k is used (see Table 1). For example, the first combination < 0,0,0 > means no preprocessing;
while the seventh < 1,1,0 > means that this model (xi) uses normalization and standardization as

3. Notice that the CLOP package includes also the spider package (Weston et al., 2005) which in turn includes other
implementations of learning algorithms and preprocessing methods. However, in this work we only used CLOP
objects.
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preprocessing. yi,1...Npre codify the hyperparameters for the selected combination of preprocessing
methods, Npre = 3 because each preprocessing method has a single hyperparameter; note that the
order of the preprocessing methods is fixed (i.e., standardization can never be performed before
normalization), in the future we will relax this constraint. xi, f s ∈ {0, . . . ,12} represents the ID of
the feature selection method used by the model (see Table 1), and yi,1...Nf s its respective hyperpa-
rameters; Nfs is set to the maximum number of hyperparameters that any feature selection method
can take. xi,sel is a binary variable that indicates whether preprocessing should be performed before
feature selection or viceversa. xi,class ∈ {1, . . . ,10} represents the classifier selected and yi,1,...Nclass
its respective hyperparameters; Nclass is the maximum number of hyperparameters that a classifier
can take. This numerical codification must be decoded and used with the chain grouping object for
obtaining a full-model from a particle position xi. Note that the dimensionality of each particle is
d = 1+Npre+1+Nfs+1+1+Nclass = 16.

3.3 Fitness Function

In FMS it is of interest to select models that minimize classification errors on unseen data (i.e.,
maximizing generalization performance). Therefore, the fitness function (F) should relate a model
with an estimate of its classification performance in unseen data. The simplicity of PSMS allows us
to use any classification performance measure as F , because the method does not require derivatives.
Thus, valid options for F include mean absolute error, balanced error rate, squared root error, recall,
precision, area under the ROC curve, etcetera. For this work it was used the balanced error rate
(BER) as F . BER takes into account misclassification rates in both classes, which prevents PSMS of
selecting biased models (favoring the majority class) in imbalanced data sets. Furthermore, BER has
been used in machine learning challenges as leading error measure for ranking participants (Guyon
et al., 2007, 2008). The BER of model $ is the average of the misclassifications obtained by $ over
the classes in a data set, as described in Equation (4):

BER($) =
E+ +E−

2
(4)

where E+ and E− are the misclassifications rates for the positive and negative classes, respectively.
The selection of the fitness function is a crucial aspect in PSO. However, for PSMS, the critical

part lies in the way an estimate of generalization performance of a model (given F and training data)
is obtained, and not in the fitness function itself. This is the main challenge of model selection, since
error estimates using training data are very optimistic about the behavior of models on unseen data,
this phenomenon is known as overfitting (Bishop, 2006; Hastie et al., 2001; Nelles, 2001). In order
to overcome overfitting the BERwas calculated using a k−fold cross validation (k-fold CV) approach
(Note that the BER is still obtained from training data). This is the only explicit mechanism of PSMS
to avoid overfitting. k-fold CV is the most used hold-out approach for model selection (Nelles,
2001; Hastie et al., 2001; Cawley and Talbot, 2007b). Using a high value for k, say k = N where
N is the training set size (i.e., leave one out - CV), the error estimate is almost unbiased, but can
have high variance because the N training sets are very similar to each other (Nelles, 2001; Cawley
and Talbot, 2007b); furthermore, computation time could be a serious problem (Hastie et al., 2001;
Nelles, 2001). With a low value for k, the estimate can have low variance but the bias could be a
problem. The selection of an optimal k is still an open problem in the model selection field. For
this work were performed experiments with k ∈ {2,5,10}, but no statistically-significant difference,
among these values, was found, see Section 4.2.
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3.4 Computational Complexity

As we have seen, the search space in the FMS problem is composed by all the possible models that
can be built given the considered methods and their hyperparameters. This is an infinite search space
even with the restriction imposed to the values that models can take; this is the main drawback of
FMS. However, the use of particle swarm optimization (PSO) allows us to harness the complexity
of this problem. Most algorithms used for FMS cannot handle very big search spaces. But PSO is
well suited to large search spaces: it converges fast and has a manageable computational complexity
(Kennedy and Eberhart, 2001; Reyes and Coello, 2006). As we can see from Algorithm 1, PSO is
very simple and does not involve expensive operations.

The computational expensiveness of PSMS is due to the fitness function we used. For each
selected model the fitness function should train and evaluate such model k−times. Depending on
the model complexity this process can be performed on linear, quadratic or higher order times.
Clearly, computing the fitness function using the entire training set, as opposed to k-fold CV, could
reduce PSMS complexity, although we could easily overfit the data. For a single run of PSMS the
fitness function should be evaluated % = m× (I+ 1) times, with m being the swarm size and I the
number of iterations. Suppose the computational complexity of model & is bounded by &O then
the computational complexity of PSMS will be bounded by %× k× &O. Because &O is related to
the computational complexity of model & (which depends on the size and dimensionality of the
data set) this value may vary dramatically. For instance, computing the fitness function for a naı̈ve
Bayes model in a high dimensional data set takes around two seconds4, whereas computing the
same fitness function for the same data set could take several minutes if a support vector classifier
is used.

In order to reduce the computational cost of PSMS we could introduce a complexity penalty-
term into the fitness function (this is current work). A simpler alternative solution is calculating the
fitness function for each model using only a small subset of the available data; randomly selected and
different each time. This approach can also be useful for avoiding local minima. The subsampling
heuristic was used for high-dimensional data sets and for data sets with a large number of examples.
Experimental results show an important reduction of processing time, without a significant loss of
accuracy, see Section 4.3. We emphasize that complexity is due to the nature of the FMS problem.
With this approach, however, users will be able to obtain models for their data without requiring
knowledge on the data or on machine learning techniques.

4. Experimental Results

In this section results of experiments with PSMS using benchmark data from two different sources
are presented. First, we present results on a suite of benchmark machine learning data sets5 used by
several authors (Mika et al., 2000; Rätsch et al., 2001; Cawley and Talbot, 2007b); such data sets
are described in Table 3, ten replications (i.e., random splits of training and testing data) of each
data set were considered. These data sets were used to compare PSO to PS in the FMS problem
(Section 4.1) and to study the performance of PSMS under different settings (Section 4.2). Next we
applied PSMS to the data sets used in a model selection competition (Section 4.3). The goal of the
latter experiments is to compare the performance of PSMS against other model selection strategies.

4. Most of the experiments were carried out on a workstation with PentiumTM 4 processor at 2.5 GHz, and 1 gigabyte
in RAM.

5. These data sets are available from http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.
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ID Data set Training
Patterns

Testing
Patterns

Input Fea-
tures

1 Breast cancer 200 77 9
2 Diabetes 468 300 8
3 Flare solar 666 400 9
4 German 700 300 20
5 Heart 170 100 13
6 Image 1300 1010 20
7 Splice 1000 2175 60
8 Thyroid 140 75 5
9 Titanic 150 2051 3

Table 3: Data sets used in the comparison of PSO and PS, ten replications (i.e., random splits of
training and testing sets) for each data set were considered.

4.1 A Comparison of PSO and PS

In the first set of experiments we compared the performance of PSO to that of another search strategy
in the FMS problem. The goal was to evaluate the advantages of using the swarm strategy over
another intensive search method. Among the available search techniques we selected PS because
of its simplicity and proved performance in model selection (Dennis and Torczon, 1994; Momma
and Bennett, 2002; Bi et al., 2003). PS is a direct search method that samples points in the search
space in a fixed pattern about the best solution found so far (the center of the pattern). Fitness values
are calculated for the sampled points trying to find a minimizer; if a new minimum is find then the
center of the pattern is changed, otherwise the search step is reduced by half; this process is iterated
until a stop criteria is met. The considered PS algorithm described in Algorithm 2 is an adaptation
of that proposed by Momma et al. for hyperparameter optimization of support vector regression
(Momma and Bennett, 2002; Bi et al., 2003).

The input to PS is the pattern P and the search step '. Intuitively, P specifies the direction of
the neighboring solutions that will be explored; while ' specifies the distance to such neighboring
solutions. There are several ways to generate P; for this work we used the nearest neighbor sampling
pattern (Momma and Bennett, 2002). Such pattern is given numerically by P = [Id −Id 0T1×d],
where Id is the identity matrix of size d; 01×d is a vector of size 1×d with all zero entries; d is the
dimensionality of the problem. ', a vector of size 1× d, is the search step by which the space of
solutions is explored. We defined ' = qmaxvals−qminvals

2 , where qmaxvals and qminvals are the maximum
and minimum values that the solutions can take, respectively. Each iteration of PS involves the
evaluation of Nc−1 solutions (where Nc is the number of columns of P). Solutions are updated by
adding s j ( j ∈ 1, . . . ,Nc−1) to the current-best solution qg; where each s j is obtained by multiplying
(element-by-element) the search step vector ' and the jth column of P. qg is replaced by a new
solution q j only if fq j < fmin = fqg . The output of PS is qg, the solution with the lowest fitness
value; we encourage the reader to follow the references for further details (Momma and Bennett,
2002; Dennis and Torczon, 1994).

For applying PS to the FMS problem (hereafter PATSMS) the solution qg was initialized in the
same way that each particle in the swarm was initialized for PSMS (i.e., randomly). The same
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Algorithm 2 Pattern search. pi is the ith column of P, Nc the number of columns in P.
Require:
– Ips: number of iterations
– F("→ R): fitness function
– P: pattern
– ': search step
Initialize solution qi (i= 1)
Compute fqi = F(qi) (Section 3.3)
Set qg = qi; fmin = fqi
while i< Ips do
for all p j ∈ P1,...,Nc−1 do
s j = '.p j
q j = qg+ s j
Compute fq j = F(q j)
if fq j < fmin then
Update qg (qg = q j, fmin = fq j )

end if
i++

end for
'= '/2

end while
return qg

representation, fitness function and restrictions on the values that each dimension can take were
considered for both methods, see Section 3. Under these settings PS is a very competitive baseline
for PSO.

In each experiment described below, we let PS and PSO perform the same number of fitness
function evaluations, using exactly the same settings and data sets, guaranteeing a fair comparison.
Since both methods use the same fitness function and perform the same number of fitness function
evaluations, the difference in performance indicates the gain we have by guiding the search accord-
ing to Equations (1) and (2). As recommended by Demsar, we used the Wilcoxon signed-rank test
for the comparison of the resultant models (Demsar, 2006). In the following we will refer to this
statistical test with 95% of confidence when mentioning statistical significance.

We compared the FMS ability of PSMS and PATSMS by evaluating the accuracy of the selected
models at the end of the search process; that is, we compared the performance of models pg and
qg in Algorithms 1 and 2, respectively. We also compared the performance of the solutions tried
through the search. For each trial we fixed the number of iterations for PSMS to I = 100 with
a swarm size of m = 10. In consequence, both search strategies performed m× (I+ 1) = 1010
evaluations of the fitness function in each run. Because more than 180,000 models were tested we
used 2−fold CV for computing the fitness function. In each trial the training set was used for FMS
and the resultant model was evaluated in the test set. This process was repeated for each replica of
each data set described in Table 3. Averaged results of this experiment are shown in Table 4. We
show the average CV error obtained through the search process (CV-BER) and the error obtained by
the selected model, at the end of the search, in the test set (test-BER).
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ID Data set PATSMS
test-BER

PSMS test-
BER

PATSMS
CV-BER

PSMS CV-
BER

1 Breast-cancer 36.98+
−0.08 33.59+

−0.12 32.64+
−0.06 32.96+

−0.01
2 Diabetes 26.07+

−0.03 25.37+
−0.02 25.39+

−0.02 26.48+
−0.05

3 Flare-solar 32.87+
−0.02 32.65+

−0.01 32.69+
−0.01 33.13+

−0.01
4 German 28.65+

−0.02 28.28+
−0.02 31.00+

−0.00 31.02+
−0.00

5 Heart 19.50+
−0.19 17.35+

−0.06 16.96+
−0.07 19.93+

−0.03
6 Image 3.58+

−0.01 2.50+
−0.01 11.54+

−0.10 15.88+
−0.04

7 Splice 13.94+
−0.99 9.46+

−0.25 18.01+
−0.05 19.15+

−0.07
8 Thyroid 10.84+

−0.39 5.98+
−0.06 11.15+

−0.20 15.49+
−0.12

9 Titanic 29.94+
−0.00 29.60+

−0.00 27.19+
−0.13 27.32+

−0.13

Table 4: Average and variance of test-BER and CV-BER obtained by models selected with PSMS
and PATSMS, the best results are shown in bold. test-BER is the BER obtained by the
selected model using the test set (averaged over 10 replications of each data set). CV-BER
is the average of CV BER obtained by each of the candidate solutions through the search
process (averaging performed over all particles and iterations and over 10 replications of
each data set) .

The performance of both search strategies is similar. PSMS outperformed PATSMS through
all of the data sets at the end of the search process (Columns 3 and 4 in Table 4). The test-BER
differences are statistically significant for all but the flare-solar and german data sets. In the latter
data sets the hypothesis that models selected with PATSMS and PSMS perform equally cannot be
rejected. However, note that for these data sets the models selected with PSMS outperformed those
selected with PATSMS in 6 out of 10 replications. Globally, we noticed that from the 90 trials
(9−data sets, × 10−replications for each, see Table 3), 68.9% of the models selected with PSMS
outperformed those obtained with PATSMS. While only in 22.2% of the runs PATSMS outperformed
PSMS, in the rest both methods tied in performance. A statistical test over these 90 results was
performed and a statistically-significant difference, favoring PSMS, was found. Despite PATSMS
being a strong baseline, these results give evidence that PSMS outperforms PATSMS at the end of
the search process.

Columns five and six in Table 4 show the average BER obtained with each strategy through the
1010 evaluations for each data set (averaged over replications). CV-BER reflects the behavior of the
search strategies through the search process. PATSMS slightly outperformed PSMS in this aspect,
though the difference is statistically significant only for the Heart, image and thyroid data sets. The
slight superior performance of PATSMS in CV-BER is due to the pattern we used and the search
procedure itself. PATSMS performs a finer grained search over a restricted search area around the
initial solution qg. The latter results in a lower CV-BER because PATSMS always moves the pattern
towards the local minimum nearest to the initial solution, qg. PSMS, on the other hand, explores
a much larger search space because the search is not only guided by the best solution found so far
(pg), but also by the individual best solutions of each particle (p1,...,m). The latter produces a higher
CV-BER in average because, even when the CV-BER of the final models is low, many models of
varied CV-BER performance are tried through the search.
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Figure 1: Performance of PATSMS (circles) and PSMS (triangles) as a function of number of iter-
ations for an experiment with one replication of the Heart data set. For PSMS we show
the performance of each particle with a different color. Left: Cross-validation Balanced
Error Rate (BER). Right: Test set BER. In both plots we indicate with an arrow the model
selected by each search strategy.

In Figure 1 we show the performance of the solutions tried through the search by each method
for a single replication of theHeart data set (for clarity in the plots we usedm= 5 and I = 50 for this
experiment). We show the CV and test BER for every model tried through the search. It can be seen
that the CV-BER of PATSMS is lower than that of PSMS, showing an apparent better convergence
behavior (left plot in Figure 1). However, by looking the test BER of the models tried, it becomes
evident that PATSMS is trapped into a local minimum since the very first iterations (right plot in
Figure 1). PSMS, on the other hand, obtains a higher CV-BER through the search, though it is less
prone to follow a local minimum. This is because with PSMS the search is guided by one global
and m local solutions, which prevents PSMS from performing a pure local search; the latter in turn
prevents PSMS of overfitting the data. This result gives evidence of the better convergence behavior
of PSMS.

The model selected with PSMS obtained a lower test-BER than that selected with PATSMS (see
right plot in Figure 1). In fact all of the solutions in the final swarm outperformed the solution
obtained with PATSMS in test-BER. With PSMS the model of lowest test BER was obtained after
3 iterations of PSMS, giving evidence of the fast convergence of PSO. One should note that the
test-BER of the worst PSMS solutions is higher than that of the best PATSMS solution. However,
near the end of the search, the possibilities that PSMS can select a worse solution than PATSMS are
small.

We have seen that PATSMS is prone to get trapped into a local minimum because it performs a
fine grained search over a small area. This causes that only a few methods are considered through
the search with this method. PSMS, on the other hand, tries a wide variety of classifiers and feature
selection methods, exploring a larger search space and being able to escape from local minima.
In order to analyze the diversity of the methods considered by PSMS, in Figure 2 we show the
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Figure 2: Normalized frequency of classifiers (left), feature selection method (middle) and combi-
nation of preprocessing methods (right) preferred by PSMS through the search process.
In the right plot, the abbreviations shift, stand and norm stand for shift-scale, standard-
ization and normalization, respectively. Results are normalized over the 90,900 models
tried for obtaining the results from Table 4.

normalized frequency of methods preferred by PSMS6 through the search. The results shown in this
figure are normalized over the 90,900 models tried for obtaining the results from Table 4. From
this figure, we can see that most of the classifiers and feature selection methods were considered for
creating solutions. No classifier, feature selection method or combination of preprocessing methods
was used for more than 27% of the models. This reflects the fact that different methods are required
for different data sets and that some are equivalent. There were, however, some methods that were
slightly more used than others.

The preferred classifier was the zarbi CLOP-object, that was used for about 23% of the models.
This is a surprising result because zarbi is a very simple linear classifier that separates the classes
by using information from the mean and variance of training examples (Golub et al., 1999). How-
ever, in 97.35% of the times that zarbi was used it was combined with a feature selection method.
Gkridge, svc, neural and logitboost were all equally selected after zarbi. Ftest was the most used
feature selection method, though most of the feature selection strategies were used. Note that Pear-
son, Zfilter, gs and s2n were considered only for a small number of models. The combination
standardize + shift-scale was mostly used for preprocessing, although the combination normalize
+ standardize + shift-scale was also highly used. Interestingly, in 70.1% of the time preprocessing
was performed before feature selection. These plots illustrate the diversity of classifiers considered
by PSMS through the search process, showing that PSMS is not biased towards models that tend to
perform very well individually (e.g., logitboost, rf or gkridge). Instead, PSMS attempts to find the
best full model for each data set.

6. We do not show those preferred by PATSMS because the methods selected with this strategy are, most of the times,
those considered in the initial solution. In our experiments we found that for each replication PATSMS used the
same classifier and feature selection method for about 95% of the search iterations. The selection of these methods
depended on the initial solution instead of the way the search space is explored or the individual performance of the
methods. Therefore, no useful information can be obtained about why some methods are preferred over others, even
when in average (over the 90,900 solutions tried) the histograms may look similar to those shown in Figure 2.
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k CV-BER test-BER test-BER* Time
2 25.36+

−0.56 22.99+
−1.18 25.79+

−0.59 4166.85
5 25.18+

−0.59 20.50+
−1.53 26.30+

−0.46 6062.56
10 24.54+

−0.63 20.82+
−1.74 26.03+

−0.51 7737.11

Table 5: Average CV-BER (average CV result over all particles and iterations), test-BER (test result
corresponding to the best CV result), test-BER* (average test result over all particles and
iterations) and processing time (in seconds) for different values of k in the k−fold CV.
Results are averaged over a single replication of each data set described in Table 3.

4.2 Parameter Selection for PSMS

In this section we analyze the performance of PSMS under different settings. The goal is to identify
mechanisms in PSMS that allow us obtaining competitive models and, to some extent, avoiding
overfitting. For the experiments described in this section we consider a single replication for each
data set. As before, we show the average CV error of the solutions considered during the search
as well as the error of the selected model in the test set. We also show the average test set error
of all solutions tried through the search test-BER∗ (averaging performed over all particles and all
iterations), providing information about the generalization performance of the models considered
throughout the search.

4.2.1 VALUE OF K IN K-FOLD CV

First we analyze the behavior of PSMS for different values of k in the CV for computing the fitness
function. We consider the values k = [2,5,10]. Average results of this experiment are shown in
Table 5.

From this table, we can see that the performance is similar for the different values of k consid-
ered. The best results at the end of the search are obtained with k = 5 (column 3 in Table 5), while
the best generalization performance is obtained with k = 2 (column 4 in Table 5). However, these
differences are not statistically significant. Therefore, the null hypothesis that models selected with
k = [2,5,10] perform equally in test-BER and test-BER* cannot be rejected. The latter is an impor-
tant result because by using k = 2 the processing time of PSMS is considerably reduced. Note that
for models of quadratic (or higher order) complexity, computing the fitness function with 2−fold
CV is even more efficient than computing the fitness function using the full training set. It is not sur-
prising that processing time increases as we increase k (column 5 in Table 5). Although it is worth
mentioning that the variance in processing time was very large (e.g., for k = 2 it took 7 minutes
applying PSMS to the titanic data set and about five hours for the image data set).

4.2.2 NUMBER I OF ITERATIONS

Next we performed experiments varying the number of iterations (I), using 2− f old CV for comput-
ing the fitness function and a swarm size of m= 10. We considered the values I = [10,25,50,100].
Averaged results for this experiment are shown in Table 6 (rows 2 - 5). As we can see the best results
were obtained by running PSMS for 50 iterations. Interestingly, models selected by running PSMS
for 10 iterations outperformed those selected after 100 iterations in test-BER, though the difference
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Setting CV-BER test-BER test-BER*
I=10 25.33+

−0.33 22.17+
−1.81 27.64+

−0.52
I=25 25.29+

−0.33 21.88+
−1.68 27.59+

−0.49
I=50 24.02+

−0.38 21.12+
−1.74 26.72+

−0.65
I=100 24.57+

−0.37 22.81+
−1.44 27.27+

−0.48
m=5 24.27+

−0.49 20.81+
−1.50 25.01+

−0.85
m=10 25.07+

−0.34 21.64+
−2.04 25.99+

−0.74
m=20 25.09+

−0.34 21.76+
−1.84 26.00+

−0.64
m=40 24.82+

−0.43 21.45+
−2.13 25.96+

−0.78
m=50 25.32+

−0.44 22.54+
−1.65 26.11+

−0.77
W=(0,0,0) 23.86+

−0.71 20.40+
−1.71 22.46+

−1.32
W=(1.2,0.5,0.5) 24.22+

−0.76 19.41+
−1.37 23.38+

−1.34
W=(1,1,1) 27.62+

−0.30 21.88+
−1.68 27.13+

−0.53

Table 6: Average CV-BER, test-BER and test-BER* for different settings of m, I andW. The best
results are shown in bold. Results are averaged over a single replication of each data set
described in Table 3.

was not statistically significant. The difference in performance between models selected after 50
and 100 iterations was statistically significant. This result shows the fast convergence property of
PSMS and that early stopping could be an useful mechanism to avoid overfitting, see Section 5.

4.2.3 SWARM SIZE M

In the next experiment we fixed the number of iterations to I = 50 and varied the swarm size as fol-
lows, m= [5,10,20,40,50]. Results of this experiment are shown in rows 6-10 in Table 6. This time
the best result was obtained by using a swarm size of 5, however there is a statistically-significant
difference only between m = 5 and m = 50. Therefore, models of comparable performance can be
obtained by using m= [5,10,20,40]. This is another interesting result because using a small swarm
size reduces the number of fitness function evaluations for PSMS and therefore makes it more prac-
tical. An interesting result is that by using 50 iterations with any swarm size the test-BER is very
close to the CV-BER estimate. Again, this provides evidence that early stopping can improve the
average generalization performance of the models.

4.2.4 INERTIA WEIGHT W

We also performed experiments with different configurations for W, the adaptive inertia weight.
Each configuration is defined by a tripletW= (wstart ,wf ,wend), whose elements indicate the starting
value for W , the proportion of iterations to vary it and its final value, respectively, see Section 2.
Three configurations were tried with the goal of evaluating the advantages of using an adaptive
inertia weight instead of constant values. Results of this experiment are shown in rows 11-13 in
Table 6. It can be seen that the best results in CV-BER and Test-BER∗ were obtained with W =
(0,0,0); the differences with the other results are statistically-significant. Under this configuration
PSMS is not taking into account information from past velocities for updating solutions; which
causes PSMS to converge quickly into a local minimum and refining the search around this point.
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Figure 3: Algorithm performance as a function of number of iterations for different configurations
ofW. CV-BER (circles) and test-BER* (crosses) for the Heart data set. We are display-
ing the test and CV BER values for each particle at every time step. Since each time step
involves m=5 particles, then for each iteration are displayed m=5 crosses and m=5 cir-
cles. We consider the following configurations: W = (0,0,0) (left), W = (1.2,0.5,0.4)
(middle) andW= (1,0,1) (right). The CV-BER and test-BER of the best solution found
by PSMS are enclosed within a bold circle.

The best result at the end of the search (column 3 in Table 6) was obtained withW= (1.2,0.5,0.4),
the difference with the other results is statistically-significant. Under this configuration both global
and local search is performed during the PSMS iterations; which caused higher CV-BER and test-
BER∗ than that of the first configuration, however, the generalization performance of the final model
was better. The configurationW= (1,0,1) obtained the worst results in all of the measures; this is
because under this configuration the search is never refined, since PSMS always takes into account
the past velocity for updating solutions. The latter configuration could be a better choice for FMS
because this way PSMS does not over-search around any solution; however, local search is also
an important component of any search algorithm. In Figure 3 we show the CV and test BER of
solutions tried during the search for the Heart data set under the different configurations tried.
From this figure we can appreciate the fact that using constant values for W results in more local
(whenW= (0,0,0)) or global search (whenW= (1,0,1)). An adaptive inertia weight, on the other
hand, aims to control the tradeoff between global and local search, which results in a model with
lower variance for this example. Therefore, an adaptive inertia weight seems to be a better option
for FMS; this is because it prevents, to some extend, PSMS to overfit the data. However, further
experiments need to be performed in order to select the best configuration forW.

4.2.5 INDIVIDUAL (c1) AND GLOBAL (c2) WEIGHTS

We now analyze the performance of PSMS under different settings of the individual (c1) and global
(c2) weights. We considered three configurations for c1 and c2; in the first one both weights have the
same influence in the search (i.e., c1 = 2;c2 = 2), this was the setting used for all of the experiments
reported in Section 4. In the second setting the local weight has no influence in the search (i.e.,
c1 = 0;c2 = 2), while in the third configuration the global weight is not considered in the search
(i.e., c1 = 2;c2 = 0). We ran PSMS for I = 50 iterations with a swarm size of m= 5, using a single
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ID Setting CV-BER test-BER test-BER*
1 c1 = 2;c2 = 2 23.69+

−0.68 19.72+
−1.45 23.92+

−1.16
2 c1 = 0;c2 = 2 26.87+

−0.43 22.42+
−1.32 27.13+

−0.55
3 c1 = 2;c2 = 0 24.99+

−0.41 21.73+
−1.42 25.59+

−0.66

Table 7: Average CV-BER, test-BER and test-BER* for different settings of c1 and c2 in Equation
(1). The best results are shown in bold. Results are averaged over a single replication of
each data set described in Table 3.

Figure 4: Performance of PSMS as a function of number of iterations using different settings for
c1 and c2, see Table 7. We show the CV-BER (left) and Test-BER (right) for a single
replication of the Heart data set. PSMS was ran for I = 25 iterations in this experiment.
The models selected with each configuration are indicated with arrows.

replication for each data set described in Table 3; for the three configurations considered it was used
the same adaptive inertia weightW= (1.2,0.5,0.4); averaged results of this experiment are shown
in Table 7.

From this table we can see that the best performance is obtained by assigning equal weights
to both factors. The difference in performance is statistically-significant over all measures with
respect to the other two configurations. Therefore, by using the first configuration we can obtain
solutions of better performance through and at the end of the search. More importantly, solutions
of better generalization performance can be obtained with this configuration as well. The difference
in performance is higher with the second configuration, where the individual-best solutions have
no influence in the search; therefore, PSMS is searching locally around the global best solution. In
the third configuration the global-best solution has no influence in the search; in consequence, the
search is guided according the m−individual-best solutions. For illustration in Figures 4 and 5 we
show the performance of PSMS as a function of the number of iterations for a single replication of
the Heart data set. In Figure 4 we show the performance of PSMS for I = 25 iterations and in Figure
5 for I = 100 iterations.

From these figures we can see that the CV estimate is very similar for the different settings we
considered (left plots in Figures 4 and 5). However, by looking at the performance of the solutions
in the test set (right plots in Figures 4 and 5), we can appreciate that configurations 2 and 3 overfit
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Figure 5: Performance of PSMS as a function of number of iterations using different settings for
c1 and c2, see Table 7. We show the CV-BER (left) and Test-BER (right) for a single
replication of the Heart data set. PSMS was ran for I = 100 iterations in this experiment.
The models selected with each configuration are indicated with arrows.

the data (red circles and green squares). With c1 = 0 we have that the m = 5 particles converge to
single local minima, performing a fine grained search over this solution (red circles). With c2 = 0
each of the m−particles converge to different local minima, overdoing the search over each of the
m solutions (green squares). On the other hand, with the configuration c1 = 2, c2 = 2 PSMS is not
trapped into a local minimum (blue triangles); searching around promising solutions, but without
doing a fine grained search over any of them.

Better models (indicated by arrows) are selected by PSMS with the first configuration, even
when their CV is higher than that of the models selected with the other configurations. This result
confirms that PSMS is overfitting the data with the configurations 2 and 3. Note that with I = 25
iterations (Figure 4) the first configuration is not converging to a local minimum yet; while with
I = 100 iterations (Figure 5) it looks like PSMS starts searching locally at the last iterations. This
result illustrates why early stopping can be useful for obtaining better models with PSMS.

In order to better appreciate the generalization performance for the different configurations, in
Figure 6 we plot the CV-BER as a function of test-BER for the run of PSMS with I = 25, we plot
each particle with a different color.

From this figure we can see that the best model is obtained with the first configuration; for the
configurations 2 and 3 the particles obtain the same test-BER for different solutions (middle and
right plots in Figure 6). Despite the CV estimate is being minimized for these configurations, the
test-BER performance of models does not improve. It is clear from the right plot in Figure 6 that
with c2 = 0 each particle is trapped in different local minima, doing a fine grained search over them
that causes PSMS to overfit the data. It also can be seen from the middle plot that with c1 = 0
the search is biased towards a single global-best solution (magenta circle), again, causing PSMS to
overfit the data. On the other hand, results with the first configuration (left plot in Figure 6) show
that particles do not oversearch at any solution.

4.3 Results on the Model Selection Challenge

In this section we describe experimental results of PSMS in the framework of a model selection
competition called agnostic learning vs. prior knowledge challenge (ALvsPK) (Guyon et al., 2007,
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Figure 6: Test-BER as a function of CV-BER for a run of PSMS for I = 25 iterations in the Heart
data set. Results with different configurations for c1 and c2 are shown. Left: c1 = 2,
c2 = 2. Middle: c1 = 0, c2 = 2. Right: c1 = 2, c2 = 0. In each plot each particle is shown
with a different color. The selected model with each configuration is indicated with an
arrow.

2008). The goal of these experiments is to compare the performance of PSMS against other model
selection strategies that work for a single algorithm or that use domain knowledge for this task.
Through its different stages, the ALvsPK competition evaluated novel strategies for model selection
as well as the added value of using prior knowledge for improving classification accuracy (Guyon
et al., 2008). This sort of competitions are very useful because through them the real effectiveness
of methods can be evaluated; motivating further research in the field and collaborations among
participants.

4.3.1 CHALLENGE PROTOCOL AND CLOP

The rules of the challenge were quite simple, the organizers provided five data sets for binary clas-
sification together with the CLOP toolbox (Saffari and Guyon, 2006). The task was to obtain the
model with the lowest BER over the five data sets on unseen data. Participants were free to elect
using CLOP or their own learning machine implementations. The challenge is over now, although
the challenge website7 still remains open, allowing the evaluation of learning techniques and model
selection methods. A complete description of the challenge and a comprehensive analysis of the
results are described by Guyon et al. (2006c, 2007, 2008).

The competition was divided into two stages. The first stage, called the model selection game
(Guyon et al., 2006c), was focused on the evaluation of pure model selection strategies. In the sec-
ond stage, the goal was to evaluate the gain we can have by introducing prior knowledge into the
model selection process (Guyon et al., 2007, 2008). In the latter stage participants could introduce
knowledge of the data domain into the model selection process (prior knowledge track). Also, par-
ticipants could use agnostic methods in which no domain knowledge is considered in the selection
process (agnostic track).

The data sets used in the agnostic track of the ALvsPK challenge are described in Table 8, these
data sets come from real domains. Data sets used for the agnostic and prior knowledge tracks were

7. See http://www.agnostic.inf.ethz.ch/.
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different. For the agnostic track the data were preprocessed and dummy features were introduced,
while for the prior knowledge track raw data were used, together with a description of the domain.
We should emphasize that, although all of the approaches evaluated in the ALvsPK competition
faced the same problem (that of choosing a model that obtains the lowest classification error for
the data), such methods did not adopt the FMS interpretation. Most of the proposed approaches
focused on a fixed machine learning technique like tree-based classifiers (Lutz, 2006), or kernel-
based methods (Cawley, 2006; Pranckeviciene et al., 2007; Guyon et al., 2008), and did not take
into account feature selection methods. Participants in the prior knowledge track could introduce
domain knowledge. Furthermore, most of participants used their own implementations, instead of
the CLOP toolbox.

After the challenge, the CLOP toolkit was augmented with methods, which performed well
in the challenge (Cawley, 2006; Cawley and Talbot, 2007a; Lutz, 2006). These include Logit-
boost (Friedman et al., 2000), LSSVM (Suykens and Vandewalle, 1999), and kernel ridge regres-
sion (Saunders et al., 1998; Hastie et al., 2001).

4.3.2 COMPETITIVENESS OF PSMS

In both stages of the competition we evaluated models obtained with PSMS under different settings.
Models obtained by PSMS were ranked high in the participants list, showing the competitiveness of
PSMS for model selection (Guyon et al., 2006c, 2007, 2008; Escalante et al., 2007). Furthermore,
the difference with methods that used prior knowledge was relatively small, showing that FMS
can be a viable solution for the model selection problem without the need of investing time in
introducing domain knowledge, and by considering a wide variety of methods.

The results of PSMS in the ALvsPK challenge have been partially analyzed and discussed else-
where (Escalante et al., 2007; Guyon et al., 2007, 2008). During the challenge, our best entry (called
Corrida-final) was ranked8 8th over all ranked participants, 5th among the methods that did not use
domain knowledge and 2nd among the methods that used the software provided by the organizers
(Guyon et al., 2006c, 2007, 2008). For Corrida-finalwe used k= 5 and the full training set for com-
puting the fitness function; we ran PSMS for 500 iterations for the Ada data set and 100 iterations
for Hiva, Gina and Sylva. We did not applied PSMS to the Nova data set in that entry, instead we
selected a model for Nova by trial and error. For such entry we used a version of CLOP where only
there were available the following classifiers zarbi, naive, neural and svc (Escalante et al., 2007);
also, only four feature selection methods were considered.

4.3.3 POST-CHALLENGE EXPERIMENTS

In the rest of this section we present results of PSMS using the augmented toolkit, including all
methods described in Tables 1 and 2. In these tables we consider implementations of logitboost,
lssvm and gkridge, which are the classifiers that won the ALvsPK challenge (Cawley, 2006; Cawley
and Talbot, 2007a; Lutz, 2006) and were added to CLOP after the end of the challenge.

In order to efficiently apply PSMS to the challenge data sets we adopted a subsample strategy
in which, instead of using the full training set, small subsamples of the training data were used
to compute the fitness function. Each time the fitness function is computed we obtain a different
random sample of size Ssub = N

SF , where N is the number of instances and SF is a constant that
specifies the proportion of samples to be used. Subsamples are only used for the search process. At

8. See http://www.clopinet.com/isabelle/Projects/agnostic/Results.html.
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Data set Domain Type Features Training Validation Testing
Ada Marketing Dense 48 4174 415 41471
Gina Digits Dense 970 3153 315 31532
Hiva Drug discovery Dense 1617 3845 384 38449
Nova Text classification Sparse binary 16969 1754 175 17537
Sylva Ecology Dense 216 13086 1309 130857

Table 8: Benchmark data sets used for the model selection challenges (Guyon et al., 2006c, 2007,
2008).

Data SF Model Time (m) Test-BER
Ada 1 chain({logitboost(units=469,shrinkage=0.4,depth=1),bias} 368.12 16.86
Gina 2 chain({sns(1),relief(fmax=487),gkridge,bias} 482.23 2.41
Hiva 3 chain({norm(1),rffs(fmax=1001),lssvm(gamma=0.096),bias} 124.54 28.01
Nova 1 chain({rffs(fmax=338),norm(1),std(1),sns(1),gkridge,bias} 82.12 5.27
Sylva 10 chain({sns(1),odds-ratio(fmax=60),gkridge,bias} 787.58 0.62

Table 9: Models selected with PSMS for the data sets of the ALvsPK challenge. For each data set we
show the subsampling factor used (SF), the selected model (Model, some hyperparameters
are omitted for clarity), the processing Time in minutes and the test-BER obtained. sns is
for shit-scale, std is for standardize and norm is for normalize. See Tables 1 and 2 for a
description of methods and their hyperparameters.

the end of the search the selected model is trained using the full training set (for the experiments
reported in this paper we considered as training set the union of the training and validation data
sets, see Table 8). Due to the dimensionality of the Nova data set we applied principal component
analysis to this data set. Then we used the first 400 components for applying PSMS. We fixed k= 2,
I = 50 and m = 5 for our experiments based on the results from previous sections. Then we ran
PSMS for all of the data sets under the above described settings using different values for SF. The
predictions of the resultant models were uploaded to the challenge website in order to evaluate them.
Our best ranked entry in the ALvsPK challenge website (called psmsx jmlr run I) is described in
Table 9, and a comparison of it with the currently best-ranked entries is shown in Table 10.

We can see from Table 9 that very different models were selected by PSMS for each data set.
This is the main advantage the FMS because it allows us selecting an ad-hoc model for each data
set by considering different model types and a wide diversity of methods. With exception of Ada,
the selected models included a feature selection method; this result shows the importance of feature
selection methods and that some of them are more compatible than others with some classifiers;
note that different numbers of features were selected for each data set. In all but the Nova data set
preprocessing was performed before feature selection. This can be due to the fact that for Nova
we used principal components instead of the original features. For Ada it was selected a logitboost
classifier, while for Hiva it was selected a lssvm classifier with gaussian kernel. For Gina, Nova
and Sylva it was selected the gkridge classifier; this classifier performs virtual leave-one out model
selection each time it is trained (Cawley et al., 2007). Note that both gkridge and logitboost were
the classifiers that best performed during the challenge (Guyon et al., 2007, 2008); this result gives
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evidence that PSMS can obtain similar and even better models, without spending time on ad-hoc
modifications for each data set and without using domain knowledge.

The use of the subsampling strategy allowed to efficiently apply PSMS to all of the data sets.
About six hours were required to obtain a competitive model for Ada, while about only two for
the Hiva data set. Note that applying PSMS for Hiva using the entire training set (Corrida-final)
took about 80 hours in the same machine (Escalante et al., 2007). During our experiments we
found that the larger the subsamples the better the performance of the selected model. However, the
selection of SF also depends on the available computer resources and time restrictions. One should
note that we can increase speed of PSMS by caching intermediate results that can be reused (e.g.,
preprocessing the data sets off-line).

Despite the use of the subsampling technique the models selected with PSMS resulted very
competitive as shown in Table 10. Currently, the PSMS run is the top-ranked agnostic entry in the
challenge website; furthermore, the performance of this entry is superior than all but one prior-
knowledge entry: Interim-all-prior; which is the best ranked entry overall, using “prior knowledge”
or “domain knowledge”. Note that the latter entry is formed of models that were designed ad-
hoc for each data set, requiring much more time, effort and knowledge than PSMS. In average
PSMS outperforms the best results presented in the ALvsPK challenge: IJCNN07AL, row 4 in Table
10 (Guyon et al., 2007); and the best-ranked agnostic entry (after PSMS): Logitboost-with-trees,
row 5 in Table 10 (Lutz, 2006).

The performance of PSMS is very close to that of IJCNN07AL, tieing in Sylva and outperforming
one to the other in two data sets. PSMS outperforms Logitboost-with-trees in three out of the five
data sets and achieves very close performance for the other two data sets. The latter entry is ranked
10th in the challenge website. It is very interesting that for the Ada data set the best model so far is a
logitboost classifier with about 1000 trees (Lutz, 2006); while with PSMS we were able to achieve
almost the same performance by using a half that number of trees, see row 2 in Table 9. This is
important because simpler models of similar performance can be obtained with PSMS.

PSMS clearly outperformed our best-ranked entry during the challenge (row 6 in Table 10); this
result gives evidence that we obtained better results by using more and better classifiers; also, the
use of subsamples instead of the entire training set (when computing the fitness function), does not
damage the performance of PSMS, although the reduction in processing time is very important. Note
that for Nova the PSMS entry obtained a slightly worse result than that of Corrida-final; however,
the model for Nova in Corrida-final was selected by trial and error which required of much more
effort and time.

Results reported in this section show the efficacy of PSMS for model selection. Despite its sim-
plicity it has shown comparable and even superior performance to those obtained by other model
selection strategies that focused on a single learning algorithm and to methods that used prior do-
main knowledge for guiding the model selection process (Lutz, 2006; Reunanen, 2007; Boullé,
2007; Pranckeviciene et al., 2007; Wichard, 2007). Models selected with PSMS are simple and yet
very competitive; furthermore, with PSMS no knowledge is needed on the methods to choose from,
nor on the domain. In consequence, it is very easy to obtain classifiers that can achieve state-of-the-
art performance without spending time on designing, developing and optimizing an ad-hoc model.
Even though PSMS can be applied to any binary classification problem, we are not claiming it will
obtain satisfactory results in every domain; however, it can be considered as a first option when
dealing with binary classification tasks. It is expected that this will further improve the performance
of models selected with PSMS if domain knowledge is used.
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Entry Description Ada Gina Hiva Nova Sylva Overall Rank
Interim-all-prior Best-PK 17.0 2.33 27.1 4.71 0.59 10.35 1th
psmsx jmlr run I PSMS 16.86 2.41 28.01 5.27 0.62 10.63 2nd
IJCNN07AL Best-AL 16.60 3.39 28.27 4.56 0.62 10.68 4th

Logitboost-with-trees Best-AL 16.60 3.53 30.18 4.69 0.78 11.15 10th
Corrida-final Best-PSMS-ALvsPK 18.27 6.14 28.54 5.11 1.22 11.86 42th

Table 10: Comparison of models selected with PSMS and the best entries in the ALvsPK challenge
data sets. We show, for reference, the best prior-knowledge entry (Interim-all-prior);
the entry formed by the models described in Table 9 (psmx jmlr run I); the best individ-
ual entries for each data set in the ALvsPK challenge(IJCNN07AL) (Guyon et al., 2007,
2008); the second-best entry of the agnostic track (Logitboost-with-trees) and our best
ranked entry evaluated during the challenge Corrida-final. The best results in the agnos-
tic track are shown in bold.

5. Discussion

In this section, we discuss the advantages and disadvantages of PSMS and perform a synthesis of our
experiments aiming at better understanding how PSMS performs intensive search in hyperparameter
space without overfitting the data.

5.1 Robust and Computationally Tractable Intensive Search

In Section 4 we reported experimental results that give evidence of the validity of the PSMS ap-
proach, demonstrating in particular that PSMS can outperform PATSMS through and at the end of
the search, showing better convergence behavior and generalization performance. This is obtained
at the expense of moderate additional computational complexity. This claim is supported by the
theoretical analysis of the computational complexity (Section 3.4), indicating that computations are
dominated by the number of learning machine trainings, and by the experiments (Section 4.2), in-
dicating as few as 5 particles (learning machines) and 10 iterations (i.e., 50 trainings) are needed to
attain the best performance. The efficiency of PSMS can be improved, for instance by preferably
exploring learning machines, which have a lower computational cost of training. We explored suc-
cessfully other heuristics, including subsampling training data, which reduced computations, at the
expense of no performance degradation.

An analysis of the diversity of models tried by PSMS shows that this method is not biased to-
wards models that tend to perform well individually. Investigating the operation of PSMS under
different settings we found that the performance of PSMS is not significantly affected by modify-
ing its hyperparameters. However, experimental results indicate that the use of an adaptive inertia
weight may be helpful to explore the search space better.We also observed that certain parameter
configurations allow the selection of competitive models, while reducing processing time. Section
5.4 provides a final set of practical recommendations.

Results of international competitions suggest that PSMS is competitive with model selection
strategies specific to single algorithms and to strategies using prior domain knowledge. The latter is
an important result because it shows that we can obtain competitive models without the need of an
expert on the domain, a careful analysis to the data, or even machine learning knowledge.
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5.2 Intensive Search without Overfitting

The findings summarized above provide empirical evidence suggesting PSMS is a reliable strategy
for agnostic model selection. However, it is not obvious why PSMS succeeds in selecting com-
petitive models without significantly overfitting data. Our hypothesis is that PSMS is able to avoid
overfitting because of the way the search is guided: PSMS performs a broad search around promising
solutions without focusing on reaching local minima. Solutions in PSMS are updated by taking into
account information from both: the global-best solution (pg, weighted by c2) and the individual-best
solutions of each particle (p1,...,m, weighted by c1), see Equations (1) and (2). The latter combined
with an adaptive inertia weight and early stopping cause do not exaggerate the search at any local
minima. Methods like PATSMS, on the contrary, update solutions by moving the pattern towards
the local minimum nearest the initial solution, see Algorithm 2. Reaching exactly a local minimum
causes PATSMS to learn peculiarities in the data set and does not necessarily result in obtaining a
better predictive model.

The experiments we performed in Section 4.2.5 support the above conjecture. The results from
Table 7 and Figures 4, 5 and 6 indicate that PSMS is able to avoid overfitting (to some extend)
because of the way the search is guided. PSMS searches around good solutions without overdoing
in terms of really fine-grained optimization. This sort of search can be considered as suboptimal in
Dietterich’s sense: “In machine learning it is optimal to be suboptimal!” (Dietterich, 1995). The
latter statement makes reference to the well known fact that oversearching (i.e., trying to be optimal)
in model selection can lead to select models that fit very well the peculiarities of the considered data
set without deriving a general predictive rule (Dietterich, 1995; Jensen and Cohen, 2000; Quinlan
and Cameron-Jones, 1995; Hastie et al., 2001; Loughrey and Cunningham, 2005). On the contrary,
PSMS is able to undercompute because for updating solutions it considers local and global knowl-
edge, information from past solutions (weighted by the inertia term) and randomness; note that the
latter holds when a reasonable small number of iterations is performed. Furthermore, our experi-
mental results provide empirical evidence that agrees with recent, yet traditional, explanations about
why and how PSO works (Kennedy, 2008; Kennedy and Eberhart, 2001). Kennedy has argued the
success of PSO is due to the fact that it performs a “collaborative trial and error” search (Kennedy,
2008). That is, PSO obtains good results mainly because the search is directed according both indi-
vidual and social knowledge; the same conclusion derived from experimental results in this section.
It is not surprising that distributed and collaborative computing can improve results of centralized
(individualized) methods. For FMS, however, it is very interesting that updating solutions in a het-
erogeneous way allows us to avoid oversearching and, in consequence, overfitting; even when the
FMS search space is infinite and has many local minima solutions.

5.3 Comparison with Related Work

A variety of approaches have been proposed to select parameters of specific methods for regression,
classification, feature selection, discretization etcetera (Hastie et al., 2001; Bishop, 2006; Voss and
Feng, 2002; Nelles, 2001; Guyon et al., 2006b; Kim et al., 2002; Hastie et al., 2001; Cawley and
Talbot, 2007b; Boullé, 2007; Hue and Boullé, 2007). However, despite the potential advantages of
FMS (namely generality, simplicity and competitiveness), this problem has been little studied be-
cause of the huge search space involved and because intensive search methods are prone to overfit
the data (Gorissen et al., 2008; Escalante et al., 2007). Nevertheless, in the rest of this section we
outline techniques used to avoid oversearching/overfitting in search that are applicable/related to
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FMS. One should note that traditional model selection techniques just like Akaike and Bayesian in-
formation criteria, the minimum description length principle and the VC-dimension are not directly
applicable to FMS and therefore they are excluded of analysis.

Grid search (with CV) is the widely used search-approach to model selection in practical appli-
cations (Momma and Bennett, 2002; Hsu et al., 2003). This method consists of defining a uniform
grid over the search space where each point in the grid defines a solution; every point in the grid
is evaluated and the point of lowest error is selected. The granularity of the grid determines both
the performance of the selected solution and the efficiency of the search. A fine-grained grid may
be inefficient and can lead to oversearching; while a sparse grid will result in low performance
models. Note that the heterogeneousness of models and the variety of ranges for the models pa-
rameters make very difficult the application of grid search to the FMS problem; furthermore, the
choice of an adequate granularity can be a serious problem. Other methods already used for pa-
rameter optimization that can be applied to FMS include: greedy search (Dietterich, 1995), random
search (e.g., the bumping technique) (Hastie et al., 2001), PS (Bi et al., 2003; Momma and Bennett,
2002), evolutionary computation approaches (Engelbrecht, 2006; Gorissen et al., 2008; Angeline,
1998), and other swarm-optimization techniques (Kennedy and Eberhart, 2001; Engelbrecht, 2006).
Note that despite one may think that exhaustive search is the best search option in model selection,
this approach is impractical for most real world problems and when applicable it suffers from the
oversearching phenomenon (Dietterich, 1995).

Early stopping has been widely used to prevent overfitting in search methods (Hastie et al.,
2001; Engelbrecht, 2006; Loughrey and Cunningham, 2005). The goal of this heuristic is to stop
searching/learning when the model starts overfitting the data. There are several variants to stop
the search: after a small number of iterations, when no improvement is found after a number of
iterations, when a solution of acceptable performance has been found, etcetera. A problem with
early stopping is that premature stopping the algorithm would lead to selecting a solution that has
not converged yet, while a late stopping of the search will cause severely overfitting the data because
of oversearching. For PSMS we found that a small number of iterations can be enough to obtain
satisfactory results in benchmark data, although the number of iterations is problem dependent;
therefore, we can adopt other stopping criteria for FMS in the future.

Randomness has bring into play in machine learning in order avoid overfitting and to escape
from local minima in search (Hastie et al., 2001; Bishop, 2006; Kirkpatrick et al., 1983; Kennedy
and Eberhart, 2001). In learning algorithms, it has been successfully used to prevent overfitting and
to obtain better predictors; learning methods that use randomness include bagging classifiers (Hastie
et al., 2001), neural and deep belief networks (Hastie et al., 2001; Hinton et al., 2006) and random-
ized decision-tree algorithms (Breiman, 2001; Geurts et al., 2006). Bootstrapping is a technique
(used in bagging and random forest classifiers) based on random sampling that has been widely
used to estimate the generalization performance of methods as an alternative to CV (Hastie et al.,
2001). In PSMS randomness played an important role because it introduces diversity into the search
process and allows PSMS to avoid local minima. Furthermore, the subsampling strategy we used to
increase the speed of PSMS is related to bootstrapping; in future work on PSMS we will explicitly
consider different subsampling estimations for the selection of the final model.

As the adaptive inertia weight in PSO, see Section 2, there are parameters in other algorithms
that aim to avoid overfitting by exploring the search space both globally and locally; examples are
the temperature parameter in simulated annealing (Kirkpatrick et al., 1983) and the momentum term
in on-line gradient descend and backpropagation (Qian, 1999). The ridge in ridge-regression and
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weight decay in neural networks training are also related to the inertia weight. Model averaging
and the use of ensembles have proved to be helpful to improve predictions and avoid overfitting;
this is because different models have different biases that in average result in improved perfor-
mance (Hastie et al., 2001; Bishop, 2006). Future work includes in PSMS consists of combining
particles in order to improve the performance of the swarm strategy. Finally, adding noise to the
training data is another overfitting avoidance mechanism in model selection that also can be used
with PSMS.

5.4 A Practical Guide to PSMS

In this section we describe the way PSMS can be put in practice in any binary classification problem.
Due to the simplicity and generality of the approach below we describe a practical guide to use the
MatlabR implementation of PSMS (included in the CLOP toolbox). It is assumed that the user
has available a data set (in MatlabR format) with N samples for binary classification: a matrix
XN×d contains the N training samples of dimensionality d and a vector YN×1 their respective labels
(yi ∈ [−1,1]). After downloading and installing CLOP (Saffari and Guyon, 2006), PSMS can be
applied to any data set by typing the followingMatlabR code:

%% load your data into the MatlabR workspace
1: >> load train data.mat;
%% Create A Clop Data-Object
2: >> D = data(X ,Y );
%% Create A CLOP PSMS-Object with default parameters
3: >> P = psmsx;
%% Perform PSMS
4: >> [Dat, Res] = train(P, D);
%% Train the selected model with the full training set
5: >> [Odat, TrM] = train(Res.Best Model,D);
%% Create a test data set, note that Yt can be empty
6: >> load test data; Dt = data(Xt ,Yt );
%% Test the selected and trained model on unseen data Dt
7: >> [Pred] = test(TrM, Dt);
%% Estimate the model’s performance on unseen data Dt, if Yt is available
8: >> [BER] = balanced errate(Pred.X, Pred.Y);
%% Analyze the ROC performance of the selected model
9: >> roc(Pred);

Note that steps 1–2 and 5–9 are associated with loading the data and the evaluation of the
selected model, respectively; which are operations not attained to PSMS. Steps 3 and 4 will create
the PSMS object and will start the search, respectively. Besides the selected model, the output of the
search (Res, line 4), is a structure with useful information about the search process, see the PSMS
documentation (Escalante, In preparation, 2009).

In Section 4.2 were presented experimental results that suggest that there is not significant differ-
ence in performance by modifying most of the PSMS hyperparameters. Therefore, one can choose
parameter settings for PSMS that make practical its application without a significant decrement of
performance. Below are shown recommended values for the PSMS hyperparameters. These param-
eters and other options of the current implementation can be modified very simply (Escalante, In
preparation, 2009).
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Recommended PSMS parameters:

Weight for individual best solution c1 = 2
Weight for global best solution c2 = 2
Adaptive inertia weight W= (1.2,0.5,0.4)
Number of iterations I = 50
Swarm size m= 5
Folds in CV k = 2
Subsampling factor SF = 1 (as small as possible in large data sets)

6. Conclusions

In this paper we proposed Particle Swarm Model Selection (PSMS), that is, the application of Parti-
cle Swarm Optimization (PSO) to the problem of Full Model Selection (FMS). Given a data set, the
FMS problem consists of selecting the combination of preprocessing, feature selection and learning
methods that obtains the lowest classification error. FMS also includes hyperparameter optimiza-
tion for the selected methods. This approach to the model selection problem has the following
advantages. First, the generality of the approach allows us to consider different model types (for
preprocessing, feature selection and learning) and a variety of methods. Second, PSMS can be ap-
plied to any data set, since neither domain knowledge nor machine learning knowledge is required,
therefore it can be considered a black-box model selection method. Third, and most importantly,
competitive and yet simple models can be obtained with PSMS. We provide empirical evidence
that shows that PSMS can be applied efficiently, without a significant loss of accuracy, by using a
subsampling heuristic and parameter settings that reduce the computational cost.

The simplicity of PSO and its proven performance, comparable to that of evolutionary algo-
rithms, make this search algorithm well suited for FMS. However, the application of any other
stochastic optimization strategy is also possible. The main advantage of PSO is that a single equa-
tion for updating solutions is needed, as opposed to evolutionary algorithms where methods for
representation, mutation, cross-over, speciation and selection have to be considered. Interestingly,
the way the search is guided in PSMS allows it obtaining competitive models without significantly
overfitting. Experimental results in benchmark data show superior performance of PSMS when
compared to Pattern Search Model Selection (PATSMS), a direct search method that constitutes a
competitive baseline.

Results obtained by models selected with PSMS in the framework of a model selection challenge
show that it is a very competitive model selection method, despite its simplicity and generality.
In such competitions, models selected with PSMS were always among the top ranking models,
together with methods performing solely hyperparameter selection in a given model family and
methods relying on prior knowledge. This demonstrates that, via the use of PSO, FMS is a viable
strategy for model selection. This is remarkable because we noted in previous competitions (Guyon
et al., 2005; Guyon et al., 2006b) that each data set had a different best performing method, yet
researchers performing FMS (in an effort to find the model family best suited to a given problem)
were not successful. The participants, which obtained the best results on average over all data sets
restricted themselves to hyperparameter selection in one given model family. In contrast, in this
paper we demonstrated the viability of FMS using the PSO search strategy. Our work paves the
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way to the use of intensive search techniques to perform FMS in the entire model space of machine
learning toolkits. With the increasing availability of diverse and sophisticated machine learning
toolkits and the improvements in computing power, we foresee that FMS will become an effective
methodology.

Current work includes the use of PSMS for the selection of model-members for ensembles and
the hierarchical application of PSO for FMS and hyperparameter optimization. PSMS is currently
being applied to different tasks, including galaxy classification, automatic image annotation, object
recognition and text classification. Future work includes the introduction of a penalty-term into
the fitness function; such that (computationally) inexpensive models be favored by PSMS. The
extension of PSMS to the multi-class classification and regression problems is another future work
direction.

Acknowledgments

We would like to thank the organizers and participants of the NIPS multi-level inference work-
shop and model selection game, and of the IJCNN ALvsPK challenge. The first author thanks the
UNIPEN foundation and the US National Science Foundation for travel support. We also thank
editors and anonymous reviewers for their useful comments that have help us to improve this paper.
We thank Dr. Eduardo Morales for his useful suggestions about the content of the paper. Last, but
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Abstract
The problem of ranking, in which the goal is to learn a real-valued ranking function that induces a
ranking or ordering over an instance space, has recently gained much attention in machine learning.
We study generalization properties of ranking algorithms using the notion of algorithmic stability;
in particular, we derive generalization bounds for ranking algorithms that have good stability prop-
erties. We show that kernel-based ranking algorithms that perform regularization in a reproducing
kernel Hilbert space have such stability properties, and therefore our bounds can be applied to these
algorithms; this is in contrast with generalization bounds based on uniform convergence, which in
many cases cannot be applied to these algorithms. Our results generalize earlier results that were
derived in the special setting of bipartite ranking (Agarwal and Niyogi, 2005) to a more general
setting of the ranking problem that arises frequently in applications.
Keywords: ranking, generalization bounds, algorithmic stability

1. Introduction

A central focus in learning theory research has been the study of generalization properties of learn-
ing algorithms. Perhaps the first work in this direction was that of Vapnik and Chervonenkis (1971),
who derived generalization bounds for classification algorithms based on uniform convergence.
Since then, a large number of different tools have been developed for studying generalization, and
have been applied successfully to analyze algorithms for both classification (learning of binary-
valued functions) and regression (learning of real-valued functions), two of the most well-studied
problems in machine learning.

In recent years, a new learning problem, namely that of ranking, has gained attention in machine
learning (Cohen et al., 1999; Herbrich et al., 2000; Crammer and Singer, 2002; Joachims, 2002;
Freund et al., 2003; Agarwal et al., 2005; Rudin et al., 2005; Burges et al., 2005; Cossock and
Zhang, 2006; Cortes et al., 2007; Clemencon et al., 2008). In ranking, one learns a real-valued
function that assigns scores to instances, but the scores themselves do not matter; instead, what is

∗. A preliminary version of this paper (which focused on the special setting of bipartite ranking) appeared in the Pro-
ceedings of the 18th Annual Conference on Learning Theory (COLT) in 2005.
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important is the relative ranking of instances induced by those scores. This problem is distinct from
both classification and regression, and it is natural to ask what kinds of generalization properties
hold for algorithms for this problem.

Although there have been several recent advances in developing algorithms for various settings
of the ranking problem, the study of generalization properties of ranking algorithms has been largely
limited to the special setting of bipartite ranking (Freund et al., 2003; Agarwal et al., 2005). In this
paper, we study generalization properties of ranking algorithms in a more general setting of the
ranking problem that arises frequently in applications. Our generalization bounds are derived using
the notion of algorithmic stability; we show that a number of practical ranking algorithms satisfy
the required stability conditions, and therefore can be analyzed using our bounds.

1.1 Previous Results

While ranking has been studied extensively in some form or another in fields as diverse as social
choice theory (Arrow, 1970), statistics (Lehmann, 1975), and mathematical economics (Chiang and
Wainwright, 2005), the study of ranking in machine learning is relatively new: the first paper on the
subject appeared less than a decade ago (Cohen et al., 1999). Since then, however, the number of
domains in which ranking has found applications has grown quickly, and as a result, ranking has
gained considerable attention in machine learning and learning theory in recent years.

Some of the earlier work, by Herbrich et al. (2000) and by Crammer and Singer (2002), fo-
cused on the closely related but distinct problem of ordinal regression. Freund et al. (2003) gave
one of the first learning algorithms for ranking, termed RankBoost, which was based on the prin-
ciples of boosting. Since then there have been many other algorithmic developments: for example,
Radlinski and Joachims (2005) have developed an algorithmic framework for ranking in informa-
tion retrieval applications; Burges et al. (2005) have developed a neural network based algorithm for
ranking; and Agarwal (2006) has developed an algorithmic framework for ranking in a graph-based
transductive setting. More recently, there has been some interest in learning ranking functions that
emphasize accuracy at the top of the ranked list; work by Rudin (2006), Cossock and Zhang (2006)
and Clemencon and Vayatis (2007) falls in this category. There has also been interest in statistical
analysis of ranking; in recent work, Clemencon et al. (2008) have studied statistical convergence
properties of ranking algorithms—specifically, ranking algorithms based on empirical and convex
risk minimization—using the theory of U-statistics.

In the paper that developed the RankBoost algorithm, Freund et al. (2003) also gave a ba-
sic generalization bound for the algorithm in the bipartite setting. Their bound was derived from
uniform convergence results for the binary classification error, and was expressed in terms of the
VC-dimension of a class of binary classification functions derived from the class of ranking func-
tions searched by the algorithm. Agarwal et al. (2005) also gave a generalization bound for bipartite
ranking algorithms based on uniform convergence; in this case, the uniform convergence result was
derived directly for the bipartite ranking error, and the resulting generalization bound was expressed
in terms of a new set of combinatorial parameters that measure directly the complexity of the class
of ranking functions searched by a bipartite ranking algorithm. Agarwal and Niyogi (2005) used a
different tool, namely that of algorithmic stability (Rogers and Wagner, 1978; Bousquet and Elisse-
eff, 2002), to obtain generalization bounds for bipartite ranking algorithms that have good stability
properties. Unlike bounds based on uniform convergence, the stability-based bounds depend on
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properties of the algorithm rather than the function class being searched, and can be applied also to
algorithms that search function classes of unbounded complexity.

As can be noted from the above discussion, the question of generalization properties of ranking
algorithms has so far been investigated mainly in the special setting of bipartite ranking. There
have been limited studies of generalization properties in more general settings. For example, Rudin
et al. (2005) derived a margin-based bound which is expressed in terms of covering numbers and
relies ultimately on a uniform convergence result; this bound is derived for a non-bipartite setting
of the ranking problem, but under the restrictive distributional assumption of a “truth” function.
Cortes et al. (2007) consider a different setting of the ranking problem and derive stability-based
generalization bounds for algorithms in this setting. However, they also implicitly assume a “truth”
function. In addition, as we discuss later in the paper, the results of Cortes et al. as stated involve
some strong assumptions about the function class searched by an algorithm. These assumptions
rarely hold for practical ranking algorithms, which prevents the direct application of their results.
We shall discuss in Section 6 how this can be remedied.

1.2 Our Results

We use the notion of algorithmic stability to study generalization properties of ranking algorithms in
a more general setting of the ranking problem than has been considered previously, and that arises
frequently in applications. The notion of algorithmic stability, first studied for learning algorithms
by Rogers and Wagner (1978), has been used to obtain generalization bounds for classification
and regression algorithms that satisfy certain stability conditions (Bousquet and Elisseeff, 2002;
Kutin and Niyogi, 2002). Here we show that algorithmic stability can be useful also in analyzing
generalization properties of ranking algorithms in the setting we consider; in particular, we derive
generalization bounds for ranking algorithms that have good stability properties. We show that
kernel-based ranking algorithms that perform regularization in a reproducing kernel Hilbert space
(RKHS) have such stability properties, and therefore our bounds can be applied to these algorithms.
Our techniques are based on those of Bousquet and Elisseeff (2002); indeed, we show that the
ranking error in our setting satisfies the same conditions that were used to establish the classification
and regression bounds of Bousquet and Elisseeff (2002), and therefore essentially the same proof
techniques can be used to analyze the ranking problem we consider. Our results generalize those of
Agarwal and Niyogi (2005), which focused on bipartite ranking.

We describe the general ranking problem and the setting we consider in detail in Section 2, and
define notions of stability for ranking algorithms in this setting in Section 3. Using these notions,
we derive generalization bounds for stable ranking algorithms in Section 4. In Section 5 we show
stability of kernel-based ranking algorithms that perform regularization in an RKHS, and apply
the results of Section 4 to obtain generalization bounds for these algorithms. Section 6 provides
comparisons with related work; we conclude with a discussion in Section 7.

2. The Ranking Problem

In the problem of ranking, one is given a finite number of examples of order relationships among
instances in some instance space X , and the goal is to learn from these examples a ranking or
ordering over X that ranks accurately future instances. Examples of ranking problems arise in a
variety of domains: in information retrieval, one wants to rank documents according to relevance
to some query or topic; in user-preference modeling, one wants to rank books or movies according
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to a user’s likes and dislikes; in computational biology, one wants to rank genes according to their
relevance to some disease.

In the most general setting of the ranking problem, the learner is given training examples in the
form of ordered pairs of instances (x,x′) ∈ X ×X labeled with a ranking preference r ∈ R, with the
interpretation that x is to be ranked higher than (preferred over) x′ if r> 0, and lower than x′ if r< 0
(r= 0 indicates no ranking preference between the two instances); the penalty for mis-ordering such
a pair is proportional to |r|. Given a finite number of such examples ((x1,x′1,r1), . . . ,(xm,x′m,rm)),
the goal is to learn a real-valued ranking function f : X→R that ranks accurately future instances; f
is considered to rank an instance x∈X higher than an instance x′ ∈X if f (x) > f (x′), and lower than
x′ if f (x) < f (x′). Thus, assuming that ties are broken uniformly at random, the expected penalty
(or loss) incurred by a ranking function f on a pair of instances (x,x′) labeled by r can be written as

|r|
(
I{r( f (x)− f (x′))<0} +

1
2
I{ f (x)= f (x′)}

)
,

where I{!} is 1 if ! is true and 0 otherwise.
A particular setting of the ranking problem that has been investigated in some detail in recent

years is the bipartite setting (Freund et al., 2003; Agarwal et al., 2005). In the bipartite ranking
problem, instances come from two categories, positive and negative; the learner is given examples of
instances labeled as positive or negative, and the goal is to learn a ranking in which positive instances
are ranked higher than negative ones. Formally, the learner is given a training sample (S+,S−)
consisting of a sequence of ‘positive’ examples S+ = (x+1 , . . . ,x+m) and a sequence of ‘negative’
examples S− = (x−1 , . . . ,x−n ), the x+i and x

−
j being instances in some instance space X , and the goal

is to learn a real-valued ranking function f : X→R that ranks future positive instances higher than
negative ones. The bipartite ranking problem is easily seen to be a special case of the general ranking
problem described above, since a training sample (S+,S−) ∈ Xm×X n in the bipartite setting can
be viewed as consisting of mn examples of the form (x+i ,x−j ,1), for 1 ≤ i ≤ m, 1 ≤ j ≤ n; in other
words, mis-ranking any positive-negative pair of instances incurs a constant penalty of 1. Thus,
assuming again that ties are broken uniformly at random, the expected penalty incurred by f on a
positive-negative pair (x+,x−) is simply

I{ f (x+)− f (x−)<0} +
1
2
I{ f (x+)= f (x−)} ;

the penalty incurred on a pair of positive instances or a pair of negative instances is zero.
In this paper, we consider a more general setting: the learner is given examples of instances

labeled by real numbers, and the goal is to learn a ranking in which instances labeled by larger
numbers are ranked higher than instances labeled by smaller numbers. Such ranking problems arise
frequently in practice: for example, in information retrieval, one is often given examples of docu-
ments with real-valued relevance scores for a particular topic or query; similarly, in computational
biology, one often receives examples of molecular structures with real-valued biological activity
scores with respect to a particular target.

Formally, the setting we consider can be described as follows. The learner is given a finite
sequence of labeled training examples S = ((x1,y1), . . . ,(xm,ym)), where the xi are instances in
some instance space X and the yi are real-valued labels in some bounded set Y ⊆ R which we take
without loss of generality to be Y = [0,M] for some M > 0, and the goal is to learn a real-valued
function f : X→R that ranks future instances with larger labels higher than those with smaller
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labels. The penalty for mis-ranking a pair of instances could again be taken to be constant for all
pairs; here we consider the more general case where the penalty is larger for mis-ranking a pair of
instances with a greater difference between their real-valued labels. In particular, in our setting, the
penalty for mis-ranking a pair of instances is proportional to the absolute difference between their
real-valued labels. Thus, assuming again that ties are broken uniformly at random, the expected
penalty incurred by f on a pair of instances (x,x′) with corresponding real-valued labels y and y′
can be written as

|y− y′|
(
I{(y−y′)( f (x)− f (x′))<0} +

1
2
I{ f (x)= f (x′)}

)
.

This problem can also be seen to be a special case of the general ranking problem described above;
a training sample S= ((x1,y1), . . . ,(xm,ym)) ∈ (X ×Y )m in this setting can be viewed as consisting
of
(m
2
)
examples of the form (xi,x j,yi− y j), for 1≤ i< j ≤ m.

In studying generalization properties of learning algorithms, one usually assumes that both train-
ing examples and future, unseen examples are generated according to some underlying random pro-
cess. We shall assume in our setting that all examples (x,y) (both training examples and future,
unseen examples) are drawn randomly and independently according to some (unknown) distribu-
tionD on X ×Y .1 The quality of a ranking function f : X→R can then be measured by its expected
ranking error, which we denote by R( f ) and define as follows:

R( f ) = E((X ,Y ),(X ′,Y ′))∼D×D

[
|Y −Y ′|

(
I{(Y−Y ′)( f (X)− f (X ′))<0} +

1
2
I{ f (X)= f (X ′)}

)]
. (1)

Note that the expected error R( f ) is simply the expected mis-ranking penalty of f on a pair of exam-
ples drawn randomly and independently according to D , assuming that ties are broken uniformly at
random. In practice, since the distributionD is unknown, the expected error of a ranking function f
must be estimated from an empirically observable quantity, such as its empirical ranking error with
respect to a sample S= ((x1,y1), . . . ,(xm,ym)) ∈ (X ×Y )m, which we denote by R̂( f ;S) and define
as follows:

R̂( f ;S) =
1(m
2
)
m−1

"
i=1

m

"
j=i+1

|yi− y j|
(
I{(yi−y j)( f (xi)− f (x j))<0} +

1
2
I{ f (xi)= f (x j)}

)
. (2)

This is simply the average mis-ranking penalty incurred by f on the
(m
2
)
pairs (xi,x j), where 1 ≤

i< j ≤ m, assuming that ties are broken uniformly at random.
A learning algorithm for the ranking problem described above takes as input a training sample

S ∈
S#
m=1(X ×Y )m and returns as output a ranking function fS : X→R. For simplicity we consider

only deterministic algorithms. We are concerned in this paper with generalization properties of
such algorithms; in particular, we are interested in bounding the expected error of a learned ranking
function in terms of an empirically observable quantity such as its empirical error on the training
sample from which it is learned. The following definitions will be useful in our study.

Definition 1 (Ranking loss function) Define a ranking loss function to be a function ! : RX×
(X ×Y )× (X ×Y ) → R+ ∪ {0} that assigns to each f : X→R and (x,y),(x′,y′) ∈ (X ×Y ) a
non-negative real number !( f ,(x,y),(x′,y′)), interpreted as the penalty or loss of f in its relative

1. Cortes et al. (2007) consider a similar setting as ours; however, they assume that only instances x ∈ X are drawn
randomly, and that labels y ∈ Y are then determined according to a “truth” function f ∗ : X→Y .
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ranking of x and x′ given corresponding labels y and y′. We shall require that ! be symmetric with re-
spect to (x,y) and (x′,y′), that is, that !( f ,(x,y),(x′,y′)) = !( f ,(x′,y′),(x,y)) for all f ,(x,y),(x′,y′).

Definition 2 (Expected !-error) Let f : X→R be a ranking function on X . Let ! :RX ×(X ×Y )×
(X ×Y ) → R+∪{0} be a ranking loss function. Define the expected !-error of f , denoted by R!( f ),
as

R!( f ) = E((X ,Y ),(X ′,Y ′))∼D×D
[
!( f ,(X ,Y ),(X ′,Y ′))

]
.

Definition 3 (Empirical !-error) Let f :X→R be a ranking function on X , and let S= ((x1,y1), . . . ,
(xm,ym)) ∈ (X ×Y )m. Let ! : RX × (X ×Y )× (X ×Y ) → R+ ∪ {0} be a ranking loss function.
Define the empirical !-error of f with respect to S, denoted by R̂!( f ;S), as

R̂!( f ;S) =
1(m
2
)
m−1

"
i=1

m

"
j=i+1

!( f ,(xi,yi),(x j,y j)) .

As mentioned above, one choice for a ranking loss function could be a 0-1 loss that simply
assigns a constant penalty of 1 to any mis-ranked pair:

!0-1( f ,(x,y),(x′,y′)) = I{(y−y′)( f (x)− f (x′))<0} +
1
2
I{ f (x)= f (x′)} .

The (empirical) !0-1-error then simply counts the fraction of mis-ranked pairs, which corresponds
to the well-known Kendall $ measure. However, the 0-1 loss effectively uses only the sign of the
difference y− y′ between labels, and ignores the magnitude of this difference; the loss function we
use, which we term the discrete ranking loss and denote as

!disc( f ,(x,y),(x′,y′)) = |y− y′|
(
I{(y−y′)( f (x)− f (x′))<0} +

1
2
I{ f (x)= f (x′)}

)
, (3)

takes the magnitude of this difference into account. Comparing with Eqs. (1-2) above, we see that
the expected and empirical ranking errors we have defined are simply the corresponding !disc-errors:

R( f ) ≡ R!disc( f ) ; R̂( f ;S) ≡ R̂!disc( f ;S) .

While our focus will be on bounding the expected (!disc-)ranking error of a learned ranking function,
our results can be used also to bound the expected !0-1-error.

Several other ranking loss functions will be useful in our study; these will be introduced in the
following sections as needed.

3. Stability of Ranking Algorithms

A stable algorithm is one whose output does not change significantly with small changes in the in-
put. The input to a ranking algorithm in our setting is a training sample of the form S= ((x1,y1), . . . ,
(xm,ym)) ∈ (X ×Y )m for some m ∈ N; we consider changes to such a sample that consist of replac-
ing a single example in the sequence with a new example. For 1≤ i≤m and (x′i,y′i) ∈ (X ×Y ), we
use Si to denote the sequence obtained from S by replacing (xi,yi) with (x′i,y′i).
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Several different notions of stability have been used in the study of classification and regression
algorithms (Rogers and Wagner, 1978; Devroye and Wagner, 1979; Kearns and Ron, 1999; Bous-
quet and Elisseeff, 2002; Kutin and Niyogi, 2002; Poggio et al., 2004). The notions of stability
that we define below for ranking algorithms in our setting are based on those defined earlier for
bipartite ranking algorithms (Agarwal and Niyogi, 2005) and are most closely related to the notions
of stability used by Bousquet and Elisseeff (2002).

Definition 4 (Uniform loss stability) Let A be a ranking algorithm whose output on a training
sample S we denote by fS, and let ! be a ranking loss function. Let % : N→R. We say that A has
uniform loss stability % with respect to ! if for all m ∈ N, S ∈ (X ×Y )m, 1 ≤ i ≤ m and (x′i,y′i) ∈
(X ×Y ), we have for all (x,y),(x′,y′) ∈ (X ×Y ),

∣∣!( fS,(x,y),(x′,y′))− !( fSi ,(x,y),(x′,y′))
∣∣ ≤ %(m) .

Definition 5 (Uniform score stability) Let A be a ranking algorithm whose output on a training
sample S we denote by fS. Let & :N→R. We say that A has uniform score stability & if for all m∈N,
S ∈ (X ×Y )m, 1≤ i≤ m and (x′i,y′i) ∈ (X ×Y ), we have for all x ∈ X ,

| fS(x)− fSi(x)| ≤ &(m) .

If a ranking algorithm has uniform loss stability % with respect to !, then changing an input
training sample of size m by a single example leads to a difference of at most %(m) in the !-loss
incurred by the output ranking function on any pair of examples (x,y),(x′,y′). Therefore, a smaller
value of %(m) corresponds to greater loss stability. Similarly, if a ranking algorithm has uniform
score stability &, then changing an input training sample of size m by a single example leads to a
difference of at most &(m) in the score assigned by the output ranking function to any instance x. A
smaller value of &(m) therefore corresponds to greater score stability.

The term ‘uniform’ in the above definitions refers to the fact that the bounds on the difference
in loss or score are required to hold uniformly for all training samples S (and all single-example
changes to them) and for all examples (x,y),(x′,y′) or instances x. This is arguably a strong require-
ment; one can define weaker notions of stability, analogous to the hypothesis stability considered
by Devroye and Wagner (1979), Kearns and Ron (1999), and Bousquet and Elisseeff (2002), or
the almost-everywhere stability considered by Kutin and Niyogi (2002), which would require the
bounds to hold only in expectation or with high probability (and would therefore depend on the
distribution D governing the data). However, we do not consider such weaker notions of stability
in this paper; we shall show later (Section 5) that several practical ranking algorithms in fact exhibit
good uniform stability properties.

4. Generalization Bounds for Stable Ranking Algorithms

In this section we give generalization bounds for ranking algorithms that exhibit good (uniform)
stability properties. The methods we use are based on those of Bousquet and Elisseeff (2002), who
derived such bounds for classification and regression algorithms. Our main result is the following,
which bounds the expected !-error of a ranking function learned by an algorithm with good uniform
loss stability in terms of its empirical !-error on the training sample.
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Theorem 6 Let A be a symmetric ranking algorithm2 whose output on a training sample S ∈ (X ×
Y )m we denote by fS, and let ! be a bounded ranking loss function such that 0≤ !( f ,(x,y),(x′,y′))≤
B for all f : X→R and (x,y),(x′,y′) ∈ (X ×Y ). Let % : N→R be such that A has uniform loss
stability % with respect to !. Then for any 0< '< 1, with probability at least 1−' over the draw of
S (according to Dm),

R!( fS) < R̂!( fS;S)+2%(m)+(m%(m)+B)

√
2ln(1/')

m
.

The proof follows the proof of a similar result for classification and regression algorithms by
Bousquet and Elisseeff (2002). In particular, the random variable R!( fS)− R̂!( fS;S), representing
the difference between the expected and empirical !-errors of the ranking function fS learned from
the random sample S, is shown to satisfy the conditions of McDiarmid’s inequality (McDiarmid,
1989), as a result of which the deviation of this difference from its expected value ES∼Dm [R!( fS)−
R̂!( fS;S)] can be bounded with high probability; a bound on this expected value then allows the
above result to be established. Details of the proof are provided in Appendix A.

A few remarks on the significance of the above result are in order, especially in relation to the
results of Bousquet and Elisseeff (2002). As can be seen from the definitions given in the preceding
two sections, the main difference in the formulation of the ranking problem as compared to the
problems of classification and regression is that the performance or loss in ranking is measured on
pairs of examples, rather than on individual examples. This means in particular that, unlike the
empirical error in classification or regression, the empirical error in ranking cannot be expressed
as a sum of independent random variables. Indeed, this is the reason that in deriving uniform
convergence bounds for the ranking error, the standard Hoeffding inequality used to obtain such
bounds in classification and regression can no longer be applied (Agarwal et al., 2005). It may
initially come as a bit of a surprise, therefore, that the proof methods of Bousquet and Elisseeff
(2002) carry through for ranking without siginificant change. The reason for this is that they rely
on the more general inequality of McDiarmid which, in Bousquet and Elisseeff’s work, is used
to capture the effect of stability, but which is also powerful enough to capture the structure of the
ranking error; indeed, the uniform convergence bound for the (bipartite) ranking error derived by
Agarwal et al. (2005) also made use of McDiarmid’s inequality. Thus, in general, any learning
problem in which the empirical performance measure fits the conditions of McDiarmid’s inequality
should be amenable to a stability analysis similar to Bousquet and Elisseeff’s, provided of course
that appropriate notions of stability are defined.

Theorem 6 gives meaningful bounds when %(m) = o(1/
√
m). This means the theorem cannot

be applied directly to obtain bounds on the expected ranking error, since it is not possible to have
non-trivial uniform loss stability with respect to the discrete ranking loss !disc defined in Eq. (3).
(To see this, note that unless an algorithm picks essentially the same ranking function that orders
all instances the same way for all training samples of a given size m, in which case the algorithm
trivially has uniform loss stability %(m) = 0 with respect to !disc, there must be some S ∈ (X ×Y )m,
1 ≤ i ≤ m, (x′i,y′i) ∈ (X ×Y ) and some x,x′ ∈ X such that fS and fSi order x,x′ differently. In this
case, for y= 0 and y′ =M, we get |!disc( fS,(x,y),(x′,y′))−!disc( fSi ,(x,y),(x′,y′))|=M, giving loss
stability %(m) = M with respect to !disc.) However, for any ranking loss ! that satisfies !disc ≤ !,

2. A symmetric ranking algorithm is one whose output is independent of the order of elements in the training sequence
S.
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Theorem 6 can be applied to ranking algorithms that have good uniform loss stability with respect
to ! to obtain bounds on the expected !-error; since in this case R ≤ R!, these bounds apply also to
the expected ranking error. We consider below a specific ranking loss that satisfies this condition,
and with respect to which we will be able to show good loss stability of certain ranking algorithms;
other ranking losses which can also be used in this manner will be discussed in later sections.

For (> 0, let the ( ranking loss, denoted by !(, be defined as follows:

!(( f ,(x,y),(x′,y′))

=






|y− y′| if ( f (x)− f (x′))·sgn(y−y′)
( ≤ 0

|y− y′|− ( f (x)− f (x′))·sgn(y−y′)
( if 0 < ( f (x)− f (x′))·sgn(y−y′)

( < |y− y′|

0 if ( f (x)− f (x′))·sgn(y−y′)
( ≥ |y− y′| ,

where for u ∈ R,

sgn(u) =






1 if u> 0
0 if u= 0

−1 if u< 0 .

Clearly, for all (> 0, we have !disc ≤ !(. Therefore, for any ranking algorithm that has good uniform
loss stability with respect to !( for some ( > 0, Theorem 6 can be applied to bound the expected
ranking error of a learned ranking function in terms of its empirical !(-error on the training sample.
The following lemma shows that, for every (> 0, a ranking algorithm that has good uniform score
stability also has good uniform loss stability with respect to !(.

Lemma 7 Let A be a ranking algorithm whose output on a training sample S ∈ (X ×Y )m we
denote by fS. Let & : N→R be such that A has uniform score stability &. Then for every ( > 0, A
has uniform loss stability %( with respect to the ( ranking loss !(, where for all m ∈ N,

%((m) =
2&(m)

(
.

Proof Let m ∈ N, S ∈ (X ×Y )m, 1 ≤ i ≤ m and (x′i,y′i) ∈ (X ×Y ). Let (x,y),(x′,y′) ∈ (X ×Y ).
We want to show

∣∣!(( fS,(x,y),(x′,y′))− !(( fSi ,(x,y),(x′,y′))
∣∣≤

2&(m)

(
.

Now, if !(( fS,(x,y),(x′,y′)) = !(( fSi ,(x,y),(x′,y′)), then trivially

∣∣!(( fS,(x,y),(x′,y′))− !(( fSi ,(x,y),(x′,y′))
∣∣ = 0 ≤

2&(m)

(
,

and there is nothing to prove. Therefore assume !(( fS,(x,y),(x′,y′)) /= !(( fSi ,(x,y),(x′,y′)). With-
out loss of generality, let !(( fS,(x,y),(x′,y′)) > !(( fSi ,(x,y),(x′,y′)). There are four possibilities:

(i) ( fS(x)− fS(x′))·sgn(y−y′)
( ≤ 0 and 0<

( fSi (x)− fSi (x
′))·sgn(y−y′)
( < |y− y′|.
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In this case, we have
∣∣∣!(( fS,(x,y),(x′,y′))− !(( fSi ,(x,y),(x′,y′))

∣∣∣

= |y− y′|−
(
|y− y′|− ( fSi (x)− fSi (x

′))·sgn(y−y′)
(

)

≤
(
|y− y′|− ( fS(x)− fS(x′))·sgn(y−y′)

(

)
−
(
|y− y′|− ( fSi (x)− fSi (x

′))·sgn(y−y′)
(

)

≤
1
(

(
| fS(x)− fSi(x)|+

∣∣ fS(x′)− fSi(x′)
∣∣)

≤
2&(m)

(
.

(ii) 0< ( fS(x)− fS(x′))·sgn(y−y′)
( < |y− y′| and ( fSi (x)− fSi (x

′))·sgn(y−y′)
( ≥ |y− y′|.

In this case, we have
∣∣∣!(( fS,(x,y),(x′,y′))− !(( fSi ,(x,y),(x′,y′))

∣∣∣

=
(
|y− y′|− ( fSi (x)− fSi (x

′))·sgn(y−y′)
(

)
−0

≤
(
|y− y′|− ( fS(x)− fS(x′))·sgn(y−y′)

(

)
−
(
|y− y′|− ( fSi (x)− fSi (x

′))·sgn(y−y′)
(

)

≤
1
(

(
| fS(x)− fSi(x)|+

∣∣ fS(x′)− fSi(x′)
∣∣)

≤
2&(m)

(
.

(iii) ( fS(x)− fS(x′))·sgn(y−y′)
( ≤ 0 and ( fSi (x)− fSi (x

′))·sgn(y−y′)
( ≥ |y− y′|.

In this case, we have
∣∣∣!(( fS,(x,y),(x′,y′))− !(( fSi ,(x,y),(x′,y′))

∣∣∣

= |y− y′|−0

≤
(
|y− y′|− ( fS(x)− fS(x′))·sgn(y−y′)

(

)
−
(
|y− y′|− ( fSi (x)− fSi (x

′))·sgn(y−y′)
(

)

≤
1
(

(
| fS(x)− fSi(x)|+

∣∣ fS(x′)− fSi(x′)
∣∣)

≤
2&(m)

(
.

(iv) 0< ( fS(x)− fS(x′))·sgn(y−y′)
( < |y− y′| and 0<

( fSi (x)− fSi (x
′))·sgn(y−y′)
( < |y− y′|.

In this case, we have
∣∣∣!(( fS,(x,y),(x′,y′))− !(( fSi ,(x,y),(x′,y′))

∣∣∣
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=
(
|y− y′|− ( fS(x)− fS(x′))·sgn(y−y′)

(

)
−
(
|y− y′|− ( fSi (x)− fSi (x

′))·sgn(y−y′)
(

)

≤
1
(

(
| fS(x)− fSi(x)|+

∣∣ fS(x′)− fSi(x′)
∣∣)

≤
2&(m)

(
.

Thus in all cases,
∣∣!(( fS,(x,y),(x′,y′))− !(( fSi ,(x,y),(x′,y′))

∣∣≤ 2&(m)
( .

Putting everything together, we thus get the following result which bounds the expected ranking
error of a learned ranking function in terms of its empirical !(-error for any ranking algorithm that
has good uniform score stability.

Theorem 8 Let A be a symmetric ranking algorithm whose output on a training sample S ∈ (X ×
Y )m we denote by fS. Let & :N→R be such that A has uniform score stability &, and let (> 0. Then
for any 0< '< 1, with probability at least 1−' over the draw of S (according to Dm),

R( fS) < R̂!(( fS;S)+
4&(m)

(
+

(
2m&(m)

(
+M

)√
2ln(1/')

m
.

Proof The result follows by applying Theorem 6 to A with the ranking loss !( (using Lemma 7),
which satisfies 0≤ !( ≤M, and from the fact that R≤ R!( .

5. Stable Ranking Algorithms

In this section we show (uniform) stability of certain ranking algorithms that select a ranking func-
tion by minimizing a regularized objective function. We start by deriving a general result for
regularization-based ranking algorithms in Section 5.1. In Section 5.2 we use this result to show
stability of kernel-based ranking algorithms that perform regularization in a reproducing kernel
Hilbert space (RKHS). We show, in particular, stability of two such ranking algorithms, and apply
the results of Section 4 to obtain generalization bounds for these algorithms. Again, the methods
we use to show stability of these algorithms are based on those of Bousquet and Elisseeff (2002),
who showed similar results for classification and regression algorithms. We also use these stability
results to give a consistency theorem for kernel-based ranking algorithms (Section 5.2.3).

5.1 General Regularizers

Given a ranking loss function !, a class F of real-valued functions on X , and a regularization func-
tional N : F→R+ ∪{0}, consider the following regularized empirical !-error of a ranking function
f ∈ F (with respect to a sample S ∈ (X ×Y )m), with regularization parameter )> 0:

R̂)! ( f ;S) = R̂!( f ;S)+)N( f ) .

We consider ranking algorithms that minimize such a regularized objective function, that is, ranking
algorithms that, given a training sample S, output a ranking function fS ∈ F that satisfies
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fS = argmin
f∈F

R̂)! ( f ;S) , (4)

for some fixed choice of ranking loss !, function classF , regularizerN, and regularization parameter
). It is worth noting that the parameter ) often depends on the sample size m; we use ) here rather
than )m for notational simplicity. We give below a general result that will be useful for showing
stability of such regularization-based algorithms.

Definition 9 (*-admissibility) Let F be a class of real-valued functions on X . Let ! be a ranking
loss and let * > 0. We say that ! is *-admissible with respect to F if for all f1, f2 ∈ F and all
(x,y),(x′,y′) ∈ (X ×Y ), we have

∣∣!( f1,(x,y),(x′,y′))− !( f2,(x,y),(x′,y′))
∣∣ ≤ *

(
| f1(x)− f2(x)|+

∣∣ f1(x′)− f2(x′)
∣∣
)

.

Lemma 10 Let F be a convex class of real-valued functions on X . Let ! be a ranking loss such
that !( f ,(x,y),(x′,y′)) is convex in f , and let * > 0 be such that ! is *-admissible with respect
to F . Let ) > 0, and let N : F→R+ ∪ {0} be a functional defined on F such that for all samples
S∈ (X ×Y )m, the regularized empirical !-error R̂)! ( f ;S) has a minimum (not necessarily unique) in
F . Let A be a ranking algorithm defined by Eq. (4), and let S= ((x1,y1), . . . ,(xm,ym))∈ (X ×Y )m,
1 ≤ i ≤ m, and (x′i,y′i) ∈ (X ×Y ). For brevity, denote f ≡ fS, f i ≡ fSi , and let + f = f i− f . Then
we have that for any t ∈ [0,1],

N( f )−N( f + t+ f )+N( f i)−N( f i− t+ f )

≤
t*
)
(m
2
)"
j /=i

(
|+ f (xi)|+2|+ f (x j)|+ |+ f (x′i)|

)
.

The proof follows that of a similar result for regularization-based algorithms for classification
and regression (Bousquet and Elisseeff, 2002); it is based crucially on the convexity of the ranking
loss !. Details are provided in Appendix B.

As we shall see below, the above result can be used to establish stability of certain regularization-
based ranking algorithms.

5.2 Regularization in Hilbert Spaces

Let F be a reproducing kernel Hilbert space (RKHS) of real-valued functions on X , with kernel
K : X ×X→R. Then the reproducing property of F gives that for all f ∈ F and all x ∈ X ,

| f (x)| = |〈 f ,Kx〉K | , (5)

where Kx : X→R is defined as

Kx(x′) = K(x,x′) ,

and 〈·, ·〉K denotes the RKHS inner product in F . In particular, applying the Cauchy-Schwartz
inequality to Eq. (5) then gives that for all f ∈ F and all x ∈ X ,

| f (x)| ≤ ‖ f‖K ‖Kx‖K
= ‖ f‖K

√
K(x,x) , (6)
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where ‖ ·‖K denotes the RKHS norm in F .
Further details about RKHSs can be found, for example, in expositions by Haussler (1999) and

Evgeniou et al. (2000). We shall consider ranking algorithms that perform regularization in the
RKHS F using the squared norm in F as a regularizer. Specifically, let N : F→R+ ∪ {0} be the
regularizer defined by

N( f ) = ‖ f‖2K .

We show below that, if the kernel K is such that K(x,x) is bounded for all x ∈ X , then a ranking
algorithm that minimizes an appropriate regularized error over F , with regularizer N as defined
above, has good uniform score stability.

Theorem 11 Let F be an RKHS with kernel K such that for all x ∈ X , K(x,x)≤ ,2 <#. Let ! be a
ranking loss such that !( f ,(x,y),(x′,y′)) is convex in f and ! is *-admissible with respect to F . Let
)> 0, and let A be a ranking algorithm that, given a training sample S, outputs a ranking function
fS ∈ F that satisfies fS = argmin f∈F

{
R̂!( f ;S)+)‖ f‖2K

}
. Then A has uniform score stability &,

where for all m ∈ N,

&(m) =
8*,2

)m
.

Proof Let m ∈ N, S = ((x1,y1), . . . ,(xm,ym)) ∈ (X × Y )m, 1 ≤ i ≤ m, and (x′i,y′i) ∈ (X × Y ).
Applying Lemma 10 with t = 1/2, we get (using the notation of Lemma 10) that

‖ f‖2K−‖ f + 1
2+ f‖

2
K +‖ f i‖2K−‖ f i− 1

2+ f‖
2
K

≤
*

)m(m−1)"j /=i

(
|+ f (xi)|+2|+ f (x j)|+ |+ f (x′i)|

)
. (7)

Note that since F is a vector space, + f ∈ F , ( f + 1
2+ f ) ∈ F , and ( f i− 1

2+ f ) ∈ F , so that ‖ f +
1
2+ f‖K and ‖ f

i− 1
2+ f‖K are well-defined. Now, we have

‖ f‖2K−‖ f + 1
2+ f‖

2
K +‖ f i‖2K−‖ f i− 1

2+ f‖
2
K

= ‖ f‖2K +‖ f i‖2K−
1
2
‖ f + f i‖2K

=
1
2
‖ f‖2K +

1
2
‖ f i‖2K−〈 f , f i〉K

=
1
2
‖+ f‖2K .

Combined with Eq. (7), this gives

1
2
‖+ f‖2K ≤

*
)m(m−1)"j /=i

(
|+ f (xi)|+2|+ f (x j)|+ |+ f (x′i)|

)
.

Since (as noted above) + f ∈ F , by Eq. (6), we thus get that

1
2
‖+ f‖2K ≤

*
)m(m−1)

‖+ f‖K"
j /=i

(√
K(xi,xi)+2

√
K(x j,x j)+

√
K(x′i,x′i)

)

≤
4*,
)m

‖+ f‖K ,
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which gives

‖+ f‖K ≤
8*,
)m

. (8)

Thus, by Eqs. (6) and (8), we have for all x ∈ X ,

| fS(x)− fSi(x)| = |+ f (x)| ≤
8*,2

)m
.

The result follows.

This gives the following generalization bound for kernel-based ranking algorithms:

Corollary 12 Under the conditions of Theorem 11, we have that for any 0< '< 1, with probability
at least 1− ' over the draw of S (according to Dm), the expected ranking error of the ranking
function fS learned by A is bounded by

R( fS) < R̂!1( fS;S)+
32*,2

)m
+

(
16*,2

)
+M

)√
2ln(1/')

m
.

Proof The result follows from Theorem 11, by applying Theorem 8 with (= 1.

Under the conditions of the above results, a kernel-based ranking algorithm minimizing a regular-
ized empirical !-error also has good uniform loss stability with respect to !; this follows from the
following simple lemma:3

Lemma 13 Let F be a class of real-valued functions on X , and let A be a ranking algorithm that,
given a training sample S, outputs a ranking function fS ∈ F . If A has uniform score stability & and
! is a ranking loss that is *-admissible with respect to F , then A has uniform loss stability % with
respect to !, where for all m ∈ N,

%(m) = 2*&(m) .

Proof Let m ∈ N, S ∈ (X ×Y )m, 1 ≤ i ≤ m and (x′i,y′i) ∈ (X ×Y ). Let (x,y),(x′,y′) ∈ (X ×Y ).
Then we have

∣∣!( fS,(x,y),(x′,y′))− !( fSi ,(x,y),(x′,y′))
∣∣ ≤ *

(
| fS(x)− fSi(x)|+

∣∣ fS(x′)− fSi(x′)
∣∣
)

≤ 2*&(m) ,

where the first inequality follows from *-admissibility and the second from uniform score stability.

3. We note that the proof of Lemma 7 in Section 4 really amounts to showing that !( is 1( -admissible with respect to the
set of all ranking functions on X ; the result then follows by the observation in Lemma 13.
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Corollary 14 Under the conditions of Theorem 11, A has uniform loss stability % with respect to !,
where for all m ∈ N,

%(m) =
16*2,2

)m
.

Proof Immediate from Theorem 11 and Lemma 13.

This leads to the following additional bound for kernel-based ranking algorithms that minimize a
regularized empirical !-error where ! is bounded and satisfies !disc ≤ !:

Corollary 15 Under the conditions of Theorem 11, if in addition the ranking loss ! satisfies
!disc( f ,(x,y),(x′,y′)) ≤ !( f ,(x,y),(x′,y′)) ≤ B for all f : X→R and (x,y),(x′,y′) ∈ (X ×Y ), then
we have that for any 0< '< 1, with probability at least 1−' over the draw of S (according toDm),
the expected ranking error of the ranking function fS learned by A is bounded by

R( fS) < R̂!( fS;S)+
32*2,2

)m
+

(
16*2,2

)
+B

)√
2ln(1/')

m
.

Proof The result follows from Corollary 14, by applying Theorem 6 and the fact that R≤ R!.

The results of both Corollary 12 and Corollary 15 show that a larger regularization parameter
) leads to better stability and, therefore, a tighter confidence interval in the resulting generalization
bound. In particular, when * is independent of ), one must have ) 3 1√

m in order for either of
these bounds to be meaningful. In practice, the ranking losses ! minimized by kernel-based ranking
algorithms tend to be larger than the loss !1, and therefore Corollary 12 tends to provide tighter
bounds on the expected ranking error than Corollary 15. Below we look at two specific algorithms
that minimize two different (regularized) ranking losses.

5.2.1 HINGE RANKING LOSS

Consider the following ranking loss function, which we refer to as the hinge ranking loss due to its
similarity to the hinge loss in classification:

!h( f ,(x,y),(x′,y′)) =
(
|y− y′|− ( f (x)− f (x′)) · sgn(y− y′)

)

+
,

where for a ∈ R,

a+ =

{
a if a> 0
0 otherwise.

We consider a ranking algorithm Ah that minimizes the regularized !h-error in an RKHS F . Specif-
ically, let Ah be a ranking algorithm which, given a training sample S∈ (X ×Y )m, outputs a ranking
function fS ∈ F that satisfies (for some fixed )> 0)

fS = argmin
f∈F

{
R̂!h( f ;S)+)‖ f‖2K

}
.
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We note that this algorithm has an equivalent quadratic programming formulation similar to SVMs
in the case of classification. In particular, the problem of minimizing R̂)!h( f ;S) is equivalent to that
of minimizing

1
2
‖ f‖2K +C

m−1

"
i=1

m

"
j=i+1

-i j

subject to
-i j ≥ |yi− y j|− ( f (xi)− f (x j) · sgn(yi− y j))
-i j ≥ 0

for all 1≤ i< j ≤m, whereC = 1/()m(m−1)). The dual formulation of this problem obtained by
introducing Lagrange multipliers leads to a quadratic program similar to that obtained for SVMs;
for example, see the related algorithms described by Herbrich et al. (1998, 2000), Joachims (2002),
Rakotomamonjy (2004), and Agarwal (2006).

It can be verified that !h( f ,(x,y),(x′,y′)) is convex in f , and that !h is 1-admissible with respect
to F (the proof of 1-admissibility is similar to the proof of Lemma 7 which, as noted earlier in
Footnote 3, effectively shows 1( -admissibility of the ( ranking loss !(). Thus, if K(x,x) ≤ ,2 for all
x ∈ X , then from Corollary 12 we get that for any 0< '< 1, with probability at least 1−' over the
draw of S (according to Dm), the expected ranking error of the ranking function fS learned by the
above algorithm Ah is bounded by

R( fS) < R̂!1( fS;S)+
32,2

)m
+

(
16,2

)
+M

)√
2ln(1/')

m
.

5.2.2 LEAST SQUARES RANKING LOSS

Consider now the following least squares ranking loss:

!sq( f ,(x,y),(x′,y′)) =
(
|y− y′|− sgn(y− y′) · ( f (x)− f (x′))

)2
. (9)

Let Asq be a ranking algorithm that minimizes the regularized !sq-error in an RKHS F , that is, given
a training sample S ∈ (X ×Y )m, the algorithm Asq outputs a ranking function fS ∈ F that satisfies
(for some fixed )> 0)

fS = argmin
f∈F

{
R̂!sq( f ;S)+)‖ f‖2K

}
.

It can be verified that !sq( f ,(x,y),(x′,y′)) is convex in f . Now, we claim that the effective search
space of Asq on training samples of size m is actually F) =

{
f ∈ F

∣∣∣ ‖ f‖2K ≤ M2

)

}
, that is, that for

any training sample S= ((x1,y1), . . . ,(xm,ym))∈ (X ×Y )m, the ranking function fS returned by Asq
satisfies ‖ fS‖2K ≤ M2

) . To see this, note that for the zero function f0 ∈ F which assigns f0(x) = 0 for
all x ∈ X , we have

R̂!sq( f0;S)+)‖ f0‖2K =
1(m
2
)
m−1

"
i=1

m

"
j=i+1

(|yi− y j|−0)2+) ·0

≤ M2 .
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Therefore, by definition of fS,

R̂!sq( fS;S)+)‖ fS‖2K ≤ M2 .

Since R̂!sq( fS;S) ≥ 0, this implies

‖ fS‖2K ≤
M2

)
.

It is easily verified that the effective search space F) is a convex set. The following lemma shows
that if K(x,x) ≤ ,2 for all x ∈ X , then !sq is (2M+ 4,M√

)
)-admissible with respect to F).

Lemma 16 Let F be an RKHS with kernel K such that for all x ∈ X , K(x,x) ≤ ,2 < #. Let )> 0,
and let F) =

{
f ∈ F

∣∣∣ ‖ f‖2K ≤ M2

)

}
. Then the least squares ranking loss !sq, defined in Eq. (9)

above, is (2M+ 4,M√
)

)-admissible with respect to F).

Proof First, note that for any f ∈ F) and any x ∈ X , we have from Eq. (6) that

| f (x)| ≤ ,‖ f‖K ≤
,M√
)

.

Now, let f1, f2 ∈ F), and let (x,y),(x′,y′) ∈ (X ×Y ). Then we have,
∣∣∣!sq( f1,(x,y),(x′,y′))− !sq( f1,(x,y),(x′,y′))

∣∣∣

=
∣∣∣
(
(y− y′)− ( f1(x)− f1(x′))

)2
−
(
(y− y′)− ( f2(x)− f2(x′))

)2∣∣∣

=
∣∣∣2(y− y′)− ( f1(x)− f1(x′))− ( f2(x)− f2(x′))

∣∣∣ ·
∣∣∣( f2(x)− f2(x′))− ( f1(x)− f1(x′))

∣∣∣

≤
(
2|y− y′|+ | f1(x)|+ | f1(x′)|+ | f2(x)|+ | f2(x′)|

)
·
(
| f1(x)− f2(x)|+ | f1(x′)− f2(x′)|

)

≤
(
2M+

4,M√
)

)
·
(
| f1(x)− f2(x)|+ | f1(x′)− f2(x′)|

)
,

where the second equality follows from the identity |a2−b2| = |a+b| · |a−b|.

An analysis of the proof of Lemma 10 shows that if a regularization-based ranking algorithm
minimizing a regularized !-error in some convex function class F is such that the ranking function
returned by it for training samples of a given size m always lies in some effective search space
Fm ⊆ F that is also convex, then the result of the lemma holds even when for each m, the loss
function ! is *m-admissible, for some *m > 0, only with respect to the smaller function class Fm.
This in turn implies more general versions of Theorem 11 and Corollary 12, in which the same
results hold even if a ranking algorithm minimizing a regularized !-error in an RKHS F is such that
for each m, ! is *m-admissible with respect to a convex subset Fm ⊆ F that serves as an effective
search space for training samples of size m. Thus, from Lemma 16 and the discussion preceding
it, it follows that if K(x,x) ≤ ,2 for all x ∈ X , then we can apply (the more general version of)
Corollary 12 with *m = (2M+ 4,M√

)
) (recall that ) ≡ )m may depend on the sample size m) to get
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that for any 0 < ' < 1, with probability at least 1− ' over the draw of S (according to Dm), the
expected ranking error of the ranking function fS learned by the algorithm Asq is bounded by

R( fS) < R̂!1( fS;S)+
64,2M
)m

(
1+

2,√
)

)
+

(
32,2M
)

(
1+

2,√
)

)
+M

)√
2ln(1/')

m
.

5.2.3 CONSISTENCY

We can also use the above results to show consistency of kernel-based ranking algorithms. In
particular, let R∗

!(F ) denote the optimal expected !-error in an RKHS F (for a given distribution
D):

R∗
!(F ) = inf

f∈F
R!( f ) .

Then for bounded loss functions !, we can show that with an appropriate choice of the regularization
parameter ), the expected !-error R!( fS) of the ranking function fS learned by a kernel-based ranking
algorithm that minimizes a regularized empirical !-error in F converges (in probability) to this
optimal value. To show this, we shall need the following simple lemma:

Lemma 17 Let f : X→R be a fixed ranking function, and let ! be a bounded ranking loss function
such that 0 ≤ !( f ,(x,y),(x′,y′)) ≤ B for all f : X→R and (x,y),(x′,y′) ∈ (X ×Y ). Then for any
0< '< 1, with probability at least 1−' over the draw of S ∈ (X ×Y )m (according to Dm),

R̂!( f ;S) < R!( f )+B
√
2ln(1/')

m
.

The proof involves a simple application of McDiarmid’s inequality to the random variable
R̂!( f ;S); details are provided in Appendix C. We then have the following consistency result:

Theorem 18 Let F be an RKHS with kernel K such that for all x ∈ X , K(x,x) ≤ ,2 < #. Let
! be a ranking loss such that !( f ,(x,y),(x′,y′)) is convex in f and ! is *-admissible with respect
to F . Furthermore, let ! be bounded such that 0 ≤ !( f ,(x,y),(x′,y′)) ≤ B for all f : X→R and
(x,y),(x′,y′) ∈ (X ×Y ), and let f ∗! be any fixed function in F that satisfies

R!( f ∗! ) ≤ R∗
!(F )+

1
m

. (10)

(Note that such a function f ∗! exists by definition of R∗
!(F ).) Let ) > 0, and let A be a ranking

algorithm that, given a training sample S, outputs a ranking function fS ∈ F that satisfies fS =

argmin f∈F
{
R̂!( f ;S)+)‖ f‖2K

}
. Then we have that for any 0 < ' < 1, with probability at least

1−' over the draw of S (according to Dm),

R!( fS) < R∗
!(F )+)‖ f ∗! ‖2K +

1
m

+
32*2,2

)m
+

(
16*2,2

)
+2B

)√
2ln(2/')

m
.

Thus, if )= o(1) and )= .( 1√
m) (for example, if )= m−1/4), then R!( fS) converges in probability

to the optimal value R∗
!(F ) (as m→#).
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Proof As in Corollary 15, we can use Corollary 14 and apply Theorem 6 with '
2 to get that with

probability at least 1− '
2 ,

R!( fS) < R̂!( fS;S)+
32*2,2

)m
+

(
16*2,2

)
+B

)√
2ln(2/')

m
. (11)

Now,

R̂!( fS;S) ≤ R̂!( fS;S)+)‖ fS‖2K
≤ R̂!( f ∗! ;S)+)‖ f ∗! ‖2K ,

where the first inequality is due to non-negativity of ‖ fS‖2K and the second inequality follows from
the definition of fS. Applying Lemma 17 to f ∗! with

'
2 , we thus get that with probability at least

1− '
2 ,

R̂!( fS;S) <

(

R!( f ∗! )+B
√
2ln(2/')

m

)

+)‖ f ∗! ‖2K . (12)

Combining the inequalities in Eqs. (11-12), each of which holds with probability at least 1− '
2 ,

together with the condition in Eq. (10), gives the desired result.

6. Comparisons With Related Work

In the above sections we have derived stability-based generalization bounds for ranking algorithms
in a setting that is more general than what has been considered previously, and have shown that
kernel-based ranking algorithms that perform regularization in an RKHS in this setting satisfy the
required stability conditions. In this section we discuss how our results relate to other recent studies.

6.1 Comparison with Stability Bounds for Classification/Regression

As pointed out earlier, our stability analysis of ranking algorithms is based on a similar analysis for
classification and regression algorithms by Bousquet and Elisseeff (2002); therefore it is instructive
to compare the generalization bounds we obtain here with those obtained in that work. Such a
comparison shows that the bounds we obtain here for ranking are very similar to those obtained for
classification and regression, differing only in constants (and, of course, in the precise definition
of stability, which is problem-dependent). The difference in constants in the two bounds is due
in part to the difference in loss functions in ranking and classification/regression, and in part to a
slight difference in definitions of stability (in particular, our definitions are in terms of changes to
a training sample that consist of replacing one element in the sample with a new one, while the
definitions of Bousquet and Elisseeff are in terms of changes that consist of removing one element
from the sample). As discussed in Section 4, the reason that we are able to obtain bounds for
ranking algorithms using the same methods as those of Bousquet and Elisseeff lies in the power of
McDiarmid’s inequality, which was used by Bousquet and Elisseeff to capture the effect of stability
but is also general enough to capture the structure of the ranking problem.
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It is also instructive to compare our bounds with those obtained for bipartite ranking algorithms
(Agarwal and Niyogi, 2005). In particular, the bounds for kernel-based ranking algorithms in the
bipartite setting differ from our bounds in that the sample size m in our case is replaced with the
term mn/(m+ n), where m,n denote the numbers of positive and negative examples, respectively,
in the bipartite setting. This suggests that in general, the effective sample size in ranking is the ratio
between the number of pairs in the training sample (mn in the bipartite setting) and the total number
of examples (m+n); indeed, in our setting, this ratio is

(m
2
)
/m= m/2, which fits our bounds.

6.2 Comparison with Uniform Convergence Bounds

While uniform convergence bounds for ranking have not been derived explicitly in the setting we
consider, it is not hard to see that the techniques used to derive such bounds in the settings of
Agarwal et al. (2005) and Clemencon et al. (2008) can be extended to obtain similar bounds in our
setting. The crucial difference between such bounds and those derived in this paper is that uniform
convergence bounds depend on the complexity of the function class searched by an algorithm. As
discussed in the context of bipartite ranking (Agarwal and Niyogi, 2005), this means that such
bounds can quickly become uninformative in high dimensions; in the case of function classes whose
complexity cannot be bounded (such as the RKHS corresponding to a Gaussian kernel), uniform
convergence bounds cannot be applied at all. In both these cases, the stability analysis provides a
more useful viewpoint.

6.3 Comparison with Cortes et al. (2007)

The work that is perhaps most closely related to ours is that of Cortes et al. (2007), who study
“magnitude-preserving” ranking algorithms—most of which perform regularization in an RKHS—
and also use algorithmic stability to derive generalization bounds for such algorithms. The setting
considered by Cortes et al. is similar to ours: the learner is given a finite sequence of labeled
training examples ((x1,y1), . . . ,(xm,ym)) ∈ (X ×R)m, and the goal is to learn a real-valued function
f : X→R that ranks future instances with larger labels higher than those with smaller labels. The
term “magnitude-preserving” comes from their view of the magnitude of the difference (y− y′) in
the labels of two examples (x,y),(x′,y′) as not just a penalty for mis-ranking the pair (x,x′), but as
a quantity to be explicitly preserved by f , in the sense that ( f (x)− f (x′)) be close to (y− y′).

There are three important differences between our work and that of Cortes et al. (2007). First,
Cortes et al. implicitly assume the existence of a “truth” function: their results are derived under that
assumption that only instances x∈ X are drawn randomly, and that labels y∈Y are then determined
according to a “truth” function f ∗ : X→Y . In our work, we make the more general distributional
assumption that all examples (x,y) are drawn randomly according to a joint distribution on X ×Y .

Second, Cortes et al. consider only the notion of uniform loss stability; they do not consider
uniform score stability. As a consequence, the bounds they obtain for ranking algorithms performing
regularization in an RKHS are similar to our bound in Corollary 15, which bounds the expected
ranking error R( fS) of a learned ranking function fS in terms of the empirical !-error R̂!( fS;S),
where ! is the loss minimized by the algorithm.4 In contrast, our bound in Corollary 12, which

4. Cortes et al. do not actually bound the expected ranking error R( fS) (which in our view is the primary performance
measure of a ranking function in our setting); their results simply give bounds on the expected !-error R!( fS), where
! again is the loss minimized by the algorithm. However, for !disc ≤ !, one can easily deduce bounds on R( fS) from
these results.
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makes use of the notion of score stability, bounds the expected error R( fS) in terms of the empirical
!1-error R̂!1( fS;S). As mentioned in Section 5.2, the !1 loss tends to be smaller than many of the
loss functions minimized by kernel-based ranking algorithms in practice (indeed, it is never greater
than the hinge ranking loss !h), thus leading to tighter bounds for the same algorithms.

The third and most important difference between our work and that of Cortes et al. is that the
results of Cortes et al. involve certain strong assumptions on the function class searched by an
algorithm. In particular, they assume that the function class F searched by a ranking algorithm
is bounded in the sense that ∃ M′ > 0 such that for all f ∈ F and all x ∈ X , | f (x)− f ∗(x)| ≤ M′

(where, as mentioned above, f ∗ : X→R is the truth function in their setting). No RKHS F satisfies
this condition, and so their results as stated do not apply to the kernel-based ranking algorithms they
consider. On closer inspection, one notices that for the loss functions they show to be 1-admissible,
they do not actually need this assumption. For the loss functions they show to be 4M′-admissible,
however, a non-trivial fix is required. We expect that an approach similar to that of separating out the
effective search space, as we have done in the case of the least squares ranking loss in Section 5.2.2,
should work; indeed, in the case of the least squares ranking loss, assuming a bounded label space
Y , it is easy to see from the observations in Section 5.2.2 that | f (x)− y| is bounded for all f in the
effective search space (and all (x,y) ∈ (X ×Y )).

6.4 Comparison with Rudin et al. (2005)

Rudin et al. (2005) studied a different setting of the ranking problem, in which one assumes the
existence of a pair-wise “truth” function / : X ×X→{0,1} that assigns a binary ranking preference
/(x,x′) to each pair of instances (x,x′), such that /(x,x′) = 1⇒ /(x′,x) = 0: if /(x,x′) = 1, then x
is to be ranked higher than x′; if /(x′,x) = 1, then x′ is to be ranked higher than x; and if /(x,x′) =
/(x′,x) = 0, then there is no ranking preference between x and x′. The training sample given to
a learner in this setting consists of a finite number of instances x1, . . . ,xm, each drawn randomly
and independently according to some (unknown) distribution on X , together with the corresponding
ranking preferences /(xi,x j) for i, j ∈ {1, . . . ,m}, i /= j. Rudin et al. derived a generalization bound
for this setting using techniques inspired by the works of Cucker and Smale (2002), Koltchinskii
and Panchenko (2002), and Bousquet (2003). Their bound, expressed in terms of covering numbers,
is a margin-based bound, which is of interest when the learned ranking function has zero empirical
error on the training sample.

Noting that the labels yi,y j corresponding to a pair of instances xi,x j in our setting are used
in our results only in the form of ranking preferences (yi− y j), we can clearly view the setting of
Rudin et al. as a special case of ours: the ranking preferences (yi− y j), which are random variables
in our setting, get replaced by the deterministic preferences /(xi,x j). All quantities can be adapted
accordingly; for example, the expected ranking error of a ranking function f : X→R in this setting
(with respect to a distribution D on X ) becomes

R( f ) = E(X ,X ′)∼D×D

[
|/(X ,X ′)|

(
I{/(X ,X ′)( f (X)− f (X ′))<0} +

1
2
I{ f (X)= f (X ′)}

)]
.

In fact, rather than restrict ourselves to binary preferences, we can extend the setting of Rudin et al.
to allow real-valued preferences, requiring that /(x,x′) =−/(x′,x) for all x,x′ ∈ X ; if / takes values
in [−M,M], we get the same results as we have derived in our setting (with the probabilities now
being over the random draw of instances only).
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We can also consider another extension of interest in the pair-wise truth function setting, where
we may not have access to the preferences for all pairs of instances in the training sample, but
rather are given preferences for only a limited number of pairs; in this case, the learner receives
a sequence of instances S = (x1, . . . ,xm), and preferences /(xi,x j) for only a subset of pairs E ⊆
{(i, j) | 1≤ i< j ≤ m}. It is interesting then to consider a model in which not only the instances in
S but also the pairs in E for which the ranking preferences are provided may be chosen randomly.
If the instances in S are drawn randomly and independently according to some distribution D on
X , and the set E is drawn randomly (independently of S) from some distribution Em on the set
of possible (undirected) edge sets for a graph on m vertices {1, . . . ,m} (for example, E could be
obtained by including each edge with some fixed probability 0< pm < 1, or by selecting at random
a subset of 0m edges for some 0m ≤

(m
2
)
), then under some natural conditions on Em, we can extend

our techniques to obtain generalization bounds in this setting too. In the remainder of this section
we discuss some details of this extension.

In particular, the empirical ranking error of a ranking function f : X→R in the above setting,
with respect to a training sample T = (S,E,/|(S,E)) where S and E are as above and /|(S,E) is the
restriction of / to

{
(xi,x j) | (i, j) ∈ E

}
, is given by

R̂( f ;T ) =
1
|E| "

(i, j)∈E
|/(xi,x j)|

(
I{/(xi,x j)( f (xi)− f (x j))<0} +

1
2
I{ f (xi)= f (x j)}

)
.

Given a loss function ! that assigns for any ranking function f , any pair of instances (x,x′) and
any r ∈ [−M,M] a non-negative loss !( f ,x,x′,r), the expected and empirical !-errors can be defined
similarly:

R!( f ) = E(X ,X ′)∼D×D
[
!( f ,X ,X ′,/(X ,X ′))

]
;

R̂!( f ;T ) =
1
|E| "

(i, j)∈E
!( f ,xi,x j,/(xi,x j)) .

A ranking algorithmA in this setting, which given a training sample T outputs a ranking function fT ,
has uniform loss stability % with respect to ! if for all m ∈ N, S ∈ Xm, E ⊆ {(i, j) | 1≤ i< j ≤ m},
/ : X ×X→[−M,M], 1≤ i≤ m and x′i ∈ X , we have for all x,x′ ∈ X and all r ∈ [−M,M],

∣∣!( fT ,x,x′,r)− !( fT i ,x,x′,r)
∣∣ ≤ %(m) ,

where T = (S,E,/|(S,E)) as above and T i = (Si,E,/|(Si,E)), with Si being the sequence obtained
from S by replacing xi with x′i. Then we can show the following bound for ranking algorithms with
good loss stability in this setting:

Theorem 19 Let / : X ×X→[−M,M] be a pair-wise truth function such that /(x,x′) = −/(x′,x)
for all x,x′ ∈ X . Let A be a symmetric ranking algorithm in the pair-wise truth function setting
whose output on a training sample T = (S,E,/|(S,E)) we denote by fT , and let ! be a bounded
ranking loss function such that 0≤ !( f ,x,x′,r)≤ B for all f : X→R, x,x′ ∈ X and r ∈ [−M,M]. Let
% :N→R be such that A has uniform loss stability % with respect to ! as defined above. LetD be any
distribution on X , and let {Em} be any family of distributions on the sets of possible (undirected)
edge sets for a graph on m vertices {1, . . . ,m} that satisfies the following condition: ∃ s> 1 and a
sequence ('m) satisfying 'm ≥ 0, limm→# 'm = 0, such that for all m, PE∼Em (|E| < ms) ≤ 'm. Then
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for any 0< '< 1, for all m large enough such that 'm ≤ '
2 , we have with probability at least 1−'

over the draw of (S,E) according to Dm×Em,

R!( fT ) < R̂!( fT ;T )+2%(m)+

√
1
2

(
4m(%(m))2+8B%(m)+

2B2
m−1

+
B2
ms−1

)
ln(2/') .

The proof makes use of McDiarmid’s inequality and is similar to that of Theorem 6, with two
main differences. First, McDiarmid’s inequality is first applied to obtain a bound conditioned on
an edge set E with |E| ≥ ms; the bound on the probability that |E| < ms then allows us to obtain
the unconditional bound. Second, the constants ck in the application of McDiarmid’s inequality are
different for each k, and depend on the degrees of the corresponding vertices in the graph with edge
set E; the sum "k c2k is then bounded using a bound on the sum of squares of degrees in a graph due
to de Caen (1998). Details of the proof are provided in Appendix D.

The condition on Em in the above theorem states that with high probability (probability at least
1− 'm), an edge set E drawn according to Em has at least ms edges for some s > 1, that is, |E|
is super-linear in m.5 Thus, in the pair-wise truth function setting, we need not have access to
the ranking preferences /(xi,x j) for all

(m
2
)
pairs of instances in S; having the preferences for any

super-linear number of pairs (where the pairs are selected independently of the instances S them-
selves) suffices to give a generalization bound (albeit with a correspondingly slower convergence
rate, as quantified by the 1

ms−1 term in the bound above). Below we give examples of two families
of distributions {Em} that satisfy the above condition.

Example 1 Fix any 1 < s < 2, and let Em be the distribution that corresponds to selecting a ran-
dom subset of 0m edges, with 0m = min

((m
2
)
,6ms7

)
. Then for large enough m, 0m = 6ms7, and

PE∼Em (|E| < ms) = 0.

Example 2 Fix any 1 < s < 2, and let Em be the distribution that corresponds to including each
edge with a fixed probability pm, with pm = min

(
1, 8

m2−s
)
. Then for large enough m, pm = 8

m2−s ,
and assuming without loss of generality that m≥ 2, it is easy to show using a Chernoff bound that
in this case, PE∼Em (|E| < ms) ≤ e−ms/4. Indeed, for any such m, let Zm be the random variable
equal to the number of edges |E|. Then Zm is a binomial random variable with parameters

(m
2
)
and

pm = 8
m2−s , and

E[Zm] =
(m
2
)
pm

= 4(m−1)ms−1

= 2(ms+(m−2)ms−1)

≥ 2ms ,

where the inequality follows from our assumption that m≥ 2. The Chernoff bound for deviations be-
low the mean of a binomial random variable tells us that for any 0< '< 1, P(Zm < (1−')E[Zm])≤
e−E[Zm]'2/2. Thus we have

P(Zm < ms) = P
(
Zm <

(
1−

1
2

)
2ms

)

5. Note that in the statement of Theorem 19 we require |E| to be super-linear in m by a polynomial factor; a smaller
super-linear growth also leads to a generalization bound, but with a slower convergence rate.
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≤ P
(
Zm <

(
1−

1
2

)
E[Zm]

)

≤ e−E[Zm]( 12 )
2/2

≤ e−m
s/4 .

Comparing the bound in Theorem 19 with that of Theorem 6, it is worth noting that the effective
sample size in the above setting becomes ms−1. This is consistent with the discussion in Section 6.1,
in that the ratio between the number of pairs in the training sample and the total number of examples
in this case is (with high probability) at least ms/m= ms−1.

7. Discussion

Our goal in this paper has been to study generalization properties of ranking algorithms in a setting
where ranking preferences among instances are indicated by real-valued labels on the instances.
This setting of the ranking problem arises frequently in practice and is more general than those
considered previously. We have derived generalization bounds for ranking algorithms in this set-
ting using the notion of algorithmic stability; in particular, we have shown that ranking algorithms
that exhibit good stability properties also have good generalization properties, and have applied our
results to obtain generalization bounds for kernel-based ranking algorithms that perform regulariza-
tion in a reproducing kernel Hilbert space. Such algorithms often cannot be analyzed using uniform
convergence results.

The main difference in the mathematical formulation of ranking problems as compared to clas-
sification or regression problems is that the loss function in ranking is ‘pair-wise’ rather than ‘point-
wise’. Indeed, ranking often resembles weighted ‘classification on pairs’, with the weights being
given by the corresponding ranking preferences (although learning a real-valued function that in-
duces a total ordering on the instance space is not quite the same as learning a binary-valued func-
tion on instance pairs that simply decides which of two instances should be ranked higher, Cohen
et al. 1999; Balcan et al. 2007; Ailon and Mohri 2008). However, generalization bounds from clas-
sification cannot be applied directly to ranking, due to dependences among the instance pairs. As
discussed earlier, the reason that we are able to obtain bounds for ranking algorithms using the same
methods as those used by Bousquet and Elisseeff (2002) for classification and regression algorithms
lies in the power of McDiarmid’s inequality, which was used by Bousquet and Elisseeff to capture
the effect of stability but is also general enough to capture the structure of the ranking problems we
consider. A comparison of our results with those of Bousquet and Elisseeff (2002) and Agarwal and
Niyogi (2005) suggests that the effective sample size in ranking is proportional to the ratio between
the number of pairs in the training sample and the total number of examples; this can be smaller
than the number of examples m if ranking preferences are provided for less than m2 pairs.

The notions of uniform stability studied in this paper correspond most closely to those studied
by Bousquet and Elisseeff (2002). These notions are strict in that they require changes in a sample
to have bounded effect uniformly over all samples and replacements. One can define weaker notions
of stability, analogous to the hypothesis stability considered by Devroye and Wagner (1979), Kearns
and Ron (1999), and Bousquet and Elisseeff (2002), or the almost-everywhere stability considered
by Kutin and Niyogi (2002), which would require the bounds to hold only in expectation or with
high probability. Such notions would lead to a distribution-dependent treatment as opposed to the
distribution-free treatment obtained with uniform stability, and it would be particularly interesting
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to see if making distributional assumptions in ranking can mitigate the reduced sample size effect
discussed above.

For the sake of simplicity and to keep the focus on the main ideas involved in applying stability
techniques to ranking, we have focused in this paper on bounding the expected ranking error in
terms of the empirical ranking error. In classification and regression, stability analysis has also been
used to provide generalization bounds in terms of the leave-one-out error (Bousquet and Elisseeff,
2002; Kearns and Ron, 1999), and with a slight change in definitions of stability, similar results can
be obtained in the case of ranking as well. In particular, in this case we need to define (for a ranking
algorithm which given a training sample S returns a ranking function fS) a ‘leave-two-out’ ranking
error as follows:

R̃!( fS;S) =
1(m
2
) "
1≤i< j≤m

!( fS\i j ,(xi,yi),(x j,y j)) ,

where S\i j denotes the sequence obtained by removing the ith and jth examples from a sample
S = ((x1,y1), . . . ,(xm,ym)) ∈ (X ×Y )m. Then, defining notions of stability in terms of changes to
a sample that consist of removing two examples rather than replacing one example, one can obtain
very similar generalization bounds for ranking algorithms in terms of the above leave-two-out error
as those we have derived in terms of the empirical error.

An open question concerns the analysis of other ranking algorithms using the algorithmic sta-
bility framework. For example, it has been shown that the AdaBoost algorithm for classification is
stability-preserving, in the sense that stability of base classifiers implies stability of the final learned
classifier (Kutin and Niyogi, 2001). It would be interesting if a similar result could be shown for
the RankBoost ranking algorithm (Freund et al., 2003), which is based on the same principles of
boosting as AdaBoost.

Finally, it is also an open question to analyze generalization properties of ranking algorithms
in even more general settings of the ranking problem. For example, a more general setting would
be one in which a finite number of instances x1, . . . ,xm ∈ X are drawn randomly and independently
according to some distribution D on X , and then pair-wise ranking preferences ri j ∈ [−M,M] for
i< j are drawn from a conditional distribution, conditioned on the corresponding pair of instances
(xi,x j). We are not aware of any generalization bounds for such a setting.

Acknowledgments

We would like to thank the anonymous referees for constructive comments that helped improve the
paper. SA is supported in part by NSF award DMS-0732334. PN thanks the NSF for financial
support.

Appendix A. Proof of Theorem 6

Our main tool will be the following powerful concentration inequality of McDiarmid (1989), which
bounds the deviation of any function of a sample for which a single change in the sample has limited
effect.
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Theorem 20 (McDiarmid 1989) Let X1, . . . ,Xm be independent random variables, each taking val-
ues in a set A. Let ! : Am→R be such that for each 1≤ k ≤ m, there exists ck > 0 such that

sup
x1,...,xm∈A,x′k∈A

∣∣∣!(x1, . . . ,xm)−!(x1, . . . ,xk−1,x′k,xk+1, . . . ,xm)
∣∣∣ ≤ ck .

Then for any 1> 0,

P
(
!(X1, . . . ,Xm)−E [!(X1, . . . ,Xm)] ≥ 1

)
≤ e−21

2/"mk=1 c2k .

Before we apply McDiarmid’s inequality to prove Theorem 6, we shall need the following technical
lemma. In the following, we shall drop explicit references to distributions where clear from context,
replacing, for example, E(X ,Y )∼D [. . .] with simply E(X ,Y )[. . .].

Lemma 21 Let A be a symmetric ranking algorithm whose output on a training sample S ∈ (X ×
Y )m we denote by fS, and let ! be a ranking loss function. Then for all 1≤ i< j ≤ m, we have

ES∼Dm

[
R!( fS)− R̂!( fS;S)

]

= ES∼Dm,((X ′
i ,Y ′

i ),(X ′
j,Y ′

j ))∼D×D

[
!( fS,(X ′

i ,Y ′
i ),(X ′

j,Y ′
j))− !( fSi, j ,(X ′

i ,Y ′
i ),(X ′

j,Y ′
j))
]
.

Proof Denoting S= ((X1,Y1), . . . ,(Xm,Ym)), we have by linearity of expectation,

ES
[
R̂!( fS;S)

]
=

1(m
2
)
m−1

"
i=1

m

"
j=i+1

ES
[
!( fS,(Xi,Yi),(Xj,Yj))

]
.

By symmetry, the term in the summation is the same for all i, j. Therefore, for all 1 ≤ i < j ≤ m,
we get

ES
[
R̂!( fS;S)

]
= ES

[
!( fS,(Xi,Yi),(Xj,Yj))

]

= ES,((X ′
i ,Y ′

i ),(X ′
j,Y ′

j ))

[
!( fS,(Xi,Yi),(Xj,Yj))

]
.

Interchanging the roles of (Xi,Yi) with (X ′
i ,Y ′

i ) and (Xj,Yj) with (X ′
j,Y ′

j), we get

ES
[
R̂!( fS;S)

]
= ES,((X ′

i ,Y ′
i ),(X ′

j,Y ′
j ))

[
!( fSi, j ,(X ′

i ,Y ′
i ),(X ′

j,Y ′
j))
]
.

Since by definition

ES
[
R!( fS)

]
= ES,((X ′

i ,Y ′
i ),(X ′

j,Y ′
j ))

[
!( fS,(X ′

i ,Y ′
i ),(X ′

j,Y ′
j))
]
,

the result follows.

Proof (of Theorem 6)
Let ! : (X ×Y )m→R be defined as follows:

!(S) = R!( fS)− R̂!( fS;S) .
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We shall show that ! satisfies the conditions of McDiarmid’s inequality (Theorem 20). Let S =
((x1,y1), . . . ,(xm,ym)) ∈ (X ×Y )m. Then for each 1≤ k ≤ m, we have for any (x′k,y′k) ∈ (X ×Y ):

∣∣!(S)−!(Sk)
∣∣ =

∣∣∣
(
R!( fS)− R̂!( fS;S)

)
−
(
R!( fSk)− R̂!( fSk ;Sk)

)∣∣∣

≤
∣∣∣R!( fS)−R!( fSk)

∣∣∣+
∣∣∣R̂!( fS;S)− R̂!( fSk ;Sk)

∣∣∣ .

Now,
∣∣∣R!( fS)−R!( fSk)

∣∣∣ =
∣∣∣E((X ,Y ),(X ′,Y ′))

[
!( fS,(X ,Y ),(X ′,Y ′))− !( fSk ,(X ,Y ),(X ′,Y ′))

]∣∣∣

≤ E((X ,Y ),(X ′,Y ′))

[∣∣∣!( fS,(X ,Y ),(X ′,Y ′))− !( fSk ,(X ,Y ),(X ′,Y ′))
∣∣∣
]

≤ %(m) ,

and ∣∣∣R̂!( fS;S)− R̂!( fSk ;Sk)
∣∣∣

≤
1(m
2
) "
1≤i< j≤m,i/=k, j /=k

∣∣∣!( fS,(xi,yi),(x j,y j))− !( fSk ,(xi,yi),(x j,y j))
∣∣∣

+
1(m
2
)"
i/=k

∣∣∣!( fS,(xi,yi),(xk,yk))− !( fSk ,(xi,yi),(x′k,y′k))
∣∣∣

≤
1(m
2
) "
1≤i< j≤m,i/=k, j /=k

%(m) +
1(m
2
)"
i/=k
B

=
1(m
2
)
(((m

2
)
− (m−1)

)
%(m)+(m−1)B

)

< %(m)+
2B
m

.

Thus we have
∣∣∣!(S)−!(Sk)

∣∣∣ ≤ 2
(
%(m)+

B
m

)
.

Therefore, applying McDiarmid’s inequality to !, we get for any 1> 0,

PS
((
R!( fS)− R̂!( fS;S)

)
−ES

[
R!( fS)− R̂!( fS;S)

]
≥ 1

)

≤ e−21
2/m(2(%(m)+ B

m ))2

= e−m1
2/2(m%(m)+B)2 .

Now, by Lemma 21, we have (for any 1≤ i< j ≤ m),

ES
[
R!( fS)− R̂!( fS;S)

]

= ES,((X ′
i ,Y ′

i ),(X ′
j,Y ′

j ))

[
!( fS,(X ′

i ,Y ′
i ),(X ′

j,Y ′
j))− !( fSi, j ,(X ′

i ,Y ′
i ),(X ′

j,Y ′
j))
]

≤ ES,((X ′
i ,Y ′

i ),(X ′
j,Y ′

j ))

[∣∣∣!( fS,(X ′
i ,Y ′

i ),(X ′
j,Y ′

j))− !( fSi ,(X ′
i ,Y ′

i ),(X ′
j,Y ′

j))
∣∣∣
]

+ ES,((X ′
i ,Y ′

i ),(X ′
j,Y ′

j ))

[∣∣∣!( fSi ,(X ′
i ,Y ′

i ),(X ′
j,Y ′

j))− !( fSi, j ,(X ′
i ,Y ′

i ),(X ′
j,Y ′

j))
∣∣∣
]

≤ 2%(m) .
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Thus we get for any 1> 0,

PS
(
R!( fS)− R̂!( fS;S)−2%(m) ≥ 1

)
≤ e−m1

2/2(m%(m)+B)2 .

The result follows by setting the right hand side equal to ' and solving for 1.

Appendix B. Proof of Lemma 10

Proof (of Lemma 10)
Recall that a convex function ! :U→R satisfies for all u,v ∈U and for all t ∈ [0,1],

!(u+ t(v−u))−!(u) ≤ t(!(v)−!(u)) .

Since !( f ,(x,y),(x′,y′)) is convex in f , we have that R̂!( f ;S) is convex in f . Therefore for any
t ∈ [0,1], we have

R̂!( f + t+ f ;S)− R̂!( f ;S) ≤ t
(
R̂!( f i;S)− R̂!( f ;S)

)
, (13)

and also (interchanging the roles of f and f i),

R̂!( f i− t+ f ;S)− R̂!( f i;S) ≤ t
(
R̂!( f ;S)− R̂!( f i;S)

)
. (14)

Adding Eqs. (13) and (14), we get

R̂!( f + t+ f ;S)− R̂!( f ;S)+ R̂!( f i− t+ f ;S)− R̂!( f i;S) ≤ 0 . (15)

Now, since F is convex, we have that ( f + t+ f ) ∈ F and ( f i− t+ f ) ∈ F . Since f minimizes
R̂)! ( f ;S) in F and f i minimizes R̂)! ( f ;Si) in F , we thus have

R̂)! ( f ;S)− R̂)! ( f + t+ f ;S) ≤ 0 , (16)
R̂)! ( f

i;Si)− R̂)! ( f
i− t+ f ;Si) ≤ 0 . (17)

Adding Eqs. (15), (16) and (17), we get

)
(
N( f )−N( f + t+ f )+N( f i)−N( f i− t+ f )

)

≤ R̂!( f i;S)− R̂!( f i;Si)+ R̂!( f i− t+ f ;Si)− R̂!( f i− t+ f ;S)

=
1(m
2
)"
j /=i

(
!( f i,(xi,yi),(x j,y j))− !( f i,(x′i,y′i),(x j,y j))

+ !( f i− t+ f ,(x′i,y′i),(x j,y j))− !( f i− t+ f ,(xi,yi),(x j,y j))
)

=
1(m
2
)"
j /=i

((
!( f i,(xi,yi),(x j,y j))− !( f i− t+ f ,(xi,yi),(x j,y j))

)

+
(
!( f i− t+ f ,(x′i,y′i),(x j,y j))− !( f i,(x′i,y′i),(x j,y j))

))

≤
t*(m
2
)"
j /=i

(
|+ f (xi)|+2|+ f (x j)|+ |+ f (x′i)|

)
,

where the last inequality follows by *-admissibility. The result follows.
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Appendix C. Proof of Lemma 17

The proof is a simple application of McDiarmid’s inequality.
Proof (of Lemma 17)
Let ! : (X ×Y )m→R be defined as follows:

!(S) = R̂!( f ;S) .

Then by linearity of expectation,

ES∼Dm

[
!(S)

]
=

1(m
2
)
m−1

"
i=1

m

"
j=i+1

E((Xi,Yi),(Xj,Yj))∼D×D

[
!( f ,(Xi,Yi),(Xj,Yj))

]

= R!( f ) .

We shall show that ! satisfies the conditions of McDiarmid’s inequality (Theorem 20). Let S =
((x1,y1), . . . ,(xm,ym)) ∈ (X ×Y )m. Then for each 1≤ k ≤ m, we have for any (x′k,y′k) ∈ (X ×Y ):

∣∣!(S)−!(Sk)
∣∣ =

∣∣∣R̂!( f ;S)− R̂!( f ;Sk)
∣∣∣

≤
1(m
2
)"
i/=k

∣∣∣!( f ,(xi,yi),(xk,yk))− !( f ,(xi,yi),(x′k,y′k))
∣∣∣

≤
1(m
2
)(m−1)B

=
2B
m

.

Therefore, applying McDiarmid’s inequality to !, we get for any 1> 0,

PS∼Dm

(
R̂!( f ;S)−R!( f ) ≥ 1

)
≤ e−21

2/m( 2Bm )2

= e−m1
2/2B2 .

The result follows by setting the right hand side equal to ' and solving for 1.

Appendix D. Proof of Theorem 19

The proof of this result also makes use of McDiarmid’s inequality and is similar to the proof of
Theorem 6 in Appendix A, with two main differences. First, McDiarmid’s inequality is first applied
to obtain a bound conditioned on an edge set E with |E|≥ms; the bound on the probability that |E|<
ms then allows us to obtain the unconditional bound. Second, the constants ck in the application of
McDiarmid’s inequality are different for each k, and depend on the degrees of the corresponding
vertices in the graph with edge set E; the sum "k c2k is then bounded using a bound on the sum of
squares of degrees in a graph due to de Caen (1998).
Proof (of Theorem 19)
Let m ∈ N, and fix any edge set E0 ⊆ {(i, j) | 1 ≤ i < j ≤ m} with |E0| ≥ ms. Let !E0 : Xm→R be
defined as follows:

!E0(S) = R!( fT )− R̂!( fT ;T ) ,
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where T = (S,E0,/|(S,E0)). We shall show that !E0 satisfies the conditions of McDiarmid’s inequality
(Theorem 20). Let S= (x1, . . . ,xm) ∈ Xm. Then for each 1≤ k ≤ m, we have for any x′k ∈ X :

∣∣!E0(S)−!E0(S
k)
∣∣ =

∣∣∣
(
R!( fT )− R̂!( fT ;T )

)
−
(
R!( fT k)− R̂!( fT k ;Tk)

)∣∣∣

≤
∣∣∣R!( fT )−R!( fT k)

∣∣∣+
∣∣∣R̂!( fT ;T )− R̂!( fT k ;Tk)

∣∣∣ .

Now,
∣∣∣R!( fT )−R!( fT k)

∣∣∣ =
∣∣∣E(X ,X ′)

[
!( fT ,X ,X ′,/(X ,X ′))− !( fT k ,X ,X ′,/(X ,X ′))

]∣∣∣

≤ E(X ,X ′)

[∣∣∣!( fT ,X ,X ′,/(X ,X ′))− !( fT k ,X ,X ′,/(X ,X ′))
∣∣∣
]

≤ %(m) ,

and
∣∣∣R̂!( fT ;T )− R̂!( fT k ;Tk)

∣∣∣

≤
1

|E0| "
(i, j)∈E0,i/=k, j /=k

∣∣∣!( fT ,xi,x j,/(xi,x j))− !( fT k ,xi,x j,/(xi,x j))
∣∣∣

+
1

|E0| "
(i,k)∈E0

∣∣∣!( fT ,xi,xk,/(xi,xk))− !( fT k ,xi,x′k,/(xi,x′k))
∣∣∣

+
1

|E0| "
(k, j)∈E0

∣∣∣!( fT ,xk,x j,/(xk,x j))− !( fT k ,x′k,x j,/(x′k,x j))
∣∣∣

≤
1

|E0| "
(i, j)∈E0,i/=k, j /=k

%(m) +
1

|E0| "
(i,k)∈E0

B +
1

|E0| "
(k, j)∈E0

B

≤ %(m)+
dk
|E0|

B ,

where dk is the degree of vertex k in the graph with edge set E0. Thus we have
∣∣∣!E0(S)−!E0(S

k)
∣∣∣ ≤ ck ,

where

ck = 2%(m)+
dk
|E0|

B .

Now,
m

"
k=1

dk = 2|E0| ,

and using a bound on the sum of squares of degrees in a graph due to de Caen (1998), we have
m

"
k=1

d2k ≤ |E0|
(
2|E0|
m−1

+m−2
)

.
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Therefore,

m

"
k=1

c2k =
m

"
k=1

(
2%(m)+

dk
|E0|

B
)2

= 4m(%(m))2+
4B%(m)

|E0|

m

"
k=1

dk +
B2

|E0|2
m

"
k=1

d2k

≤ 4m(%(m))2+8B%(m)+
2B2

m−1
+
B2(m−2)

|E0|

≤ 4m(%(m))2+8B%(m)+
2B2

m−1
+

B2

ms−1
︸ ︷︷ ︸

((m)

,

where the last inequality follows since |E0| ≥ ms. Thus, applying McDiarmid’s inequality to !E0 ,
we get for any 1> 0,

PS
((
R!( fT )− R̂!( fT ;T )

)
−ES

[
R!( fT )− R̂!( fT ;T )

∣∣∣ E = E0
]
≥ 1

∣∣∣ E = E0
)

≤ e−21
2/((m) .

Now, as in Theorem 6, we can show that

ES
[
R!( fT )− R̂!( fT ;T )

∣∣∣ E = E0
]

≤ 2%(m) .

Thus we get for any 1> 0,

PS
(
R!( fT )− R̂!( fT ;T )−2%(m) ≥ 1

∣∣∣ E = E0
)

≤ e−21
2/((m) .

Since the above bound holds for all E0 with |E0|≥ ms, we have

P(S,E)

(
R!( fT )− R̂!( fT ;T )−2%(m) ≥ 1

)
≤ PE(|E| < ms)+ e−21

2/((m)

≤ 'm+ e−21
2/((m) .

Thus for m large enough such that 'm ≤ '
2 , we get

P(S,E)

(
R!( fT )− R̂!( fT ;T )−2%(m) ≥ 1

)
≤

'
2

+ e−21
2/((m) .

Setting the second term on the right hand side equal to '
2 and solving for 1 gives the desired result.
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Abstract
In real world applications, graphical statistical models are not only a tool for operations such as
classification or prediction, but usually the network structures of the models themselves are also of
great interest (e.g., in modeling brain connectivity). The false discovery rate (FDR), the expected
ratio of falsely claimed connections to all those claimed, is often a reasonable error-rate criterion
in these applications. However, current learning algorithms for graphical models have not been
adequately adapted to the concerns of the FDR. The traditional practice of controlling the type I
error rate and the type II error rate under a conventional level does not necessarily keep the FDR
low, especially in the case of sparse networks. In this paper, we propose embedding an FDR-control
procedure into the PC algorithm to curb the FDR of the skeleton of the learned graph. We prove
that the proposed method can control the FDR under a user-specified level at the limit of large
sample sizes. In the cases of moderate sample size (about several hundred), empirical experiments
show that the method is still able to control the FDR under the user-specified level, and a heuristic
modification of the method is able to control the FDR more accurately around the user-specified
level. The proposed method is applicable to any models for which statistical tests of conditional
independence are available, such as discrete models and Gaussian models.
Keywords: Bayesian networks, false discovery rate, PC algorithm, directed acyclic graph, skele-
ton

1. Introduction

Graphical models have attracted increasing attention in the fields of data mining and machine learn-
ing in the last decade. These models, such as Bayesian networks (also called belief networks) and
Markov random fields, generally represent events or random variables as vertices (also referred
to as nodes), and encode conditional-independence relationships among the events or variables as
directed or undirected edges (also referred to as arcs) according to the Markov properties (see Lau-
ritzen, 1996, Chapt. 3). Of particular interest here are Bayesian networks (see Pearl, 1988, Chapt.
3.3) that encode conditional-independence relationships according to the directed Markov property
(see Lauritzen, 1996, pages 46–53) with directed acyclic graphs (DAGs) (i.e., graphs with only di-
rected edges and with no directed cycles). The directed acyclic feature facilitates the computation
of Bayesian networks because the joint probability can be factorized recursively into many local
conditional probabilities.

©2009 Junning Li and Z. Jane Wang.
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As a fundamental and intuitive tool to analyze and visualize the association and/or causality
relationships among multiple events, graphical models have become more and more explored in
biomedical researches, such as discovering gene regulatory networks and modelling functional con-
nectivity between brain regions. In these real world applications, graphical models are not only a
tool for operations such as classification or prediction, but often the network structures of the mod-
els themselves are also output of great interest: a set of association and/or causality relationships
discovered from experimental observations. For these applications, a desirable structure-learning
method needs to account for the error rate of the graphical features of the discovered network. Thus,
it is important for structure-learning algorithms to control the error rate of the association/causality
relationships discovered from a limited number of observations closely below a user-specified level,
in addition to finding a model that fits the data well. As edges are fundamental elements of a graph,
error rates related to them are of natural concerns.

In a statistical decision process, there are basically two sources of errors: the type I errors, that
is, falsely rejecting negative hypotheses when they are actually true; and the type II errors, that is,
falsely accepting negative hypotheses when their alternatives, the positive hypotheses are actually
true. In the context of learning graph structures, a negative hypothesis could be that an edge does
not exist in the graph while the positive hypothesis could be that the edge does exist. Because of
the stochastic nature of random sampling, data of a limited sample size may appear to support a
positive hypothesis more than a negative hypothesis even when actually the negative hypothesis is
true, or vice versa. Thus it is generally impossible to absolutely prevent the two types of errors
simultaneously, but has to set a threshold on a certain type of errors, or keep a balance between
the them, for instance by minimizing a certain lost function associated with the errors according to
the Bayesian decision theory. For example, when diagnosing cancer, to catch the potential chance
of saving a patient’s life, doctors probably hope that the type II error rate, that is, the probability
of falsely diagnosing a cancer patient as healthy, to be low, such as less than 5%. Meanwhile,
when diagnosing a disease whose treatment is so risky that may cause the loss of eyesight, to
avoid the unnecessary but great risk for healthy people, doctors probably hope that the type I error
rate, that is, the probability of falsely diagnosing a healthy people as affected by the disease, to be
extremely low, such as less than 0.1%. Learning network structures may face scenarios similar to
the two cases above of diagnosing diseases. Given data of a limited sample size, there is not an
algorithm guaranteeing a perfect recovery of the structure of the underlying graphical model, and
any algorithm has to compromise on the two types of errors.

For problems involving simultaneously testing multiple hypotheses, such as verifying the exis-
tence of edges in a graph, there are several different criteria for their error-rate control (see Table 2),
depending on researchers’ concerns or the scenario of the study. Generally there are not mathemati-
cally or technically superior relationships among different error-rate criteria if the research scenario
is not specified. One error-rate criterion may be favoured in one scenario while another criterion
may be right of interest in a different scenario, just as the aforementioned examples of diagnosing
diseases. In real world applications, selecting the error rate of interest is largely not an abstract
question “which error rate is superior over others?”, but a practical question “which error rate is the
researchers’ concern?” For extended discussions on why there are not general superior relationships
among different error-rate criteria, please refer to Appendix C, where examples of typical research
scenarios, accompanied by theoretical discussions, illustrate that each of the four error-rate criteria
in Table 2 may be favoured in a certain study.
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The false discovery rate (FDR) (see Benjamini and Yekutieli, 2001; Storey, 2002), defined as
the expected ratio of falsely discovered positive hypotheses to all those discovered, has become an
important and widely used criterion in many research fields, such as bioinformatics and neuroimag-
ing. In many real world applications that involve multiple hypothesis testing, the FDR is more
reasonable than the traditional type I error rate and type II error rate. Suppose that in a pilot study
researchers are selecting candidate genes for a genetic research on schizophrenia. Due to the limited
funding, only a limited number of genes can be studied thoroughly in the afterward genetic research.
To use the funding efficiently, researchers would hope that 95% of the candidate genes selected in
the pilot study are truly associated with the disease. In this case, the FDR is chosen as the error rate
of interest and should be controlled under 5%. Simply controlling the type I error rate and the type
II error rate under certain levels does not necessarily keep the FDR sufficiently low, especially in
the case of sparse networks. For example, suppose a gene regulatory network involves 100 genes,
where each gene interacts in average with 3 others, that is, there are 150 edges in the network. Then
an algorithm with the realized type I error rate = 5% and the realized power = 90% (i.e., the real-
ized type II error rate = 10%) will recover a network with 150×90%=135 correct connections and
[100× (100−1)/2−150]×5%= 240 false connections. This means that 240/(240+135) = 64%
of the claimed connections actually do not exist in the true network. Due to the popularity of the
FDR in research practices, it is highly desirable to develop structure-learning algorithms that allow
the control over the FDR on network structures.

However, current structure-learning algorithms for Bayesian networks have not been adequately
adapted to explicitly controlling the FDR of the claimed “discovered” networks. Score-based search
methods (see Heckerman et al., 1995) look for a suitable structure by optimizing a certain criterion
of goodness-of-fit, such as the Akaike information criterion (AIC), the Bayesian information crite-
rion (BIC), or the Bayesian Dirichlet likelihood equivalent metric (BDE), with a random walk (e.g.,
simulated annealing) or a greedy walk (e.g., hill-climbing), in the space of DAGs or their equiva-
lence classes.1 It is worth noting that the restricted case of tree-structured Bayesian networks has
been optimally solved, in the sense of Kullback-Leibler divergence, with Chow and Liu (1968)’s
method, and that Chickering (2002) has proved that the greedy equivalence search can identify the
true equivalence class in the limit of large sample sizes. Nevertheless, scores do not directly reflect
the error rate of edges, and the sample sizes in real world applications are usually not large enough
to guarantee the perfect asymptotic identification.

The Bayesian approach first assumes a certain prior probability distribution over the network
structures, and then estimates the posterior probability distribution of the structures after data are
observed. Theoretically, the posterior probability of any structure features, such as the existence
of an edge, the existence of a path, or even the existence of a sub-graph, can be estimated with the
Bayesian approach. This consequently allows the control of the posterior error rate of these structure
features, that is, the posterior probability of the non-existence of these features. It should be pointed
out that the posterior error rate is conceptually different from those error rates such as the type I
error rate, the type II error rate, and the FDR, basically because they are from different statistical
perspectives. The posterior error rate is defined from the perspective of Bayesian statistics. From
the Bayesian perspective, network structures are assumed to be random, according to a probability
distribution, and the posterior error rate is the probability of the non-existence of certain features
according to the posterior probability distribution over the network structures. Given the same data,

1. An equivalence class of DAGs is a set of DAGs that encode the same set of conditional-independence relationships
according to the directed Markov property.
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different posterior distributions will be derived from different prior distributions. The type I error
rate, the type II error rate, and the FDR are defined from the perspective of classical statistics. From
the classical perspective, there is a true, yet unknown, model behind the data, and the error rates are
defined by comparing with the true model. Nevertheless, a variant of the FDR, the positive false
discovery rate (pFDR) proposed by Storey (2002), can be interpreted from the Bayesian perspective
(Storey, 2003).

The Bayesian approach for structure learning is usually conducted with the maximum-a poste-
riori-probability (MAP) method or the posterior-expectation method. The MAP method selects the
network structure with the largest posterior probability. The optimal structure is usually searched for
in a score-based manner, with the posterior probability or more often approximations to the relative
posterior probability (for instance the BIC score) being the score to optimize. Cooper and Her-
skovits (1992) developed a heuristic greedy search algorithm called K22 that can finish the search
in a polynomial time with respect to the number of vertices, given the order of vertices. The MAP
method provides us with a single network structure, the posteriorly most probable one, but does not
address error rates in the Bayesian approach.

To control errors in the Bayesian approach, the network structure should be learned with the
posterior-expectation method, that is, calculating the posterior probabilities of network structures,
and then deriving the posterior expectation of the existence of certain structure features. Though
theoretically the posterior-expectation method can control the error rate of any structure features, in
practice its capacity is largely limited for computational reasons. The number of DAGs increases
super-exponentially as the number of vertices increases (Robinson, 1973). For 10 vertices, there are
already about 4.2×1018 DAGs. Though the number of equivalence classes of DAGs is much smaller
than the number of DAGs, it is still forbiddingly large, empirically asymptotically decreasing to
1/13.652 of the number of DAGs, as the number of vertices increases (Steinsky, 2003). Therefore,
exact inferences of posterior probabilities are only feasible for small scale problems, or under cer-
tain additional constraints. For certain prior distributions, and given the order of vertices, Friedman
and Koller (2003) have derived a formula that can be used to calculate the exact posterior probabil-
ity of a structure feature with the computational complexity bounded by O(NDin+1), where N is the
number of vertices and Din is the upper bound of the in-degree for each vertex. Considering similar
prior distributions, but without the restriction on the order of vertices, Koivisto and Sood (2004)
have developed a fast exact Bayesian inference algorithm based on dynamic programming that is
able to compute the exact posterior probability of a sub-network with the computational complexity
bounded by O(N2N +NDin+1L(m)), where L(m) is the complexity of computing a marginal condi-
tional likelihood from m samples. In practice, this algorithm runs fairly fast when the number of
vertices is less than 25. For networks with more than 30 vertices, the authors suggested setting more
restrictions or combining with inexact techniques. These two breakthroughs made exact Bayesian
inferences practical for certain prior distributions. However, as Friedman and Koller (2003) pointed
out, the prior distributions which facilitate the exact inference are not hypothesis equivalent (see
Heckerman et al., 1995), that is, different network structures that are in the same equivalence class
often have different priors. The simulation performed by Eaton and Murphy (2007) confirmed that
these prior distributions deviate far from the uniform distributions. This implies that the methods
cannot be applied to the widely accepted uninformative prior, that is, the uniform prior distribution
over DAGs. For general problems, the posterior probability of a structure feature can be approx-

2. The algorithm is named K2 because it evolved from a system named Kutato (Herskovits and Cooper, 1990).
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imated with Markov chain Monte Carlo (MCMC) methods (Madigan et al., 1995). As a versatile
implementation of Bayesian inferences, the MCMC method can estimate the posterior probability
given any prior probability distribution. However, MCMC usually requires intensive computation
and results may depend on the initial state of the randomization.

Constraint-based approaches, such as the SGS3 algorithm (see Spirtes et al., 2001, pages 82–
83), inductive causation (IC)4 (see Pearl, 2000, pages 49–51), and the PC5 algorithm (see Spirtes
et al., 2001, pages 84–89), are rooted in the directed Markov property, the rule by which Bayesian
networks encode conditional independence. These methods first test hypotheses of conditional inde-
pendence among random variables, and then combine those accepted hypotheses of conditional in-
dependence to construct a partially directed acyclic graph (PDAG) according to the directed Markov
property. The computational complexity of these algorithms is difficult to analyze exactly, though
for the worst case, which rarely occurs in real world applications, is surely bounded by O(N22N)
where N is the number of vertices. In practice, the PC algorithm and the fast-causal-inference (FCI)
algorithm (see Spirtes et al., 2001, pages 142–146) can achieve polynomial time if the maximum
degree of a graph is fixed. It has been proved that if the true model satisfies the faithfulness con-
straints (see Spirtes et al., 2001, pages 13 and 81) and all the conditional-independence/dependence
relationships are correctly identified, then the PC algorithm and the IC algorithm can exactly re-
cover the true equivalence class, and so do the FCI algorithm and the IC* algorithm6 (see Pearl,
2000, pages 51–54) for problems with latent variables. Kalisch and Bühlmann (2007) have proved
that for Gaussian Bayesian networks, the PC algorithm can consistently estimate the equivalence
class of an underlying sparse DAG as the sample size m approaches infinity, even if the number
of vertices N grows as fast as O(m!) for any 0 < ! < ". Yet, as in practice hypotheses of condi-
tional independence are tested with statistical inference from limited data, false decisions cannot
be entirely avoided and thus the ideal recovery cannot be achieved. In current implementations of
the constraint-based approaches, the error rate of testing conditional independence is usually con-
trolled individually for each test, under a conventional level such as 5% or 1%, without correcting
the effect of multiple hypothesis testing. Therefore these implementations may fail to curb the FDR,
especially for sparse graphs.

In this paper, we propose embedding an FDR-control procedure into the PC algorithm to curb
the error rate of the skeleton of the learned PDAGs. Instead of individually controlling the type
I error rate of each hypothesis test, the FDR-control procedure considers the hypothesis tests to-
gether to correct the effect of simultaneously testing the existence of multiple edges. We prove
that the proposed method, named as the PCfdr-skeleton algorithm, can control the FDR under a
user-specified level at the limit of large sample sizes. In the case of moderate sample sizes (about
several hundred), empirical experiments show that the method is able to control the FDR under the
user-specified level, and a heuristic modification of the method is able to control the FDRmore accu-
rately around the user-specified level. Schäfer and Strimmer (2005) have applied an FDR procedure
to graphical Gaussian models to control the FDR of the non-zero entries of the partial correlation
matrix. Different from Schäfer and Strimmer (2005)’s work, our method, built within the frame-

3. “SGS” stands for Spirtes, Glymour and Scheines who invented this algorithm.
4. An extension of the IC algorithm which was named as IC* (see Pearl, 2000, pages 51–54) was previously also named
as IC by Pearl and Verma (1992). Here we follow Pearl (2000).

5. “PC” stands for Peter Spirtes and Clark Glymour who invented this algorithm. A modified version of the PC algo-
rithm which was named as PC* (see Spirtes et al., 2001, pages 89–90) was previously also named as PC by Spirtes
and Glymour (1991). Here we follow Spirtes et al. (2001).

6. See footnote 4.
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work of the PC algorithm, is not only applicable to the special case of Gaussian models, but also
generally applicable to any models for which conditional-independence tests are available, such as
discrete models.

We are particularly interested in the PC algorithm because it roots in conditional-independence
relationships, the backbone of Bayesian networks, and p-values of hypothesis testing represent one
type of error rates. We consider the skeleton of graphs because constraint-based algorithms usually
first construct an undirected graph, and then annotate it into different types of graphs while keeping
the skeleton as the same as that of the undirected one.

The PCfdr-skeleton algorithm is not designed to replace or claimed to be superior over the stan-
dard PC algorithm, but provide the PC algorithm with the ability to control the FDR over the skele-
ton of the recovered network. The PCfdr-skeleton algorithm controls the FDR while the standard
PC algorithm controls the type I error rate, as illustrated in Section 3.1. Since there are no general
superior relationships between different error-rate criteria, as explained in Appendix C, neither be
there between the PCfdr-skeleton algorithm and the standard PC algorithm. In research practices,
researchers first decide which error rate is of interest, and then choose appropriate algorithms to
control the error rate of interest. Generally they will not select an algorithm that sounds “superior”
but controls the wrong error rate. Since the purpose of the paper is to provide the PC algorithm with
the control over the FDR, we assume in this paper that the FDR has been selected as the error rate
of interest, and selecting the error rate of interest is out of the scope of the paper.

The remainder of the paper is organized as follows. In Section 2, we review the PC algorithm,
present the FDR-embedded PC algorithm, prove its asymptotic performance, and analyze its com-
putational complexity. In Section 3, we evaluate the proposed method with simulated data, and
demonstrate its real world applications to learning functional connectivity networks between brain
regions using functional-magnetic-resonance-imaging (fMRI). Finally, we discuss the advantages
and limitations of the proposed method in Section 4.

2. Controlling FDR with PC Algorithm

In this section, we first briefly introduce Bayesian networks and review the PC algorithm. Then, we
expatiate on the FDR-embedded PC algorithm and its heuristic modification, prove their asymptotic
performances, and analyze their computational complexity. At the end, we discuss other possible
ideas of embedding FDR control into the PC algorithm.

2.1 Notations and Preliminaries

To assist the reading, notations frequently used in the paper are listed as follows:

a, b, · · · : vertices
Xa, Xb, · · · : variables respectively represented by vertices a, b, · · ·
A, B, · · · : vertex sets
XA, XB, · · · : variable sets respectively represented by vertex sets A, B, · · ·
V : the vertex set of a graph
N = |V | : the number of vertices of a graph
a→ b : a directed edge or an ordered pair of vertices
a∼ b : an undirected edge, or an unordered pair of vertices
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E : a set of directed edges
E∼ : the undirected edges derived from E, that is, {a∼ b|a→ b or b→ a ∈ E}
G= (V,E) : a directed graph composed of vertices in V and edges in E
G∼ = (V,E∼) : the skeleton of a directed graph G= (V,E)
adj(a,G) : vertices adjacent to a in graph G, that is, {b|a→ b or b→ a ∈ E}
adj(a,G∼) : vertices adjacent to a in graph G∼, that is, {b|a∼ b ∈ E∼}
a⊥b|C : vertices a and b are d-separated by vertex setC
Xa⊥Xb|XC : Xa and Xb are conditional independent given XC
pa⊥b|C : the p-value of testing Xa⊥Xb|XC

A Bayesian network encodes a set of conditional-independence relationships with a DAG G =
(V,E) according to the directed Markov property defined as follows.

Definition 1 the Directed Markov Property: if A and B are d-separated by C where A, B and C
are three disjoint sets of vertices, then XA and XB are conditionally independent given XC, that is,
P(XA,XB|XC) = P(XA|XC)P(XB|XC). (see Lauritzen, 1996, pages 46–53)

The concept of d-separation (see Lauritzen, 1996, page 48) is defined as follows. A chain between
two vertices a and b is a sequence a = a0,a1, . . . ,an = b of distinct vertices such that ai−1 ∼ ai ∈ E∼

for all i=1, . . . , n. Vertex b is a descendant of vertex a if and only if there is a sequence a =
a0,a1, . . . ,an = b of distinct vertices such that ai−1 → ai ∈ E for all i=1, . . . , n. For three disjoint
subsets A, B andC ⊆V ,C d-separates A and B if and only if any chain # between ∀a∈ A and ∀b∈ B
contains a vertex $ ∈ # such that either

• arrows of # do not meet head-to-head at $ and $ ∈C, or

• arrows of # meet head-to-head at $ and $ is neither inC nor has any descendants inC.

Moreover, a probability distribution P is faithful to a DAG G (see Spirtes et al., 2001, pages 13
and 81) if all and only the conditional-independence relationships derived from P are encoded by
G. In general, a probability distribution may possess other independence relationships besides those
encoded by a DAG.

It should be pointed out that there are often several different DAGs encoding the same set of
conditional-independence relationships and they are called an equivalence class of DAGs. An
equivalence class can be uniquely represented by a completed acyclic partially directed graph
(CPDAG) (also called the essential graph in the literature) that has the same skeleton as a DAG
does except that some edges are not directed (see Andersson et al., 1997).

2.2 PC Algorithm

If a probability distribution P is faithful to a DAG G, then the PC algorithm (see Spirtes et al.,
2001, pages 84–89) is able to recover the equivalence class of the DAG G, given the set of the
conditional-independence relationships. In general, a probability distribution may include other
independence relationships besides those encoded by a DAG. The faithfulness assumption assures
that the independence relationships can be perfectly encoded by a DAG. In practice, the information
on conditional independence is usually unknown but extracted from data with statistical hypothesis
testing. If the p-value of testing a hypothesis Xa⊥Xb|XC is lower than a user-specified level %
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(conventionally 5% or 1%), then the hypothesis of conditional independence is rejected while the
hypothesis of conditional dependence Xa !!⊥ Xb|XC is accepted.

The first step of the PC algorithm is to construct an undirected graph G∼ whose edge direc-
tions will later be further determined with other steps, while the skeleton is kept the same as that
of G∼. Since we restrict ourselves to the error rate of the skeleton, here we only present in Al-
gorithm 1 the first step of the PC algorithm, as implemented in software Tetrad version 4.3.8 (see
http://www.phil.cmu.edu/projects/tetrad), and refer to it as the PC-skeleton algorithm.

Algorithm 1 PC-skeleton
Input: the data XV generated from a probability distribution faithful to a DAG Gtrue,

and the significance level % for every statistical test of conditional independence
Output: the recovered skeleton G∼

1: Form the complete undirected graph G∼ on the vertex set V .
2: Let depth d = 0.
3: repeat
4: for each ordered pair of adjacent vertices a and b in G∼, that is, a∼ b ∈ E∼ do
5: if |adj(a,G∼)\{b}|≥ d, then
6: for each subsetC ⊆ adj(a,G∼)\{b} and |C| = d do
7: Test hypothesis Xa⊥Xb|XC and calculate the p-value pa⊥b|C.
8: if pa⊥b|C ≥ %, then
9: Remove edge a∼ b from G∼.
10: Update G∼ and E∼.
11: break the for loop at line 6
12: end if
13: end for
14: end if
15: end for
16: Let d = d+1.
17: until |adj(a,G∼)\{b}| < d for every ordered pair of adjacent vertices a and b in G∼.

The theoretical foundation of the PC-skeleton algorithm is Proposition 1: if two vertices a and
b are not adjacent in a DAG G, then there is a set of other vertices C that either all are neighbors of
a or all are neighbors of b such that C d-separates a and b, or equivalently, Xa⊥Xb|XC, according to
the directed Markov property. Since two adjacent vertices are not d-separated by any set of other
vertices (according to the directed Markov property), Proposition 1 implies that a and b are not
adjacent if and only if there is a d-separating C in either neighbors of a or neighbors of b. Readers
should notice that the proposition does not imply that a and b are d-separated only by such a C, but
just guarantees that a d-separatingC can be found in either neighbors of a or neighbors b.

Proposition 1 If vertices a and b are not adjacent in a DAG G, then there is a set of vertices C
which is either a subset of adj(a,G) \ {b} or a subset of adj(b,G) \ {a} such that C d-separates
a and b in G. This proposition is a corollary of Lemma 5.1.1 on page 411 of book Causation,
Prediction, and Search (Spirtes et al., 2001).
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The logic of the PC-skeleton algorithm is as follows, under the assumption of perfect judgment
on conditional independence. The most straightforward application of Proposition 1 to structure
learning is to exhaustively search all the possible neighbors of a and b to verify whether there is
such a d-separating C to disconnect a and b. Since the possible neighbors of a and b are unknown,
to guarantee the detection of such a d-separating C, all the vertices other than a and b should be
searched as possible neighbors of a and b. However, such a straightforward application is very
inefficient because it probably searches many unnecessary combinations of vertices by considering
all the vertices other than a and b as their possible neighbors, especially when the true DAG is
sparse. The PC-skeleton algorithm searches more efficiently, by keeping updating the possible
neighbors of a vertex once some previously-considered possible neighbors have been found actually
not connected with the vertex. Starting with a fully connected undirected graph G∼ (step 1), the
algorithm searches for the d-separating C progressively by increasing the size of C, that is, the
number of conditional variables, from zero (step 2) with the step size of one (step 16). Given the
size of C, the search is performed for every vertex pair a and b (step 4). Once a C d-separating a
and b is found (step 8), a and b are disconnected (step 9), and the neighbors of a and b are updated
(step 10). In the algorithm, G∼ is continually updated, so adj(a,G∼) is also constantly updated
as the algorithm progresses. The algorithm stops when all the subsets of the current neighbors of
each vertex have been examined (step 17). The Tetrad implementation of the PC-skeleton algorithm
examines an edge a ∼ b as two ordered pairs (a, b) and (b, a) (step 4), each time searching for
the d-separating C in the neighbors of the first element of the pair (step 6). In this way, both the
neighbors of a and the neighbors of b are explored.

The accuracy of the PC-skeleton algorithm depends on the discriminability of the statistical test
of conditional independence. If the test can perfectly distinguish dependence from independence,
then the algorithm can correctly recover the true underlying skeleton, as proved by Spirtes et al.
(2001, pages 410–412). The outline of the proof is as follows. First, all the true edges will be
recovered because an adjacent vertex pair a∼ b is not d-separated by any vertex setC that excludes
a and b. Second, if the edge between a non-adjacent vertex pair a and b has not been removed,
subsets of either adj(a,G)\{b} or adj(b,G)\{a} will be searched until theC that d-separates a and
b according to Proposition 1 is found, and consequently the edge between a and b will be removed.
If the judgments on conditional independence and conditional dependence are imperfect, the PC-
skeleton algorithm is unstable. If an edge is mistakenly removed from the graph in the early stage
of the algorithm, then other edges which are not in the true graph may be included in the graph (see
Spirtes et al., 2001, page 87).

2.3 False Discovery Rate

In a statistical decision process, there are basically two sources of errors: the type I errors, that
is, falsely rejecting negative hypotheses when they are actually true; and the type II errors, that is,
falsely accepting negative hypotheses when their alternative, the positive hypotheses are actually
true. The FDR (see Benjamini and Yekutieli, 2001) is a criterion to assess the errors when multiple
hypotheses are simultaneously tested. It is the expected ratio of the number of falsely claimed
positive results to that of all those claimed to be positive, as defined in Table 2. A variant of the
FDR, the positive false discovery rate (pFDR), defined as in Table 2, was proposed by Storey (2002).
Clearly, pFDR = FDR / P(R2 > 0), so the two measures will be similar if P(R2 > 0) is close to 1,
and quite different otherwise.
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Test Results Truth
Negative Positive Total

Negative TN (true negative) FN (false negative) R1
Positive FP (false positive) TP (true positive) R2
Total T1 T2

Table 1: Results of multiple hypothesis testing, categorized according to the claimed results and the
truth.

Full Name Abbreviation Definition
False Discovery Rate FDR E(FP/R2) (See note *)
Positive False Discovery Rate pFDR E(FP/R2|R2 > 0)
Family-Wise Error Rate FWER P(FP≥ 1)
Type I Error Rate (False Positive Rate) % E(FP/T1)
Specificity (True Negative Rate) 1−% E(TN/T1)
Type II Error Rate (False Negative Rate) & E(FN/T2)
Power (Sensitivity, True Positive Rate) 1−& E(TP/T2)

Table 2: Criteria for multiple hypothesis testing. Here E(x) means the expected value of x, and
P(A) means the probability of event A . Please refer to Table 1 for related notations. * If
R2 = 0, FP/R2 is defined to be 0.

The FDR is a reasonable criterion when researchers expect the “discovered” results are trustful
and dependable in afterward studies. For example, in a pilot study, we are selecting candidate genes
for a genetic research on Parkinson’s disease. Because of the limited funding, we can only study a
limited number of genes in the afterward genetic research. Thus, when selecting candidate genes
in the pilot study, we hope that 95% of the selected candidate genes are truly associated with the
disease. In this case, the FDR is chosen as the error rate of interest and should be controlled under
5%. Since similar situations are quite common in research practices, the FDR has been widely
adopted in many research fields such as bioinformatics and neuroimaging.

In the context of learning the skeleton of a DAG, a negative hypothesis could be that a connection
does not exist in the DAG, and a positive hypothesis could be that the connection exists. The FDR
is the expected proportion of the falsely discovered connections to all those discovered. Learning
network structures may face scenarios similar to the aforementioned pilot study, but the FDR control
has not yet received adequate attention in structure learning.

Benjamini and Yekutieli (2001) have proved that, when the test statistics have positive regression
dependency on each of the test statistics corresponding to the true negative hypotheses, the FDR can
be controlled under a user-specified level q by Algorithm 2. In other cases of dependency, the FDR
can be controlled with a simple conservative modification of the procedure by replacing H∗ in
Eq. (1) with H(1+ 1/2, . . . ,+1/H). Storey (2002) has provided algorithms to control the pFDR
for independent test statistics. For a review and comparison of more FDR methods, please refer
to Qian and Huang (2005)’s work. It should be noted that the FDR procedures do not control the
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realized FDR of a trial under q, but control the expected value of the error rate when the procedures
are repetitively applied to randomly sampled data.

Algorithm 2 FDR-stepup
Input: a set of p-values {pi|i= 1, . . . ,H}, and the threshold of the FDR q
Output: the set of rejected null hypotheses

1: Sort the p-values of H hypothesis tests in the ascendant order as p(1) ≤ . . . ≤ p(H).
2: Let i = H, and H∗ = H (or H∗ = H(1+ 1/2, . . . ,+1/H), depending on the assumption of the
dependency among the test statistics).

3: while
H∗

i
p(i) > q and i> 0, (1)

do
4: Let i= i−1.
5: end while
6: Reject the null hypotheses associated with p(1), . . . , p(i), and accept the null hypotheses associ-
ated with p(i+1), . . . , p(H).

Besides the FDR and the pFDR, other criteria, as listed in Table 2, can also be applied to assess
the uncertainty of multiple hypothesis testing. The type I error rate is the expected ratio of the type I
errors to all the negative hypotheses that are actually true. The type II error rate is the expected ratio
of the type II errors to all the positive hypotheses that are actually true. The family-wise error rate is
the probability that at least one of the accepted positive hypotheses are actually wrong. Generally,
there are not mathematically or technically superior relationships among these error-rate criteria.
Please refer to Appendix C for examples of typical research scenarios where each particular error
rate is favoured.

Controlling both the type I and the type II error rates under a conventional level (such as % <
5% or 1% and & < 10% or 5%) does not necessarily curb the FDR at a desired level. As shown
in Eq. (2), if FP/T1 and FN/T2 are fixed and positive, FP/R2 approaches 1 when T2/T1 is small
enough. This is the case of sparse networks where the number of existing connections T2 is much
smaller than the number of non-existing connections T1.

FP
R2

=
FP
T1

FP
T1 +(1− FN

T2 ) T2T1
. (2)

2.4 PC Algorithm with FDR

Steps 8–12 of the PC-skeleton algorithm control the type I error rate of each statistical test of con-
ditional independence individually below a pre-defined level %, so the algorithm can not explicitly
control the FDR. We propose embedding an FDR-control procedure into the algorithm to curb the
error rate of the learned skeleton. The FDR-control procedure collectively considers the hypoth-
esis tests related to the existence of multiple edges, correcting the effect of multiple hypothesis
testing. The proposed method is described in Algorithm 3, and we name it as the PCfdr-skeleton

485



LI AND WANG

algorithm. Similar to the PC-skeleton algorithm, G∼, adj(a,G∼) and E∼ are constantly updated as
the algorithm progresses.

The PCfdr-skeleton and the PC-skeleton algorithms share the same search strategy, but differ
on the judgment of conditional independence. The same as the PC-skeleton algorithm, the PCfdr-
skeleton algorithm increases d, the number of conditional variables, from zero (step 3) with the step
size of one (step 25), and also keeps updating the neighbors of vertices (steps 14 and 15) when some
previously-considered possible neighbors have been considered not connected (step 13). The PCfdr-
skeleton algorithm differs from the PC-skeleton algorithm on the inference of d-separation, with its
steps 11–20 replacing steps 8–12 of the PC-skeleton algorithm. In the PC-skeleton algorithm, two
vertices are regarded as d-separated once the conditional-independence test between them yields a
p-value larger than the pre-defined significant level %. In this way, the type I error of each statistical
test is controlled separately, without consideration of the effect of multiple hypothesis testing. The
PCfdr-skeleton algorithm records in pmaxa∼b the up-to-date maximum p-value associated with an edge
a ∼ b (steps 9 and 10), and progressively removes those edges whose non-existence is accepted
by the FDR procedure (step 12), with Pmax = {pmaxa∼b}a ,=b and the pre-defined FDR level q being
the input. The FDR procedure, Algorithm 2, is invoked at step 12, either immediately after every
element of Pmax has been assigned a valid p-value for the first time, or later once any element of
Pmax is updated.

The pmaxa∼b is the upper bound of the p-value of testing the hypothesis that a and b are d-separated
by at least one of the vertex setsC searched in step 7. According to the directed Markov property, a
and b are not adjacent if and only if there is a set of verticesC⊆V \{a,b} d-separating a and b. As
the algorithm progresses, the d-separations between a and b by vertex sets C1, . . . ,CK ⊆ V \ {a,b}
are tested respectively, and consequently a sequence of p-values p1, . . . , pK are calculated. If we use
pmaxa∼b =maxKi=1 pi as the statistic to test the negative hypothesis that there is, though unknown, a Cj
amongC1, . . . ,CK d-separating a and b, then due to

P(pmaxa∼b ≤ p) = P(pi ≤ p for all i= 1, . . . ,K) ≤ P(p j ≤ p) = p, (3)

pmaxa∼b is the upper bound of the p-value of testing the negative hypothesis. Eq. (3) also clearly shows
that the PC-skeleton algorithm controls the type I error rate of the negative hypothesis, since its step
8 is equivalent to “if pmaxa∼b < %, then . . . ” if pmaxa∼b is recorded in the PC-skeleton algorithm.

The statistical tests performed at step 8 of the PCfdr-skeleton algorithm generally are not in-
dependent with each other, since the variables involved in two hypotheses of conditional indepen-
dence may overlap. For example, conditional-independence relationships a⊥b1|C and a⊥b2|C both
involve a and C. It is very difficult to prove whether elements of Pmax have positive regression
dependency or not, so rigorously the conservative modification of Algorithm 2, should be applied
at step 12. However, since pmaxa∼b is probably a loose upper bound of the p-value of testing a ! b, in
practice we simply apply the FDR procedure that is correct for positive regression dependency.

It should be noted that different from step 9 of the PC-skeleton algorithm, step 14 of the PCfdr-
skeleton algorithm may remove edges other than just a ∼ b, because the decisions on other edges
can be affected by the updating of pmaxa∼b.

A heuristic modification of the PCfdr-skeleton algorithm is to remove pmaxa∼b from Pmax once
edge a ∼ b has been deleted from G∼ at step 14. We name this modified version as the PCfdr*-
skeleton algorithm. In the PCfdr-skeleton algorithm, pmaxa∼b is still recorded in Pmax and input to the
FDR procedure after the edge a ∼ b has been removed. This guarantees that the algorithm can
asymptotically keep the FDR under the user-specified level q (see Section 2.5). The motivation of
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Algorithm 3 PCfdr-skeleton
Input: the data XV generated from a probability distribution faithful to a DAG Gtrue,

and the FDR level q for the discovered skeleton
Output: the recovered skeleton G∼

1: Form the complete undirected graph G∼ on the vertex set V
2: Initialize the maximum p-values associated with edges as
Pmax = {pmaxa∼b = −1}a ,=b.

3: Let depth d = 0.
4: repeat
5: for each ordered pair of adjacent vertices a and b in G∼, that is, a∼ b ∈ E∼ do
6: if |adj(a,G∼)\{b}|≥ d, then
7: for each subsetC ⊆ adj(a,G∼)\{b} and |C| = d do
8: Test hypothesis Xa⊥Xb|XC and calculate the p-value pa⊥b|C.
9: if pa⊥b|C > pmaxa∼b, then
10: Let pmaxa∼b = pa⊥b|C.
11: if every element of Pmax has been assigned a valid p-value by step 10, then
12: Run the FDR procedure, Algorithm 2, with Pmax and q as the input.
13: if the non-existence of certain edges are accepted, then
14: Remove these edges from G∼.
15: Update G∼ and E∼.
16: if a∼ b is removed, then
17: break the for loop at line 7.
18: end if
19: end if
20: end if
21: end if
22: end for
23: end if
24: end for
25: Let d = d+1.
26: until |adj(a,G∼)\{b}| < d for every ordered pair of adjacent vertices a and b in G∼.

* A heuristic modification at step 15 of the algorithm is to remove from Pmax the pmaxa∼bs whose asso-
ciated edges have been deleted from G∼ at step 14, that is, to update Pmax as Pmax = {pmaxa∼b}a∼b∈E∼

right after updating E∼ at step 15. This heuristic modification is named as the PCfdr*-skeleton
algorithm.

the heuristic modification is that if an edge has been eliminated, then it should not be considered in
the FDR procedure any longer. Though we cannot theoretically prove the asymptotic performance
of the heuristic modification in the sense of controlling the FDR, it is shown to control the FDR
closely around the user-specified level in our empirical experiments and gain more detection power
than that of the PCfdr-skeleton algorithm (see Section 3).
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2.5 Asymptotic Performance

Here we prove that the PCfdr-skeleton algorithm is able to control the FDR under a user-specified
level q (q> 0) at the limit of large sample sizes if the following assumptions are satisfied:

(A1) The probability distribution P is faithful to a DAG Gtrue.

(A2) The number of vertices is fixed.

(A3) Given a fixed significant level of testing conditional-independence relationships, the power
of detecting conditional-dependence relationships with statistical tests approaches 1 at the
limit of large sample sizes. (For the definition of power in hypothesis testing, please refer to
Table 2.)

Assumption (A1) is generally assumed when graphical models are applied, although it restricts the
probability distribution P to a certain class. Assumption (A2) is usually implicitly stated, but here
we explicitly emphasize it because it simplifies the proof. Assumption (A3) may seem demanding,
but actually it can be easily satisfied by standard statistical tests, such as the likelihood-ratio test
introduced by Neyman and Pearson (1928), if the data are identically and independently sampled.
Two statistical tests that satisfy Assumption (A3) are listed in Appendix B.

The detection power and the FDR of the PCfdr-skeleton algorithm and its heuristic modification
at the limit of large sample sizes are elucidated in Theorems 1 and 2. The detailed proofs are
provided in Appendix A.

Theorem 1 Assuming (A1), (A2) and (A3), both the PCfdr-skeleton algorithm and its heuristic mod-
ification, the PCfdr*-skeleton algorithm, are able to recover all the true connections with probability
one as the sample size approaches infinity:

lim
m→"

P(E∼
true ⊆ E∼) = 1,

where E∼
true denotes the set of the undirected edges derived from the true DAG Gtrue, E∼ denotes the

set of the undirected edges recovered with the algorithms, and m denotes the sample size.

Theorem 2 Assuming (A1), (A2) and (A3), the FDR of the undirected edges recovered with the
PCfdr-skeleton algorithm approaches a value not larger than the user-specified level q as the sample
size m approaches infinity:

limsup
m→"

FDR(E∼,E∼
true) ≤ q,

where FDR(E∼,E∼
true) is defined as







FDR(E∼,E∼
true) = E

[

|E∼\E∼
true|

|E∼|

]

,

Define |E∼\E∼
true|

|E∼| = 0, if |E∼| = 0.

2.6 Computational Complexity

The PCfdr-skeleton algorithm spends most of its computation on performing statistical tests of con-
ditional independence at step 8 and controlling the FDR at step 12. Since steps 13 to 19 of the
PCfdr-skeleton algorithm play a role similar to steps 8 to 12 of the PC-skeleton algorithm do, and
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all the other parts of both algorithms employ the same search strategy, the computation spent by
the PCfdr-skeleton algorithm on statistical tests has the same complexity as that by the PC-skeleton
algorithm. The only extra computational cost of the PCfdr-skeleton algorithm is at step 12 for con-
trolling the FDR.

The computational complexity of the search strategy employed by the PC algorithm has been
studied by Kalisch and Bühlmann (2007) and Spirtes et al. (see 2001, pages 85–87). Here to make
the paper self-contained, we briefly summarize the results as follows. It is difficult to analyze the
complexity exactly, but if the algorithm stops at the depth d = dmax, then the number of conditional-
independence tests required is bounded by

T = 2C2N
dmax
'
d=0

CdN−2,

where N is the number of vertices,C2N is the number of combinations of choosing 2 un-ordered and
distinct elements from N elements, and similarly C2N−2 is the number of combinations of choosing
from N−2 elements. In the worst case that dmax = N−2, the complexity is bounded by 2C2N2N−2.
The bound usually is very loose, because it assumes that no edge has been removed until d = dmax.
In real world applications, the algorithm is very fast for sparse networks.

The computational complexity of the FDR procedure, Algorithm 2, generally is O( H log(H)
+ H) = O(H log(H)) where H = C2N is the number of input p-values. The sorting at step 1 costs
H log(H) and the “while” loop from step 3 to step 5 repeats H times at most. However, if the
sorted Pmax is recorded during the computation, each time when an element of Pmax is updated at
step 10 of the PCfdr-skeleton algorithm, the complexity of keeping the updated Pmax sorted is only
O(H). With this optimization, the complexity of the FDR-control procedure is O(H log(H)) at its
first operation, and is O(H) later. The FDR procedure is invoked only when pa⊥b|C > pmaxa∼b. In the
worst case that pa⊥b|C is always larger than pmaxa∼b, the complexity of the computation spent on the
FDR control in total is bounded by O(C2N log(C2N)+TC2N) = O(N2 log(N)+TN2) where T is the
number of performed conditional-independence tests. This is a very loose bound because it is rare
that pa⊥b|C is always larger than pmaxa∼b.

The computational complexity of the heuristic modification, the PCfdr*-skeleton algorithm, is
the same as that of the PCfdr-skeleton algorithm, since they share the same search strategy and both
employ the FDR procedure. In the PCfdr*-skeleton algorithm, the size of Pmax keeps decreasing as
the algorithm progresses, so each operation of the FDR procedure is more efficient. However, since
the PCfdr*-skeleton algorithm adjusts the effect of multiple hypothesis testing less conservatively,
it may remove less edges than the PCfdr-skeleton algorithm does, and invokes more conditional-
independence tests. Nevertheless, their complexity is bounded by the same limit in the worst case.

It is unfair to directly compare the computational time of the PCfdr-skeleton algorithm against
that of the PC-skeleton algorithm, because if the q of the former is set at the same value as the % of
the latter, the former will remove more edges and perform much less statistical tests, due to its more
stringent control over the type I error rate. A reasonable way is to compare the time spent on the
FDR control at step 12 against that on conditional-independence tests at step 8 in each run of the
PCfdr-skeleton algorithm. If Pmax is kept sorted during the learning process as aforementioned, then
each time (except the first time) the FDR procedure just needs linear computation time (referring to
the size of Pmax) with simple operations such as division and comparing two numerical values. Thus,
we suspect that the FDR procedure will not contribute much to the total computation time of the
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structure learning. In our simulation study in Section 3.1, the extra computation added by the FDR
control was only a tiny portion, less than 0.5%, to that spent on testing conditional independence,
performed with the Cochran-Mantel-Haenszel (CMH) test (see Agresti, 2002, pages 231–232), as
shown in Tables 3 and 4.

2.7 Miscellaneous Discussions Discussions

An intuitive and attracting idea of adapting the PC-skeleton algorithm to the FDR control is to
“smartly” determine such an appropriate threshold of the type I error rate % that will let the errors
be controlled at the pre-defined FDR level q. Given a particular problem, it is very likely that the
FDR of the graphs learned by the PC-skeleton algorithm is an monotonically increasing function of
the pre-defined threshold % of the type I error rate. If this hypothesis is true, then there is a one-to-
one mapping between % and q for the particular problem. Though we cannot prove this hypothesis
rigorously, the following argument may be enlightening. Instead of directly focusing on FDR =
E(FP/R2) (see Table 2), the expected ratio of the number of false positives (FP) to the number of
accepted positive hypotheses (R2), we first focus on E(FP)/E(R2), the ratio of the expected number
of false positives to the expected number of accepted positive hypotheses, since the latter is easier
to link with the type I error rate according to Eq. (2), as shown in Eq. (4),

E(FP)
E(R2)

=
E

(

FP
T1

)

E
(

FP
T1 +(1− FN

T2 ) T2T1

) =
E

(

FP
T1

)

E
(

FP
T1

)

+
(

1−E
(

FN
T2

))

T2
T1

=
%

%+(1−&) T2T1
, (4)

where % and & are the type I error rate and the type II error rate respectively. A sufficient condition
for E(FP)/E(R2) being a monotonically increasing function of the type I error rate includes (I)
(1−&)/%> ((1−&)/(%, (II) T1 > 0 and (III) T2 > 0, where ((1−&)/(% is the derivative of (1−&)
over %. If (1−&), regarded as a function of %, is a concave curve from (0, 0) to (1,1), then condition
(I) is satisfied. Recall that (1−&) versus % actually is the receiver operating characteristic (ROC)
curve, and that with an appropriate statistic the ROC curve of a hypothesis test is usually a concave
curve from (0, 0) to (1,1), we speculate that condition (I) is not difficult to satisfy. With the other two
mild conditions (II) T1 > 0 and (III) T2 > 0, we could expect that E(FP)/E(R2) is a monotonically
increasing function of %. E(FP)/E(R2) is the ratio of the expected values of two random variables,
while E(FP/R2) is the expected value of the ratio of two random variables. Generally, there is not a
monotonic relationship between E(FP)/E(R2) and E(FP/R2). Nevertheless, if the average number
of false positives, E(FP), increases proportionally faster than that of the accepted positives, E(R2),
we speculate that under certain conditions, the FDR = E(FP/R2) also increases accordingly. Thus
the FDR may be a monotonically increasing function of the threshold % of the type I error rate for
the PC-skeleton algorithm.

However, even though the FDR of the PC-skeleton algorithm may decrease as the pre-defined
significant level % decreases, the FDR of the PC-skeleton algorithm still cannot be controlled at the
user-specified level for general problems by “smartly” choosing an % beforehand, but somehow has
to be controlled in a slightly different way, such as the PCfdr-skeleton algorithm does. First, the
value of such an % for the FDR control depends on the true graph, but unfortunately the graph is
unknown in problems of structure learning. According to Eq. (2), the realized FDR is a function of
the realized type I and type II error rates, as well as T2/T1, which in the context of structure learning
is the ratio of the number of true connections to the number of non-existing connections. Since
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T2/T1 is unknown, such an % cannot be determined completely in advance without any information
about the true graph, but has to be estimated practically from the observed data. Secondly, the
FDR method we employ is such a method that estimates the % from the data to control the FDR
of multiple hypothesis testing. The output of the FDR algorithm is the rejection of those null
hypotheses associated with p-values p(1), . . . , p(i) (see Algorithm 2). Given p(1) ≤ . . . ≤ p(H),
the output is equivalent to the rejection of all those hypotheses whose p-values are smaller than or
equal to p(i). In other words, it is equivalent to setting %= p(i) in the particular multiple hypothesis
testing. Thirdly, the PCfdr-skeleton algorithm is a valid solution to combining the FDR method with
the PC-skeleton algorithm. Because the estimation of the % depends on p-values, and p-values are
calculated one by one as the PC-skeleton algorithm progresses with hypothesis tests, the % cannot
be estimated separately before the PC-skeleton algorithm starts running, but the estimation has to
be embedded within the algorithm, like in the PCfdr-skeleton algorithm.

Another idea on the FDR control in structure learning is a two-stage algorithm. The first stage
is to draft a graph that correctly includes all the existing edges and their orientations but may also
include non-existing edges as well. The second stage is to select the real parents for each vertex,
with the FDR controlled, from the set of potential parents determined in the first stage. The advan-
tage of this algorithm is that the selection of real parent vertices in the second stage is completely
decoupled from the determination of edge orientations, because all the parents of each vertex have
been correctly connected with the particular vertex in the first stage. However, a few concerns about
the algorithm should be noticed before researchers start developing this two-stage algorithm. First,
to avoid missing many existing edges in the first stage, a considerable number of non-existing edges
may have to be included. To guarantee a perfect protection of the existing edges given any ran-
domly sampled data, the first stage must output a graph whose skeleton is a fully connected graph.
The reason for this is that the type I error rate and the type II error rate contradict each other and
the latter reaches zero generally when the former approaches one (see Appendix C). Rather than
protecting existing edges perfectly, the first stage should trade off between the type I and the type II
errors, in favour of keeping the type II error rate low. Second, selecting parent vertices from a set of
candidate vertices in the second stage, in certain sense, can be regarded as learning the structure of
a sub-graph locally, in which error-rate control remains as a crucial problem. Thus erro-rate control
is still involved in both of the two stages. Though this two-stage idea may not essentially reduce the
problem of the FDR control to an easier task, it may break the big task of simultaneously learning
all edges to many local structure-learning tasks.

3. Empirical Evaluation

The PCfdr-skeleton algorithm and its heuristic modification are evaluated with simulated data sets,
in comparison with the PC-skeleton algorithm, in the sense of the FDR, the type I error rate and the
power. The PCfdr-skeleton and the PC-skeleton algorithms are also applied to two real functional-
magnetic-resonance-imaging (fMRI) data sets, to check whether the two algorithms correctly curb
the error rates that they are supposed to control in real world applications.

3.1 Simulation Study

The simulated data sets are generated from eight different DAGs, shown in Figure 1, with the
number of vertices N = 15, 20, 25 or 30, and the average degree of vertices D = 2 or 3. The DAGs
are generated as follows:
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(1) Sample N×D
2 undirected edges from {a ∼ b|a,b ∈ V and a ,= b} with equal probabilities and

without replacement to compose an undirected graph G∼
true.

(2) Generate a random order - of vertices with permutation.

(3) Orientate the edges of G∼ according to the order -. If a is before b in the order -, then
orientate the edge a∼ b as a→ b. Denote the orientated graph as a DAG Gtrue.

For each DAG, we associate its vertices with (conditional) binary probability distributions as
follows, to extend it to a Bayesian network.

(1) Specify the strength of (conditional) dependence as a parameter )> 0.

(2) Randomly assign each vertex a ∈ V with a dependence strength )a = 0.5) or −0.5), with
equal possibilities.

(3) Associate each vertex a ∈V with a logistic regression model

*= '
b∈pa[a]

Xb)b,

P(Xa = 1|Xpa[a]) =
exp(*)

1+ exp(*)
,

P(Xa = −1|Xpa[a]) =
1

1+ exp(*)
,

where pa[a] denotes the parent vertices of a.

The parameter ) reflects the strength of dependence because if the values of all the other parent
variables are fixed, the difference between the conditional probabilities of a variable Xa = 1 given a
parent variable Xb = 1 and -1 is

∣

∣logit[P(Xa = 1|Xb = 1,Xpa[a]\{b})]− logit[P(Xa = 1|Xb = −1,Xpa[a]\{b})]
∣

∣ = |2)b| = ),

where the logit function is defined as logit(x) = log( x
1−x).

Since the accuracy of the PC-skeleton algorithm and its FDR versions is related to the discrim-
inability of the statistical tests, we generated data with different values of ) ()= 0.5, 0.6, 0.7, 0.8,
0.9 and 1.0) to evaluate the algorithms’ performances with different power of detecting conditional
dependence. The larger the absolute value of ) is, the easier the dependence can be detected with
statistical tests. Because statistical tests are abstract queries yielding p-values about conditional in-
dependence for the structure-learning algorithms, the accuracy of the algorithms is not determined
by the particular procedure of a statistical test, or a particular family of conditional probability dis-
tributions but by the discriminability of the statistical tests. Given a fixed sample size, the stronger
the conditional-dependence relationships are, the higher discriminability the statistical tests have.
By varying the dependence strength ) of the binary conditional probability distributions, we have
varied the discriminability of the statistical tests, as if by varying the dependence strength of other
probability distribution families. To let the readers intuitively understand the dependence strength
of these ) values, we list as follows examples of probability pairs whose logit contrasts are equal to
these ) values:
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Figure 1: DAGs used in the simulation study. N denotes the number of vertices and D denotes the
average degree of the vertices. Unshaded vertices are associated with positive dependence
strength 0.5), and shaded ones are associated with negative dependence strength −0.5).
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0.5 = logit( 0.5622 ) - logit( 0.4378 ), 0.6 = logit( 0.5744 ) - logit( 0.4256 ),
0.7 = logit( 0.5866 ) - logit( 0.4134 ), 0.8 = logit( 0.5987 ) - logit( 0.4013 ),
0.9 = logit( 0.6106 ) - logit( 0.3894 ), 1.0 = logit( 0.6225 ) - logit( 0.3775 ).

.
In total, we performed the simulation with 48 Bayesian networks generated with all the combi-

nations of the following parameters:

N = 15,20,25,30;
D = 2,3;
) = 0.5,0.6,0.7,0.8,0.9,1.0.

From each Bayesian network, we repetitively generated 50 data sets each of 500 samples to es-
timate the statistical performances of the algorithms. A non-model-based test, the Cochran-Mantel-
Haenszel (CMH) test (see Agresti, 2002, pages 231–232), was employed to the test conditional
independence among random variables. Both the significant level % of the PC-skeleton algorithm
and the FDR level q of the PCfdr-skeleton algorithm and its heuristic modification were set at 5%.

Figures 2, 3 and 4 respectively show the empirical FDR, power and type I error rate of the al-
gorithms, estimated from the 50 data sets repetitively generated from each Bayesian network, with
error bars indicating the 95% confidence intervals of these estimations. The PCfdr-skeleton algo-
rithm controls the FDR under the user-specified level 5% for all the 48 Bayesian networks, and
the PCfdr*-skeleton algorithm steadily controls the FDR closely around 5%, while the PC-skeleton
algorithm yields the FDR ranging from about 5% to about 35%, and above 15% in many cases,
especially for those sparser DAGs with the average degree of vertices D= 2. The PCfdr-skeleton al-
gorithm is conservative, with the FDR notably lower than the user-specified level, while its heuristic
modification controls the FDRmore accurately around the user-specified level, although the correct-
ness of the heuristic modification has not been theoretically proved. As the discriminability of the
statistical tests increases, the power of all the algorithms approaches 1. When their FDR level q is
set at the same value as the % of the PC-skeleton algorithm, the PCfdr-skeleton algorithm and its
heuristic modification control the type I error rate more stringently than the PC-skeleton algorithm
does, so their power generally is lower than that of the PC-skeleton algorithm. Figure 4 also clearly
shows, as Eq. 3 implies, that it is the type I error rate, rather than the FDR, that the PC-skeleton
algorithm controls under 5%.

Figure 5 shows the average computational time spent during each run of the PCfdr-skeleton al-
gorithm and its heuristic modification on the statistical tests of (conditional) independence at step 8
and the FDR control at step 12. The computational time was estimated on the platform of an Intel
Xeon 1.86GHz CPU and 4G RAM, and with the code implemented in Matlab R14. Tables 3 and
4 show the average ratios of the computational time spent on the FDR control to that spent on the
statistical tests. The average ratios are not more than 2.57‰ for all the 48 Bayesian networks. The
relatively small standard deviations, as shown in brackets in the tables, indicate that these estimated
ratios are trustful. Because the PCfdr-skeleton algorithm and its heuristic modification employ the
same search strategy as the PC-skeleton algorithm does, this result evidences that the extra compu-
tation cost to achieve the control over the FDR is trivial in comparison with the computation already
spent by the PC-skeleton algorithm on statistical tests.
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Figure 2: The FDR (with 95% confidence intervals) of the PC-skeleton algorithm, the PCfdr-
skeleton algorithm and the PCfdr*-skeleton algorithm on the DAGs in Figure 1, as the
dependence parameter ) shown on the x-axes increases from 0.5 to 1.0.
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Figure 3: The power (with 95% confidence intervals) of the PC-skeleton algorithm, the PCfdr-
skeleton algorithm and the PCfdr*-skeleton algorithm on the DAGs in Figure 1, as the
dependence parameter ) shown on the x-axes increases from 0.5 to 1.0.
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Figure 4: The type I error rates (with 95% confidence intervals) of the PC-skeleton algorithm, the
PCfdr-skeleton algorithm and the PCfdr*-skeleton algorithm on the DAGs in Figure 1, as
the dependence parameter ) shown on the x-axes increases from 0.5 to 1.0.
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Figure 5: The average computational time (in seconds, with 95% confidence intervals) spent on the
FDR control and statistical tests during each run of the PCfdr-skeleton algorithm and its
heuristic modification.

) N=15 N=20 N=25 N=30

D
=
2

0.5 1.11e-03 (3.64e-04) 7.19e-04 (2.32e-04) 5.44e-04 (1.79e-04) 4.81e-04 (1.37e-04)
0.6 1.48e-03 (2.03e-04) 1.24e-03 (2.15e-04) 1.21e-03 (3.32e-04) 1.09e-03 (1.44e-04)
0.7 1.58e-03 (1.68e-04) 1.61e-03 (2.01e-04) 1.59e-03 (1.31e-04) 1.64e-03 (1.09e-04)
0.8 1.63e-03 (1.64e-04) 1.81e-03 (1.61e-04) 1.93e-03 (1.20e-04) 1.89e-03 (1.04e-04)
0.9 1.59e-03 (1.50e-04) 1.83e-03 (1.50e-04) 2.06e-03 (1.19e-04) 1.95e-03 (9.63e-05)
1.0 1.64e-03 (1.51e-04) 1.88e-03 (1.59e-04) 2.15e-03 (1.12e-04) 2.01e-03 (9.01e-05)

D
=
3

0.5 1.69e-03 (3.70e-04) 1.50e-03 (2.55e-04) 9.80e-04 (1.90e-04) 9.10e-04 (1.52e-04)
0.6 2.06e-03 (2.82e-04) 2.22e-03 (1.45e-04) 1.93e-03 (1.71e-04) 1.82e-03 (1.47e-04)
0.7 2.11e-03 (1.84e-04) 2.36e-03 (1.24e-04) 2.31e-03 (1.19e-04) 2.29e-03 (1.12e-04)
0.8 2.02e-03 (1.68e-04) 2.35e-03 (1.20e-04) 2.45e-03 (1.28e-04) 2.20e-03 (1.15e-04)
0.9 2.04e-03 (1.50e-04) 2.34e-03 (9.05e-05) 2.53e-03 (1.15e-04) 2.03e-03 (1.23e-04)
1.0 1.99e-03 (1.41e-04) 2.28e-03 (9.18e-05) 2.57e-03 (9.66e-05) 1.92e-03 (1.25e-04)

Table 3: The average ratios (with their standard deviations in brackets) of the computational time
spent on the FDR control to that spent on the statistical tests during each run of the PCfdr-
skeleton algorithm.
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) N=15 N=20 N=25 N=30
D

=
2

0.5 8.88e-04 (2.57e-04) 5.93e-04 (2.25e-04) 3.94e-04 (1.60e-04) 3.24e-04 (1.15e-04)
0.6 1.12e-03 (2.99e-04) 8.82e-04 (3.19e-04) 7.08e-04 (2.58e-04) 5.86e-04 (1.81e-04)
0.7 1.17e-03 (2.76e-04) 1.04e-03 (2.92e-04) 9.02e-04 (1.51e-04) 7.45e-04 (1.37e-04)
0.8 1.16e-03 (2.66e-04) 1.04e-03 (1.83e-04) 1.03e-03 (1.38e-04) 8.23e-04 (1.24e-04)
0.9 1.22e-03 (2.73e-04) 1.08e-03 (1.91e-04) 1.06e-03 (8.76e-05) 8.37e-04 (1.35e-04)
1.0 1.21e-03 (2.68e-04) 1.11e-03 (2.09e-04) 1.12e-03 (1.04e-04) 8.31e-04 (1.05e-04)

D
=
3

0.5 1.33e-03 (3.42e-04) 1.01e-03 (1.86e-04) 6.74e-04 (1.54e-04) 5.49e-04 (1.08e-04)
0.6 1.44e-03 (3.46e-04) 1.19e-03 (1.63e-04) 1.08e-03 (2.08e-04) 7.97e-04 (8.83e-05)
0.7 1.43e-03 (2.41e-04) 1.20e-03 (1.10e-04) 1.09e-03 (1.51e-04) 7.19e-04 (7.80e-05)
0.8 1.36e-03 (1.38e-04) 1.17e-03 (9.36e-05) 1.10e-03 (1.20e-04) 6.48e-04 (9.32e-05)
0.9 1.35e-03 (1.34e-04) 1.24e-03 (1.03e-04) 1.10e-03 (8.31e-05) 6.19e-04 (6.57e-05)
1.0 1.39e-03 (1.72e-04) 1.29e-03 (1.01e-04) 1.14e-03 (9.77e-05) 5.98e-04 (4.86e-05)

Table 4: The average ratios (with their standard deviations in brackets) of the computational time
spent on the FDR control to that spent on the statistical tests during each run of the PCfdr*-
skeleton algorithm.

3.2 Applications to Real fMRI Data

We applied the PCfdr-skeleton and the PC-skeleton algorithms to real-world research tasks, study-
ing the connectivity network between brain regions using functional magnetic resonance imaging
(fMRI). The purpose of the applications is to check whether the two algorithms correctly curb the
error rates in real world applications. The purpose of the applications is not, and also should not
be, to answer the question “which algorithm, the PCfdr-skeleton or the PC-skeleton, is superior?”,
for the following reasons. Basically, the two algorithms control different error rates between which
there is not a superior relationship (see Appendix C). Secondly, the error rate of interest for a spe-
cific application is selected largely not by mathematical superiority, but by researchers’ interest and
the scenario of research (see Appendix C). Thirdly, the simulation study has clearly revealed the
properties of and the differences (not superiority) between the two algorithms. Lastly, the approx-
imating graphical models behind the real fMRI data are unknown, so the comparison on the real
fMRI data is rough, rather than rigorous.

The two algorithms were applied to two real fMRI data sets, one including 11 discrete variables
and 1300 observations, and the other including 25 continuous variables and 1098 observations. The
first data set, denoted by “the bulb-squeezing data set”, was collected from 10 healthy subjects each
of whom was asked to squeeze a rubber bulb with their left hand at three different speeds or at
a constant force, as cued by visual instruction. The data involve eleven variables: the speed of
squeezing and the activities of the ten brain regions listed in Table 5. The speed of squeezing is
coded as a discrete variable with four possible values: the high speed, the medium speed, the low
speed, and the constant force. The activities of the brain regions are coded as discrete variables
with three possible values: high activation, medium activation and low activation. The data of each
subject include 130 time points. The data of the ten subjects are pooled together, so in total there
are 1300 time points. For details of the data set, please refer to Li et al. (2008).

The second data set, denoted by “the sentence-picture data set”, was collected from a single
subject performing a cognitive task. In each trial of the task, the subject was shown in sequence
an affirmative sentence and a simple picture, and then answered whether the sentence correctly
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Full Name Abbreviation
Left/Right anterior cingulate cortex L ACC, R ACC
Left/Right lateral cerebellar hemispheres L CER, R CER
Left/Right primary motor cortex L M1, R M1
Left/Right pre-frontal cortex L PFC, R PFC
Left/Right supplementary motor cortex L SMA, R SMA

Table 5: Brain regions involved in the bulb-squeezing data set. The prefixes “L” or “R” in the
abbreviations stand for “Left” or “Right”, respectively.
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Figure 6: The networks learned from the bulb-squeezing data set, by the PCfdr-skeleton and the PC-
skeleton algorithms. For ease of comparison, the networks learned by the two algorithms
are overlaid. Thin solid black edges are those connections detected by both the two
algorithms; thick solid red edges are those connections detected only by the PC-skeleton
algorithm. For the full names of the brain regions, please refer to Table 5.

described the picture. In half of the trials, the picture was presented first, followed by the sentence.
In the remaining trials, the sentence was presented first, followed by the picture. The data involve
the activities of 25 brain regions, as listed in Table 6, encoded as continuous variables, at 1098 time
points. For details of the data set, please refer to Keller et al. (2001) and Mitchell et al. (2004).

The PCfdr-skeleton and the PC-skeleton algorithms were applied to both the bulb-squeezing and
the sentence-picture data sets. Both the FDR level q of the PCfdr-skeleton algorithm and the type-I-
error-rate level % of the PC-skeleton algorithm were set at 5%. For the bulb-squeezing data set, all
of whose variables are discrete, conditional independence was tested with Pearson’s Chi-square test;
for the sentence-picture data set, all of whose variables are continuous, conditional independence
was tested with the t-test for partial correlation coefficients (Fisher, 1924).

The networks learned from the bulb-squeezing data set and the networks learned from the
sentence-picture data set are shown in Figures 6 and 7 respectively. For ease of comparison, the
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Full Name Abbreviation
Calcarine fissure CALC
Left/Right dorsolateral prefrontal cortex L DLPFC, R DLPFC
Left/Right frontal eye field L FEF, R FEF
Left inferior frontal gyrus L IFG
Left/Right inferior parietal lobe L IPL, R IPL
Left/Right intraparietal sulcus L IPS, R IPS
Left/Right inferior temporal lobule L IT, R IT
Left/Right opercularis L OPER, R OPER
Left/Right posterior precentral sulcus L PPREC, R PPREC
Left/Right supramarginal gyrus L SGA, R SGA
Supplementary motor cortex SMA
Left/Right superior parietal lobule L SPL, R SPL
Left/Right temporal lobe L T, R T
Left/Right triangularis L TRIA, R TRIA

Table 6: Brain regions involved in the sentence-picture data set. The prefixes “L” or “R” in the
abbreviations stand for “Left” or “Right”, respectively.
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Figure 7: The networks learned from the sentence-picture data set, by the PCfdr-skeleton and the
PC-skeleton algorithms. For ease of comparison, the networks learned by the two al-
gorithms are overlaid. Thin solid black edges are those connections detected by both
the two algorithms; thin dashed blue edges are those connections detected only by the
PCfdr-skeleton algorithm; thick solid red edges are those connections detected only by
the PC-skeleton algorithm. For the full names of the brain regions, please refer to Ta-
ble 6.
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Bulb-Squeezing
Assumed Truth Realized Detection

Exist Non-Exist Correct False FDR Type I Error Rate
PCfdr 17 11∗(11−1)

2 −17= 38
17 0 0.00% 0.00%

PC 17 1 5.56% 2.63%

Sentence-Picture
Assumed Truth Realized Detection

Exist Non-Exist Correct False FDR Type I Error Rate
PCfdr 39 25∗(25−1)

2 −39= 261
39 3 7.14% 1.14%

PC 39 12 23.5% 4.60%

Table 7: The realized error rates of the PCfdr-skeleton and the PC algorithms on the bulb-squeezing
and sentence-picture data sets, under the TI assumption that all and only those connections
detected by both of the two algorithms truly exist.

networks learned by the two algorithms are overlaid. Thin solid black edges are those connections
detected by both the two algorithms; thin dashed blue edges are those detected only by the PCfdr-
skeleton algorithm; thick solid red edges are those detected only by the PC-skeleton algorithm. In
Figure 6, there are 17 thin solid black edges, 0 thin dashed blue edge and 1 thick solid red edge; in
Figure 7, there are 39 thin solid black edges, 3 thin dashed blue edges and 12 thick solid red edges.

The results intuitively, though not rigorously, support our expectation of the performances of
the two algorithms in real world applications. First, since the data sets are relatively large, with the
sample sizes more than 1000, it is expected that both algorithms will recover many of the existing
connections, and consequently the networks recovered by the two algorithms may share many com-
mon connections. This is consistent with the fact that in Figures 6 and 7 there are many thin solid
black edges, that is, the connections recovered by both algorithms.

Second, since the PCfdr-skeleton algorithm is designed to control the FDRwhile the PC-skeleton
algorithm to control the type I error rate, it is expected that the two algorithms will control the
corresponding error rate under or around the pre-defined level, which is 5% in this study. To verify
whether the error rates were controlled as expected, we need to know which connections really exist
and which do not. Unfortunately, this is very difficult for real data sets, because unlike the simulated
data, the true models behind the real data are unknown, and in the literature, researchers usually
tend to report evidences supporting the existence of connections rather than supporting the non-
existence. However, since the sample sizes of the two data sets are relatively large, more than 1000,
we can speculate that both of the two algorithms have recovered most of the existing connections.
Extrapolating this speculation a bit, we intuitively assume that those connections detected by both
of the two algorithms truly exist while all the others do not. In other words, we assume that all
and only the thin black edges in the figures truly exist. We refer to this assumption as the “True
Intersection” (TI) assumption. The statistics about Figures 6 and 7, under the TI assumption, are
listed in Table 7. The realized FDR of the PCfdr-skeleton algorithm on the bulb-squeezing and
sentence-picture data sets are 0.00% and 7.14%, respectively; the realized type I error rate of the
PC-skeleton algorithm on the bulb-squeezing and sentence-picture data sets are 2.63% and 4.60%,
respectively. Considering that the realized error rate, as a statistic extracted from just a trial, may
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slightly deviate from its expected value, these results, derived under the TI assumption, support that
the two algorithms controlled the corresponding error rate under the pre-defined level 5%.

Third, according to Eq. (2), the sparser and the larger the true network is, the higher the FDR
of the PC-skeleton algorithm will be. For the bulb-squeezing data set, there are 11 vertices, and
under the TI assumption, 17 existing connections and 38 non-existing connections. In this case, the
realized FDR of the PC-skeleton algorithm is only 5.56% (Table 7). For the sentence-picture data
set, there are 25 vertices, and under the TI assumption, 39 existing connections and 261 non-existing
connections. In this case, the realized FDR of the PC-skeleton algorithm rises to 23.5% (Table 7).
This notable increase of the realized FDR is consistent with the prediction based on Eq. (2).

It should be noted that the preceding arguments are rough rather than rigorous, since they are
based on the TI assumption rather than the true models behind the data. However, because the true
models behind the real data are unknown, the TI assumption is a practical and intuitive approach to
assess the performance of the two algorithms in the two real world applications.

4. Conclusions and Discussions

We have proposed a modification of the PC algorithm, the PCfdr-skeleton algorithm, to curb the false
discovery rate (FDR) of the skeleton of the learned Bayesian networks. The FDR-control procedure
embedded into the PC algorithm collectively considers the hypothesis tests related to the existence
of multiple edges, correcting the effect of multiple hypothesis testing. Under mild assumptions,
it is proved that the PCfdr-skeleton algorithm can control the FDR under a user-specified level q
(q > 0) at the limit of large sample sizes (see Theorem 2). In the cases of moderate sample size
(about several hundred), empirical experiments have shown that the method is still able to control
the FDR under the user-specified level. The PCfdr*-skeleton algorithm, a heuristic modification of
the proposed method, has shown better performance in the simulation study, steadily controlling
the FDR closely around the user-specified level and gaining more detection power, although its
asymptotic performance has not been theoretically proved. Both the PCfdr-skeleton algorithm and
its heuristic modification can asymptotically recover all the edges of the true DAG (see Theorem
1). The idea of controlling the FDR can be extended to other constraint-based methods, such as
the inductive causation (IC) algorithm (see Pearl, 2000, pages 49–51) and the fast-causal-inference
(FCI) algorithm (see Spirtes et al., 2001, pages 142–146).

The simulation study has also shown that the extra computation spent on achieving the FDR
control is almost negligible when compared with that already spent by the PC algorithm on statistical
tests of conditional independence. The computational complexity of the new algorithm is closely
comparable with that of the PC algorithm.

As a modification based on the PC algorithm, the proposed method is modular, consisting of
the PC search strategy, statistical tests of conditional independence and an FDR-control procedure.
Different statistical tests and FDR-control procedures can be “plugged in”, depending on the data
type and the statistical model. Thus, the method is applicable to any models for which statistical
tests of conditional independence are available, such as discrete models and Gaussian models.

It should be noted that the PCfdr-skeleton algorithm is not proposed to replace the PC-skeleton
algorithm. Instead, it provides an approach to controlling the FDR, a certain error-rate criterion
for testing the existence of multiple edges. When multiple edges are involved in structure learning,
there are different applicable error-rate criteria, such as those listed in Table 2. The selection of these
criteria depends on researchers’ interest and the scenarios of studies, which is beyond the scope of
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this paper. When the FDR is applied, the PCfdr-skeleton algorithm is preferable; when the type I
error rate is applied, the PC-skeleton algorithm is preferable. The technical difference between the
two algorithms is that the PCfdr-skeleton algorithm adaptively adjusts the type I error rate according
to the sparseness of the network to achieve the FDR control, while the PC-skeleton algorithm fixes
the type I error rate.

Currently the FDR control is applied only to the skeleton of the graph, but not to the directions
of the edges yet. The final output of the PC algorithm is a partially directed acyclic graph that
uniquely represents an equivalence class of DAGs, so a possible improvement for the PCfdr-skeleton
algorithm is to extend the FDR control to the directions of the recovered edges. Because both type
I and type II errors may lead to wrong directions in the later steps of the PC algorithm, minimizing
direction errors may lead to a related, yet different, error-control task.

The asymptotic performance of the PCfdr-skeleton algorithm has only been proved under the
assumption that the number of vertices is fixed. Its behavior when both the number of vertices and
the sample size approach infinity has not been studied yet. Kalisch and Bühlmann (2007) proved
that for Gaussian Bayesian networks, the PC algorithm consistently recovers the equivalence class
of the underlying sparse DAG, as the sample size m approaches infinity, even if the number of
vertices N grows as quickly as O(m!) for any 0 < ! < ". Their idea is to adaptively decrease the
type I error rate % of the PC-skeleton algorithm as both the number of vertices and the sample size
increase. It is desirable to study whether similar behavior can be achieved with the PCfdr-skeleton
algorithm if the FDR level q is adjusted appropriately as the sample size increases.

A Matlab® package of the PCfdr-skeleton algorithm and its heuristic modification is download-
able at www.junningli.org/software.
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Appendix A. Proof of Theorems

To assist the reading, we list below notations frequently used in the proof:

G∼
true : the skeleton of the true underlying Bayesian network.

Aa∼b : the event that edge a∼ b is in the graph recovered by the PCfdr-skeleton algorithm.

AE∼
true : AE∼

true =
T

a∼b∈E∼
true

Aa∼b, the joint event that all the edges in G∼
true, the skeleton of the true DAG,

are recovered by the PCfdr-skeleton algorithm.

E!

true : the set of the undirected edges that are not in G∼
true.

pa∼b : the value of pmaxa∼b when the PCfdr-skeleton algorithm stops.

C∗
a∼b : a certain vertex set that d-separates a and b in Gtrue and that is also a subset of either

adj(a,G∼
true) \ {b} or adj(b,G∼

true) \ {a}, according to Proposition 1. C∗
a∼b is defined only

for vertex pairs that are not adjacent in the true DAG Gtrue.
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p∗a∼b : the p-value of testing Xa⊥Xb|XC∗
a∼b
. The conditional-independence relationship may not be

really tested during the process of the PCfdr-skeleton algorithm, but p∗a∼b can still denote the
value as if the conditional-independence relationship was tested.

H∗: the value in Eq. (1) that is either H or H(1+ 1/2, . . . ,+1/H), depending on the assumption
of the dependency of the p-values.

Lemma 1 If as m approaches infinity, the probabilities of K events Ai(m), · · · ,AK(m) approach 1
at speed

P(Ai(m)) = 1−o(&(m))

where lim
m→"

&(m) = 0 and K is a finite integer, then the probability of the joint of all these events
approaches 1 at speed

P

(

K
\

i=1
Ai(m)

)

≥ 1−Ko(&(m))

as m approaches infinity.

Proof

∵

K
T

i=1
Ai(m) =

K
S

i=1
A i(m).

∴ P
(

K
T

i=1
Ai(m)

)

= 1−P
(

K
S

i=1
A i(m)

)

≥ 1−
K
'
i=1

P(A i(m))

= 1−
K
'
i=1

[1−P(Ai(m))] = 1−
K
'
i=1

o(&(m)) = 1−Ko(&(m)).

Corollary 1 If Ai(m), · · · ,AK(m) are a finite number of events whose probabilities each approach
1 as m approaches infinity:

lim
m→"

P(Ai(m)) = 1,

then the probability of the joint of all these events approaches 1 as m approaches infinity:

lim
m→"

P

(

K
\

i=1
Ai(m)

)

= 1.

Lemma 2 If there are F (F ≥ 1) false hypotheses among H tested hypotheses, and the p-values
of the all the false hypotheses are smaller than or equal to F

H∗ q, where H∗ is either H or H(1+
1/2, . . . ,+1/H), depending on the assumption of the dependency of the p-values, then all the F
false hypotheses will be rejected by the FDR procedure, Algorithm 2.

Proof
Let pi (i = 1, · · · ,H) denote the p-value of the ith hypothesis, p f denote the maximum of the p-
values of the F false hypotheses, and r f denote the rank of p f in the ascending order of {pi}i=1,··· ,H .
∵ p f is the maximum of the p-values of the F false hypotheses.
∴ r f = |{pi|pi ≤ p f }|≥ F .
∴

H∗

r f p f ≤
H∗

F p f .
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∵ p f ≤ F
H∗ q.

∴
H∗

r f p f ≤
H∗

F p f ≤ q.
∴ Hypotheses with p-values not greater than p f will be rejected.
∵ The p-values of the F false hypotheses are not greater than p f .
∴ All the F false hypotheses will be rejected by the FDR procedure, Algorithm 2.

Proof of Theorem 1
If there is not any edge in the true DAG Gtrue, then the proof is trivially E∼

true = /0 ⊆ E∼. In the
following part of the proof, we assume E∼

true ,= /0. For the PCfdr-skeleton algorithm and its heuris-
tic modification, whenever the FDR procedure, Algorithm 2, is invoked, pmaxa∼b is always less than
max

C∈V\{a,b}
{pa⊥b|C}, and the number of p-values input to the FDR algorithm is always not more than

C2N . Thus, according to Lemma 2, if

max
a∼b∈E∼

true

{

max
C∈V\{a,b}

{pa⊥b|C}
}

≤
|E∼
true|

C2N'
C2N
i=1

1
i

q, (5)

then all the true connections will be recovered by the PCfdr-skeleton algorithm and its heuristic
modification. Let A ′

a⊥b|C denote the event

pa⊥b|C ≤
|E∼
true|

C2N'
C2N
i=1

1
i

q,

A ′
E∼
true
denote the event of Eq. (5), and AE∼

true denote the event that all the true connections are recov-
ered by the PCfdr-skeleton algorithm and its heuristic modification.
∵ A ′

E∼
true
is a sufficient condition for AE∼

true , according to Lemma 2.
∴ AE∼

true ⊇ A ′
E∼
true
.

∴ P(AE∼
true) ≥ P(A ′

E∼
true

).
∵ A ′

E∼
true
is the joint of a limited number of events as

A
′
E∼
true

=
\

a∼b∈E∼
true

\

C⊆V\{a,b}
A

′
a⊥b|C,

and lim
m→"

P(A ′
a⊥b|C) = 1 according to Assumption (A3).

∴ According to Corollary 1, lim
m→"

P(A ′
E∼
true

) = 1.
∴ 1≥ lim

m→"
P(AE∼

true) ≥ lim
m→"

P(A ′
E∼
true

) = 1.
∴ lim

m→"
P(AE∼

true) = 1.

Lemma 3 Given any FDR level q > 0, if the p-value vector P = [p1, · · · , pH ] input to Algorithm
2 is replaced with P′ = [p′1, · · · , p′H ], such that (1) for the those hypotheses that are rejected when
P is the input, p′i is equal to or less than pi, and (2) for all the other hypotheses, p′i can be any
value between 0 and 1, then the set of rejected hypotheses when P′ is the input is a superset of those
rejected when P is the input.
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Proof
Let R and R′ denote the sets of the rejected hypotheses when P and P′ are respectively input to the
FDR procedure.

If R= /0, then the proof is trivially R′ ⊇ /0= R.
If R ,= /0, let us define % = max

i∈R
pi and %′ = max

i∈R
p′i. Let r = |R| denote the rank of % in the

ascending order of P and r′ denote the rank of %′ in the ascending order of P′.
∵ p′i ≤ pi for all i ∈ R.
∴ %′ ≤ %.
∵ %′ =max

i∈R
p′i.

∴ r′ ≥ |R| = r.
∵

H∗

r %≤ q.
∴

H∗

r′ %
′ ≤ H∗

r %≤ q.
∴When P′ is the input, hypotheses with p′i smaller than or equal to %′ will be rejected.
∵ p′i ≤ %′,∀i ∈ R.
∴ R⊆ R′, equivalently R′ ⊇ R.

Corollary 2 Given any FDR level q> 0, if the p-value vector P= [p1, · · · , pH ] input to Algorithm
2 is replaced with P′ = [p′1, · · · , p′H ] such that p′i ≤ pi for all i = 1, · · · ,H, then the set of rejected
hypotheses when P′ is the input is a superset of those rejected when P is the input.

Proof of Theorem 2
Let E∼

stop and E!

stop denote the undirected edges respectively recovered and removed by the PCfdr-
skeleton algorithm when the algorithm stops. Let sequence Pmax1 , · · · ,PmaxK denote the values of Pmax
when the FDR procedure is invoked at step 12 as the algorithm progresses, in the order of the update
process of Pmax, and let E!

k denote the set of removable edges indicated by the FDR procedure, with
Pmaxk as the input. E!

k may include edges that have already been removed.
∵ The PCfdr-skeleton algorithm accumulatively removes edges in E!

k .

∴ E!

stop =
K
S

k=1
E!

k .

∵ Pmax is updated increasingly at step 10 of the algorithm.
∴ According to Corollary 2, E!

1 ⊆ · · ·⊆ E!

K .

∴ E!

stop =
K
S

k=1
E!

k = E!

K .

Let P= {pa∼b} denote the value of Pmax when the PCfdr-skeleton algorithm stops.
∵ The FDR procedure is invoked whenever Pmax is updated.
∴ The value of Pmax does not change after the FDR procedure is invoked for the last time.
∴ P= PmaxK .
∴ E∼

stop is the same as the edges recovered by directly applying the FDR procedure to P.

The theorem is proved through comparing the result of the PCfdr-skeleton algorithm with that
of applying the FDR procedure to a virtual p-value set constructed from P. The virtual p-value set
P∗ is defined as follows.

For a vertex pair a ∼ b that is not adjacent in the true DAG Gtrue, let C∗
a∼b denote a certain

vertex set that d-separates a and b in Gtrue and that is also a subset of either adj(a,G∼
true) \ {b} or
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adj(b,G∼
true)\{a}. Let us define P∗ = {p∗a∼b} as:

p∗a∼b =

{

pa⊥b|C∗
a∼b

: a∼ b ∈ E!

true,
pa∼b : a∼ b ∈ E∼

true.

Though pa⊥b|C∗
a∼b
may not be actually calculated during the process of the algorithm, pa⊥b|C∗

a∼b
still

can denote the value as if it was calculated. Let us design a virtual algorithm, called Algorithm∗, that
recovers edges by just applying the FDR procedure to P∗, and let E∼∗ denote the edges recovered
by this virtual algorithm. This algorithm is virtual and impracticable because the calculation of P∗

depends on the unknown E∼
true, but this algorithm exists because E∼

true exists. For any vertex pair a
and b that is not adjacent in Gtrue:
∵ Xa and Xb are conditional independent given XC∗

a∼b
.

∴ pa⊥b|C∗
a∼b
follows the uniform distribution on [0, 1].

∴ The FDR of Algorithm∗ is under q.

When all the true edges are recovered by the PCfdr-skeleton algorithm, that is, E∼
true ⊆ E∼

stop,
the conditional independence between Xa and Xb given XC∗

a∼b
is tested for all the falsely recovered

edges a ∼ b ∈ E!

true
T

E∼
stop, because for these edges, subsets of adj(a,Gtrue) \ {b} and subsets of

adj(a,Gtrue)\{b} have been exhaustively searched andC∗
a∼b is one of them. Therefore, pa∼b≥ p∗a∼b

for all a∼ b∈ E∼
stop when event AE∼

true happens. Consequently, according to Lemma 3, if event AE∼
true

happens, E∼
stop ⊆ E∼∗.

Let q(E∼) denote the realized FDR of reporting E∼ as the recovered skeleton of the true DAG:

q(E∼) =

{

|E∼ T

E!

true|
|E∼| : E∼ ,= /0,

0 : E∼ = /0.

The FDRs of the PCfdr-skeleton algorithm and Algorithm∗ are E[q(E∼
stop)] and E[q(E∼∗)] respec-

tively. Here E[x] means the expected value of x.

∵ E[q(E∼
stop)] = E[q(E∼

stop)|AE∼
true ]P(AE∼

true)+E[q(E∼
stop)|AE∼

true ]P(AE∼
true)

≤ Q+P(AE∼
true), where Q= E[q(E∼

stop)|AE∼
true ]P(AE∼

true).
∴ limsup

m→"
E[q(E∼

stop)] ≤ limsup
m→"

Q+ limsup
m→"

P(AE∼
true).

∵ lim
m→"

P(AE∼
true) = 1, according to Theorem 1.

∴ limsup
m→"

P(AE∼
true) = lim

m→"
P(AE∼

true) = 0.

∴ limsup
m→"

E[q(E∼
stop)] ≤ limsup

m→"
Q.

∵ Q≤ E[q(E∼
stop)].

∴ limsup
m→"

Q≤ limsup
m→"

E[q(E∼
stop)].

∴ limsup
m→"

E[q(E∼
stop)] = limsup

m→"
Q= limsup

m→"
E[q(E∼

stop)|AE∼
true ]P(AE∼

true).

Similarly, limsup
m→"

E[q(E∼∗)] = limsup
m→"

E[q(E∼∗)|AE∼
true ]P(AE∼

true).

∵ Given event AE∼
true , E∼

true ⊆ E∼
stop ⊆ E∼∗.
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∴ Given event AE∼
true ,

q(E∼
stop) =

|E∼
stop|− |E∼

true|
|E∼
stop|

= 1−
|E∼
true|

|E∼
stop|

≤ 1−
|E∼
true|

|E∼∗|
=

|E∼∗|− |E∼
true|

|E∼∗|
= q(E∼∗).

∴ limsup
m→"

E[q(E∼
stop)|AE∼

true ]P(AE∼
true) ≤ limsup

m→"
E[q(E∼∗)|AE∼

true ]P(AE∼
true).

∴ limsup
m→"

E[q(E∼
stop)] ≤ limsup

m→"
E[q(E∼∗)].

∵ Algorithm∗ controls the FDR under q.
∴ E[q(E∼∗)] ≤ q.
∴ limsup

m→"
E[q(E∼∗)] ≤ q.

∴ limsup
m→"

E[q(E∼
stop)] ≤ q.

Appendix B. Statistical Tests with Asymptotic Power Equal to One

Assumption (A3) on the asymptotic power of detecting conditional dependence appears demanding,
but actually the detection power of several standard statistical tests approaches one as the number of
identically and independently sampled observations approaches infinity. Listed as follows are two
statistical tests satisfying Assumption (A3) for Gaussian models or discrete models.

B.1 Fisher’s z Transformation on Sample Partial-correlation-coefficients for Gaussian
Models

In multivariate Gaussian models, Xa and Xb are conditional independent given XC if and only if the
partial-correlation-coefficient of Xa and Xb given XC is zero (see Lauritzen, 1996, pages 129–130).
The partial-correlation-coefficient + is defined as:

+ = Cov [Ya,Yb]√
Var[Ya]Var[Yb]

,

Ya = Xa− <Wa,XC >,
Yb = Xb− <Wb,XC >,
Wa = argmin

w
E[(Xa− < w,XC >)2],

Wb = argmin
w
E[(Xb− < w,XC >)2].
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The sample partial-correlation-coefficient +̂ can be calculated from m i.i.d. samples [xai, xbi, xCi]
(i= 1, · · · ,m) as:

+̂ =
1
m

m
'
i=1

[(ŷai−ya)(ŷbi−yb)]
√

1
m

m
'
i=1

(ŷai−ya)2 1m
m
'
i=1

(ŷbi−yb)2
,

ya = 1
m

m
'
i=1

ŷai,

yb = 1
m

m
'
i=1

ŷbi,

ŷai = xai− < Ŵa,xCi >,
ŷbi = xbi− < Ŵb,xCi >,

Ŵa = argmin
w

m
'
i=1

(xai− < w,xCi >)2,

Ŵb = argmin
w

m
'
i=1

(xbi− < w,xCi >)2.

The asymptotic distribution of z(+̂), where z(x), the Fisher’s z transformation (see Fisher, 1915),
is defined as

z(x) =
1
2
log

1+ x
1− x

,

is the normal distribution with mean z(+) and variance 1/(m− |C|−3) (see Anderson, 1984, pages
120–134). When the type I error rate is kept lower than %, the power of detecting + ,= 0 with Fisher’s
z transformation is the probability that

√

m− |C|−3 z(+̂) falls in the range (−",,−1(%/2)] or
[,−1(1−%/2),+"), where , is the cumulative distribution function of the standard normal dis-
tribution and ,−1 is its inverse function. Without loss of generality, we assume the true partial-
correlation-coefficient + is greater than zero, then the asymptotic power is

lim
m→"

Power≥ lim
m→"

P
(

√

m− |C|−3 z(+̂) ≥,−1(1−%/2)
)

= lim
m→"

(

1−,[,−1(1−%/2)−
√

m− |C|−3 z(+)]
)

= (1−,[−"]) = 1.

B.2 The Likelihood-ratio Test Generally Applicable to Nested Models

The likelihood ratio is the ratio of the maximum likelihood of a restricted model to that of a saturated
model (see Neyman and Pearson, 1928). Let f (x,-) denote the probability density function of
a random vector x parametrized with - = [-1, · · · ,-k]. The null hypothesis restricts - to a set .
specified with r (r ≤ k) constraints

/1(-) = /2(-) = · · · = /r(-) = 0.

Given i.i.d. observations x1, · · · ,xm, let L(-) denote the likelihood function

L(-) =
m

0
i=1

f (xi,-).

The likelihood ratio 1 given the observations is defined as

1=
supL(-)
sup
-∈.

L(-)
.
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Wald (1943) has proved that under certain assumptions on f (x,-) and /1(-), · · · ,/r(-), the limit
distribution of the statistic −2log1 is the 22r distribution with r degrees of freedom if the null
hypothesis true. If the null hypothesis is not true, the distribution of −2log1 approaches the non-
central 22r (!) distribution with r degrees of freedom and the non-central parameter

! = mD(-) ≥ 0,

D(-) =
k
'
i=1

k
'
j=1

/i(-)/ j(-)

k
'
p=1

k
'
q=1

(/i
(-p

(/ j
(-p

E
[

− (2 f (x,-)
(-p(-q

]

.

If D(-) > 0, then lim
m→"

!=". Let t (t <") denote the threshold of rejecting the null hypothesis with
type I error rate under % (%> 0). The asymptotic power of detecting a - that is not in . and whose
D(-) is greater than 0 is lim

!→"
P(22r (!) > t). The mean and the variance of the 22r (!) distribution is

u= r+! and 32 = 2(r+2!), respectively. When ! is large enough,

P
(

22r (!) > t
)

≥ P
(

t < 22r (!) < u+(u− t)
)

= 1−P
(

|22r (!)−u|≥ u− t
)

.

According to Chebyshev’s inequality,

P
(

|22r (!)−u|≥ u− t
)

≤
32

(u− t)2
=

2(r+2!)
(r+!− t)2

.

∴When ! is large enough, P(22r (!) > t) ≥ 1− 2(r+2!)
(r+!−t)2 .

∵ lim
m→"

!= " and both r and t are fixed.

∴ lim
m→"

2(r+2!)
(r+!−t)2 = 0.

∴ lim
m→"

P(22r (!) > t) = 1.

Appendix C. Error Rates of Interest

Statistical decision processes usually involve choices between negative hypotheses and their alter-
natives, positive hypotheses. In the decision, there are basically two sources of errors: the type
I errors, that is, falsely rejecting negative hypotheses when they are actually true; and the type II
errors, that is, falsely accepting negative hypotheses when their alternatives, the positive hypothe-
ses are actually true. In the context of learning graph structures, a negative hypothesis could be
that an edge does not exist in the graph, while the positive hypothesis could be that the edge does
exist. It is generally impossible to absolutely prevent the two types of errors simultaneously, be-
cause observations of a limited sample size may appear to support a positive hypothesis more than
a negative hypothesis even when actually the negative hypothesis is true, or vice versa, due to the
stochastic nature of random sampling. Moreover, the two types of errors generally contradict each
other. Given a fixed sample size and a certain statistic extracted from the data, decreasing the type
I errors will increase the type II errors, and vice versa. To guarantee the absolute prevention of the
type I errors in any situations, one must accept all negative hypotheses, which will generally lead
the type II error rate to be one, and vice versa. The contradiction between the two types of errors is
clearly revealed by the monotone increase of receiver operating characteristic (ROC) curves. Thus
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the errors must be controlled by setting a threshold on a certain type of errors, or trading off between
them, for instance, by minimizing a certain lost function associated with the errors according to the
Bayesian decision theory.

Rooted in the two types of errors, there are several different error-rate criteria (as listed in
Table 2) for problems involving simultaneously testing multiple hypotheses, such as verifying the
existence of edges in a graph. The type I error rate is the expected ratio of the type I errors to
all the negative hypotheses that are actually true; the type II error rate is the expected ratio of the
type II errors to all the positive hypotheses that are actually true; the false discovery rate (FDR)
(see Benjamini and Yekutieli, 2001; Storey, 2002), is the expected ratio of falsely accepted positive
hypotheses to all those accepted positive hypotheses; the family-wise error rate is the probability
that at least one of the accepted positive hypotheses is actually wrong.

Generally, there are no mathematically or technically superior relationships among these error-
rate criteria. Each of these error rates may be favoured in certain research scenarios. For example:

• We are diagnosing a dangerous disease whose treatment is so risky that may cause the loss of
eyesight. Due to the great risk of the treatment, we hope that less than 0.1% of healthy people
will be falsely diagnosed as patients of the disease. In this case, the type I error rate should
be controlled under 0.1%.

• We are diagnosing cancer patients. Because failure in detecting the disease will miss the
potential chance to save the patient’s life, we hope that 95% of the cancer patients will be
correctly detected. In this case, the type II error rate should be controlled under 5%.

• In a pilot study, we are selecting candidate genes for a genetic research on Parkinson’s disease.
Because of the limited funding, we can only study a limited number of genes in the afterward
genetic research, so when selecting candidate genes in the pilot study, we hope that 95% of
the selected candidate genes are truly associated with the disease. In this case, the FDR will
be chosen as the error rate of interest and should be controlled under 5%.

• We are selecting electronic components to make a device. Any error in any component will
cause the device to run out of order. To guarantee the device functions well with a probability
higher than 99%, the family-wise error rate should be controlled under 1%.

In these examples, the particular error-rate criteria are selected by reasons beyond mathematical or
technical superiority, but by the researchers’ interest, to minimize a certain lost function associated
with the errors according to the Bayesian decision theory. Learning network structures in real world
applications may face scenarios similar to the above examples.

The excellent discrimination between negative hypotheses and positive hypotheses cannot be
achieved by “smartly” setting a threshold on a “superior” error-rate criterion. Setting a threshold
on a certain type of error rate is just choosing a cut-point on the ROC curve. If the ROC curve
is not sharp enough, any cut-point on the curve away from the ends (0,0) and (1,1) still leads to
considerable errors. To discriminate more accurately between a negative hypothesis and a positive
hypothesis, one must design a better statistic or increase the sample size to achieve a sharper ROC
curve.
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Abstract
We introduce novel online Bayesian methods for the identification of a family of noisy recurrent
neural networks (RNNs). We present Bayesian active learning techniques for stimulus selection
given past experiences. In particular, we consider the unknown parameters as stochastic variables
and use A-optimality and D-optimality principles to choose optimal stimuli. We derive myopic cost
functions in order to maximize the information gain concerning network parameters at each time
step. We also derive the A-optimal and D-optimal estimations of the additive noise that perturbs the
dynamical system of the RNN. Here we investigate myopic as well as non-myopic estimations, and
study the problem of simultaneous estimation of both the system parameters and the noise. Em-
ploying conjugate priors our derivations remain approximation-free and give rise to simple update
rules for the online learning of the parameters. The efficiency of our method is demonstrated for a
number of selected cases, including the task of controlled independent component analysis.
Keywords: active learning, system identification, online Bayesian learning, A-optimality, D-
optimality, infomax control, optimal design

1. Introduction

When studying systems in interactive and online fashion, it is of high relevance to facilitate fast
information gain during the interaction (Fedorov, 1972; Cohn, 1994). As an example, consider
experiments aiming at the description of the receptive field of different neurons. These experi-
ments look for those stimuli that maximize the response of the given neuron (deCharms et al., 1998;
Földiák, 2001). Neurons, however, might change due to the investigation, so the minimization of
interaction is highly desired. Different techniques have been developed to speed up the identifica-
tion procedure. One approach searches for stimulus distribution that maximizes mutual information
between stimulus and response (Machens et al., 2005). A recent technique assumes that the un-
known system belongs to the family of generalized linear models (Lewi et al., 2007) and treats the
parameters as probabilistic variables. Then the goal is to find the optimal stimuli by maximizing
mutual information between the parameter set and the system’s response.

This example motivates our interest in active learning (MacKay, 1992; Cohn et al., 1996; Fuku-
mizu, 1996; Sugiyama, 2006) of noisy recurrent artificial neural networks (RNNs), when we have
the freedom to interrogate the network and to measure its responses.
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In active learning, the training set may be modified by the learning process itself based on the
progress experienced so far. The goal of this modification is to maximize the expected improvement
of the precision of the estimation. This idea can for example be used to improve generalization
capability in regression and classification tasks or to better estimate hidden parameters. Theoretical
concepts have been formulated in the fields of Optimal Experimental Design, or Optimal Bayesian
Design (Kiefer, 1959; Fedorov, 1972; Steinberg and Hunter, 1984; Toman and Gastwirth, 1993;
Pukelsheim, 1993).

Although active learning is in the focus of current research interest, some relevant theoretical
issues are still unresolved. While there are promising studies showing that active learning may
outperform uniform sampling under certain conditions (Freund et al., 1997; Seung et al., 1992), in
other cases it has been proven that active learning has no advantage over non-adaptive algorithms.
For example, this is the case in compressed sensing (Castro et al., 2006a) and also for certain
function classes in the area of function approximation (Castro et al., 2006b). Even more problematic
is the observation that active learning heuristics may be less efficient than uniform sampling in some
situations (Schein, 2005).

There are several forms of active learning. The most relevant difference is in the definition of the
value of information. One of the simplest heuristics is the Uncertainty Sampling (US): US suggests
that in regression or in classification tasks one should choose those training examples, which have
the largest uncertainty in the value of the function or in the label of the class, respectively (Lewis
and Catlett, 1994; Lewis and Gale, 1994; Cohn et al., 1996). Although several US versions exist
with different measure of the uncertainty itself, they all lack robustness. The Query by Committee
method improves upon robustness (Seung et al., 1992; Freund et al., 1997): the committee of a few
models are trained on the existing training set and the next query points are selected to reduce the
disagreement among these models. The method of Roy and McCallum (2001) minimizes the direct
error, that is, it tries to choose training points to minimize the expected classification error directly.

In the literature there are other approaches, including decision theory based methods. The orig-
inal ideas were worked out in Raiffa and Schlaifer (1961) and Lindley (1971). The objective in
this method family is to choose the design such that the predicted value of a given utility function
become maximal. Numerous utility functions have been proposed. For example, if we aim to esti-
mate the unknown parameter θ, then one possible direction is the minimization of, for example, the
entropy or the standard deviation of the posterior distribution. If we minimize the entropy then we
arrive at the D-optimality principle (Bernardo, 1979; Stone, 1959). This principle is equivalent to
the information maximization method (also known as infomax principle) of Lewi et al. (2007). If
we intend to minimize the standard deviation then the result is the A-optimality principle (Duncan
and DeGroot, 1976). A special case is called the c-optimality principle (Chaloner, 1984) when the
goal is to estimate a linear projection of parameter θ (cTθ). There exist a number of other methods,
called alphabetical optimality and utility functions. For a review see, for example, Chaloner and
Verdinelli (1995). Although the original ideas belong to the field of optimal experimental design,
they have appeared also in active learning recently (MacKay, 1992; Tong and Koller, 2000; Schein
and Ungar, 2007).

Today, active learning is present almost in all fields of machine learning and there are many
popular applications on diverse areas, including Gaussian Processes (Krause and Guestrin, 2007),
Artificial Neural Networks (Fukumizu, 2000), Support Vector Machines (Tong and Koller, 2001b),
Generalized Linear Models (Bach, 2007; Lewi et al., 2007), Logistic Regression (Schein, 2005),
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learning the parameters and structure of Bayes nets (Tong and Koller, 2000, 2001a) and Hidden
Markov Models (Anderson and Moore, 2005).

Our framework is similar to the generalized linear model (GLM) approach used by Lewi et al.
(2007): we would like to choose interrogating, or ‘control’ inputs in order to (i) identify the pa-
rameters of the network and (ii) estimate the additive noise efficiently. From now on, we use the
terms control and interrogation interchangeably; control is the conventional expression, whereas
the word interrogation expresses our aims better. We apply online Bayesian learning (Opper and
Winther, 1999; Solla and Winther, 1999; Honkela and Valpola, 2003; Ghahramani, 2000). For
Bayesian methods, prior updates often lead to intractable posterior distributions such as a mixture
of exponentially numerous distributions. Here, we show that, for the model studied in this paper,
computations are both tractable and approximation-free. Further, the emerging learning rules are
simple. We also show that different stimuli are needed for the same RNN model depending on
whether the goal is to estimate the weights of the RNN or the additive perturbation (referred to as
‘driving noise’).

In this article we investigate the D-optimality, as well as the A-optimality principles. To the best
of our knowledge, neither of them has been applied to the typical non-spiking stochastic artificial
recurrent neural network model that we treat here.

The contribution of this paper can be summarized as follows: We use A-optimality and D-
optimality principles and derive cost functions and algorithms for (i) the learning of parameters of
the stochastic RNN and (ii) the estimation of its driving noise. We show that, (iii) using the D-
optimality interrogation technique, these two tasks are incoherent in the myopic (i.e., single step
look-ahead) control scheme: signals derived from this principle for parameter estimation are sub-
optimal (basically the worst possible) for the estimation of the driving noise and vice versa. (iv)
We show that for the case of noise estimation task the two principles, that is, A- and D-optimality
principles result in the same cost function. (v) For the A-optimality case, we derive equations for
the joined estimation of the noise and the parameters. On the contrary, we show also that (vi)
D-optimality cannot be applied on the same joined task. For the case of noise estimation, (vii) a
non-myopic multiple step look-ahead heuristics is introduced and we demonstrate its applicability
through numerical experiments.

The paper is structured as follows: In Section 2 we introduce our model. Section 3 concerns
the Bayesian equations of the RNN model. In Section 4 optimal control for parameter identification
is derived from the D-optimality principle. Section 5 is about the same task, but using the A-
optimality principle instead. Section 6 deals with our second task, when the goal is the estimation
of the driving noise of the RNN. Here we treat the D-optimality principle. Section 7 is about the
same problem, but for the A-optimality principle. We combine the two tasks for both optimality
principles in Section 8 and consider the cost functions for the joined estimation of the parameters
and the driving noise. All of these considerations concern myopic algorithms. In Section 9 a non-
myopic heuristics is introduced for the noise estimation task. Section 10 contains our numerical
experiments for a number of cases, including independent component analysis. The paper ends
with a short discussion and some conclusions (Section 11). Technical details of the derivations can
be found in the Appendix.
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2. The Model

Let P(e) = Ne(m,V) denote the probability density of a normally distributed stochastic variable e
with mean m and covariance matrix V. Let us assume that we have d simple computational units
called ‘neurons’ in a recurrent neural network:

rt+1 = g

(

I

!
i=0
Firt−i+

J

!
j=0
B jut+1− j + et+1

)

, (1)

where {et}, the driving noise of the RNN, denotes temporally independent and identically dis-
tributed (i.i.d.) stochastic variables and P(et) =Net (0,V), rt ∈Rd represents the observed activities
of the neurons at time t. Let ut ∈ Rc denote the control signal at time t. The neural network is
formed by the weighted delays represented by matrices Fi (i= 0, . . . , I) and B j ( j= 0, . . . ,J), which
connect neurons to each other and also the control components to the neurons, respectively. Control
can also be seen as the means of interrogation, or the stimulus to the network (Lewi et al., 2007).
We assume that function g : Rd → Rd in (1) is known and invertible. The computational units, the
neurons, sum up weighted previous neural activities as well as weighted control inputs. These sums
are then passed through identical non-linearities according to Eq. (1). Our goal is to estimate the
parameters Fi ∈ Rd×d (i = 0, . . . , I), B j ∈ Rd×c ( j = 0, . . . ,J) and the covariance matrix V, as well
as the driving noise et by means of the control signals.

In artificial neural network terms, (1) is in the form of rate code models. This is the typical
form for RNNs, but there are methods to approximate rate code description with spike codes and
vice versa. For the case of RNNs, the best is to compare Liquid State Machine, a spike code model
of Maass et al. (2002) with the Echo State Network, the corresponding rate code model of Jaeger
(2001). Rate code, very crudely, is the low pass filtered spike code, whereas spike code can be seen
as the response of integrate-and-fire neurons. We show that analytic cost functions emerge for the
rate code RNN model. Due to the applied conjugate priors, we can calculate the high dimensional
integrals involved in our derivations, and hence these derivations remain approximation-free and
give rise to simple update rules.

3. Bayesian Approach

Here we embed the estimation task into the Bayesian framework. First, we introduce the follow-
ing notations: xt+1 = [rt−I; . . . ;rt ;ut−J+1; . . . ;ut+1], yt+1 = g−1(rt+1),A= [FI, . . . ,F0,BJ, . . . ,B0]∈
Rd×m. With these notations, model (1) reduces to a linear equation

yt = Axt + et . (2)

In order to estimate the unknown quantities (parameter matrix A, noise et and its covariance matrix
V) in an online fashion, we rely on Bayes’ method. We assume that prior knowledge is available
and we update our posteriori knowledge on the basis of the observations. Control will be chosen
at each instant to provide maximal expected information concerning the quantities we have to esti-
mate. Starting from an arbitrary prior distribution of the parameters the posterior distribution needs
to be computed. This latter distribution, however, can be highly complex, so approximations are
applied. For example, assumed density filtering, when the computed posterior is projected to sim-
pler distributions, has been suggested (Boyen and Koller, 1998; Minka, 2001; Opper and Winther,
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1999). In order to avoid approximations, we apply the method of conjugated priors (Gelman et al.,
2003). For matrix A we assume a matrix valued normal distribution prior.

For the case of D-optimality principle, we shall use the inverted Wishart (IW) distribution as
our prior for covariance matrix V. This is the most general known conjugate prior distribution
for the covariance matrix of a normal distribution at present. For A-optimality, however, we keep
the derivations simple and assume that the covariance matrix has diagonal structure. In turn, we
replaced the IW assumption on the prior with the distribution of the Product of Inverted Gammas
(PIG).

We define the normally distributed matrix valued stochastic variable A ∈ Rd×m by using the
following quantities: M ∈ Rd×m is the expected value of A. V ∈ Rd×d is the covariance matrix
of the rows, and K ∈ Rm×m is the so-called precision parameter matrix that we shall modify in
accordance with the Bayesian update. Matrix K contains the estimations of the ‘Bayesian trainer’
about the precision of parameters in A. Informally, matrix K behaves as the inverse of a covariance
matrix. Upon each observation, matrix K is updated. The larger the eigenvalues of this matrix, the
smaller the variance ellipsoids of the posteriori estimations are.

BothK andV are positive semi-definite matrices. The density function of the stochastic variable
A is defined as:

NA(M,V,K) =
|K|d/2

|2"V|m/2 exp(−
1
2
tr((A−M)TV−1(A−M)K)),

where tr, | · |, and superscript T denote the trace operation, the determinant, and transposition,
respectively (see, e.g., Gupta and Nagar, 1999; Minka, 2000). We assume thatQ∈Rd×d is a positive
definite matrix and n> 0. Using these notations, the density of the InvertedWishart distribution with
parameters Q and n is as follows (Gupta and Nagar, 1999):

IW V(Q,n) =
1
Zn,d

1
|V|(d+1)/2

∣

∣

∣

∣

V−1Q
2

∣

∣

∣

∣

n/2

exp(−
1
2
tr(V−1Q)),

where Zn,d = "d(d−1)/4
d
#
i=1

$((n+1− i)/2) and $(.) denotes the gamma function.

Similarly, let V= diag(v) ∈ Rd×d diagonal covariance matrix with 0< v ∈ Rd diagonal values.
With the slight abuse of notation we will use later the v= diag(V) ∈ Rd term, too. Then the density
of PIG is defined as

PIGV(α,β) =
d

#
i=1

%&ii
$(&i)

v−&i−1i exp(−
%i
vi

),

where &i > 0 and %i > 0 are the shape and scale parameters respectively.
Now, one can rewrite model (2) as follows:

P(A|V) = NA(M,V,K), (3)
P(et |V) = Net (0,V), (4)

P(yt |A,xt ,V) = Nyt (Axt ,V), (5)

and P(V) = PIGV(α,β) or P(V) = IW V(Q,n) depending on whether we want to use A- or D-
optimality.
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4. D-Optimality Approach for Parameter Learning

Let us compute the D-optimal parameter estimation strategy for our RNN given by (1) and rewritten
into (3)-(5). Let us introduce two shorthands; θ = {A,V}, and {x} ji = {xi, . . . ,x j}. We choose
the control value in (1) at each instant to provide maximal expected information concerning the
unknown parameters. Assuming that {x}t1, {y}t1 are given, according to the infomax principle our
goal is to compute

argmax
ut+1

I(θ,yt+1;{x}t+11 ,{y}t1), (6)

where I(a,b;c) denotes the mutual information of stochastic variables a and b for fixed parameters
c. Let H(a|b;c) denote the conditional entropy of variable a conditioned on variable b and for fixed
parameter c. Note that

I(θ,yt+1;{x}t+11 ,{y}t1) = H(θ;{x}t+11 ,{y}t1)−H(θ|yt+1;{x}t+11 ,{y}t1),

holds (Cover and Thomas, 1991) and H(θ;{x}t+11 ,{y}t1) = H(θ;{x}t1,{y}t1) is independent from
ut+1, hence our task is reduced to the evaluation of the following quantity:

argmin
ut+1

H(θ|yt+1;{x}t+11 ,{y}t1) = (7)
= argmin

ut+1
−

Z

dyt+1P(yt+1|{x}t+11 ,{y}t1)
Z

dθP(θ|{x}t+11 ,{y}t+11 ) logP(θ|{x}t+11 ,{y}t+11 ).

In order to solve this minimization problem we need to evaluate P(yt+1|{x}t+11 ,{y}t1), the posterior
P(θ|{x}t+11 ,{y}t+11 ), and the entropy of the posterior, that is

R

dθP(θ|{x}t+11 ,{y}t+11 )
logP(θ|{x}t+11 ,{y}t+11 ), where P(a|b) denotes the conditional probability of variable a given con-
dition b. The main steps of these computations are presented below.

Assume that the a priori distributions P(A|V,{x}t1,{y}t1) = N (A|Mt ,V,Kt) and
P(V|{x}t1,{y}t1) = IW V(Qt ,nt) are known. Then the posterior distribution of θ is:

P(A,V|{x}t+11 ,{y}t+11 ) =
P(yt+1|A,V,xt+1)P(A|V,{x}t1,{y}t1)P(V|{x}t1,{y}t1)

P(yt+1|{x}t+11 ,{y}t1)
,

=
Nyt+1(Axt+1,V)NA(Mt ,V,Kt)IW V(Qt ,nt)

R

A
R

VNyt+1(Axt+1,V)NA(Mt ,V,Kt)IW V(Qt ,nt)
.

This expression can be rewritten in a more useful form: let K ∈ Rm×m and Q ∈ Rd×d be positive
definite matrices. Let A ∈ Rd×m, and let us introduce the density function of the matrix valued
Student-t distribution (Kotz and Nadarajah, 2004; Minka, 2000) as follows:

TA(Q,n,M,K) =
|K|d/2

"dm/2
Zn+m,d
Zn,d

|Q|n/2

|Q+(A−M)K(A−M)T |(m+n)/2 .

Now, we need the following lemma:

Lemma 4.1

Ny(Ax,V)NA(M,V,K)IW V(Q,n) =NA((MK+yxT )(xxT +K)−1,V,xxT +K)×

×IW V
(

Q+(y−Mx)(1−xT (xxT +K)−1x)(y−Mx)T ,n+1
)

×

×Ty
(

Q,n,Mx,1−xT (xxT +K)−1x
)

.
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The proof can be found in the Appendix.
Using this lemma, we can compute the posterior probabilities. We introduce the following

quantities:

't+1 = 1−xTt+1(xt+1xTt+1+Kt)
−1xt+1, (8)

nt+1 = nt +1,
Mt+1 = (MtKt +yt+1xTt+1)(xt+1xTt+1+Kt)

−1, (9)
Qt+1 = Qt +(yt+1−Mtxt+1)'t+1 (yt+1−Mtxt+1)T . (10)

For the posterior probabilities we have determined that

P(A|V,{x}t+11 ,{y}t+11 ) = NA(Mt+1,V,xt+1xTt+1+Kt), (11)
P(V|{x}t+11 ,{y}t+11 ) = IW V (Qt+1,nt+1) , (12)
P(yt+1|{x}t+11 ,{y}t1) = Tyt+1 (Qt ,nt ,Mtxt+1,'t+1) .

Now we are in the position to compute the entropy of the posterior distribution of θ = {A,V} using
the following lemma:

Lemma 4.2 The entropy of a stochastic variable with density function P(A,V) =
NA(M,V,K)IW V(Q,n) assumes the form − d

2 ln |K|+(m+d+1
2 ) ln |Q|+ f1,1(d,n), where f1,1(d,n)

depends only on d and n.

The proof can be found in the Appendix.
Lemmas 4.1 and 4.2 lead to the following corollary:

Corollary 4.3 For the entropy of a stochastic variable with posterior distribution P(A,V|x,y) it
holds that

H(A,V;x,y) = −
d
2
ln |xxT +K|+ f1,1(d,n)+(

m+d+1
2

) ln |Q+(y−Mx)'(y−Mx)T |.

We note that the following lemma also holds:

Lemma 4.4
Z

Ty (Q,n,µ,') ln |Q+(y−µ)'(y−µ)T |dy

is independent from both µ and ',

and thus we can compute the conditional entropy expressed in (7):

Lemma 4.5

H(A,V|y;x) =
Z

p(y|x)H(A,V;x,y)dy= −
d
2
ln |xxT +K|+ f1,2(Q,n,m),

where f1,2(Q,n,m) depends only on Q, n and m.
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Collecting all the terms, we arrive at the following intriguingly simple expression

uoptt+1 = argmin
ut+1

Z

p
(

yt+1|{x}t+11 ,{y}t1
)

H(A,V|{x}t+11 ,{y}t1,yt+1)dyt+1,

= argmin
ut+1

−
d
2
ln |xt+1xTt+1+Kt | = argmax

ut+1
xTt+1K−1

t xt+1, (13)

where

xt+1
.
= [rt−I; . . . ;rt ;ut−J+1; . . . ;ut+1],

and we used that |xxT +K| = |K|(1+xTK−1x) according to the Matrix Determinant Lemma
(Harville, 1997). We assume a bounded domain U for the control, which is necessary to keep
the maximization procedure of (13) finite. This is, however, a reasonable condition for all practical
applications. So,

uoptt+1 = arg max
ut+1∈U

xTt+1K−1
t xt+1, (14)

In what follows D-optimal control will be referred to as ‘infomax interrogation scheme’. The steps
of our algorithm are summarized in Table 1.

Control Calculation
ut+1 = argmaxu∈U x̂Tt+1K

−1
t x̂t+1

where x̂t+1 = [rt−I; . . . ;rt ;ut−J+1; . . . ;ut ;u]
set xt+1 = [rt−I; . . . ;rt ;ut−J+1; . . . ;ut ;ut+1]

Observation
observe rt+1, and let yt+1 = g−1(rt+1)

Bayesian update
Mt+1 = (MtKt +yt+1xTt+1)(xt+1xTt+1+Kt)−1

Kt+1 = xt+1xTt+1+Kt
nt+1 = nt +1
γt+1 = 1−xTt+1(xt+1xTt+1+Kt)−1xt+1
Qt+1 = Qt +(yt+1−Mtxt+1)'t+1 (yt+1−Mtxt+1)T

Table 1: Pseudocode of the algorithm

Computation of the inverse (xt+1xTt+1+Kt)−1 in Table 1 can be simplified considerably by the
following recursion: let Pt = K−1

t , then according to the Sherman-Morrison formula (Golub and
Van Loan, 1996)

Pt+1 = (xt+1xTt+1+Kt)
−1 = Pt−

Ptxt+1xTt+1Pt
1+xTt+1Ptxt+1

. (15)

In this expression matrix inversion disappears and only a real number is inverted instead.

5. A-Optimality Approach for Parameter Learning

The D-optimality principle aims to minimize the expected posteriori entropy of the parameters.
A-optimality principle differs; it measures the uncertainty by means of the variance and not the
entropy. Thus, instead of (7), the A-optimal objective function is as follows:
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uoptt+1 = argmin
ut+1

Z

dyt+1P(yt+1|{x}t+11 ,{y}t1)trVar[θ|{x}t+11 ,{y}t+11 ]. (16)

where Var[θ|F ] denotes the conditional covariance matrix of θ given the condition F .
To keep the calculations simple, in this case we use PIGV(αt ,βt) prior distribution for the co-

variance matrix instead of IW V(Qt ,nt). Using the notations of (8)-(10), the posterior distributions
assume the following forms:

Lemma 5.1

P(A|V,{x}t+11 ,{y}t+11 ) = NA(Mt+1,V,xt+1xTt+1+Kt), (17)
P(V|{x}t+11 ,{y}t+11 ) = PIGV (αt+1,βt+1) ,

P(yt+1|{x}t+11 ,{y}t1) =
d

#
i=1

T(yt+1)i

(

(βt)i,2(αt)i,(Mtxt+1)i,
't+1
2

)

, (18)

where we used the shorthands

(αt+1)i = (αt)i+1/2,

(βt+1)i = (βt)i+((yt+1)i− (Mtxt+1)i)2
't+1
2

. (19)

The proof can be found in the Appendix.
Given that P(V|{x}t+11 ,{y}t+11 ) belongs to the PIG family we can calculate the quantity

Var(V|{x}t+11 ,{y}t+11 ) (Gelman et al., 2003):

tr
(

Var[V|{x}t+11 ,{y}t+11 ]
)

=
d

!
i=1

(βt+1)i
((αt+1)i−1)2((αt+1)i−2)

.

We will need the following lemma:

Lemma 5.2

tr
(

Var[A|{x}t+11 ,{y}t+11 ]
)

= tr
(

(

Kt +xt+1xTt+1
)−1

)

E[trV|{x}t+11 ,{y}t+11 ],

= tr
(

(

Kt +xt+1xTt+1
)−1

) d

!
i=1

(βt+1)i
(αt+1)i−1

.

The proof can be found in the Appendix.
Now we can elaborate on the A-optimal cost function for parameter estimation (16):

Z

dyt+1P(yt+1|{x}t+11 ,{y}t1)trVar[θ|{x}t+11 ,{y}t+11 ] = (20)

=
Z

dyt+1
d

#
i=1

T(yt+1)i

(

(βt)i,2(αt)i,(Mtxt+1)i,
't+1
2

)

×

×

(

tr
(

(

Kt +xt+1xTt+1
)−1

) d

!
i=1

(βt+1)i
(αt+1)i−1

+
d

!
i=1

(βt+1)i
((αt+1)i−1)2((αt+1)i−2)

)

,

= tr
(

(

Kt +xt+1xTt+1
)−1

)

f2,1(αt+1,βt)+ f2,2(αt+1,βt),
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where f2,1 and f2,2 depend only on αt+1, and βt . Here we used (18), (19) and Lemma 4.4.
Applying again the Sherman-Morrison formula (15) and the fact that tr[K−1

t xt+1xTt+1K
−1
t ] =

tr[xTt+1K
−1
t K−1

t xt+1], we arrive at the following expression for A-optimal parameter estimation:

uoptt+1 = arg max
ut+1∈U

xTt+1K
−1
t K−1

t xt+1
1+xTt+1K

−1
t xt+1

, (21)

which is a hyperbolic programming task.
We can conclude that while in the D-optimality case the task is to minimize expression |(Kt +

xt+1xTt+1)−1|, the A-optimality principle is concerned with the minimization of tr[(Kt+xt+1xTt+1)−1].

6. D-Optimality Approach for Noise Estimation

One might wish to compute the optimal control for estimating noise et in (1), instead of the identi-
fication problem above. Based on (1) and because

et+1 = yt+1−
I

!
i=0
Firt−i−

J

!
j=0
B jut+1− j, (22)

one might think that the best strategy is to use the optimal infomax control of Table 1, since it
provides good estimations for parameters A= [FI, . . . ,F0,BJ, . . . ,B0] and so for noise et .

Another—and different—thought is the following. At time t+1, let the estimation of the noise
be êt+1 = yt+1−!I

i=0 F̂tirt−i−!J
j=0 B̂tjut+1− j, where F̂ti (i=0,. . . ,I), and B̂tj (j=0,. . . ,J) denote the

estimations of F and B respectively.
Using (22), we have that

et+1− êt+1 =
I

!
i=0

(Fi− F̂ti)rt−i+
J

!
j=0

(B j− B̂tj)ut+1− j. (23)

This hints that the control should be ut = 0 for all times in order to get rid of the error contribution
of matrix B j in (23).

Straightforward D-optimality considerations oppose the utilization of objective (6) for the present
task. One can optimize, instead, the following quantity:

argmax
ut+1

I(et+1,yt+1;{x}t+11 ,{y}t1).

In other words, for the estimation of the noise we want to design a control signal ut+1 such that the
next output is the best from the point of view of greedy optimization of mutual information between
the next output yt+1 and the noise et+1. It is easy to show that this task is equivalent to the following
optimization problem:

argmin
ut+1

Z

dyt+1P(yt+1|{x}t+11 ,{y}t1)H(et+1;{x}t+11 ,{y}t+11 ), (24)

where H(et+1;{x}t+11 ,{y}t+11 ) = H(Axt+1;{x}t+11 ,{y}t+11 ), because et+1 = yt+1−Axt+1.
In practice, we perform this optimization in an appropriate domainU. After some mathematical

calculation we can prove that the D-optimal interrogation scheme for noise estimation gives rise to
the following control:
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Lemma 6.1

uoptt+1 = arg min
ut+1∈U

xTt+1K−1
t xt+1. (25)

The proof of this lemma can be found in the Appendix.
It is worth noting that this D-optimal cost function for noise estimation and the D-optimal cost

function derived for parameter estimation in (13) are not compatible with each other. Estimating
one of them quickly will necessarily delay the estimation of the other.

We shall show later (Section 9) that for large t values, expression (25) gives rise to control values
close to ut = 0.

7. A-Optimality Approach for Noise Estimation

Instead of (24), our task is to compute the following quantity:

argmin
ut+1

Z

dyt+1P(yt+1|{x}t+11 ,{y}t1) tr
(

Var[et+1|{x}t+11 ,{y}t+11 ]
)

. (26)

We will apply the identity

NAxt+1

(

Mt+1xt+1,V,
(

xTt+1K−1
t+1xt+1

)−1)
PIGV (αt+1,βt+1) =

=
d

#
i=1

T(Axt+1)i



(βt+1)i,2(αt+1)i,(Mt+1xt+1)i,
(

xTt+1
K−1
t+1
2
xt+1

)−1


×

×PIGV
(

αt+1+1,βt+1+diag[(yt+1−Mtxt+1)
't+1
2

(yt+1−Mtxt+1)T ]
)

,

which can be proven by using Lemma A.1. We can simplify (26) by noting that

tr
(

Var[et+1|{x}t+11 ,{y}t+11 ]
)

= tr
(

Var[Axt+1|{x}t+11 ,{y}t+11 ]
)

.

We also take advantage of the fact that

VarV[E[Axt+1|V,{x}t+11 ,{y}t+11 ]] =VarV[Mt+1xt+1] = 0,

and proceed as

EV[trVar(Axt+1|V,{x}t+11 ,{y}t+11 )] = EV[tr(V⊗xTt+1K−1
t+1xt+1|{x}

t+1
1 ,{y}t+11 ],

= tr(E[V|{x}t+11 ,{y}t+11 ])xTt+1K−1
t+1xt+1,

= xTt+1K−1
t+1xt+1

d

!
i=1

(βt+1)i
(αt+1)i−1

,

where ⊗ denotes the Kronecker product. The law of total variance says that

Var[Ax] =Var[E[Ax|V]]+E[Var[Ax|V]],

and hence

trVar[Axt+1|{x}t+11 ,{y}t+11 ] = xTt+1K−1
t+1xt+1

d

!
i=1

(βt+1)i
(αt+1)i−1

.
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There is another way to arrive at the same result. One can apply (37) with Lemma A.1 and use
the fact that the covariance matrix of a Tx(%,&,µ,K) distributed variable is %K−1

&−2 (Gelman et al.,
2003). That is, we have

trVar[Axt+1|{x}t+11 ,{y}t+11 ] =
d

!
i=1









(βt+1)i

(

xTt+1
K−1
t+1
2 xt+1

)

2(αt+1)i−2









.

Now, we can proceed as
Z

dyt+1P(yt+1|{x}t+11 ,{y}t1)tr
(

Var[et+1|{x}t+11 ,{y}t+11 ]
)

= (27)
Z

dyt+1P(yt+1|{x}t+11 ,{y}t1)tr(E[V|{x}t+11 ,{y}t+11 ])xTt+1K−1
t+1xt+1 =

xTt+1K−1
t+1xt+1

Z

dyt+1P(yt+1|{x}t+11 ,{y}t1)
d

!
i=1

(βt+1)i
(αt+1)i−1

=

xTt+1K−1
t+1xt+1

d

!
i=1

f4((αt+1)i,(βt)i),

where we used (18), (19) and Lemma 4.4 again. Applying the Sherman-Morrison formula one can
see that the task is the same as in (25).

8. Joint Parameter and Noise Estimation

So far we wanted to optimize the control in order to speed-up learning of either the parameters of
the dynamics or the noise. In this section we investigate the A- and D-optimality principles for the
joint parameter and noise estimation task.

8.1 A-optimality

According to the A-optimality principle, the joined objective for parameter and noise estimation is
given as:

Z

dyt+1P(yt+1|{x}t+11 ,{y}t1) trVar[vec(A),diag(V),et+1|{x}t+11 ,{y}t+11 ].

By means of (20), (27) and Lemma 5.2, it is equivalent to:
Z

dyt+1P(yt+1|{x}t+11 ,{y}t1)E[trV|xt+11 ,yt+11 ] tr
(

(

Kt +xt+1xTt+1
)−1

+xTt+1K−1
t+1xt+1

)

.

From here, one can prove the following lemma in a few steps:

Lemma 8.1 The A-optimality principle in the joined parameter and noise estimation task gives rise
to the following choice for control:

uoptt+1 = arg max
ut+1∈U

1+xTt+1K
−1
t K−1

t xt+1
1+xTt+1K

−1
t xt+1

. (28)

The proof can be found in the Appendix.
Thus, the task is a hyperbolic programming task, similar to (21).
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8.2 D-optimality

One of the most salient differences between A-optimality and D-optimality is that for D-optimality
we have

H(X ,Y ) = H(X |Y )+H(Y ),

however, for A-optimality the corresponding equation does not hold in general, because:

trVar(X ,Y ) (= EY [trVar(X |Y )]+ trVar(Y ).

An implication—as we shall see below—is that we cannot use the D-optimality principle for the
joint parameter and noise estimation task. For D-optimality our cost function would be

argmin
ut+1

Z

dyt+1P(yt+1|{x}t+11 ,{y}t1)H(A,V,et+1|{x}t+11 ,{y}t+11 ),

but the following equality holds:

H(A,V,et+1|{x}t+11 ,{y}t+11 ) = H(A,V|{x}t+11 ,{y}t+11 )+H(et+1|A,V{x}t+11 ,{y}t+11 ),

and since et+1 = yt+1−Axt+1, therefore the last term H(et+1|A,V{x}t+11 ,{y}t+11 ) = −(. The first
term is a finite real number, thus we can conclude that the D-optimality cost function is constant
−(, and therefore the D-optimality principle does not suit the joint parameter and noise estimation
task.

9. Non-myopic Optimization

Until now, we considered myopic methods for the optimization of control, that is, we aimed to
determine the optimum of the objective only for the next step. In this section, we show a non-
myopic heuristics for the noise estimation task (25).

The optimization of the derived objective function, xTt+1K
−1
t xt+1, is simple, provided that Kt is

fixed during the optimization of ut+1. If so, then the optimization task is quadratic. To see this, let
us partition matrix Kt as follows:

Kt =

(

K11t K12t
K21t K22t

)

,

where K11t ∈ Rd×d ,K21t ∈ Rm−d×d , K22t ∈ Rm−d×m−d . It is easy to see that if domain U in (25) is
large enough then

uoptt+1 = (K22t )−1K21t rt . (29)

It occurs, however, that the objective xTt+1K
−1
t xt+1 may be improved by considering multiple-

step lookaheads. In this case matrixKt can be subject to changes in xTt+1K
−1
t xt+1, because it depends

on previous control inputs u1, . . . ,ut derived from previous optimization steps.
We propose a two-step heuristics for the long-term minimization of expression xTt+1K

−1
t xt+1.

During the first )-step long stage, we focus only on the minimization of the quantity |K−1
t |. Then,

if this quantity |K−1
t | becomes small, we start the second stage: we consider K−1

t as given and
search for control that minimizes quantity xTt+1K

−1
t xt+1, so we now apply the rule of (29). Thus,
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this method ‘sacrifices’ the first ) steps in order to achieve smaller costs later; this heuristic opti-
mization is non-myopic. More formally, we use the strategy of Table 1 in the first ) steps in order to
decrease quantity |K−1

t | fast. Then after this )-steps, we switch to the control method of (29). This
will decrease the cost function (25) further. We will call this non-greedy interrogation heuristics
introduced for noise estimation ‘)-infomax noise interrogation’. This non-myopic heuristics admits
that parameter estimation of the dynamics is the prerequisite of noise estimation, because improper
parameter estimation makes apparent noise, and thus the heuristics sacrifices ) steps for parameter
estimation.

In Section 10 we will empirically show that using this non-myopic strategy, after ) steps we can
achieve smaller cost values in (25)—as well as better performance in parameter estimation—than
using the greedy competitors. The compromise is that in the first ) steps the performance of the
non-myopic control can be worse than that of the other control methods.

We note that in the )-infomax noise interrogation, for large switching time ) and for large t
values, |K22t | will be large, and hence—according to (29)—the optimal ut for interrogation will
be close to 0. (In Section 10 we will show this empirically.) A reasonable approximation of the
‘)-infomax noise interrogation’ is to use the control given in Table 1 for ) steps and to switch to
zero-interrogation onwards. This scheme will be called the ‘)-zero interrogation’ scheme.

10. Numerical Illustrations

We illustrate by numerical simulations the power of A- and D-optimizations.

10.1 Generated Data

This section provides numerical experiments for parameter and noise estimations on artificially
generated toy problems.

10.1.1 PARAMETER ESTIMATION

We investigated the parameter estimation capability of the D- and A-optimal interrogation. Matrix
F∈Rd×d has been generated as a random orthogonal matrix multiplied by 0.9 so that the magnitudes
of its eigenvalues remained below 1. Random matrix B∈Rd×c was generated from standard normal
distribution. Elements of the diagonal covariance matrix V of noise et were generated from the
uniform distribution over [0,1]. The process is stable under these conditions.

To study whether or not the D- and A-optimal interrogations are able to estimate the true pa-
rameters we measured the averages of the squared deviations of the true matrices F and B and the
means of their posterior estimations, respectively. The square roots of these estimations are the
mean squared errors (MSE). One might use other options to measure performance. For example, L2
norm could be replaced by the L1 norm and the variance of the posterior estimations could also be
added as the complementary information for the bias.

We examined the following strategies: (i) D-optimal control of Table 1 withU = [−*,*]c, which
defines a c-dimensional hypercube. The value of * was set to 50. (ii) A-optimal control of (21) with
the sameU, (iii) zero control: ut = 0∈Rc ∀t, (iv) random control: ut ∈ [−*,*]c generated randomly
from the uniform distribution in the c-dimensional hypercube, (v) control defined by (25) for noise
estimation, called ‘noise control’, (vi) 25-zero control and (vii) 75-zero control defined in Section 9.
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For solving the quadratic problem of (14) and (25) we used a subspace trust-region procedure,
which is based on the interior-reflective Newton method described by Coleman and Li (1996). Its
implementation is available in the Matlab Optimization toolbox. However, the optimization task in
(21) is more involved: Generally, the optimization of a constrained hyperbolic programming task is
quite difficult. We tried the gradient ascent method, but its convergence appeared to be very slow
and we got poor results. In this case, it was more efficient to apply a simplex method as follows:
we know that the optimal solution of (21) lies at the boundary of U. Thus, we chose one corner
of hypercubeU randomly with uniform distribution and moved greedily to the neighboring corners
with the best improvement in the objective. This procedure was iterated until convergence. The
method was efficient for our special simple optimization domain.

We investigated two distinct cases. In the first case we set d = 10 < c = 40; the dimension of
the observations is smaller than the dimension of the control. By contrast, in the other case we set
d = 40> c= 10. Results are shown in Fig. 1 (a-b) and in Fig. 2 (a-b). We separated the MSE values
of matrices B and F. According to the figure, zero control may give rise to early and sudden drops
in the MSE values of matrix F. Not surprisingly, however, zero control is unable to estimate matrix
B. For both types of matrices as well as for d < c and for d > c, the D-optimal procedure produced
the smallest MSE after about 50 online estimations, but the A-optimal method reached very similar
levels only a few iterations later. As can be expected, )-zero control, which is identical to D-optimal
control in the first ) steps fell behind D-optimal control after ) since it changes the objective and
estimates the noise and not the parameters afterwards.

For statistical significance studies, we introduced the concept of average correlation curves. We
use Fig. 1 to explain this concept. There are 7 curves in Fig. 1 each representing the averages of
25 computer runs. Error bars make the curves incomprehensible and they hide the correlations
that may be present between the errors. We note that the relative order of the curves is of interest
for us. However, it is possible that in each run the relative order of the curves was the same and
the overlap of the error bars—which originates from the large differences between the individual
runs—hides this important piece of information. We treat this problem as follows. In each time
instant 1≤ t ≤ 250 and for all 1≤ i< j ≤ 25 we compute the empirical (linear, or rank) correlation
of the 7 curves of the ith and jth experiment and take the average of the 25× 24/2 = 300 values.
The most significant case gives rise to 1 for each of the 300 correlations, that is, the 25 experiments
agree in the height of the curves at that time instant, or in their relative orderings for the case
of rank correlation. If there is any single experiment out of 25 that produces different heights
or orders then the average correlation becomes smaller than 1. For randomly chosen curves the
average correlation is 0. Results can be seen in Fig. 1 (c-d) and Fig. 2 (c-d) for linear Pearson and
for Kendal rank correlations, respectively. The curves demonstrate that after about 50 steps, the
correlations, in particular the linear correlation is almost 1. This means that the curves behaved
similarly in a considerable portion of the experiments. The slightly different picture shown by the
linear correlation and the rank correlation could be due to the fact that the performance of the A and
D-optimal control is very similar after some time, and their ordering may change often, thus giving
rise to changes in the ranks in different experiments.

10.1.2 NOISE ESTIMATIONS

In Section 7 we showed that A- and D-optimality principles result in the same cost function.
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Figure 1: Mean Square Error of the estimated parameters for different control strategies and the sig-
nificance of the curves. Magnitude of MSE as a function of time is averaged for 25 runs. Dimension
of the control is 10. F ∈ R40×40, B ∈ R40×10. (a): MSE of the estimated matrix F̂. (b): MSE of the
estimated matrix B̂. (c): The average correlation curves for the estimation of F. (d): The average
correlation curves for the estimation of B. For details see the text.

We investigated the noise estimation capability of the interrogation in (25) for four cases. The
first set of experiments illustrates that the estimation of driving noise et for large ) values barely
differs if we replace the )-infomax noise interrogation with the )-zero interrogation scheme. Pa-
rameters were the same as above and the MSE of the noise estimation was computed. Results are
shown in Fig. 3: for the case of )= 21, cost function (25) of the )-zero interrogation is higher than
that of )-infomax interrogation. However, for values ) = 51 and 81 the performances of the two
schemes are approximately identical. Given that )-zero and )-infomax noise interrogation behave
similarly for large ) values, we compare the )-zero interrogation scheme with other schemes in our
numerical experiments.

In the second experiment we investigated the problem of noise estimation on a toy problem.
Parameters were set as in Section 10.1.1, and the following strategies were compared: zero control,
infomax control, random control and )-zero control for different ) values. Results are shown in
Fig. 4. It is clear from the figure that neither the zero control, nor the infomax (D-optimal) control
of Table 1 work for this case. If we want to have minimal MSE in approximately ) steps then the
best strategy is to apply the )-zero strategy, that is, the strategy of Table 1 up to ) steps and then
to switch to zero control. Note, however, that parameter estimation requires to keep control values
non-negligible forever (Table 1).
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Figure 2: Mean Square Error of the estimated parameters for different control strategies and the sig-
nificance of the curves. Magnitude of MSE as a function of time is averaged for 25 runs. Dimension
of the control is 40. F ∈ R10×10, B ∈ R10×40. (a): MSE of the estimated matrix F̂. (b): MSE of the
estimated matrix B̂. (c): The average correlation curves for the estimation of F. (d): The average
correlation curves for the estimation of B. For details see the text.

In the third experiment we used numerical tools to support our the arguments we made in Sec-
tion 9. We investigate the D-optimal, the zero, the random, and the greedy noise control of (25), as
well as the 71-zero and 101-zero controls. Results show that if we may sacrifice the first ) steps,
then the non-myopic )− zero control gives rise to the smallest MSE for the estimated noise and the
smallest values for the cost function (25) after ) steps considering all studied control methods. Fig-
ure 5a shows the MSE of the estimated driving noise, whereas Fig. 5b depicts the cost xTt+1K

−1
t xt+1.

Figure 5c is about the time dependence of log |Kt | that supports our argument in Section 9, namely, it
may be worth to sacrifice steps at the beginning to quickly decrease |K−1

t | (i.e., to decrease log |Kt |)
in order to estimate (25) efficiently later. The problem we studied was the same as before, except
that d = 25 and c= 25 were applied.

The fourth experiment illustrates the efficiency of the approximation of the noise for the case
when our assumptions on et are not fulfilled. Here noise et was neither Gaussian nor i.i.d. ‘Noise’ et
was chosen as equidistant points smoothly ‘walking’ along a 3 dimensional spiral curve as a function
of time (Fig. 6a). Dimensions of observation and control were 3 and 15, respectively. Results are
shown in Fig. 6. Neither random control, nor infomax interrogation of Table 1 (Fig. 6c), nor zero
control (Fig. 6d) could produce reasonable estimation. However, the )-zero interrogation scheme
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Figure 3: Comparing )-infomax noise and )-zero interrogations. The curves are averaged for 50
runs. Dimension of the control is 15 and the dimension of the observation is 10. (a): MSE of the
estimated noise (b): Cost function as given in (25). ‘)-infomax noise’ ()-zero) means that up to step
number ) strategy of Table 1 applies and then the control of Eq. (29) is followed.
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Figure 4: Mean Square Error of the estimated noise for different control strategies. Magnitude of
MSE as a function of time is averaged for 20 runs. (a): Dimension of the control is 40. F ∈ R40×40,
B ∈ R40×10. (b): Dimension of the control is 10. F ∈ R10×10, B ∈ R10×40. ‘)-zero’ means that up to
step number ) the strategy illustrated in Table 1 was applied and then zero control followed.

produced a good approximation for large enough ) values (Fig. 6e). Details of this illustration are
shown in Fig. 6f.

10.1.3 JOINT PARAMETER AND NOISE ESTIMATIONS

In Section 8 we showed that the objective of the D-optimality principle is constant for the joined
parameter and noise estimation task. However, A-optimality principle provides sensible cost func-
tion (Eq. (28)). Unfortunately, it leads to a hyperbolic programming task. This optimization is hard
in most cases. One can estimate the complexity of the objective by inspecting lower dimensional
cases. We show the negative logarithm of (28) for the 2 dimensional case for different K matrices
(Fig. 7). In one of the cases the null vector corresponds to the minimum, whereas in the other case
the minimum is at a boundary point of the optimization domain. Also, the cost functions appear to
be flat in a large part of their domains, rendering gradient based methods ineffective.
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Figure 5: Empirical study on non-myopic controls for noise estimation. We sacrifice the first )
steps to achieve better MSE and smaller cost function. The curves are averaged over 25 runs. The
dimension of the control and the dimension of the observation is 25. (a): MSE of noise estimation
for different control strategies. (b): xTt+1K

−1
t xt+1 cost function for different control strategies. (c):

log |Kt | function for different control strategies.

Studies were conducted on the problem family of 10.1.1 for observation dimension d = 15 and
control dimension c = 30. For the optimization, we modified the simplex method that we used for
the hyperbolic task before. The single difference is that upon convergence, the best value was com-
pared with the value of the objective at the 0 point and we chose the better one for control. We have
compared this strategy with the parameter estimation strategy of the D-optimality principle, with
zero control strategy, with random control strategy, and with )− zero control for several ) values.
Results are shown in Fig. 8. The figure indicates that control derived from the A-optimality princi-
ple (28) provides superior MSE results at approximately 45 iterations and then onwards compared
to the other myopic techniques, however its performance was slightly worse than the non-myopic
)-zero control for ) values larger than an appropriate threshold.

Inspecting the optimal control series of the winner, we found that the algorithm chooses control
values from the boundaries of the hypercube in the first 45 or so iterations. Then up to about 130
iterations it is switching between zero control and controls on the boundaries, but eventually it uses
zero controls only. That is, the A-optimality principle is able to detect the need for the switch from
high control values (to determine the parameters of the dynamics) to zero control values for noise
estimation. This automated switching behavior is a special advantage of the A-optimality principle.

10.2 Controlled Independent Component Analysis

In this section we study the usefulness of our methods for auto-regressive (AR) hidden processes
with independent driving sources and we would like to find the independent causes that drive the
processes. This task belongs to independent component analysis (ICA) (Jutten and Hérault, 1991;
Comon, 1994; Hyvärinen et al., 2001). Informally, we assume that our sources are doubly covered:
they are the driving noise processes of AR processes which can not be directly observed due to the
mixing with an unknown matrix. We will study our methods for this particular example and we
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Figure 6: Different control strategies for non i.i.d. noise. (a): original noise. (b-e): estimated
noise using random, infomax, zero, 51-zero strategy, respectively. (f): MSE for different control
strategies. In (b-e), estimations of the first 51 time steps are not shown.
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(a) (b)

Figure 7: Negative logarithm of the objective function for the joint parameter and noise estimation
task for different K matrices. (a) the minimum point is in zero, (b) the minimum point is on the
boundary.
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Figure 8: MSE of the joint parameter and noise estimation task. Comparisons between joint param-
eter and noise estimation using A-optimality principle, parameter estimation using D-optimality
principle, random control, zero control and )− zero control for different ) values. MSE values are
averaged for 20 experiments.

.

assume that the processes can be exogenously controlled. Such processes are called ARX processes
where X stands for letter x of the word eXogenous.

The ‘classical’ ICA task is as follows: we are given temporally i.i.d. signals et ∈ Rd (t =
1,2, . . . ,T ) with statistically independent coordinates. We are unable to measure them directly, but
their mixture rt =Cet is available for observation, whereC∈Rd×d is an unknown invertible matrix.
The task is to measure the observable signals and to estimate both mixing matrix C and sources et .
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There are several generalizations of this problem. Hyvärinen (1998) has introduced an algorithm
to solve the ICA task even if the hidden sources are AR processes, whereas Szabó and Lőrincz
(2008) generalized this problem for ARX processes in the following way: Processes ẽt ∈ Rd are
given and they are statistically independent for the different coordinates and are temporally i.i.d
signals. They generate ARX process st by means of parameters F̃ ∈ Rd×d , B̃ ∈ Rd×c:

st+1 =
I

!
i=0
F̃ist−i+

J

!
j=0
B̃ jut+1− j + ẽt+1. (30)

We assume that ARX process st can not be observed directly, but its mixture

rt = Cst (31)

is observable, where mixing matrix C ∈ Rd×d is invertible, but unknown. Our task is to estimate the
original independent processes also called sources, noises or ‘causes’, that is, ẽt , the hidden process
st and mixing matrix C from observations rt . It is easy to see that (30) and (31) can be rewritten
into the following form

rt+1 =
I

!
i=0
CF̃iC−1rt−i+

J

!
j=0
CB̃ut+1− j +Cẽt+1. (32)

Using notations Fi =CF̃iC−1, B j =CB̃ j, et+1 =Cẽt+1, (32) takes the form of the model (1) that we
are studying with function g being the identity matrix. The only difference is that in ICA tasks et is
assumed to be non-Gaussian, whereas in our derivations we always used the Gaussian assumption.
In our studies, however, we found that the different control methods can be useful for non-Gaussian
noise, too. Furthermore, the Central Limit Theorem says that the mixture of the variables ẽt , that
is, Cẽt approximates Gaussian distributions, provided that the number of mixed variables is large
enough.

In our numerical experiments we studied the following special case:

rt+1 = Frt +But+1+Cet+1,

where the dimension of the noise was 3, the dimension of the control was 15. Matrices F and B
were generated the same way as before, matrix C was a randomly chosen orthogonal mixing, noise
sources et+1 were chosen from the benchmark tasks of the fastICA toolbox1 (Hyvärinen, 1999).
We compared 5 different control methods (zero control, D-optimal control developed for parameter
estimation, random control, A-optimal control developed for joint estimation of parameters and
noise, as well as the )-zero control with )=81 that we developed for noise estimation). Comparisons
are executed by first estimating the noise (Cet+1) for times T = 1, . . . ,1000 and then applying the
JADE ICA algorithm (Cardoso, 1999) for the estimation of the noise components (et+1). Estimation
was executed in each fiftieth steps, but only for the preceding 300 elements of the time series.

The quality of separation is evaluated by means of the Amari-error (Amari et al., 1996) as
follows. Let W ∈ Rd×d be the estimated demixing matrix, and let G := WC ∈ Rd×d . In case

1. Found at http://www.cis.hut.fi/projects/ica/fastica/.
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of perfect separation the matrix G is a scaled permutation matrix. The Amari-error evaluates the
quality of the separation by measuring the ‘distance’ of matrix G from permutation matrices:

r (G) =
1

2d (d−1)

d

!
i=1

(

!d
j=1

∣
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∣
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∣
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)

.

The Amari-error r(G) has the property that 0 ≤ r(G) ≤ 1, and r(G) = 0 if and only if G is a
permutation matrix.

Results are shown in Fig. 9. In short, )-zero control performs slightly better than the joint
parameter and noise estimation using the A-optimality principle. We note that for A-optimality
design one does not have to worry about the duration of the parameter estimation. The performance
of the other methods were considerably worse, especially for early times.

Most importantly, we found that if we use Bayesian methods for noise separation in ARX prob-
lems then it is worth to interrogate the system actively to improve the efficiency of the estimation.

300 400 500 600 700 800 900 1000
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D−optimal param
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Figure 9: ARX-ICA experiment. Amari-error as a function of time for different control methods.
Curves show the means of 100 experiments.

10.3 Model of the Furuta Pendulum

This section is concerned with more realistic simulations and investigate the robustness of our ap-
proach. We use a model of the Furuta pendulum (e.g., Yamakita et al., 1995) as our example, In
this case, conditions of the theorems are not fulfilled and the task—in our formulation—can not
be represented with a few matrices. In this simulation, we studied the D-optimality principle and
compared it with the random control method. We were interested in the parameter estimation task
in this example.

The two-segment Furuta pendulum problem (e.g., Yamakita et al., 1995; Gäfvert, 1998) was
used. The pendulum has two links. Configuration of the pendulum is determined by the length
of the links and by two angles. Dynamics of the pendulum are also determined by the different
masses, that is, the masses of the links and the mass of the end effector as well as by the two motors,
which are able to rotate the horizontal link and the swinging link in both directions. The angles of
the horizontal and the swinging links are denoted by + and ,, respectively (Fig. 10). Parameters
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Name of parameter Value Unit Notation
Angle of swinging link rad ,
Angle of horizontal link rad +
Mass of horizontal link 0.072 kg ma
Mass of vertical link 0.00775 kg mp
Mass of the weight 0.02025 kg M
Length of horizontal link 0.25 m la
Length of vertical link 0.4125 m lp
Coulomb friction 0.015 Nm )S
Coulomb stiction 0.01 Nm )C
Maximal rotation speed for both links 2 rotation

s
Approx. zero angular speed for swinging link 0.02 rad

s +̇-
Time intervals between interrogations 100 ms
Maximum control value 0.05 Nm *

Table 2: Parameters of the Physical Model

of computer illustrations are provided in Table 2 for the sake of reproducibility. The state of the
pendulum is given by +, ,, +̇ and ,̇. The magnitude of angular speeds +̇ and ,̇ was restricted to 2
rotations/s, that is, to the interval [−2rots ,2rots ]. For the equations of the dynamics and the details of
the parameters, see, for example, the related technical report (Gäfvert, 1998).

Figure 10: Furuta pendulum and notations of the different parameters. m: mass; l: length, M: mass
of the end effector, subscript a: horizontal link, subscript p: swinging link, +: angle of horizontal
link, ,: angle of swinging link

.

The pendulum is a continuous dynamical system that we observe in discrete time steps. Further-
more, we assume that our observations are limited; we have only 144 low resolution and overlapping
sensors for observing angles + and ,. In each time step these sensors form our r(t) ∈ R144 obser-
vations, which were simulated as follows: Space of angles + and , is [0,2")× [0,2"), which we
divided into 12×12= 144 squared domains of equal sizes. There is a Gaussian sensor at the center
of each domain. Each sensor gives maximal response 1 when angles , and + of the pendulum are
in the center of the respective sensor, whereas the response decreased according to the Gaussian
function. For example, for the ith (1 ≤ i ≤ 144) sensor characterized by angles ,i, +i response yi
scaled as yi = 1√

2". exp(−
(,−,i)2+(+−+i)2

2.2 ) and the value of . was set to 1.58 in radians. Sensors
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were crude but noise-free; no noise was added to the sensory outputs. The inset at label 4 of Fig. 11
shows the outputs of the sensors in a typical case. Sensors satisfied periodic boundary conditions; if
sensor S was centered around zero degree in any of the directions, then it sensed both small (around
0 radian) and large (around 2" radian) angles. We note that the outputs of the 144 domains are
arranged for purposes of visualization; the underlying geometry of the sensors is hidden for the
learning algorithm.

We observed these rt ∈ R144 quantities and then calculated the ut+1 ∈ R2 D-optimal control
using the algorithm of Table 1, where we approximated the pendulum with the model r̃t+1 = Frt +
But+1, F ∈ R144×144, B ∈ R144×2. Components of vector ut+1 controlled the 2 actuators of the
angles separately. Maximal magnitude of each control signal was set to 0.05 Nm. Clearly we do
not know the best parameters for F and B in this case, so we studied the prediction error and the
number of visited domains instead. This procedure is detailed below.

First, we note that the angle of the swinging link and the angular speeds are important from
the point of view of the prediction of the dynamics, whereas the angle of the horizontal link can
be neglected. Thus, for the investigation of the learning process, we used the 3D space determined
by +̇,, and ,̇. As was mentioned above, angular speeds were restricted to the [−2rots ,2rots ] domain.
We divided each angular speed domain into 12 equal regions. We also used the 12-fold division of
angle ,. Counting the domains, we had 12× 12× 12 = 1,728 rectangular block shaped domains.
Our algorithm provides estimations for F̂t and B̂t in each instant. We can use them to compute the
predicted observation vector r̂t+1 = F̂trt+B̂tut+1. An example is shown in inset at label 4 of Fig. 11.
We investigated the ‖rt+1− r̂t+1‖ prediction error (see Fig. 11) cumulated over these domains as
follows. For each of the 1,728 domain, we set the initial error value at 30, a value somewhat larger
than the maximal error we found in the computer runs. Therefore the cumulated error at start was
1,728×30= 51,840.

The D-optimal algorithm does two things simultaneously: (i) it explores new domains, and (ii)
it decreases the errors in the domains already visited. Thus, we measured the cumulated prediction
errors during learning and corrected the estimation at each step. So, if our cumulated error estima-
tion at time t was e(t) = !

1,728
k=1 ek(t) and the pendulum entered the ith domain at time t+1, then we

set ek(t+ 1) = ek(t) for all k (= i and ei(t+ 1) at ei(t+ 1) = ‖rt+1− r̂t+1‖. Then we computed the
new cumulated prediction error, that is, e(t+1) = !

1,728
k=1 ek(t+1) .

We compared the random and the D-optimality interrogation schemes. We show two sets of
figures, Figs. 12a and 12b, as well as Figs. 12c and 12d. The upper set depicts the results for
the full set of the 1,728 domains. It is hard for the random control to guide the pendulum to the
upper domain, so we also investigated how the D-optimal control performs here. We computed the
performance for cases when the swinging link was above vertical, that is for 864 domains ( Figs. 12c
and 12d).

For the full domain the number of visited domains is 456 (26%) and 818 (47%) for the random
control and the D-optimal control, respectively after 5,000 control steps (Fig. 12a). The error drops
by 13,390 (26%) and by 24,040 (46%), respectively (Fig. 12b). While the D-optimal controlled
pendulum visited more domains and achieved smaller errors, the domain-wise estimation error is
about the same for the domains visited; both methods gained about 29.4% per domains.

We can compute the same quantities for the upper domains as well. The number of visited upper
domains is 9 and 114 for the random control and for the D-optimal control, respectively (Fig. 12c).
The decrease of error is 265 and 3,342, respectively (Fig. 12d). In other words, D-optimal control
gained 29.3% in each domain on average, whereas random control, on average, gained 29.4 %,
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Figure 11: Scheme of D-optimal interrogation. (1) Control ut+1 is computed from D-optimal prin-
ciple, (2) control acts upon the pendulum, (3) signals predicted before control step, (4) sensory
information after control step. Difference between (3) and (4) is used for the computation of the
cumulated prediction error. (5) Parameters were updated according to the pseudocode of Table 1.
For more details, see text.

which are very close to the previous values in both cases. In this experiment D-optimal control
gains more information concerning the system to be identified by visiting new domains.

This observation is further emphasized by the following data: The D-optimal algorithm discov-
ered 37 new domains in the last 500 steps of the 5,000 step experiment. Out of these 37 domains, 20
(17) were discovered in the lower (upper) domain. By contrast, the random algorithm discovered 9
domains, out of which 5 (4) was in the lower (upper) domain. That is, D-optimality principle has a
similar (roughly fourfold) lead in both the upper and lower domains, although the complexity of the
task is different and the relative number of available volumes is also different in these two domains.
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Figure 12: Furuta experiments driven by random and D-optimality controls. Solid (dotted) line:
D-optimal (random) case. (a-b): Number of domains is 1728. (a): Visited domains, (b): upper
bound for cumulated estimation error in all domains, (c-d): Number of domains is 864. (c): visited
domains for swing angle above horizontal, (d): upper bound for cumulated estimation error for
domains with swing angle above vertical. For more details, see text.

11. Discussion and Conclusions

We have treated the identification problem of recurrent neural networks as defined by the model
detailed in (1). We applied active learning to solve this task. In particular, we studied the learning
properties of the online A-optimality and D-optimality principles for parameter and noise estima-
tions. We note that the D-optimal interrogation scheme is also called InfoMax control in the liter-
ature by Lewi et al. (2007). This name originates from the cost function that optimizes the mutual
information.

In the generalized linear model (GLM) used by Lewi et al. (2007) rt+1 is drawn from an expo-
nential family distribution with link function g and

E[rt+1] = g

(

I

!
i=0
Firt−i+

J

!
j=0
B jut+1− j

)

expected value. This model can be rewritten as

rt+1 = g

(

I

!
i=0
Firt−i+

J

!
j=0
B jut+1− j

)

+ et+1, (33)
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where {et} is a special noise process with 0 ∈ Rd mean. The elements of this error series are
independent of each other, but usually they are not identically distributed. The authors modeled
spiking neurons and assumed that the main source of the noise is this spiking, which appears at the
output of the neurons and adds linearly to the neural activity. They investigated the case in which
the observed quantity rt had a Poisson distribution. Unfortunately, in this model Bayesian equations
become intractable and the estimation of the posterior may be corrupted, because the distribution is
projected to the family of normal distributions at each instant. A serious problem with this approach
is that the extent of the information loss caused by this approximation is not known. Our stochastic
RNN model

rt+1 = g

(

I

!
i=0
Firt−i+

J

!
j=0
B jut+1− j + et+1

)

,

differs only slightly from the GLM model of (33), but it has considerable advantages, as we discuss
it later. Note that the two models assume the same form if function g is the identity matrix and if
the noise distribution is normal.

Our model is very similar to the well-studied non-linear Wiener (Celka et al., 2001) and Ham-
merstein (Pearson and Pottmann, 2000; Abonyi et al., 2000) systems. The Hammerstein model
develops according to the following dynamics

rt+1 =
I

!
i=0
Firt−i+

J

!
j=0
B jg(ut+1− j)+ et+1.

The dynamics of the Wiener system is

rt+1 = g

(

I

!
i=0
Fig−1(rt−i)+

J

!
j=0
B jut+1− j + et+1

)

,

where we assumed that function g is invertible.
The Wiener and the Hammerstein systems have found applications in a broad range of areas,

including financial predictions to the modeling of chemical processes. These models are special
cases of non-linear ARX (NARX) models (Billings and Leontaritis, 1981). They are popular, be-
cause they belong to the simplest non-linear systems. Using block representation, they are simply
the compositions of a static non-linear function and a dynamic ARX system. As a result, their prop-
erties can be investigated in a relatively simple manner and they are still able to model a large class
of sophisticated non-linear phenomena.

Interesting comparisons between Wiener and Hammerstein systems can be found in Bai (2002),
Aguirre et al. (2005), and Haber and Unbehauen (1990). We note that our Bayesian interrogation
methods can be easily transferred to both the Wiener and to the Hammerstein systems.

Bayesian designs of different kinds were derived for the linear regression problem by Verdinelli
(2000):

y= Xθ + e, (34)
P(e) =Ne(0,.2I).

This problem is similar to ours ((3)-(5)), but while the goal of Verdinelli (2000) was to find an
optimal design for the explanatory variables θ, we were concerned with the parameter (X in 34) and
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Parameter Noise Joint
D-optimal max

ut+1∈U
xTt+1K

−1
t xt+1 min

ut+1∈U
xTt+1K

−1
t xt+1 N/A

A-optimal max
ut+1∈U

xTt+1K
−1
t K−1

t xt+1
1+xTt+1K

−1
t xt+1

min
ut+1∈U

xTt+1K
−1
t xt+1 max

ut+1∈U
1+xTt+1K

−1
t K−1

t xt+1
1+xTt+1K

−1
t xt+1

Table 3: Cost functions in the parameter, noise, and in the joined parameter noise estimation task.

the noise (e) estimation tasks. In Verdinelli’s paper inverted gamma prior and vector-valued normal
distribution were assumed on the isotropic noise and on the explanatory variables, respectively. By
contrast, we were interested in the matrix-valued coefficients and in general, non-isotropic noises.
We used matrix-valued normal distribution for the coefficients, and in the D-optimal case we applied
inverted Wishart distribution for the covariance matrix of the noise. Due to the properties of the
inverted Wishart distribution, the noise covariance matrix is not restricted to the isotropic form.
However, in the A-optimal case, we kept the derivations simple and we applied product of inverted
gamma distributions for the covariance matrix as the conjugate prior.

The Bayesian online learning framework allowed us to derive analytic results for the myopic
optimization of the parameters as well as the driving noise. In the D-optimal case the optimal
interrogation strategies for parameter (14) and noise estimation (25) appeared in attractive, intrigu-
ingly simple quadratic forms. We have shown that these two tasks are incompatible with each
other. Parameter and noise estimations require the maximization and the minimization of expres-
sion xTt+1K

−1
t xt+1, respectively. We have shown also that D-optimality can not be applied to the

joined estimation of parameters and noise, because the corresponding cost function is constant.
For the A-optimality principle, we found that the objective of the noise estimation task is iden-

tical to that of the D-optimality principle. In this case, we were able to derive sensible results for
the joined estimation of parameters and noise, and received hyperbolic optimization task. We also
received a similar hyperbolic optimization task for the parameter estimation problem. The opti-
mization of this task is non-trivial. For a simple hyper-cube domain we put forth a heuristics based
on the simplex method. The different cost functions are summarized in Table 3.

We found empirically in the parameter learning task that the different objectives—that is, the
minimization of |(Kt +xt+1xTt+1)−1| and tr[(Kt +xt+1xTt+1)−1], the results of the D-optimality and
A-optimality principles, respectively—exhibit similar performances (Fig. 1, Fig. 2). However, D-
optimality has slightly better performance and it is easier to compute, since we need to solve a
quadratic problem only as opposed to a hyperbolic one. One of the reasons for the similar perfor-
mance could be that the corresponding matrices are positive definite and thus they are diagonally
dominant. In this case both the trace and the determinant are dominated by diagonal elements of the
matrices.

In the noise estimation task, however, cost functions of the A- and D-optimality principles are
the same. The main difficulty here is the non-myopic optimization of this cost function (Fig. 3,
Fig. 4, Fig. 5, Fig. 6). The problem of non-greedy optimization of the full task has been left open for
both the A-optimality and the D-optimality principles. For the noise estimation task, we suggested
a heuristic solution that we called )-infomax noise interrogation. Numerical experiments served to
show that )-infomax noise interrogation overcomes several other estimation strategies. The novel
)-infomax noise interrogation uses the D-optimal interrogation of Table 1 up to )-steps, and applies
the noise estimation control detailed in (25) afterwards. This heuristics decreases the estimation
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error of the coefficients of matrices F and B up to time ) and thus—upon turning off the explorative
D-optimization—tries to minimize the estimation error of the value of the noise at time )+ 1. We
introduced the )-zero interrogation scheme and showed that it is a good approximation of the )-
infomax noise scheme for large ) values.

In the joint noise parameter estimation task the D-optimal principle leads to a meaningless con-
stant valued cost function. The A-optimal objective is a hyperbolic programming task, which is
difficult to optimize. Still, its myopic optimization gave us better results than the myopic D-optimal
objective derived for parameter estimation only. Interestingly, myopic A-optimal interrogations be-
haved similarly to the non-myopic )-zero control (D-optimal parameter estimation up to ) steps,
then zero control) with emergent automatic ) selection. However, these myopic results were some-
what worse than the non-myopic results from the )-zero interrogation, when ) was larger than an
appropriate threshold (Fig. 8).

In the field of active-learning, non myopic optimization is one of the most challenging tasks so
most studies are concerned with greedy optimization only. Still, greedy optimization has produced
valuable results in many cases. A few studies are concerned with non-greedy optimization of active
learning, but only for certain special cases (Krause and Guestrin, 2007; Rangarajan et al., 2007).
This field is in a rather early stage at the moment.

We illustrated the working of the algorithm on artificial databases both for the parameter estima-
tion problem and for the noise estimation task. In the first set of experiments the database satisfied
the conditions of our theorems. We studied the robustness of the algorithm and studied the noise es-
timation problem for a situation in which the conditions of our theorems were not satisfied, namely
when the noise was neither Gaussian nor i.i.d. In particular, we studied the ARX problem family,
when the hidden driving sources are non-Gaussian and statistically independent i.i.d. processes. We
found that active control can speed-up the learning process. Function g was the identity function in
these experiments.

We have also started to characterize the algorithm for a problem closer to reality. We chose the
two-link Furuta pendulum task in these studies. We used a crude discretization for the pendulum,
where the underlying dynamics and the low-dimensional nature of the problem are both hidden.
Clearly we could express neither the ideal parameters for this case nor the noise that arose as a
result of the disctretization. Thus we have studied the volume explored by the D-optimality method
as well as the magnitude of the prediction errors.

The pendulum problem demonstrated that D-optimality maximizes mutual information by ex-
ploring new areas without significant compromise in the precision of estimation in the visited do-
mains. The discovery rate is in favor of the D-optimality algorithm, which has a significant lead
in both the frequently visited and the rarely visited domains, although the task is different and the
relative number of available volumes is also different in these domains.

Our method treats the identification problem of non-linear ARX systems. We plan to generalize
the method to NARMAX systems in the future. Such systems have several application fields, includ-
ing financial modeling and the modeling of gas turbines (Chiras et al., 2001). One may try to apply
these principles in a broad variety of fields, including selective laser chemistry Rabitz (2003), or
the analysis of brain signals ‘controlled’ by visual inputs, for example, in brain-computer interfaces
Vaughan et al. (2003).

Finally, it seems desirable to determine the conditions under which the algorithms derived from
the optimality principles are both consistent and efficient. The tractable form of our approximation-
free results is promising in this respect.
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Appendix A.

In this section we provide the technical details of our derivations.

A.1 Proof of Lemma 4.1

It is easy to show that the following equations hold:

Ny(Ax,V)NA(M,V,K) = NA(M+,V,xxT +K)Ny(Mx,V,'),

NA(M,V,K)IW V(Q,n) = IW V (Q+H,n+m)TA(Q,n,M,K),

whereM+ = (MK+yxT )(xxT +K)−1, '= 1−xT (xxT +K)−1x, H= (A−M)K(A−M)T for the
sake of brevity. Then we have

Ny(Mx,V,')IW V(Q,n) = IW V(Q+(y−Mx)'(y−Mx)T ,n+1)Ty (Q,n,Mx,') ,

and the statement of the lemma follows.

A.2 Proof of Lemma 4.2

Let vec(A) denote a vector of dm dimensions where the (d(i− 1) + 1)th, . . . ,(id)th (1 ≤ i ≤ m)
elements of this vector are equal to the elements of the ith column of matrix A ∈ Rd×m in the ap-
propriate order. Let ⊗ denote the Kronecker-product. It is known that for P(A) = NA(M,V,K),
P(vec(A)) =Nvec(A)(vec(M),V⊗K−1) holds (Minka, 2000). Using the well-known formula for
the entropy of a multivariate and normally distributed variable (Cover and Thomas, 1991) and ap-
plying the relation |V⊗K−1| = |V|m/|K|d , we have that

H(A;V) =
1
2
ln |V⊗K−1|+

dm
2
ln(2"e) =

m
2
ln |V|− d

2
ln |K|+ dm

2
ln(2"e).

By exploiting certain properties of the Wishart distribution, we can compute the entropy of distri-
bution IW V(Q,n). The density of the Wishart distribution is defined by

WV(Q,n) =
1
Zn,d

|V|(n−d−1)/2
∣

∣

∣

∣

Q−1

2

∣

∣

∣

∣

n/2

exp
(

−
1
2
tr(VQ−1)

)

.

Let / denote the digamma function, and let f1,3(d,n) = −!d
i=1/(n+1−i2 ))−d ln2. Replacing V−1

with S, we have for the Jacobian that | dVdS |= | dS−1dS |= |S|−(d+1) (Gupta and Nagar, 1999). To proceed
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we use that EWS(Q,n)S = nQ, and EWS(Q,n) ln |S| = ln |Q|− f1,3(d,n), (Beal, 2003) and substitute
them into EIW V(Q,n) ln |V|, and EIW V(Q,n)tr(QV−1):

EIW V(Q,n) ln |V| =
Z 1
Zn,d

1
|V|(d+1)/2

∣

∣

∣

∣

V−1Q
2

∣

∣

∣

∣

n/2

exp
(

−
1
2
tr(V−1Q)

)

ln |V|dV,

= −
Z 1
Zn,d

|S|(d+1)/2
∣

∣

∣

∣

SQ
2

∣

∣

∣

∣

n/2
exp

(

−
1
2
tr(SQ)

)

ln |S||S|−d−1dS,

= −
Z 1
Zn,d

|S|(n−d−1)/2
∣

∣

∣

∣

Q
2

∣

∣

∣

∣

n/2
exp

(

−
1
2
tr(SQ)

)

ln |S|dS,

= −EWS(Q−1,n) ln |S|,
= ln |Q|+ f1,3(d,n). (35)

One can also show that

EIW V(Q,n)tr(QV−1) =
Z 1
Zn,d

1
|V|(d+1)/2

∣

∣

∣

∣

V−1Q
2

∣

∣

∣

∣

n/2

exp
(

−
1
2
tr(V−1Q)

)

tr(QV−1)dV,

=
Z 1
Zn,d

|S|(d+1)/2
∣

∣

∣

∣

SQ
2

∣

∣

∣

∣

n/2
exp

(

−
1
2
tr(SQ)

)

tr(QS)|S|−d−1dS,

=
Z 1
Zn,d

|S|(n−d−1)/2
∣

∣

∣

∣

Q
2

∣

∣

∣

∣

n/2
exp

(

−
1
2
tr(SQ)

)

tr(QS)dS,

= EWS(Q−1,n)tr(QS),
= tr(QQ−1n) = nd. (36)

We calculate the entropy of stochastic variable V with distribution IW V(Q,n). It follows from
Eq. (35) and Eq. (36) that

H(V) = −EIW V(Q,n)

[

− ln(Zn,d)+
n
2
ln

∣

∣

∣

∣

Q
2

∣

∣

∣

∣

−
n+d+1

2
ln |V|− 1

2
tr(V−1Q)

]

,

= ln(Zn,d)−
n
2
ln

∣

∣

∣

∣

Q
2

∣

∣

∣

∣

+
n+d+1

2

[

ln |Q|−
d

!
i=1

/(
n+1− i
2

))−d ln2

]

+
nd
2

,

=
d+1
2

ln |Q|+ f1,4(d,n),

where f1,4(d,n) depends only on d and n.
Given the results above, we complete the computation of entropy H(A,V) as follows:

H (A,V) = H(A|V)+H(V) = H(V)+
Z

dVIW V(Q,n)H(A;V),

=
Z

dVIW V(Q,n)
(

m
2
ln |V|− d

2
ln |K|+ dm

2
ln(2"e)

)

+H(V),

= −
d
2
ln |K|+ dm

2
ln(2"e)+

m
2

[ln |Q|+ f1,3(d,n)]+
d+1
2

ln |Q|+ f1,4(d,n),

= −
d
2
ln |K|+(

m+d+1
2

) ln |Q|+ f1,1(d,n).

This is exactly what was claimed in Lemma 4.2.
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A.3 Proof of Lemma 5.1

The proof is analogous to the D-optimality case. We need the following lemma:

Lemma A.1 Let V diagonal positive definite matrix. Let X(i,:) denote the ith row of matrix X. Let
0i = (A(i,:)−M(i,:))K(A(i,:)−M(i,:))

T , ∀i= 1, . . . ,d. η ∈ Rd. Then the following statement holds:

NA(M,V,K)PIGV(α,β) = PIGV(α+m/2,β +η/2)
d

#
i=1

TA(i,:) (%i,2&i,M(i,:),
K
2

).

Proof:

NA(M,V,K)PIGV(α,β) =

=
|K|d/2

|2"V|m/2 exp(−
1
2
tr(V−1(A−M)K(A−M)T ))

d

#
i=1

%&ii
$(&i)

v−&i−1i exp(−
%i
vi

),

=
|K|d/2

#d
i=1(2")m/2vm/2

i

exp(−
1
2

d

!
i=1

1
vi
0i)

d

#
i=1

%&ii
$(&i)

v−&i−1i exp(−
%i
vi

),

=
|K|d/2

#d
i=1(2")m/2

d

#
i=1

%&ii
$(&i)

v−&i−m/2−1
i exp(−

%i+0i/2
vi

),

=
|K|d/2

#d
i=1(2")m/2

d

#
i=1

%&ii
$(&i)

(%i+0i/2)&i+m/2

(%i+0i/2)&i+m/2
$(&i+m/2)
$(&i+m/2)

,v−&i−m/2−1
i exp(−

%i+0i/2
vi

),

=
|K|d/2

#d
i=1(2")m/2

d

#
i=1

%&ii $(&i+m/2)/$(&i)
(%i+0i/2)&i+m/2

d

#
i=1

(%i+0i/2)&i+m/2

$(&i+m/2)
v−&i−m/2−1
i exp(−

%i+0i/2
vi

),

=
d

#
i=1

|K|1/2

(2")m/2
$(&i+m/2)

$(&i)
%&ii

(%i+0i/2)&i+m/2PIGv(α+m/2,β +η/2),

=
d

#
i=1

|K2 |
1/2

"m/2
$(&i+m/2)%&ii

$(&i)(%i+(A(i,:)−M(i,:))
K
2 (A(i,:)−M(i,:))T )&i+m/2PIGv(α+m/2,β +η/2),

= PIGv(α+m/2,β +η/2)
d

#
i=1

TA(i,:) (%i,2&i,M(i,:),
K
2

).

Lemma A.2

Ny(Ax,V)NA(M,V,K)PIGV(α,β) =NA((MK+yxT )(xxT +K)−1,V,xxT +K)×

×PIGV

(

α+1/2,β +diag(y−Mx) (1−xT (xxT +K)−1x)
2

(y−Mx)T
)

×

×
d

#
i=1

Tyi

(

%i,2&i,(Mx)i,
1−xT (xxT +K)−1x

2

)

.

Proof:

Ny(Ax,V)NA(M,V,K)PIGV(α,β) =NA((MK+yxT )(xxT +K)−1,V,xxT +K)×
Ny((Mx,V,1−xT (xxT +K)−1x)×

PIGV(α,β).
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A.4 Proof of Lemma 5.2

We can see that VarV[E[A|V,{x}t+11 ,{y}t+11 ]] =VarV[Mt+1] = 0, and

EV[trVar(A|V,{x}t+11 ,{y}t+11 )] = EV[tr(V⊗ (Kt +xt+1xTt+1)−1)|{x}t+11 ,{y}t+11 ],

= tr(E[V|{x}t+11 ,{y}t+11 ])tr[(Kt +xt+1xTt+1)−1],

= tr[(Kt +xt+1xTt+1)−1]
d

!
i=1

(βt+1)i
(αt+1)i−1

,

where we used that P(V|{x}t+11 ,{y}t+11 ) = PIGV(αt+1,βt+1).
The law of total variance says that Var[A] =Var[E[A|V]]+E[Var[A|V]], hence

trVar[A|{x}t+11 ,{y}t+11 ] = tr(Kt +xt+1xTt+1)−1
d

!
i=1

(βt+1)i
(αt+1)i−1

.

A.5 Proof of Lemma 6.1

To compute (24) we need the following lemma (Minka, 2000):

Lemma A.3 If P(A) =NA(M,V,K), then P(Ax) =NAx
(

Mx,V,
(

xTK−1x
)−1

)

.

Applying this lemma and using (11) we have that

P(Axt+1|V,{x}t+11 ,{y}t+11 ) =NAxt+1

(

Mt+1xt+1,V,
(

xTt+1K−1
t+1xt+1

)−1)
. (37)

We introduce the notations

K̃t+1 =
(

xTt+1K−1
t+1xt+1

)−1 ∈ R, (38)
1t+1 = 1+(Axt+1−Mt+1xt+1)T (K̃t+1Q−1

t+1)(Axt+1−Mt+1xt+1) ∈ R.

Exploit the fact that

NA(M,V,K)IW V(Q,n) = IW V (Q+H,n+m)TA(Q,n,M,K),

and use (12) for the posterior distribution (37) and get

P(Axt+1|{x}t+11 ,{y}t+11 ) = TAxt+1
(

Qt+1,nt+1,Mt+1xt+1, K̃t+1
)

,

= "−d/2|K̃−1
t+1Qt+1|−1/2

$(nt+1+12 )

$(nt+1+1−d2 )
1
nt+1+1

2
t+1 .

The Shannon-entropy of this distribution according to Zografos and Nadarajah (2005) can be written
as:

H(Axt+1;{x}t+11 ,{y}t+11 ) = f3,1(d,nt+1)+
d
2
log |K̃−1

t+1|+ log |Qt+1|,

where

f3,1(d,nt+1) = − log
$(nt+1+12 )

"d/2$(nt+1+1−d2 )
+
nt+1+1
2

(

/

(

nt+1+1
2

)

−/

(

nt+1+1−d
2

))

.
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Using the notations introduced in (10) and in (38), the above expressions can be transcribed as
follows:

H(Axt+1;{x}t+11 ,{y}t+11 ) = f3,1(d,nt+1)−
d
2
log |K̃t+1|+ log |Qt+1|,

= f3,1(d,nt+1)+
d
2
log |xTt+1(Kt +xt+1xTt+1)−1xt+1|+ log |Qt+1|,

= f3,1(d,nt+1)+
d
2
log |xTt+1(Kt +xt+1xTt+1)−1xt+1|+

+ log |Qt +(yt+1−Mtxt+1)'t+1 (yt+1−Mtxt+1)T |.

Now, we are in a position to calculate (24) by applying Lemma 4.4 as before. We get that

Z

dyt+1P(yt+1|{x}t+11 ,{y}t1)H(et+1;{x}t+11 ,{y}t+11 ) =

= f3,2(Qt ,nt+1)+
d
2
log |xTt+1(Kt +xt+1xTt+1)−1xt+1|,

where f3,2(Qt ,nt+1) depends only on Qt , and nt+1. We can proceed as follows

argmax
ut+1

I(et+1,yt+1;{x}t+11 ,{y}t1) = argmin
ut+1

log |xTt+1(Kt +xt+1xTt+1)−1xt+1|,

= argmin
ut+1

log

∣

∣

∣

∣

∣

xTt+1

(

K−1
t −

K−1
t xt+1xTt+1K

−1
t

1+xTt+1K
−1
t xt+1

)

xt+1

∣

∣

∣

∣

∣

,

= argmin
ut+1

log

∣

∣

∣

∣

∣

xTt+1K
−1
t xt+1

1+xTt+1K
−1
t xt+1

∣

∣

∣

∣

∣

,

= argmin
ut+1
xTt+1K−1

t xt+1.

This is exactly what we were to prove.

A.6 Proof of Lemma 8.1

One needs to compute the value of the integral

Z

dyt+1P(yt+1|{x}t+11 ,{y}t1)E[trV|xt+11 ,yt+11 ]tr
(

(

Kt +xt+1xTt+1
)−1

+xTt+1K−1
t+1xt+1

)

.

However,

Z

dyt+1P(yt+1|{x}t+11 ,{y}t1)E[trV|xt+11 ,yt+11 ]

=
Z

dyt+1
d

#
i=1

T(yt+1)i

(

(βt)i,2(αt)i,(Mtxt+1)i,
't+1
2

) d

!
i=1

(βt+1)i
(αt+1)i−1

,

549



PÓCZOS AND LŐRINCZ

and depends only on the values ofαt+1 and βt as a result of (19) and Lemma 4.4, and is independent
of the value of xt+1. Thus, we arrive at the minimization of the following expression:

tr

[(

K−1
t −

K−1
t xt+1xTt+1K

−1
t

1+xTt+1K
−1
t xt+1

)

+xTt+1

(

K−1
t −

K−1
t xt+1xTt+1K

−1
t

1+xTt+1K
−1
t xt+1

)

xt+1

]

=

[

tr(K−1
t )− tr

K−1
t xt+1xTt+1K

−1
t

1+xTt+1K
−1
t xt+1

+
xTt+1K

−1
t xt+1

1+xTt+1K
−1
t xt+1

]

,

=

[

tr(K−1
t )−

xTt+1K
−1
t K−1

t xt+1
1+xTt+1K

−1
t xt+1

+
xTt+1K

−1
t xt+1

1+xTt+1K
−1
t xt+1

]

,

=
1+xTt+1K

−1
t K−1

t xt+1
1+xTt+1K

−1
t xt+1

.

References

J. Abonyi, R. Babuska, A. Ayala-Botto, A. Szeifert, and L. Nagy. Identification and control of
nonlienar systems using Hammerstein-models. Ind. Eng. Chem. Res, 39:4302–4314, 2000.

L. A. Aguirre, M. C. S. Coelho, and M. V. Correa. On the interpretation and practice of dynamical
differences between Hammerstein and Wiener models. In IEE. Proc. of Control Theory Applica-
tion, volume 152, pages 349–354, 2005.

S. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for blind signal separation. In
Advances in Neural Information Processing Systems, volume 8, pages 757–763, Cambridge, MA,
1996. MIT Press.

B. Anderson and A. Moore. Active learning for hidden Markov models: objective functions and
algorithms. In ICML ’05: Proceedings of the 22nd international conference on Machine learning,
pages 9–16, New York, NY, USA, 2005. ACM.

F. R. Bach. Active learning for misspecified generalized linear models. In B. Schölkopf, J. Platt,
and T. Hoffman, editors, Advances in Neural Information Processing Systems, volume 19, pages
65–72, Cambridge, MA, 2007. MIT Press.

E. W. Bai. A blind approach to the Hammerstein-Wiener model identification. Automatica, 38:
967–979, 2002.

M. J. Beal. Variational Algorithms for Approximate Bayesian Inference. PhD thesis, Gatsby Com-
putational Neuroscience Unit, University College London, 2003.

J. M. Bernardo. Expected information as expected utility. The Annals of Statistics, 7(3):686–690,
1979.

S. A. Billings and I. J. Leontaritis. Identifiaction of nonlinear systems using parametric estimation
techniques. In IEE. Proc. of Control and its Applications, pages 183–187, 1981.

X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In Fourteenth
Conference on Uncertainty in Artificial Intelligence, pages 33–42, 1998.

550



BAYESIAN INTERROGATION FOR PARAMETER AND NOISE IDENTIFICATION

J. F. Cardoso. High-order contrasts for independent component analysis. Neural Computation, 11
(1):157–192, 1999.

R. Castro, J. Jaupt, and R. Nowak. Compressed sensing vs. active learning. In ICASSP 2006, IEEE
International Conference on Acoustics, Speech and Signal Processing, volume 3, 2006a.

R. Castro, R. Willett, and R. Nowak. Faster rates in regression via active learning. In Y. Weiss,
B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages
179–186. MIT Press, Cambridge, MA, 2006b.

P. Celka, N. J. Bershad, and J. Vesin. Stochastic gradient identification of polynomial Wiener
systems: Analysis and application. IEEE Trans. Signal Process., 49(2):301–313, 2001.

K. Chaloner. Optimal bayesian experimental design for linear models. The Annals of Statistics, 12
(1):283–300, 1984.

K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statist. Sci., 10:273–304,
1995.

N. Chiras, C. Evans, and D. Rees. Nonlinear gas turibne modeling using NARMAX structures.
IEEE Trans. Instrum. Meas., 50(4):893–898, 2001.

D. A. Cohn. Neural network exploration using optimal experiment design. In Advances in Neural
Information Processing Systems, volume 6, pages 679–686, 1994.

D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical models. Journal of
Artificial Intelligence Research, 4:129–145, 1996.

T. F. Coleman and Y. Li. A reflective newton method for minimizing a quadratic function subject to
bounds on some of the variables. SIAM Journal on Optimization, 6(4):1040–1058, 1996.

P. Comon. Independent component analysis, a new concept? Signal Processing, 36(3):287–314,
1994.

T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 1991.

R. C. deCharms, D. T. Blake, and M. M. Merzenich. Optimizing sound features for cortical neurons.
Science, 280:1439–1444, 1998.

G. Duncan and M. H. DeGroot. A mean squared error approach to optimal design theory. In
Proceedings of the 1976 Conference on Information: Sciences and Systems, pages 217–221. The
Johns Hopkins University, 1976.

V. V. Fedorov. Theory of Optimal Experiments. Academic Press, New York, 1972.

P. Földiák. Stimulus optimization in primary visual cortex. Neurocomputing, 38–40:1217–1222,
2001.

Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee
algorithm. Machine Learning, 28:133–168, 1997.

551



PÓCZOS AND LŐRINCZ
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Abstract
This paper studies the feature selection problem using a greedy least squares regression algorithm.
We show that under a certain irrepresentable condition on the design matrix (but independent of
the sparse target), the greedy algorithm can select features consistently when the sample size ap-
proaches infinity. The condition is identical to a corresponding condition for Lasso.

Moreover, under a sparse eigenvalue condition, the greedy algorithm can reliably identify fea-
tures as long as each nonzero coefficient is larger than a constant times the noise level. In compar-
ison, Lasso may require the coefficients to be larger than O(

√
s) times the noise level in the worst

case, where s is the number of nonzero coefficients.
Keywords: greedy algorithm, feature selection, sparsity

1. Introduction

We are interested in the statistical feature selection problem for least squares regression. Let X =
[x1, . . . ,xd] ∈ Rn×d be an n×d data matrix with x j ∈ Rn ( j = 1, . . . ,d) as its columns. Assume that
the response vector y= [y1, . . . ,yn] ∈ Rn is generated from a sparse linear combination of the basis
vectors {x j} plus a zero-mean stochastic noise vector z ∈ Rn:

y= X !̄+ z=
d

"
j=1

!̄ jx j + z, (1)

where most coefficients !̄ j equal zero. The goal of feature selection is to identify the set of non-
zeros { j : !̄ j %= 0}, where !̄ = [!̄1, . . . , !̄d]. The purpose of this paper is study the performance of
greedy least squares regression for feature selection.

The following notations are used throughout the paper. Given ! ∈ Rd , define

supp(!) = { j : ! j %= 0}.

Given x ∈ Rn and F̄ ⊂ {1, . . . ,d}, let

!̂X(F̄ ,x) = min
!∈Rd

1
n
‖X!−x‖22 subject to supp(!) ⊂ F̄ .

∗. Supported by NSF grant DMS-0706805.
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That is, !̂X(F̄ ,x) is the least squares solution with coefficients restricted to F̄ .
Given F̄ ∈ {1, . . . ,d}, we let XF̄ be the n× |F̄| matrix that is the restriction of columns of X to

F̄ . That is, XF̄ ’s columns are the basis functions x j with j ∈ F̄ arranged in the ascending order. The
following quantity, appeared in Tropp (2004), is important in our analysis (also see Wainwright,
2006):

µX(F̄) =max
j/∈F̄

‖(XTF̄ XF̄)−1XTF̄ x j‖1.

We also define for all F̄ ⊂ {1, . . . ,d}

#X(F̄) = inf
{

1
n
‖X!‖22/‖!‖22 : supp(!) ⊂ F̄

}

.

This quantity is the smallest eigenvalue of the restricted design matrix 1
nX

T
F̄ XF̄ , which has also

appeared in previous work such as Wainwright (2006) and Zhao and Yu (2006). The requirement
that #X(F) is bounded away from zero for small |F| is often referred to as the sparse eigenvalue
condition (or the restricted isometry condition).

2. Related Work

The feature selection problem of estimating supp(!̄) from observation y defined in (1) has attracted
significant attention in recent years. One of the frequently used method for feature selection is
Lasso, which solves the following L1 regularization problem:

!̂= argmin
!





1
n

∥

∥

∥

∥

∥

d

"
j=1

! jx j−y

∥

∥

∥

∥

∥

2

2

+$‖!‖1



 , (2)

where $> 0 is an appropriately chosen regularization parameter.
The effectiveness of feature selection using Lasso was established in Zhao and Yu (2006) (also

see Meinshausen and Buhlmann, 2006) under irrepresentable conditions that depend on the signs of
the true target sgn(!̄). Results established in this paper have cruder forms that depend only on the
design matrix but not the sparse target !̄. Such conditions have also been studied by Zhao and Yu
(2006) (also see Wainwright, 2006).

In addition to Lasso, greedy algorithms have also been widely used for feature selection. Greedy
algorithms for least squares regression are called matching pursuit in the signal processing commu-
nity (Mallat and Zhang, 1993). The particular algorithm analyzed in this paper (some time referred
to as orthogonal matching pursuit or OMP) is presented in Figure 1. The algorithm is often called
forward greedy selection in the machine learning literature.

This paper investigates the behavior of greedy least squares algorithm in Figure 1 for feature
selection under the stochastic noise model (1). Our result extends that of Tropp (2004), which only
considered the situation without stochastic noise. It was shown by Tropp (2004) that µX(F̄) < 1 is
sufficient for the greedy algorithm to identify the correct feature set supp(!̄) when the noise vector
z= 0. The main contribution of this paper is to generalize Tropp’s analysis to handle non-zero sub-
Gaussian stochastic noise vectors. In particular, we will establish conditions on min j∈supp(!̄) |!̄ j| and
the stopping criterion % in Figure 1, so that the algorithm finds the correct feature set supp(!̄). The
selection of stopping criterion % in the greedy algorithm is equivalent to selecting an appropriate
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Input: X = [x1, . . . ,xd] ∈ Rn×d , y ∈ Rn and %> 0
Output: F(k) and !(k)

let x̃ j = x j/‖x j‖2 be normalized basis ( j = 1, . . . ,d)
let F(0) = /0 and !(0) = 0
for k = 1,2, . . .
let i(k) = argmaxi |x̃Ti (X!(k−1)−y)|
if (|x̃Ti(k)(X!

(k−1)−y)|≤ %) break
let F(k) = {i(k)}∪F(k−1)

let !(k) = !̂X(F(k),y)
end

Figure 1: Greedy Least Squares Regression (OMP)

regularization condition $ in the Lasso formulation (2), which is necessary both in theory and in
practice. The condition on min j∈supp(!̄) |!̄ j| also naturally appears in the analysis of Lasso (Zhao
and Yu, 2006). In fact, our result shows that the condition of min j∈supp(!̄) |!̄ j| required for greedy
algorithm is weaker than the corresponding condition for Lasso.

The greedy algorithm analysis employed in this paper is a combination of an observation by
Tropp (2004, see Lemma 11) and some technical lemmas for the behavior of greedy least squares
regression by Zhang (2008), which are included in Appendix A for completeness. Note that Zhang
(2008) only studied a forward-backward procedure, but not the more standard forward greedy algo-
rithm considered here. In this paper, both the employment of the condition µX(F̄) < 1 and the proof
in Appendix B are new.

As we shall see in this paper, the condition µX(F̄)≤ 1 is necessary for the success of the forward
greedy procedure. It is worth mentioning that Lasso is consistent in parameter estimation under a
weaker sparse eigenvalue condition, even if the condition µX(F̄) ≤ 1 fails (which means Lasso may
not estimate the true feature set correctly): for example, see Meinshausen and Yu (2008) and Zhang
(2009). Although similar results may be obtained for greedy least squares regression, when the
condition µX(F̄) ≤ 1 fails, it was shown by Zhang (2008) that the performance of greedy algorithm
can be improved by incorporating backward steps. In contrast, results in this paper show that if
the design matrix satisfies the additional condition µX(F̄) < 1, then the standard forward greedy
algorithm will be successful without complicated backward steps.

3. Feature Selection using Greedy Least Squares Regression

We would like to establish conditions under which the forward greedy algorithm in Figure 1 never
makes any mistake (with large probability), and thus suitable for feature selection. For convenience,
we state an assumption before stating the theoretical result.

Assumption 1 Assume that

• The basis functions are normalized such that 1n‖x j‖
2
2 = 1 for all j = 1, . . . ,d.

• The target function is truly sparse: there exists !̄ ∈ Rd with F̄ = supp(!̄) such that Ey= X !̄.

• µX(F̄) < 1 and #X(F̄) > 0.
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• y = [yi]i=1,...,n are independent (but not necessarily identically distributed) sub-Gaussians:
there exists &≥ 0 such that ∀i ∈ {1, . . . ,n} and ∀t ∈ R, Eyiet(yi−Eyi) ≤ e&2t2/2.

Both Gaussian and bounded random variables are sub-Gaussian using the above definition. For
example, if a random variable ' ∈ [a,b], then E'et('−E') ≤ e(b−a)2t2/8. If a random variable is
Gaussian: '∼ N(0,&2), then E'et' ≤ e&2t2/2.

The following theorem gives conditions under which the forward greedy algorithm can identify
the correct set of features.

Theorem 1 Consider the greedy least squares algorithm in Figure 1, where Assumption 1 holds.
Given any ( ∈ (0,0.5), with probability larger than 1−2(, if the stopping criterion satisfies

%>
1

1−µX(F̄)
&
√

2ln(2d/(), min
j∈F̄

|!̄ j|≥ 3%#X(F̄)−1/
√
n,

then when the procedure stops, we have F(k−1) = F̄ and

‖!(k−1)− !̄‖) ≤ &
√

(2ln(2|F̄|/())/(n#X(F̄)).

The result is a simple consequence of the following slightly more general theorem (its proof is
left to Appendix B).

Theorem 2 Consider the greedy least squares algorithm in Figure 1, where Assumption 1 holds.
Given any ( ∈ (0,0.5), with probability larger than 1−2(, if the stopping criterion satisfies

%>
1

1−µX(F̄)
&
√

2ln(2d/(),

then when the procedure stops, the following claims are true:

• F(k−1) ⊂ F̄ .

• |F̄−F(k−1)|≤ 2|{ j ∈ F̄ : |!̄ j| < 3%#X(F̄)−1/
√
n}|

• ‖!(k−1)− !̂X(F̄ ,y)‖2 ≤ %#(F̄)−1
√

|F̄−F(k−1)|/n.

• ‖!̂X(F̄ ,y)− !̄‖) ≤ &
√

(2ln(2|F̄|/())/(n#X(F̄)).

In the following, we discuss some consequences of Theorem 1 and Theorem 2, and compare
them with those of Lasso. Let k(%) be the number of j ∈ F̄ such that |!̄ j| < 3%#X(F̄)−1/

√
n. The-

orem 2 implies that |F̄−F(k−1)| ≤ 2k(%); that is, |F̄−F(k−1)| is small when k(%) is small. In such
case, the feature set F(k−1) selected by the greedy least squares algorithm is approximately correct.
Moreover, we have !(k−1) ≈ !̄. In fact, one can show (e.g., see Zhang, 2008) that with probability
larger than 1−(:

‖!̂X(F̄ ,y)− !̄‖2 ≤ &
√

|F̄|/(#(F̄)n)[1+
√

20ln(1/()].

By combining this estimate with Theorem 2, we have

‖!(k−1)− !̄‖2 ≤ &
√

|F̄|/(#(F̄)n)[1+
√

20ln(1/()]+ %#(F̄)−1
√

2k(%)/n.
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That is, ‖!(k−1) − !̄‖2 = O(
√

|F̄|/n+ %
√

k(%)/n). This implies that when µX(F̄) < 1, greedy
least squares regression leads to a good estimation of the true parameter !̄. By choosing % =
O(&

√

ln(2d/()), we obtain ‖!(k−1) − !̄‖2 = O(
√

|F̄|/n+
√

k(%) lnd/n). The corresponding re-
sult for the Lasso estimator !̂ in (2) is ‖!̂− !̄‖2 = O($

√

|F̄|/n), where we require $ to be of the
order &

√

ln(d/()/n or larger. Therefore, if k(%) is small, then Lasso is inferior due to the extra lnd
factor. This factor is inherent to the L1 regularization in Lasso, which introduces a bias that cannot
be removed.

In this paper, we are mainly interested in the situation k(%) = 0, which implies that with the
stopping criterion %, greedy least squares regression can correctly identify all features with large
probability. Note that in order to correctly identify all features (F(k−1) = F̄), the requirement
min j∈F̄ |!̄ j| ≥ 3%#X(F̄)−1/

√
n in Theorem 1 is natural. Observe that we may take

% = &
√

3ln(d/()/(1− µX(F̄)). This means that under the assumption of Theorem 1, it is pos-
sible to identify all features correctly using the greedy least squares algorithm as long as the target
coefficients !̄ j ( j ∈ F̄) are larger than the order &

√

ln(d/()/n.
In fact, since &

√

ln(d/()/n is the noise level, if there exists a target coefficient !̄ j that is smaller
than O(&

√

ln(d/()/n) in absolute value, then we cannot distinguish such a small coefficient from
zero (or noise) with large probability. Therefore when the condition µX(F̄) < 1 holds, it is not
possible to do much better than greedy least squares regression except for the constant hidden in
O(·) and its dependency on #(F̄) and µX(F̄).

In comparison, for Lasso, the condition required of min j∈F̄ |!̄ j| depends not only on #(F̄)−1 and
(1−µX(F̄))−1, but also on the quantity ‖(XTF̄ XF̄)−1‖),) (see Wainwright, 2006), where

‖(XTF̄ XF̄)−1‖),) = sup
u∈R|F̄ |

‖(XTF̄ XF̄)−1u‖)
‖u‖)

.

Consider the matrix (XTF̄ XF̄)−1 = I+0.5B/
√

|F̄|, where Bi, j = 1 when either i= 1 or j= 1 or i= j,
and Bi, j = 0 otherwise. Then it is not hard to verify that #(F̄)−1 < 2 and ‖(XTF̄ XF̄)−1‖),) > 0.5

√

|F̄|
(by taking u= [1, . . . ,1]). This means that in the worst case, we can find matrix XTF̄ XF̄ such that

‖(XTF̄ XF̄)−1‖),) > 0.25
√

|F̄|#(F̄)−1.

Therefore, if we only assume that #(F̄) is bounded away from zero without using the quantity
‖(XTF̄ XF̄)−1‖),), the feature consistency result in Zhao and Yu (2006) and Wainwright (2006) for
Lasso requires the condition

min
j∈supp(!̄)

|!̄ j|≥ c&
√

|F̄| ln(d/()/n

for some constant c that is proportional to #(F̄)−1(1−µX(F̄))−1. This is a more restrictive condition
than that of greedy least squares regression. Unfortunately, the factor

√

|F̄| cannot be removed for
Lasso, unless we make the additional and stronger assumption that ‖(XTF̄ XF̄)−1‖),) = O(#(F̄)−1).

As we discussed after Theorem 2, the bias of L1-regularization also leads to suboptimal estima-
tion for Lasso. For example, for the greedy algorithm, we can show ‖!̂X(F̄ ,y)− !̄‖2 =O(&

√

|F̄|/n)
and ‖!̂X(F̄ ,y)− !̄‖) = O(&

√

ln |F̄|/n). Under the conditions of Theorem 1, we have !(k−1) =

!̂X(F̄ ,y), and thus ‖!(k−1) − !̄‖2 = O(&
√

|F̄|/n) and ‖!(k−1) − !̄‖) = O(&
√

ln |F̄ |/n). Under
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the same conditions, for the Lasso estimator !̂ of (2), we have ‖!̂− !̄‖2 = O(&
√

|F̄| lnd/n) and
‖!̂− !̄‖) = O(&

√

lnd/n). The lnd factor (bias) is inherent to Lasso, which can be removed with
two-stage procedures (e.g., Zhang, 2009). However, such procedures are less robust and more com-
plicated than the simple greedy algorithm.

4. Feature Selection Consistency

As we have mentioned before, the effectiveness of feature selection using Lasso was established by
Zhao and Yu (2006), under more refined irrepresentable conditions that depend on the signs of the
true target sgn(!̄). In comparison, the condition µX(F̄) < 1 in Theorem 2 depends only on the design
matrix but not the sparse target !̄. That is, the condition is with respect to the worst case choice of
!̄ with support supp(!̄) = F̄ . Due to the complexity of greedy procedure, we cannot establish a
simple target dependent condition that ensures feature selection consistency. This means for any
specific target, the behavior of forward greedy algorithm and Lasso might be different, and one may
be preferred over the other under different scenarios. Experiments in Zhang (2008) illustrated this
point.

In the following, we introduce the target independent irrepresentable conditions that are equiv-
alent to the irrepresentable conditions of Zhao and Yu (2006) with the worst case choice of sgn(!̄)
(also see Wainwright, 2006).

Definition 3 Consider a sequence of problems indexed by n: at each sample size n, let X (n) be an
n× d(n) dimensional data matrix, and we observe y(n) ∈ Rn that is corrupted with noise. Let F̄(n)

be the feature set, where Ey(n) = X (n)!̄(n) and supp(!̄(n)) = F̄(n) .
We say that the sequence satisfies the strong target independent irrepresentable condition if there

exists *> 0 such that limn→)µX (n) (F̄(n)) ≤ 1−*.
We say that the sequence satisfies the weak target independent irrepresentable condition if

µX (n) (F̄(n)) ≤ 1 for all sufficiently large n.

It was shown by Zhao and Yu (2006) that the strong (target independent) irrepresentable condition
is sufficient for Lasso to select features consistently for all possible sign combination of !̄(n) when
n→ ) (under appropriate assumptions). In addition, the weak (target independent) irrepresentable
condition is necessary for Lasso to select features consistently when n→). The target independent
irrepresentable conditions are considered by Zhao and Yu (2006) and Wainwright (2006). Similar
conditions were also considered by Tropp (2004) without stochastic noise.

Results parallel to that of Lasso can be obtained for Algorithm 1. Specifically, the following two
theorems show that the strong target independent irrepresentable condition is sufficient for Algo-
rithm 1 to select features consistently, while the weak target independent irrepresentable condition
is necessary.

Theorem 4 Consider regression problems indexed by the sample size n, and use notations in Defini-
tion 3. Let Assumption 1 hold, with noise & independent of n. Assume that the strong irrepresentable
condition holds. For each problem of sample size n, denote by Fn the feature set from Algorithm 1
when it stops with %= ns/2 for some s ∈ (0,1]. Then for all sufficiently large n, we have

P(Fn %= F̄(n)) ≤ exp(−ns/ lnn)

if the following conditions hold:
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1. dn ≤ exp(ns/ lnn)

2. min j∈F̄(n) |!̄(n)
j |≥ 3n(s−1)/2/#(F̄(n)).

Proof When n is sufficiently large, the two conditions of Theorem 1 hold with (= 0.5exp(−ns/ lnn).
Therefore the theorem is a direct consequence.

Theorem 5 Consider regression problems indexed by the sample size n, and use notations in Defini-
tion 3. Let Assumption 1 hold, with noise & independent of n. Assume that the weak irrepresentable
condition is violated at sample sizes n1 < n2 < · · · . There exist targets !̄(n j) with arbitrarily large
mini∈F̄(n j) |!̄

(n j)
i |, such that at each sample size n j, Algorithm 1 chooses a basis i(1) /∈ F̄ in the first

step with probability larger than 0.5.

Proof By definition of µX(F̄), there exists v= (XTF̄ XF̄)u ∈ R|F̄ | such that

µX(F̄) =max
j/∈F̄

‖(XTF̄ XF̄)−1XTF̄ x j‖1

=max
j/∈F̄

|vT (XTF̄ XF̄)−1XTF̄ x j|
‖v‖)

=max
j/∈F̄

|uTXTF̄ x j|
‖(XTF̄ XF̄)u‖)

=
max j/∈F |xTj XF̄u|
maxi∈F̄ |(xTi XF̄)u|

.

Therefore if µX(F̄) > 1, we can find u ∈ R|F̄ | such that max j/∈F |xTj XF̄u| >maxi∈F̄ |(xTi XF̄)u|.
Consider an arbitrary sequence *n > 0 (n = 1,2, . . .). At any sample size n = n j, since

µX (n) (F̄(n)) > 1, we can find a sufficiently large target vector !̄(n) such that

max
i∈F̄(n)

|xTi X (n)!̄(n)| < max
j/∈F̄(n)

|xTj X (n)!̄(n)|−2*n. (3)

Now we may take *n = &
√

2n ln(4dn); then Lemma 8 implies that with probability larger than 0.5,
max j∈{1,...,d} |xTj (y−X (n)!̄(n))|≤ *n. Therefore (3) implies that

max
i∈F̄(n)

[|xTi X (n)!̄(n)|+ |xTi (y−X (n)!̄(n))|] < max
j/∈F̄(n)

[|xTj X (n)!̄(n)|− |xTj (y−X (n)!̄(n))|].

Therefore
max
i∈F̄(n)

|xTi y| < max
j/∈F̄(n)

|xTj y|.

This means that we pick i(1) /∈ F̄ in the first step with probability larger than 0.5.
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5. Conclusion

We have shown that weak and strong target independent irrepresentable conditions are necessary and
sufficient conditions for a greedy least squares regression algorithm to select features consistently.
These conditions match the target independent versions of the necessary and sufficient conditions
for Lasso by Zhao and Yu (2006).

Moreover, if the eigenvalue #(F̄) is bounded away from zero, then the greedy algorithm can
reliably identify features as long as each nonzero coefficient is larger than a constant times the noise
level. In comparison, under the same condition, Lasso may require the coefficients to be larger than
O(

√
s) times the noise level, where s is the number of nonzero coefficients. This implies that under

some conditions, greedy least squares regression may potentially select features more effectively
than Lasso in the presence of stochastic noise.

Although the target independent versions of the irrepresentable conditions for greedy least
squares regression match those of Lasso, our result does not show which algorithm is better for
any specific target. In fact, the target specific behaviors of the two algorithms are different, and one
may be preferred over the other under different scenarios.
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Appendix A. Auxiliary Lemmas

The following technical lemmas from Zhang (2008) are needed to analyze the behavior of greedy
least squares regression under stochastic noise. For completeness, we include them here with proofs.

The following lemma relates the squared error reduction in one greedy step to correlation coef-
ficients.

Lemma 6 For all x,x′,y ∈ Rn, we have

inf
+∈R

‖x++x′ −y‖22 = ‖x−y‖22− ((x−y)Tx′)2/‖x′‖22.

Proof The equality follows from simple algebra with the optimal + achieved at−(x−y)Tx′/‖x′‖22.

The following lemma provides a bound on the squared error reduction of one forward greedy
step. Some ingredients of the proof has appeared in Natarajan (1995).

Lemma 7 Let Assumption 1 hold. Consider F ⊂ F̄ ⊂ {1, . . . ,d}. Let !′ = !̂X(F̄ ,y), ! = !̂X(F,y),
x′ = X!′, and x= X!. Then

inf
+∈R, j∈F̄−F

‖x++x j−y‖22 ≤ ‖x−y‖22−
#(F̄)

|F̄−F|
‖x−x′‖22.
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Proof For all j ∈ F , we have ‖x++x j− y‖22 achieves the minimum at + = 0. This implies that
(x−y)Tx j = 0 for j ∈ F . Therefore we have

(x−y)T "
j∈F̄−F

(!′j−! j)x j

=(x−y)T "
j∈F̄∪F

(!′j−! j)x j = (x−y)T (x′ −x)

=−‖x−x′‖22+(x′ −y)T (x′ −x) = −‖x−x′‖22.

The last quality follows from the definition of !′ = !̂X(F̄ ,y) and F ⊂ F̄ , which implies that (x′ −
y)T (x′ − x) = 0. Now, let s′ = |F̄ −F|, then the above inequality leads to the following derivation
∀(> 0:

s′ inf
j∈F̄−F

‖x+((!′j−! j)x j−y‖22

≤ "
j∈F̄−F

‖x+((!′j−! j)x j−y‖22

=s′‖x−y‖22+(2 "
j∈F̄−F

(!′j−! j)
2‖x j‖22+2((x−y)T "

j∈F̄−F
(!′j−! j)x j

=s′‖x−y‖22+n(2 "
j∈F̄−F

(!′j−! j)2−2(‖x′ −x‖22.

Note that in the last equation, we have used ‖x j‖22 = n in Assumption 1. By optimizing over (, we
obtain

s′ inf
j∈F̄−F

‖x+((!′j−! j)x j−y‖22

≤s′‖x−y‖22−
‖x′ −x‖42

n" j∈F̄(!′j−! j)2
≤ s′‖x−y‖22−#(F̄)‖x′ −x‖22.

This leads to the lemma.

The following lemma is a standard empirical processes bound for sub-Gaussian random vari-
ables. The bound is used to derive probability estimates in our analysis.

Lemma 8 Consider n independent random variables '1, . . . ,'n such that Eet('i−E'i) ≤ e&2i t2/2 for
all t and i. Consider gi, j for i= 1, . . . ,n and j= 1, . . . ,m, we have for all ( ∈ (0,1), with probability
larger than 1−(:

sup
j
|
n

"
i=1

gi, j('i−E'i)|≤ a
√

2ln(2m/(),

where a2 = sup j"n
i=1 g2i, j&2i .

Proof For a fixed j, we let s j = "n
i=1 gi, j('i−E'i); then by assumption, E(ets j + e−ts j) ≤ 2ea2t2/2,

which implies that for all %> 0: P(|s j|≥ %)et% ≤ 2ea2t2/2. Now let t = %/a2, we obtain:

P

(
∣

∣

∣

∣

∣

n

"
i=1

gi, j('i−E'i)

∣

∣

∣

∣

∣

≥ %

)

≤ 2e−%
2/2a2 .
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This implies that

P

[

sup
j

∣

∣

∣

∣

∣

n

"
i=1

gi, j('i−E'i)

∣

∣

∣

∣

∣

≥ %

]

≤ msup
j
P

[
∣

∣

∣

∣

∣

n

"
i=1

gi, j('i−E'i)

∣

∣

∣

∣

∣

≥ %

]

≤ 2me−%
2/(2a2).

This implies the lemma.

The following lemma gives a bound on the infinity norm of the difference between the estimated
parameter !̂X(F̄ ,y) and the true parameter !̄ when the set of features F̄ are known in advance.

Lemma 9 Let Assumption 1 hold. Consider any fixed F̄ ⊂ {1, . . . ,d}. For all ( ∈ (0,1), with
probability larger than 1−(, we have

‖!̂X(F̄,y)− !̂X(F̄,Ey)‖) ≤ &
√

(2ln(2|F̄|/())/(n#(F̄)).

Proof For simplicity, let G = XF̄ and k̄ = |F̄|. Let !̂′ ∈ Rk̄ and !̄′ ∈ Rk̄ be the restrictions of
!̂X(F̄ ,y) ∈ Rd and !̂X(F̄ ,Ey) ∈ Rd to F̄ respectively. Algebraically, we have !̂′ = (GTG)−1GTy
and !̄′ = (GTG)−1GTEy. It follows that

!̂′ − !̄′ = (GTG)−1GT (y−Ey).

Therefore
|!̂′j− !̄′j| = |eTj (GTG)−1GT (y−Ey)|.

Lemma 8 implies that with probability larger than 1−(, for all j:

|eTj (GTG)−1GT (y−Ey)|≤ &‖eTj (GTG)−1GT‖2
√

2ln(2k̄/().

Since by definition, #(F̄)n is no larger than the smallest eigenvalue of GTG, the desired inequality
follows from the estimate

‖eTj (GTG)−1GT‖22 = eTj (GTG)−1e j ≤ 1/(n#(F̄)).

The following lemma estimates the correlation coefficient of x j with j /∈ F̄ .

Lemma 10 Let Assumption 1 hold. Assume also that Ey= X !̄ with supp(!̄) ⊂ F̄ ⊂ {1, . . . ,d}. For
all ( ∈ (0,1), with probability larger than 1−(, we have

max
j/∈F̄

|(X !̂X(F̄,y)−y)Tx j|≤ &
√

2n ln(2d/().

Proof Let P be the projection operator to the subspace spanned by {x j : j ∈ F̄} on Rn. Lemma 8
implies that with probability larger than 1−(:

sup
j=1,...,d

|(y−Ey)T (I−P)x j|≤ &
√

2n ln(2d/(),
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where we have used ‖x j‖2 =
√
n. Let x̂ = X !̂X(F̄ ,y). Since (x̂−y)Tx j = 0 for all j ∈ F̄ , we have

x̂= Py. Moreover, since (I−P)Ey= (I−P)X !̄= 0, we have

(y−Ey)T (I−P)x j = ((I−P)y− (I−P)Ey)Tx j = (y− x̂)Tx j.

Combine this equation with the previous inequality, we obtain the desired bound.

Appendix B. Proof of Theorem 2

Before the formal proof, we give a brief outline of the main argument. First, Lemma 10 im-
plies that with large probability, max j/∈F̄ |(X !̂X(F̄ ,y)− y)Tx j| is small. Using this fact, and the
assumption that µX(F̄) < 1, it follows from Lemma 11 below that when supp(!(k−1)) ⊂ F̄ , ei-
ther maxi |(X!(k−1) − y)Txi| is sufficiently small (which implies that the greedy procedure stops
and !(k−1) ≈ !̄), or max j/∈F̄ |(X!(k−1)−y)Tx j| <maxi∈F̄ |(X!(k−1)−y)Txi| (which implies that the
greedy procedure chooses a direction i(k) ∈ F̄ in the next iteration). The claims of the theorem then
follow by induction.

We start the formal proof by introducing the following critical lemma, which generalizes the
essential idea of Tropp (2004). Note that the result there only considered the case X !̂X(F̄ ,y) = y.

Lemma 11 Consider ! ∈ Rd such that supp(!) ⊂ F̄ . We have

max
j/∈F̄

|(X!−y)Tx j|≤max
j %∈F̄

|(X !̂X(F̄ ,y)−y)Tx j|+µX(F̄)max
i∈F̄

|(X!−y)Txi|.

Proof Let !′ = !̂X(F̄,y). Note that (X!′ −y)Txi = 0 when i ∈ F̄ . Therefore

max
i∈F̄

|(X!−y)Txi| =max
i∈F̄

|xTi X(!−!′)| = ‖XTF̄ XF̄(!−!′)‖).

Let v= XTF̄ XF̄(!−!′), then the definition of µX(F̄) implies that

µX(F̄) ≥max
j/∈F̄

|xTj XF̄(XTF̄ XF̄)−1v|
‖v‖)

=
max j/∈F̄ |xTj XF̄(!−!′)|
‖XTF̄ XF̄(!−!′)‖)

.

We obtain from the above

max
j/∈F̄

|xTj X(!−!′)|≤ µX(F̄)‖XTF̄ XF̄(!−!′)‖) = µX(F̄)max
i∈F̄

|(X!−y)Txi|.

Now, the lemma follows from the simple inequality

max
j/∈F̄

|(X!−y)Tx j|≤max
j/∈F̄

|xTj X(!−!′)|+max
j/∈F̄

|xTj (X!′ −y)|

Now we are ready to prove the theorem. From Lemma 9, we obtain with probability larger than
1−(,

‖!̂X(F̄ ,y)− !̄‖) ≤ &
√

(2ln(2|F̄|/())/(n#(F̄)).
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From Lemma 10, we obtain with probability larger than 1−(,

max
j/∈F̄

|(X(!̂X(F̄ ,y))−y)T x̃ j|≤ &
√

2ln(2d/() < (1−µX(F̄))%. (4)

With probability larger than 1−2(, both claims hold.
We now proceed by induction on k to show that F(k−1) ⊂ F̄ before the procedure stops. Assume

the claim is true after k− 1 steps for k ≥ 1. By induction hypothesis, we have F(k−1) ⊂ F̄ at the
beginning of step k. Therefore Lemma 7 implies

min
+,i∈F̄

‖X!(k−1) ++xi−y‖22 ≤ ‖X!(k−1)−y‖22−
#(F̄)

|F̄−F(k−1)|
‖X(!(k−1)− !̂X(F̄ ,y))‖22.

Using the above inequality, we obtain from Lemma 6 the following bound on the correlation coef-
ficients:

max
i∈F̄

|(X!(k−1)−y)T x̃i| =
(

‖X!(k−1)−y‖22− min
+,i∈F̄

‖X!(k−1) ++xi−y‖22
)1/2

≥
√

#(F̄)
√

|F̄−F(k−1)|
‖X(!(k−1)− !̂X(F̄ ,y))‖2

≥
√
n#(F̄)

√

|F̄−F(k−1)|
‖!(k−1)− !̂X(F̄ ,y)‖2.

We only need to consider the following two scenarios:

• ‖!(k−1)− !̂X(F̄ ,y)‖2 > %#(F̄)−1
√

|F̄−F(k−1)|/n.
In this case, we have

max
i∈F̄

|(X!(k−1)−y)T x̃i| > %>max
j/∈F̄

|(X !̂X(F̄ ,y)−y)T x̃ j|/(1−µX(F̄)).

The second inequality is due to (4). Now by combining this estimate with Lemma 11, we
obtain

max
j/∈F̄

|(X!(k−1)−y)T x̃ j| <max
i∈F̄

|(X!(k−1)−y)T x̃i|.

This implies that i(k) ∈ F̄ and the procedure does not stop.

• ‖!(k−1)− !̂X(F̄ ,y)‖2 ≤ %#(F̄)−1
√

|F̄−F(k−1)|/n.
In this case, we have the following scenarios:

1. i(k) /∈ F̄ : By Lemma 11, we must have:

max
i∈F̄

|(X!−y)T x̃i|≤max
j/∈F̄

|(X!−y)T x̃ j|

≤max
j %∈F̄

|(X !̂X(F̄,y)−y)T x̃ j|+µX(F̄)max
i∈F̄

|(X!−y)T x̃i|

≤max
j %∈F̄

|(X !̂X(F̄,y)−y)T x̃ j|+µX(F̄)max
j/∈F̄

|(X!−y)T x̃ j|.
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Therefore

max
j/∈F̄

|(X!−y)T x̃ j|≤
1

1−µX(F̄)
max
j %∈F̄

|(X !̂X(F̄ ,y)−y)T x̃ j| < %.

The last inequality is due to (4). This implies that the procedure stops.
2. i(k) ∈ F̄ and the procedure does not stop.
3. i(k) ∈ F̄ and the procedure stops.

The above situations imply that if the procedure does not stop, then i(k) ∈ F̄ . If the procedure
stops, then

‖!(k−1)− !̂X(F̄,y)‖2 ≤ %#(F̄)−1
√

|F̄−F(k−1)|/n.

Therefore by induction, when the procedure stops, the following three claims hold:

• F(k−1) ⊂ F̄ .

• ‖!(k−1)− !̂X(F̄ ,y)‖2 ≤ %#X(F̄)−1
√

|F̄−F(k−1)|/n.

• ‖!̂X(F̄ ,y)− !̄‖) ≤ &
√

(2ln(2|F̄|/())/(n#X(F̄)) < %/
√

n#X(F̄).

Now, we can let ,=
√
8%#X(F̄)−1/

√
n, then the above claims imply that

,
√

|{ j ∈ F̄−F(k−1) : |!̄ j|≥ ,}|

≤



 "
j∈F̄−F(k−1)

|!̄ j|2




1/2

≤



 "
j∈F̄−F(k−1)

|!̄ j− !̂X(F̄ ,y)|2




1/2

+



 "
j∈F̄−F(k−1)

|!̂X(F̄,y)|2




1/2

≤
√

|F̄−F(k−1)|‖!̄− !̂X(F̄,y)‖)+‖!(k−1)− !̂X(F̄ ,y)‖2

<
√

|F̄−F(k−1)|/(n#X(F̄))%+ %#X(F̄)−1
√

|F̄−F(k−1)|/n

≤2%#X(F̄)−1
√

|F̄−F(k−1)|/n= ,
√

|F̄−F(k−1)|/2.

Therefore
2|{ j ∈ F̄−F(k−1) : |!̄ j|≥ ,}|≤ |F̄−F(k−1)|,

which implies that

|F̄−F(k−1)| =2|F̄−F(k−1)|− |F̄−F(k−1)|

≤2|F̄−F(k−1)|−2|{ j ∈ F̄−F(k−1) : |!̄ j|≥ ,}|

=2|{ j ∈ F̄−F(k−1) : |!̄ j| < ,}|
≤2|{ j ∈ F̄ : |!̄ j| < ,}|.

This proves the theorem.

567



ZHANG

References

S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on
Signal Processing, 41(12):3397–3415, 1993.

Nicolai Meinshausen and Peter Buhlmann. High-dimensional graphs and variable selection with
the Lasso. The Annals of Statistics, 34:1436–1462, 2006.

Nicolai Meinshausen and Bin Yu. Lasso-type recovery of sparse representations for high-
dimensional data. Annals of Statistics, 2008. to appear.

B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM J. Comput., 24(2):227–234,
1995. ISSN 0097-5397.

Joel A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Info.
Theory, 50(10):2231–2242, 2004.

MartinWainwright. Sharp thresholds for high-dimensional and noisy recovery of sparsity. Technical
report, Department of Statistics, UC. Berkeley, 2006.

Tong Zhang. Some sharp performance bounds for least squares regression with L1 regularization.
The Annals of Statistics, 2009. to appear.

Tong Zhang. Forward-backward greedy algorithm for learning sparse representations. Technical
report, Rutgers Statistics Department, 2008. A short version is to appear in NIPS 08.

Peng Zhao and Bin Yu. On model selection consistency of Lasso. Journal of Machine Learning
Research, 7:2541–2567, 2006.

568



Journal of Machine Learning Research 10 (2009) 569-590 Submitted 7/08; Revised 1/09; Published 3/09

Online Learning with Sample Path Constraints

Shie Mannor∗ SHIE.MANNOR@MCGILL.CA
Department of Electrical and Computer Engineering
McGill University
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Abstract
We study online learning where a decision maker interacts with Nature with the objective of max-
imizing her long-term average reward subject to some sample path average constraints. We define
the reward-in-hindsight as the highest reward the decision maker could have achieved, while sat-
isfying the constraints, had she known Nature’s choices in advance. We show that in general the
reward-in-hindsight is not attainable. The convex hull of the reward-in-hindsight function is, how-
ever, attainable. For the important case of a single constraint, the convex hull turns out to be the
highest attainable function. Using a calibrated forecasting rule, we provide an explicit strategy
that attains this convex hull. We also measure the performance of heuristic methods based on
non-calibrated forecasters in experiments involving a CPU power management problem.
Keywords: online learning, calibration, regret minimization, approachability

1. Introduction

We consider a repeated game from the viewpoint of a decision maker (player P1) who plays against
Nature (player P2). The opponent (Nature) is “arbitrary” in the sense that player P1 has no pre-
diction, statistical or strategic, of the opponent’s choice of actions. This setting was considered
by Hannan (1957), in the context of repeated matrix games. Hannan introduced the Bayes utility
with respect to the current empirical distribution of the opponent’s actions, as a performance goal
for adaptive play. This quantity, defined as the highest average reward that player P1 could have
achieved, in hindsight, by playing some fixed action against the observed action sequence of player
P2. Player P1’s regret is defined as the difference between the highest average reward-in-hindsight
that player P1 could have hypothetically achieved, and the actual average reward obtained by player
P1. It was established in Hannan (1957) that there exist strategies whose regret converges to zero as

∗. Also at Department of Electrical Engineering, Technion, Israel, 32000.

c©2009 Shie Mannor, John N. Tsitsiklis and Jia Yuan Yu.
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the number of stages increases, even in the absence of any prior knowledge on the strategy of player
P2. For recent advances on online learning, see Cesa-Bianchi and Lugosi (2006).

In this paper we consider regret minimization under sample-path constraints. That is, in addition
to maximizing the average reward, or more precisely, minimizing the regret, the decision maker has
some side constraints that need to be satisfied on the average. In particular, for every joint action
of the players, there is an additional penalty vector that is accumulated by the decision maker. The
decision maker has a predefined set in the space of penalty vectors, which represents the accept-
able tradeoffs between the different components of the penalty vector. An important special case
arises when the decision maker wishes to keep some constrained resource below a certain threshold.
Consider, for example, a wireless communication system where the decision maker can adjust the
transmission power to improve the probability that a message is received successfully. Of course,
the decision maker does not know a priori how much power will be needed (this depends on the
behavior of other users, the channel conditions, etc.). Still, a decision maker is usually interested in
both the rate of successful transmissions, and in the average power consumption. In an often consid-
ered variation of this problem, the decision maker wishes to maximize the transmission rate, while
keeping the average power consumption below some predefined threshold. We refer the reader to
Mannor and Shimkin (2004) and references therein for a discussion of constrained average cost
stochastic games and to Altman (1999) for constrained Markov decision problems. We note that the
reward and the penalty are not treated the same; otherwise they could have been combined into a
single scalar value, resulting in a much simpler problem.

The paper is organized as follows. In Section 2, we present formally the basic model, and
provide a result that relates attainability with the value of the game. In Section 3, we provide
an example where the reward-in-hindsight cannot be attained. In light of this negative result, in
Section 4 we define the closed convex hull of the reward-in-hindsight, and show that it is attainable.
Furthermore, in Section 5, we show that when there is a single constraint, this is the maximal
attainable objective. In Section 6, we provide a simple strategy, based on calibrated forecasting,
that attains the closed convex hull. Section 7 presents heuristic algorithms derived from an online
forecaster, while incorporating strictly enforced constraints. The application of the algorithms of
Section 7 to a power management domain is presented in Section 8. We finally conclude in Section
9 with some open questions and directions for future research.

2. Problem Definition

We consider a repeated game against Nature, in which a decision maker tries to maximize her
reward, while satisfying some constraints on certain time-averages. The underlying stage game is
a game with two players: P1 (the decision maker of interest) and P2 (who represents Nature and is
assumed arbitrary). For our purposes, we only need to define rewards and constraints for P1.

A constrained game with respect to a set T is defined by a tuple (A,B,R,C,T ) where:

1. A is the set of actions of P1; we will assume A= {1,2, . . . , |A|}.

2. B is the set of actions of P2; we will assume B= {1,2, . . . , |B|}.

3. R is an |A|× |B| matrix where the entry R(a,b) denotes the expected reward obtained by
P1, when P1 plays action a ∈ A and P2 action b ∈ B. The actual rewards obtained at each
play of actions a and b are assumed to be IID random variables, with finite second moments,
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distributed according to a probability law PrR(· |a,b). Furthermore, the reward streams for
different pairs (a,b) are statistically independent.

4. C is an |A|× |B| matrix, where the entry C(a,b) denotes the expected d-dimensional penalty
vector incurred by P1, when P1 plays action a ∈ A and P2 action b ∈ B. The actual penalty
vectors obtained at each play of actions a and b are assumed to be IID random variables, with
finite second moments, distributed according to a probability law PrC(· |a,b). Furthermore,
the penalty vector streams for different pairs (a,b) are statistically independent.

5. T is a set in Rd within which we wish the average of the penalty vectors to lie. We assume
that T is convex and closed. Since the entries ofC are bounded, we will also assume, without
loss of generality, that T is bounded.

The game is played in stages. At each stage t, P1 and P2 simultaneously choose actions at ∈ A
and bt ∈ B, respectively. Player P1 obtains a reward rt , distributed according to PrR(· |at ,bt), and a
penalty ct , distributed according to PrC(· |at ,bt). We define P1’s average reward by time t to be

r̂t =
1
t

t

!
"=1

r", (1)

and P1’s average penalty vector by time t to be

ĉt =
1
t

t

!
"=1

c". (2)

A strategy for P1 (resp. P2) is a mapping from the set of all possible past histories to the set of
mixed actions on A (resp. B), which prescribes the (mixed) action of that player at each time t, as a
function of the history in the first t−1 stages. Loosely, P1’s goal is to maximize the average reward
while having the average penalty vector converge to T , pathwise:

limsup
t→#

dist(ĉt ,T ) → 0, a.s., (3)

where dist(·) is the point-to-set Euclidean distance, that is, dist(x,T ) = infy∈T ‖y− x‖2, and the
probability measure is the one induced by the policy of P1, the policy of P2, and the randomness in
the rewards and penalties.

We will often consider the important special case where T = {c ∈ Rd : c≤ c0}, for some given
c0 ∈ Rd , with the inequality interpreted component-wise. We simply call such a game a constrained
game with respect to (a vector) c0. For that special case, the requirement (3) is equivalent to:

limsup
t→#

ĉt ≤ c0, a.s..

For a set D, we will use the notation $(D) to denote the set of all probability measures on D. If
D is finite, we will identify $(D) with the set of probability vectors of the same size as D. If D is a
subset of Euclidean space, we will assume that it is endowed with the Borel %-field.
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2.1 Reward-in-hindsight

We define q̂t ∈ $(B) as the empirical distribution of P2’s actions by time t, that is,

q̂t(b) =
1
t

t

!
"=1
1{bt=b}, b ∈ B. (4)

If P1 knew in advance that q̂t will equal q, and if P1 were restricted to using a fixed action, then
P1 would pick an optimal response (generally a mixed action) to the mixed action q, subject to the
constraints specified by T . In particular, P1 would solve the convex program1

max
p∈$(A)

!
a,b
p(a)q(b)R(a,b), (5)

s.t. !
a,b
p(a)q(b)C(a,b) ∈ T.

By playing a p that solves this convex program, P1 would meet the constraints (up to small fluctua-
tions that are a result of the randomness and the finiteness of t), and would obtain the maximal aver-
age reward. We are thus led to define P1’s reward-in-hindsight, which we denote by r∗ : $(B) )→ R,
as the optimal objective value in the program (5), as a function of q. The function r∗ is often referred
to as the Bayes envelope.

For the special case of a constrained game with respect to a vector c0, the convex constraint
!a,b p(a)q(b)C(a,b)∈ T is replaced by!a,b p(a)q(b)C(a,b)≤ c0 (the inequality is to be interpreted
component-wise).

The following examples show some of the properties of the Bayes envelope. Consider a 2× 2
constrained game with respect to a scalar c0 specified by:

(

(1,0) (0,1)
(0,1) (1,0)

)

,

where each entry (pair) corresponds to (R(a,b),C(a,b)) for a pair of actions a and b. (Here a
and b correspond to a choice of row and column, respectively.) Suppose first that c0 = 1. In that
case the constraint does not play a part in the problem, and we are dealing with a version of the
matching pennies game. So, if we identify q with the frequency of the first action, we have that
r∗(q) = max(q,1− q). Suppose now that c0 = 1/2. In this case, it is not difficult to show that
r∗(q) = 1/2, since P1 cannot take advantage of any deviation from q = 1/2 while satisfying the
constraint.

The next example involves a game where P2’s action does not affect the constraints; such games
are further discussed in Section 4.1. Consider a 2×2 constrained game with respect to a scalar c0,
specified by:

(

(1,1) (0,1)
(0,0) (1,0)

)

,

1. If T is a polyhedron (specified by finitely many linear inequalities), then the optimization problem is a linear program.
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where each entry (pair) corresponds to (R(a,b),C(a,b)) for a pair of actions a and b. We identify
q with the frequency of the second action of P2 as before. Suppose first that c0 = 1. As before,
the constraint has no effect and r∗(q) = max(q,1− q). Suppose now that c0 = 1/2. It is not hard
to show that in this case r∗(q) = max(q,1/2). Finally, if c0 = 0, P1 is forced to choose the second
action; in this case, r∗(q) = q. The monotonicity of r∗(q) in c0 is to be expected since the lower c0
is, the more stringent the constraint in Eq. (5).

2.2 The Objective

Formally, our goal is to attain a function r in the sense of the following definition. Naturally, the
higher the function r, the better.

Definition 1 A function r : $(B) )→ R is attainable by P1 in a constrained game with respect to a
set T if there exists a strategy % of P1 such that for every strategy & of P2:

(i) liminft→#(r̂t− r(q̂t)) ≥ 0, a.s., and

(ii) limsupt→# dist(ĉt ,T ) → 0, a.s.,

where the almost sure convergence is with respect to the probability measure induced by % and &.

In constrained games with respect to a vector c0 we can replace (ii) in the definition with

limsup
t→#

ĉt ≤ c0, a.s.

2.3 The Value of the Game

In this section, we consider the attainability of a constant function r : $(B) )→ R, that is, r(q) = ',
for all q. We will establish that attainability is equivalent to having ' ≤ v, where v is a naturally
defined “value of the constrained game.”

We first introduce the assumption that P1 is always able to satisfy the constraint.

Assumption 1 For every mixed action q ∈ $(B) of P2, there exists a mixed action p ∈ $(A) of P1,
such that:

!
a,b
p(a)q(b)C(a,b) ∈ T. (6)

For constrained games with respect to a vector c0, the condition (6) reduces to the inequality
!a,b p(a)q(b)C(a,b) ≤ c0.

If Assumption 1 is not satisfied, then P2 can choose a q such that for every (mixed) action of P1,
the constraint is violated in expectation. By repeatedly playing this q, P1’s average penalty vector
will be outside T , and the objectives of P1 will be impossible to meet.

The following result deals with the attainability of the value, v, of an average reward repeated
constrained game, defined by

v= inf
q∈$(B)

sup
p∈$(A):!a,b p(a)q(b)C(a,b)∈T

!
a,b
p(a)q(b)R(a,b). (7)

The existence of a strategy for P1 that attains the value was proven in Shimkin (1994) in the broader
context of stochastic games.
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Proposition 2 Suppose that Assumption 1 holds. Then,

(i) P1 has a strategy that guarantees that the constant function r(q) ≡ v is attained with respect
to T .

(ii) For every number v′ > v there exists ( > 0 such that P2 has a strategy that guarantees that
either liminft→# r̂t < v′ − ( or limsupt→# dist(ĉt ,T ) > (, almost surely. (In particular, the
constant function v′ is not attainable.)

Proof The proof relies on Blackwell’s approachability theory (Blackwell, 1956a). We construct a
nested family of convex sets in Rd+1 defined by S' = {(r,c) ∈ R×Rd : r ≥ ',c ∈ T}. Obviously,
S' ⊂ S) for '> ). Consider the vector-valued game in Rd+1 associated with the constrained game.
In this game, P1’s vector-valued payoff at time t is the d+1 dimensional vectormt = (rt ,ct) and P1’s
average vector-valued payoff is m̂t = (r̂t , ĉt). Since S' is convex, it follows from approachability the-
ory for convex sets (Blackwell, 1956a) that each S' is either approachable2 or excludable.3 If S' is
approachable, then S) is approachable for every )< '. We define v0 = sup{) | S) is approachable}.
It follows that Sv0 is approachable (as the limit of approachable sets; see Spinat, 2002). By Black-
well’s theorem, for every q ∈ $(B), an approachable convex set must intersect the set of feasible
payoff vectors when P2 plays q. Using this fact, it is easily shown that v0 equals v, as defined by
Eq. (7), and part (i) follows. Part (ii) follows because a convex set which is not approachable is
excludable.

Note that part (ii) of the proposition implies that, essentially, v is the highest average reward P1
can attain while satisfying the constraints, if P2 plays an adversarial strategy. By comparing Eq. (7)
with Eq. (5), we see that v= infq r∗(q). On the other hand, if P2 does not play adversarially, P1 may
be able to do better, perhaps attaining r∗(q). Our subsequent results address the question whether
this is indeed the case.

Remark 3 In general, the infimum and supremum in (7) cannot be interchanged. This is because
the set of feasible p in the inner maximization depends on the value of q. Moreover, it can be shown
that the set of (p,q) pairs that satisfy the constraint !a,b p(a)q(b)C(a,b) ∈ T is not necessarily
convex.

2. A set X is approachable if there exists a strategy for the agent such that for every *> 0, there exists an integer N such
that, for every opponent strategy:

Pr

(

dist

(

1
n

n
!
i=1

mt ,X

)

≥ * for some n≥ N

)

< *.

3. A set X is excludable if there exists a strategy for the opponent such that there exists (> 0 such that for every *> 0,
there exists an integer N such that, for every agent strategy:

Pr

(

dist

(

1
n

n
!
i=1

mt ,X

)

≥ ( for all n≥ N

)

> 1− *.
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2.4 Related Works

Notwithstanding the apparent similarity, the problem that we consider is not an instance of online
convex optimization (Zinkevich, 2003; Hazan and Megiddo, 2007). In the latter setting, there is a
convex feasible domain F ⊂ Rn, and an arbitrary sequence of convex functions ft : F → R. At
every step t, the decision maker picks xt ∈ F based on the past history, without knowledge of the
future functions ft , and with the objective of minimizing the regret

T

!
t=1

ft(xt)−min
y∈F

T

!
t=1

ft(y).

An analogy with our setting might be possible, by identifying xt and ft with at and bt , respectively,
and by somehow relating the feasibility constraints described by F to our constraints. However,
this attempt seems to run into some fundamental obstacles. In particular, in our setting, feasibility
is affected by the opponent’s actions, whereas in online convex optimization, the feasible domain
F is fixed for all time steps. For this reason, we do not see a way to reduce the problem of online
learning with constraints to an online convex optimization problem, and given the results below, it
is unlikely that such a reduction is possible.

3. Reward-in-Hindsight Is Not Attainable

As it turns out, the reward-in-hindsight cannot be attained in general. This is demonstrated by the
following simple 2×2 matrix game, with just a single constraint.

Consider a 2×2 constrained game specified by:

(

(1,−1) (1,1)
(0,−1) (−1,−1)

)

,

where each entry (pair) corresponds to (R(a,b),C(a,b)) for a pair of actions a and b. At a typical
stage, P1 chooses a row, and P2 chooses a column. We set c0 = 0. Let q denote the frequency
with which P2 chooses the second column. The reward of the first row dominates the reward of
the second one, so if the constraint can be satisfied, P1 would prefer to choose the first row. This
can be done as long as 0 ≤ q ≤ 1/2, in which case r∗(q) = 1. For 1/2 ≤ q ≤ 1, player P1 needs
to optimize the reward subject to the constraint. Given a specific q, P1 will try to choose a mixed
action that satisfies the constraint (on the average) while maximizing the reward. If we let ' denote
the frequency of choosing the first row, we see that the reward and penalty are:

r(',q) = '− (1−')q , c(',q) = 2'q−1,

respectively. We observe that for every q, r(') and c(') are monotonically increasing functions of
'. As a result, P1 will choose the maximal ' that satisfies c(') ≤ 0, which is '(q) = 1/2q, and the
optimal reward is 1/2+1/2q−q. We conclude that the reward-in-hindsight is:

r∗(q) =







1, if 0≤ q≤ 1/2,
1
2

+
1
2q

−q, if 1/2≤ q≤ 1.

The graph of r∗(q) is the solid line in Figure 1.
We now claim that P2 can make sure that P1 does not attain r∗.

575



MANNOR, TSITSIKLIS AND YU

! !"# !"$ !"% !"& !"' !"( !") !"* !"+ #
!

!"$

!"&

!"(

!"*

#

,

-. /
,0

$1$234526789

Figure 1: The reward-in-hindsight of the constrained game. Here, r∗(q) is the solid line, and the
dotted line connects the two extreme values, for q= 0 and q= 1.

Proposition 4 If c0 = 0, then there exists a strategy for P2 such that r∗ cannot be attained.

Proof Suppose that the opponent, P2, plays according to the following strategy. Initialize a counter
k = 1. Let '̂t be the empirical frequency with which P1 chooses the first row during the first t time
steps. Similarly, let q̂t be the empirical frequency with which P2 chooses the second column during
the first t time steps.

1. While k = 1 or '̂t−1 > 3/4, P2 chooses the second column, and k is incremented by 1.

2. For the next k times, P2 chooses the first column. Then, reset the counter k to , and go back
to Step 1.

We now show that if

limsup
t→#

ĉt ≤ 0, a.s.,

then a strict inequality holds for the regret:

liminf
t→#

(r̂t− r∗(q̂t)) < 0, a.s.

Suppose that Step 2 is entered only a finite number of times. Then, after some finite time, P2 keeps
choosing the second column, and q̂t converges to 1. For P1 to satisfy the constraint limsupt→# ĉt ≤
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0, we must have lim '̂t ≤ 1/2. But then, the condition '̂t−1 > 3/4 will be eventually violated. This
shows that Step 2 is entered an infinite number of times. In particular, there exist infinite sequences
ti and t ′i such that ti < t ′i < ti+1 and (i) if ti < t ≤ t ′i , P2 chooses the second column (Step 1); (ii) if
t ′i < t ≤ ti+1, P2 chooses the first column (Step 2).

Note that Steps 1 and 2 last for an equal number of time steps. Thus, we have q̂ti = 1/2, and
r∗(q̂ti) = 1, for all i. Furthermore, ti+1−t ′i ≤ t ′i , or t ′i ≥ ti+1/2. Note that '̂t ′i ≤ 3/4, because otherwise
P2 would still be in Step 1 at time t ′i + 1. Thus, during the first ti+1 time steps, P1 has played the
first row at most

3t ′i/4+(ti+1− t ′i) = ti+1− t ′i/4≤ 7ti+1/8

times. Due to the values of the reward matrix, we have limsupt→# r̂t < limsupi→# r̂ti . In particular,
we have r̂ti+1 ≤ 7/8, and liminft→#(r̂t− r∗(q̂t)) ≤ 7/8−1< 0.

Intuitively, the strategy that was described above allows P2 to force P1 to move, back and forth,
between the extreme points (q = 0 and q = 1) that are linked by the dotted line in Figure 1. Since
r∗(q) is not convex, and since the dotted line is strictly below r∗(q) for q = 1/2, this strategy
precludes P1 from attaining r∗(q). We note that the choice of c0 is critical in this example. With
other choices of c0 (for example, c0 = −1), the reward-in-hindsight may be attainable.

4. Attainability of the Convex Hull

Since the reward-in-hindsight is not attainable in general, we have to settle for a more modest
objective. More specifically, we are interested in functions f : $(B) → R that are attainable with
respect to a given constraint set T . As a target we suggest the closed convex hull of the reward-in-
hindsight, r∗. After defining it, we prove that it is indeed attainable. In the next section, we will also
show that it is the highest possible attainable function, when there is a single constraint.

Given a function f : X )→ R, over a convex domain X , its closed convex hull is the function
whose epigraph is

conv({(x,r) : r ≥ f (x)}),

where conv(D) is the convex hull, and D is the closure of a set D. We denote the closed convex hull
of r∗ by rc.

We will make use of the following facts. Forming the convex hull and then the closure results
in a larger epigraph, hence a smaller function. In particular, rc(q) ≤ r∗(q), for all q. Furthermore,
the closed convex hull is guaranteed to be continuous on $(B). (This would not be true if we had
considered the convex hull, without forming its closure.) Finally, for every q in the interior of $(B),
we have:

rc(q) = inf
q1,q2,...,qk∈$(B),'1,...,'k

k

!
i=1

'ir∗(qi) (8)

s.t.
k

!
i=1

'iqi(b) = q(b), ∀b ∈ B,

'i ≥ 0, i= 1,2, . . . ,k,
k

!
i=1

'i = 1,
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where k can be taken equal to |B|+2 by Caratheodory’s Theorem.
The following result is proved using Blackwell’s approachability theory. The technique is simi-

lar to that used in other no-regret proofs (e.g., Blackwell, 1956b; Mannor and Shimkin, 2003), and
is based on the convexity of a target set in an appropriately defined space.

Theorem 5 Let Assumption 1 hold for a given convex set T ⊂Rd. Then rc is attainable with respect
to T .

Proof Define the following game with vector-valued payoffs, where the payoffs belong to R×
Rd ×$(B) (a |B|+ d+ 1 dimensional space, which we denote by M ). Suppose that P1 plays at ,
P2 plays bt , P1 obtains an immediate reward of rt and an immediate penalty vector of ct . Then, the
vector-valued payoff obtained by P1 is

mt = (rt ,ct ,e(bt)) ,

where e(b) is a vector of zeroes, except for a 1 in its bth component. It follows that the average
vector-valued reward at time t, which we define as m̂t = 1

t !
t
"=1m", satisfies: m̂t = (r̂t , ĉt , q̂t), where

r̂t , ĉt , and q̂t were defined in Eqs. (1), (2), and (4), respectively. Consider the sets:

B1 = {(r,c,q) ∈M : r ≥ rc(q)}, B2 = {(r,c,q) ∈M : c ∈ T},

and let B = B1 ∩B2. Note that B is a convex set. We claim that B is approachable. Let m :
$(A)×$(B) →M describe the expected payoff in a single stage game, when P1 and P2 choose
actions p and q, respectively. That is,

m(p,q) =
(

!
a,b
p(a)q(b)R(a,b), !

a,b
p(a)q(b)C(a,b), q

)

.

Using the sufficient condition for approachability of convex sets (Blackwell, 1956a), it suffices to
show that for every q there exists a p such thatm(p,q)∈B . Fix q∈$(B). By Assumption 1, the con-
straint !a,b p(a)q(b)C(a,b) ∈ T is feasible, which implies that the program (5) has an optimal solu-
tion p∗. It follows that m(p∗,q) ∈ B . We now claim that a strategy that approaches B also attains rc
in the sense of Definition 1. Indeed, since B ⊆ B2 we have that Pr(d(ct ,T ) > * infinitely often) = 0
for every *> 0. Since B ⊆ B1 and using the continuity of rc, we obtain liminf(r̂t − rc(q̂t)) ≥ 0.

We note that Theorem 5 is not constructive. Indeed, a strategy that approaches B , based on a
naive implementation Blackwell’s approachability theory, requires an efficient procedure for com-
puting the closest point in B ,and therefore a computationally efficient description of B , which may
not be available (we do not know whether B can be described efficiently). This motivates the devel-
opment of the calibration based scheme in Section 6.

Remark 6 Convergence rate results also follow from general approachability theory, and are gen-
erally of the order of t−1/3; see Mertens et al. (1994). It may be possible, perhaps, to improve upon
this rate and obtain t−1/2, which is the best possible convergence rate for the unconstrained case.

Remark 7 For every q ∈ $(B), we have r∗(q) ≥ v, which implies that rc(q) ≥ v. Thus, attaining rc
guarantees an average reward at least as high as the value of the game.
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4.1 Degenerate Cases

In this section, we consider the degenerate cases where the penalty vector is affected by only one of
the players. We start with the case where P1 alone affects the penalty vector, and then discuss the
case where P2 alone affects the penalty vector.

If P1 alone affects the penalty vector, that is, ifC(a,b) =C(a,b′) for all a∈ A and b,b′ ∈ B, then
r∗(q) is convex. Indeed, in this case, Eq. (5) becomes (writingC(a) forC(a,b))

r∗(q) = max
p∈$(A):!a p(a)C(a)∈T

!
a,b
p(a)q(b)R(a,b),

which is the maximum of a collection of linear functions of q (one function for each feasible p), and
is therefore convex.

If P2 alone affects the penalty vector, that is, if c(a,b) = c(a′,b) for all b ∈ B and a,a′ ∈ A, then
Assumption 1 implies that the constraint is always satisfied. Therefore,

r∗(q) = max
p∈$(A)

!
a,b
p(a)q(b)R(a,b),

which is again a maximum of linear functions, hence convex.
We conclude that in both degenerate cases, if Assumption 1 holds, then the reward-in-hindsight

is attainable.

5. Tightness of the Convex Hull

We now show that rc is the maximal attainable function, for the case of a single constraint.

Theorem 8 Suppose that d = 1, T is of the form T = {c | c ≤ c0}, where c0 is a given scalar, and
that Assumption 1 is satisfied. Let r̃ : $(B) )→ R be a continuous attainable function with respect to
the scalar c0. Then, rc(q) ≥ r̃(q) for all q ∈ $(B).

Proof The proof is constructive, as it provides a concrete strategy for P2 that prevents P1 from
attaining r̃, unless rc(q) ≥ r̃(q) for every q. Assume, in order to derive a contradiction, that there
exists some r̃ that violates the theorem. Since r̃ and rc are continuous, there exists some q0 ∈ $(B)
and some *> 0 such that r̃(q) > rc(q)+ * for all q in an open neighborhood of q0. In particular, q0
can be taken to lie in the interior of $(B). Using Eq. (8), it follows that there exist q1, . . . ,qk ∈ $(B)
and '1, . . . ,'k (with k ≤ |B|+2, due to Caratheodory’s Theorem) such that

k

!
i=1

'ir∗(qi) ≤ rc(q0)+
*
2

< r̃(q0)−
*
2
;

k

!
i=1

'iqi(b) = q0(b), ∀ b ∈ B;
k

!
i=1

'i = 1; 'i ≥ 0, ∀ i.

Let " be a large positive integer (" is to be chosen large enough to ensure that the events of
interest occur with high probability, etc.). We will show that if P2 plays each qi for 1'i"2 time
steps, in an appropriate order, then either P1 does not satisfy the constraint along the way or r̂" ≤
r̃(q̂")− */2.
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Figure 2: In either part (a) or (b) of the figure, we fix some q ∈ $(B). The triangle is the set of
possible reward-cost pairs, as we vary p over the set $(A). Then, for a given value c in
the upper bound on the cost (cf. 10), the shaded region is the set of reward-cost pairs that
also satisfy the cost constraint.

We let qi, i= 1, . . . ,k, be fixed, as above, and define a function fi : Rd → R∪{−#} as:

fi(c) = max
p∈$(A)

!
a,b
p(a)qi(b)R(a,b), (9)

subject to !
a,b
p(a)qi(b)C(a,b) ≤ c, (10)

where the maximum over an empty set is defined to equal −#. Observe that the feasible set (and
hence, optimal value) of the above linear program depends on c. Figure 2 illustrates how the feasible
sets to (10) may depend on the value of c. By viewing Eqs. (9)-(10) as a parametric linear program,
with a varying right-hand side parameter c, we see that fi(c) is piecewise linear, concave, and
nondecreasing in c (Bertsimas and Tsitsiklis, 1997). Furthermore, fi(c0) = r∗(qi). Let + f+i be
the right directional derivative of fi at c = c0, and note that + f+i ≥ 0. From now on, we assume
that the qi have been ordered so that the sequence + f+i is nonincreasing (e.g., as in Figure 3).
To visualize the ordering that we have introduced, consider the set of possible pairs (r,c), given
a fixed q. That is, consider the set M(qi) = {(r,c) : ∃p ∈ $(A)s.t. r = !a,b p(a)qi(b)R(a,b), c =
!a,b p(a)qi(b)C(a,b)}. The setM(qi) is the image of the simplex under a linear transformation, and
is therefore a polytope, as illustrated by the triangular areas in Figure 2. The strategy of P2 is to first
play qi such that the p that maximizes the reward (Eq. 9) satisfies Eq. (10) with equality. (Such a
qi results in a set M(qi) like the one shown in Figure 2(b).) After all these qi are played, P2 plays
those qi for which the p that maximizes the reward (Eq. 9) satisfies Eq. (10) with strict inequality,
and + f+i = 0. (Such a qi results in a set M(qi) like the one shown in Figure 2(a).)

Suppose that P1 knows the sequence q1, . . . ,qk (ordered as above) in advance, and that P2 fol-
lows the strategy described earlier. We assume that " is large enough so that we can ignore the
effects of dealing with a finite sample. Let pi be the average of the mixed actions chosen by P1
while player P2 plays qi. We introduce the constraints

!

!
i=1

'i!
a,b
pi(a)qi(b)C(a,b) ≤ c0

!

!
i=1

'i, ! = 1,2, . . . ,k.
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Figure 3: An example of functions fi ordered according to + f+i .

These constraints must be satisfied in order to guarantee that ĉt has negligible probability of sub-
stantially exceeding c0, at the “switching” times from one mixed action to another. If P1 exploits
the knowledge of P2’s strategy to maximize her average reward at time ", the resulting expected
average reward at time " will be the optimal value of the objective function in the following linear
programming problem:

max
p1,p2,...,pk

k

!
i=1

'i!
a,b
pi(a)qi(b)R(a,b)

s.t.
!

!
i=1

'i!
a,b
pi(a)qi(b)C(a,b) ≤ c0

!

!
i=1

'i, ! = 1,2, . . . ,k, (11)

p! ∈ $(A), ! = 1,2, . . . ,k.

Of course, given the value of !a,b pi(a)qi(b)C(a,b), to be denoted by ci, player P1 should choose
a pi that maximizes rewards, resulting in !a,b pi(a)qi(b)R(a,b) = fi(ci). Thus, the above problem
can be rewritten as

max
c1,...,ck

!'i fi(ci)

s.t.
!

!
i=1

'ici ≤ c0
!

!
i=1

'i, ! = 1,2, . . . ,k. (12)

We claim that letting ci = c0, for all i, is an optimal solution to the problem (12). This will then
imply that the optimal value of the objective function for the problem (11) is !k

i=1'i fi(c0), which
equals !k

i=1'ir∗(qi), which in turn, is bounded above by r̃(q0)−*/2. Thus, r̂" < r̃(q0)−*/2+(("),
where the term ((") incorporates the effects due to the randomness in the process. By repeating
this argument with ever increasing values of " (so that the stochastic term ((") is averaged out
and becomes negligible), we obtain that the event r̂t < r̃(q0)− */2 will occur infinitely often, and
therefore r̃ is not attainable.

It remains to establish the claimed optimality of (c0, . . . ,c0). Suppose that (c1, . . . ,ck) 5=
(c0, . . . ,c0) is an optimal solution of the problem (12). If ci ≤ c0 for all i, the monotonicity of
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the fi implies that (c0, . . . ,c0) is also an optimal solution. Otherwise, let j be the smallest index for
which c j > c0. If + f+j = 0 (as in the case shown in Figure 2(b)) we have that fi(c) is maximized at
c0 for all i ≥ j and (c0, . . . ,c0) is optimal. Suppose that + f+j > 0. In order for the constraint (12)
to be satisfied, there must exist some index s < j such that cs < c0. Let us perturb this solution
by setting ( = min{'s(c0− cs),' j(c j− c0)}, increasing cs to c̃s = cs + (/'s, and decreasing c j to
c̃ j = c j−(/' j. This new solution is clearly feasible. Let + f−s = lim*↓0( fs(c0)− fs(c0−*))/*, which
is the left derivative of fs at c0. Using the concavity of fs, and the earlier introduced ordering, we
have + f−s ≥ + f+s ≥ + f+j . Observe that

fs(c̃s) = fs(cs)++ f−s (/'s,
f j(c̃ j) = f j(c j)−+ f+j (/' j,

so that 's fs(c̃s)+' j f j(c̃ j)≥ 's fs(cs)+' j f j(c j). Therefore, the new solution must also be optimal,
but has fewer components that differ from c0. By repeating this process, we eventually conclude
that (c0, . . . ,c0) is an optimal solution of (12).

To the best of our knowledge, this is the first tightness result for a performance envelope (the
reward-in-hindsight) different than the Bayes envelope, for repeated games. On the other hand, we
note that our proof relies crucially on the assumption of a single constraint (d = 1), which allows us
to order the + f+i .

6. Attaining the Convex Hull Using Calibrated Forecasts

In this section, we consider a specific strategy that attains the convex hull, thus providing a con-
structive proof for Theorem 5. The strategy is based on forecasting P2’s action, and playing a best
response (in the sense of Eq. 5) against the forecast. The quality of the resulting strategy depends,
of course, on the quality of the forecasts; it is well known that calibrated forecasts lead to no-regret
strategies in standard repeated matrix games. See Foster and Vohra (1997) and Cesa-Bianchi and
Lugosi (2006) for a discussion of calibration and its implications in learning in games. In this
section we consider the consequences of calibrated play for repeated games with constraints.

We start with a formal definition of calibrated forecasts and calibrated play, and then show that
calibrated play attains rc in the sense of Definition 1.

A forecasting scheme specifies at each stage k a probabilistic forecast qk ∈ $(B) of P2’s action
bk. More precisely a (randomized) forecasting scheme is a sequence of maps that associate with
each possible history hk−1 during the first k− 1 stages a probability measure µk over $(B). The
forecast qk ∈ $(B) is then selected at random according to the distribution µk. Let us clarify that for
the purposes of this section, the history is defined to include the realized past forecasts.

We shall use the following definition of calibrated forecasts.

Definition 9 (Calibrated forecasts) A forecasting scheme is calibrated if for every (Borel measur-
able) set Q⊂ $(B) and every strategy of P1 and P2

lim
t→#

1
t

t

!
"=1
1{q" ∈ Q}(e(b")−q") = 0, a.s., (13)

where e(b) is a vector of zeroes, except for a 1 in its bth component.
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Calibrated forecasts, as defined above, have been introduced into game theory in Foster and Vohra
(1997), and several algorithms have been devised to achieve them (see Cesa-Bianchi and Lugosi,
2006, and references therein). These algorithms typically start with predictions that are restricted to
a finite grid, and gradually increase the number of grid points.

The proposed strategy is to let P1 play a best response against P2’s forecasted play while still
satisfying the constraints (in expectation, for the single stage game). Formally, we let:

p∗(q) = argmax
p∈$(A)

!
a,b
p(a)q(b)R(a,b)

s.t. !
a,b
p(a)q(b)C(a,b) ∈ T,

where in the case of a non-unique maximum we assume that p∗(q) is uniquely determined by some
tie-breaking rule; this is easily done, while keeping p∗(·) a measurable function. The strategy is
to play pt = p∗(qt), where qt is a calibrated forecast of P2’s actions.4 We call such a strategy a
calibrated strategy.

The following theorem states that a calibrated strategy attains the convex hull.

Theorem 10 Let Assumption 1 hold, and suppose that P1 uses a calibrated strategy. Then, rc is
attained with respect to T .

Proof Fix *> 0. We need to show that by playing the calibrated strategy, P1 obtains liminft→#(r̂t−
rc(q̂t)) ≥ 0 and limsupt→# dist(ĉt ,T ) ≤ 0, almost surely.

Fix some * > 0. Consider a partition of the simplex $(B) to finitely many measurable sets
Q1,Q2, . . . ,Q! such that q,q′ ∈ Qi implies that ‖q− q′‖ ≤ * and ‖p∗(q)− p∗(q′)‖ ≤ *. (Such a
partition exists by the compactness of $(B) and $(A). The measurability of the sets Qi can be
guaranteed because the mapping p∗(·) is measurable.) For each i, let us fix a representative element
qi ∈ Qi, and let pi = p∗(qi).

Since we have a calibrated forecast, Eq. (13) holds for every Qi, 1 ≤ i ≤ !. Define ,t(i) =
!t"=1 1{q" ∈Qi} and assume without loss of generality that ,t(i) > 0 for large t (otherwise, eliminate
those i for which ,t(i) = 0 for all t, and renumber the Qi). To simplify the presentation, we assume
that for every i, and for large enough t, we have ,t(i) ≥ *t. (If for some i, and t this condition is
violated, the contribution of such an i in the expressions that follow will be O(*).)

By a law of large numbers for martingales, we have

lim
t→#

(

ĉt −
1
t

t

!
"=1

C(a",b")

)

= 0, a.s.

By definition, we have

1
t

t

!
"=1

C(a",b") =!
i

,t(i)
t !

a,b
C(a,b)

1
,t(i)

t

!
"=1
1{q" ∈ Qi}1{a" = a}1{b" = b}.

Observe that whenever q" ∈Qi, we have
∥

∥p"− pi
∥

∥≤ *, where p" = p∗(q") and pi = p∗(qi) because
of the way the sets Qi were constructed. By martingale convergence, the frequency with which a

4. When the forecast µt is mixed, qt is the realization of the mixed rule.
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will be selected whenever q" ∈ Qi and b" = b, will be approximately pi(a). Hence, for all b,

limsup
t→#

∣

∣

∣

∣

∣

1
,t(i)

t

!
"=1
1{q" ∈ Qi}1{a" = a}1{b" = b}− pi(a)

1
,t(i)

t

!
"=1
1{q" ∈ Qi}1{b" = b}

∣

∣

∣

∣

∣

≤ *,

almost surely. By the calibration property (13) for Q=Qi, and the fact that whenever q,q′ ∈Qi, we
have ‖q−q′‖ ≤ *, we obtain

limsup
t→#

∣

∣

∣

∣

∣

1
,t(i)

t

!
"=1
1{q" ∈ Qi}1{b" = b}−qi(b)

∣

∣

∣

∣

∣

≤ *, a.s.

By combining the above bounds, we obtain

lim
t→#

∣

∣

∣

∣

∣

ĉt −!
i

,t(i)
t !

a,b
C(a,b)pi(a)qi(b)

∣

∣

∣

∣

∣

≤ 2*, a.s. (14)

Note that the sum over index i in Eq. (14) is a convex combination (because the coefficients
,t(i)/t sum to 1) of elements of T (because of the definition of pi), and is therefore an element of
T (because T is convex). This establishes that the constraint is asymptotically satisfied within O(*).
Note that in this argument, whenever ,t(i)/t < *, the summand corresponding to i is indeed of order
O(*) and can be safely ignored, as stated earlier.

Regarding the average reward, an argument similar to the above yields

liminf
t→#

r̂t ≥ liminft→# !i
,t(i)
t !

a,b
R(a,b)pi(a)qi(b)−2*, a.s.

Next, observe that

!
i

,t(i)
t !

a,b
R(a,b)pi(a)qi(b) =!

i

,t(i)
t

r∗(qi) ≥ rc
(

!
i

,t(i)
t

qi
)

,

where the equality is a consequence of the definition of pi, and the inequality follows by the def-
inition of rc as the closed convex hull of r∗. Observe also that the calibration property (13), with
Q= $(B), implies that

lim
t→#

∥

∥

∥

∥

∥

q̂t −
1
t

t

!
"=1

q"

∥

∥

∥

∥

∥

= 0, a.s.

In turn, since
∥

∥q"−qi
∥

∥ ≤ * for a fraction ,t(i)/t of the time,

limsup
t→#

∥

∥

∥

∥

∥

q̂t −!
i

,t(i)
t

qi
∥

∥

∥

∥

∥

= limsup
t→#

∥

∥

∥

∥

∥

1
t

t

!
"=1

q"−!
i

,t(i)
t

qi
∥

∥

∥

∥

∥

≤ *, a.s.

Recall that the function rc is continuous, hence uniformly continuous. Thus, there exists some
function g, with lim*↓0 g(*) = 0, such that when the argument of rc changes by at most *, the value
of rc changes by at most g(*). By combining the preceding results, we obtain

liminf
t→#

r̂t ≥ rc(q̂t)−2*−g(*), a.s.
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The above argument involves a fixed *, and a fixed number ! of sets Qi, and lets t increase to in-
finity. As such, it establishes that for any *> 0 the function rc−2*−g(*) is attainable with respect
to the set T * defined by T * = {x | dist(x,T ) ≤ 2*}. Since this is true for every * > 0, we conclude
that the calibrated strategy attains rc as claimed.

7. Algorithms

The results in the previous section motivate us to develop algorithms for online learning with con-
straints, perhaps based on calibrated forecasts. For practical reasons, we are interested in computa-
tionally efficient methods, but there are no known computationally efficient calibrated forecasting
algorithms. For this reason, we will consider related heuristics that are similar in spirit, even if they
do not have all the desired guarantees.

We first consider a method based on the weighted average predictor. The algorithm in Table 1
keeps track of the performance of the different actions in the set A, updating a corresponding set
of weights accordingly at each step. The main idea is to quantify “performance” by a linear com-
bination of the total reward and the magnitude of the constraint violation. The parameter - > 0 of
the algorithm, which acts similar to a Lagrange multiplier, determines the tradeoff between these
two objectives. When the average penalty is higher than c0 (i.e., there is a violation), the weight
of the cost term increases. When the average penalty is lower than c0, the weight of the cost term
decreases. The parametersM andM are used to bound the magnitude of the weight of the cost term;
in the experiments reported in Section 8, they were set to 1000 and 0.001, respectively.

1. Set -, w0, M, and M.

2. For t = 1,2, . . .:

(a) Sample an independent random variable at distributed so that

at = a, with probability
wt(a)

!a∈Awt(a)
for a ∈ A.

(b) Compute:

wt(a) = wt−1(a) exp
(

.
(

R(a,bt)−-C(a,bt)
))

, a ∈ A.

(c) For t = 1,2, . . ., update -:

- :=
{

min(2-,M), if ĉt > c0,
max(-/2,M), otherwise.

Table 1: Exponentially weighted average predictor.

The second algorithm uses the tracking forecaster (Mannor et al., 2007) as the forecasting
method. This forecaster predicts that the distribution of the next action as a weighted average of
previous actions, weighing recent actions more than less recent ones others. For the special case of
only two actions, it is calibrated, but not calibrated in general. There are, however, some special
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cases where it is calibrated, in particular if the sequence it tries to calibrate comes from a source
with some specific properties; see Mannor et al. (2007) for details. The algorithm is presented in
Table 2. If there is a current violation, it selects an action that minimizes the immediate forecasted
cost. If the current average penalty does not violate the constraint, it selects a best response to the
forecasted action of P2, while satisfying the constraints.

1. Set & ∈ (0,1), c0, and f0 = (1/|B|)"1.

2. For t = 1,2, . . .:

(a) If t = 1 or ĉt > c0, choose an action that minimizes the worst-case cost:

at ∈ argmin
a∈A

(C(a,b) ft−1(b)) ,

(b) Otherwise (if ĉt ≤ c0 and t > 1), solve

max
p∈$(A)

!
a,b
p(a)R(a,b) ft−1(b),

subject to !
a,b
p(a)C(a,b) ft−1(b) ≤ c0.

and choose a random action distributed according to the solution to the above linear
program.

(c) After observing bt , update the forecast ft on the probability distribution of the next
opponent action bt+1:

ft = ft−1+(1/t)& (ebt − ft−1),

where eb is a unit vector in R|B| with the element 1 in the component corresponding
to b ∈ B.

Table 2: Tracking forecaster.

8. Experimental Setup

Our experiment addresses the problem of minimizing power consumption in a computer with a hu-
man user. The agent is a low-level software controller that decides when to put the central processor
(CPU) into a low-power state, thereby reducing power expenditures during periods when the user
is idle. The system is driven by a human user, as well as different hardware processes, and can
be realistically assumed to be non-stationary. The actions of the system correspond to hardware
interrupts (most interrupts are generated by hardware controllers on the motherboard such as direct
memory access, hard disk interrupts and networking interrupts) and the ongoing running processes.
In the particular application at hand, there is a software interrupt (generated by the Windows oper-
ating system) every 16 milliseconds. The times of these interrupts are the decision epochs, at which
the software controller can decide if and when to put the CPU to sleep before the next scheduled
periodic interrupt.
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However, saving energy by putting the processor in the low-power state comes at a cost. In the
low-power state, a delay is incurred each time that the processor moves back into the high-power
state in response to user-generated interrupts. We wish to limit the delay perceived by the human
user. For this purpose, we assign a cost to the event that an interrupt arrives while the processor is
in the low-power state, and impose a constraint on the time average of these costs. A similar model
was used in Kveton et al. (2008), and we refer the reader to that work for further details.

We formulate the problem as follows. We divide a typical 16 millisecond interval into ten
intervals. We let P1’s action set be A = {0,0.1,0.2, . . . ,1}, where action a corresponds to turning
off the CPU after 16a milliseconds (the action a = 1 means the CPU is not turned off during the
interval while the action a= 0 means it is turned off for the whole interval). Similarly, the action set
of P2 is B= {0,0.1,0.2, . . . ,0.9}, where action b corresponds to an interrupt after 16bmilliseconds.
(Note that the action b = 0 means there is no interrupt and that there is no point in including an
action b= 1 in B since it would coincide with the known periodic interrupt.) The assumption is that
an interrupt is handled instantaneously so if the CPU chooses a slightly larger than b it maximizes
the power savings while incurring no penalty for observed delay (it is assumed for the sake of
discussion that only a single interrupt is possible in each 16 millisecond interval). We define the
reward at each stage as follows:

R(a,b) =



















1−a, if b= 0 or a> b, that is, if no interrupt occurs or an interrupt occurs
before the CPU turns off,

b−a, if b> 0 and a≤ b, that is, if there is an interrupt
after the CPU is turned off.

The cost is:

C(a,b) =

{

1, if a≤ b and b> 0,
0, otherwise.

In “normal” operation where the CPU is powered throughout, the action is a = 1 and in that case
there is no reward (no power saving) and no cost (no perceived delay). When a = 0 the CPU is
turned off immediately and in this case the reward will be proportional to the amount of time until
an interrupt (or until the next decision). The cost in the case a = 0 is 0 only is there is no interrupt
(b= 0).

We used the real data trace obtained from what is known as MobileMark 2005 (MM05), a
performance benchmark that simulates the activity of an average Microsoft Windows user. This
CPU activity trace is 90 minutes long and contains more than 500,000 interrupts, including the
periodic scheduled interrupts mentioned earlier. The exponentially weighted algorithm (Table 1)
and the tracking forecaster (Table 2) were run on this data set. Figure 4 shows the performance of
the two algorithms. The straight line shows the tradeoff between constraint violation and average
reward by picking a fixed action over the entire time horizon. The different points for the exponential
weighted predictor (Table 1) or the tracking forecaster (Table 2) correspond to different values of
c0. We observe that for the same average cost, the tracking forecast performs better (i.e., gets higher
reward).

We selected c0 = 0.3 and used both algorithms for the MM05 trace. Figures 5(a) and 5(b) show
the instantaneous cost incurred by the tracking forecaster and the weighted average forecaster over
the same short period. It should be observed that the cost of the algorithms is different, reflecting
the fact that different policies are employed. Figures 6(a) and 6(b) show the time evolution of the
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Figure 4: Plot of average reward against constraint violation frequency from experiments in power
management for the MM05 data.
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Figure 5: Instantaneous cost incurred by the tracking forecaster and weighted average predictor
with target constraint c0 = 0.3 for the MM05 data.

average reward and average cost for the same experiment. In spite of not being calibrated, the
tracking forecast based algorithm outperforms the exponentially weighted based algorithm.

9. Conclusions

There are several open problems and directions for future research that are worth mentioning. First,
the issue of convergence rate is yet to be settled. We noted that there exists an algorithm based on
approachability that converges at the rate of t−1/3, and that the usual lower bound of t−1/2 holds.
The other algorithm based on calibration suffers from potentially even worse convergence rate, as
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Figure 6: Time evolution of average reward and average cost for the tracking forecaster and
weighted average forecaster with c0 = 0.3 for the MM05 data.

we are not aware of any approximate calibration algorithm with comparable convergence rates.
Second, the complexity of these two online learning algorithms leaves much to be desired. The
complexity of a policy based on approachability theory is left undetermined because we do not
have a specific procedure for computing P1’s action at each stage. The per stage complexity is
unknown for calibrated forecasts, but is exponential for approximately calibrated schemes (Cesa-
Bianchi and Lugosi, 2006). Moreover, it is not clear whether online learning with constraints is as
hard computationally as finding a calibrated forecast. Third, we only established the tightness of
the lower convex hull of the Bayes envelope for the case of a one-dimensional penalty function.
This is a remarkable result because it establishes the tightness of an envelope other than the Bayes
envelope, and we are not aware of any such results for similar settings. However, it is not clear
whether such a result also holds for two-dimensional penalties. In particular, the proof technique of
the tightness result does not seem to extend to higher dimensions.

Our formulation of the learning problem (learning with pathwise constraints) is only a first
step in considering multi-objective problems in online learning. In particular, other formulations,
for example, that consider the number of time-windows where the constraints are violated, are of
interest; see Kveton et al. (2008).
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Abstract

In this paper we propose a new multilayer classifier architecture. The proposed hybrid architecture
has two cascaded modules: feature extraction module and classification module. In the feature
extraction module we use the multilayered perceptron (MLP) neural networks, although other tools
such as radial basis function (RBF) networks can be used. In the classification module we use sup-
port vector machines (SVMs)—here also other tool such as MLP or RBF can be used. The feature
extraction module has several sub-modules each of which is expected to extract features capturing
the discriminating characteristics of different areas of the input space. The classification module
classifies the data based on the extracted features. The resultant architecture with MLP in feature
extraction module and SVM in classification module is called NEUROSVM. The NEUROSVM is
tested on twelve benchmark data sets and the performance of the NEUROSVM is found to be better
than both MLP and SVM. We also compare the performance of proposed architecture with that of
two ensemble methods: majority voting and averaging. Here also the NEUROSVM is found to
perform better than these two ensemble methods. Further we explore the use of MLP and RBF in
the classification module of the proposed architecture. The most attractive feature of NEUROSVM
is that it practically eliminates the severe dependency of SVM on the choice of kernel. This has
been verified with respect to both linear and non-linear kernels. We have also demonstrated that for
the feature extraction module, the full training of MLPs is not needed.

Keywords: feature extraction, neural networks (NNs), support vector machines (SVMs), hybrid
system, majority voting, averaging
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1. Introduction

A classifier designed from a data set X = {xi|i= 1,2, . . . ,N,xi ∈!p}, where!p is the p dimensional
real space, can be defined as a function G :!p →Nc. Here Nc = {y∈!c : yk ∈ {0,1}∀k,

c
"
k=1

yk = 1}

is the set of label vectors and c is the number of classes. For any input vector x∈!p,G(x) is a vector
in c dimension with only one component as 1 and all others 0. In this paper our primary objective
is to find a good G combining neural networks (NNs) and support vector machines (SVMs).

In machine learning literature NN and SVM are two widely used classifiers. NNs have been
developed for many years and been used in various applications (Haykin, 1999; Pal et al., 2006).
The SVM (Vapnik, 1995) is a classification and regression tool. It is comparatively a new family of
learning tools including training algorithms for optimal margin classifiers (Boser et al., 1992) and
support vector networks (Cortes and Vapnik, 1995). In SVM the input data are often transformed
into a high dimensional space using some kernel functions. A linear separating hyper plane with
the maximal margin between the closest positive and closest negative samples in the mapped space
is found. The SVM works by solving a quadratic optimization problem that minimizes a sum of
two terms. The first term is related with the reciprocal of norm of weight vector associated with
the hyper plane and the second term is related to the sum of classification error. The SVM is a
very active topic of research (von Luxburg et al., 2004; Adankon and Cheriet, 2007) and it has been
successfully applied to many areas including handwritten digit recognition (Vapnik, 1995), object
recognition (Pontil and Verri, 1998), protein structure prediction (Nguyen and Rajapakse, 2003) and
texture classification (Kim et al., 2002). But there are some computational difficulties associated
with using SVM. One of them is the required memory, which grows very quickly with the size of
the training data since the SVM algorithm involves solving a large quadratic programming problem
where every training data point forms a constraint. This is a constraint on the application of SVM to
very large data sets. More importantly, the performance of SVM is significantly dependent on the
choice of kernel. Needless to say that for non-linearly separable data, the performance of linear and
nonlinear SVM also differs significantly.

Use of an ensemble of classifiers is a popular approach to improve the classification perfor-
mance. Many ensemble methods are used by researchers to report the improvement in performance
over single classifier (Hansen, 1999; Maqsood et al., 2004; Chawla et al., 2004). An ensemble
of classifiers can be constructed using both homogeneous and heterogeneous classifiers (Hansen,
1999; Prevost et al., 2003; Garcia-Pedrajas et al., 2005). An ensemble of neural networks is often
used for pattern classification problems (Garcia-Pedrajas et al., 2005; Islam et al., 2003) including
face recognition (Melin et al., 2005), weather forecasting (Maqsood et al., 2004), protein secondary
structure prediction (Guimaraes et al., 2003). Different approaches for constructing ensemble of
neural networks have been suggested in the literatures (Wu et al., 2001; Zhou et al., 2002; Windeatt,
2006). In this paper for the purpose of comparison we have considered two ensemble methods for
neural networks, one uses the average output of the ensemble of networks while the other one makes
the ensemble vote on a classification task.

In this context, the ensemble method of Garcia-Pedrajas et al. (2007) needs a special attention
as this method also uses a multilayer perceptron network for feature extraction and hence one may
get a false impression that this method and our proposed method are quite similar.

This is an ensemble method where a large number of classifiers are trained and then their out-
comes are aggregated using the majority voting rule. This is an interesting method but quite different
from our proposed scheme.
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Like AdaBoost the first baseline classifier is trained using the original training data while each
of the subsequent classifiers is trained using a projected data set created using the hidden output
of a trained MLP. The second baseline classifier uses data projected through the hidden layer of a
projection network (MLP here). The projection network is an MLP network with number of hidden
nodes equal to the number of inputs in the original training data and it is trained using only that
subset of the training data which are not classified correctly by the first baseline classifier. The
projection network (again an MLP with number of hidden nodes equal to the number of inputs in
the original data) for the third baseline classifier is trained using the original data points whose
projected versions are wrongly classified by the second baseline classifier. The process is repeated
to generate a large number of baseline classifiers.

Note that, our proposed method falls in the category of hybrid system. There have been several
attempts to combine different machine learning tools to develop efficient hybrid systems for pattern
classification problems (Huang and LeCun, 2006; Happel and Murre, 1994; Vincent and Bengio,
2000; Mitra et al., 2006, 2005). To design a hybrid system different combination of classifiers is used
including neural network-SVM (Mitra et al., 2005, 2006; Vincent and Bengio, 2000), convolution
network-SVM (Huang and LeCun, 2006). Neural networks and support vector machines are used to
design a hybrid system for text classification in Mitra et al. (2005) and Lidar detection of underwater
objects in Mitra et al. (2006). Mitra et al. (2005) proposed a hybrid system called neuro-SVMwhich
takes the component wise product of the outputs of a cascaded-SVM classifier and a recurrent neural
network, and applies a set of heuristic rules to decide on the class. In the work of Mitra et al. (2006),
after preprocessing Lidar signal is modeled using a polynomial as well as a linear predictor. The
optimal coefficients of the polynomial are used as inputs to train a RBF, while coefficients of the
linear predictor are used to train an MLP. The products of the corresponding components of the
output vectors from the two networks are used as input to a cascaded-SVM classifier. Huang and
LeCun (2006) presented a hybrid system for object recognition that uses the outputs of the last
hidden layer of a convolution network to train a SVM with Gaussian kernel. The convolution
network is generally used for computer vision problems. A convolution network has several hidden
layers alternately consisting of convolution layer and sub-sampling layer. In a convolution network,
the successive layers are designed to learn progressively higher-level features until the last layer,
which produces categories.

There have been a number of attempts to develop modular networks to solve complex prob-
lems efficiently (Ronco and Gawthrop, 1995; Bottou and Gallinari, 1991). The basic philosophy
of developing a modular network is to divide the task into a number of, preferably, meaningful
subtasks, and then design one module for each subtask. Finally one needs to devise a mechanism
to integrate these modules—this will dictate how different modules interact and lead to the final
output. Sometimes the knowledge of the problem domain can be used to find the subtasks, but often
clustering is used for this purpose. For example in Pal et al. (2003) a self organized map (SOM) is
used to find natural clusters (subtasks) in the data and then for each cluster a separate network is
trained. A given input is routed to the appropriate MLP module using the SOM. Jenkins and Yuhas
(1993) have presented a simple solution to the truck backer-upper problem by decomposing it into
subtasks. Then all subtasks are realized in parallel (that is, off line) to obtain the final two-layer
feed-forward network, which is used to control the truck. Although our proposed architecture uses
several modules, this is not designed following the usual principle of modular network.

In this paper we propose a new classifier architecture called NEUROSVM. The proposed clas-
sifier has two modules. In the first module we have used an MLP. We view the first module as a
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feature extraction module (FM), because outputs of this module can be used as inputs to any other
classifier. This new set of features is used in the next module, termed as the classification module
(CM). In the classification module we have used SVM with different kernel functions. Instead of
SVM, one can use any other classifier also. We also consider the MLP and RBF neural networks in
the CM of our proposed architecture. To further demonstrate the effectiveness of NEUROSVM we
compare it with two other ensemble methods: majority voting and averaging. We demonstrate the
effect of the kernel on SVM and NEUROSVM.

Our proposed method is neither an ensemble method nor has any relation to boosting. There is
only one classifier. The classifier uses features extracted from the hidden nodes of several trained
networks where typically the number of hidden nodes in a network is smaller than input dimension.
Each network used for feature extraction is trained using the same data and each network sees
the entire input space as represented through the training data. Thus typically to get improved
performance we need fewer feature extraction networks than that would be needed by the ensemble
type methods.

2. Methods

The section is arranged as follows. First, we provide a brief description of neural networks for
the sake of completeness. Next, we give a brief description of the support vector machine (SVM)
classifier and how several binary SVMs can be combined to solve a multiclass problem. Then we
explain two popular existing ensemble methods that will be used for comparison. This is followed
by a detailed discussion of the proposed method.

2.1 MLP and RBF Neural Networks

The two most widely used neural networks for pattern recognition are multilayer perceptron (MLP)
and radial basis function (RBF) networks (Haykin, 1999). We have used the back-propagation
algorithm for training MLP networks with single hidden layer.

The RBF network consists of exactly three layers: input layer, basis function layer and output
layer. Unlike MLP, the activation functions of the hidden nodes are not of sigmoidal type, rather
each hidden node represents a radial basis function. The transformation from the input space to the
hidden space is nonlinear but each node in the output layer computes just the weighted sum of the
outputs of the previous layer, that is, each output layer node makes a linear transformation. The
learning of RBF network is usually performed in two phases. An unsupervised learning method
is applied to estimate the basis function parameters. Then a supervised learning method, such as
gradient descent or least square error estimate, is applied to tune the network weights between
the hidden layer and the output layer. However, the parameters of the basis functions can also be
tuned using gradient descent technique. Here we have used the MATLAB implementation of RBF
network.

2.2 Support Vector Machines (SVMs)

The basic SVM (Haykin, 1999; Vapnik, 1995) formulation is for two class problems. If the training
data are linearly separable, then SVM finds an optimum hyperplane that maximizes the margin of
separation between the two classes.
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Given a training set (X ,Y ), xi ∈ X , xi ∈ !p and yi ∈ Y , the class label associated with xi;
yi ∈ {−1,+1}, the learning problem for SVMs is to find the weight vector w and bias b such that
they satisfy the constraints:

xi.w+b! +1 for yi = +1 (1)

xi.w+b" −1 for yi = −1 (2)

and the weight vector w minimizes the cost function

#(w) =
1
2
wTw.

The constraints written in Equations (1)-(2) can be combined as

yi(xi.w+b) ! +1 ∀i.

If the training points are not linearly separable, then there is no hyperplane that separates them
into positive and negative classes. In this case, the problem is reformulated considering the slack
variables $i ! 0; i= 1,2, . . . ,N. For most xi, $i = 0. The constraints are now modified as follows:

xi.w+b! +1−$i for yi = +1 (3)

xi.w+b" −1+$i for yi = −1 (4)

$i ! 0, ∀i. (5)

The SVM then finds w, minimizing

#(w,$) =
1
2
wTw+C

N

"
i=1

$i

subject to constraints as in Equations (3)-(5). The constantC is termed as a regularization parameter
as it controls the trade off between the complexity of the machine and the number of misclassifica-
tions.

Typically, when the training points are not linearly separable, a nonlinear mapping % is used to
map the training data from !p to some higher dimensional feature space H, with a hope that the
data may be linearly separable in H. The mapping is implicitly realized using a kernel function.

Two kernels that are popular for non-linear SVMs are:

1. Polynomial of degree d: K(x,xi) = (sx.xi+1)d , where s is the scaling coefficient of the dot
product.

2. Radial Basis Function (RBF): K(x,xi) = e−&‖x−xi‖
2
, &> 0.

In this study, we shall extensively use the RBF kernel with a wide range of &. We shall also demon-
strate the utility of the proposed method with polynomial kernel.

We have used SVMlight (Joachims, 2002) software for learning the SVM classifier. Note that,
NEUROSVM uses SVMlight in the classification module. We also use SVMs on the original data
to compare its performance with that of NEUROSVM.
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2.3 SVM for Multiclass Problems

The preceding SVM formulation is for two class problems. Multiclass SVMs are generally realized
using several two class SVMs. We use the One versus One (OVO) method (Nguyen and Rajapakse,
2003; Weston and Watkins, 1999). Let us assume that we have a c class problem. In this method
we construct one binary classifier for every pair of distinct classes. So we get c× (c−1)/2 binary
classifiers for a c class problem. In the training data, suppose ki samples are from class i, N =

c
"
i=1

ki.

For the class pair (i, j), a binary classifierCi j is trained using ki and k j data points from class i and j.
An unknown sample x is then classified by each of the c×(c−1)/2 different classifiers. If classifier
Ci j classifies x as class i then the vote for class i for sample x is increased by one. Otherwise, vote
for class j for sample x is increased by one. In this way for sample x, the votes for all c classes are
calculated using the output of all c× (c−1)/2 classifiers. After that we assign x to class l, if class
l has the largest number of votes for x. Ties are randomly resolved.

2.4 Ensemble Methods: Majority Voting and Averaging

Different methods of classifier fusion are available in the literature (Maqsood et al., 2004; Ko et al.,
2007; Brown et al., 2005; Tang et al., 2006; Kuncheva and Whitaker, 2003; Windeatt, 2006; Islam
et al., 2003), of which the majority voting scheme is probably the most popular method (Stepenosky
et al., 2006). In this method, the final class is determined by the maximum number of votes counted
among all the classifiers fused. Let us consider a c class problem and let m be the number of
classifiers to be fused. For an unknown sample x, vote for class j, v j,( j = 1,2, . . . ,c) is computed
from the ensemble of classifiers Ci,(i = 1,2, ...,m). If Ci,(i = 1,2, ...,m) assigns sample x to class
j then v j is incremented by 1. Note that, initially vote for every class is initialized to 0; that is, v j =
0,( j = 1,2, ...,c). The final class determination by the ensemble for sample x is k, if vk =

cmax
j=1

{v j}.

Averaging also is a simple but effective method and is used in many classification problems
(Guimaraes et al., 2003; Naftaly et al., 1997). In this method, the final class is determined by the
average of continuous outputs of all classifiers (here MLPs) fused. For an unknown sample x, let
the output for class j ( j = 1,2, ...,c) from classifier Ci,(i= 1,2, ...,m) be oi j. Then the output from
the ensemble classifier is obtained as Oj =

1
m

m
"
i=1

oi j, j = 1,2, . . . ,c. The final class assignment by

the ensemble to x is k, if Ok =
cmax
j=1

{Oj}.

2.5 Proposed NEUROSVM Classifier

The proposed multilayer architecture can be thought of as a combination of two types of modules:
feature extraction module (FM) and classification module (CM). The FM consists of a number of
sub-modules SFMi, i = 1,2, . . . ,m. Each sub-module SFMi takes the same p dimensional data
x = (x1,x2, . . . ,xp)T as input and produces ni dimensional output vectors vi = (vi1,vi2, . . . ,vini)

T .
Thus n=

m
"
i=1

ni output values together as shown in Equations (6) and (7) constitute an n dimensional
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input to the classification module.

z=











v1
v2
...
vm











∈!n1+n2+...+nm (6)

and

v1 = (v11,v12, . . . ,v1n1)
T ,

v2 = (v21,v22, . . . ,v2n2)
T , (7)

...
vm = (vm1,vm2, . . . ,vmnm)

T .

In general, different SFMi can use different methods of feature extractions or they can use the
same principle for feature extraction. Similarly, the classification module can use any principle like
neurocomputing, support vector machines and so on.

In this investigation, the sub-modules SFMis are derived from multilayer perceptron networks,
while the classification module consists of support vector machines. And, hence, we call the result-
ing architecture NEUROSVM.

In order to constitute the ith sub-module SFMi, we consider an MLP with just one hidden layer,
with architecture (p,ni,c), where p is the input dimension, ni is the number of nodes in the hidden
layer and c is the number of classes. Note that, although the number of input and output nodes
in each MLP remains the same, the number of nodes in the hidden layer could be different for
different MLPs. Each MLP is then trained using the training data X = {xi; i = 1,2, . . . ,N} ⊂ !p,
Y = {yi; i= 1,2, . . . ,N}⊂!c where yi is the target output corresponding to xi.

Once each network is trained, the output of the hidden layer can be taken as the extracted
features. These features capture characteristics of the data that can discriminate between classes;
hence using these features we can do the classification job using just a single layer network.

Note that, instead of MLP, we can use RBF also in the feature extraction module. In Figure
1, the top panel has m different trained MLPs labeled as MLP1,MLP2, . . . ,MLPm. After the train-
ing, we remove the output layer and its associated connections from each of the MLPs and then
the truncated two-layer sub-networks are taken as feature extraction sub-modules. The subnets
SFM1,SFM2, . . . ,SFMm in the lower panel of the NEUROSVM are constructed from the trained
MLPs in the upper panel. The first two layers of MLPi constitute SFMi, i= 1,2, . . . ,m.

As depicted in the lower panel of Figure 1, the output from the m sub-modules, taken together
constitutes the input to the classification module. Here we consider SVMs for classification, but
other classifiers such as neural networks (MLP or RBF network) can also be used. Note that, each
sub-module receives the same input x= (x1,x2, . . . ,xp)T .

Given the training data X and Y , in order to train the CM we use the following data set. For
each xi ∈ X , the FM produces an output zi ∈ !n as in Equation (6). Like an MLP, every node in
the second layer of NEUROSVM computes the weighted sum of its input and applies a sigmoidal
activation function to produce its output. Thus Z = {zi; i= 1,2, . . . ,N},zi ∈!n, as in Equation (6),
is used as the input data and corresponding to each zi ∈ Z, the associated yi ∈!c, yi ∈Y is taken as
the target output. The CM is trained using (Z,Y ).
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In the present case the CM has two layers. The first layer, as shown in Figure 1, is the SVM
kernel layer where each node is associated to a mapped training sample zi (it is the output from an
FM that represents a support vector) and it computes the kernel output K(z,zi) on a mapped input
z, while the other layer is the output layer.

Figure 1: The proposed NEUROSVM classifier

2.6 Advantages of the Proposed Method

A natural question comes, why such an architecture (NEUROSVM) will be better or more useful
than the usual SVM or MLP? There are number of reasons behind this. Note that, we are not
considering very simple data sets where most classifiers will lead to zero training-test errors.
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1. Typically, due to the local minima problem of MLP training and its dependence on initial-
ization, different MLPs may learn different areas of the input space better. Hence when we
combine the output of the hidden layer of different networks to generate new features, the
learning task becomes simpler to the CM. This is true irrespective of whether the CM is a
neural network or SVM.

2. The extracted features result in simpler classification boundaries because a single layer net-
work can classify the new data (consider a two layer network consisting of the hidden and
output layers of an MLP). This also makes the learning task of the CM simpler.

3. For high dimensional data, typically the number of nodes in the hidden layer is much smaller
than the number of the input nodes and one does not need many feature extraction sub-
modules (SFMs). Hence, the dimensionality of the input for the CM can be reduced com-
pared to the original dimension of the input. This makes simpler error surface, faster learning
and allows us to do more experiments, if CM is a neural network.

4. This is not an ensemble method but it makes fusion of salient characteristics of the input
space as extracted/learnt by different feature extraction networks. It can at least be viewed as
an implicit fusion of multiple classifiers, and hence improvement in performance is expected.

5. For large data sets, it may not be necessary to make full training of the MLPs for constructing
the SFMis, because the objective of the MLPs here is to capture the inherent attributes of the
data by the FM.

For low dimensional data sets or simpler data sets this method may not have much advantage be-
cause then n (dimension of input to the CM) can be more than p (original dimension of the input)
and different SFMs may capture the same attributes of the data resulting in not much of benefits.
Note that, the advantages mentioned in 2 and 3 are also applicable to MLPs.

3. Experiments

The section is arranged as follows. First we have listed the selected data sets to validate our proposed
method. Then experimental setup is described. Next, the experimental results are presented. Finally,
a control experiment to justify one of the advantages of the proposed method is demonstrated.

3.1 Data Sets

To demonstrate the effectiveness of the proposed method, we consider twelve data sets from the UCI
Machine Learning Repository (Blake and Merz, 1998). We divide the data sets into two Groups:
A and B. The Group A consists of eight data sets: Iris, Vehicle, Breast Cancer (WDBC), Glass,
Sonar, Ionosphere, Lymphography Domain (Lymph) and Pima Indians Diabetes (Pima) data. The
Group B contains Pendigits, Image-Segmentation (Img. Seg.), Landsat satellite image (Sat. Img.)
and Optdigits data. For Group A data sets some results are available in the literature but the details
of the experimental protocols (such as training/test divisions) used are not available. Hence, we
report the performance with ten-fold cross-validation experiments. Each data set is divided into ten
subsets of almost equal size. One of the subsets is used for testing and the remaining nine subsets
are used for training. The procedure is repeated ten times and the average performance is reported.
We report the results in terms of mean test error and its standard error for Group A data sets. For the
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four data sets in Group B, benchmark results with different classifiers are available along with the
training-test partition. Hence we have used the same training-test partition here and report the error
on the fixed test set. Table 1 and Table 2 summarize the Group A and Group B data sets respectively.

Data set No. of No. of features Size of the data set and class wise
classes distribution

Iris 3 4 150 (= 50 + 50 +50 )
Vehicle 4 18 846 (=212+217+218+199 )
WDBC 2 30 569 (=212 + 357 )
Glass 6 9 214 (=70+76+17+13+9+29)
Sonar 2 60 208 (=97+111)
Ionosphere 2 34 351 (=225+126)
Lymph 4 18 148 (=2+81+61+4)
Pima 2 8 768 (=500+268)

Table 1: Group A data sets

Data set No. of No. of Training data Test data
classes features Size Class distribution Size Class distribution

780, 779, 780, 719 363, 364, 364, 336
Pendigits 10 16 7494 780, 720, 720, 778 3498 364, 335, 336, 364

719, 719 336, 336
Img. Seg. 7 18 210 30 in each class 2100 300 in each class

104, 68, 108, 47 1429, 635, 1250, 579
Sat. Img. 6 4 500 58, 115 5935 649, 1393

376, 389, 380, 389 178, 182, 177, 183
Optdigits 10 64 3823 387, 376, 377, 387 1797 181, 182, 181, 179

380, 382 174, 180

Table 2: Group B data sets

3.2 Experimental Setup

In this subsection we describe the selection method for hyper parameters of MLP and SVM classi-
fiers. To select the optimal architecture for an MLP, Andersen and Martinezr (1999) used ten-fold
cross-validation experiments. Adankon and Cheriet (2007) discussed another scheme for SVM
model selection. Here we have used ten-fold cross-validation experiments for MLP architecture
selection as well as for selection of SVM kernel parameters. For Group B data sets training-test
partitions are fixed and hence we have used ten-fold cross-validation on the training set to select the
hyper parameters of classifiers. For Group A data sets, as mentioned earlier, the performances are
reported based on ten-fold cross-validation. So, we perform double blind ten-fold cross-validation
experiments to select hyper parameters of classifiers for Group A data sets.

Note that, for the FM of NEUROSVM, we need to select m! 1 MLPs. A natural choice would
be to select the best m architectures corresponding to the smallest m values of validation errors.
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Based on validation error we choose m architectures for each of the ten folds for Group A data sets
and m architectures for each of the Group B data sets for NEUROSVM.

In a similar manner the regularization parameter C and spread & of RBF kernels of SVMs are
chosen based on ten-fold cross-validation experiments. We have experimented with nc choices of
C and ng choices of &. So, we have used nc×ng sets of choice of parameters. For each choice, the
ten-fold cross-validation experiments are conducted. Here we also select the (C,&) pair that leads to
the minimum average validation error. In this investigation nc = 12 and ng = 15 are used resulting
in a total of 180 pairs of parameters.

We have also used ten-fold cross-validation to find the sub-modules for NEUROSVM. The
hyper parameters of SVMs in the classification module of NEUROSVM are also estimated through
ten-fold cross-validation experiments. Note, for Group A data sets we have used double blind ten-
fold cross-validation. We have selected m (=5) SFMs. Hence using the m SFMs we can generate
2m− 1 different feature subsets combinations. In our case it is 25− 1 = 31. Then for each of
the 31 combinations with all 180 pairs of (C,&) we have conducted the ten-fold cross-validation
experiments on training set(s). We have obtained the best (C,&) for each of the 31 combinations.
Then the best combination is chosen based on the minimum average validation error over all 31
combinations. Finally using the best combination and corresponding (C,&) pair the performance of
NEUROSVM is reported.

We have performed statistical tests (Dietterich, 1998) to compare the proposed algorithms with
that of standard algorithms. For Group A data sets where cross-validation is performed, we have
applied the ten-fold cross-validation paired t-test with 9 degrees of freedom and 95% significance
level. For the four data sets of Group B where a single test set is employed, we have constructed
McNemar test with 1 degree of freedom and 95% significance level. The formulations of these tests
are as follows.

3.2.1 K-FOLD CROSS-VALIDATION PAIRED T-TEST (DIETTERICH, 1998)

Consider two classifier models, D1 and D2, and a data set X . The data set is split into K parts
of approximately equal sizes, and each part is used in turn for testing of a classifier built on the
pooled remaining K−1 parts. Classifiers D1 and D2 are trained on the training set and tested on the
test set. Denote the observed test accuracies as P1 and P2, respectively. This process is repeated K
times and test accuracies are tagged with superscript (i), i= 1,2, . . . ,K. Thus a set ofK differences is
obtained, P(1) = P(1)

1 −P(1)
2 to P(K) = P(K)

1 −P(K)
2 . Under the null hypothesis (H0: equal accuracies),

the following statistic has a t-distribution with K−1 degrees of freedom

t =
P
√
K

√

K
"
i=1

(P(i)−P)2/(K−1)

,

where P = (1/K)
K
"
i=1

P(i). If the calculated t is greater than the tabulated value for chosen level of

significance (here 0.05) and K− 1 (here 9) degrees of freedom, we reject null hypothesis H0 and
accept that there are significant differences in the two compared classifier models.
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3.2.2 MCNEMAR TEST (DIETTERICH, 1998)

As done before consider two classifiers D1 and D2. Let us define the following: N00 = number of
samples which both D1 and D2 classify incorrectly, N01 = number of samples which D1 classifies
incorrectly but D2 classifies correctly, N10 = number of samples which D1 classifies correctly but
D2 classifies incorrectly and N11= number of samples which both D1 and D2 classify correctly. Let,
N = N00+N01+N10+N11 be the total number of samples in the test set. The null hypothesis, H0,
is that there is no difference between the accuracies of the two classifiers. If the null hypothesis is
correct, then the expected counts for N01 and N10 are 1

2 (N01+N10). The discrepancy between the
expected and the observed counts is measured by the following statistic

'2 =
(|N01−N10|−1)

N01+N10
,

which is approximately distributed as '2 with 1 degree of freedom. To carry out the test we simply
calculate '2 and compare it with the tabulated '2 value for a given level of significance, say, 0.05
(in our case).

We have performed all experiments using two Sun Blade 2500 with dual processors. The
svm learn and svm classify modules for binary SVMs training and classification are used from
SVMlight (Joachims, 2002) software. For the RBF neural network MATLAB toolbox is used. All
other programs are written in c.

3.3 Experimental Results

In this subsection first we list the selected hyper parameters of MLP and SVM by cross-validation
experiments. Next selection of sub-modules and hyper parameters of NEUROSVM is discussed.
The performance comparison of NEUROSVM with the baseline classifiers and standard ensemble
methods is presented. Finally, we present the performance of other variants of NEUROSVM and
compare it with the baseline classifiers as well as ensemble methods.

3.3.1 SELECTION OF HYPER PARAMETERS FOR MLPS TO CONSTRUCT THE FM

For Group A data set we use double blind ten-fold cross-validation. The partitioning of data for
Group A data sets is explained in Appendix A. For each of the outer level cross validation loop,
finding the optimal number of hidden nodes and computation of the test error are explained in the
procedure RunMLP in Appendix B. The initial weights of the MLPs are chosen randomly in [-0.5,
+0.5] and the learning rate used to train the MLPs is 0.60. The number of iterations used to train
the networks for different data sets are chosen based on a few trial experiments. For each data set,
a set of choices on the number of hidden nodes is used to train the MLPs. In Table 3, number of
iterations and number of hidden nodes that are used to train the MLPs for the twelve data sets are
listed. We have decided to use m= 5 neural networks for feature extraction modules and hence for
each fold, we have to select a set of five hidden nodes to train five MLPs.

First we display the variation of the average validation error of cross-validation experiments as
a function of the number of hidden nodes for both Group A and Group B data sets. Since for each
data set in Group A 10 panels are required for the 10 folds, we include the figure for only one data
set, Vehicle, in Figure 2. In Figure 3, four panels are included, one for each of the four data sets in
Group B. In both Figures 2 and 3 we also include the average training errors. As mentioned earlier,
for the FM of NEUROSVM, we want to use m= 5 networks (SFMs). Consider a data set in Group
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A. Suppose, we have trained MLPs with M different architectures, that is, with M different choices
of hidden nodes. Then for each of the outer level fold, we shall haveM different hidden nodes each
associated with an average validation error. Now we order theseM hidden nodes in ascending order
of the associated validation error. Then select the top five hidden nodes from this ordered list. These
five different choices of hidden nodes will be used to train five MLPs for feature extraction for that
particular fold. For each data set, in Table 4, we depict the list of selected hidden nodes for each fold
(outer level). As an example, for the IRIS data for the first fold (outer level), the selected hidden
nodes are (7, 2, 5, 6, 8). This means that for the first fold (outer level) we got the least validation
error with 7 hidden nodes; the next smaller validation error is obtained with 2 hidden nodes and so
on.

Since the first element of this set of five resulted in the smallest validation error, we use this
choice of hidden nodes to train MLPs when we report the performance of the MLP networks as
classifiers. For each data set in Group B, since the training and test partitions are fixed, we have
only one outer loop and hence only one set with five choices of hidden nodes as shown in Table 4.
We follow the same protocol as that of Group A data sets to choose the number of hidden nodes for
computing the performance of MLP networks.

Data set Training iterations Hidden nodes explore
Iris 1500 2-10
Vehicle 2000 3-16
WDBC 1500 3, 5-10, 12, 15, 20
Glass 1500 2-15
Sonar 2000 3, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40
Ionosphere 1500 5-10, 12, 15, 20, 25, 30
Lymph 1500 4-10, 12, 15, 20
Pima 1500 2-10
Pendigits 1500 5-10, 12, 15, 18, 20, 25
Img. Seg. 1500 3-10, 12, 15, 20
Sat. Img. 5000 2-10
Optdigits 1500 5, 8, 10, 12, 15, 18, 20, 25, 30, 35, 40, 50

Table 3: List of explore hidden nodes and number of iterations for MLP for the twelve data sets

3.3.2 SELECTION OF HYPER PARAMETERS FOR SVMS

In this section we consider the problem of selecting hyper parameters for a regular SVM that we
shall use as benchmark in experiments for the purpose of comparison with NEUROSVM. To select
the regularization parameterC and spread & for RBF kernel of SVM classifiers we have tried a wide
range ofC and &. In this experiment we have used 12 different values ofC and 15 different values of
& resulting in a total of 180 pairs of (C,&). The 12 different values of C are 0.001, 0.01, 0.10, 0.20,
0.50, 1.00, 2.00, 5.00, 10.00, 20.00, 100.00 and 1000.00. The 15 different values of & that we have
used are 0.0001, 0.001, 0.01, 0.10, 0.20, 0.40, 0.80, 1.00, 2.00, 5.00, 10.00, 20.00, 100.00, 1000.00
and 10000.00. In a manner similar to the way the optimal number of hidden node is chosen for each
fold (outer level), the optimal (C,&) is chosen using ten-fold cross-validation experiments. This is
further explained by Procedure RunSVM included in Appendix C. For each of the twelve data sets,
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Figure 2: For each of the ten-folds the variation of cross-validation error with different choices of
number of hidden nodes for MLPs on the Vehicle data set. The lines with cross-mark
denote the validation error while the lines with circles denote the training error.
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Figure 3: Variation of cross-validation error with different choices of number of hidden nodes for
MLPs on four data sets in Group B: (a) Pendigits (b) Img. Seg. (c) Sat. Img. and
(d) Optdigits. The lines with cross-mark denote the validation error while the lines with
circles denote the training error.
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the obtained optimal set of parameters is in Table 5. The results reported for SVMs correspond to
these choices.

Data set Hidden nodes
Iris (7, 2, 5, 6, 8), (7, 9, 3, 6, 5), (7, 6, 5, 8, 9), (5, 6, 7, 8, 3),

(7, 9, 10, 8, 6), (5, 6, 7, 8, 9), (7, 8, 9, 5, 6), (5, 6, 7, 8, 9),
(9, 8, 7, 10, 6), (2, 5, 6, 7, 8)

Vehicle (11, 9, 13, 10, 5), (10, 13, 9, 7, 8), (12, 11, 10, 13, 9), (10, 13, 12, 5, 16),
(12, 13, 7, 15, 14), (12, 6, 14, 8, 5), (9, 5, 8, 13, 12), (12, 13, 6, 11, 9),
(11, 6, 10, 15, 13), (9, 11, 14, 8, 10)

WDBC (12, 10, 9, 15, 7), (10, 6, 8, 9, 7), (8, 15, 12, 9, 10), (12, 7, 8, 15, 10),
(15, 8, 12, 10, 9), (8, 20, 15, 10, 7), (12, 10, 15, 7, 9), (7, 15, 8, 9, 10),
(12, 15, 6, 9, 10), (9, 7, 20, 10, 12)

Glass (11, 15, 13, 4, 9), (12, 9, 13, 7, 8), (13, 12, 7, 10, 14), (11, 14, 12, 15, 10),
(10, 15, 9, 13, 6), (10, 12, 9, 14, 8), (14, 5, 13, 4, 8), (11, 13, 12, 10, 14),
(12, 15, 8, 6, 9), (11, 13, 14, 15, 12)

Sonar (25, 15, 12, 35, 30), (25, 35, 20, 30, 5), (30, 35, 7, 40, 10), (30, 5, 20, 25, 7),
(20, 35, 15, 30, 25), (25, 30, 10, 12, 7), (30, 15, 25, 10, 20), (25, 35, 7, 10, 30),
(20, 25, 7, 12, 15), (10, 12, 15, 7, 20)

Ionosphere (7, 25, 10, 12, 15), (15, 9, 7, 20, 8), (15, 9, 8, 12, 20), (9, 12, 15, 8, 20),
(8, 25, 12, 9, 10), (7, 9, 8, 20, 15), (10, 8, 7, 25, 15), (8, 20, 15, 12, 10),
(15, 25, 20, 6, 5), (6, 15, 12, 20, 7)

Lymph (9, 6, 15, 5, 10), (10, 8, 15, 6, 7), (9, 10, 8, 12, 20), (15, 10, 7, 20, 12),
(9, 10, 12, 6, 20), (9, 15, 10, 8, 6), (7, 6, 10, 8, 9), (7, 10, 15, 12, 8),
(12, 8, 9, 10, 6), (10, 12, 8, 15, 9)

Pima (6, 7, 8, 9, 5), (7, 9, 8, 5, 6), (6, 7, 9, 8, 10), (7, 5, 9, 6, 8),
(7, 9, 10, 6, 8), (7, 6, 9, 5, 8), (7, 5, 6, 8, 9), (8, 7, 9, 10, 5),
(5, 9, 8, 7, 10), (6, 7, 8, 9, 5)

Pendigits (15, 18, 20, 12, 10)
Img. Seg. (12, 7, 8, 10, 15)
Sat. Img. (8, 9, 7, 10, 6)
Optdigits (30, 35, 40, 25, 20)

Table 4: List of selected hidden nodes for SFMs of the NEUROSVM for the twelve data sets se-
lected by cross-validation experiments

3.3.3 SELECTION OF SFMS AND HYPER PARAMETERS FOR NEUROSVM

We have already explained, for each fold how to choose the number of hidden nodes for the five
MLPs that will be required in the feature extraction module of NEUROSVM. These choices for
different data sets are listed in Table 4. In order to use these data extraction MLPs, two issues need
to be addressed. First do we need all five feature extraction MLPs, or for different folds, different
subsets of the five would be more appropriate. In other words, for each fold, using five feature
extraction MLPs we can have 31 possible combinations of feature sets. And we have to use the
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Data set (C,&)
Iris (2.00, 0.20), (2.00, 0.20), (100.00, 0.01), (1.00, 0.20),

(20.00, 0.01), (20.00, 0.01), (0.10, 1.00), (0.50, 0.40),
(5.00, 0.10), (1.00, 0.40)

Vehicle (100.00, 0.0001), (1000.00, 0.0001), (100.00, 0.0001), (100.00, 0.0001),
(100.00, 0.0001), (100.00, 0.0001), (100.00,0.0001), (1000.00, 0.0001),
(100.00, 0.0001), (100.00, 0.0001)

WDBC (5.00, 0.0001), (20.00, 0.0001), (0.20, 0.0001), (2.00, 0.0001),
(10.00, 0.0001), (20.00, 0.0001), (20.00, 0.0001), (2.00, 0.0001),
(20.00, 0.0001), (2.00, 0.0001)

Glass (20.00, 0.20), (5.00, 0.80), (10.00, 0.80), (5.00, 0.80),
(10.00, 0.80), (20.00, 0.20), (5.00, 0.10), (10.00, 0.40),
(5.00, 1.00), (10.00, 1.00)

Sonar (2.00, 1.00), (2.00, 1.00), (20.00, 0.40), (20.00, 0.20),
(2.00, 0.80), (5.00, 0.40), (10.00, 0.40), (2.00, 1.00),
(5.00, 2.00), (5.00, 0.40)

Ionosphere (5.00, 0.10), (20.00, 0.20), (20.00, 0.20), (20.00, 0.40),
(100.00, 0.01), (100.00, 0.40), (2.00, 0.10), (2.00, 0.20),
(20.00, 0.40), (5.00, 0.40)

Lymph (1000.00, 0.0001), (1000.00, 0.0001), (2.00, 0.20), (100.00, 0.001),
(1000.00, 0.0001), (5.00, 0.10), (1000.00, 0.0001), (100.00, 0.001),
(100.00, 0.01), (1000.00, 0.001)

Pima (0.50, 0.0001), (1.00, 0.0001), (0.50, 0.0001), (10.00, 0.0001),
(5.00, 0.0001), (1.00, 0.0001), (5.00, 0.0001), (10.00, 0.0001),
(2.00, 0.0001), (1.00, 0.0001)

Pendigits (10.00, 0.0001)
Img. Seg. (100.00, 0.0001)
Sat. Img. (20.00, 0.01)
Optdigits (20.00, 0.0001)

Table 5: List of regularization parameter and spread of the RBF kernel for SVMs selected by cross-
validation experiments

most appropriate combination for each fold. The second issue is to find the optimal hyper parameter
for each combination of feature sets. Thus for each fold, to obtain the best choice of combination
of feature subsets and the associated optimal hyper parameter, for each of the 31 combinations, as
we did for SVM (in Procedure RunSVM) we use ten-fold cross-validation. This is summarized
in Appendix D by Procedure RunNEUROSVM. The selected combinations of SFMs along with
the hyper parameters for the twelve data sets are listed in Table 6. The set within braces in the
second column of Table 6 shows the best combination of feature extraction MLPs selected by cross-
validation experiments. As an illustration, for fold 1 of Iris, a set of 7 features is used in the
classification module, which is generated by two selected SFMs each with 2 and 5 hidden nodes.
The (C,&) pair within parenthesis followed by the combination shows the regularization parameter
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(C) and spread (&) of the RBF kernel for SVM classifiers in the classification module that are selected
by the cross-validation. From Table 6 we see that NEUROSVM with single SFM is not selected
for any data sets. Hence using just one SFM we shall not gain anything. The selected combination
of SFMs and corresponding (C,&) are used to report the results of NEUROSVM. From Table 5
and Table 6 we observe that the values of & chosen for SVM are usually smaller than those for
NEUROSVM. It is probably because the hidden layers of neural networks are more suited for linear
classification than the original inputs, so a higher & (less non-linearity) is more appropriate.

Four of the twelve data sets have dimensionality 30 or more. For these four data sets dimen-
sionality is reduced in the classification module of NEUROSVM. The dimensions of the four data
sets, WDBC, Sonar, Ionosphere and Optdigits, in the classification module of NEUROSVM are
reduced by 16.67-56.67% (average 41.33%), 16.67-80.00% (average 48.33%), 47.06-67.65% (av-
erage 54.41%) and 14.06% respectively. Hence for high dimensional data the dimensionality of
input for the CM can be reduced compared to original dimension of the input.

3.3.4 PERFORMANCE COMPARISON OF NEUROSVM WITH THE BASELINE CLASSIFIERS
AND STANDARD ENSEMBLE METHODS

We compare the performance of NEUROSVM with MLP, SVM as well as two existing neural
ensemble methods. The majority voting and averaging are simple yet effective ensemble methods.
In Table 7, test error results of NEUROSVM, MLP, SVM, majority voting and averaging are shown.
In Table 7, majority voting ensemble method is denoted by MVOTING while the average ensemble
method is denoted by AVERAGING. The results in Table 7 show that based on the paired t-test
for Group A data sets and McNemar test for Group B data sets NEUROSVM is significantly better
than the baseline classifiers for 11 data sets when compared with MLP and for 6 data sets when
compared with SVM.

Note that the results of MVOTING and AVERAGING in Table 7 are obtained using the same
combinations of networks (SFMs) that are used in the FM of NEUROSVM. From Table 7 we see
that NEUROSVM performs significantly better than the standard ensemble methods for 11 data sets
when compared with majority voting and for 10 data sets when compared with averaging.

As a summary, NEUROSVM is superior to MLP, SVM as well as two ensemble methods for
6 data sets. These data sets are Vehicle, WDBC, Ionosphere, Lymph, Pima and Img. Seg. For
four out of remaining six data sets NEUROSVM performs significantly better than MLP, MVOT-
ING and AVERAGING. The performance of NEUROSVM and SVM for these four data sets, Iris,
Sonar, Pendigits and Sat. Img, is not significantly different. For the Glass data, the performance of
NEUROSVM is significantly better than MLP and MVOTING but is not significantly different from
that of SVM and AVERAGING. For the Optdigits data set all algorithms perform equally well. No
data set is found where two baseline classifiers (MLP and SVM) or two ensemble methods perform
better than NEUROSVM.

For the results in Table 7, for each data set, the combination of SFMs used is selected by cross-
validation for NEUROSVM. So, a natural question arises, will other combinations perform better
with majority voting or averaging than NEUROSVM? To investigate this we have compared the
performance of NEUROSVM using the combinations selected by cross-validation separately for
each of MVOTING and AVERAGING. Following the same protocol as used for NEUROSVM, the
SFMs for MVOTING and AVERAGING are selected using the double ten-fold cross-validation for
Group A data sets and ten-fold cross-validation for Group B data sets. The selected combinations of
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Data set Selected combinations and (C,&) pair of these combinations
Iris {2, 5}(0.10, 2.00), {3, 5}(0.10, 2.00), {6, 5}(0.10, 0.10),

{5, 3}(0.10, 2.00), {7, 6}(0.10, 5.00), {5, 6}(0.10, 1.00),
{5, 6}(0.001, 0.0001), {5, 6}(0.50, 10.00),
{7, 6}(1000.00, 0.80), {2, 5}(0.10, 2.00)

Vehicle {11, 13}(1.00, 0.20), {9, 7}(1000.00, 2.00), {12, 13}(20.00, 0.80),
{10, 5}(0.50, 0.10), {12, 13}(1000.00, 0.40), {12, 14}(1000.00, 2.00),
{8, 13}(1000.00, 0.001), {12, 13}(0.20, 1.00),
{11, 6, 10, 13}(1.00, 0.40), {11, 8}(20.00, 0.01)

WDBC {10, 15}(0.50, 0.20), {6, 7}(0.001, 0.0001), {8, 12}(20.00, 0.20),
{7, 10}(0.10, 5.00), {8, 10}(0.20, 20.00), {8, 7}(0.50, 0.40),
{15, 7}(5.00, 0.40), {7, 8}(0.01, 0.40), {6, 9}(0.01, 0.40),
{9, 7}(0.50, 0.01)

Group A Glass {11, 15, 9}(1000.00, 0.01), {7, 8}(1.00, 2.00), {13, 7}(1.00, 5.00),
{11, 10}(2.00, 10.00), {9, 6}(1000.00, 0.01), {12, 14, 8}(0.50. 0.20),
{5, 4}(5.00, 0.40), {11, 14}(0.10, 0.20), {12, 8, 6}(10.00, 0.10),
{14, 15}(1000.00, 0.01)

Sonar {12, 30}(0.20, 2.00), {35, 5}(100.00, 0.10), {30, 7, 10}(0.20, 2.00),
{5, 7}(0.50, 5.00), {20, 30}(1.00, 2.00), {7, 9}(2.00, 0.01),
{25, 20}(1.00, 5.00), {7, 10}(0.10, 0.10), {7, 12}(0.10, 0.20),
{15, 7}(2.00, 0.01)

Ionosphere {7, 10}(0.001, 0.0001), {7, 8}(0.001, 0.0001), {9, 8}(0.001, 0.0001),
{9, 8}(0.001, 0.0001), {8, 9}(0.001, 0.0001), {7, 8}(0.001, 0.0001),
{8, 7}(0.001, 0.0001), {8, 10}(0.001, 0.0001), {6, 5}(0.001, 0.0001),
{6, 7}(0.001, 0.0001)

Lymph {6, 5}(0.10, 2.00), {6, 7}(20.00, 0.40), {9, 8}(5.00, 0.10),
{10, 7}(0.10, 0.20), {9, 12}(0.10, 2.00), {8, 6}(0.10, 0.10),
{7, 9}(2.00, 5.00), {7, 8}(0.10, 0.10), {9, 6}(0.50, 0.20),
{10, 12, 8, 9}(0.20, 0.01)

Pima {6, 5}(5.00, 100.00), {5, 6}(0.10, 100.00), {6, 7}(5.00, 0.40),
{5, 6}(0.50, 1.00), {7, 6}(1000, 0.40), {6, 5}(0.20, 100.00),
{5, 6}(1.00, 10000.00), {7, 5}(10.00, 20.00), {5, 7}(20.00, 0.40),
{6, 5}(100.00, 0.10)

Pendigits {15, 20, 10} (20.00, 0.10)
Group B Img. Seg. {12, 15} (10.00, 1.00)

Sat. Img. {7, 6} (100.00, 0.40)
Optdigits {30, 25} (2.00, 0.10)

Table 6: The combination of SFMs and (C,&) pair for NEUROSVM selected by cross-validation
for each of the twelve data sets

SFMs for MVOTING and AVERAGING are listed in Table 8. Table 9 reports the test error statistics
using the combinations shown in Table 8. Based on the paired t-test for Group A data sets and
McNemar test for Group B data sets, Table 9 reveals that NEUROSVM is significantly better than
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Baseline classifiers Standard ensemble methods
Data set NEUROSVM MLP SVM MVOTING AVERAGING
Iris 0.013±0.008 0.040±0.017 0.033±0.014 0.040±0.017 0.040±0.017
Vehicle 0.101±0.013 0.166±0.016 0.190±0.011 0.159±0.022 0.142±0.013
WDBC 0.019±0.009 0.042±0.007 0.070±0.008 0.040±0.007 0.037±0.008

Gr. A Glass 0.251±0.034 0.309±0.024 0.290±0.026 0.308±0.025 0.290±0.030
Sonar 0.067±0.017 0.168±0.025 0.138±0.038 0.148±0.029 0.148±0.027
Ionosphere 0.011±0.002 0.074±0.017 0.060±0.014 0.088±0.016 0.080±0.018
Lymph 0.094±0.019 0.168±0.030 0.202±0.034 0.148±0.029 0.168±0.030
Pima 0.211±0.013 0.252±0.014 0.249±0.013 0.246±0.010 0.249±0.012
Pendigits 0.022 0.077 0.016 0.074 0.074

Gr. B Img. Seg. 0.059 0.075 0.075 0.074 0.075
Sat. Img. 0.154 0.178 0.158 0.178 0.179
Optdigits 0.027 0.033 0.026 0.034 0.032
Win/Loss 11/0 6/0 11/0 10/0

bold/Italic significantly worse/better than NEUROSVM using ten-fold cross-validation paired
t-test for Group A data sets and McNemar test for Group B data sets.

Table 7: Performance comparison of NEUROSVM with baseline classifiers and standard ensemble
methods

the standard ensemble methods for 8 data sets when compared with majority voting and for 7 data
sets when compared with averaging. Here also no data set is found where two ensemble methods
perform better than NEUROSVM. Hence we can conclude that NEUROSVM performs consistently
better than majority voting and averaging.

3.3.5 PERFORMANCE COMPARISON OF OTHER VARIANTS OF NEUROSVM WITH BASELINE
CLASSIFIERS AND STANDARD ENSEMBLE METHODS

As stated earlier, for the proposed architecture, in the classification module we can use other tools
also. Here we demonstrate the effect of using MLP and RBF neural networks in the classification
module instead of SVM. We termed these two architectures as NMLP and NRBF respectively.
The combination of SFMs and the number of hidden nodes for MLP and RBF networks in the
classification module are selected using double ten-fold cross-validation for Group A data sets and
using ten-fold cross-validation for Group B data sets. The performance comparison of these variants
of NEUROSVM with the original NEUROSVM is shown in Table 10. From Table 10, we see that
original NEUROSVM is significantly better than other variants for 4 data sets when compared with
NMLP and better than 2 data sets when compared with NRBF. The performance of NEUROSVM
and NMLP is equally well for 8 data sets. There is no significant difference in performance between
NEUROSVM and NRBF for 10 data sets. For six out of twelve data sets, all three variants of the
proposed architecture perform equally well. So, proposed architecture can be considered a general
one.

Now we compare the performance of baseline classifiers and two ensemble methods with the
two new variants of NEUROSVM, that is, NMLP and NRBF, by statistical test. These results
are summarized in Table 11 for NMLP and in Table 12 for NRBF. The results of MVOTING and
AVERAGING are obtained in Table 11 and Table 12 using the same combinations of SFMs that are
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Selected combinations
Data set MVOTING AVERAGING

Iris {2, 5}, {3, 5}, {6, 5}, {6, 3}, {2, 5}, {3, 5}, {6, 5}, {6, 8},
{7, 6}, {5, 6}, {5, 6}, {5, 6}, {7, 6}, {5, 6}, {5, 6}, {5, 6},
{7, 6}, {2, 5} {7, 6}, {2, 5}

Vehicle {9, 13, 10, 5}, {13, 7, 8}, {11, 10}, {13, 9}, {12, 13, 9},
{10, 13, 9}, {13, 12}, {13, 7}, {10, 5}, {13, 7}, {12, 14, 8},
{12, 14, 8}, {9, 13, 12}, {11, 9}, {9, 8, 13}, {13, 11},
{11, 6, 13}, {14, 10} {11, 6, 10}, {11, 14}

WDBC {10, 7}, {6, 8, 9}, {8, 10}, {10, 9}, {6, 7}, {15, 12},
{12, 7, 15}, {8, 9}, {8, 7}, {12, 8}, {8, 9}, {8, 7},
{15, 7}, {8, 10}, {6, 9}, {9, 7} {15, 7}, {7, 8}, {6, 9}, {9, 7}

Group A Glass {15, 4}, {12, 13}, {12, 7, 14}, {15, 9}, {13, 7}, {7, 14},
{12, 10}, {15, 6}, {10, 8}, {14, 8}, {15, 10}, {10, 6}, {12, 9}, {4, 8},
{11, 10}, {12, 8}, {11, 12} {11, 13}, {8, 9}, {11, 12}

Sonar {25, 12}, {20, 5}, {7, 10}, {5, 7}, {25, 12}, {20, 5}, {7, 10},
{20, 15}, {25, 7}, {15, 10}, {5, 7}, {20, 15}, {25, 7}, {15, 10},
{7, 10}, {7, 12, 15}, {15, 7} {7, 10}, {7, 12}, {10, 7}

Ionosphere {7, 10}, {9, 8}, {8, 12}, {9, 15}, {7, 10}, {9, 8}, {9, 12}, {15, 8},
{8, 10}, {7, 8}, {8, 7}, {8, 20}, {8, 12}, {7, 8}, {8, 7}, {8, 15},
{6, 5}, {12, 20} {6, 5}, {15, 12}

Lymph {6, 5}, {6, 7}, {9, 8}, {10, 7}, {9, 5}, {6, 7}, {9, 8}, {10, 7},
{9, 12}, {8, 6}, {10, 8, 9}, {6, 20}, {10, 6}, {10, 9},
{7, 8}, {9, 6}, {8, 9} {7, 8}, {8, 6}, {8, 9}

Pima {8, 9}, {9, 8}, {6, 7}, {6, 8}, {9, 5}, {9, 6}, {6, 10}, {5, 8},
{10, 8}, {7, 8}, {7, 5}, {8, 10}, {6, 8}, {5, 8}, {6, 8}, {8, 9},
{8, 10}, {6, 7} {5, 8}, {6, 7}

Pendigits {15, 18, 12} {15, 18, 20}
Group B Img. Seg. {8, 15} {7, 8, 10, 15}

Sat. Img. {9, 7, 10, 6} {8, 9, 7, 10, 6}
Optdigits {35, 40, 20} {35, 40}

Table 8: The combination of SFMs for MVOTING and AVERAGING selected by cross-validation
for each of the twelve data sets

used in the FM of NMLP and NRBF respectively. From Table 11 we can see that NMLP performs
significantly better than baseline classifiers for 8 data sets when compared with MLP and better than
5 data sets when compared with SVM. The NMLP performs significantly better than MVOTING on
8 data sets. It also performs significantly better than AVERAGING for 7 data sets. From Table 12,
it is observed that NRBF performs significantly better than MLP on 8 data sets and it is better than
SVM for 4 data sets. The SVM performs significantly better than NRBF only with one data set.
When compared with the standard ensemble methods the NRBF is found to perform significantly
better for majority of the data sets. For example, NRBF performs significantly better than majority
voting for 8 data sets and better than averaging for 7 data sets.

Now we compare the results of NMLP and NRBF with the results of MVOTING and AVER-
AGING in Table 9 by statistical test. We find that the NMLP is significantly better than the standard
ensemble methods for 3 data sets (Pima, Pendigits and Sat. Img.) when compared with majority
voting and for 2 data sets (Pima and Pendigits) when compared with averaging. The NRBF performs
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Standard ensemble methods
Data set NEUROSVM MVOTING AVERAGING

Iris 0.013±0.008 0.033±0.017 0.033±0.017
Vehicle 0.101±0.013 0.123±0.014 0.125±0.016
WDBC 0.019±0.009 0.033±0.008 0.032±0.009

Group A Glass 0.251±0.034 0.279±0.031 0.274±0.030
Sonar 0.067±0.017 0.124±0.024 0.134±0.027
Ionosphere 0.011±0.002 0.074±0.016 0.065±0.017
Lymph 0.094±0.019 0.134±0.027 0.141±0.022
Pima 0.211±0.013 0.228±0.009 0.229±0.011
Pendigits 0.022 0.074 0.072

Group B Img. Seg. 0.059 0.071 0.074
Sat. Img. 0.154 0.172 0.164
Optdigits 0.027 0.032 0.032
Win/Loss 8/0 7/0

bold/Italic significantly worse/better than NEUROSVM using ten-fold cross-validation
paired t-test for Group A data sets and McNemar test for Group B data sets.

Table 9: Performance comparison of NEUROSVM, MVOTING and AVERAGING for selected
combinations with corresponding algorithm

Data set NEUROSVM NMLP NRBF
Iris 0.013±0.008 0.027±0.014 0.013±0.013
Vehicle 0.101±0.013 0.116±0.013 0.114±0.014
WDBC 0.019±0.009 0.030±0.008 0.019±0.009

Group A Glass 0.251±0.034 0.255±0.026 0.253±0.024
Sonar 0.067±0.017 0.119±0.029 0.057±0.015
Ionosphere 0.011±0.002 0.062±0.016 0.045±0.013
Lymph 0.094±0.019 0.135±0.025 0.101±0.020
Pima 0.211±0.013 0.199±0.009 0.194±0.012
Pendigits 0.022 0.023 0.032

Group B Img. Seg. 0.059 0.063 0.067
Sat. Img. 0.154 0.159 0.171
Optdigits 0.027 0.029 0.029
Win/Loss 4/0 2/0

bold/Italic significantly worse/better than NEUROSVM using ten-fold cross-validation
paired t-test for Group A data sets and McNemar test for Group B data sets.

Table 10: Performance comparison of three variants of proposed algorithm

significantly better than both of MVOTING and AVERAGING on 5 data sets. These 5 data sets are
WDBC, Sonar, Lymph, Pima and Pendigits. It is worth noticing here that for no data set the pro-
posed methods are worse than standard ensemble methods. So, the proposed method consistently
works better than baseline classifiers and standard ensemble methods.
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Baseline classifiers Standard ensemble methods
Data set NMLP MLP SVM MVOTING AVERAGING
Iris 0.027±0.014 0.040±0.017 0.033±0.014 0.040±0.017 0.040±0.017
Vehicle 0.116±0.013 0.166±0.016 0.190±0.011 0.153±0.013 0.151±0.015
WDBC 0.030±0.008 0.042±0.007 0.070±0.008 0.044±0.008 0.035±0.008

Gr. A Glass 0.255±0.026 0.309±0.024 0.290±0.026 0.294±0.030 0.294±0.030
Sonar 0.119±0.029 0.168±0.025 0.138±0.038 0.144±0.021 0.139±0.027
Ionosphere 0.062±0.016 0.074±0.017 0.060±0.014 0.093±0.019 0.068±0.016
Lymph 0.135±0.025 0.168±0.030 0.202±0.034 0.155±0.026 0.161±0.028
Pima 0.199±0.009 0.252±0.014 0.249±0.013 0.245±0.010 0.238±0.011
Pendigits 0.023 0.077 0.016 0.074 0.072

Gr. B Img. Seg. 0.063 0.075 0.075 0.083 0.078
Sat. Img. 0.159 0.178 0.158 0.176 0.168
Optdigits 0.029 0.033 0.026 0.033 0.036
Win/Loss 8/0 5/0 8/0 7/0

bold/Italic significantly worse/better than NMLP using ten-fold cross-validation paired t-test
for Group A data sets and McNemar test for Group B data sets.

Table 11: Performance comparison of NMLP with baseline classifiers and standard ensemble meth-
ods

Baseline classifiers Standard ensemble methods
Data set NRBF MLP SVM MVOTING AVERAGING
Iris 0.013±0.013 0.040±0.017 0.033±0.014 0.040±0.017 0.040±0.017
Vehicle 0.114±0.014 0.166±0.016 0.190±0.011 0.148±0.018 0.137±0.013
WDBC 0.019±0.009 0.042±0.007 0.070±0.008 0.042±0.007 0.040±0.007

Gr. A Glass 0.253±0.024 0.309±0.024 0.290±0.026 0.309±0.029 0.295±0.040
Sonar 0.057±0.015 0.168±0.025 0.138±0.038 0.153±0.027 0.153±0.030
Ionosphere 0.045±0.013 0.074±0.017 0.060±0.014 0.091±0.017 0.077±0.018
Lymph 0.101±0.020 0.168±0.030 0.202±0.034 0.161±0.031 0.189±0.031
Pima 0.194±0.012 0.252±0.014 0.249±0.013 0.252±0.014 0.247±0.011
Pendigits 0.032 0.077 0.016 0.074 0.075

Gr. B Img. Seg. 0.067 0.075 0.075 0.074 0.075
Sat. Img. 0.171 0.178 0.158 0.172 0.167
Optdigits 0.029 0.033 0.026 0.033 0.033
Win/Loss 8/0 4/1 8/0 7/0

bold/Italic significantly worse/better than NRBF using ten-fold cross-validation paired t-test
for Group A data sets and McNemar test for Group B data sets.

Table 12: Performance comparison of NRBF with baseline classifiers and standard ensemble meth-
ods

3.4 Controlled Experiments - Avoiding Full Training of Networks for Feature Extraction

We have mentioned in Section 2.6 that for large data sets it may not be necessary to make full
training of the MLPs for constructing the SFMs. Now we are going to prove it by experiments.
We consider two data sets, one from each group for this experiment. More specifically, we use
the Sonar data (in 60 dimension) from Group A and Optdigits (in 64 dimension) from Group B.
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We have conducted the experiments as before for NEUROSVM except we stop the training of
MLPs to construct SFMs only after 100 iterations. In this case, we have obtained the test error of
0.135±0.087 for Sonar and 0.023 for Optdigits data sets. By statistical test we observe that these
errors are not significantly different from the previous NEUROSVM errors when the MLPs were
fully trained.

4. The Kernel Independence of NEUROSVM

In this section we shall illustrate an attractive feature of NEUROSVM, its kernel independence. In
order to perform such study we choose three kernels for SVM: linear, RBF and polynomial. We
choose these kernels also for SVMs in the classification module of NEUROSVM. The different
kernels are tried with a set of parameters. We perform ten-fold (double ten-fold for Group A data
sets) cross-validation to select the best parameter set for each kernel of SVM. We also conducted
cross-validation experiments to select the best combination of SFMs and hyper parameters of NEU-
ROSVM for each of three choices of kernel. For the RBF kernel we choose 12 different C and 15
different & resulting 180 pairs. Similarly, for the polynomial kernel we choose 12 different C, 5
different degrees d and 7 different scaling coefficients of dot products s resulting 420 triplets and 12
different C are used in linear kernel. The values of C and & are presented in Section 3.3.2. The five
values of d for the polynomial kernel are 2, 3, 4, 5 and 6. The seven different choices of s are 0.001,
0.01, 0.10, 1.00, 10.00, 100.00 and 1000.00.

In Figure 4, the test errors of SVM and NEUROSVMwith three choices of kernel for the twelve
data sets are shown. It is clear from Figures 4(b)-4(h) that the performance of SVM significantly
depends on the choice of kernels for Vehicle, WDBC, Glass, Sonar, Ionosphere, Lymph and Pima
data sets respectively. Also the kernel dependency of SVM is noticeable for the data sets Iris,
Pendigits, Img. Seg. and Optdigits (Figure 4(a), 4(i), 4(j) and 4(l)). Only for the Sat. Img. the
SVM produces almost the same test errors for all three choices of kernel. On the other hand, from
Figures 4(a)-4(l) we see that the performance of NEUROSVM for eight (out of the twelve) data sets
practically does not depend on the choice of kernels. To observe it more closely for each data set we
find out the difference of percentage errors between the maximum and minimum errors produce by
the three kernels for SVM and NEUROSVM (Table 13). To explain the entries in Table 13, consider
the WDBC data set. The test errors produced by SVM on WDBC data set with the three kernels
are 0.049, 0.070 and 0.095 respectively. Hence the minimum and maximum errors are 0.049 and
0.095 respectively. So, the difference in error rates and hence the percentage are 0.046 and 4.60%
respectively. Whereas the test error rates for NEUROSVM onWDBC data set with the three kernels
are 0.023, 0.019 and 0.023 respectively. Here the minimum, maximum and percentage of difference
of these two errors are 0.019, 0.023 and 0.40% respectively. From Table 13, it is clear that for eight
data sets the performance of NEUROSVM using the three kernels remains almost the same (with
error less than 1%). On the other hand, with SVM only for Sat. Img. the difference is less than 1%.
Thus NEUROSVM is found to perform equally well with different choices of kernels of the SVM
in the classification module.

5. Conclusions

We have proposed a multilayer classifier architecture consisting of two modules. The first module is
the feature extraction module (FM), while the second module is the classification module (CM). In
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Figure 4: Comparison of the test errors of SVM and NEUROSVM for twelve data sets using Linear,
RBF, and Polynomial kernels.
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Differences of the percentage error
Data set SVM NEUROSVM
Iris 1.40% 0.00%
Vehicle 4.10% 0.60%
WDBC 4.60% 0.40%
Glass 10.80% 0.00%
Sonar 8.40% 2.30%
Ionosphere 6.50% 2.10%
Lymph 4.80% 2.00%
Pima 9.30% 1.40%
Pendigits 2.70% 0.10%
Img. Seg. 1.90% 0.90%
Sat. Img. 0.20% 0.20%
Optdigits 1.40% 0.10%

Table 13: Differences of the percentage errors between the maximum and minimum errors pro-
duced by linear, RBF and polynomial kernels for SVM and NEUROSVM

the FM, we have used MLP, while for the CM we have used SVM resulting in the classifier, called
NEUROSVM. The architecture is general in nature and both for FM and CM other tools can be
used. We have experimented using RBF and MLP in the CM. We have tested the performance of the
proposed system on twelve benchmark data sets and NEUROSVM is found to perform consistently
better than MLP and SVM. The performance of NEUROSVM is also better than the ensemble
methods based on majority voting and averaging. A noticeable feature of NEUROSVM is that
nonlinear NEUROSVM and linear NEUROSVM perform equally well on all data sets tried.

Other advantages of NEUROSVM are as follows:

• For large data sets, it may not be necessary to make a full training of the MLPs in the FM
because in an MLP, the extraction of the salient feature of the data is done at the beginning of
the training.

• Typically the number of nodes in the hidden layer of MLPs is much smaller than the number
of the input nodes, and one does not need many feature extraction sub-modules. Hence, the
dimensionality of the input for the SVMs (or MLP/RBF) in the classification module can
be reduced compared to the original dimension of the input. So, for solving bioinformatics
problems such as protein secondary structure prediction or protein fold recognition such an
architecture may be very useful.

• It may be viewed as an implicit fusion of multiple classifiers and hence the improvement in
performance is expected.

We have demonstrated the advantages of the proposed architecture by good experimental results.
In our experimental results we have noticed that most of the time out of the 5 SFMs, 2 or 3 are
selected for NEUROSVM by the cross-validation method. This limited use of the architectures
could be due to the fact that all networks are trained using the same data and some of the networks
may be extracting similar information from the data. We are currently working on developing a
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more theoretical view of our proposed method that may help further explain the results reported
here.

Appendix A. Procedure DataPreparation

Input: A data set X
Output: Training and test data sets
Algorithm:

1. if X belongs to Group A then
2. Set no o f f old = 10.
3. X is randomly partitioned into 10 subsets Xi; i= 1,2, . . . ,10

such that, X =
10
S

i=1
Xi,Xi∩Xj = (, i += j.

4. Get the training set for fold i of X as XTi =
S

j +=i
Xj and the test data set is

XTei = Xi. So we get 10 training-test set (XTi,XTei), i= 1,2, ,10.
5. else /* for Group B data sets */
6. Set no o f f old = 1.
7. Let the training set be XT1 and the test set be XTe1 .
8. end if

End DataPreparation
NB: For a given data set (in Group A), the Procedure DataPreparation returns the same outer
level ten-folds to RunMLP, RunSVM and RunNEUROSVM.

Appendix B. Procedure RunMLP

Input: A data set X.
A set of hidden nodes H = {h1,h2, . . . ,hm}.

Output: Test error of MLP on X
Algorithm:

1. Perform DataPreparation
2. for i = 1 to no o f f old
/* To choose the optimal network size for XTi, we use ten-fold cross-validation
experiment on XTi */

3. XTi is divided into 10 equal (or almost equal) parts Zj; j = 1,2, . . . ,10

such that, XTi =
10
S

j=1
Zj,Zj ∩Zk = (, j += k .

4. Get the training set for fold j of XTi as ZTj =
S

k += j
Zk and the validation

set as ZVj = Zj. So we get 10 training-validation set (ZTj,ZVj),
j = 1,2, . . . ,10 for fold i of X .

5. for each a in {h1,h2, . . . ,hm}
6. for j = 1 to 10
7. Train a network (MLP) for architecture a with training data set ZTj

and find validation error on ZVj. Let the validation error with fold
(ZTj,ZVj) be eaj .
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8. end for /* end for j */
9. The average validation error for an architecture a related to XTi of the

original fold (XTi,XTei) is ēai = 1
10

10
"
j=1

eaj .

10. end for /* end of for a */
11. Let ēki =min

a
{ēai }, then we choose k as the optimal architecture for fold XTi.

12. Train a network (MLP) for architecture k with training data XTi and find
test error on XTei. Let the test error with fold (XTi,XTei) be Ei.

13. end for /* end of for i */
14. Find average test error Ē = 1

no o f f old

no o f f old
"
i=1

Ei.

End RunMLP

Appendix C. Procedure RunSVM

Input: A data set X .
A set of 12 choices ofC and 15 choices of & for RBF kernel resulting in a total
of 180 pairs of (C,&).

Output: Test error of SVM on X
Algorithm:

1. Perform DataPreparation
2. for i = 1 to no o f f old
/* To choose the best (C,&) pair for XTi, we use ten-fold cross-validation
experiment on XTi */

3-4. Same as steps 3-4 of RunMLP
5. for each (Ck,&k) pair on 180 pairs
6. for j = 1 to 10
7. Train SVM with parameters (Ck,&k) of RBF kernel for training

data ZTj and find validation error on ZVj.
Let the validation error with fold (ZTj,ZVj) be ekj.

8. end for /* end of for j */
9. The average validation error for (Ck,&k) pair related to XTi of the

original fold (XTi,XTei) is ēki =
10
"
j=1

ekj.

10. end for /* end of for (Ck,&k) */
11. Let ēmi =min

k
{ēki }, then we choose (Cm,&m) pair as the best hyper

parameters for fold XTi.
12. Train SVM with RBF kernel and (Cm,&m) pair with training data XTi and

find test error on XTei. Let the test error with fold (XTi,XTei) be Ei.
13. end for /* end of for i */
14. Find average test error Ē = 1

no o f f old

no o f f old
"
i=1

Ei.

End RunSVM
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Appendix D. Procedure RunNEUROSVM

Input: A data set X .
A set of hidden nodes H = {h1,h2, . . . ,hm}.
A set of 12 choices ofC and 15 choices of & for RBF kernel resulting in a total
of 180 pairs of (C,&).

Output: Test error of NEUROSVM on X
Algorithm:

1. Perform DataPreparation
2. for i = 1 to no o f f old
/* To choose 5 MLPs for 5 SFMs for XTi, we use ten-fold cross-validation
experiment on XTi */

3-10. Same as steps 3-10 of RunMLP
11. We need to select 5 MLP architectures for 5 SFMs to construct NEUROSVM.

The best 5 architectures corresponding to the smallest 5 values of ēai .
In other word, we select 5 architecture (ai1,ai2, . . . ,ai5) where
ēai1i , ēai2i , . . . , ēai5i , . . . is the sequence of ēai ’s sorted in ascending order.

12. Train 5 networks with above 5 selected architectures for training data XTi.
13. Find projected data of (XTi,XTei) from hidden layer of above 5 MLPs

and hence we get 5 SFMs.
14. Construct 25−1= 31 combinations of projected data using 5 SFMs, that is,

31 sets of training-test data using 5 SFMs. So, we get 31 sets of training-test
data (Z̃T ip, Z̃Teip), p= 1,2, . . . ,31 for NEUROSVM.
/* To select the best combination among 31 combinations and (C,&) pair
of RBF kernel of SVM in the classification module we perform ten-fold
cross-validation experiment */

15. for p = 1 to 31
16. Perform ten-fold cross-validation as steps 3-10 of RunSVM on Z̃T ip.
17. Choose (C,&) for combination p with minimum average validation error

say ēpi .
18. end for /* end of for p */
19. Finally choose kth combination and corresponding (C,&) pair (say (Ck,&k))

where ēki =min
p
{ēpi } .

20. Train SVM with training data Z̃T ik and (Ck,&k) pair of RBF kernel.
Find test error on Z̃Teik , say test error is Ei.

21. end for /* end of for i */
22. Find average test error Ē = 1

no o f f old

no o f f old
"
i=1

Ei.

End RunNEUROSVM
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we first report on some implementation issues, and we suggest on how parameter optimization can
be performed efficiently for MFs. We then show that the proposed scalable approaches compare
favorably with existing ones in terms of prediction accuracy and/or required training time. Finally,
we report on some experiments performed on MovieLens and Jester data sets.
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1. Introduction

Recommender systems attempt to profile user preferences over items, and model the relation be-
tween users and items. The task of recommender systems is to recommend items that fit a user’s
tastes, in order to help the user in selecting/purchasing items from an overwhelming set of choices.
Such systems have great importance in applications such as e-commerce, subscription based ser-
vices, information filtering, etc. Recommender systems providing personalized suggestions greatly
increase the likelihood of a customer making a purchase compared to unpersonalized ones. Person-
alized recommendations are especially important in markets where the variety of choices is large,
the taste of the customer is important, and last but not least the price of the items is modest. Typi-
cal areas of such services are mostly related to art (esp. books, movies, music), fashion, food and
restaurants, gaming and humor.

With the burgeoning of web based businesses, an increasing number of web based merchant or
rental services use recommender systems. Some of the major participants of e-commerce web, like
Amazon and Netflix, successfully apply recommender systems to deliver automatically generated
personalized recommendation to their customers. The importance of a good recommender system
was recognized by Netflix, which led to the announcement of the Netflix Prize (NP) competition to
motivate researchers to improve the accuracy of the recommender system of Netflix (see details in
Section 5.1.1).

There are two basic strategies that can be applied when generating recommendations. Content-
based approaches profile users and items by identifying their characteristic features, such us demo-
graphic data for user profiling, and product information/descriptions for item profiling. The profiles
are used by algorithms to connect user interests and item descriptions when generating recommen-
dations. However, it is usually laborious to collect the necessary information about items, and
similarly it is often difficult to motivate users to share their personal data to help create the database
for the basis of profiling.

Therefore, the alternative approach, termed collaborative filtering (CF), which makes use of
only past user activities (for example, transaction history or user satisfaction expressed in ratings),
is usually more feasible. CF approaches can be applied to recommender systems independently of
the domain. CF algorithms identify relationships between users and items, and make associations
using this information to predict user preferences.

In this paper, we focus on the case when users express their opinion of items by means of
ratings. In this framework, the user first provides ratings of some items, titles or artifacts, usually
on a discrete numerical scale, and the system then recommends other items based on ratings the
virtual community has already provided. The virtual community was defined by Hill et al. (1995) as
“a group of people who share characteristics and interact in essence or effect only.” The underlying
assumption is that people who had similar tastes in the past may also agree on their tastes in the
future.

1.1 Related Work

The first works on the field of CF were published in the early 1990s. Goldberg et al. (1992) presented
the Tapestry system that used collaborative filtering to filter mails simultaneously from several mail-
ing lists, based on the opinion of other users on the readings. Resnick et al. (1994) described the
GroupLens system that was one of the pioneer applications of the field where users could rate arti-
cles on a 1–5 scale after having read them and were then offered suggestions. Breese et al. (1998)
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divided the underlying techniques of predicting user preferences into two main groups. Memory-
based approaches operate on the entire database of ratings collected by the vendor or service sup-
plier. On the other hand, model-based approaches use the database to estimate or learn a model and
then apply this model for prediction.

Over the last broad decade many CF algorithms have been proposed that approach the prob-
lem by different techniques, including similarity/neighborhood based approaches (Resnick et al.,
1994; Sarwar et al., 2001), personality diagnosis (Pennock et al., 2000), Bayesian networks (Breese
et al., 1998), restricted Boltzmann machines (RBM) (Salakhutdinov et al., 2007), and various ma-
trix factorization techniques (Canny, 2002; Hofmann, 2004; Sarwar et al., 2000; Srebro et al., 2005).
Vozalis and Margaritis (2007) presented an MF approach that incorporates demographic informa-
tion and ratings to enhance plain CF algorithms. Breese et al. (1998) surveyed in detail the major CF
approaches of the early years, Rashid et al. (2006) gave a short description of most recent methods,
and Adomavicius and Tuzhilin (2005) also investigated in their survey the possible extensions.

The NP competition boosted the interest in CF, and yielded the publication of a number of new
methods. We should also mention here the NP related KDD Cup and Workshop (Bennett et al.,
2007), which indicated the possible directions of scalable and accurate CF methods. We feature
among them the matrix factorization, neighbor based approaches, and their combinations.

Several matrix factorization techniques have been successfully applied to CF, including singular
value decomposition (Sarwar et al., 2000), probabilistic latent semantic analysis (Hofmann, 2004),
probabilistic matrix factorization (Salakhutdinov and Mnih, 2008), maximum margin matrix factor-
ization (Srebro et al., 2005), expectation maximization for MF (Kurucz et al., 2007), and alternating
least squares (Bell and Koren, 2007a).

Simon Funk (Brandyn Webb) published a detailed implementation of a regularized MF with
separate feature update.1 Paterek (2007) introduced a bunch of novel techniques, including MF
with biases, applying kernel ridge regression on the residual of MF, linear model for each item,
and asymmetric factor models (NSVD1, NSVD2). Kurucz et al. (2007) showed the application
of expectation maximization based MF methods for the NP. Bell and Koren (2007a) presented an
improved neighborhood based approach, which removes the global effect from the data, and calcu-
lates optimal similarity values by solving regression problems. Salakhutdinov et al. (2007) mention
without details a momentum based MF method that uses batch learning.

Our methods are different from the above ones in various aspects. Bell and Koren (2007a) use
alternate least squares, but we use incremental gradient descent (also known as stochastic gradient
descent) method for weight updates. Their method does not use the chronological order of ratings,
while we exploit this information in our approaches. They use only positive and ordinary MFs,
while we propose the semi-positive version of the MF algorithm. Paterek (2007) applies a different
learning scheme following Simon Funk’s path (see the detailed comparison in Section 3.1). We
point out that this difference makes our training process somewhat faster and does not deteriorate
the accuracy. Other differences are that Paterek uses fewer meta-parameters for his MF methods.
Salakhutdinov et al. (2007) apply a momentum based MF with batch learning, but we point out that
incremental gradient descent is more appropriate for large scale problems.

1. Details at http://sifter.org/˜simon/journal/20061211.html.
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1.2 Main Results and Organization

The aim of this work is to propose accurate and scalable solutions for a class of collaborative fil-
tering problems. Scalability is crucial since CF systems often have to manage millions of users or
items. As it was shown by many researchers (see for example Bell et al., 2007b) combination (also
termed blending) of various algorithms typically outperforms single methods in terms of accuracy.
Therefore, we would like to emphasize here that a particular method can have beneficial impact on
the overall accuracy if (1) it yields a very accurate model on its own or (2) it “blends well”, that
is it improves the accuracy of the combination of several models. The methods proposed in this
paper satisfy one or both of these criteria. We classify the methods presented in this paper into 4
categories:

• crucial in improving accuracy or run-time;

• may negligibly improve accuracy, in a way that is more important for competitions than for
real life data;

• does not improve accuracy, but is useful for blending with other techniques;

• important for real life data.

This paper is organized as follows. Section 2 defines the CF setting we focus on in this work.
Section 3 describes our proposed MF algorithms. In particular, we present

• a regularizedMF and its biased version that use an incremental gradient descent weight updat-
ing scheme, termed as RISMF and BRISMF, (biased) regularized incremental simultaneous
MF;

• a fast (semi-)positive MF version that approximates the features by using nonnegative values
for either users or items or both;

• an accurate momentum based MF approach;

• an incremental variant of MF that efficiently handles new users/ratings (this is crucial in a
real-life recommender systems);

• a transductive version of MF that makes use of information from test instances (namely the
ratings users have given for certain items) to improve prediction accuracy.

We also introduce a special MF version that supports the visualization of user/item features,
which can be used to generate explanation for recommendations. Finally, we illustrate that the
learning scheme of some MF algorithms can be directly described in the neural network framework.

Section 4 presents a neighbor based correction approach for MF, which alloys the global per-
spective of MF and the localized property of neighbor based approaches efficiently. We propose
here two similarity functions for items.

Section 5 contains the experiments. First, we introduce the Netflix Prize data set against which
our proposed algorithms are validated. In addition, we also describe the MovieLens and the Jester
data sets, on which we also run some experiments. Next, we mention some important implemen-
tation issues: we comment on the efficient storage of very large rating databases, we consider the
proper ordering of training examples, and we outline our parameter optimization heuristic. We then
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report on our comprehensive experiments run on the NP data set. In order to illustrate the applica-
bility of MF methods to other data sets, we also report on tests executed with a selected MF method,
BRISMF, on the MovieLens and Jester data sets and compare the results with baseline predictors.
For the NP data set, we report on the results of each proposed method and the most accurate com-
binations of methods. We briefly analyze the accuracy-time complexity trade-off of MF methods.
We finally compare our results to other published ones to show that the proposed methods are com-
parable to the existing one in terms of root mean squared error (RMSE). We also discuss the time
complexity of some selected methods, and we point out that it compares favorably to similar type
methods published so far. We further mention here that all the presented methods are part of the
blended solution of our team Gravity in the NP contest.

2. Problem Definition

We define the problem of collaborative filtering (CF) in the following setting. The problem can be
modeled by the random triplet (U, I,R), where

• U taking values from {1, . . . ,N} is the user identifier (N is the number of users),

• I taking values from {1, . . . ,M} is the item identifier (M is the number of items), and

• R taking values from X ⊂ R is the rating value. Typical rating values can be binary (X =
{0,1}), integers from a given range (for example, X = {1,2,3,4,5}), or real numbers of a
closed interval (for example, X = [−10,10]).

A realization of (U, I,R) denoted by (u, i,r) means that user u rated item i with value r.
The goal is to estimate R from (U, I) such that the root mean squared error of the estimate,

RMSE=
√

E{(R̂−R)2}, (1)

is minimal, where R̂ is the estimate2 of R. We briefly discuss other possible evaluation metrics in
CF in Section 5.

In practice, the distribution of (U, I,R) is not known: we are only given a finite sample, T ′ =
{(u1, i1,r1),(u2, i2,r2), . . . ,(ut , it ,rt)}, generated by it. The sample T ′ can be used for training pre-
dictors. We assume sampling without replacement in the sense that (user ID, item ID) pairs are
unique in the sample, which means that users do not rate items more than once. Let us introduce the
notation T = {(u, i) : ∃r : (u, i,r) ∈ T ′} for the set of (user ID, item ID) pairs. Note that |T ′| = |T |,
and typically |T | ( N ·M, because most of the users rate only a small subset of the entire set of
items. The sample can be represented as a partially specified matrix denoted by R ∈ RN×M, where
the matrix elements are known in positions (u, i) ∈ T , and unknown in positions (u, i) /∈ T . The
value of the matrix R at position (u, i) ∈ T , denoted by rui, stores the rating of user u for item
i. For clarity, we use the term (u, i)-th rating in general for rui, and (u, i)-th training example if
rui : (u, i) ∈ T .

2. In general, superscript “hat” denotes the prediction of the given quantity, so x̂ is the prediction of x.
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The goal of this CF setup is to create such predictors that aim at minimizing the error (1).
In practice, we cannot measure the error because the distribution of (U, I,R) is unknown, but we
can estimate the error on a validation set. Let us denote the validation set by V ′ ⊂ [1, . . . ,N]×
[1, . . . ,M]×X , assuming sampling without replacement as defined above, and we further assume the
uniqueness of (user ID, item ID) pairs across T ′ and V ′. We define V = {(u, i) : ∃r : (u, i,r) ∈V ′}.
The assumptions ensure that T ∩V = /0. If both the training set T ′ and validation set V ′ are
generated from the same distribution the estimate of RMSE can be calculated as

R̂MSE=

√

1
|V | !

(u,i)∈V
(r̂ui− rui)2.

For better readability, from now on we omit the “hat” from the RMSE, recalling that we always
calculate the estimate of the error.

When we predict a given rating rui by r̂ui we refer to the user u as active user and to the item i
as active item. The (u, i) pair of active user and active item is termed query.

3. Matrix Factorization

Matrix factorization is one of the most often applied techniques for CF problems. Numerous differ-
ent MF variants have been already published and were validated against the NP data set as well. We
should credit here again Simon Funk, who published the first detailed implementation notes on this
problem. He applied a regularized MF with gradient descent learning scheme. His model trained
factors one after another, which can be considered as a series of 1 factor MF training processes
performed on the residual of the previous one. Other efficient MF variants were published by Bell
and Koren (2007a), where they used alternating least squares for weight updates. Biased MF was
applied by Paterek (2007), whose technique was also proposed at the same time in our previous
work (Takács et al., 2007) as “constant values in matrices”.

In this section we give an overview of our MF variants that proved to be effective in tackling
the large scale practical problem of NP, and hence may be considered as a useful collection of tools
for practitioners. Here we also propose several modifications for already known MF variants, which
are effective in improving the accuracy of the generated models. We also give details concerning
the time requirement of certain methods and propose efficient implementation solutions.

The idea behind MF techniques is very simple. Suppose we want to approximate the matrix R
as the product of two matrices:

R≈ PQ,

where P is an N×K and Q is a K×M matrix. We call P the user feature matrix and Q the item
feature matrix, and K is the number of features in the given factorization. If we consider the matrices
as linear transformations, the approximation can be interpreted as follows: matrix Q is a transform
from S1 = RM into S2 = RK , and matrix P is a transform from S2 into S3 = RN . Typically, K ( N
and K(M, therefore the vector space S2 acts as a bottleneck when predicting v3 ∈ S3 from v1 ∈ S1.
In other words, the number of parameters to describe R can be reduced from |T | to NK+KM. Note
that Q and P typically contain real numbers, even when R contains only integers.

In the case of the given problem, the unknown ratings of R cannot be represented by zero.
For this case, the approximation task can be defined as follows. Let puk denote the elements of
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P ∈ RN×K , and qki the elements of Q ∈ RK×M. Further, let pu denote a row (vector) of P, and qi a
column (vector) of Q. Then:

r̂ui =
K

!
k=1

pukqki = puqi, (2)

eui = rui− r̂ui for (u, i) ∈ T ,

e′ui =
1
2
e2ui, (3)

SSE= !
(u,i)∈T

e2ui = !
(u,i)∈T

(

rui−
K

!
k=1

pukqki

)2

,

SSE′ =
1
2
SSE= !

(u,i)∈T
e′ui,

RMSE=
√

SSE/|T |,

(P∗,Q∗) = argmin
(P,Q)

SSE′ = argmin
(P,Q)

SSE= argmin
(P,Q)

RMSE. (4)

Here r̂ui denotes how the u-th user would rate the i-th item, according to the model, eui denotes the
training error measured at the (u, i)-th rating, and SSE denotes the sum of squared training errors.
Eq. (4) states that the optimal P and Q minimize the sum of squared errors only on the known
elements of R.

In order to minimize RMSE, which is in this case equivalent to minimizing SSE′, we apply a
simple incremental gradient descent method to find a local minimum of SSE′, where one gradient
step intends to decrease the square of prediction error of only one rating, or equivalently, either e′ui
or e2ui.

Minimizing RMSE can be seen as a weighted low-rank approximation of R. Weighted low-rank
approximations try to minimize the objective function SSEw = !N

u=1!
M
i=1wui · e2ui, where wui-s are

predefined non-negative weights. For collaborative filtering problems, wui is 1 for known ratings,
and 0 for unknown ratings. Srebro and Jaakkola (2003) showed that when the rank of ((wui))
is 1, all local minima are global minima. However, when it is greater than 1—as in the case of
collaborative filtering—this statement does not hold any more, which was shown by the authors via
counterexamples.

For the incremental gradient descent method, suppose we are at the (u, i)-th training example,
rui, and its approximation r̂ui is given.

We compute the gradient of e′ui:

"
"puk

e′ui = −eui ·qki,
"
"qki

e′ui = −eui · puk.

We update the weights in the direction opposite to the gradient:

p′uk = puk +# · eui ·qki,
q′ki = qki+# · eui · puk.

That is, we change the weights in P and Q to decrease the square of actual error, thus better ap-
proximating rui. Here # is the learning rate. This basic MF method is referred to as ISMF, that is
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incremental simultaneous MF, due to its distinctive incremental and simultaneous weight updating
method to other MF methods.

When the training has been finished, each value of R can be computed easily using Eq. (2),
even at unknown positions. In other words, the model (P∗ and Q∗) provides a description of how an
arbitrary user would rate any item.

3.1 RISMF

The matrix factorization presented in the previous section can overfit for users with few (no more
than K) ratings: assuming that the feature vectors of the items rated by the user are linearly inde-
pendent and Q does not change, there exists a user feature vector with zero training error. Thus,
there is a potential for overfitting, if # and the extent of the change in Q are both small. A common
way to avoid overfitting is to apply regularization by penalizing the square of the Euclidean norm
of weights. This is often used in machine learning methods, for example Support Vector Machines
and ridge regression apply that. It is common also in neural networks, where it is termed as weight
decay (Duda et al.). Penalizing the weights results in a new optimization problem:

e′ui = (e2ui+$ ·pu ·pTu +$ ·qTi ·qi)/2,
SSE′ = !

(u,i)∈T
e′ui,

(P∗,Q∗) = argmin
(P,Q)

SSE′. (5)

Here $ ≥ 0 is the regularization factor. Note that minimizing SSE′ is no longer equivalent to min-
imizing SSE, unless $ = 0, in which case we get back the ISMF. We call this MF variant RISMF
that stands for regularized incremental simultaneous MF.

Similar to the ISMF approach, we compute the gradient of e′ui:

"
"puk

e′ui = −eui ·qki+$ · puk,
"
"qki

e′ui = −eui · puk +$ ·qki. (6)

We update the weights in the direction opposite to the gradient:

p′uk = puk +# · (eui ·qki−$ · puk),
q′ki = qki+# · (eui · puk−$ ·qki).

(7)

For the training algorithm used in RISMF, see Algorithm 1. Note that we use early stopping in
Algorithm 1, thus P∗ and Q∗ differs from Eq. (5), because we optimize for the validation set. Note
that the matrices are initialized randomly. If both P and Q are initialized with a constant value, that
is, both are rank 1, the weight update will not increase the rank, which is equivalent to the K = 1
case. Random initialization is a simple way to avoid this. Typically, we uniformly choose random
values from [−0.01,0.01] or [−0.02,0.02].

We point out that RISMF differs from Funk’s MF in a few important aspects. We update each
feature simultaneously and initialize the matrix randomly. Simon Funk’s approach learns each
feature separately during a certain number of epochs, but there are no specification as to when
the learning procedure has to step to the next feature. His approach converges slower than ours,
because it iterates overRmore times. Both methods use regularization and early stopping to prevent
overfitting.
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Input: T ′: training set, #: learning rate, $: regularization factor
Output: P∗,Q∗: the user and item feature matrices
Partition T ′ into two sets: T ′

I, T ′
II (validation set)1

Initialize P and Q with small random numbers.2
loop until the terminal condition is met. One epoch:3

iterate over each (u, i,rui) element of T ′
I:4

compute e′ui;5
compute the gradient of e′ui, according to Eq. (6);6
for each k7

update pu, the u-th row of P,8
and qi, the i-th column of Q according to Eq. (7);9

calculate the RMSE on T ′
II;10

if the RMSE on T ′
II was better than in any previous epoch:11

Let P∗ = P and Q∗ =Q.12
terminal condition: RMSE on T ′

II does not decrease during two epochs.13
end14

Algorithm 1: Training algorithm for RISMF

We observed (Takács et al., 2007), that the learning curve of epochs (RMSE on the validation
set as a function of the number of epochs) is always convex, regardless of the value of $, that is why
we use not only regularization but also early stopping.

3.2 BRISMF: Constant Values in Matrices

One may argue that some users tend to rate all items higher or lower than the average. The same may
hold for items: some items can be very popular. Although MF can reconstruct the original matrix
exactly when K is large enough and $ = 0, this is not the case when overfitting is to be avoided.
There is a straightforward way to extend RISMF to be able to directly model this phenomenon, by
extending MF with biases for users and items.

The bias feature idea was mentioned by Paterek (2007). He termed his version RSVD2, which
appeared at the same time in our work in a generalized form by incorporating constant values in
the MF (Takács et al., 2007). Paterek’s and our variants share some common features, but he used
Simon Funk’s approach to update feature weights.

We incorporate bias features into RISMF by fixing the first column of P and the second row
of Q to the constant value of 1. By “fixing to a constant value” we mean initialize p•1 and q2•
with a fixed constant value instead of random values and drop the application of (7) when updating
p•1 and q2•. In this way, we get back exactly Paterek’s RSVD2, except that we update features
simultanously. The pair of these features (q1• and p•2) can serve as bias features. Our pu2 and q1i
corresponds to Paterek’s ci and d j resp.

We refer to this method as BRISMF that stands for biased regularized incremental simultaneous
MF. This simple extension speeds up the training phase and yields a more accurate model with
better generalization performance. Since BRISMF is always superior to RISMF in terms of both
the accuracy and the running time, it is our recommended basic MF method.
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3.3 Semipositive and Positive MF

The RISMF algorithm can generate not only positive but also negative feature values. Nonnega-
tive matrix factorization (Lee and Seung, 1999) generates models with only nonnegative features,
which enables additive part-based representation of the data. Positive (Bell and Koren, 2007a) and
semipositive (Hofmann, 2004) matrix factorization techniques have been successfully applied in
the field of CF. We present a simple modification of RISMF that can give positive and semipos-
itive factorizations. Although, these modifications do not yield more accurate models, they are
important, because the models are still accurate (Section 5.4.6), they blend well with other methods
(Section 5.4.8), and the running time (Section 5.4.10), simplicity and accuracy compares favorably
with Bell and Koren’s positive MF method.

We talk about semipositive MF when exactly one of P and Q contains both nonnegative and
negative values, and positive MF, when both contains only nonnegative values.

We apply a simple thresholding method to ensure the nonnegativeness of features: for the (u, i)-
th training example in a given epoch, if puk or qki would become negative when applying (7), we
reset their value to 0. We describe the modified equations for the case when both user and item
features are required to be nonnegative:

p′uk =max{0, puk +# · eui ·qki−$ · puk},
q′ki =max{0,qki+# · eui · puk−$ ·qki}.

(8)

If we allow, for instance, user features to be negative, we can simply use Eq. (7) instead of Eq. (8)
for p′uk. Allowing only nonnegative item features can be treated similarly.

3.4 Applying Momentum Method

This method modifies the learning rule of RISMF slightly. In each learning step the weight updates
are calculated from the actual gradient and from the last weight changes. With the modification of
(7) we get the following equations:

puk(t+1) = puk(t)+%puk(t+1),
%puk(t+1) = # · (eui ·qki(t)−$ · puk(t))+& ·%puk(t),
qki(t+1) = qki(t)+%qki(t+1),

%qki(t+1) = # · (eui · puk(t)−$ ·qki(t))+& ·%qki(t).

Here & is the momentum factor and puk(t+ 1) and puk(t) stands for the new and old k-th feature
values of user u, respectively. Analogously, %puk(t + 1) and %puk(t) denote the current and last
change of the given feature value. The notations are similar for the item features.

Without a detailed description, the momentum method was mentioned by Salakhutdinov et al.
(2007), but they used batch learning, which makes the training slower. In our experiments, mo-
mentum MF does not yield more accurate models; however, it blends well with other methods
(Section 5.4.8).

3.5 Retraining User Features

The incremental gradient descent weight update of RISMF has a serious drawback: item features
change while we iterate through users. If the change is significant, user features updated in the
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beginning of an epoch may be inappropriate at the end of the epoch. We found two ways to solve
this.
1. We can evaluate the test ratings of a user immediately after iterating through its ratings in the
training set, and before starting to iterate through the next user’s ratings.

2. We can completely recompute the user features after the learning procedure. This method
can serve as an efficient incremental training method for recommender systems. Algorithm 2
summarizes the method.

Input: T ′: training set, #: learning rate, $: regularization factor
Output: P∗,Q∗: the user and item feature matrices
Partition T ′ into two sets: T ′

I, T ′
II (tuning set)1

First training step: call Algorithm 1, store the result in (P1,Q1)2
Let Q=Q1, initialize P randomly.3
Second training step: call Algorithm 1, with the following restrictions:4

skip the weight initialization step, use P and Q from here.5
do not change weights in Q, that is, do not apply (7) or its variants for qki.6
store the optimal number of epochs, denote it n∗.7

Return the result of Algorithm 1 called in line 48
end9

Algorithm 2: Algorithm for retraining user features

Note that this method can efficiently incorporate into the model new users or new ratings of
existing users without the necessity of retraining the entire model, which is very important for
recommender systems. Then we do not apply the whole training procedure, just reset the user
feature weights of the active user u and apply the second training procedure for n∗ epochs for u. The
second training procedure needs to iterate through the entire database—which requires slow (but
sequential) disk access operation—only once (not n∗ times), as the ratings of user u can be kept in
memory and can be immediately re-used in the next epoch.

We remark that the presented algorithm cannot handle the addition of new items, and after the
addition of many new ratings to the database, Q will be obsolete, thus the first training step should
be re-run. Retraining user features mostly yields a slightly more accurate model (Section 5.4.7),
which means that it is useful for real life recommender systems to handle the addition of new users
or ratings.

3.6 Transductive MF

Transductive learning involves the use of validation examples but not their labels. In the case of
CF, this means that the algorithm “knows” what validation examples the model will be applied for,
the (u, i) ∈ V pairs, but not the corresponding rui values. The first transductive model for CF was
the conditional restricted Boltzmann machine (Salakhutdinov et al., 2007). In this RBM variant,
the distribution over the visible and hidden units is defined conditional on which items the user has
rated. The authors noted that the model performance is significantly improved by using conditional
distribution instead of unconditional one.

We give a possible practical example when transductive learning model is useful. Let us suppose
that, when buying items, users can optionally rate them. Via the proposed technique, the information
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that a user purchased but did not rate an item can be incorporated in such cases into the prediction
model.

We propose a transductive MF that can exploit this information after the learning process. The
idea behind the method is the following: suppose that user u (with feature vector pu) has the fol-
lowing v queries in the validation set: ru1, . . . ,ruv. When we are at the i-th validation example of
user u, we can predict another feature vector based only on what other items (1 ≤ i′ ≤ v, i′ .= i) are
to be predicted. A proper linear combination—not depending on u or i—of the original user fea-
ture vector and this new feature vector can yield a third feature vector for the prediction of rui that
produces a better predictor than the original one (see Table 7 for the performance gain obtained by
transductive MF). Formally:

p′u( j) =
1

√

|i′ : (u, i′) ∈ V |+1

v

!
i′′=1
i′′ .=i

qTi′′ . (9)

r̂′ui = r̂ui+' ·p′u( j) ·qi = pu ·qi+' ·p′u( j) ·qi.

The attenuation factor in Eq. (9) ensures that the more ratings a user has in the training set, the less
the prediction relies on the information the validation set provides, thus r̂′ui will differ less from r̂ui.

In practice, ' need not be determined: we can use r̂′ui and p′u( j) ·qi as two predictions for rui, and
apply linear regression to get an improved RMSE. Transductive MF is a post-processing method for
MF, which can exploit the information provided by the existence of ratings even if the values of the
ratings are unknown. This can be the case in some real life problems, for example, when a user buys
many items but rates only a few of them.

3.7 2D Variant of the Matrix Factorization Algorithm

We propose here an MF variant that provides visual information about MF features, which can
be used to generate an explanation for recommendations. The idea is that we store user and item
features in a two dimensional (2D) grid instead of a one dimensional row vector. Accordingly, we
replace the puk and qki notation of feature values with pukl and qimn. Furthermore we define a simple
neighborhood relation between the features based on their distance in the grid. If the difference of
the horizontal and vertical positions of two features is small, then the “meaning” of those features
should also be close. To achieve this, we modify our error function in (3) to penalize the difference
between neighbor features:

eui′′ = e′ui+!
k,l

!
m.=k,n .=l

s(k, l,m,n)(pukl− pumn)2+!
k,l

!
m.=k,n .=l

s(k, l,m,n)(qikl−qimn)2.

Here (k, l), (m,n) are the indices in the 2D grid, and s(k, l,m,n) is the similarity between the (k, l)-th
and (m,n)-th positions of the grid. For example we can use the inverse of the squared Euclidean
distance as similarity:

s(k, l,m,n) =
(

(k−m)2+(l−n)2
.
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With this function the gradient used for learning pukl and qikl will be:

"
"pukl

eui′′ =
"

"pukl
e′ui+2 !

m.=k,n .=l
s(k, l,m,n)(pukl− pumn),

"
"qikl

eui′′ =
"

"qikl
e′ui+2 !

m.=k,n .=l
s(k, l,m,n)(qikl−qimn).

Figure 1: Features of movie Constantine

The 2D features of items (or users) can be visualized on a so-called feature map. In our next
examples, items are movies from the Netflix Prize data set. Meanings can be associated to the
regions of the feature map. Note that the labels on Figure 1 are assigned to groups of features and
not to single features. The labels have been manually determined based on such movies that have
extreme values at the given feature group.

The labeling process is performed as follows: we select a cell of the feature map. Then we list
the movies with the highest and the lowest feature values in the selected cell; we term them repre-
sentative movies. Finally, we select an expression which describes the best the common properties
of the movies with high feature values in contrast to the movies with low feature values. In the
case when neighboring features have similar representative movies, we assign a common label to
the corresponding cells. As a result of the label unification, we can obtain larger areas of the feature
map with the same label; see for instance labels Classic, Western or Action on Figure 1. Since the
described labeling process is subjective, it requires human interaction. The size of the areas the
labels are assigned to depends on multiple factors like the neighborhood strength (, the size of the
feature map, and how general the label term assigned is. In the example (Figure 1), the labels prin-
cipally characterize the features directly under themselves and immediate neighbors. The further a
feature is from the label, the less the label reflects its meaning.

Such feature maps are useful for detecting main differences between movies or episodes of the
same movie. Figure 2 represents the three episodes of The Matrix movie. One can observe that
the main characteristic of the feature maps are the same, but there are noticeable changes between
the first and the other episodes. In the first episode the feature values are higher in the area of
Political protest and Absurd and lower around Legendary. This may indicate that the first episode
presents a unique view of the world, but the other two are rather based on the success of the first
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episode. Visual feature maps can also be used to demonstrate to the users why they are provided the
current recommendations: showing similar feature map of items formerly ranked high by the user
can justify the recommendations. This kind visual of explanation may be a preferred by people who
can capture the meaning of visual information faster than textual one. We, therefore, recommend
this technique for real life recommender systems, although it does not improve the blending of the
methods.

Figure 2: Features of The Matrix episodes

3.8 Connections with Neural Networks

In this section we point out that the learning scheme of someMF variants can be directly represented
in the framework of neural networks (NN). We show that this correspondence can be exploited by
applying the methodology of NN learning for CF problems.

The learning of the ISMF and RISMF models can be paired with the multi-layer perceptron
depicted on Figure 3. The network has N inputs, M outputs and K hidden neurons and an identity
activation function in each neuron. The weight between the u-th input and the k-th hidden neuron
corresponds to puk, and the weight between the k-th hidden neuron and the i-th output neuron
corresponds to qki.

x1 y1

z1

zK

xu

xN yM

yizk
puk qki

Figure 3: The multilayer perceptron equivalent for the general MF scheme

In the learning phase, an incremental learning method is used. For the (u, i)-th rating, we set the
input x so that xu is 1 and xu′ .=u = 0, thus zk = puk holds. Let r̂ui = y j denote the i-th output of the
network. We compute the error: eui = rui− r̂ui. This error is back-propagated from the i-th output
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neuron towards the input layer. This neural network (NN) with this special learning is equivalent to
the ISMF.

If we apply regularization (weight decay), we get the RISMF approach.
We can extend this NN to be equivalent to the BRISMF: item biases can be handled by adding

a bias (constant 1) input to the output neurons; user biases can be handled by setting q2• weights to
1 and keeping them constant. In the evaluation phase, we set the input as in the learning phase, and
yi (i= 1, . . . ,M) predicts the active user’s rating on the i-th item.

It was shown that feed-forward neural networks with linear activation function can find the
principal components of a data set (Baldi and Hornik, 1989), since all local minima are global
minima there. However, our problem setting differs in two minor and one major issues: First, our
goal is to factorize a non-squared matrix (the number of inputs of the neural network is different
from the number of outputs), second, we penalize the weights of the neural network, and principally,
not all output are defined, since users rate only a small subset of the items. This latter point infers
that we cannot expect local minima to be global minima, as it has been reflected on page 629.

4. Neighbor Based Correction of MF

Neighbor based (NB) approaches exploit the observation that similar users rate similar items simi-
larly. In the NB scheme a set of similar users is selected for each query from among those who rated
the active item. Or analogously, a set of similar items is selected from among those that have been
rated by the active user. The answer of the predictor is then obtained by combining the ratings of
similar users (items) for the active item (user). The first variant is termed the user neighbor based,
and the second is termed the item neighbor based approach.

MF and NB approaches complement each other well:
• The MF approach views the data from a high level perspective. MF can identify the major
structural patterns in the ratings matrix. An appealing property of MF is that it is able to
detect the similarity between 2 items, even if no user rated both of them.

• The NB approach is more localized. It is typically good at modeling pairs of users/items and
not so good at modeling interdependency within larger sets of users/items. NB methods are
memory based, therefore they do not require any training.3

It is known that the combination of MF and NB can lead to very accurate predictions (Bell and
Koren, 2007a; Bell et al., 2007b). However, the price of additional accuracy is paid by the decreased
scalability. Here we propose a scalable solution for unifying the MF and NB approaches. We will
point out that it is computationally less expensive than Bell et al’s approaches.

The idea is that we try to improve an existing MF model (P,Q) by adding a neighbor based
correction term to its answer in the prediction phase. Assuming the item neighbor based scheme,
the corrected answer for query (u, i) is the following:

r̂ui = pTu qi+ )
! j∈Tu\{i} si j

(

pTu q j− ru j
)

! j∈Tu\{i} si j
,

where si j is the similarity between qi and q j, and Tu is set of the items rated by user u. The weight of
the correction term ) can be optimized via cross-validation. This model can be seen as a unification
of the MF and NB approaches.
3. However, it can be useful to precompute the similarity values to speed up the prediction phase.
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The similarity si j can be defined in many different ways. Here we propose two variants.

• (S1): Normalized scalar product based similarity.

si j =







max{0,!K
k=1 qkiqk j}

√

!K
k=1 q2ki ·

√

!K
k=1 q2k j







*

,

where * is an amplification parameter.

• (S2): Normalized Euclidean distance based similarity.

si j =







!K
k=1(qki−qk j)2

√

!K
k=1 q2ki ·

√

!K
k=1 q2k j







−*

.

In both cases, the value s jk can be calculated in O(K) time, thus r̂ui can be calculated in O(K · |Tu|).
We remark that one can restrict to use only the top S neighbors of the queried item (Bell and Koren,
2007a), however, it does not affect the time requirement, if we use the same function for si j and
neighbor selection.

Now let us comment in more details on the time and memory requirements of our NB corrected
MF in comparison with the improved neighborhood based approach of Bell and Koren (2007a),
which can also be applied to further improve the results of an MF. For a given query, the running
time of our method is O(K · S), while their method requires to solve a separate linear least squares
problem with S variables, thus it is O(S3). Memory requirements: for the u-th user, our method
requires the storing qu and Q in the memory, that is O(KN), while their approach must store the
item-by-item matrix and the ratings of the user, which is O(M2+ |Tu|). For all users, our method
requires O(NK+KM) while their approach requires O(M2+ |T |) memory.

Despite the simplicity of our method its effectiveness is comparable with that of Bell and Ko-
ren’s method, see Section 5.4.9. We highly recommend this method as it improves accuracy signif-
icantly, as we show above and in Section 5.4.8.

This model can be seen as simple, scalable, and accurate unification of the MF and NB ap-
proaches. The training is identical to the regular MF training. The prediction consists of an MF and
a NB term. The similarities used in the NB term need not to be precomputed and stored, because
they can be calculated very efficiently from the MF model.

5. Experiments

Currently, the largest publicly available ratings data set is provided by Netflix, a popular online DVD
rental company. Netflix initiated the Netflix Prize contest in order to improve their recommender
system—called Cinematch—that provides movie recommendations to customers. The data set re-
leased for the competition was substantially larger than former benchmark data sets and contained
about 100 million ratings from over 480k users on nearly 18k movies (see details in Subsection
5.1.1). For comparison, the well-known EachMovie data set4 only consists of 2,811,983 ratings of

4. It used to be available upon request from Compaq, but in 2004 the proprietary retired the data set, and since then it
has no longer been available for download.
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72,916 users and 1,628 movies. Rashid et al. (2006) used a 3 millions ratings subset of the Grou-
pLens project, which entirely contains about 13 million ratings from 105k users on 9k movies. We
evaluated all of our algorithms against the Netflix data set, since currently this is the most chal-
lenging problem for the collaborative filtering community, and our work was greatly motivated by
it. In addition, to illustrate the applicability of the presented methods on other data sets, we also
performed experiments with a selected MF, BRISMF, on the 1M MovieLens and the Jester data set
(see details in Subsection 5.1.2–5.1.3).

The evaluation metrics of recommender systems can greatly vary depending on the characteris-
tics of the data set (size, rating density, rating scale), the goal of recommendation, the purpose of
evaluation (Herlocker et al., 2004). In the current CF setting the goal is to evaluate the predictive
accuracy, namely, how closely the recommender system can predict the true ratings of the users,
measured in terms of root mean squared error.

In case of MovieLens and Jester data sets, we also provide the mean absolute error (MAE) since
this is the most common performance measure for these sets:

MAE=
1
|V | !

(u,i)∈V
|r̂ui− rui|.

5.1 Data Sets

In this section we describe in details the above mentioned three data sets.

5.1.1 THE NETFLIX PRIZE DATA SET

The data set provided generously by Netflix for the NP competition contains (u, i,rui,dui) rating
quadruples, representing that user u rated item i as rui on date dui, where dui ∈D the ordered set of
possible dates. The ratings rui are integers from 1 to 5, where 1 is the worst, and 5 is the best. The
data were collected between October, 1998 and December, 2005 and reflect the distribution of all
ratings received by Netflix during this period (Bennett and Lanning, 2007). The collected data was
released in a train-test setting in the following manner (see also Figure 4).

Netflix selected a random subset of users from their entire customer base with at least 20 ratings
in the given period. A Hold-out set was created from the 9 most recent ratings of the users, con-
sisting of about 4.2 million ratings. The remaining data formed the Training set. The ratings of the
Hold-out set were split randomly with equal probability into three subsets of equal size: Quiz, Test
and Probe. The Probe set was added to the Training set and was released with ratings. The ratings
of the Quiz and Test sets were withheld as a Qualifying set to evaluate competitors. The Quiz/Test
split of the Qualifying set is unknown to the public. We remark that the date based partition of the
entire NP data set into train-test sets reflects the original aim of recommender systems, which is the
prediction of future interest of users from their past ratings/activities.

As the aim of the competition is to improve the prediction accuracy of user ratings, Netflix
adopted RMSE as evaluation measure. The goal of the competition is to reduce by at least 10 percent
the RMSE on the Test set, relative to the RMSE achieved by Cinematch.5 The contestants have to
submit predictions for the Qualifying set. The organizers return the RMSE of the submissions on

5. The first team achieving the 10 percent improvement is promised to be awarded by a grand prize of $1 million by
Netflix. Not surprisingly, this prospective award drawn much interest towards the competition. So far, more than
3 000 teams submitted entries for the competition.
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the Quiz set, which is also reported on a public leaderboard.6 Note that the RMSE on the Test set is
withheld by Netflix.

Known ratings Ratings withheld by
Netflix for scoring

Random 3-
way split

Training Data Probe Quiz Test

All Data
(~100 M user item pairs)

Training Data

Held-Out Set
(last 9 rating
for each user:
4.2 M pairs)

Figure 4: The train-test split and the naming convention of Netflix Prize data set, after Bell et al.
(2007a)

There are some interesting characteristics of the data and the set-up of the competition that pose
a difficult challenge for prediction:

• The distribution over the time of the ratings of the Hold-out set is quite different from the
Training set. As a consequence of the selection method, the Hold-out set does not reflect
the skewness of the movie-per-user, observed in the much larger Training set. Therefore the
Qualifying set contains approximately equal number of queries for often and rarely rating
users.

• The designated aim of the release of the Probe set is to facilitate unbiased estimation of RMSE
for the Quiz/Test sets despite of the different distributions of the Training and the Hold-out
sets. In addition, it permits off-line comparison of predictors before submission.

• We already mentioned that users’ activity at rating is skewed. To put this into numbers, ten
percent of users rated 16 or fewer movies and one quarter rated 36 or fewer. The median is
93. Some very active users rated more than 10,000 movies. A similar biased property can
be observed for movies: The most-rated movie,Miss Congeniality was rated by almost every
second user, but a quarter of titles were rated fewer than 190 times, and a handful were rated
fewer than 10 times (Bell et al., 2007a).

6. Found at http://www.netflixprize.com/leaderboard.
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• The variance of movie ratings is also very different. Some movies are rated approximately
equally by the user base (typically well), and some partition the users. The latter ones may be
more informative in predicting the taste of individual users.

In this experimentation section we evaluate the presented methods on a randomly selected 10%
subset of the Probe set, which we term as Probe10.7 Unless we explicitly mention, from now on the
RMSE values refer to the Probe10 RMSE. We have decided to report on RMSE values measured
on the Probe10 set, since in our experiments the Probe10 RMSE are significantly closer to the
Quiz RMSE than Probe RMSE, and Quiz RMSE tell us more about the accuracy of the predictor,
since it excludes the impact of overtraining. On the other hand the rules of NP competition allows
only 1 submission daily, which limits the number of the Quiz RMSE calculation drastically. We
remark that we measured typically 0.0003 difference between the Probe10 and the Quiz RMSE
values (sometimes 0.0010), while this was of an order of magnitude larger for the Probe set. This
advantageous property nominates the Probe10 set for being a standard and Netflix-independent
evaluation set for predictors trained on the NP data set.

We performed a thorough analysis to check how reliable the Probe10 results are. For this, we
will show that if a given method has better RMSE compared to another method for a particular
subset of the Probe set, then it has the same performance gain on other subsets of the Probe set. To
do this, we partitioned the Probe set into 10 subsets, and we ran 10 different methods using them.
Therefore, in total we had 100 runs. We denote the test RMSE of the x-th method on the y-th test set
by mxy. To summarize the results, we calculated the average test RMSE for each method, denoted
by (m1•, . . . ,m10•), and a difficulty offset for each test set, denoted by (o1, . . . ,o10), defined as

oy =
1
10

10

!
x=1

mxy−mx•.

The test RMSE of the 100 runs are approximated as mxy = mx• + oy. The standard deviation of
this approximation is 0.000224 RMSE score, and the maximal deviation is less than 0.0007 RMSE
score, which means that mxy is well approximated, thus we can assign a difficulty offset to each test
set. Consequently, our initial hypothesis is verified.

When Quiz RMSE values are reported we also mention the percentage of improvement over
Cinematch (IoC). We performed all tests on an average single processor laptop (a 2 GHz Intel
Pentium M (Dothan) with 1 GB RAM), on which reported training times were measured.

5.1.2 MOVIELENS DATA SET

The 1M MovieLens data set8 contains cca. 1 million ratings from 6,040 users on 3,900 movies.
As in the case of NP, ratings are made on a 5 star scale, and the rating records are also quadruples
containing the timestamp of the rating. Demographic data provided with the ratings are not used in
our setting. Since there is no standard train-test split of the data set, we applied a simple random
split to generate a 90%–10% train-test setting.9

7. A Perl script can be downloaded from our homepage, http://gravityrd.com, which selects the Probe10 from the
original Netflix Probe set to ensure repeatability and comparability.

8. Available at: http://www.grouplens.org/node/73.
9. This split can be downloaded from our website: http://gravityrd.com.
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5.1.3 JESTER DATA SET

The Jester data set10 (Goldberg et al., 2001) contains 4,136,360 ratings from 73,421 users on 100
jokes. Users rated jokes on the continuous [−10, +10] range. Ten percent of the jokes (called the
gauge set, which users were asked to rate) are densely rated, others, more sparsely. Two thirds of
the users have rated at least 36 jokes, and the remaining ones have rated between 15 and 35 jokes.
The average number of ratings per user is 46, so it is a particularly dense data set compared to NP
and MovieLens. Goldberg et al. (2001) created their train-test split by a random division of a subset
of 18,000 users into two disjoint sets. For our experiments this split is obviously inappropriate since
it does not enable us to integrate user preferences into the model. Therefore, here we also applied a
random split to generate a 90%–10% train-test setting.11

5.2 Implementation Issues

Because the data set is huge, its storage is an important issue. This was thoroughly investigated
in our previous work (see Takács et al., 2007). We have shown there that the entire data set can
be stored in 300 MB without storing the dates but keeping the chronological order of the ratings,
and in 200 MB without even keeping the order. This enables to perform the algorithms on an
average PC (our platform details are given at the end of Section 5.1.1). As we will point out here,
MF methods are sensitive to the order of training examples and the selection of their proper order
exploits date information. On the other hand, pure NB approaches are not sensitive to the order of
training examples.

The users’ tastes change in time, and when providing them recommendations, only their current
taste matters. This phenomenon is modeled in the NP data set as the value of dui is greater for test
examples than for training examples. We can condition MF methods to exploit the date information
by properly ordering training examples. We found the following order to be very effective: iterate
over users in an arbitrary order, and for each user, take the ratings in an increasing chronological
order, that is, starting from the oldest and ending with the newest. Unless explicitly mentioned
otherwise, in our experiments we use this training example order for MF methods. The impact of
the order on the accuracy of MFs is investigated in Subsection 5.4.4.

5.3 Parameter Optimization

All of the presented methods have many pre-defined parameters that greatly influence the accuracy.
Sometimes a few experiments are enough to set them well, sometimes we need to apply parameter
optimization to find the best settings.

We recall that a parameter setting can be advantageous because (1) it produces a very accurate
model (low validation RMSE) or (2) it “blends well”, that is it improves the accuracy of the blended
model. The more parameters a method has, the harder to set them well, but the more chance to get
a better RMSE.

We used random search and Algorithm 3 to optimize parameters. The typical value of n is 2. In
case of MF, we have experimented with many parameters, namely:

• the number of features: K;
• different learning rate and regularization factor

10. Available at: http://goldberg.berkeley.edu/jester-data/.
11. This split can be downloaded from our website: http://gravityrd.com.
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Input: L, p1, . . . , pL, n
Output: v1, . . . ,vl
Randomly initialize parameters p1, . . . , pL1
Iterate forever (iteration is stopped manually).2
Randomly choose one parameter: pl;3
Randomly generate n different values4
to that parameter: u1, . . . ,un;5

Let u0 be the current value of the pl .6
For each of the u0, . . . ,un values, run a training7
algorithm, temporarily setting pl to that value, and8
evaluating the model on the validation set.9

Assign the best value to pl .10
end11

Algorithm 3: Simple parameter optimization algorithm

– for users and movies (#(p),#(q),$(p),$(q));
– for the corresponding variables of bias features (#(pb),#(qb),$(pb),$(qb));

• minimum and maximum weights in the uniform random initialization of P andQ: wp,wp,wq,
wq;

• G: the offset to subtract from R before learning (can be, for example, set to the global average
of ratings);

We subsampled the matrix R for faster evaluation of parameter settings. We have experienced
that movie-subsampling substantially increased the error, in contrast to user-subsampling, thus we
do not perform the former. The reason for this is that in the evaluation data set movies have much
more ratings than users. Consequently, if we do user-subsampling for example with 100 instead of
the original 200 ratings we lose more information than at movie-subsampling when we have for ex-
ample 10000 ratings instead of 20000. Interestingly, the larger the subsample is, the fewer iterations
are required to achieve the optimal model. This can be explained by the existing redundancy in the
data set. This implies also that the time-complexity of MF is sublinear in the number of ratings.

5.4 Results of Matrix Factorization

We recall that we applied linear combinations of methods for blending,12 and we ordered the training
examples user-wise and then by date, as specified in Section 5.2.

5.4.1 COMPARING REGULARIZED AND BIASED MF VARIANTS

We compare:

• an instance of the regularized RISMF, termed as RISMF#0, with the following parameter
settings: K = 40,#= 0.01,$= 0.01,wp = −wp = wq = −wq = −0.01

• an instance of the biased BRISMF, named briefly as BRISMF#0, with the following parameter
settings: K = 40,#= 0.01,$= 0.01,wp = −wp = wq = −wq = −0.01

12. The source code of our combination algorithm can be downloaded from our web site: http://gravityrd.com.
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RISMF#0 reaches its optimal RMSE in the 13th epoch: 0.9214, while these numbers for
BRISMF#0 are: 10th and 0.9113, which is a 0.0101 improvement.

5.4.2 CHANGING THE PARAMETERS OF THE BRISMF

Table 1 presents the influence of # and $ on the Probe10 RMSE and the optimal number of
epochs. Other parameters are the same as in BRISMF#0. The best result is RMSE= 0.9056 when
# = 0.007,$ = 0.005, which is a 0.0057 improvement. We refer to this MF in the following as
BRISMF#1. The running time for this MF is only 14 minutes! Note that running time depends only
on K, and on the optimal number of epochs.

Note that decreasing # or increasing $ increases the optimal number of epochs, (except for
#= $= 0.020).

#
$ 0.005 0.007 0.010 0.015 0.020

0.005 0.9061 / 13 0.9079 / 15 0.9117 / 19 0.9168 / 28 0.9168 / 44
0.007 0.9056 / 10 0.9074 / 11 0.9112 / 13 0.9168 / 19 0.9169 / 31
0.010 0.9064 / 7 0.9077 / 8 0.9113 / 10 0.9174 / 13 0.9186 / 21
0.015 0.9099 / 5 0.9111 / 6 0.9152 / 6 0.9257 / 7 0.9390 / 7
0.020 0.9166 / 4 0.9175 / 4 0.9217 / 4 0.9314 / 4 0.9431 / 3

Table 1: Probe10 RMSE/optimal number of epochs of the BRISMF for various # and $ values
(K = 40)

Now we show that the usage and proper setting of new parameters can boost the performance:
we introduce the parameters #(p),#(q),$(p),$(q) and #(pb),#(qb),$(pb),$(qb) (see Section 5.3 for ex-
planation).

Initially #(p) = #(q) = #(qb) = $(pb) = 0.007, and $(p) = $(q) = $(pb) = $(qb) = 0.005, to yield
the RMSE = 0.9056 given above. Finding the best setting of these 8 variables is practically im-
possible and can cause overlearning on Probe10. To demonstrate how the parameter optimization
algorithm mentioned in Section 5.3 works, we apply its simplified version: we do not use ran-
dom numbers, just fix the order of these variables and define the possible values for them. Let
the order be: #(p),#(q),#(pb),$(qb),$(p),$(q),$(pb),$(qb). Let the set of values for # variants be
{0.005,0.007,0.010}, and for the $ variants: {0.003,0.005,0.007}. Table 2 shows step-by-step
how parameters are optimized one-by-one in 8 iterations. The parameter optimization procedure
decreased the RMSE score from 0.9056 to 0.9036.

5.4.3 BRISMF RESULTS ON MOVIELENS AND JESTER DATA SETS

We performed several tests on MovieLens and Jester data sets with the BRISMF method. As men-
tioned earlier there are no standard train-test split for these data sets; therefore it is difficult to
compare our obtained results with already published ones. Consequently, we used three baseline
methods for comparison. The constant method always predicts the average of the ratings in the
training set, the item average outputs the average of the training ratings of the active item at query-
ing, while the item neighbor (Takács et al., 2008b) is an item neighbor based method with Pearson
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0.003 0.005 0.007 0.010 Decision
#(p) 0.9057 0.9056 0.9058 #(p) := 0.007 (no change)
#(q) 0.9057 0.9056 0.9061 #(q) := 0.007 (no change)
#(pb) 0.9059 0.9056 0.9052 #(pb) := 0.010
#(qb) 0.9053 0.9052 0.9056 #(qb) := 0.007 (no change)
$(p) 0.9053 0.9052 0.9051 $(p) := 0.007
$(q) 0.9057 0.9051 0.9050 $(q) := 0.007
$(pb) 0.9053 0.9050 0.9047 $(pb) := 0.007
$(qb) 0.9036 0.9047 0.9066 $(qb) := 0.003

Table 2: Effect of parameter optimization on BRISMF#1

correlation based similarity. The MAE results for BRISMFs were obtained by using the same P and
Q that were used to get the RMSE values.

For MovieLens, the main training parameters were set to #(p) = #(q) = 0.01, $(p) = $(q) = 0.02,
and the number of features (K) was varied as tabulated in Table 3. The obtained results show that
the increase of the number of features K yields better accuracy at a decreasing number of epochs.

Model Epochs RMSE RMSE MAE MAE
w/o S2 with S2 w/o S2 with S2

constant – 1.1179 – 0.9348 –
item average – 0.9793 – 0.7829 –
item neighbor – 0.8521 – 0.6641 –
BRISMF#5 35 0.8555 0.8537 0.6684 0.6667
BRISMF#10 27 0.8471 0.8426 0.6608 0.6563
BRISMF#20 24 0.8435 0.8363 0.6582 0.6507
BRISMF#50 23 0.8396 0.8319 0.6544 0.6461
BRISMF#100 24 0.8378 0.8299 0.6531 0.6444
BRISMF#200 21 0.8365 0.8285 0.6519 0.6430
BRISMF#500 20 0.8353 0.8275 0.6508 0.6424

Table 3: Test RMSE of various methods on the MovieLens data set

In terms of RMSE, the simplest BRISMF#5 achieves 12.64% improvement over the item av-
erage, while this is 14.70% for the largest BRISMF#500.13 We also included in the table the test
RMSE value achieved with neighbor correction using similarity function S2 (* = 5). The im-
provement over the item average is 12.82% and 15.5% for the neighbor corrected BRISMF#5 and
BRISMF#500, respectively. The S2 correction improves RMSE value from 0.0018 to 0.0080, which
can be as large as almost 1% improvement over the RMSE of the non-corrected version. One can
observe that the percentage of improvement increases with the number of features. The improve-
ment of BRISMF#500 with S2 correction over item neighbor is 2.89%, which is similar to the
results published in Takács et al. (2008b) and Takács et al. (2008a) for the Netflix data set.

13. We recall that Cinematch produces 9.6% improvement over item average (Quiz RMSE= 1.0540) on the NP data set
(Bennett and Lanning, 2007).
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In terms of MAE, the tendency of the improvements is almost identical. The simplest and the
largest BRISMF achieves 14.63% and 16.87% improvements, which become 14.84% and 17.95%
with NB correction. Here the magnitude of improvement is somewhat larger.

The reported results on RMSE and MAE value on the MovieLens data set are not directly
comparable with ours because of the use of different train-test splits. The best known results are
given by Delannay and Verleysen (2007): RMSE 0.875 and MAE 0.648 that are obtained with
an interlaced generalized linear model. Similar MAE = 0.652 was reported by DeCoste (2006)
achieved with ensembles of maximum margin matrix factorizations.

For Jester, the main training parameters were set to #(p) = #(q) = 0.002, $(p) = $(q) = 0.02, and
K was varied as tabulated in Table 4. The obtained results show that the increase of K yields better
accuracy, while the number of epochs is almost the same. Due the different characteristics of the
Jester data set, the magnitude of RMSE scores are larger. It is interesting that on the Jester data set
the item neighbor method gives better results than BRISMF. We think that this phenomenon is due
to the different characteristics of Jester data set when compared to NP and MovieLens data sets: the
rating matrix is almost dense and there are only 100 items.

Model Epochs RMSE RMSE MAE MAE
w/o S2 with S2 w/o S2 with S2

constant – 5.2976 – 4.4372 –
item average – 5.0527 – 4.1827 –
item neighbor – 4.1123 – 3.1616 –
BRISMF#5 7 4.2080 4.1902 3.2608 3.2352
BRISMF#10 8 4.1707 4.1575 3.2201 3.1967
BRISMF#20 7 4.1565 4.1405 3.2095 3.1820
BRISMF#50 8 4.1399 4.1265 3.1876 3.1616
BRISMF#100 7 4.1395 4.1229 3.1909 3.1606

Table 4: RMSE of various methods on the Jester data set

In terms of RMSE, the simplest BRISMF#5 achieves 16.72% improvement over the item aver-
age, while this is 18.07% for the largest BRISMF#100. We also included in the table the test RMSE
value achieved with neighbor correction using similarity function S2 (*= 5). The improvement over
the item average is 17.07% and 18.40% for the neighbor corrected BRISMF#5 and BRISMF#100,
respectively. The S2 correction improves the RMSE value from 0.0132 to 0.0178, which can be
an over 0.4% improvement over the RMSE of the non-corrected version. In terms of MAE, the
improvements are somewhat larger; they reach 23.72% without and 24.43% with S2 correction.

Here we also indicate some of the best published RMSE and MAE scores, keeping in mind
that those are not directly comparable due to different test settings. Delannay and Verleysen (2007)
achieved RMSE 4.17 and MAE 3.26 with an interlaced generalized linear model; the same MAE
score was obtained by Canny (2002) with a sparse factor analysis model.

We can conclude from the experiments performed on the MovieLens and Jester data sets that
the applicability of MF based methods and neighbor based correction technique is not restricted to
the NP data set. Rather, they are useful CF techniques for different problems as well.
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5.4.4 ORDER OF EXAMPLES

We examined how the order of examples influences the result by comparing the RMSE of BRISMF#1
on two different orders: For the proposed order the RMSE is 0.9056, and for a random order—
obtained by a random shuffle of the ratings of each user—the RMSE is 0.9104.

5.4.5 SUBSAMPLING USERS

On Figure 5 we demonstrate how the number of users (thus, the number of ratings) influences
RMSE and the optimal number of training epochs in case of BRISMF#1. RMSE varies between
0.9056 and 0.9677, and the number of epochs between 10 and 26. The smaller the subset of users
used for training and testing, the larger the RMSE and the number of epochs. This means that the
time-complexity of MF is sublinear in the number of ratings (see Section 5.3). We remark that the
number of ratings is proportional to the number of users; the ratio of them—which is equal to the
average number of ratings per user—is 209 in the training set.
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Figure 5: Effect of the number of users on Probe10 RMSE and on the optimal number of training
epochs.

5.4.6 SEMIPOSITIVE AND POSITIVE MF

We investigated the accuracy of semipositive and positive variants using the following MFs:
• SemPosMF#800: this is a semipositive MF, where user features are nonnegative and item
features are arbitrary. Parameters are set to: K = 800,wp = 0,wp =−wq =wq = 0.005,#(p) =

#(pb) = 0.016,#(q) = #(qb) = 0.005,$(p) = $(q) = 0.010,$(pb) = $(qb) = 0,G= 3.6043. After
12 epochs, learning rates are multiplied by 0.01, and the model is trained for another 2 epochs.

• PosMF#400: this is a positive MF. Parameters are the same as in SemPosMF#800, except that
K = 400,wq = 0.

• PosMF#100: like PosMF#400, but K = 100.
The results are summarized on Table 5.
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Model Epochs RMSE
SemPosMF#800 12+2 0.8950
PosMF#400 14 0.9036
PosMF#100 14 0.9078

Table 5: Probe10 RMSE of positive and semipositive MFs

5.4.7 RETRAINING USER FEATURES

We investigated the effectiveness of retraining user features. We tested both solutions proposed in
Section 3.5. The experiments were run with three parameter settings: BRISMF#1, and the following
two MFs:

• BRISMF#250: K = 250, wp =−0.01, wp =−0.006, wq =−0.010, wq = 0.020, #(p) = 0.008,
#(pb) = 0.016, #(q) = 0.015, #(qb) = 0.007, $(p) = 0.048, $(q) = 0.008, $(pb) = 0.019, $(qb) =
0,G= 0.

• BRISMF#1000: the same as BRISMF#250, but K = 1000.

First, we investigated the first solution (intra-training user-wise test). For BRISMF#250 the
obtained Probe10 RMSE is 0.8959, which is only a slight 0.0002 improvement.

Second, we tested the second solution (see Table 6). Both the simpler case (after the first learn-
ing step, reset P and retrain only P), and the advanced case (after the first learning step, reset P and
retrain both P and Q) are analyzed. We append letter “U” to the method name in the simpler case
(BRISMF#1 becomes BRISMF#1U, etc.) and letters “UM” in the advanced case (BRISMF#1UM,
etc.). We indicated the required number of epochs both in the first and the second training procedure
(if available). Note, that in case of BRISMF#250 and BRISMF#1000, the retraining of user features
greatly improves their performance. BRISMF#1000UM is currently our best MF: Probe10 RMSE
is 0.8921, Quiz RMSE is 0.8918.

Model Epochs Probe10 Quiz IoC
BRISMF#1 10 0.9056
BRISMF#1U 10+8 0.9072
BRISMF#1UM 10+6 0.9053
BRISMF#250 14 0.8961 0.8962 5.80%
BRISMF#250U 14+8 0.8953 0.8954 5.89%
BRISMF#250UM 14+7 0.8937
BRISMF#1000 14 0.8938 0.8939 6.04%
BRISMF#1000U 14+8 0.8936
BRISMF#1000UM 14+8 0.8921 0.8918 6.26%

Table 6: Examining the effect of retraining user features

We investigated the effect of retraining only P, when BRISMF#250 was learnt on a subset of the
database. The question in this case is: how reliable is a Q learnt only on a subset of the database.

First, we kept only the 40%, 60% or 80% of users and ran an MF algorithm and fixed the
resulting Q. Then we reset and learnt P, first on the same subset of the database, and then on the
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entire database. In all 3 cases, the difference between the two Probe10 RMSE results was less
than 0.0013. Each Probe10 RMSE was less than 0.8970. Thus, we can conclude that the proposed
retraining method can handle the addition of new users.

Second, we discarded the last N1 ratings of each user and ran the same retraining procedure. In
our experiments, N1 was set to 0, 10, 20, 40. Obviously, the removal of ratings increased Probe10
RMSE significantly; the highest score was 1.0038, whereas Probe10 RMSE on the entire training
database went up to only 0.8980, which means that theQ calculated on the subset of the data differs
slightly from the Q calculated on the entire data set. Thus, the proposed retraining method can
handle the addition of new ratings as well. These experiments verify the usability of user feature
retraining method for handling new users or ratings.

5.4.8 THE EFFECT OF CORRECTION TECHNIQUES

In order to investigate the effect of various correction techniques, we first generated a number of
accurate MF models. We will show that correction techniques improve accuracy significantly for
all of these models. We applied the parameter optimization method mentioned in section 5.3 to get
accurate MFs. Also, we applied the “trial and error” method to get manually parameterized accurate
MFs. Here we describe some results of both:

• BRISMF#800: manually parameterized MF, with 800 features. Parameters are set to: K =
800, wp = −wp = wq = −wq = −0.005,#(p) = #(pb) = 0.016,#(q) = #(qb) = 0.005,$(p) =

$(q) = 0.010,$(pb) = $(qb) = 0,G = 3.6043. After 9 epochs, learning rates are multiplied by
0.01, and the model is trained for another 2 epochs.

• SemPosMF#800: defined in Section 5.4.6.

• MlMF#200: a BRISMF with 200 features. Parameters are found by the parameter optimiza-
tion algorithm.

• MlMF#80: a BRISMF with 80 features. Parameters are found by the parameter optimization
algorithm.

• MomentumMF: a BRISMF with momentum method, manually optimized: K = 50, #= 0.01,
&= 0.3 and $= 0.00005. Model learnt in 5 epochs.

We refer to a variant of the transductive MF algorithm as Q-correction: in Eq. (9) to improve
predictions we use only the ratings in the Qualify set, not in the Probe10+Qualify set. See Table 7
for the RMSE values of the each method and its blended versions. We applied two NB corrections
to the MF models, with similarities S1 and S2.

The results indicated in the Q, S1, S2 and Q+S1+S2 columns are obtained by using one or
more correction techniques; thus those figures refer to linear regression of predictors (columns) on
Probe10 data. Each correction technique adds one more column to the combination of the basic
method; that is Q, S1, S2 add 1 extra column, Q+S1+S2 adds 3 extra columns.

One can observe in Table 7 that NB correction significantly improves the result of MF based
methods. Starting from an averageMF (MlMF#80) the reduction of RMSE can be 0.0179, it reduces
the RMSE of the good MomentumMF by 0.0075, and it even improves slightly (0.0026) the very
accurate BRISMF#800. We recall that we measured similar accuracy improvement using NB cor-
rection (with S2 similarity) in the case of the MovieLens and the Jester data sets (see Sections 5.1.2
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# Model basic Q S1 S2 Q+S1+S2
1 BRISMF#800 0.8940 0.8930 0.8916(*=8) 0.8914(*=7) 0.8902
2 SemPosMF#800 0.8950 0.8941 0.8916(*=8) 0.8913(*=5) 0.8900
3 MlMF#200 0.9112 0.9106 0.9087(*=8) 0.9085(*=6) 0.9076
4 MlMF#80 0.9251 0.9240 0.9104(*=9) 0.9072(*=2) 0.9058
5 BRISMF#1000UM 0.8921 0.8918 0.8905(*=7) 0.8907(*=5) 0.8901
6 MomentumMF 0.9031 0.9020 0.8979(*=6) 0.8956(*=3) 0.8949
7 1+2 0.8923 0.8880
8 1+2+3 0.8913 0.8872
9 1+2+3+4 0.8909 0.8863
10 1+2+3+4+5 0.8895 0.8851
11 1+2+3+4+5+6 0.8889 0.8838

Table 7: Probe10 RMSE of accurate MFs without and with applying Q-correction and NB correc-
tion (S1 and S2). At columns S1 and S2 we also indicated the optimal value of parameter
*.

and 5.1.3). In comparison, BellKor’s approach (Bell and Koren, 2007a, Table 2) results in 0.0096
RMSE reduction, starting from MF with 0.9167 RMSE. Here the reduced RMSE score is almost
identical with our NB corrected MlMF#80 that has originally only RMSE 0.9251.

If we put in all MFs and all correction techniques, which is a linear combination of 24 methods,
then the combination yields RMSE= 0.8838, Quiz RMSE= 0.8839. Using only the first 4 methods
with all corrections (combination of 16 methods), it yields RMSE= 0.8863, Quiz RMSE= 0.8862.

It brings only insignificant improvements if one applies Q-correction technique for all MFs. We
get RMSE= 0.8839 if we exclude the Q-corrections of all MFs but the first from the combination.
Moreover, if we apply neighbor and Q-correction only on BRISMF#800, then the RMSE increases
only by 0.0011 to 0.8850. In general, we can state that one “correction technique” brings a major
decrease in the RMSE when applied only to a single method in the linear combination. If we apply
it multiple times, the improvement becomes less. In other words, Q-correction and NB corrections
captures the same aspects of the data, regardless of the MF behind them.

These experiments demonstrate that the Probe10 set containing 140,840 ratings is big enough
to evalute not only single methods, but also combinations of many methods.

5.4.9 COMPARISON WITH BELLKOR’S POSTPROCESSING

The neighbor based correction of MF can also be done by running a neighbor based method on the
residuals of MF. A very effective known algorithm for postprocessing the residuals of MF is Bel-
lKor’s neighbor based method (Bell and Koren, 2007b) (BKNB). The comparison of our neighbor
correction scheme and BKNB can be seen in Table 8.

In the experiments we applied the techniques on the residuals of 3 models: a BRISMF#100, a
SemPosMF#100, and a so called global effects model (Bell and Koren, 2007b) with 12 effects. For
running S1 and S2 correction on global effects we used the item features of SemPosMF#100.
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Model basic S1 S2 S1+S2 BKNB
BRISMF#100 0.8979 0.8940 0.8937 0.8933 0.8948
SemPosMF#100 0.9001 0.8954 0.8951 0.8946 0.8957
GlobalEffects#12 0.9600 0.9196 0.9237 0.9174 0.9145

Table 8: Comparison of NB correction and BKNB in terms of Probe10 RMSE.

For MF models the most accurate postprocessing technique is S2 correction. In the case of
global effects BKNB gives the lowest Probe10 RMSE. It is also important to mention that our
approach is significantly faster than BKNB (see Section 5.4.10).

5.4.10 SPEED VS. ACCURACY

From the scalability point of view, it is interesting and important to investigate the relationship of
speed and accuracy. We ran numerous randomly parameterized MFs with K = 40, and collected the
best accuracies in each epoch, and then optimized the parameters. Table 9 summarizes the results.
One epoch takes 80 seconds (K = 40), and the initialization takes an additional 40 seconds (loading
the full database into the memory).

An RMSE of 0.9071 can be achieved within 200 seconds (including the time to train with the
100 million available ratings and evaluate on the Probe10)! For a comparison: Netflix’s Cinematch
algorithm can achieve Quiz RMSE 0.9514, so this fast solution achieves more than 5.6% improve-
ment on Cinematch.

In Table 9, 1.1 epoch means that the model was trained for one epoch and then the ratings of the
first 1/10 of users was used for another epoch. The reason is the same as for feature retraining (see
Section 3.5): when we train only for 1 epoch, the features of the first trained users will be obsolete
at the end of the epoch, since items have nonsense values at the beginning of the training procedure,
and item features change significantly by the end of the epoch.

Epoch Training Time (sec) RMSE
1 120 0.9179

1.1 128 0.9147
2 200 0.9071
3 280 0.9057
4 360 0.9028
5 440 0.9008
6 520 0.9002

Table 9: Probe10 RMSE and running time of fast and accurate MFs.

To our best knowledge, the running times and accuracies here and in the previous sections are
favorable compared to any other method published in the field of Collaborative Filtering. Though
this statement might seem somewhat speculative since authors do not tend to publish running times,
we can support it with the following arguments:

• we train each feature simultaneously;

• the number of epochs is small;
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• we use a gradient descent algorithm, which is the fastest if we can keep the number of required
gradient steps low, which is exactly the case.

Note that given n∗, the number of epochs, there are n∗ · |T | ·K variable updates in P and Q
during the training. The presented methods can achieve the favorable RMSEs while keeping the
number of features (K) and the number of epochs (n∗) low; consequently they are also favorable in
terms of time requirement.

Let us compare the time requirement of our MF methods (all major variants) to one of the
best published ones. Bell and Koren (2007a) provide a detailed description of their alternating
least squares approach proposed to matrix factorization. Briefly, their idea is to initialize P and
Q randomly, recompute one of them using a nonnegative or a regular least squares solver while
the other is constant, then recompute the other, and iterate these two alternating steps for a certain
number of epochs (n∗). In the case of the P-step, one needs to run the solver for each user to
determine how the features of the items rated by the user should be combined to best predict the
ratings. One run of the solver requires ,(K3) time, which should be run for each user; thus the
P-step requires ,(|N| ·K3) time.14 Analogously, the Q-step requires ,(|M| ·K3) time. The K2
elements of the covariance matrix need to be updated for each rating, thus, in both alternating steps
we update K2 elements |T | times. Let n∗ denote the optimal number of epochs, which is a few
dozen according to their paper. In total, their method requires ,((|N|+ |M|) ·K3 + |T | ·K2) · n∗
time.

Our presented approaches have O(|T | ·K) ·n∗ computational complexity, where n∗ is typically
less than 20. We remark that O(·) is an upper bound, while ,(·) is a lower bound for the computa-
tional complexity.

Here we neglected the cost of parameter optimization. Our MF has 13 parameters. We perform
the parameter optimization process (Sec. 5.3) with a subset of users (1/6), and with a small K
value (typically K is 20 or 40). The optimization process requires 100–200 MF runs. In case of
SemPosMF#800, which is manually parameterized, we performed ∼50 runs. One may argue that
parameter optimization for alternating least squares type MF is faster, since there are no learning
rates, thus it has just 9 parameters. We observed that the more parameters the MF have, the easier
it was to tune the parameters to get the same Probe10 RMSE. Consequently, we introduced some
additional parameters, for example #(p),#(q),#(pb),#(qb) instead of a single #.

5.5 RMSE Values Reported by Other Authors

Finally, let us compare the accuracy of our method (in terms of Probe10 RMSE values that differ
from Quiz RMSE values at most by 0.0003) with other RMSE values reported for the Netflix Prize
data set. This comparison is difficult since authors often report on RMSE values measured on
various custom test sets, different from the Probe and Quiz set. Of the latter two options, Probe
RMSE values, which are calculated by leaving out the Probe set from the Train set, can be also
misleading, and, consequently, Probe RMSE is often much lower than Quiz RMSE. We remark that
Quiz RMSE is often computed by incorporating the Probe data into the training of the predictor.
The comparison presented in Table 10 therefore focuses on methods where Quiz RMSE values
are available. The table shows that our presented MF method and correction techniques compare
favorably with other published ones.

14. There exists somewhat better least squares solvers, but this does not significantly change this comparison.

652



SCALABLE COLLABORATIVE FILTERING APPROACHES

Source Method’s name Quiz IoC Probe10
Paterek (2007) Basic + RSVD + RSVD2 0.9070 4.67%
Salakhutdinov and
Mnih (2008)

PMF + PMF with a
learnable prior +
constrained PMF

0.8970 5.72%

Bell et al. (2007b) best stand-alone positive
MF

0.9039 4.99%

best NB corrected
positive MF

0.8953 5.90%

stand-alone MF,
BRISMF#1000

0.8939 6.04% 0.8938

this paper stand-alone MF with
retrained features,
BRISMF#1000UM

0.8918 6.26% 0.8921

NB corrected MF,
BRISMF#1000UM+S1

0.8904 6.41% 0.8905

stand-alone positive MF,
PosMF#400

0.9046 4.92% 0.9036

Table 10: Comparison of Quiz RMSE values of reported MF based methods. We also indicate the
Probe10 values of our methods

6. Conclusions

This paper surveyed our approaches for collaborative filtering. We presented several MF methods
and a neighbor based correction to the MF. Our methods apply a number of small modifications
compared to already published MF variants, but these modifications are together important from the
aspects of implementation (time and memory requirements) and accuracy. We performed a com-
prehensive evaluation of our methods on the Netflix Prize data set, and we showed that the methods
can be efficiently applied for other data set (we tested on MovieLens and Jester data sets). We also
presented different “correction techniques” to improve prediction accuracy: Q-correction use infor-
mation from unlabeled examples, while neighbor based correction exploits localized information at
prediction. We showed that linear combination of various methods can significantly improve the
accuracy of the blended solution. We pointed out that various correction techniques can bring major
improvement in accuracy when applied to only one method of the linear combination. We showed
that they compare favorably with existing methods in terms of prediction accuracy measured by
RMSE and time complexity. The experiments prove that the proposed methods are scalable to large
recommender systems having hundreds of millions of ratings.
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Abstract
Clustering is often formulated as a discrete optimization problem. The objective is to find, among
all partitions of the data set, the best one according to some quality measure. However, in the sta-
tistical setting where we assume that the finite data set has been sampled from some underlying
space, the goal is not to find the best partition of the given sample, but to approximate the true
partition of the underlying space. We argue that the discrete optimization approach usually does
not achieve this goal, and instead can lead to inconsistency. We construct examples which prov-
ably have this behavior. As in the case of supervised learning, the cure is to restrict the size of
the function classes under consideration. For appropriate “small” function classes we can prove
very general consistency theorems for clustering optimization schemes. As one particular algo-
rithm for clustering with a restricted function space we introduce “nearest neighbor clustering”.
Similar to the k-nearest neighbor classifier in supervised learning, this algorithm can be seen as a
general baseline algorithm to minimize arbitrary clustering objective functions. We prove that it is
statistically consistent for all commonly used clustering objective functions.

Keywords: clustering, minimizing objective functions, consistency

1. Introduction

Clustering is the problem of discovering “meaningful” groups in given data. In practice, the most
common approach to clustering is to define a clustering quality function Qn, and then construct an
algorithm which is able to minimize (or maximize) Qn. There exists a huge variety of clustering
quality functions: the K-means objective function based on the distance of the data points to the
cluster centers, graph cut based objective functions such as ratio cut or normalized cut, or various
criteria based on some function of the within- and between-cluster similarities. Once a particular
clustering quality function Qn has been selected, the objective of clustering is stated as a discrete
optimization problem. Given a data set Xn = {X1, . . . ,Xn} and a clustering quality function Qn,
the ideal clustering algorithm should take into account all possible partitions of the data set and
output the one that minimizes Qn. The implicit understanding is that the “best” clustering can be
any partition out of the set of all possible partitions of the data set. The practical challenge is then
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to construct an algorithm which is able to explicitly compute this “best” clustering by solving an
optimization problem. We will call this approach the “discrete optimization approach to clustering”.

Now let us look at clustering from the perspective of statistical learning theory. Here we assume
that the finite data set has been sampled from an underlying data space X according to some prob-
ability measure . The ultimate goal in this setting is not to discover the best possible partition of
the data set Xn, but to learn the “true clustering” of the underlying space X . While it is not obvious
how this “true clustering” should be defined in a general setting (cf. von Luxburg and Ben-David,
2005), in an approach based on quality functions this is straightforward. We choose a clustering
quality function Q on the set of partitions of the entire data space X , and define the true clustering
f ∗ to be the partition of X which minimizes Q. In a finite sample setting, the goal is now to approx-
imate this true clustering as well as possible. To this end, we define an empirical quality function
Qn which can be evaluated based on the finite sample only, and construct the empirical clustering
fn as the minimizer of Qn. In this setting, a very important property of a clustering algorithm is
consistency: we require that Q( fn) converges to Q( f ∗) when n→ !. This strongly reminds of the
standard approach in supervised classification, the empirical risk minimization approach. For this
approach, the most important insight of statistical learning theory is that in order to be consistent,
learning algorithms have to choose their functions from some “small” function space only. There
are many ways how the size of a function space can be quantified. One of the easiest ways is to use
shattering coefficients s(F ,n) (see Section 2 for details). A typical result in statistical learning the-
ory is that a necessary condition for consistency is logs(F ,n)/n→0 (cf. Theorem 2.3 in Vapnik,
1995, Section 12.4 of Devroye et al., 1996). That is, the “number of functions” s(F ,n) in F must
not grow exponentially in n, otherwise one cannot guarantee for consistency.

Stated like this, it becomes apparent that the two viewpoints described above are not compatible
with each other. While the discrete optimization approach on any given sample attempts to find the
best of all (exponentially many) partitions, statistical learning theory suggests to restrict the set of
candidate partitions to have sub-exponential size. So from the statistical learning theory perspective,
an algorithmwhich is considered ideal in the discrete optimization setting will not produce partitions
which converge to the true clustering of the data space.

In practice, for most clustering objective functions and many data sets the discrete optimization
approach cannot be performed perfectly as the corresponding optimization problem is NP hard.
Instead, people resort to heuristics and accept suboptimal solutions. One approach is to use local
optimization procedures potentially ending in local minima only. This is what happens in the K-
means algorithm: even though the K-means problem for fixed K and fixed dimension is not NP hard,
it is still too hard for being solved globally in practice. Another approach is to construct a relaxation
of the original problem which can be solved efficiently (spectral clustering is an example for this).
For such heuristics, in general one cannot guarantee how close the heuristic solution is to the finite
sample optimum. This situation is clearly unsatisfactory: in general, we neither have guarantees on
the finite sample behavior of the algorithm, nor on its statistical consistency in the limit.

The following alternative approach looks much more promising. Instead of attempting to solve
the discrete optimization problem over the set of all partitions, and then resorting to relaxations
due to the hardness of this problem, we turn the tables. Directly from the outset, we only consider
candidate partitions in some restricted class Fn containing only polynomially many functions. Then
the discrete optimization problem of minimizing Qn over Fn is not NP hard—formally it can be
solved in polynomially many steps by trying all candidates in Fn. From a theoretical point of view
this approach has the advantage that the resulting clustering algorithm has the potential of being
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consistent. In addition, this approach also has advantages in practice: rather than dealing with
uncontrolled relaxations of the original problem, we restrict the function class to some small subset
Fn of “reasonable” partitions. Within this subset, we then have complete control over the solution of
the optimization problem and can find the global optimum. Put another way, one can also interpret
this approach as some controlled way to approximate a solution of the NP hard optimization problem
on the finite sample, with the positive side effect of obeying the rules of statistical learning theory.

This is the approach we want to describe in this paper. In Section 2 we will first construct
an example which demonstrates the inconsistency in the discrete optimization approach. Then we
will state a general theorem which gives sufficient conditions for clustering optimization schemes
to be consistent. We will see that the key point is to control the size of the function classes the
clustering are selected from. In Section 3 we will then introduce an algorithm which is able to work
with such a restricted function class. This algorithm is called nearest neighbor clustering, and in
some sense it can be seen as a clustering-analogue to the well-known nearest neighbor classifier for
classification. We prove that nearest neighbor clustering is consistent under minimal assumptions
on the clustering quality functions Qn and Q. Then we will apply nearest neighbor clustering to a
large variety of clustering objective functions, such as the K-means objective function, normalized
cut and ratio cut, the modularity objective function, or functions based on within-between cluster
similarity ratios. For all these functions we will verify the consistency of nearest neighbor clustering
in Section 4. Discussion of our results, also in the context of the related literature, can be found in
Sections 5 and 6. The proofs of all our results are deferred to the appendix, as some of them are
rather technical.

2. General (In)Consistency Results

In the rest of this paper, we consider a space X which is endowed with a probability measure .
The task is to construct a clustering f : X → {1, . . . ,K} on this space, where K denotes the number
of clusters to construct. We denote the space of all -measurable functions from X to {1, ...,K} by
H . Let Q :H → + denote a clustering quality function: for each clustering, it tells us “how good”
a given clustering is. This quality function will usually depend on the probability measure . An
optimal clustering, according to this objective function, is a clustering f ∗ which satisfies

f ∗ ∈ argmin
f∈F

Q( f ).

where F ⊆ H is a fixed set of candidate clusterings. Now assume that is unknown, but that we
are given a finite sample X1, ...,Xn ∈ X which has been drawn i.i.d according to . Our goal is to
use this sample to construct a clustering fn which “approximates” an optimal clustering f ∗. To this
end, assume that Qn : H → + is an estimator of Q which can be computed based on the finite
sample only (that is, it does not involve any function evaluations f (x) for x &∈ {X1, ...,Xn}). We then
consider the clustering

fn ∈ argmin
f∈Fn

Qn( f ).

Here, Fn is a subset of H , which might or might not be different from F . The general question we
are concerned with in this paper is the question of consistency: under which conditions do we know
that Q( fn) → Q( f ∗)?
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Note that to avoid technical overload we will assume throughout this paper that all the minima
(as in the definitions of f ∗ and fn) exist and can be attained. If this is not the case, one can always
go over to statements about functions which are "-close to the corresponding infimum. We also
will not discuss issues of measurability in this paper (readers interested in measurability issues for
empirical processes are referred to Section 1 of van der Vaart and Wellner, 1996).

2.1 Inconsistency example

In the introduction we suggested that as in the supervised case, the size of the function class Fn
might be the key to consistency of clustering. In particular, we argued that optimizing over the
space of all measurable functions might lead to inconsistency. First of all, we would like to prove
this statement by providing a example. This example will show that if we optimize a clustering
objective function over a too large class of functions, the resulting clusterings are not consistent.

Example 1 (Inconsistency in general) As data space we choose X = [0,1]∪ [2,3], and as proba-
bility measure we simply use the normalized Lebesgue measure # on X . We define the following
similarity function between points in X :

s(x,y) =






1 if x ∈ [0,1],y ∈ [0,1]
1 if x ∈ [2,3], y ∈ [2,3]
0 otherwise.

For simplicity, we consider the case where we want to construct K = 2 clusters called C1 and
C2. Given a clustering function f : X → {0,1} we call the clusters C1 := {x ∈ X | f (x) = 0} and
C2 := {x ∈ X | f (x) = 1}. As clustering quality function Q we use the between-cluster similarity
(equivalent to cut, see Section 4.2 for details):

Q( f ) =
Z

x∈C1

Z

y∈C2
s(X ,Y ) d (X) d (Y ).

As an estimator of Q we will use the function Qn where the integrals are replaced by sums over the
data points:

Qn( f ) =
1

n(n−1) $i∈C1
$
j∈C2

s(Xi,Xj).

As set F we choose the set of all measurable partitions on X (note that the same example also holds
true when we only look at the set F of measurable partitions such that both clusters have a minimal
mass " for some "> 0). For all n ∈ we set Fn = F . Let X1, ...,Xn ∈ X be our training data. Now
define the functions

f ∗(x) =

{
0 if x ∈ [0,1]
1 if x ∈ [2,3]

and fn(x) =






0 if x ∈ {X1, ...,Xn}∩ [0,1]
1 if x ∈ [2,3]
0 if x ∈ [0,0.5]\{X1, ...,Xn}
1 if x ∈ [0.5,1]\{X1, ...,Xn}

.

It is obvious that Q( f ∗) = 0 and Qn( fn) = 0. As both Q and Qn are non-negative, we can
conclude f ∗ ∈ argmin f∈F Q( f ) and fn ∈ argmin f∈F Qn( f ). It is also straightforward to compute
Q( fn) = 1/16 (independently of n). Hence, we have inconsistency: 1/16= Q( fn) &→ Q( f ∗) = 0.
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Note that the example is set up in a rather natural way. The data space contains two perfect
clusters ([0,1] and [2,3]) which are separated by a large margin. The similarity function is the ideal
similarity function for this case, giving similarity 1 to points which are in the same cluster, and
similarity 0 to points in different clusters. The function f ∗ is the correct clustering. The empirical
clustering fn, if restricted to the data points, reflects the correct clustering. It is just the “extension”
of the empirical clustering to non-training points which leads to the inconsistency of fn. Intuitively,
the reason why this can happen is clear: the function space F does not exclude the unsuitable
extension chosen in the example, the function overfits. This can happen because the function class
is too large.

2.2 Main Result

Now we would like to present our first main theorem. It shows that if fn is only picked out of
a “small” function class Fn, then we can guarantee consistency of clustering. Before stating the
theorem we would like to recall the definition of the shattering coefficient in a K-class setting. For
a function class F : X → {1, . . . ,K} the shattering coefficient of size n is defined as

s(F ,n) = max
x1,...,xn∈X

|{( f (x1), . . . , f (xn)) | f ∈ F }|.

To state our theorem, we will also require a pseudo-distance d between functions. A pseudo-distance
is a dissimilarity function d : X ×X → + which is symmetric, satisfies the triangle inequality and
the condition f = g =⇒ d( f ,g) = 0, but not necessarily the condition d( f ,g) = 0 =⇒ f = g. For
distances between sets of functions we use the standard convention d(F ,G) = inf f∈F ,g∈G d( f ,g).
Our theorem is as follows:

Theorem 1 (Consistency of a clustering optimizing scheme) Let (Xn)n∈ be a sequence of ran-
dom variables which have been drawn i.i.d. according to some probability measure on some set X .
Let Fn :=Fn(X1, . . . ,Xn)⊂H be a sequence of function spaces, and F ⊂H . Let d :H ×H → be
a pseudo-distance defined onH . Let Q :H → + be a clustering quality function, and Qn :H → +

an estimator of this function which can be computed based on the finite sample only. Finally let

F̃n :=
[

X1,...,Xn∈ d

Fn.

Define the true and the empirical clusterings as

f ∗ ∈ argmin
f∈F

Q( f ),

fn ∈ argmin
f∈Fn

Qn( f ).

Assume that the following conditions are satisfied:

1. Qn( f ) is a consistent estimator of Q( f ) which converges sufficiently fast for all f ∈ F̃n :

∀"> 0, s(F̃n,2n) sup
f∈F̃n

(|Qn( f )−Q( f )| > ") → 0,
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2. Fn approximates F in the following sense:

(i) ∀ f ∈ F ,d( f ,Fn) → 0 in probability,
(ii) ( fn /∈ F ) → 0.

3. Q is uniformly continuous with respect to the pseudo-distance d between F and F̃n:

∀"> 0 ∃%(") > 0 such that ∀ f ∈ F ∀g ∈ F̃n : d( f ,g) ≤ %(") ⇒ |Q( f )−Q(g)|≤ ".

Then the optimization scheme is weakly consistent, that is Q( fn) → Q( f ∗) in probability.

This theorem states sufficient conditions for consistent clustering schemes. In the context of the
standard statistical learning theory, the three conditions in the theorem are rather natural. The first
condition mainly takes care of the estimation error. Implicitly, it restricts the size of the function
class Fn by incorporating the shattering coefficient. We decided to state condition 1 in this rather
abstract way to make the theorem as general as possible. We will see later how it can be used in
concrete applications. Of course, there are many more ways to specify the size of function classes,
and many of them might lead to better bounds in the end. However, in this paper we are not so much
concerned with obtaining the sharpest bounds, but we want to demonstrate the general concept (as
the reader can see in appendix, the proofs are already long enough using simple shattering numbers).
The second condition in the theorem takes care of the approximation error. Intuitively it is clear that
if we want to approximate solutions in F , eventually Fn needs to be “close” to F . The third
condition establishes a relation between the quality function Q and the distance function d: if two
clusterings f and g are close with respect to d, then their quality values Q( f ) and Q(g) are close,
too. We need this property to be able to conclude from “closeness” as in Condition 2 to “closeness”
of the clustering quality values.

Finally, we would like to point out a few technical treats. First of all, note that the function
class Fn is allowed to be data dependent. Secondly, as opposed to most results in empirical risk
minimization we do not assume that Qn is an unbiased estimator of Q (that is, we allow Qn &= Q),
nor does Q need to be “an expectation” (that is, of the form Q( f ) = (&( f ,X)) for some &). Both
facts make the proof more technical, as many of the standard tools (symmetrization, concentration
inequalities) become harder to apply. However, this is necessary since in the context of clustering
biased estimators pop up all over the place. We will see that many of the popular clustering objective
functions lead to biased estimators.

3. Nearest Neighbor Clustering—General Theory

The theorem presented in the last section shows sufficient conditions under which clustering can be
performed consistently. Now we want to present a generic algorithm which can be used to minimize
arbitrary clustering objective functions. With help of Theorem 1 we can then prove the consistency
of its results for a large variety of clustering objective functions.

We have seen that the key to obtain consistent clustering schemes is to work with an appropriate
function class. But of course, given quality functions Q and Qn, the question is how such a function
space can be constructed in practice. Essentially, three requirements have to be satisfied:
• The function space Fn has to be “small”. Ideally, it should only contain polynomially many
functions.
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• The function space Fn should be “rich enough”. In the limit n→ !, we would like to be able to
approximate any (reasonable) measurable function.

• We need to be able to solve the optimization problem argmin f∈Fn Qn( f ). This sounds trivial at
first glance, but in practice is far from easy.
One rather straightforward way to achieve all requirements is to use a function space of piece-

wise constant functions. Given a partitioning of the data space in small cells, we only look at
clusterings which are constant on each cell (that is, the clustering never splits a cell). If we make
sure that the number of cells is only of the order log(n), then we know that the number of clus-
terings is at most Klog(n) = nlog(K), which is polynomial in n. In the following we will introduce a
data-dependent random partition of the space which turns out to be very convenient.

3.1 Nearest Neighbor Clustering—The Algorithm

We will construct a function class Fn as follows. Given a finite sample X1, . . . ,Xn ∈ d , the number
K of clusters to construct, and a number m ∈ with K ≤ m 0 n, randomly pick a subset of m
“seed points” Xs1 , . . . ,Xsm . Assign all other data points to their closest seed points, that is for all
j = 1, . . . ,m define the set Zj as the subset of data points whose nearest seed point is Xsj . In other
words, the sets Z1, . . . ,Zm are the Voronoi cells induced by the seeds Xs1 , . . . ,Xsm . Then consider
all partitions of Xn which are constant on all the sets Z1, ...,Zm. More formally, for given seeds we
define the set Fn as the set of all functions

Fn := { f : X → {1, . . . ,K} | ∀ j = 1, . . . ,m : ∀z,z′ ∈ Zj : f (z) = f (z′)}.

Obviously, the function class Fn contains Km functions, which is polynomial in n if the number m
of seeds satisfies m ∈ O(logn). Given Fn, the most simple polynomial-time optimization algorithm
is then to evaluate Qn( f ) for all f ∈ Fn and choose the solution fn = argmin f∈Fn Qn( f ). We call
the resulting clustering the nearest neighbor clustering and denote it by NNC(Qn). The entire algo-
rithm is summarized in Figure 1. We have already published results on the empirical performance

Nearest Neighbor Clustering NNC(Qn), naive implementation

Parameters: number K of clusters to construct, number m ∈ of seed points
to use (with K ≤ m0 n), clustering quality function Qn

Input: data set Xn = {X1, . . . ,Xn}, distances di j = d(Xi,Xj)

• Subsample m seed points from the data points, without replacement.

• Build the Voronoi decomposition Z1, . . . ,Zm of Xn based on the distances
di j using the seed points as centers

• Define Fn :=
{
f : Xn → {1, . . . ,K} | f constant on all cells Zj

}

• For all f ∈ Fn evaluate Qn( f ).

Output: fn := argmin f∈Fn Qn( f )

Figure 1: Nearest neighbor clustering for a general clustering objective function Qn.
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of the algorithm in von Luxburg et al. (2008), and more results can be found in Section 3 of Jegelka
(2007). We have found that on finite samples, the algorithm performs surprisingly well in terms
of quality function: using m= logn seed points, the objective function values obtained at the solu-
tions are comparable to these of K-means or spectral clustering, respectively. Moreover, there exist
efficient ways to compute fn using branch and bound methods. Using these methods, the running
time of nearest neighbor clustering using m = logn seeds is roughly comparable to the one of the
other clustering algorithms. See von Luxburg et al. (2008) and Jegelka (2007) for details on the
experimental results.

3.2 Consistency of Nearest Neighbor Clustering (General Statement)

Now we want to prove that nearest neighbor clustering is consistent. We will see that even though
we can rely on Theorem 1, the consistency proof for nearest neighbor clustering does not come
for free. Let f : X → {1, . . . ,K} be a clustering function. In the following, we will often use the
notation fk for the indicator function of the k-th cluster:

fk(x) := f (x)=k.

This is a slight abuse of notation, as we already reserved the notation fn for the minimizer of the
empirical quality function. However, from the context it will always be clear whether we will refer
to fn or fk, respectively, as we will not mix up the letters n (for the sample size) and k (a cluster
index).

As distance function between two clusterings we use the 0-1-loss

d( f ,g) := ( f (X) &= g(X)|X1, . . . ,Xn).

Here the conditioning is needed for the cases where the functions f or g are data dependent. Note
that in clustering, people often consider a variant of this distance which is independent with respect
to the choice of labels, that is they choose d̃( f ,g) := min'P( f (X) &= '(g(X))|X1, . . . ,Xn), where '
runs over all permutations of the set {1, . . . ,K}. However, we will see that for our purposes it does
not hurt to use the overly sensitive 0-1 distance instead. The main reason is that at the end of the
day, we only want to compare functions based on their quality values, which do not change under
label permutations. In general, the theorems and proofs could also be written in terms of d̃. For
better readability, we decided to stick to the standard 0-1 distance, though.

We will see below that in many cases, even in the limit case one would like to use a function
space F which is a proper subset of H . For example, one could only be interested in clusterings
where all clusters have a certain minimal size, or where the functions satisfy certain regularity
constraints. In order to be able to deal with such general function spaces, we will introduce a tool
to restrict function classes to functions satisfying certain conditions. To this end, let

( :H → +

be a functional which quantifies certain aspects of a clustering. In most cases, we will use func-
tionals ( which operate on the individual cluster indicator functions fk. For example, (( fk) could
measure the size of cluster k, or the smoothness of the cluster boundary. The function class F will
then be defined as

F = { f ∈H |(( fk) > a for all k = 1, . . . ,K},
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where a ≥ 0 is a constant. In general, the functional ( can be used to encode our intuition about
“what a cluster is”. Note that this setup also includes the general case of F = H , that is the case
where we do not want to make any further restrictions on F , for example by setting (( fk) ≡ 1,
a ≡ 0. As it is the case for Q, we will usually not be able to compute ( on a finite sample only.
Hence we also introduce an empirical counterpart (n which will be used in the finite sample case.

The following theorem will state sufficient conditions for the consistency of nearest neighbor
clustering. For simplicity we state the theorem for the case X = d , but the proofs can also be
carried over to more general spaces. Also, note that we only state the theorem for the case d ≥ 2; in
case d = 1 the theorem holds as well, but the formulas look a bit different.

Theorem 2 (Consistency of nearest neighbor clustering) Let X = d, d ≥ 2, Q : H → + be a
clustering quality function, and Qn :H → + an estimator of this function which can be computed
based on the finite sample only. Similarly, let ( : H → +, and (n : H → + an estimator of this
function. Let a > 0 and (an)n∈ be such that an > a and an → a. Let m = m(n) ≤ n ∈ . Finally,
denote d( f ,g) the 0-1-loss, and let NNm(x) be the nearest neighbor of x among X1, . . . ,Xm according
to the Euclidean distance. Define the function spaces

F := { f : d → {1, . . . ,K} | f continuous a.e. and ∀k ∈ {1, . . . ,K} (( fk) > a}
Fn := { f : d → {1, . . . ,K} | f (x) = f (NNm(x)) and ∀k ∈ {1, . . . ,K} (n( fk) > an}

F̃n :=
[

X1,...,Xn∈ d

Fn

F̂n := { f : d → {1, . . . ,K} | ∃ Voronoi partition of m cells: f constant on all cells}.

Assume that the following conditions are satisfied:

1. Qn( f ) is a consistent estimator of Q( f ) which converges sufficiently fast for all
f ∈ F̃n :

∀"> 0,Km(2n)(d+1)m2 sup
f∈F̃n

(|Qn( f )−Q( f )| > ") → 0,

2. (n( fk) is a consistent estimator of (( fk) which converges sufficiently fast for all f ∈ F̂n :

∀"> 0,Km(2n)(d+1)m2 sup
f∈F̂n

(|(n( fk)−(( fk)| > ") → 0,

3. Q is uniformly continuous with respect to the pseudo-distance d( f ,g) between F and F̃n, as
defined in Condition (3) of Theorem 1,

4. (k( f ) :=(( fk) is uniformly continuous with respect to the pseudo-distance d( f ,g) between
F and F̂n, as defined in Condition (3) of Theorem 1,

5. an decreases slowly enough to a:

Km(2n)(d+1)m2 sup
g∈F̂n,k

((n(gk)−((gk) ≥ an−a) → 0,
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6. m→ !.

Then nearest neighbor clustering based on m seed points using quality function Qn is weakly con-
sistent, that is for fn ∈ argmin f∈Fn Qn( f ) and f ∗ ∈ argmin f∈F Q( f ) we have Q( fn) → Q( f ∗) in
probability.

This theorem is still rather abstract, but pretty powerful. In the following we will demonstrate
this by applying it to many concrete clustering objective functions. To define our objective functions,
we will from now on adopt the convention 0/0= 0.

4. Nearest Neighbor Clustering with Popular Clustering Objective Functions

In this section we want to study the consistency of nearest neighbor clustering when applied to
particular objective functions. For simplicity we assume in this section that X = d .

4.1 NNC Using the K-means Objective Function

The K-means objective function is the within-cluster sum of squared distances, called WSS for
short. To define it properly, for a given clustering function f : d → {1, . . . ,K} we introduce the
following quantities:

WSSn( f ) :=
1
n

n

$
i=1

K

$
k=1

fk(Xi)‖Xi− ck,n‖2 where

ck,n :=
1
nk
1
n

n

$
i=1

fk(Xi)Xi and nk :=
1
n

k

$
i=1

fk(Xi)

WSS( f ) :=
K

$
k=1

fk(X)‖X− ck‖2 where ck :=
fk(X)X
fk(X)

.

Here, WSSn plays the role ofQn and WSS the role ofQ. Let us point out some important facts. First
the empirical quality function is not an unbiased estimator of the true one, that is WSSn &=WSS
and ck,n &= ck (note that in the standard treatment of K-means this can be achieved, but not on
arbitrary function classes, see below for some discussion). However, at least we have nk = fk(X)
and 1

n $
n
i=1 fk(Xi)Xi = fk(X)X .Moreover, one should remark that if we defineWSS(·, ) :=WSS

then WSSn =WSS(·, n) where n is the empirical distribution.
Secondly, our setup for proving the consistency of nearest neighbor clustering with the WSS

objective function is considerably more complicated than proving the consistency of the global
minimizer of the K-means algorithm (e.g., Pollard, 1981). The reason is that for the K-means algo-
rithm one can use a very helpful equivalence which does not hold for nearest neighbor clustering.
Namely, if one considers the minimizer of WSSn in the space of all possible partitions, then one can
see that the clustering constructed by this minimizer always builds a Voronoi partition with K cells;
the same holds in the limit case. In particular, given the cluster centers ck,n one can reconstruct the
whole clustering by assigning each data point to the closest cluster center. As a consequence, to
prove the convergence of K-means algorithms one usually studies the convergence of the empirical
cluster centers ck,n to the true centers ck. However, in our case this whole chain of arguments breaks
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down. The reason is that the clusters chosen by nearest neighbor clustering from the set Fn are not
necessarily Voronoi cells, they do not even need to be convex (all clusters are composed by small
Voronoi cells, but the union of “small” Voronoi cells is not a “large” Voronoi cell). Also, it is not the
case that each data point is assigned to the cluster corresponding to the closest cluster center. It may
very well happen that a point x belongs to clusterCi, but is closer to the center of another clusterCj
than to the center of its own cluster Ci. Consequently, we cannot reconstruct the nearest neighbor
clustering from the centers of the clusters. This means that we cannot go over to the convergence of
centers, which makes our proof considerably more involved than the one of the standard K-means
case.

Due to these technical problems, it will be of advantage to only consider clusters which have a
certain minimal size (otherwise, the cluster quality function WSS is not uniformly continuous). To
achieve this, we use the functionals

(WSS( fk) := fk(X), (WSSn( fk) := nk( f ).

and will only consider clusterings where (( fk) ≥ a > 0. In practice, this can be interpreted as a
simple means to avoid empty clusters. The constant a can be chosen so small that its only effect is
to make sure that each cluster contains at least one data point. The corresponding function spaces
are

F := { f : d → {1, . . . ,K} | f continuous a.e. and ∀k ∈ {1, . . . ,K} (WSS( fk) > a}
Fn := { f : d → {1, . . . ,K} | f (x) = f (NNm(x)) and ∀k ∈ {1, . . . ,K} (WSSn( fk) > an}

Moreover, for technical convenience we restrict our attention to probability measures which have
a bounded support inside some large ball, that is which satisfy supp ⊂ B(0,A) for some constant
A > 0. It is likely that our results also hold in the general case, but the proof would get even more
complicated. With the notation of Theorem 2 we have:

Theorem 3 (Consistency of NNC(WSS)) Assume that an > a,an → a,m→ ! and

m2 logn
n(a−an)2

→ 0.

Then for all probability measures on d with bounded support, nearest neighbor clustering with
WSS is consistent, that is if n→ ! thenWSS( fn) →WSS( f ∗) in probability.

This theorem looks very nice and simple. The conditions on an and m are easily satisfied as
soon as these quantities do not converge too fast. For example, if we define

an = a+
1
logn

and m= logn

then
m2 logn
n(an−a)2

=
(logn)5

n
→ 0.
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Moreover, it is straightforward to see from the proofs that this theorem is still valid if we con-
sider the objective functions WSSn and WSS with ‖ · ‖ instead of ‖ · ‖2. It also holds for any other
norm, such as the p-norms ‖ ·‖p. However, it does not necessarily hold for powers of norms (in this
sense, the squared Euclidean norm is an exception). The proof shows that the most crucial property
is

‖Xi− ck,n‖−‖Xi− ck‖ ≤ const ·‖ck,n− ck‖.

This is straightforward if the triangle inequality holds, but might not be possible for general powers
of norms.

By looking more carefully at our proofs one can state the following rate of convergence:

Theorem 4 (Convergence Rate for NNC(WSS)) Assume that supp ⊂ B(0,A) for some constant
A> 0 and that n(an−a)2 → !. Let "≤ 1 and a∗ := infk f ∗k (X)−a> 0. Then there exists :

N = N((an),a∗) ∈ ,

C1 =C1(a,a∗,",K,A) > 0, C2 =C2(a,a∗,",A, f ∗, ) > 0,
C3 =C3(a,d,",K,A) > 0, C4 =C4(a,d,A) > 0

such that for n≥ N the following holds true:

(|WSS( fn)−WSS( f ∗)|≥ ")

≤C1e−C2m+Km+1(2n)(d+1)m2
(
C3e−C4"

2n+8Ke−
n(an−a)2

8

)
.

At first glance, it seems very tempting to try to use the Borel-Cantelli lemma to transform the
weak consistency into strong consistency. However, we do not have an explicit functional form of
dependency of C2 on ". The main reason is that in Lemma 11 (Appendix) the constant b(") will be
defined only implicitly. If one would like to prove strong consistency of nearest neighbor clustering
with WSS one would have to get an explicit form of b(") in Lemma 11.

For a general discussion relating the consistency result of NNC(WSS) in to the consistency
results by Pollard (1981) and others see Section 5.

4.2 NNC Using Standard Graph-cut Based Objective Functions

In this section we want to look into the consistency of nearest neighbor clustering for graph based
objective functions as they are used in spectral clustering (see von Luxburg, 2007 for details). Let
s : d × d → + be a similarity function which is upper bounded by a constant C. The two main
quantities we need to define graph-cut based objective functions are the cut and the volume. For a
given cluster described by the cluster indicator function fk : d → {0,1}, we set

cut( fk) := cut( fk, ) := fk(X1)(1− fk(X2))s(X1,X2),

vol( fk) := vol( fk, ) := fk(X1)s(X1,X2).

668



CONSISTENT CLUSTERING WITH ARBITRARY OBJECTIVE FUNCTIONS

For f ∈H we can then define the normalized cut and the ratio cut by

Ncut( f ) := Ncut( f , ) :=
K

$
k=1

cut( fk)
vol( fk)

,

RatioCut( f ) := RatioCut( f , ) :=
K

$
k=1

cut( fk)
fk(X)

.

The empirical estimators of these objective functions will be Ncut( f , n) and RatioCut( f , n), in
explicit formulas:

cutn( fk) :=
1

n(n−1)

n

$
i, j=1

fk(Xi)(1− f (Xj))s(Xi,Xj),

voln( fk) :=
1

n(n−1)

n

$
i, j=1

fk(Xi)s(Xi,Xj), nk :=
1
n

k

$
i=1

fk(Xi),

Ncutn( f ) :=
K

$
k=1

cutn( fk)
voln( fk)

, RatioCutn( f ) :=
K

$
k=1

cutn( fk)
nk

.

Again we need to define how we will measure the size of the clusters. We will use

(cut( fk) := vol( fk), (Ncut( fk) := vol( fk), (RatioCut( fk) := fk(X).

with the corresponding empirical quantities (cutn ,(Ncutn and (RatioCutn . Then, with the notations of
Theorem 2, we have:

Theorem 5 (Consistency of NNC(cut),NNC(Ncut) and NNC(RatioCut)) Assume that the simi-
larity function s is bounded by a constant C > 0, let an > a, an → a, m→ ! and

m2 logn
n(a−an)2

→ 0.

Then nearest neighbor clustering with cut,Ncut and RatioCut is universally weakly consistent, that
is for all probability measures, if n → ! we have cut( fn) → cut( f ∗), Ncut( fn) → Ncut( f ∗) and
RatioCut( fn) → RatioCut( f ∗) in probability.

For these objective functions one can also state a rate of convergence. For sake of shortness we only
state it for the normalized cut:

Theorem 6 (Convergence Rate for NNC(Ncut)) Assume that the similarity function s is bounded
by C > 0 and that n(an−a)2 → !. Let "≤ 1 and a∗ := infk vol( f ∗k )−a> 0. Then there exist

N = N((an),a∗) ∈ ,

C1 =C1(a,a∗,",K,C) > 0, C2 =C2(a,a∗,",C,K, f ∗, ) > 0,
C3 =C3(a,",K,C) > 0, C4 =C4(a,K,C) > 0.

such that for n≥ N the following holds true:

(|Ncut( fn)−Ncut( f ∗)|≥ ")

≤C1e−C2m+Km+1(2n)(d+1)m2
(
C3e−C4"

2n+8Ke−
n(an−a)2

8

)
.
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4.3 NNC Using the Modularity Objective Function

A slightly different objective functions for graph clustering is the “modularity”, which has been put
forward by Newman (2006) for detecting communities in networks. In this paper, the modularity is
formulated as an objective function to find communities in a finite graph. However, as it is the case
for Ncut or RatioCut, the modularity cannot be directly minimized. Instead, a spectral relaxation
has been developed to minimize the modularity, see Newman (2006) for details. Of course, the
nearest neighbor clustering algorithm can also be used to minimize this objective function directly,
without using a relaxation step. Using our own notation we define:

Modn( f ) =

n

$
k=1

1
n(n−1)$i&= j

fk(Xi) fk(Xj)

(
1

(n−1)2 $l,l &=i
s(Xi,Xl) $

l,l &= j
s(Xj,Xl)− s(Xi,Xj)

)

,

Mod( f ) =
n

$
k=1

Z Z

fk(X) fk(Y )

(
Z

s(X ,Z)d (Z)
Z

s(Y,Z)d (Z)− s(X ,Y )

)
d( × )(X ,Y ).

In the proof we will see that as the limit function Mod(·) is uniformly continuous on H , we do not
need to quantify any function ( or (n to measure the volume of the clusters. The function classes
are thus

F := { f : d → {1, . . . ,K} | f continuous a.e.},
Fn := { f : d → {1, . . . ,K} | f (x) = f (NNm(x))}.

Theorem 7 (Consistency of NNC(Mod)) Assume that m→ ! and

m2 logn
n

→ 0.

Then nearest neighbor clustering with Mod is universally weakly consistent: for all probability
measures, if n→ ! thenMod( fn) →Mod( f ∗) in probability.

4.4 NNC Using Objective Function Based on the Ratio of Within-cluster and
Between-cluster Similarity

Often, clustering algorithms try to minimize joint functions of the within-cluster similarity and the
between cluster similarity. The most popular choice is the ratio of those two quantities, which is
closely related to the criterion used in Fisher linear discriminant analysis. Formally, the between-
cluster similarity corresponds to the cut, and the within similarity of cluster k is given by

WS := f (X1) f (X2)s(X1,X2).

Thus the ratio of between- and within-cluster similarity is given as

BWR( f ) :=
K

$
k=1

cut( fk)
WS( fk)

.
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Again we use their empirical estimations:

WSn( fk) :=
1

n(n−1)

n

$
i, j=1

fk(Xi) fk(Xj)s(Xi,Xj),

BWRn( f ) :=
K

$
k=1

cutn( fk)
WSn( fk)

.

To measure the size of the cluster we use

(BWR( fk) :=WS( fk)

and its natural empirical counterpart. This leads to function spaces

F := { f : d → {1, . . . ,K} | f continuous a.e. and ∀k ∈ {1, . . . ,K} (BWR( fk) > a},
Fn := { f : d → {1, . . . ,K} | f (x) = f (NNm(x)) and ∀k ∈ {1, . . . ,K} (BWRn( fk) > an}.

Theorem 8 (Consistency of NNC(BWR)) Assume that the similarity function s is bounded by a
constant C > 0, let an > a,an → a,m→ ! and

m2 logn
n(a−an)2

→ 0.

Then nearest neighbor clustering with BWR is universally weakly consistent, that is for all proba-
bility measure if n→ ! then BWR( fn) → BWR( f ∗) in probability.

5. Relation to Previous Work

In this section we want to discuss our results in the light of the existing literature on consistent
clusterings.

5.1 Standard Consistency Results for Center-based Algorithms

For a few clustering algorithms, consistency results are already known. The most well-known
among them is the K-means algorithm. For this algorithm it has been first proved by Pollard (1981)
that the global minimizer of the K-means objective function on a finite sample converges to the
global minimizer on the underlying space.

First of all, we would like to point out that the consistency result by Pollard (1981) can easily
be recovered using our theorems. Let us briefly recall the standard K-means setting. The objective
function which K-means attempts to optimize is the function WSS, which we already encountered
in the last sections. In the standard K-means setting the optimization problem is stated over the
space of all measurable functions H :

f ∗ = argmin
f∈H

WSS( f ).

It is not difficult to prove that the solution f ∗ of this optimization problem always has a particular
form. Namely, the solution f ∗ forms a Voronoi decomposition of the space, where the cluster
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centers ck are the centers of the Voronoi cells. Thus, we can rewrite the optimization problem above
equivalently as

f ∗ = argmin
f∈GK

WSS( f )

whereGK denotes the set of all clusterings for which the clusters are Voronoi cells. The optimization
problem for the finite sample case can be stated analogously:

fn = argmin
f∈GK

WSSn( f ).

So in this particular case we can set Fn = F = GK . This means that even though the original
optimization problem has been set up to optimize over the huge set H , the optimization only needs
to run over the small set GK . It is well known that the shattering coefficient of GK is polynomial in n,
namely it is bounded by KKn(d+1)K2 (cf. Lemma 10). Moreover, the uniform continuity of WSS on
GK (Condition (3) of Theorem 2) can easily be verified if we assume that the probability distribution
has compact support. As a consequence, using similar techniques as in the proofs of Theorem 3 we
can prove that the global minimizer of the empirical K-means objective function WSSn converges
to the global minimizer of the true K-means objective function WSS. By this we recover the well-
known result by Pollard (1981), under slightly different assumptions. In this sense, our Theorem 1
can be seen as a blueprint for obtaining Pollard-like results for more general objective functions and
function spaces.

Are there any more advantages of Theorem 3 in the K-means setting? At first glance, our result
in Theorem 3 looks similar to Pollard’s result: the global minimizers of both objective functions
converge to the true global minimizer. However, in practice there is one important difference. Note
that as opposed to many vector quantization problems (cf. Garey et al., 1982), minimizing the K-
means objective function is not NP-hard in n: the solution is always a Voronoi partition, there exist
polynomially many Voronoi partitions of n points, and they can be enumerated in polynomial time
(cf. Inaba et al., 1994). However, the size of the function class GK is still so large that it would
take too long to simply enumerate all its functions and select the best one. Namely, we will see
in Lemma 10 that the number of Voronoi partitions of n points in d using K cells is bounded
by n(d+1)K , which is huge even for moderate d and K. As a work-around in practice one uses
the well-known K-means algorithm, which is only able to find a local minimum of WSSn( f ). In
contrast, nearest neighbor clustering works with a different function class which is much smaller
than GK : it has only size nlogK . On this smaller class we are still able to compute the global
minimum of WSSn( f ). Consequently, our result in Theorem 3 is not only a theoretical statement
about some abstract quantity as it is the case for Pollard’s result, but it applies to the algorithm
used in practice. While Pollard’s result abstractly states that the global minimum (which cannot
be computed efficiently) converges, our result implies that the result of nearest neighbor clustering
does converge.

5.2 Consistency of Spectral Clustering

In the previous section we have seen in Theorems 5 and 6 that NNC is consistent for all the standard
graph cut objective functions. Now we want to discuss these results in connection with the graph cut
literature. It is well known that the discrete optimization problem of minimizing Ncutn or RatioCutn
is an NP-hard problem, see Wagner and Wagner (1993). However, approximate solutions of relaxed
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problems can be obtained by spectral clustering, see von Luxburg (2007) for a tutorial. Consistency
results for spectral clustering algorithms have been proved in von Luxburg et al. (2008). These
results show that under certain conditions, the solutions computed by spectral clustering on finite
samples converge to some kind of “limit solutions” based on the underlying distribution. In the light
of the previous discussions, this sounds plausible, as the space of solutions of spectral clustering is
rather restricted: we only allow solutions which are eigenfunctions of certain integral operators.
Thus, spectral clustering implicitly works with a small function class.

However, it is important to note that the convergence results of spectral clustering do not make
any statement about the minimizers of Ncut (a similar discussion also holds for RatioCut). The
problem is that on any finite sample, spectral clustering only solves a relaxation of the original
problem of minimizing Ncutn. The Ncutn-value of this solution can be arbitrarily far away from
the minimal Ncutn-value on this sample (Guattery and Miller, 1998), unless one makes certain as-
sumptions which are not necessarily satisfied in a standard statistical setting (cf. Spielman and
Teng, 1996, or Kannan et al., 2004). Thus the convergence statements for the results computed by
the spectral clustering algorithm cannot be carried over to consistency results for the minimizers
of Ncut. One knows that spectral clustering converges, but one does not have any guarantee about
the Ncut-value of the solution. Here our results for nearest neighbor clustering present an improve-
ment, as they directly refer to the minimizer of Ncut. While it is known that spectral clustering
converges to “something”, for the solutions computed by nearest neighbor clustering we know that
they converge to the global minimizer of Ncut (or RatioCut, respectively).

5.3 Consistency of Other Clustering Schemes

To the best of our knowledge, apart from results on center-based algorithms and spectral clustering,
there are very few non-parametric clustering algorithms for which statistical consistency has been
proved so far. The only other major class of algorithms for which consistency has been investigated
is the class of linkage algorithms. While single linkage can be proved to be “fractionally consistent”,
that is it can at least discover sufficiently distinct high-density regions, both complete and average
linkage are not consistent and can be misleading (cf. Hartigan, 1981, 1985). A more general method
for hierarchical clustering used in Wong and Lane (1983) is statistically consistent, but essentially
first estimates the density and then constructs density level sets based on this estimator.

Concerning parametric clustering algorithms, the standard setting is a model-based approach.
One assumes that the underlying probability distribution has a certain parametric form (for example
a mixture of Gaussians), and the goal is to estimate the parameters of the distribution from the sam-
ple. Estimating parameters in parametric models has been intensively investigated in statistics, in
particular in the maximum likelihood framework and the Bayesian framework (for an overview how
this can be done for clustering see Fraley and Raftery, 1998, or the bookMcLachlan and Peel, 2004).
Numerous consistency results are known, but typically they require that the true underlying distribu-
tion indeed comes from the model class under consideration. For example, in a Bayesian setting one
can show that in the large sample limit, the posterior distribution will concentrate around the true
mixture parameters. However, if the model assumptions are not satisfied, counter-examples to con-
sistency can be constructed. Moreover, the consistency results mentioned above are theoretic in the
sense that the algorithm used in practice does not necessarily achieve them. Standard approaches to
estimate mixture parameters are the EM algorithm (in a frequentist of MAP setting), or for example
Markov Chain Monte Carlo sampling in a fully Bayesian approach. However, as it is the case for
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the K-means algorithm, these methods can get stuck in local optima, and no convergence towards
the global optimum can be guaranteed. Another way to tackle model-based clustering problems is
based on the minimum message length or minimum description length principle. The standard ref-
erence for MML approaches to learn mixtures is Figueiredo and Jain (2002), for a general overview
on MDL see Grünwald (2007). Consistency results for MML are quite similar to the ones for the
Bayesian approach: if the true distribution indeed comes from the mixture class and the number of
components is known, then consistency can be achieved. For general results on consistency of MDL
see Sections 16 and 17.11 in Grünwald (2007). Often, MML/MDL approaches are interpreted as a
particular way to work with small function classes, consisting of functions which can be described
in a “compact” way. In this sense, this method can also be seen as a way of achieving “small”
function classes.

5.4 Sublinear Time Algorithms Using Subsampling

Some algorithms related to our approach have been published in the theoretical computer science
community, such as Indyk (1999), Mishra et al. (2001), or Czumaj and Sohler (2007). The general
idea is to use subsampling approaches to approximate clustering solutions, and to prove that these
approximations are quite accurate. Given a sample of n points, one draws a subsample of m0 n
points, applies some (approximate) clustering algorithm to the subsample, and then extends this
clustering to the remaining points. Using techniques such as concentration inequalities, Chernoff
bounds or Hoeffding bounds, one can then prove that the resulting clustering approximates the best
clustering on the original point set.

While at first glance, this approach sounds very similar to our nearest neighbor clustering, note
that the focus in these papers is quite a different one than ours. The authors do not aim for con-
sistent clustering solutions (that is, solutions which are close to the “true clustering solution” of
the underlying space ), but they want to find algorithms to approximate the optimal clustering on a
given finite sample in sublinear time. The sublinearity is achieved by the fact that already a very
small subsample (say, m = logn) is enough to achieve good approximation guarantees. However,
our main point that it is important to control the size of the underlying function class, is not revealed
in these papers. As the authors mainly deal with K-means type settings, they automatically work
with polynomial function classes of center-based clusterings, and the issue of inconsistency does
not arise. Moreover, subsampling is just one way of reducing the function class to a smaller size,
there can be many others. In this sense, we believe that our “small function class” approach is more
general than the subsampling approach.

Finally, one difference between our approach and the subsampling approach is the kind of results
of interest. We are mainly concerned with asymptotic results, and on our way achieve approximation
guarantees which are good for large sample size n. The focus of the subsampling papers is non-
asymptotic, dealing with a small or moderate sample size n, and to prove approximation guarantees
in this regime.

5.5 Other Statistical Learning Theory Approaches to Clustering

In the last years there have been several papers which started to look at clustering from a statistical
learning theory perspective. A general statistical learning theory approach to clustering, based on
a very similar intuition as ours, has already been presented in Buhmann (1998). Here the authors
put forward an “empirical risk approximation” approach for unsupervised learning, along the lines
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of empirical risk minimization for the supervised case. The setting under consideration is that the
clustering quality function is an expectation with respect to the true underlying probability distribu-
tion, and the empirical quality function is the corresponding empirical expectation. Then, similar to
the statistical learning theory for supervised learning, generalization bounds can be derived, for ex-
ample using VC dimensions. Additionally, the authors discuss regularization approaches and relate
them to annealing schemes for center-based clusterings.

A different approach has been investigated in Ben-David (2007). Here the author formalizes
the notion of a “cluster description scheme”. Intuitively, a clustering problem can be described by
a cluster description scheme of size l ∈ if each clustering can be described using l points from
the space (and perhaps some additional parameter). For instance, this is the case for center-based
clusterings, where the clustering can be described by the centroids only. Ben-David then proves
generalization bounds for clustering description schemes which show that the global minimizer of
the empirical quality function converges to the global minimizer of the true quality function. The
proof techniques used in this paper are very close to the ones used in standard minimum description
length results.

Another class of results about K-means algorithms has been proved in Rakhlin and Caponnetto
(2007). After computing covering numbers for the underlying classes, the authors study the stability
behavior of K-means. This leads to statements about the set of “almost-minimizers” (that is the set
of all functions whose quality is " close to the one of the global optimal solutions). As opposed to
our results and all the other results discussed above, the main feature of this approach is that at the
end of the day, one is able to make statements about the clustering functions themselves, rather than
only about their quality values. In this sense, the approach in Rakhlin and Caponnetto (2007) has
more powerful results, but its application is restricted to K-means type algorithms.

All approaches outlined above implicitly or explicitly rely on the same intuition as our approach:
the function class needs to be “small” in order to lead to consistent clusterings. However, all pre-
vious results have some restrictions we could overcome in our approach. First of all, in the papers
discussed above the quality function needs to be an expectation, and the empirical quality function
is simply the empirical expectation. Here our results are more general: we neither require the qual-
ity functions to be expectations (for example, Ncut cannot be expressed as an expectation, it is a
ratio of two expectations) nor do we require unbiasedness of the empirical quality function. Second,
the papers discussed above make statements about global optimizers, but do not really deal with the
question how such a global optimizer can be computed. The case of standard K-means shows that
this is by no means simple, and in practice one has to use heuristics which discover local optima
only. In contrast, we suggest a concrete algorithm (NNC) which computes the global optimum
over the current function class, and hence our results not only concern abstract global minimizers
which are hard to obtain, but refer to exactly the quantities which are computed by the algorithm.
Finally, our algorithm has the advantage that it provides a framework for dealing with more general
clustering objective functions than just center-based ones. This is not the case in the papers above.

Finally, we would like to mention that a rather general but vague discussion of some of the open
issues in statistical approaches to clustering has been led in von Luxburg and Ben-David (2005).
Our current paper partly solves some of the open issues raised there.
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6. Discussion

Our paper is concerned with clustering algorithms which minimize certain quality functions. Our
main point is that as soon as we require statistical consistency we have to work with function classes
Fn which are “small”. Our results have a similar taste as the well-known corresponding results for
supervised classification. While in the domain of supervised classification practitioners are well
aware of the effect of overfitting, it seems like this effect has been completely overlooked in the
clustering domain.

We would like to highlight a convenient side-effect of working with small function classes. In
clustering, for many objective functions the problem of finding the best partition of the discrete
data set is an NP-hard problem (for example, this is the case for all balanced graph-cut objective
functions). On the other side, if we restrict the function class Fn to have polynomial size (in n),
then the trivial algorithm of evaluating all functions in Fn and selecting the best one is inherently
polynomial. Moreover, if the small function class is “close” to the large function class, then the
solution found in the small function class approximates the best solution in the unrestricted space
of all clusterings.

We believe that the approach of using restricted function classes can be very promising, also
from a practical point of view. It can be seen as a more controlled way of constructing approximate
solutions of NP hard optimization problems than the standard approaches of local optimization or
relaxation. While the effects of the latter cannot be controlled in general, we are able to control the
effects of optimizing over smaller function classes by carefully selecting Fn. This strategy circum-
vents the problem that solutions of local optimization or relaxation heuristics can be arbitrarily far
away from the optimal solution.

The generic clustering algorithm we studied in this article is nearest neighbor clustering, which
produces clusterings that are constant on small local neighborhoods. We have proved that this algo-
rithm is statistically consistent for a large variety of popular clustering objective functions. Thus, as
opposed to other clustering algorithms such as the K-means algorithm or spectral clustering, near-
est neighbor clustering is guaranteed to converge to a minimizer of the true global optimum on the
underlying space. This statement is much stronger than the results already known for K-means or
spectral clustering. For K-means it has been proved that the global minimizer of the WSS objec-
tive function on the sample converges to a global minimizer on the underlying space (e.g., Pollard,
1981). However, as the standard K-means algorithm only discovers a local optimum on the discrete
sample, this result does not apply to the algorithm used in practice. A related effect happens for
spectral clustering, which is a relaxation attempting to minimize Ncut or RatioCut. For this class of
algorithms, it has been shown that under certain conditions the solution of the relaxed problem on
the finite sample converges to some limit clustering. However, this limit clustering is not necessarily
the optimizer of the Ncut or RatioCut objective function.

It is interesting to note that the problems about the existing consistency results for K-means
and spectral clustering are “reverse” to each other: while for K-means we know that the global
minimizer converges, but this result does not apply to the algorithm used in practice, for spectral
clustering there exist consistency results for the algorithm used in practice, but these results do not
relate to the global minimizer. For both cases, our consistency results represent an improvement:
we have constructed an algorithm which provably converges to the true limit minimizer of WSS or
Ncut, respectively. The same result also holds for a large number of alternative objective functions
used for clustering.
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We believe that a big advantage of our approach is that both the algorithm and the statistical anal-
ysis is not restricted to center-based algorithms only, as it has been the case for most approaches
in the literature (Buhmann, 1998; Ben-David, 2007; Rakhlin and Caponnetto, 2007). Instead, near-
est neighbor clustering can be used as a baseline method to construct clusterings for any objective
function. In von Luxburg et al. (2008) we have shown how nearest neighbor clustering can be im-
plemented efficiently using branch and bound, and that in terms of quality, its results can compete
with algorithms of spectral clustering (for the Ncut objective function) or K-means (for the WSS
objective function). We believe that in particular for unusual objective functions for which no state
of the art optimizer exists yet, nearest neighbor clustering is a promising baseline to start with.
We have seen that for many commonly used objective functions, statistical guarantees for nearest
neighbor clustering can be obtained, and we expect the same to be true for many more clustering
objective functions.

Finally, it is a fair question how statistical consistency helps in practical applications. Is it
any help in solving the big open issues in clustering, such as the question of selecting clustering
algorithms for a particular data set, or selecting the number of clusters? In this generality, the
answer is no. In our opinion, consistency is a necessary requirement which any clustering algorithm
should satisfy. If an algorithm is not consistent, even with a high amount of data one cannot rely on a
clustering constructed on a finite amount of data—and this is not due to computational problems, but
to inherent statistical problems. Such an algorithm cannot be trusted when constructing results on
a finite sample; given another sample, it might just come up with a completely different clustering.
Or, the more samples one gets, the more “trivial” the solution might become (unnormalized spectral
clustering is an example for such an algorithm). In this sense, consistency is just one piece of
evidence to discard unreliable clustering algorithms. In our opinion, it is very hard to come up with
sufficient conditions about “what a good clustering algorithm is”. The applications of clustering are
just too diverse, and 50 years of clustering literature show that people will not agree on a unique
definition of what a good clustering algorithm is. This is the reason why we believe that it is very
fruitful to start by studying necessary conditions first. Our current paper is meant as a contribution
to this effort.

Appendix A. All Proofs

In this section we concentrate all the proofs.

A.1 The Proof of Theorem 1

The following lemma will be central in our analysis. It allows to take a supremum out of a proba-
bility.

Lemma 9 With the notation in Theorem 1 we have:

( sup
f∈Fn

|Qn( f )−Q( f )|≥ ") ≤ 2s(F̃n,2n)

sup
f∈F̃n

(|Qn( f )−Q( f )|≥ "/4)

inf
f∈F̃n

(|Qn( f )−Q( f )|≤ "/2)
.

The proof technique is similar to the one in Devroye et al. (1996), Section 12.3. The unusual term
in the denominator originates in the symmetrization step. In a more standard setting where we have
Qn = Q, this term usually “disappears” as it can be lower bounded by 1/2, for example using
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Chebyshev’s inequality (e.g., Section 12.3 of Devroye et al., 1996). Unfortunately, this does not
work in our more general case, as we do not assume unbiasedness and instead also allow Qn &= Q.
However, note that the ratio in Lemma 9 essentially has the form un/(1−un). Thus, as soon as the
term un in the numerator becomes non-trivial (i.e., un < 1 or say, un < 3/4), then the denominator
will only play the role of a small constant (it is lower bounded by 1/4). This means that in the regime
where the numerator is non-trivial, the whole bound will essentially behave like the numerator.
Proof First note that we can replace the data-dependent function class Fn by the class F̃n which
does not depend on the data:

( sup
f∈Fn

|Qn( f )−Q( f )|≥ ") ≤ ( sup
f∈F̃n

|Qn( f )−Q( f )|≥ ").

Now we want to use a symmetrization argument. To this end, let X ′
1, . . . ,X ′

n be a ghost sample (that
is a sample drawn i.i.d. according to which is independent of our first sample X1, . . . ,Xn), and
denote by Q′

n the empirical quality function based on the ghost sample.
Let f̂ ∈ F̃n be such that |Qn( f̂ )−Q( f̂ )| ≥ "; if such an f̂ does not exist then just choose f̂ as

some other fixed function in F̃n. Note that f̂ is a data-dependent function depending on the sample
X1, ...,Xn. We have the following inequalities:

( sup
f∈F̃n

|Qn( f )−Q′
n( f )|≥ "/2)

≥ (|Qn( f̂ )−Q′
n( f̂ )|≥ "/2)

≥ (|Qn( f̂ )−Q( f̂ )|≥ ", |Q′
n( f̂ )−Q( f̂ )|≤ "/2)

=
(

(|Qn( f̂ )−Q( f̂ )|≥ ", |Q′
n( f̂ )−Q( f̂ )|≤ "/2|X1, . . . ,Xn)

)

=
(

(|Qn( f̂ )−Q( f̂ )|≥ "|X1, . . . ,Xn) (|Q′
n( f̂ )−Q( f̂ )|≤ "/2|X1, . . . ,Xn)

)

=
(
1|Qn( f̂ )−Q( f̂ )|≥" (|Q′

n( f̂ )−Q( f̂ )|≤ "/2|X1, . . . ,Xn)
)

≥

(

1|Qn( f̂ )−Q( f̂ )|≥" inf
f∈F̃n

(|Q′
n( f )−Q( f )|≤ "/2|X1, . . . ,Xn)

)

= (1|Qn( f̂ )−Q( f̂ )|≥")

(

inf
f∈F̃n

(|Q′
n( f )−Q( f )|≤ "/2|X1, . . . ,Xn)

)

= (|Qn( f̂ )−Q( f̂ )|≥ ") inf
f∈F̃n

(|Qn( f )−Q( f )|≤ "/2)

= ( sup
f∈F̃n

|Qn( f )−Q( f )|≥ ") inf
f∈F̃n

(|Qn( f )−Q( f )|≤ "/2).

The last step is true because of the definition of f̂ : note that due to the definition of f̂ the event
|Qn( f̂ )−Q( f̂ )|≥ " is true iff there exists some f ∈ F̃n such that |Qn( f )−Q( f )|≥ ", which is true
iff sup f∈F̃n |Qn( f )−Q( f )|≥ " (recall that we assumed for ease of notations that all supremum are
attained). Rearranging the inequality above leads to

( sup
f∈F̃n

|Qn( f )−Q( f )|≥ ") ≤

( sup
f∈F̃n

|Qn( f )−Q′
n( f )|≥ "/2)

inf
f∈F̃n

(|Qn( f )−Q( f )|≤ "/2)
.
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Due to the symmetrization we got rid of the quantity Q( f ) in the numerator. Furthermore, using
the assumption of the theorem that Qn( f ) does not involve any function evaluations f (x) for x /∈
{X1, . . . ,Xn} we can apply a union bound argument to move the supremum in the numerator out of
the probability:

( sup
f∈F̃n

|Qn( f )−Q′
n( f )|≥ "/2)

≤ s(F̃n,2n) sup
f∈F̃n

(|Qn( f )−Q′
n( f )|≥ "/2)

≤ s(F̃n,2n) sup
f∈F̃n

(|Qn( f )−Q( f )|+ |Q( f )−Q′
n( f )|≥ "/2)

≤ 2s(F̃n,2n) sup
f∈F̃n

(|Qn( f )−Q( f )|≥ "/4).

This completes the proof of the lemma.

Now we are ready to prove our first main theorem.

A.2 Proof of Theorem 1

Additionally to the functions fn and f ∗, we will define

f ∗n ∈ argmin
f∈Fn

Q( f ),

f̃ ∗ ∈ argmin
f∈Fn

d( f , f ∗).

To prove the theorem we have to show that under the conditions stated, for any fixed "> 0 the term
(|Q( fn)−Q( f ∗)|≥ ") converges to 0. We can study each ”side” of this convergence independently:

(|Q( fn)−Q( f ∗)|≥ ") = (Q( fn)−Q( f ∗) ≤−")+ (Q( fn)−Q( f ∗) ≥ ").

To treat the “first side” observe that if fn ∈ F then Q( fn)−Q( f ∗) > 0 by the definition of f ∗. This
leads to

(Q( fn)−Q( f ∗) ≤−") ≤ ( fn /∈ F ).

Under Assumption (2) of Theorem 1 this term tends to 0.
The main work of the proof is to take care of the second side. To this end we splitQ( fn)−Q( f ∗)

in two terms, the estimation error and the approximation error:

Q( fn)−Q( f ∗) = Q( fn)−Q( f ∗n )+Q( f ∗n )−Q( f ∗).

For a fixed "> 0 we have

(Q( fn)−Q( f ∗) ≥ ") ≤ (Q( fn)−Q( f ∗n ) ≥ "/2)+ (Q( f ∗n )−Q( f ∗) ≥ "/2).

In the following sections we will treat both parts separately.
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A.2.1 ESTIMATION ERROR

The first step is to see that

Q( fn)−Q( f ∗n ) ≤ 2 sup
f∈Fn

|Qn( f )−Q( f )|.

Indeed, since Qn( fn) ≤ Qn( f ∗n ) by the definition of fn we have

Q( fn)−Q( f ∗n ) = Q( fn)−Qn( fn)+Qn( fn)−Qn( f ∗n )+Qn( f ∗n )−Q( f ∗n )

≤ Q( fn)−Qn( fn)+Qn( f ∗n )−Q( f ∗n )

≤ 2 sup
f∈Fn

|Qn( f )−Q( f )|.

Using Lemma 9 we obtain

(Q( fn)−Q( f ∗n ) ≥ "/2) ≤ 2s(F̃n,2n)

sup
f∈F̃n

(|Qn( f )−Q( f )|≥ "/16)

inf
f∈F̃n

(|Qn( f )−Q( f )|≤ "/8)
.

Now observe that under Assumption (1) the numerator of the expression in the proposition tends to
0 and the denominator tends to 1, so the whole term tends to 0.

A.3 Approximation Error

By definition of f ∗n it is clear that

Q( f ∗n )−Q( f ∗) ≤ Q( f̃ ∗)−Q( f ∗).

Using Assumption (3) this leads to

(Q( f ∗n )−Q( f ∗) ≥ "/2) ≤ (Q( f̃ ∗)−Q( f ∗) ≥ "/2)

≤ (d( f , f̃ ∗) ≥ %("/2)).

The right hand side clearly tends to 0 by Assumption (2).

A.4 The Proof of Theorem 2

Before proving Theorem 2, we again need to prove a few technical lemmas. The first one is a simple
relation between the shattering coefficients of the nearest neighbor function classes.

Lemma 10 Let u ∈ and F̃n and F̂n be the function sets defined in Theorem 2. Then

s(F̃n,u) ≤ s(F̂n,u) ≤ Kmu(d+1)m2 .

Proof The first inequality is obvious as we have F̃n ⊂ F̂n. For the second inequality observe that

s(F̂n,u) ≤ Kms∗(F̂n,u)
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where s∗(F̂n,u) is the maximal number of different ways u points can be partitioned by cells of
a Voronoi partition of m points. It is well known (e.g., Section 21.5 of Devroye et al., 1996) that
s∗(F̂n,u) ≤ u(d+1)m2 for d > 1. Note that for d = 1 a similar inequality holds, we do not consider
this case any further.

The second lemma relates a function evaluated at a point x to the same function, evaluated at
the nearest neighbor of x in the training points. This lemma builds on ideas of Fritz (1975).

Lemma 11 Let f : X → {1, . . . ,K} be continuous almost everywhere and

Ln := ( f (X) &= f (NNm(X))|X1, . . . ,Xn).

Then for every "> 0 there exists a constant b f (") > 0 independent of n such that

(Ln ≥ ") ≤
2
"
e−mbf (").

Proof By B(x,%) we denote the Euclidean ball of center x and radius %. The first step of the proof
consists in constructing a certain set D (depending on ") which satisfies the following statement:

For all " > 0 there exists some %(") > 0, a measurable set D ⊂ d and a constant 1 > u > 0
such that

(a) (D) ≥ 1− "/2
(b) ∀x ∈ D : (B(x,%)) > u
(c) ∀x ∈ D the function f is constant on B(x,%).

Assume we have such a set D. Then using Properties (c) and (a) we can see that

Ln = ( f (X) &= f (NNm(X))|X1, . . . ,Xn)

≤ (X /∈ D|X1, . . . ,Xn)+ (X ∈ D, |X−NNm(X)| > %|X1, . . . ,Xn)

≤ "
2 + (X ∈ D, |X−NNm(X)| > %|X1, . . . ,Xn).

Using the Markov inequality we can then see that

(Ln > ") ≤ ( (X ∈ D, |X−NNm(X)| > %|X1, . . . ,Xn) ≥ "
2)

≤ 2
" ( (X ∈ D, |X−NNm(X)| > %|X1, . . . ,Xn))

= 2
" (X ∈ D, |X−NNm(X)| > %)

= 2
"

R

D (|x−NNm(x)| > %) d (x).

Due to Property (b) we know that for all x ∈ D,

(|x−NNm(x)| > %) = (∀i ∈ {1, . . . ,m},x /∈ B(Xi,%))

= (1− (B(x,%)))m

≤ (1−u)m.
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Setting b(") := −log(1−u) > 0 then leads to

P(Ln > ") ≤
2
"

(D)(1−u)m ≤
2
"
e−mb(%(")).

Note that this constant b(") will also be used in several of the following lemmas. To finish the proof
of the lemma we have to show how the set D can be constructed. By the assumption of the lemma
we know that f is continuous a.e., and that f only takes finitely many values 1, ...,K. This implies
that the set

C = {x ∈ d : ∃%> 0 : d(x,y) ≤ %⇒ f (x) = f (y)}

satisfies (C) = 1. Furthermore, for any %> 0 we define the set

A% = {x ∈C : d(x,y) ≤ %⇒ f (x) = f (y)}.

We have ∪%A% =C, and for )> % we have A) ⊂ A%. This implies that given some "> 0 there exists
some %(") > 0 such that (A%(")) ≥ 1−"/4. By construction, all points in A%(") satisfy Property (c).

As the next step, we can see that for every % > 0 one has (B(x,%)) > 0 almost surely (with
respect to x). Indeed, the setU = {x : ∃%> 0 : (B(x,%)) = 0} is a union of sets of probability zero.
So using the fact that d is separable we see that (U) = 0. Thus, ( (B(X ,%)|X) > 0) = 1, which
implies ( (B(X ,%)|X) > 1

n) → 1. This means that given " > 0 and % > 0 there exists a set A and
a constant u > 0 such that (A) ≥ 1− "/4 and ∀x ∈ A, (B(x,%)) > u. So all points in A satisfy
Property (b).

Now finally define the set D = A
T

A%("). By construction, this set has probability P(D) ≥ "/2,
so it satisfies Property (a). It satisfies Properties (b) and (c) by construction of A and A%("), respec-
tively.

A.5 Proof of Theorem 2

To prove this theorem we will verify that the conditions (1) - (3) of Theorem 1 are satisfied for the
function classes studied in Theorem 2.

Lemma 10 proves that Condition (1) of Theorem 2 implies Condition (1) of Theorem 1. More-
over, it is obvious that Condition (3) of Theorem 2 implies Condition (3) of Theorem 1.

Thus we only have to prove Condition (2) of Theorem 1. We begin by proving that ( fn /∈
F ) → 0. As fn ∈ Fn by definition we have that (n( fn,k) > an for all k = 1, . . . ,K. A union bound
argument shows that

( fn /∈ F ) ≤ K sup
k

((( fn,k) ≤ a).

Using the same techniques as in the proof of Lemma 9 we can see that

((( fn,k) ≤ a) ≤ ((n( fn,k)−(( fn,k) ≥ an−a)
≤ ( sup

g∈Fn
(n(gk)−((gk) ≥ an−a)

≤ 2s(F̂n,2n)

sup
g∈F̂n

((n(gk)−((gk) ≥ (an−a)/4)

inf
g∈F̂n

((n(gk)−((gk) ≤ (an−a)/2)
.
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Moreover, we already proved in Lemma 10 that s(F̂n,2n) ≤ Km(2n)(d+1)m2 . Condition (5) of Theo-
rem 2 then implies that ((( fn,k) ≤ a) tends to 0.

Now we have to prove that for f ∈ F the term d( f ,Fn) :=ming∈Fn d( f ,g) tends to 0 in proba-
bility. Let f̃ (x) = f (NNm(x)). If f̃ ∈ Fn then d( f ,Fn) ≤ d( f , f̃ ), so the following holds true:

(d( f ,Fn) ≥ ") ≤ ( f̃ /∈ Fn)+ (d( f , f̃ ) ≥ ").

The second term on the right hand side tends to 0 because of Lemma 11. To deal with the first term
on the right hand side, observe that

( f̃ /∈ Fn) ≤ K sup
k

((n( f̃k) ≤ an).

Because of Condition (4), for all "> 0, f ∈ F and g ∈ F̂n there exists %(") > 0 such that

d( f ,g) ≤ %(") ⇒(( fk)−((gk) ≤ ".

Define a fn := infk(( fk)−an. Since f ∈ F there exists N such that n≥ N ⇒ a fn > 0. For n≥ N we
have the following inequalities:

((n( f̃k) ≤ an)

= ((( fk)−(n( f̃k) ≥(( fk)−an)

= ((( fk)−(( f̃k)+(( f̃k)−(n( f̃k) ≥(( fk)−an)

≤ ((( fk)−(( f̃k) ≥ ((( fk)−an)/2)+ ((( f̃k)−(n( f̃k) ≥ ((( fk)−an)/2)

≤ ((( fk)−(( f̃k) ≥ a fn/2)+ ((( f̃k)−(n( f̃k) ≥ a fn/2)

≤ (d( f , f̃ ) > %(a fn/2))+ ( sup
g∈F̂n

((gk)−(n(gk) ≥ a fn/2)

≤ 2
%(a fn/2)

e−mb(%(a
f
n/2)) + ( sup

g∈F̂n

((gk)−(n(gk) ≥ a fn/2).

If m→ ! then the first term goes to 0. Indeed, %(a fn/2) and b(%(a fn/2)) tend to positive constants
since f ∈ F and thus a fn → infk(( fk)− a > 0. For the second term, the key step is to see that by
the techniques used in the proof of Lemma 9 we get

( sup
g∈F̂n

((gk)−(n(gk) ≥ a fn/2)

≤ 2Km(2n)(d+1)m2
sup
g∈F̂n

(((gk)−(n(gk) ≥ a fn/8)

inf
g∈F̂n

(((gk)−(n(gk) ≤ a fn/4)
.

Under Condition (2) this term tends to 0.
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A.6 The Proofs of the Consistency Theorems 3, 5, 7 and 8

All these theorems are applications of Theorem 2 to specific objective functions Qn and Q and to
specific functions (n and (. For all of them, we individually have to check whether the conditions
in Theorem 2 are satisfied. In this section, we do not follow the order of the Theorems in the paper.
This is only due to better readability of the proofs.

In most of these proves, we will use the McDiarmid inequality (McDiarmid, 1989), which we
recall for the convenience of the reader:

Theorem 12 (McDiarmid inequality) Let (Xn)n∈ be a sequence of independent random vari-
ables. Let g : ( d)n → be measurable and c> 0 a constant such that for all 1≤ i≤ n we have

sup
x1,...,xn,x′∈ d

g(x1, . . . ,xn)−g(x1, . . . ,xi−1,x′,xi+1, . . . ,xn) ≤ c.

Then
(|g(X1, . . . ,Xn)− g(X1, . . . ,Xn)|≥ ") ≤ 2e−

2"2
nc2 .

Moreover, several times we will use the fact that an → a,m→ ! and m2 logn
n(a−an)2

→ 0 implies that

n(a−an)2 → ! and m2 logn
n → 0.

Before we look at the “combined” objective functions such as Ncut, RatioCut, WSS, we will
prove some technical conditions about their “ingredients” cut, vol, E fk(X) and WS.

Lemma 13 (Conditions (2), (4), and (5) for cut, vol, fk(X), andWS) Assume that

m2 logn
n(a−an)2

→ 0

then vol, cut, fk(X) andWS satisfy Conditions (2), (4) and (5) of Theorem 2.

Proof To prove Conditions (2) and (5) we are going to use the McDiarmid inequality. Observe that
if one replaces one variable Xi by a new one X ′

i , then voln changes by at most 2C/n, cutn changes
by at most 2C/n, WS( fk) changes by at most 2C/n, and nk( f ) changes by at most 1/n. Using the
McDiarmid inequality, this implies that for all g ∈ F̂n and "> 0

(|voln(gk)−vol(gk)|≥ ") ≤ 2e−
n"2
2C2 ,

(|cutn(gk)− cut(gk)|≥ ") ≤ 2e−
n"2
2C2 ,

(|WSn(gk)−WS(gk)|≥ ") ≤ 2e−
n"2
2C2 ,

(|nk(g)− gk(X)|≥ ") ≤ 2e−2n"
2
.

So to prove Condition (2) we have to show that

∀"> 0,Km(2n)(d+1)m2e−n" → 0.

This follows clearly from Km(2n)(d+1)m2e−n" = e
−n

(
m logK+(d+1)m2 log(2n)

−n +"

)

and
m2 logn

n → 0.Moreover, since n(a−an)2 → ! Condition (5) is also true.

684
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To prove (4) for each of the objective functions, let f ,g ∈H and fk and gk be the corresponding
cluster indicator functions for cluster k. Then we can see that

|vol(gk)−vol( fk)| = |
Z Z

( fk(X)−gk(X))s(X ,Y ) dP(X)dP(Y )|

≤C
Z

{ fk=gk}
0 dP(X)dP(Y )+C

Z

{ fk=gk}c
1 dP(X)dP(Y )

=C ( fk &= gk)
≤Cd( f ,g),

|cut(gk)− cut( fk)| = |
Z Z

fk(X)(1− fk(Y ))s(X ,Y )−gk(X)(1−gk(Y ))s(X ,Y ) dP(X)dP(Y ) |

≤C
Z Z

{ f=g}2
0 dP(X)dP(Y )+C

Z Z

({ f=g}2)c
1 dP(X)dP(Y )

=C(1− ( f (X) = g(X))2)

=C(1− (1−d( f ,g))2)
≤ 2Cd( f ,g),

| fk(X)− gk(X)|≤ d( f ,g),

|WS( fk)−WS(gk)| = |
Z Z

( fk(X) fk(Y )−gk(X)gk(Y ))s(X ,Y ) dP(X)dP(Y ) |

≤
Z

{ f=g}2
0 dP(X)dP(Y )+C

Z

({ f=g}2)c
1 dP(X)dP(Y )

=C(1− ( f = g)2)
=C(1− (1−d( f ,g))2)
≤ 2Cd( f ,g).

Now we are going to check that the “combined” objective functions Ncut, RatioCut, Mod, WSS,
BWR satisfy the conditions of Theorem 2. For many of the objective functions, one important step
in the proof is to separate the convergence of the whole term into the convergence of the numerator
and the denominator.

Lemma 14 (Condition (1) for Ncut) Assume that

m2 logn
n

→ 0

then Ncut satisfies Condition (1) of Theorem 2.
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Proof We first want to split the deviations of Ncut into the ones of cut and vol, respectively. To this
end we want to show that for any f ∈ F̃n

{|cutn( fk)− cut( fk)|≤ a
2"}

T

{|voln( fk)−vol( fk)|≤ a
2"}

⊂ {| cutn( fk)voln( fk) −
cut( fk)
vol( fk) |≤ "}.

This can be seen as follows. Assume that |cutn( fk)− cut( fk)| ≤ " and |voln( fk)− vol( fk)| ≤ ".
If vol( fk) &= 0 then we have (using the facts that cut( fk) ≤ vol( fk) and that voln( fk) > an > a by
definition of F̃n):

cutn( fk)
voln( fk) −

cut( fk)
vol( fk) = cutn( fk)vol( fk)−cut( fk)voln( fk)

voln( fk)vol( fk)

≤ (cut( fk)+")vol( fk)−cut( fk)(vol( fk)−")
voln( fk)vol( fk)

= "
voln( fk)

cut( fk)+vol( fk)
vol( fk)

≤ 2"
a .

On the other hand, if vol( fk) = 0 then we have cut( fk) = 0, which implies cutn( fk) ≤ " by the
assumption above. Thus the following statement holds true:

cutn( f )
voln( f )

−
cut( f )
vol( f )

=
cutn( f )
voln( f )

≤
"
a
≤
2"
a

.

Using the same technique we have the same bound for cut( fk)vol( fk) −
cutn( fk)
voln( fk) , which proves our set inclu-

sion.
Now we apply a union bound and the McDiarmid inequality. For the latter, note that if one

changes one Xi then cutn( f ) and voln( f ) will change at most by 2C/n. Together all this leads to

(|Ncut( f )−Ncutn( f )| > ")

≤ Ksup
k

(|
cutn( fk)
voln( fk)

−
cut( fk)
vol( fk)

| > "/K)

≤ Ksup
k

(
(|cutn( fk)− cut( fk)| >

a
2K

")+ (|voln( fk)−vol( fk)| >
a
2K

")
)

≤ 4Ke−
na2"2
8C2K2 .

To finish we have to prove that

∀"> 0,Km+1(2n)(d+1)m2e−n" → 0.

This follows clearly from Km+1(2n)(d+1)m2e−n" = e
−n

(
(m+1) logK+(d+1)m2 log(2n)

−n +"

)

and
m2 logn

n → 0.
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Lemma 15 (Condition (3) for Ncut) Ncut satisfies Condition (3) of Theorem 2.

Proof Let f ∈ F ,g ∈ F̃n. In the proof of Lemma 13 we have already seen that

|cut( fk)− cut(gk)| ≤ 2Cd( f ,g),

|vol( fk)−vol(gk)| ≤ 2Cd( f ,g).

If vol(g) &= 0 then we have (using the fact that we always have cut( f ) ≤ vol( f )):
cut( fk)
vol( fk) −

cut(gk)
vol(gk) = cut( fk)vol(gk)−cut(gk)vol( fk)

vol( fk)vol(gk)

≤ (cut(gk)+2Cd( f ,g))vol( f̃ )−cut(gk)(vol(gk)−2Cd( f ,g))
vol( fk)vol(gk)

= 2Cd( f ,g)
vol( fk)

vol(gk)+cut(gk)
vol(gk)

≤ 4C
a d( f ,g)).

On the other hand if vol(gk) = 0 then we have |cut( fk)|≤ |vol( fk)|≤ 2Cd( f ,g), in which case the
following holds true:

cut( fk)
vol( fk)

−
cut(gk)
vol( f̃k)

=
cut( fk)
vol( fk)

≤
2Cd( f ,g)

a
≤
4C
a
d( f ,g).

So all in all we have
Ncut( f )−Ncut(g) ≤

4CK
a

d( f ,g).

We can use the same technique to bound Ncut(g)−Ncut( f ). This proves that Ncut is Lipschitz and
thus uniformly continuous.

Lemma 16 (Condition (1) for RatioCut) Assume that

m2 logn
n

→ 0

then RatioCut satisfies Condition (1) of Theorem 2.

Proof Using exactly the same proof as for Lemma 14 (just changing voln( fk) to nk and vol( fk) to
fk(X) and using the fact that cut( fk) ≤C fk(X)) we get

(|RatioCutn( f )−RatioCut( f )| > ")

≤ Ksup
k

(
(|cutn( fk)− cut( fk)| >

a
(S+1)K

")+ (|nk( f )− fk(X)| >
a

(S+1)K
")

)
.

Now a simple McDiarmid argument (using again the fact that changing one Xi changes cutn by at
most 2S/n) gives

(|RatioCutn( f )−RatioCut( f )| > ") ≤ 2Ke−
na2"
8C2K2 +2Ke−

na2"2
2K2 .
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We conclude the proof with the same argument as in Lemma 14.

Lemma 17 (Condition (3) for RatioCut) RatioCut satisfies Condition (3) of Theorem 2.

Proof This follows by the same proof as Lemma 14, just changing voln( fk) to nk, vol( fk) to fk(X)
and using the fact that cut( fk) ≤C fk(X).

Lemma 18 (Condition (1) for BWR) If m2 logn/n→ 0, then BWR satisfies Condition (1) of The-
orem 2.

Proof Let f ∈ F̃n. Let " ≤ a/2. If |WSn( fk)−WS( fk)| ≤ " and |cutn( fk)− cut( fk)| ≤ " then
WS( fk) ≥ a/2> 0 (because WSn( fk) > an > a since f ∈ F̃n). This implies

cutn( fk)
WSn( fk) −

cut( fk)
WS( fk) = WS( fk)cutn( fk)−WSn( fk)cut( fk)

WSn( fk)WS( fk)

≤ WS( fk)(cut( fk)+")−(WS( fk)−")cut( fk)
WSn( fk)WS( fk)

= "
WSn( fk)

WS( fk)+cut( fk)
WS( fk)

≤ 2C"
a2 .

The analogous statement holds for cut( fk)WS( fk) −
cutn( fk)
WSn( fk) . Thus, if "≤C/a then

{|WSn( fk)−WS( fk)|≤ a2"/(2C)}∩{|cutn( fk)− cut( fk)|≤ a2"/(2C)}

⊂ {
∣∣∣∣
cutn( fk)
WSn( fk)

−
cut( fk)
WS( fk)

∣∣∣∣ ≤ "}.

As a consequence, if "≤CK/a we have

(|BWRn( f )−BWR( f )| > ") ≤ K sup
k

(∣∣∣∣
cutn( fk)
WSn( fk)

−
cut( fk)
WS( fk)

∣∣∣∣ | > "/K
)

≤ K sup
k

(
(|WSn( fk)−WS( fk)| > a2"/(2CK))+ (|cutn( fk)− cut( fk)| > a2"/(2CK))

)
.

Using the McDiarmid inequality together with the fact that changing one point changes cutn and
WSn by at mostC/(2n), we get for "≤CK/a:

(|BWRn( f )−BWR( f )| > ") ≤ 4Ke−
na4"2
8C4K2 .

On the other hand, for ">CK/a we have

(|BWRn( f )−BWR( f )| > ")

≤ (|BWRn( f )−BWR( f )| > SK/a)

≤ 4Ke−
na4(SK/a)2

8C4K2 .
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So all in all we have proved that

(|BWRn( f )−BWR( f )| > ") ≤ 2Ke−
na4(min(",CK/a))2

8C4K2 .

We conclude the proof with the same argument as in Lemma 14.

Lemma 19 (Condition (3) for BWR) BWR satisfies Condition (3) of Theorem 2.
Proof Let "> 0, f ∈ F and g ∈ F̃n.We have already proved the two following inequalities (in the
proofs of Lemmas 13 and 15):

|cut( fk)− cut(gk)|≤ 2Cd( f ,g),

|WS( fk)−WS(gk)|≤ 2Cd( f ,g).
If 2Cd( f ,g) ≤ a/2, then using that WS( fk) > a we get WS(gk) ≥ a/2> 0. By the same technique
as at the beginning of Lemma 18 we get

|BWR( f )−BWR(g)|≤
2CK
a2

2Cd( f ,g).

Written a bit differently,

d( f ,g) ≤
a
4C

⇒ |BWR( f )−BWR(g)|≤
4C2K
a2

d( f ,g).

Now recall that we want to prove that there exists % > 0 such that d( f ,g) ≤ % ⇒ |BWR( f )−
BWR(g)|≤ ".

If "≤CK/a then we have:

d( f ,g) ≤
a2

4C2K
"≤

a
4C

⇒ |BWR( f )−BWR(g)|≤
4C2K
a2

d( f ,g) ≤ ".

On the other hand, if ">CK/a then

d( f ,g) ≤
a
4C

⇒ |BWR( f )−BWR(g)|≤
4C2K
a2

d( f ,g) ≤CK/a≤ "

so we have proved the lemma.

Lemma 20 (Condition (1) forWSS) If m
2 logn
n → 0 and that supp ⊂ B(0,A), then WSS satisfies

Condition (1) of Theorem 2.
Proof Let f ∈ F̃n. First note that

|WSSn( f )−WSS( f )| =

∣∣∣∣∣
1
n

n

$
i=1

K

$
k=1

fk(Xi)‖Xi− ck,n‖2−
K

$
k=1

fk(X)‖X− ck‖2
∣∣∣∣∣

≤

∣∣∣∣∣
1
n

n

$
i=1

K

$
k=1

fk(Xi)‖Xi− ck,n‖2−
1
n

n

$
i=1

K

$
k=1

fk(Xi)‖Xi− ck‖2
∣∣∣∣∣

+

∣∣∣∣∣
1
n

n

$
i=1

K

$
k=1

fk(Xi)‖Xi− ck‖2−
K

$
k=1

fk(X)‖X− ck‖2
∣∣∣∣∣ .
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Now we will bound the probability for each of the terms on the right hand side. For the second
term we can simply apply McDiarmid’s inequality. Due to the assumption that supp ⊂ B(0,A) we
know that for any two points x,y ∈ supp we have ‖x− y‖ ≤ 2A. Thus if one changes one variable
Xi then the term 1

n$
n
i=1$

K
k=1 fk(Xi)‖Xi− ck‖2 will change by at most A2/(4n). This leads to

(∣∣∣∣∣
1
n

n

$
i=1

K

$
k=1

fk(Xi)‖Xi− ck‖2−
K

$
k=1

fk(X)‖X− ck‖2
∣∣∣∣∣ ≥ "

)

≤ 2e−
2n"2
A4 .

Now we have to take care of the first term, which can be written as

1
n

n

$
i=1

K

$
k=1

fk(Xi)
(
‖Xi− ck,n‖2−‖Xi− ck‖2

)
.

The triangle inequality gives

‖Xi− ck,n‖2 ≤ (‖Xi− ck‖+‖ck,n− ck‖)2,

and together with the fact that supp ⊂ B(0,A) this leads to

‖Xi− ck,n‖2−‖Xi− ck‖2 ≤ 6A‖ck,n− ck‖.

So at this point we have
∣∣∣∣∣
1
n

n

$
i=1

K

$
k=1

fk(Xi)‖Xi− ck,n‖2−‖Xi− ck‖2
∣∣∣∣∣ ≤ 6Asupk

‖ck,n− ck‖.

We will denote the j-th coordinate of a vector X by X j. Recall that d denotes the dimensionality of
our space. Using this notation we have

‖ck,n− ck‖2 =
d

$
j=1

(
fk(X)X j

fk(X)
−
1
nk
1
n

n

$
i=1

fk(Xi)X j
i

)2

.

Our goal will be to apply the McDiarmid inequality to each coordinate. Before we can do this, we
want to show that

{|nk− fk(X)|≤ a"
A+1} ∩ {|1n

n

$
i=1

fk(Xi)X j
i − fk(X)X j|≤

a"
A+1

} ⊂ {|c jk− c jk,n|≤ "}.

To this end, assume that |nk− fk(X)|≤ " and | 1n
n

$
i=1

fk(Xi)X j
i − fk(X)X j|≤ ".

In case fk(X) &= 0 we have

c jk− c jk,n =
nk fk(X)X j− fk(X) 1nk

1
n$

n
i=1 fk(Xi)X

j
i

nk fk(X)

≤
( fk(X)+ ") fk(X)X j− fk(X)( fk(X)X j− ")

nk fk(X)

=
"
nk

fk(X)X j + fk(X)

fk(X)

≤
(A+1)"

a
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and similarly for c jk,n− c jk.
On the other hand, in case fk(X) = 0 we also have fk(X)X j = 0 (as fk is a non-negative

function and |X | is bounded by A). Together with the assumption this means that 1n$
n
i=1 fk(Xi)X

j
i ≤ ".

This implies

|c jk− c jk,n| =
1
nk
1
n

n

$
i=1

fk(Xi)X j
i ≤

"
a
≤

(A+1)"
a

which shows the inclusion stated above. The McDiarmid inequality now yields the two statements

(|nk− fk(X)| > ") ≤ 2e−2n"
2
,

(∣∣∣∣∣
1
n

n

$
i=1

fk(Xi)X j
i − fk(X)X j

∣∣∣∣∣ > "

)

≤ 2e−
2n"2
A2 .

Together they show that for the coordinate-wise differences

(|c jk− c jk,n| > ") ≤ 2e−
2na2"2
(A+1)2 +2e−

2na2"2
A2(A+1)2 ≤ 4e−

2na2"2
max(1,A2)(A+1)2 .

This leads to

(‖ck− ck,n‖ > ") = (
d

$
j=1

|c jk− c jk,n|
2 > "2) ≤ d sup

j
(|c jk− c jk,n| > "/

√
d)

≤ 4de−
2na2"2

dmax(1,A2)(A+1)2 .

Combining all this leads to a bound for the first term of the beginning of the proof:
(∣∣ 1

n$
n
i=1$

K
k=1 fk(Xi)

(
‖Xi− ck,n‖2−‖Xi− ck‖2

)∣∣ ≥ "
)

≤ (supk ‖ck,n− ck‖ ≥ "/(6A))

≤ K supk (‖ck,n− ck‖ ≥ "/(6A))

≤ 4dKe−
na2"2

18dmax(1,A2)A2(A+1)2 .

Now we combine the probabilities for the first and the second term from the beginning of the proof
using a union bound to get

(|WSSn( f )−WSS( f )| > ") ≤ 4dKe−
na2"

18dmax(1,A2)A2(A+1)2 +2e−
8n"2
A4 .

We conclude the proof with the same argument as in Lemma 14.

Lemma 21 (Condition (3) forWSS) Assume that supp ⊂ B(0,A) then WSS satisfies Condition
(3) of Theorem 2.
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Proof Let f ∈ F ,g ∈ F̃n. We begin with the following inequality, which can be seen by splitting
the expectation in the part where { f = g} and { f &= g} and using the fact that supp ⊂ B(0,A):

|WSS( f )−WSS(g)| = | $K
k=1 fk(X)‖X− ck( f )‖2−gk(X)‖X− ck(g)‖2|

≤ 4A2d( f ,g)+
R

{ f=g}$
K
k=1 fk(X)

(
‖X− ck( f )‖2−‖X− ck(g)‖2

)
.

For the second term we have already seen in the proof of the previous lemma that ‖X − ck( f )‖2−
‖X− ck(g)‖2 ≤ 6A‖ck( f )− ck(g)‖. So for the moment we have

|WSS( f )−WSS(g)|≤ 4A2d( f ,g)+6Asup
k
‖ck( f )− ck(g)‖.

Now we want to bound the expression ‖ck( f )−ck(g)‖. First of all, observe that | fk(X)−gk(X)|≤
d( f ,g) and ‖ fk(X)X−gk(X)X‖ ≤ Ad( f ,g).

In case gk(X) &= 0 we have

‖ck( f )− ck(g)‖ =
‖ gk(X) fk(X)X− fk(X) gk(X)X‖

fk(X) gk(X)

≤
‖ gk(X)( fk(X)X− gk(X)X)‖+‖( gk(X)− fk(X)) gk(X)X‖

fk(X) gk(X)

≤
gk(X)‖ fk(X)X−gk(X)X‖+A gk(X)| gk(X)− fk(X)|

fk(X) gk(X)

≤
2A
fk(x)

d( f ,g)

≤
2A
a
d( f ,g).

On the other hand, in case gk(X) = 0 we also have gk(X)X = 0 (as gk is a non-negative function
and |X | is bounded by A). This leads to

‖ck( f )− ck(g)‖ = ‖
fk(X)X
fk(X)

−
gk(X)X
gk(X)

‖ = ‖
fk(X)X
fk(X)

‖ ≤
A
a
d( f ,g) ≤

2A
a
d( f ,g).

Combining all results leads to

|WSS( f )−WSS(g)|≤ 4A2(1+3/a)d( f ,g)

which proves the lemma.

Lemma 22 (Condition (1) forMod) If m2 logn/n→ 0, then Mod satisfies Condition (1) of Theo-
rem 2.

Proof Let f ∈ f̃ . Using McDiarmid inequality one can prove

(|
K

$
k=1

1
n(n−1)$i&= j

fk(Xi) fk(Xj)s(Xi,Xj)−
K

$
k=1

fk(X) fk(Y )s(X ,Y )|≥ ") ≤ 2e−
n"2

2C2K2 .
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Now for ease of notation let

Qn( f ) =
1

n(n−1)3
K

$
k=1
$
i&= j

fk(Xi) fk(Xj) $
l,l &=i

s(Xi,Xl) $
l,l &= j

s(Xj,Xl),

Q̃n( f ) =
1

n(n−1)

K

$
k=1
$
i&= j

fk(Xi) fk(Xj)
Z

s(Xi,Z)d (Z)
Z

s(Xj,Z)d (Z),

Q( f ) =
K

$
k=1

Z Z

fk(X) fk(Y )
Z

s(X ,Z)d (Z)
Z

s(Y,Z)d (Z)d( × )(X ,Y ).

If we have an exponential bound for (|Qn( f )−Q( f )| ≥ ") then with the above bound we would
have an exponential bound for (|Modn( f )−Mod( f )|≥ "). Thus with the same argument than the
one at the end of Lemma 14 the current lemma will be proved.
First note that

(|Qn( f )−Q( f )|≥ ") ≤ (|Qn( f )− Q̃n( f )|≥ "/2)+ (|Q̃n( f )−Q( f )|≥ "/2).

Moreover Q̃n( f ) = Q( f ) and thus with McDiarmid one can prove that

(|Q̃n( f )−Q( f )|≥ ") ≤ 2e
n"2

2C4K2 .

The next step is to use the fact that for real numbers a,b,an,bn ∈ B(0,C),

|ab−anbn| = |ab−anb+anb−anbn|≤C(|a−an|+ |b−bn|).

This implies the following inequalities:

|Qn( f )− Q̃n( f )|

≤
K

n(n−1)$i&= j

∣∣∣∣∣
1

(n−1)2 $l,l &=i
s(Xi,Xl) $

l,l &= j
s(Xj,Xl)−

Z

s(Xi,Z)d (Z)
Z

s(Xj,Z)d (Z)

∣∣∣∣∣

≤ 2CK sup
i

∣∣∣∣∣
1

n−1 $l,l &=i
s(Xi,Xl)−

Z

s(Xi,Z)d (Z)

∣∣∣∣∣ .

Hence the following:

(|Qn( f )− Q̃n( f )|≥ ") ≤ (sup
i
|
1

n−1 $l,l &=i
s(Xi,Xl)−

Z

s(Xi,Z)d (Z)|≥ "/(2CK))

≤ nsup
i

(|
1

n−1 $l,l &=i
s(Xi,Xl)−

Z

s(Xi,Z)d (Z)|≥ "/(2CK)).
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Now to bound the last term we condition on Xi and use the McDiarmid inequality. Then taking the
expectation yields the exponential bound:

(|
1

n−1 $l,l &=i
s(Xi,Xl)−

Z

s(Xi,Z)d (Z)|≥ "/(2CK))

= ( (|
1

n−1 $l,l &=i
s(Xi,Xl)−

Z

s(Xi,Z)d (Z)|≥ "/(2CK)|Xi))

≤ (2e−
n"2

2C4K2 )

= 2e−
n"2

2C4K2 .

All in all we proved that

(|Modn( f )−Mod( f )|≥ ") ≤ 2e−
n"2

8C2K2 +2(n+1)e−
n"2

32C2K2 .

The n in front of the exponential obviously does not matter for the limit, see end of the proof of
Lemma 14.

Lemma 23 (Condition (3) forMod) Mod satisfies Condition (3) of Theorem 2.

Proof Let f ∈ F ,g ∈ F̃n. Following the proof of Lemma 15 we have:

|Mod( f )−Mod(g)|≤
K

$
k=1

Z Z

({ f=g}2)c
(C+C2)

= K(C+C2)(1− (1−d( f ,g))2)
≤ 2K(C+C2)d( f ,g).

A.7 The Proofs of the Convergence Rates in Theorems 4 and 6

The following lemma collects all the bounds given in the previous proofs for WSS . Whenever
possible, we used the one-sided McDiarmid inequality.

Lemma 24 Assume that supp ⊂ B(0,A) for some constant A > 0. Let a∗n := infk f ∗k (X)− an.
Then a∗n → a∗ := infk f ∗k (X)− a > 0. For all n and " > 0 there exists a constant b(a∗n/2) which
tends to a constant C′ > 0 when n→ !, and a constant b("/(8A2(1+ 3/a))) (see Lemma 11 for
more details about b) such that the following holds true

(|WSS( fn)−WSS( f ∗)|≥ ")

≤ 2Km+1(2n)(d+1)m2
(

4dKe
− na2"
616dmax(1,A2)A2(A+1)2 +2e

− n"2
32A4

1−4dKe
− na2"
308dmax(1,A2)A2(A+1)2 −2e

− n"2
8A4

+ Ke−
n(an−a)2

8

1−e−
n(an−a)2

2
+ Ke−

na∗n
2

32

1−e−
na∗n

2
8

)

+ 4K
a∗n
e−mb(a∗n/2) + (16A2(1+3/a)/")e−mb("/(8A2(1+3/a))).
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A.8 Proof of Theorem 4

First we take care of the last two terms. There exists N′ which depends on the rate of convergence
of an and on a∗ such that for n≥ N′ we have

a∗n ≤ a∗/2.

This implies b(a∗n/2) ≤ b(a∗/4) (see Lemma 11 for details). Now let C′
1 := b("/(8A2(1+ 3/a)))

andC′
2 := b(a∗/4). Then for n≥ N′ we have:

4K
a∗n
e−mb(a

∗
n/2) + (16A2(1+3/a)/")e−mb("/(8A2(1+3/a)))

≤ 8Ka∗e−C
′
2m+(16A2(1+3/a)/")e−C

′
1m

≤C1e−C2m

with

C1 :=max(8Ka∗;16A2(1+3/a)/") and C2 :=min(C′
1;C′

2).

C2 is a positive constant which depends on a,a∗,A," and .C1 depends on K,a,a∗," and A.

Since we assume n(an−a)2 → ! there exists N′′ which depends on the rate of convergence of
an and on a∗ such that n≥ N′′ implies:

e−
n(an−a)2

8 ≤ 1/2 and e−
na∗n
32 ≤ e−

n(an−a)2
8 .

This means that for n≥ N′′ :

Ke−
n(an−a)2

8

1− e−
n(an−a)2

2

+
Ke−

na∗n
2

32

1− e−
na∗n

2
8

≤ 4Ke−
n(an−a)2

8 .

Finally let N =max(N′,N′′) and

C3 :=
8dK

1−4dKe−
Na2"

308dmax(1,A2)A2(A+1)2 −2e−
N"2
8A4

C4 :=min(
a2

616dmax(1,A2)A2(A+1)2
;
1

32A4
).

Since "≤ 1 we have with these notations for n≥ N:

4dKe−
na2"

616dmax(1,A2)A2(A+1)2 +2e−
n"2
32A4

1−4dKe−
na2"

308dmax(1,A2)A2(A+1)2 −2e−
n"2
8A4

≤ (C3/2)e−C4"
2n.

All in all Theorem 4 is proved.
The Proof of Theorem 6 works analogously, we just replace the above lemma by to following

one:
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Lemma 25 Assume that the similarity function s is bounded by C > 0. Let a∗n := infk vol( f ∗k )−an.
Then a∗n → infk vol( f ∗k )−a> 0. For all n and "> 0 there exists a constant b(a∗n/(2S)) which tends
to a constant C′ > 0 when n→ !, and a constant b(a"/(8SK)) (see Lemma 11 for more details
about b) such that the following holds true

(|Ncut( fn)−Ncut( f ∗)|≥ ")

≤ 2Km+1(2n)(d+1)m2
(

4e
− na2"2
2048C2K2

1−4Ke
− na2"2
512C2K2

+ e
− n(an−a)2

32C2

1−e
− n(an−a)2

8C2
+ e

− na∗n
2

128C2

1−e
− na∗n

2

32C2

)

+ 4CK
a∗n
e−mb(a∗n/(2C)) + 16CK

a" e−mb(a"/(8CK)).
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Abstract
Various relationships are shown hold between monotonic effects and weak monotonic effects and
the monotonicity of certain conditional expectations. Counterexamples are provided to show that
the results do not hold under less restrictive conditions. Monotonic effects are furthermore used to
relate signed edges on a causal directed acyclic graph to qualitative effect modification. The theory
is applied to an example concerning the direct effect of smoking on cardiovascular disease control-
ling for hypercholesterolemia. Monotonicity assumptions are used to construct a test for whether
there is a variable that confounds the relationship between the mediator, hypercholesterolemia, and
the outcome, cardiovascular disease.
Keywords: Bayesian networks, conditional expectation, covariance, directed acyclic graphs, ef-
fect modification, monotonicity

1. Introduction

Several papers have considered various monotonicity relationships on Bayesian networks or di-
rected acyclic graphs. Wellman (1990) introduced the notion of qualitative causal influence and
derived various resulting concerning the propagation of qualitative influences, the preservation of
monotonicity under edge reversal, the necessity of first order stochastic dominance for propagat-
ing influences and the propagation of sub-additive and super-additive relationships on probabilistic
networks. Druzdzel and Henrion (1993) developed a polynomial time algorithm for reasoning in
qualitative probabilistic network, based on local sign propagation. More recently, van der Gaag et
al. (2004) showed that identifying whether a network exhibits various monotonicity properties is
coNPPP- complete. VanderWeele and Robins (2009) introduced the concept of a monotonic effect
which is closely related to Wellman’s qualitative influence and considered the relationship between
monotonicity properties and causal effects, covariance, bias and confounding. In this paper we
develop a number of probabilistic properties concerning monotonic effects and weak monotonic
effects. Some of these properties give rise to certain inequality constraints that could be used to
test for the presence of hidden or unmeasured confounding variables. These inequality constraints
which arise from monotonicity relationships provide constraints beyond those already available in
the literature (Kang and Tian, 2006). The paper is organized as follows. In Section 2 we describe
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the notation we will use in this paper and review the definitions concerning directed acyclic graphs.
In Section 3 we present a motivating example for the theory that will be developed. In Section 4, we
define the concepts of a monotonic effect and a weak monotonic effect in the directed acyclic graph
causal framework, the latter essentially being equivalent to Wellman’s (1990) qualitative influence.
In Section 5, we give a number of results relating weak monotonic effects to the monotonicity in the
conditioning argument of certain conditional expectations; we also return to the motivating example
and show how the theory developed can be applied to this example. Finally, in Section 6, we give a
number of results that relate weak monotonic effects to the existence of qualitative effect modifiers.
Section 7 closes with some concluding remarks.

2. Notation and Directed Acyclic Graphs

Following Pearl (1995), a causal directed acyclic graph is a set of nodes (X1, ...,Xn) and directed
edges amongst nodes such that the graph has no cycles and such that for each node Xi on the graph
the corresponding variable is given by its non-parametric structural equation Xi = fi(pai,!i) where
pai are the parents of Xi on the graph and the !i are mutually independent. We will use " to denote
the sample space for ! and # to denote a particular point in the sample space. These non-parametric
structural equations can be seen as a generalization of the path analysis and linear structural equation
models (Pearl, 1995, 2000) developed by Wright (1921) in the genetics literature and Haavelmo
(1943) in the econometrics literature. Directed acyclic graphs can be interpreted as representing
causal relationships. The non-parametric structural equations encode counterfactual relationships
amongst the variables represented on the graph. The equations themselves represent one-step ahead
counterfactuals with other counterfactuals given by recursive substitution. The requirement that
the !i be mutually independent is essentially a requirement that there is no variable absent from
the graph which, if included on the graph, would be a parent of two or more variables (Pearl,
1995, 2000). Further discussion of the causal interpretation of directed acyclic graphs can be found
elsewhere (Pearl, 1995, 2000; Spirtes et al., 2000; Dawid, 2002; Robins, 2003).

A path is a sequence of nodes connected by edges regardless of arrowhead direction; a directed
path is a path which follows the edges in the direction indicated by the graph’s arrows. A node C
is said to be a common cause of A and Y if there exists a directed path from C to Y not through A
and a directed path from C to A not through Y . We will say that V1, ...,Vn constitutes an ordered list
if i < j implies that Vi is not a descendent of Vj. A collider is a particular node on a path such that
both the preceding and subsequent nodes on the path have directed edges going into that node, that
is, both the edge to and the edge from that node have arrowheads into the node. A path between A
and B is said to be blocked given some set of variables Z if either there is a variable in Z on the path
that is not a collider or if there is a collider on the path such that neither the collider itself nor any
of its descendants are in Z. If all paths between A and B are blocked given Z then A and B are said
to be d-separated given Z. It has been shown that if A and B are d-separated given Z then A and B
are conditionally independent given Z (Verma and Pearl, 1988; Geiger et al., 1990; Lauritzen et al.,
1990). We will use the notation A $B|Z to denote that A is conditionally independent of B given Z;
we will use the notation (A $B|Z)G to denote that A and B are d-separated given Z on graph G. The
directed acyclic graph causal framework has proven to be particularly useful in determining whether
conditioning on a given set of variables, or none at all, is sufficient to control for confounding. The
most important result in this regard is the back-door path criterion (Pearl, 1995). A back-door path
from some node A to another node Y is a path which begins with a directed edge into A. Pearl
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Figure 1: Motivating example concerning the estimation of controlled direct effects.

(1995) showed that for intervention variable A and outcome Y , if a set of variables Z is such that
no variable in Z is a descendent of A and such that Z blocks all back-door paths from A to Y then
conditioning on Z suffices to control for confounding for the estimation of the causal effect of A on
Y . The counterfactual value of Y intervening to set A= a we denote by YA=a.

3. Motivating Example

To motivate the theory we develop in this paper consider the following example.

Example 1. Suppose that Figure 1 represents a causal directed acyclic graph. Let A denote smoking;
let R hypercholesterolemia; and letY denote cardiovascular disease. High cholesterol can lead to the
narrowing of the arteries resulting in cardiovascular disease; smoking can lead to blood clots through
platelet aggregation resulting in cardiovascular disease. Let Q denote some variable that confounds
the relationships between smoking and cardiovascular disease and between hypercholesterolemia
and cardiovascular disease (e.g., stress). LetU be some unmeasured variable which might confound
the relationship between hypercholesterolemia and cardiovascular disease. The researcher is unsure
whether the variableU is a cause of R and we therefore represent the edge fromU to R as a dashed
line. The results of Pearl (2001) imply that it is possible to estimate controlled direct effects of the
form YA=a1,R=r−YA=a0,R=r (i.e., the direct effect of smoking on cardiovascular disease controlling
for hypercholesterolemia) on the graph in Figure 1 if that U is not a cause of R. Suppose that
although the researcher is unsure about the presence an edge from U to R, it is known that the
relationship between A and Y is monotonic in the sense that P(Y > y|A= a,R= r,Q= q,U = u) is
non-decreasing in a for all y, r, q and u. In Section 5, we will present theory that will allow us to
derive a statistical test for the null hypothesis that there is no unmeasured variable U confounding
the relationship between R and Y .
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4. On the Definition of a Monotonic Effect

The definition of a monotonic effect is given in terms of a directed acyclic graph’s nonparametric
structural equations.

Definition 1. The non-parametric structural equation for some node Y on a causal directed acyclic
graph with parent A can be expressed as Y = f (p̃aY ,A,!Y ) where p̃aY are the parents of Y other
than A; A is said to have a positive monotonic effect on Y if for all p̃aY and !Y , f (p̃aY ,A1,!Y ) ≥
f (p̃aY ,A2,!Y ) whenever A1 ≥ A2. Similarly A is said to have a negative monotonic effect on Y if for
all p̃aY and !Y , f (p̃aY ,A1,!Y ) ≤ f (p̃aY ,A2,!Y ) whenever A1 ≥ A2.

As we have defined it above, a causal direct acyclic graph corresponds to a set of non-parametric
structural equations and as such the definition of a monotonic effect given above is relative to a par-
ticular set of non-parametric structural equations. The presence of a monotonic effect is closely
related to the monotonicity of counterfactual variables as is made clear by the following proposi-
tion. All proofs of all propositions and lemmas are given in Appendix A.

Proposition 1. The variable A has a positive monotonic effect on Y if and only if for all # and all
values of p̃aY , Ya1,p̃aY (#) ≥ Ya0,p̃aY (#) whenever a1 ≥ a0.

We note that several sets of non-parametric structural equations may yield identical distributions
of X = (X1, ...,Xn) and {XV=v}V⊆X ,v∈supp(V ) (Pearl, 2000). In the context of characterizations of
causal directed acyclic graphs that make reference to counterfactuals but not to non-parametric
structural equations (Robins, 2003), a positive monotonic effect could instead be defined to be
present if for all p̃aY and a1 ≥ a0, P(Ya1,p̃aY ≥Ya0,p̃aY ) = 1. If this latter condition holds with respect
to one set of non-parametric structural equations it will hold for any set of non-parametric structural
equations which yields the same distribution for X and {XV=v}V⊆X ,v∈supp(V ). We note that if for
a1 ≥ a0 the set {# : Ya1,p̃aY (#) < Ya0,p̃aY (#)} is of measure zero then Ya1,p̃aY and Ya0,p̃aY could be
re-defined on this set so that Ya1,p̃aY (#) ≥ Ya0,p̃aY (#) for all # and so that the distributions of X and
{XV=v}V⊆X ,v∈supp(V ) remain unchanged.

Because for any value # we observe the outcome only under one particular value of the inter-
vention variable, the presence of a monotonic effect is not identifiable. The results presented in this
paper are in fact true under slightly weaker conditions which are identifiable when data on all of the
directed acyclic graph’s variables are observed. We thus introduce the concept of a weak monotonic
effect which is a special case of Wellman’s positive qualitative influence (Wellman, 1990). The def-
inition of a weak monotonic effect does not make reference to counterfactuals and thus can be used
in characterizations of causal directed acyclic graphs that do not employ the concept of counterfac-
tuals (Spirtes et al., 2000; Dawid, 2002). The stronger notion of a monotonic effect given above is
useful in the context of testing for synergistic relationships (VanderWeele and Robins, 2008).

Definition 2. Suppose that variable A is a parent of some variable Y and let p̃aY denote the par-
ents of Y other than A. We say that A has a weak positive monotonic effect on Y if the survivor
function S(y|a, p̃aY ) = P(Y > y|A= a, p̃aY ) is such that whenever a1 ≥ a0 we have S(y|a1, p̃aY ) ≥
S(y|a0, p̃aY ) for all y and all p̃aY ; the variable A is said to have a weak negative monotonic effect
on Y if whenever a1 ≥ a0 we have S(y|a1, p̃aY ) ≤ S(y|a0, p̃aY ) for all y and all p̃aY .
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Proposition 2. If A has a positive monotonic effect on Y then A has a weak positive monotonic
effect on Y .

We note that for parent A and child Y , the definition of a weak monotonic effect coincides
with Wellman’s (1990) definition of positive qualitative influence when the ”context” for qualitative
influence is chosen to be the parents of Y other than A.

A monotonic effect is a relation between two nodes on a directed acyclic graph and as such it
is associated with an edge. The definition of the sign of an edge can be given either in terms of
monotonic effects or weak monotonic effects. We can define the sign of an edge as the sign of the
monotonic effect or weak monotonic effect to which the edge corresponds; this in turn gives rise to
a natural definition for the sign of a path.

Definition 3. An edge on a causal directed acyclic graph from X to Y is said to be of positive sign
if X has a positive monotonic effect on Y . An edge from X to Y is said to be of negative sign if X
has a negative monotonic effect on Y . If X has neither a positive monotonic effect nor a negative
monotonic effect on Y , then the edge from X to Y is said to be without a sign.

Definition 4. The sign of a path on a causal directed acyclic graph is the product of the signs of the
edges that constitute that path. If one of the edges on a path is without a sign then the sign of the
path is said to be undefined.

Wewill call a causal directed acyclic graph with signs on those edges which allow them a signed
causal directed acyclic graph. The theorems in this paper are given in terms of signed paths so as to
be applicable to both monotonic effects and weak monotonic effects. One further definition will be
useful in the development of the theory below.

Definition 5. Two variables X and Y are said to be positively monotonically associated if all directed
paths from X to Y or from Y to X are of positive sign and all common causes Ci of X and Y are
such that all directed paths from Ci to X are of the same sign as all directed paths from Ci to Y ; the
variables X and Y are said to be negatively monotonically associated if all directed paths between
X and Y are of negative sign and all common causes Ci of X and Y are such that all directed paths
from Ci to X are of the opposite sign as all directed paths from Ci to Y .

It has been shown elsewhere (VanderWeele and Robins, 2009) that if X and Y are positively
monotonically associated then Cov(X ,Y ) ≥ 0 and if X and Y are negatively monotonically asso-
ciated then Cov(X ,Y ) ≤ 0. We now develop several results concerning the monotonicity in the
conditioning argument of certain conditional expectations.

5. Monotonic Effects and Conditional Expectations

Lemma 1 below can be proved by integration by parts and will be used in the proofs of the subse-
quent propositions. We will assume throughout the remainder of this paper that the random variables
under consideration satisfy regularity conditions that allow for the integration by parts required in
the proof of Lemma 1. If conditional cumulative distribution functions are continuously differen-
tiable then the regularity conditions will be satisfied; the regularity conditions will also be satisfied
if all variables are discrete. Härdle et al. (1998, p72) also gives relatively weak conditions under
which such integration by parts is possible. Alternatively, the existence of the Lebesgue-Stieltjes
integrals found in the proof of Lemma 1 suffices to allow integration by parts. Note that Lemma 1
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will always be applied either to the function h(y,a,r) = y or to conditional survivor functions which
will satisfy the relevant regularity conditions; thus the conditions which are required for integration
by parts are only regularity conditions on the distribution of the random variables.

Lemma 1. If h(y,a,r) is non-decreasing in y and in a and S(y|a,r) = P(Y > y|A = a,R = r) is
non-decreasing in a for all y then E[h(Y,A,R)|A= a,R= r] is non-decreasing in a.

Proposition 3 immediately follows from Lemma 1.

Proposition 3. Suppose that the A–Y edge, if it exists, is positive. Let X denote some set of non-
descendents of Y that includes p̃aY , the parents of Y other than A, then E[Y |X = x,A = a] is
non-decreasing in a for all values of x.

Proposition 4 gives the basic result for the monotonicity of conditional expectations. For the
conditional expectation of some variable Y to be monotonic in a conditioning argument A, it re-
quires that the conditioning set includes variables that block all backdoor paths from A to Y . In
order to prove Proposition 4 we will make use of the following two lemmas.

Lemma 2. Suppose that A is a non-descendent of Y and let Q denote the set of ancestors of A
or Y which are not descendents of A. Let R = (R1, ...,Rm) denote an ordered list of some set of
nodes on directed paths from A to Y such that for each i the backdoor paths from Ri to Y are
blocked by R1, ...,Ri−1,A, and Q. Let V0 = A and Vn = Y and let V1, ...,Vn−1 be an ordered list of
all the nodes which are not in R but which are on directed paths from A to Y such that at least
one of the directed paths from each node to Y is not blocked by R. Let V k = {V1, ...,Vk} then
S(vk|a,vk−1,q,r) = S(vk|pavk).

Lemma 3. If under the conditions of Lemma 2 all directed paths from A to Y are positive except
possibly through R then S(y|a,q,r) is non-decreasing in a.

These two lemmas allow us to prove Proposition 4 given below.

Proposition 4. Suppose that A is a non-descendent of Y and let X denote some set of non-
descendents of A that blocks all backdoor paths from A to Y . Let R= (R1, ...,Rm) denote an ordered
list of some set of nodes on directed paths from A to Y such that for each i the backdoor paths from
Ri to Y are blocked by R1, ...,Ri−1,A and X. If all directed paths from A to Y are positive except
possibly through R then S(y|a,x,r) and E[y|a,x,r] are non-decreasing in a.

If R= ∅ the statement of Proposition 4 is considerably simplified and is stated in the following
corollary.

Corollary. Let X denote some set of non-descendents of A that blocks all backdoor paths from A to
Y . If all directed paths between A and Y are positive then S(y|a,x) and E[y|a,x] are non-decreasing
in a.

Lemma 3 and Proposition 4 are generalizations of results given byWellman (1990) and Druzdzel
and Henrion (1993). In particular, in Lemma 3 if R = ∅, then the result follows immediately from
repeated application of Theorems 4.2 and 4.3 in Wellman (1990) or more directly from the work of
Druzdzel and Henrion (1993, Theorem 4). Lemma 3 generalizes the results of Wellman (1990) and
Druzdzel and Henrion (1993) by allowing for conditioning on nodes R= (R1, ...,Rm) which are on
directed paths from A to Y . Proposition 4 further generalizes Lemma 3 by replacing the set Q in
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Figure 2: Example illustrating Propositions 4-6.

Lemma 3 which consists of the set of ancestors of A or Y which are not descendents of A with some
other set X which consists of some set of non-descendents of A that blocks all backdoor paths from
A to Y .

Propositions 5-8 relax the condition that the conditioning set includes variables that block all
backdoor paths A to Y and impose certain other conditions; the proofs of each of these propositions
make use of Proposition 4.

Proposition 5. Suppose that A is not a descendent of Y , that A is binary, and that A and Y are
positively monotonically associated then E[Y |A] is non-decreasing in A.

Proposition 6. Suppose that A is not a descendent of Y , that Y is binary, and that A and Y are
positively monotonically associated then E[A|Y ] is non-decreasing in Y .

Propositions 5 and 6 require that the conditioning variable be binary. Counterexamples can be
constructed to show that if the conditioning variable is not binary then the conditional expectation
may not be non-decreasing in the conditioning argument even if A and Y are positively monotoni-
cally associated (see Appendix B, counterexamples 1 and 2).

Propositions 5 and 6 can be combined to give the following corollary which makes no reference
to the ordering of A and Y .

Corollary. Suppose that A is binary and that A and Y are positively monotonically associated then
E[Y |A] is non-decreasing in A.

Example 2. Consider the signed directed acyclic graph given in Figure 2. By Proposition 4, we
have that E[Y |A = a,C = c,R = r] and E[Y |A = a,C = c] are non-decreasing in a. If A is binary
then by Proposition 5, it is also the case that E[Y |A= a] is non-decreasing in a. If Y is binary, then
by Proposition 6, E[A|Y = y] is non-decreasing in y. The monotonicity of E[Y |A= a,C = c,R= r]
and E[Y |A = a,C = c] also follow directly from the results of Wellman (1990) and Druzdzel and
Henrion (1993); the monotonicity of E[Y |A= a] and E[A|Y = y] do not.

Propositions 7 and 8 consider the monotonicity of conditional expectations while conditioning
on variables other than the variable in which monotonicity holds but not conditioning on variables
that are sufficient to block all backdoor paths between A and Y . Propositions 7 and 8 generalize
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Figure 3: Example illustrating Propositions 7 and 8.

Propositions 5 and 6 respectively.

Proposition 7. Suppose that A is not a descendent of Y and that A is binary. Let Q be some set of
variables that are not descendents of Y nor of A and let C be the common causes of A and Y not
in Q. If all directed paths from A to Y are of positive sign and all directed paths from C to A not
through Q are of the same sign as all directed paths from C to Y not through {Q,A} then E[Y |A,Q]
is non-decreasing in A.

Proposition 8 is similar to Proposition 7 but the conditional expectation E[A|Y,Q] is considered
rather than E[Y |A,Q] and Y rather than A is assumed to be binary. The form of the proof differs.

Proposition 8. Suppose that A is not a descendent of Y and that Y is binary. Let Q be some set of
variables that are not descendents of Y nor of A and let C be the common causes of A and Y not
in Q. If all directed paths from A to Y are of positive sign and all directed paths from C to A not
through Q are of the same sign as all directed paths from C to Y not through {Q,A} then E[A|Y,Q]
is non-decreasing in Y .

Propositions 7 and 8 can be combined to give the following corollary which makes no reference
to the ordering of A and Y .

Corollary. Suppose that A is binary. Let Q be some set of variables that are not descendents of Y
nor of A and let C be the common causes of A and Y not in Q. If all directed paths from A to Y (or
from A to Y ) are of positive sign and all directed paths from C to A not through {Q,Y} are of the
same sign as all directed paths from C to Y not through {Q,A} then E[Y |A,Q] is non-decreasing in
Y .

Example 3. Consider the signed directed acyclic graph given in Figure 3. If A is binary, then
by Proposition 7, E[Y |A = a,C = c,Q = q], E[Y |A = a,Q = q], E[Y |A = a,C = c] and E[Y |A =
a] are all non-decreasing in a. If Y is binary then by Proposition 8, E[A|Y = y,C = c,Q = q],
E[A|Y = y,Q= q], E[A|Y = y,C = c] and E[A|Y = y] are all non-decreasing in y. The monotonicity
of E[Y |A= a,C = c,Q= q] follows directly from the results of Wellman (1990) and Druzdzel and
Henrion (1993); the monotonicity of the other conditional expectations do not.
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We now return to Example 1 concerning potential unmeasured confounding in the estimation of
controlled direct effects.

Example 1 (Revisited). Consider once again the causal directed acyclic graph given in Figure 1.
Suppose that we may assume that A has a weak monotonic effect on Y . Under the null hypothesis
that U is not a cause of R (i.e., does not confound the relationship between R and Y ) we could
conclude by Proposition 4 that E[Y |A= a,R= r,Q= q] is non-decreasing in a for all r and q. Under
the alternative hypothesis that U is a cause of R, we could not apply Proposition 4 because of the
unblocked backdoor path R−U −Y between R and Y . The monotonicity relationship would thus
not necessarily hold. Consequently, if E[Y |A= a,R= r,Q= q] were found not to be monotonic in
a then we could reject the null hypothesis that U is not a cause of R. Note that the monotonicity
of E[Y |A= a,R= r,Q= q] in a also follows from the results of Wellman (1990) and Druzdzel and
Henrion (1993). If, however, there were an edge fromU to Q for example, or in more complicated
scenarios, the results of Wellman (1990) and Druzdzel and Henrion (1993) would no longer suffice
to conclude the monotonicity of E[Y |A= a,R= r,Q= q] in a; one would need to employ Proposition
4.

We now construct a simple statistical test in the case that A, R andY are all binary (cf. Robins and
Greenland, 1992) of the null hypothesis thatU is absent from Figure 1. Let ni jq denote the number of
individuals in stratumQ= qwith A= i and R= j and let let di jq denote the number of individuals in
stratumQ= qwith A= i and R= j andY = 1. Let pi jq denote the true probability P(Y = 1|A= i,R=
j,Q= q). From the null hypothesis thatU is absent from Figure 1, it follows by Proposition 4 that
p1 jq− p0 jq≤ 0 for all j and q. Thus we have di jq∼Bin(ni jq, pi jq)with E[

di jq
ni jq ] = pi jq andVar(

di jq
ni jq ) =

pi jq(1−pi jq)
ni jq . By the central limit central limit theorem

(
d1 jq
n1 jq

−
d0 jq
n0 jq

)−(p1 jq−p0 jq)
√

p1 jq(1−p1 jq)

n1 jq
+

p0 jq(1−p0 jq)

n0 jq

.
∼N(0,1) and by Slut-

sky’s theorem we have
(
d1 jq
n1 jq

−
d0 jq
n0 jq

)−(p1 jq−p0 jq)
√

d1 jq(n1 jq−d1 jq)

n31 jq
+

d0 jq(n0 jq−d0 jq)

n30 jq

.
∼N(0,1). To test the null hypothesis that the edge

from U to R is absent from Figure 1 one may thus use the test statistic
(
d1 jq
n1 jq

−
d0 jq
n0 jq

)
√

d1 jq(n1 jq−d1 jq)

n31 jq
+

d0 jq(n0 jq−d0 jq)

n30 jq

with critical regions of the form: {
(
d1 jq
n1 jq

−
d0 jq
n0 jq

)
√

d1 jq(n1 jq−d1 jq)

n31 jq
+

d0 jq(n0 jq−d0 jq)

n30 jq

> Z1−%} to carry out a one-sided (up-

per tail) test. The derivation of the power of such a test would require providing explicit structural
equations for each of the variables in the model. Similar tests could be constructed for other sce-
narios. We note that if the test fails to reject the null, one cannot conclude that the arrow from U
to R is absent; if the inequality E[Y |A= a1,R= r,Q= q] ≤ E[Y |A= a2,R= r,Q= q] holds for all
a1 ≤ a2 this is potentially consistent with both the presence and the absence of an edge from U to
R. If, however, the test rejects the null then one can conclude that an edge from U to R must be
present, provided the other model assumptions hold. With observational data, the assumption that
no unmeasured confounding variable is present can be falsified but it cannot be verified regardless
of the approach one takes. It is nevertheless worthwhile testing any empirical implications of the
no unmeasured confounding variables assumptions which can be derived, such as those following
from Proposition 4.
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Tian and Pearl (2002) and Kang and Tian (2007) derived various equality constraints that arise
from causal directed acyclic graphs with hidden variables; Kang and Tian (2006) derived various
inequality constraints that arise from causal directed acyclic graphs with hidden variables. We note
that the inequality constraint E[Y |A = a1,R = r,Q = q] ≤ E[Y |A = a2,R = r,Q = q] for a1 ≤ a2
does not follow from the results of Tian and Pearl (2002) or Kang and Tian (2006, 2007). The
equality and inequality constraints which follow from their work will apply to all causal models
consistent with the directed acyclic graph in Figure 1 (without the sign); the inequality constraint
E[Y |A= a1,R= r,Q= q] ≤ E[Y |A= a2,R= r,Q= q] follows only if it can be assumed in Figure 1
that A has a weak positive monotonic effect on Y . More generally, the results in this paper provide a
supplementary set of constraints to those of Tian and Pearl (2002) and Kang and Tian (2006, 2007).

6. Effect Modification and Monotonic Effects

If when conditioning on a particular variable, the sign of the effect of another variable on the out-
come varies between strata of the conditioning variable, then the conditioning variable is said to
be a qualitative effect modifier. The following definition gives the condition for qualitative effect
modification more formally.

Definition 6. A variable Q is said to be an effect modifier for the causal effect of A on Y if Q
is not a descendent of A and if there exist two levels of A, a0 and a1 say, such that E[YA=a1 |Q =
q]−E[YA=a0 |Q= q] is not constant in q. Furthermore Q is said to be a qualitative effect modifier if
there exist two levels of A, a0 and a1, and two levels of Q, q0 and q1, such that sign(E[YA=a1 |Q =
q1]−E[YA=a0 |Q= q1]) (= sign(E[YA=a1 |Q= q0]−E[YA=a0 |Q= q0]).

Monotonic effects and weak monotonic effects are closely related to the concept of qualitative
effect modification. Essentially, the presence of a monotonic effect precludes the possibility of qual-
itative effect modification. This is stated precisely in Propositions 9 and 10.

Proposition 9. Suppose that some parent A1 of Y is such that the A1−Y edge is of positive sign
then there can be no other parent, A2, of Y which is a qualitative effect modifier for causal effect of
A1 on Y , either unconditionally or within some stratum C = c of the parents of Y other than A1 and
A2.

A similar result clearly holds if the A1−Y edge is of negative sign. We give the contrapositive
of Proposition 9 as a corollary.

Corollary. Suppose that some parent of Y , A2, is a qualitative effect modifier for causal effect of
another parent of Y , A1, either unconditionally or within some stratum C = c of the parents of Y
other than A1 and A2 then A1 can have neither a weak positive monotonic effect nor a weak negative
monotonic effect on Y .

If there are intermediate variables between A and Y then Proposition 9 can be generalized to
give Proposition 10.

Proposition 10. Suppose that all directed paths from A to Y are of positive sign (or are all of neg-
ative sign) then there exists no qualitative effect modifier Q on the directed acyclic graph for the
causal effect of A on Y .
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Figure 4: Example illustrating the use of Propositions 9 and 10.

Example 4. Consider the signed directed acyclic graph given in Figure 4 in which the A−Y edge
is of positive sign. It can be shown that any of Q1, Q2, Q3, Q4 or Q5 can serve as effect modifiers
for the causal effect of A on Y (VanderWeele and Robins, 2007). However, by Proposition 9 or 10,
since A has a (weak) monotonic effect on Y , none of Q1, Q2, Q3, Q4 or Q5 can serve as qualitative
effect modifiers for the causal effect of A on Y . Conversely, if it is found that one of Q1, Q2, Q3, Q4
or Q5 is a qualitative effect modifier for the causal effect of A on Y then the A−Y edge cannot be of
positive (or negative) sign.

7. Concluding Remarks

In this paper we have related weak monotonic effects to the monotonicity of certain conditional
expectations in the conditioning argument and to qualitative effect modification. When the variables
on a causal directed acyclic graph exhibit weak monotonic effects the results can be used to construct
tests for the presence of unmeasured confounding variables. Future work could examine whether it
is possible to weaken the restrictions on R in Proposition 4; another area of future research would
include developing an algorithm for what relationships need systematic evaluation in order to test for
particular confounding patterns; further research could also be done on the derivation of statistical
tests of the type considered at the end of Section 5 for cases in which A, R and Y are not binary and
for dealing with issues related to multiple testing problems.
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Appendix A. Proofs

This appendix contains the proofs for all of the results in this paper.
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A.1 Proof of Proposition 1

By the definition of a non-parametric structural equation, Ya,p̃aY (#) = f (p̃aY ,a,!Y (#)) and from
this the result follows.

A.2 Proof of Proposition 2

Since A has a positive monotonic effect on Y , for any a1 ≥ a0 we have that S(y|a1, p̃aY ) = P(Y >
y|a1, p̃aY ) = P{ f (p̃aY ,a1,!Y ) > y}≥ P{ f (p̃aY ,a0,!Y ) > y} = P(Y > y|a0, p̃aY ) = S(y|a1, p̃aY ).

A.3 Proof of Lemma 1

For a≥ a′ we have E[h(Y,A,R)|A= a,R= r]−E[h(Y,A,R)|A= a′,R= r]
=

Z y=&

y=−&
h(y,a,r)dF(y|a,r)−

Z y=&

y=−&
h(y,a′,r)dF(y|a′,r)=

Z y=&

y=−&
h(y,a,r)d{F(y|a,r)−F(y|a′,r)}+

Z y=&

y=−&
{h(y,a,r)−h(y,a′,r)}dF(y|a′,r)= [h(y,a,r){F(y|a,r)−F(y|a′,r)}]y=&y=−&−

Z y=&

y=−&
{F(y|a,r)−

F(y|a′,r)}dh(y,a,r)+
Z y=&

y=−&
{h(y,a,r)−h(y,a′,r)}dF(y|a′,r)

=
Z y=&

y=−&
{S(y|a,r)− S(y|a′,r)}dh(y,a,r)+

Z y=&

y=−&
{h(y,a,r)− h(y,a′,r)}dF(y|a′,r). This final ex-

pression is non-negative since the integrands of both integrals are non-negative for a≥ a′.

A.4 Proof of Proposition 3

We have that E[Y |X = x,A = a] = E[Y | p̃aY ,A = a] and since A has a (weak) positive monotonic
effect on Y , we have that S(y|a, p̃aY ) is non-decreasing in a and it follows from Lemma 1 that
E[Y |X = x,A= a] = E[Y | p̃aY ,A= a] is non-decreasing in a.

A.5 Proof of Lemma 2

We will say a path from A to B is a frontdoor path from A to B if the path begins with a directed
edge with the arrowhead pointing out of A. Let Qk and Rk be the subsets of Q and R respectively
that are ancestors of Vk. We will show that

S(vk|a,v1, ...,vk−1,q,r) = S(vk|a,v1, ...,vk−1,q,rk)
= S(vk|a,v1, ...,vk−1,qk,rk) = S(vk|pavk).

If Rk =R, the first equality holds trivially. Suppose that Rk (=R so that Rm is not an ancestor ofVk. All
frontdoor paths from Rm toVk must include a collider since Rm is not an ancestor ofVk. This collider
will not be in A,V1, ...,Vk−1,Q,R1, ...,Rm−1 since all these variables are non-descendents of Rm. Thus
all frontdoor paths from Rm to Vk will be blocked given A,V1, ...,Vk−1,Q,R1, ...,Rm−1. All backdoor
paths from Rm to Vk with an edge going into Vk will be blocked given A,V1, ...,Vk−1,Q,R1, ...,Rm−1
by paVk ; note by hypothesis it can be seen that paVk will be contained by the variables A,V1, ...,Vk−1,
Q,Rk since there is a directed path from Vk to Y and Q includes all ancestors of Y not on di-
rected paths from A to Y . All backdoor paths from Rm to Vk with an edge going out from Vk
will be blocked given A,Q,R1, ...,Rm−1 by hypothesis; otherwise there would be a backdoor path
from Rm through Vk to Y not blocked by A,Q,R1, ...,Rm−1. But all backdoor paths from Rm to Vk
with an edge going out from Vk which are blocked by A,Q,R1, ...,Rm−1 will also be blocked by

710



PROPERTIES OF MONOTONIC EFFECTS

A,V1, ...,Vk−1,Q,R1, ...,Rm−1. This is because such a path concluding with an edge going out from
Vk which is blocked by A,Q,R1, ...,Rm−1 but not blocked by A,V1, ...,Vk−1,Q,R1, ...,Rm−1 would
require that one of V1, ...,Vk−1, say Vp, be a collider on the path or a descendent of a collider. If one
of V1, ...,Vk−1 were a collider then the path would in fact be blocked by the parents of the collider
since all the parents of V1, ...,Vk−1 are in A,V1, ...,Vk−1,Q,R1, ...,Rm−1. If one of V1, ...,Vk−1, say
Vp, were a descendent of the collider then none of the directed paths from the collider to Vp could
contain nodes in R1, ...,Rm−1 for otherwise the path would not be blocked by A,Q,R1, ...,Rm−1; for
the same reason the collider itself could not be in R1, ...,Rm−1. But it then follows that the collider
must itself be one of V1, ...,Vp−1 since it is an ancestor of Vp with a directed path to Vp not blocked
by R. However, if the collider is one of V1, ...,Vp−1 then the path would in fact be blocked by the
parents of the collider since all the parents of V1, ...,Vk−1 are in A,V1, ...,Vk−1,Q,R1, ...,Rm−1. From
this it follows that all backdoor paths from Rm to Vk with an edge going out from Vk are blocked by
A,V1, ...,Vk−1,Q,R1, ...,Rm−1.

We have thus shown that Vk and Rm are d-separated given A,V1, ...,Vk−1,Q,R1, ...,Rm−1 and so

S(vk|a,v1, ...,vk−1,q,r) = S(vk|a,v1, ...,vk−1,q,r1, ...,rm−1).

Similarly, Vk and Rm−1 are d-separated given A,V1, ...,Vk−1,Q,R1, ...,Rm−2 and so

S(vk|a,v1, ...,vk−1,q,r1, ...,rm−1) = S(vk|a,v1, ...,vk−1,q,r1, ...,rm−2).

We may carry this argument forward to get

S(vk|a,v1, ...,vk−1,q,r) = S(vk|a,v1, ...,vk−1,q,rk).

All backdoor paths from Vk to Q\Qk will be blocked given A,V1, ...,Vk−1,Qk,Rk by pavk . Since Vk
is not a descendent of Q\Qk all frontdoor paths from Vk to Q\Qk will involve at least one collider
which is a descendent of Vk. This collider is not in the conditioning set A,V1, ...,Vk−1,Qk,Rk since
this entire set consists of non-descendents of Vk and so the collider will block the frontdoor path
from Vk to Q\Qk.

Thus Vk and Q\Qk are d-separated given A,V1, ...,Vk−1,Qk,Rk and so

S(vk|a,v1, ...,vk−1,q,rk) = S(vk|a,v1, ...,vk−1,qk,rk).

Furthermore, A,V1, ...,Vk−1,Qk,Rk are non-descendents ofVk and include all of the parents ofVk and
so

S(vk|a,v1, ...,vk−1,qk,rk) = S(vk|pavk).

We have thus shown as desired that

S(vk|a,v1, ...,vk−1,q,r) = S(vk|a,v1, ...,vk−1,q,rk)
= S(vk|a,v1, ...,vk−1,qk,rk) = S(vk|pavk).

A.6 Proof of Lemma 3

Let V0 = A and Vn = Y and let V1, ...,Vn−1 be an ordered list of all the nodes which are not in R but
which are on directed paths from A to Y such that at least one of the directed paths from each node
to Y is not blocked by R. Let Vk = {V1, ...,Vk}. It can be shown by induction that by starting with
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n = k and for each k iteratively replacing by their negations the parents of Vk with negative edges
into Vk suffices to obtain a graph such that all edges on all directed paths from A to Y not blocked
by R have positive sign.

We can express E[1(Vn > v)|A,Q,R] as

E[E[...E[E[1(Vn > v)|A,Vn−1,Q,R]|A,Vn−2,Q,R]|...|A,V1,Q,R]|A,Q,R].

Now conditional on A,Vn−1\Vi,Q,R we have that

E[1(Vn > v)|,A,Vn−1,Q,R]

is non-decreasing in vi for i= 1, ...,n−1 since Vi has either a weak positive monotonic effect or no
effect on Vn. Thus conditional on A,Vn−1\{Vi,Vn−1},Q,R we have that

E[1(Vn > v)|A,Vn−1,Q,R]

is a non-decreasing function of vi and vn−1. Furthermore, by Lemma 2 we have that S(vn−1|a,v1, ...,
vn−2,q,r) = S(vn−1|pavn−1) and so S(vn−1|a,v1, ...,vn−2,q,r) = S(vn−1|pavn−1) is a non-decreasing
in vi for all a,v1, ...,vi−1,vi+1, ...,vn−2,q,r sinceVi has either a weak positive monotonic effect or no
effect on Vn−1. Thus by Lemma 1 we have that conditional on A,Vn−2\Vi,Q,R,

E[E[1(Vn > v)|A,Vn−1,Q,R]|A,Vn−2,Q,R]

is non-decreasing in vi for i = 1, ...,n− 2. Carrying the argument forward, conditional on A,Q,R,
we will have that

E[...E[E[1(Vn > v)|A,Vn−1,Q,R]|A,Vn−2,Q,R]|...|A,V1,Q,R]

is a non-decreasing function of v1 and v0 = a and since A has either a weak positive monotonic
effect or no effect on V1, S(v1|a,q,r) = S(v1|pav1) will be non-decreasing in a and thus by Lemma
1,

S(y|a,q,r) = E[1(Vn > y)|A,Q,R]

= E[E[...E[E[1(Vn > y)|A,Vn−1,Q,R]|A,Vn−2,Q,R]|...|A,V1,Q,R]|A,Q,R]

will be non-decreasing in a.

A.7 Proof of Proposition 4

Let Q denote the set of ancestors of A or Y which are not descendents of A. Note that if for each i
the backdoor paths from Ri to Y are blocked by R1, ...,Ri−1,A and X then these backdoor paths will
also be blocked by R1, ...,Ri−1,A and Q since for each backdoor path from Ri to X there must be
some member of {A}

[

Q through which the path passes. We may thus apply Lemma 3 to conclude
that E[1(Y > y)|a,Q,r]. Since Q blocks all backdoor paths from A to Y we have

S(y|a,x,r) = E[E[1(Y > y)|a,Q,x,r]|a,x,r]
= E[E[1(Y > y)|a,Q,r]|a,x,r] = E[E[1(Y > y)|a,W,r]|a,x,r]

where W is the subset of Q which are either parents of Y or parents of a node on a directed path
from A to Y . Let W ′ denote the subset ofW for which there is a path to Y not blocked by A,X ,R
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then E[E[1(Y > y)|a,W,r]|a,x,r] = E[E[1(Y > y)|a,W ′,r]|a,x,r]. All backdoor paths from A toW ′

are blocked given R and X by X since X blocks all backdoor paths from A to Y . Any frontdoor path
from A to W ′ will include a collider since the nodes in W ′ are not descendents of A. The collider
cannot be in X because X includes only non-descendents of A. Suppose the collider were some
node Ri; by hypothesis all backdoor paths from Ri to Y are blocked by R1, ...,Ri−1,A and X ; thus the
frontdoor path from A toW ′ would have to be blocked by A,R1, ...,Ri−1 and X for otherwise there
would be a backdoor path from Ri throughW ′ to Y not blocked by A,R1, ...,Ri−1 and X . From this
it follows that every frontdoor path from A toW ′ must be blocked given R and X either by a collider
or by a node in R or X . We have thus shown that all paths from A toW ′ are blocked given R and X
and soW ′ is conditionally independent of A given R and X and so we have

E[E[1(Y > y)|a,W ′,r]|a,x,r] = E[E[1(Y > y)|a,W ′,r]|x,r]
= E[E[1(Y > y)|a,Q,r]|x,r].

We have thus shown that S(y|a,x,r) = E[E[1(Y > y)|a,Q,r]|x,r]. Since E[1(Y > y)|a,Q,r] is non-
decreasing in a for all q we also have that

S(y|a,x,r) = E[E[1(Y > y)|a,Q,r]|x,r]

is non-decreasing in a. Finally, since S(y|a,x,r) is non-decreasing in a, it follows from Lemma 1
that E[y|a,x,r] is also non-decreasing in a.

A.8 Proof of Proposition 5

Proposition 5 is in fact a special case of Proposition 7 with R = ∅ and Q = ∅. The proof of
Proposition 7 is given below.

A.9 Proof of Proposition 6

Proposition 6 is in fact a special case of Proposition 8 with R = ∅ and Q = ∅. The proof of
Proposition 8 is given below.

A.10 Proof of Proposition 7

By the law of iterated expectations,

E[Y |A= a,Q= q]
='

c
E[Y |A= a,C = c,Q= q]P(C = c|A= a,Q= q)

We have by Proposition 4 that E[Y |A,Q,C] is non-decreasing in A. Let (C1, ...,Cn) denote an ordered
list of the variables inC. LetQc be variables inQwhich are common causes ofC and letQn =Q\Qc.
Let Qd

i be the variables in Qc that are descendents of Ci. Let Cdi denote the variables in C that
are descendents of Ci and let Cni = C\{Ci,Cdi }. By Proposition 4 we have that E[Y |A,Q,C] is
non-decreasing in each component Ci of C by choosing for each i, A in Proposition 4 to be Ci, X
in Proposition 4 to be the set {Qn,Qc\Qd

i ,Cni } and R in Proposition 4 to be the set {Qd
i ,Cdi ,A}.

Furthermore,

P(C = c|A= a,Q= q) =
P(A= a|C = c,Q= q)P(C = c|Q= q)

P(A= a|Q= q)
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and so
P(C = c|A= 1,Q= q) = (q(c)P(C = c|A= 0,Q= q)

where
(q(c) =

P(A= 0|Q= q)P(A= 1|C = c,Q= q)
P(A= 1|Q= q)P(A= 0|C = c,Q= q)

which is non-decreasing in each dimension of c since the numerator is non-decreasing in each
dimension of c and the denominator is non-increasing in each dimension of c by Proposition 4 by
choosing for each i, A in Proposition 4 to be Ci, X in Proposition 4 to be the set {Qn,Qc\Qc

i ,Cni }
and R in Proposition 4 to be the set {Qc

i ,Cdi }. Thus

E[Y |A= 1,Q= q]
='

c
E[Y |A= 1,C = c,Q= q]P(C = c|A= 1,Q= q)

≥'
c
E[Y |A= 0,C = c,Q= q]P(C = c|A= 1,Q= q)

='
c
E[Y |A= 0,C = c,Q= q](q(c)P(C = c|A= 0,Q= q)

≥'
c
E[Y |A= 0,C = c,Q= q]P(C = c|A= 0,Q= q)

= E[Y |A= 0,Q= q].

The second inequality holds because by an argument similar to that above E[Y |A= 0,Q= q,C = c]
is non-decreasing in each dimension of c and P(C= c|A= 1,Q= q) = (q(c)P(C= c|A= 0,Q= q)
weights more heavily higher values of each dimension of c than does P(C = c|A= 0,Q= q) since
(q(c) is non-decreasing in each dimension of c. Thus E[Y |A= a,Q= q] is non-decreasing in a.

A.11 Proof of Proposition 8

By the law of iterated expectations we have that

E[A|Y = y,Q= q] ='
c
E[A|Y = y,C = c,Q= q]P(C = c|Y = y,Q= q)

='
c,a
aP(A= a|Y = y,C = c,Q= q)P(C = c|Y = y,Q= q)

='
c,a
a
P(Y = y,A= a,C = c|Q= q)

P(Y = y,C = c|Q= q)
P(C = c|Y = y,Q= q)

='
c,a
a
P(Y = y|A= a,C = c,Q= q)

P(Y = y|Q= q)
P(A= a,C = c|Q= q)

= EC,A[A
P(Y = y|A,C,Q= q)
P(Y = y|Q= q)

|Q= q].

As in the proof of Proposition 7, we have by Proposition 4 we have that conditional on and Q= q,
P(Y=1|A,C,Q=q)
P(Y=1|Q=q) is a non-decreasing function of A and of each dimension ofC. Similarly, P(Y=0|A,C,Q=q)

P(Y=0|Q=q)
is a non-increasing function of A and each dimension of C. Over c and a, conditional on and
Q = q, P(Y=y|A=a,C=c,Q=q)

P(Y=y|Q=q) is a weight function that sums to 1, that is, EC,A[
P(Y=y|A=a,C=c,Q=q)

P(Y=y|Q=q) ] =
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P(Y=y|Q=q)
P(Y=y|Q=q) = 1. Furthermore, by Proposition 4, S(a|c,q) is non-decreasing in c and we thus have
that

E[A|Y = 1,Q= q] = EC,A[A
P(Y = 1|A,C,Q= q)
P(Y = 1|Q= q)

|Q= q]

≥ EC,A[A
P(Y = 0|A,C,Q= q)
P(Y = 0|Q= q)

|Q= q]

= E[A|Y = 0,Q= q]

and so E[A|Y,Q] is non-decreasing in Y .

A.12 Proof of Proposition 9

Note that by Proposition 3 above if A1 has a weak positive monotonic effect on Y then E[Y |A1 =
a1,A2 = a2,C = c] must be non-decreasing in a1 and if A1 has a weak negative monotonic effect on
Y then E[Y |A1 = a1,A2 = a2,C = c] must be non-increasing in a1. Since (Y $A1|{A2,C})GE1 where
GE1 is the original directed acyclic graph G with all edges emanating from A1 removed, we have
YA1=a

$A1|{A2,C} (Pearl, 1995). Thus E[YA1=a1 |A2 = a2,C= c] = E[Y |A1 = a1,A2 = a2,C= c] and
so if A2 is a qualitative effect modifier for the causal effect of A1 onY for stratumC= c then we must
two values of A1, a∗1 and a∗∗1 , and two levels of A2, a′2 and a′′2, such that E[Y |A1 = a∗∗1 ,A2 = a′′2,C =
c]−E[Y |A1 = a∗1,A2 = a′′2,C= c] < 0 and E[Y |A1 = a∗∗1 ,A2 = a′2,C= c]−E[Y |A1 = a∗1,A2 = a′2,C=
c] > 0. Either a∗∗1 > a∗1 or a∗∗1 < a∗1. Consider the first case (the second is analogous) then since
E[Y |A1 = a∗∗1 ,A2 = a′′2,C= c]−E[Y |A1 = a∗1,A2 = a′′2,C= c] < 0, A1 does not have a weak positive
monotonic effect on Y and since E[Y |A1 = a∗∗1 ,A2 = a′2,C = c]−E[Y |A1 = a∗1,A2 = a′2,C = c] > 0,
A1 does not have a weak negative monotonic effect on Y . Now if A2 is a qualitative effect modifier
for the causal effect of A1 unconditionally then we must have two values of A1, a∗1 and a∗∗1 , and two
levels of A2, a′2 and a′′2, such that E[YA1=a∗∗1 |A2 = a′′2]−E[YA1=a∗1 |A2 = a′′2] < 0 and E[YA1=a∗∗1 |A2 =
a′2]−E[YA1=a∗1 |A2 = a′2] > 0. Once again either a∗∗1 > a∗1 or a∗∗1 < a∗1. We will consider the first
case (the second is analogous). We thus have that '

c
E[Y |A1 = a∗∗1 ,A2 = a′′2,C = c]P(C = c|A2 =

a′′2) = '
c
E[YA1=a∗∗1 |A2 = a′′2,C = c]P(C = c|A2 = a′′2) = E[YA1=a∗∗1 |A2 = a′′2] < E[YA1=a∗1 |A2 = a′′2] =

'
c
E[YA1=a∗1 |A2 = a′′2,C = c]P(C = c|A2 = a′′2) = '

c
E[Y |A1 = a∗1,A2 = a′′2,C = c]P(C = c|A2 = a′′2)

and so A1 cannot have a weak positive monotonic effect on Y and similarly, '
c
E[Y |A1 = a∗∗1 ,A2 =

a′2,C= c]P(C= c|A2 = a′2) ='
c
E[YA1=a∗∗1 |A2 = a′2,C= c]P(C= c|A2 = a′2) = E[YA1=a∗∗1 |A2 = a′2] >

E[YA1=a∗1 |A2 = a′2] = '
c
E[YA1=a∗1 |A2 = a′2,C = c]P(C = c|A2 = a′2) = '

c
E[Y |A1 = a∗1,A2 = a′2,C =

c]P(C = c|A2 = a′2) and so A1 cannot have a weak negative monotonic effect on Y .

A.13 Proof of Proposition 10

We prove the Theorem for weak positive monotonic effects. The proof for weak negative mono-
tonic effects is similar. Let C denote all non-descendents of A which are either parents of Y or
parents of a node on a directed path between A and Y . By the law of iterated expectations we have
E[YA=a1 |Q = q]− E[YA=a0 |Q = q] = 'c E[YA=a1 |C = c,Q = q]P(C = c|Q = q)−'c E[YA=a0 |C =
c,Q = q]P(C = c|Q = q). We will show that this latter expression is equal to 'c E[YA=a1 |C =
c]P(C = c|Q = q)−'c E[YA=a0 |C = c]P(C = c|Q = q). By Theorem 3 of Pearl (1995) it suffices
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Figure 5: Directed acyclic graph illustrating counterexamples to Propositions 5 and 6 when A is
not binary.

to show that (Y $Q|C,A)GA where GA denotes the graph obtained by deleting from the original di-
rected acyclic graph all arrows pointing into A. Any front door path from Y to Q in GA will be
blocked by a collider. Any backdoor path from Y to Q in GA will be blocked by C. We thus
have that E[YA=a1 |Q= q]−E[YA=a0 |Q= q] = 'c E[YA=a1 |C = c]P(C = c|Q= q)−'c E[YA=a0 |C =
c]P(C = c|Q = q). Since C will block all backdoor paths from A to Y we have by the backdoor
path adjustment theorem 'c E[Y |C = c,A = a1]P(C = c|Q = q)−'c E[Y |C = c,A = a0]P(C =
c|Q = q) = 'c{E[Y |C = c,A = a1]−E[Y |C = c,A = a0]}P(C = c|Q = q). If there were a qual-
itative effect modifier Q for the causal effect of A on Y then there would exist a value q0 such that
E[YA=a1 |Q= q0]−E[YA=a0 |Q= q0] < 0. But since all paths between A andY are of positive sign and
since C blocks all backdoor paths from A to Y we have by Proposition 4 that E[Y |C = c,A = a] is
non-decreasing in a and so E[YA=a1 |Q= q0]−E[YA=a0 |Q= q0] ='c{E[Y |C= c,A= a1]−E[Y |C=
c,A= a0]}P(C = c|Q= q0) ≥ 0.

Appendix B. Counterexamples

This appendix contains the details of the counterexamples mentioned in the body of the paper.

B.1 Counterexample 1

Consider the directed acyclic graph given in Figure 5. In this example C and Y are binary and A
is ternary. Suppose that C ∼ Ber(0.5), !A ∼ Ber(0.5) and that P(A = 0|!A = 0) = 1 and P(A =
C+ 1|!A = 1) = 1. Suppose also that P(Y = 1|A = 2) = 1 and that if P(Y = C|A = 0) = 1 and
P(Y = C|A = 1) = 1. Clearly then C has a positive monotonic effect on A and on Y and A has a
positive monotonic effect on Y and so A and Y are positively monotonically associated. However,
we have that E[Y |A = 1] = E[C|A = 1] = 0 ∗P(C = 1|A = 1) = 0 but E[Y |A = 0] = E[C|A = 0] =
1∗P(C = 1|A= 0)+0∗P(C = 0|A= 0) = 1/2.

B.2 Counterexample 2

Consider again the directed acyclic graph given in Figure 5. In this example we will assume that C
and A are binary and thatY is ternary. Suppose thatC∼ Ber(0.5) and that !A takes on the values 0, 1
and 2, each with probability 1/3. Suppose also that P(A= 0|!A = 0) = 1, P(A=C|!A = 1) = 1 and
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P(A= 1|!A = 2) = 1. Suppose further that P(Y = 0|C = 0) = 1 and if P(Y = A+1|C = 1). Clearly
then C has a positive monotonic effect on A and on Y and A has a positive monotonic effect on Y
and so A and Y are positively monotonically associated. However, we have that E[A|Y = 1] = 0 but
E[A|Y = 0] = E[A|C = 0] = 1/3.
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Abstract

In classification, semisupervised learning usually involves a large amount of unlabeled data with
only a small number of labeled data. This imposes a great challenge in that it is difficult to achieve
good classification performance through labeled data alone. To leverage unlabeled data for enhanc-
ing classification, this article introduces a large margin semisupervised learning method within the
framework of regularization, based on an efficient margin loss for unlabeled data, which seeks effi-
cient extraction of the information from unlabeled data for estimating the Bayes decision boundary
for classification. For implementation, an iterative scheme is derived through conditional expec-
tations. Finally, theoretical and numerical analyses are conducted, in addition to an application to
gene function prediction. They suggest that the proposed method enables to recover the perfor-
mance of its supervised counterpart based on complete data in rates of convergence, when possible.

Keywords: difference convex programming, classification, nonconvex minimization, regulariza-
tion, support vectors

1. Introduction

Semisupervised learning occurs in classification, where only a small number of labeled data is avail-
able with a large amount of unlabeled data, because of the difficulty of labeling. In artificial intelli-
gence, one central issue is how to integrate human’s intelligence with machine’s processing capacity.
This occurs, for instance, in webpage classification and spam email detection, where webpages and
emails are automatically collected, yet require labeling manually or classification by experts. The
reader may refer to Blum and Mitchell (1998), Amini and Gallinari (2003), and Balcan et al. (2005)
for more details. In genomics applications, functions of many genes in sequenced genomes remain
unknown, and are predicted using available biological information, see Xiao and Pan (2005). In
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situations as such, the primary goal is to leverage unlabeled data to enhance predictive performance
of classification (Zhu, 2005).

In semisupervised learning, labeled data {(xi,yi)nli=1} are sampled from an unknown distribution
P(x,y), together with an independent unlabeled sample {x j}nj=nl+1 from its marginal distribution
q(x). Here label yi ∈ {−1,1}, xi = (xi1, · · · ,xid) is an d-dimensional input, nl $ nu and n= nl +nu
is the combined size of labeled and unlabeled samples.

Two types of approaches—distributional and margin-based, have been proposed in the literature.
The distributional approach includes, among others, co-training (Blum and Mitchell, 1998), the EM
method (Nigam et al., 1998), the bootstrap method (Collins and Singer, 1999), Gaussian random
fields (Zhu, Ghahramani and Lafferty, 2003), and structure learning models (Ando and Zhang,
2005). The distributional approach relies on an assumption relating the class probability given input
p(x) = P(Y = 1|X = x) to q(x) for an improvement to occur. However, the assumption of this sort
is often not verifiable or met in practice.

A margin approach uses the concept of regularized separation. It includes Transductive SVM
(TSVM; Vapnik, 1998; Chapelle and Zien, 2005; Wang, Shen and Pan, 2007), and a large mar-
gin method of Wang and Shen (2007). These methods use the notation of separation to borrow
information from unlabeled data to enhance classification, which relies on the clustering assump-
tion (Chapelle and Zien, 2005) that the clustering boundary can precisely approximate the Bayes
decision boundary which is the focus of classification.

This article develops a large margin semisupervised learning method, which aims to extract the
information from unlabeled data for estimating the Bayes decision boundary. This is achieved by
constructing an efficient loss for unlabeled data with regard to reconstruction of the Bayes decision
boundary and by incorporating some knowledge from an estimate of p. This permits efficient use
of unlabeled data for accurate estimation of the Bayes decision boundary thus enhancing the clas-
sification performance based on labeled data alone. The proposed method, using both the grouping
(clustering) structure of unlabeled data and the smoothness structure of p, is designed to recover the
classification performance based on complete data without missing labels, when possible.

The proposed method has been implemented through an iterative scheme, which can be thought
of as an analogy of Fisher’s efficient scoring method (Fisher, 1946). That is, given a consistent
initial classifier, an iterative improvement can be obtained through the constructed loss function.
Numerical analysis indicates that the proposed method performs well against several state-of-the-
art semisupervised methods, including TSVM and Wang and Shen (2007), where Wang and Shen
(2007) compares favorably against several smooth and clustering based semisupervised methods.

A novel statistical learning theory for !-loss is developed to provide an insight into the proposed
method. The theory reveals that the !-learning classifier’s generalization performance based on
complete data can be recovered by its semisupervised counterpart based on incomplete data in rates
of convergence, when some regularity assumptions are satisfied. The theory also says that the
least favorable situation for a semisupervised problem occurs at points near p(x) = 0 or 1 because
little information can be provided by these points for reconstructing the classification boundary
as discussed in Section 2.3. This is in contrast to the fact that the least favorable situation for a
supervised problem occurs near p(x) = 0.5. In conclusion, this semisupervised method achieves the
desired objective of delivering higher generalization performance.

This article also examines one novel application in gene function prediction, which has been
a primary focus of biomedical research. In gene function prediction, microarray gene expression
profiles can be used to predict gene functions, because genes sharing the same function tend to co-
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express, see Zhou, Kao and Wong (2002). Unfortunately, biological functions of many discovered
genes remain unknown at present. For example, about 1/3 to 1/2 of the genes in the genome of bac-
terium E. coli have unknown functions. Therefore, gene function prediction is an ideal application
for semisupervised methods and also employed in this article as a real numerical example.

This article is organized in six sections. Section 2 introduces the proposed method. Section 3
develops an iterative algorithm for implementation. Section 4 presents some numerical examples,
together with an application to gene function prediction. Section 5 develops a learning theory.
Section 6 contains a discussion, and the appendix is devoted to technical proofs.

2. Methodology

In this section, we present our proposed efficient large margin semisupervised learning method as
well its connection to other existing popular methodologies.

2.1 Large Margin Classification

Consider large margin classification with labeled data (xi,yi)nli=1. In linear classification, given a
class of candidate decision functions F , a cost function

C
nl
"
i=1

L(yi f (xi))+ J( f ) (1)

is minimized over f ∈ F = { f (x) = w̃Tf x+wf ,0 ≡ (1,xT )wf } to yield the minimizer f̂ leading to
classifier sign( f̂ ). Here J( f ) is the reciprocal of the geometric margin of various form with the usual
L2 margin J( f ) = ‖w̃ f ‖2/2 to be discussed in further detail, and L(·) is a margin loss defined by
functional margin z = y f (x), and C > 0 is a regularization parameter. In nonlinear classification, a
kernel K(·, ·) is introduced for flexible representations: f (x) = "nl

i=1#iK(x,xi)+b. For this reason,
it is referred to as kernel-based learning, where the reproducing kernel Hilbert spaces (RKHS) are
useful, see Gu (2000) and Wahba (1990).

Different margin losses correspond to different learning methodologies. Margin losses include,
among others, the hinge loss L(z) = (1− z)+ for SVM with its variant L(z) = (1− z)q+ for q > 1;
see Lin (2002); the !-losses L(z) = !(z), with !(z) = 1− sign(z) if z ≥ 1 or z < 0, and 2(1− z)
otherwise, see Shen et al. (2003), the logistic loss V (z) = log(1+ e−z), see Zhu and Hastie (2005);
the $-hinge loss L(z) = ($− z)+ for nu-SVM (Schölkopf et al., 2000) with $> 0 being optimized;
the sigmoid loss L(z) = 1− tanh(cz); see Mason, Baxter, Bartlett and Frean (2000). A margin loss
L(z) is said to be large margin if L(z) is non-increasing in z, penalizing small margin values. In this
article, we fix L(z) = !(z).

2.2 Loss Construction for Unlabeled Data

In classification, the optimal Bayes rule is defined by f̄.5 = sign( f.5) with f.5(x) = P(Y = 1|X =
x)−0.5 being a global minimizer of the generalization errorGE( f ) =EI(Y (= sign( f (X))), which is
usually estimated by labeled data through L(·) in (1). In absence of sufficient labeled data, the focus
is on how to improve (1) by using additional unlabeled data. For this, we construct a margin lossU
to measure the performance of estimating f̄.5 for classification through unlabeled data. Specifically,
we seek the best loss U from a class of candidate losses of form T ( f ), which minimizes the L2-
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distance between the target classification loss L(y f ) and T ( f ). The expression of this loss U is
given in Lemma 1.

Lemma 1 (Optimal loss) For any margin loss L(z),

argmin
T

E(L(Y f (X))−T ( f (X)))2 = E(L(Y f (X))|X = x) =U( f (x)),

where U( f (x)) = p(x)L( f (x)) + (1− p(x))L(− f (x)) and p(x) = P(Y = 1|X = x). Moreover,
argmin f∈F EU( f (X)) = argmin f∈F EL(Y f (X)).

Based on Lemma 1, we define Û( f ) to be p̂(x)L( f (x))+(1− p̂(x))L(− f (x)) by replacing p in
U( f ) by p̂. Clearly, Û( f ) approximates the ideal loss U( f ) for reconstructing the Bayes decision
function f.5 when p̂ is a good estimate of p, as suggested by Corollary 5. This is analogous to
construction of the efficient scores for Fisher’s scoring method: an optimal estimate can be obtained
iteratively through an efficient score function, provided that a consistent initial estimate is supplied,
see McCullagh and Nelder (1983) for more details. Through (approximately) optimal loss Û( f ),
an iterative improvement of estimation accuracy is achieved by starting with a consistent estimate
p̂ of p, which, for instance, can be obtained through SVM or TSVM. For Û( f ), its optimality is
established through its closeness to U( f ) in Corollary 5, where our iterative method based on Û
is shown to yield an iterative improvement in terms of the classification accuracy, recovering the
generalization error rate of its supervised counterpart based on complete data ultimately.

As a technical remark, we note that the explicit relationship between p and f is usually un-
available in practice. As a result, several large margin classifiers such as SVM and !-learning do
not directly yield an estimate of p given f̂ . Therefore p needs to be either assumed or estimated.
For instance, the methods of Wahba (1999) and Platt (1999) assume a parametric form of p so that
an estimated f̂ yields an estimated p, whereas Wang, Shen and Liu (2008) estimates p given f̂
nonparametrically.

The preceding discussion leads to our proposed cost function:

s( f ) =C

(

n−1l
nl
"
i=1

L(yi f (xi))+n−1u
n

"
j=nl+1

Û( f (x j))

)

+ J( f ). (2)

Minimization of (2) with respect to f ∈ F gives our estimated decision function f̂ for classification.

2.3 Connection with Clustering Assumption

We now intuitively explain advantages of Û( f ) over a popular large margin loss L(| f |) = (1−
| f (x)|)+ (Vapnik, 1998; Wang and Shen, 2007), and its connection with the clustering assumption
(Chapelle and Zien, 2005) that assumes closeness between the classification and grouping (cluster-
ing) boundaries.

First, Û( f ) has an optimality property, as discussed in Section 2.2, which leads to better perfor-
mance as suggested by Theorem 3. Second, it has a higher discriminative power over its counterpart
L(| f |). To see this aspect, note that L(| f |) = infpU( f ) by Lemma 1 of Wang and Shen (2007). This
says that L(| f |) is a version of Û( f ) in the least favorable situation where unknown p is estimated
by sign( f ), completely ignoring the magnitude of p. As displayed in Figure 1, Û( f ) corresponds to
an “asymmetric” hat function or the solid line, whereas L(| f |) corresponds to a “symmetric” one or
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the dashed line. By comparison, Û( f ) enables not only to identify the clustering boundary through
the hat function as L(| f |) does but also to discriminate f (x) from − f (x) through an estimated p̂(x).
That is, Û( f ) has a smaller value for f (x) > 0 than for − f (x) < 0 when p̂ > 0.5, and vice versa,
whereas L(| f |) is in-discriminative with regard to the sign of f (x).

−2 −1 0 1 2

f(x)

U
(f(

x)
)

0
1−

p̂
p̂

1
L(|f(x)|)
Û(f(x))

Figure 1: Plots of L(| f (x)|) and Û( f (x)).

To reinforce the second point in the foregoing discussion, we examine one specific example
with two possible clustering boundaries as described in Figure 3 of Zhu (2005). There Û( f ) favors
one clustering boundary for classification if a consistent p̂ is provided, whereas L(| f |) fails to dis-
criminate these two. More details are deferred to Section 4.1, where the simulated example 2 of this
nature is studied.

In conclusion, Û( f ) yields a more efficient loss for a semisupervised problem as it uses the
clustering information from the unlabeled data as L(| f |) does, in addition to guidance about labeling
through p̂ to gain a higher discriminative power.

3. Computation

In this section, we implement the proposed semisupervised method through an iterative scheme as
well as a nonconvex optimization technique.

3.1 Iterative Scheme

Effectiveness of Û depends largely on the accuracy of p̂ in estimating p. Given an estimate p̂(0), (2)
yields an estimate f̂ (1), which leads to a new estimate p̂(1) through Algorithm 0 below. The p̂(1) is
expected to be more accurate than p̂(0) for p because additional information from unlabeled data has
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been used in estimation of f̂ (1) through p̂(0) and additional smoothness structure has been used in
Algorithm 0 in estimation of p̂(1) given f̂ (1). Specifically, an improvement in the process from p̂(0)

to f̂ (1) and that from f̂ (1) to p̂(1) are assured by Assumptions B and D in Section 5.1, respectively,
which are a more general version of the clustering assumption and a smoothness assumption of p.
In other words, the marginal information from unlabeled data has been effectively incorporated in
each iteration of Algorithm 1 for improving estimation accuracy of f̂ and p̂.

Detailed implementation of the preceding scheme as well as the conditional probability estima-
tion are summarized as follows.
Algorithm 0: (Conditional probability estimation; Wang, Shen and Liu, 2008)
Step 1. Specify m and initialize %t = (t−1)/m, for t = 1, . . . ,m+1.
Step 2. Train weighted margin classifiers f̂%t by solving

min
f∈F

Cn−1
(

(1−%t) "
yi=1

L(yi f (xi))+%t "
yi=−1

L(yi f (xi))

)

+ J( f ),

with 1−%t associated with positive instances and %t associated with negative instances.
Step 3. Estimate labels of x by sign( f̂%t (x)).
Step 4. Sort sign{ f̂%t (x)}, t = 1, . . . ,m+ 1, to compute %∗ = max

{

%t : sign( f̂%t (x)) = 1
}

, %∗ =
min

{

%t : sign( f̂%t (x)) = −1
}

. The estimated class probability is p̂(x) = 1
2(%

∗ +%∗).
Algorithm 1: (Efficient semisupervised learning)
Step 1. (Initialization) Given any initial classifier sign( f̂ (0)), compute p̂(0) through Algorithm 0.
Specify precision tolerance level &.
Step 2. (Iteration) At iteration k+ 1; k = 0,1, · · · , minimize s( f ) in (2) for f̂ (k+1) with Û = Û (k)

defined by p̂ = p̂(k) there. This is achieved through sequential QP for the !-loss. Details for
sequential QP are deferred to Section 3.2. Compute ˆ̃p(k+1) throughAlgorithm 0, based on complete
data with unknown labels imputed by sign( f̂ (k+1)). Define p̂(k+1) =max(p̂(k), ˆ̃p(k+1))when f̂ (k+1) ≥
0 and min(p̂(k), ˆ̃p(k+1)) otherwise.
Step 3. (Stopping rule) Terminate when |s( f̂ (k+1))− s( f̂ (k))| ≤ &|s( f̂ (k))|. The final solution f̂C is
f̂ (K), with K the number of iterations to termination in Algorithm 1.

Theorem 2 (Monotonicity) s( f̂ (k)) is non-increasing in k. As a consequence, Algorithm 1 con-
verges to a stationary point s( f̂ (')) in that s( f̂ (k)) ≥ s( f̂ (')). Moreover, Algorithm 1 terminates
finitely.

Algorithm 1 differs from the EM algorithm and its variant MM algorithm (Hunter and Lange,
2000) in that little marginal information has been used in these algorithms as argued in Zhang and
Oles (2000). Algorithm 1 also differs from Yarowsky’s algorithm (Yarowsky, 1995; Abney, 2004)
in that Yarowsky’s algorithm solely relies on the strength of the estimated p̂, ignoring the potential
information from the clustering assumption.

There are several important aspects of Algorithm 1. First, loss L(·) in (2) may not be a likeli-
hood regardless of if labeling missingness occurs at random. Secondly, the monotonicity property,
as established in Theorem 2, is assured by constructing p̂(k+1) to satisfy (p̂(k+1) − p̂(k)) f̂ (k+1) ≥ 0,
as opposed to the property of likelihood in the EM algorithm. Most importantly, the smoothness
and clustering assumptions have been used in estimating p, and thus semisupervised learning. This
is in contrast to the EM, where only likelihood is used in estimating p in a supervised manner.
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Finally, we note that in Step 2 of Algorithm 1, given p̂(k), minimization in (2) involves non-
convex minimization when L(·) is !-loss. Next we shall discuss how to solve (2) for f̂ (k+1) through
difference convex (DC) programming for nonconvex minimization.

3.2 Nonconvex Minimization

This section develops a nonconvex minimization method based on DC programming (An and Tao,
1997) for (2) with the !-loss, which was previously employed in Liu, Shen and Wong (2005) for
supervised !-learning. As a technical remark, we note that DC programming has a high chance to
locate an &-global minimizer (An and Tao, 1997), although it can not guarantee globality. In fact,
when combined with the method of branch-and-bound, it yields a global minimizer, see Liu et al.
(2005). For a computational consideration, we shall use the DC programming algorithm without
seeking an exact global minimizer.

Key to DC programming is decomposing the cost function s( f ) in (2) with L(z) = !(z) into a
difference of two convex functions as follows:

s( f ) = s1( f )− s2( f ); (3)

s1( f ) = C
(

n−1l
nl
"
i=1

!1(yi f (xi))+n−1u
n

"
j=nl+1

Û (k)
!1 ( f (x j))

)

+ J( f );

s2( f ) = C
(

n−1l
nl
"
i=1

!2(yi f (xi))+n−1u
n

"
j=nl+1

Û (k)
!2 ( f (x j))

)

,

where Û (k)
!t ( f (x j)) = p̂(k)(x j)!t( f (x j)) + (1− p̂(k)(x j))!t(− f (x j)); t = 1,2, !1 = 2(1− z)+ and

!2 = 2(−z)+. Here !1 and !2 are obtained through a convex decomposition of ! = !1−!2 as
displayed in Figure 2.

With these decompositions, we treat (2) with the !-loss and p̂ = p̂(k) by solving a sequence of
quadratic problems described in Algorithm 2.
Algorithm 2: (Sequential QP)
Step 1. (Initialization) Set initial f̂ (k+1,0) to be the solution of min f s1( f ). Specify precision toler-
ance level & as in Algorithm 1.
Step 2. (Iteration) At iteration l+1, compute f̂ (k+1,l+1) by solving

min
f

(

s1( f )−〈wf ,(s2( f̂ (k+1,l))〉
)

, (4)

where (s2( f (k+1,l)) is a gradient vector of s2( f ) at wf̂ (k+1,l) .
Step 3. (Stopping rule) Terminate when |s( f̂ (k+1,l+1))− s( f̂ (k+1,l))|≤ &|s( f̂ (k+1,l))|.
Then the estimate f̂ (k+1) is the best solution among f̂ (k+1,l); l = 0,1, · · · .

In (4), gradient (s2( f (k+1,l)) is defined as the sum of partial derivatives of s2 over each observa-
tion, with (!2(z) = 0 if z > 0 and (!2(z) = −2 otherwise. By the definition of (s2( f (k+1,l)) and
convexity of s2( f (k+1,l)), (4) gives a sequence of non-increasing upper envelops of (3), which can
be solved via their dual forms.

The speed of convergence of Algorithm 2 is super-linear, following the proof of Theorem 3 in
Liu et al. (2005). This means that the number of iterations required for Algorithm 2 to achieve the
precision & is o(log(1/&)).
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Figure 2: Plot of !, !1 and !2 for the DC decomposition of !=!1−!2. Solid, dotted and dashed
lines represent !, !1 and !2, respectively.

4. Numerical Comparison

This section examines effectiveness of the proposed method through numerical examples. A test
error, averaged over 100 independent simulation replications, is used to measure a classifier’s gen-
eralization performance. For simulation comparison, the amount of improvement of our method
over sign( f̂ (0)) is defined as the percent of improvement in terms of the Bayesian regret

(T (Before)−Bayes)− (T (After)−Bayes)
T (Before)−Bayes

, (5)

where T (Before), T (After), and Bayes denote the test errors of sign( f̂ (0)), the proposed method
based on initial classifier sign( f̂ (0)), and the Bayes error. The Bayes error is the ideal performance
and serves as a benchmark for comparison, which can be computed when the distribution is known.
For benchmark examples, the amount of improvement over sign( f̂ (0)) is defined as

T (Before)−T (After)
T (Before)

, (6)

which actually underestimates the amount of improvement in absence of knowledge of the Bayes
error.

Numerical analyses are conducted in R2.1.1. In linear learning, K(x,y) = 〈x,y〉; in Gaussian
kernel learning, K(x,y) = exp(−‖x−y‖2

)2 ), where ) is set to be the median distance between posi-
tive and negative classes to reduce computational cost for tuning )2, see Jaakkola, Diekhans and
Haussler (1999).
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4.1 Simulations and Benchmarks

Two simulated and five benchmark data sets are examined, based on four state-of-the-art classifiers
sign( f̂ (0))’s. They are SVM (with labeled data alone), TSVM (TSVMDCA; Wang, Shen and Pan,
2007) , and the methods of Wang and Shen (2007) with the hinge loss (SSVM) and with the !-
loss (SPSI), where SSVM and SPSI compare favorably against their competitors. Corresponding
to these methods, our method, with m = n1/2 and & = 10−3, yields four semisupervised classifiers
denoted as ESVM, ETSVM, ESSVM and ESPSI.

4.1.1 SIMULATED EXAMPLES

Examples 1 and 2 are taken from Wang and Shen (2007), where 200 and 800 labeled instances are
randomly selected for training and testing. For training, 190 out 200 instances are randomly chosen
for removing their labels. Here the Bayes errors are 0.162 and 0.089, respectively.

4.1.2 BENCHMARKS

Six benchmark examples include Wisconsin breast cancer (WBC), Pima Indians diabetes (PIMA),
HEART, MUSHROOM, Spam email (SPAM) and Brain computer interface (BCI). The first five
datasets are available in the UCI Machine Learning Repository (Blake and Merz, 1998) and the
last one can be found in Chapelle et al. (2006). WBC discriminates a benign breast tissue from
a malignant one through 9 diagnostic characteristics; PIMA differentiates between positive and
negative cases for female diabetic patients of Pima Indian heritage based on 8 biological or diag-
nostic attributes; HEART concerns diagnosis status of the heart disease based on 13 clinic attributes;
MUSHROOM separates an edible mushroom from a poisonous one through 22 biological records;
SPAM identifies spam emails using 57 frequency attributes of a text, such as frequencies of partic-
ular words and characters; BCI concerns the difference of brain images when imagining left-hand
and right-hand movements, based on 117 autoregressive model parameters fitted over human’s elec-
troencephalography.

Instances in WBC, PIMA, HEART, and MUSHROOM are randomly divided into two halves
with 10 labeled and 190 unlabeled instances for training, and the remaining 400 for testing. In-
stances in SPAM are randomly divided into halves with 20 labeled and 380 unlabeled instances
for training, and the remaining instances for testing. Twelve splits for BCI have already given
at http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html, with 10 labeled and 390 unlabeled
instances while no instance for testing. An averaged error rate over the unlabeled set is used in BCI
example to approximate the test error.

In each example, the smallest test errors of all methods in comparison are computed over 61
grid points {10−3+k/10; k = 0, · · · ,60} for tuning C in (2) through a grid search. The results are
summarized in Tables 1-2.

As suggested in Tables 1-2, ESVM, ETSVM, ESSVM and ESPSI perform no worse than their
counterparts in almost all examples, except ESVM in SPAM where the performance is slightly
worse but indistinguishable from its counterpart. The amount of improvement, however, varies over
examples and different types of classifiers. In linear learning, the improvements of the proposed
method are from 1.0% to 51.7% over its counterparts, except in SPAM where ESVM performs
slightly worse than SVM; in kernel learning, the improvements range from 0.0% to 23.2% over its
counterparts. Overall, large improvement occurs for less accurate initial classifiers when they are
sufficiently accurate. However, if the initial classifier is too accurate, the potential for an improve-
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Data Example 1 Example 2 WBC PIMA HEART MUSHROOM SPAM BCI1
Size 1000 × 2 1000 × 2 682 × 9 768 × 8 303 × 13 8124 × 22 4601 × 57 400 × 117
SVM .345(.0081) .333(.0129) .053(.0071) .328(.0092) .284(.0085) .232(.0135) .216(.0097) .479(.0059)
ESVM .281(.0143) .297(.0177) .031(.0007) .320(.0059) .214(.0066) .172(.0084) .217(.0178) .474(.0052)
Improv. 35.0% 14.8% 41.5% 2.4% 24.6% 25.9% -0.5% 1.0%
TSVM .220(.0103) .203(.0088) .037(.0024) .314(.0086) .270(.0082) .206(.113) .196(.0132) .479(.0054)
ETSVM .190(.0074) .147(.0131) .029(.0009) .309(.0063) .211(.0062) .153(.0054) .179(.0101) .474(.0076)
Improv. 51.7% 49.1% 21.6% 1.6% 21.9% 25.7% 8.7% 1.0%
SSVM .188(.0084) .129(.0031) .032(.0025) .307(.0054) .240(.0074) .186(.0095) .191(.0114) .479(.0071)
ESSVM .182(.0065) .124(.0034) .028(.0006) .293(.0029) .205(.0059) .162(.0054) .169(.0107) .474(.0041)
Improv. 23.1% 12.5% 12.5% 4.6% 14.6% 11.8% 11.5% 1.0%
SPSI .184(.0084) .128(.0084) .029(.0022) .291(.0032) .232(.0067) .184(.0095) .189(.0107) .476(.0068)
ESPSI .182(.0065) .123(.0029) .027(.0006) .284(.0026) .181(.0052) .137(.0067) .167(.0107) .471(.0046)
Improv. 9.1% 12.8% 6.9% 2.4% 22.0% 25.5% 11.6% 1.1%
SVMc .164(.0084) .115(.0032) .027(.0020) .238(.0011) .176(.0031) .041(.0018) .095(.0022) .173(.0012)2

Table 1: Linear learning. Averaged test errors as well as estimated standard errors (in parenthesis)
of ESVM, ETSVM, ESSVM, ESPSI, and their initial counterpartsand testing samples, in
the simulated and benchmark examples. SVMc denotes the performance of SVM with
complete labeled data. Here the amount of improvement is defined in (5) or (6).

Data Example 1 Example 2 WBC PIMA HEART MUSHROOM SPAM BCI 1
Size 1000 × 2 1000 × 2 682 × 9 768 × 8 303 × 13 8124 × 22 4601 × 57 400 × 117
SVM .385(.0099) .347(.0119) .047(.0038) .353(.0089) .331(.0094) .217(.0135) .226(.0108) .488(.0073)
ESVM .368(.0077) .322(.0109) .039(.0067) .335(.0035) .308(.0107) .187(.0118) .212(.0104) .482(.0076)
Improv. 7.6% 9.7% 17.0% 5.1% 6.9% 13.8% 6.2% 1.2%
TSVM .232(.0122) .205(.0091) .037(.0015) .330(.0107) .281(.0113) .185(.0080) .192(.0110) .484(.0087)
ETSVM .216(.0090) .187(.0084) .030(.0005) .304(.0028) .263(.0094) .171(.0093) .181(.0106) .484(.0086)
Improv. 22.9% 15.5% 18.9% 7.9% 6.4% 7.6% 5.7% 0.0%
SSVM .201(.0072) .175(.0092) .030(.0005) .304(.0044) .226(.0063) .173(.0126) .189(.0120) .479(.0080)
ESSVM .201(.0072) .170(.0083) .030(.0005) .304(.0042) .223(.0054) .147(.0105) .170(.0103) .476(.0085)
Improv. 0.0% 5.8% 0.0% 0.0% 1.3% 15.0% 10.1% 0.6%
SPSI .200(.0069) .175(.0092) .030(.0005) .295(.0037) .215(.0057) .164(.0123) .189(.0112) .475(.0072)
ESPSI .198(.0072) .169(.0082) .030(.0005) .294(.0033) .215(.0054) .126(.0083) .169(.0091) .475(.0081)
Improv. 1.0% 7.0% 0.0% 0.3% 0.0% 23.2% 10.6% 0.0%
SVMc .196(.0015) .151(.0021) .030(.0004) .254(.0013) .196(.0031) .021(.0014) .099(.0018) .280(.0015)2

Table 2: Gaussian kernel learning. Averaged test errors as well as estimated standard errors (in
parenthesis) of ESVM, ETSVM, ESSVM, ESPSI, and their initial counterpartsin the sim-
ulated and benchmark examples. Here the amount of improvement is defined in (5) or
(6).

ment becomes small or null, such as the cases of SSVM and SPSI with Gaussian kernel in PIMA.
If the initial classifier is too poor, then no improvement may occur. This is the case for ESVM with
linear kernel in SPAM, where ESVM performs worse than SVM with nl = 10 labeled data alone.
This suggests that a better initial estimate should be used together with unlabeled data.

In summary, we recommend SPSI to be an initial classifier for f̂ (0) based on its overall perfor-
mance across all the examples. Moreover, ESPSI nearly recovers the classification performance of
its counterpart SVM with complete labeled data in the two simulated examples, WBC and HEART.

4.2 Gene Function Prediction Through Expression Profiles

This section applies the proposed method to predict gene functions through gene data in Hughes
et al. (2000), consisting of expression profiles of a total of 6316 genes for yeast S. cerevisiae from

1. The error rate is computed on the unlabeled data and averaged over twelve splits.
2. This error rate is approximated by the 10-fold cross validation.
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300 microarray experiments. In this case almost half of the genes have unknown functions although
gene expression profiles are available for almost the entire yeast genome.

Our specific focus is predicting functional categories defined by the MIPS, a multifunctional
classification scheme (Mewes et al., 2002). For simplicity, we examine two functional categories,
namely “transcriptional control” and “mitochondrion”, with 334 and 346 annotated genes, respec-
tively. The goal is to predict gene functional categories for genes annotated within these two cate-
gories by training our semisupervised classifier on expression profiles of genes, where some genes
are treated as if their functions are unknown to mimic the semisupervised scenario in complete
dataset. At present, detection of novel class is not permitted in our formulation, which remains to
be an open research question.

For the purpose of evaluation, we divide the entire dataset into two sets of training and testing.
The training set involves a random sample of nl = 20 labeled and nu = 380 unlabeled gene profiles,
while the testing set contains 280 remaining profiles.

SVM TSVM SSVM SPSI
I .298(.0066) .303(.0087) .270(.0075) .272(.0063)

Linear E .278(.0069) .272(.0080) .261(.0052) .252(.0112)
Improv. 6.7% 14.0% 3.3 % 7.4%

I .290(.0081) .287(.0027) .284(.0111) .283(.0063)
Gaussian E .279(.0085) .279(.0076) .275(.0086) .256(.0082)

Improv. 3.8% 2.8% 3.2% 9.5%

Table 3: Averaged test errors as well as estimated standard errors (in parenthesis) of ESVM,
ETSVM, ESSVM, ESPSI, and their initial counterparts, over 100 pairs of training and
testing samples, in gene function prediction. Here I stands for an initial classifier, E stands
for our proposed method with the initial method, and the amount of improvement is de-
fined in (6).

As indicated in Table 3, ESVM, ETSVM, ESSVM and ESPSI all improve predictive accuracy
of their initial counterparts in linear learning and Gaussian kernel learning. It appears that ESPSI
performs best. Most importantly, it demonstrates predictive power of the proposed method for
predicting which of the two categories a gene belongs to.

5. Statistical Learning Theory

In the literature, several theories have been developed to understand the problem of semisuper-
vised learning, including Rigollet (2007) and Singh, Nowak and Zhu (2008). Both the theories
rely on a different clustering assumption that homogeneous labels are assumed over local clusters.
Based on the original clustering assumption, as well as a smoothness assumption on the condi-
tional probability p(x), this section develops a novel statistical learning theory. Specifically, finite-
sample and asymptotical upper bounds of the generalization error are derived for ESPSI f̂C defined
by the !-loss in Algorithm 1. The generalization accuracy is measured by the Bayesian regret
e( f̂C, f̄.5) = GE( f̂C)−GE( f̄.5) ≥ 0 with GE( f ) defined in Section 2.2.
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5.1 Statistical Learning Theory

The error bounds of e( f̂C, f̄.5) are expressed in terms of complexity of the candidate class F , the
sample size n, tuning parameter * = (nC)−1, the error rate of the initial classifier +(0)

n , and the
maximum number of iteration K in Algorithm 1. The results imply that ESPSI, without knowing
labels of the unlabeled data, enables to recover the classification accuracy of !-learning based on
complete data under regularity conditions.

We first introduce some notations. Let L(z) = !(z) be the !-loss. Define the margin loss
V%( f ,Z) for unequal cost classification to be S%(y)L(y f (x)), with cost 0 < % < 1 for the positive
class and S%(y) = 1− % if y = 1, and % otherwise. Let eV%( f , f̄%)E(V%( f ,Z)−V%( f̄%,Z)) ≥ 0 for
f ∈ F with respect to unequal cost %, where f̄%(x) = sign( f%(x)) = argmin f EV%( f ,Z) is the Bayes
rule, with f%(x) = p(x)−%.
Assumption A: (Approximation) For any % ∈ (0,1), there exist some positive sequence sn → 0 as
n→ ' and f ∗% ∈ F such that eV%( f ∗% , f̄%) ≤ sn.

Assumption A is an analog of that of Shen et al. (2003), which ensures that the Bayes rule f̄%
can be well approximated by elements in F .
Assumption B. (Conversion) For any % ∈ (0,1), there exist constants 0 < #, ,% < ', 0 ≤ - < ',
ai > 0; i= 0,1,2, such that for any sufficiently small +> 0,

sup
{ f∈F :eV.5 ( f , f̄.5)≤+}

e( f , f̄.5) ≤ a0+#, (7)

sup
{ f∈F :eV% ( f , f̄%)≤+}

‖sign( f )− sign( f̄%)‖1 ≤ a1+,% , (8)

sup
{ f∈F :eV% ( f , f̄%)≤+}

Var(V%( f ,Z)−V%( f̄%,Z)) ≤ a2+-. (9)

Assumption B describes local smoothness of the Bayesian regret e( f , f̄.5) in terms of a first-
moment function ‖sign( f )− sign( f̄%)‖1 and a second-moment function Var(V%( f ,Z) −V%( f̄%,Z))
relative to eV%( f , f̄%) with respect to unequal cost %. Here the degrees of smoothness are defined by
exponents #, ,% and -. Note that (7) and (9) are related to the “no noise assumption” of Tsybakov
(2004); and (8) has been used in Wang et al. (2008) for quantifying the error rate of probability
estimation, which plays a key role in controlling the error rate of ESPSI. For simplicity, denote ,.5
and inf%(=0.5{,%} as , and . respectively, where , quantifies the clustering assumption through the
degree to which the positive and negative clusters are distinguishable, and .measures the conversion
rate between the classification and probability estimation accuracies.

For Assumption C, we define a complexity measure—the L2-metric entropy with bracketing,
describing the cardinality of F . Given any & > 0, denote {( f lr , f ur )}Rr=1 as an &-bracketing function
set of F if for any f ∈ F , there exists an r such that f lr ≤ f ≤ f ur and ‖ f lr − f ur ‖2 ≤ &;r = 1, · · · ,R.
Then the L2-metric entropy with bracketing HB(&,F ) is defined as the logarithm of the cardinality
of the smallest &-bracketing function set of F . See Kolmogorov and Tihomirov (1959) for more
details.

Define F (k) = {L( f ,z)−L( f ∗% ,z) : f ∈F ,J( f )≤ k} to be a space defined by candidate decision
functions, with J( f ) = 1

2‖ f‖
2
K . Let J∗% = max(J( f ∗% ),1). In (11), we specify an entropy integral to

establish a relationship between the complexity of F (k) and convergence speed &n for the Bayesian
regret.
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Assumption C. (Complexity) For some constants ai > 0; i= 3, · · · ,5 and &n > 0,

sup
k≥2

/(&n,k) ≤ a5n1/2, (10)

where /(&,k) =
R a1/23 Mmin(1,-)/2

a4M H1/2B (w,F (k))dw/M, andM=M(&,*,k) =min(&2+*(k/2−1)J∗%,1).
Assumption D. (Smoothness of p(x)) There exist some constants 0≤ $≤ 1, d ≥ 0 and a6 > 0 such
that ‖0 j(p)‖' ≤ a6 for j = 0,1, · · · ,d, and |0d(p(x1))−0d(p(x2))|≤ a6‖x1− x2‖$1 +d/m for any
‖x1− x2‖1 ≤ + with some sufficiently small + > 0, where 0 j is the j-th order difference operator
and m is defined as in Algorithm 0.

Assumption D specifies the degree of smoothness of the conditional density p(x).
Assumption E. (Degree of least favorable situation) There exist some constants 0 ≤ 1 ≤ ' and
a7 > 0 such that P

(

X : min(p(X),1− p(X)) ≤ +
)

≤ a7+1 for any sufficiently small +> 0.
Assumption E describes the behavior of p(x) near 0 and 1, corresponding to the least favorable

situation, as described in Section 2.3.

Theorem 3 In addition to Assumptions A-E, let the precision parameter m be [+−,.n ] and +2n =
min(max(&2n,16sn),1). Then for ESPSI f̂C, there exist some positive constants a8-a10 such that

P
(

e( f̂C, f̄.5) ≥ a10max(+2#n ,(a112n+
(0)
n )2#max(1,B

K))
)

≤

P
(

eL( f̂
(0)
.5 , f̄.5) ≥ 2a112n(+

(0)
n )2

)

+3.5K exp(−a8nl(*J∗.5)max(1,2−-))+

3.5K exp(−a9n(*J∗%)max(1,2−-))+2K2−min(1,,)n .

Here B= (1+1)(d+$),.
2(1+max(0,1−,)1)(d+$+1) , a11 =max

(

1,2
3.(d+$)
d+$+1 +2a

(2.+1)(d+$)
d+$+1

1

)

and 2n > 0 is any real number
satisfying a112n+2n ≤ 4*J∗% .

Theorem 3 provides a finite-sample probability bound for the Bayesian regret e( f̂C, f̄.5), where
the parameter B measures the level of difficulty of a semisupervised problem, with small value of B
indicating more difficulty. Note that the value of B is proportional to those of #, ,, ., d, $ and 1,
as defined in Assumptions A-E. In fact, #, , and . quantify the local smoothness of the Bayesian
regret e( f , f̄.5), and d, $ and 1 describe the smoothness of p(x) as well as its behavior near 0 and 1.

Next, by letting nl,nu tending infinity, we obtain the rates of convergence of ESPSI in terms of
the error rate +2#n of its supervised counterpart !-learning based on complete data, and the initial
error rate +(0)

n , B, and the maximum number K of iteration.

Corollary 4 Under the assumptions of Theorem 3, as nu,nl → ',

|e( f̂C, f̄.5)| = Op

(

max(+2#n ,(2n+
(0)
n )2#max(1,B

K))
)

,

E|e( f̂C, f̄.5)| = O
(

max(+2#n ,(2n+
(0)
n )2#max(1,B

K))
)

,

provided that the initial classifier converges in that P
(

eL( f̂
(0)
.5 , f̄.5) ≥ 2a112n(+

(0)
n )2

)

→ 0, with any

slow varying sequence 2n → ' and 2n+
(0)
n → 0, and the tuning parameter * is chosen such that

n(*J∗%)max(1,2−-) and nl(*J∗.5)max(1,2−-) are bounded away from 0.
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Note that there are two important cases defined by the value of B. When B> 1, ESPSI achieves
the convergence rate +2#n of its supervised counterpart !-learning based on complete data, c.f., The-
orem 1 of (Shen and Wang, 2007). When B≤ 1, ESPSI performs no worse than its initial classifier
because (+(0)

n )2#max(1,B
K)(+(0)

n )2#. Therefore, it is critical to compute the value of B. For instance,
if the two classes are perfectly separated and located very densely within respective regions, then
B = ' and our method recovers the rate +2#n ; if the two classes are completely indistinguishable,
then B= 0 and our method yields the rate (+(0)

n )2.
For the optimality claimed in Section 2.2, we show that Û( f ) is sufficiently close toU( f ) so that

optimality of U( f ) can be translated into Û( f ). As a result, minimization of Û( f ) over f mimics
that ofU( f ).

Corollary 5 (Optimality) Under the assumptions of Corollary 4, as nu,nl → ',

sup
f∈F

‖Û( f )−U( f )‖1 = Op

(

max(+,.n ,(2n+
(0)
n ),.max(1,B

K))
)

,

where Û( f ) is estimated U( f ) loss with p estimated based on f̂C.

To argue that the approximation error rate of Û( f ) to U( f ) is sufficiently small, note that f̂C
obtained from minimizing (2) recovers the classification error rate of its supervised counterpart
based on complete data, as suggested by Corollary 4. Otherwise, a poor approximation precision
could impede the error rate of ESPSI.

In conclusion, ESPSI, without knowing label values of unlabeled instances, enables to recon-
struct the classification and estimation performance of !-learning based on complete data in rates
of convergence, when possible.

5.2 Theoretical Example

We now apply Corollary 4 to linear and kernel learning examples to derive generalization errors rates
for ESPSI in terms of the Bayesian regret. In all cases, ESPSI (nearly) achieves the generalization
error rates of !-learning for complete data when unlabeled data provides useful information, and
yields no worse performance then its initial classifier otherwise.

Consider a learning example in which X = (X·1,X·2) are independent, following marginal dis-
tribution q(x) = 1

2(31+1)|x|31 for x ∈ [−1,1] for 31 > 0. Given X = 1, P(Y = 1|X = x) = p(x) =
2
5 sign(x·1)|x·1|

32 + 1
2 with 32 > 0. Note that f%(x) is x·1− sign(%− 1

2)(
5
4 |2%− 1|)

1
32 , which in turn

yields the vertical line as the decision boundary for classification with unequal cost %. The value
of 3i; i = 1,2 describe the behavior of the marginal distribution around the origin, and that of the
conditional distribution p(x) in the neighborhood of 1/2, respectively.

For illustration, Figure 3 displays the marginal and conditional densities from the data distribu-
tion with 31 = 2 and 32 = 1. It is evident that the clustering assumption (Assumption B) is met
since the neighborhood of f.5(x) has low density as showed in the left panel of Figure 3, and the
smoothness assumption (Assumption D) and the boundedness assumption of p(x) (Assumption
E) are met as well since p(x) is a hyperplane bounded by (0.1,0.9) as showed in the right panel of
Figure 3. Technical details of verifying assumptions are deferred to Appendix B.
5.2.1 LINEAR LEARNING

Here it is natural to consider linear learning in which candidate decision functions are linear in
F = { f (x) = (1,xT )w : w ∈ R 3,x= (x·1,x·2) ∈ R 2}.
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X1
X2

q(x1,x2)

X1

X2

p(x1,x2)

Figure 3: Plots of the marginal and conditional densities from the data distribution with 31 = 2 and
32 = 1.

For ESPSI f̂C, we choose +
(0)
n = n−1l lognl , the convergence rate of supervised linear !-learning,

2n → ' to be an arbitrarily slow sequence and C = O((logn)−1). An application of Corollary 4
yields that E|e( f̂C, f̄.5)|=O(max(n−1 logn, (n−1l (lognl)2)max(1,2B

K))), with B= (1+31)2
232(1+31+32) . When

B > 1, equivalently, 31+ 1 > (1+
√
3)32, this rate reduces to O(n−1 logn) when K is sufficiently

large. Otherwise, the rate is O(n−1l lognl).

The fast rate n−1 logn is achieved when 31 is large but 32 is relatively small. Interestingly,
large 31 value implies that q(x) has a low density around x = 0, corresponding to the low density
separation assumption in Chapelle and Zien (2005) for a semisupervised problem, whereas large
31 value and small 32 value indicate that p(x) has a small probability to be close to the decision
boundary p(x) = 1/2 for a supervised problem.

5.2.2 KERNEL LEARNING

Consider a flexible representation defined by a Gaussian kernel, where F = {x ∈ R 2 : f (x)wf ,0+
"n
k=1wf ,kK(x,xk) : wf = (wf ,1, · · · ,wf ,n)T ∈ R n} by the representation theorem of RKHS, see
Wahba (1990). Here K(x,z) = exp(−‖x−z‖2

2)2 ) is the Gaussian kernel.

Similarly, we choose +(0)
n = n−1l (lognl)3 to be the convergence rate of supervised !-learning

with Gaussian kernel, 2n→' to be an arbitrarily slow sequence andC=O((logn)−3). By Corollary
4, E|e( f̂C, f̄.5)| = O(max((n−1l (lognl)3)max(1,2B

K), n−1(logn)3)) = O(n−1(logn)3) when 31 + 1 >
232(1+32) and K is sufficiently large, and O(n−1l (lognl)3) otherwise. Again, large 31 and small
32 lead to the fast rate.
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6. Summary

This article introduces a large margin semisupervised learning method through an iterative scheme
based on an efficient loss for unlabeled data. In contrast to most methods assuming a relationship
between the conditional and the marginal distributions, the proposed method integrates labeled and
unlabeled data through using the clustering structure of unlabeled data as well as the smoothness
structure of the estimated p. The theoretical and numerical results suggest that the method compares
favorably against top competitors, and achieves the desired goal of reconstructing the classification
performance of its supervised counterpart on complete labeled data.

With regard to tuning parameter C, further investigation is necessary. One critical issue is how
to use unlabeled data to enhance the accuracy of estimating the generalization error so that adaptive
tuning is possible.
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Appendix A. Technical Proofs

Proof of Lemma 1: Let U( f (x)) = E(L(Y f (X))|X = x). By orthogonality, E(L(Y f (X))−
T ( f (X)))2 = E(L(Y f (X))−U( f (X)))2+E(U( f (X))−T ( f (X)))2, implying that U( f (x)) mini-
mizes E(L(Y f (X))−T ( f (X)))2 over any T . Then the proof follows from the fact that EL(Y f (X))=
E(E(L(Y f (X))|X)).
Proof of Theorem 2: For clarity, we write s( f̂ ) as s( f̂ , p̂) in this proof. Then it suffices to show that
s( f̂ (k), p̂(k))≥ s( f̂ (k+1), p̂(k+1)). First, s( f̂ (k), p̂(k))≥ s( f̂ (k+1), p̂(k)) since f̂ (k+1) minimizes s( f , p̂(k)).
Then s( f̂ (k+1), p̂(k))− s( f̂ (k+1), p̂(k+1)) = "n

j=nl+1(p̂
(k) − p̂(k+1))(L( f̂ (k+1)(x j))− L(− f̂ (k+1)(x j))),

which is nonnegative by the definition of p̂(k+1).
Proof of Theorem 3: The proof involves two steps. In Step 1, given f (k), we derive a probability
upper bound for ‖ p̂(k) − p‖1, where p̂(k) is obtained from Algorithm 0. In Step 2, based on the
result of Step 1, the difference between the tail probability of e%( f̂ (k+1)% , f̄%) and that of e%( f̂

(k)
% , f̄%)

is bounded through a large deviation inequality of Wang and Shen (2007); k = 0,1, · · · . This in
turn results in a faster rate for e( f̂ (k+1).5 , f̄.5), thus e( f̂C, f̄.5). In this proof, we denote labeled and
unlabeled samples by {(Xi,Yi)}nli=1 and {Xj}nj=nl+1 to indicate that they are all random variables.
Step 1: First we bound the probability of the percentage of wrongly labeled unlabeled instances

by sign( f̂ (k)) by the tail probability of eV.5( f̂ (k), f̄.5). For this purpose, defineDf = {sign( f̂ (k)(Xj)) (=
sign( f̄.5(Xj));nl +1≤ j ≤ n} to be the set of unlabeled data that are wrongly labeled by sign( f̂ (k)),
with n f = #{Df } being its cardinality. According to Markov’s inequality, the fact that E(

n f
n ) =

nu
n E‖sign( f̂

(k+1))− sign( f̄.5)‖1, and (8), we have

P
(n f
n

≥ a1(a1122n(+
(k)
n )2),

)

≤ P
(

‖sign( f̂ (k))− sign( f̄.5)‖1 ≥ a1(a112n(+
(k)
n )2),

)

+P
(n f
n

≥ 2,n‖sign( f̂ (k+1))− sign( f̄.5)‖1
)

≤ P
(

eV.5( f̂
(k), f̄.5) ≥ a112n(+

(k)
n )2

)

+2−,n . (11)
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Next we bound the tail probability of ‖ p̂(k) − p‖1 based on “complete” data consisting of un-
labeled data assigned by sign( f̂ (k)). An application of similar treatment to that in the proof of
Theorem 3 of Wang et al. (2008) leads to

P
(

‖ p̂(k)− p‖1 ≥8.a2.+11 (a112n+
(k)
n ),.

)

≤

P(∃ j : ‖sign( f̂ (k)% j )− sign( f̄% j)‖1 ≥ 8.a
2.+1
1 (a112n+

(k)
n )2,.),

(12)

with % j = j/1(a112n+
(k)
n )−,.2. By (8), it suffices to bound P(eV%( f̂

(k)
% j , f̄% j) ≥ 8a21(a112n+

(k)
n )2,) for

all % j in what follows.
We introduce some notations to be used. Let Ṽ%( f ,Z) =V%( f ,Z)+*J( f ), and Zj = (Xj,Yj)with

Yj = sign( f̂ (k)(Xj)); nl + 1 ≤ j ≤ n. Define a scaled empirical process En(Ṽ%( f ∗% ,Z)− Ṽ%( f ,Z)) =

n−1
(

"i∈Df +"i/∈Df

)(

Ṽ%( f ∗% ,Zi)−Ṽ%( f ,Zi)−E(Ṽ%( f ∗% ,Zi)−Ṽ%( f ,Zi))
)

≡En(V%( f ∗% ,Z)−V%( f ,Z)).

By the definition of f̂ (k)% and (11),

P
(

eV%( f̂
(k)
% , f̄%) ≥ +2k

)

≤ P
(n f
n

≥ a1(a1122n(+
(k)
n )2),

)

+

P∗
(

sup
Nk

1
n

n

"
i=1

(Ṽ%( f ∗% ,Zi)−Ṽ%( f ,Zi)) ≥ 0,
n f
n

≤ a1(a1122n(+
(k)
n )2),

)

≤ P
(

eV.5( f̂
(k), f̄.5) ≥ a112n(+

(k)
n )2

)

+2−,n + I1, (13)

where Nk = { f ∈ F : eV%( f , f̄%) ≥ +2k}, +2k = 8a21(a112n+
(k)
n )2,, I1 = P∗

(

supNk En(V%( f
∗
% , Z)−

V%( f ,Z))≥ infNk(( f , f ∗% ),
n f
n ≤ a1(a1122n(+

(k)
n )2),

)

, and(( f , f ∗% )=
n f
n Ei∈Df (Ṽ%( f ,Zi)−Ṽ%( f ∗% ,Zi))+

n−n f
n Ei/∈Df (Ṽ%( f ,Zi)−Ṽ%( f

∗
% ,Zi)).

To bound I1, we partition Nk into a union of As,t with

As,t = { f ∈ F : 2s−1+2k ≤ eV%( f , f̄%) < 2s+2k ,2t−1J∗% ≤ J( f ) < 2tJ∗%};
As,0 = { f ∈ F : 2s−1+2k ≤ eV%( f , f̄%) < 2s+2k ,J( f ) < J∗%},

for s, t = 1,2, · · · . Then it suffices to bound the corresponding probability over each As,t . Toward this
end, we need to bound the first and second moments of Ṽ%( f ,Z)−Ṽ%( f ∗% ,Z) over f ∈ As,t . Without
loss of generality, assume that 4sn < +2k < 1, J( f ∗% ) ≥ 1, and thus J∗% =max(J( f ∗% ),1) = J( f ∗% ).

For the first moment, note that (( f , f ∗% ) ≥ eV%( f , f ∗% )− n f
n E|V%( f ,Z)−V%( f ∗% ,Z)+ V̄%( f ,Z)−

V̄%( f ∗% ,Z)|≥ eV%( f , f ∗% )−4 n fn with V̄%( f ,z) = S%(−y)L(−y f (x)). Using the assumption that 4*J( f ∗% )
≤ +2k , and Assumptions A and B, we obtain

inf
As,t
(( f , f ∗% ) ≥ M(s, t) = (2s−1−1/2)+2k +*(2t−1−1)J( f ∗% ),

inf
As,0

(( f , f ∗% ) ≥ (2s−1−3/4)+2k ≥M(s,0) = 2s−3+2k .
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For the second moment, by Assumptions A and B and |V̄%( f ,Z)− V̄%( f̄%,Z)| ≤ 2 for any 0 <
%< 1, we have, for any s, t = 1,2, · · · and some constant a3 > 0,

sup
As,t
Var(V%( f ,Z)−V%( f ∗% ,Z))

≤ sup
As,t

2(n−n f )
n

(

Var(V%( f ,Z)−V%( f̄%,Z))+Var(V%( f ∗% ,Z)−V%( f̄%,Z))
)

+

2n f
n

(

Var(V̄%( f ,Z)−V̄%( f̄%,Z))+Var(V̄%( f ∗% ,Z)−V̄%( f̄%,Z))
)

≤ 2a2M(s, t)-+8a1(a1122n(+
(k)
n )2),+4sn ≤ a3M(s, t)min(1,-) = v2(s, t).

Note that I1 ≤ I2+ I3 with

I2 =
'

"
s,t=1

P∗(sup
As,t

En(V%( f ∗% ,Z)−V%( f ,Z)) ≥M(s, t),n f/n≤ a1(a1122n(+
(k)
n )2),);

I3 =
'

"
s=1

P∗(sup
As,0

En(V%( f ∗% ,Z)−V%( f ,Z)) ≥M(s,0),n f/n≤ a1(a1122n(+
(k)
n )2),).

Then we bound I2 and I3 separately using Lemma 1 of Wang et al. (2007). For I2, we verify
conditions (8)-(10) there. Note that

R v(s,t)
aM(s,t)H

1/2
B (w,F (2w))dw/M(s, t) is non-increasing in s and

M(s, t), we have

Z v(s,t)

aM(s,t)
H1/2B (w,F (2t))dw/M(s, t) ≤

Z aM(1,t)min(1,-)/2

a3M(1,t)
H1/2B (w,F (2t))dw/M(1, t),

which is bounded by /(&2n,2t) with a = 2a4& and &2n ≤ +2k . Then Assumption C implies (8)-(10)
there with & = 1/2, the choices of M(s, t) and v(s, t) and some constants ai > 0; i = 3,4. It then
follows that for some constant 0< 4< 1,

I2 ≤
'

"
s,t=1

3exp
(

−
(1−4)n(M(s, t))2

2(4(v(s, t))2+2M(s, t)/3)

)

≤
'

"
s,t=1

3exp(−a8n(M(s, t))max(1,2−-))

≤
'

"
s,t=1

3exp(−a8n(2s−1+2k +*(2t−1−1)J∗%)max(1,2−-))

≤ 3exp(−a8n(*J∗%)max(1,2−-))/(1− exp(−a8n(*J∗%)max(1,2−-)))2.

Similarly I3≤ 3exp(−a8n(*J∗%)max(1,2−-))/(1−exp(−a8n(*J∗%)max(1,2−-)))2. Combining the bounds
for Ii; i= 2,3, we have I1 ≤ 3.5exp(−a8n(*J∗%)max(1,2−-)). Consequently, by (8), (12) and (13)

P
(

‖ p̂(k)− p‖1 ≥ 8.a2.+11 (a112n+
(k)
n ),.

)

≤

P
(

eV.5( f̂
(k)
.5 , f̄.5) ≥ a112n(+

(k)
n )2

)

+2−,n +3.5exp(−a8n(*J∗%)max(1,2−-)).
(14)
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Step 2: To begin, note that P
(

eV.5( f̂
(k+1)
.5 , f̄.5) ≥ a112n(+

(k+1)
n )2

)

≤ I4+ I5 with

I4 = P
(

eV.5( f̂
(k+1)
.5 , f̄.5) ≥ a112n(+

(k+1)
n )2‖ p̂(k)− p‖1 < 8.a2.+11 (a112n+

(k)
n ),.

)

,

I5 = P
(

‖ p̂(k)− p‖1 ≥ 8.a2.+11 (a112n+
(k)
n ),.

)

,

where a112n(+
(k+1)
n )2 = (a12(a112n+

(k)
n )

(d+$),.
d+$+1 )

1+1
1+max(0,1−,)1 and a12 = 2a1/(d+$+1)

6 (4a7)−
1
1 . By (14), it

suffices to bound I4.
For I4, we need some notations. Let the ideal cost function beV.5( f ,z)+U.5( f (x)), the ideal ver-

sion of (2), where V.5( f ,z) = 1
2L(y f (x)), andU.5( f (x)) = 1

2(p(x)L( f (x))+(1− p(x))L(− f (x))) is
the ideal loss for unlabeled data. Denote by Û (k)

.5 ( f (x)) = 1
2(p̂

(k)(x)L( f (x))+(1− p̂(k)(x))L(− f (x)))
an estimate ofU.5( f (x)) at Step k. So the cost function in (2) can be written as W̃ ( f ,z) =W ( f ,z)+
*J( f ) with W ( f ,z) = V.5( f ,z) +U.5( f (x)). For simplicity, we denote a weighted empirical pro-
cess by En(W ( f ∗.5,z)−W ( f ,z)) = n−1l "nl

i=1
(

V.5( f ∗.5,Zi)−V.5( f ,Zi) −E(V.5( f ∗.5,Z)−V.5( f ,Z))
)

+
n−1u "n

j=nl+1
(

U.5( f ∗.5(Xj))−U.5( f (Xj))−E(U.5( f ∗.5(X))−U.5( f (X)))
)

.
By the definition of f̂ (k+1).5 , we have

I4 ≤ P
(

sup
N′
k

n−1l
nl
"
i=1

(V.5( f ∗.5,Zi)−V.5( f ,Zi))+n−1u
n

"
j=nl+1

(Û (k)
.5 ( f ∗.5(Xj))−

Û (k)
.5 ( f (Xj)))+*(J( f ∗.5)− J( f )) ≥ 0, ‖ p̂(k)− p‖1 < 8.a2.+11 (a112n+

(k)
n ),.

)

,

where N′
k = { f ∈ F : eV.5( f , f̄.5) ≥ a112n(+

(k+1)
n )2}. Then I4 ≤ I6+ I7 with

I6 = P
(

sup
N′
k

n−1u
n

"
j=nl+1

D( f ,Xj) ≥

8
.(d+$)
d+$+1 a

(2.+1)(d+$)
d+$+1

1 2n(eV.5( f , f
∗
.5))

min(1,,)1
1+1 (a112n(+

(k+1)
n )2)

1+max(0,1−,)1
1+1

)

,

I7 = P
(

sup
N′
k

En(W ( f ∗.5,Z)−W ( f ,Z)) ≥ inf
N′
k

E(W̃ ( f ,Z)−W̃ ( f ∗.5,Z))

−8
.(d+$)
d+$+1 a

(2.+1)(d+$)
d+$+1

1 2n(eV.5( f , f
∗
.5))

min(1,,)1
1+1 (a112n(+

(k+1)
n )2)

1+max(0,1−,)1
1+1

)

,

where D( f ,Xj) = Û (k)
.5 ( f ∗.5(Xj))−Û

(k)
.5 ( f (Xj))−U.5( f ∗.5(Xj))+U.5( f (Xj)).

For I6, we note that

E|D( f ,X)| =
1
2
E| p̂(k)(X)− p(X)|

∣

∣L( f ∗.5(X))−L( f (X))−L(− f ∗.5(X))+L(− f (X))
∣

∣

≤
1
2
‖ p̂(k)− p‖'E

(

|L( f ∗.5(X))−L( f (X))|+ |L(− f ∗.5(X))−L(− f (X))|
)

.

It thus suffices to bound ‖ p̂(k) − p‖' and E
(

|L( f ∗.5(X))− L( f (X))|+ |L(− f ∗.5(X))− L(− f (X))|
)

separately.
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To bound ‖ p̂(k) − p‖', note that EJ( f̂
(k)
% j ) is bounded for all % j following the same argument

as in Lemma 5 of Wang and Shen (2007). By Sobolev’s interpolation theorem (Adams, 1975),
‖ p̂(k)‖' ≤ 1 and the fact that | p̂(k,d)(x1)− p̂(k,d)(x2)|≤ sup j | f̂

(k,d)
% j (x1)− f̂ (k,d)% j (x2)|+d(m(k))−1 for

any x1 and x2 based on the construction of p̂(k) with f̂ (k,d)% j = 0d( f̂ (k)% j ), there exists a constant a13
such that ‖ p̂(k,d)‖' ≤ a13 and | p̂(k,d)(x1)− p̂(k,d)(x2)|≤ a13|x1− x2|$+d(m(k))−1 when |x1− x2| is
sufficiently small. Without loss of generality, we assume a13 ≤ a6. By Assumption D and m(k) =

1(a112n+
(k)
n )−,.2, we have
∣

∣| p̂(k,d)(x1)− p(d)(x1)|− |p̂(k,d)(x2)− p(d)(x2)|
∣

∣

≤ |p̂(k,d)(x1)− p̂(k,d)(x2)|+ |p(d)(x1)− p(d)(x2)|≤ 2a6|x1− x2|$+2d(a112n+
(k)
n )

,.(d+$)
d+$+1 .

It then follows from Proposition 6 of Shen (1997) that ‖ p̂(k) − p‖' ≤ 2a
1

d+$+1
6 ‖ p̂(k) − p‖

d+$
d+$+1
1 +

2d(a112n+
(k)
n )

,.(d+$)
d+$+1 ≤ 2a

1
d+$+1
6 (8.a2.+11 )

d+$
d+$+1 (a112n+

(k)
n )

,.(d+$)
d+$+1 .

To bound E
(

|L( f ∗.5(X))−L( f (X))|+ |L(− f ∗.5(X))−L(− f (X))|
)

, we note that

E|V.5( f ,Z)−V.5( f ∗.5,Z)|

=
1
2
E

(

p(X)|L( f ∗.5)−L( f )|+(1− p(X))|L(− f )−L(− f ∗.5)|
)

≥ E
+
2
(

|L( f ∗.5)−L( f )|+ |L(− f )−L(− f ∗.5)|
)

I(min(p(X),1− p(X)) ≥ +)

≥ +
(

E
1
2
(

|L( f ∗.5)−L( f )|+ |L(− f )−L(− f ∗.5)|
)

−2a7+1
)

by Assumption E. With + =
(

E(|L( f ∗.5) − L( f )| + |L(− f ) − L(− f ∗.5)|)/8a7
)1/1, it yields that

E
(

|L( f ∗.5)−L( f )|+ |L(− f )−L(− f ∗.5)|
)

≤ (4a7)−1/1
(

E|V.5( f ,Z)−V.5( f ∗.5,Z)|
)1/1+1, where

E|V.5( f ,Z)−V.5( f ∗.5,Z)|≤ E|V.5( f ,Z)−V.5( f̄.5,Z)|+E|V.5( f ∗.5,Z)−V.5( f̄.5,Z)|
≤ P(sign( f ) (= sign( f̄.5))+E(V.5( f ,Z)−V.5( f̄.5,Z))+

P(sign( f ∗.5) (= sign( f̄.5))+E(V.5( f ∗.5,Z)−V.5( f̄.5,Z))

≤ (eV.5( f , f
∗
.5))

,+ eV.5( f , f
∗
.5)+ s,n + sn ≤ 4(eV.5( f , f

∗
.5))

min(1,,)

by Assumptions A and B. Therefore,

E|D( f ,X)|≤ 8
,(d+$)
d+$+1 a

(2,+1)(d+$)
d+$+1

1 (eV.5( f , f
∗
.5))

min(1,,)1
1+1 (a112n(+

(k+1)
n )2)

1+max(0,1−,)1
1+1

and I6 ≤ 2−1n by Markov’s inequality.
To bound I7, we apply a similar treatment as in bounding I1 in Step 1 to yield that I7 ≤

3.5exp(−a8nl(*J∗.5)max(1,2−-)). Combining the upper bounds of I6 and I7, P(eV.5( f̂
(k+1)
.5 , f̄.5) ≥

a112n(+
(k+1)
n )2) ≤ P(eV.5( f̂

(k)
.5 , f̄.5) ≥ a112n(+

(k)
n )2) + 3.5exp(−a9n(*J∗.5)max(1,2−-))+

3.5exp(−a8nl(*J∗.5)max(1,2−-))+2−,n +2−1n . Iterating this inequality yields that

P
(

eV.5( f̂
(K)
.5 , f̄.5) ≥ (a

2B(d+$+1)
,.(d+$)

12 (a112n)2B−1)
BK+1−1
B−1 (+(0)

n )2B
K
)

≤ P
(

eV.5( f̂
(0)
.5 , f̄.5) ≥ a112n(+

(0)
n )2

)

+3.5K exp(−a8nl(*J∗.5)max(1,2−-))+

3.5K exp(−a9n(*J∗%)max(1,2−-))+K2−,n +K2−1n ,

(15)
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where B= (1+1)(d+$),.
2(1+max(0,1−,)1)(d+$+1) . Then the desired result follows from Assumption B and the fact

that +2k = 8a21(a112n+
(k)
n )2, ≥max(&2n,16sn) = +2n for any k.

Proof of Corollary 4: It follows from Theorem 3 immediately and the proof is omitted.
Proof of Corollary 5: It follows from (14) and Corollary 4 that ‖ p̂C − p‖1 =

Op

(

max(+,.n , (2n+
(0)
n )max(1,1,.B

K))
)

, where p̂C is the estimated probability through f̂C. The desired
results follows from the fact that ‖ÛC( f )−U( f )‖1 ≤ 4‖ p̂C− p‖1.

Appendix B. Verification of Assumptions in Section 5.2

We now verify Assumptions A-E for the theoretical examples in Section 5.2.

B.1 Linear Learning

First, note that (X·1,Y ) is independent of X·2, which implies that ES( f ;C) = E(E(S( f ;C)|X·2)) ≥
ES( f̃ ∗C;C) for any f ∈ F , where f̃ ∗C = argmin f̃∈F1 ES( f̃ ;C) with F1 = {x·1 ∈ R : f̃ (x) = (1,x·1)Tw :
w ∈ R 2}⊂ F and S( f ;C) =C(L(Y f (X))+U( f (X)))+ J( f ).

Assumption A follows from eV%( f ∗% , f̄%) ≤ 2P(|n f%(X)|≤ 1) ≤ (31+1)n−1 = sn with f ∗% = n f%.
Easily, (7) in Assumption B holds for #= 1. To verify (8), direct calculation yields that there exist
some constants b1 > 0 and b2 > 0 such that for any f ∈ F1, we have eV%( f , f̄%) ≥ e%( f , f̄%) =
b1

(

(54(2%− 1) + e)31+32+1 − (54(2%− 1))
31+32+1

)

and E|sign( f%)− sign( f )| = b2
(

(54(2%− 1) +

e)31+1− (54(2%− 1))
31+1

)

with wf = wf% + (e0,e1)T and e = − 50e1( 54 (2%−1))+10e0
4+10e1 > 0. This im-

plies (8) with ,= .= 1+31
1+31+32 . For (9) in Assumption B, by the triangle inequality, Var(V%( f ,Z)−

V%( f ∗% ,Z)) ≤ 2E|V%( f ,Z)−V%( f̄%,Z)| ≤ 2(51 +52), where 51 = E|l%( f ,Z)−V%( f̄%,Z)|E|S%(Y )|

|sign( f )−sign( f̄%)|≤
(

21+32(31+1)32
)

1+31
1+31+32 eV%( f , f̄%)

1+31
1+31+32 , and 52 = E(V%( f ,Z)− l%( f ,Z)) =

E(V%( f ,Z)−V%( f̄%,Z)) + E(l%( f̄%, Z)− l%( f ,Z)) ≤ 2eV%( f , f̄%). Therefore (9) is met with - =
1+31

1+31+32 . For Assumption C, we define /1(&,k) = a3(log(1/M1/2))1/2/M1/2 with M = M(&,*,k).
By Lemma 6 of Wang and Shen (2007), solving (10) yields &n = ( lognn )1/2 when C/J∗% ∼ +−2n n−1 ∼
(logn)−1. Assumption D is satisfied with d =' and $= 0, and Assumption E is met with 1=' by
noting that min(p(x),1− p(x))≥ 1/10. In this case, B= (1+31)2

232(1+31+32) , and the desired result follows
from Corollary 4.

B.2 Kernel Learning

Similar to the linear case, we restrict our attention to F1 = {x·1 ∈ R : f (x·1) = wf ,0+
"n
k=1wf ,kK(x·1,xk1) : wf = (wf ,1, · · · ,wf ,n)T ∈ R n}.
Note that F1 is rich for sufficiently large n in that for function f ∗% as defined in the linear ex-

ample, there exists a f̃ ∗% ∈ F1 such that ‖ f̃ ∗% − f ∗%‖' ≤ sn, and hence eV%( f̃ ∗% , f̄%) ≤ 2sn. Assump-
tion A is then met. Easily, (7) is satisfied for # = 1. To verify (8), note that there exists con-
stant b3 > 0 such that for small + > 0, P(|p(x)− 1/2| ≥ +) = 2P(0 ≤ p(x)− 1/2 ≤ +) = 2P(0 ≤
x(1) ≤ 5

2+
1
32 ) ≤ b3+

1+31
32 . Therefore, eV.5( f , f̄.5) ≥ e.5( f , f̄.5) ≥ +E|sign( f )− sign( f̄.5)|I(|p(x)| ≥

+) ≥ 2−1(4b3)
− 32
1+31 ‖sign( f )− sign( f̄.5)‖

1+31+32
1+31

1 with + = (‖sign( f )− sign( f̄.5)‖1/4b3)
32
1+31 . This

implies , = 1+31
1+31+32 in (8). Similarly, we can verify that there exists a constant b4 > 0 such that
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P(|p(x)−%|≥ +) = 2P
( 5
2(%−

1
2) ≤ x(1) ≤ 5

2(%−
1
2 ++

1
32 )

)

≤ b4+
1
32 when %> 1

2 , which implies (8)
with .= 1

1+32 . For (9), an application of the similar argument leads to -= 1
1+32 . For Assumption C,

we define /1(&,k) = a3(log(1/M1/2))3/2/M1/2 withM=M(&,*,k). By Lemma 7 ofWang and Shen
(2007), solving (10) yields &n = ((logn)3n−1)1/2 when C/J∗% ∼ +−2n n−1 ∼ (logn)−3. Assumption D
is satisfied with d = ' and $= 0, and Assumption E is met with 1= '. Finally, B= (1+31)

232(1+32) , and
the desired result follows from Corollary 4.
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Abstract
In this paper we introduce NIEME,1 a machine learning library for large-scale classification, re-
gression and ranking. NIEME relies on the framework of energy-based models (LeCun et al., 2006)
which unifies several learning algorithms ranging from simple perceptrons to recent models such as
the pegasos support vector machine or l1-regularized maximum entropy models. This framework
also unifies batch and stochastic learning which are both seen as energy minimization problems.
NIEME can hence be used in a wide range of situations, but is particularly interesting for large-scale
learning tasks where both the examples and the features are processed incrementally. Being able to
deal with new incoming features at any time within the learning process is another original feature
of the NIEME toolbox. NIEME is released under the GPL license. It is efficiently implemented
in C++, it works on Linux, Mac OS X and Windows and provides interfaces for C++, Java and
Python.
Keywords: large-scale machine learning, classification, ranking, regression, energy-based mod-
els, machine learning software

1. Introduction

Although many machine learning toolkits have been developed in the past years, it is often the
case that they do not scale well to real-world applications. Developing learning algorithms for
large-scale applications is a challenging design and implementation problem. In this paper, we
introduce NIEME, a C++ library that provides generic tools for large-scale learning. NIEME covers
two domains: supervised learning and learning in decision processes. In this paper, we focus on the
supervised learning part, made of classification, regression and ranking algorithms. The support of
decision processes is still in active development and will be more detailed in further versions of the
library.

2. Framework: Energy-based Models

Most learning machines in NIEME rely on the unified framework of energy-based models introduced
by LeCun et al. (2006). In this framework, illustrated in Figure 1, a learning machine can be
interpreted as a combination of an architecture A with parameters !, a per-example loss L , a set
of regularizers {"1, . . . ,"R} and a learner L . Given the architecture, the per-example loss and the

1. Code for NIEME can be found at http://nieme.lip6.fr.

c©2009 Francis Maes.
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Figure 1: This figure illustrates the framework of energy-based models. Top: the three components
that define the learning energy. Bottom: the learner component that performs energy
minimization.

Model Architecture Loss Regularizers Learner
Perceptron linear perceptron none stochastic descent
Logistic regression linear log-binomial none batch quasi-newton
Pegasos linear SVM linear hinge loss l2 pegasos learner
Multilayer perceptron linear ◦ transfer ◦ linear perceptron none stochastic descent
L1-maxent classifier multi-class linear log-binomial l1 batch quasi-newton
Pegasos multi-class SVM multi-class linear hinge loss l2 pegasos learner
Least-square regression linear squared loss none batch quasi-newton
Custom linear ◦ transfer absolute loss l1 + l2 batch rprop
Many others ... ... ... ...

Table 1: This table gives some examples of energy-based models. Each model is defined by its ar-
chitecture, per-example loss, regularizers and learner. The ◦ symbols denotes architecture
composition.

regularizers, we can define a learning loss for a set of examples S= {e1, . . .eN}:

LS(!) =
1
N

N

#
i=1

L(ei,A!)+
R

#
i=1

"i(!).

The aim of the learner is then to find parameters ! that minimize the learning loss given the
training set S. As illustrated in Table 1, many combinations are possible in the energy-based frame-
work. Some correspond to well-known learning machines, others to more original approaches. We
describe the three components that define the learning loss LS(!) in Section 2.1, describe learners
in Section 2.2 and discuss some aspects of features in NIEME in Section 2.3.

2.1 Learning Loss components

The architecture is a parameterized function which computes predictions given input vectors. A
simple example is the linear architecture, which computes a single output as a scalar product be-
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tween the input vector and the parameter vector. NIEME supports elementary architectures (linear,
multi-class linear, neural network transfer function) as well as a composition operation which al-
lows users to create a new architecture by chaining existing ones. The per-example loss quantifies
how bad an architecture and its parameters perform on a given learning example. Learning aims at
finding parameters which lead to low expected per-example loss. Currently NIEME implements four
different loss functions for discriminant learning (perceptron loss, hinge loss, log-binomial loss and
exponential loss) and two loss functions for regression (squared and absolute loss). Regularizers are
functions which measure the complexity of an architecture and its parameters. It has been shown
(Vapnik, 1999) that penalizing complex models often leads to better generalization performance.
Up to now, NIEME includes the two most commonly used regularizers: the l1-norm and l2-norm of
the parameters.

2.2 Learners

The learner is the algorithmic component that performs learning loss minimization. NIEME im-
plements three batch learners: the large-scale limited-memory quasi-Newton method of Lio and
Nocedal (1989), the recently proposed method of Andrew and Gao (2007) for minimizing large-
scale l1-regularized models and the rprop method of Riedmiller and Braun (1993). If batch learning
is not possible for a given problem, NIEME proposes classical online methods such as stochastic
gradient descent. Finally, NIEME also offers mini-batch methods including the recent SVM solver
of Shalev-Shwartz et al. (2007).

2.3 Feature Space

In large-scale applications, such as text processing, natural language processing, or bioinformatics,
examples are often described with sparse feature representations. NIEME has thus been designed
for efficient processing of such vectors. Moreover, in online settings, NIEME has the key ability
to handle new incoming features at any time within the learning process. Everytime a new feature
appears, the parameters of the learning machines are automatically extended to include this new
feature. This is particularly interesting when dealing with large data streams for which the feature set
cannot be known entirely before learning. Conceptually, all those features exist from the beginning
of the learning process although most of them have zero values. Practically, a feature does not affect
the learning parameters until it has been seen once.

3. Implementation

The core of NIEME is implemented in portable C++ and compiles currently under Windows (with
Visual C++), Mac OS X (with Xcode or Makefiles) and Linux (with Makefiles or KDevelop). The
implementation of about 14,000 lines of code is fully object-oriented and makes use of several
design-patterns. The code is clear and easy to extend. However, it is not necessary to have a
detailed understanding of the implementation in order to use NIEME. Indeed, NIEME includes an
easy-to-use interface that can be used from C++, Java or Python, as illustrated in Figure 2. Wrappers
for Java and Python are automatically generated thanks to the SWIG tool2 that makes the glue code.
NIEME could even be extended to support languages such as C# or OCaml.

2. SWIG can be found at http://www.swig.org.
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Figure 2: This figure shows the same program in three languages (Python, Java and C++). The
program loads a classification data set, trains a maximum entropy classifier and saves the
resulting model in a file called “example.model”.

3.1 Tutorials, Documentation, License, Unit Tests

The NIEME website includes a quick-start guide with compilation instructions and tutorials to get
started with NIEME in C++, Python or Java. Furthermore, it includes a complete reference docu-
mentation of the interface. NIEME is released under the GPL license. All functions of NIEME’s
interface are unit-tested within the python unittest framework.
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Abstract
This paper reviews and extends the field of similarity-based classification, presenting new analy-
ses, algorithms, data sets, and a comprehensive set of experimental results for a rich collection of
classification problems. Specifically, the generalizability of using similarities as features is ana-
lyzed, design goals and methods for weighting nearest-neighbors for similarity-based learning are
proposed, and different methods for consistently converting similarities into kernels are compared.
Experiments on eight real data sets compare eight approaches and their variants to similarity-based
learning.
Keywords: similarity, dissimilarity, similarity-based learning, indefinite kernels

1. Introduction

Similarity-based classifiers estimate the class label of a test sample based on the similarities between
the test sample and a set of labeled training samples, and the pairwise similarities between the
training samples. Like others, we use the term similarity-based classification whether the pairwise
relationship is a similarity or dissimilarity. Similarity-based classification does not require direct
access to the features of the samples, and thus the sample space can be any set, not necessarily a
Euclidean space, as long as the similarity function is well defined for any pair of samples. Let !
be the sample space and G be the finite set of class labels. Let " : !×!→ R be the similarity
function. We assume that the pairwise similarities between n training samples are given as an n×n
similarity matrix S whose (i, j)-entry is "(xi,x j), where xi ∈!, i= 1, . . . ,n, denotes the ith training
sample, and yi ∈ G , i = 1, . . . ,n the corresponding ith class label. The problem is to estimate the
class label ŷ for a test sample x based on its similarities to the training samples "(x,xi), i= 1, . . . ,n
and its self-similarity "(x,x).

c©2009 Yihua Chen, Eric K. Garcia, Maya R. Gupta, Ali Rahimi and Luca Cazzanti.
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Similarity-based classification is useful for problems in computer vision, bioinformatics, infor-
mation retrieval, natural language processing, and a broad range of other fields. Similarity functions
may be asymmetric and fail to satisfy the other mathematical properties required for metrics or inner
products (Santini and Jain, 1999). Some simple example similarity functions are: travel time from
one place to another, compressibility of one random process given a code built for another, and the
minimum number of steps to convert one sequence into another (edit distance). Computer vision
researchers use many similarities, such as the tangent distance (Duda et al., 2001), earth mover’s
distance (EMD) (Rubner et al., 2000), shape matching distance (Belongie et al., 2002), and pyramid
match kernel (Grauman and Darrell, 2007) to measure the similarity or dissimilarity between im-
ages in order to do image retrieval and object recognition. In bioinformatics, the Smith-Waterman
algorithm (Smith and Waterman, 1981), the FASTA algorithm (Lipman and Pearson, 1985) and
the BLAST algorithm (Altschul et al., 1990) are popular methods to compute the similarity be-
tween different amino acid sequences for protein classification. The cosine similarity between term
frequency-inverse document frequency (tf-idf) vectors is widely used in information retrieval and
text mining for document classification.

Notions of similarity appear to play a fundamental role in human learning, and thus psycholo-
gists have done extensive research to model human similarity judgement. Tversky’s contrast model
and ratio model (Tversky, 1977) represent an important class of similarity functions. In these two
models, each sample is represented by a set of features, and the similarity function is an increasing
function of set overlap but a decreasing function of set differences. Tversky’s set-theoretic similar-
ity models have been successful in explaining human judgement in various similarity assessment
tasks, and are consistent with the observations made by psychologists that metrics do not account
for cognitive judgement of similarity in complex situations (Tversky, 1977; Tversky and Gati, 1982;
Gati and Tversky, 1984). Therefore, similarity-based classification may be useful for imitating or
understanding how humans categorize.

The main contributions of this paper are: (1) we distill and analyze concepts and issues specific
to similarity-based learning, including the generalizability of using similarities as features, (2) we
propose similarity-based nearest-neighbor design goals and methods, and (3) we present a compre-
hensive set of experimental results for eight similarity-based learning problems and eight different
similarity-based classification approaches and their variants. First, we discuss the idea of similari-
ties as inner products in Section 2, then the concept of treating similarities as features in Section 3.
The generalizability of using similarities as features and that of using similarities as kernels are
compared in Section 4. In Section 5, we propose design goals and solutions for similarity-based
weighted nearest-neighbor learning. Generative similarity-based classifiers are discussed in Sec-
tion 6. Then in Section 7 we describe eight similarity-based classification problems, detail our
experimental setup, and discuss the results. The paper concludes with some open questions in Sec-
tion 8. For the reader’s reference, key notation is summarized in Table 1.

2. Similarities as Inner Products

A popular approach to similarity-based classification is to treat the given similarities as inner prod-
ucts in some Hilbert space or to treat dissimilarities as distances in some Euclidean space. This
approach can be roughly divided into two categories: one is to explicitly embed the samples in a
Euclidean space according to the given (dis)similarities using multidimensional scaling (see Borg
and Groenen, 2005, for further reading); the other is to modify the similarities to be kernels and
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! sample space S n×n matrix with (i, j)-entry "(xi,x j)
G set of class labels si n×1 vector with jth element "(xi,x j)
n number of training samples s n×1 vector with jth element "(x,x j)
xi ∈! ith training sample 1 column vector of 1’s
x ∈! test sample I identity matrix
yi ∈ G class label of ith training sample I{·} indicator function
y ∈ Gn n×1 vector with ith element yi K kernel matrix or kernel function
ŷ ∈ G estimated class label for x k neighborhood size
D n training sample pairs {(xi,yi)}ni=1 L hinge loss function
" :!×!→ R similarity function diag(a) diagonal matrix with a as the diagonal

Table 1: Key Notation

apply kernel classifiers. We discuss different methods for modifying similarities into kernels in
Section 2.1. An important technicality is how to handle test samples, which is addressed in Sec-
tion 2.2.

2.1 Modify Similarities into Kernels

The power of kernel methods lies in the implicit use of a reproducing kernel Hilbert space (RKHS)
induced by a positive semidefinite (PSD) kernel (Schölkopf and Smola, 2002). Although the mathe-
matical meaning of a kernel is the inner product in some Hilbert space, a standard interpretation of a
kernel is the pairwise similarity between different samples. Conversely, many researchers have sug-
gested treating similarities as kernels, and applying any classification algorithm that only depends
on inner products. Using similarities as kernels eliminates the need to explicitly embed the samples
in a Euclidean space.

Here we focus on the support vector machine (SVM), which is a well-known representative of
kernel methods, and thus appears to be a natural approach to similarity-based learning. All the SVM
algorithms that we discuss in this paper are for binary classification1 such that yi ∈ {±1}. Let y be
the n×1 vector whose ith element is yi. The SVM dual problem can be written as

maximize
#

1T#− 1
2
#T diag(y)K diag(y)#

subject to 0& #&C1, yT#= 0,
(1)

with variable #∈Rn, whereC> 0 is the hyperparameter, K is a PSD kernel matrix whose (i, j)-entry
is K(xi,x j), 1 is the column vector with all entries one, and & denotes component-wise inequality
for vectors. The corresponding decision function is Schölkopf and Smola (2002)

ŷ= sgn

(
n

$
i=1

#iyiK(x,xi)+b

)

,

where
b= yi−

n

$
j=1

# jy jK(xi,x j)

for any i that satisfies 0 < #i < C. The theory of RKHS requires the kernel to satisfy Mercer’s
condition, and thus the corresponding kernel matrix K must be PSD. However, many similarity

1. We refer the reader to Hsu and Lin (2002) for multiclass SVM.
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functions do not satisfy the properties of an inner product, and thus the similarity matrix S can
be indefinite. In the following subsections we discuss several methods to modify similarities into
kernels; a previous review can be found in Wu et al. (2005). Unless mentioned otherwise, in the
following subsections we assume that S is symmetric. If not, we use its symmetric part 12

(
S+ST

)

instead. Notice that the symmetrization does not affect the SVM objective function in (1) since
#T 12

(
S+ST

)
#= 1

2#
T S#+ 1

2#
T ST#= #T S#.

2.1.1 INDEFINITE KERNELS

One approach is to simply replace K with S, and ignore the fact that S is indefinite. For example,
although the SVM problem given by (1) is no longer convex when S is indefinite, Lin and Lin (2003)
show that the sequential minimal optimization (SMO) (Platt, 1998) algorithm will still converge
with a simple modification to the original algorithm, but the solution is a stationary point instead of
a global minimum. Ong et al. (2004) interpret this as finding the stationary point in a reproducing
kernel Kreı̆n space (RKKS), while Haasdonk (2005) shows that this is equivalent to minimizing the
distance between reduced convex hulls in a pseudo-Euclidean space. A Kreı̆n space, denoted by K ,
is defined to be the direct sum of two disjoint Hilbert spaces, denoted by H+ and H−, respectively.
So for any a,b ∈ K = H+ ⊕H−, there are unique a+,b+ ∈ H+ and unique a−,b− ∈ H− such that
a= a+ +a− and b= b+ +b−. The “inner product” on K is defined as

〈a,b〉K = 〈a+,b+〉H+
−〈a−,b−〉H− ,

which no longer has the property of positive definiteness. Pseudo-Euclidean space is a special case
of Kreı̆n space where H+ and H− are two Euclidean spaces. Ong et al. (2004) provide a representer
theorem for RKKS that poses learning in RKKS as a problem of finding a stationary point of the
risk functional, in contrast to minimizing a risk functional in RKHS. Using indefinite kernels in
empirical risk minimization (ERM) methods such as SVM can lead to a saddle point solution and
thus does not ensure minimizing the risk functional, so this approach does not guarantee learning
in the sense of a good function approximation. Also, the nonconvexity of the problem may require
intensive computation.

2.1.2 SPECTRUM CLIP

Since S is assumed to be symmetric, it has an eigenvalue decomposition S =UT%U , where U is
an orthogonal matrix and % is a diagonal matrix of real eigenvalues, that is, % = diag(&1, . . . ,&n).
Spectrum clip makes S PSD by clipping all the negative eigenvalues to zero. Some researchers
assume that the negative eigenvalues of the similarity matrix are caused by noise and view spectrum
clip as a denoising step (Wu et al., 2005). Let

%clip = diag(max(&1,0), . . . ,max(&n,0)) ,

and the modified PSD similarity matrix be Sclip =UT%clipU . Let ui denote the ith column vector of
U . Using Sclip as a kernel matrix for training the SVM is equivalent to implicitly using xi = %1/2clipui
as the representation of the ith training sample since 〈xi,x j〉 is equal to the (i, j)-entry of Sclip. A
mathematical justification for spectrum clip is that Sclip is the nearest PSD matrix to S in terms of
the Frobenius norm (Higham, 1988), that is,

Sclip = argmin
K*0

‖K−S‖F ,
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where * denotes the generalized inequality with respect to the PSD cone.
Recently, Luss and d’Aspremont (2007) have proposed a robust extension of SVM for indefinite

kernels. Instead of only considering the nearest PSD matrix Sclip, they consider all the PSD matrices
within distance ' to S, that is, {K * 0 | ‖K− S‖F ≤ '}, where ' > minK*0 ‖K− S‖F , and propose
to maximize the worst case of the SVM dual objective among these matrices:

maximize
#

min
K*0,‖K−S‖F≤'

(
1T#− 1

2
#T diag(y)K diag(y)#

)

subject to 0& #&C1, yT#= 0.

This model is more flexible in the sense that the set of possible K in the hypothesis space lies in a
ball with radius ' centered around S. Different draws of training samples will change the candidate
set of K and could cause overfitting. In practice, they replace the hard constraint ‖K−S‖F ≤ ' with
a penalty term and propose the following problem as the robust SVM for S:

maximize
#

min
K*0

(
1T#− 1

2
#T diag(y)K diag(y)#+(‖K−S‖2F

)

subject to 0& #&C1, yT#= 0,
(2)

where (> 0 is the parameter to control the trade-off. They point out that the inner problem of (2) has
a closed-form solution, and the outer problem is convex since its objective is a pointwise minimum
of a set of concave quadratic functions of # and thus concave. A fast algorithm to solve (2) is given
by Chen and Ye (2008).

2.1.3 SPECTRUM FLIP

In contrast to the interpretation that negative eigenvalues are caused by noise, Laub and Müller
(2004) and Laub et al. (2006) show that the negative eigenvalues of some similarity data can code
useful information about object features or categories, which agrees with some fundamental psy-
chological studies (Tversky and Gati, 1982; Gati and Tversky, 1982). In order to use the negative
eigenvalues, Graepel et al. (1998) propose an SVM in pseudo-Euclidean space, and Pekalska et al.
(2001) also consider a generalized nearest mean classifier and Fisher linear discriminant classifier
in the same space. Following the notation in Section 2.1.1, they assume that the samples lie in a
Kreı̆n space K = H+ ⊕H− with similarities given by "(a,b) = 〈a+,b+〉H+

−〈a−,b−〉H− . These
proposed classifiers are their standard versions in the Hilbert space H = H+ ⊕H− with associated
inner product 〈a,b〉H = 〈a+,b+〉H+

+ 〈a−,b−〉H− . This is equivalent to flipping the sign of the neg-
ative eigenvalues of the similarity matrix S: let %flip = diag(|&1|, . . . , |&n|), and then the similarity
matrix after spectrum flip is Sflip =UT%flipU . Wu et al. (2005) note that this is the same as replacing
the original eigenvalues of S with its singular values.

2.1.4 SPECTRUM SHIFT

Spectrum shift is another popular approach to modifying a similarity matrix into a kernel matrix:
since S+&I =UT (%+&I)U , any indefinite similarity matrix can be made PSD by shifting its spec-
trum by the absolute value of its minimum eigenvalue |&min(S)|. Let %shift =%+ |min(&min(S),0)| I,
which is used to form the modified similarity matrix Sshift =UT%shiftU . Compared with spectrum
clip and flip, spectrum shift only enhances all the self-similarities by the amount of |&min(S)| and
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does not change the similarity between any two different samples. Roth et al. (2003) propose spec-
trum shift for clustering nonmetric proximity data and show that Sshift preserves the group structure
of the original data represented by S. Let X be the set of samples to cluster, and {X!}N!=1 be a
partition of X into N sets. Specifically, they consider minimizing the clustering cost function2

f
(
{X!}N!=1

)
= −

N

$
!=1

$
i, j∈X!
i-= j

"(xi,x j)
|X!|

, (3)

where |X!| denotes the cardinality of set X!. It is easy to see that (3) is invariant under spectrum
shift.

Recently, Zhang et al. (2006) proposed training an SVM only on the k-nearest neighbors of each
test sample, called SVM-KNN. They used spectrum shift to produce a kernel from the similarity
data. Their experimental results on image classification demonstrated that SVM-KNN performs
comparably to a standard SVM classifier, but with significant reduction in training time.

2.1.5 SPECTRUM SQUARE

The fact that SST * 0 for any S ∈ Rn×n led us to consider using SST as a kernel, which is valid
even when S is not symmetric. For symmetric S, this is equivalent to squaring its spectrum since
SST =UT%2U . It is also true that using SST is the same as defining a new similarity function "̃ for
any a,b ∈! as

"̃(a,b) =
n

$
i=1

"(a,xi)"(xi,b).

We note that for symmetric S, treating SST as a kernel matrix K is equivalent to representing each
xi by its similarity feature vector si =

[
"(xi,x1) . . . "(xi,xn)

]T since Ki j = 〈si,s j〉. The concept
of treating similarities as features is discussed in more detail in Section 3.

2.2 Consistent Treatment of Training and Test Samples

Consider a test sample x that is the same as a training sample xi. Then if one uses an ERM clas-
sifier trained with modified similarities S̃, but uses the unmodified test similarities, represented by
vector s =

[
"(x,x1) . . . "(x,xn)

]T , the same sample will be treated inconsistently. In general,
one would like to modify the training and test similarities in a consistent fashion, that is, to modify
the underlying similarity function rather than only modifying the S. In this context, given S and
S̃, we term a transformation T on test samples consistent if T (si) is equal to the ith row of S̃ for
i= 1, . . . ,n.

One solution is to modify the training and test samples all at once. However, when test samples
are not known beforehand, this may not be possible. For such cases, Wu et al. (2005) proposed to
first modify S and train the classifier using the modified n×n similarity matrix S̃, and then for each
test sample modify its s in an effort to be consistent with the modified similarities used to train the
model. Their approach is to re-compute the same modification on the augmented (n+1)× (n+1)
similarity matrix

S′ =
[
S s
sT "(x,x)

]

2. They originally use dissimilarities in their cost function, and we reformulate it into similarities with the assumption
that the relationship between dissimilarities and similarities is affine.
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to form S̃′, and then let the modified test similarities s̃ be the first n elements of the last column of
S̃′. The classifier that was trained on S̃ is then applied on s̃. To implement this approach, Wu et al.
(2005) propose a fast algorithm to perform eigenvalue decomposition of S′ by using the results of
the eigenvalue decomposition of S. However, this approach does not guarantee consistency.

To attain consistency, we note that both the spectrum clip and flip modifications can be rep-
resented by linear transformations, that is, S̃ = PS, where P is the corresponding transformation
matrix, and we propose to apply the same linear transformation P on s such that s̃ = Ps. For spec-
trum flip, the linear transformation is Pflip =UTMflipU , where

Mflip = diag(sgn(&1), . . . ,sgn(&n)) .

For spectrum clip, the linear transformation is Pclip =UTMclipU , where

Mclip = diag
(
I{&1≥0}, . . . , I{&n≥0}

)
,

and I{·} is the indicator function. Recall that using S̃ implies embedding the training samples in a
Euclidean space. For spectrum clip, this linear transformation is equivalent to embedding the test
sample as a feature vector into the same Euclidean space of the embedded training samples:

Proposition 1 Let Sclip be the Grammatrix of the column vectors of X ∈Rm×n, where rank(X) =m.
For a given s, let x= argminz∈Rm ‖XT z− s‖2, then XT x= Pclips.

The proof is in the appendix.
Proposition 1 states that if the n training samples are embedded in Rm with Sclip as the Gram

matrix, and we embed the test sample in Rm by finding the feature vector whose inner products
with the embedded training samples are closest to the given s, then the inner products between the
embedded test sample and the embedded training samples are indeed s̃= Pclips.

On the other hand, there is no linear transformation to ensure consistency for spectrum shift.
For our experiments using spectrum shift, we adopt the approach of Wu et al. (2005), which for this
case is to let s̃= s, because spectrum shift only affects self-similarities.

3. Similarities as Features

Similarity-based classification problems can be formulated into standard learning problems in Eu-
clidean space by treating the similarities between a sample x and the n training samples as features
(Graepel et al., 1998, 1999; Pekalska et al., 2001; Pekalska and Duin, 2002; Liao and Noble, 2003).
That is, represent sample x by the similarity feature vector s. As detailed in Section 4, the gener-
alizability analysis yields different results for using similarities as features and using similarities as
inner products.

Graepel et al. (1998) consider applying a linear SVM on similarity feature vectors by solving
the following problem:

minimize
w,b

1
2
‖w‖22+C

n

$
i=1

L(wTsi+b,yi) (4)

with variables w ∈ Rn, b ∈ R and hyperparameter C > 0, where L(#,') ! max(1−#',0) is the
hinge loss function. Liao and Noble (2003) also propose to apply an SVM on similarity feature
vectors; they use a Gaussian radial basis function (RBF) kernel.
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In order to make the solution w sparser, which helps ease the computation of the discriminant
function f (s) = wTs+b, Graepel et al. (1999) substitute the !1-norm regularization for the squared
!2-norm regularization in (4), and propose a linear programming (LP) machine:

minimize
w,b

‖w‖1+C
n

$
i=1

L(wTsi+b,yi). (5)

Balcan et al. (2008a) provide a theoretical analysis for using similarities as features, and show
that if a similarity is good in the sense that the expected intraclass similarity is sufficiently large
compared to the expected interclass similarity, then given n training samples, there exists a linear
separator on the similarities as features that has a specifiable maximum error at a margin that de-
pends on n. Specifically, Theorem 4 in Balcan et al. (2008a) gives a sufficient condition on the
similarity function " for (4) to achieve good generalization. Their latest results for !1-margin (in-
versely proportional to ‖w‖1) provide similar theoretical guarantees for (5) (Balcan et al., 2008b,
Theorem 11). Wang et al. (2007) show that under slightly less restrictive assumptions on the simi-
larity function there exists with high probability a convex combination of simple classifiers on the
similarities as features which has a maximum specifiable error.

Another approach is the potential support vector machine (P-SVM) (Hochreiter and Obermayer,
2006; Knebel et al., 2008), which solves

minimize
#

1
2
‖y−S#‖22+ )‖#‖1

subject to ‖#‖* ≤C,
(6)

whereC > 0 and )> 0 are two hyperparameters. We note that by strong duality (6) is equivalent to

minimize
#

1
2
‖y−S#‖22+ )‖#‖1+ +‖#‖* (7)

for some +> 0. One can see from (7) that P-SVM is equivalent to the lasso regression (Tibshirani,
1996) with an extra !*-norm regularization term. The use of multiple regularization terms in P-
SVM is similar to the elastic net (Zou and Hastie, 2005), which uses !1 and squared !2 regularization
together.

The algorithms above minimize the empirical risk with regularization. In addition, Pekalska et
al. consider generative classifiers for similarity feature vectors; they propose a regularized Fisher
linear discriminant classifier (Pekalska et al., 2001) and a regularized quadratic discriminant classi-
fier (Pekalska and Duin, 2002).

We note that treating similarities as features may not capture discriminative information if there
is a large intraclass variance compared to the interclass variance, even if the classes are well-
separated. A simple example is if the two classes are generated by Gaussian distributions with
highly-ellipsoidal covariances, and the similarity function is taken to be a negative linear function
of the distance.

4. Generalization Bounds of Similarity SVM Classifiers

To investigate the generalizability of SVM classifiers using similarities, we analyze two forms of
SVMs: using similarity as a kernel as discussed in Section 2, and a linear SVM using the similarities
as features as given by (4). When similarities are used as features, we show that good generalization
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performance can be achieved by training the SVM on a small subset of m (< n) randomly selected
training examples, and we compare this to the established analysis for the kernelized SVM.

The SVM learns a discriminant function f (s) = wT s+b by minimizing the empirical risk

R̂D( f ,L) =
1
n

n

$
i=1

L( f (si),yi),

where D denotes the training set, subject to some smoothness constraint N , that is,

minimize
f

R̂D( f ,L)+&nN ( f ),

where &n = 1
2nC . We note that using (arbitrary) similarities as features corresponds to settingN ( f )=

wTw, while using (PSD) similarities as a kernel changes the smoothness constraint toN ( f ) =wTSw
(Rifkin, 2002, Appendix B), and in fact, this change of regularizer is the only difference between
these two similarity-based SVM approaches. In this section, we examine how this small change in
regularization affects the generalization ability of the classifiers.

To simplify the following analysis, we do not directly investigate the SVM classifier as pre-
sented; instead, as is standard in SVM learning theory, we investigate the following constrained
version of the problem:

minimize
f

R̂D( f ,Lt)

subject to N ( f ) ≤ '2,
(8)

with truncated hinge loss Lt !min(L,1) ∈ [0,1] and f (s) = wT s stripped of the intercept b.
The following generalization bound for the SVM using (PSD) similarities3 as a kernel follows

directly from the results in Bartlett and Mendelson (2002).

Theorem 1 (Generalization Bound of Similarities as Kernel) Suppose (x,y) and D =
{(xi,yi)}ni=1 are drawn i.i.d. from a distribution on !× {±1}. Let " be a positive definite simi-
larity such that "(a,a)≤ ,2 for some ,> 0 and all a∈!. Let S be the n×n matrix with (i, j)-entry
"(xi,x j) and s be the n× 1 vector with ith element "(x,xi). Define FS to be the set of real-valued
functions

{
f (s) = wT s

∣∣wTSw≤ '2
}
for a finite '. Then with probability at least 1−- with respect

to D , every function f in FS satisfies

P(y f (s) ≤ 0) ≤ R̂D( f ,Lt)+4',
√
1
n

+

√
ln(2/-)
2n

.

The proof is in the appendix.
Theorem 1 says that with high probability, as n→*, the misclassification rate is tightly bounded

by the empirical risk R̂D( f ,Lt), implying that a discriminant function trained by (8) with N ( f ) =
wTSw generalizes well to unseen data.

Next, we state a weaker result in Theorem 2 for the SVM using (arbitrary) similarities as fea-
tures. Let the features be the similarities tom (< n) prototypes {(x̃1, ỹ1), . . . ,(x̃m, ỹm)}⊆D randomly
chosen from the training set so that s̃ is the m× 1 vector with ith element "(x, x̃i). Results will be
obtained on the remaining n−m training data D̃ =D\{(x̃1, ỹ1), . . . ,(x̃m, ỹm)}.

3. If the original similarities are not PSD, then they must be modified to be PSD before this result applies; see Section 2
for a discussion of common PSD modifications.
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Theorem 2 (Generalization Bound of Similarities as Features) Suppose (x,y) and D =
{(xi,yi)}ni=1 are drawn i.i.d. from a distribution on !× {±1}. Let " be a similarity such that
"(a,b) ≤ ,2 for some ,> 0 and all a,b ∈!. Let {(x̃1, ỹ1), . . . ,(x̃m, ỹm)}⊆D be a set of randomly
chosen prototypes, and denote D̃ = D\{(x̃1, ỹ1), . . . ,(x̃m, ỹm)}. Let s̃ be the m× 1 vector with ith
element "(x, x̃i). Define FI to be the set of real-valued functions

{
f (s̃) = wT s̃

∣∣wTw≤ '2
}
for a

finite '. Then with probability at least 1−- with respect to D̃ , every function f in FI satisfies

P(y f (s) ≤ 0) ≤ R̂D̃( f ,Lt)+4',2
√
m
n

+

√
ln(2/-)
2n

.

The proof is in the appendix.
Theorem 2 only differs significantly from Theorem 1 in the term

√
m/n, which means that if

m, the number of prototypes used, grows no faster than o(n), then with high probability, as n→ *,
the misclassification rate is tightly bounded by the empirical risk on the remaining training set
R̂D̃( f ,Lt). Note that Theorem 2 is unable to claim anything about the generalization when m = n,
that is, the entire training set is chosen as prototypes. For a further discussion, see the appendix.

5. Similarity-based Weighted Nearest-Neighbors

In this section, we consider design goals and propose solutions for weighted nearest-neighbors for
similarity-based classification. Nearest-neighbor learning is the algorithmic parallel of the exemplar
model of human learning (Goldstone and Kersten, 2003). Weighted nearest-neighbor algorithms are
task-flexible because the weights on the neighbors can be used as probabilities as long as they are
non-negative and sum to one. For classification, such weights can be summed for each class to form
posteriors, which is helpful for use with asymmetric misclassification costs and when the similarity-
based classifier is a component of a larger decision-making system. As a lazy learning method,
weighted nearest-neighbor classifiers do not require training before the arrival of test samples. This
can be advantageous to certain applications where the amount of training data is huge, or there are
a large number of classes, or the training data is constantly evolving.

5.1 Design Goals for Similarity-based Weighted k-NN

In this section, for a test sample x, we use xi to denote its ith nearest neighbor from the training set as
defined by the similarity function" for i= 1, . . . ,k, and yi to denote the label of xi. Also, we redefine
S as the k×k matrix of the similarities between the k-nearest neighbors and s the k×1 vector of the
similarities between the test sample x and its k-nearest neighbors. For each test sample, weighted
k-NN assigns weight wi to the ith nearest neighbor for i = 1, . . . ,k. Weighted k-NN classifies the
test sample x as the class ŷ that is assigned the most weight,

ŷ= argmax
g∈G

k

$
i=1

wiI{yi=g}. (9)

It is common to additionally require that the weights be nonnegative and normalized such that the
weights form a posterior distribution over the set of classes G . Then the estimated probability for
class g is $k

i=1wiI{yi=g}, which can be used with asymmetric misclassification costs.
An intuitive and standard approach to weighting nearest neighbors is to give larger weight to

neighbors that are more similar to the test sample. Formally, we state:
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Design Goal 1 (Affinity): wi should be an increasing function of "(x,xi).

In addition, we propose a second design goal. In practice, some samples in the training set
are often very similar, for example, a random sampling of the emails by one person may include
many emails from the same thread that contain repeated text due to replies and forwarding. Such
similar training samples provide highly-correlated information to the classifier. In fact, many of the
nearest neighbors may provide very similar information which can bias the classifier. Moreover, we
consider those training samples that are similar to many other training samples less valuable based
on the same motivation for tf-idf. To address this problem, one can choose weights to down-weight
highly similar samples and ensure that a diverse set of the neighbors has a voice in the classification
decision. We formalize this goal as:

Design Goal 2 (Diversity): wi should be a decreasing function of "(xi,x j).

Next we propose two approaches to weighting neighbors for similarity-based classification that
aim to satisfy these goals.

5.2 Kernel Ridge Interpolation Weights

First, we describe kernel regularized linear interpolation, and we show that it leads to weights that
satisfy the design goals. Gupta et al. (2006) proposed weights for k-NN in Euclidean space that
satisfy a linear interpolation with maximum entropy (LIME) objective:

minimize
w

∥∥∥∥∥

k

$
i=1

wixi− x

∥∥∥∥∥

2

2

−&H(w)

subject to
k

$
i=1

wi = 1, wi ≥ 0, i= 1, . . . ,k,

(10)

with variable w ∈ Rk, where H(w) = −$k
i=1wi logwi is the entropy of the weights and & > 0 is

a regularization parameter. The first term of the convex objective in (10) tries to solve the linear
interpolation equations, which balances the weights so that the test point is best approximated by
a convex combination of the training samples. Additionally, the entropy maximization pushes the
LIME weights toward the uniform weights.

We simplify (10) to a quadratic programming (QP) problem by replacing the negative entropy
regularization with a ridge regularizer4 wTw, and we rewrite (10) in matrix form:

minimize
w

1
2
wTXTXw− xTXw+

&
2
wTw

subject to w* 0, 1Tw= 1,
(11)

where X =
[
x1 x2 · · · xk

]
. Note that (11) is completely specified in terms of the inner products

of the feature vectors: 〈xi,x j〉 and 〈x,xi〉, and thus we term the solution to (11) as kernel ridge

4. Due to the constraint 1Tw = 1, the ridge regularizer actually regularizes the variance of the weights and thus has
similar effect as the negative entropy regularizer.
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interpolation (KRI) weights. Generalizing from inner products to similarities, we form the KRI
similarity-based weights:

minimize
w

1
2
wTSw− sTw+

&
2
wTw

subject to w* 0, 1Tw= 1.
(12)

There are three terms in the objective function of (12). Acting alone, the linear term −sTw would
give all the weight to the 1-nearest neighbor. This is prevented by the ridge regularization term
1
2&w

Tw, which regularizes the variance of w and hence pushes the weights toward the uniform
weights. These two terms work together to give more weight to the training samples that are more
similar to the test sample, and thus help the resulting weights satisfy the first design goal of reward-
ing neighbors with high affinity to the test sample. The quadratic term in (12) can be expanded as
follows,

1
2
wTSw=

1
2$i, j

"(xi,x j)wiwj.

From the above expansion, one sees that holding all else constant in (12), the bigger "(xi,x j) and
"(x j,xi) are, the smaller the chosen wi and wj will be. Thus the quadratic term tends to down-weight
the neighbors that are similar to each other and acts to achieve the second design goal of spreading
the weight among a diverse set of neighbors.

A sensitivity analysis further verifies the above observations. Let g(w;S,s) be the objective
function of (12), and w" denote the optimal solution. To simplify the analysis, we only consider
w" in the interior of the probability simplex and thus .g(w";S,s) = 0. We first perturb s by adding
- > 0 to its ith element, that is, s̃ = s+ -ei, where ei denotes the standard basis vector whose ith
element is 1 and 0 elsewhere. Then

.g(w";S, s̃) = (S+&I)w"− s̃= −-ei,

whose projection on the probability simplex is

.g(w";S, s̃)−
1
k

(
1T.g(w";S, s̃)

)
1= -

(
1
k
1− ei

)
. (13)

The direction of the steepest descent given by the negative of the projected gradient in (13) indicates
that the new optimal solution will have an increased wi, which satisfies the first design goal.

Similarly, if we instead perturb S by adding -> 0 to its (i, j)-entry (i -= j), that is, S̃= S+-Ei j,
where Ei j denotes the matrix with (i, j)-entry 1 and 0 elsewhere, then

.g(w"; S̃,s) = (S̃+&I)w"− s= -w"
j ei,

whose projection on the probability simplex is

.g(w"; S̃,s)−
1
k

(
1T.g(w"; S̃,s)

)
1= -w"

j

(
ei−

1
k
1
)

. (14)

The direction of the steepest descent given by the negative of the projected gradient in (14) indicates
that the optimal solution will have a decreased wi, which satisfies the second design goal.

Experimentally, we found little statistically significant difference between using negative en-
tropy or ridge regularization for the KRI weights. Analytically, entropy regularization leads to an
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exponential form for the weights that can be used to prove consistency (Friedlander and Gupta,
2006). Computationally, the ridge regularizer is more practical because it results in a QP with box
constraints and an equality constraint if the S matrix is PSD or approximated by a PSD matrix, and
can thus be solved by the SMO algorithm (Platt, 1998).

5.2.1 KERNEL RIDGE REGRESSION WEIGHTS

A closed-form solution to (12) is possible if one relaxes the problem by removing the constraints
wi ∈ [0,1] and $i wi = 1 that ensure the weights form a probability mass function. Then for PSD S,
the objective 12w

TSw− sTw+ 1
2&w

Tw is solved by

w= (S+&I)−1s. (15)

The k-NN decision rule (9) using these weights is equivalent to classifying by maximizing the
discriminant of a local kernel ridge regression. For each class g ∈ G , local kernel ridge regression
(without intercept) solves

minimize
'g

k

$
i=1

(
I{yi=g}−〈'g,/(xi)〉

)2
+&〈'g,'g〉, (16)

where / denotes the mapping from the sample space ! to a Hilbert space with inner product
〈/(xi),/(x j)〉 = "(xi,x j). Each solution to (16) yields the discriminant fg(x) = 〈'g,/(x)〉 = 0Tg (S+

&I)−1s for class g (Cristianini and Shawe-Taylor, 2000), where 0g =
[
I{y1=g} . . . I{yk=g}

]T . Max-
imizing fg(x) over g ∈ G produces the same estimated class label as (9) using the weights given
in (15), thus we refer to these weights as kernel ridge regression (KRR) weights.

For a non-PSD S, it is possible that S+&I is singular. In the experiments, we compare handling
non-PSD S by clip, flip, shift, or taking the pseudo-inverse (pinv) (S+&I)†.

5.2.2 ILLUSTRATIVE EXAMPLES

We illustrate the KRI and KRR5 weights with three toy examples shown on the next page. For each
example, there are k= 4 nearest-neighbors, and the KRI and KRR weights are shown for a range of
regularization parameter &.

In Example 1, affinity is illustrated. One sees from s that the four distinct training samples are
not equally similar to the test sample, and from S that the training samples have zero similarity to
each other. Both KRI and KRR give more weight to training samples that are more similar to the
test sample, illustrating that the weighting methods achieve the design goal of affinity.

In Example 2, diversity is illustrated. The four training samples all have similarity 3 to the test
sample, but x2 and x3 are very similar to each other, and are thus weighted down as prescribed the
by the design goal of diversity. Because of the symmetry of the similarities, the weights for x2 and
x3 are exactly the same for both KRI and KRR.

In Example 3, the interaction between the two design goals is illustrated. The S matrix is the
same as in Example 2, but s is no longer uniform. In fact, although x1 is less similar to the test
sample than x3, x1 receives more weight because it is less similar to other training samples. The

5. For the purpose of comparison, we show the normalized KRR weights w̃ where w̃ =
(
I− 1

k 11
T )
w+ 1

k 1. This does
not affect the result of classification since each weight is shifted by the same constant.
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Example 1: sT =
[
4 3 2 1

]
, S=





5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5





!"#$ !"" !"$
"
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#"%!

"

"%!

"%$&

"%'

"%&

"%(

λ
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w1

w3

w4

KRI weights KRR weights

Example 2: sT =
[
3 3 3 3

]
, S=





5 1 1 1
1 5 4 2
1 4 5 2
1 2 2 5
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KRI weights KRR weights

Example 3: sT =
[
2 4 3 3

]
, S=





5 1 1 1
1 5 4 2
1 4 5 2
1 2 2 5





!"#$ !"" !"$
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"
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affinity goal allots the largest weight to the most similar neighbor x2, but because x2 and x3 are
highly similar, the diversity goal forces them to share weight, resulting in x3 receiving little weight.

One observes from these examples that the KRR weights tend to be smoother than the KRI
weights, because the KRI weights are constrained to a probability simplex, while the KRR weights
are unconstrained.

6. Generative Classifiers

Generative classifiers provide probabilistic outputs that can be easily fused with other probabilistic
information or used to minimize expected misclassification costs. One approach to generative clas-
sification given similarities is using the similarities as features to define an n-dimensional feature
space, and then fitting standard generative models in that space, as discussed in Section 3. However,
this requires fitting generative models with n data points (or less for class-conditional models) in
an n-dimensional space. Another generative framework for similarity-based classification termed
similarity discriminant analysis (SDA) has been proposed that models the class-conditional distri-
butions of similarity statistics (Cazzanti et al., 2008). First we review the basic SDA model, then
consider a local variant (Cazzanti and Gupta, 2007) and a mixture model variant that were both
designed to reduce bias.

Let X denote a random test sample and x denote a realization of X . Assume that the relevant
information about the class label of X is captured by a finite set T (X) of M descriptive statistics,
where the mth descriptive statistic is denoted Tm(X). In this paper, we take the set of descriptive
statistics to be the similarities to class centroids:

T (x) = {"(x,µ1),"(x,µ2), . . . ,"(x,µG)} , (17)

where µg ∈ ! is a centroid for the gth class, and G is the number of classes. Although there are
many possible definitions of a centroid given similarities, in this paper a class centroid is defined to
be the training sample that has maximum sum-similarity to the other training samples of its class.
The centroid-based descriptive statistics given by (17) were shown to be overall more effective
than other considered descriptive statistics on simulations and a small set of real-data experiments
(Cazzanti, 2007).

The classification rule for SDA to minimize the expected misclassification cost is: classify x as
the class

ŷ= argmin
g∈G $h∈G

C(g,h)P(T (x) |Y = h)P(Y = h), (18)

whereC(g,h) is the cost of classifying a sample as class g if the truth is class h.
To estimate the class-conditional distributions {P(T (x) |Y = g)}Gg=1 the SDA model estimates

the expected value of the mth descriptive statistic Tm(X) with respect to the class conditional distri-
bution P(T (x) |Y = g) to be the average of the training sample data for each class g:

EP(T (x) |g) (Tm(X)) =
1

|Xg| $z∈Xg
Tm(z), (19)

where Xg is the set of training samples from class g. Given the G×G constraints specified by (19),
the SDA model estimates each class-conditional distribution as the solution to (19) with maximum
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entropy, which is the exponential (Jaynes, 1982):

P̂(T (x) |g) =
G

1
m=1

+gme&gmTm(x). (20)

Substituting the maximum entropy solution (20) into (18) yields the SDA classification rule: classify
x as the class

ŷ= argmin
g∈G $h∈G

C(g,h)P(Y = h)
G

1
m=1

+hme&hmTm(x).

Each pair of parameters (&gm,+gm) can be separately calculated from the constraints given in (19)
by one-dimensional optimization and normalization.

6.1 Reducing SDA Model Bias

The SDAmodel may not be flexible enough to capture a complicated decision boundary. To address
this model bias issue, one could apply SDA locally to a neighborhood of k nearest neighbors for
each test point, or learn a mixture SDA model.

In this paper we experimentally compare to local SDA (Cazzanti and Gupta, 2007) with local
centroid-similarity descriptive statistics given by (17), in which SDA is applied to the k nearest
neighbors of a test point, where the parameter k is trained by cross-validation. If any class in the
neighborhood has fewer than three samples, there are not enough data samples to fit distributions
of similarities, so every & is assumed to be zero, and the local SDA model is reduced to a simple
local centroid classifier. Given a discrete set of possible similarities, local SDA has been shown
to be a consistent classifier in the sense that its error converges to the Bayes error under the usual
asymptotic assumption that when the number of training samples n→ *, the neighborhood size
k→ * but k grows relatively slowly such that k/n→ 0 (Cazzanti and Gupta, 2007).

Cazzanti (2007) explored mixture SDA models analogous to Gaussian mixture models (GMM).
He fits SDA mixture models, producing the following decision rule:

ŷ= argmin
g∈G $h∈G

C(g,h)P(Y = h)

(
G

1
m=1

cm
$
l=1

wgml+gmle&gml"(x,µml)

)

,

where$cm
l=1wml = 1, andwml > 0. The number of components cm are determined by cross-validation.

The component weights {wgml} and the component SDA parameters {(&gml ,+gml)} are estimated by
an expectation-maximization (EM) algorithm, analogous to the EM-fitting of a GMM, except that
the centroids are calculated only once (rather than iteratively) at the beginning using a k-medoids
algorithm (Hastie et al., 2001). Simulations and a small set of experiments showed that this mixture
SDA performed similarly to local SDA, but the model training for mixture SDA was much more
computationally intensive.

7. Experiments

We compare eight similarity-based classification approaches: a linear and an RBF SVM using sim-
ilarities as features, the P-SVM (Hochreiter and Obermayer, 2006), a local SVM (SVM-KNN)
(Zhang et al., 2006) and a global SVM using the given similarities as a kernel, local SDA, k-NN,
and the three weighted k-NN methods discussed in Section 5: the proposed KRR and KRI weights,
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and affinity weights as a control, defined by wi = a"(x,xi), i= 1, . . . ,k, where a is a normalization
constant. Results are shown in Table 3 and 4.

For algorithms that require a PSD S, we make S PSD by clip, flip or shift as discussed in
Section 2, and pinv for KRRweights. The results in Table 3 are for clip; the experimental differences
between clip, flip and shift, and pinv are shown in Table 4 and discussed in Section 7.4.

7.1 Data Sets

We tested the proposed classifiers on eight real data sets6 representing a diverse set of similarities
ranging from the human judgement of audio signals to sequence alignment of proteins.

The Amazon-47 data set, created for this paper, consists of 204 books written by 47 authors.
Each book listed on amazon.com links to the top four books that customers bought after viewing it,
along with the percentage of customers who did so. We take the similarity of book A to book B to
be the percentage of customers who bought B after viewing A, and the classification problem is to
determine the author of the book.

The Aural Sonar data set is from a recent paper which investigated the human ability to distin-
guish different types of sonar signals by ear (Philips et al., 2006). The signals were returns from
a broadband active sonar system, with 50 target-of-interest signals and 50 clutter signals. Every
pair of signals was assigned a similarity score from 1 to 5 by two randomly chosen human subjects
unaware of the true labels, and these scores were added to produce a 100× 100 similarity matrix
with integer values from 2 to 10.

The Caltech-101 data set (Fei-Fei et al., 2004) is an object recognition benchmark data set
consisting of 8677 images from 101 object categories. Similarities between images were computed
using the pyramid match kernel (Grauman and Darrell, 2007) on SIFT features (Lowe, 2004). Here,
the similarity is PSD.

The Face Rec data set consists of 945 sample faces of 139 people from the NIST Face Recog-
nition Grand Challenge data set.7 There are 139 classes, one for each person. Similarities for
pairs of the original three-dimensional face data were computed as the cosine similarity between
integral invariant signatures based on surface curves of the face (Feng et al., 2007). The original
paper demonstrated comparable results to the state-of-the-art using these similarities with a 1-NN
classifier.

The Mirex07 data set was obtained from the human-rated, fine-scale audio similarity data used
in the MIREX 2007 Audio Music Similarity and Retrieval8 task. Mirex07 consists of 3090 samples,
divided roughly evenly among 10 classes that correspond to different music genres. Humans judged
how similar two songs are on a 0–10 scale with 0.1 increments. Each song pair was evaluated by
three people, and the three similarity values were averaged. Self-similarity was assumed to be 10,
the maximum similarity. The classification task is to correctly label each song with its genre.

The Patrol data set was collected by Driskell and McDonald (2008). Members of seven patrol
units were asked to name five members of their unit; in some cases the respondents inaccurately
named people who were not in their unit, including people who did not belong to any unit. Of
the original 385 respondents and named people, only the ones that were named at least once were

6. The data sets along with the randomized partitions are available at http://idl.ee.washington.edu/
SimilarityLearning/.

7. For more information, see http://face.nist.gov/frgc/.
8. For more information, see http://www.music-ir.org/mirex/2007/index.php/Audio_Music_Similarity_

and_Retrieval.
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kept, reducing the data set to 241 samples. The similarity between any two people a and b is
(N(a,b)+N(b,a))/2, where N(a,b) is the number of times person a names person b. Thus, this
similarity / has a range {0,0.5,1}. The classification problem is to estimate to which of the seven
patrol units a person belongs, or to correctly place them in an eighth class that corresponds to “not
in any of the units.”

The Protein data set has sequence-alignment similarities for 213 proteins from 4 classes,9 where
class one through four contains 72, 72, 39, and 30 samples, respectively (Hofmann and Buhmann,
1997). As further discussed in the results, we define an additional similarity termed RBF-sim for
the Protein data set: "RBF(xi,x j) = e−‖s(xi)−s(x j)‖2 , where s(x) is the 213× 1 vector of similarities
with mth component "(x,xm).

The Voting data set comes from the UCI Repository (Asuncion and Newman, 2007). It is a two-
class classification problemwith 435 samples, where each sample is a categorical feature vector with
16 components and three possibilities for each component. We compute the value difference metric
(Stanfill and Waltz, 1986) from the categorical data, which is a dissimilarity that uses the training
class labels to weight different components differently so as to achieve maximum probability of
class separation.

Shown in Figure 1 are the similarity matrices of all the data sets. The rows and columns are
ordered by class label; on many of the data sets, particularly those with a fewer number of classes,
a block-diagonal structure is visible along the class boundaries, indicated by tick marks. Note that
a purely block-diagonal similarity matrix would indicate a particularly easy classification problem,
as objects have nonzero similarity only to objects of the same class.

7.2 Other Experimental Details

For each data set, we randomly selected 20% of the data for testing and used the remaining 80%
for training. We chose the classifier parameters such as C for the SVM, & for the KRI and KRR
weights, and k for local classifiers by 10-fold cross-validation on the training set, and then used
them to classify the held out test data. This process was repeated for 20 random partitions of
test and training data, and the statistical significance of the classification error was computed by a
one-sided Wilcoxon signed-rank test. Multiclass implementations of the SVM classifiers used the
“one-vs-one” scheme (Hsu and Lin, 2002).

Nearest neighbors for local methods were determined using symmetrized similarities10
1
2 ("(x,xi)+"(xi,x)). Cross-validation choices are listed in Table 2. These choices were based on
recommendations and usage in previous literature, and on preliminary experiments we conducted
with a larger range of cross-validation parameters on the Voting and Protein data sets.

7.3 Results

The mean and standard deviation (in parentheses) of the error across the 20 randomized test/training
partitions are shown in Table 3. The bold results in each column indicate the classifier with lowest
average error; also bolded are any classifiers that were not statistically significantly worse than the
classifier with lowest average error.

9. The original data set has 226 samples with 9 classes. As is standard practice with this data set, we removed those
classes which contain less than 7 samples.

10. Only Amazon-47 and Patrol are natively asymmetric.
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Amazon-47 Aural Sonar Caltech-101

Face Rec Mirex Patrol

Protein Protein RBF-sim Voting

Figure 1: Similarity matrices of each data set with class divisions indicated by tick marks; black
corresponds to maximum similarity and white to zero.

The similarity matrices in Figure 1 show that Aural Sonar and Voting exhibit fairly nice block-
diagonal structures, indicating that these are somewhat easy classification problems. This is re-
flected in the relatively low errors across the board and few statistically significant differences in
performance. More interesting results can be observed on the more difficult classification problems
posed by the other data sets.
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All local methods k: 1, 2, 3, . . . , 16, 32, 64, 128
KRR &: 10−3,10−2, . . . ,10
KRI &: 10−6,10−5, . . . ,10, and 106

PSVM ): 10−4,10−3, . . . ,10
PSVM C: 100,101, . . . ,104

SVM-KNN C: 10−3,10−2, . . . ,105

SVM (linear, clip, flip, shift) C: 10−3,10−2, . . . ,105

SVM (RBF) C: 10−3, . . . ,10
SVM (RBF) +: 10−5,10−4, . . . ,10

Table 2: Cross-validation Parameter Choices

The Amazon-47 data set is very sparse with at most four non-zero similarities per row. With
such sparse data, one might expect a 1-NN classifier to perform well; indeed for the uniform k-NN
classifier, the cross-validation chose k = 1 on all 20 of the randomized partitions. For all of the
local classifiers, the k chosen by cross-validation on this data set was never larger than k = 3, and
out of the 20 randomized partitions, k = 1 was chosen the majority of the time for all the local
classifiers. In contrast, the global SVM classifiers perform poorly on this sparse data set. The Patrol
data set is the next sparsest data set, and the results show a similar pattern. However, the Mirex data
set is also relatively sparse, and yet the global classifiers do well, in particular the SVMs that use
similarities as features. The Amazon-47 and Patrol data sets do differ from the Mirex data set in that
the self-similarities are not always maximal. Whether (and how) this difference causes or correlates
the relative differences in performance is an open question.

The Protein data set exhibits large differences in performance, with the statistically significantly
best performances achieved by two of the three SVMs that use similarity as features. The reason
that similarities on features performs so well while others do so poorly can be seen in the Protein
similarity matrix in Figure 1. The first and second classes (roughly the first and second thirds of
the matrix) exhibit a strong interclass similarity, and rows belonging to the same class exhibit very
similar patterns, thus treating the rows of the similarity matrix as feature vectors provides good
discrimination of classes. To investigate this effect, we transformed the entire data set using a
radial basis function (RBF) to create a similarity based on the Euclidean distance between rows
of the original similarity matrix, yielding the 213× 213 Protein RBF similarity matrix. One sees
from Table 3 that this transformation increases the performance of classifiers across the board,
indicating that this is indeed a better measure of similarity for this data set. Furthermore, after this
transformation we see a complete turnaround in performance: for Protein RBF, the SVMs that use
similarities as features are among the worst performers (with P-SVM still performing decently), and
the basic k-NN does better than the best classifier given the original Protein similarities.

The Caltech-101 data set is the largest data set, and with 8677 samples in 101 classes, an analysis
of the structure of this similarity matrix is difficult. Here we see the most dramatic enhancement in
performance (25% lower error) by using the KRR and KRI weights rather than k-NN or the affinity
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Amazon-47 Aural Sonar Caltech-101

k-NN 16.95 (4.85) 17.00 (7.65) 41.55 (0.95)

affinity k-NN 15.00 (4.77) 15.00 (6.12) 39.20 (0.86)

KRI k-NN (clip) 17.68 (4.75) 14.00 (6.82) 30.13 (0.42)

KRR k-NN (pinv) 16.10 (4.90) 15.25 (6.22) 29.90 (0.44)

Local SDA 16.83 (5.11) 17.75 (7.66) 41.99 (0.52)

SVM-KNN (clip) 17.56 (4.60) 13.75 (7.40) 36.82 (0.60)

SVM-similarities as kernel (clip) 81.34 (4.77) 13.00 (5.34) 33.49 (0.78)

SVM-similarities as features (linear) 76.10 (6.92) 14.25 (6.94) 38.18 (0.78)

SVM-similarities as features (RBF) 75.98 (7.33) 14.25 (7.46) 38.16 (0.75)

P-SVM 70.12 (8.82) 14.25 (5.97) 34.23 (0.95)

Face Rec Mirex Patrol

k-NN 4.23 (1.43) 61.21 (1.97) 11.88 (4.42)

affinity k-NN 4.23 (1.48) 61.15 (1.90) 11.67 (4.08)

KRI k-NN (clip) 4.15 (1.32) 61.20 (2.03) 11.56 (4.54)

KRR k-NN (pinv) 4.31 (1.86) 61.18 (1.96) 12.81 (4.62)

Local SDA 4.55 (1.67) 60.94 (1.94) 11.77 (4.62)

SVM-KNN (clip) 4.23 (1.25) 61.25 (1.95) 11.98 (4.36)

SVM-similarities as kernel (clip) 4.18 (1.25) 57.83 (2.05) 38.75 (4.81)

SVM-similarities as features (linear) 4.29 (1.36) 55.54 (2.52) 42.19 (5.85)

SVM-similarities as features (RBF) 3.92 (1.29) 55.72 (2.06) 40.73 (5.95)

P-SVM 4.05 (1.44) 63.81 (2.70) 40.42 (5.94)

Protein Protein RBF Voting

k-NN 29.88 (9.96) 0.93 (1.71) 5.80 (1.83)

affinity k-NN 30.81 (6.61) 0.93 (1.71) 5.86 (1.78)

KRI k-NN (clip) 30.35 (9.71) 1.05 (1.72) 5.29 (1.80)

KRR k-NN (pinv) 9.53 (5.04) 1.05 (1.72) 5.52 (1.69)

Local SDA 17.44 (6.52) 0.93 (1.71) 6.38 (2.07)

SVM-KNN (clip) 11.86 (5.50) 1.16 (1.72) 5.23 (2.25)

SVM-similarities as kernel (clip) 5.35 (4.60) 1.16 (1.72) 4.89 (2.05)

SVM-similarities as features (linear) 3.02 (2.76) 2.67 (2.12) 5.40 (2.03)

SVM-similarities as features (RBF) 2.67 (2.97) 2.44 (2.60) 5.52 (1.77)

P-SVM 1.86 (1.89) 1.05 (1.56) 5.34 (1.72)

Table 3: % Test misclassified averaged over 20 randomized test/training partitions.
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k-NN, suggesting that there are highly correlated samples that bias the classification. In contrast,
for the Amazon-47, Aural Sonar, Face Rec, Mirex, and Patrol data sets there is only a small win
by using the KRI or KRR weights, or a statistically insignificant small decline in performance (we
hypothesize this occurs because of overfitting due to the additional parameter &). On Protein the
KRR error is 1/3 the error of the other weighted methods; this is a consequence of using the pinv
rather than other types of spectrum modification, as can be seen from Table 4. The other significant
difference between the weighting methods is a roughly 10% improvement in average error on Voting
by using the KRR or KRI weights. In conclusion, the use of diverse weights may not matter on some
data sets, but can be very helpful on certain data sets.

SVM-KNN was proposed by Zhang et al. (2006) in part as a way to reduce the computations
required to train a global SVM using similarities as a kernel, and their results showed that it per-
formed similarly to a global SVM. That is somewhat true here, but some differences emerge. For the
Amazon-47 and Patrol data sets the local methods all do well including SVM-KNN, but the global
methods do poorly, including the global SVM using similarities as a kernel. On the other hand,
the global SVM using similarities as a kernel is statistically significantly better than SVM-KNN
on Caltech-101, even though the best performance on that data set is achieved by a local method
(KRR). From this sampling of data sets, we conclude that applying the SVM locally or globally
can in fact make a difference, but whether it is a positive or negative difference depends on the
application.

Among the four global SVMs (including P-SVM), it is hard to draw conclusions about the
performance of the one that uses similarities as a kernel versus the three that use similarities as
features. In terms of statistical significance, the SVM using similarities as a kernel outperforms the
others on Patrol and Caltech-101 whereas it is the worst on Amazon-47 and Protein, and there is
no clear division on the remaining data sets. Lastly, the results do not show statistically significant
differences between using the linear or RBF version of the SVM with similarities as features except
for small differences on Face Rec and Patrol.

7.4 Clip, Flip, or Shift?

Different approaches to modifying similarities to form a kernel were discussed in Section 2.1. We
experimentally compared clip, flip, and shift for the KRI weights, SVM-KNN, and SVM, and flip,
clip, shift and pinv for the KRR weights on the nine data sets. Table 4 shows the five data sets
for which at least one method showed statistically significantly different results depending on the
choice of spectrum modification.

For KRR weights, one sees that the pinv solution is never statistically significantly worse than
clip, flip, or shift, which are worse than pinv at least once. For KRI weights, the differences are
negligible, but based on average error we recommend clip.

Flip takes the absolute value of the eigenvalues, which is similar to the effect of using SST (as
discussed in Section 2.1.5), which for an SVM is equivalent to using the SVM on similarities-as-
features. Thus it is not surprising that for the Protein data set, which we have seen in Table 3 works
best with similarities as features, flip makes a large positive difference for SVM-KNN and SVM.
One sees different effects of the spectrummodification on the local methods versus the global SVMs
because for the local methods the modification is only done locally.
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KRI KRR

Amazon Mirex Patrol Protein Voting Amazon Mirex Patrol Protein Voting

clip 17.68 61.20 11.56 30.35 5.34 16.22 61.22 11.67 30.35 5.34

flip 17.56 61.17 11.67 31.28 5.34 16.22 61.12 12.08 30.47 5.29

shift 17.68 61.25 13.23 30.35 5.29 16.34 61.25 11.88 30.35 5.52

pinv - - - - - 16.10 61.18 12.81 9.53 5.52

SVM-KNN SVM

Amazon Mirex Patrol Protein Voting Amazon Mirex Patrol Protein Voting

clip 17.56 61.25 11.98 11.86 5.23 81.34 57.83 38.75 5.35 4.89

flip 17.56 61.25 11.88 1.74 5.23 84.27 56.34 47.29 1.51 4.94

shift 17.56 61.25 11.88 30.23 5.34 77.68 85.29 40.83 23.49 5.17

Table 4: Clip, flip, shift, and pinv comparison. Table shows % test misclassified averaged over 20
randomized test/training partitions for the five data sets that exhibit statistically significant
differences between these spectrum modifications. If there are statistically significant dif-
ferences for a given algorithm and a given data set, then the worst score, and scores not
statistically better, are shown in italics.

8. Conclusions and Some Open Questions

Similarity-based learning is a practical learning framework for many problems in bioinformatics,
computer vision, and those regarding human similarity judgement. Kernel methods can be applied
in this framework, but similarity-based learning creates a richer set of challenges because the data
may not be natively PSD.

In this paper we explored four different approximations of similarities: clipping, flipping, and
shifting the spectrum, and in some cases a pseudoinverse solution. Experimental results show small
but sometimes statistically significant differences. Based on the theoretical justification and results,
we suggest practitioners clip. Flipping the spectrum does create significantly better performance for
the original Protein problem because, as we noted earlier, flipping the spectrum has a similar effect
to using the similarities as features, which works favorably for the original Protein problem. How-
ever, it should be easy to recognize when flip will be advantageous, modify the similarity as we did
for the Protein RBF problem, and possibly achieve even better results. Concerning approximating
similarities, we addressed the issue of consistent treatment of training and test samples when ap-
proximating the similarities to be PSD. Although our linear solution is consistent, we do not argue
it is optimal, and consider this issue still open.

A fundamental question is whether it is more advisable to use the similarities as kernels or
features. We showed that the difference for SVMs is in the regularization, and that for similarities-
as-kernels generalization bounds can be proven using standard learning theory machinery. How-
ever, it is not straightforward to apply standard learning theory machinery to similarities-as-features
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because the normal Rademacher complexity bounds do not hold with the resulting adaptive non-
independent functions. To address this, we considered splitting the training set into prototypes for
similarities-as-features and a separate set to evaluate the empirical risk. Even then, we were only
able to show generalization bounds if the number of prototypes grows slowly. Complementary re-
sults have been shown for similarities-as-features by Balcan et al. (2008a) and Wang et al. (2007),
but further analysis would be valuable. Experimentally, it would be interesting to investigate meth-
ods using prototypes and performance as the number of training samples increases, ideally with
larger data sets than those used in our experiments.

We proposed design goals of affinity and diversity for weighting nearest neighbors, and sug-
gested two methods for constructing weights that satisfy these design goals. Experimental results
on eight diverse data sets demonstrated that the proposed weighted k-NN methods can significantly
reduce error compared to standard k-NN. In particular, on the largest data set Caltech-101, the
proposed KRI and KRR weights provided a roughly 25% improvement over k-NN and affinity-
weighted k-NN. The Caltech-101 similarities are PSD, and it may be that the KRI and KRR meth-
ods are sensitive to approximations of the matrix S. Preliminary experiments using the unmodified
local S and solving KRI or KRR objective functions using a global optimizer showed an increase
in performance but at the price of greatly increased computational cost. Compared to the local
SVM (SVM-KNN), the proposed KRR weights were statistically significantly worse on the two-
class data sets Aural Sonar and Patrol, but statistically significantly better on both of the highly
multi-class data sets, Amazon-47 and Caltech-101.

Overall, the results show that local methods are effective for similarity-based learning. It is
tempting from the obvious discrepancy between the performance of local and global methods on
Amazon and Patrol to argue that local methods will work best for sparse similarities. However,
Mirex is also relatively sparse, and the best methods are global. The Amazon and Patrol data sets
are different from the other data sets in that they are the only two data sets with non-maximal
self-similarities, and this issue may be the root of the discrepancy. For local methods an open
question not addressed here is how to efficiently find nearest-neighbors given only similarities.
Some research has been done in this area, for example Goyal et al. (2008) developed methods for
fast search with logarithmic query times that depend on how “disordered” the similarity is, where
they measure a disorder constant D of a set of samples as the D that ensures that if xi is the kth most
similar sample to x, and x j is the qth most similar sample to x, then x is among the D(q+ k) most
similar samples to x j.

Lastly, we note that similarity-based learning can be considered a special case of graph-based
learning (see, for example, Zhu, 2005), where the graph is fully-connected. However, most graph-
based learning literature addresses the problem of semi-supervised learning, while the similarity-
based learning algorithms discussed in this paper are mainly for supervised learning. We have
seen no cross-referential literature between these two fields, and it remains an open question which
techniques developed for one problem will be useful for the other problem and vice versa.
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Appendix A.

Proof of Proposition 1: Recall the eigenvalue decomposition Sclip = UT%clipU . After removing
the zero eigenvalues in %clip and their corresponding eigenvectors in U and UT , one can express
Sclip = ǓT %̌clipǓ , where %̌clip is anm×m diagonal matrix withm the number of nonzero eigenvalues
and Ǔ an m× n matrix satisfying ǓǓT = I. The vector representation of the training samples
implicitly used via Sclip is X = %̌1/2clipǓ . Given test similarity vector s, the least-squares solution to
the equation XTx = s is x =

(
XXT

)−1Xs. Let s̃ be the vector of the inner products between the
embedded test sample x and the embedded training samples X , then

s̃= XTx= XT
(
XXT

)−1Xs= ǓTǓs=UTMclipUs= Pclips. "

The proofs of the generalization bounds of Theorem 1 and Theorem 2 rely on bounding the
Rademacher complexity of the function classes FS and FI , respectively. We provide the definition of
Rademacher complexity here for convenience.

Definition 1 (Rademacher Complexity) Suppose X = {X1,X2, . . . ,Xn} are samples drawn inde-
pendently from a distribution on !, and let F be a class of functions mapping from ! to R. Then,
the Rademacher complexity of F is

RX (F) = E2,X

(

sup
f∈F

∣∣∣∣∣
2
n

n

$
i=1

2i f (Xi)

∣∣∣∣∣

)

,

where 2 = {21,22, . . . ,2n} is a set of independent uniform {±1}-valued random variables11 such
that P(2i = 1) = P(2i = −1) = 1/2 for all i.

The following lemma establishes that for a class of bounded functions F , the generalization
error for any f ∈ F is bounded above by a function of R̂D( f ,L) and RD(F).

Lemma 1 (Bartlett and Mendelson, 2002, Theorem 7) Suppose (X ,Y ) and the elements of D are
drawn i.i.d. from a distribution on !× {±1}. Let F be a class of bounded real-valued functions
defined on ! such that sup f∈F supx∈! | f (x)| < *. Suppose L : R → [0,1] is Lipschitz with constant
C and satisfies L(a) ≥ I{a≤0}. Then with probability at least 1−- with respect to D , every function
in F satisfies

P(Y f (X) ≤ 0) ≤ R̂D( f ,L)+2CRD(F)+

√
ln(2/-)
2n

.

For the proof of Theorem 1, we also require the following bound on the Rademacher complexity
of kernel methods.

Lemma 2 (Bartlett and Mendelson, 2002, Lemma 22) Suppose the elements of D are drawn
i.i.d. from a distribution on ! × {±1}. Let FK denote the set of functions{
f (x) = $i#iK(x,Xi)

∣∣∣ $i, j#i# jK(Xi,Xj) ≤ '2
}
, then by Jensen’s inequality,

RD(FK) ≤ 2'
√
E (K(X ,X))

n
.

11. Such random variables are called Rademacher random variables and their distribution is called the Rademacher
distribution.
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Proof of Theorem 1: Theorem 1 is an application of Lemma 1 and 2 for the function class FS ={
f (s) = wT s

∣∣wTSw≤ '2
}
. By replacing the kernel function K in Lemma 2 with ", and noticing

E ("(X ,X)) ≤ ,2 since "(a,a) ≤ ,2 for all a ∈!, we have RD(FS) ≤ 2',
√
1/n. It can be verified

that the function class FS is bounded as | f (s)|≤ ', for all f ∈ FS, and thus we can apply Lemma 1.
Noting that Lt is Lipschitz withC = 1 completes the proof. "

Proof of Theorem 2: Recall that s̃=
[
"(x, x̃1) . . . "(x, x̃m)

]T where {(x̃1, ỹ1), . . . , (x̃m, ỹm)}⊆D

is a subset of the training data and D̃ =D\{(x̃1, ỹ1), . . . ,(x̃m, ỹm)} is the remaining training set. It is
tempting to apply Lemma 2 with the linear kernel, but in this case, this does not satisfy the definition
of the function class FI =

{
f (s̃) = wT s̃

∣∣wTw≤ '2
}
defined on these prototypes. The following

bound on the Rademacher complexity mirrors that of Bartlett and Mendelson (2002, Lemma 22),
but requires an important modification noted below:

RD̃(FI) = ED̃,2

(

sup
f∈FI

∣∣∣∣∣
2
n

n−m

$
i=1

2i f (s̃i)

∣∣∣∣∣

)

≤
2
n
ED̃,2

(

sup
‖w‖2≤'

∣∣∣∣∣
wT

(
n−m

$
i=1

2is̃i

)∣∣∣∣∣

)

(a)
≤
2
n
ED̃,2

(

'

∥∥∥∥∥

n−m

$
i=1

2is̃i

∥∥∥∥∥
2

)

=
2'
n
ED̃,2

(
√
$
i, j
2i2 j s̃Ti s̃ j

)

(b)
≤
2'
n

√
$
i, j
ED̃,2

(
2i2 j s̃Ti s̃ j

)

=
2'
n

√
n−m

$
i=1

ED̃
(
s̃Ti s̃i

)

=
2'
n

√√√√
n−m

$
i=1

m

$
j=1

ED̃ "
2(xi, x̃ j)

≤ 2',2
√
m
n
−
m2
n2

≤ 2',2
√
m
n

where (a) follows from the Cauchy-Schwarz inequality12 and (b) follows from Jensen’s inequality.
It can be verified that the function class is bounded as | f (s̃)| ≤ ',2

√
m for all f ∈ FI , and thus

we can apply Lemma 1. As before, noting that Lt is Lipschitz withC = 1 completes the proof. "

The proof of Theorem 2 illustrates why using similarities as features has a poorer guarantee on
the generalization than using similarities as a kernel. Specifically, the function class corresponding

12. Note that in the proof of Theorem 1 and in Bartlett andMendelson (2002, Lemma 22) the Cauchy-Schwartz inequality
is applied in the RKHS space whereas here it is applied in Rm.

772



SIMILARITY-BASED CLASSIFICATION

to regularization on wTw is too large. Of course, this flexibility can be mitigated by using only a
set of m prototypes whose size grows as o(n), which can be seen as an additional form of capacity
control.
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Abstract
We propose a general method called truncated gradient to induce sparsity in the weights of online-
learning algorithms with convex loss functions. This method has several essential properties:

1. The degree of sparsity is continuous—a parameter controls the rate of sparsification from no sparsifi-
cation to total sparsification.

2. The approach is theoretically motivated, and an instance of it can be regarded as an online counterpart
of the popular L1-regularization method in the batch setting. We prove that small rates of sparsification
result in only small additional regret with respect to typical online-learning guarantees.

3. The approach works well empirically.

We apply the approach to several data sets and find for data sets with large numbers of features,
substantial sparsity is discoverable.
Keywords: truncated gradient, stochastic gradient descent, online learning, sparsity, regulariza-
tion, Lasso

1. Introduction

We are concerned with machine learning over large data sets. As an example, the largest data set
we use here has over 107 sparse examples and 109 features using about 1011 bytes. In this setting,
many common approaches fail, simply because they cannot load the data set into memory or they
are not sufficiently efficient. There are roughly two classes of approaches which can work:

1. Parallelize a batch-learning algorithm over many machines (e.g., Chu et al., 2008).

2. Stream the examples to an online-learning algorithm (e.g., Littlestone, 1988; Littlestone et al.,
1995; Cesa-Bianchi et al., 1996; Kivinen and Warmuth, 1997).

∗. Partially supported by NSF grant DMS-0706805.

c©2009 John Langford, Lihong Li and Tong Zhang.
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This paper focuses on the second approach.
Typical online-learning algorithms have at least one weight for every feature, which is too much

in some applications for a couple reasons:

1. Space constraints. If the state of the online-learning algorithm overflows RAM it can not
efficiently run. A similar problem occurs if the state overflows the L2 cache.

2. Test-time constraints on computation. Substantially reducing the number of features can yield
substantial improvements in the computational time required to evaluate a new sample.

This paper addresses the problem of inducing sparsity in learned weights while using an online-
learning algorithm. There are several ways to do this wrong for our problem. For example:

1. Simply adding L1-regularization to the gradient of an online weight update doesn’t work
because gradients don’t induce sparsity. The essential difficulty is that a gradient update has
the form a+b where a and b are two floats. Very few float pairs add to 0 (or any other default
value) so there is little reason to expect a gradient update to accidentally produce sparsity.

2. Simply rounding weights to 0 is problematic because a weight may be small due to being
useless or small because it has been updated only once (either at the beginning of training
or because the set of features appearing is also sparse). Rounding techniques can also play
havoc with standard online-learning guarantees.

3. Black-box wrapper approaches which eliminate features and test the impact of the elimination
are not efficient enough. These approaches typically run an algorithm many times which is
particularly undesirable with large data sets.

1.1 What Others Do

In the literature, the Lasso algorithm (Tibshirani, 1996) is commonly used to achieve sparsity for
linear regression using L1-regularization. This algorithm does not work automatically in an online
fashion. There are two formulations of L1-regularization. Consider a loss function L(w,zi) which is
convex in w, where zi = (xi,yi) is an input/output pair. One is the convex constraint formulation

ŵ= argmin
w

n

!
i=1

L(w,zi) subject to ‖w‖1 ≤ s, (1)

where s is a tunable parameter. The other is the soft regularization formulation, where

ŵ= argmin
w

n

!
i=1

L(w,zi)+g‖w‖1. (2)

With appropriately chosen g, the two formulations are equivalent. The convex constraint formu-
lation has a simple online version using the projection idea of Zinkevich (2003), which requires
the projection of weight w into an L1-ball at every online step. This operation is difficult to imple-
ment efficiently for large-scale data with many features even if all examples have sparse features
although recent progress was made (Duchi et al., 2008) to reduce the amortized time complexity to
O(k logd), where k is the number of nonzero entries in xi, and d is the total number of features (i.e.,
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the dimension of xi). In contrast, the soft-regularization method is efficient for a batch setting (Lee
et al., 2007) so we pursue it here in an online setting where we develop an algorithm whose com-
plexity is linear in k but independent of d; these algorithms are therefore more efficient in problems
where d is prohibitively large.

More recently, Duchi and Singer (2008) propose a framework for empirical risk minimization
with regularization called Forward Looking Subgradients, or FOLOS in short. The basic idea is to
solve a regularized optimization problem after every gradient-descent step. This family of algo-
rithms allow general convex regularization function, and reproduce a special case of the truncated
gradient algorithm we will introduce in Section 3.3 (with " set to #) when L1-regularization is used.

The Forgetron algorithm (Dekel et al., 2006) is an online-learning algorithm that manages mem-
ory use. It operates by decaying the weights on previous examples and then rounding these weights
to zero when they become small. The Forgetron is stated for kernelized online algorithms, while we
are concerned with the simpler linear setting. When applied to a linear kernel, the Forgetron is not
computationally or space competitive with approaches operating directly on feature weights.

A different, Bayesian approach to learning sparse linear classifiers is taken by Balakrishnan and
Madigan (2008). Specifically, their algorithms approximate the posterior by a Gaussian distribution,
and hence need to store second-order covariance statistics which require O(d2) space and time per
online step. In contrast, our approach is much more efficient, requiring only O(d) space and O(k)
time at every online step.

After completing the paper, we learned that Carpenter (2008) independently developed an algo-
rithm similar to ours.

1.2 What We Do

We pursue an algorithmic strategy which can be understood as an online version of an efficient L1
loss optimization approach (Lee et al., 2007). At a high level, our approach works with the soft-
regularization formulation (2) and decays the weight to a default value after every online stochastic
gradient step. This simple approach enjoys minimal time complexity (which is linear in k and in-
dependent of d) as well as strong performance guarantee, as discussed in Sections 3 and 5. For
instance, the algorithm never performs much worse than a standard online-learning algorithm, and
the additional loss due to sparsification is controlled continuously with a single real-valued param-
eter. The theory gives a family of algorithms with convex loss functions for inducing sparsity—one
per online-learning algorithm. We instantiate this for square loss and show how an efficient imple-
mentation can take advantage of sparse examples in Section 4. In addition to the L1-regularization
formulation (2), the family of algorithms we consider also include some non-convex sparsification
techniques.

As mentioned in the introduction, we are mainly interested in sparse online methods for large
scale problems with sparse features. For such problems, our algorithm should satisfy the following
requirements:

• The algorithm should be computationally efficient: the number of operations per online step
should be linear in the number of nonzero features, and independent of the total number of
features.

• The algorithm should be memory efficient: it needs to maintain a list of active features, and
can insert (when the corresponding weight becomes nonzero) and delete (when the corre-
sponding weight becomes zero) features dynamically.
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Our solution, referred to as truncated gradient, is a simple modification of the standard stochastic
gradient rule. It is defined in (6) as an improvement over simpler ideas such as rounding and sub-
gradient method with L1 -regularization. The implementation details, showing our methods satisfy
the above requirements, are provided in Section 5.

Theoretical results stating how much sparsity is achieved using this method generally require
additional assumptions which may or may not be met in practice. Consequently, we rely on experi-
ments in Section 6 to show our method achieves good sparsity practice. We compare our approach
to a few others, including L1 -regularization on small data, as well as online rounding of coefficients
to zero.

2. Online Learning with Stochastic Gradient Descent

In the setting of standard online learning, we are interested in sequential prediction problems where
repeatedly from i= 1,2, . . .:

1. An unlabeled example xi arrives.

2. We make a prediction based on existing weights wi ∈ Rd .

3. We observe yi, let zi = (xi,yi), and incur some known loss L(wi,zi) that is convex in parameter
wi.

4. We update weights according to some rule: wi+1 ← f (wi).

We want to come up with an update rule f , which allows us to bound the sum of losses

t

!
i=1

L(wi,zi)

as well as achieving sparsity. For this purpose, we start with the standard stochastic gradient descent
(SGD) rule, which is of the form:

f (wi) = wi−$%1L(wi,zi), (3)

where %1L(a,b) is a sub-gradient of L(a,b) with respect to the first variable a. The parameter $> 0
is often referred to as the learning rate. In our analysis, we only consider constant learning rate
with fixed $ > 0 for simplicity. In theory, it might be desirable to have a decaying learning rate $i
which becomes smaller when i increases to get the so called no-regret bound without knowing T in
advance. However, if T is known in advance, one can select a constant $ accordingly so the regret
vanishes as T →#. Since our focus is on sparsity, not how to adapt learning rate, for clarity, we use
a constant learning rate in the analysis because it leads to simpler bounds.

The above method has been widely used in online learning (Littlestone et al., 1995; Cesa-
Bianchi et al., 1996). Moreover, it is argued to be efficient even for solving batch problems where
we repeatedly run the online algorithm over training data multiple times. For example, the idea has
been successfully applied to solve large-scale standard SVM formulations (Shalev-Shwartz et al.,
2007; Zhang, 2004). In the scenario outlined in the introduction, online-learning methods are more
suitable than some traditional batch-learning methods.

780



SPARSE ONLINE LEARNING VIA TRUNCATED GRADIENT

!!"#$!%

#
!&!

!'"#$!$"%

#
"

&" &!
!

Figure 1: Plots for the truncation functions, T0 and T1, which are defined in the text.

However, a main drawback of (3) is that it does not achieve sparsity, which we address in this
paper. In the literature, the stochastic-gradient descent rule is often referred to as gradient descent
(GD). There are other variants, such as exponentiated gradient descent (EG). Since our focus in this
paper is sparsity, not GD versus EG, we shall only consider modifications of (3) for simplicity.

3. Sparse Online Learning

In this section, we examine several methods for achieving sparsity in online learning. The first idea
is simple coefficient rounding, which is the most natural method. We will then consider another
method which is the online counterpart of L1-regularization in batch learning. Finally, we combine
such two ideas and introduce truncated gradient. As we shall see, all these ideas are closely related.

3.1 Simple Coefficient Rounding

In order to achieve sparsity, the most natural method is to round small coefficients (that are no larger
than a threshold " > 0) to zero after every K online steps. That is, if i/K is not an integer, we use
the standard GD rule in (3); if i/K is an integer, we modify the rule as:

f (wi) = T0(wi−$%1L(wi,zi),"), (4)

where for a vector v= [v1, . . . ,vd] ∈ Rd , and a scalar "≥ 0, T0(v,") = [T0(v1,"), . . . ,T0(vd ,")], with
T0 defined by (cf., Figure 1)

T0(v j,") =

{

0 if |v j|≤ "

v j otherwise
.

That is, we first apply the standard stochastic gradient descent rule, and then round small coefficients
to zero.

In general, we should not take K = 1, especially when $ is small, since each step modifies wi
by only a small amount. If a coefficient is zero, it remains small after one online update, and the
rounding operation pulls it back to zero. Consequently, rounding can be done only after every K
steps (with a reasonably large K); in this case, nonzero coefficients have sufficient time to go above
the threshold ". However, if K is too large, then in the training stage, we will need to keep many
more nonzero features in the intermediate steps before they are rounded to zero. In the extreme
case, we may simply round the coefficients in the end, which does not solve the storage problem in
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the training phase. The sensitivity in choosing appropriate K is a main drawback of this method;
another drawback is the lack of theoretical guarantee for its online performance.

3.2 A Sub-gradient Algorithm for L1-Regularization

In our experiments, we combine rounding-in-the-end-of-training with a simple online sub-gradient
method for L1-regularization with a regularization parameter g> 0:

f (wi) = wi−$%1L(wi,zi)−$gsgn(wi), (5)

where for a vector v = [v1, . . . ,vd], sgn(v) = [sgn(v1), . . . ,sgn(vd)], and sgn(v j) = 1 when v j > 0,
sgn(v j) =−1 when v j < 0, and sgn(v j) = 0 when v j = 0. In the experiments, the online method (5)
plus rounding in the end is used as a simple baseline. This method does not produce sparse weights
online. Therefore it does not handle large-scale problems for which we cannot keep all features in
memory.

3.3 Truncated Gradient

In order to obtain an online version of the simple rounding rule in (4), we observe that the direct
rounding to zero is too aggressive. A less aggressive version is to shrink the coefficient to zero by a
smaller amount. We call this idea truncated gradient.

The amount of shrinkage is measured by a gravity parameter gi > 0:

f (wi) = T1(wi−$%1L(wi,zi),$gi,"), (6)

where for a vector v= [v1, . . . ,vd]∈Rd , and a scalar g≥ 0, T1(v,&,")= [T1(v1,&,"), . . . ,T1(vd ,&,")],
with T1 defined by (cf., Figure 1)

T1(v j,&,") =











max(0,v j−&) if v j ∈ [0,"]

min(0,v j +&) if v j ∈ [−",0]

v j otherwise
.

Again, the truncation can be performed every K online steps. That is, if i/K is not an integer, we
let gi = 0; if i/K is an integer, we let gi = Kg for a gravity parameter g> 0. This particular choice
is equivalent to (4) when we set g such that $Kg ≥ ". This requires a large g when $ is small. In
practice, one should set a small, fixed g, as implied by our regret bound developed later.

In general, the larger the parameters g and " are, the more sparsity is incurred. Due to the
extra truncation T1, this method can lead to sparse solutions, which is confirmed in our experiments
described later. In those experiments, the degree of sparsity discovered varies with the problem.

A special case, which we will try in the experiment, is to let g= " in (6). In this case, we can use
only one parameter g to control sparsity. Since $Kg* " when $K is small, the truncation operation
is less aggressive than the rounding in (4). At first sight, the procedure appears to be an ad-hoc way
to fix (4). However, we can establish a regret bound for this method, showing it is theoretically
sound.

Setting "= # yields another important special case of (6), which becomes

f (wi) = T (wi−$%1L(wi,zi),gi$), (7)
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where for a vector v= [v1, . . . ,vd] ∈ Rd , and a scalar g≥ 0, T (v,&) = [T (v1,&), . . . ,T (vd,&)], with

T (v j,&) =

{

max(0,v j−&) if v j > 0
min(0,v j +&) otherwise

.

The method is a modification of the standard sub-gradient descent method with L1-regularization
given in (5). The parameter gi ≥ 0 controls the sparsity that can be achieved with the algorithm.
Note when gi = 0, the update rule is identical to the standard stochastic gradient descent rule. In
general, we may perform a truncation every K steps. That is, if i/K is not an integer, we let gi = 0; if
i/K is an integer, we let gi = Kg for a gravity parameter g> 0. The reason for doing so (instead of a
constant g) is that we can perform a more aggressive truncation with gravity parameter Kg after each
K steps. This may lead to better sparsity. An alternative way to derive a procedure similar to (7)
is through an application of convex hull projection idea of Zinkevich (2003) to the L1-regularized
loss, as in (5). However, instead of working with the original feature set, we need to consider a
2d-dimensional duplicated feature set [xi,−xi], with the non-negativity constraint wj ≥ 0 for each
component of j (wwill also have dimension 2d in this case). The resulting method is similar to ours,
with a similar theoretical guarantee as in Theorem 3.1. The proof presented in this paper is more
specialized to truncated gradient, and directly works with xi instead of augmented data [xi,−xi].
Moreover, our analysis does not require the loss function to have bounded gradient, and thus can
directly handle the least squares loss.

The procedure in (7) can be regarded as an online counterpart of L1-regularization in the sense
that it approximately solves an L1-regularization problem in the limit of $→ 0. Truncated gradient
for L1-regularization is different from (5), which is a naïve application of stochastic gradient de-
scent rule with an added L1-regularization term. As pointed out in the introduction, the latter fails
because it rarely leads to sparsity. Our theory shows even with sparsification, the prediction perfor-
mance is still comparable to standard online-learning algorithms. In the following, we develop a
general regret bound for this general method, which also shows how the regret may depend on the
sparsification parameter g.

3.4 Regret Analysis

Throughout the paper, we use ‖ · ‖1 for 1-norm, and ‖ · ‖ for 2-norm. For reference, we make the
following assumption regarding the loss function:

Assumption 3.1 We assume L(w,z) is convex in w, and there exist non-negative constants A and B
such that ‖%1L(w,z)‖2 ≤ AL(w,z)+B for all w ∈ Rd and z ∈ Rd+1.

For linear prediction problems, we have a general loss function of the form L(w,z) = '(wTx,y). The
following are some common loss functions '(·, ·) with corresponding choices of parameters A and
B (which are not unique), under the assumption supx ‖x‖ ≤C.

• Logistic: '(p,y) = ln(1+exp(−py)); A= 0 and B=C2. This loss is for binary classification
problems with y ∈ {±1}.

• SVM (hinge loss): '(p,y) = max(0,1 − py); A = 0 and B = C2. This loss is for binary
classification problems with y ∈ {±1}.

• Least squares (square loss): '(p,y) = (p−y)2; A= 4C2 and B= 0. This loss is for regression
problems.
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Our main result is Theorem 3.1 which is parameterized by A and B. The proof is left to the
appendix. Specializing it to particular losses yields several corollaries. A corollary applicable to the
least square loss is given later in Corollary 4.1.

Theorem 3.1 (Sparse Online Regret) Consider sparse online update rule (6) with w1 = 0 and $> 0.
If Assumption 3.1 holds, then for all w̄ ∈ Rd we have

1−0.5A$
T

T

!
i=1

[

L(wi,zi)+
gi

1−0.5A$
‖wi+1 · I(wi+1 ≤ ")‖1

]

≤
$
2
B+

‖w̄‖2

2$T
+

1
T

T

!
i=1

[L(w̄,zi)+gi‖w̄ · I(wi+1 ≤ ")‖1],

where for vectors v= [v1, . . . ,vd] and v′ = [v′1, . . . ,v′d], we let

‖v · I(|v′|≤ ")‖1 =
d

!
j=1

|v j|I(|v′j|≤ "),

where I(·) is the set indicator function.

We state the theorem with a constant learning rate $. As mentioned earlier, it is possible to
obtain a result with variable learning rate where $ = $i decays as i increases. Although this may
lead to a no-regret bound without knowing T in advance, it introduces extra complexity to the
presentation of the main idea. Since our focus is on sparsity rather than adapting learning rate, we
do not include such a result for clarity. If T is known in advance, then in the above bound, one can
simply take $= O(1/

√
T ) and the L1-regularized regret is of order O(1/

√
T ).

In the above theorem, the right-hand side involves a term gi‖w̄ · I(wi+1 ≤ ")‖1 depending on
wi+1 which is not easily estimated. To remove this dependency, a trivial upper bound of "= # can
be used, leading to L1 penalty gi‖w̄‖1. In the general case of " < #, we cannot replace wi+1 by
w̄ because the effective regularization condition (as shown on the left-hand side) is the non-convex
penalty gi‖w · I(|w| ≤ ")‖1. Solving such a non-convex formulation is hard both in the online and
batch settings. In general, we only know how to efficiently discover a local minimum which is
difficult to characterize. Without a good characterization of the local minimum, it is not possible
for us to replace gi‖w̄ · I(wi+1 ≤ ")‖1 on the right-hand side by gi‖w̄ · I(w̄ ≤ ")‖1 because such a
formulation implies we can efficiently solve a non-convex problem with a simple online update rule.
Still, when " < #, one naturally expects the right-hand side penalty gi‖w̄ · I(wi+1 ≤ ")‖1 is much
smaller than the corresponding L1 penalty gi‖w̄‖1, especially when wj has many components close
to 0. Therefore the situation with "<# can potentially yield better performance on some data. This
is confirmed in our experiments.

Theorem 3.1 also implies a trade-off between sparsity and regret performance. We may simply
consider the case where gi = g is a constant. When g is small, we have less sparsity but the regret
term g‖w̄ · I(wi+1 ≤ ")‖1 ≤ g‖w̄‖1 on the right-hand side is also small. When g is large, we are
able to achieve more sparsity but the regret g‖w̄ · I(wi+1 ≤ ")‖1 on the right-hand side also becomes
large. Such a trade-off (sparsity versus prediction accuracy) is empirically studied in Section 6. Our
observation suggests we can gain significant sparsity with only a small decrease of accuracy (that
is, using a small g).
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Now consider the case " = # and gi = g. When T → #, if we let $→ 0 and $T → #, then
Theorem 3.1 implies

1
T

T

!
i=1

[L(wi,zi)+g‖wi‖1] ≤ inf
w̄∈Rd

[

1
T

T

!
i=1

L(w̄,zi)+g‖w̄‖1

]

+o(1).

In other words, if we let L′(w,z)=L(w,z)+g‖w‖1 be the L1-regularized loss, then the L1-regularized
regret is small when $→ 0 and T →#. In particular, if we let $= 1/

√
T , then the theorem implies

the L1-regularized regret is

T

!
i=1

(L(wi,zi)+g‖wi‖1)−
T

!
i=1

(L(w̄,zi)+g‖w̄‖1)

≤
√
T

2
(B+‖w̄‖2)

(

1+
A

2
√
T

)

+
A

2
√
T

(

T

!
i=1

L(w̄,zi)+g
T

!
i=1

(‖w̄‖1 −‖wi+1‖1)

)

+o(
√
T ),

which is O(
√
T ) for bounded loss function L and weights wi. These observations imply our pro-

cedure can be regarded as the online counterpart of L1-regularization methods. In the stochastic
setting where the examples are drawn iid from some underlying distribution, the sparse online gra-
dient method proposed in this paper solves the L1-regularization problem.

3.5 Stochastic Setting

SGD-based online-learning methods can be used to solve large-scale batch optimization problems,
often quite successfully (Shalev-Shwartz et al., 2007; Zhang, 2004). In this setting, we can go
through training examples one-by-one in an online fashion, and repeat multiple times over the train-
ing data. In this section, we analyze the performance of such a procedure using Theorem 3.1.

To simplify the analysis, instead of assuming we go through the data one by one, we assume
each additional data point is drawn from the training data randomly with equal probability. This
corresponds to the standard stochastic optimization setting, in which observed samples are iid from
some underlying distributions. The following result is a simple consequence of Theorem 3.1. For
simplicity, we only consider the case with "= # and constant gravity gi = g.

Theorem 3.2 Consider a set of training data zi = (xi,yi) for i= 1, . . . ,n, and let

R(w,g) =
1
n

n

!
i=1

L(w,zi)+g‖w‖1

be the L1-regularized loss over training data. Let ŵ1 =w1 = 0, and define recursively for t = 1,2, . . .

wt+1 = T (wt−$%1(wt ,zit ),g$), ŵt+1 = ŵt +
wt+1 − ŵt
t+1

,
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where each it is drawn from {1, . . . ,n} uniformly at random. If Assumption 3.1 holds, then at any
time T , the following inequalities are valid for all w̄ ∈ Rd:

Ei1,...,iT
[

(1−0.5A$)R
(

ŵT ,
g

1−0.5A$

)]

≤Ei1,...,iT

[

1−0.5A$
T

T

!
i=1

R
(

wi,
g

1−0.5A$

)

]

≤
$
2
B+

‖w̄‖2

2$T
+R(w̄,g).

Proof Note the recursion of ŵt implies

ŵT =
1
T

T

!
t=1

wt

from telescoping the update rule. Because R(w,g) is convex in w, the first inequality follows di-
rectly from Jensen’s inequality. It remains to prove the second inequality. Theorem 3.1 implies the
following:

1−0.5A$
T

T

!
t=1

[

L(wt ,zit )+
g

1−0.5A$
‖wt‖1

]

≤ g‖w̄‖1 +
$
2
B+

‖w̄‖2

2$T
+

1
T

T

!
t=1

L(w̄,zit ). (8)

Observe that

Eit
[

L(wt ,zit )+
g

1−0.5A$
‖wt‖1

]

= R
(

wt ,
g

1−0.5A$

)

and

g‖w̄‖1 +Ei1,...,iT

[

1
T

T

!
t=1

L(w̄,zit )

]

= R(w̄,g).

The second inequality is obtained by taking the expectation with respect to Ei1,...,iT in (8).

If we let $→ 0 and $T → #, the bound in Theorem 3.2 becomes

E [R(ŵT ,g)] ≤ E
[

1
T

T

!
t=1

R(wt ,g)

]

≤ inf
w̄
R(w̄,g)+o(1).

That is, on average, ŵT approximately solves the L1-regularization problem

inf
w

[

1
n

n

!
i=1

L(w,zi)+g‖w‖1

]

.

If we choose a random stopping time T , then the above inequalities says that on average wT also
solves this L1-regularization problem approximately. Therefore in our experiment, we use the last
solution wT instead of the aggregated solution ŵT . For practice purposes, this is adequate even
though we do not intentionally choose a random stopping time.

Since L1-regularization is frequently used to achieve sparsity in the batch learning setting, the
connection to L1-regularization can be regarded as an alternative justification for the sparse-online
algorithm developed in this paper.
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Algorithm 1 Truncated Gradient for Least Squares
Inputs:

• threshold "≥ 0
• gravity sequence gi ≥ 0
• learning rate $ ∈ (0,1)

• example oracle O

initialize weights wj ← 0 ( j = 1, . . . ,d)
for trial i= 1,2, . . .

1. Acquire an unlabeled example x= [x1,x2, . . . ,xd] from oracle O

2. forall weights wj ( j = 1, . . . ,d)

(a) if wj > 0 and wj ≤ " then wj ← max{wj−gi$,0}
(b) elseif wj < 0 and wj ≥−" then wj ← min{wj +gi$,0}

3. Compute prediction: ŷ= ! j w jx j

4. Acquire the label y from oracle O

5. Update weights for all features j: wj ← wj +2$(y− ŷ)x j

4. Truncated Gradient for Least Squares

The method in Section 3 can be directly applied to least squares regression. This leads to Algorithm
1 which implements sparsification for square loss according to Equation (6). In the description,
we use superscripted symbol wj to denote the j-th component of vector w (in order to differentiate
from wi, which we have used to denote the i-th weight vector). For clarity, we also drop the index
i from wi. Although we keep the choice of gravity parameters gi open in the algorithm description,
in practice, we only consider the following choice:

gi =

{

Kg if i/K is an integer
0 otherwise

.

This may give a more aggressive truncation (thus sparsity) after every K-th iteration. Since we do
not have a theorem formalizing how much more sparsity one can gain from this idea, its effect will
only be examined empirically in Section 6.

In many online-learning situations (such as web applications), only a small subset of the features
have nonzero values for any example x. It is thus desirable to deal with sparsity only in this small
subset rather than in all features, while simultaneously inducing sparsity on all feature weights.
Moreover, it is important to store only features with non-zero coefficients (if the number of features
is too large to be stored in memory, this approach allows us to use a hash table to track only the
nonzero coefficients). We describe how this can be implemented efficiently in the next section.

For reference, we present a specialization of Theorem 3.1 in the following corollary which is
directly applicable to Algorithm 1.
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Corollary 4.1 (Sparse Online Square Loss Regret) If there exists C> 0 such that for all x, ‖x‖ ≤C,
then for all w̄ ∈ Rd, we have

1−2C2$
T

T

!
i=1

[

(wTi xi− yi)2 +
gi

1−2C2$
‖wi · I(|wi|≤ ")‖1

]

≤
‖w̄‖2

2$T
+

1
T

T

!
i=1

[

(w̄T xi− yi)2 +gi+1‖w̄ · I(|wi+1|≤ ")‖1
]

,

where wi = [w1, . . . ,wd] ∈ Rd is the weight vector used for prediction at the i-th step of Algorithm 1;
(xi,yi) is the data point observed at the i-step.

This corollary explicitly states that average square loss incurred by the learner (the left-hand
side) is bounded by the average square loss of the best weight vector w̄, plus a term related to the
size of w̄ which decays as 1/T and an additive offset controlled by the sparsity threshold " and the
gravity parameter gi.

5. Efficient Implementation

We altered a standard gradient-descent implementation, VOWPAL WABBIT(Langford et al., 2007),
according to algorithm 1. VOWPAL WABBIT optimizes square loss on a linear representation wTx
via gradient descent (3) with a couple caveats:

1. The prediction is normalized by the square root of the number of nonzero entries in a sparse
vector, wTx/

√

‖x‖0. This alteration is just a constant rescaling on dense vectors which is
effectively removable by an appropriate rescaling of the learning rate.

2. The prediction is clipped to the interval [0,1], implying the loss function is not square loss for
unclipped predictions outside of this dynamic range. Instead the update is a constant value,
equivalent to the gradient of a linear loss function.

The learning rate in VOWPAL WABBIT is controllable, supporting 1/i decay as well as a constant
learning rate (and rates in-between). The program operates in an entirely online fashion, so the
memory footprint is essentially just the weight vector, even when the amount of data is very large.

As mentioned earlier, we would like the algorithm’s computational complexity to depend lin-
early on the number of nonzero features of an example, rather than the total number of features. The
approach we took was to store a time-stamp ( j for each feature j. The time-stamp was initialized
to the index of the example where feature j was nonzero for the first time. During online learning,
we simply went through all nonzero features j of example i, and could “simulate” the shrinkage
of wj after ( j in a batch mode. These weights are then updated, and their time stamps are set to
i. This lazy-update idea of delaying the shrinkage calculation until needed is the key to efficient
implementation of truncated gradient. Specifically, instead of using update rule (6) for weight wj,
we shrunk the weights of all nonzero feature j differently by the following:

f (wj) = T1

(

wj +2$(y− ŷ)x j,
⌊

i− ( j
K

⌋

K$g,"
)

,

and ( j is updated by

( j ← ( j +

⌊

i− ( j
K

⌋

K.
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This lazy-update trick can be applied to the other two algorithms given in Section 3. In the
coefficient rounding algorithm (4), for instance, for each nonzero feature j of example i, we can
first perform a regular gradient descent on the square loss, and then do the following: if |wj| is
below the threshold " and i≥ ( j +K, we round wj to 0 and set ( j to i.

This implementation shows the truncated gradient method satisfies the following requirements
needed for solving large scale problems with sparse features.

• The algorithm is computationally efficient: the number of operations per online step is linear
in the number of nonzero features, and independent of the total number of features.

• The algorithm is memory efficient: it maintains a list of active features, and a feature can be
inserted when observed, and deleted when the corresponding weight becomes zero.

If we directly apply the online projection idea of Zinkevich (2003) to solve (1), then in the up-
date rule (7), one has to pick the smallest gi ≥ 0 such that ‖wi+1‖1 ≤ s. We do not know an efficient
method to find this specific gi using operations independent of the total number of features. A stan-
dard implementation relies on sorting all weights, which requires O(d logd) operations, where d is
the total number of (nonzero) features. This complexity is unacceptable for our purpose. However,
in an important recent work, Duchi et al. (2008) proposed an efficient online !1-projection method.
The idea is to use a balanced tree to keep track of weights, which allows efficient threshold finding
and tree updates in O(k lnd) operations on average, where k denotes the number of nonzero coef-
ficients in the current training example. Although the algorithm still has weak dependency on d, it
is applicable to large-scale practical applications. The theoretical analysis presented in this paper
shows we can obtain a meaningful regret bound by picking an arbitrary gi. This is useful because
the resulting method is much simpler to implement and is computationally more efficient per online
step. Moreover, our method allows non-convex updates closely related to the simple coefficient
rounding idea. Due to the complexity of implementing the balanced tree strategy in Duchi et al.
(2008), we shall not compare to it in this paper and leave it as a future direction. However, we be-
lieve the sparsity achieved with their approach should be comparable to the sparsity achieved with
our method.

6. Empirical Results

We applied VOWPAL WABBIT with the efficiently implemented sparsify option, as described in
the previous section, to a selection of data sets, including eleven data sets from the UCI repository
(Asuncion and Newman, 2007), the much larger data set rcv1 (Lewis et al., 2004), and a private
large-scale data set Big_Ads related to ad interest prediction. While UCI data sets are useful for
benchmark purposes, rcv1 and Big_Ads are more interesting since they embody real-world data
sets with large numbers of features, many of which are less informative for making predictions than
others. The data sets are summarized in Table 1.

The UCI data sets used do not have many features so we expect that a large fraction of these
features are useful for making predictions. For comparison purposes as well as to better demonstrate
the behavior of our algorithm, we also added 1000 random binary features to those data sets. Each
feature has value 1 with probability 0.05 and 0 otherwise.
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Data Set #features #train data #test data task
ad 1411 2455 824 classification
crx 47 526 164 classification

housing 14 381 125 regression
krvskp 74 2413 783 classification

magic04 11 14226 4794 classification
mushroom 117 6079 2045 classification
spambase 58 3445 1156 classification

wbc 10 520 179 classification
wdbc 31 421 148 classification
wpbc 33 153 45 classification
zoo 17 77 24 regression
rcv1 38853 781265 23149 classification

Big_Ads 3×109 26×106 2.7×106 classification

Table 1: Data Set Summary.

6.1 Feature Sparsification of Truncated Gradient

In the first set of experiments, we are interested in how much reduction in the number of features is
possible without affecting learning performance significantly; specifically, we require the accuracy
be reduced by no more than 1% for classification tasks, and the total square loss be increased by no
more than 1% for regression tasks. As common practice, we allowed the algorithm to run on the
training data set for multiple passes with decaying learning rate. For each data set, we performed
10-fold cross validation over the training set to identify the best set of parameters, including the
learning rate $ (ranging from 0.1 to 0.5), the sparsification rate g (ranging from 0 to 0.3), number of
passes of the training set (ranging from 5 to 30), and the decay of learning rate across these passes
(ranging from 0.5 to 0.9). The optimized parameters were used to train VOWPAL WABBIT on the
whole training set. Finally, the learned classifier/regressor was evaluated on the test set. We fixed
K = 1 and "= #, and will study the effects of K and " in later subsections.

Figure 2 shows the fraction of reduced features after sparsification is applied to each data set.
For UCI data sets, we also include experiments with 1000 random features added to the original
feature set. We do not add random features to rcv1 and Big_Ads since the experiment is not as
interesting.

For UCI data sets, with randomly added features, VOWPAL WABBIT is able to reduce the num-
ber of features by a fraction of more than 90%, except for the ad data set in which only 71% reduc-
tion is observed. This less satisfying result might be improved by a more extensive parameter search
in cross validation. However, if we can tolerate 1.3% decrease in accuracy (instead of 1% as for
other data sets) during cross validation, VOWPAL WABBIT is able to achieve 91.4% reduction, indi-
cating that a large reduction is still possible at the tiny additional cost of 0.3% accuracy loss. With
this slightly more aggressive sparsification, the test-set accuracy drops from 95.9% (when only 1%
loss in accuracy is allowed in cross validation) to 95.4%, while the accuracy without sparsification
is 96.5%.
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Even for the original UCI data sets without artificially added features, VOWPAL WABBIT man-
ages to filter out some of the less useful features while maintaining the same level of performance.
For example, for the ad data set, a reduction of 83.4% is achieved. Compared to the results above,
it seems the most effective feature reductions occur on data sets with a large number of less useful
features, exactly where sparsification is needed.

For rcv1, more than 75% of features are removed after the sparsification process, indicating the
effectiveness of our algorithm in real-life problems. We were not able to try many parameters in
cross validation because of the size of rcv1. It is expected that more reduction is possible when a
more thorough parameter search is performed.

The previous results do not exercise the full power of the approach presented here because the
standard Lasso (Tibshirani, 1996) is or may be computationally viable in these data sets. We have
also applied this approach to a large non-public data set Big_Ads where the goal is predicting which
of two ads was clicked on given context information (the content of ads and query information).
Here, accepting a 0.009 increase in classification error (from error rate 0.329 to error rate 0.338)
allows us to reduce the number of features from about 3× 109 to about 24× 106, a factor of 125
decrease in the number of features.

For classification tasks, we also study how our sparsification solution affects AUC (Area Under
the ROC Curve), which is a standard metric for classification.1 Using the same sets of parameters
from 10-fold cross validation described above, we find the criterion is not affected significantly by
sparsification and in some cases, they are actually slightly improved. The reason may be that our
sparsification method removed some of the features that could have confused VOWPAL WABBIT.
The ratios of the AUC with and without sparsification for all classification tasks are plotted in
Figures 3. Often these ratios are above 98%.

6.2 The Effects of K

As we argued before, using a K value larger than 1 may be desired in truncated gradient and the
rounding algorithms. This advantage is empirically demonstrated here. In particular, we try K = 1,
K = 10, and K = 20 in both algorithms. As before, cross validation is used to select parameters
in the rounding algorithm, including learning rate $, number of passes of data during training, and
learning rate decay over training passes.

Figures 4 and 5 give the AUC vs. number-of-feature plots, where each data point is generated
by running respective algorithm using a different value of g (for truncated gradient) and " (for the
rounding algorithm). We used "= # in truncated gradient.

The effect of K is large in the rounding algorithm. For instance, in the ad data set the algorithm
using K = 1 achieves an AUC of 0.94 with 322 features, while 13 and 7 features are needed using
K = 10 and K = 20, respectively. However, the same benefits of using a larger K is not observed
in truncated gradient, although the performances with K = 10 or 20 are at least as good as those
with K = 1 and for the spambase data set further feature reduction is achieved at the same level of
performance, reducing the number of features from 76 (when K = 1) to 25 (when K = 10 or 20)
with of an AUC of about 0.89.

1. We use AUC here and in later subsections because it is insensitive to threshold, which is unlike accuracy.
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Figure 2: Plots showing the amount of features left after sparsification using truncated gradient for
each data set, when the performance is changed by at most 1% due to sparsification.
The solid bar: with the original feature set; the dashed bar: with 1000 random features
added to each example. Plot on left: fraction left with respect to the total number of
features (original with 1000 artificial features for the dashed bar). Plot on right: fraction
left with respect to the original features (not counting the 1000 artificial features in the
denominator for the dashed bar).
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Figure 3: A plot showing the ratio of the AUC when sparsification is used over the AUC when no
sparsification is used. The same process as in Figure 2 is used to determine empirically
good parameters. The first result is for the original data set, while the second result is for
the modified data set where 1000 random features are added to each example.

6.3 The Effects of " in Truncated Gradient

In this subsection, we empirically study the effect of " in truncated gradient. The rounding algorithm
is also included for comparison due to its similarity to truncated gradient when " = g. Again, we
used cross validation to choose parameters for each " value tried, and focused on the AUC metric
in the eight UCI classification tasks, except the degenerate one of wpbc. We fixed K = 10 in both
algorithm.
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Figure 4: Effect of K on AUC in the rounding algorithm.
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Figure 5: Effect of K on AUC in truncated gradient.
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Figure 6 gives the AUC vs. number-of-feature plots, where each data point is generated by
running respective algorithms using a different value of g (for truncated gradient) and " (for the
rounding algorithm). A few observations are in place. First, the results verify the observation that
the behavior of truncated gradient with " = g is similar to the rounding algorithm. Second, these
results suggest that, in practice, it may be desirable to use " = # in truncated gradient because it
avoids the local-minimum problem.

6.4 Comparison to Other Algorithms

The next set of experiments compares truncated gradient to other algorithms regarding their abilities
to balance feature sparsification and performance. Again, we focus on the AUC metric in UCI
classification tasks except wpdc. The algorithms for comparison include:

• The truncated gradient algorithm: We fixed K = 10 and " = #, used crossed-validated pa-
rameters, and altered the gravity parameter g.

• The rounding algorithm described in Section 3.1: We fixed K = 10, used cross-validated
parameters, and altered the rounding threshold ".

• The subgradient algorithm described in Section 3.2: We fixed K = 10, used cross-validated
parameters, and altered the regularization parameter g.

• The Lasso (Tibshirani, 1996) for batch L1-regularization: We used a publicly available imple-
mentation (Sjöstrand, 2005).

Note that we do not attempt to compare these algorithms on rcv1 and Big_Ads simply because their
sizes are too large for the Lasso.

Figure 7 gives the results. Truncated gradient is consistently competitive with the other two
online algorithms and significantly outperformed them in some problems. This suggests the effec-
tiveness of truncated gradient.

Second, it is interesting to observe that the qualitative behavior of truncated gradient is often
similar to LASSO, especially when very sparse weight vectors are allowed (the left side in the
graphs). This is consistent with theorem 3.2 showing the relation between them. However, LASSO
usually has worse performance when the allowed number of nonzero weights is set too large (the
right side of the graphs). In this case, LASSO seems to overfit, while truncated gradient is more
robust to overfitting. The robustness of online learning is often attributed to early stopping, which
has been extensively discussed in the literature (e.g., Zhang, 2004).

Finally, it is worth emphasizing that the experiments in this subsection try to shed some light
on the relative strengths of these algorithms in terms of feature sparsification. For large data sets
such as Big_Ads only truncated gradient, coefficient rounding, and the sub-gradient algorithms are
applicable. As we have shown and argued, the rounding algorithm is quite ad hoc and may not
work robustly in some problems, and the sub-gradient algorithm does not lead to sparsity in general
during training.

7. Conclusion

This paper covers the first sparsification technique for large-scale online learning with strong the-
oretical guarantees. The algorithm, truncated gradient, is the natural extension of Lasso-style re-
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Figure 6: Effect of " on AUC in truncated gradient.
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gression to the online-learning setting. Theorem 3.1 proves the technique is sound: it never harms
performance much compared to standard stochastic gradient descent in adversarial situations. Fur-
thermore, we show the asymptotic solution of one instance of the algorithm is essentially equivalent
to the Lasso regression, thus justifying the algorithm’s ability to produce sparse weight vectors when
the number of features is intractably large.

The theorem is verified experimentally in a number of problems. In some cases, especially for
problems with many irrelevant features, this approach achieves a one or two order of magnitude
reduction in the number of features.
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Appendix A. Proof of Theorem 3.1

The following lemma is the essential step in our analysis.

Lemma 1 Suppose update rule (6) is applied to weight vector w on example z= (x,y) with gravity
parameter gi = g, and results in a weight vector w′. If Assumption 3.1 holds, then for all w̄ ∈ Rd,
we have

(1−0.5A$)L(w,z)+g‖w′ · I(|w′|≤ ")‖1

≤L(w̄,z)+g‖w̄ · I(|w′|≤ ")‖1 +
$
2
B+

‖w̄−w‖2 −‖w̄−w′‖2

2$
.

Proof Consider any target vector w̄ ∈ Rd and let w̃ = w−$%1L(w,z). We have w′ = T1(w̃,g$,").
Let

u(w̄,w′) = g‖w̄ · I(|w′|≤ ")‖1 −g‖w′ · I(|w′|≤ ")‖1.

Then the update equation implies the following:

‖w̄−w′‖2

≤‖w̄−w′‖2 +‖w′ − w̃‖2

=‖w̄− w̃‖2 −2(w̄−w′)T (w′ − w̃)

≤‖w̄− w̃‖2 +2$u(w̄,w′)

=‖w̄−w‖2 +‖w− w̃‖2 +2(w̄−w)T (w− w̃)+2$u(w̄,w′)

=‖w̄−w‖2 +$2‖%1L(w,z)‖2 +2$(w̄−w)T%1L(w,z)+2$u(w̄,w′)

≤‖w̄−w‖2 +$2‖%1L(w,z)‖2 +2$(L(w̄,z)−L(w,z))+2$u(w̄,w′)

≤‖w̄−w‖2 +$2(AL(w,z)+B)+2$(L(w̄,z)−L(w,z))+2$u(w̄,w′).

Here, the first and second equalities follow from algebra, and the third from the definition of w̃.
The first inequality follows because a square is always non-negative. The second inequality follows
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because w′ = T1(w̃,g$,"), which implies (w′ − w̃)Tw′ =−g$‖w′ · I(|w̃|≤ ")‖1 =−g$‖w′ · I(|w′|≤
")‖1 and |w′

j− w̃ j|≤ g$I(|w′
j|≤ "). Therefore,

−(w̄−w′)T (w′ − w̃) =− w̄T (w′ − w̃)+w′T (w′ − w̃)

≤
d

!
j=1

|w̄ j||w′
j− w̃ j|+(w′ − w̃)Tw′

≤g$
d

!
j=1

|w̄ j|I(|w′
j|≤ ")+(w′ − w̃)Tw′ = $u(w̄,w′),

where the third inequality follows from the definition of sub-gradient of a convex function, implying

(w̄−w)T%1L(w,z) ≤ L(w̄,z)−L(w,z)

for all w and w̄; the fourth inequality follows from Assumption 3.1. Rearranging the above inequal-
ity leads to the desired bound.

Proof (of Theorem 3.1) Applying Lemma 1 to the update on trial i gives

(1−0.5A$)L(wi,zi)+gi‖wi+1 · I(|wi+1|≤ ")‖1

≤L(w̄,zi)+
‖w̄−wi‖2 −‖w̄−wi+1‖2

2$
+gi‖w̄ · I(|wi+1|≤ ")‖1 +

$
2
B.

Now summing over i= 1,2, . . . ,T , we obtain

T

!
i=1

[(1−0.5A$)L(wi,zi)+gi‖wi+1 · I(|wi+1|≤ ")‖1]

≤
T

!
i=1

[

‖w̄−wi‖2 −‖w̄−wi+1‖2

2$
+L(w̄,zi)+gi‖w̄ · I(|wi+1|≤ ")‖1 +

$
2
B
]

=
‖w̄−w1‖2 −‖w̄−wT‖2

2$
+
$
2
TB+

T

!
i=1

[L(w̄,zi)+gi‖w̄ · I(|wi+1|≤ ")‖1]

≤
‖w̄‖2

2$
+
$
2
TB+

T

!
i=1

[L(w̄,zi)+gi‖w̄ · I(|wi+1|≤ ")‖1].

The first equality follows from the telescoping sum and the second inequality follows from the initial
condition (all weights are zero) and dropping negative quantities. The theorem follows by dividing
with respect to T and rearranging terms.
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Abstract
We present a general approach for collaborative filtering (CF) using spectral regularization to learn
linear operators mapping a set of “users” to a set of possibly desired “objects”. In particular, sev-
eral recent low-rank type matrix-completion methods for CF are shown to be special cases of our
proposed framework. Unlike existing regularization-based CF, our approach can be used to incor-
porate additional information such as attributes of the users/objects—a feature currently lacking
in existing regularization-based CF approaches—using popular and well-known kernel methods.
We provide novel representer theorems that we use to develop new estimation methods. We then
provide learning algorithms based on low-rank decompositions and test them on a standard CF data
set. The experiments indicate the advantages of generalizing the existing regularization-based CF
methods to incorporate related information about users and objects. Finally, we show that certain
multi-task learning methods can be also seen as special cases of our proposed approach.
Keywords: collaborative filtering, matrix completion, kernel methods, spectral regularization

1. Introduction

Collaborative filtering (CF) refers to the task of predicting preferences of a given “user” for some
“objects” (e.g., books, music, products, people, etc.) based on his/her previously revealed
preferences—typically in the form of purchases or ratings—as well as the revealed preferences
of other users. In a book recommender system, for example, one might like to suggest new books
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to a new user based on what she and other users have recently purchased or rated. The ultimate goal
of CF is to infer the preferences of users in order to offer them new objects.

A number of CF methods have been developed in the past (Breese et al., 1998; Heckerman et al.,
2000; Salakhutdinov et al., 2007). Recently there has been interest in CF using regularization-based
methods (Srebro and Jaakkola, 2003). This work adds to that literature by developing a novel
general approach to regularization-based CF methods.

Recent regularization-based CF methods assume that the only data available are the revealed
preferences, where no other information such as background information on the objects or users is
given. In this case, one may formulate the problem as that of inferring the contents of a partially
observed preference matrix: each row represents a user, each column represents an object (e.g.,
books or movies), and entries in the matrix represent a given user’s rating of a given object. When
the only information available is a set of observed user/object ratings, the unknown entries in the
matrix must be inferred from the known ones—of which there are typically very few relative to the
size of the matrix.

To make useful predictions within this setting, regularization-based CF methods make certain
assumptions about the relatedness of the objects and users. The most common assumption is that
the preference function can be decomposed into a small number of factors, resulting in the search
for a low-rank matrix which approximates the partially observed matrix of preferences (Srebro and
Jaakkola, 2003). The rank constraint can be interpreted as a regularization on the hypothesis space.
Since the rank constraint gives rise to a non-convex set of matrices, the associated optimization
problem will be a difficult non-convex problem for which only heuristic algorithms exist (Srebro and
Jaakkola, 2003). An alternative formulation, proposed by Srebro et al. (2005), suggests penalizing
the predicted matrix by its trace norm, that is, the sum of its singular values. An added benefit of the
trace norm regularization is that, with a sufficiently large regularization parameter, the final solution
will be low-rank (Fazel et al., 2001; Bach, 2008).

However, a key limitation of current regularization-based CF methods is that they do not take
advantage of additional information, such as known attributes of each user (e.g., gender, age) and
object (e.g., book’s author, genre), which is often available. Intuitively, such information might be
useful to guide the inference of preferences, in particular for users and objects with very few known
ratings. For example, at the extreme, users and objects with no prior ratings can not be considered
in the standard CF formulation, while their attributes alone could provide some basic preference
inference.

The main contribution of this paper is to develop a general framework for the CF setting when
user/object attribute information is potentially available and, in particular, to provide several specific
algorithms based on new “representer” theorems. More precisely we show that CF, while typically
seen as a problem of matrix completion, can be thought of more generally as linear operator esti-
mation, where the desired operator maps from a Hilbert space of users to a Hilbert space of objects.
Equivalently, this can be viewed as learning a bilinear form between users and objects. We then
develop spectral regularization based methods to learn such linear operators. When dealing with
operators, rather than matrices, one may also work with infinite dimensions, allowing one to con-
sider arbitrary feature space, possibly induced by some kernel function. Among key theoretical con-
tributions of this paper are new representer theorems, allowing us to develop new general methods
that learn finitely many parameters even when working in infinite dimensional user/object feature
space. These representer theorems generalize the classical representer theorem for minimization of
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an empirical loss penalized by the norm in a Reproducing Kernel Hilbert Space (RKHS) to more
general penalty functions and function classes.

We also show that, with the appropriate choice of kernels for both users and objects, we may
consider a number of existing machine learning methods as special cases of our general framework.
In particular, we show that several CF methods such as rank-constrained optimization, trace-norm
regularization, and those based on Frobenius norm regularization, can all be cast as special cases of
spectral regularization on operator spaces. Moreover, particular choices of kernels lead to specific
sub-cases such as regular matrix completion and multi-task learning. In the specific application
of collaborative filtering with the presence of attributes, we show that our generalization of these
sub-cases leads to better predictive performance.

The outline of the paper is as follows. In Section 2, we review the notion of a compact op-
erator on Hilbert Space, and we show how to cast the collaborative filtering problem within this
framework. We then introduce spectral regularization and discuss how rank constraint, trace norm
regularization, and Frobenius norm regularization are all special cases of spectral regularization. In
Section 3, we show how our general framework encompasses many existing methods with proper
choice of the loss function, the kernels, and the spectral regularizer. In Section 4, we provide three
representer theorems for operator estimation with spectral regularization that allow for efficient
learning algorithms. Finally in Section 5 we present a number of algorithms and describe several
techniques to improve efficiency. We test these algorithms in Section 6 on synthetic examples and
a widely used movie database.

2. Learning Compact Operators with Spectral Regularization

In this section we propose a mathematical formulation for a general CF problem with spectral
regularization. We then show in Section 3 how several learning problems can be cast under this
general framework.

2.1 A General CF Formulation

We consider a general CF problem in which our goal is to model the preference of a user described
by x for an item described by y. We denote by x and y the data objects containing all relevant or
available information; this could, for example, include a unique identifier i for the i-th user or object.
Of course, the users and objects may additionally be characterized by known attributes, in which
case x or y might contain some representation of this extra information. Ultimately, we would like
to consider such attribute information as encoded in some positive definite kernel between users, or
equivalently between objects. This naturally leads us to model the users as elements in a Hilbert
space X , and the objects they rate as elements of another Hilbert space Y .

We assume that our observation data is in the form of ratings from users to objects, a real-
valued score representing the user’s preference for the object. Alternatively, similar methods can be
applied when the observations are binary, specifying for instance whether or not a user considered
or selected an object.

Given a series of N observations (xi,yi, ti)i=1,...,N in X ×Y ×R, where ti represents the rating
of user xi for object yi, the generalized CF problem is then to infer a function f : X ×Y → R that
can then be used to predict the rating of any user x ∈ X for any object y ∈ Y by f (x,y). Note that
in our notation xi and yi represent the user and object corresponding to the i-th rating available. If
several ratings of a user for different objects are available, as is commonly the case, several xi’s
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will be identical in X—a slight abuse of notation. We denote by XN and YN the linear spans of
{xi , i= 1, . . . ,N} and {yi , i= 1, . . . ,N} in X and Y , with respective dimensions mX and mY .

In the present paper, we uniquely consider learning preference functions f (·, ·) that take the
form of a linear operator from X to Y ; that is, bilinear forms on X ×Y ,

f (x,y) = 〈x,Fy〉X , (1)

for some compact operator F . We now denote by B0 (Y ,X ) the set of compact operators from X to
Y . For an introduction to relevant concepts in functional analysis, see Appendix A.

In the general case we consider below, if X and Y are not Hilbert spaces, one could also first map
(implicitly) users x and objects y into possibly infinite dimensional Hilbert feature spaces !X (x)
and "Y (y) and use kernels. We refer the reader to Appendix A for basic definitions and properties
related to compact operators that are useful below. The inference problem can now be stated as
follows:

Given a training set of ratings, how may we estimate a “good” compact operator F to predict
future ratings?

We estimate the operator F in (1) from the training data using a standard regularization and
statistical machine learning approach. In particular, we propose to define the operator as the solution
of an optimization problem over B0 (Y ,X ) whose objective function balances a data fitting term
RN(F), which is small for operators that can correctly explain the training data, with a regularization
term #(F) that controls the complexity of the desired operator. We now describe these two terms
in more details.

2.2 Data Fitting Term

Given a loss function !(t ′, t) that quantifies how good a prediction t ′ ∈ R is if the true value is t ∈ R,
we consider a fitting term equal to the empirical risk, that is, the mean loss incurred on the training
set:

RN(F) =
1
N

N

$
i=1

!(〈xi,Fyi〉X , ti) . (2)

The particular choice of the loss function should typically depend on the precise problem to be
solved and on the nature of the variables t to be predicted. See more details in Section 3. In
particular, while the representer theorems presented in Section 4 do not need any convexity with
respect to this choice, the algorithms presented in Section 5 do.

2.3 Regularization Term

For the regularization term, we focus on a class of spectral functions defined as follows.

Definition 1 A function# : B0 (Y ,X ) )→ R∪{+%} is called a spectral penalty function if it can be
written as:

#(F) =
d

$
i=1

si (&i(F)) , (3)

where for any i≥ 1,si :R+ )→ R+∪{+%} is a non-decreasing penalty function satisfying s(0) = 0,
and (&i(F))i=1,...,d are the d singular values of F in decreasing order—d possibly infinite.
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Note that, by the spectral theorem presented in Appendix A, any compact operator can be decom-
posed into singular vectors, with singular values being a sequence that tends to zero.

Spectral penalty functions include as special cases several functions often encountered in matrix
completion problems:

• For a given integer r, consider taking si = 0 for i = 1, . . . ,r, sr+1(u) = 0 for u = 0, and
sr+1(u) = +% when u> 0. This leads to the function:

#(F) =

{

0 if rank(F) ≤ r ,
+% otherwise.

(4)

In other words, the set of operators F that satisfy#(F) < +% is the set of operators with rank
smaller than r.

• Taking si(u) = u for all i results in the trace norm penalty (see Appendix A):

#(F) =

{

‖F ‖1 if F ∈ B1 (Y ,X ) ,

+% otherwise,
(5)

where we note with B1 (Y ,X ) the set of operators with finite trace norm. Such operators are
referred to as trace class operators.

• Taking si(u) = u2 for all i results in the squared Hilbert-Schmidt norm penalty (also called
squared Frobenius norm for matrices, see Appendix A):

#(F) =

{

‖F ‖22 if F ∈ B2 (Y ,X ) ,

+% otherwise,
(6)

where we note with B2 (Y ,X ) the set of operators with finite squared Hilbert-Schmidt norm.
Such operators are referred to as Hilbert Schmidt operators.

These particular functions can be combined together in different ways. For example, we may
constrain the rank to be smaller than r while penalizing the trace norm of the matrix, which can
be obtained by setting si(u) = u for i = 1, . . . ,r and sr+1(u) = +% if u > 0. Alternatively, if we
want to penalize the Frobenius norm while constraining the rank, we set si(u) = u2 for i = 1, . . . ,r
and sr+1(u) = +% if u > 0. We state these two choices of # explicitly since we use these in the
experiments (see Section 6) or to design efficient algorithms (see Section 5):

Trace+Rank Penalty: #(F) =

{

‖F ‖1 if rank(F) ≤ r,
+% otherwise.

(7)

Frobenius+Rank Penalty: #(F) =

{

‖F ‖22 if rank(F) ≤ r,
+% otherwise.
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2.4 Operator Inference

With both a fitting term and a regularization term, we can now formally define our inference ap-
proach. It consists of finding an operator F̂ , if there exists one, that solves the following optimization
problem:

F̂ ∈ argmin
F∈B0(Y ,X )

RN(F)+'#(F) , (8)

where '∈R+ is a parameter that controls the trade-off between fitting and regularization, and where
RN(F) and #(F) are respectively defined in (2) and (3). We note that if the set
{F ∈ B0 (Y ,X ) ,#(F) < +%} is not empty, then necessarily the solution F̂ of this optimization
problem must satisfy #(F̂) < %.

We show in Sections 4 and 5 how problem (8) can be solved in practice in particular for Hilbert
spaces of infinite dimensions. Before exploring such implementation-related issues, in the following
section we provide several examples of algorithms that can be derived as particular cases of (8) and
highlight their relationships to existing methods.

3. Examples and Related Approaches

The general formulation (8) can result in a variety of practical algorithms potentially useful in
different contexts. In particular, three elements can be tailored to one’s particular needs: the loss
function, the kernels (or equivalently the Hilbert spaces), and the spectral penalty term. We start this
section by some generalities about the possible choices for these elements and their consequences,
before highlighting some particular combinations of choices relevant for different applications.

1. The loss function. The choice of ! defines the empirical risk through (2). It is a classical
component of many machine learning methods, and should typically depend on the type of
data to be predicted (e.g., discrete or continuous) and of the final objective of the algorithm
(e.g., classification, regression or ranking). The choice of ! also influences the algorithm, as
discussed in Section 5. As a deeper discussion about the loss function is only tangential to the
current work, we only consider the square loss here, knowing that other convex losses may
be considered.

2. The spectral penalty function. The choice of#(F) defines the type of constraint we impose
on the operator that we seek to learn. In Section 2.3, we gave several examples of such con-
straints including the rank constraint (4), the trace norm constraint (5), the Hilbert-Schmidt
norm constraint (6), or the trace norm constraint over low-rank operators (7). The choice of a
particular penalty might be guided by some considerations about the problem to be solved, for
example, finding low-rank operators as a way to discover low-dimensional latent structures
in the data. On the other hand, from an algorithmic perspective, the choice of the spectral
penalty may affect the efficiency or feasibility of our learning algorithm. Certain penalty
functions, such as the rank constraint for example, will lead to non-convex problems because
the corresponding penalty function (4) is itself not convex. However, the same rank constraint
can vastly reduce the number of parameters to be learned. These algorithmic considerations
are discussed in more detail in Section 5.

3. The kernels. Our choice of kernels defines the inner products (i.e., embeddings) of the users
and objects in their respective Hilbert spaces. We may use a variety of possible kernels

808



COLLABORATIVE FILTERING VIA OPERATOR ESTIMATION WITH SPECTRAL REGULARIZATION

depending on the problem to be solved and on the available attributes. Interestingly, the choice
of a particular kernel has no influence on the algorithm, as we show later (however, it can
easily influence the running time of these algorithms). In the current work, we focus on two
basic kernels (Dirac kernels and attribute kernels) and in Section 3.4 we discuss combining
these.

• The first kernel we consider is the Dirac kernel. When two users (resp. two objects)
are compared, the Dirac kernel returns 1 if they are the same user (resp. object), and 0
otherwise. In other words, the Dirac kernel amounts to representing the users (resp. the
objects) by orthonormal vectors in X (resp. in Y ). This kernel can be used whether or
not attributes are available for users and objects. We denote by kXD (resp. k

Y
D ) the Dirac

kernel for the users (resp. objects).
• The second kernel we consider is a kernel between attributes, when attributes are avail-
able to describe the users and/or objects. We call this an “attribute kernel”. This would
typically be a kernel between vectors, such as the inner product or a Gaussian RBF ker-
nel, when the descriptions of users and/or objects take the form of vectors of real-valued
attributes, or any kernel on structured objects (Shawe-Taylor and Cristianini, 2004). We
denote by kXA (resp. k

Y
A ) the attributes kernel for the users (resp. objects).

In the following section we illustrate how specific combinations of loss, spectral penalty and
kernels can be relevant for various settings. In particular the choice of kernels leads to new methods
for a range of different estimation problems; namely, matrix completion, multi-task learning, and
pairwise learning. In Section 3.4 we consider a new representation that allows interpolation between
these particular problem formulations.

3.1 Matrix Completion

When the Dirac kernel is used for both users and objects, then we can organize the data {xi, i =
1, . . . ,n} into nX groups of identical data points and similarly {yi, i= 1, . . . ,n} into nY groups. Since
we use the Dirac kernel, we can represent each of these groups by the elements of the canonical basis
(u1, . . . ,unX ) and

(

v1, . . . ,vnY
)

of RnX and RnY , respectively. A bilinear form using Dirac kernels
only depends on the identities of the users and the objects, and we only predict the rating ti based
on the identities of the groups in both spaces. If we assume that each user/object pair is observed
at most once, the data can be re-arranged into a nX × nY incomplete matrix where the learning
objective would be to “complete” the missing entries in this matrix (indeed, in this context, it is not
possible to generalize to never seen points in X and Y ).

In this case, our bilinear form framework exactly corresponds to completing the matrix, since
the bilinear function of x and y is exactly equal to u.i Mv j where x = ui (i.e., x is the i-th person)
and y= v j (i.e., y is the j-th object). Thus, the (i, j)-th entry of the matrix M can be assimilated to
the value of the bilinear form defined by the matrix M over the pair (ui,v j). Moreover the spectral
regularizer corresponds to the corresponding spectral function of the complete matrixM ∈ RnX×nY .

In this context, finding a low-rank approximation of the observed entries in a matrix is an ap-
pealing strategy, which corresponds to taking the rank penalty constraint (4) combined with, for
example, the square loss error. This however leads to non-convex optimization problems with mul-
tiple local minima, for which only local search heuristics are known (Srebro and Jaakkola, 2003).
To circumvent this issue, convex spectral penalty functions can be considered. Indeed, in the case
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of binary preferences, combining the hinge loss function with the trace norm penalty (5) leads to
the maximum margin matrix factorization (MMMF) approach proposed by Srebro et al. (2005),
which can be rewritten as a semi-definite program. For the sake of efficiency, Rennie and Srebro
(2005) proposed to add a constraint on the rank of the matrix, resulting in a non-convex problem
that can nevertheless be handled efficiently by classical gradient descent techniques; in our setting,
this corresponds to changing the trace norm penalty (5) by the penalty (7).

3.2 Multi-Task Learning

It may be the case that we have attributes only for objects y (or, similarly, only for users). In that
case, for a finite number of users {xi , i= 1, . . . ,N} organized in nX groups, we aim to estimate a
separate function on objects fi(y) for each of the nX users i. Considering the estimation of each
of these fi’s as a learning task, one can possibly learn all fi’s simultaneously using a multi-task
learning approach.

In order to adapt our general framework to this scenario, it is natural to consider the attribute
kernel kYA for the objects, whose attributes are available, and the Dirac kernel kXD for the users, for
which no attributes are used. Again the choice of the loss function depends on the precise task to
be solved, and the spectral penalty function can be chosen to enforce some sharing of information
between different tasks.

In particular, taking the rank penalty function (4) enforces a decomposition of the tasks (learning
each fi) into a limited number of factors. This results in a method for multi-task learning based on a
low-rank representation of the predictor functions fi. The resulting problem, however, is not convex
due to the use of the non-convex rank penalty function. A natural alternative is then to replace the
rank constraint by the trace norm penalty function (5), resulting in a convex optimization problem
when the loss function is convex. Recently, a similar approach was independently proposed by Amit
et al. (2007) in the context of multiclass classification and by Argyriou et al. (2008) for multi-task
learning.

Alternatively, another strategy to enforce some constraints among the tasks is to constrain the
variance of the different classifiers. Evgeniou et al. (2005) showed that this strategy can be for-
mulated in the framework of support vector machines by considering a multi-task kernel, that is, a
kernel kmulti−task over the product space X ×Y defined between any two user/object pairs (x,y) and
(x′,y′) by:

kmulti−task
(

(x,y) ,
(

x′,y′
))

=
(

kXD
(

x,x′
)

+ c
)

kYA
(

y,y′
)

, (9)

where c > 0 controls how the variance of the classifiers is constrained compared to the norm of
each classifier. As explained in Appendix A, estimating a function over the product space X ×Y
by penalizing the RKHS norm of the kernel (9) is a particular case of our general framework, where
we take the Hilbert-Schmidt norm (6) as spectral penalty function, and where the kernels between
users and between objects are respectively kXD (x,x′)+c and kYA (y,y′). When c= 0, that is, when we
take a Dirac kernel for the users and an attribute kernel for the objects, then penalizing the Hilbert-
Schmitt norm amounts to estimating independent models for each user, as explained by Evgeniou
et al. (2005). Combining two Dirac kernels for users and objects, respectively, and penalizing the
Hilbert-Schmitt norm would not be useful, since the optimal solution would be 0 all points other
than training pairs. On the other hand, replacing the Hilbert-Schmidt norm defined by another
penalty, such as the trace norm (5), would be an interesting extension when the kernels kXD (x,x′)+c
and kYA (y,y′) are used: this would constrain both the variance of the predictor functions fi and
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their decomposition into a small number of factors, a potentially nice approach in some multi-task
learning applications.

3.3 Pairwise Learning

When attributes are available for both users and objects then it is possible to use the attributes kernels
for each. Combining this choice with the Hilbert-Schmidt penalty (6) results in classical machine
learning algorithms (e.g., an SVM if the hinge loss is taken as the loss function) applied to the tensor
product of X and Y . This strategy is a classical approach to learn a function over pairs of points
(see, e.g., Jacob and Vert, 2008). Replacing the Hilbert-Schmidt norm by another spectral penalty
function, such as the trace norm, would result in new algorithms for learning low-rank functions
over pairs.

3.4 Combining the Attribute and Dirac Kernels

As illustrated in the previous subsections, the setting of the application often determines the com-
bination of kernels to be used for the users and the objects: typically, two Dirac kernels for the
standard CF setting without attributes, one Dirac and one attributes kernel for multi-task problems,
and two attributes kernels when attributes are available for both users and objects and one wishes to
learn over pairs.

There are many situations, however, where the attributes available to describe the users and/or
objects are certainly useful for the inference task, but on the other hand do not fully characterize the
users and/or objects. For example, if we just know the age and gender of users, we would like to use
this information to model their preferences, but would also like to allow for prediction of different
preferences for different users even when they share the same age and gender. In our setting, this
means that we may want to use the attributes kernel in order to use known attributes from the users
and objects during inference, but also the Dirac kernel to incorporate the fact that different users
and/or objects remain different even when they share many or all of their attributes.

This naturally leads us to consider the following convex combinations of Dirac and attributes
kernels (Abernethy et al., 2006):

{

kX = (kXA +(1−()kXD ,

kY = )kYA +(1−))kYD ,

where 0≤ (≤ 1 and 0≤ )≤ 1. These kernels interpolate between the Dirac kernels ((= 0 and )=
0) and the attributes kernels ((= 1 and )= 1). Combining this choice of kernels with, for example,
the trace norm penalty function (5), allows us to continuously interpolate between different settings
corresponding to different “corners” in the ((,)) square: standard CF with matrix completion at
(0,0), multi-task learning at (0,1) and (1,0), and learning over pairs at (1,1). The extra degree
of freedom created when ( and ) are allowed to vary continuously between 0 and 1 provides a
principled way to optimally balance the influence of the attributes in the function estimation process.

Note that our representational framework encompasses simpler natural approaches to include at-
tribute information for collaborative filtering: for example, one could consider completing matrices
using matrices of the formUV.+UAR.

A +UAS.A , whereUV. is a low-rank matrix to be optimized,
UA and VA are the given attributes for the first and second domains, and RA, SA are parameters to
be learned. This formulation corresponds to adding an unconstrained low-rank term UV., and the
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simpler linear predictor from the concatenation of attributesUAR.
A +UAS.A (Jacob and Vert, 2008).

Our approach implicitly adds a fourth cross-product termUATV.
A , where T is estimated from data.

This exactly corresponds to imposing that the low rank matrix has a decomposition which includes
UA and VA as columns. Our combination of Dirac and attribute kernels has the advantage of hav-
ing specific weights ( and ) that control the trade-off between the constrained and unconstrained
low-rank matrices.

4. Representer Theorems

We now present the key theoretical results of this paper and discuss how the general optimization
problem (8) can be solved in practice. A first difficulty with this problem is that the optimization
space {F ∈ B0 (Y ,X ) : #(F) < %} can be of infinite dimension. We note that this can occur even
under a rank constraint, because the set {F ∈ B0 (Y ,X ) : rank(F) ≤ R} is not included into any
finite-dimensional linear subspace if X and Y have infinite dimensions. In this section, we show
that the optimization problem (8) can be rephrased as a finite-dimensional problem, and propose
practical algorithms to solve it in Section 5. While, as we show in Section 4.1, the reformulation
of the problem as a finite-dimensional problem is a simple instance of the representer theorem
when the Hilbert-Schmidt norm is used as a penalty function, we prove in Section 4.2 a generalized
representer theorem that is valid with any spectral penalty function.

4.1 The Case of the Hilbert-Schmidt Penalty Function

In the particular case where the penalty function #(F) is the Hilbert-Schmidt norm (6), then the set
{F ∈ B0 (Y ,X ) : #(F) < %} is the set of Hilbert-Schmidt operators. As recalled in Appendix A,
this set is a Hilbert space isometric through (1) to the reproducing kernel Hilbert space H⊗ of the
kernel:

k⊗
((

x,x′
)

,
(

y,y′
))

=
〈

x,x′
〉

X

〈

y,y′
〉

Y ,

and the isometry translates from F to f as:

‖ f ‖2H⊗
= ‖F ‖2 =#(F) .

As a result, in that case the problem (8) is equivalent to:

min
f∈H⊗

RN( f )+'‖ f ‖2⊗ . (10)

Therefore the representer theorem for optimization of empirical risks penalized by the RKHS norm
(Aronszajn, 1950; Schölkopf et al., 2001) can be applied to show that the solution of (10) necessarily
lives in the linear span of the training data. With our notations this translates into the following
result:

Theorem 2 If F̂ is a solution of the problem:

min
F∈B2(Y ,X )

RN(F)+'
%

$
i=1

&i(F)2 ,

then it is necessarily in the linear span of {xi⊗yi : i= 1, . . . ,N}, that is, it can be written as:

F̂ =
N

$
i=1

*ixi⊗yi , (11)
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for some * ∈ RN.

For the sake of completeness, and to highlight why this result is specific to the Hilbert-Schmidt
penalty function (6), we rephrase here, with our notations, the main arguments in the proof of
Schölkopf et al. (2001). Any operator F in B2 (Y ,X ) can be decomposed as F = FS+F⊥, where FS
is the projection of F onto the linear span of {xi⊗yi : i= 1, . . . ,N}. F⊥ being orthogonal to each
xi⊗ yi in the training set, one easily gets RN(F) = RN(FS), while ‖F ‖2 = ‖FS ‖2+ ‖F⊥‖2 by the
Pythagorean theorem. As a result a minimizer F of the objective function must be such that F⊥ = 0,
that is, must be in the linear span of the training tensor products.

4.2 A Representer Theorem for General Spectral Penalty Functions

Let us now move on to the more general situation (8) where a general spectral function #(F) is
used as regularization. Theorem 2 is usually not valid in such a case. Its proof breaks down because
it is not true that #(F) =#(FS)+#(F⊥) for general #, or even that #(F) ≥#(FS).

The following theorem, whose proof is presented in Appendix B, can be seen as a generalized
representer theorem. It shows that a solution of (8), if it exists, can be expanded over a finite basis
of dimension mX ×mY (where mX and mY are the underlying dimensions of the subspaces where
the data lie), and that it can be found as the solution of a finite-dimensional optimization problem
(with no convexity assumptions on the loss):

Theorem 3 For any spectral penalty function # : B0 (Y ,X ) )→ R∪ {+%}, consider the optimiza-
tion problem:

min
F∈B0(Y ,X ),

RN(F)+'#(F) . (12)

If the set of solutions is not empty, then there is a solution F in XN ⊗ YN, that is, there exists
* ∈ RmX×mY such that:

F =
mX

$
i=1

mY

$
j=1

*i jui⊗v j , (13)

where (u1, . . . ,umX ) and
(

v1, . . . ,vmY

)

form orthonormal bases of XN and YN, respectively. More-
over, in that case the coefficients * can be found by solving the following finite-dimensional opti-
mization problem:

min
*∈R

mX ×mY
RN

(

diag
(

X*Y.
))

+'#(*) , (14)

where #(*) refers to the spectral penalty function applied to the matrix * seen as an operator
from RmY to RmX , and X ∈ RN×mX and Y ∈ RN×mX denote any matrices that satisfy K = XX. and
G=YY. for the two N×N Gram matrices K and G defined by Ki j =

〈

xi,x j
〉

X and Gi j =
〈

yi,y j
〉

Y ,
for 0≤ i, j ≤ N.

This theorem shows that, as soon as a spectral penalty function is used to control the complexity
of the compact operators, a solution can be searched in the finite-dimensional space XN⊗YN , which
in practice boils down to an optimization problem over the set of matrices of size mX ×mY . The
dimension of this space might however be prohibitively large for real-world applications where,
for example, tens of thousands of users are confronted to a database of thousands of objects. A
convenient way to obtain an important decrease in complexity (at the expense of possibly losing
convexity) is by constraining the rank of the operator through an adequate choice of a spectral
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penalty. Indeed, the set of non-zero singular components of F as an operator is equal to the set of
non-zero singular values of * in (13) seen as a matrix. Consequently any constraint on the rank of
F as an operator results in a constraint on * as a matrix, from which we deduce:

Corollary 4 If, in Theorem 3, the spectral penalty function # is infinite on operators of rank larger
than r (i.e., &r+1(u) = +% for u> 0), then the matrix * ∈ RmX×mY in (13) has rank at most r.

As a result, if a rank constraint rank(F) ≤ r is added to the optimization problem then the
representer theorem still holds but the dimension of the parameter * becomes r×

(

mX +mY
)

instead
of mX ×mY , which is usually beneficial. We note, however, that when a rank constraint is added
to the Hilbert-Schmidt norm penalty, then the classical representer Theorem 2 and the expansion of
the solution over N vectors (11) are not valid anymore, only Theorem 3 and the expansion (13) can
be used. More importantly, this will likely have algorithmic/efficiency consequences.

5. Algorithms

In this section we explain how the optimization problem (14) can be solved in practice. We first
consider a general formulation, then we specialize to the situation where many x’s and many y’s are
identical; that is, we are in a matrix completion setting where it may be advantageous to consider
other formulations that take into account some group structure explicitly.

5.1 Convex Dual of Spectral Regularization

When the loss is convex, we can derive the convex dual problem, which can be helpful for actually
solving the optimization problem. As in the classical representer theorems, this could also provide
an alternative proof of the representer theorem in that particular situation.

For all i= 1, . . . ,N, we let denote +i(vi) = !(vi, ti) the loss corresponding to predicting vi for the
i-th data point. We now assume that each +i is convex (this is usually met in practice). Following
Bach et al. (2005), we let +∗

i (*i) denote its Fenchel conjugate defined as +∗
i (*i) = maxvi∈R*ivi−

+i(vi). Minimizers of the optimization problem defining the conjugate function are often referred
to as Fenchel duals to *i (Boyd and Vandenberghe, 2003). In particular, we have the following
classical examples:

• Least-squares regression: we have +i(vi) = 1
2(ti− vi)2 and +∗

i (*i) = 1
2*

2
i +*iti.

• Logistic regression: we have +i(vi) = log(1+exp(−yivi)), where yi ∈ {−1,1}, and +∗
i (*i) =

(1+*iti) log(1+*iti)−*iti log(−*iti) if *iti ∈ (−1,0), +% otherwise.

We also assume that the spectral regularization is such that for all i ∈ N, si = s, where s is
a convex function such that s(0) = 0. In this situation, we have #(A) = $i∈N s(&i(A)). We can
also define a Fenchel conjugate for #(A), which is also a spectral function #∗(B) = $i∈N s∗(&i(B))
(Lewis and Sendov, 2002).1

Some special cases of interest for s(&) are:

1. Note that results on functions of eigenvalues of symmetric matrices can be extended to functions of singular values
of rectangular matrices by using the equivalence between the singular value decomposition of A and the eigenvalue

decomposition of
(

0 A
A. 0

)

(Stewart and Sun, 1990).
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• s(&) = |&| leads to the trace norm and then s∗(,) = 0 if |,| is less than 1, and +% otherwise.

• s(&) = 1
2&

2 leads to the Frobenius/Hilbert Schmidt norm and then s∗(,) = 1
2,
2.

• s(&) = - log(1+ e&/-)+ - log(1+ e−&/-) is a smooth approximation of |&|, which becomes
tighter when - is closer to zero. We have: s∗(,) = 1

- (1+ ,) log(1+ ,)+ 1
- (1− ,) log(1− ,).

Moreover, s′(&) = ,⇔ (s∗)′(,) = &= 1
- log

1+,
1−, .

Once the representer theorem has been applied, our optimization problem can be rewritten in
the primal form in (14):

min
*∈Rmx×my

N

$
i=1

+i((X*Y.)ii)+'#(*). (15)

We can now form the Lagrangian, associated with added constraints v = diag(X*Y.) and corre-
sponding Lagrange multiplier . ∈ RN :

L(v,*,.) =
N

$
i=1

+i(vi)−
N

$
i=1

.i(vi− (X*Y.)ii)+'#(*),

and minimize with respect to v andW to obtain the dual problem, which is to maximize:

−
N

$
i=1

+∗
i (.i)−'#∗

(

−
1
'
X.Diag(.)Y

)

. (16)

Once the optimal dual variable . is found (there are as many of those as there are observations),
then we can go back to * (which may or may not be of smaller size), by Fenchel duality, that is,
* is among the Fenchel duals of − 1

'X
.Diag(.)Y . Thus, when the function s is differentiable and

strictly convex (which implies that the Fenchel dual is unique), then we obtain the primal variables
* in closed form from the dual variables .. When s is not differentiable, for example, for the trace
norm then, following Amit et al. (2007), we can find the primal variables by noting that once . is
known, the singular vectors of * are known and we can find the singular values by solving a reduced
convex optimization problem.

5.1.1 COMPUTATIONAL COMPLEXITY

Note that for optimization, we have two strategies, following the same two strategies in regular
kernel methods: using the primal problem in Eq. (15) of dimension mXmY ≤ nX nY (the actual
dimension of the underlying data) or using the dual problem in Eq. (16) of dimension N (the number
of ratings). The choice between those two formulations is problem dependent.

5.2 Collaborative Filtering

In the presence of (many) identical columns and rows, which is often the case in collaborative
filtering situations, the kernel matrices K and L have some columns (and thus rows) which are
identical. In such cases, it is computationally more desirable to instead consider the kernel matrices
(with their square-root decompositions) K̃= X̃ X̃. and L̃= ỸỸ. as the kernel matrices for all distinct
elements of X and Y (let nX and nY be their sizes). Then each observation (xi,yi, ti) corresponds to
a pair of indices (a(i),b(i)) in {1, . . . ,nX }×{1, . . . ,nY }, and the primal problem becomes:
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min
*∈Rmx×my

n

$
i=1

+i(/.a(i)X̃*Ỹ
./b(i))+'#(*),

where /u is a vector with only zeroes except at position u. The dual function is

−
N

$
i=1

+∗
i (.i)−'#∗

(

−
1
'
X̃.

N

$
i=1

.i/a(i)/
.
b(i)Ỹ

)

.

Similar to usual kernel machines and the general case presented above, using the primal or the
dual formulation for optimization depends on the number of available ratings N compared to the
ranks mX and mY of the kernel matrices K̃ and L̃. Indeed, the number of variables in the primal
formulation is mXmY , while in the dual formulation it is N.

5.3 Low-rank Constrained Problem

We approximate the spectral norm by an infinitely differentiable spectral function. Since we con-
sider in this paper only infinitely differentiable loss functions, our problem is that of minimizing
an infinitely differentiable convex function G(W ) over rectangular matrices of size p× q for cer-
tain integers p and q. As a result of our spectral regularization, we hope to obtain (approximately)
low-rank matrices. In this context, it has proved advantageous to consider low-rank decompositions
of the form W =UV. where U and V have m < min{p,q} columns (Burer and Monteiro, 2005;
Burer and Choi, 2006). Specifically, instead of optimizing a low-rankW directly, we can optimize
U and V jointly in training. Burer and Monteiro (2005) have shown that if m=min{p,q} then the
non-convex problem of minimizing G(UV.) with respect toU and V. has no local minima.

We now prove a stronger result in the context of twice differentiable functions, namely that if
the global optimum of G has rank r <min{p,q}, then the low-rank constrained problem with rank
r+1 (or any larger rank, for that matter) has no local minimum and its global minimum corresponds
to the global minimum of G. The following theorem makes this precise (see Appendix C for proof).

Proposition 5 Let G be a twice differentiable convex function on matrices of size p×q with compact
level sets. Let m> 1 and (U,V )∈Rp×m×Rq×m a local optimum of the function H :Rp×m×Rq×m )→
R defined by H(U,V ) = G(UV.), that is, U is such that 0H(U,V ) = 0 and the Hessian of H at
(U,V ) is positive semi-definite. If U or V is rank deficient, then N =UV. is a global minimum of
G, that is, 0G(N) = 0.

The previous proposition shows that if we have a local minimum for the rank-m problem and
if the solution is rank deficient, then we have a solution of the global optimization problem. This
naturally leads to a sequence of reduced problems of increasing dimension m, smaller than r+ 1,
where r is the rank of the global optimum. However, the number of iterations of each of the local
minimizations and the final rank m cannot be bounded a priori in general.

Note that using a low-rank representation to solve the trace-norm regularized problem leads
to a non-convex minimization problem with no local minima, while simply using the low-rank
representation without the trace norm penalty and potentially with a Frobenius norm penalty, may
lead to local minima. That is, instead of Eq. (14) with the trace norm, we consider the following
formulation:
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min
*∈RmX ×r, .∈R

mY ×r
RN

(

diag
(

X*..Y.
))

+'
r

$
q=1

‖*(:,k)‖2‖.(:,k)‖2 ,

where *(:,k) and .(:,k) are the k-th columns of * and .. In the simulation section, we compare
the two approaches on a synthetic example, and show that the convex formulation solved through a
sequence of non-convex formulations leads to better predictive performance.

5.4 Kernel Learning for Spectral Functions

In our collaborative filtering context, there are two potentially useful sources of kernel learning:
learning the attribute kernels, or learning the weights ( and ) between Dirac kernels and attribute
kernels. In this section, we show how multiple kernel learning (MKL) (Lanckriet et al., 2004; Bach
et al., 2004) may be extended to spectral regularization.

We first prove a computationally useful fact about our particular objective function:

Proposition 6 The dual solution of the optimization problem in Eq. (16) depends only on the matrix
K⊗G.

Proof It suffices to show that for all matrices B, then the positive singular values of X.BY only
depend on K⊗G. The largest singular value is defined as the maximum of a.X.BYb over unit
norm vectors a and b. By a change of variable, it is equivalent to maximize (X.ã)X.BY (Y.b̃)

‖X.ã‖‖Y.b̃‖ =

vec(b̃ã.)(K⊗G)vec(B)
vec(b̃ã.).(K⊗G)vec(b̃ã.)

with respect to ã and b̃ (Golub and Loan, 1996). Thus the largest positive
singular value is indeed a function of K⊗G. Results for other singular values may be obtained
similarly.

This shows that the natural kernel matrix to be learned in our context is the Kronecker product
K ⊗G. We thus follow Lanckriet et al. (2004) and consider M kernel matrices K1, . . . ,KM for
X and M kernel matrices G1, . . . ,GM for Y . One possibility could be to follow Lanckriet et al.
(2004) and to learn a convex combination of the matrices Kk⊗Gk by minimizing with respect to
the combination weights the optimal value of the problem in Eq. (16). However, unlike the usual
Hilbert norm regularization, this does not lead to a convex problem in general. We thus focus on
the alternative formulation of the MKL problem (Bach et al., 2004): we consider the sum of the
predictor functions associated with each of the individual kernel pairs (Kk,Gk) and penalize by the
sum of the norms.

That is, if we let denote X1, . . . ,XM and Y1, . . . ,YM the respective square roots of matrices
K1, . . . ,KM andG1, . . . ,GM, we look for predictor functions which are sums of theM possible atomic
predictor functions, and we penalize by the sum of spectral functions, to obtain the following opti-
mization problem:

min
∀k,*k∈R

mkx×mky

n

$
i=1

+i

(

M

$
k=1

(Xk*kY.
k )ii

)

+'
M

$
k=1

#(*k).

We form the Lagrangian:

L(v,*1, . . . ,*M,.) =
n

$
i=1

+i(vi)−
N

$
i=1

.i(vi−
M

$
k=1

(Xk*kY.
k )ii)+'

M

$
k=1

#(*k),
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and minimize w.r.t. v and *1, . . . ,*M to obtain the dual problem, which is to maximize

−$
u
+∗
i (.i)−$

k
'#∗

(

−
1
'
X.
k Diag(.)Yk

)

.

In the case of the trace norm, we obtain support kernels (Bach et al., 2004), that is, only a sparse
combination of matrices ends up being used. Note that in the dual formulation, there is only one .
to optimize, and thus it is preferable to use the dual formulation rather than the primal formulation.

6. Experiments

In this Section we present several experimental findings for the algorithms and methods discussed
above. Much of the present work was motivated by the problem of collaborative filtering and we
therefore focus solely within this domain. As discussed in Section 3, by using operator estimation
and spectral regularization as a framework for CF, we may use potentially more information to
predict preferences. Our primary goal now is to show that, as one would hope, such capabilities do
improve prediction accuracy.

6.1 Data Sets and Metrics

We present several plots created by experimenting on synthetic data. This artificial data set was gen-
erated as follows: (1) sample i.i.d. multivariate features for x of dimension 6, (2) generate i.i.d. mul-
tivariate features for y of dimension 6 as well, (3) sample z from a random bilinear form in x and
y plus some noise, (4) restrict the observed feature space to only 3 features for both x and y. Since
part of the data is discarded, the label cannot be perfectly predicted by the known features. On the
other hand, since we keep some of them, knowing and using these attributes should work better than
not using them. In other words, we expect that setting ( and ) to be values other than 0 or 1 should
provide better performance.

We also experimented with the well-known MovieLens 100k data set from the GroupLens Re-
search Group at the University of Minnesota. This data set consists of ratings of 1682 movies by
943 users. Each user provided a rating, in the form of a score from {1,2,3,4,5}, for a small sub-
set of the movies. Each user rated at least 20 movies, and the total number of ratings available is
exactly 100,000, averaging about 105 per user. This data set was rather appropriate as it included
attribute information for both the movies and the users. Each movie was labeled with at least one
among 19 genres (e.g., action or adventure), while the users’ attributes included age, gender, and
an occupation among a list of 21 occupations (e.g., administrator or artist). We converted the users’
age attribute to a set of binary features identifying one of five age categories.

All test set accuracies are measured as the root mean squared error averaged over 10-fold cross
validations. In particular, we focus on the comparisons of intermediate values of ( and ), compared
to the four “corners” of the (/)−parameter space:

• (= 0,)= 0: matrix completion

• (= 0,)= 1 and (= 1,)= 0: multi-task learning on users or objects

• (= 1,)= 1: pairwise learning
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Figure 1: Comparison between two spectral penalties: the trace norm (left) and the Frobenius norm
(right), each with an additional fixed rank constraint as described in Section 5.3. Each
surface plot displays performance values over a range of ( and ) values, all obtained
using the synthetic data set. The minimal value achieved by the trace norm is 0.1222 and
the one achieved by the rank constraint is 0.1540.

6.2 Results

We now summarize a number of experimental results for several of the aforementioned algorithms.

6.2.1 TRACENORM VERSUS LOW-RANK

In Figure 1, we present two performance plots over the (/) parameter space, both obtained using the
synthetic data set. The left plot displays the results when using the trace norm spectral penalty. Here
we used the low rank decomposition formulation described in Section 5.3 which (by Proposition 5)
has no local minima. The plot on the right uses the same rank-constrained formulation, but with
a Frobenius norm penalty instead. The trace norm constrained algorithm performs slightly better.
Moreover, best predictive performance is achieved in both cases in the middle of the square and not
at any of the four corners.

6.2.2 KERNEL LEARNING

In Figure 2, we show the test set accuracy as a function of the regularization parameter, when we use
the kernels corresponding to the four corners as the four basis kernels. We can see that we recover
similar performance (error of 0.14 instead of 0.12) than by searching over all ( and )’s. The same
algorithm could also be used to learn kernels on the attributes.
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Figure 2: Learning the kernel: test set accuracy vs. regularization parameter. Minimum value is
0.14.

6.2.3 PERFORMANCE ON MOVIELENS DATA

Figure 3 shows the predictive accuracy in RMSE on the MovieLens data set, obtained by 10-fold
cross-validation. The heat plot provides some insight on the relative value, for both movies and
users, of the given attribute kernels versus the simple identity kernels. The corners have higher
values than some of the values inside the square, showing that the best balance between attribute
and Dirac kernels is achieved for (,) well inside the interior of [0,1]× [0,1].

7. Conclusions

We have presented a method for solving a generalized matrix completion problem where we have
attributes describing the matrix dimensions. The problem is formalized as the problem of inferring a
linear compact operator between two general Hilbert spaces, which generalizes the classical finite-
dimensional matrix completion problem. We introduced the notion of spectral regularization for
operators, which generalizes various spectral penalizations for matrices, and we proved a general
representer theorem for this setting. Various approaches, such as standard low rank matrix comple-
tion, are special cases of our method. This framework is particularly relevant for CF applications
where attributes are available for users and/or objects, and preliminary experiments confirm the
benefits of our method.

An interesting direction of future research is to explore further the multi-task learning algorithm
we obtained with low-rank constraint, and to study the possibility to derive on-line implementations
that may better fit the need for large-scale applications where training data are continuously increas-
ing. On the theoretical side, a better understanding of the effects of norm and rank regularizations
and their interaction would be of considerable interest.
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Figure 3: A heat plot of performance for a range of kernel parameter choices, ( and ), using the
MovieLens data set.

Appendix A. Compact Operators on Hilbert Spaces

In this appendix, we recall basic definitions and properties of Hilbert space operators. We refer
the interested reader to general books (Brezis, 1980; Berlinet and Thomas-Agnan, 2003) for more
details.

Let X and Y be two Hilbert spaces, with respective inner products denoted by 〈x,x′〉X and
〈y,y′〉Y for x,x′ ∈ X and y,y′ ∈ Y . We denote by B (Y ,X ) the set of bounded operators from X to
Y , that is, of continuous linear mappings from Y to X . For any two elements (x,y) in X ×Y , we
denote by x⊗y their tensor product, that is, the linear operator from Y to X defined by:

∀h ∈ Y , (x⊗y)h= 〈y,h〉Y x .

We denote by B0 (Y ,X ) the set of compact linear operators from Y to X , that is, the set of linear
operators that map the unit ball of Y to a relatively compact set of X . Alternatively, they can also
be defined as the limit of finite rank operators.

When X and Y have finite dimensions, then B0 (Y ,X ) is simply the set of linear mappings from
Y to X , which can be represented by the set of matrices of dimensions dim(X )×dim(Y ). In that
case the tensor product x⊗y is represented by the matrix xy., where y. denotes the transpose of y.

For general Hilbert spaces X and Y , any compact linear operator F ∈ B0 (Y ,X ) admits a spec-
tral decomposition:

F =
%

$
i=1

&iui⊗vi . (17)
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Here the the singular values (&i)i∈N form a sequence of non-negative real numbers such that
lim
i→%

&i = 0, and (ui)i∈N
and (vi)i∈N

form orthonormal families in X and Y , respectively. Although
the vectors (ui)i∈N

and (vi)i∈N
in (17) are not uniquely defined for a given operator F , the set of

singular values is uniquely defined. By convention we denote by &1(F),&2(F), . . ., the successive
singular values of F ranked by decreasing order. The rank of F is the number rank(F) ∈ N∪{+%}
of strictly positive singular values.

We now describe three subclasses of compact operators of particular relevance in the rest of this
paper.

• The set of operators with finite rank is denoted BF (Y ,X ).

• The operators F ∈ B0 (Y ,X ) that satisfy:
%

$
i=1

&i(F)2 < %

are called Hilbert-Schmidt operators. They form a Hilbert space, denoted B2 (Y ,X ), with
inner product 〈·, ·〉X⊗Y between basic tensor products given by:

〈

x⊗y,x′ ⊗y′
〉

X⊗Y =
〈

x,x′
〉

X

〈

y,y′
〉

Y . (18)

In particular, the Hilbert-Schmidt norm of an operator in B2 (Y ,X ) is given by:

‖F ‖2 =

(

%

$
i=1

&i(F)2
)

1
2

.

Another useful characterization of Hilbert-Schmidt operators is the following. Each linear
operator F : Y → X uniquely defines a bilinear function fH : X ×Y → R by

f (x,y) = 〈x,Fy〉X .

The set of functions fF associated to the Hilbert-Schmidt operators forms itself a Hilbert
space of functions X ×Y → R, which is the reproducing kernel Hilbert space of the product
kernel defined for ((x,y) ,(x′,y′)) ∈ (X ×Y )2 by

k⊗
(

(x,y) ,
(

x′,y′
))

=
〈

x,x′
〉

X

〈

y,y′
〉

Y .

• The operators F ∈ B0 (Y ,X ) that satisfy:
%

$
i=1

&i(F) < %

are called trace-class operators. The set of trace-class operators is denoted B1 (Y ,X ). The
trace norm of an operator F ∈ B1 (Y ,X ) is given by:

‖F ‖1 =
%

$
i=1

&i(F) .

Obviously the following ordering exists among these various classes of operators:

BF (Y ,X ) ⊂ B1 (Y ,X ) ⊂ B2 (Y ,X ) ⊂ B0 (Y ,X ) ⊂ B (Y ,X ) ,

and all inclusions are equalities if X and Y have finite dimensions.
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Appendix B. Proof of Theorem 3

We start with a general result about the decrease of singular values for compact operators composed
with projection:

Lemma 7 Let G and H be two Hilbert spaces, H a compact linear subspace of H , and 1H denote
the orthogonal projection onto H. Then for any compact operator F : G )→H it holds that:

∀i≥ 1 , &i(1HF) ≤ &i(F) .

Proof We use the classical characterization of the i-th singular value:

&i(F) = max
V∈Vi(G)

min
x∈V,‖x‖G=1

‖Fx‖H ,

where Vi(G) denotes the set of all linear subspaces of G of dimension i. Now, observing that for
any x we have ‖1HFx‖H ≤ ‖Fx‖H proves the Lemma.

Given a training set of patterns (xi,yi)i=1,...,N ∈ X ×Y , remember that we denote by XN and YN the
linear subspaces of X and Y spanned by the training patterns {xi , i= 1, . . . ,N} and {yi , i= 1, . . . ,N},
respectively. For any operator F ∈ B0 (Y ,X ), let us now consider the operator G=1XNF1YN . By
construction, F and G agree on the training patterns, in the sense that for i= 1, . . . ,N:

〈xi,Gyi〉X =
〈

xi,1XNF1YNyi
〉

X =
〈

1XNxi,F1YNyi
〉

X = 〈xi,Fyi〉X .

Therefore F and G have the same empirical risk:

RN(F) = RN(G) . (19)

Now, by denoting F∗ the adjoint operator, we can use Lemma 7 and the fact that the singular values
of an operator and its adjoint are the same to obtain, for any i≥ 1:

&i(G) = &i(1XNF1YN )

≤ &i(F1YN )

= &i(1YNF
∗)

≤ &i(F∗)

= &i(F).

This implies that the spectral penalty term satisfies #(G) ≤#(F). Combined with (19), this shows
that if F is a solution to (12), then G = 1XNF1YN is also a solution. Observing that G ∈ XN ⊗YN
concludes the proof of the first part of Theorem 3, resulting in (13).

We have now reduced the optimization problem in B0 (Y ,X ) to a finite-dimensional optimiza-
tion over the matrix * of size mX ×mY . Let us now rephrase the optimization problem in this
finite-dimensional space.

Let us first consider the spectral penalty term#(F). Given the decomposition (13), the non-zero
singular values of F as an operator are exactly the non-zero singular values of * as a matrix, as soon
as (u1, . . . ,umX ) and

(

v1, . . . ,vmY

)

form orthonormal bases of XN and YN , respectively. In order to
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be able to express the empirical risk RN(F) we must however consider a decomposition of F over
the training patterns, as:

F =
N

$
i=1

N

$
j=1

2i jxi⊗y j . (20)

In order to express the singular values from this expression let us introduce the Gram matrices K
and G of the training patterns, that is, the N×N matrices defined for i, j = 1, . . . ,N by:

Ki j =
〈

xi,x j
〉

X , Gi j =
〈

yi,y j
〉

Y .

We note that by definition the ranks of K and G are respectively mX and mY . Let us now fac-
torize these two matrices as K = XX. and G = YY., where X ∈ RN×mX and Y ∈ RN×mY are any
square roots, for example, obtained by kernel PCA or incomplete Cholesky decomposition (Fine
and Scheinberg, 2001; Bach and Jordan, 2005). The matrices X and Y provide a representation
of the pattern in two orthonormal bases which we denote by (u1, . . . ,umX ) and

(

v1, . . . ,vmY

)

. In
particular we have, for any i, j ∈ 1, . . . ,N:

xi⊗y j =
mX

$
l=1

mY

$
m=1

XilYjmul⊗vm ,

from which we deduce:

F =
mX

$
l=1

mY

$
m=1

(

N

$
i=1

N

$
j=1

XilYjm2i j

)

ul⊗vm .

Comparing this expression to (13) we deduce that:

*= X.2Y .

The empirical error RN(F) is a function of f (xl,yl) for l = 1, . . . ,N. From (20), we see that:

f (xl,yl) =
N

$
i=1

N

$
j=1

2i jKilGl j ,

and therefore the vector of predictions FN = ( f (xl,yl))l=1,...,N ∈ RN can be rewritten as:

FN = diag(K2G) = diag
(

X*Y.
)

.

We can now replace the empirical risk RN(FN) by RN
(

diag
(

X*Y.
))

and the penalty#(F) by#(*)
to deduce the optimization problem (14) from (12), which concludes the proof of Theorem 3.

Appendix C. Proof of Proposition 5

Since the function has compact level sets, we may assume that we are restricted to an open bounded
subset of Rp×q where the second and first derivatives are uniformly bounded. We let denote C > 0
a common upper bound of all derivatives. The gradient of the function H is equal to 0H =

(0G.U
0G V

)

,
while the Hessian of H is the following quadratic form:

02H[(dU,dV ),(dU,dV )] = 2trdV.0GdU+02G[UdV. +dUV.,UdV. +dUV.].
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Without loss of generality, we may assume that the last columns ofU and V are equal to zero (this
can be done by rotation of U or V ). The zero gradient assumption implies that 0G.U = 0 and
0GV = 0. While if we take dU and dV with the first m−1 columns equal to zero, and last columns
equal to arbitrary u and v, then the second term in the Hessian is equal to zero. The positivity of the
first term implies that for all u and v, v.0Gu≥ 0, that is, the gradient of G at N =UV. is equal to
zero, and thus we get a stationary point and thus a global minimum of G.
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Abstract
We show that all consistent learning methods—that is, that asymptotically achieve the lowest pos-
sible expected loss for any distribution on (X ,Y )—are necessarily localizable, by which we mean
that they do not significantly change their response at a particular point when we show them only
the part of the training set that is close to that point. This is true in particular for methods that
appear to be defined in a non-local manner, such as support vector machines in classification and
least-squares estimators in regression. Aside from showing that consistency implies a specific form
of localizability, we also show that consistency is logically equivalent to the combination of two
properties: (1) a form of localizability, and (2) that the method’s global mean (over the entire X
distribution) correctly estimates the true mean. Consistency can therefore be seen as comprised of
two aspects, one local and one global.
Keywords: consistency, local learning, regression, classification

1. Introduction

In a supervised learning problem we are given an i.i.d sample Sn = {(xi,yi)}i=1..n of size n from
some distribution P; then a new pair (x,y) is drawn from the same P and our goal is to predict y
when shown only x. Our prediction (also called estimate, or guess) of y is written f (Sn,x), some
function that depends on the training set and the point at which we estimate (note that it is slightly
atypical to have both the training set and point as inputs to f , but this will be very convenient
in our setting). We call f a learning method; in the context of regression we will also use the
term estimator, and in the context of classification we will use the term classifier. In both of these
settings, if f achieves the lowest possible expected loss as n→!, for every distribution, then we call
f consistent (we will formalize all of these definitions later on; for now we just sketch the general
ideas). Consistent estimators are of obvious interest due to their capability to learn without knowing
in advance anything about the actual distribution.

When we look at the learning methods known to be consistent, we can separate them into two
general types. In the first of these we have methods that are defined in a local manner, for example,
the k-nearest-neighbor (k-NN) classifier (Stone, 1977; Devroye et al., 1996). The k-NN classifier
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guesses the class of a point x based on its nearest neighbors in the training set, thus, this classifier
behaves in a ‘local’ way: only close-by points affect the estimate. More generally, by a locally-
behaving method we mean one that, given a training set Sn and a point x at which to estimate
the value of y, in some way treats the close-by part of the training set as the most important. A
second type of consistent learning method is defined in a global manner, for example, support
vector machines (see Vapnik, 1998; Steinwart, 2002, for a description and proof of consistency,
respectively). It is not clear from the definition of support vector machines whether they behave
locally or not: The separating hyperplane is determined based on the entire training set Sn, and
furthermore does not depend on the specific point x at which we classify, perhaps leading us to
expect that support vector machines do not behave locally. Thus, on an intuitive level we might
think that some consistent methods behave locally and some do not.

This intuition also appears relevant when we consider regression: The k-NN regression estima-
tor appears to behave locally, while on the other hand support vector regression (see, e.g., Smola
and Schoelkopf, 1998), kernel ridge regression (Saunders et al., 1998), etc., seem not to have that
property. Another example is that of orthogonal series estimation, that is, of using a weighted sum
of fixed harmonic functions (Lugosi and Zeger, 1995); this method appears to not behave locally
both because the harmonic functions are non-local and because the coefficients are determined in a
way based on all of the data.

Despite the intuition that some consistent methods might not behave locally, we will see that
in fact all of them necessarily behave in that manner. As mentioned before, we already know that
some locally-behaving methods are consistent, since some are in fact defined in a local manner,
for example, k-NN. What we will see is that all other consistent methods must also behave locally.
In classification, this implies that, in particular, (properly regularized) support vector machines and
boosting (Freund and Schapire, 1999; Zhang, 2004; Bartlett and Traskin, 2007) must behave locally,
despite being defined in a way that appears global. In the area of regression, our results show
that neural network estimators, orthogonal series estimators, etc., must behave locally if they are
consistent, again, despite their being defined in a way that does not indicate such behavior.

In the rest of this introductory section we will present a summary of our approach and results as
well as background regarding related work. While doing so we focus on regression problems since
that setting allows for simpler and clearer definitions. For the same reasons we will also focus on
regression in the main part of this paper; in a later section we will show how to apply our results to
classification.

Our goal in regression is to estimate f ∗(x) = E(y|x), that is, the expected value of y conditioned
on x, or the regression of y on x. Our hope is that f (Sn,x) is close to f ∗(x). We say that f is
consistent on a distribution P iff

Ln( f ) ≡ E | f (Sn,x)− f ∗(x)|−→
n→!

0

where the expected value is taken over training sets Sn and observations x both distributed according
to P (which is suppressed in the notation). If a method is consistent on all P then we call it consistent
(this is sometimes called universal consistency). Note that there are stronger notions of consistency,
such as requiring that the loss converge to 0 with probability 1 (see, e.g., Gyorfi et al., 2002), but we
will focus on the loss as just described. Note also that the Ln loss is ‘global’ in that we average over
all x, which makes it all the more interesting to see whether methods that minimize it must end up
behaving locally.
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The notion of local behavior that we will consider will be called localizability, and it entails that
the method returns a similar estimate for x when shown Sn in comparison to the estimate it would
have returned when shown only the part of Sn that is close to x. In other words, if we define

Sn(x,r) = {(xi,yi) ∈ Sn : ||xi− x||≤ r}

then a localizable method has the property that

f (Sn,x) ≈ f (Sn(x,r),x)

for some small r > 0 (the formal definitions of all of these concepts will be given in later sections).
More specifically, for any sequence Rn ↘ 0 we can see g(Sn,x) = f

(
Sn

(
x,Rn

)
,x

)
as a ‘localization’

of f , since it applies f to the close-by part of the training set for the particular point at which we
estimate. In other words, a localizable method is one that behaves similarly to a localization of
itself. (Note the convenience of the f (Sn,x) notation here, that is, of seeing f as a function of both
Sn and x.)

Why is the concept of localizability of interest? The main motivation for us is that, as we will
see later, consistency implies a form of localizability. That is, even an estimator defined in what
seems to be a global manner, for example, by minimizing a global loss of the general form

1
n "i=1..n

l
(
f (xi),yi

)
+#c( f )

where l is, for example, least-squares, and c is (optional) complexity penalization—then even such
an estimator must be in some sense localizable, if it is consistent. Thus, our first motivation is to
point out that not only locally-defined methods like k-NN behave locally, but also all other consistent
methods as well.

Aside from this main motivation for investigating localizability, another reason is that it allows
us to answer questions such as, “What might happen if we localize a support vector machine?”
That is, we can apply a support vector machine (or some other useful method) to only the close-
by part of the training set, perhaps motivated by the fact that training on this smaller set is more
computationally efficient, at least if all we need is to generate estimates at a small number of points.
If support vector machines are localizable, then we in fact know that such an approach can be
consistent; and if they are not localizable, then we may end up with a non-consistent method with
poor performance. Thus, localizability can have practical applications.

Note that one can consider other ways to define local behaviour than localizability. In one such
approach, we can evaluate the behavior of a method when altering the far-off part of the training
set, as opposed to removing it (which is what we do with localizability). Work along those lines
(Zakai and Ritov, 2008) arrives at similar conclusions to the ones presented here. Comparing the
two approaches, localizability has the advantage of relevance to practical applications, as mentioned
in the previous paragraph.

Previous work related to localizability has been done in the context of learning methods that
work by minimizing a loss function: We can ‘localize’ the loss function by re-weighting it so that
close-by points are more influential; this has been investigated in the context of Empirical Risk
Minimization (ERM; Vapnik, 1998) (Bottou and Vapnik, 1992; Vapnik and Bottou, 1993), as well
as in the specific case of linear regression (see, e.g., Cleveland and Loader, 1995, and references
therein); this approach has also lead to various applications (Atkeson et al., 1997). In this paper we
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differ from these approaches in that we work in a more general context: Our approach is applicable
to all learning methods, and not just those that are based on minimizing a loss function that can
be re-weighted. Another difference is that we consider consistency in the sense of asymptotically
arriving at the lowest possible loss achievable by any measurable function, and not in the sense of
minimizing the loss within a set of finite VC dimension.

Another related work is that of Bengio et al. (2006), in which it was shown that kernel machines
behave locally, in the sense of requiring a large number of examples in order to learn complex
functions (because each local area must be learned separately). Our approach differs from this
work in the way we define local behavior, and in that we are interested in all (consistent) learning
methods, not just kernel machines. However, our conclusion is in agreement with theirs, that even
methods that may appear to be global like support vector machines in fact behave locally.

We now sketch our main result, which is that consistency is logically equivalent to the combi-
nation of two properties (which will be given later, in Definitions 2 and 5): Uniform Approximate
Localizability (UAL), which is a form of localizability, and Weak Consistency in Mean (WCM),
which deals with the mean E f (Sn,x) estimating the true mean E f ∗(x) reasonably well, where the
expected values are taken over Sn and x. It will be easy to see that the UAL and WCM properties
are ‘independent’ in the sense that neither implies the other, and therefore we can see consistency
as comprised of two independent aspects, which might be presented as

Consistency ⇐⇒ UAL ⊕WCM.

This can be seen as describing consistency in terms of local (UAL) and global (WCM) aspects
(WCM is ‘global’ in the sense of only comparing scalar values averaged over x).

Note that there are two issues here which might be surprising, the first of which has already
been mentioned—that all consistent methods must behave locally. The second important issue is
that WCM is sufficient, when combined with UAL, to imply consistency. That is, if our goal is to
be consistent,

E| f (Sn,x)− f ∗(x)|−→ 0 (1)

then it is interesting that all that is needed in addition to behaving locally is a property close to

|E f (Sn,x)−E f ∗(x)|−→ 0.

Note that the latter condition is very weak. For example, it is fulfilled by g(Sn,x)= 1
n "i yi, the simple

empirical mean of the y values in the sample Sn (ignoring the xs completely), since 1n "i yi −→ Ey=
E f ∗(x) a.s., where Ey is the mean of y. On the other hand, g does not fulfill the stronger property (1)
except on trivial distributions.

Our main result, which has just been described, will also be generalized to settings other than
that of methods consistent on the set of all distributions. This will lead to peculiar consequences:
Consider, for example, the following two sets of distributions:

P1 =
{
P : y= f ∗(x)+ $ , E$= 0 , $ is independent of x

}
, P2 =

{
P : Ey= 0

}

(note that P1 is simply regression with additive noise). It turns out that a method consistent on P1
must behave locally on that set (just as with the set of all distributions), but the same is not true
for P2, where a consistent method does not necessarily behave locally. The reason for this will be
explained later.
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The rest of this work is as follows. In Section 2 we present the formal setting and other pre-
liminary matters. In Section 3 we present definitions of local properties (and specifically UAL) as
well as some results concerning them. In Section 4 we define the global concepts that we need,
specifically WCM. In Section 5 we present our main result, the equivalence of consistency to the
combination of UAL and WCM. In Section 6 we extend our results to various sets of distributions.
In Section 7 we use results from previous sections in order to derive consequences for classification.
In Section 8 we summarize our results and discuss some directions for future work. Finally, proofs
of our results appear in the Appendices.

2. Preliminaries

We now complete the description of the formal setting in which we work, as well as lay out notation
useful later. Most of this section deals with the context of regression; details specific to classification
will appear in Section 7.

We consider distributions P on (X ,Y ) where X ⊂ Rd ,Y ⊂ R. We assume that X ,Y are bounded,
supx∈X ||x||,supy∈Y |y|≤M1 for someM1 > 0 which is the same for all distributions. Thus, when we
say ‘all distributions’ we mean all distributions bounded by the same value of M1. We also assume
that our learning methods return bounded responses, ∀S,x | f (S,x)| ≤ M2.1 Let M be a constant
fulfilling M ≥M1,M2. Importantly, note that while these boundedness assumptions are non-trivial
in the context of regression, they do not limit us when we consider classification, as we will see in
Section 7.

Note that we wrote f (S,x) instead of f (Sn,x) in the previous paragraph. The reason is that nwill
always denote the size of the original training set, which in turn will always be written as Sn. Since
we will also apply f to to other training sets (in particular, subsets of Sn), for clarity of notation
we will therefore write S for a general (finite) set of pairs (xi,yi) and define learning methods via
f (S,x).
Formally speaking, a learning method f (S,x) is defined as a sequence of measurable functions

{ fk}k∈N, where each fk is a function on training sets of size k, that is,

fk : (X×Y )k×X −→ Y.

For brevity, we will continue to write f instead of fk since which fk is used is determined by the
size of the training set that we pass to f , that is, f (S,x) = f|S|(S,x). For example, we will often
denote by S̃ a subset of the original training set Sn. Then in an expression of the form f (S̃,x) the
actual function used is fm, where m = |S̃|, and in this example we expect to have m ≤ n (where, as
mentioned before, n is the size of the original training set Sn).

For any distribution P on (X ,Y ), we write f ∗(x) = E(y|x), as already mentioned, and we denote
the marginal distribution on X by µ. We write f ∗P ,µP instead of f ∗,µ to make explicit the dependence
on Pwhen necessary. Denote by suppX(P) = supp(µP) the support of µP. The measure of sets B⊆X
will be written in the form µ(B).

1. Note that this is a minor assumption since for most methods we have supx | f (S,x)|≤C ·maxi |yi| for someC> 0, and
the yi values are already assumed to be bounded. If this does not hold, then we might in any case want to consider
enforcing boundedness based on the sample, that is, to truncate values larger in absolute value than maxi |yi|, and in
doing so perhaps improve performance. Finally, recall that we are concerned with consistent methods, that is, that
behave similarly to f ∗ in the limit, and f ∗ is bounded.
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We denote random variables by, for example, (x,y) ∼ P and Sn ∼ P where in the latter case we
intend a random i.i.d sample of n elements from the distribution P. We will often abbreviate and
write x,y ∼ P instead of (x,y) ∼ P; also, we will write x ∼ P where we mean x ∼ µP. To prevent
confusion we always use x and y to indicate a pair (x,y) sampled from P.

We will write the mean and variance of random variables v as E(v) =Ev and %2(v), respectively.
More generally, expected values will be denoted by Ev∼VH(v) = EvH(v) where v is a random vari-
able distributed according to V and H(v) is some function of v; we may write EH(v) when the
random variables are clear from the context. The conditional expected value of H(v) given w will
be written in the form Ev|w (H(v)).

We will work mainly with the L1 loss, which we can now write formally as

Ln,P( f ) ≡ ESn,x∼P | f (Sn,x)− f ∗P(x)| ,

or, more briefly,
Ln( f ) ≡ ESn,x | f (Sn,x)− f ∗(x)| .

Note that for purposes of consistency (i.e., Ln( f ) → 0) all Lp losses are equivalent, since

∀0< p< q E|z|p ≤ (E|z|q)p/q ≤ (2M)p(q−p)/q (E|z|p)p/q

where z = f (Sn,x)− f ∗(x). Thus, if one Lp loss converges to 0, so do all the others. Hence our
results apply to all Lp norms; we work mainly with the L1 norm for convenience.

For any set B ⊆ X , denote by PB the conditioning of P on B, that is, the conditioning of µP
on B (and leaving unchanged the behavior of y given x). Denote the ball of radius r around x by
Bx,r = {x′ ∈ Rd : ||x− x′||≤ r}. Let Px,r = PBx,r .

Finally, we mention two useful conventions. Note that we defined consistency on a single
distribution, and then consistency in general as the property of being consistent on all distributions.
More specifically, for any property A that can hold for a method f on particular distributions, we
say that f has property A on a set of distributions P when f has property A on all P ∈ P. We
also say that f has property A (without specifying P or P) when it has property A on the set of all
distributions (with bounded support). This convention will be used for consistency as well as for
UAL and other properties.

Similarly, when we start by defining a property A on the set of all distributions, we then use
the convention that f has property A on a set P when we simply replace ∀P with ∀P ∈ P. This
convention will be used with the WCM property.

3. Local Behavior

In this section we consider local properties of learning methods. We will present a series of defini-
tions, leading up to a definition of Uniform Approximate Localizability (UAL).

We start with some introductory definitions. For any two learning methods f ,g, we say that they
are mutually consistent iff

Dn( f ,g) ≡ ESn,x | f (Sn,x)−g(Sn,x)|−→n→!
0.

That is, f and g are mutually consistent if they behave asymptotically similarly according to a
distance metric Dn. The term ‘mutual consistency’ is used since Dn( f , f ∗) = Ln( f ) (where we can
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formally define f ∗(S,x) = f ∗(x)), that is, being mutually consistent with f ∗ is equivalent to being
consistent. Thus, mutual consistency is a natural extension of consistency. Note that Dn obeys the
triangle inequality,

∀ f ,g,h Dn( f ,g) ≤ Dn( f ,h)+Dn(h,g)

which will be convenient later.
We now define some useful notation for the topic of locality. For any training set S and r ≥ 0,

we call
S(x,r) = {(xi,yi) ∈ S : ||xi− x||≤ r}

a local training set for x within S, of radius r. For every learning method f and r ≥ 0, let

f |r(S,x) = f (S(x,r),x).

Note that, as mentioned previously, if f = { fk}k∈N then in the expression f (Sn(x,r),x) (where Sn is,
as always, the original training set of size n), we are passing Sn(x,r),x to fm, where m = |Sn(x,r)|,
which will in general be smaller than n= |Sn|. Thus, formally speaking we might write

f |r(S,x) = f|S(x,r)|(S(x,r),x)

but for simplicity we will continue to drop the lower index on f . Note that f |r can also be formally
defined as a series of functions { f |r,k}k∈N, but again, for simplicity we avoid this.

In words, f |r is a learning method that results from forcing f to only work on local training
sets of radius r around x, when estimating the value at x. For example, if f is a linear regression
estimator then we can see f |r as performing local linear regression (Cleveland and Loader, 1995).

Continuing in our definitions, for any sequence {Rk}k∈N,Rk ≥ 0,Rk → 0, we call f |{Rk} a local
version, or a localization of f ; by this notation, we mean

f |{Rk}(S,x) = f
(
S
(
x,R|S|

)
,x

)

—that is, which Rk is used from the sequence {Rk} depends on the size of the training set passed to
f |{Rk}. In particular, for the original training set Sn we have

f |{Rk}(Sn,x) = f
(
Sn

(
x,Rn

)
,x

)
.

Note that, as a consequence, local versions are indeed ‘local’ in the limit since we have Rn → 0.
We can now define one form of local behavior: Call a method f localizable on a distribution P

iff there exists a local version f |{Rk} of f with which f is mutually consistent, that is,

Dn
(
f |{Rk}, f

)
−→
n→!

0.

Thus, a localizable method is one that is similar, in the sense of mutual consistency, to a local version
of it, which implies that it gives similar results when seeing the entire training set versus only the
local part of it; we can localize the method without changing the estimates significantly. Note once
more that the requirement Rn → 0 is what makes this definition truly define local behavior.

We will also need a notion of a method that, when localized, is consistent. Call a method f
locally consistent on a distribution P iff there exists a local version f |{Rk} of f which is consistent,

Ln
(
f |{Rk}

)
= Dn

(
f |{Rk}, f

∗)−→
n→!

0.
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That is, there is a way to localize f so that it becomes consistent.
Are all consistent learning methods localizable and locally consistent? Consider the latter prop-

erty: It appears as if any consistent method must be locally consistent, since a consistent method
can successfully ‘learn’ given any underlying distribution, and when we localize such a method we
are in effect applying that same useful behavior in every local area. Thus, it seems reasonable to
expect a localization of a consistent method to be consistent as well, and if this were true then it
might have useful practical applications, as mentioned in the introduction. Yet this intuition turns
out to be false, and a similar failure occurs for localizability:

Proposition 1 A learning method exists which is consistent but neither localizable nor locally con-
sistent.

The proof of Proposition 1 (appearing in Appendix A) is mainly technical, and consists in con-
structing a method f = { fk} which becomes less smooth as n rises, and asymptotically considerably
less smooth than the true f ∗. That is, the issue is that we have required merely that the functions fk
be measurable, and it turns out that without additional assumptions they can behave erratically in
a manner that renders f not locally consistent. The specific example that we construct in the proof
involves functions fk that behave oddly on an area close to Ex but otherwise perform well. It is then
possible to show that the ‘problematic area’ near Ex can be large enough so that all local versions
of the method behave poorly, but small enough so that the original method is consistent.

Now, the counterexample constructed in the proof of Proposition 1 might rightfully be called a
‘fringe case’. Yet, it suffices to show that not all consistent methods are localizable, contrary perhaps
to intuition. There is therefore the question of what to do. One solution to this matter is to work
with a property stronger than consistency, one that includes an additional smoothness requirement.
The disadvantage of such an approach is that we cannot immediately derive consequences for the
various methods known to be consistent, unless we also prove that they have the stronger property.

Instead, the approach that we will follow is to define more complex notions of local behavior
which can be used to arrive at properties equivalent to consistency. Thus, one major goal of this
paper is to arrive at suitable definitions for the topic of local behavior, that on the one hand capture
the intuition correctly and on the other allow useful results to be proven. The simple definitions
given before fail in the second matter; we will now give definitions that remedy that problem.

In order to formulate our improved definitions we first require some preparation. For any r,q≥ 0
and distribution P, let

f̄ |qr (S,x) = Ex′∼Px,q·r f (S(x,r),x
′). (2)

Compared to f |r, f̄ |qr adds a smoothing operation performed around the x at which we estimate. Note
that if q = 0 then we interpret the expected value as a delta function and we get f̄ |0r = f |r. Note
also that we require the actual unknown distribution P in the definition of f̄ |qr , that is, f̄ |qr cannot
be directly implemented in practice— f̄ |qr is a construction useful mainly for theoretical purposes.
However, we can implement an approximate version of f̄ |qr (S,x) by replacing the true expectation
with the empirical one. We will return to this matter later.

We define the following set of sequences:

T =
{
{Tk} : Tk ↘ 0 strictly

}
.

For any sequence T = {Tk}, let T = {Tk : k ∈ N}, that is, the set containing the elements in the
sequence. For any such sequence T = {Tk}, we then define the set of its infinite subsequences and
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selection functions on them by

R (T ) =
{
R= {Rk} : R⊆ T , Rk ↘ 0

}
,

Q (T ) =
{
Q : T→ T : Q(Tk) ↘ 0

}
.

For any T ∈ T and {Rk} ∈ R (T ), Q ∈ Q (T ), we call f̄ |{Q(Rk)}
{Rk} a smoothed local version of f ;

by this notation, we mean to replace the q,r values in (2) in an appropriate manner, that is,

f̄ |{Q(Rk)}
{Rk} (S,x) = Ex′∼Px,Q(R|S|)·R|S|

f
(
S
(
x,R|S|

)
,x′

)
.

Note that on the original training set Sn we get

f̄ |{Q(Rk)}
{Rk} (Sn,x) = Ex′∼Px,Q(Rn)·Rn

f
(
S
(
x,Rn

)
,x′

)
.

We now elaborate on these definitions. T is the set of possible values that Q(Rn),Rn can take;
these values must approach 0 as our goal is to consider local behavior. R (T ) contains sequences
of radii of local training sets; we require that Rn ↘ 0, as we are interested in behavior on local
training sets with radius descending to 0, that is, that become truly ‘local’ asymptotically. Q (T )
contains functions that become small when Tk is small; the values Q(Rn) determine radii on which
to smooth, via Q(Rn) ·Rn. Since Q(Rn) ·Rn = o(Rn), the smoothing is done on radii much smaller
(asymptotically negligibly small) than the radii of the local training sets Rn, and therefore this is a
minor operation. In conclusion, a smoothed local version is similar to a local version, but adds an
averaging operation on small radii.

We now start with our main definitions. The idea behind them is not overly complex, but their
description is necessarily somewhat technical.

Definition 2 Call a learning method f Uniformly Approximately Localizable (UAL) iff
∀P ∀T ∈ T

∃Q ∈ Q (T )

∀Q′ ∈ Q (T ) , Q′ ≥ Q
∃{Rk} ∈ R (T )

∀{R′
k} ∈ R (T ) , {R′

k}≥ {Rk}

Dn

(
f̄ |{Q

′(R′k)}
{R′k}

, f
)
−→
n→!

0.

(Here the expression {R′
k} ≥ {Rk} simply implies an inequality for the entire series, that is, for all

k. Q′ ≥ Q implies Q′(Tk) ≥ Q(Tk) for all k.)
In essence, a UAL learning method is one for whom, for any choice of T , all large-enough

choices of Q and {Rk} are suitable in order to get similar behavior between f and a smoothed local
version of f . That is, if we take {Rk} and Q slowly enough to 0 then we get local behavior. Note
that in any case taking {Rk} to 0 very quickly is problematic since we may get empty local training
sets, that is, Sn(x,Rn) = /0.

Concerning our choice of name for this definition, ‘uniformly’ appears in the title ‘uniformly
approximately local’ due to the requirement for all large-enough choices of {Rk},Q to be relevant,
and ‘approximately’ appears because we allow smoothed local versions and not just local versions.
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Both of these changes from the original definition of localizability are present in order to prevent
odd counterexamples. A concrete counterexample was shown in Proposition 1 to make clear the
need for smoothing; we do not present one in full for the uniformity requirement in order to save
space.

Note that we only consider {Rk},Q taking values in some fixed T , and that while T is arbitrary
it does need to be determined in advance. The issue is that if we instead allow all the values [0,!)
to appear in {Rk} and Q then, due to this being an uncountable set, it is not clear to the authors if
additional conditions are not required to prove our main results in that case. In any event, a countable
set of possible values is of sufficient interest for any practical learning-theoretical purpose, and as
already mentioned the actual set of possible values can be chosen in whatever manner is desired.

We also need a definition parallel to that of local consistency, as follows.

Definition 3 LetUniform Approximate Local Consistency (UALC) be the property defined exactly
the same as UAL, except for replacing the last condition with

Ln
(
f̄ |{Q

′(R′k)}
{R′k}

)
= Dn

(
f̄ |{Q

′(R′k)}
{R′k}

, f ∗
)
−→
n→!

0.

A UALC method is one whose smoothed local versions are consistent for any large-enough choice
of Q,{Rk}.

We now mention some properties of UAL and UALC, noting first that they are independent, in
that each can exist without the other. Consider the following two methods:

fy(S,x) =
1
|S| "i=1..|S|

yi, f0(S,x) = 0 (3)

fy (called thus because it considers only the y values) is UALC since a local version of it is simply
a kernel estimator, using the ‘window kernel’ k(x) = 1{||x||≤ 1}, and thus consistent, for any {Rk}
fulfilling nRdn → ! (Devroye and Wagner, 1980); {Rk} acts as the bandwidth parameter of a kernel
estimator. (Note that smoothing has no effect, as the guess does not depend on x.) fy, however,
clearly cannot be UAL (e.g., consider the simple example of x uniform on [−1,1] and y= sign(x));
neither is it consistent. Turning to f0, this method is clearly UAL but it is neither UALC nor
consistent.

Our first main result is that consistency is equivalent to the combination of UAL and UALC:

Theorem 4 A learning method is consistent iff it is both UAL and UALC.

In light of the independence of UAL and UALC, mentioned before, we can summarize this as

Consistency ⇐⇒ UAL ⊕ UALC.

The proof of⇐ is immediate: Pick any T . We derive some Q, Q̃ from the appropriate ∃ clauses of
the definitions of UAL and UALC, respectively; let Q′ ∈ Q (T ) fulfill Q′ ≥ Q, Q̃. Given Q′, we can
then derive some {Rk},{R̃k} from the appropriate ∃ clauses of UAL and UALC; let {R′

k} ∈ R (T )
fulfill R′

k ≥ Rk, R̃k. It is then clear that

Dn

(
f̄ |{Q

′(R′k)}
{R′k}

, f ∗
)

,Dn

(
f̄ |{Q

′(R′k)}
{R′k}

, f
)
−→ 0
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due to UALC and UAL. By the triangle inequality we get

Dn ( f , f ∗) ≤ Dn

(
f , f̄ |{Q

′(R′k)}
{R′k}

)
+Dn

(
f̄ |{Q

′(R′k)}
{R′k}

, f ∗
)
−→ 0 (4)

that is, consistency. Thus, it is fairly immediate from the definitions of UAL and UALC that together
they suffice for consistency. What is interesting is that they are equivalent to it. Instead of proving
that fact directly, the remainder of the proof of Theorem 4 will be a corollary of the results in Section
5.

4. Global Properties

In this section we define global properties that will be useful in the next section, where we present
our main results.

First we need some preliminary definitions. We define the means of f , f ∗ in the natural way,

En( f ) ≡ En,P( f ) ≡ ESn,x f (Sn,x),

E( f ∗) ≡ EP( f ∗) ≡ Ex f ∗(x) = ExE(y|x) = Ey

the latter expression which is just the global mean of y. We also want to consider the Mean Absolute
Deviation (MAD) of f and f ∗,

MADn( f ) ≡MADn,P( f ) ≡ ESn,x | f (Sn,x)−En( f )| ,

MAD( f ∗) ≡MADP( f ∗) ≡ Ex | f ∗(x)−E( f ∗)| .

We can now define the first version of the global property of interest to us: We say that f is
consistent in mean iff

∀P lim
n→!

|En( f )−E( f ∗)| = lim
n→!

|MADn( f )−MAD( f ∗)| = 0.

A consistent in mean learning method is required to correctly estimate E( f ∗) and MAD( f ∗); that
is, we require that the global behavior of f , averaged over x, be asymptotically equal to that of f ∗.
Note that we are only interested here in two scalar values which represent global averages of the
behavior of f , f ∗.

Consistency in mean is obviously a weaker property than requiring that, on average, f behave
similarly to f ∗ on every x separately—that is, consistency—since

|En( f )−E( f ∗)| = |ESn,x f (Sn,x)−Ex f ∗(x)|≤ ESn,x | f (Sn,x)− f ∗(x)| . (5)

By consistency the RHS converges to 0, and therefore so does the LHS. Consider now the MAD:

MADn( f ) = ESn,x| f (Sn,x)−En( f )|
= ESn,x| f (Sn,x)− f ∗(x)+ f ∗(x)−E( f ∗)+E( f ∗)−En( f )|
≤ ESn,x| f (Sn,x)− f ∗(x)|+Ex| f ∗(x)−E( f ∗)|+ |E( f ∗)−En( f )|
≤ Dn( f , f ∗)+MAD( f ∗)+ |E( f ∗)−En( f )|.
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Of the last three expressions, the first converges to 0 by consistency, and the third by (5) (which was
implied by consistency). Similarly,

MADn( f ) ≥MAD( f ∗)−Dn( f , f ∗)− |E( f ∗)−En( f )|

showing that |MADn( f )−MAD( f ∗)|→ 0. Thus, unsurprisingly, consistency implies consistency
in mean.

It turns out that a weaker property than consistency in mean is sufficient for our purposes:

Definition 5 We say that f is Weakly Consistent in Mean (WCM) iff there exists a function H :
R → R, H(0) = 0, limt→0H(t) = 0, for which

∀P limsup
n→!

∣∣En( f )−E( f ∗)
∣∣ , limsup

n→!
MADn( f ) ≤ H

(
MAD( f ∗)

)
.

(Note that the sameH is used for all P.) AWCM learning method is required only to do ‘reasonably’
well in estimating the global properties of the distribution, in a way that depends on the MAD, that
is, on the difficulty: We only require that performance be good when the learning task is overall quite
easy, in the sense of f ∗(x) being almost constant. Note that when H(MAD( f ∗)) ≥ 2M we require
nothing of f for such f ∗ (since | f |, | f ∗| ≤M), and also that for small MAD( f ∗) we may allow the
MAD of f to be significantly larger than that of f ∗ (consider, for example, H(t) = c · (

√
t+ t) for

large c> 0). Note also that we take the limsups, that is, we do not even require that the limits exist
(except in the trivial case where MAD( f ∗) = 0).

To see the justification for the adjective ‘weak’, note first that consistency in mean immediately
implies WCM, using H(t) = t. Second, recall the example hinted at in the introduction: fy(S,x) =
1
n "i yi is clearly not consistent, since it ignores the xs, nor is it consistent in mean, since

MADn( fy) = ESn,x| fy(Sn,x)−En( fy)| = Ey1,...,yn

∣∣∣∣∣
1
n"i

yi−Ey

∣∣∣∣∣
−→ 0.

However, fy is WCM, since En( fy) → E( f ∗) and, as just mentioned, fy’s MAD converges to 0. (In
fact, fy is WCM with H ≡ 0, that is, in the strongest sense. That is, there are even ‘weaker’ methods
that are WCM.)

5. Main Result

In this section we present our main result, the logical equivalence of consistency to the combination
of the UAL and WCM properties. This will be arrived at during the course of proving the final step
of Theorem 4.

The logical relationships between the concepts of consistency, UAL, UALC and WCM are
shown in graph form in Figure 1. Note that we already saw that consistency implies WCM (since
consistency implies consistency in mean, which implies WCM), and that UAL combined with
UALC implies consistency (shown immediately after the statement of Theorem 4). Instead of prov-
ing directly that consistency implies UAL and UALC, we will prove that WCM implies UALC, and
hence that consistency implies UALC. Consistency combined with UALC, in turn, implies UAL,
since

Dn

(
f , f̄ |{Q(Rk)}

{Rk}

)
≤ Dn ( f , f ∗)+Dn

(
f̄ |{Q(Rk)}
{Rk} , f ∗

)
→ 0

similarly to (4). Thus, in order to complete the picture sketched in Figure 1, it remains to show that
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Consistency !" ( UAL + UALC )

WCM

#

!

Figure 1: Logical relations between consistency, Uniform Approximate Localizability (UAL), Uni-
form Approximate Local Consistency (UALC) and Weak Consistency in Mean (WCM).
That is, consistency is equivalent to the combination of UAL and UALC; consistency
implies WCM; and WCM implies UALC.

Lemma 6 A learning method that is WCM is UALC.

The proof of Lemma 6 is the most complex of our results; we now sketch it very briefly (the full
proof appears in Appendix B). The initial idea is to consider Sn(x,r) as |Sn(x,r)| points derived from
Px,r. The expected loss of a smoothed local version can then be seen to be approximately equal to
a mean of expected losses over Px,r for various x. The expected losses over Px,r can, in turn, be
bounded by the MADs of f ∗Px,r and f as well as the difference between their means; we bound the
latter two using the WCM property. Finally, we construct in a recursive manner Q and {Rk} that
fulfill the requirements of UALC, using some results from measure theory regarding the asymptotic
behavior of f ∗Px,r .

Based on our results thus far, as summarized in Figure 1, it is obvious that we can also conclude
the following:

Corollary 7 A learning method is consistent iff it is both UAL and WCM.

This can be stated as
Consistency ⇐⇒ UAL ⊕WCM

since just like UAL and UALC, UAL and WCM are clearly independent in that neither implies the
other, in fact, the same two examples seen in (3) apply here: fy has already been mentioned to be
WCM, while clearly it is not UAL, whereas f0 is UAL but not WCM.

6. Localizable Sets of Distributions

Thus far we have been concerned with consistency in the sense of the set of all (appropriately
bounded) distributions; this is a very general case. However, many specific types of learning prob-
lems consider more limited sets of distributions. Our goal in this section is to apply our results to
such problems. In addition, this section will provide some of the tools used in Section 7 to derive
results for classification.

This section relies on the following definition:

Definition 8 We call a set of distributions P localizable iff

P ∈ P =⇒ ∀r ≥ 0,x ∈ suppX(P) Px,r ∈ P.
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That is, a localizable set of distributions contains all conditionings of its distributions onto small
balls. Simple inspection of the proof of Lemma 6 reveals that it holds true on localizable sets of
distributions, and not just on the set of all distributions, simply because we apply the WCM property
of f only on distributions Px,r. Consequently, it is easy to see that our results—specifically, Theorem
4 and Corollary 7—apply to localizable sets in general, and not just to the set of all distributions
bounded by some constantM > 0 (which is just one type of example of a localizable set). Note that
the requirement that a set of distributions be localizable is in a sense the minimal requirement we
would expect, since if f is consistent on a distribution P but not on some Px,r then there is no reason
to expect f to be UALC. We will say more about this matter in Section 8.

Are all standard learning problems defined (perhaps implicitly) on localizable sets of distri-
butions? The answer is no; for example, if we assume that Ey = 0, which implies Ex f ∗(x) = 0,
then this is clearly not necessarily preserved when we consider some Px,r. However, the converse
is true for many standard setups in statistics and machine learning. Specific examples include the
following, to all of which our results apply (assuming the boundedness assumption is upheld):

1. y= f ∗(x)+ $ , $ is independent of x , E$= 0

This is the standard regression model with additive noise (and random design) appearing in
statistics. It is clearly a setup that implicitly works on a localizable set since Px,r retains the
property that y= f ∗(x)+ $.

2. As a subcase of the previous example, we can assume that f ∗ ∈ F , where F is the set of
all continuous functions, or alternatively some ‘smoothness class’, for example, Lipschitz-
continuous functions, etc. Note, however, that if the density of the marginal distribution on X
is assumed to be bounded then this is no longer a localizable set.

3. P
(
y= f ∗(x)

)
= 1 , ∀S,x f (S,x), f ∗(x) ∈ {−1,+1}

This is a noiseless classification problem, or set-estimation problem with non-overlapping
sets, since

P
(
f (Sn,x) 6= y

)
= ESn,(x,y)1

{
f (Sn,x) 6= y

}
=
1
2
ESn,x

∣∣ f (Sn,x)− f ∗(x)
∣∣ =

1
2
Ln( f ).

That is, the 0-1 loss used in classification is equal to (half) the L1 loss in this case. Note,
however, that we assume f (S,x) ∈ {−1,+1}, and smoothed local versions do not have this
property; for them the equality between the 0-1 and L1 losses is not valid. If we are willing
to use the L1 norm for classification, however, then our results apply here.
In the next section we will see a way to derive results for the 0-1 loss, as well as allow noisy
distributions, that is, the standard classification setup. This will require somewhat different
definitions than those used for regression.

4. x= &(z) for some random variable z, where & : Rd → RD is smooth and D> d.

We conclude with this final somewhat more complex example in order to show how local-
izable sets can be present even in settings where we might not expect them. In the setting
described here, the original data (z,y) lies on some low-dimensional space, but we observe
(x,y) = (&(z),y), which lies on a low-dimensional manifold inside a high-dimensional space.
This sort of setting is considered in the manifold-learning field in unsupervised learning (see,
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e.g., Roweis and Saul, 2000; Belkin and Niyogi, 2003); recently such methods have been
applied to supervised learning (see, e.g., Kouropteva et al., 2003; Li et al., 2005). Note also
the relevance to the kernel trick, in which a kernel implicitly defines such a transformation &.
The assumption of x = &(z) (and that & is smooth) is a nontrivial requirement; however, it
is easy to see that if we consider the set of all & and z then this set is a localizable set of
distributions.

7. Classification

As mentioned in the previous section, noiseless classification in the L1 norm can be dealt with using
the results we have seen thus far, but this is quite limiting. Therefore in this section we consider the
standard case of classification, using the natural 0-1 loss, and allowing for the possibility of noise.

In classification (also known as pattern recognition; Devroye et al., 1996) we consider only
distributions for whom Y = {−1,+1}; when we say ‘all distributions’ in this section we mean only
distributions of this sort. Note that such distributions form a localizable set, and thus we might
expect our results to apply to them. Note also that f ∗(x) = E(y|x) = 2'(x)− 1 where '(x) =
P(y = 1|x), the conditional probability. We call a learning method c a classifier iff ∀S,x c(S,x) ∈
{−1,+1}. We will use c,d, etc., to denote classifiers, to differentiate them from general learning
methods, which we generally denote f ,g.

In classification the natural loss is the 0-1,

R0−1(c) = P(c(Sn,x) 6= y) = ESn,(x,y)1{c(Sn,x) 6= y}

and the minimal (Bayesian) loss is

R∗
0−1 = inf

h
Ex,y1{h(x) 6= y}

where the infimum is taken over all measurable h. Denote the optimal (Bayesian) classification rule
by

c∗(x) = sign( f ∗(x)) = sign(2'(x)−1)
which clearly minimizes R0−1. We are interested in the relative loss (R0−1(c) = R0−1(c)−R∗

0−1.
This is well-known to be equal to (half the value of)

L̃n(c) ≡ ESn,x|c(Sn,x)− c∗(x)| · |2'(x)−1| = ESn,x|c(Sn,x)− c∗(x)| · | f ∗(x)|.

That is, we have the usual L1 loss but it is weighted according to the distance of '(x) from 1/2.
Another difference is that we compare c to c∗ = sign( f ∗) and not to f ∗. These differences between
L̃n and the loss Ln we considered in the main part of this work prevent an immediate application
of our results. We will therefore present alternative definitions that will allow us to get around this
problem.

First, we define mutual consistency in the context of classification, which we will call mutual
classification-consistency (or, briefly,mutual C-consistency), using

D̃n(c,d) = ESn,x|c(Sn,x)−d(Sn,x)| · |2'(x)−1|−→ 0

—that is, we simply add the same weighting as in L̃n. This leads to defining classification-consistency
(or, briefly, C-consistency) on a distribution P as

L̃n(c) = D̃n(c,c∗) = ESn,x|c(Sn,x)− c∗(x)| · |2'(x)−1|−→ 0
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(denoting c∗(S,x) = c∗(x)). Note that, in a similar way as in regression, C-consistency is a specific
case of mutualC-consistency.

A change needs to be made to smoothed local versions to ensure that they remain classifiers,
since c̄|qr can return values not in {−1,+1}. Define, therefore,

c̃|qr (S,x) = sign(c̄|qr (S,x)) = sign
(
Ex′∼Px,qr c(S(x,r),x

′)
)
.

When we talk of smoothed local versions in the context of classification, we intend c̃|qr .
We can now define a version of UAL for the context of classification, in the following natural

way. Let C-UAL be the same as UAL, but replace Dn with D̃n, f with c and f̄ |qr with c̃|qr .
Instead of proving results ‘from scratch’ for the definitions given in this section, we can build

upon the previous ones, using the following general technique. Let fker be a consistent Nadaraya-
Watson kernel estimator using the window kernel. Define

f|·|(S,x) = | fker(S,x)|.

For any classifier c, define a learning method

fc(S,x) = c(S,x) f|·|(S,x).

We can see fc(S,x) as an estimate of f ∗(x), using (in a plug-in manner) c(S,x) to estimate sign( f ∗(x))
and f|·|(S,x) to estimate | f ∗(x)|.

We will now use our results on regression for estimators fc in order to arrive at conclusions
for classifiers c. Note that | fc(S,x)| ≤ 1 (since fker uses the window kernel, it is bounded by the
largest |yi| in the training set, which is 1). Given the additional fact that in classification we have
Y = {−1,+1}, we can conclude that our boundedness assumption on learning methods is of no con-
sequence to our treatment of classification, that is, to get completely general results for classification
we need only rely on bounded regression withM = 1.

To arrive at results, we will need some minor facts:

Lemma 9 The following hold true for every P,c,d:

1. Dn ( fc, fd) → 0 ⇐⇒ D̃n (c,d) → 0.

2. Dn ( fc, f ∗) → 0 ⇐⇒ D̃n (c,c∗) → 0.

3. fc is UALC ⇒ Dn

(
¯( fc)|

{Q(Rk)}
{Rk} , f

c̃|{Q(Rk)}
{Rk}

)
→ 0

for large-enough Q,{Rk} in the sense appearing in the definitions UAL,UALC.

The first part of the lemma indicates that the C-mutual consistency of any c,d are linked to the
mutual consistency of fc, fd; the second does the same forC-consistency and consistency. The third
part of the lemma shows that if fc is UALC then smoothed local versions of fc are asymptotically
equivalent to fc′ , where c′ is a smoothed local version in the sense of classification of c (in other
words, we can either smooth fc or first smooth c and then apply f ; the result is similar). A proof of
all parts of the lemma appears in Appendix E.

We can now present an example of deriving results for classification from those for regression.
Assume that c is C-consistent on some localizable set P. Then fc is consistent on P by part 2 of
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Lemma 9, hence by Theorem 4 (and what we have seen regarding localizable sets in Section 6) fc
is UAL on P, that is, for every P ∈ P we have

Dn

(
fc, ¯( fc)|

{Q(Rk)}
{Rk}

)
→ 0

for large-enough Q,Rk in the sense of the definition of UAL. fc is also UALC on P, and therefore
for large enough Q,Rk we have

Dn

(
¯( fc)|

{Q(Rk)}
{Rk} , f

c̃|{Q(Rk)}
{Rk}

)
→ 0

by part 3 of Lemma 9, and therefore we conclude by the triangle inequality that (again, for large
enough Q,Rk)

Dn

(
fc, fc̃|{Q(Rk)}

{Rk}

)
→ 0.

Hence, by part 1 of Lemma 9, c and c̃|{Q(Rk)}
{Rk} are mutuallyC-consistent for large-enough Q,Rk, that

is, c is C-UAL on P. Since this was for every P ∈ P, we conclude that c is C-UAL on P. Since the
entire argument was for an arbitrary localizable set P, we conclude that

Theorem 10 A C-consistent classifier on a localizable set P is C-UAL on P.

In particular, since the set of all distributions (having Y = {−1,+1}) is localizable, we get

Corollary 11 A C-consistent classifier is C-UAL.

In a similar way we can define in the context of classification concepts parallel to UALC and WCM,
and prove corresponding results (we do not go into details to avoid repetition).

8. Concluding Remarks

Our analysis of consistency has led to the following result: Consistent learning methods must have
two properties, first, that they behave locally (UAL); second, that their mean must not be far from
estimating the true mean (WCM). Only a learning method having these two independent properties
is consistent, and vice versa; their combination is logically equivalent to consistency.

To further elaborate on this result, note that UAL is clearly a local property, and WCM a global
one. Thus, we can see consistency as comprised of two aspects, one local and one global. Note also
that the global property, WCM, is a trivial consequence of consistency, and therefore what is worth
noting about this result is that consistency implies local behavior. We can then ask, in an informal
manner at least, why is this so?

As noted in the introduction, the loss Ln that we considered is a global one, in that we average
over x, and hence it does not seem to directly imply local behavior. What does seem to be the
crux of the matter is the requirement to perform well on all distributions, or more generally on a
localizable set; note that the term ‘localizable’ here is a giveaway. Indeed, if we have a method
that is consistent on a non-localizable set of distributions, it may not behave locally. As a simple
example (but complex enough for the underlying issues to be evident), let us assume we work on
distributions having Ey= 0 (which was mentioned in Section 6 as being non-localizable). We might
consider the following approach on this problem: Let f be some general learning method known
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to be useful on other data sets; specifically, assume that f is consistent. We can then calibrate its
output so that it returns an empirical mean of 0, which makes sense since we know that Ey = 0.
That is, let

g(S,x) = f (S,x)−
1
|S| "i=1..|S|

f (S,xi)

(alternatively, we might calibrate by multiplying by an appropriate scalar, etc.). Then, while g is
consistent on the set of distributions with Ey = 0 (using the consistency of f on all distributions),
g does not behave locally. This can be seen, for example, by considering g on a distribution with x
uniform on [−1,1] and y = sign(x). This distribution fulfills Ey = 0, and g is consistent on it, but
neither UAL nor UALC, since smoothed local versions of g in fact return values tending towards 0.

Thus, in summary, the fact that the set of all distributions is localizable is what causes consis-
tency to imply local behavior. If we are concerned about that fact (e.g., because we suspect local
behavior might lead to the curse of dimensionality; Bengio et al., 2006), then we must do away
with consistency on the set of all distributions and instead talk about consistency on a more limited
set, one which is not localizable. However, part of the reason why nonparametric methods often
outperform parametric ones on real-world data is precisely because they make as few as possible
assumptions about the unknown distribution. Consequently, we may find that local behavior is hard
to avoid.

We now turn to directions for future work. One such direction is to apply our results towards
proving the consistency of learning methods not yet known to be consistent. It appears that in
many cases proving the WCM property should not be difficult; hence, what remains is to prove
UAL. While not necessarily a simple property to show, it may in some cases be easier than proving
consistency directly.

An additional area for possible future work is empirical investigation, as follows. Since a con-
sistent method is necessarily UALC, we can consider using a smoothed local version of the original
method, since if chosen appropriately it is also consistent.2 Now, if for example we have a large
training set and only a few points at which to estimate, then by training on the local parts of the
original training set we may save time. Of course, there is no guarantee that this will be beneficial
on a particular problem, since consistency is an asymptotic property. Future empirical work might
therefore examine real-world data sets in detail to see how the performance of local versions of a
method compare to the original.

Acknowledgments

We thank the anonymous reviewers of a previous version of this paper for their comments. We also
acknowledge support for this project from the Israel Science Foundation as well as partial support
from NSF grant DMS-0605236.

2. Note that we might not need smoothing in practice, since the smoothing radius becomes negligibly small, Q(Rk)Rk =
o(Rk). That is, local versions might behave similarly enough to smoothed local versions for practical purposes.
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Appendix A. Proof of Proposition 1

For any sample S, denote the mean and standard deviation (of the xs) by

Ê(S) =
1
|S| "i=1..|S|

xi , %̂(S) =

√
1
|S| "i=1..|S|

(
xi− Ê(S)

)2
.

Now, start with a consistent method g, which is translation-invariant in the sense that

∀S,x,b g(S,x) = g(S+b,x+b)

where S+b= {(xi+b,yi) : (xi,yi) ∈ S} (for example, we can take g to be a kernel estimator).
Define, for any q> 0,

f q(S,x) =

{
g(S,x) x /∈ BÊ(S),q or x ∈ {xi : (xi,yi) ∈ S}
0 otherwise

and let
Q(S) =

%̂(S)
log(|S|)

.

Finally, let
f (S,x) = f Q(S)(S,x).

We will first show that f is consistent; then we will show that f is neither locally consistent nor
localizable. A brief overview of the proof is as follows: As n→ !, we get that Q(Sn) ≈ const

log(n) . This
means that f is forced to return 0 on an area with vanishing radius, and hence f behaves like g on
an area with measure rising to 1, and is consistent. On the other hand, when we consider a local
version, we get that Q(Sn(x,Rn)) ≈ O

(
Rn

log(m)

)
, where m is the size of Sn(x,Rn). We also get that x,

the point at which we are estimating, is at distance ≈ O
(
Rn√
m

)
from Ê(Sn(x,Rn)), a distance which

is asymptotically smaller than Q. Hence x will tend to be in the area on which f is forced to return
0, making f neither locally consistent nor localizable.

We now start with the formal proof, first showing that f is consistent. Since X is bounded,
%̂(Sn) is bounded, and hence Q(Sn) = %̂(Sn)

log(n) → 0. We first assume that there is not a point mass

on Ex, which implies µ
(
BÊ(Sn),Q(Sn)

)
→ 0 almost surely, which follows from the fact that, since

Ê(Sn) → Ex a.s. (by the LLN) and Q(Sn) → 0, we must have limsupn BÊ(Sn),Q(Sn) ⊆ {Ex} with
probability 1. We can then use the consistency of g to see that

ESnEx | f (Sn,x)− f ∗(x)|
≤ ESnEx1{x /∈ BÊ(Sn),Q(Sn) or x ∈ {xi : (xi,yi) ∈ Sn}}|g(Sn,x)− f ∗(x)|

+ESn2Mµ
(
BÊ(Sn),Q(Sn)

\

{xi : (xi,yi) ∈ Sn}C
)

≤ ESn
[
Ex |g(Sn,x)− f ∗(x)|+2Mµ

(
BÊ(Sn),Q(Sn)

)]

→ 0
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which proves that f is consistent. Consider now the case where there is a point mass on Ex. Recall
that limsupn BÊ(Sn),Q(Sn) ⊆ {Ex} a.s., and note that due to the point mass on Ex, we have P

(
Ex ∈

{xi : (xi,yi) ∈ Sn}
)
→ 1. Because of these two facts, we get

ESnµ
(
BÊ(Sn),Q(Sn)

\

{xi : (xi,yi) ∈ Sn}C
)
→ 0

hence once more f is consistent by the consistency of g, by a similar argument as before.
We will now show that f is not locally consistent. For this, it is sufficient to show a single

distribution on which Ln
(
f |{Rk}

)
does not converge to 0, for any sequence Rk → 0. Take X = [0,1]

(higher-dimensional cases can be proved similarly), let µ be uniform on X , and let y = +1 with
probability (1+ f ∗(x))/2, and otherwise y= −1 (which makes sense if f ∗(x) ∈ [−1,+1]). Define

f ∗(x) =

{
+1/2 x ∈

[
0, 12

]

−1/2 x ∈
(1
2 ,1

] .

Fix some x ∈ (0,1). Note that µ has no point masses, so P(x ∈ {xi : (xi,yi) ∈ Sn}) = 0, and the
relevant condition in the definition of f q is of no consequence. Now, for large enough n (that is,
small enough Rn) we have x ∈ [Rn,1−Rn]; we will now focus on that case.

Denote S̃ = Sn(x,Rn) and m = m(n,x,Rn) = |S̃|. Notice that m is the sum of i.i.d Bernoulli
variables, and that

Em= 2nRn , %2(m) ≤ 2nRn (6)

(recall that Em,%2(m) denote the expected value and variance of the random variable m, respec-
tively). Now, consider the case in which nRn 6→ !. Then there is some bounded subsequence,
knRkn ≤ K for all n. Then (using Chebyshev) clearly m is less than 4knRkn with non-vanishing prob-
ability on this subsequence. Since Rk → 0 then in order for f to be consistent we must, for large
enough n, discriminate between the two possibilities f ∗(x) = +1/2, f ∗(x) = −1/2 in a way that
does not depend upon x (due to the translation-invariance of f , which stems from the translation-
invariance of g). But discriminating between the two cases with arbitrarily small error cannot be
done with a bounded sample size, hence the loss cannot go to 0. Thus, we conclude that if nRn 6→!
then f is not locally consistent.

Consider now the other case, of nRn → !. We start by formulating bounds for m, |x− Ê(S̃)|,
and %̂2(S̃).

• m: Using Bernstein’s Inequality and (6), we get

P(|m−2nRn|≥ t) ≤ 2exp
(
−
1
2

t2

2nRn+ t/3

)
.

Picking t = tn = nRn, we get

P(|m−2nRn|≥ nRn) ≤ 2exp
(
−
1
6
nRn

)
. (7)

Note that this bound converges to 0 since nRn → !.
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• |x− Ê(S̃)|: Clearly x is the mean of Px,Rn , and also the mean of the individual observations
in S̃, as they are distributed i.i.d as Px,Rn . Note that for every xi ∈ S̃ (i.e., taken from the
distribution Px,Rn) we have %2(xi) = R2n

3 . Then, by Hoeffding’s Inequality,

P
(∣∣∣x− Ê(S̃)

∣∣∣ ≥ t
)
≤ Em

{
2exp

(
−
mt2

2R2n

)}
.

Picking t = tn = Rn
√

log(nRn)
nRn , we get

P




∣∣∣x− Ê(S̃)

∣∣∣ ≥ Rn

√
log(nRn)
nRn



 ≤ Em
{
2exp

(
−
1
2
m
nRn

log(nRn)
)}

(8)

≤ 2exp
(
−
1
2
log(nRn)

)
+4exp

(
−
1
6
nRn

)

→ 0

using the bound for m above (7).

• A final bound that we will need relates to %̂2(S̃). Note that for any sample S and point x,

%̂2(S) =
1
|S|"i

(xi− x)2− (x− Ê(S))2

Consider the first expression on the RHS. On our (sub)sample S̃, we have for every xi ∈ S̃ that
E(xi− x)2 = R2n

3 , and note that (xi− x)2 ≤ R2n. Then, by Hoeffding’s Inequality,

P

(∣∣∣∣∣
1
m

m

"
i=1

(xi− x)2−
R2n
3

∣∣∣∣∣
≥ t

)

≤ Em2exp
(
−
mt2

2R4n

)
.

Picking t = tn = R2n
√

log(nRn)
nRn , we get

P




∣∣∣∣∣
1
m

m

"
i=1

(xi− x)2−
R2n
3

∣∣∣∣∣
≥ R2n

√
log(nRn)
nRn





≤ Em2exp
(
−
1
2
m
nRn

log(nRn)
)

≤ 2exp
(
−
1
2
log(nRn)

)
+4exp

(
−
1
6
nRn

)

→ 0
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similarly as before. Combined with the bound from before for |x− Ê(S̃)|, we get, for large
enough n,

P
(
%̂2(S̃) ≤

1
12
R2n

)

= P
(
%̂2(S̃) ≤

1
12
R2n ,

(
x− Ê(S̃)

)2
< R2n

log(nRn)
nRn

)

+P
(
%̂2(S̃) ≤

1
12
R2n ,

(
x− Ê(S̃)

)2 ≥ R2n
log(nRn)
nRn

)

≤ P

(
1
m

m

"
i=1

(xi− x)2 ≤
1
6
R2n

)

+P




∣∣∣x− Ê(S̃)

∣∣∣ ≥ Rn

√
log(nRn)
nRn





→ 0.

We now have all the bounds we need. Using our results for m= |S̃| and %̂2(S̃) together, we get

lim
n→!

P
(∣∣∣x− Ê(S̃)

∣∣∣ ≥ Q(S̃)
)

= lim
n→!

P

(∣∣∣x− Ê(S̃)
∣∣∣ ≥

%̂(S̃)
log(m)

)

= lim
n→!

P
(∣∣∣x− Ê(S̃)

∣∣∣ ≥
%̂(S̃)
log(m)

, |m−2nRn|≤ nRn , %̂2(S̃) ≥
1
12
R2n

)

≤ lim
n→!

P
(∣∣∣x− Ê(S̃)

∣∣∣ ≥
Rn√

12log(3nRn)

)

→ 0

where to reach the very last line we used what we know about |x− Ê(S̃)|, as appearing in (8). Thus,
for every x ∈ suppX(P) we have P

(
x ∈ BÊ(S̃),Q(S̃)

)
→ 1.

Finally, we can see that

ESn
∣∣ f |{Rk}(Sn,x)− f ∗(x)

∣∣ = ESn
∣∣∣ f (S̃,x)− f ∗(x)

∣∣∣

= ESn1{x ∈ BÊ(S̃),Q(S̃)}
∣∣∣ f (S̃,x)− f ∗(x)

∣∣∣

+ESn1{x /∈ BÊ(S̃),Q(S̃)}
∣∣∣ f (S̃,x)− f ∗(x)

∣∣∣

≥ ESn1{x ∈ BÊ(S̃),Q(S̃)}| f
∗(x)|

=
1
2
ESn1{x ∈ BÊ(S̃),Q(S̃)}

=
1
2
P

(
x ∈ BÊ(S̃),Q(S̃)

)

→
1
2
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where we used that f ∗(x) ∈ {−1/2,+1/2}. Taking the expected value over x, the dominated con-
vergence theorem gives us

lim
n→!

Ln
(
f |{Rk}

)
≥
1
2
.

Thus, f |{Rk} is not consistent, that is, f is not locally consistent (note that this is even by a relatively
large constant factor).

Having shown that f is consistent but not locally consistent, we now show that in addition f
cannot be localizable. This is immediate, since if f were localizable, then some sequence Rk → 0
would exist for which Dn

(
f , f |{Rk}

)
→ 0, and therefore

Ln
(
f |{Rk}

)
= Dn

(
f |{Rk}, f

∗) ≤ Dn
(
f |{Rk}, f

)
+Dn( f , f ∗) → 0

by the localizability and consistency of f . But this result implies f is locally consistent, contradict-
ing what we saw earlier.

Appendix B. Proof of Lemma 6

Define (as in the proof of Proposition 1) S̃= Sn(x,r), m=m(n,x,r) = |Sn(x,r)|, the size of the local
training set. Note that we can see S̃ as m points sampled from Px,r. Then we get, for any r,q> 0,

Dn
(
f̄ |qr , f ∗

)
= ESn,x

∣∣Ex′∼Px,qr f (Sn(x,r),x
′)− f ∗(x)

∣∣

= Ex,mES̃∼Px,r | m
∣∣∣Ex′∼Px,qr f (S̃,x

′)− f ∗(x)
∣∣∣

≤ Ex,mES̃∼Px,r | mEx′∼Px,qr
∣∣∣ f (S̃,x′)− f ∗(x)

∣∣∣

≤ Ex,mES̃∼Px,r | m , x′∼Px,qr

∣∣∣ f (S̃,x′)− f ∗(x′)
∣∣∣

+Ex,x′∼Px,qr
∣∣ f ∗(x′)− f ∗(x)

∣∣ .

We now start to consider the limit behavior of these expressions when we replace r> 0 with {Rk} ∈
R (T ) and q> 0 with {Q(Rk)},Q ∈ Q (T ), where T ∈ T is arbitrary. First, for any such {Rk},Q we
have

lim
n→!

Ex,x′∼Px,Q(Rn)Rn

∣∣ f ∗(x′)− f ∗(x)
∣∣ = 0

by the corollary to the following lemma (and since Rn,Q(Rn) → 0):

Lemma 12 [Devroye, 1981; Lemma 1.1] For any distribution P and measurable g, if Ex∼P|g(x)| <
! then

lim
r→0

Ex′∼Px,rg(x
′) = g(x)

for almost all x.

Corollary 13 For any distribution P and measurable g, if Ex∼P|g(x)| < ! then

lim
r→0

Ex′∼Px,r
∣∣g(x′)−g(x)

∣∣ = 0

for almost all x.
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Write S̃ = Sn(x,Rn) (a minor abuse of our notation, as we also write S̃ = Sn(x,r), but r is always a
placeholder for Rn in any case). Then

limsup
n→!

Dn

(
f̄ |{Q(Rk)}
{Rk} , f ∗

)
≤ limsup

n→!
Ex,mES̃∼Px,Rn | m , x′∼Px,Q(Rn)Rn

∣∣∣ f (S̃,x′)− f ∗(x′)
∣∣∣ .

To simplify notation for this last expression, define, for any x ∈ suppX(P),n ∈ N,r,q ∈ T ,

C(x,n,r,q) = EmES̃∼Px,r | m , x′∼Px,qr

∣∣∣ f (S̃,x′)− f ∗(x′)
∣∣∣

and
C(n,r,q) = ExC(x,n,r,q).

It is therefore our goal to show thatC(n,Rn,Q(Rn)) → 0 for appropriate {Rk},Q. Towards that end,
we consider the limit limsupn→!C(n,r,q), for fixed r,q. We have, for every x ∈ suppX(P),

C(x,n,r,q)

= EmES̃∼Px,r | m , x′∼Px,qr

∣∣∣ f (S̃,x′)− f ∗(x′)
∣∣∣

=
µ(Bx,r)
µ(Bx,qr)

EmES̃∼Px,r | m , x′∼Px,r

∣∣∣ f (S̃,x′)− f ∗(x′)
∣∣∣1

{
x′ ∈ Bx,qr

}

≤
µ(Bx,r)
µ(Bx,qr)

EmES̃,x′∼Px,r | m
∣∣∣ f (S̃,x′)− f ∗(x′)

∣∣∣

=
µ(Bx,r)
µ(Bx,qr)

EmES̃,x′∼Px,r | m
∣∣∣ f (S̃,x′)−Em( f )+Em( f )−E( f ∗)+E( f ∗)− f ∗(x′)

∣∣∣

≤
µ(Bx,r)
µ(Bx,qr)

Em
[
MADm,Px,r( f )+ |Em,Px,r( f )−EPx,r( f

∗)|+MADPx,r( f ∗)
]

where the expected values Em( f ),E( f ∗) on the line before last are w.r.t Px,r, and the expected values
and MADs on the last two lines are all conditional on m.

Now, clearly m→ ! almost surely (since x is in the support of µ, and r > 0 is fixed, so there is
a positive probability for an observation to fall within Bx,r). Hence, by the WCM property of f on
Px,r (a fixed distribution in the current view),

limsup
n→!

C(x,n,r,q) ≤
µ(Bx,r)
µ(Bx,qr)

[
MADPx,r( f ∗)+2H

(
MADPx,r( f ∗)

)]
.

Using this bound, we can then conclude that

limsup
n→!

C(n,r,q) = limsup
n→!

ExC(x,n,r,q)

≤ Ex limsup
n→!

C(x,n,r,q) (9)

≤ Exmin
{
2M ,

µ(Bx,r)
µ(Bx,qr)

[
MADPx,r( f ∗)+2H

(
MADPx,r( f ∗)

)]}
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using the Fatou-Lebesgue theorem for the first inequality, where we rely on the trivial fact that
C(x,n,r,q) ≤ 2M based on our boundedness assumptions on f , f ∗, and using those same bounded-
ness assumptions for the second inequality as well. We define

C∗(r,q) = limsup
n→!

C(n,r,q),

C̄∗(r,q) = Exmin
{
2M ,

µ(Bx,r)
µ(Bx,qr)

[
MADPx,r( f ∗) +2H

(
MADPx,r( f ∗)

)]}
.

Hence, based on (9) we have
C∗(r,q) ≤ C̄∗(r,q) (10)

We will now need the following lemma:

Lemma 14 [Devroye, 1981; see the proof of Lemma 2.2] For any measure µ, for almost every x,

lim
r→0

rd

µ(Bx,r)
= cx , |cx| < !.

That is, the limit exists and is finite.

We now consider C̄∗ for fixed q and varying r. By Lemma 14, we know that for almost every x,

lim
r→0

µ(Bx,r)
µ(Bx,qr)

= lim
r→0

cxrd

cxqdrd
=
1
qd

(11)

and using Lemma 12 we can consider the MAD, as follows. First, by Lemma 12 we have, for almost
every x,

lim
r→0

Ex′∼Px,r f
∗(x′) = f ∗(x)

so, for almost every x,

lim
r→0

MADPx,r( f ∗) = lim
r→0

Ex′∼Px,r | f
∗(x′)−Ex′′∼Px,r f

∗(x′′)|

≤ lim
r→0

Ex′∼Px,r | f
∗(x′)− f ∗(x)|+ | f ∗(x)−Ex′′∼Px,r f

∗(x′′)|

= lim
r→0

Ex′∼Px,r | f
∗(x′)− f ∗(x)|

= 0

using Corollary 13 for the last equality. Combining this with (11), and using the properties of H,
we get

lim
r→0

C̄∗(r,q) = lim
r→0

Exmin
{
2M ,

µ(Bx,r)
µ(Bx,qr)

[
MADPx,r( f ∗)+2H

(
MADPx,r( f ∗)

)]}
= 0

since we have convergence to 0 for almost every x in the expected value, and can apply the domi-
nated convergence theorem (for which the bound of 2M is crucial). Consequently, due to (10) we
have

lim
r→0

C∗(r,q) ≤ lim
r→0

C̄∗(r,q) = 0. (12)
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We now turn to defining {Rk} and Q, using what we have seen thus far. Recall that T = {Tk} is
arbitrary and that Tk ↘ 0. Define in a recursive manner, for every q ∈ T (where recall that T is the
set containing all the members in the sequence T ),

K(T0) = 0,

K(q) =min
{
k ∈ N : ∀q′ ∈ T,q′ > q

k > K(q′) and ∀k′ ≥ k ∀q′ ∈ T,q′ ≥ q
C∗(Tk′ ,q′) ≤ q′

}

(since Tk ↘ 0, we start by defining K for the largest value in T , which is T0, and then proceed to
lower ones). Note that the clause regarding C∗ is fulfillable by (12) for individual q′, and since we
consider a finite number of such q′, we can take k large enough for them all. Note also that we
ensure that K(Tk) strictly increases, for which we rely on the fact that Tk strictly descends.

We now define Q:

Q(T0), ...,Q(TK(T1)) = T0,
Q(TK(T1)+1), ...,Q(TK(T2)) = T1, (13)

...
Q(TK(Tk)+1), ...,Q(TK(Tk+1)) = Tk,

...

Then according to these definitions, for any Q′ ∈ Q (T ),Q′ ≥ Q, and any (large enough) k′ ∈ N,

Q′(Tk′) ≥ Q(Tk′) = Tk for some k fulfilling k′ > K(Tk)

and hence, for all large enough k′,

C∗(Tk′ ,Q′(Tk′)) ≤ Q′(Tk′). (14)

We now work towards defining R= {Rk}, which just as with Q will be done in two stages. First,
we define in a recursive manner, for every r,q ∈ T,

N(T0,T0) = 0,
N(r,q) =

min
{
ñ ∈ N : ∀r′,q′ ∈ T,r′ > r,q′ ≥ q

ñ> N(r′,q′) and ∀ñ′ ≥ ñ ∀r′,q′ ∈ T,r′ ≥ r,q′ ≥ q
C(ñ′,r′,q′) ≤ 2C∗(r′,q′)

}
.

Note that the clause regarding C,C∗ is fulfillable by the definition of C∗ as the limsup of C, and
hence we can achieve it over a set of finite q,r as well. Note also that we ensure N(r,q) strictly
increases when r strictly descends (and q does not rise).

Define, for any Q′ ∈ Q (T ),

R0, ...,RN(T1,Q′(T1)) = T0,
RN(T1,Q′(T1))+1, ...,RN(T2,Q′(T2)) = T1,

...
RN(Tk,Q′(Tk))+1, ...,RN(Tk+1,Q′(Tk+1)) = Tk,

...
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Then, for any R′ ∈ R (T ),R′ ≥ R, and if n is large enough,

R′
n ≥ Rn = Tk for some k fulfilling n> N(Tk,Q′(Tk)).

Note that Q′(R′
n) ≥ Q′(Tk). Thus, by the definition of N(·, ·),

C(n,R′
n,Q′(R′

n)) ≤ 2C∗(R′
n,Q′(R′

n)).

If we now also assume that Q′ ≥ Q, where Q is as defined in (13), then by (14) we get

C(n,R′
n,Q′(R′

n)) ≤ 2C∗(R′
n,Q′(R′

n)) ≤ 2Q′(R′
n)−→n→!

0

completing the proof.

Appendix C. Proof of Lemma 9

1. First, note that

∀P ESn,x
∣∣ f|·|(Sn,x)− | f ∗(x)|

∣∣ ≤ ESn,x | fker(Sn,x)− f ∗(x)|−→ 0. (15)

Now, notice that for any P,c,d,

Dn ( fc, fd) = ESn,x
∣∣c(Sn,x) f|·|(Sn,x)−d(Sn,x) f|·|(Sn,x)

∣∣

= ESn,x |c(Sn,x)−d(Sn,x)| f|·|(Sn,x)
= ESn,x |c(Sn,x)−d(Sn,x)| |2'(x)−1|

+ESn,x |c(Sn,x)−d(Sn,x)|
(
f|·|(Sn,x)− |2'(x)−1|

)

= D̃n(c,d)+ESn,x |c(Sn,x)−d(Sn,x)|
(
f|·|(Sn,x)− |2'(x)−1|

)
.

The last expression converges to 0 by (15) since

ESn,x |c(Sn,x)−d(Sn,x)|
(
f|·|(Sn,x)− |2'(x)−1|

)
≤ 2ESn,x

∣∣ f|·|(Sn,x)− |2'(x)−1|
∣∣ → 0

which leads directly to the result we wanted.
2. By part 1 we know that Dn( fc, fc∗) → 0 ⇐⇒ D̃n(c,c∗) → 0, so it suffices to prove that
∀P Dn( fc∗ , f ∗) → 0, which can be shown using (15):

Dn( fc∗ , f ∗) = ESn,x
∣∣c∗(x) f|·|(Sn,x)− f ∗(x)

∣∣ = ESn,x
∣∣ f|·|(Sn,x)− | f ∗(x)|

∣∣ → 0.

3. We consider Dn

(
¯( fc)|qr , fc̃|qr

)
; later we will replace q,r with {Q(Rk)},{Rk}. By the definitions,

Dn

(
¯( fc)|qr , fc̃|qr

)

= ESn,x
∣∣Ex′∼Px,qr c(Sn(x,r),x

′) f|·|(Sn(x,r),x′)− sign
(
Ex′∼Px,qr c(Sn(x,r),x

′)
)
f|·|(Sn,x)

∣∣

≤ ESn,x
∣∣Ex′∼Px,qr c(Sn(x,r),x

′)− sign
(
Ex′∼Px,qr c(Sn(x,r),x

′)
)∣∣ | f ∗(x)|

+ESn,x
∣∣sign

(
Ex′∼Px,qr c(Sn(x,r),x

′)
)(
f|·|(Sn,x)− | f ∗(x)|

)∣∣

+ESn,x
∣∣Ex′∼Px,qr c(Sn(x,r),x

′)
(
f|·|(Sn(x,r),x′)− | f ∗(x)|

)∣∣ (16)
≤ ESn,x

∣∣Ex′∼Px,qr c(Sn(x,r),x
′)− c∗(x)

∣∣ | f ∗(x)|
+ESn,x

∣∣ f|·|(Sn,x)− | f ∗(x)|
∣∣

+ESn,xEx′∼Px,qr
∣∣ f|·|(Sn(x,r),x′)− | f ∗(x)|

∣∣
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where we used the fact that |a− sign(a)|≤ |a−b| for any b ∈ {−1,+1}. We now consider the final
three expressions separately, denoting them (1),(2),(3):

(1) : ESn,x
∣∣Ex′∼Px,qr c(Sn(x,r),x

′)− c∗(x)
∣∣ | f ∗(x)|

= ESn,x
∣∣Ex′∼Px,qr c(Sn(x,r),x

′)| f ∗(x)|− f ∗(x)
∣∣

≤ ESn,x
∣∣Ex′∼Px,qr c(Sn(x,r),x

′)
(
| f ∗(x)|− f|·|(Sn(x,r),x′)

)∣∣

+ESn,x
∣∣Ex′∼Px,qrc(Sn(x,r),x

′) f|·|(Sn(x,r),x′)− f ∗(x)
∣∣

≤ ESn,xEx′∼Px,qr
∣∣| f ∗(x)|− f|·|(Sn(x,r),x′)

∣∣

+ESn,x
∣∣Ex′∼Px,qrc(Sn(x,r),x

′) f|·|(Sn(x,r),x′)− f ∗(x)
∣∣ .

Of the last two expressions, the first is equal to the last of the three expressions we arrived at
in (16), so we can consider later on double the value of that expression instead of handling it
here. Regarding the second, it is simply equal to Dn

( ¯( fc)|qr , f ∗
)
, which we know to converge

to 0 for large-enough Q,{Rk} since fc is UALC on P.

(2) : This converges to 0 by (15).

(3) : Since

ESn,xEx′∼Px,qr
∣∣ f|·|(Sn(x,r),x′)− | f ∗(x)|

∣∣ ≤ ESn,xEx′∼Px,qr
∣∣ fker(Sn(x,r),x′)− f ∗(x)

∣∣

we can use the same techniques as in the proof of Lemma 6:

ESn,xEx′∼Px,qr
∣∣ fker(Sn(x,r),x′)− f ∗(x)

∣∣

≤ ESn,xEx′∼Px,qr
∣∣ fker(Sn(x,r),x′)− f ∗(x′)

∣∣

+ExEx′∼Px,qr
∣∣ f ∗(x′)− f ∗(x)

∣∣

= Ex
µ(Bx,r)
µ(Bx,rq)

EmES̃∼Px,r | m Ex′∼Px,r
∣∣∣ fker(S̃,x′)− f ∗(x′)

∣∣∣1{x′ ∈ Bx,rq}

+ExEx′∼Px,qr
∣∣ f ∗(x′)− f ∗(x)

∣∣

≤ Ex
µ(Bx,r)
µ(Bx,rq)

EmES̃,x′∼Px,r | m
∣∣∣ fker(S̃,x′)− f ∗(x′)

∣∣∣

+ExEx′∼Px,qr
∣∣ f ∗(x′)− f ∗(x)

∣∣

where, as in previous proofs, m = |Sn(x,r)|. The expression before last converges to 0 for
every x ∈ suppX(P) and fixed r,q > 0 by the consistency of fker on Px,r (using the fact that
m→! a.s.), and therefore in a similar way as that performed in Lemma 6 we can see that the
entire expression (with expected value over x) converges to 0 for slowly-enough descending
Q,{Rk}. The final expression converges to 0 for any qr→ 0 by Corollary 13.

Thus, by replacing q,r with large-enough Q,{Rk} we can see that the original expression converges
to 0, as required.
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Abstract

The use of Gaussian processes can be an effective approach to prediction in a supervised learning
environment. For large data sets, the standard Gaussian process approach requires solving very
large systems of linear equations and approximations are required for the calculations to be practi-
cal. We will focus on the subset of regressors approximation technique. We will demonstrate that
there can be numerical instabilities in a well known implementation of the technique. We discuss
alternate implementations that have better numerical stability properties and can lead to better pre-
dictions. Our results will be illustrated by looking at an application involving prediction of galaxy
redshift from broadband spectrum data.

Keywords: Gaussian processes, low rank approximations, numerical stability, photometric red-
shift, subset of regressors method

1. Introduction

The use of Gaussian processes can be an effective approach to prediction in a supervised learning
environment. For large data sets, the standard Gaussian process approach requires solving very large
systems of linear equations and approximations are required for the calculations to be practical. We
will focus on the subset of regressors technique which involves low rank approximations. The goal
of the paper is to describe techniques that are fast—requiring O(nm2) operations where n is the
number of data points available for training and m is the rank of a low rank approximation—and
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have good numerical stability properties in the sense that the growth of computer arithmetic errors
is limited.

The paper begins with a review of Gaussian processes and the subset of regressors approach.
We then show that implementation of the subset of regressors method using normal equations can
be inaccurate due to computer arithmetic errors. A key contribution of the paper is a discussion
of alternative implementations of the subset of regressors technique that have improved numerical
stability. Another valuable contribution of the paper is a discussion of how pivoting can be incor-
porated in the subset of regressors approach to further enhance numerical stability. We discuss the
algorithm of Lucas (2004, pp. 4-5) for construction of a partial Cholesky factorization with pivoting
and emphasize that with this algorithm the flop count, including subset selection, of the subset of
regressors calculations is O(nm2).

In Section 2 we provide background about using Gaussian processes to facilitate prediction. In
Section 3 we discuss how low rank approximations lead to the subset of regressors approach. In
Section 4 we describe why a commonly used implementation of this technique may suffer from
numerical instabilities and in Section 5 we propose two alternative implementations that have better
numerical stability properties. In Section 6 we address the subset selection problem and indicate
that a solution to this problem can enhance numerical stability. In Section 7 we discuss tools that
aid in the choice of rank in the low rank approximation. In Section 8 we illustrate that the numerical
stability issues addressed in Section 4 can lead to unacceptably large growth of computer arithmetic
errors in an important application involving prediction of galaxy redshift from broadband spectrum
data. Our alternative implementations of the subset of regressors method overcome these difficulties.
Also in Section 8 we discuss code, available at http://dashlink.arc.nasa.gov/algorithm/
stableGP, that implements our ideas. Finally, in Section 9 we summarize our results.

2. Gaussian Processes

Supervised learning is the problem of learning input-output mappings using empirical data. We will
assume that a training data set is known consisting of a n×d matrix X of input measurements and a
n by 1 vector y of output or target values. The task is to use the training data set to develop a model
that can be used to make prediction with new data. We will assume the new data, called the testing
data, is contained in an n∗ × d matrix X∗ of inputs. The n∗ × 1 vector y∗ will represent the target
values corresponding to X∗. The goal is to predict the value of y∗ given X , y, and X∗.

In the Gaussian process approach the prediction of y∗ involves selection of a covariance function
k(x,x′), where x and x′ are vectors with d components. It is required that the covariance function be
positive semidefinite (Rasmussen andWilliams, 2006, p. 80) which implies that the n×n covariance
matrix K with entries Ki j = k(xi,x j)where xi and x j are rows of X is symmetric positive semidefinite
(SPS), so that vTKv≥ 0 for any n×1 real column vector v. The covariance function can be used to
construct K and also the n∗ by n cross covariance matrix K∗ where K∗

i j = k(x∗i ,x j) where x∗i is the
ith row of X∗. The prediction ŷ∗ for y∗ is given by the Gaussian processes equation (Rasmussen and
Williams, 2006, p. 17):

ŷ∗ = K∗(!2I+K)−1y. (1)

The parameter ! in this equation represents the noise in the measurements of y and, in practice, it is
often selected to improve the quality of the model (Rasmussen and Williams, 2006).

It is often not clear how to choose the covariance function k. There exist many different covari-
ance functions that apply broadly to many cases. Potential covariance function choices include the
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squared exponential (sometimes called the radial basis function), Matern, rational quadratic, neural
network, polynomial or other covariance functions (Rasmussen and Williams, 2006, pp. 79-102).
Most of these covariance functions contain free parameters that need to be selected. Such param-
eters and ! in (1) are called hyperparameters. We will not focus on the choice of a covariance
function or alternative methods for selection of hyperparameters in this paper. In the examples dis-
cussed in Section 8 we tried out a variety of covariance functions and selected the one that provided
the best predictions. Hyperparameters were selected using the Matlab routine minimize (Rasmussen
and Williams, 2006, pp. 112-116, 221) which finds a (local) maximum of the marginal likelihood
function calculated using the training set data.

We should mention that the choice of the hyperparameter ! can affect the numerical stability of
the Gaussian process calculations. Generally larger values of ! lead to reduced computer arithmetic
errors but a large value of ! may be a poor theoretical choice—note that ŷ∗ → 0 as !→ ". One
needs to select a value of ! that balances such competing errors. The choice of ! in Gaussian
processes is closely related to the parameter choice in ridge regression in the statistics literature
(Montgomery et al., 2006, pp. 344-355) and in the literature on regularization (Hansen, 1998, pp.
175-208). As mentioned above we select hyperparameters, including !, using the routine minimize
(Rasmussen and Williams, 2006, pp. 112-116, 221). This technique worked well for the practical
example presented in Section 8 when used with our algorithms with improved numerical stability.

We should note that Gaussian process approach also leads to an equation for C the covariance
matrix for the predictions in (1). If the n∗×n∗ matrixK∗∗ has entriesK∗

i j = k(x∗i ,x∗j) then (Rasmussen
and Williams, 2006, pp. 79-102):

C = K∗∗ −K∗(!I+K)−1K∗T . (2)

The superscript T indicates transpose. The pointwise variance of the predictions is diag(C), the
diagonal of the n∗ ×n∗ matrixC.

3. Low Rank Approximation: The Subset of Regressors Method

In (1) the matrix (!2I+K) is an n by nmatrix that, in general, is dense (that is has few zero entries).
Therefore for large n, for example n ≥ 10000, it is not practical to solve (1) since the memory
required to store K is O(n2) and the number of floating point operations required to solve (1) is
O(n3). Therefore for large n it is useful to develop approximate solutions to (1).

To do this, for some m< n, we can partition the matrices K and K∗ as follows:

K =

(
K11 K12
K21 K22

)
=

(
K1 K2

)
, K∗ =

(
K∗
1 K∗

2
)
. (3)

Here K11 is m×m, K21 is (n−m)×m, K12 = KT
21 is m× (n−m), K22 is (n−m)× (n−m), K1 is

n×m, K2 is n× (n−m), K∗
1 is n∗ ×m and K∗

2 is n∗ × (n−m). Next we approximate K and K∗ using

K ∼= K̂ ≡ K1K−1
11 K

T
1 (4)

and
K∗ ∼= K̂∗ ≡ K∗

1K−1
11 K

T
1

and in (1) we replace K with K̂ and K∗ with K̂∗. Therefore

ŷ∗ ∼= ŷ∗N ≡ K̂∗(!2I+ K̂)−1y=
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K∗
1K−1

11 K
T
1 (!2I+K1K−1

11 K
T
1 )−1y=

K∗
1K−1

11 (!2I+KT
1 K1K−1

11 )−1KT
1 y, so that

ŷ∗N = K∗
1 (!

2K11+KT
1 K1)−1KT

1 y. (5)

Equation (5) is called the subset of regressors method (Rasmussen and Williams, 2006, p. 176)
and was proposed, for example, in Wahba (1990, p. 98) and Poggio and Girosi (1990, p. 1489). As
we discuss in the next section the subscript N stands for normal equations. We refer to use of (5) as
the SR-N approach.

If m << n then (5) is substantially more efficient than (1). For large n the leading order term
in the operation count for the calculations in (5) is nm2 flops or floating point operations (where a
floating point operation is either an addition, subtraction, multiplication or division), whereas the
calculations in (1) require approximately 2n3/3 flops. If n= 180,000 andm= 500, as in an example
discussed later, the solution to (1) requires approximately 4× 1015 flops which is five order of
magnitudes greater than the approximately 4×1010 flops required to solve (5). Furthermore, to use
(1) one needs to calculate all n2+nn∗ elements of K and K∗ whereas (5) requires that one calculate
only the nm+n∗m elements in K1 and K∗

1 . This also improves the efficiency of the calculations and
will reduce the memory requirements dramatically.

We should add that if in Equation (2) we use the approximations (4), (3) and

K∗∗ ∼= K̂∗∗ ≡ K∗
1K−1

11 K
∗T
1

then, in (2) replacing K with K̂, K∗ with K̂∗, K∗∗ with K̂∗∗ and using algebra similar to that used in
deriving (5), it follows that

C ∼= ĈN ≡ !2K∗
1 (!

2K11+KT
1 K1)−1K∗T

1 . (6)

For an alternate derivation of (6) see Rasmussen and Williams (2006, p. 176). Also diag(C) ∼=
diag(ĈN) so that diag(ĈN) provides approximations for the variance of the predictions.

4. Numerical Instability

The sensitivity of a problem measures the growth of errors in the answer to the problem relative
to perturbations in the initial data to the problem, assuming that that there are no errors in the
solution other than the errors in the initial data. A particular algorithm implementing a solution to
the problem is numerically stable if the error in the answer calculated by the algorithm using finite
precision arithmetic is closely related (a modest multiple of) the error predicted by the sensitivity
of the problem. An algorithm is unstable if the error in the answer calculated by the algorithm is
substantially greater than the error predicted by the sensitivity of the problem.

A straightforward implementation for the subset of regressors approximation using (5) has a po-
tential numerical instability. To see this note that since K is SPS it follows that the m×m submatrix
K11 is also. Therefore we can factor the matrix K11 with a Cholesky factorization (Golub and Van
Loan, 1996, p. 148)

K11 =V11VT
11 (7)

where V11 is an m×m lower triangular matrix. Now let

A=

(
K1
!VT

11

)
and b=

(
y
0

)
, (8)
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where 0 is an m×1 zero vector, A is an (n+m)×m matrix and b is a (n+m)×1 vector. Consider
the least square problem:

min
x

||Ax−b|| (9)

where the norm is the usual Euclidean norm. The normal equations solution (Golub and Van Loan,
1996, p. 237) to this least squares problem is x= (ATA)−1ATb= (!2V11VT

11+KT
1 K1)−1KT

1 y and so
by (7)

xN = (!2K11+KT
1 K1)−1KT

1 y. (10)

Therefore the solution ŷ∗N presented in (5) can also be written

ŷ∗N = K∗
1xN . (11)

The subscript N indicates the use of the normal equations solution to (8).
The potential difficulty with the above solution is that the intermediate result xN is the solution

to a least squares problem using the normal equation. It is well known that the use of the normal
equation can, in some cases, introduce numerical instabilities and can be less accurate than alterna-
tive approaches. As discussed in Golub and Van Loan (1996, p. 236-245) the sensitivity of the least
squares problem (9) is roughly proportional to cond(A)+#LS cond2(A), where #LS = ||b−Ax|| and
cond(A) = ||A||||(ATA)−1AT || is the condition number of A. The problem with the normal equa-
tions solution to (9) is that the accuracy of the calculated solution is (almost always) proportional
to cond2(A), the square of the condition number of A, whereas in the case that #LS is small the
sensitivity of the least squares problem is approximately cond(A). To quote from Golub and Van
Loan (1996, p. 245):

We may conclude that if #LS is small and cond(A) is large, then the method of
normal equations . . . will usually render a least squares solution that is less accurate
than a stable QR approach.

We will discuss use of the stable QR approach and another alternative to the normal equations in
the next section.

5. Improving Numerical Stability

The calculation of ŷ∗N as given by (5) is equivalent to the solution to (9) and (11) using the normal
Equations (10). We can reduce the computer arithmetic errors in the calculation of ŷ∗N if we develop
algorithms that avoid the use of the normal equations in the solution to (9) and (11) . We will present
two alternative algorithms for solving (9) and (11). We should add that although these algorithms
can have better numerical properties than use of (5), all the algorithms presented in this section are
mathematically (in exact arithmetic) equivalent to (5).

5.1 The Subset of Regressors Using a QR Factorization

We first describe use of the QR factorization to solve (9). In this approach (Golub and Van Loan,
1996, p.239) one first factors A= QR where Q is an (n+m)×m matrix with orthonormal columns
and R is an m×m right triangular matrix. Then

xQ = R−1QTb= R−1QT
(
y
0

)
(12)
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so that
ŷ∗Q = K∗

1xQ = K∗
1R−1QT

(
y
0

)
. (13)

With the above algorithm ŷ∗ can still be solved quickly. Assuming that the elements of K1 and
K∗
1 have been calculated, and that m << n, then the approximate number of operations for the QR
approach is 2nm2 flops. Therefore both the QR and normal equations approach require O(nm2)
flops.

We should also note that we can use the QR factorization to reduce computer arithmetic errors
in the computation of the approximate covariance matrix in (6). If we let

ĈQR ≡ !2(K∗
1R−1)(K∗

1R−1)T

then mathematically (in exact arithmetic) ĈN and ĈQR are the same. However, for reasons similar to
those discussed in Section 4, the computer arithmetic errors in ĈQR will usually be smaller than those
in ĈN , assuming, for example, that ĈN is computed using a Cholesky factorization of !2K11+KT

1 K1.
We will refer to the subset of regressors method using the QR factorization as the SR-Q method.

We should add that the use of a QR factorization in equations related to Gaussian process calcula-
tions is not new. For example Wahba (1990, p. 136) discusses using a QR factorization for cross
validation calculations.

5.2 The V Method

If we assume the V11 is nonsingular we can define the n×m matrix V :

V = K1V−T
11 (14)

where the superscript −T indicates inverse transpose. Note that by (7) it follows that V is lower

trapezoidal and thatV =

(
V11
V21

)
, where V21 = K21V−T

11 . Substituting K1 =VVT
11 and (9) into (10) we

get
xV =V−T

11 (!2I+VTV )−1VTy (15)

so that
ŷ∗V = K∗

1xV = K∗
1 V−T

11 (!2I+VTV )−1VTy. (16)

We should note that this formulation of the subset of regressors method is not new. It is presented,
for example, in Seeger et al. (2003) and Wahba (1990, p. 136) presents a formula closely related to
(16). We will call the formula (16) for ŷ∗ the V method. We should note, as will be seen in Section
6.2, that one can calculate V as part of a partial Cholesky factorization rather than using (14).

We will see in our numerical experiments and the theoretical analysis in Section 6 that the
V method is intermediate in terms of growth of computer arithmetic errors between the normal
equations and QR approach. Often, but not always, the accuracy of the V method is close to that of
the QR approach.

Assuming that the elements of K1 and K∗
1 have been calculated, and that m << n, then the

approximate number of operations for the V method is 2nm2 flops—approximately nm2 flops to
form V and another nm2 flops to solve for xV using (15). This is approximately the same as SR-Q
and approximately twice the flop count for the SR-N method.
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We can also compute the approximate covariance matrix with the V method approach:

ĈV ≡ !2K∗
1V−T
11 (!2I+VTV )−1V−1

11 K
∗T
1 .

In exact arithmetic ĈN , ĈQR and ĈV are identical but the computer arithmetic errors are often smaller
in ĈV and ĈQR than ĈN .

5.3 Examples Illustrating Stability Results

We present two sets of examples that illustrate some of the above remarks.

Example 1 Let the n× n matrices K be of the form K = UDUT where U is a random orthogo-
nal matrix (Stewart, 1980) and D is a diagonal matrix with diagonal entries s1 ≥ s2 ≥ . . .sn ≥ 0.
Therefore s1, s2, . . ., sn are the singular values of K. We will choose a vector w ∈ Rn, where Rn is

real n dimensional space, of the form w =

(
x
0

)
where x ∈ Rm is a random vector and 0 indicates

a zero vector with (n−m) components. We let the target data be y = Kw. We will also assume for
simplicity that != 0.

Due to the structure of w each of xN (10), xQ (12), and xV (15) will calculate x exactly in exact
arithmetic. Therefore in finite precision arithmetic ||x− ẋ||, with ẋ = xN, xQ or xV will be a measure
of the computer arithmetic errors in the calculation.

We carried out an experiment n= 100, m= 50, si = 10−(i−1)/5, i= 1,2, . . . ,m, and si = 10−10,
i = m+ 1,m+ 2, . . . ,n using a set of one hundred random matrices of this type. For this class of
matrices the singular values of K vary between 1 and 10−10, cond(K) = 1010 and cond(K1)∼= 1010.
The results are:

ẋ = xN xV xQ
min ||x− ẋ||/||x|| 9.3×10−1 5.1×10−7 2.7×10−8
mean ||x− ẋ||/||x|| 9.1×10 0 3.6×10−6 1.2×10−7
max ||x− ẋ||/||x|| 9.6×10 1 9.9×10−6 4.5×10−7

Table 1: Min, mean and max errors, ||x− ẋ||/||x||, for 100 matrices and various methods.

For this set of matrices xQ and xV have small errors. However xN has large errors due to its use
of normal equations.

Example 2 This example will illustrate that, although the V method often greatly improves upon

the stability of the SR-N method, this is not always the case. For 0< s≤ 1 let C =

(
s2 10s
10s 200

)
, let

the 4×4 matrix K =

(
s2C 10sC
10sC 200C

)
, let x=

(
1/3
1/3

)
, w=




x
0
0



, != 0 let y= Kw.

Due to the structure of w we again have each of xN, xQ and xV will calculate x exactly in exact
arithmetic. However, in finite precision arithmetic the calculated values will not be exact. For this
example for small s the errors in both xN and xV can be significantly larger than the errors in xQ.
For example if s= 10−4 we get the following results:
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ẋ = xN xV xQ
||x− ẋ||/||x|| 8.8×10−1 2.1×10−1 7.7×10−11

Table 2: Errors ||x− ẋ||/||x|| for a 4×4 matrices and various methods.

In Section 6 and Appendix A we will discuss the reason that the V method performs poorly
in this example and show that the numerical instability illustrated in this example can be cured
by interchanging the columns and rows of K appropriately. Also we should note that although
difficulties like the one illustrated here are possible for the V method, experiments like those in
Example 1 suggest that such difficulties are not likely. As we discuss in Section 6, the method
performed well when we applied it to real world applications.

6. Pivoting and Subset Selection

In Section 5 we discussed low rank approximations to K which involved the first m columns of
K. However one can select any subset of the columns to construct a low rank approximation. The
choice of these columns or the “active” set is the subset selection problem. This problem has been
addressed by, for example, Smola and Bartlett (2001), Seeger et al. (2003), Csato and Opper (2002)
and Fine and Scheinberg (2001). The technique that we will use is the same as that in Fine and
Scheinberg (2001). However we will focus on the effect of the resulting choice of the active set on
the numerical stability of the resulting algorithm. This is a different motivation than the motivations
in the above references.

6.1 The Singular Value Decomposition

To pursue this we will first discuss the singular value decomposition which, in a certain sense,
produces an optimal low rank approximation to K. The singular value decomposition (SVD) of the
symmetric semidefinite matrix K produces the factorization

K =UDUT =
(
U1 U2

)(
D1 0
0 D2

)(
U1 U2

)T

where U is an n× n orthogonal matrix, D is an n× n diagonal matrix whose diagonal entries s1 ≥
s2 ≥ . . .≥ sn ≥ 0 are the singular values of K,U1 is n×m,U2 is n× (n−m), D1 is an n×n diagonal
matrix, andD2 is an (n−m)×(n−m) diagonal matrix. We then can construct the truncated singular
value decomposition (TSVD) low rank approximation to K:

K̂SVD =U1D1UT
1 . (17)

The TSVD approximation K̂SVD is the best low rank approximation (Golub and Van Loan, 1996, p.
72) to K in the sense that

min
rank(K̂)=m

||K− K̂|| = ||K− K̂SVD|| = sm+1. (18)

Given an n×q matrix A with rank m≤min(n,q) we will define (Björck, 1996, p. 28) the condition
number of A to be cond(A) = s1/sm where s1 and sm are singular values of A. This definition
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generalizes to singular matrices the definition of condition number that we used in Section 4 (where
A had m columns). It then follows from (17) that

cond(K̂SVD) = s1/sm (19)

where s1 and sm are singular values of K (which are the same as the singular values of K̂SVD). Thus
the singular value decomposition provides two desirable properties:

• Equation (18) indicates that K̂SVD will be close to K, if there exists a rank m approximation
that is close to K, and

• Equation (19) limits the condition number of K̂SVD which will limit the growth of computer
arithmetic errors in the use of K̂SVD.

However, for large n, it is not practical to calculate the SVD of K since the SVD requiresO(n3) oper-
ations and is much more expensive than the algorithms described in Section 5 which requireO(nm2)
operations. We would like to construct an approximation that requires only O(nm2) operations and
that produces low rank approximations with properties related to (18) and (19).

6.2 Cholesky Factorization with Pivoting

The algorithms describe in Sections 3 and 5 (which are mathematically but not numerically identi-
cal) do not satisfy relations related to (18) and (19) as is apparent from the following example.

Example 3 For the matrix

K =




1+ $ 1− $ 0
1− $ 1+ $ 0
0 0 1





if we let m= 2 then by (4) and (17) we have

K̂ =




1+ $ 1− $ 0
1− $ 1+ $ 0
0 0 0



 and K̂SVD =




1 1 0
1 1 0
0 0 1





so that, for small $,
||K− K̂SVD|| = 2$ << 1= ||K− K̂|| and

cond(K̂SVD) = 2 << 1/$= cond(K̂).

For this example the low rank approximation K̂ has two problems: (1) it does not provide a good
approximation to K even though a good low rank approximation exists and (2) the condition number
of K̂ can be arbitrarily large which potentially could lead to a large growth of computer arithmetic
errors.

To overcome the difficulties illustrated in this example we can use a Cholesky factorization,
with pivoting, to insure that linearly independent columns and rows appear first. The Cholesky
factorization with pivoting produces a decompostion

PTKP= LLT
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where P is an n×n permutation matrix and L is an n×n lower triangular matrix. To produce our low
rank approximations to the Gaussian process equations we do not need to factor all of K, rather it is
sufficient to calculate a partial factorization that factors only m columns and rows of PTKP. This is
a partial Cholesky factorization with pivoting. If the pivoting is done using complete pivoting (that
is the pivoting in the Cholesky factorization is equivalent to using complete pivoting in Gaussian
elimination) then there are a variety of algorithms that determine the factorization (Higham, 2002,
p. 202; Golub and Van Loan, 1996, p. 149; Lucas, 2004, pp. 4-5 and Fine and Scheinberg, 2001,
p. 255). Here we will summarize the algorithm presented in Lucas (2004, pp. 4-5) since it is not
as widely known as the algorithms in Higham (2002, p. 202) and Golub and Van Loan (1996, p.
149) and is more efficient in our context. The algorithm below is also the same as that in Fine and
Scheinberg (2001, p. 255) except for the stopping criteria.

Algorithm 1: Algorithm for the partial Cholesky factorization
Data: an n×n symmetric positive semidefinite matrix K

a stopping tolerance tol ≥ 0
the maximum rank, max rank ≤ n, of the low rank approximation

Result: m, the rank of the low rank approximation
an n×m partial Cholesky factor V
a permutation vector piv
Note: on completion the first m rows and columns of PTKP−VVT are
zero, where P is a permutation matrix with Ppivi, i = 1, i= 1, . . . ,n

initialize:
di = Kii, i= 1, . . . ,n
Kmax =maxi=1,...,n (di)
pivi = i, i= 1, . . . ,n
m= max rank

for j = 1 to max rank do
[dmax, jmax] =maxi= j,...,n (di)
where jmax is an index where the max is achieved
if dmax ≤ (tol)Kmax then

m= j−1 ;
exit the algorithm ;

end
if jmax ,= j then

switch elements j and jmax of piv and d
for i= j+1 : n let ui = element i of column jmax of PTKP
switch rows j and jmax of the current n× ( j−1) matrix V

end
Vj j =

√
dmax

for i= j+1 to n do
Vi j = (ui−%

j−1
k=1VikVjk)/Vj j

di = di−V 2
i j

end
end
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There are two choices of the stopping tolerance tol that have been suggested elsewhere. For the
choice tol = 0 the algorithm will continue as long as the factorization determines that K is positive
definite (numerically). This choice of tol is used in LINPACK’s routine xCHDC (Dongarra et al.,
1979) and also by Matlab’s Cholesky factorization chol (which implements a Cholesky factorization
without pivoting). The choice tol = n×$ where $ is machine precision is suggested in Lucas (2004,
p. 5) and in Higham (2002). The best choice of tol will depend on the application.

There are a number of attractive properties of the partial Cholesky factorization.

• The number of floating point operations in the algorithm is approximately nm2−2m3/3 flops.
The calculations to determine the pivoting require only O(nm) flops.

• The algorithm accesses only the diagonal entries of K and elements from m columns of K.

• The storage requirement for the algorithm is approximately n(m+2) floating point numbers
plus storage for the integer vector piv and any storage needed to calculate entries in K.

• The accuracy and condition number of the low rank approximation to K produced by the
algorithm is related to the accuracy and condition number of the low rank approximation
produced by the singular value decomposition. In particular

Theorem 1 Let the n×m matrix V be the partial Cholesky factor produced by Algorithm 1
and let

K̂P = PVVTPT . (20)

Also let K̂SVD be the rank m approximation (17) produced by the singular value decomposi-
tion. Then

||K− K̂P||≤ c1 ||K− K̂SVD|| and (21)

cond(K̂P) ≤ c2 cond(K̂SVD) where (22)

c1 ≤ (n−m)4m and c2 ≤ (n−m)4m. (23)

Proof The theorem follows from results in Gu and Eisenstat (1996) for the QR factorization
with pivoting. First we consider a Cholesky factorization, without pivoting, of K so that
K = LLT where L is and n× n lower triangular matrix. Let &i(A) represent the ith singular
value of a matrix A. Then, making use of the singular value decomposition, it follows easily
that &i(K) = &2i (L), i = 1, . . . ,n. Consider a QR factorization of LT with standard column
pivoting (Golub and Van Loan, 1996, p. 249-250) so that QR= LTP1. The permutation matrix
P1 produced by this QR factorization will be identical, in exact arithmetic, to the permutation
matrix produced by the Cholesky factorization with pivoting applied to K (Dongarra et al.,
1979, p. 9.26). In addition, the Cholesky factorization, with pivoting, of K is PT1 KP1 = RTR,
assuming the diagonal entries of R are chosen to be nonnegative (Dongarra et al., 1979, p.
9.2). Now we partition the Cholesky factorization:

PT1 KP1 =

(
RT11 0
RT12 RT22

)(
R11 R12
0 R22

)
. (24)

It follows from Theorem 7.2 in Gu and Eisenstat (1996, p. 865) that

&1(R22) ≤ c3&m+1(L) and
1

&m(R11)
≤ c4

1
&m(L)

where c3, c4 ≤
√
n−m 2m. (25)
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Now the first m steps of Cholesky factorization, with pivoting, of K will produce identical
results to the m steps of the partial Cholesky factorization described in Algorithm 1. Let

V =

(
V11
V21

)
and R1 =

(
R11 R12

)
so that RT1 =

(
RT11
RT12

)
. (26)

In the (complete) Cholesky factorization with pivoting of K, after the first m steps of the
algorithm additional pivoting will be restricted to the last n−m rows and columns of PTKP.
Let P2 be a n× n permutation matrix representing the pivoting in the last n−m steps in the
algorithm. Then it follows that

P1 = PP2, V11 = RT11 and RT1 = PT2 V.

Therefore
K̂P = PVVTP= P1PT2 VVTP2PT1 = P1RT1R1PT1 . (27)

By (18), (24), (25), (26) and (27) we can conclude that

||K− K̂P|| = ||RT22R22|| = &21(R22) ≤ c23 &2m+1(L) = c1&m+1(K) = c1 ||K− K̂SVD||.

Also, by (25), (27) and the interlace theorem (Björck, 1996, p. 15)

&m(K̂P) = &2m(R1) ≥ &2m(R11) ≥ &2m(L)/c24 = &m(K)/c24. (28)

Next by (27) and the interlace theorem

&1(K̂P) = &21(R1) ≤ &21(R) = &1(K). (29)

Finally, (19), (28) and (29) imply that

cond(K̂P) = &1(K̂P)/&m(K̂P) ≤ c24&1(K)/&m(K) = c2 cond(K̂SVD).

The bounds in (23) on c1 and c2 grow exponentially in m and in principle can be large for larger
values of m. In practice this appears to be very uncommon. For example the constants c3 and c4 in
(25) are closely related to ||W || where W = R−1

11 R22 (Gu and Eisenstat, 1996, p. 865). Numerical
experiments indicate the ||W || is almost always small in practice (typically less than 10) (Higham,
2002, p. 207 and Higham, 1990). Therefore c1 = c23 and c2 = c24 will not be large in practice. We
should add that there are choices of the pivot matrices P in (20) which guarantee bounds on c1 and
c2 that are polynomials in n and m rather than exponential in m as in (23) (Gu and Miranian, 2004).
However algorithms that produce such pivot matrices are more expensive than Algorithm 1 and, in
practice, usually do not lead to an improvement in accuracy.

Prior to applying one of the methods—SR-N, SR-V and SR-Q—from Sections 3 and 5 one
can carry out a partial Cholesky factorization of K to determine the permutation matrix P, and
apply the algorithms of Sections 3 and 5 using the matrices K̃ ≡ PTKP, K̃∗ = K∗P and the vector
ỹ= PTy. If pivoting is used in this manner, we will call the algorithms SR-NP, SR-VP and SR-QP
corresponding, respectively, to the algorithms SR-N, SR-V and SR-Q without pivoting.
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Since the algorithms SR-N, SR-V and SR-Q are all mathematically (in exact arithmetic) equiv-
alent, then by (4) in all these algorithms the low rank approximation to K̃ is K̃1K̃−1

11 K̃T
1 where K̃1 is

the first m columns of K̃ and K̃11 is the first m rows of K̃1. Therefore the low rank approximation to
K = PK̃PT would be

K̂P = PK̃1K̃11K̃T
1 PT . (30)

We then have

Theorem 2 In exact arithmetic the matrices K̂P in (20) and (30) are the same.
Proof LetV be the factor produced by a partial Cholesky factorization, with pivoting, of K. Then, as
mentioned in Algorithm 1, the first m columns and rows of PTKP−VVT are zero. Since K̃ = PTKP
it follows that K̃11 = V11VT

11 and K̃1 = VVT
11, where V11 is the m×m leading principle submatrix of

V . Therefore that VVT = K̃1K̃−1
11 K̃T

1 . We conclude PVVTPT = PK̃1K̃−1
11 K̃T

1 PT .

A key conclusion of Theorems 1 and 2 is that for the algorithms SR-NP, SR-VP and SR-QP which
use pivoting, the low rank approximation K̂P to K has the desirable properties (21-23) which show
that the accuracy and condition number of K̂P is comparable to the accuracy and condition number
of the low rank approximation produced by the singular value decomposition. Therefore if m is
small, difficulties such as those illustrated in Example 3 are not possible since for small m the
bound (n−m)4m for c1 and c2 is not large. Furthermore, such difficulties are unlikely for large m
since, as mentioned earlier, for large m, the values of c1 and c2 are, apparently, not large in practice.

For the algorithm SR-VP one does not need to calculateV using (14) since, as shown in the proof
of Theorem 2,V is calculated by the partial Cholesky factorization. Using this fact the floating point
operation counts of the six algorithms that we have discussed are:

method no pivoting pivoting
SR-N / SR-NP nm2 2nm2
SR-V / SR-VP 2nm2 2nm2
SR-Q / SR-QP 2nm2 3nm2

Table 3: Approximate flop counts, for n and m large and n>> m, for various algorithms.

We should note that flop counts are only rough measures of actual run times since other factors,
such as the time for memory access or the degree to which code uses Matlab primitives, can be
significant factors. This is discussed further in Section 8.

Also we should note that all the algorithms listed in Table 3 require memory forO(mn) numbers.
Another advantage of the use of pivoting is that if pivoting is included in the V method then

for small examples such as Example 2 the potential numerical instability illustrated in Example 2
cannot occur. We illustrate this in the next example. In Appendix A we describe the reason that
the SR-VP method is guaranteed to be numerically stable for small problems and why numerical
instability is very unlikely for larger real world problems.

Example 4 This example illustrates that if one includes pivoting in theV method then the numerical
instability illustrated in Example 2 does not occur in the V method. As in Example 2 for 0< s≤ 1
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let C =

(
s2 10s
10s 200

)
, let the 4× 4 matrix K =

(
s2C 10sC
10sC 200C

)
. Now let x =

(
1/3
1/3

)
, w =





0
x2
0
x1



,

!= 0 let y= Kw.
Due to the structure of w (and since, in this example, a partial Cholesky factorization will move

column 4 of K to the first column of K̃ = PTKP) we again have each of xNP, xQP and xVP will cal-
culate x exactly in exact arithmetic. In finite precision arithmetic the calculated values will not be
exact. For this example for small s the errors in both xVP and xQP are very small. For example if
s= 10−4 we get the results in Table 4.

ẋ = xNP xVP xQP
||x− ẋ||/||x|| 1.7×10−1 2.6×10−11 9.7×10−12

Table 4: Errors ||x− ẋ||/||x|| for a 4×4 matrices and various methods.

Note that even with pivoting the error in the normal equations approach is large. With the nor-
mal equations approach the error in the calculated x includes a term proportional to cond2(K1).
Even with pivoting cond2(K1) can be large enough so the accuracy of the normal equations ap-
proach is poor.

7. Rank Selection

In using low rank approximation the choice of rank will affect the accuracy of the approximation.
It may be impractical to repeat the computations for a variety of different ranks and it is useful to
have techniques to facilitate determination of the accuracy of a variety of low rank approximations.

We first consider the case that the true target values y∗ corresponding to the testing data X∗ are
known. Then if n∗ < n the accuracy of the prediction for y∗ can be calculated efficiently for all low
rank approximations with rank less than a specified value m.

To illustrate this we first consider the QR implementation, (12) and (13), of the subset of re-
gressors method. For the (n+m)×m matrix A in (8) let A= QR where Q is an (n+m)×m matrix
with orthonormal columns and R is an m×m upper triangular matrix and let x= R−1QTb, as in (12)
(where we omit the subscript Q on x to simplify our notation). Then by (13) the predicted values of
y∗ are

ŷ∗ = K∗
1x

where K∗
1 is the n∗ ×m matrix defined in (3).

Now for some i, 1 ≤ i ≤ m, consider the construction of a prediction for y∗ using a rank i low
rank approximation. Let Ã consist of the first i columns of A. It then follows from (9), (13) and the
fact that the last m− i rows of b and Ã are zero that the rank i prediction, which we call ỹ∗, for y∗ is
given by solving

min
x̃

||Ã x̃−b|| and letting

ỹ∗ = K∗
1

(
x̃
0

)
(31)
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where x̃ ∈ Ri and the 0 in (31) indicates a vector of m− i zeros. Since A = QR it follows that

Ã= Q
(
R̃
0

)
where the 0 here indicates m− i rows of zeros. Therefore if c= (the first i elements

of QTb) it then follows (Golub and Van Loan, 1996, p. 239) that we can construct x̃ using

x̃= R̃−1c. (32)

We can use (32) to construct predictions for y∗ for every low rank approximation of rank less
than or equal to m. To do this we letC be a m×m upper triangular matrix whose ith column consists
of the first i elements of QTb and is zero otherwise. Let Ỹ be the n∗ ×m matrix whose ith columns
consists of the prediction for y∗ using a rank i approximation. Then, for the reasons described in the
last paragraph,

Ỹ = K∗
1R−1C. (33)

If y∗ is known (33) can be used to calculate, for example, the root mean square error of the prediction
for y∗ for all low rank approximations of rank less than or equal to m.

After the rankm low rank prediction for y∗ is constructed, the above calculations requireO(m3+
n∗m2) floating point operations. If n∗ is less than n, this is less than the O(nm2) operations required
to construct the initial rank m prediction. Although we will not present the details here similar
efficiencies are possible when using the normal equations approach or the V method.

If the true value y∗ for the test set are not known, one can use the subset of regressors approach
to estimate the known y values in the training set (by replacing K∗

1 with K1 in (11), (13) or (16)).
Again one can calculate the accuracies in estimating y for every low rank approximation of rank
less than a given rank m and this can be done relatively efficiently after the initial rank m low rank
approximation is constructed. These accuracies will give some indication of the relative difference
in using low rank approximations of different ranks.

Finally, we should note that our algorithms provide a limit on the largest rank that can be used.
For example in SR-NP, SR-VP and SR-QP Algorithm 1 is used to determine the subset selection.
Algorithm 1 returns a rank m where the factorization is stopped and m can be used as the maximum
possible rank. For the SR-V and SR-Q algorithms a Cholesky factorization of K11 is required
in (7). If Matlab’s Cholesky routine chol is used for this factorization there is an option to stop
the factorization when it is determined that K11 is not positive definite (numerically). The size
of the factor that successfully factors a positive definite portion of K11 sets a limit on the rank
that can be effectively used. Finally, SR-N and SR-NP require solving a system of Equations (5)
involving the symmetric semidefinite system !2K11+KT

1 K1. A good way to solve this system is to
use Matlab’s chol, which again has an option that can be used to determine a limit on the rank that
can be effectively used. As discussed in the next section if these rank limits are exceeded then the
calculated answers are often dominated by computer arithmetic errors and are not accurate.

8. Practical Example

In the Sloan Digital Sky Survey (York et al., 2000) broadband u, g, r, i, z photometric measurements
will be made for 100s of million galaxies but only approximately 1 million galaxies will have care-
ful spectroscopic measurements of redshifts. Therefore the estimation of redshift from broadband
photometric measurements is important since it can lead to much better constraints on the formation
and evolution of large-scale structured element in cosmological models (Way and Srivastava, 2006).
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We illustrate our earlier remarks by using a training set of 180045 galaxies, each with five
measured u, g, r, i, z broadband measurements. The training set consists of a 180045× 5 matrix
X of broadband measurements and the 180045× 1 vector y with the corresponding redshifts. The
testing set will consist of a 20229× 5 matrix X∗ of broadband measurements and the 20229× 1
vector y∗ of redshifts. This data is from the SDSS GOOD data set discussed in Way and Srivastava
(2006).

To determine a good choice for a covariance function we calculated the root mean square (RMS)
error for the prediction ŷ∗ for y∗ using the Matern (with parameter ' = 3/2 and with parameter
' = 5/2), squared exponential, rational quadratic, quadratic and neural network covariance func-
tions from Rasmussen and Williams (2006, Chap. 4). As mentioned earlier we selected the hyper-
parameters for each covariance function using the Matlab routine minimize from Rasmussen and
Williams (2006, pp. 112-116, 221). The covariance function which produced the smallest RMS
error for the prediction of y∗ was the neural network covariance function (Rasmussen and Williams,
2006, p. 91). For example, for low rank approximations of rank 500 with bootstrap resampling runs
(described below) of size 100 the neural network median RMS error was .0204. The next small-
est median RMS error was .0212 for the Matern covariance function with ' = 3/2 and the largest
median RMS error was .0248 for the quadratic covariance function. Therefore in the experiments
below we will use the neural network covariance function.

To compare, experimentally, the efficiency of our implementations of the subset of regressors
method we choose a training set size of 90023 (consistent with the bootstrap resampling runs de-
scribe below) and low rank approximations of rank m= 150 and m= 1500. On a computer with 2.2
GH Core Duo Intel processor we timed the SR-N, SR-V, SR-Q, SR-NP, SR-VP and SR-QP meth-
ods. On all the calculations in this section that use Algorithm 1 we set the stopping tolerance tol to
0. We ran each of the methods with the additional calculations required to determine the “history”
of the accuracy of all low rank approximations less than the specified rank (either 150 or 1500) and
also without these extra calculations. The results are summarized in Figure 1.
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Figure 1: Comparison of run times for implementations of the subset of regressors method.
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As can be seen in Figure 1, without pivoting the normal equations approach is the fastest, the QR
factorization the slowest and the V method in between. With pivoting all the methods take similar
amounts of time (the V method is slightly faster). The reason that all the methods require about
the same time when using pivoting is that the code for SR-N, SR-V and SR-Q is written so that
the key calculations are done almost entirely with Matlab primitives whereas our implementation
of the partial Cholesky factorization contains loops written in Matlab code. The Matlab primitives
make use of BLAS-3 (Anderson et al., 1999) routines and will make effective use of cache memory.
Therefore, even though the big-O operation counts are similar, the partial Cholesky factorization
takes longer to run than SR-N, SR-V or SR-Q and the partial Cholesky factorization dominates
the run times in the SR-NP, SR-VP and SR-QP code. We should add that the times for the partial
Cholesky factorization would be reduced if a partial Cholesky factorization with pivoting could be
implemented using BLAS-3 operations. We are not aware of such an implementation. Finally, we
should note that the calculations required to determine the accuracy of all low-order approximations
adds only a modest amount to the run times.

To determine the accuracy of the algorithms for different choices of the training set we carried
out bootstrap resampling (Efron and Tibshirani, 1993). For each of 100 samples we randomly se-
lected half or 90023 of the 180045 galaxies in the original training set and used this smaller training
set to predict the redshift for the 20229 galaxies in the testing set. We considered such resam-
pling with replacement as well as without replacement. For SR-N, SR-V and SR-Q we selected the
indices in the active set randomly. Following this we selected the hyperparameters using the mini-
mize routine in Rasmussen and Williams (2006, pp. 112-116, 221). For SR-NP, SR-VP and SR-QP
the active set was determined by the partial Cholesky factorization with pivoting. To illustrate the
variation in the calculated accuracies, after carrying out a bootstrap resampling run we sorted the
100 RMS errors in increasing order and plotted these errors versus the sample number. The results
for low rank approximations of rank 1500, using resampling without replacement, are pictured in
Figure 2.

Note that mathematically (in exact arithmetic) SR-N, SR-V and SR-Q will produce identical
results; as will SR-NP, SR-VP and SR-QP. Therefore the differences illustrated in Figure 2 between
SR-N and SR-V or SR-Q and the differences between SR-NP and SR-VP or SR-QP are due to com-
puter arithmetic and, in particular, the numerical instabilities in using a normal equations approach
to solve the least squares problem (9). Also note that although pivoting reduces the numerical
instability in using the normal equations approach, still in SR-NP the instability is evident for ap-
proximately half of the bootstrap resampling runs. Also we should remark that the ŷ∗ predictions
calculated using SR-V and SR-Q are essentially identical—they agree to at least seven significant
digits in this example—as are the ŷ∗ predictions calculated using SR-VP and SR-QP. Finally we
should note that for this example the methods that avoid normal equation and use pivoting—SR-VP
and SR-QP—are a small amount better than their counterparts, SR-V and SR-Q, that do not use
pivoting.

As mentioned earlier, the parameter ! in the Gaussian process computations was selected while
optimizing the hyperparameters using the routine minimize from Rasmussen and Williams (2006,
pp. 112-116, 221). The values of ! varied over a small range, .0176 ≤ ! ≤ .0214, for the 100
samples illustrated in Figure 2. For our stable algorithms these values of ! were good values as can
be seen by the accuracy of the results of SR-V, SR-VP, SR-Q and SR-QP pictured in Figures 2, 3
and 4. For SR-N and SR-NP we experimented with a variety of choices of ! but did not reliably
achieve accurate predictions for any of our choices.
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Figure 2: Bootstrap resampling: Comparison of RMS errors for implementations of the subset of
regressors method.

We might also add that we tried other types of resampling. We obtained results similar to those
illustrated in Figure 2 when using bootstrap resampling with replacement and also when we choose
a number of galaxies in the sample size other than 90023.

We can also illustrate the ability to efficiently calculate the accuracy of low rank approximations
lower than a specified rank. For the same runs picture in Figure 2 we calculated the mean RMS error
of the 100 samples for each rank less than 1500 for each of the six implementations of the subset of
regressors method. This is pictured in Figure 3.

As one increases the rank of the low rank approximation the condition number of the matrix A in
(9) will tend to increase. This will increase the computer arithmetic errors in the calculated results.
The ranks where significant computer arithmetic errors arise are illustrated in Figure 3 by the jumps
in the mean errors calculated for the SR-N and SR-NP methods. The ranks where this occurs and
the magnitude of the jumps is dependent on the particular data chosen for a bootstrap resampling
run and will vary for different bootstrap resampling runs. For the SR-N method the ranks where
numerical difficulties were first substantial varied between a rank of 46 to a rank of 839. For the
SR-NP method the ranks where numerical difficulties were first substantial varied between ranks of
325 and 1479. For the SR-V, SR-Q, SR-VP and SR-QP methods we did not encounter significant
numerical difficulties with these runs and the graphs for these methods smoothly decrease.

The SR-VP and SR-QP method, which use pivoting, are somewhat more accurate than the
corresponding methods without pivoting after a rank of approximately 200 but prior to this SR-V
and SR-Q are more accurate. Our motivation for subset selection using the Cholesky factorization
with pivoting is based on controlling the condition number and improving numerical stability. For
smaller ranks it appears that this choice of the active set is good but not optimal. Finally, we should
note that Figure 3 indicates for the stable methods the mean RMS errors decrease rapidly for smaller
ranks but are only slowly decreasing for larger ranks.
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Figure 3: Mean RMS errors versus rank for implementations of the subset of regressors method.

As we mentioned earlier all of our algorithms may limit the rank so that the effective rank can be
less than the desired rank. This did not occur on the above runs for SR-V, SR-Q, SR-VP or SR-QP
but did occur for SR-N and SR-NP due to our use of the Cholesky factorization to solve the linear
system (5). It is possible to solve the linear system in (5) using Gaussian elimination, rather than
using a Cholesky factorization, for ranks up to 1500. However the Cholesky factorization in (5)
will fail only if the matrix !2K11+KT

1 K1 is very ill conditioned. In this case solving the system of
equations in (5) by any method will be prone to large computer arithmetic errors. Indeed, for these
runs, if we used Gaussian elimination to solve (5) for large ranks the errors became larger than when
we limited the rank as we have described earlier. Also when the Cholesky factorization failed in the
solution to (5) we tried perturbing K11 a small amount following a suggestion in the code provided
with Rasmussen and Williams (2006). For our runs this did not improve the calculated results in a
significant manner.

In Way and Srivastava (2006) there is a comparison of a variety of methods for predicting red-
shift with data from the SLOAN digital sky survey. The methods compared in Way and Srivastava
(2006) include linear regression, quadratic regression, artificial neural networks (label ANNz in
Figure 4), E-model and Gaussian processes using a quadratic covariance function (labeled GP in
Figure 4). In Figure 4 we have compared these methods with our predictions using the SR-VP
and SR-QP implementations of the subset of regressors Gaussian processes method with a neural
network covariance function. Other than the SR-VP and SR-QP predictions the results in Figure 4
are from Way and Srivastava (2006). As seen in Figure 4, in this example either SR-VP or SR-QP
provides overall the best predictions. The E-model approach is also quite good.

We should add that in addition to the data set which was used to generate the results in Figures
1 to 4 we have also carried out experiments using other data sets described in Way and Srivastava
(2006) (for example redshift prediction using photometry properties in addition to broadband mea-
surements) and using the SARCOS robot arm inverse dynamics (Rasmussen and Williams, 2006;
Vijayakumar et al., 2002). For the other redshift data sets significant computer arithmetic errors in
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Figure 4: Bootstrap resampling: comparison of RMS errors for six methods of predicting redshift.

the predictions were common for the SR-N and SR-NP algorithms. For some data sets, for exam-
ple the SARCOS robot arm, computer arithmetic errors were not significant and all the algorithms
worked well. Also we might note that although prediction using Gaussian processes was more ac-
curate than alternatives approaches in some cases, in other cases the E-model or artificial neural
network approaches provided better accuracy.

Finally, we should note that Matlab code which implements the SR-N, SR-NP, SR-V,SR-VP,
SR-Q and SR-QP methods and can produce graphs such as those in Figures 2 and 3 is available at
http://dashlink.arc.nasa.gov/algorithm/stableGP. Our code makes use of the code from
Rasmussen and Williams (2006, p. 221) and the syntax is modeled on that code. We should also
note that Foster et al. (2008) and Cayco et al. (2006) discuss additional results related to redshift
prediction.

9. Conclusions

An important conclusion of our results is that with the subset of regressors approach to Gaussian
process calculations use of normal equations can be unstable and should, in some important prac-
tical examples, be avoided. We expect that this principle is also applicable to other approaches to
Gaussian process calculations. For example when using approximations based on sparse Gaussian
processes with pseudo-inputs (Snelson and Ghahramani, 2006) which is called the FITC approx-
imation in the framework of Quinonero-Candela and Rasmussen (2005) the predicted values are
calculated using

ŷ∗FITC = K∗
1 (!

2K11+KT
1 ((+ I)−1K1)−1KT

1 ((+ I)−1y.

where
(= diag(K−K1K−1

11 K
T
1 )/!2.

Our results suggest that it may be more accurate to carry out these calculations using a QR factor-

ization of
(
DK1
!VT

11

)
where D= ((+ I)−1/2 rather than, for example, using a Cholesky factorization

of !2K11+KT
1 ((+ I)−1K1.
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To summarize our results, we have presented different implementations of the subset of re-
gressors method for solving, approximately, the Gaussian process equations for prediction. An
implementation of the subset of regressors method which uses the normal equations is the fastest
approach but also can have poor numerical stability and unacceptable large growth of computer
arithmetic errors. An implementation using orthogonal factorization is somewhat slower but in
principle has better numerical stability properties. A third approach, which we call the V method,
is intermediate between these other two approaches in terms of accuracy and stability. We can
use the partial Cholesky factorization to select the active set prior to implementation of any of the
above methods. This also will tend to reduce the growth of computer arithmetic errors and can, in
some cases, improve the accuracy of the predictions. All of these implementations require 0(nm2)
operations where n is the number of data points in the training set and m is the size of the ac-
tive set or the rank of the low rank approximation used. In this sense all these implementations
are efficient and can be much faster than implementation of the full Gaussian process equations.
Finally, we have illustrated these result with an important practical application—redshift predic-
tion from broadband spectral measurements. Code implementing our algorithms is available at
http://dashlink.arc.nasa.gov/algorithm/stableGP.
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Appendix A. Numerical Stability of SR-VP

Here we explain why, even though there is a potential numerical instability in SR-V, as illustrated
in Example 2, this difficulty cannot occur with the SR-VP method for small problems and is very
unlikely to occur for larger problems from real world applications.

Let P be the n× n permutation matrix determined by the partial Cholesky factorization with
pivoting applied to K, let K̃ = PTKP and let K̃1 be the first m columns of K̃. In the SR-VP method
we apply Equations (14)-(16) to K̃ and K̃1 rather than K and K1.

We will begin by considering the special case where != 0 and later consider the more general
case. In the case that ! = 0 the least square problem (9), with K1 replaced by K̃1 since we are
incorporating pivoting, is equivalent to

min
x

||K̃1x− y||.

and, by (15), we have
x=V−T

11 (VTV )−1VTy. (34)

where K̃1 = VVT
11. There is a potential concern in using (34) since to construct x the linear system

of equations
(VTV )z=VTy

must be solved. Forming VTV squares the condition number of V which, potentially could lead to
the introduction of undesirable computer arithmetic errors. However we will argue that the matrix
B = VTV is diagonally equivalent to a matrix that is guaranteed to be well conditioned for small
problems and, in practice, is almost always well conditioned for larger problems. This will limit the
growth of computer arithmetic errors. We should add that without pivoting one cannot prove such
results, as is illustrated by Example 2.

Now V is formed by a partial Cholesky factorization with pivoting of the symmetric positive
semidefinite matrix K. Since pivoting is included in the partial Cholesky factorization of the SPS
matrix it follows, for each i= 1, . . . ,m, that the ith diagonal entry of K̃1 is at least as large in magni-
tude as any off diagonal entry in row i or column i of K̃1 (Trefethen and Bau III, 1997, p. 176) and
that the lower trapezoidal matrixV has the property that, for each i= 1, . . . ,m, the ith diagonal entry
in V is at least as large in magnitude as any entry in column i (Higham, 2002, p. 202). Therefore
we can write V as V = LD where D is an m×m diagonal matrix and L is an n×m lower trapezoidal
matrix with all entries one or less in magnitude and with ones on the diagonal. Indeed this matrix L
is identical to the lower trapezoidal matrix produced if Gaussian elimination with complete pivoting
is applied to K̃1 (Higham, 2002, p. 202). Also since the pivoting has already been applied in form-
ing K̃1 Gaussian elimination with complete pivoting will not pivot any entries in K̃1 and this implies
that Gaussian with partial pivoting will not pivot any entries in K̃1 and will produce the same lower
trapezoidal factor L. Now it follows from Higham (2002, p. 148) that

cond(L) ≤
√
nm 2m−1

and therefore for n and m small, as in Example 2, L is well conditioned. More generally, according
to Björck (1996, p. 73), if partial pivoting is used in the factorization of K̃1 then L is usually well
conditioned and, indeed, the discussion in Trefethen and Bau III (1997, p. 169) indicates that,
for matrices from applications and for random matrices K̃1, the matrix L is almost always well
conditioned, in the sense, for example, that cond(L) is far from being exponentially large.

878



STABLE AND EFFICIENT GAUSSIAN PROCESS CALCULATIONS

Thus V is a diagonal rescaling of a matrix L that is well conditioned in practice. Now define
U = DVT

11. It then follows from (34) that

x=U−1(LTL)−1LTy. (35)

Equation (35) is precisely the Peters-Wilkinson method (Peters and Wilkinson, 1970 and Björck,
1996, p. 73) to the least square problem (34). Since L is usually well conditioned then the calculation
of (LTL)−1LTy can be computed without substantial loss of accuracy and the calculation of x using
(35) is more stable than using the normal equation solution to (34) (Björck, 1996, p. 73).

The SR-VP method uses (34) rather that (35). However, sinceV is a diagonal rescaling of L and
U is a diagonal rescaling ofVT

11 the SR-VP method will also have good numerical stability properties
in practice. To demonstrate this we can writeV = LD1D2 where the entries of the diagonal matrixD1
are between 1 and 2 and where entries in D2 are exact powers of 2. Since L will be well conditioned
in practice then so isW = LD1 (since cond(LD1) ≤ cond(L)cond(D1) ≤ 2 cond(L)). Now, by (34),
we have

x= (D2V11)−T (WTW )−1WTy. (36)

SinceW is well conditioned in practice it follows, for the same reasons that (35) has good numerical
stability, that (36) will have good numerical stability properties.

To finish the analysis of numerical stability of the SR-VP method in the case that ! = 0 note
that since D2 has entries that are exact powers of 2, it follows by the discussion in Higham (2002,
p. 200) and Forsythe and Moler (1967, 37-39), for any computer using base 2 computer arithmetic,
that the x calculated by (36) will be precisely the same, even in floating point arithmetic (as long as
there is no overflow or underflow), as the x calculated by (34). Therefore we may conclude that in
practice x calculated when using the SR-VP method will have good numerical stability properties
and the SR-VP method will usually have smaller computer arithmetic errors than will the SR-N or
SR-NP methods.

To consider the case that ! ,= 0 we note that in this case the condition number of B= (!2I+VTV )
will be important in solving

(!2I+VTV )z=VTy.

However we have

Theorem 3 For any !≥ 0, cond(!2I+VTV ) ≤ cond(VTV ).

Proof If VTV has eigenvalues )1 ≥ )2 ≥ . . . ≥ )m ≥ 0 then the eigenvalues of (!2I+VTV ) are
(!2+)i), i = 1, . . . ,m. Therefore cond(VTV ) = )1/)m and cond(!2I+VTV ) = ()1+!2)/()m+
!2). However it follows easily that )1/)m ≥ ()1+!2)/()m+!2).

Since cond(!2I+VTV ) ≤ cond(VTV ) we expect that solving (!2I+VTV )z=VTy with ! ,= 0
will be more accurate than solving this equation with ! = 0. Since we have argued that the error
growth in solving this equation for ! = 0 should be limited we expect that this should also be true
when ! ,= 0.
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Abstract
We consider the problems of estimating the parameters as well as the structure of binary-valued
Markov networks. For maximizing the penalized log-likelihood, we implement an approximate
procedure based on the pseudo-likelihood of Besag (1975) and generalize it to a fast exact algo-
rithm. The exact algorithm starts with the pseudo-likelihood solution and then adjusts the pseudo-
likelihood criterion so that each additional iterations moves it closer to the exact solution. Our
results show that this procedure is faster than the competing exact method proposed by Lee, Gana-
pathi, and Koller (2006a). However, we also find that the approximate pseudo-likelihood as well
as the approaches of Wainwright et al. (2006), when implemented using the coordinate descent
procedure of Friedman, Hastie, and Tibshirani (2008b), are much faster than the exact methods,
and only slightly less accurate.
Keywords: Markov networks, logistic regression, L1 penalty, model selection, Binary variables

1. Introduction

In recent years a number of authors have proposed the estimation of sparse undirected graphical
models for continuous as well as discrete data through the use of L1 (lasso) regularization. For
continuous data, one assumes that the observations have a multivariate Gaussian distribution with
mean µ and covariance matrix !. Then an L1 penalty is applied to " = !−1. That is, the penalized
log-likelihood !(")−#||"||1 is maximized, where ! is the Gaussian log-likelihood, ||"||1 is the sum
of the absolute values of the elements of " and # ≥ 0 is a user-defined tuning parameter. Several
papers proposing estimation procedures for this Gaussian model have been published. Meinshausen
and Bühlmann (2006) develop a lasso based method for estimating the graph structure and give
theoretical consistency results. Yuan and Lin (2007), Banerjee et al. (2008) and Dahl et al. (2008)
as well as Friedman, Hastie, and Tibshirani (2008a) propose algorithms for solving this penalized
log-likelihood with the procedure in Friedman, Hastie, and Tibshirani (2008a), the graphical lasso,
being especially fast and efficient.

Here we focus on estimation of networks of discrete, more specifically binary-valued, units with
pairwise interactions. These are a special class of Markov networks. The use of L1 penalties for this

c©2009 Holger Höfling and Robert Tibshirani.
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X1

X2X3

X4

Figure 1: A simple graph for illustration.

x1 x2 x3 x4
1 1 1 0
1 1 0 1
0 0 1 0
1 1 0 1
1 1 1 0
1 1 0 1
0 0 1 0
1 1 0 1
0 1 1 0
1 1 0 1

Table 1: Sample data for graph of Figure 1

special class as well as more general Markov networks was proposed by Lee, Ganapathi, and Koller
(2006a). This problem is more difficult than the continuous Gaussian version because of the need
to compute the first and second moments under the model, which are derivatives of the log-partition
function. Figure 1 shows an example, and Table 1 shows some sample data from this graph. Given
this data and a model for binary graphical data (detailed later), we would like to a) infer a structure
something like that of Figure 1, and b) estimate the link parameters itself. For the data in Table 1,
Figure 2 shows the path of solutions for varying penalty parameter. Most edges for L1-norm≤ 2 are
correctly identified as in the graph in Figure 1. However, edge (1,3) is absent in the true model but
included in the L1 penalized model relatively early.

Our main focus in this paper is to develop and implement fast approximate and exact proce-
dures for solving this class of L1-penalized binary pairwise Markov networks and compare the
accuracy and speed of these to other methods proposed by Lee, Ganapathi, and Koller (2006a) and
Wainwright et al. (2006). Here, by “exact” procedures we refer to algorithms that find the exact
maximizer of the penalized log-likelihood of the model whereas “approximate” procedures only
find an approximate solution.

In Section 2 we describe the Ising model as well as the details of the competing methods of
Lee, Ganapathi, and Koller (2006a) and Wainwright et al. (2006). Section 3 then introduces the
basic pseudo-likelihood model and outlines the computational approach to increase the speed of
the algorithm. The pseudo-likelihood is a very interesting and fast approximate method which has
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Figure 2: Toy example: profiles of estimated edge parameters as the penalty parameter is varied.

the added advantage that it can be used as a building block to a new algorithm for maximizing the
penalized log-likelihood exactly. The adjustments necessary to achieve this are described in Section
4. Finally, Section 5 discusses the results of the simulations with respect to speed and accuracy of
the competing algorithms.

2. The Model and Competing Methods

In this section we briefly outline the competing methods for maximizing the penalized log-likelihood.
Apart from the method proposed in Lee, Ganapathi, and Koller (2006a), which we already men-
tioned above, we also discuss a very simple solution that was presented in Wainwright et al. (2006).
We first describe the underlying model in more detail. Consider data generated under the Ising
model

p(x,") = exp

[

$
s∈V

%sxs+ $
(s,t)∈E

%stxsxt −&(")

]

.

for a single observation x = (x1, . . . ,xp)T ∈ {0,1}p and model parameters %s and %st for s, t ∈ V =
{1, . . . , p}. Here, V denotes the vertices and E the edges of a graph. &(") is the normalization
constant, which is also known as the log-partition function. By setting %st = 0 for (s, t) &∈ E, and
using the fact that x is a binary vector we can write the log-likelihood as

l(x,") = log p(x,") =
p

$
s≥t≥1

%stxsxt −&(")
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where " is a symmetric p× p matrix with %ss = %s for s= 1, . . . , p. Note that for notational conve-
nience, we do not distinguish between %st and %ts and therefore we enforce symmetry of " although
the log-likelihood only uses the lower-triangular matrix of ". For the L1-penalty let R be a p× p
lower triangular matrix of penalty parameters. The penalized log-likelihood for all N observations
is

p

$
s≥t≥1

(XTX)st%st −N&(")−N||R∗"||1

where ∗ denotes component-wise multiplication.
The algorithms that we will discuss in the following sections could be generalized to more

general categorical variables or higher order interaction terms than those included in the Ising model.
However, as we will see, solving these problems exactly is already computationally demanding in
the pairwise binary case so that we chose not to adapt the algorithms to these more general settings.

2.1 The Lee, Ganapathi, and Koller (2006a) Method

The penalized log-likelihood is a concave function, so standard convex programming techniques
can be used to maximize it. The main difficulty is that the log-partition function &(") is the sum
over 2p elements, and therefore it is computationally expensive to calculate & or its derivatives
in general. However, for sparse matrices ", algorithms such as the junction tree algorithm exist
that can calculate & and its derivatives efficiently. Therefore, it is especially important to maintain
sparsity of " for any optimization method. Lee, Ganapathi, and Koller (2006a) achieve this by
optimizing the penalized log-likelihood only over a set F of active variables which they gradually
enlarge until an optimality criterion is satisfied.

To be more precise, they start out with a set of active variables F = F0 (e.g., the diagonal of
" if it is unpenalized). Using either conjugate gradients or BFGS, the penalized log-likelihood is
maximized over the set of variables F . Then one of the currently inactive variables is selected by
the grafting procedure (see Perkins et al., 2003) and added to the set F . These steps are repeated
until grafting does not add any more features. The algorithm can be used for more general Markov
networks, but for ease of implementation they choose to work with binary random variables and we
do the same as well.

Their procedure provides an exact solution to the problem when the junction tree algorithm
is used to calculate &(") and its derivatives. In their implementation, however, they used loopy
belief propagation, which is faster on denser matrices, but only provides approximate results. In
their method as well as ours, any procedure to evaluate &(") can be “plugged in” without any
further changes to the rest of the algorithm; we decided to evaluate the speed and performance of
only the exact algorithms. The relative performance of an approximate method using loopy belief
propagation would likely be similar. They also provide a proof that under certain assumptions and
using the L1 regularized log-likelihood, it is possible to recover the true expected log-likelihood up
to an error '.

2.2 The Wainwright et al. (2006) Method

Wainwright et al. (2006) propose estimation of the Markov network by applying a separate L1-
penalized logistic regression to each of the p variables on the remaining variables. For every s ∈V
regress xs onto x\s = (x1, . . . ,xs−1,xs+1, . . . ,xp)T . Let the p× p matrix "̃ denote the estimate of ".
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Then set %̃ss = (0, the intercept of the logistic regression, and %̃st = (t , where (t is the coefficient
associated with xt in the regression.

In the outline above, we assumed that " is a symmetric matrix. However, due to the way it was
constructed, "̃ is not necessarily symmetric. We investigate two methods for symmetrizing "̃. The
first way is to define " as

%st = %ts =

{

%̃st if |%̃st | > |%̃ts|

%̃ts if |%̃st |≤ |%̃ts|

which we call “Wainwright-max”. Similarly, “Wainwright-min” is defined by

%st = %ts =

{

%̃st if |%̃st | < |%̃ts|

%̃ts if |%̃st |≥ |%̃ts|
.

Wainwright et al. (2006) mainly intended their method to be used in order to estimate the presence or
absence of an edge in the underlying graph of the model. They show that under certain assumptions,
their method correctly identifies the non-zero edges in aMarkov graph, asN→) even for increasing
number of parameters p or neighborhood sizes of the graph d, as long as N grows more quickly than
d3 log p (see Wainwright et al., 2008). Due to the simplicity of the method it is obvious that it could
also be used for parameter estimation itself and here we will compare its performance in these
cases to the pseudo-likelihood approach proposed below and the exact solution of the penalized
log-likelihood. Furthermore, as an important part of this article is the comparison of the speeds of
the underlying algorithms, we implement their method, using the fast coordinate descent algorithm
for logistic regression with a lasso penalty (see Friedman, Hastie, and Tibshirani, 2008b).

3. Pseudo-likelihood Model

In this section we first introduce an approximate method to infer the structure of the graph that is
based on pseudo-likelihoods (Besag, 1975). As we will see in the simulations section, the results
are very close to the exact solution of the penalized log-likelihood. In the next section, we use
the pseudo-likelihood model to design a very fast algorithm for finding an exact solution for the
penalized Ising model.

The main computational problem in the Ising model is the complexity of the partition function.
One possibility in this case is to solve an approximate version of the likelihood instead. Approaches
of this kind have been proposed in various papers in the statistical literature before, for example the
pseudo-likelihood approach of Besag (Besag, 1975) and the treatments of composite likelihoods in
Lindsay (1998) and Cox and Reid (2004) among others. Here, we want to apply the approximation
proposed in Besag (1975) to our problem. This approach is also related to the method of Wainwright
et al. (2006), however instead of performing separate logistic regressions for every column of the
parameter matrix ", the pseudo-likelihood approach here allows us to estimate all parameters at the
same time. This way, the resulting matrix " is symmetric and no additional step like the max or
min-rule described above is necessary. The log-pseudo-likelihood is then given by

l̃("|x) =
p

$
s=1
log p(xs,"|x\s)

with
log p(xs,"|x\s) = xi(%ss+$

t &=s
xt%st)−&s(x,").
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Here,&s(x,") is the log-normalization constant when conditioning xs on the other variables, which
is exactly the same as in logistic regression with a logit link-function, that is,

&s(x,") = log(1+ exp(%ss+$
t &=s
xt%st))

where as above for notational convenience we set %st = %ts for t &= s. Putting all this together, the
pseudo-likelihood for a single observation x is given by

l̃("|x) =
p

$
s=1

p

$
t=1

xsxt%st −
p

$
s=1

&s(x,").

In the usual way, the pseudo-likelihood for all N observations is given by the sum of the pseudo-
likelihood of the individual observations

l̃("|X) =
N

$
k=1

l̃("|xk)

where xk is the kth row of matrix with observations X ∈RN×p.
As this is just a sum of logistic likelihoods, the pseudo-likelihood is a concave function and

therefore the L1-penalized pseudo-likelihood
N

$
k=1

l̃("|xk)−N||S∗"||1

is concave as well. Here S = 2R− diag(R) and is chosen to be roughly equivalent to the penalty
terms in the penalized log-likelihood. The penalty term is doubled on the off-diagonal, as the
derivative of the pseudo-likelihood on the off-diagonal is roughly twice as large as the derivative of
the log-likelihood (see Equation 1).

3.1 Basic Optimization Algorithm

Due to its simple structure, a wide range of standard convex programming techniques can be used to
solve this problem, although the non-differentiability of the L1 penalty poses a problem. Here, we
want to use a local quadratic approximation to the pseudo-likelihood. As the number of variables
is p(p+ 1)/2, the Hessian could get very large, we restrict our quadratic approximation to have a
diagonal Hessian.

In order to construct the approximation, we need the first and second derivative of l̃ w.r.t %st .
These are

*l̃
*%st

= 2(XTX)st − (p̂Ts X)t − (p̂Tt X)s s &= t, (1)

*l̃
*%ss

= (XTX)ss−
N

$
k=1

p̂sk

where 1− p̂sk = 1/(1+ exp(%ss+$s&=t Xkt%st)). The second derivatives are

*2 l̃
(*%st)2

= −(XTdiag(p̂s)diag(1− p̂s)X)tt− (XTdiag(p̂t)diag(1− p̂t)X)ss s &= t,

*2 l̃
(*%ss)2

= −
N

$
k=1

p̂sk(1− p̂sk).
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Algorithm 1: Estimation for L1 penalized pseudo-likelihood
if "(0) not given then

Set "(0) = diag(logit(p̂(0))) where p̂(0)
s = 1

N $
N
k=1 xks

end
Set k:=0;
while not converged do

With current estimate "(k), define local approximation f"(k) (") to l̃−N||S∗"||1;
Find solution "∗ of f"(k) (");
Perform backtracking line search on the line from "(k) to "∗ to find "(k+1);
Set k:=k+1

end

Assume that at the k-th step the parameter estimate is "(k). Then define the local approximation
to l̃("|X)−N||S∗"||1 as

f"(k) (") =C+$
s≥t

*l̃
*%st

(%st −%(k)
st )+

1
2

*2 l̃
(*%st)2

(%st−%(k)
st )2−N||S∗"||1

where C is some constant. As stated above, this is just a quadratic approximation with linear term
equal to the gradient of l̃ and a diagonal Hessian with diagonal elements equal to the diagonal of
the Hessian of l̃. The main reasons for using this simple structure are that it keeps the computation
complexity per iteration low and it is very easy to solve this L1 penalized local approximation. Let
"̃ be the minimizer of the unpenalized f"(k) ("), then

%̃st = %(k)
st −

*l̃
*%st
*2 l̃

(*%st)2

.

As the Hessian is diagonal, the L1-penalized solution "∗ of f"(k) (") can be obtained by soft thresh-
olding as

%∗st = sign(%̃st)
(

%̃st − sst/
*2 l̃

(*%st)2

)

+

.

Using "∗, the next step "(k+1) can now be obtained by, for example, a backtracking line search.
The whole algorithm can be seen in Algorithm 1 and a proof of convergence that closely follows
Lee, Lee, Abbeel, and Ng (2006b) is given in the appendix.

3.2 Speed Improvements

In practice, there are several things that can be done to speed up the algorithm given above. First
of all, as " will in general be sparse, all computations to calculate p̂ should exploit this sparse
structure. However, the sparseness of " can also be used in another way:

3.2.1 USING ACTIVE VARIABLES

As the solutions are usually sparse, calculating the gradient for all variables in every step is wasteful.
Most variables are zero and will not change from one iteration to the next. In order to be more
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Algorithm 2: Pseudo-likelihood algorithm using active variables
if "(0) not given then

Set "(0) = diag(logit(p̂(0))) where p̂(0)
s = 1

N $
N
k=1 xks

end
Set k:=0;
Set A = {(s, t) : s≥ t,%st &= 0} as active variables;
repeat
while not converged over variables in A do

Find "(k+1) using local approximation over variables in A ;
Set k:=k+1;

end
Set A =

{

(s, t) : %st &= 0 or
∣

∣

∣

*l̃
*%st

∣

∣

∣
> sst

}

;
until A did not change ;

efficient, it is possible to move variables that are zero only once in a while. Several different kinds of
methods have been proposed to exploit this situation, for example grafting (Perkins et al., 2003) and
the implementation of the penalized logistic regression in Friedman, Hastie, and Tibshirani (2008b)
among others. In our case here, we use an outer and an inner loop. The outer loop decides which
variables are active. The inner loop then optimizes over only the active variables until convergence
occurs. Active variables are those that are either non-zero, or that have a gradient large enough so
that they would become non-zero in the next step. More details are given in Algorithm 2.

When using this method, convergence is still guaranteed. In the outer loop, the criterion chooses
variables to be active that are either non-zero already or will be non-zero after one step of the local
approximation over all variables. Therefore, if the active set stays the same, no variables would be
moved in the next step as all active variables are already optimal and therefore, we have a solution
over all variables. However, if the active set changes, the inner loop is guaranteed to improve the
penalized pseudo-likelihood and find the optimum for the given set of active variables. As there are
only a finite number of different active variables sets, the algorithm has to converge after a finite
number of iterations of the outer loop.

3.2.2 SUBSTITUTING THE LINE SEARCH

Calculating the pseudo-likelihood is computationally expensive compared to the cost of the local
approximation. Therefore, we save time by not performing a line search after every step. Instead,
we fix a step size + and skip the line search. However, with this method, the algorithm may diverge.
In order to detect this, we calculate the penalized pseudo-likelihood every 100 iterations and check
that we improved during the last 100 steps. If yes, the step size remains the same. If no, reset the
variables to where they were 100 steps ago and divide the step size by 2. If the step size drops below
a pre-specified threshold, we revert to the original line-search algorithm. This way, in most cases,
we do not have to perform the line-search. However, the algorithm is still guaranteed to converge
as it automatically detects convergence problems when the fixed step size is used and reverts to the
line-search algorithm, which as stated above is guaranteed to converge.
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4. Exact Solution Using Pseudo-likelihood

We now turn to our new method for optimizing the penalized log-likelihood. As the log-likelihood
is a concave function, there are several standard methods that can be used for maximizing it, for
example, gradient descent, BFGS and Newton’s method among others. For each step of these
methods, the gradient of the log-likelihood has to be calculated. This requires the evaluation of the
partition function and its derivatives, which is computationally much more expensive than any other
part of the algorithms. Taking this into considerations, the standard methods mentioned above have
the following drawbacks:

Gradient descent: It can take many steps to converge and therefore require many evaluations of
the partition function and its derivatives (using the junction tree algorithm). Also, it does not
control the number of non-zero variables in intermediate steps well to which the runtime of
the junction tree algorithm is very sensitive. Therefore, intermediate steps can take very long.

BFGS: Takes less steps than gradient descent, but similar to gradient descent, intermediate steps
can have more non-zero variables than the solution. Thus, same as above, computations of
intermediate steps can be slow.

Newton’s method: In order to locally fit the quadratic function, the second derivatives of the log-
likelihood are needed. Computing these is computationally prohibitive.

Lee, Ganapathi, and Koller (2006a) use the BFGS method only on a set of active variables onto
which additional variables are “grafted” until convergence. This mitigates the problem of slow
intermediate steps and makes using BFGS feasible. However, this comes at the expense of an
increased total number of steps, as only one variable at a time is being grafted. Here, we want to
use the pseudo-likelihood in a new algorithm for maximizing the penalized log-likelihood.

The functional form of the pseudo-likelihood is by its definition closely related to the real like-
lihood and in Section 5 we will see that its solutions are also very similar, indicating that it approxi-
mates the real likelihood reasonably well. Furthermore, we can also maximize the pseudo-likelihood
very quickly. We want to leverage this by using a quasi-Newton method in which we fit a “tilted”
pseudo-likelihood instead of a quadratic function. Specifically, among all functions of the form

f"(k) =
1
2
l̃+$

s≥t
ast(%st−%(k)

st )− +$
s≥t

(%st−%(k)
st )2−N||R∗"||1,

we fit the one that at "(k) is a first order approximation to the penalized log-likelihood l. Essen-
tially, f"(k) is an L1-penalized pseudo-likelihood with an added linear term as well as a very simple
quadratic term for some +> 0. Here, ast will be chosen so that the sub-gradient is equal to the penal-
ized log-likelihood l at "(k). The additional quadratic term with coefficient + is only being included
to ensure the existence of a global maximum. In practice, we can set + = 0, unless a convergence
problem occurs. In our simulations, += 0 always worked very well.
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In particular, for the approximation at "(k), choose ast such that

f"(k) =
1
2

(

l̃("|X)+$
s>t

(%st−%(k)
st )

(

(p̂("(k))Ts X)t +(p̂("(k))Tt X)s−2 ·N ·wst("(k))
)

+

+$
s
(%ss−%(k)

ss )

(

$
k
p̂sk("(k))+(XTX)ss−2 ·N ·wss("(k))

))

−

−$
s≥t
+(%st−%(k)

st )2−N||R∗"||1

where W is a matrix with elements wst(") = *&
*%st

(") = E"(xsxt) is the derivative of the partition
function and p̂s is as defined in the pseudo-likelihood section.

For the algorithm, we need an initial parameter estimate "(0), which we pick as follows: Let
Z(%) = e%

1+e% be the logistic function and let Z
−1 denote its inverse. Then choose

%(0)
st =

{

0 if s &= t
Z−1

( 1
N $

N
k=1 xks

)

if s= t
.

In this case we than have p̂sk = 1
N $

N
k=1 xks ∀k and also

Wst =

{

( 1
N $

N
k=1 xks

)( 1
N $

N
k=1 xkt

)

if s &= t
( 1
N $

N
k=1 xks

)

if s= t

and together with += 0 we then get that

f"(0) =
1
2
l̃("|X)−N||R∗"||1

and thus just a regular pseudo-likelihood step. The only slight difference is that in this case the
penalty term on the diagonal is twice as large as in the pseudo-likelihood case presented above.
However, in practice we recommend not to penalize the diagonal at all, so that this difference
vanishes. Therefore, this algorithm is a natural extension of the pseudo-likelihood approach that
starts out by performing a regular pseudo-likelihood calculation and then proceeds to converge to
the solution by a series of adjusted pseudo-likelihood steps.

The algorithm for maximizing the penalized log-likelihood is now very similar to the one pre-
sented for maximizing the penalized pseudo-likelihood. Assume our current estimate is "(k). Then
approximate the log-likelihood locally by f"(k) and find the maximizer "∗ of f"(k) . This is essen-
tially the pseudo-likelihood and the algorithm presented above can easily be adjusted to accommo-
date the additional terms. Now, using a line search on the line between "(k) and "∗, find the next
estimate "(k+1). This algorithm is guaranteed to converge by the same argument as the pseudo-
likelihood algorithm. The proof that f"(k) approximates l at "(k) to first order can be found in
Appendix B, which is a prerequisite for the convergence proof of the algorithm in Appendix A.

4.1 Speed Improvement

As for the pseudo-likelihood algorithm, we can again save computations by using the active vari-
ables technique presented above. Here, the savings in time are especially large due to a special fea-
ture of the junction tree algorithm that we use to calculate the derivatives of the partition function.
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Algorithm 3: Likelihood algorithm using active variables
if "(0) not given then

Set "(0) = diag(logit−1(p̂(0))) where p̂(0)
s = 1

N $
N
k=1 xks

end
Set k:=0;
Set A = {(s, t) : s≥ t,%st &= 0} as active variables;
repeat
while not converged over variables in A do

CalculateW only over variables in A ;
Find "(k+1) using local approximation over variables in A ;
Set k:=k+1;

end
Calculate the whole matrixW;
Set A =

{

(s, t) : %st &= 0 or
∣

∣

∣

*l
*%st

∣

∣

∣
> rst

}

;
until A did not change ;

In order to calculate derivatives with respect to non-zero variables, only one pass of the junction
tree algorithm is necessary. However, p passes of the junction tree are needed in order to get the full
matrix of derivativesW. Therefore, depending on the size of p, using only active variables can be
considerable faster. For details, see Algorithm 3.

4.2 Graphical Lasso for the Discrete Case

In the case of Gaussian Markov networks, the graphical lasso algorithm (see Friedman, Hastie, and
Tibshirani, 2008a) is an very efficient method and implementation for solving the L1-penalized log-
likelihood. In order to leverage this speed, we extended the methodology to the binary case treated
in this article. However, the resultant algorithm was not nearly as fast as expected. In the Gaussian
case, the algorithm is very fast as the approach to update the parameter matrix " one row at a time
allows for a closed form solution and efficient calculations. In the binary case on the other hand, the
computational bottleneck is not all of the calculation involved in the update of ", but specifically
by a large margin the evaluations of the partition function itself. Therefore, any fast algorithm for
solving the penalized log-likelihood exactly has to use as few evaluations of the partition function
as possible. The graphical lasso approach is thus not suitable for the binary case as it takes a lot of
small steps towards the solution.

This observation also explains the improvement in speed of the pseudo-likelihood based exact
algorithm over the specific methods proposed in Lee, Lee, Abbeel, and Ng (2006b). Standard
convex optimization procedures often rely on either the first or second derivatives of the functions
they seek to optimize. Newton-like procedures that use the second derivative often converge in very
few steps, however these cannot be used here as it is prohibitively expensive to evaluate the second
derivative of the partition function, even in small examples. Approaches like conjugate gradients of
BFGS as proposed in Lee, Lee, Abbeel, and Ng (2006b) are somewhat less efficient and take more
steps. This is where the advantage of using the pseudo-likelihood as a local approximation comes
into play. It usually only takes very few steps to converge and is therefore faster than standard
methods.
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5. Simulation Results

In order to compare the performance of the estimation methods for sparse graphs described in this
article as well as Lee, Ganapathi, and Koller (2006a) andWainwright et al. (2006), we use simulated
data and compare the speed as well as the accuracy of these methods.

5.1 Setup

Before simulating the data it is necessary to generate a sparse symmetric matrix ". First, the di-
agonal is drawn uniformly from the set {−0.5,0,0.5}. Then, using the average number of edges
per node, upper-triangular elements of " are drawn uniformly at random to be non-zero. These
non-zero elements are then set to either −0.5 or 0.5, again each uniformly. In order for " to by
symmetric, the lower triangular matrix is set equal to the upper triangular matrix. The actual data is
generated by Gibbs sampling using " as described above.

With respect to the penalty parameters that we use for the different methods, we always leave
the diagonal unpenalized and all off-diagonal elements have the same parameter #, that is we set

rst =

{

0 if s= t
# otherwise

and the penalty term matrix for the pseudo-likelihood S = 2R−diag(R) as defined above. For the
Wainwright-methods, the penalty parameter is # with no penalty on the intercept. Although the
log-likelihood functions that are being penalized are somewhat different, this choice of parameters
makes them perform roughly equivalent, as can be seen in Figure 3. The number of edges is plotted
against the penalty parameter used and all methods behave very similar. However, in order not to
confound some results by these slight differences of the effects of the penalty, all the following plots
are with respect to the number of edges in the graph, not the penalty parameter itself.

5.2 Speed Comparison

First, we compare the speed of the four methods for the L1-penalized model. We used an an-
nealing schedule for Lee, Ganapathi, and Koller (2006a) to improve convergence as suggested in
their article. Plots of the speeds of the exact methods can be seen in Figure 4 and the approxi-
mate methods are shown in Figure 5. Each plot shows the time the algorithm needed to converge
versus the number of edges in the estimated graph. As can be seen, the pseudo-likelihood based
exact algorithm described above is considerable faster than the one proposed in Lee, Ganapathi, and
Koller (2006a). For the approximate algorithms, we can see that the p logistic regressions in the
Wainwright et al. (2006) algorithm take roughly the same amount of time as the pseudo-likelihood
algorithm presented above. This is not surprising due to the similarity of the optimization methods
and any difference that can be observed in Figure 5 is mostly due to the specific implementations
used. Furthermore, we would like to note that we decided to plot the speed against the number of
edges in the graph instead of the penalty parameter, as the runtime of the algorithm is very closely
related to the actual sparseness of the graph.

Overall, when comparing the computation times for the exact algorithms to the approximate
algorithms, we can see that the approximate methods are orders of magnitude faster and do not suffer
from an exponentially increasing computation time for decreasing sparsity as the exact methods.
Therefore, if an exact solution is required, our exact algorithm is preferable. On the other hand, the
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Figure 3: Number of edges in the graph vs. penalty parameter for different problem sizes, averaged
over 20 simulations.

superior speed of the pseudo-likelihood and Wainwright et al. (2006) algorithm warrants a closer
look at the trade-off with respect to accuracy.

5.3 Accuracy Comparisons

In this subsection we compare the algorithms mentioned above with respect to the accuracy with
which they recover the original model. As both our L1 penalized exact algorithm and the one by Lee,
Ganapathi, and Koller (2006a) find the exact maximizer of the L1-penalized log-likelihood, we only
use our algorithm in the comparison. The other 3 methods we compare to are “Wainwright-min”,
“Wainwright-max” and the pseudo-likelihood.
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Figure 4: Computation time of the exact algorithms versus the number of non-zero elements in ".
Values are averages over 20 simulation runs, along with ±2 standard error curves. Also,
p is the number of variables in the model, N the number of observations and Neigh is the
average number of neighbors per node in the simulated data. Here, Pseudo-Exact refers
to the the exact solution algorithm that uses adjusted pseudo-likelihoods as presented in
Section 4.

First we investigate how closely the edges in the estimated graph correspond to edges in the true
graph. In Figure 6, ROC curves are shown, plotting the false positive (FP) rates against true positive
(TP) rates for edge identification, for various problem sizes. Note that only partial ROC curves are
shown since our method cannot estimate non-sparse graphs due to very long computation times.
Overall, we see that all approximate algorithms match the results of the exact solution very closely
and in some of the plots, the curves even lie almost on top of each other.
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Figure 5: Computation time for the approximate algorithms versus the number of non-zero ele-
ments in ". Values are averages over 20 simulation runs, along with ±2 standard error
curves. Also, p is the number of variables in the model, N the number of observations
and Neigh is the average number of neighbors per node in the simulated data.

Apart from the accuracy of edge identification, we also consider other statistics. The unpenal-
ized log-likelihood is a measure of how well the estimated model fits the observed data (higher
values are better). Again, the approximate solutions are all very close to the exact solution (see
Figure 7) and the differences are always smaller than 2 standard deviations. In Figure 8, we plot
the difference of the log-likelihood with respect to the exact solution. Also in this plot, no clear
”winner” can be identified.

We also use the Kullback-Leibler divergence DKL(P||Q), which is a measure of difference be-
tween a true probability distribution P and an arbitrary other distribution Q. Here, for the true
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Figure 6: ROC curves: false positive versus true positive rate for edge identification. Values are
averages over 20 simulation runs.

probability distribution we use the distribution of the binary Markov network using the true "0-
matrix that was used to generate the simulated data. The distribution Q in our case is the binary
Markov network using the estimated "̂-matrix. We can compute DKL(P||Q) as

DKL(P||Q) =$
x

P(x) log
P(x)
Q(x)

=&("0)−&("̂)+$
x

P(x)tr
(

xxT ("̂−"0)
)

=

=&("0)−&("̂)+ tr
(

EP(xxT )("̂−"0)
)

.

If the distributions P andQ are identical, then DKL(P||Q) = 0. In our simulations, the exact solution
has lower KL-divergence than the other methods, however the differences are very small. For a plot
of the KL-divergence against the number of edges in the model see Figure 9. Again, all approximate
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Figure 7: Log-likelihood of the estimated model vs number of edges in the graph for different
problem sizes, averaged over 20 simulations.

methods match the exact solution very closely and any differences are well within the 2 standard
deviation error band. In Figure 10 the differences of the KL-divergence of the approximate to the
exact method can be seen. Again, all methods are very close with the pseudo-likelihood approach
performing the best in this case.

6. Discussion

When we embarked on this work, our goal was to find a fast method for maximizing the L1 penal-
ized log-likelihood of binary-valued Markov networks. We succeeded in doing this, and found that
the resulting procedure is faster than competing exact methods. However, in the course of this work,
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Figure 8: Difference of log-likelihood of the estimated model to the exact model vs number of
edges in the graph for different problem sizes, averaged over 20 simulations.

we also learned something surprising: several approximate methods exist that are much faster and
only slightly less accurate than the exact methods. In addition, when a dense solution is required,
the exact methods become infeasible while the approximate methods can still be used. Our imple-
mentation of the methods of Wainwright et al. (2006) uses the fast coordinate descent procedure
of Friedman, Hastie, and Tibshirani (2008b), a key to its speed. The pseudo-likelihood algorithm
also uses similar techniques, which make it very fast as well. We conclude that the Wainwright and
pseudo-likelihood methods should be seriously considered for computation in Markov networks.

In this article, we treated the case of pairwise Markov networks with a binary response variable.
We think these methods can also be extended to more general cases. With respect to the response
variables, a multinomial instead of a binary response could be used. In addition to this, it would
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Figure 9: Kullback-Leibler divergence of the estimated model vs. number of edges in the graph for
different problem sizes, averaged over 20 simulations.

also be possible to generalize the graph structure by introducing higher order interaction terms.
Apart from these extensions, an interesting possibility for future work would also be to prove the
theoretical results of Wainwright et al. (2006) for the pseudo-likelihood model. Furthermore, we
believe that both the exact and fast approximate methods can also be applied to the learning of
multilayer generative models, such as restricted Boltzmann machines (see Hinton, 2007).

An R language package for fitting sparse graphical models, both by exact and approximate
methods, will be made available on the authors’ websites.

901
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Figure 10: Difference of Kullback-Leibler divergence of the approximate methods to the exact so-
lution vs. number of edges in the graph for different problem sizes, averaged over 20
simulations.

902



SPARSE MARKOV NETWORKS

Acknowledgments

Hoefling was supported by a Stanford Graduate Fellowship. Tibshirani was partially supported by
National Science Foundation Grant DMS-9971405 and National Institutes of Health Contract N01-
HV-28183. We would like to thank Trevor Hastie and Jerome Friedman for code implementing the
fast L1 logistic regression and Daniela Witten for helpful comments on a draft of this article. We
also want to thank the editor and two anonymous reviewers for their work and helpful reviews.

Appendix A. Proof of Convergence for Penalized Pseudo-likelihood and Penalized
Log-likelihood Algorithms

Lee, Lee, Abbeel, and Ng (2006b) gives a proof of convergence for an algorithm that solves an L1
constrained problem by quadratic approximation of the objective function. Here, we will follow
this proof very closely and make few changes to accommodate that we are only using a first order
approximation and are working with the Lagrangian form of the L1 constrained problem instead of
the standard form.

Assume that g(") is a strictly convex function with a global minimum that we want to mini-
mize. Furthermore, let f"0

(") be a first order approximation of g at "0 and assume that f"0
(")

is strictly convex, has a global optimum and is jointly continuous in ("0,"). Here, by first order
approximation at "0, we mean that f"0

−g is twice continuously differentiable with derivative 0 at
"0. Assume that our algorithm works as follows:

initialize "(0);
Set k:=0;
while not converged do

With current estimate "(k), define local approximation f"(k) (") to g;
Find solution "∗ of f"(k) (");
Perform backtracking line search on the line from "(k) to "∗ to find "(k+1);
Set k:=k+1;

end

Then "(k) converges to the global minimizer of g("). In order to show this, we first need the
following lemma:

Lemma 1 Let "0 be any point that is not the global optimum. Then there is an open subset S"0
and a constant K"0

such that for every ,0 in S"0
every iteration of the algorithm starting at ,0

will return a point ,1 that improves the objective by at least K"0
, that is, g(,1) ≤ g(,0)−K"0

.

Proof First, let f"0
be an approximation to g at "0 with global optimum "1. Then set

-= f"0
("0)− f"0

("1)

and we know that - > 0 as "0 is not the global optimum. Now, there exists an ' > 0 such that for
,0 ∈ S"0

:= {" : ||"−"0||2 < '} the following holds:

|g("0)−g(,0)|≤
-
8
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HÖFLING AND TIBSHIRANI

and
| f,0

(,1)− f"0
("1)|≤

-
4

where ,1 is the global minimum of f,0
. The existence of this ' follows from the continuity and

convexity of f and g. Then

f,0
(,1) ≤ f"0

("1)+
-
4
≤ f"0

("0)−
3-
4

=

= g("0)−
3-
4

≤ g(,0)−
-
2
.

With step size 0< t < 1 in the line search, and using the previous result, it holds that

f,0
(,0+ t(,1−,0)) ≤ (1− t) f,0

(,0)+ t f,0
(,1) ≤ g(,0)− t

-
2

For the next step observe that the minimizer ,1 of f,0
is a continuous function of ,0 due to the

convexity of f in the second argument and the continuity in both arguments. Then, as S"0
is a

compact set, there exists a compact set T"0
with ,1(,0) ∈ T"0

for all ,0 ∈ S"0
. Thus, as f"0

is a
first order approximation of g at "0, there exists aC such that for all " ∈ T"0

g(") ≤ f"0
(")+C||"−"0||

2
2.

Therefore

g(,0+ t(,1−,0)) ≤ g(,0)− t
-
2

+Ct2||,1−,0||22 ≤

≤ g(,0)− t
-
2

+ t2CD2

where D is the diameter of T"0
. Now set t∗ = min

(

1, -
4CD2

)

and thus we know that it exists a ,∗

such that
g(,∗) ≤ g(,0)− t∗

-
2

+ t∗2CD2.

Setting K"0
= t∗ -2 − t∗2CD2 > 0 now finishes the proof.

Now, using the lemma the rest of the proof is again very similar as in Lee, Lee, Abbeel, and Ng
(2006b) and we only repeat it here for completeness.

Theorem 1 The algorithm converges in a finite number of steps.

Proof Pick - > 0 arbitrary. Let "∗ the global optimum and "0 the starting point of the algorithm.
Then there exists a compact set K such that g(") > g("0) for every " &∈ K. Define P- = {" :
||"−"∗|| ≥ -}∩K. We will show convergence by showing that the algorithm can only spend a
finite number of steps in P-. For every " in P- there exists an open set S". So

P- ⊆ ∪"∈P-
S"
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As P- is compact, Heine-Borel guarantees that there is a finite set Q- such that

P- ⊆ ∪"∈Q-
S".

Furthermore, as Q- is finite, define
C- = min

"∈Q-

K".

As the lemma guarantees that every step of the algorithm inside P- improves the objective by at least
C- and a global optimum exists by assumption, the algorithm can at most spend a finite number of
steps in P-. Therefore, the algorithm has to converge in a finite number of steps.

For the penalized pseudo-likelihood algorithm, by definition of the approximation it is evident
that it is a first order approximation. The situation for the penalized log-likelihood algorithm is a
little more complicated and it will be shown in the next section of the appendix that the proposed
approximation is to first order and therefore satisfies the assumptions of the proof.

Appendix B. First Order Approximation of Log-likelihood

In Section 4, we defined a function f"(k) to calculate the next estimate "(k+1). The convergence
proof in Appendix A requires that f"(k) is a first order approximation of the objective l("|X)−

N||R ∗"||1. Here, we want to show that this is in fact the case. For this, we need to show that
f"(k) − l("|X)+N||R∗"||1 is twice continuously differentiable with derivative 0 at "(k).
First, inserting f"(k) from Section 4 yields

d"(k) = f"(k) − l("|X)+N||R∗"||1 =

=
1
2

(

l̃("|X)+$
s>t

(%st −%(k)
st )

(

(p̂("(k))Ts X)t +(p̂("(k))Tt X)s−2 ·N ·wst("(k))
)

+

+$
s
(%ss−%(k)

ss )

(

$
k
p̂sk("(k))+(XTX)ss−2 ·N ·wss("(k))

))

−

−$
s≥t
+(%st−%(k)

st )2− l("|X)

which has derivative

2
*d"(k)

*%st
= 2(XTX)st− (p̂(")Ts X)t− (p̂(")Tt X)s+(p̂("(k))Ts X)t +(p̂("(k))Tt X)s−

−2 ·N ·wst("(k))−4+(%st−%(k)
st )−2(XTX)st +2 ·N ·wst(")

for s &= t and

2
*d"(k)

*%st
= (XTX)ss−$

k
p̂sk(")+$

k
p̂sk("(k))+(XTX)ss−2 ·N ·wss("(k))−

−4+(%ss−%(k)
ss )−2(XTX)ss+2 ·N ·wss(")

for s = t. These are clearly continuous and differentiable. Furthermore, inserting " = "(k) yields
that the derivative is 0. Therefore, f"(k) is a first order approximation and our proof holds.
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Abstract
Algorithms that list graphs such that no two listed graphs are isomorphic, are important building
blocks of systems for mining and learning in graphs. Algorithms are already known that solve this
problem efficiently for many classes of graphs of restricted topology, such as trees. In this article
we introduce the concept of a dense augmentation schema, and introduce an algorithm that can be
used to enumerate any class of graphs with polynomial delay, as long as the class of graphs can be
described using a monotonic predicate operating on a dense augmentation schema. In practice this
means that this is the first enumeration algorithm that can be applied theoretically efficiently in any
frequent subgraph mining algorithm, and that this algorithm generalizes to situations beyond the
standard frequent subgraph mining setting.

Keywords: graph mining, enumeration, monotonic graph classes

1. Introduction

Among the most prominent graph mining problems is the problem of finding frequent subgraphs
in databases of small graphs of any topology. This is witnessed by the large number of algorithms
that have been proposed for this task (Yan and Han, 2002; Borgelt and Berthold, 2002; Kuramochi
and Karypis, 2004; Inokuchi et al., 2003; Inokuchi, 2004; Huan et al., 2003; Nijssen and Kok,
2004; Leskovec et al., 2006). A fundamental problem that is addressed in all these works is how to
enumerate a set of graphs such that no two graphs in the enumerated set are isomorphic with each
other. The main motivation for this focus is that if duplicates would not be avoided, these algorithms
would access the data more often than necessary and produce results that are larger than required.

To avoid isomorphic graphs in their output, all these existing graph mining algorithms use a
methodology based on canonical codes. A canonical code is a code that uniquely identifies a set
of isomorphic graphs. To determine if a graph should be part of the output, its canonical code is
computed, and, in some algorithms, compared with the canonical codes of graphs found before.

A fundamental problem with the canonical code based approach, however, is that we essentially
need to solve the graph isomorphism problem: if we could compute the canonical code of any
graph efficiently, we could compute the codes of two graphs to determine if they are isomorphic.
The state of the art is that no polynomial algorithm for the graph isomorphism problem is known.
Consequently, it can be shown that when the existing graph mining algorithms are enumerating
candidate subgraphs, the delay between two enumerated graphs is exponential in the worst case (in
terms of the size of the largest graph enumerated).
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The contribution of this article is that we introduce a novel algorithm for enumerating graphs
that does not use canonical codes, and incrementally maintains data structures that ensure that no
two isomorphic graphs are listed. We show that in contrast to other algorithms for enumerating
graphs, this new algorithm outputs many classes of graphs, including arbitrary connected graphs,
with polynomial delay, which makes this algorithm theoretically more efficient than any other graph
enumeration algorithm used in the graph mining literature.

It is important to note that our algorithm works for many classes of graphs. If we would restrict
the topology of the graphs, for instance, to only those graphs that are trees, the enumeration problem
of frequent graph mining is already known to be more efficiently solvable, and algorithms are known
(Wright et al., 1986; Nakano and Uno, 2004) and used in practice (Chi et al., 2005; Horváth et al.,
2006).

Even though the frequency constraint is the most popular constraint in the graph mining litera-
ture, other constraints have been studied as well. An important property of the frequency constraint
is that it is monotonic w.r.t. to subgraph isomorphism: if a graph is frequent, all its subgraphs are
also frequent. In our algorithm we exploit this property to maintain data structures incrementally.
An interesting question is to what extent enumeration with polynomial delay is feasible when the
graphs to enumerate are not monotonic under the subgraph isomorphism relation. To this aim, we
developed the concept of an augmentation schema. The augmentation schema defines relations be-
tween graphs in the space of graphs to enumerate (in the simplest case, the subgraph isomorphism
relation). We will show that enumeration with polynomial delay is possible as long as an aug-
mentation schema satisfies certain conditions, and the graphs to enumerate can be specified using a
monotonic predicate w.r.t. the augmentation schema. We will specify our algorithm in terms of such
augmentation schemas. This makes our method general enough to be applied in settings beyond the
traditional frequent subgraph mining setting, and allows us also to enumerate both connected and
unconnected graphs. For instance, we can also enumerate hereditary classes of graphs with bounded
degree; a class of graphs is called hereditary if it is monotonic under the induced subgraph relation,
instead of the traditional subgraph relation.

The problem of graph enumeration has not only been studied in the graph mining literature. In
particular, Goldberg showed in the early nineties that there is a polynomial delay algorithm to list
all graphs (Goldberg, 1992). We will provide more details about this algorithm in Section 3, where
we will show that this algorithm cannot be used to list graphs that satisfy a monotonic predicate, as
required in a graph mining setting. Many algorithms exist for enumerating classes of graphs without
taking into account isomorphisms, such as classes of graphs described by first order logic formulas
(Goldberg, 1993) and edge-maximal graphs with bounded branchwidth (Paul et al., 2006); it is not
known how to list these classes while taking into account isomorphisms. Heuristic implementations
exist for enumerating graphs in general (McKay, 1998), but these do not guarantee polynomial
delay.

Our algorithm uses similar ideas as the algorithm of Goldberg (1992). In particular, as our algo-
rithm maintains a data structure incrementally, our algorithm requires that all computed subgraphs
are stored. In the pattern mining setting, where we are interested in finding these graphs, this is a
common assumption.

This article is the full version of a workshop abstract (Ramon and Nijssen, 2007). Compared to
the workshop abstract, in this article (1) we show how our method extends to other classes of graphs
than connected graphs and (2) we provide full details and proofs.

908



POLYNOMIAL-DELAY GRAPH ENUMERATION

The article is organized as follows. In Section 2 we introduce the problem of subgraph mining.
In Section 3 we show why the algorithm of Goldberg is too limited for applications in graph mining.
In Section 4 we introduce the concept of augmentation schemas and formally define the enumeration
problems that we are addressing. In Section 5 we state our results. In Section 6 we provide a
short introduction to concepts in group theory which we need in Section 7, where we outline our
algorithm; Section 8 concludes. The proofs of our claims are given in an appendix.

2. Motivation

The main motivation for our work is the problem of efficiently mining subgraphs under constraints.
The most common such problem is the problem of mining frequent subgraphs in a database of small
graphs. We will first give a formal definition of this problem.

A graph g is a tuple (V,E)whereV is a set of vertices and E ⊆V×V is a set of edges. We denote
with V (g) the set of vertices and with E(g) the set of edges of a graph g. In this article we restrict
ourselves to unlabeled, simple graphs (i.e., undirected, unweighted, no loops, no multiple edges
between two nodes). It easy to lift these restrictions. In particular, in frequent subgraph mining it
is usually assumed that graphs have labels. However, our discussion is simplified by assuming that
we do not have labels; this is not a fundamental restriction of our methodology.

There are many ways in which one can restrict the topology of graphs. For instance, a path is
a graph in which all nodes have degree 2, except two nodes, which have degree one. A tree is a
connected graph with k nodes and k− 1 edges. When we use the word graph, we refer to graphs
that have no apriori restriction on their topology (except being unlabeled and simple).

Between two graphs we can define the graph isomorphism and the subgraph isomorphism rela-
tions. Our definitions are as usual in the literature: two graphs g1 and g2 are isomorphic iff there is
a bijection ! :V (g1) →V (g2) such that (v1,v2) ∈ E(g1) ⇔ (!(v1),!(v2)) ∈ E(g2). We denote this
by g1 (! g2, where ! is the bijection between the graphs. The bijection can be omitted if this is
clear from the context.

A graph g1 is subgraph isomorphic to g2 iff there is a subgraph (V ′,E ′) with V ′ ⊆ V (g2) and
E ′ ⊆ E(g2), such that g1 is isomorphic with (V ′,E ′). This is denoted with g1 *! g2, where ! is the
bijection between the nodes of g1 and the subset of nodes of g2. A subgraph (V ′,E ′) of g2 is an
induced subgraph if for all v,v′ ∈V ′ : {v,v′} ∈ E(g2) ↔ {v,v′} ∈ E ′; in other words, all edges in g2
between nodes in V ′ are also present in E ′. A graph g1 is induced subgraph isomorphic to g2 iff g1
is isomorphic with an induced subgraph of g2.

The graph isomorphism and subgraph isomorphism problems should not be confused with each
other. The subgraph isomorphism problem is known to be NP complete, while the graph isomor-
phism problem is believed to be in a complexity class of its own. For both problems in general no
polynomial algorithm is known (Köbler et al., 1993).

The problem of frequent subgraph mining can now be formalized as follows. Given is a database
of graphs, DB = {g1,g2, . . . ,gn}, and a threshold t. Then we are interested in finding all graphs g
for which the support is higher than or equal to t. The support of a graph g is the number of graphs
in DB with which g is subgraph isomorphic.

This frequent subgraph mining problem can be generalized by replacing the minimum frequency
constraint with other predicates. For instance, a predicate could involve an additional maximum size
constraint.
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A predicate on graphs is called monotonic if all subgraphs of a graph that satisfies the predicate,
will also all satisfy the predicate.1 The support constraint and the maximum size constraint are
examples of predicates that are monotonic under subgraph isomorphism.

The problem of constraint-based subgraph mining is closely related to the problem of frequent
item set mining. Many algorithms have been developed to tackle the frequent item set mining
problem, the most well-known being the APRIORI algorithm (Agrawal et al., 1996). Both frequent
graph mining algorithms and frequent item set mining algorithms are considered to be constraint-
based pattern mining algorithms. Constraint-based pattern mining algorithms look for patterns in a
pattern language L , and assume that these patterns are ordered using a partial order relation ≤ on
L . In the case of graph mining, ≤ is usually the subgraph isomorphism relation.

Many algorithms for pattern mining are level-wise (breadth-first) enumeration algorithms. These
algorithms assume that the size of a pattern in the language is well-defined, and look for the pat-
terns by listing them increasing in size. A high-level description of such an algorithm is given in
Algorithm 1.

Algorithm 1 Level-Wise Pattern Miner
Require: A pattern language L and a monotonic predicate p
Ensure: output all g ∈ L with p(g)

1: C1 ← patterns of size 1
2: k← 1
3: while Ck .= /0 do
4: Fk ← {g ∈ Ck|p(g)}
5: Generate Ck+1 from Fk
6: k← k+1
7: end while
8: Output

S

kFk

In this algorithm, Fk contains the patterns of size k that satisfy the predicate. In line 4 it is
determined which candidates of size k satisfy the predicate. In frequent pattern mining, this line
requires access to the data, and can be most time consuming. It is therefore essential that Ck be as
small as possible.

The main focus of this article is on the computation that needs to be performed in line 5. In this
line new candidates should be generated. This generation should ensure the following:

• by repeatedly generating new candidates we should be able to enumerate all patterns in the
pattern space, in our case the space of all unlabeled, simple graphs;

• to ensure that the algorithm is as efficient as possible, we should not insert two patterns in
Ck+1 that are equivalent with each other; in our case, we should avoid inserting two graphs
that are isomorphic;

• we should not insert patterns in Ck+1 for which we can know beforehand that p will not be
true; in our case, we should exploit the monotonicity of p to avoid inserting graphs of which
a subgraph is not included in Fk.

1. We adopt here the terminology most common in graph theory. Some authors in the data mining literature use the
term ‘anti-monotonic’.
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In the graph mining setting, the second and third requirements are difficult, as the second require-
ment requires us to solve a graph isomorphism problem, and the third requirement involves a sub-
graph isomorphism problem.

Algorithm 1 has applications beyond traditional frequent subgraph mining. For instance, if we
are interested in computing a decomposition graph kernel between two graphs which counts the
number of non-isomorphic subgraphs that two graphs have in common, we could compute this
kernel by providing algorithm 1 a database of two graphs as input and a threshold of t = 2. The size
of the output is the desired kernel value.

Similarly, we could be interested in enumerating all different graphs that include one node in a
network (Leskovec et al., 2006). In this case, the input of Algorithm 1 consists of one graph with
all nodes up to a certain threshold distance from the node of interest, and the subgraph isomorphism
should be restricted such that only bijections are considered in which at least one node in the pattern
is mapped to the special node in the data.

In all cases, the essential problem of enumerating graphs without duplicates remains. Several
algorithms have been proposed in the literature to address this graph enumeration problem. The
main idea that has been employed, is that for every graph, we can compute a canonical code, that is,
a code that is unique for all graphs that are isomorphic. The level-wise graph miners AGM (Inokuchi
et al., 2003) and FSG (Kuramochi and Karypis, 2004) define a canonical code from adjacency
matrices. Essentially, all subgraphs are stored in a data structure that is indexed according to this
canonical code, and duplicates are avoided by computing for every candidate the canonical code.
The approaches of AGM and FSG differ in their definition of size: AGM grows graphs by adding
nodes, FSG by adding edges.

Other graph miners search depth-first, but their enumeration strategy can easily be modified for
use in a level-wise algorithm (Yan and Han, 2002; Huan et al., 2003; Nijssen and Kok, 2004). Also
these algorithms use a canonical code, but do not require the use of an indexed data structure. An
algorithm for enumerating graphs surrounding a node in a network was proposed by Leskovec et al.
(2006). Again, this algorithm used a canonical code.

Unfortunately, currently no polynomial algorithm is known to compute a canonical code; if one
was known, we would be able to solve the graph isomorphism problem in polynomial time. Overall,
this means that in all existing graph mining algorithms exponential time can be spent between two
graphs that are inserted in the set of candidates.

Enumeration algorithms for which this is not the case, that is, algorithms that solve an enumera-
tion problem such that between any two enumerated solutions polynomial time is spent (in terms of
the largest enumerated solution), are known as algorithms with polynomial delay. To the best of our
knowledge, all algorithms that have been proposed in the graph mining literature for enumerating
graphs in general do not have polynomial delay. Only for restricted classes of graphs, such as trees
and outerplanar graphs, algorithms with polynomial delay are known (Chi et al., 2005; Horváth
et al., 2006).

However, the fact that graph isomorphism is not known to be polynomially computable, does
not imply that graph enumeration cannot be solved with polynomial delay. Even though ignored
in the data mining and machine learning literature, a polynomial algorithm for enumerating graphs
does exist and was proposed by Goldberg (1992).

The problem with this algorithm is that it solves a rather simple enumeration problem: given
a bound on the size of the graphs to enumerate, Goldberg’s algorithm lists all graphs of this size
with polynomial delay. In the case of data mining and machine learning, we are dealing with more
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complicated monotonic constraints that are data-dependent. We will show in the next section that we
can create databases such that the set of graphs to enumerate does not fulfill the basic assumptions
that need to be satisfied in Goldberg’s algorithm. Even worse, we will see that this type of data is
very common.

It should be stressed that this paper only studies the candidate generation of graph mining al-
gorithms; it does not study the frequency evaluation. For general graphs the frequency evaluation
also takes exponential time; a general frequent graph miner which uses our enumeration algorithm
will still have exponential delay due to the fact that frequency evaluation is still exponential. This
article proposes an improvement only of the candidate generation phase. The key insight is that we
devised a graph enumeration algorithm which does not use canonical codes to perform this task.

3. Goldberg’s Algorithm

In this section we briefly discuss the key points in the algorithm of Goldberg (1992), which shows
why this algorithm cannot be used in a pattern mining setting.

Goldberg’s algorithm aims at listing all graphs with n nodes, and makes a distinction between
easy and hard graphs. Easy is a graph g that satisfies at least one of these two properties:

• g has a vertex with degree n−1, that is, at least one vertex is connected to all other vertices;

• g has only one vertex, say v, of maximum degree and g−v is rigid, that is, the graph g−v has
only one isomorphism with itself (called the identity automorphism in Section 6).

An example of a graph that is never rigid, is a path.
Let E(n) be the set of easy graphs with n nodes, and U(n) the set of all graphs with n nodes,

then it was shown by Goldberg that
2|E(n)|≥ |U(n)|.

This property implies that a large fraction of the graphs to enumerate are in fact easy. It was then
shown that E(n) can be listed with polynomial delay, and that H(n) =U(n)\E(n) can be listed in
O(n4|U(n)|) time steps, where |U(n)| is exponential in n but linear in the number of solutions. The
main idea is then to interleave these two methods. The method which lists easy graphs, makes sure
that the delay is polynomial. The other method is allowed to spend an exponential number of steps
between consecutive graphs, but these steps are spread over several iterations of the method that
lists easy graphs. Effectively this gives an algorithm with polynomial delay.

It is clear that this method fundamentally relies on the property that many graphs are ‘easy’.
This property does not hold for sets of graphs defined by a monotonic predicate. Let us illustrate
this for the monotonic constraint that every node in a graph has a degree of at most three. If n> 3,
it is easily seen that

• as the degree is at most 3, the number of graphs that contain a vertex that is connected to all
other vertices is independent of n;

• every graph g that contains a single node v of maximum degree 3, consists, after removal of
v, only of a set of (possibly unconnected) paths, hence g− v is not rigid.

Consequently, E(n) is a constant independent of n, while U(n) grows with n. The condition of
Goldberg’s approach is therefore not satisfied for this class of graphs.
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Moreover, to list all graphs in H(n) in time O(n4|U(n)|), it is assumed that the average size of
the automorphism groups of the elements ofU(n) is bounded. However, one can find subclasses for
which this bound is not polynomial.

The most popular application of graph mining algorithms is in chemistry (Horváth et al., 2006).
Most of the graphs in these databases have a degree bounded by four, and a majority of the subgraphs
that need to be enumerated have a degree bounded by three. Thus, we do not believe that the
conditions for Goldberg’s method are satisfied in such data.

4. Problem Statement

Our problem setting has two parameters:

• an augmentation operator, which takes as input a graph, and outputs a set of augmentations of
this graph, and whose closure, starting from a given set of graphs, describes a class of graphs;

• a predicate which restricts this class.

For instance, the augmentation operator can be used to describe the class of connected or uncon-
nected graphs, while the boolean predicate can restrict this class further to those graphs that have
bounded degree.

More formally, we will denote by VE the set that contains all pairs (rV ,rE) where rV is a
set of vertices and rE a set of edges (not necessarily between vertices in rV ). We will use set
operators on elements of VE to denote the corresponding operations on their components, for
example, (rV ,rE)∪ (r′V ,r′E) = (rV ∪ r′V ,rE ∪ r′E). Again, V (r) and E(r) describe the components of
an element r ∈ VE . An augmentation operator "+ is a function that takes as input a graph, and
outputs a set of descriptions of possible augmentations. This set is a subset of VE . Every element
r ∈ "+(g) describes a new graph (V (g)∪V (r),E(g)∪E(r)), abbreviated by g+ r, that we call a
child of g.

An example of an augmentation operator is

"+
t (g) = {({vnew},{{v,vnew}}) |v ∈V (g)};

where vnew is a new vertex (not belonging to V (g)). This operator adds a new vertex and connects
it to an existing vertex. We can use this operator to describe the set of all (connected) trees. The
minimal graph on which we apply the operator is in this case the graph with one node1t = ({v}, /0);
in general, when we use one graph as the minimal element, we will denote this initial graph with1.

The following operator enumerates all graphs:

"+
a (g) = {({vnew}, /0)}∪{( /0,{{v1,v2}})|v1,v2 ∈V (g)∧{v1,v2} .∈ E(g)}. (1)

with 1a = ( /0, /0), while the following allows for enumerating all connected graphs:

"+
c (g) = "+

t (g)∪{( /0,{{v1,v2}})|v1,v2 ∈V (g)∧{v1,v2} .∈ E(g)}. (2)

with 1c = ({v}, /0).
As we can see in these examples, the vertices occurring in edges E(r) do not have to occur in

V (r). Still it is useful to determine the entire set of vertices involved in an augmentation. For this
we use the notation V ∗, that is, V ∗(r) = V (r)∪ {v | ∃e ∈ E(r) : v ∈ e}. Observe that the example
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operators output a number of augmentations that is bounded by a polynomial in the size of g, and
that for each r, the size of the set V ∗(r) is bounded by a constant.

The class of graphs defined by taking the closure of the augmentation operator on the minimal
element is denoted by L"+ (which we shorten further to La and Lc for the classes defined by "+

a
and "+

c ). The operator "+ defines an ancestry relation between the graphs. This relation is a partial
order.

The second parameter of our problem setting is a predicate p on graphs. The set of graphs g in
L"+ such that p(g) is true is denoted by L"+,p. We only consider predicates that cannot distinguish
between isomorphic graphs, that is, if g( g′ then p(g) = p(g′). We call a predicate monotonic w.r.t.
an augmentation operator "+ if for every graph g ∈ L"+,p it also holds that g′ ∈ L"+,p for every
g′ that is an ancestor of g. For instance, the predicate that tests if a graph has bounded degree, is
monotonic under "+

a as defined in (1).
In this article, we consider the following problem.

Problem 1 Given are an augmentation operator "+ and a predicate p which is monotonic w.r.t.
"+. Then, enumerate all elements in L"+,p such that exactly one representative of every equivalence
class under isomorphism of L"+,p is enumerated.

In the next section we determine a set of sufficient conditions on the augmentation operator and the
monotonic predicate that have to be fulfilled in order to obtain an algorithm with polynomial delay.

5. Main Result

The augmentation operator that we introduced in the previous section, generates the children of a
graph. Our algorithm relies on the existence of an operator which can inverse this operator. We call
this operator a reduction operator. The reduction operator generates the parents of a graph.

Formally, the definition of a reduction operator is similar to that of an augmentation operator;
the input of a reduction operator "− is a single graph, its output consists of a subset of VE . We
call each element r ∈ "−(g) a reduction of g. It defines a graph (V (g)\V (r),E(g)\E(r)), which is
abbreviated by g− r.

For instance, in the case of connected graphs, we can define the following reduction operator:

"−c (g) = {r |r = ( /0,{{v1,v2}})∧{v1,v2} ∈ E(g)∧{v1,v2} is in a cycle}
{r |r = ({v1},{{v1,v2}})∧{v1,v2} ∈ E(g)∧ v1 has degree 1} (3)

Let L be a class of graphs. Then, an augmentation schema on L is a pair ("+,"−) of an
augmentation operator "+ and a reduction operator "−, such that

• ∀g ∈ L ,∀r ∈ "+(g) : g+ r ∈ L ∧g∩ r= ( /0, /0), that is, "+(g) contains augmentations that can
be added to g to obtain a larger graph (child);

• ∀g ∈ L ,∀r ∈ "−(g) : g− r ∈ L ∧ r⊆ g, that is, "−(g) contains reductions that can be removed
from g to obtain a parent;

• ∀g ∈ L ,∀r ∈ "+(g) : r ∈ "−(g+ r), that is, the effects of the additions r ∈ "+(g) can be
inverted by a deletion from "−(g+ r);
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• ∀g ∈ L ,∀r ∈ "−(g) : ∃r′ ∈ "+(g− r),∃! :
(

(g− r)+ r′ (! g
)

∧
(

Ig−r ⊆ !
)

, that is, deletions
r ∈ "−(g) can be inverted by additions from "+(g− r). Here Ig−r = {(v,v) | v ∈V (g− r)} is
the identity permutation over the vertices of g− r;

• ∀g1,g2 ∈ L : g1 (! g2 ⇒ ∀r ∈ "+(g1) : !(r) ∈ "+(g2), that is, "+ (and hence also "−(g)) is
invariant to isomorphisms.

Given a graph g and two reductions r1,r2 ∈ "−(g), we are interested in applying both r1 and r2
to g. However, sometimes this is not possible directly. Consider for instance the class of connected
graphs Lc, the graph g = ({1,2,3},{{1,2},{2,3},{3,1}}), and the reductions r1 = ( /0,{{1,2}})
and r2 = ( /0,{{2,3}}). We have f1 = g− r1 = ({1,2,3},{{2,3},{3,1}}). We cannot apply r2 to f1
as this would result in a graph which is not in Lc due to the isolated node 2; r2 is not an allowed
reduction in g− r1. We can however map the reduction r2 to a reduction that is allowed; instead of
r2 we use ({2},{{2,3}}), which is a valid deletion from f1. This translation of r2 to the context
of g− r1 for "−c is denoted by r2 ↑

g
c r1. More formally, for connected graphs Lc, we define r2 ↑gc r1

to be equal to r2, except in the case where r1 = ( /0,{v,u1}), r2 = ( /0,{v,u2}) and v has degree 2, in
which case r2 ↑gc r1 = r2∪ ({v}, /0). Then, (g− r1)−

(

r2 ↑gc r1
)

= ({1,3},{{1,3}}).
We now more formally introduce the properties of these reduction translators. A reduction

translator is an operator · ↑· · mapping graphs g and reductions r1,r2 ∈ "−(g) to a new reduction
r2 ↑g r1 satisfying

∀g,r1,r2 : r2 ⊆ r2 ↑g r1, (4)

that is, after the translator is applied the reduction can only become larger,

∀g,r1,r2 : r1∩ (r2 ↑g r1) = ( /0, /0), (5)

that is, no element is removed twice, and

∀g,r1,r2 : (r2 ↑g r1)∪ r1 = (r1 ↑g r2)∪ r2, (6)

that is, reversing the order does not affect which vertices and edges are removed.
To allow for an efficient enumeration of graphs by our algorithm, we require that the augmenta-

tion schema of the class of graphs fulfills a density property. This property is based on the graph of
parents. The graph of parents GoP"−,↑(g) of a graph g is defined as follows:

• V (GoP"−,↑(g)) = "−(g), that is, every reduction for g corresponds to a vertex in its graph of
parents.

• For any two r1,r2 ∈ V (GoP"−,↑(g)), the graph GoP"−,↑(g) has edge {r1,r2} iff (r1 ↑g r2) ∈
"−(g− r2) and (r2 ↑g r1) ∈ "−(g− r1).

The intuition is that there is an edge between two nodes in the graph of parents, iff it is possible to
go from one parent to the other by first applying a reduction, and then applying an augmentation.
An example is shown in Figure 1.

We say that ("+,"−,↑) is a dense augmentation schema for L iff

1. ("+,"−) is an augmentation schema for L and ↑ is a reduction translator.

2. for every non-minimal graph g ∈ L it holds that either the graph of parents GoP"−,↑(g) is
connected, or g− r is a minimal element of L for all r ∈ "−(g) (in most cases, g− r = 1).

915



RAMON AND NIJSSEN

r5
r4

r1 r3

r2

r4

r2
r3

r5

gr1

c
g

(g-r1)-(r4     r1) (g-r5)-(r3     r5)
c
g

Figure 1: On the bottom-left, a connected graph g is drawn. In the middle, there is the graph of
parents GoP"−c ,↑c(g). For every of its vertices ri, the corresponding g− ri of g is drawn. For the
edges {r1,r4} and {r3,r5}, the common (grand)parent is drawn. Note that there is no edge between
for example r3 and r4 as (g− r3)− (r4 ↑gc r3) is not a connected graph.

Let us return to the examples of graph classes. For the class of all graphs La, we define r1 ↑ga r2 =
r1. It is easy to show that GoP"−a ,↑a(g) is a clique and that ("+

a ,"−a ,↑a) is a dense augmentation
schema. We can also prove for connected graphs that ("+

c ,"−c ,↑c) is a dense augmentation schema
(see the appendix for a proof).

The main result of this paper is the following:

Theorem 1 Given an augmentation operator "+ and a predicate p. We can solve problem 1 with
polynomial delay if the following conditions are satisfied:

• there exists a reduction operator "− and a reduction translator ↑ such that ("+,"−,↑) is a
dense augmentation schema;

• the predicate p is monotonic w.r.t. "+ over L"+;

• "+, "− and p can be evaluated in polynomial time in their arguments;

• the number of vertices in V ∗(r) for every possible r resulting from "+ and "− is bounded by
a constant.

There are many classes of graphs for which these conditions are fulfilled. Below we give a
non-exhaustive list of examples.

5.1 Monotonic Classes

Any predicate p that is monotonic w.r.t. edge and vertex deletion and that can be evaluated in
polynomial time defines a class L"+

a ,p that satisfies the conditions of Theorem 1, as ("+
a ,"−a ,↑a) is a

dense augmentation schema, and all operations are polynomial. Hence, our algorithm can efficiently
enumerate all these monotonic classes.

An interesting special case are the minor-closed classes of graphs. The minors of a graph can
be obtained by deleting edges, vertices, or identifying adjacent vertices into a single new vertex that
is adjacent to all vertices that were adjacent to any of the identified original vertices. A class is
minor-closed if for any graph g all its minors are also included in the class. Some classes of graphs
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can be characterized by forbidden minors, that is, minors that none of the graphs are allowed to
have. One example is the class of all planar graphs (the forbidden minors being the 5-clique K5 and
the complete bipartite graph K3,3). It can be determined in polynomial time if a graph contains a
given forbidden minor, and minor-closed classes of graphs are monotonic for "+

a .

5.2 Connected Graphs

It is proven in the appendix that the augmentation schema ("+
c ,"−c ,↑c) is dense and its operators

are polynomial. It follows that connected graphs can be enumerated with polynomial delay. Any
predicate which is closed under edge and vertex deletion is also monotonic w.r.t. "+

c . Therefore, for
any monotonic predicate p, our algorithm can list all connected graphs satisfying p with polynomial
delay.

5.3 Hereditary Classes with Bounded Degree

A predicate p is hereditary iff for every graph g1 such that p(g1) holds, p(g2) holds for any induced
subgraph g2 of g1. As pointed out in Section 2, an induced subgraph must contain all edges between
a selected set of nodes in the original graph. A hereditary predicate is monotonic w.r.t. the following
augmentation operator:

"+
h (g) =

{(

{vnew},{{vnew,v′}|v′ ∈V}
)

| V ⊆V (g)
}

,

where again vnew is a new vertex not in V (g). The corresponding reduction operator should remove
every single vertex as well as all edges emanating from it. It can be shown that the resulting augmen-
tation schema is dense. However, the augmentation operator "+

h outputs a number of augmentations
exponential in the size of the input. If we restrict ourselves to graphs with bounded degree, however,
we can enumerate the resulting class with polynomial delay.

One example is the class of claw-free graphs. A graph is called claw-free if the graph

({v1,v2,v3,v4},{{v1,v2},{v1,v3},{v1,v4}})

is not one of its induced subgraphs. Claw-freeness is not a monotonic property in L"+
a
, as a subgraph

of a graph without claws can contain a claw: for instance, consider the clique K5; this graph does
not have a claw as induced subgraph (all its induced subgraphs also being cliques), but many of its
(ordinary) subgraphs are claws.

In general, claw-freeness is a hereditary property, as every induced subgraph of a graph without
claws, is claw-free. To the best of our knowledge no polynomial algorithm is currently known
for enumerating all claw-free graphs even if we do allow for duplicates (Goldberg, 1992). Our
algorithm partially solves this problem by allowing for listing all claw-free graphs with bounded
degree.

6. Automorphism Groups and Bases

In order to avoid enumerating duplicates, we will use some theory on automorphism groups. In this
section, we will briefly review the necessary concepts.

An automorphism of a graph g is an isomorphism between g and itself. We will denote the
identity automorphism with Ig. In Figure 2, a graph gex with 8 vertices is shown, together with
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Figure 2: A graph gex and 6 of its automorphisms.

six of its automorphisms. An automorphism is a permutation of the vertices of g. The set of all
automorphisms of g equipped with composition of permutations forms a permutation group acting
on V (g). This group is called the automorphism group of g, which we denote with Aut(g).

Let P be a permutation group and let S ⊆ P. We say S is a set of generators of P iff every
element of P can be written as a composition of elements of S. We denote this fact with P =<
S >. For example, in Figure 2, {!1,!2,!3,!5} is a (non-minimal) set of generators of Aut(gex).
Automorphism !4 can be composed by !4 = !3 ◦!1 ◦!3. !6 can be composed as !6 = !1 ◦!3 ◦!1.

Let P be a permutation group acting on V and let v ∈V . The stabilizer of v in P is the subgroup
Pv = {!∈ P | !(v) = v}. Consider for example the automorphism group P=Aut(C5) on the 5-cycle
graph C5 = ({v1,v2,v3,v4,v5},{{v1,v2},{v2,v3},{v3,v4},{v4,v5}}). This group has 10 elements,
each of which can be decomposed by (possibly) a mirror permutation {(v1,v1),(v2,v5), (v5,v2),
(v3,v4),(v4,v3)} and rotations (0, 1 or more applications of {(v1,v2),(v2,v3),(v3,v4), (v4,v5),
(v5,v1)}). For any vertex v ∈ C5, the stabilizer Pv contains precisely 2 elements. E.g., Pv3 con-
tains the identity permutation and the mirror {(v3,v3),(v4,v2),(v2,v4),(v1,v5),(v5,v1)}

One can apply the definition of stabilizers recursively; we will denote with Pv1,...,vk the stabilizer
of vk in Pv1,...,vk−1 . A sequence of points B = [v1 . . .vn] of V is called a base for permutation group
P iff Pv1,...,vn−1 only contains the identity permutation. For example, in Figure 2, B1 = [3,1,6,8] is a
base for gex. Indeed, only the identity automorphism Igex leaves all four vertices 1, 3, 6 and 8 fixed.
Also B2 = [3,1,6,8,2,4,5,7] is a base for gex.

Let P be a permutation group, B a base of P and S⊆ P. S is called a strong generating set related
to B= {v1, . . . ,vk} if it contains generators for all permutations in Pv1,...,vl for 1≤ l ≤ k. We will use
the abbreviation BSGS for a pair (B,S) where B is a base and S is a strong generating set related to
B.

Consider the base B1 = [3,1,6,8] for the group Aut(gex) in Figure 2. We can construct a
strong generating set by first choosing generators for Aut(gex)3,1,6,8, then choosing generators for
Aut(gex)3,1, Aut(gex)3,1,6 and so on until we have generators for Aut(gex). Each time, we use the
generators of the subgroup and extend them to a set of generators for the larger group. In our exam-
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ple, {!4} is a set of generators for Aut(gex)3,1,6, Next, {!4,!5} is a set of generators for Aut(gex)3,1
and {!4,!5,!1} is a set of generators for Aut(gex)3. Finally, {!4,!5,!1,!3,!2} is a set of genera-
tors for Aut(gex) and therefore a strong generating set for B.

A BSGS can represent a permutation group acting on n elements using only O(n log(n)) genera-
tors. For example, even though in Figure 2, the automorphism group Aut(gex) contains 2∗3∗2∗3∗
2= 72 elements, only 5 generators are needed to represent it. Moreover, an O(n5) algorithm exists
to transform a BSGS into a BSGS with a different base (Butler, 1991). In Figure 2, consider the
BSGS ([3,1,6,8],{!4,!5,!1,!3,!2}) and suppose we want a strongly generating set for the base
[3,1,8,6]. Then, we have to combine the generators of Aut(gex)3,1,6 and Aut(gex)3,1. One possible
strongly generating set is {!4 ◦!5,!5,!1,!3,!2}.

In general, it is easy to see that we can reduce any strong generating set for a permutation group
on n elements to at most n(n− 1)/2 elements. Let B = {v1, . . . ,vk} be a base (k ≤ n), and let Si
(1 ≤ i ≤ k) be the subset of the strong generating set containing all generators fixing v j for all
1≤ j < i but mapping vi on a different element. Now for all i from 1 to k we can do the following.
As long as any Si has more than n− i elements, there are two permutations p1, p2 ∈ Si such that
p1(vi) = p2(vi), and we can remove p2 from Si and add p2 ◦ p−11 to Si+1. The permutation group
generated by the new strong generating set ∪iSi remains the same, as any permutation requiring p2
in its construction can still be constructed with p2 ◦ p−11 ◦ p1. After performing such replacements
until all Si contain at most n− i elements, we have a strong generating set of size at most n(n−1)/2.

An important property is that given a strong generating set for some base, one can efficiently
compute a strong generating set for another base. A basic step in such base change is to interchange
two vertices, that is, given a strong generating set for B = {v1 . . .vn}, find a strong generating set
for B′ = {v1 . . .vl−1,vl+1,vl,vl+2 . . .vn} for some l with 1 ≤ l < n. Let S be a strong generating
set with S = ∪ni=1Si where Si contains the generators fixing v j (1 ≤ j < i) and not fixing vi. The
only part of S that should be changed when swapping vl and vl+1 in the base are Sl and Sl+1. Let
S′ = S′l ∪ S′l+1 ∪

S

i.∈{l,l+1} Si be the strong generating set for the new base B′, where S′l fixes vi
(1 ≤ i < l) and S′l+1 fixes vi (1 ≤ i < l) and vl+1. One can construct S′i by ensuring it contains
permutations that map vi+1 on all its possible images. These images can be found with a so-called
reachability graph. This means one starts with a set of possible images I = {vi+1}, and as long as
there is a permutation in ∪ni=lSi which maps an element v∈ I on an element v′ .∈ I, one adds v′ to I; in
the mean time, for each element v′ one maintains a corresponding permutation. After constructing
S′l , one can construct S′l+1 by starting with S′l+1 = Sl ∪ Sl+1 and then removing any permutations
from it that are redundant. In this way, it is possible to find in polynomial time a strong generating
set for a base in which two vertices have been swapped. By iterating this procedure, it is possible
to efficiently find a strong generating set for any new base. Note that we here only described one
naive strategy. In the literature, much more advanced algorithms have been proposed, which allow
to perform these operations significantly more efficiently.

7. Algorithm Outline

Our algorithm enumerates the graph ordered by size, that is, no graph will be output before all its
ancestors under "+ are listed. Indeed, we can show that if ("+,"−,↑) is a dense augmentation
schema, every graph has a unique size, that is, there is a function size that maps every graph to an
integer such that for every g in L"+ it holds that r ∈ "+(g) implies that size(g+ r) = size(g)+ 1.
This results allows us to order the graphs that we need to enumerate level-wise.
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Superficially, the idea is then as follows. We maintain graphs that we are enumerating in a
queue. Initially, this queue contains the graph1. Repeatedly, we pop a graph from the queue, apply
the augmentation operator, and those children which are not equivalent to any graph in the queue,
are pushed in the queue. Due to the level-wise enumeration, equivalent graphs must be in the queue.
We need to address two issues:

• how do we avoid that we insert a child which is equivalent to a child of another graph?

• how do we avoid that we insert two children of the same graph that are equivalent with each
other?

To make these computations possible in polynomial time, we also keep all parents of the graphs
in the queue in memory. For each graph, both those in the queue and their parents, we store the
following information:

• a representation for the graph g

• for each augmentation (and reduction) r of g, we store r together with an isomorphism map-
ping ! = aug(g,r) (resp. ! = red(g,r)) such that !(g+ r) (resp. !(g− r)) is the stored
representative of the isomorphism class of g+ r (resp. g− r). Until we assign the aug(g,r)
and red(g,r) variables with a value, we will assume them initialized aug(g,r) =′?′ and
red(g,r) =′?′. If p(g+ r) is false, with p the monotonic predicate of interest, we will as-
sign aug(g,r) the value nil.

• a base and strong generating set (BSGS) bsgs(g) of the automorphism group Aut(g).

We output a graph when we pop it from the queue. Furthermore, we determine the BSGS at that
point. The BSGS allows us to compute for each pair of augmentations of a graph if they result in
equivalent graphs, and thus allows us to avoid two equivalent children of the same graph from being
pushed in the queue.

To avoid that two different graphs insert children in the queue that are equivalent, we make sure
that the first parent of a child marks at least one augmentation in each of the other parents of the
child. When this alternative parent is popped from the queue later, it can use this information to
avoid pushing this child and all its equivalent children.

To prove that this procedure is polynomial, we need to show that we can compute the BSGS in
polynomial time, and that we can find all parents of a child in polynomial time. Let us start with
this second point.

One of the conditions of Theorem 1 is that the augmentation schema is dense, that is, that the
graph of parents is connected; hence we can compute a spanning tree for the graph of parents. If we
create a child, we know the parent that generated this child; by traversing the spanning tree starting
from the reduction achieving this parent, we can traverse all possible reductions. At the same time,
for every step we take in this spanning tree, we can determine a corresponding stored parent: every
step in the graph of parents corresponds to a reduction followed by an augmentation, for which we
have stored associated permutations that point to stored representatives.

To compute the BSGS the key observation is that we can incrementally compute the BSGS of
a graph from the BSGS of one of its parents, in a similar way to the algorithm of Goldberg (1992).
Given a child and its parent, we perform a base change for the parent, such that we obtain permu-
tations in which the vertices contained in the augmentation are stabilized. This gives generators
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for all vertices in the child, except those contained in the augmentation. By traversing all parents
(as computed when the child was created), we can determine permutations and images for these
vertices as well. The resulting set of generators can be reduced to a BSGS in polynomial time.

Details of this algorithm, including optimizations and proofs of complexity, can be found in the
appendix.

8. Conclusions

We introduced an algorithm for listing graphs that makes sure that no two equivalent graphs are
being output. We showed that for a well-defined set of conditions on a class of graphs to enumerate,
this algorithm is correct and achieves polynomial delay. Classes of graphs that can be enumerated
with low run-time complexity are connected graphs, planar graphs, minor closed graphs, mono-
tonic classes of graphs in general, and hereditary classes with bounded degree. To the best of our
knowledge, this is the first algorithm to be general enough to be able to list this range of classes
efficiently, and for several of these classes no polynomial delay algorithm was presented before. In
the appendix, we show that our algorithm runs with delay O(n5) for the class of all graphs, which
is an improvement over the known method of Goldberg (1992), which achieves a delay of O(n6),
where n is the number of vertices in the largest graph that is listed.

Most pattern mining algorithms consist of a candidate generation part and an interestingness
evaluation part. This work contributes to the theory of pattern mining by providing a polynomial-
delay algorithm for the first of these two common tasks. Also, our algorithm can be used as a generic
candidate pattern generator for a wide range of algorithms for mining structured patterns, avoiding
the need to research specialized canonical forms and enumeration strategies.

In contrast to other graph pattern mining systems, our algorithm provides at the same time a
data structure in which one can look up a pattern in polynomial time. Indeed: given a pattern g,
one can construct g from the empty graph by a sequence of augmentations, and then follow the
augmentation pointers through the data structure. Efficient lookup could be very useful when the
set of patterns resulting from a pattern mining step is queried by the user or by algorithms taking
this set of patterns as input.

Even though its run-time complexity is favorable, the space complexity of our algorithm is an
issue. The space required is polynomial in the size of the output; given that the number of listed
graphs can be exponential, the storage requirements for large classes of graphs can be exponential.
However, in those applications where the listed graphs need to be stored anyway, such as applica-
tions in data analysis, this drawback is of minor concern. Moreover, we know of no other general
approaches that obtain a better space complexity.

As future work, we conjecture that the run-time complexity of our algorithm can be reduced
further, at least to a delay of O(n4) for the class of all graphs and the class of connected graphs,
through the definition of a canonical representation over the graphs. Furthermore, we hope to re-
duce the space requirements of our algorithm in problem settings where not all listed graphs are
required to be stored, and plan to implement it in concrete data mining systems. Finally, relieving
the constraint of bounded degree for hereditary classes remains an interesting problem.
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Appendix A. Algorithmic Details and Proofs

In this appendix we provide details of our algorithm and proofs for our results.

A.1 Dense Augmentation Schemas

An important property of a dense augmentation schema is the following:

Lemma 2 Let L be a class of graphs, and let ("+,"−,↑) be a dense augmentation schema for L .
Then, there exists a function size : L → N such that ∀g ∈ L ,∀r ∈ "+(g) : size(g+ r) = size(g)+1.

Proof We will say that a graph g can be constructed from 1 in n steps if there exists a sequence
1 = g0,g1, . . . ,gn = g such that gi+1 = gi+ ri for some ri ∈ "+(gi) for i= 0 . . .n−1.

We first show that there is no graph g which both can be constructed from 1 in n1 steps and can
be constructed from 1 in n2 steps for two distinct numbers n1 and n2.

Assume that such a graph g exists, and consider a minimal such graph g (according to the
order induced by the augmentation schema). Then, there exists a parent g− r′1 of g which can
be constructed from 1 in n1− 1 steps, and a parent g− r′2 of g which can be constructed from
1 in n2− 1 steps. As the graph of parents GoP"−,↑(g) of g is connected, there must exist two
r1,r2 ∈ "−(g) such that (r1,r2) is an edge of GoP"−,↑(g), g− r1 can be constructed from 1 in
n′1 steps, g− r2 can be constructed from 1 in n′2 steps and n′1 .= n′2. As (r1,r2) is an edge of
GoP"−,↑(g), (r1 ↑g r2) ∈ "−(g− r2) and (r2 ↑g r1) ∈ "−(g− r1), there exists some graph p such that
p ( (g− r2)− (r1 ↑g r2) and p ( (g− r2)− (r2 ↑g r1). Let np be the number of steps needed to
construct p from 1. Then, remembering that augmentation schemas are isomorphism-invariant, we
can conclude that both g− r1 and g− r2 can be constructed from 1 in np+1 steps. Now as n1 .= n2
either n1−1 .= np+1 or n2−1 .= np+1. Without loss of generality we can assume n1 .= np+1. This
means that g−r1 can be constructed from1 in both np+1 and n1−1 steps, which is a contradiction
with the assumption that g is a minimal graph for which it holds that it can be constructed from 1
in two different numbers of steps.

Therefore, we conclude that no such graph exists. Hence, in order to obtain a function size
satisfying the requirement, one can define size(1) to be 0 and for every g, size(g) to be the number
of steps in which g can be constructed from 1.

In Section 5 we stated the following.

Lemma 3 ("+
c ,"−c ,↑c) is a dense augmentation schema.
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Proof We consider the different elements of the definition of a dense augmentation schema.
First, remember that ("+

c ,"−c ) was defined by Equation (2) and (3) (see page 913 and 914). This
is clearly an augmentation schema. Also, we defined r1 ↑gc r2 to be equal to r1, except in the case
where r1 = ( /0,{v,u1}), r2 = ( /0,{v,u2}) and v has degree 2. In that case r1 ↑gc r2 = r1∪ ({v},{}). It
is easy to see that ↑c satisfies Equations (4), (5) and (6), and hence is a reduction translator.

It remains to be shown that for every non-minimal graph g ∈ Lc it holds that either the graph of
parents GoP"−c ,↑c(g) is connected, or g− r is the minimal element of Lc for all r ∈ "−(g).

Consider a connected graph g with at least 2 edges. We prove that GoP"−c ,↑c(g) is connected.
If g is a tree, then every reduction in "−(g) removes a leaf and the edge adjacent to it. By the
definition of ↑c, r1 ↑gc r2 = r1 and r1 ∈ "−c (g− r2) will hold for any distinct r1,r2 ∈ "−c . So if g is a
tree, GoP"−c ,↑c(g) is a clique.

If g is not a tree it contains at least one simple cycle C. We can partition "−c (g) into two sets R1
and R2 such that R1 contains all reductions removing an edge from the cycle C, and R2 contains all
other reductions. For any r1 ∈ R1 and r2 ∈ R2, it holds that removing r2 from g− r1 does not discon-
nect g and vice-versa. So such two r1 and r2 are adjacent in GoP"−c ,↑c(g). Therefore, GoP"−c ,↑c(g)
is certainly connected if #R2 ≥ 1. On the other hand, if #R2 = 0, g is a simple cycle. In that case,
two reductions of R1 are adjacent iff they remove two adjacent edges of the cycle. So in that case,
GoP"−c ,↑c(g) is a cycle and hence connected.

A.2 Algorithm

In this section we explain in more detail our algorithm. As stated in Section 7, for each graph, we
store the following information:

• a representation for the graph g

• for each augmentation and reduction r of g, we store r together with an isomorphism mapping
aug(g,r) (resp. red(g,r)) that maps g+ r (resp. g− r), to the stored representative of their
isomorphism class. In the algorithm, we use aug(g,r) and red(g,r) as functions that return
the isomorphism. When the isomorphism is not yet computed, aug(g,r) and red(g,r) will
return ′?′. If p(g+ r) is false, aug(g,r) returns the value nil.

• a base and strong generating set (BSGS) bsgs(g) of the automorphism group Aut(g).

Algorithm 2 shows the high level algorithm. It repeatedly takes an unprocessed graph g+ r and
processes it; g+ r must be minimal according to the size function from Lemma 2. A graph which
has been processed remains in memory till it is no longer needed in the computation for one of its
ancestors.

As shown by Algorithm 3, the processing of a graph g includes computing a BSGS and the
automorphism group of g, computing reachability graphs of Aut(g) (line 3), finding isomorphic
variants of children (lines 8-12), and examining all other children of g including constructing all
red(·, ·) and some aug(·, ·) links (lines 13-24). We will describe each of the steps of the algorithm
below.

Let us first consider what is known at the point PROCESS GRAPH(g,r0) is called. First, all
graphs h for which p(h) and size(h) < size(g) have been processed and outputted, and the values
for aug(h, ·), red(h, ·) and bsgs(h) have been computed. Second, all graphs f for which p( f ) and
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Algorithm 2 Highlevel algorithm
Require: a graph class L , a monotonic predicate p and a dense augmentation schema ("+,"−,↑)
Ensure: output all g ∈ L with p(g)

1: Re fQueue← {(1,( /0, /0))}
2: while Re fQueue .= /0 do
3: Let (g,r) ∈ Re fQueue such that size(g+ r) is minimal
4: Re fQueue← Re fQueue\{(g,r)}
5: PROCESS GRAPH(g,r)
6: Output g
7: end while

size( f ) = size(g) have either entered Re fQueue or are fully processed. In any case, all values
red( f , ·) have been computed.

Let SV denote the bound on the number of vertices and edges that can occur at most in any
augmentation r ∈ "+(g) with g ∈ L . Then we have the following lemma.

Lemma 4 At line 2 of Algorithm 3 one can compute a BSGS forAut(g) in time O(|V (g)|5+ |V (g)|3 ·
|"−(g)| ·SV !).

Proof The case g=1 is trivial, so we assume g .=1 and r0 ∈ "−(g). A parent g− r0 is known, and
so is bsgs(g− r0) (as size(g− r0) = size(g)−1 and hence g− r0 has been fully processed). By per-
forming a base change, we can obtain a BSGS for the stabilizerAut(g)V ∗(r0) which fixes all elements
in V ∗(r0); please note that V ∗(r) contains all nodes involved in the reduction. Hence, we compute a
base in which all nodes involved in the reduction are fixed. This is possible in time O(|V (g)|5). We
can then extend the set of generators corresponding to this BSGS to a set of generators for Aut(g)
by adding for every coset of Aut(g)V ∗(r0) in Aut(g) one representative. Each such representative !
maps r0 on some different !(r0). Graphs g− r0 and g−!(r0) are isomorphic, which is reflected
by red(g,r0)(g− r0) = red(g,!(r0))(g−!(r0)); here, red(g,r0) returns the stored permutation for
reduction r0 on graph g, which after application on the nodes and edges in graph g− r0 yields the
same graph as for the equivalent reduction !(r0). One can therefore find all such representatives
by iterating over all r ∈ "−(g), checking whether red(g,r0)(g− r0) = red(g,r)(g− r) (all red(g, ·)
were computed earlier) and for all of these listing all possibilities to extend red(g,r)−1 ◦aug(g,r0)
to an automorphism (red(g,r)−1 ◦aug(g,r0))∪!0 (where !0 :V (r) →V (r0)). In total, the number
of representatives of cosets of Aut(g)V ∗(r0) is bounded by |"−(g)| · SV !. One can eliminate the re-
dundant automorphisms in this list in time O(|V (g)|3 · |"−(g)| ·SV !).

Line 3 of Algorithm 3 computes reachability graphs Qi, which are used in line 9 of the algo-
rithm to determine if two augmentations yield isomorphic graphs. These graphs help to exploit the
knowledge of the just computed BSGS bsgs(g) of Aut(g). A reachability graph is computed for the
number of nodes of graph g involved in the augmentation. In the case of (un)connected graphs, an
augmentation involves either one or two nodes of graph g, and hence a reachability graph is used
for i= 1 or i= 2. Qi can be computed in time O(i · |V (g)|i · |bsgs(g)|). As for a reduced BSGS we
have |bsgs(g)|≤ |V (g)|2, line 3 can be performed in time O(SV · |V (g)|SV+2).
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Algorithm 3 Processing one graph
1: procedure PROCESS GRAPH(g,r0)
2: bsgs(g) ← Compute BSGS(g,r0)
3: Ensure reachability graph Qi exists for g where i= |V ∗(r0)∩V (g)|,
V (Qi) = (V (g))i, E(Qi) = {(W,!(W )) |W ∈V (Qi)∧! ∈ bsgs(g)}

4: Riso+ ← {r ∈ "+(g) | aug(g,r) .=′?′}
5: done← FALSE
6: while not(done) do
7: if Riso+ .= /0 then
8: Let r ∈ Riso+
9: for all r′ ∈ "+(g) s.t. ∃! : (∀v ∈V (g) : !(v) ∈V (g))∧g+ r (! g+ r′ do
10: aug(g,r′) ← aug(g,r)◦!−1
11: Riso+ ← Riso+ \{r′}
12: end for
13: else if ∃r ∈ "+(g) : aug(g,r) =′?′ then
14: s= g+ r
15: (ok,s par list) ← SEARCH PARENTS(g,r,s)
16: if ok∧ p(g) then
17: for all (r′,!′) ∈ s par list do
18: f ← !′(s− r′) ; aug( f ,!′(r′)) = !′−1 ; red(s,r′) = !′

19: Re fQueue= Re fQueue∪{(s,r)}
20: else
21: for all (r′,!′) ∈ s par list do
22: aug(!′(s− r′),!′(r′)) ← nil
23: end if
24: Riso+ ← Riso+∪{r}
25: else
26: done← TRUE
27: end if
28: end while
29: end procedure

It is possible that previous calls of PROCESS GRAPH have assigned a value already to some
of the aug(g, ·), and line 4 collects these augmentations so that their isomorphic variants can be
computed in lines 8-12.

Next, the while loop at line 6 runs until all aug(g, ·) values have been computed. As soon as a
new child is identified (either by previous calls to PROCESS GRAPH (line 4) or by newly examined
children (line 24) it is added to Riso+, and in the next iteration all its isomorphic variants are com-
puted. If Riso+ is empty, the r ∈ "+(g) for which aug(g,r) =′?′ are isomorphic to none of the r′ for
which aug(g,r′) has already been assigned a value and a new child is considered (lines 13-24).

We will first discuss the computation of isomorphic variants of an r ∈ Riso+ in line 9. Recalling
the definition, all r′ are searched for which there is a mapping ! such that (∀v ∈ V (g) : !(v) ∈
V (g))∧ g+ r (! g+ r′. One can do this as follows. First, use the reachability graph Qi (with i =
|V ∗(r)∩V (g)|) to find all possible images of V ∗(r)∩V (g) under the automorphism group Aut(g).
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Algorithm 4 search parents
1: procedure SEARCH PARENTS(g, r0, s)
2: Construct a spanning tree T for GoP"−,↑(s), the graph of parents of s
3: s par list ← {(r0, Ig)}}
4: Perform a depth-first search of T , starting at r0
5: for all edges (r1,r2) visited during the depth first search do
6: !← GET PARENT(s,r1,r2)
7: if != nil then return (FALSE,s par list)
8: s par list ← s par list ∪{(r2,!)}
9: end for
10: return (TRUE,s par list)
11: end procedure

Algorithm 5 Get one parent
1: procedure GET PARENT(s,r1,r2)
2: ! f1 ← ext(s par list(s,r1), Is)
3: f1 ← ! f1(s− r1)
4: !p ← ext(red( f1,! f1(r2 ↑s r1)),! f1)
5: p← !p((s− r1)−! f1(r2 ↑s r1))
6: Let r′1 ∈ "+(p) and !∗ : V (!p(r1 ↑s r2)) →V (r′1) such that (Ip∪!∗)(!p(r1 ↑s r2)) = r′1
7: if aug(p,r′1) = nil then return nil
8: else return ext(aug(p,r′1),(Ip∪!∗)◦!p)
9: end procedure

For each of these images of r, one can also compute one automorphism !g ∈ Aut(g) under which
!g(r) corresponds to the image, by following the edges of Qi. Then, one can check for every
r′ ∈ "+(g)whether there is a mapping !r :V (r)→V (r′) such that for != !g∪!r we have !(r) = r′.
Traversing Qi and computing the automorphisms !g along the way is possible in time O(|V (g)|i+1).
As i≤ SV and we do this at most once for every r ∈ "+(g), the total time spent here is bounded by
O(|V (g)|SV+1|"+(g)|).

Let us now consider the investigation of new children in lines 13-24 of Algorithm 3. For a
particular child s= g+ r, the algorithm first searches the parents f = s− r′ for all r′ ∈ "−(s). As we
explain below, if all parents of s satisfy the predicate p the algorithm is guaranteed to find all these
parents. The aug( f ,r′) variables have been assigned a value and depending on whether p holds for
s itself, the red(s,r′) variables have been assigned a value and it is added to the data structures and
to Re fQueue.

Finding other parents of a proposed child s = g+ r is detailed in Algorithms 4 and 5. Before
analysing this procedure and its consequences, we first explain some basic ideas. The key intuition
that enables an efficient enumeration is that we can efficiently identify the (already enumerated)
parents f2 of the candidate graph s together with a suitable isomorphism mapping ! such that s−
r2 (! f2 for every reduction r2 ∈ "−(s) by using the knowledge from Equation (6) that one can
obtain p = (s− r1)− (r2 ↑s r1) also by removing the parts in a different order: p = (s− r2)−
(r1 ↑s r2). Therefore, in Algorithm 5 we first remove some r1 ∈ "−(s) to obtain a known parent f1
of s, then go to a grand-parent p by removing a (translated) r2 from f1, and then go downwards
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Figure 3: Searching for parents

again from p to the unknown parent f2 (see Figure 3 for an illustration). In order to construct an
isomorphism between s− r2 and f2, isomorphisms between s− r1 and f1, between f1− (r2 ↑s r1)
and p and between p+(r1 ↑s r2) and f2 are first extended to cover the full set of vertices of s (the
ext(·, ·) function), and then composed (line 8).

In Algorithm 5 we have the following notation. Let !2 and !1 be bijections between sets of
vertices. Then, ext(!2,!1) is a bijection that maps any x for which !1(x) is in the domain of !2 on
!2(!1(x)) and maps any other x on a new vertex.

Now we return to the details of Algorithms 4 and 5. First, remember that for a dense augmen-
tation schema, the graph of parents of a particular graph is connected. Therefore, it is possible in
line 2 of Algorithms 4 to construct a spanning tree for it. Algorithm 4 attempts to construct in
s par list a mapping from reductions r ∈ "−(s) to isomorphism mappings between the graphs s− r
and the representatives of their isomorphism class which were output before. We know already the
isomorphism mapping between s− r0 = g and the representative of its isomorphism class, which
is g itself (line 3). Now, if for some r1 ∈ "−(s) we know an isomorphism mapping between s− r1
and its representative f1, and if for some other r2 ∈ "−, the graph s− r2 satisfies p and has been
listed earlier, then Algorithm 5 will provide us with an isomorphism mapping between s− r2 and its
representative f2 as discussed above.

Then there are two possible cases. On the one hand, if there is a parent of s which did not fulfil
the predicate p and hence was not listed earlier, we will not find that parent: line 7 of Algorithm
5 will detect this and return nil, which will cause also Algorithm 4 to return FALSE. On the other
hand, if all parents of s fulfil predicate p, the search along the spanning tree will eventually provide
an isomorphism mapping between s and the representatives of s− r for all r ∈ "−(s).

The complexity of this search can be assessed as follows: Algorithm 5 is executed once for
every r′ ∈ "−(s) and contains operations on permutations that can be performed in time O(|V (s)|).
Assuming that ↑ can be performed efficiently, that a good data structure is built on "+(p) in order
to be able to perform line 6 of Algorithm 5 efficiently, that |"−(s)| can be bounded by O(|"−(g)|)
and that |V (s)| can be bounded by O(|V (g)|), we can therefore conclude that Algorithm 4 can be
performed in time O(|"−(g)| · |V (g)|). These assumptions are not very strong and hold for our two
example augmentation schemas ("+

a ,"−a ,↑a) and ("+
c ,"−c ,↑c). Algorithm 4 is ran at most once for

every r ∈ "+(g), for a total complexity of O(|"+(g)| · |V (g)| · |"−(g)|).
In summary, this appendix has provided an informal proof of the following.

Theorem 5 Under the assumptions stated in Theorem 1, Algorithm 2 correctly lists for every iso-
morphism class of graphs g for which p(g) = TRUE exactly one representative, and the time needed
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for outputting the next graph g is bounded by O(|V (g)|5+ |V (g)|3 · |"−(g)| ·SV !+SV · |V (g)|SV+2+
|V (g)|SV+1|"+(g)|+ |"+(g)| · |V (g)| · |"−(g)|).

This bound is polynomial for a constant SV .
For example, for enumerating connected graphs with the schema ("+

c ,"−c ,↑c), SV = 2. There-
fore, this algorithm enumerates classes of connected graphs in time O(|V (g)|5) for each output
graph g in the worst case. A similar result can be shown for enumerating (a monotonic subset of)
all graphs with ("+

a ,"−a ,↑a).
Our conjecture is that this complexity can be improved further to O(|V (g)|4).
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Abstract

Java-ML is a collection of machine learning and data mining algorithms, which aims to be a readily
usable and easily extensible API for both software developers and research scientists. The inter-
faces for each type of algorithm are kept simple and algorithms strictly follow their respective
interface. Comparing different classifiers or clustering algorithms is therefore straightforward, and
implementing new algorithms is also easy. The implementations of the algorithms are clearly writ-
ten, properly documented and can thus be used as a reference. The library is written in Java and is
available from http://java-ml.sourceforge.net/ under the GNU GPL license.

Keywords: open source, machine learning, data mining, java library, clustering, feature selection,
classification

1. Introduction

Machine learning techniques are increasingly popular in research fields like bio- and chemo-
informatics, text and web mining, as well as many other areas of research and industry. In this
paper we present Java-ML: a cross-platform, open source machine learning library written in Java.

Several well-known data mining libraries already exist, including for example, Weka (Witten
and Frank, 2005) and Yale/RapidMiner (Mierswa et al., 2006). These programs provide a user-
friendly interface and are geared towards interactive use with the user. In contrast to these programs,
Java-ML is oriented towards developers that want to use machine learning in their own programs.
To this end, Java-ML interfaces are restricted to the essentials, and are very easy to understand. As
a result, Java-ML facilitates a broad exploration of different models, is straightforward to integrate
into your own source code, and can be easily extended.

Regarding the content of the library, Java-ML also has a different focus than the other libraries.
Java-ML contains an extensive set of similarity based techniques, and offers state-of-the-art feature
selection techniques. The large number of similarity functions allow for a broad set of clustering
and instance based learning techniques, while the feature selection techniques are well suited to
deal with high-dimensional domains, such as the ones often encountered in bioinformatics and
biomedical applications.

c©2009 Thomas Abeel, Yves Van de Peer and Yvan Saeys.
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Clustering Classification
K-means-like (7) SVM (2)
Self organizing maps Instance based learning (4)
Density based clustering (3) Tree based methods (2)
Markov chain clustering Random Forests
Cobweb Bagging
Cluster evaluation measures (15)

Feature selection Data filters
Entropy based methods (4) Discretization
Stepwise addition/removal (2) Normalization (2)
SVM RFE Missing values (3)
Random forests Instance manipulation (11)
Ensemble feature selection

Distance measures Utilities
Similarity measures (6) Cross-validation/evaluation
Distance metrics (11) Data loading (ARFF and CSV)
Correlation measures (2) Weka bridges (2)

Table 1: Overview of the main algorithms included in Java-ML. The number of algorithms for each
category is shown in parentheses.

2. Description of the Library

In this section we first describe the software design of Java-ML, we then discuss how to integrate it
in your program and finally we cover the documentation.

2.1 Structure of the Library

The library is built around two core interfaces: Dataset and Instance. These two interfaces have
several implementations for different types of samples. The machine learning algorithms implement
one of the following interfaces: Clusterer, Classifier, FeatureScoring, FeatureRanking or
FeatureSubsetSelection. Distance, correlation and similarity measures implement the interface
DistanceMeasure. These distance measures can be used in many algorithms to modify their behav-
ior. Cluster evaluation measures are defined by the ClusterEvaluation interface. Manipulation
filters either implement InstanceFilter or DatasetFilter, depending on the level they work on.
All implementing classes for each of the interfaces are available from the API documentation that
is available on the Java-ML website. Each of these interfaces provides one or two methods that are
required to execute the algorithm on a particular data set. Several utility classes make it easy to load
data from tab or comma separated files and from ARFF formatted files. An overview of the main
algorithms included in Java-ML can be found in Table 1.

The library provides several algorithms that have not been made available before in a bundled
form. In particular, clustering algorithms and the accompanying cluster evaluation measures are ex-
tensively represented. This includes the adaptive quality-based clustering algorithm, density based
methods, self-organizing maps (both as clustering and classification algorithm) and numerous other
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well-known clustering algorithms. A large number of distance, similarity and correlation measures
are included. Feature selection algorithms include traditional algorithms like symmetrical uncer-
tainty, gain ratio, RELIEF, stepwise addition/removal, as well as a number of more recent methods
(SVMRFE and random forest attribute evaluation). Also the recently introduced concept of ensem-
ble feature selection techniques (Saeys et al., 2008) is incorporated in the library. We have also
implemented a fast and simple random tree algorithm to cope with high dimensional, sparse and
ambiguous data. Finally, we provide bridges for classification and clustering in Weka and libsvm
(Fan et al., 2005).

2.2 Easy Integration in Your Own Source Code

Including Java-ML algorithms in your own source code is very simple. To illustrate this, we present
here two short code fragments that demonstrate the ease to integrate the library. The following lines
of code integrate a K-Means clustering algorithm in your own program.

Dataset data = FileHandler.loadDataset(new File("iris.data"), 4, ",");
Clusterer km = new KMeans();
Dataset[]clusters=km.cluster(data);

The first line uses the FileHandler utility to load data from the iris.data file. In this file, the class
label is on the fourth position and the fields are separated by a comma. The second line constructs a
new instance of the KMeans clustering algorithm with default values, in this case k=4. The third line
uses the KMeans instance to cluster the data that we loaded in the first line. The resulting clusters
will be returned as an array of data sets.

The following example illustrates how to perform a cross-validation experiment for a specific
dataset and classifier.

Dataset data = FileHandler.loadDataset(new File("iris.data"), 4, ",");
Classifier knn = new KNearestNeighbors(5);
CrossValidation cv = new CrossValidation(knn);
Map<Object, PerformanceMeasure> p = cv.crossValidation(data);

First we load the iris data set, and construct a K-nearest neighbors classifier, which uses 5 neigh-
bors to classify instances. In the next line, we initialize the cross-validation with our classifier. The
last line runs the cross-validation on the loaded data. By default, a 10-fold cross validation will
be performed. The result is returned in a map, which maps each class label to its corresponding
PerformanceMeasure (Map<Object,PerformanceMeasure>). For classification problems, a per-
formance measure is a wrapper around four values: (i) true positives, (ii) true negatives, (iii) false
positives and (iv) false negatives. This class also provides a number of derivative measures such as
accurracy, error rate, precision, recall and others. More advanced samples are available from the
documentation pages on the Java-ML website.

2.3 Documentation

There are a number of resources for documentation about Java-ML. The source code itself is docu-
mented thoroughly, always up-to-date, and accessible from the web site through the API documen-
tation. The web site additionally provides a number of tutorials with illustrated code samples for
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the most common tasks in Java-ML, covering the following topics: installing the library, introduc-
ing basic concepts, creating and loading data, creating algorithms and applying them to your data,
and more advanced topics for people who would like to contribute to the library. Finally, all code
samples as well as the PDF versions of the tutorials are also included in the Java-ML distribution
itself.

3. Case Studies

The library described in this manuscript has been used in several studies. Here we highlight two
applications which have been recently published.

Initially, the project focused on clustering algorithms and measures to evaluate the quality of
a clustering. Our goal was to separate DNA sequences that are likely to contain a promoter (the
controlling element of a gene) from other sequences, a well-known task in bioinformatics. The
best results were obtained using a clustering algorithm based on self-organizing maps (Abeel et al.,
2008).

More recently, the focus has shifted toward feature selection. More specifically, we are looking
whether ensemble feature selection (combining different feature selectors) can improve the stability
of feature selection in case of high-dimensional data sets with few samples. The improvements in
stability were shown not to affect the prediction accuracy. This is ongoing research, but the first
results are promising (Saeys et al., 2008).
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Abstract

Positive definite kernels on probability measures have been recently applied to classification prob-
lems involving text, images, and other types of structured data. Some of these kernels are related
to classic information theoretic quantities, such as (Shannon’s) mutual information and the Jensen-
Shannon (JS) divergence. Meanwhile, there have been recent advances in nonextensive gener-
alizations of Shannon’s information theory. This paper bridges these two trends by introducing
nonextensive information theoretic kernels on probability measures, based on new JS-type diver-
gences. These new divergences result from extending the the two building blocks of the classical
JS divergence: convexity and Shannon’s entropy. The notion of convexity is extended to the wider
concept of q-convexity, for which we prove a Jensen q-inequality. Based on this inequality, we in-
troduce Jensen-Tsallis (JT) q-differences, a nonextensive generalization of the JS divergence, and
define a k-th order JT q-difference between stochastic processes. We then define a new family of
nonextensive mutual information kernels, which allow weights to be assigned to their arguments,
and which includes the Boolean, JS, and linear kernels as particular cases. Nonextensive string
kernels are also defined that generalize the p-spectrum kernel. We illustrate the performance of
these kernels on text categorization tasks, in which documents are modeled both as bags of words
and as sequences of characters.

Keywords: positive definite kernels, nonextensive information theory, Tsallis entropy, Jensen-
Shannon divergence, string kernels
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1. Introduction

In kernel-based machine learning (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004),
there has been recent interest in defining kernels on probability distributions to tackle several prob-
lems involving structured data (Desobry et al., 2007; Moreno et al., 2004; Jebara et al., 2004; Hein
and Bousquet, 2005; Lafferty and Lebanon, 2005; Cuturi et al., 2005). By defining a parametric
family S containing the distributions from which the data points (in the input space X) are assumed
to have been generated, and defining a map from X from S (e.g., via maximum likelihood estima-
tion), a distribution in S may be fitted to each datum. Therefore, a kernel that is defined on S× S
automatically induces a kernel on X ×X , through map composition. In text categorization, this
framework appears as an alternative to the Euclidean geometry inherent to the usual bag-of-words
representations. In fact, approaches that map data to statistical manifolds, equipped with well-
motivated non-Euclidean metrics (Lafferty and Lebanon, 2005), often outperform support vector
machine (SVM) classifiers with linear kernels (Joachims, 2002). Some of these kernels have a
natural information theoretic interpretation, establishing a bridge between kernel methods and in-
formation theory (Cuturi et al., 2005; Hein and Bousquet, 2005).

The main goal of this paper is to widen that bridge; we do that by introducing a new class of ker-
nels rooted in nonextensive information theory, which contains previous information theoretic ker-
nels as particular elements. The Shannon and Rényi entropies (Shannon, 1948; Rényi, 1961) share
the extensivity property: the joint entropy of a pair of independent random variables equals the sum
of the individual entropies. Abandoning this property yields the so-called nonextensive entropies
(Havrda and Charvát, 1967; Lindhard, 1974; Lindhard and Nielsen, 1971; Tsallis, 1988), which
have raised great interest among physicists in modeling phenomena such as long-range interactions
and multifractals, and in constructing nonextensive generalizations of Boltzmann-Gibbs statisti-
cal mechanics (Abe, 2006). Nonextensive entropies have also been recently used in signal/image
processing (Li et al., 2006) and other areas (Gell-Mann and Tsallis, 2004). The so-called Tsal-
lis entropies (Havrda and Charvát, 1967; Tsallis, 1988) form a parametric family of nonextensive
entropies that includes the Shannon-Boltzmann-Gibbs entropy as a particular case. Nonextensive
generalizations of information theory have been proposed (Furuichi, 2006).

Convexity and Jensen’s inequality are key concepts underlying several central results of infor-
mation theory, for example, the non-negativity of the Kullback-Leibler (KL) divergence (or rela-
tive entropy) (Kullback and Leibler, 1951). Jensen’s inequality (Jensen, 1906) also underlies the
Jensen-Shannon (JS) divergence, a symmetrized and smoothed version of the KL divergence (Lin
and Wong, 1990; Lin, 1991), often used in statistics, machine learning, signal/image processing,
and physics.

In this paper, we introduce new extensions of JS-type divergences by generalizing its two pil-
lars: convexity and Shannon’s entropy. These divergences are then used to define new information-
theoretic kernels between probability distributions. More specifically, our main contributions are:

• The concept of q-convexity, generalizing that of convexity, for which we prove a Jensen q-
inequality. The related concept of Jensen q-differences, which generalize Jensen differences,
is also proposed. Based on these concepts, we introduce the Jensen-Tsallis (JT) q-difference,
a nonextensive generalization of the JS divergence, which is also a “mutual information” in
the sense of Furuichi (2006).

• Characterization of the JT q-difference, with respect to convexity and extrema, extending
work by Burbea and Rao (1982) and by Lin (1991) for the JS divergence.
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• Definition of k-th order joint and conditional JT q-differences for families of stochastic pro-
cesses, and derivation of a chain rule.

• A broad family of (nonextensive information theoretic) positive definite kernels, interpretable
as nonextensive mutual information kernels, ranging from the Boolean to the linear kernels,
and including the JS kernel proposed by Hein and Bousquet (2005).

• A family of (nonextensive information theoretic) positive definite kernels between stochastic
processes, subsuming well-known string kernels (e.g., the p-spectrum kernel) (Leslie et al.,
2002).

• Extensions of results of Hein and Bousquet (2005) proving positive definiteness of kernels
based on the unbalanced JS divergence. A connection between these new kernels and those
studied by Fuglede (2005) and Hein and Bousquet (2005) is also established. In passing, we
show that the parametrix approximation of the multinomial diffusion kernel introduced by
Lafferty and Lebanon (2005) is not positive definite in general.

The paper is organized as follows. Section 2 reviews nonextensive entropies, with empha-
sis on the Tsallis case. Section 3 discusses Jensen differences and divergences. The concepts
of q-differences and q-convexity are introduced in Section 4, where they are used to define and
characterize some new divergence-type quantities. In Section 5, we define the Jensen-Tsallis q-
difference and derive some of its properties; in that section, we also define k-th order Jensen-Tsallis
q-differences for families of stochastic processes. The new family of entropic kernels is introduced
and characterized in Section 6, which also introduces nonextensive kernels between stochastic pro-
cesses. Experiments on text categorization are reported in Section 7. Section 8 concludes the paper
and discusses future research.

2. Nonextensive Entropies and Tsallis Statistics

In this section, we start with a brief overview of nonextensive entropies. We then introduce the
family of Tsallis entropies, and extend their domain to unnormalized measures.

2.1 Nonextensivity

In what follows, R+ denotes the nonnegative reals, R++ denotes the strictly positive reals, and

!n−1 !

{

(x1, . . . ,xn) ∈ R
n |

n

"
i=1

xi = 1, ∀i xi ≥ 0

}

denotes the (n−1)-dimensional simplex.
Inspired by the axiomatic formulation of Shannon’s entropy (Khinchin, 1957; Shannon and

Weaver, 1949), Suyari (2004) proposed an axiomatic framework for nonextensive entropies and
a uniqueness theorem. Let q ≥ 0 be a fixed scalar, called the entropic index. Suyari’s axioms
(Appendix A) determine a function Sq,# : !n−1 → R of the form

Sq,#(p1, . . . , pn) =

{
k

#(q)
(
1−"n

i=1 p
q
i
)
if q )= 1

−k"n
i=1 pi ln pi if q= 1,

(1)
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where k is a positive constant, and # : R+ → R is a continuous function that satisfies the following
three conditions: (i) #(q) has the same sign as q−1; (ii) #(q) vanishes if and only if q= 1; (iii) # is
differentiable in a neighborhood of 1 and #′(1) = 1.

Note that S1,# = limq→1 Sq,#, thus Sq,#(p1, . . . , pn), seen as a function of q, is continuous at
q = 1. For any # satisfying these conditions, Sq,# has the pseudoadditivity property: for any two
independent random variables A and B, with probability mass functions pA ∈ !nA−1 and pB ∈ !nB−1,
respectively, consider the new random variable A⊗B defined by the joint distribution pA⊗ pB ∈
!nAnB−1; then,

Sq,#(A⊗B) = Sq,#(A)+Sq,#(B)−
#(q)
k

Sq,#(A)Sq,#(B),

where we denote (as usual) Sq,#(A) ! Sq,#(pA).
For q= 1, Suyari’s axioms recover the Shannon-Boltzmann-Gibbs (SBG) entropy,

S1,#(p1, . . . , pn) = H(p1, . . . , pn) = −k
n

"
i=1

pi ln pi,

and pseudoadditivity turns into additivity, that is, H(A⊗B) = H(A)+H(B) holds.
Several proposals for # have appeared in the literature (Havrda and Charvát, 1967; Daróczy,

1970; Tsallis, 1988). In this article, unless stated otherwise, we set #(q) = q− 1, which yields the
Tsallis entropy:

Sq(p1, . . . , pn) =
k

q−1

(

1−
n

"
i=1

pqi

)

. (2)

To simplify, we let k = 1 and write the Tsallis entropy as

Sq(X) ! Sq(p1, . . . , pn) = −"
x∈X

p(x)q lnq p(x), (3)

where lnq(x) ! (x1−q− 1)/(1− q) is the q-logarithm function, which satisfies lnq(xy) = lnq(x)+
x1−q lnq(y) and lnq(1/x) = −xq−1 lnq(x). This notation was introduced by Tsallis (1988).

2.2 Tsallis Entropies

Furuichi (2006) derived some information theoretic properties of Tsallis entropies. Tsallis joint and
conditional entropies are defined, respectively, as

Sq(X ,Y ) ! −"
x,y
p(x,y)q lnq p(x,y)

and
Sq(X |Y ) ! −"

x,y
p(x,y)q lnq p(x|y) ="

y
p(y)qSq(X |y), (4)

and the chain rule Sq(X ,Y ) = Sq(X)+Sq(Y |X) holds.
For two probability mass functions pX , pY ∈ !n, the Tsallis relative entropy, generalizing the

KL divergence, is defined as

Dq(pX‖pY ) ! −"
x
pX(x) lnq

pY (x)
pX(x)

. (5)
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Finally, the Tsallis mutual entropy is defined as

Iq(X ;Y ) ! Sq(X)−Sq(X |Y ) = Sq(Y )−Sq(Y |X), (6)

generalizing (for q> 1) Shannon’s mutual information (Furuichi, 2006). In Section 5, we establish
a relationship between Tsallis mutual entropy and a quantity called Jensen-Tsallis q-difference,
generalizing the one between mutual information and the JS divergence (shown, e.g., by Grosse
et al. 2002, and recalled below, in Section 3.2).

Furuichi (2006) also mentions an alternative generalization of Shannon’s mutual information,
defined as

Ĩq(X ;Y ) ! Dq(pX ,Y‖pX⊗ pY ), (7)

where pX ,Y is the true joint probability mass function of (X ,Y ) and pX⊗ pY denotes their joint
probability if they were independent. This alternative definition of a “Tsallis mutual entropy” has
also been used by Lamberti and Majtey (2003); notice that Iq(X ;Y ) )= Ĩq(X ;Y ) in general, the case
q= 1 being a notable exception. In Section 5, we show that this alternative definition also leads to
a nonextensive analogue of the JS divergence.

2.3 Entropies of Measures and Denormalization Formulae

Throughout this paper, we consider functionals that extend the domain of the Shannon-Boltzmann-
Gibbs and Tsallis entropies to include unnormalized measures. Although, as shown below, these
functionals are completely characterized by their restriction to the normalized probability distri-
butions, the denormalization expressions will play an important role in Section 6 to derive novel
positive definite kernels inspired by mutual informations.

In order to keep generality, whenever possible we do not restrict to finite or countable sample
spaces. Instead, we consider a measure space (X ,M ,$) where X is Hausdorff and $ is a %-finite
Radon measure. We denote by M+(X ) the set of finite Radon $-absolutely continuous measures
on X , and by M1

+(X ) the subset of those which are probability measures. For simplicity, we often
identify each measure in M+(X ) or M1

+(X ) with its corresponding nonnegative density; this is
legitimated by the Radon-Nikodym theorem, which guarantees the existence and uniqueness (up
to equivalence within measure zero) of a density function f : X → R+. In the sequel, Lebesgue-
Stieltjes integrals of the form

R

A f (x)d$(x) are often written as
R

A f , or simply
R

f , if A = X .
Unless otherwise stated, $ is the Lebesgue-Borel measure, if X ⊆ Rn and intX )= ∅, or the counting
measure, if X is countable. In the latter case integrals can be seen as finite sums or infinite series.

Define R ! R∪ {−&,+&}. For some functional G : M+(X ) → R, let the set MG
+(X ) ! { f ∈

M+(X ) : |G( f )| < &} be its effective domain, and M1,G
+ (X ) ! MG

+(X )∩M1
+(X ) be its subdomain

of probability measures.
The following functional (Cuturi and Vert, 2005), extends the Shannon-Boltzmann-Gibbs en-

tropy fromM1,H
+ (X ) to the unnormalized measures inMH

+(X ):

H( f ) = −k
Z

f ln f =
Z

'H ◦ f , (8)

where k > 0 is a constant, the function 'H : R+ → R is defined as

'H(y) = −k y lny,
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and, as usual, 0 ln0! 0.
The generalized form of the KL divergence, often called generalized I-divergence (Csiszar,

1975), is a directed divergence between two measures µf ,µg ∈MH
+(X ), such that µf is µg-absolutely

continuous (denoted µf 1 µg). Let f and g be the densities associated with µf and µg, respectively.
In terms of densities, this generalized KL divergence is

D( f ,g) = k
Z

(
g− f + f ln

f
g

)
. (9)

Let us now proceed similarly with the nonextensive entropies. For q ≥ 0, let MSq
+ (X ) = { f ∈

M+(X ) : f q ∈M+(X )} for q )= 1, and MSq
+ (X ) =MH

+(X ) for q = 1. The nonextensive counterpart
of (8), defined onMSq

+ (X ), is

Sq( f ) =
Z

'q ◦ f , (10)

where 'q : R+ → R is given by

'q(y) =

{
'H(y) if q= 1,
k

#(q) (y− yq) if q )= 1, (11)

and # : R+ → R satisfies conditions (i)-(iii) stated following Equation (1). The Tsallis entropy is
obtained for #(q) = q−1,

Sq( f ) = −k
Z

f q lnq f . (12)

Similarly, a nonextensive generalization of the generalized KL divergence (9) is

Dq( f ,g) = −
k

#(q)

Z (
q f +(1−q)g− f qg1−q

)
,

for q )= 1, and D1( f ,g) ! limq→1Dq( f ,g) = D( f ,g).
Define | f | !

R

f = µf (X ). For | f | = |g| = 1, several particular cases are recovered: if #(q) =
1−21−q, thenDq( f ,g) is the Havrda-Charvát relative entropy (Havrda and Charvát, 1967; Daróczy,
1970); if #(q) = q− 1, then Dq( f ,g) is the Tsallis relative entropy (5); finally, if #(q) = q(q− 1),
then Dq( f ,g) is the canonical (-divergence defined by Amari and Nagaoka (2001) in the realm of
information geometry (with the reparameterization ( = 2q− 1 and assuming q > 0 so that #(q) =
q(q−1) conforms with the axioms).

Remark 1 Both functionals Sq and Dq are completely determined by their restriction to the nor-
malized measures. Indeed, the following equalities hold for any c ∈ R++ and f ,g ∈MSq

+ (X ), with
µf 1 µg:

Sq(c f ) = cqSq( f )+ | f |'q(c),
Dq(c f ,cg) = cDq( f ,g),

Dq(c f ,g) = cqDq( f ,g)−q'q(c)| f |+
k

#(q)
(q−1)(1− cq)|g|. (13)
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For any f ∈MSq
+ (X ) and g ∈MSq

+ (Y ),

Sq( f ⊗g) = |g|Sq( f )+ | f |Sq(g)−
#(q)
k

Sq( f )Sq(g).

If | f | = |g| = 1, we recover the pseudo-additivity property of nonextensive entropies:

Sq( f ⊗g) = Sq( f )+Sq(g)−
#(q)
k

Sq( f )Sq(g).

For #(q) = q−1, Dq is the Tsallis relative entropy and (13) reduces to

Dq(c f ,g) = cqDq( f ,g)−q'q(c)| f |+ k(1− cq)|g|.

By taking the limit q→ 1, we obtain the following formulae for H and D:

H(c f ) = cH( f )+ | f |'H(c),
D(c f ,cg) = cD( f ,g),
D(c f ,g) = cD( f ,g)− | f |'H(c)+ k (1− c) |g|.

Consider f ∈MH
+(X ) and g ∈MH

+(Y ), and define f ⊗g ∈MH
+(X ×Y ) as ( f ⊗g)(x,y) ! f (x)g(y).

Then,
H( f ⊗g) = |g|H( f )+ | f |H(g).

If | f |= |g|= 1, we recover the additivity property of the Shannon-Boltzmann-Gibbs entropy, H( f ⊗
g) = H( f )+H(g).

3. Jensen Differences and Divergences

In this section, we review the concept of Jensen difference. We then discuss three particular cases:
the Jensen-Shannon, Jensen-Rényi, and Jensen-Tsallis divergences.

3.1 The Jensen Difference

Jensen’s inequality (Jensen, 1906) is at the heart of many important results in information theory.
Let E[.] denote the expectation operator. Jensen’s inequality states that if Z is an integrable random
variable taking values in a set Z, and f is a measurable convex function defined on the convex hull
of Z, then

f (E[Z]) ≤ E[ f (Z)].

Burbea and Rao (1982) considered the scenario where Z is finite, and took f ! −H', where
H' : [a,b]n → R is a concave function, called a '-entropy, defined as

H'(z) ! −
n

"
i=1

'(zi), (14)

where ' : [a,b] → R is convex. They studied the Jensen difference

J)'(y1, . . . ,ym) ! H'

(
m

"
t=1

)t yt

)

−
m

"
t=1

)t H'(yt),
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where )! ()1, . . . ,)m) ∈ !m−1, and each y1, . . . ,ym ∈ [a,b]n.
We consider here a more general scenario, involving two measure sets (X ,M ,$) and (T ,T ,*),

where the second is used to index the first.

Definition 2 Let µ! (µt)t∈T ∈ [M+(X )]T be a family of finite Radon measures on X , indexed by
T , and let + ∈M+(T ) be a finite Radon measure on T . Define:

J+,(µ) ! ,

(
Z

T
+(t)µt d*(t)

)
−

Z

T
+(t),(µt)d*(t) (15)

where:

(i) , is a concave functional such that dom,⊆M+(X );

(ii) +(t)µt(x) is *-integrable, for all x ∈ X ;

(iii)
R

T +(t)µtd*(t) ∈ dom,;

(iv) µt ∈ dom,, for all t ∈ T ;

(v) +(t),(µt) is *-integrable.

If + ∈M1
+(T ), we still call (15) a Jensen difference.

In the following subsections, we consider several instances of Definition 2, leading to several
Jensen-type divergences.

3.2 The Jensen-Shannon Divergence

Let p be a random probability distribution taking values in {pt}t∈T according to a distribution
) ∈ M1

+(T ). (In classification/estimation theory parlance, ) is called the prior distribution and
pt ! p(.|t) the likelihood function.) Then, (15) becomes

J),(p) =,(E[p])−E[,(p)], (16)

where the expectations are with respect to ).
Let now ,= H, the Shannon-Boltzmann-Gibbs entropy. Consider the random variables T and

X , taking values respectively in T and X , with densities )(t) and p(x) !
R

T p(x|t))(t). Using
standard notation of information theory (Cover and Thomas, 1991),

J)(p) ! J)H(p) = H
(

Z

T
)(t)pt

)
−

Z

T
)(t)H(pt)

= H(X)−
Z

T
)(t)H(X |T = t)

= H(X)−H(X |T )

= I(X ;T ), (17)

where I(X ;T ) is the mutual information between X and T . (This relationship between JS divergence
and mutual information was pointed out by Grosse et al. 2002.) Since I(X ;T ) is also equal to the
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KL divergence between the joint distribution and the product of the marginals (Cover and Thomas,
1991), we have

J)(p) = H (E[p])−E[H(p)] = E[D(p‖E[p])]. (18)

When X and T are finite with |T | = m, J)H(p1, . . . , pm) is called the Jensen-Shannon (JS) di-
vergence of p1, . . . , pm, with weights )1, . . . ,)m (Burbea and Rao, 1982; Lin, 1991). Equality (18)
allows two interpretations of the JS divergence:

• the Jensen difference of the Shannon entropy of p;

• the expected KL divergence from p to the expectation of p.

A remarkable fact is that J)(p) =minr E[D(p‖r)], that is, r∗ = E[p] is a minimizer of E[D(p‖r)]
with respect to r. It has been shown that this property together with Equality (18) characterize the
so-called Bregman divergences: they hold not only for , = H, but for any concave , and the
corresponding Bregman divergence, in which case J), is the Bregman information (Banerjee et al.,
2005).

When |T | = 2 and ) = (1/2,1/2), p may be seen as a random distribution whose value on
{p1, p2} is chosen by tossing a fair coin. In this case, J(1/2,1/2)(p) = JS(p1, p2), where

JS(p1, p2) ! H
(
p1+ p2
2

)
−
H(p1)+H(p2)

2

=
1
2
D

(
p1

∥∥∥
p1+ p2
2

)
+
1
2
D

(
p2

∥∥∥
p1+ p2
2

)
,

as introduced by Lin (1991). It has been shown that
√
JS satisfies the triangle inequality (hence

being a metric) and that, moreover, it is a Hilbertian metric1 (Endres and Schindelin, 2003; Topsøe,
2000), which has motivated its use in kernel-based machine learning (Cuturi et al., 2005; Hein and
Bousquet, 2005) (see Section 6).

3.3 The Jensen-Rényi Divergence

Consider again the scenario above (Section 3.2), with the Rényi q-entropy

Rq(p) =
1

1−q
ln

Z

pq

replacing the Shannon-Boltzmann-Gibbs entropy. It is worth noting that the Rényi and Tsallis
q-entropies are monotonically related through Rq(p) = ln

(
[1+(1−q)Sq(p)]

1
1−q

)
, or, using the q-

logarithm function,
Sq(p) = lnq expRq(p).

The Rényi q-entropy is concave for q ∈ [0,1) and has the Shannon-Boltzmann-Gibbs entropy as
the limit when q→ 1. Letting ,= Rq, (16) becomes

J)Rq(p) = Rq (E[p])−E[Rq(p)]. (19)

1. A metric d : X ×X → R is Hilbertian if there is some Hilbert space H and an isometry f : X → H such that
d2(x,y) = 〈 f (x)− f (y), f (x)− f (y)〉H holds for any x,y ∈ X (Hein and Bousquet, 2005).
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Unlike in the JS divergence case, there is no counterpart of equality (18) based on the Rényi q-
divergence

DRq(p1‖p2) =
1

q−1
ln

Z

pq1 p
1−q
2 .

When X and T are finite, we call J)Rq in (19) the Jensen-Rényi (JR) divergence. Furthermore,
when |T | = 2 and )= (1/2,1/2), we write J)Rq(p) = JRq(p1, p2), where

JRq(p1, p2) = Rq
(
p1+ p2
2

)
−
Rq(p1)+Rq(p2)

2
.

The JR divergence has been used in several signal/image processing applications, such as regis-
tration, segmentation, denoising, and classification (Ben-Hamza and Krim, 2003; He et al., 2003;
Karakos et al., 2007). In Section 6, we show that the JR divergence is (like the JS divergence) a
Hilbertian metric, which is relevant for its use in kernel-based machine learning.

3.4 The Jensen-Tsallis Divergence

Burbea and Rao (1982) have defined Jensen-type divergences of the form (16) based on the Tsallis
q-entropy Sq, defined in (12). Like the Shannon-Boltzmann-Gibbs entropy, but unlike the Rényi
entropies, the Tsallis q-entropy, for finite T , is an instance of a '-entropy (see Equation 14). Letting
,= Sq, (16) becomes

J)Sq(p) = Sq (E[p])−E[Sq(p)]. (20)

Again, as in Section 3.3, if we consider the Tsallis q-divergence,

Dq(p1‖p2) =
1

1−q

(
1−

Z

p1q p21−q
)

,

there is no counterpart of the Equality (18).
When X and T are finite, J)Sq in (20) is called the Jensen-Tsallis (JT) divergence and it has also

been applied in image processing (Ben-Hamza, 2006). Unlike the JS divergence, the JT divergence
lacks an interpretation as a mutual information. Despite this, for q∈ [1,2], it exhibits joint convexity
(Burbea and Rao, 1982). In the next section, we propose an alternative to the JT divergence which,
among other features, is interpretable as a nonextensive mutual information (in the sense of Furuichi
2006) and is jointly convex, for q ∈ [0,1].

4. q-Convexity and q-Differences

This section introduces a novel class of functions, termed Jensen q-differences, which generalize
Jensen differences. Later (in Section 5), we will use these functions to define the Jensen-Tsallis q-
difference, which we will propose as an alternative nonextensive generalization of the JS divergence,
instead of the JT divergence discussed in Section 3.4. We begin by recalling the concept of q-
expectation (Tsallis, 1988).

Definition 3 The unnormalized q-expectation of a random variable X, with probability density p,
is

Eq[X ] !
Z

x p(x)q.
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Of course, q= 1 corresponds to the standard notion of expectation. For q )= 1, the q-expectation
does not match the intuitive meaning of average/expectation (e.g., Eq[1] )= 1, in general). The q-
expectation is a convenient concept in nonextensive information theory; for example, it yields a very
compact form for the Tsallis entropy: Sq(X) = −Eq[lnq p(X)].

4.1 q-Convexity

We now introduce the novel concept of q-convexity and use it to derive a set of results, namely the
Jensen q-inequality.

Definition 4 Let q ∈ R and X be a convex set. A function f : X → R is q-convex if for any x,y ∈ X
and - ∈ [0,1],

f (-x+(1−-)y) ≤ -q f (x)+(1−-)q f (y). (21)

If − f is q-convex, f is said to be q-concave.

Of course, 1-convexity is the usual notion of convexity. Many properties of 1-convex functions
do not have q-analogues. For example, for q )= 1, any q-convex function must be either nonnegative
(if q < 1) or nonpositive (if q > 1); this simple fact can be shown through reductio ad absurdum
by setting x = y in (21). However, other properties remain: the next proposition states the Jensen
q-inequality.

Proposition 5 If f : X → R is q-convex, then for any n ∈ N, x1, . . . ,xn ∈ X and ) = ()1, . . . ,)n) ∈
!n−1,

f

(
n

"
i=1

)i xi

)

≤
n

"
i=1

)qi f (xi).

Moreover, if f is continuous, the above still holds for countably many points (xi)i∈N.

Proof In the finite case, the proof can be carried out by induction, as in the proof of the standard
Jensen inequality (Cover and Thomas, 1991). Assuming that the inequality holds for n ∈ N, then,
from the definition of q-convexity, it will also hold for n+1:

f

(
n+1

"
i=1

)i xi

)

= f

(
n

"
i=1

)i xi+)n+1 xn+1

)

= f

(

(1−)n+1)
n

"
i=1

)′i xi+)n+1 xn+1

)

≤ (1−)n+1)q f

(
n

"
i=1

)′i xi

)

+)qn+1 f (xn+1)

≤
n

"
i=1

)qi f (xi)+)qn+1 f (xn+1) =
n+1

"
i=1

)qi f (xi),

where we used the fact that )n+1 = 1−"n
i=1)i, and we defined )′i ! )i/(1− )n+1) (note that

"n
i=1)

′
i = 1.) Furthermore, if f is continuous, it commutes with taking limits, thus
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f

(
&

"
i=1

)i xi

)

= f

(

lim
n→&

n

"
i=1

)i xi

)

= lim
n→&

f

(
n

"
i=1

)i xi

)

≤ lim
n→&

n

"
i=1

)qi f (xi) =
&

"
i=1

)qi f (xi).

Proposition 6 Let f ≥ 0 and q≥ r ≥ 0; then,

f is q-convex ⇒ f is r-convex (22)
f is r-concave ⇒ f is q-concave. (23)

Proof Implication (22) results from
f (-x+(1−-)y) ≤ -q f (x)+(1−-)q f (y) ≤ -r f (x)+(1−-)r f (y),

where the first inequality states the q-convexity of f and the second one is valid because f (x), f (y)≥
0 and tr ≥ tq ≥ 0, for any t ∈ [0,1] and q≥ r. The proof of (23) is similar.

4.2 Jensen q-Differences

We now generalize Jensen differences, formalized in Definition 2, by introducing the concept of
Jensen q-differences.

Definition 7 Let µ! (µt)t∈T ∈ [M+(X )]T be a family of finite Radon measures on X , indexed by
T , and let + ∈M+(T ) be a finite Radon measure on T . For q≥ 0, define

T+q,,(µ) ! ,

(
Z

T
+(t) µt d*(t)

)
−

Z

T
+(t)q ,(µt)d*(t), (24)

where:
(i) , is a concave functional such that dom,⊆M+(X );

(ii) +(t)µt(x) is *-integrable for all x ∈ X ;

(iii)
R

T +(t)µt d*(t) ∈ dom,;

(iv) µt ∈ dom,, for all t ∈ T ;

(v) +(t)q ,(µt) is *-integrable.
If + ∈M1

+(T ), we call the function defined in (24) a Jensen q-difference.

Burbea and Rao (1982) established necessary and sufficient conditions on ' for the Jensen
difference of a '-entropy (see Equation 14) to be convex. The following proposition generalizes
that result, extending it to Jensen q-differences.

Proposition 8 Let T and X be finite sets, with |T | = m and |X | = n, and let ) ∈ M1
+(T ). Let

' : [0,1]→R be a function of class C2 and consider the ('-entropy, Burbea and Rao, 1982) function
, : [0,1]n → R defined as ,(z) ! −"n

i=1'(zi). Then, the q-difference T )q,, : [0,1]nm → R is convex
if and only if ' is convex and −1/'′′ is (2−q)-convex.

The proof is rather long, thus it is relegated to Appendix B.
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5. The Jensen-Tsallis q-Difference

This section introduces the Jensen-Tsallis q-difference, a nonextensive generalization of the Jensen-
Shannon divergence. After deriving some properties concerning the convexity and extrema of these
functionals, we introduce the notion of joint and conditional Jensen-Tsallis q-difference, a contrast
measure between stochastic processes. We end the section with a brief asymptotic analysis for the
extensive case.

5.1 Definition

As in Section 3.2, let p be a random probability distribution taking values in {pt}t∈T according to a
distribution ) ∈M1

+(T ). Then, we may write

T )q,,(p) =,(E[p])−Eq[,(p)],

where the expectations are with respect to ). Hence Jensen q-differences may be seen as defor-
mations of the standard Jensen differences (16), in which the second expectation is replaced by a
q-expectation.

Let,= Sq, the nonextensive Tsallis q-entropy. Introducing the random variables T and X , with
values respectively in T and X , with densities )(t) and p(x) !

R

T p(x|t))(t), we have (writing T )q,Sq
simply as T )q )

T )q (p) = Sq (E[p])−Eq[Sq(p)]

= Sq(X)−
Z

T
)(t)qSq(X |T = t)

= Sq(X)−Sq(X |T )

= Iq(X ;T ), (25)

where Sq(X |T ) is the Tsallis conditional entropy (4), and Iq(X ;T ) is the Tsallis mutual information
(6), as defined by Furuichi (2006). Observe that (25) is a nonextensive analogue of (17). Since, in
general, Iq )= Ĩq (see Equation 7), unless q = 1 (in that case, I1 = Ĩ1 = I), there is no counterpart
of (18) in terms of q-differences. Nevertheless, Lamberti and Majtey (2003) have proposed a non-
logarithmic version of the JS divergence, which corresponds to using Ĩq for the Tsallis mutual q-
entropy (although this interpretation is not explicitly mentioned).

When X and T are finite with |T | = m, we call the quantity T )q (p1, . . . , pm) the Jensen-Tsallis
(JT) q-difference of p1, . . . , pm with weights )1, . . . ,)m. Although the JT q-difference is a gener-
alization of the JS divergence, for q )= 1, the term “divergence” would be misleading in this case,
since T )q may take negative values (if q< 1) and does not vanish in general if p is deterministic.

When |T | = 2 and )= (1/2,1/2), define Tq ! T 1/2,1/2q ,

Tq(p1, p2) = Sq
(
p1+ p2
2

)
−
Sq(p1)+Sq(p2)

2q
.

Notable cases arise for particular values of q:

• For q = 0, S0(p) = −1+$(supp(p)), where $(supp(p)) denotes the measure of the support
of p (recall that p is defined on the measure space (X ,M ,$)). For example, if X is finite and
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$ is the counting measure, $(supp(p)) = ‖p‖0 is the so-called 0-norm (although it is not a
norm) of vector p, that is, its number of nonzero components. The Jensen-Tsallis 0-difference
is thus

T0(p1, p2) = −1+$

(
supp

(
p1+ p2
2

))
+1−$(supp(p1))+1−$(supp(p2))

= 1+$(supp(p1)∪ supp(p2))−$(supp(p1))−$(supp(p2))
= 1−$(supp(p1)∩ supp(p2)) ; (26)

if X is finite and $ is the counting measure, this becomes

T0(p1, p2) = 1−‖p17 p2‖0,

where 7 denotes the Hadamard-Schur (i.e., elementwise) product. We call T0 the Boolean
difference.

• For q= 1, since S1(p) = H(p), T1 is the JS divergence,

T1(p1, p2) = JS(p1, p2).

• For q= 2, S2(p) = 1−〈p, p〉, where 〈a,b〉 =
R

X a(x)b(x)d$(x) is the inner product between
a and b (which reduces to 〈a,b〉 = "i ai bi if X is finite and $ is the counting measure). Con-
sequently, the Tsallis 2-difference is

T2(p1, p2) =
1
2
−
1
2
〈p1, p2〉,

which we call the linear difference.

5.2 Properties of the JT q-Difference

This subsection presents results regarding convexity and extrema of the JT q-difference, for certain
values of q, extending known properties of the JS divergence (q = 1). Some properties of the JS
divergence are lost in the transition to nonextensivity; for example, while the former is nonnegative
and vanishes if and only if all the distributions are identical, this is not true in general with the JT
q-difference. Nonnegativity of the JT q-difference is only guaranteed if q≥ 1, which explains why
some authors (e.g., Furuichi 2006) only consider values of q ≥ 1, when looking for nonextensive
analogues of Shannon’s information theory. Moreover, unless q = 1, it is not generally true that
T )q (p, . . . , p) = 0 or even that T )q (p, . . . , p, p′) ≥ T )q (p, . . . , p, p). For example, the solution of the
optimization problem

min
p1∈!n

Tq(p1, p2), (27)

is, in general, different from p2, unless q = 1. Instead, this minimizer is closer to the uniform
distribution if q ∈ [0,1), and closer to a degenerate distribution for q ∈ (1,2] (see Fig. 1). This is not
so surprising: recall that T2(p1, p2) = 1

2 −
1
2〈p1, p2〉; in this case, (27) becomes a linear program,

and the solution is not p∗1 = p2, but p∗1 = . j, where j = argmaxi p2i.
At this point, we should also remark that, when X is a finite set, the uniform distribution max-

imizes the Tsallis entropy for any q ≥ 0, which is in fact one of the Suyari axioms underlying the
Tsallis entropy (see Axiom A2 in Appendix A).
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Figure 1: Jensen-Tsallis q-difference between two Bernoulli distributions, p1 = (0.3,0.7) and
p2 = (p,1− p), for several values of the entropic index q. Observe that, for q ∈ [0,1),
the minimizer of the JT q-difference approaches the uniform distribution (0.5,0.5) as q
approaches 0; for q ∈ (1,2], this minimizer approaches the degenerate distribution, as
q→ 2.

We start with the following corollary of Proposition 8, which establishes the joint convexity of
the JT q-difference, for q ∈ [0,1]. (Interestingly, this “complements” the joint convexity of the JT
divergence (20), for q ∈ [1,2], proved by Burbea and Rao 1982.)

Corollary 9 Let T and X be finite sets with cardinalities m and n, respectively. For q ∈ [0,1], the
JT q-difference is a jointly convex function on M1,Sq

+ (X ). Formally, let {p(i)
t }t∈T , and i= 1, . . . , l, be

a collection of l sets of probability distributions on X ; then, for any (-1, . . . ,-l) ∈ !l−1,

T )q

(
l

"
i=1

-i p
(i)
1 , . . . ,

l

"
i=1

-i p
(i)
m

)

≤
l

"
i=1

-i T )q (p(i)
1 , . . . , p(i)

m ).

Proof Observe that the Tsallis entropy (3) of a probability distribution pt = {pt1, ..., ptn} can be
written as

Sq(pt) = −
n

"
i=1

'(pti), where 'q(x) =
x− xq

1−q
;

thus, from Proposition 8, T )q is convex if and only if 'q is convex and −1/'′′q is (2− q)-convex.
Since '′′q(x)= qxq−2, 'q is convex for x≥ 0 and q≥ 0. To show the (2−q)-convexity of−1/'′′q(x)=

−(1/q)x2−q, for xt ≥ 0, and q∈ [0,1], we use a version of the power mean inequality (Steele, 2006),

−

(
l

"
i=1

-i xi

)2−q

≤−
l

"
i=1

(-i xi)2−q = −
l

"
i=1

-2−qi x2−qi ,
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thus concluding that −1/'′′q is in fact (2−q)-convex.

A consequence of Corollary 9 is that, for finite X and any q ∈ [0,1], the JT q-difference is
upper bounded, namely T )q (p1, . . . , pm) ≤ Sq()). Indeed, since T )q is convex and its domain is the
Cartesian product of m simplices (a convex polytope), its maximum must occur on a vertex, that is,
when each argument pt is a degenerate distribution at xt , denoted .xt . In particular, if |X | ≥ |T |,
this maximum occurs at a vertex corresponding to disjoint degenerate distributions, that is, such that
xi )= x j if i )= j. At this maximum,

T )q (.x1 , . . . ,.xm) = Sq

(
m

"
t=1

)t.xt

)

−
m

"
t=1

)tSq(.xt )

= Sq

(
m

"
t=1

)t.xt

)

(28)

= Sq())

where the equality in (28) results from Sq(.xt ) = 0. (Notice that this maximum may not be achieved
if |X |< |T |.) The next proposition provides a stronger result: it establishes upper and lower bounds
for the JT q-difference to any non-negative q and to countable X and T .

Proposition 10 Let T and X be countable sets. For q≥ 0,

T )q ((pt)t∈T ) ≤ Sq()), (29)

and, if |X |≥ |T |, the maximum of T )q is reached for a set of disjoint degenerate distributions. This
maximum may not be attained if |X | < |T |.

For q≥ 1,
T )q ((pt)t∈T ) ≥ 0,

and the minimum of T )q is attained in the purely deterministic case, that is, when all distributions
are equal to the same degenerate distribution.

For q ∈ [0,1] and X a finite set with |X | = n,

T )q ((pt)t∈T ) ≥ Sq())[1−n1−q]. (30)

This lower bound (which is zero or negative) is attained when all distributions are uniform.

Proof The proof is given in Appendix C.

Finally, the next proposition characterizes the convexity/concavity of the JT q-difference on
each argument.

Proposition 11 Let T and X be countable sets. The JT q-difference is convex in each argument,
for q ∈ [0,2], and concave in each argument, for q≥ 2.
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Proof Notice that the JT q-difference can be written as T )q (p1, . . . , pm) =
" j/(p1 j, . . . , pm j), with

/(y1, . . . ,ym) =
1

q−1

[

"
i
()i−)qi )yi+"

i
)qi y

q
i −

(

"
i
)iyi

)q ]

.

It suffices to consider the second derivative of / with respect to y1. Introducing z= "m
i=2)i yi,

02/
0y21

= q
[
)q1 y

q−2
1 −)21 ()1 y1+ z)q−2

]

= q)21
[
()1 y1)q−2− ()1 y1+ z)q−2

]
. (31)

Since )1 y1 ≤ ()1 y1+ z) ≤ 1, the quantity in (31) is nonnegative for q ∈ [0,2] and non-positive for
q≥ 2.

5.3 Joint and Conditional JT q-Differences and a Chain Rule

This subsection introduces joint and conditional JT q-differences, which will later be used as a
contrast measure between stochastic processes. A chain rule is derived that relates conditional and
joint JT q-differences.

Definition 12 Let X , Y and T be measure spaces. Let (pt)t∈T ∈ [M1
+(X ×Y )]T be a family of

measures in M1
+(X ×Y ) indexed by T , and let p be a random probability distribution taking values

in {pt}t∈T according to a distribution ) ∈M1
+(T ). Consider also:

• for each t ∈ T , the marginals pt(Y ) ∈M1
+(Y ),

• for each t ∈ T and y ∈ Y , the conditionals pt(X |Y = y) ∈M1
+(X ),

• the mixture r(X ,Y ) !
R

T )(t) pt(X ,Y ) ∈M1
+(X ×Y ),

• the marginal r(Y ) ∈M1
+(Y ),

• for each y ∈ Y , the conditionals r(X |Y = y) ∈M1
+(X ).

For notational convenience, we also append a subscript to p to emphasize its joint or conditional de-
pendency of the random variables X andY , that is, pXY ! p, and pX |Y denotes a random conditional
probability distribution taking values in {pt(.|Y )}t∈T according to the distribution ).

For q≥ 0, we refer to the joint JT q-difference of pXY by

T )q (pXY ) ! T )q (p) = Sq(r)−Eq,T∼)(T )[Sq(pt)]

and to the conditional JT q-difference of pX |Y by

T )q (pX |Y ) ! Eq,Y∼r(Y ) [Sq(r(.|Y = y))]−Eq,T∼)(T )

[
Eq,Y∼pt(Y ) [Sq(pt(.|Y = y))]

]
, (32)

where we appended the random variables being used in each q-expectation, for the sake of clarity.
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Note that the joint JT q-difference is just the usual JT q-difference of the joint random variable
X×Y , which equals (cf. 25)

T )q (pXY ) = Sq(X ,Y )−Sq(X ,Y |T ) = Iq(X×Y ;T ), (33)

and the conditional JT q-difference is simply the usual JT q-difference with all entropies replaced
by conditional entropies (conditioned on Y ). Indeed, expression (32) can be rewritten as:

T )q (pX |Y ) = Sq(X |Y )−Sq(X |T,Y ) = Iq(X ;T | Y ), (34)

that is, the conditional JT q-difference may also interpreted as a Tsallis mutual information, as in
(25), but now conditioned on the random variable Y .

Note also that, for the extensive case q= 1, (32) may also be rewritten in terms of the conditional
KL divergences,

J)(pX |Y ) ! T )1 (pX |Y ) = EY∼r(Y ) [H(r(.|Y = y))]−ET∼)(T )

[
EY∼pt(Y ) [H(pt(.|Y = y))]

]

= ET∼)(T )

[
EY∼r(Y ) [D(pt(.|Y = y)‖r(.|Y = y))]

]
.

Proposition 13 The following chain rule holds:

T )q (pXY ) = T )q (pX |Y )+T )q (pY )

Proof Writing the joint/conditional JT q-differences as joint/conditional mutual informations (33–
34) and invoking the chain rule provided by (4), we have that

Iq(X ;T |Y )+ Iq(Y ;T ) = Sq(X |T,Y )−Sq(X |Y )+Sq(Y |T )−Sq(Y )

= Sq(X ,Y |T )−Sq(X ,Y ),

which is the joint JT q-difference associated with the random variable X×Y .

Let us now turn our attention to the case where Y = Xk for some k ∈ N. In the following, the
notation (An)n∈N denotes a stationary ergodic process with values on some finite alphabet A .

Definition 14 Let X and T be measure spaces, with X finite, and letF = [(Xn)n∈N]T be a family of
stochastic processes (taking values on the alphabet X ) indexed by T . The k-th order JT q-difference
of F is defined, for k = 1, . . . ,n, as

T joint,)q,k (F ) ! T )q (pXk)

and the k-th order conditional JT q-difference of F is defined, for k = 1, . . . ,n, as

T cond,)q,k (F ) ! T )q (pX |Xk),

and, for k = 0, as T cond,)q,0 (F ) ! T joint,)q,1 (F ) = T )q (pX).

Proposition 15 The joint and conditional k-th order JT q-differences are related through:

T joint,)q,k (F ) =
k−1

"
i=0

T cond,)q,i (F ) (35)

Proof Use Proposition 13 and induction.
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5.4 Asymptotic Analysis in the Extensive Case

We now focus on the extensive case (q= 1) for a brief asymptotic analysis of the k-th order joint and
conditional JT 1-differences (or conditional Jensen-Shannon divergences) when k goes to infinity.

The conditional Jensen-Shannon divergence was introduced by El-Yaniv et al. (1998) to address
the two-sample problem for strings emitted by Markovian sources. Given two strings s and t, the
goal is to decide whether they were emitted by the same source or by different sources. Under
some fair assumptions, the most likely k-th order Markovian joint source of s and t is governed by
a distribution r̂ given by

r̂ = argmin
r
-D(p̂s‖r)+(1−-)D(p̂t‖r). (36)

where D(.‖.) are conditional KL divergences, p̂s and p̂t are the empirical (k− 1)-th order condi-
tionals associated with s and t, respectively, and - = |s|/(|s|+ |t|) is the length ratio. The solution
of the optimization problem is

r̂(a|c) =
- p̂s(c)

- p̂s(c)+(1−-) p̂t(c)
p̂s(a|c)+

(1−-) p̂t(c)
- p̂s(c)+(1−-) p̂t(c)

p̂t(a|c),

where a ∈ A is a symbol and c ∈ Ak−1 is a context; this can be rewritten as r̂(a,c) = -p̂s(a,c)+
(1−-)p̂t(a,c); that is, the optimum in (36) is a mixture of p̂s and p̂t weighted by the string lengths.
Notice that, at the minimum, we have

-D(p̂s‖r̂)+(1−-)D(p̂t‖r̂) = JScond,(-,1−-)k (p̂s, p̂t).

It is tempting to investigate the asymptotic behavior of the conditional and joint JS divergences
when k → &; however, unlike other asymptotic information theoretic quantities, like the entropy
or cross entropy rates, this behavior fails to characterize the sources s and t. Intuitively, this is
justified by the fact that observing more and more symbols drawn from the mixture of the two
sources rapidly decreases the uncertainty about which source generated the sample. Indeed, from
the asymptotic equipartition property of stationary ergodic sources (Cover and Thomas, 1991), we
have that limk→&

1
kH(pXk) = limk→&H(pX |Xk), which implies

lim
k→&

JScond,)k = lim
k→&

1
k
JSjoint,)k ≤ lim

k→&

1
k
H()) = 0,

where we used the fact that the JS divergence is upper-bounded by the entropy of the mixture
H()) (see Proposition 10). Since the conditional JS divergence must be non-negative, we therefore
conclude that limk→& JScond,)k = 0, pointwise.

6. Nonextensive Mutual Information Kernels

In this section we consider the application of extensive and nonextensive entropies to define kernels
on measures; since kernels involve pairs of measures, throughout this section |T | = 2. Based on
the denormalization formulae presented in Section 2.3, we devise novel kernels related to the JS
divergence and the JT q-difference; these kernels allow setting a weight for each argument, thus will
be called weighted Jensen-Tsallis kernels. We also introduce kernels related to the JR divergence
(Section 3.3) and the JT divergence (Section 3.4), and establish a connection between the Tsallis
kernels and a family of kernels investigated by Hein et al. (2004) and Fuglede (2005), placing
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those kernels under a new information-theoretic light. After that, we give a brief overview of string
kernels, and using the results of Section 5.3, we devise k-th order Jensen-Tsallis kernels between
stochastic processes that subsume the well-known p-spectrum kernel of Leslie et al. (2002).

6.1 Positive and Negative Definite Kernels

We start by recalling basic concepts from kernel theory (Schölkopf and Smola, 2002); in the fol-
lowing, X denotes a nonempty set.

Definition 16 Let ' : X ×X → R be a symmetric function, that is, a function satisfying '(y,x) =
'(x,y), for all x,y ∈ X . ' is called a positive definite (pd) kernel if and only if

n

"
i=1

n

"
j=1

ci c j'(xi,x j) ≥ 0

for all n ∈ N, x1, . . . ,xn ∈ X and c1, . . . ,cn ∈ R.

Definition 17 Let / : X ×X → R be symmetric. / is called a negative definite (nd) kernel if and
only if

n

"
i=1

n

"
j=1

ci c j/(xi,x j) ≤ 0

for all n∈N, x1, . . . ,xn ∈ X and c1, . . . ,cn ∈R, satisfying the additional constraint c1+ . . .+cn = 0.
In this case, −/ is called conditionally pd; obviously, positive definiteness implies conditional
positive definiteness.

The sets of pd and nd kernels are both closed under pointwise sums/integrations, the former
being also closed under pointwise products; moreover, both sets are closed under pointwise con-
vergence. While pd kernels “correspond” to inner products via embedding in a Hilbert space, nd
kernels that vanish on the diagonal and are positive anywhere else, “correspond” to squared Hilber-
tian distances. These facts, and the following propositions and lemmas, are shown in Berg et al.
(1984).

Proposition 18 Let / : X ×X → R be a symmetric function, and x0 ∈ X . Let ' : X ×X → R be
given by

'(x,y) = /(x,x0)+/(y,x0)−/(x,y)−/(x0,x0).

Then, ' is pd if and only if / is nd.

Proposition 19 The function / : X ×X → R is a nd kernel if and only if exp(−t/) is pd for all
t > 0.

Proposition 20 The function / : X ×X → R+ is a nd kernel if and only if (t+/)−1 is pd for all
t > 0.

Lemma 21 If / is nd and nonnegative on the diagonal, that is, /(x,x) ≥ 0 for all x ∈ X , then /(,
for ( ∈ [0,1], and ln(1+/), are also nd.
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Lemma 22 If f :X →R satisfies f ≥ 0, then, for (∈ [1,2], the function/((x,y) =−( f (x)+ f (y))(
is a nd kernel.

The following definition (Berg et al., 1984) has been used in a machine learning context by
Cuturi and Vert (2005).

Definition 23 Let (X ,⊕) be a semigroup.2 A function ' : X → R is called pd (in the semigroup
sense) if k : X ×X → R, defined as k(x,y) = '(x⊕ y), is a pd kernel. Likewise, ' is called nd if k is
a nd kernel. Accordingly, these are called semigroup kernels.

6.2 Jensen-Shannon and Tsallis Kernels

The basic result that allows deriving pd kernels based on the JS divergence and, more generally, on
the JT q-difference, is the fact that the denormalized Tsallis q-entropies (10) are nd functions on
(MSq

+ (X ),+), for q ∈ [0,2]. Of course, this includes the denormalized Shannon-Boltzmann-Gibbs
entropy (8) as a particular case, corresponding to q = 1. Although part of the proof was given by
Berg et al. (1984) (and by Topsøe 2000 and Cuturi and Vert 2005 for the Shannon entropy case), we
present a complete proof here.

Proposition 24 For q∈ [0,2], the denormalized Tsallis q-entropy Sq is a nd function on (MSq
+ (X ),+).

Proof Since nd kernels are closed under pointwise integration, it suffices to prove that 'q (see
Equation 11) is nd on (R+,+). For q )= 1, 'q(y) = (q− 1)−1(y− yq). Let us consider two cases
separately: if q ∈ [0,1), 'q(y) equals a positive constant times−1+ 1q, where 1(y) = y is the identity
map defined on R+. Since the set of nd functions is closed under sums, we only need to show that
both −1 and 1q are nd. Both 1 and −1 are nd, as can easily be seen from the definition; besides,
since 1 is nd and nonnegative, Lemma 21 guarantees that 1q is also nd. For the second case, where
q ∈ (1,2], 'q(y) equals a positive constant times 1− 1q. It only remains to show that −1q is nd for
q ∈ (1,2]: Lemma 22 guarantees that the kernel k(x,y) = −(x+ y)q is nd; therefore −1q is a nd
function.

For q= 1, we use the fact that,

'1(x) = 'H(x) = −x lnx= lim
q→1

x− xq

q−1
= lim

q→1
'q(x),

where the limit is obtained by L’Hôpital’s rule; since the set of nd functions is closed under limits,
'1(x) is nd.

The following lemma, proved in Berg et al. (1984), will also be needed below.

Lemma 25 The function 2q : R++ → R, defined as 2q(y) = y−q is pd, for q ∈ [0,1].

We are now in a position to present the main contribution of this section, which is a family of
weighted Jensen-Tsallis kernels, generalizing the JS-based (and other) kernels in two ways: (i) they
allow using unnormalized measures; equivalently, they allow using different weights for each of the
two arguments; (ii) they extend the mutual information feature of the JS kernel to the nonextensive
scenario.
2. Recall that (X ,⊕) is a semigroup if ⊕ is a binary operation in X that is associative and has an identity element.
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Definition 26 (weighted Jensen-Tsallis kernels) The kernel k̃q :M
Sq
+ (X )×MSq

+ (X )→R is defined
as

k̃q(µ1,µ2) ! k̃q(+1p1,+2p2)
=

(
Sq())−T )q (p1, p2)

)
(+1++2)

q,

where p1=µ1/+1 and p2=µ2/+2 are the normalized counterparts of µ1 and µ2, with corresponding
masses +1,+2 ∈ R+, and )= (+1/(+1++2),+2/(+1++2)).

The kernel kq :
(
MSq

+ (X )\{0}
)2

→ R is defined as

kq(µ1,µ2) ! kq(+1p1,+2p2) = Sq())−T )q (p1, p2).

Recalling (25), notice that Sq())−T )q (p1, p2) = Sq(T )− Iq(X ;T ) = Sq(T |X) can be interpreted
as the Tsallis posterior conditional entropy. Hence, kq can be seen (in Bayesian classification terms)
as a nonextensive expected measure of uncertainty in correctly identifying the class, given the prior
) = ()1,)2), and a sample from the mixture )1p1+)2p2. The more similar the two distributions
are, the greater this uncertainty.

Proposition 27 The kernel k̃q is pd, for q ∈ [0,2]. The kernel kq is pd, for q ∈ [0,1].

Proof With µ1 = +1p1 and µ2 = +2p2 and using the denormalization formula of Remark 1, we ob-
tain k̃q(µ1,µ2) =−Sq(µ1+µ2)+Sq(µ1)+Sq(µ2). Now invoke Proposition 18 with /= Sq (which is
nd by Proposition 24), x= µ1, y= µ2, and x0 = 0 (the null measure). Observe now that kq(µ1,µ2) =

k̃q(µ1,µ2)(+1 ++2)−q. Since the product of two pd kernels is a pd kernel and (Proposition 25)
(+1++2)−q is a pd kernel, for q ∈ [0,1], we conclude that kq is pd.

As we can see, the weighted Jensen-Tsallis kernels have two inherent properties: they are pa-
rameterized by the entropic index q and they allow their arguments to be unbalanced, that is, to have
different weights +i. We now mention some instances of kernels where each of these degrees of
freedom is suppressed. We start with the following subfamily of kernels, obtained by setting q= 1.

Definition 28 (weighted Jensen-Shannon kernels) The kernel k̃WJS : (MH
+(X ))2 → R is defined

as k̃WJS ! k̃1, that is,

k̃WJS(µ1,µ2) = k̃WJS(+1p1,+2p2)
= (H())− J)(p1, p2))(+1++2),

where p1 = µ1/+1 and p2 = µ2/+2 are the normalized counterpart of µ1 and µ2, and ) =
(+1/(+1++2),+2/(+1++2)).

Analogously, the kernel kWJS :
(
MH

+(X )\{0}
)2 → R is simply kWJS ! k1, that is,

kWJS(µ1,µ2) = kWJS(+1p1,+2p2) = H())− J)(p1, p2).

Corollary 29 The weighted Jensen-Shannon kernels k̃WJS and kWJS are pd.
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Proof Invoke Proposition 27 with q= 1.

The following family of weighted exponentiated JS kernels, generalize the so-called exponenti-
ated JS kernel, that has been used, and shown to be pd, by Cuturi and Vert (2005).

Definition 30 (Exponentiated JS kernel) The kernel kEJS :M1
+(X )×M1

+(X ) → R is defined, for
t > 0, as

kEJS(p1, p2) = exp [−t JS (p1, p2)] .

Definition 31 (Weighted exponentiated JS kernels) The kernel kWEJS :MH
+(X )×MH

+(X )→ R is
defined, for t > 0, as

kWEJS(µ1,µ2) = exp[t kWJS(µ1,µ2)]
= exp(t H()))exp [−tJ)(p1, p2)] . (37)

Corollary 32 The kernels kWEJS are pd. In particular, kEJS is pd.

Proof Results from Proposition 19 and Corollary 29. Notice that although kWEJS is pd, none of its
two exponential factors in (37) is pd.

We now keep q ∈ [0,2] but consider the weighted JT kernel family restricted to normalized
measures, kq|(M1

+(X ))2 . This corresponds to setting uniform weights (+1 = +2 = 1/2); note that in
this case k̃q and kq collapse into the same kernel,

k̃q(p1, p2) = kq(p1, p2) = lnq(2)−Tq(p1, p2).

Proposition 27 guarantees that these kernels are pd for q ∈ [0,2]. Remarkably, we recover three
well-known particular cases for q ∈ {0,1,2}. We start with the Jensen-Shannon kernel, introduced
and shown to be pd by Hein et al. (2004); it is a particular case of a weighted Jensen-Shannon kernel
in Definition 28.

Definition 33 (Jensen-Shannon kernel) The kernel kJS :M1
+(X )×M1

+(X ) → R is defined as

kJS(p1, p2) = ln2− JS(p1, p2).

Corollary 34 The kernel kJS is pd.

Proof kJS is the restriction of kWJS to M1
+(X )×M1

+(X ).

Finally, we study two other particular cases of the family of Tsallis kernels: the Boolean and
linear kernels.

Definition 35 (Boolean kernel) Let the kernel kBool :MS0,1
+ (X )×MS0,1

+ (X )→R be defined as kBool=
k0, that is,

kBool(p1, p2) = $(supp(p1)∩ supp(p2)) ,
that is, kBool(p1, p2) equals the measure of the intersection of the supports (cf. Equation 26). In
particular, if X is finite and $ is the counting measure, the above may be written as

kBool(p1, p2) = ‖p17 p2‖0.
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Definition 36 (Linear kernel) Let the kernel klin :MS2,1
+ (X )×MS2,1

+ (X ) → R be defined as

klin(p1, p2) =
1
2
〈p1, p2〉.

Corollary 37 The kernels kBool and klin are pd.

Proof Invoke Proposition 27 with q = 0 and q = 2. Notice that, for q = 2, we just recover the
well-known property of the inner product kernel (Schölkopf and Smola, 2002), which is equal to
klin up to a scalar.

In conclusion, the Boolean kernel, the Jensen-Shannon kernel, and the linear kernel are simply
particular elements of the much wider family of Jensen-Tsallis kernels, continuously parameterized
by q ∈ [0,2]. Furthermore, the Jensen-Tsallis kernels are a particular subfamily of the even wider
set of weighted Jensen-Tsallis kernels.

One of the key features of our generalization is that the kernels are defined on unnormalized
measures, with arbitrary mass. This is relevant, for example, in applications of kernels on empirical
measures (e.g., word counts, pixel intensity histograms); instead of the usual step of normalization
Hein et al. 2004, we may leave these empirical measures unnormalized, thus allowing objects of dif-
ferent size (e.g., total number of words in a document, total number of image pixels) to be weighted
differently. Another possibility opened by our generalization is the explicit inclusion of weights:
given two normalized measures, they can be multiplied by arbitrary (positive) weights before being
fed to the kernel function.

6.3 Other Kernels Based on Jensen Differences and q-Differences

It is worthwhile to note that the Jensen-Rényi and the Jensen-Tsallis divergences also yield positive
definite kernels, albeit there are not any obvious “weighted generalizations” like the ones presented
above for the Tsallis kernels.

Proposition 38 (Jensen-Rényi and Jensen-Tsallis kernels) For any q ∈ [0,2], the kernel

(p1, p2) :→ Sq
(
p1+ p2
2

)

and the (unweighted) Jensen-Tsallis divergence JSq (20) are nd kernels on M1
+(X )×M1

+(X ).
Also, for any q ∈ [0,1], the kernel

(p1, p2) :→ Rq
(
p1+ p2
2

)

and the (unweighted) Jensen-Rényi divergence JRq (19) are nd kernels on M1
+(X )×M1

+(X ).

Proof The fact that (p1, p2) :→ Sq( p1+p2
2 ) is nd results from the embedding x :→ x/2 and Propo-

sition 24. Since (p1, p2) :→
Sq(p1)+Sq(p2)

2 is trivially nd, we have that JSq is a sum of nd func-
tions, which turns it nd. To prove the negative definiteness of the kernel (p1, p2) :→ Rq

( p1+p2
2

)
,

notice first that the kernel (x,y) :→ (x+ y)/2 is clearly nd. From Lemma 21 and integrating,
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we have that (p1, p2) :→
R

( p1+p2
2

)q is nd for q ∈ [0,1]. From the same lemma we have that
(p1, p2) :→ ln

(
t+

R

( p1+p2
2

)q) is nd for any t > 0. Since
R

( p1+p2
2

)q
> 0, the nonnegativity of

(p1, p2) :→ Rq
( p1+p2

2
)
follows by taking the limit t → 0. By the same argument as above, we con-

clude that JRq is nd.

As a consequence, we have from Lemma 19 that the following kernels are pd for any q ∈ [0,1]
and t > 0:

k̃EJR(p1, p2) = exp
(
−tRq

(
p1+ p2
2

))
=

(
Z

(
p1+ p2
2

)q)− t
1−q

,

and its “normalized” counterpart,

kEJR(p1, p2) = exp(−tJRq(p1, p2)) =




R

( p1+p2
2

)q
√

R

pq1
R

pq2




− t
1−q

.

Although we could have derived its positive definiteness without ever referring to the Rényi entropy,
the latter has in fact a suggestive interpretation: it corresponds to an exponentiation of the Jensen-
Rényi divergence; it generalizes the case q = 1 which corresponds to the exponentiated Jensen-
Shannon kernel.

Finally, we point out a relationship between the Jensen-Tsallis divergences (Section 3.4) and a
family of difference kernels introduced by Fuglede (2005),

/(,3(x,y) =

(
x(+ y(

2

)1/(
−

(
x3+ y3

2

)1/3

.

Fuglede (2005) derived the negative definiteness of the above family of kernels provided 1≤ (≤&
and 1/2≤ 3≤ (; he went further by providing representations for these kernels. Hein et al. (2004)
used the fact that the integral

R

/(,3(x(t),y(t))d*(t) is also nd to derive a family of pd kernels for
probability measures that included the Jensen-Shannon kernel (see Def. 33).

We start by noting the following property of the extended Tsallis entropy, which is very easy to
establish:

Sq(µ) = q−1S1/q(µq)

As a consequence, by making the substitutions r ! q−1, x1 ! yq1 and x2 ! yq2, we have that

JSq(y1,y2) = Sq
(
y1+ y2
2

)
−

(
Sq(y1)+Sq(y2)

2

)

= r

[

Sr

((
xr1+ xr2
2

)1/r)

−
Sr(x1)+Sr(x2)

2

]

! rJ̃Sr(x1,x2)
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where we introduced

J̃Sr(x1,x2) = Sr

((
xr1+ xr2
2

)1/r)

−
Sr(x1)+Sr(x2)

2

= (r−1)−1
Z

[(
xr1+ xr2
2

)1/r
−
x1+ x2
2

]

. (38)

Since JSq is nd for q ∈ [0,2], we have that J̃Sr is nd for r ∈ [1/2,&].
Notice that while JSq may be interpreted as “the difference between the Tsallis q-entropy of the

mean and the mean of the Tsallis q-entropies,” J̃Sq may be interpreted as “the difference between
the Tsallis q-entropy of the q-power mean and the mean of the Tsallis q-entropies.”

From (38) we have that
Z

/(,3(x,y) = ((−1)J̃S((x,y)− (3−1)J̃S3(x,y),

so the family of probabilistic kernels studied in Hein et al. (2004) can be written in terms of Jensen-
Tsallis divergences.

6.4 k-th Order Jensen-Tsallis String Kernels

This subsection introduces a new class of string kernels inspired by the k-th order JT q-difference
introduced in Section 5.3. Although we refer to them as “string kernels,” they are more generally
kernels between stochastic processes.

Several string kernels (i.e., kernels operating on the space of strings) have been proposed in the
literature (Haussler, 1999; Lodhi et al., 2002; Leslie et al., 2002; Vishwanathan and Smola, 2003;
Shawe-Taylor and Cristianini, 2004; Cortes et al., 2004). These are kernels defined on A∗ ×A∗,
where A∗ is the Kleene closure of a finite alphabet A (i.e., the set of all finite strings formed by
characters in A together with the empty string 4). The p-spectrum kernel (Leslie et al., 2002) is as-
sociated with a feature space indexed by A p (the set of length-p strings). The feature representation
of a string s, 5p(s) ! (#pu(s))u∈A p , counts the number of times each u ∈ A p occurs as a substring of
s,

#pu(s) = |{(v1,v2) : s= v1uv2}|.

The p-spectrum kernel is then defined as the standard inner product in R|A |p

kpSK(s, t) = 〈5p(s),5p(t)〉 . (39)

A more general kernel is the weighted all-substrings kernel (Vishwanathan and Smola, 2003), which
takes into account the contribution of all the substrings weighted by their length. This kernel can be
viewed as a conic combination of p-spectrum kernels and can be written as

kWASK(s, t) =
&

"
p=1

(p kpSK(s, t), (40)

where (p is often chosen to decay exponentially with p and truncated; for example, (p = -p, if
pmin ≤ p≤ pmax, and (p = 0, otherwise, where 0< -< 1 is the decaying factor.
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Both kpSK and kWASK are trivially positive definite, the former by construction and the latter
because it is a conic combination of positive definite kernels. A remarkable fact is that both kernels
may be computed in O(|s|+ |t|) time (i.e., with cost that is linear in the length of the strings), as
shown by Vishwanathan and Smola (2003), by using data structures such as suffix trees or suffix
arrays (Gusfield, 1997). Moreover, with s fixed, any kernel k(s, t) may be computed in time O(|t|),
which is particularly useful for classification applications.

We will now see how Jensen-Tsallis kernels may be used as string kernels. In Section 5.3, we
have introduced the concept of joint and conditional JT q-differences. We have seen that joint JT
q-differences are just JT q-differences in a product space of the form X = X1×X2; for k-th order
joint JT q-differences this product space is of the form Ak = A ×Ak−1. Therefore, they still yield
positive definite kernels as those introduced in Definition 26, where X = Ak. The next definition
and proposition summarize these statements.

Definition 39 (k-th order weighted JT kernels) Let S (A) be the set of stationary and ergodic
stochastic processes that take values on the alphabet A . For k ∈ N and q ∈ [0,2], let the kernel
k̃q,k : (R+×S (A))2 → R be defined as

k̃q,k((+1,s1),(+2,s2)) ! k̃q(+1ps1,k,+2ps2,k) (41)

=
(
Sq())−T joint,)q,k (s1,s2)

)
(+1++2)

q,

where ps1,k and ps2,k are the k-th order joint probability functions associated with the stochastic
sources s1 and s2, and )= (+1/(+1++2),+2/(+1++2)).

Let the kernel kq,k : (R++×S (A))2 → R be defined as

kq,k((+1,s1),(+2,s2)) ! kq(+1ps1,k,+2ps2,k) (42)

=
(
Sq())−T joint,)q,k (s1,s2)

)
,

Proposition 40 The kernel k̃q,k is pd, for q ∈ [0,2]. The kernel kq,k is pd, for q ∈ [0,1].

Proof Define the map g : R+ ×S (A) → R+ ×M1,Sq
+ (Ak) as (+,s) :→ g(+,s) = (+, ps,k). From

Proposition 27, the kernel k̃q(g(+1,s1),g(+2,s2)) is pd and therefore so is k̃q,k((+1,s1),(+2,s2));
proceed analogously for kq,k.

At this point, one might wonder whether the “k-th order conditional JT kernel” k̃condq,k that would
be obtained by replacing T joint,)q,k with T cond,)q,k in (41–42) is also pd. Formula (35) shows that such
“conditional JT kernel” is a difference between two joint JT kernels, which is inconclusive. The
following proposition shows that k̃condq,k and kcondq,k are not pd in general. The proof, which is in
Appendix D, proceeds by building a counterexample.

Proposition 41 Let k̃condq,k be defined as k̃condq,k (s1,s2) !
(
Sq())−T cond,)q,k (s1,s2)

)
(+1 ++2)q; and

kcondq,k be defined as kcondq,k (s1,s2) !
(
Sq())−T cond,)q,k (s1,s2)

)
. It holds that k̃condq,k and kcondq,k are not pd

in general.
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Despite the negative result in Proposition 41, the chain rule in Proposition 15 still allows us to
define pd kernels by combining conditional JT q-differences.

Proposition 42 Let (3k)k∈N be a non-increasing infinitesimal sequence, that is, satisfying

30 ≥ 31 ≥ . . . ≥ 3n → 0

Any kernel of the form
&

"
k=0

3k k̃condq,k (43)

is pd for q ∈ [0,2]; and any kernel of the form
&

"
k=0

3k kcondq,k

is pd for q ∈ [0,1], provided both series above converge pointwise.

Proof From the chain rule, we have that (defining the 0-th order joint JT q-difference as k̃q,0 ! 0)
&

"
k=0

3k k̃condq,k =
&

"
k=0

3k (k̃q,k+1− k̃q,k) = lim
n→&

n

"
k=1

(k k̃q,k +3n k̃q,n+1 =
&

"
k=1

(k k̃q,k (44)

with (k = 3k−1− 3k (the term lim3nk̃q,n+1 was dropped because 3n → 0 and k̃q,n+1 is bounded).
Since (3k)k∈N is non-increasing, we have that ((k)k∈N\{0} is non-negative, which makes (44) the
pointwise limit of a conic combination of pd kernels, and therefore a pd kernel. The proof for
"&
k=03kkcondq,k is analogous.

Notice that if we set 30 = . . . = 3k−1 = 1 and 3 j = 0, ∀ j ≥ k, in the above proposition, we
recover the k-th order joint JT q-difference.

Finally, notice that, in the same way that the linear kernel is a special case of a JT kernel when
q = 2 (see Cor. 37), the p-spectrum kernel (39) is a particular case of a p-th order joint JT kernel,
and the weighted all substrings kernel (40) is a particular case of a combination of joint JT kernels
in the form (43), both obtained when we set q = 2 and the weights +1 and +2 equal to the length
of the strings. Therefore, we conclude that the JT string kernels introduced in this section subsume
these two well-known string kernels.

7. Experiments

We illustrate the performance of the proposed nonextensive information theoretic kernels, in com-
parison with common kernels, for SVM-based text classification. We performed experiments with
two standard data sets: Reuters-215783 and WebKB.4 Since our objective was to evaluate the ker-
nels, we considered a simple binary classification task that tries to discriminate among the two
largest categories of each data set; this led us to the earn-vs-acq classification task for the first data
set, and stud-vs-fac (students’ vs. faculty webpages) in the second data set. Two different frame-
works were considered: modeling documents as bags of words, and modeling them as strings of
characters. Therefore, both bags of words kernels and string kernels were employed for each task.

3. Available at www.daviddlewis.com/resources/testcollections.
4. Available at www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data.
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7.1 Documents as Bags of Words

For the bags of words framework, after the usual preprocessing steps of stemming and stop-word re-
moval, we mapped text documents into probability distributions over words using the bag-of-words
model and maximum likelihood estimation; this corresponds to normalizing the term frequencies
(tf) using the !1-norm, and is referred to as tf (Joachims, 2002; Baeza-Yates and Ribeiro-Neto,
1999). We also used the tf-idf (term frequency-inverse document frequency) representation, which
penalizes terms that occur in many documents (Joachims, 2002; Baeza-Yates and Ribeiro-Neto,
1999). To weight the documents for the Tsallis kernels, we tried four strategies: uniform weighting,
word counts, square root of the word counts, and one plus the logarithm of the word counts; how-
ever, for both tasks, uniform weighting revealed the best strategy, which may be due to the fact that
documents in both collections are usually short and do not differ much in size.

As baselines, we used the linear kernel with !2 normalization, commonly used for this task
(Joachims, 2002), and the heat kernel approximation introduced by Lafferty and Lebanon (2005):

kheat(p1, p2) = (4)t)−
n
2 exp

(
−
1
4t
d2g(p1, p2)

)
,

where t > 0 and dg(p1, p2) = 2arccos
(
"i

√p1i p2i
)
. Although Lafferty and Lebanon (2005) provide

empirical evidence that the heat kernel outperforms the linear kernel, it is not guaranteed to be pd
for an arbitrary choice of t, as we show in Appendix E. This parameter and the SVM C parameter
were tuned by cross-validation over the training set. The SVM-Light package (available at http:
//svmlight.joachims.org/) was used to solve the SVM quadratic optimization problem.

Figures 2–3 summarize the results. We report the performance of the Tsallis kernels as a func-
tion of the entropic index q. For comparison, we also plot the performance of an instance of a Tsallis
kernel with q tuned by cross-validation. For the first task, this kernel and the two baselines exhibit
similar performance for both the tf and the tf-idf representations; differences are not statistically
significant. In the second task, the Tsallis kernel outperformed the !2-normalized linear kernel for
both representations, and the heat kernel for tf-idf ; the differences are statistically significant (using
the unpaired t test at the 0.05 level). Regarding the influence of the entropic index, we observe that
in both tasks, the optimal value of q is usually higher for tf-idf than for tf.

The results on these two problems are representative of the typical relative performance of the
kernels considered: in almost all tested cases, both the heat kernel and the Tsallis kernels (for a
suitable value of q) outperform the !2-normalized linear kernel; the Tsallis kernels are competitive
with the heat kernel.

7.2 Documents as Strings

In the second set of experiments, each document is mapped into a probability distribution over
character p-grams, using maximum likelihood estimation; we did experiments for p = 3,4,5. To
weight the documents for the p-th order joint Jensen-Tsallis kernels, four strategies were attempted:
uniform weighting, document lengths (in characters), square root of the document lengths, and
one plus the logarithm of the document lengths. For the earn-vs-acq task, all strategies performed
similarly, with a slight advantage for the square root and logarithm of the document lengths; for
the stud-vs-fac task, uniform weighting revealed the best strategy. For simplicity, all experiments
reported here use uniform weighting.
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Figure 2: Results for earn-vs-acq using tf and tf-idf representations. The error bars represent ±1
standard deviation on 30 runs. Training (resp. testing) with 200 (resp. 250) samples per
class.
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Figure 3: Results for stud-vs-fac using tf and tf-idf representations. The error bars represent ±1
standard deviation on 30 runs. Training (resp. testing) with 200 (resp. 250) samples per
class.

As baselines, we used the p-spectrum kernel (PSK, see 39) for the values of p referred above,
and the weighted all substrings kernel (WASK, see 40) with decaying factor tuned to - = 0.75
(which yielded the best results), with pmin = p set to the values above, and pmax = &. The SVM C
parameter was tuned by cross-validation over the training set.

Figures 4–5 summarize the results.
For the first task, the JT string kernel and the WASK outperformed the PSK (with statistical

significance for p = 3), all kernels performed similarly for p = 4, and the JT string kernel outper-
formed the WASK for p= 5; all other differences are not statiscally significant. In the second task,
the JT string kernel outperformed both the WASK and the PSK (and the WASK outperformed the
PSK), with statistical significance for p = 3,4,5. Furthermore, by comparing Figures 3 and 5, we
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Figure 4: Results for earn-vs-acq using string kernels and p = 3,4,5. The error bars represent ±1
standard deviation on 15 runs. Training (resp. testing) with 200 (resp. 250) samples per
class.

also observe that the 5-th order JT string kernel remarkably outperforms all bags of words kernels
for the stud-vs-fac task, even though it does not use or build any sort of language model at the word
level.

8. Conclusions

In this paper we have introduced a new family of positive definite kernels between measures, which
includes previous information-theoretic kernels on probability measures as particular cases. One of
the key features of the new kernels is that they are defined on unnormalized measures (not necessar-
ily normalized probabilities). This is relevant, for example, for kernels on empirical measures (such
as word counts, pixel intensity histograms); instead of the usual step of normalization (Hein et al.,
2004), we may leave these empirical measures unnormalized, thus allowing objects of different
sizes (e.g., documents of different lengths, images with different sizes) to be weighted differently.
Another possibility is the explicit inclusion of weights: given two normalized measures, they can
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Figure 5: Results for stud-vs-fac using string kernels and p = 3,4,5. The error bars represent ±1
standard deviation on 15 runs. Training (resp. testing) with 200 (resp. 250) samples per
class.

be multiplied by arbitrary (positive) weights before being fed to the kernel function. In addition,
we define positive definite kernels between stochastic processes that subsume well-known string
kernels.

The new kernels and the proofs of positive definiteness rely on other main contributions of this
paper: the new concept of q-convexity, for which we proved a Jensen q-inequality; the concept
of Jensen-Tsallis q-difference, a nonextensive generalization of the Jensen-Shannon divergence;
denormalization formulae for several entropies and divergences.

We have reported experiments in which these new kernels were used in support vector machines
for text classification tasks. Although the reported experiments do not lead to strong conclusions,
they show that the new kernels are competitive with the state-of-the-art, in some cases yielding a
significant performance improvement.

Future research will concern applying Jensen-Tsallis q-differences to other learning problems,
like clustering, possibly exploiting the fact that they accept more than two arguments.
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Appendix A. Suyari’s Axioms for Nonextensive Entropies

Suyari (2004) proposed the following set of axioms (above referred as Suyari’s axioms) that deter-
mine nonextensive entropies of the form stated in (1). Below, q ≥ 0 is any fixed scalar and fq is a
function defined on ∪&n=1!n−1.

(A1) Continuity: fq|!n−1 is continuous, for any n ∈ N;

(A2) Maximality: For any n ∈ N and (p1, . . . , pn) ∈ !n−1,

fq(p1, . . . , pn) ≤ Sq(1/n, . . . ,1/n);

(A3) Generalized additivity: For i= 1, . . . ,n, j = 1, . . . ,mi, pi j ≥ 0, and pi = "mi
j=1 pi j,

fq(p11, . . . , pnmn) = fq(p1, . . . , pn)+
n

"
i=1

pqi fq
(
pi1
pi

, . . . ,
pimi
pi

)
;

(A4) Expandability: fq(p1, . . . , pn,0) = fq(p1, . . . , pn).

Appendix B. Proof of Proposition 8

Proof The case q = 1 corresponds to the Jensen difference and was proved by Burbea and Rao
(1982) (Theorem 1). Our proof extends that to q )= 1. Let y= (y1, . . . ,ym), where yt = (yt1, . . . ,ytn).
Thus

T )q,,(y) = ,

(
m

"
t=1

)tyt

)

−
m

"
t=1

)qt ,(yt)

=
n

"
i=1

[
m

"
t=1

)qt '(yti)−'

(
m

"
t=1

)tyti

)]

,

showing that it suffices to consider n= 1, where each yt ∈ [0,1], that is,

T )q,,(y1, . . . ,ym) =
m

"
t=1

)qt '(yt)−'

(
m

"
t=1

)tyt

)

;
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this function is convex on [0,1]m if and only if, for every fixed a1, . . . ,am ∈ [0,1], and b1, . . . ,bm ∈R,
the function

f (x) = T )q,,(a1+b1x, . . . ,am+bmx)

is convex in {x∈R : at+btx∈ [0,1], t = 1, . . . ,m}. Since f isC2, it is convex if and only if f ′′(t)≥ 0.
We first show that convexity of f (equivalently of T )q,,) implies convexity of '. Letting ct =

at +btx,

f ′′(x) =
m

"
t=1

)qt b2t '′′(ct)−

(
m

"
t=1

)t bt

)2

'′′
(

m

"
t=1

)t ct

)

. (45)

By choosing x= 0, at = a ∈ [0,1], for t = 1, ...,m, and b1, . . . ,bm satisfying "t )tbt = 0 in (45), we
get

f ′′(0) = '′′(a)
m

"
t=1

)qt b2t ,

hence, if f is convex, '′′(a) ≥ 0 thus ' is convex.
Next, we show that convexity of f also implies (2−q)-convexity of −1/'′′. By choosing x= 0

(thus ct = at) and bt = )1−qt ('′′(at))−1, we get

f ′′(0) =
m

"
t=1

)2−qt
'′′(at)

−

(
m

"
t=1

)2−qt
'′′(at)

)2

'′′
(

m

"
t=1

)tat

)

=

[
1

'′′ ("m
t=1)tat)

−
m

"
t=1

)2−qt
'′′(at)

](
m

"
t=1

)2−qt
'′′(at)

)

'′′
(

m

"
t=1

)tat

)

,

where the expression inside the square brackets is the Jensen (2− q)-difference of 1/'′′ (see Def-
inition 7). Since '′′(x) ≥ 0, the factor outside the square brackets is non-negative, thus the Jensen
(2−q)-difference of 1/'′′ is also nonnegative and −1/'′′ is (2−q)-convex.

Finally, we show that if ' is convex and −1/'′′ is (2− q)-convex, then f ′′ ≥ 0, thus T )q,, is
convex. Let rt = (q)2−qt /'′′(ct))1/2 and st = bt()qt '′′(ct)/q)1/2; then, non-negativity of f ′′ results
from the following chain of inequalities/equalities:

0 ≤

(
m

"
t=1

r2t

)(
m

"
t=1

s2t

)

−

(
m

"
t=1

rt st

)2

(46)

=
m

"
t=1

)2−qt
'′′(ct)

m

"
t=1

b2t )
q
i '

′′(ct)−

(
m

"
t=1

bt)t

)2

(47)

≤
1

'′′ ("m
t=1)tct)

m

"
t=1

b2t )
q
t '

′′(ct)−

(
m

"
t=1

bt)t

)2

(48)

=
1

'′′ ("m
t=1)tct)

· f ′′(t), (49)

where: (46) is the Cauchy-Schwarz inequality; Equality (47) results from the definitions of rt and
st and from the fact that rtst = bt)t ; Inequality (48) states the (2−q)-convexity of −1/'′′; equality
(49) results from (45).
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Appendix C. Proof of Proposition 10

Proof The proof of (29), for q≥ 0, results from

T )q (p1, . . . , pm) =
1

q−1

[

1−
n

"
j=1

(
m

"
t=1

)t pt j

)q

−
m

"
t=1

)qt

(

1−
n

"
j=1

pqt j

)]

= Sq())+
1

q−1

n

"
j=1

[
m

"
t=1

()t pt j)q−

(
m

"
t=1

)t pt j

)q]

≤ Sq()),

where the inequality holds since, for yi ≥ 0: if q≥ 1, then "i y
q
i ≤ ("i yi)

q; if q ∈ [0,1], then "i y
q
i ≥

("i yi)
q.

The proof that T )q ≥ 0 for q≥ 1, uses the notion of q-convexity. Since X is countable, the Tsallis
entropy is as in (2), thus Sq ≥ 0. Since −Sq is 1-convex, then, by Proposition 6, it is also q-convex
for q≥ 1. Consequently, from the q-Jensen inequality (Proposition 5), for finite T , with |T | = m,

T )q (p1, . . . , pm) = Sq

(
m

"
t=1

)t pt

)

−
m

"
t=1

)qt Sq(pt) ≥ 0.

Since Sq is continuous, so is T )q , thus the inequality is valid in the limit as m→&, which proves the
assertion for T countable. Finally, T )q (.1, . . . ,.1, . . .) = 0, where .1 is some degenerate distribution.

Finally, to prove (30), for q ∈ [0,1] and X finite,

T )q (p1, . . . , pm) = Sq

(
m

"
t=1

)t pt

)

−
m

"
t=1

)qt Sq(pt)

≥
m

"
t=1

)tSq(pt)−
m

"
t=1

)qt Sq(pt) (50)

=
m

"
t=1

()t −)qt )Sq(pt)

≥ Sq(U)
m

"
t=1

()t−)qt ) (51)

= Sq())[1−n1−q].

where the Inequality (50) results from Sq being concave, and the Inequality (51) holds since )t −
)qt ≤ 0, for q∈ [0,1], and the uniform distributionU maximizes Sq, with Sq(U) = (1−n1−q)/(q−1).

Appendix D. Proof of Proposition 41

Proof We show a counterexample with q = 1 (the extensive case), ) = (1/2,1/2) and k = 1,
that discards both cases. It suffices to show that

√
JScond1 !

√
T cond,(1/2,1/2)1,1 violates the triangle

inequality for some choice of stochastic processes s1,s2,s3 and therefore is a not a squared distance;
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this in turn implies that
√
JScond1 is not nd and, from Proposition 18, that the above two kernels

are not pd. We define s1,s2,s3 to be stationary first order Markov processes in a binary alphabet
A = {0,1} defined by the following transition matrices, respectively:

S1 = lim
4→0

[
1− 4 4
1/4 3/4

]
=

[
1 0
1/4 3/4

]
,

S2 = lim
4→0

[
3/4 1/4
4 1− 4

]
=

[
3/4 1/4
0 1

]
,

and

S3 = lim
4→0

[
4 1− 4
1/4 3/4

]
=

[
0 1
1/4 3/4

]
,

whose stationary distributions are

%1 = lim
4→0

1
1+44

[
1
44

]
=

[
1
0

]
,

%2 = lim
4→0

1
1+44

[
44
1

]
=

[
0
1

]
,

and

%3 = lim
4→0

1
5−44

[
1

4−44

]
=

[
1/5
4/5

]
.

The matrix of first order conditional JT 1-differences (or first order conditional Jensen-Shannon
divergences) is 


0 0 3

5H(56)
∗ 0 9

10H(89)−
2
5H(14)

∗ ∗ 0



 ≈




0 0 0.390
∗ 0 0.128
∗ ∗ 0



 , (52)

which fails to be negative definite, since
√
JScond1 (s1,s2)+

√
JScond1 (s2,s3) <

√
JScond1 (s1,s3),

which violates the triangle inequality required for
√
JScond1 to be a metric.

Interestingly, the 0-th order conditional Jensen-Shannon divergence matrix (this one ensured to
be negative definite because it equals a standard Jensen-Shannon divergence matrix) is




0 1 H(25)−

1
2H(15)

∗ 0 H( 110)−
1
2H(15)

∗ ∗ 0



 ≈




0 1 0.610
∗ 0 0.108
∗ ∗ 0



 . (53)

From the chain rule (35), we have that the sum of the matrices (52) and (53) is the second order
joint Jensen-Shannon divergence, and therefore is also guaranteed to be negative definite.
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Appendix E. The Heat Kernel Approximation

The diffusion kernel for statistical manifolds, recently proposed by Lafferty and Lebanon (2005), is
grounded in information geometry (Amari and Nagaoka, 2001). It models the diffusion of “informa-
tion” over a statistical manifold according to the heat equation. Since in the case of the multinomial
manifold (the relative interior of !n), the diffusion kernel has no closed form, the authors adopt
the so-called “first-order parametrix expansion,” which resembles the Gaussian kernel replacing the
Euclidean distance by the geodesic distance that is induced when the manifold is endowed with a
Riemannian structure given by the Fisher information (we refer to Lafferty and Lebanon 2005 for
further details). The resulting heat kernel approximation is

kheat(p1, p2) = (4)t)−
n
2 exp

(
−
1
4t
d2g(p1, p2)

)
,

where t > 0 and dg(p1, p2) = 2arccos
(
"i

√p1i p2i
)
. Whether kheat is pd has been an open problem

(Hein et al., 2004; Zhang et al., 2005). Let Sn+ be the positive orthant of the n-dimensional sphere,
that is,

S
n
+ =

{

(x1, . . . ,xn+1) ∈ R
n+1 |

n+1

"
i=1

x2i = 1, ∀i xi ≥ 0

}

.

The problem can be restated as follows: is there an isometric embedding from Sn+ to some Hilbert
space? In this section we answer that question in the negative.

Proposition 43 Let n≥ 2. For sufficiently large t, the kernel kheat is not pd.

Proof From Proposition 19, kheat is pd, for all t > 0, if and only if d2g is nd. We provide a coun-
terexample, using the following four points in !2: p1 = (1,0,0), p2 = (0,1,0), p3 = (0,0,1) and
p4 = (1/2,1/2,0). The squared distance matrix [Di j] = [d2g(pi, p j)] is

D=
)2

4
·





0 4 4 1
4 0 4 1
4 4 0 4
1 1 4 0



 .

Taking c= (−4,−4,1,7)we have cTDc= 2)2 > 0, showing thatD is not nd. Although p1, p2, p3, p4
lie on the boundary of !2, continuity of d2g implies that it is not nd on the relative interior of !2. The
case n> 2 follows easily, by appending zeros to the four vectors above.
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Abstract
The statistical learning theory of risk minimization depends heavily on probability bounds for uni-
form deviations of the empirical risks. Classical probability bounds using Hoeffding’s inequality
cannot accommodate more general situations with unbounded loss and dependent data. The current
paper introduces an inequality that extends Hoeffding’s inequality to handle these more general sit-
uations. We will apply this inequality to provide probability bounds for uniform deviations in a very
general framework, which can involve discrete decision rules, unbounded loss, and a dependence
structure that can be more general than either martingale or strong mixing. We will consider two
examples with high dimensional predictors: autoregression (AR) with !1-loss, and ARX model
with variable selection for sign classification, which uses both lagged responses and exogenous
predictors.
Keywords: dependence, empirical risk, probability bound, unbounded loss, uniform deviation

1. Introduction

In machine learning, a problem of central importance is to bound a probability of uniform deviation
P[supb∈B |n−1!n

t=1"(#t ,b)− n−1!n
t=1E"(#t ,b)| > $], where $ > 0 is a positive deviation (which

can be allowed to depend on n and characterize a convergence rate), b is a parameter in a parameter
space B (which is typically a Borel measurable subset of an Euclidean space), D= (#1, ...,#n) form
the data set of n random observations, "(·, ·) is a loss function (measurable to a certain product
%-field), R̂(b) = n−1!n

t=1"(#t ,b) is an empirical risk, and R(b) = n−1!n
t=1E"(#t ,b) is its expec-

tation.1
Such a probability is of interest since it is well known to bound the performance R(b̂) of an

empirical risk minimizer b̂= argminb∈B R̂(b), relative to the optimal performance infb∈BR(b) over
B:

P[R(b̂)− inf
b∈B

R(b) > 2$] ≤ P[sup
b∈B

|R̂(b)−R(b)| > $],

due to, for example, Lemma 8.2 (Devroye, Györfi and Lugosi, 1996). Recently, Jiang and Tanner
(2007, 2008) indicate that the probability of uniform deviation is also of central importance in

1. In this paper, we will not be concerned about the measurability problem that may be involved in quantities such
as supb∈B |R̂(b)−R(b)|. Works on ‘universal measurability’ described in, for example, Yu (1994, Appendix) and
Davidson (1994, Section 21.1) imply that this is not a problem for all our examples later where B is a Borel measurable
subset of a compact metric space. Alternatively we could consider P as the ‘outer probability’ as in Newey (1991).
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studying the performance of a Bayesian approach of empirical risk minimization considered in, for
example, Zhang (2006), when b is generated randomly according to a Gibbs posterior &b|D(db) '
e−n(R̂(b)&b(db) where &b(db) is a prior distribution on B and (−1 > 0 is a ‘temperature parameter’.
This includes the usual Bayesian posterior as a special case when ( = 1 and when −nR̂ is the
log-likelihood function. A straightforward application of Jiang and Tanner (2008, Proposition 6)
renders

P[R(b)− inf
b∈B

R(b) > 5$] ≤ P[sup
b∈B

|R̂(b)−R(b)| > $]+ e−2n($/&b[R(b)− inf
b∈B

R(b) < $],

when b|D ∼ &b|D and D is generated from a true distribution. This again shows the dependence of
the risk performance on the probability of uniform deviation.

The probability of uniform deviation is treated in the standard machine learning text such as De-
vroye, Györfi and Lugosi (1996) by the Vapnik-Chervonenkis theory using a Hoeffding’s inequality
on the probability of pointwise deviation P[|n−1!n

t=1"(#t ,b)−n−1!n
t=1E"(#t ,b)|> $], which typ-

ically assumes that #t’s are iid (independent and identically distributed), and that the loss function "
is bounded. The goal of this paper is to generalize in several directions, so that " can be unbounded
and #t’s can be dependent. In addition, we will allow b to have a possibly high dimension that can
increase with n in certain ways. When " has sufficiently thin tail in the distribution and when #t’s
have certain kind of decaying dependence over t, we derive bounds of the form

P[sup
b∈B

|n−1
n

!
t=1

"(#t ,b)−n−1
n

!
t=1

E"(#t ,b)| > n−0.5+)1 ] = O(e−c1n
c2 ),

for any small positive )1, where c1, c2 are some positive constants depending on )1. Such a result
indicates uniform convergence of the empirical risk at a near ‘parametric’ rate (close to OP(n−0.5))
despite high dimensionality in b, dependence in #t , and unbounded loss function ".

Such results are obtained using a very general ‘pointwise’ inequality that generalizes Hoeffd-
ing’s inequality, which will be introduced in Section 2. This allows unbounded loss and a framework
of dependence that is more general than strong mixing, which is therefore more general than pre-
vious works using strong mixing (e.g., Vidyasagar, 2005; Zou and Li, 2007) or *-mixing (e.g.,
Yu, 1994; Lozano, Kulkarni and Schapire, 2006). The ‘uniform aspect’ is then treated in a very
general framework in Section 3 allowing both continuity and discontinuity of " in b. Examples of
applications of this general framework are given in Sections 4 and 5.

2. An Inequality

We first introduce an inequality that is more general than Hoeffding’s inequality (Hoeffding, 1963).
This inequality may be called a ‘triplex inequality’ since its right hand side has three parts. In
addition to a term that is of an exponential form as in the Hoeffding’s inequality, it also includes a
term to gauge the dependence, and a term to control the unboundedness of the random variables. The
result is therefore almost assumption free and generally applicable: it does not assume independence
or boundedness of the random variables.

Theorem 1 (A triplex inequality.) let {Ft}+−+ be an increasing sequence of %-fields and "t be a
random variable that is Ft -measurable for each t. Then for any ,,C > 0 and positive integers n,m,

978



UNIFORM DEVIATION OF GENERAL EMPIRICAL RISKS

we have

P[|
n

!
t=1

("t −E"t)| > n,] ≤ 2me−n,
2/(288m2C2)

+(6/,)n−1
n

!
t=1

E|E("t |Ft−m)−E"t |

+(15/,)n−1
n

!
t=1

E|"t |I(|"t | >C),

as long as the right hand side exists and does not exceed one.

2.1 Remarks

1. The bound is not necessarily very tight; the constants appearing in the theorem may be im-
proved. However, these typically do not affect the convergence rates in the later applications
of this inequality.

2. In later applications, the choices of m andC can be made to depend on n so that the combina-
tion of all three terms converge to zero as n→ +.

3. The last term will be called the ‘tail term’ since it is related to the tail behavior of "t .
This often can be bounded by techniques similar to the Markov inequalities. Note that for
nonnegative X = |"t |, EXI(X > C) ≤ EXk+1C−k and EXI(X > C) ≤

√
EX2

√

P(X >C) ≤√
EX2

√
Ee-Xe−-C/2, for k,- > 0. So existence of moments of X will imply a power law

and existence of the moment generating function in a neighborhood of zero will imply an
exponential law for the decay of the ‘tail term’ inC.

4. The second term will be called the ‘dependence term’ since it is related to the dependence
described in the framework of L1-mixingale (see, e.g., Chapter 16, Davidson, 1994), which is
more general than either martingale or strong mixing. When {"t} is a sequence of martingale
differences, the dependence term vanishes. If {"t} is strong mixing with coefficients .m, and
has bounded Lq norms (q> 1), then Theorem 14.2 of Davidson (1994) would imply that the
dependence term decreases according to order O(.1−1/qm ) as m increases.

5. The mixingale formulation of the dependence term can also handle a process "t that is not
strong mixing. We will provide an example below when "t is not strong mixing but is
approximable to a strong mixing process, where we can still make the dependence term
small for large m. Such an extension from ‘strong mixing’ to ‘approximable by strong mix-
ing’, although seemingly a small improvement, is very significant. The problem of strong
mixing is that a function of a mixing sequence (even an independent sequence) that depends
on an infinite number of lags is not generally mixing. This is regarded as a ‘serious draw-
back from the viewpoint of applications in time-series modelling’ (Davidson, 1994, p.261),
and has led to the ‘approximability’ framework summarized in Davidson (1994, Chapter 17),
which is popular in modern time series study but has not been paid much attention to by the
machine learning society. Our work can incorporate this approximability concept and provide
a ‘bridge’ introducing this framework to our field.
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2.2 An Example for the Dependence Term

Suppose that {"t}+t=−+ can be approximated in an L1-sense by a strong mixing sequence {"t,k}+t=−+
as k increases (where "t,k is measurable -Ft for each t):

n−1
n

!
t=1

E|"t−"t,k|≤ c1/k,

where c1 > 0 and /k > 0 are nonstochastic and /k decreases to zero as k → +. Suppose the qth
moment ||"t,k||q ≡ (E|"t,k|q)1/q ≤ c2 for some constants q > 1, c2 > 0. Then Theorem 14.2 of
Davidson (1994) implies that

n−1
n

!
t=1

E|E("t,k|Ft−m)−E"t,k|≤ 6c2.m({"t,k}+t=−+)1−1/q.

Then apply the triangular inequality and note that the dependence term is proportional to

n−1
n

!
t=1

E|E("t |Ft−m)−E"t |≤ n−1
n

!
t=1

E|E("t,k|Ft−m)−E"t,k|+2n−1
n

!
t=1

E|"t−"t,k|

≤ 6c2.m({"t,k}+t=−+)1−1/q+2c1/k.

We may be able to choose k= k(m) to increase with m somehow so that both terms above are small
for large m. Such a choice k(m) depends on the mechanism of approximation. When k indicates the
number of lags involved as in the following example, one can choose k(m) ≈ m/2.

For example, consider an MA(+) process "t = !+
j=0- jVt− j where {Vt}+−+ is a zero-mean, Lq-

bounded sequence (i.e., supt ||Vt ||q <+) for some q> 1. (We can take Ft to be the %-field generated
by {Vs}ts=−+.) Then "t is not necessarily strong mixing even whenVt’s are independent innovations,
even when |- j| decreases very rapidly, due to the infinitely many lags involved (see, e.g., Section
14.3, Davidson 1994). On the other hand, when |-|1 ≡ !+

1 |- j| < +, we can define ‘finite-lag’
approximators "t,k =!k

j=0- jVt− j so that E|"t−"t,k|= E|!+
k+1- jVt− j|≤ supt ||Vt ||1!+

k+1 |- j| which
is of the form c1/k where /k = !+

k+1 |- j|→ 0 as k→ +.
Suppose Vt is strong mixing (e.g., when innovations are independent) with mixing coefficient

.m({Vt}+−+). Then the strong mixing coefficient of "t,k satisfies

.m({"t,k}+t=−+) ≤ .m−k({Vt}+−+),

since the "t,k depends on lags Vt ,Vt−1, ...,Vt−k. Note that ||"t,k||q ≤ !k
j=0 |- j|supt ||Vt−k||q ≤

|-|1 supt ||Vt ||q which can be taken as the constant c2.
Now note that the dependence term of interest is proportional to

n−1
n

!
t=1

E|E("t |Ft−m)−E"t |

≤ 6c2.m({"t,k}+t=−+)1−1/q+2c1/k
≤ 6c2.m−k({Vt}+−+)1−1/q+2c1/k.

Then one can take, for example, k = *m/2+ (the integer part of m/2) and make the upperbound
small for large m.

This shows that the current formulation of the inequality can handle dependence that is more
general than strong mixing.
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2.3 Proving the Triplex Inequality

The idea behind an upperbound with a decomposition into such three terms has appeared in econo-
metric literature. For example, de Jong and Woutersen (2004) used this idea to treat an unbounded
sum appearing in the binary choice models. The idea of our proof is related to a mixingale treatment
seen in, for example, Chapter 16 of Davidson (1994). Since the specific form of the current inequal-
ity is not seen in these literatures, we will provide a proof below for completeness. The following
Lemma will be used in the proof.

Lemma 1 let {Ft}+−+ be an increasing sequence of %-fields. Let Xt be a random variable that is
Ft -measurable and is bounded so that |Xt |≤C for some constant C for each t. Then for any ,> 0
and positive integers n,m, we have

P[|
n

!
t=1

Xt−E
n

!
t=1

Xt | > n,] ≤ 2me−n,
2/(32m2C2) + (2/,)n−1

n

!
t=1

E|E(Xt |Ft−m)−EXt |, (1)

as long as the right hand side exists.

Proof for Lemma 1 Consider Un ≡ !n
t=1Xt − E!n

t=1Xt , which can be ‘telescoped’ into Un =
U1,n +U2,n + ... +Um,n +Vn where U1,n = {X1−E(X1|F1−1)}+ ... + {Xn−E(Xn|Fn−1)}, U2,n =
{E(X1|F1−1) − E(X1|F1−2)} + ... + {E(Xn|Fn−1) − E(Xn|Fn−2)},..., Um,n = {E(X1|F1−(m−1))−
E(X1|F1−m)} + ... + {E(Xn|Fn−(m−1)) − E(Xn|Fn−m)}, Vn = {E(X1|F1−m) − EX1} + ...+
{E(Xn|Fn−m)−EXn}. Then a union bound leads to

P[|Un| > n,]
≤ P[|U1,n| > n,/(2m)]+P[|U2,n| > n,/(2m)]+ ....+P[|Um,n| > n,/(2m)]

+P[|Vn| > n,/2]. (2)

Note thatU1,n is a sum of nmartingale differences each bounded in magnitude by 2C. So P[|U1,n|>
n,/(2m)] ≤ 2e−n,2/(32m2C2) by applying a generalization of the Hoeffding’s inequality to the mar-
tigale differences (see, e.g., Theorem 15.20, Davidson, 1994, or Theorem 9.1, Devroye, Györfi
and Lugosi, 1996). Similarly is P[|Uj,n| > n,/(2m)] ≤ 2e−n,2/(32m2C2) for all j = 1, ...,m. Now
P[|Vn|> n,/2]≤ (2/,)n−1E|Vn|≤ (2/,)n−1!n

t=1E|E(Xt |Ft−m)−EXt | using the Markov inequality
and the triangular inequalities. Combining these upperbounds for the terms on the right hand side
of (2) leads to the proof. Q.E.D.

The inequality appearing in the current lemma holds without assumption of a dependence struc-
ture. It still assumes a bounded Xt . Next we remove the boundedness assumption by incorporating
a term related to the ‘tail behavior’ of a random variable "t , which is now possibly unbounded.

Proof for Theorem 1 Wewill decompose "t = Xt +Yt where Xt = "t I[|"t |≤C] andYt = "t I[|"t |>
C]. Then |!("t −E"t)| ≤ |!(Xt −EXt)|+! |Yt |+!E|Yt | by using triangular inequalities. Then
P[!n

1("t −E"t)| > n,] ≤ P[|!n
1(Xt −EXt)| > n,/3] +P[!n

1 |Yt | > n,/3] +P[!n
1E|Yt | > n,/3] The

first term is bounded by the preceding lemma by

2me−n,
2/(288m2C2) + (6/,)n−1

n

!
t=1

E|E(Xt |Ft−m)−EXt |.
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The second term is bounded above by (3/,)n−1!n
1E|Yt |. The third term is a probability of a deter-

ministic event, which is zero if the righthand side of the triplex inequality in Theorem 1 does not
exceed one. Therefore P[!n

1("t−E"t)| > n,] ≤ 2me−n,2/(288m2C2) +(6/,)n−1!n
t=1E|E(Xt |Ft−m)−

EXt | + (3/,)n−1!n
1E|Yt |. Now note that |E|E(Xt |Ft−m) − EXt | − E|E("t |Ft−m) − E"t || ≤

E|E(Yt |Ft−m)−EYt | ≤ 2E|Yt | using the triangular inequalities and the Jensen’s inequality. Then
E|E(Xt |Ft−m)−EXt |≤E|E("t |Ft−m)−E"t |+2E|Yt | and P[!n

1("t−E"t)|> n,]≤ 2me−n,2/(288m2C2)

+(6/,)n−1!n
t=1{E|E("t |Ft−m)−E"t |+2E|Yt |}+(3/,)n−1!n

1E|Yt | which leads to the proof of the
theorem. Q.E.D.

3. Uniform Deviation

The above inequality (in Theorem 1) can be used to bound the probability of a large (pointwise) devi-
ation Tn(b) = R̂(b)−R(b), where b is a parameter, R̂(b) is a sample average R̂(b) = n−1!n

t=1"(#t ,b)
(where for each t, #t is measurable -Ft from an increasing sequence of %-fields), and R(b) is its ex-
pectation R(b) = ER̂(b). It is often of interest to bound the probability of a large uni f orm deviation
supb∈B |Tn(b)| over a parameter space B for b.

The connection between the pointwise and uniform deviations can be obtained by covering B
with many (say, 0) smaller sets Bi’s, so that B ⊂ ∪0i=1Bi. Choose bi to be some parameter located
in Bi for each i. Note that supb∈B |Tn(b)| ≤ max0i=1 |Tn(bi)|+max0i=1 supb∈Bi |Tn(b)−Tn(bi)|. Then
a union bound leads to:

Proposition 1 For any nonstochastic $> 0 and any positive integer n,

P[sup
b∈B

|Tn(b)| > 2$] ≤
0

!
i=1

P[|Tn(bi)| > $]+
0

!
i=1

P[sup
b∈Bi

|Tn(b)−Tn(bi)| > $]. (3)

This is the basis for us to bound the probability of uniform large deviation. The first term involves
pointwise deviations and can be bounded by the inequality derived before. The second term can be
bounded when Tn(b) ‘often changes little’ in a small set Bi. This can often achieved by assuming a
Lipshitz condition for the summand "(#t ,b) in argument b (see, e.g., Newey, 1991).

In machine learning, however, we often encounter summand "(#t ,b) that is discontinuous in
b. For example, the classification error can be written as "(#t ,b) = |yt − I[x′tb > 0]|, which is
discontinuous in b, when a linear boundary (in predictor xt) is used to classify a {0,1} valued label
yt . (Here #t = (yt ,xt).)

We will use a quite general framework that allows some continuous cases and some discon-
tinuous cases as well as some ‘mixed’ cases. Let "(#t ,b) be of the form "(#t ,b) = ft(b,At(b))
where ft(·, ·) is continuous in the first argument, but the second argument At(b) = I[g(#t ,b) > 0]
for some fixed function g that determines a decision boundary. The function ft depends on t through
observation #t . This framework can then include the following examples:

• (continuous) L1-loss: "= |yt− x′tb| (when ft(b, ·) is constant);

• (discontinuous) classification loss: "= |yt− I[x′tb> 0]| (when ft(·,At(b)) is constant);

• ‘mixed’ loss such as "= (1− yt).(x′tb)I[.(x′tb) > 0], which may result from a loan decision
of lending out amount .(x′tb) (according to a continuous parametric model .) when 100yt%
of the loan is paid back.
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Under this framework we will bound the deviation supb∈Bi |Tn(b)−Tn(bi)|. This is summarized
in the following Proposition, the proof of which is included in the Appendix.

Proposition 2 For each parameter b in a convex set Bi that contains bi, denote Tn(b) = R̂(b)−
ER̂(b), where R̂(b) = n−1!n

t=1"(#t ,b) and for each t, #t is measurable -Ft (from an increasing
sequence of %-fields). Assume that " has the form "(#t ,b) = ft(b,At(b)) where At(b) = I[g(#t ,b) >
0] for some fixed function g that determines a decision boundary.

Define Si as the ‘boundary set’ Si = ∪b∈Bi{#t : g(#t ,b) = 0}. Assume that:
(A1): g(#t ,b) is continuous in b and measurable in #t ;
(A2): (Lipshitz condition) supa=0,1 | ft(b,a)− ft(b∗,a))| ≤ Nit |b− b∗|q for some q > 0, for any

b,b∗ ∈ Bi;2
(A3): (Small boundary condition) The boundary set Si is measurable and n−1!n

t=1EI(#t ∈
Si) ≤ $/(12C) for some constants $,C > 0.

Denote 1= supb,b∗∈Bi |b−b∗|q and Mit = | ft(bi,1)− ft(bi,0)|.
For any constants $,C > 0 and positive integers n,m, if (A3) holds, then we have:

P[sup
b∈Bi

|Tn(b)−Tn(bi)| > $]

≤ (61/$)n−1
n

!
t=1

E(Nit +ENit)I[Nit +ENit > $/(61)]

+(6/$)n−1
n

!
t=1

EMitI(Mit >C)

+2me−n$
2/(1152m2C2) + (12C/$)n−1

n

!
t=1

E|E(I(#t ∈ Si)|Ft−m)−EI(#t ∈ Si)|,

as long as the right hand side exists.

3.1 Remarks

6. In the ‘continuous case’, ft(b,a) is constant in a ∈ {0,1}. We can then drop the last three
terms in the above bound. This is because Mit = 0 in this case and we can take C → 0. In
the ‘discontinuous case’, ft(b,a) is constant in b and we can drop the first term in the above
bound, since the Lipshitz constant Nit can be taken as 0. The result above holds also for the
more general ‘mixed case’ when ft(b,a) varies with both b and a.

7. Assumption A2 can often be validated by bounding the partial derivative of ft(b,a) on the first
argument. In a later example with L1 loss we will use a triangular inequality to validate this
assumption.

8. Assumption A3 is related to P(#t ∈ Si), the probability of an observation falling in the ‘boundary
set’ Si corresponding to a parameter set Bi. When Bi is small enough, we expect that the
‘boundary set’ will have small probability and A3 can be satisfied. The situation is clarified
when #t = (yt ,xt), g(#t ,b) depends on #t only through predictor xt , and xt = (wt ,v′t)′ has a

2. For a vector v with component v j’s, define the !q norm as |v|q = (!
dim(v)
j=1 |v j|q)1/q for q ∈ (0,+), and |v|+ =

supdim(v)
j=1 |v j|. We will also formally denote |v|0 = !

dim(v)
j=1 I[|v j| > 0].
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scalar component wt and other components vt , so that the decision boundary [g(#t ,b) = 0]
‘can be solved’ as [wt =w(vt ,b)] for some fixed function w. In this case the boundary set Si =
{(wt ,vt) :wt =w(vt ,b),b∈Bi}= [infb∈Bi w(vt ,b)≤wt ≤ supb∈Bi w(vt ,b)] if Bi is compact and
w(vt ,b) is continuous in b. Suppose we use the !+ norm and define 1 = supb,b∗∈Bi |b− b∗|+.
Denote d0 = supb,b∗∈Bi |b−b∗|0. Then in the Appendix we will show that

P(#t ∈ Si) ≤ EVt{supwt
p(wt |Vt) sup

b∈Bi
|2bw(vt ,b)|+}1d0. (4)

Here 2bw(vt ,b) denotes a partial derivative of w, Vt is some %-field such that vt is mea-
surable -Vt for each t, and p(wt |Vt) denotes the conditional density. In the ‘linear case’3
assuming 1 < 2, g(#t ,b) = ±wt + v′tbv (so A1 is satisfied), we can take w(vt ,b) = ∓v′tbv
and supb∈Bi |2bw(vt ,b)|+ = |vt |+. If the conditional density is bounded above by constant c,
then (4) becomes P(#t ∈ Si) ≤ cE|vt |+1d0. The assumption A3 will be satisfied for choosing
1≤ $/(12Ccsupt E|vt |+d0), which restricts the size of Bi.

9. It is also noted that in this paper, we will consider ‘boundary sets’ of the ‘solvable’ form
Si = [infb∈Bi w(vt ,b) ≤ wt ≤ supb∈Bi w(vt ,b)] which is assumed to be measurable. In our later
examples we will focus on ‘linear solvable type’ described above, with decision boundary
[wt = ∓v′tbv], and Bi being a closed !+ ball centered at bi and with radius h= 1/2> 0. Then
Si = [∓v′t(bi)v−h|vt |1≤wt ≤∓v′t(bi)v+h|vt |1]which is indeed measurable. [More generally,
when supb∈Bi w(vt ,b) and infb∈Bi w(vt ,b) are both continuous in vt , Si is measurable.]

We will analyze the bound in Proposition 2 term by term in the later examples. The terms
E(Nit +ENit)I[Nit +ENit > $/(61)] and EMitI(Mit >C) are tail terms. We can choose sufficiently
small 1 and sufficiently largeC to make them small.

The dependence term E|E(I(#t ∈ Si)|Ft−m)−EI(#t ∈ Si)| will be small for large m when #t
can be approximated by strong mixing sequences in some sense.

The exponential term 2me−n$2/(1152m2C2) can be made small by choosing m and C to depend on
n in certain ways. We can allow $ to depend on n also, which will lead to convergence rates.

4. A Continuous Example

Consider "t = "(#t ,b) = |Yt − b1Yt−1− ...− brYt−r| (where #t = (Yt , ...,Yt−r) and b = (b1, ...,br)),
which represents predicting Yt by r of its own lags under an L1 loss. We will allow r to increase with
n later to allow high dimensionality. We will bound the probability of a large uniform deviation
supb∈B |n−1!n

t=1"t −n−1!n
t=1E"t | over an !+ ball B= [|b|+ ≤Cb] with a constant radiusCb > 0.

Suppose the true model for Yt follows an MA(+) model Yt = !+
j=0- jZt− j, where - j’s are fixed

coefficients with a finite !1 norm |-|1 = !+
0 |- j| < +, and Zj’s are ‘innovations’, which are assumed

to be iid (independent and identically distributed) with zero mean and finite variance. Although we
have assumed Yt to be centered to have mean zero and that there is no intercept term used in the L1
loss, this is only for convenience and similar results can be obtained without this assumption.

We will consider a case of exponentially decaying - j’s, but each - j can be nonzero:

3. In the ‘linear case’ the decision rule [g(#t ,b) > 0] has the form [wtbw + v′t bv > 0]. We can always rescale the
coefficients b= (bw,b′v)′ by a scalar multiple. One such standardization used in Horowitz (1992) is such that |bw|= 1
or bw ∈ {−1,+1}. Note that for small enough set Bi with 1= supb,b′∈Bi |b−b′|+ < 2, bw is constant in Bi and takes
a common sign. We can pick either sign to proceed.
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Condition (B1): !+
j=k |- j| < /k for all large enough k, for some / ∈ (0,1).

This is a situation when Yt can have a dependence structure that is not strong mixing, since it
involves the infinite past of Zt− j’s (see, e.g., Davidson, 1994, Section 14.3). On the other hand, the
dependence term in Theorem 1 can be bounded by L1 approximation of strong mixing and we have
the following result (proved in Appendix, where Ft is the %-field generated by {Zs}ts=−+ for each
t):

E|E("t |Ft−m)−E"t |≤ 2(r+1)(Cb+1)E|Z1|
+

!
j=k+1

|- j| for any positive integer k < m− r. (5)

In order to bound the tail term in Theorem 1, we use, for some finite constants u,Cu > 0,

E|"t |I(|"t | >C) ≤ (r+1)2(Cb+1)||Z1||2|-|1Cue−uC(Cb+1)−1(r+1)−1/2, (6)

which is proved in the Appendix assuming an additional condition:
Condition (B2): For innovation Z1, the cumulant generating function K(u) = lnEeZ1u is continu-
ously differentiable at 0. (E.g., Z1 can be a Gaussian innovation.)

Nowwe apply Proposition 2, where only the first term of the bound is relevant in this continuous
case due to Remark 6. The Lipshitz constant Nit can be obtained from the triangular inequality
|"(#t ,b)−"(#t ,b∗)|≤ |b1−b∗1||Yt−1|+ ...+ |br−b∗r ||Yt−r|≤ (|Yt−1|+ ...+ |Yt−r|)|b−b∗|+. So we
can take Nit = |Yt−1|+ ...+ |Yt−r| (using !+ norm). We have

E(Nit +ENit)I(Nit +ENit > $/(61)) ≤ (2r2|-|1||Z1||2)Cue−u(/2, (7)

for some finite constants u,Cu > 0, where(= $/(6r1)−E|Z1||-|1, which is proved in the Appendix.
Now we apply (3), Theorem 1 and Proposition 2 and combine all terms together (using (5), (6)

and (7)) to obtain:
For any positive integers k < m− r, m, n, and positiveC, $, we have

P[sup
b∈B

|n−1
n

!
t=1

("n−E"t)| > 2$]

≤ 02me−n$
2/(288m2C2)

+0(6/$)2(r+1)(Cb+1)E|Z1|
+

!
j=k+1

|- j|

+0(15/$)(r+1)2(Cb+1)||Z1||2|-|1Cue−uC(Cb+1)−1(r+1)−1/2

+0(61/$)(2r2|-|1||Z1||2)Cue−u($/(6r1)−E|Z1||-|1)/2. (8)

Here B = [|b|+ ≤ Cb] = [−Cb,Cb]r for some constant radius Cb > 0. We will consider a high
dimensional case where the number of lags can increase with sample size n:
Condition (B3): r = O((lnn)M) for some power M > 0.

Note that we can take B1, ...,B0 to be 0 closed !+ balls of radius 1/2 to cover B, where 0 ≤
(2Cb/1+1)r .

We will let $= n−0.5+)1/2 for some small )1 > 0, m=C = *n)1/4+, 1= n−1, k = m−2r. Then
under conditions (B1) to (B3), ln0 = O((lnn)M1) for some M1 > 0 and all four terms in the above
inequality (8) are O(e−c1nc2 ) for some c1,c2 > 0 dependent on )1. Therefore we have:
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Proposition 3 Under Conditions (B1) to (B3), for any small )1 > 0,

P[sup
b∈B

|n−1
n

!
t=1

("t −E"t)| > n−0.5+)1 ] = O(e−c1n
c2 ).

The rate of uniform convergence remains nearly ‘parametric’ OP(n−0.5) in this case, despite the
high dimensionality of set B.

5. A Discontinuous Example

Let #t = (yt ,xt), where yt is a real-valued response at t and xt = (1,yt−1, ...,yt−r,z′t)′ is a vector of
predictors that can include r lags of y as well as a vector of exogenous variable zt . Suppose we are
interested in predicting the sign of yt by using a discontinuous loss "t = |I(yt > 0)− I(x′tb > 0)|.
We will bound the probability of a large uniform deviation supb∈B |n−1!n

t=1("t−E"t)| over a set of
‘variable selection’ B = [|b|0 ≤ v, |b|+ ≤Cb, |br+2| = 1], where |b|0 ≡ !

dim(b)
j=1 I|b j| > 0] counts the

number of selected x-components, |b|+ ≤Cb bounds the parameter space, and |br+2| = 1 is due to a
standardization for the coefficient of the first component of zt (see Footnote 2). Later we will allow
v (maximal number of selected variables), r (number of lags allowed) and K ≡ dim(zt) to increase
with n in certain ways for high dimensional variable selection.

The true model of yt is assumed to be an MA(+) transform of a strong mixing process: yt =
!+
j=0- j f j(zt− j,,t− j), where f j is some fixed measurable function for each j so that

supt, j || f j(zt ,,t)||1 < +, and ,t is a stochastic sequence independent of zt called the ‘innovation’.
We assume that:
Condition (C1): {zt ,,t} is strong mixing with mixing coefficient .m decreasing exponentially fast in
m.
Condition (C2): !+

j=k+1 |- j| decreases exponentially fast in k.
Note that yt itself may no longer be strong mixing due to its dependence on the infinite past.

These assumptions are satisfied in many situations. For example, in an ARX model yt = 3yt−1+
z′t*+,t (|3|< 1), anMA(+) representation gives yt =!+

j=03
j(z′t− j*+,t− j). Here, ,t does not have

to be iid; it can be an ‘exponential’ strong (or *-) mixing process such as a GARCH process (see,
e.g., Francq and Zakoı̈an, 2006) when yt follows an ARX-GARCH model.

In the Appendix, we show that under some additional conditions (C3 and C4) on the underlying
process {zt ,,t}, we have, for any positive integer k < m− r,

E|E("t |Ft−m)−E"t |≤ 6.m−r−k +8(
√

2My+
√

2MxrCb)
√

sup
t,l

|| fl(zt ,,t)||1!
j>k

|- j|. (9)

Here Mx,My are constants appearing in these additional conditions:
Condition (C3): yt follows a model of the form yt = Ft + ,t where Ft depends on the history
({zs}t+,{,s}t−1−+}) and ,t is an innovation that has a conditional density p(,t |{zs}t+,{,s}t−1−+}) bounded
above by a constant My (which is satisfied, for example, by N(0,%2) innovations).
Condition (C4): The conditional density p(zt,1|zt,2, ...,zt,K,{zs,,s}t−1−+ ) is bounded above by a con-
stant Mx.

We can cover B by 0 sets Bi ⊂ B, i = 1, ...,0, with each Bi being a closed !+ ball centered
at some bi, with radius h = 1/2 > 0, and with dimension at most v− 1. This is explained in the
Appendix, where we also show that we can take

0≤ 2v(K+ r)v−1(2Cb/1+1)v−1 (10)
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as an upperbound obtained from a combinatorial argument. Now we try to apply Proposition 2.
Assumption (A1) is obviously satisfied since g(#t ,b) = x′tb. We will show that assumption (A3)

holds for all large n in the Appendix, with an additional condition (C5) and with suitable choices of
$, 1 (the !+ diameter of Bi), r (the number of lags) and v (the maximal number of selected variables)
to be specified later. This additional condition is:
Condition (C5): The exogenous variables are bounded above by a finite constant: |zt |+ ≤Cz.

Assumption (A2) is satisfied with Nit = 0 due to this ‘discrete’ situation (see Remark 6). So
the first term of the bound in Proposition 2 is zero. We can take Mit = ||I(yt > 0)− 1|− |I(yt >
0)−0|| = 1 andC = 1 so the second term of the bound is zero also.

In the Appendix we evaluate the last term which is determined by E|E(I(#t ∈ Si)|Ft−m)−
EI(#t ∈ Si)|. Assuming (C4), we have, for any positive integer k < m− r,

E|E(I(#t ∈ Si)|Ft−m)−EI(#t ∈ Si)|≤ 6.m−r−k+4
√

r!
j>k

|- j|sup
t,l

|| fl(zt ,,t)||1(2Mx2(1+Cb+h)).

(11)
Now combine the applications of (3), Theorem 1 (withC= 1, or just use Lemma 1), and Propo-

sition 2, apply Equations (9) and (11) and we obtain:
For any positive integers k < m− r, m, n, and positive $,

P[!
b∈B

|n−1
n

!
t=1

("t −E"t)| > 2$]

≤ 02me−n$
2/(32m2)

+0(2/$)

{

6.m−r−k +8(
√

2My+
√

2MxrCb)
√

sup
t,l

|| fl(zt ,,t)||1!
j>k

|- j|

}

+02me−n$
2/(1152m2)

+0(12/$)

{

6.m−r−k +4
√

r!
j>k

|- j|sup
t,l

|| fl(zt ,,t)||1(2Mx2(1+Cb+1/2))

}

. (12)

Now choose parameters to make the bound small. Note that we can take 0≤ 2v(K+r)v−1(2Cb/1+
1)v−1. We have assumed exponential decay for .k and ! j>k |- j| in k.

LetCb > 0 be a constant in n. Assume the following condition on the various dimension param-
eters:
Condition (C6): The number of lags r = O((lnn)M1) for some power M1 > 0; the number of ex-
ogenous variables K = O(nM2) for some power M2 > 0, which can form a very-high dimensional
candidate predictor, with dimension possibly large than sample size n; the number of selected vari-
ables v= O((lnn)M3) for some power M3 > 0 .

We will let $= n−0.5+)1/2 for some small )1 > 0, m= *n)1/4+, 1= n−1, k = *(m− r)/2+. Then
ln0 = O((lnn)M4) for some M4 > 0 and all four terms in the above inequality (12) are O(e−c1nc2 )
(for some c1,c2 > 0 dependent on )1), when Conditions (C1) to (C6) are assumed. Therefore we
have:

Proposition 4 Under conditions (C1) to (C6), for any small )1 > 0,

P[sup
b∈B

|n−1
n

!
t=1

("n−E"t)| > n−0.5+)1 ] = O(e−c1n
c2 ).
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The rate of uniform convergence remains nearly ‘parametric’ OP(n−0.5) in this case, despite the
high dimensionality of set B.

6. Discussion

This paper presents a very general inequality that generalizes Hoeffding’s inequality to dependent
and unbounded summands. The inequality may not be very tight, but it involves few assumptions
and can be very useful in deriving convergence rates of pointwise and uniform deviations in a
number of situations that cannot be dealt with before. We gave two examples here, one with L1 loss
and another on sign classification. There are other examples that may be worked out (e.g., with L2
loss or with log-likelihood) which are not considered here. We hope that the current work can serve
as a probablistic foundation to the theory of empirical risk minimization for many situations with
dependent data and unbounded loss.

The current results involve a high dimensional parameter b; near-parametric convergence rates
are obtained in examples with exponentially small ‘unboundedness’ (characterized by existence
of some moment generating function) and with certain kinds of exponentially decaying temporal
dependence. We expect that slower convergence rates may be obtained with more severe ‘unbound-
edness’, or with a slower decay of temporal dependence, using the same techniques.

Although the number of selected variables is restricted to O((logn)M), we can allow these vari-
ables to be selected from a much higher number of candidate regressors of dimension up to nM for
any finite positive M, and still maintain a near-parametric convergence rate. This is demonstrated
in Section 5 and is also true if we add in regressors and make an ARX model for Section 4. (In fact
it is also possible to allow a higher number of selected variables such as na for some a ∈ (0,1), but
this will correspond to a slower convergence rate.)

It is noted that there exists much previous work in addressing the problems considered in this
paper, in addition to the related work mentioned in the Introduction (we thank the reviewers for
bringing our attention to these additional references). In the direction of unbounded loss, Meir and
Zhang (2003) consider uniform deviations for iid data using a bound of the Rademaker complexity.
Various ratios of empirical processes can also be used to handle unboundedness (see, e.g., Haussler,
1992; Pollard, 1995; Bartlett and Lugosi, 1999; Bercu, Gassiat and Rio, 2002). Bercu, Gassiat and
Rio (2002) present a ratio-type result that can relax the assumption on the ‘unboundedness’ while
proving exponential concentration for iid data. In the direction of dependence, McDiarmid (1998,
e.g., Theorem 3.8) uses the method of bounded differences and includes a term related to a ‘bad set’
of events involving a large variance. Uniform inequalities have also been obtained for martingales
(see, e.g., van de Geer, 2000, Theorem 8.13). In the direction of high dimensionality, typical uni-
form deviation results deal with infinite-dimensional function space (see, e.g, good summaries in
Bousquet, Boucheron, and Lugosi, 2003 and van de Geer, 2000).

In comparison, our method addresses the three aspects (unboundedness, dependence, high di-
mensionality) simultaneously with a relative simple approach. While the additional references can
sometimes handle one aspect better, they typically do not address the other aspects in the same time.
For example, McDiarmid (1998, e.g., Theorem 3.8) can potentially handle data that are dependent
‘in multi-dimensions’ (such as random graph or spatial dependence), while our method only ad-
dresses ‘one-dimensional’ dependence (i.e., a time series). On the other hand, McDiarmid’s method
also requires bounded differences which would require some kind of boundedness (e.g., bounded
summands in the case of an iid average) while we do not need this assumption. In addition, we
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note that the ‘bad set’ term bounding the probability of a large variance will often require applying
a large deviation inequality again, while our triplex inequality is one in closed form.

Many of these additional references do not treat dependence to the same degree of generality as
the current paper. For example, traditional treatments with symmetrization and Rademaker average
such as Meir and Zhang (2003) are suitable only for iid data. Ratio-type results such as Bercu,
Gassiat, Rio (2002) can relax the assumption on the ‘unboundedness’ while proving exponential
concentration for iid data, but it is not clear how this can be extended to general dependent sit-
uations. The chaining technique described in, for example, van de Geer (2000, Section 3.2) and
Bousquet, Boucheron and Lugosi (2003, Section 5) may be used to improve the convergence rate
by a logn factor in the finite dimensional case. However, most applications of this technique are for
independent data or martingales. Our dependence term, on the other hand, is put in the framework
of mixingale, which is more general than martingales as discussed in Remark 4.

Typical uniform deviation results deal with infinite-dimensional function spaces. Our formula-
tion is for a somewhat less general situation where the functions are parameterized, and we formu-
lated uniform convergence on a high dimensional parameter space. Although it may be possible to
formulate uniform convergence on function spaces directly for dependent data (see, e.g., Yu, 1994
for beta-mixing and Vidyasagar, 2005 for alpha-mixing), we choose the parametric covering frame-
work which is less abstract and easier to understand, and demonstrates the convergence rates more
clearly. The result of such a formulation is that a reader with an elementary background on proba-
bility and real analysis can follow the development easily, and arrive at such advanced results as the
convergence rates with high dimensional variable selection. Although the formulation is deliber-
ately elementary, the results are powerful enough to handle such complicated dependent situations
as the sign prediction for an ARX process with GARCH error in Section 5.
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Appendix A.

Proof of Proposition 2 Note that for any b ∈ Bi, |Tn(b)− Tn(bi)| = |n−1!n
t=1{ ft(b,At(b))−

ft(bi,At(bi))}− n−1!n
t=1E{ ft(b,At(b))− ft(bi,At(bi))}|. We therefore investigate the differences

of the form ft(b,At(b)) − ft(bi,At(bi)) = { ft(b,At(b)) − ft(bi,At(b))} + { ft(bi,At(b))−
ft(bi,At(bi))}.
Note that | ft(bi,At(b))− ft(bi,At(bi))| = Mit |At(b)−At(bi)| where Mit = | ft(bi,1)− ft(bi,0)|,

and | ft(b,At(b)) − ft(bi,At(b))| ≤ supb,b∗∈Bi supa=0,1 | ft(b,a) − ft(b∗,a))| ≤ Nit1, where
1 ≡ supb,b∗∈Bi |b− b∗|q, if we assume a Lipshitz condition supa=0,1 | ft(b,a)− ft(b∗,a))| ≤ Nit |b−
b∗|q under an !q-norm for some q> 0.

We then combine the statements before and apply the triangular inequalities to obtain
|Tn(b) − Tn(bi)| ≤ n−1!n

t=1Nit1 + n−1!n
t=1Mit |At(b) − At(bi)| + n−1!n

t=1ENit1
+n−1!n

t=1EMit |At(b)−At(bi)|.
Now note that |At(b)− At(bi)| ≤ I(#t ∈ Si) where Si is the ‘boundary set Si = ∪b∈Bi{#t :

g(#t ,b) = 0}. This is true when we assume that g(#t ,b) is continuous in b and Bi is convex.
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[The difference |At(b)−At(bi)| is {0,1} valued and takes value 1 only when only one of g(#t ,b)
and g(#t ,bi) is positive. This would imply g(#t ,b∗) = 0 at some intermediate point b∗ on the line
segment between b and bi, which must fall in Bi due to its convexity. A similar technique is used in
Jiang and Tanner (2007) for a binary choice model with g(#t ,b) linear in b.]

The above statements hold for any b ∈ Bi. Therefore

sup
b∈Bi

|Tn(b)−Tn(bi)|

≤ n−1
n

!
t=1

Nit1+n−1
n

!
t=1

MitI(#t ∈ Si)+n−1
n

!
t=1

ENit1+n−1
n

!
t=1

EMitI(#t ∈ Si)

≤ n−1
n

!
t=1

(Nit +ENit)1+n−1
n

!
t=1

CI(#t ∈ Si)+n−1
n

!
t=1

CEI(#t ∈ Si)

+n−1
n

!
t=1

{MitI(Mit >C)+EMitI(Mit >C)},

by noting that MitI(#t ∈ Si) ≤CI(#t ∈ Si)+MitI(Mit >C) for any constantC > 0.
Then

P[sup
b∈Bi

|Tn(b)−Tn(bi)| > $]

≤ P[n−1
n

!
t=1

(Nit +ENit)1> $/3]

+P[n−1
n

!
t=1

CI(#t ∈ Si)+n−1
n

!
t=1

CEI(#t ∈ Si) > $/3]

+P[n−1
n

!
t=1

{MitI(Mit >C)+EMitI(Mit >C)} > $/3]

≤ P[n−1
n

!
t=1

(Nit +ENit)1> $/3]

+(6/$)n−1
n

!
t=1

EMitI(Mit >C)

+P[n−1
n

!
t=1

{I(#t ∈ Si)−EI(#t ∈ Si)} > $/(3C)−2n−1
n

!
t=1

EI(#t ∈ Si)]

≤ (61/$)n−1
n

!
t=1

E(Nit +ENit)I[Nit +ENit > $/(61)]

+(6/$)n−1
n

!
t=1

EMitI(Mit >C)

+P[n−1
n

!
t=1

{CI(#t ∈ Si)−CEI(#t ∈ Si)} > $/6],

where in the last step we assume that n−1!n
t=1EI(#t ∈ Si)≤ $/(12C) and have used P[n−1!n

t=1Xt >
2Q] ≤ Q−1n−1!n

t=1EXtI[Xt > Q] for nonnegative X = Nit +ENit and constant Q = $/(61). [Note
that n−1!n

t=1Xt = n−1!n
t=1XtI[Xt > Q]+n−1!n

t=1XtI[Xt ≤ Q] ≤ Q+n−1!n
t=1XtI[Xt > Q] and use

Markov inequality.]
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Now apply the pointwise inequality (1) on the last term and we obtain Proposition 2. Q.E.D.

Proof of Equation (4) in Remark 8

P(#t ∈ Si) = P[wt ∈ [ inf
b∈Bi

w(vt ,b), sup
b∈Bi

w(vt ,b)]]

≤ EVt supwt
p(wt |Vt)| sup

b∈Bi
w(vt ,b)− inf

b∈Bi
w(vt ,b)|

≤ EVt supwt
p(wt |Vt) sup

b,b∗∈Bi
|w(vt ,b)−w(vt ,b∗)|

≤ EVt{supwt
p(wt |Vt) sup

b∈Bi
|2bw(vt ,b)|+} sup

b,b∗∈Bi
|b−b∗|+ sup

b,b∗∈Bi
|b−b∗|0

= EVt{supwt
p(wt |Vt) sup

b∈Bi
|2bw(vt ,b)|+}1d0.

Q.E.D.

Proof of Equation (5) Define Yt,k = !k
j=0- jZt− j and "t,k = |Yt,k−b1Yt−1,k− ...−brYt−r,k|, which

are strong mixing due to dependence on finite number of lags. We then have the L1 approximation
error E|"t − "t,k| ≤ (Cb + 1)E(|Yt −Yt,k|+ ...+ |Yt−r−Yt−r,k|) ≤ (r+ 1)(Cb + 1)E|Z1|!+

j=k+1 |- j|.
Then the technique in Section 2.2 implies that E|E("t |Ft−m)−E"t |≤ 6supt,k ||"t,k||2.m−k−r({Zt})1/2
+2(r+1)(Cb+1)E|Z1|!+

j=k+1 |- j|.
Note that .m−k−r({Zt}) = 0 for m> k+ r, We have (5). Q.E.D.

Proof of Equation (6) We note that |"t |≤ (Cb+1)(|Yt |+ ...+ |Yt−r|) and therefore E|"t |I(|"t | >
C) ≤ (Cb + 1)E(|Yt | + ... + |Yt−r|)!r

s=0 I(|Yt−s| > C(Cb + 1)−1(r + 1)−1) ≤
(1+ r)2(Cb+1)supt,s E|Yt |I(|Ys|>C(Cb+1)−1(r+1)−1). Note that for 4=C(Cb+1)−1(r+1)−1,
we have

E|Yt |I(|Ys| > 4)

≤ ||Yt ||2||I(|Ys| > 4)||2

≤ (
+

!
j=0

|- j|||Zt− j||2)
√

(Eeu|Ys|)e−u4

= ||Z1||2|-|1
√

(Eeu|Y1|)e−u4/2

≤ ||Z1||2|-|1Cue−u4/2

for some positive u and Cu such that Eeu|Ys| ≤C2u < +. This is achieved for some small enough u
since

Ee±uYs = exp{
+

!
j=0
lnEe±u- jZ1} = exp{

+

!
j=0

K(±u- j)}

≤ exp{
+

!
j=0

sup
|v|≤u|-|1

|K′(v)||u- j|}≤ exp{ sup
|v|≤u|-|1

|K′(v)|u|-|1}.
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Then

Eeu|Ys| ≤ EeuYs +Ee−uYs ≤ 2exp{ sup
|v|≤u|-|1

|K′(v)|u|-|1}≡C2u < +

for some small enough u, due to continuous differentiability of K(·) at 0, which is assumed in Con-
dition (B2). These lead to (6). Q.E.D.

Proof of Equation (7) Note that ENit = rE|Y1|≤ rE|Z1||-|1, and

E(Nit +ENit)I(Nit +ENit > $/(61))
≤ E(|Yt−1|+ ...+ |Yt−r|+ rE|Y1|)I(|Yt−1|+ ...+ |Yt−r| > $/(61)− rE|Z1||-|1)

≤ E(|Yt−1|+ ...+ |Yt−r|+ rE|Y1|)
r

!
s=1

I(|Yt−s| > $/(6r1)−E|Z1||-|1)

≤ |||Yt−1|+ ...+ |Yt−r|+ rE|Y1|||2||
r

!
s=1

I(|Yt−s| > $/(6r1)−E|Z1||-|1)||2

≤ (2r||Y1||2)r
√

Eeu|Y1|e−u(/2

≤ (2r2|-|1||Z1||2)Cue−u(/2

for some small enough u> 0, where (= $/(6r1)−E|Z1||-|1, andCu is defined in Proof of Equation
(6). Q.E.D.

Proof of Equation (9) We notice the process (yt ,xt) can be approximated by strong mixing pro-
cesses. This is because if we define yt,k = !k

j=0- j f j(zt− j,,t− j), and xt,k = (1,yt−1,k, ...,yt−r,k,z′t)′

then ||yt−yt,k||1≤! j>k |- j|supt,l || fl(zt ,,t)||1 and ||xt−xt,k||1≡E|xt−xt,k|1=!t−rs=t−1 ||ys−ys,k||1≤
r! j>k |- j|supt,l || fl(zt ,,t)||1, both of which will decrease exponentially fast with k. On the other
hand, (yt,k,xt,k) is a measurable transform of (zt , ...,zt−r−k,,t , ...,,t−r−k) and is therefore strong
mixing with mixing coefficient .m−r−k for m> r+ k.

Now define "t,k = |I(yt,k > 0) − I(x′t,kb > 0)|. The technique in Section 2.2 implies that
E|E("t |Ft−m)−E"t |≤ E|E("t,k|Ft−m)−E"t,k|+2E|"t−"t,k| where Ft represents the %-field gen-
erated by (zs,,s)t−+. The first term is bounded by 6.m−r−k by using Theorem 14.2, Davidson (1994).

Applying the triangular inequalities, the second term is at most 2||I(yt > 0)− I(yt,k > 0)||1+
2||I(x′tb > 0)− I(x′t,kb > 0)||1. We will assume that (†) P[|yt | ≤ 5] ≤My(25) for any small 5 > 0,
for some constantMy < +. This is true under Condition (C3).

We will also assume that (‡) P[|x′tb| ≤ 5] ≤ Mx(25) for any small 5 > 0, for some constant
Mx < +. Notice that x′tb is of the form “±zt,1+ a linear combination of yt−1, ...,yt−r,zt,2, ...,zt,K”
due to the standardization of the coefficient of zt,1. Then it is obvious that (‡) holds under Condition
(C4).

Now notice that for two random variablesW andW ∗,

||I(W > 0)− I(W ∗ > 0)||1 ≤ 4
√
2M

√

||W −W ∗||1, (13)

if P(|W |≤ 5) ≤M(25) for 5=
√

||W −W ∗||1/
√
2M. This is proved by noting

EI(W > 0,W ∗ ≤ 0)
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≤ EI(W > 0,W ∗ ≤ 0, |W −W ∗|≤ 5)+EI(|W −W ∗| > 5)

≤ P[|W |≤ 5]+E|W −W ∗|/5
≤M(25)+E|W −W ∗|/5
= 2

√
2M

√

||W −W ∗||1.

Similarly EI(W ∗ > 0,W ≤ 0) ≤ 2
√
2M

√

||W −W ∗||1. Now ||I(W > 0)− I(W ∗ > 0)||1 = EI(W >
0,W ∗ ≤ 0)+EI(W ∗ > 0,W ≤ 0) leads to (13).

Now apply (13) and we obtain

2||I(yt > 0)− I(yt,k > 0)||1+2||I(x′tb> 0)− I(x′t,kb> 0)||1

≤ 8
√

2My

√

||yt− yt,k||1+8
√

2Mx

√

||x′tb− x′t,kb||1

≤ 8
√

2My

√

||yt− yt,k||1+8
√

2Mx|b|+
√

||xt− xt,k||1

≤ 8
√

2My
√

!
j>k

|- j|sup
t,l

|| fl(zt ,,t)||1+8
√

2MxCb
√

r!
j>k

|- j|sup
t,l

|| fl(zt ,,t)||1,

and therefore we have (9). Q.E.D.

Proof of Equation (10) Note that the B = B+ ∪ B− where B± = {b ∈ B : br+1 = ±1} repre-
sents the two halfs of B with br+1 = ±1, respectively. Note that B± can be written as a union
B± =∪)B±()), where ) represents the subset of ‘selected indices’ in addition to r+2, and the union
is taken over all subsets ) of {1, ...,K+ r+ 1}\{r+ 2} with card()) ≤ v− 1. Here B±()) = {b ∈
6K+r+1 : br+2 = ±1, |b j|≤Cb,∀ j ∈ ); |b j| = 0,∀ j 2∈ )∪{r+2}}. Each B±()) can be covered by at
most (2Cb/1+1)card()) sets Bi’s of the form Bi = {b ∈6K+r+1 : br+2 =±1, |b j− (bi) j|≤ 1/2,∀ j ∈
); |b j− (bi) j|= 0,∀ j 2∈ )∪{r+2}} for some bi ∈ B±()), where card())≤ v−1. So a combinatorial
argument leads to upperbound (10). Q.E.D.

Proof of Assumption (A3) for the example in Section 5 Assume Condition (C5), so that |zt |+ ≤
Cz < +.

We can apply the arguments in Remark 8 by identifying wt = zt,1, vt = (1,yt−1, ...,yt−r,zt,2, ...,
zt,K)′. Note that d0 ≤ v and we can choose Vt as the %-field generated by {zs,,s}t−1−+ and zt,2, ...,zt,K .
Then A3 is satisfied if (C4) holds [the conditional density p(wt |Vt) is bounded above by c (=Mx)]
and if

1≤ $/(12vCc(1+Cz+ r|-|1 sup
t,l

|| fl(zt ,,t)||1)), (14)

which would then be ≤ $/(12vCc(1+Cz+ r supt ||yt ||1)) ≤ $/(12d0Ccsupt E|vt |+). This inequality
(14) is satisfied for all large n, when we take $ = n−0.5+)1/2 for any )1 > 0, and 1 = n−1 (the !+-
diameter of Bi), and assume that the number of lags r and the maximal number of selected variables
v follow condition (C6). Q.E.D.

Proof of Equation (11) Similar to the approximation argument used before in Proof of Equation
(9), we define #t,k = (yt,k,xt,k) and obtain E|E(I(#t ∈ Si)|Ft−m)− EI(#t ∈ Si)| ≤ E|E(I(#t,k ∈
Si)|Ft−m)−EI(#t,k ∈ Si)|+2E|I(#t ∈ Si)− I(#t,k ∈ Si)|, where the first term is bounded above by
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6.m−r−k for m> r+k, due to a treatment similar to the one used in Proof of Equation (9). Now we
try to bound E|I(#t ∈ Si)− I(#t,k ∈ Si)| ≡ ED in the second term, where Si ≡ ∪b∈Bi [x′tb = 0] will
be computed below.

For our vector xt = (1,yt−1, ...,yt−r,zt,1,zt,2, ...,zt,K)′, we here identify wt = zt,1 = (xt)r+2, and
vt = (1,yt−1, ...,yt−r,zt,2, ...,zt,K)′ including all {(xt) j} j 2=r+2, for applying Remarks 8 and 9. Note
that according to Remark 9, Si = [w−(vt) ≤ wt ≤ w+(vt)] where w±(vt) = v′t(bi)v± h|vt |1. [We
have picked a sign br+2 = −1 to proceed. The other sign is similar. To be more precise, here
|vt |1 = ! j∈) |(xt) j| where ) is a subset of ‘selected indices’ in addition to r+ 2, when Bi is as
described in Proof of Equation (10).]

Now D ≡ |I(#t ∈ Si)− I(#t,k ∈ Si)| = 1 implies that only one of the two points {xt ,xt,k} =
{(v′t ,wt)′, (v′t,k,wt,k)′} can lie in Si, so there must be an intermediate point lying on a boundary of
Si, either on the upper boundary and denoted as x+ = ((v+)′,w+(v+))′, or on the lower boundary
and denoted as x− = ((v−)′,w−(v−))′. [Here we have re-ordered the components of the vectors.
For examples, for vector xt , its component (xt)r+2 = wt is now placed behind other components
(denoted as vt).]

If in addition, we also have a small distance |xt−xt,k|1 ≤ 4, then one of the following two events
must happen (with± option depending on whether the intermediate point falls on the upper or lower
boundary of Si):

|wt−w±(vt)|
≤ |wt−w±(v±)|+ |w±(v±)−w±(vt)|
≤ |wt−w±(v±)|+(Cb+h)|vt− v±|1
≤ |(1+Cb+h)|xt− x±|1
≤ (1+Cb+h)|xt− xt,k|1 ≤ (1+Cb+h)4.

Now we can bound

ED≤ P[D= 1, |xt− xt,k|1 ≤ 4]+P[|xt− xt,k|1 > 4]

≤ P[∪|wt−w±(vt)|≤ (1+Cb+h)4]+P[|xt− xt,k|1 > 4]
(a)
≤ 2c2(1+Cb+h)4+E|xt− xt,k|1/4
≤ 2c2(1+Cb+h)4+ r!

j>k
|- j|sup

t,l
|| fl(zt ,,t)||1/4.

Now take 4=
√

r! j>k |- j|supt,l || fl(zt ,,t)||1/(2c2(1+Cb+h)) and obtain

ED≤ 2
√

r!
j>k

|- j|sup
t,l

|| fl(zt ,,t)||1(2c2(1+Cb+h)).

As in the previous Proof of Assumption (A3), we identify c = Mx. We have assumed Condition
(C4) for the inequality (a) above. Therefore we have (11). Q.E.D.
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Abstract
Permutations are ubiquitous in many real-world problems, such as voting, ranking, and data asso-
ciation. Representing uncertainty over permutations is challenging, since there are n! possibilities,
and typical compact and factorized probability distribution representations, such as graphical mod-
els, cannot capture the mutual exclusivity constraints associated with permutations. In this paper,
we use the “low-frequency” terms of a Fourier decomposition to represent distributions over per-
mutations compactly. We present Kronecker conditioning, a novel approach for maintaining and
updating these distributions directly in the Fourier domain, allowing for polynomial time bandlim-
ited approximations. Low order Fourier-based approximations, however, may lead to functions that
do not correspond to valid distributions. To address this problem, we present a quadratic program
defined directly in the Fourier domain for projecting the approximation onto a relaxation of the
polytope of legal marginal distributions. We demonstrate the effectiveness of our approach on a
real camera-based multi-person tracking scenario.
Keywords: identity management, permutations, approximate inference, group theoretical meth-
ods, sensor networks

1. Introduction

Probability distributions over permutations arise in a diverse variety of real world problems. While
they were perhaps first studied in the context of gambling and card games, they have now been found
to be applicable to many important problems such as multi-object tracking, information retrieval,
webpage ranking, preference elicitation, and voting. Probabilistic reasoning problems over permu-
tations, however, are not amenable to the typical representations afforded by machine learning such
as Bayesian networks and Markov random fields. This paper explores an alternative representation
and inference algorithms based on Fourier analysis for dealing with permutations.

As an example, consider the problem of tracking n people based on a set of noisy measurements
of identity and position. A typical tracking system might attempt to manage a set of n tracks along

c©2009 Jonathan Huang, Carlos Guestrin and Leonidas Guibas.
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A or B?

A or B?

A

B

Figure 1: When two persons pass near each other, their identities can get confused.

with an identity corresponding to each track, in spite of ambiguities arising from imperfect identity
measurements. When the people are well separated, the problem is easily decomposed and mea-
surements about each individual can be clearly associated with a particular track. When people pass
near each other, however, confusion can arise as their signal signatures may mix; see Figure 1. Af-
ter the individuals separate again, their positions may be clearly distinguishable, but their identities
can still be confused, resulting in identity uncertainty which must be propagated forward in time
with each person, until additional observations allow for disambiguation. This task of maintaining a
belief state for the correct association between object tracks and object identities while accounting
for local mixing events and sensor observations, was introduced in Shin et al. (2003) and is called
the identity management problem.

The identity management problem poses a challenge for probabilistic inference because it needs
to address the fundamental combinatorial challenge that there is a factorial number of associations
to maintain between tracks and identities. Distributions over the space of all permutations require
storing at least n!− 1 numbers, an infeasible task for all but very small n. Moreover, typical com-
pact representations, such as graphical models, cannot efficiently capture the mutual exclusivity
constraints associated with permutations.

While there have been many approaches for coping with the factorial complexity of maintaining
a distribution over permutations, most attack the problem using one of two ideas—storing and up-
dating a small subset of likely permutations, or, as in our case, restricting consideration to a tractable
subspace of possible distributions. Willsky (1978) was the first to formulate the probabilistic filter-
ing/smoothing problem for group-valued random variables. He proposed an efficient FFT based
approach of transforming between primal and Fourier domains so as to avoid costly convolutions,
and provided efficient algorithms for dihedral and metacyclic groups. Kueh et al. (1999) show that
probability distributions on the group of permutations are well approximated by a small subset of
Fourier coefficients of the actual distribution, allowing for a principled tradeoff between accuracy
and complexity. The approach taken in Shin et al. (2005), Schumitsch et al. (2005), and Schumitsch
et al. (2006) can be seen as an algorithm for maintaining a particular fixed subset of Fourier coef-
ficients of the log density. Most recently, Kondor et al. (2007) allow for a general set of Fourier
coefficients, but assume a restrictive form of the observation model in order to exploit an efficient
FFT factorization.

In the following, we outline our main contributions and provide a roadmap of the sections
ahead.1

1. A much shorter version this work appeared in NIPS 2007 (Huang et al., 2007). We provide a more complete discus-
sion of our Fourier based methods in this extended paper.
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• In Sections 4 and 5, we provide a gentle introduction to the theory of group representations
and noncommutative Fourier analyis. While none of the results of these sections are novel,
and have indeed been studied by mathematicians for decades (Diaconis, 1989; Terras, 1999;
Willsky, 1978; Chen, 1989), noncommutative Fourier analysis is still fairly new to the ma-
chine learning community, which has just begun to discover some of its exciting applica-
tions (Huang et al., 2007, 2009; Kondor et al., 2007; Kondor and Borgwardt, 2008). Our
tutorial sections are targeted specifically at the machine learning community and describe its
connections to probabilistic inference problems that involve permutations.

• In Section 6, we discuss performing probabilistic inference operations in the Fourier domain.
In particular, we present Fourier theoretic algorithms for two ubiquitous operations which
appear in filtering applications and beyond: prediction/rollup and conditioning with Bayes
rule. Our main contribution in this section is a novel and conceptually simple algorithm,
called Kronecker Conditioning, which performs all conditioning operations completely in
the Fourier domain, allowing for a principled tradeoff between computational complexity
and approximation accuracy. Our approach generalizes upon previous work in two ways—
first, in the sense that it can address any transition model or likelihood function that can be
represented in the Fourier domain, and second, in the sense that many of our results hold for
arbitrary finite groups.

• In Section 7, we analyze the errors which can be introduced by bandlimiting a probability
distribution and show how they propagate with respect to inference operations. We argue that
approximate conditioning based on bandlimited distributions can sometimes yield Fourier
coefficients which do not correspond to any valid distribution, even returning negative “prob-
abilities” on occasion. We address possible negative and inconsistent probabilities by present-
ing a method for projecting the result back into the polytope of coefficients which correspond
to nonnegative and consistent marginal probabilities using a simple quadratic program.

• In Section 8, we present a collection of general techniques for efficiently computing the
Fourier coefficients of probabilistic models that might be useful in practical inference prob-
lems, and give a variety of examples of such computations for probabilistic models that might
arise in identity management or ranking scenarios.

• Finally in Section 10, we empirically evaluate the accuracy of approximate inference on sim-
ulated data drawn from our model and further demonstrate the effectiveness of our approach
on a real camera-based multi-person tracking scenario.

2. Filtering Over Permutations

As a prelude to the general problem statement, we begin with a simple identity management problem
on three tracks (illustrated in Figure 2) which we will use as a running example. In this problem, we
observe a stream of localization data from three people walking inside a room. Except for a camera
positioned at the entrance, however, there is no way to distinguish between identities once they are
inside. In this example, an internal tracker declares that two tracks have ‘mixed’ whenever they get
too close to each other and announces the identity of any track that enters or exits the room.

In our particular example, three people, Alice, Bob and Cathy, enter a room separately, walk
around, and we observe Bob as he exits. The events for our particular example in the figure are
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(a) Be f ore (b) A f ter

Figure 2: Identity Management example. Three people, Alice, Bob and Charlie enter a room and
we receive a position measurement for each person at each time step. With no way to
observe identities inside the room, however, we are confused whenever two tracks get too
close. In this example, track 1 crosses with track 2, then with track 3, then leaves the
room, at which point it is observed that the identity at Track 1 is in fact Bob.

recorded in Table 1. Since Tracks 2 and 3 never mix, we know that Cathy cannot be in Track 2 in the
end, and furthermore, since we observe Bob to be in Track 1 when he exits, we can deduce that Cathy
must have been in Track 3, and therefore Alice must have been in Track 2. Our simple example
illustrates the combinatorial nature of the problem—in particular, reasoning about the mixing events
allows us to exactly decide where Alice and Cathy were even though we only made an observation
about Bob at the end.

Event # Event Type
1 Tracks 1 and 2 mixed
2 Tracks 1 and 3 mixed
3 Observed Identity Bob at Track 1

Table 1: Table of Mixing and Observation events logged by the tracker.

In identity management, a permutation ! represents a joint assignment of identities to internal
tracks, with !(i) being the track belonging to the ith identity. When people walk too closely to-
gether, their identities can be confused, leading to uncertainty over !. To model this uncertainty,
we use a Hidden Markov Model (HMM) on permutations, which is a joint distribution over latent
permutations !(1), . . . ,!(T ), and observed variables z(1), . . . ,z(T ) which factors as:

P(!(1), . . . ,!(T ),z(1), . . . ,z(T )) = P(!(1))P(z(1)|!(1))
T

"
t=2

P(zt |!(t)) ·P(!(t)|!(t−1)).

The conditional probability distribution P(!(t)|!(t−1)) is called the transition model, and might re-
flect, for example, that the identities belonging to two tracks were swapped with some probability
by a mixing event. The distribution P(z(t)|!(t)) is called the observation model, which might, for
example, capture a distribution over the color of clothing for each individual.
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We focus on filtering, in which one queries the HMM for the posterior at some time step, con-
ditioned on all past observations. Given the distribution P(!(t)|z(1), . . . ,z(t)), we recursively com-
pute P(!(t+1)|z(1), . . . ,z(t+1)) in two steps: a prediction/rollup step and a conditioning step. Taken
together, these two steps form the well known Forward Algorithm (Rabiner, 1989). The predic-
tion/rollup step multiplies the distribution by the transition model and marginalizes out the previous
time step:

P(!(t+1)|z(1), . . . ,z(t)) =#
!(t)

P(!(t+1)|!(t))P(!(t)|z(1), . . . ,z(t)).

The conditioning step conditions the distribution on an observation z(t+1) using Bayes rule:

P(!(t+1)|z(1), . . . ,z(t+1)) $ P(z(t+1)|!(t+1))P(!(t+1)|z(1), . . . ,z(t)).

Since there are n! permutations, a single iteration of the algorithm requires O((n!)2) flops and is
consequently intractable for all but very small n. The approach that we advocate is to maintain a
compact approximation to the true distribution based on the Fourier transform. As we discuss later,
the Fourier based approximation is equivalent to maintaining a set of low-order marginals, rather
than the full joint, which we regard as being analogous to an Assumed Density Filter (Boyen and
Koller, 1998).

Although we use hidden Markov models and filtering as a running example, the approach we
describe is useful for other probabilistic inference tasks over permutations, such as ranking objects
and modeling user preferences. For example, operations such as marginalization and conditioning
are fundamental and are widely applicable. In particular, conditioning using Bayes rule, one of the
main topics of our paper, is one of the most fundamental probabilistic operations, and we provide a
completely general formulation.

3. Probability Distributions over the Symmetric Group

A permutation on n elements is a one-to-one mapping of the set {1, . . . ,n} into itself and can be
written as a tuple,

!= [!(1) !(2) . . . !(n)],

where !(i) denotes where the ith element is mapped under the permutation (called one line no-
tation). For example, ! = [2 3 1 4 5] means that !(1) = 2, !(2) = 3, !(3) = 1, !(4) = 4, and
!(5) = 5. The set of all permutations on n elements forms a group under the2 operation of function
composition—that is, if !1 and !2 are permutations, then

!1!2 = [!1(!2(1)) !1(!2(2)) . . . !1(!2(n))]

is itself a permutation. The set of all n! permutations is called the symmetric group, or just Sn.
We will actually notate the elements of Sn using the more standard cycle notation, in which

a cycle (i, j,k, . . . ,!) refers to the permutation which maps i to j, j to k, . . . , and finally ! to i.
Though not every permutation can be written as a single cycle, any permutation can always be
written as a product of disjoint cycles. For example, the permutation ! = [2 3 1 4 5] written in
cycle notation is ! = (1,2,3)(4)(5). The number of elements in a cycle is called the cycle length
and we typically drop the length 1 cycles in cycle notation when it creates no ambiguity—in our

2. See Appendix A for a list of the basic group theoretic definitions used in this paper.
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example, ! = (1,2,3)(4)(5) = (1,2,3). We refer to the identity permutation (which maps every
element to itself) as %.

A probability distribution over permutations can be thought of as a joint distribution on the n
random variables (!(1), . . . ,!(n)) subject to the mutual exclusivity constraints that P(! : !(i) =
!( j)) = 0 whenever i #= j. For example, in the identity management problem, Alice and Bob cannot
both be in Track 1 simultaneously. Due to the fact that all of the !(i) are coupled in the joint dis-
tribution, graphical models, which might have otherwise exploited an underlying conditional inde-
pendence structure, are ineffective. Instead, our Fourier based approximation achieves compactness
by exploiting the algebraic structure of the problem.

3.1 Compact Summary Statistics

While continuous distributions like Gaussians are typically summarized using moments (like mean
and variance), or more generally, expected features, it is not immediately obvious how one might,
for example, compute the ‘mean’ of a distribution over permutations. There is a simple method that
might spring to mind, however, which is to think of the permutations as permutation matrices and
to average the matrices instead.

Example 1 For example, consider the two permutations %,(1,2) ∈ S3 (% is the identity and (1,2)
swaps 1 and 2). We can associate the identity permutation % with the 3× 3 identity matrix, and
similarly, we can associate the permutation (1,2) with the matrix:

(1,2) &→




0 1 0
1 0 0
0 0 1



 .

The ‘average’ of % and (1,2) is therefore:

1
2




1 0 0
0 1 0
0 0 1



+
1
2




0 1 0
1 0 0
0 0 1



 =




1/2 1/2 0
1/2 1/2 0
0 0 1



 .

As we will later show, computing the ‘mean’ (as described above) of a distribution over permuta-
tions, P, compactly summarizes P by storing a marginal distribution over each of !(1),!(2), . . . ,!(n),
which requires storing only O(n2) numbers rather than the full O(n!) for the exact distribution. As
an example, one possible summary might look like:

P̂=





Alice Bob Cathy
Track 1 2/3 1/6 1/6
Track 2 1/3 1/3 1/3
Track 3 0 1/2 1/2



 .

Such doubly stochastic “first-order summaries” have been studied in various settings (Shin et al.,
2003; Helmbold and Warmuth, 2007). In identity management (Shin et al., 2003),3 first-order sum-

3. Strictly speaking, a map from identities to tracks is not a permutation since a permutation always maps a set into
itself. In fact, the set of all such identity-to-track assignments does not actually form a group since there is no way
to compose any two such assignments to obtain a legitimate group operation. We abuse the notation by referring to
these assignments as a group, but really the elements of the group here should be thought of as the ‘deviation’ from
the original identity-to-track assignment (where only the tracks are permuted, for example, when they are confused).
In the group theoretic language, there is a faithful group action of Sn on the set of all identity-to-track assignments.
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maries maintain, for example,

P(Alice is at Track 1) = 2/3,
P(Bob is at Track 3) = 1/2.

What cannot be captured by first-order summaries however, are the higher order statements like:

P(Alice is in Track 1 and Bob is in Track 2) = 0.

Over the next two sections, we will show that the first-order summary of a distribution P(!)
can equivalently be viewed as the lowest frequency coefficients of the Fourier transform of P(!),
and that by considering higher frequencies, we can capture higher order marginal probabilities in
a principled fashion. Furthermore, the Fourier theoretic perspective, as we will show, provides a
natural framework for formulating inference operations with respect to our compact summaries. In
a nutshell, we will view the prediction/rollup step as a convolution and the conditioning step as a
pointwise product—then we will formulate the two inference operations in the Fourier domain as a
pointwise product and convolution, respectively.

4. The Fourier Transform on Finite Groups

Over the last fifty years, the Fourier Transform has been ubiquitously applied to everything digital,
particularly with the invention of the Fast Fourier Transform (Cooley and Tukey, 1965; Rockmore,
2000). On the real line, the Fourier Transform is a well-studied method for decomposing a func-
tion into a sum of sine and cosine terms over a spectrum of frequencies. Perhaps less familiar to
the machine learning community though, is its group theoretic generalization. In this section we
review group theoretic generalizations of the Fourier transform with an eye towards approximating
functions on Sn. None of the results stated in this section or the next are original. Noncommutative
generalizations of the Fourier transform have been studied quite extensively throughout the last cen-
tury from both the mathematics (Lang, 1965) and physics communities (Chen, 1989). Applications
to permutations were first pioneered by Persi Diaconis who studied problems in card shuffling and
since then, there have been many papers on related topics in probability and statistics. For further
information, see Diaconis (1988) and Terras (1999).

4.1 Group Representation Theory

The generalized definition of the Fourier Transform relies on the theory of group representations,
which formalize the concept of associating permutations with matrices and are used to construct a
complete basis for the space of functions on a group G, thus also playing a role analogous to that of
sinusoids on the real line.

Definition 1 A representation of a group G is a map & from G to a set of invertible d&×d& (complex)
matrix operators (& : G → Cd&×d&) which preserves algebraic structure in the sense that for all
!1,!2 ∈ G, &(!1!2) = &(!1) · &(!2). The matrices which lie in the image of & are called the
representation matrices, and we will refer to d& as the degree of the representation.
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The requirement that &(!1!2) = &(!1) ·&(!2) is analogous to the property that ei('1+'2) = ei'1 · ei'2
for the conventional sinusoidal basis. Each matrix entry, &i j(!) defines some function over Sn:

&(!) =





&11(!) &12(!) · · · &1d&(!)
&21(!) &22(!) · · · &2d&(!)
...

... . . . ...
&d&1(!) &d&2(!) · · · &d&d&(!)




,

and consequently, each representation & simultaneously defines a set of d2& functions over Sn. We
will eventually think of group representations as the set of Fourier basis functions onto which we
can project arbitrary functions.

Before moving onto examples, we make several remarks about the generality of this paper. First,
while our paper is primarily focused on the symmetric group, many of its results hold for arbitrary
finite groups. For example, there are a variety of finite groups that have been studied in applications,
like metacyclic groups (Willsky, 1978), wreath product groups (Foote et al., 2004), etc. However,
while some of these results will even extend with minimal effort to more general cases, such as
locally compact groups, the assumption in all of the following results will be that G is finite, even
if it is not explicitly stated. Specifically, most of the results in Sections 4, 6, and Appendix D.2 are
intended to hold over any finite group, while the results of the remaining sections are specific to
probabilistic inference over the symmetric group. Secondly, given an arbitrary finite group G, some
of the algebraic results that we use require that the underlying field be the complex numbers. For the
particular case of the symmetric group, however, we can in fact assume that the representations are
real-valued matrices. Thus, throughout the paper, we will explicitly assume that the representations
are real-valued.4

Example 2 We begin by showing three examples of representations on the symmetric group.

1. The simplest example of a representation is called the trivial representation &(n) : Sn → R1×1,
which maps each element of the symmetric group to 1, the multiplicative identity on the real
numbers. The trivial representation is actually defined for every group, and while it may seem
unworthy of mention, it plays the role of the constant basis function in the Fourier theory.

2. The first-order permutation representation of Sn, which we alluded to in Example 1, is the de-
gree n representation, ((n−1,1) (we explain the terminology in Section 5) , which maps a per-
mutation ! to its corresponding permutation matrix given by [((n−1,1)(!)]i j = 1{!( j) = i}.
For example, the first-order permutation representation on S3 is given by:

((2,1)(%) =




1 0 0
0 1 0
0 0 1



 ((2,1)(1,2) =




0 1 0
1 0 0
0 0 1



 ((2,1)(2,3) =




1 0 0
0 0 1
0 1 0





((2,1)(1,3) =




0 0 1
0 1 0
1 0 0



 ((2,1)(1,2,3) =




0 0 1
1 0 0
0 1 0



 ((2,1)(1,3,2) =




0 1 0
0 0 1
1 0 0





4. To recover similar results for more complex-valued representations, one would have to replace matrix transposes by
adjoints, etc.
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3. The alternating representation of Sn, maps a permutation ! to the determinant of ((n−1,1)(!),
which is+1 if ! can be equivalently written as the composition of an even number of pairwise
swaps, and −1 otherwise. We write the alternating representation as &(1,...,1) with n 1’s in the
subscript. For example, on S4, we have:

&(1,1,1,1)((1,2,3)) = &(1,1,1,1)((13)(12)) = +1.

The alternating representation can be interpreted as the ‘highest frequency’ basis function
on the symmetric group, intuitively due to its high sensitivity to swaps. For example, if
((1,...,1)(!) = 1, then ((1,...,1)((12)!) = −1. In identity management, it may be reasonable
to believe that the joint probability over all n identity labels should only change by a little if
just two objects are mislabeled due to swapping—in this case, ignoring the basis function cor-
responding to the alternating representation should still provide an accurate approximation
to the joint distribution.

In general, a representation corresponds to an overcomplete set of functions and therefore does
not constitute a valid basis for any subspace of functions. For example, the set of nine functions on
S3 corresponding to ((2,1) span only four dimensions, because there are six normalization constraints
(three on the row sums and three on the column sums), of which five are independent—and so there
are five redundant dimensions. To find a valid complete basis for the space of functions on Sn, we
will need to find a family of representations whose basis functions are independent, and span the
entire n!-dimensional space of functions.

In the following two definitions, we will provide two methods for constructing a new represen-
tation from old ones such that the set of functions on Sn corresponding to the new representation
is linearly dependent on the old representations. Somewhat surprisingly, it can be shown that de-
pendencies which arise amongst the representations can always be recognized in a certain sense, to
come from the two possible following sources (Serre, 1977).

Definition 2

1. Equivalence. Given a representation &1 and an invertible matrix C, one can define a new
representation &2 by “changing the basis” for &1:

&2(!) !C−1 ·&1(!) ·C. (1)

We say, in this case, that &1 and &2 are equivalent as representations (written &1 ≡ &2, as
opposed to &1 = &2), and the matrix C is known as the intertwining operator. Note that
d&1 = d&2 .

It can be checked that the functions corresponding to &2 can be reconstructed from those
corresponding to &1. For example, if C is a permutation matrix, the matrix entries of &2 are
exactly the same as the matrix entries of &1, only permuted.

2. Direct Sum. Given two representations &1 and &2, we can always form a new representation,
which we will write as &1⊕&2, by defining:

&1⊕&2(!) !

[
&1(!) 0
0 &2(!)

]
.
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&1⊕&2 is called the direct sum representation. For example, the direct sum of two copies of
the trivial representation is:

&(n)⊕&(n)(!) =

[
1 0
0 1

]
,

with four corresponding functions on Sn, each of which is clearly dependent upon the trivial
representation itself.

Most representations can be seen as being equivalent to a direct sum of strictly smaller representa-
tions. Whenever a representation & can be decomposed as & ≡ &1⊕&2, we say that & is reducible.
As an example, we now show that the first-order permutation representation is a reducible represen-
tation.

Example 3 Instead of using the standard basis vectors {e1,e2,e3}, the first-order permutation
representation for S3, ((2,1) : S3 → C3×3, can be equivalently written with respect to a new basis
{v1,v2,v3}, where:

v1 =
e1+ e2+ e3
|e1+ e2+ e3|

,

v2 =
−e1+ e2
|− e1+ e2|

,

v3 =
−e1− e2+2e3
|− e1− e2+2e3|

.

To ‘change the basis’, we write the new basis vectors as columns in a matrix C:

C =




| | |
v1 v2 v3
| | |



 =





1√
3 −

√
2
2 − 1√

6
1√
3

√
2
2 − 1√

6
1√
3 0 2√

6



 ,

and conjugate the representation ((2,1) by C (as in Equation 1) to obtain the equivalent representa-
tion C−1 · ((2,1)(!) ·C:

C−1 · ((2,1)(%) ·C =




1 0 0
0 1 0
0 0 1



 C−1 · ((2,1)(1,2) ·C =




1 0 0
0 −1 0
0 0 1





C−1 · ((2,1)(2,3) ·C =




1 0 0
0 1/2

√
3/2

0
√
3/2 −1/2



 C−1 · ((2,1)(1,3) ·C =




1 0 0
0 1/2 −

√
3/2

0 −
√
3/2 −1/2





C−1 · ((2,1)(1,2,3) ·C =




1 0 0
0 −1/2 −

√
3/2

0
√
3/2 −1/2



 C−1 · ((2,1)(1,3,2) ·C =




1 0 0
0 −1/2

√
3/2

0 −
√
3/2 −1/2





The interesting property of this particular basis is that the new representation matrices all ap-
pear to be the direct sum of two smaller representations, a trivial representation, &(3) as the top left
block, and a degree 2 representation in the bottom right which we will refer to as &(2,1).
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Geometrically, the representation &(2,1) can also be thought of as the group of rigid symmetries
of the equilateral triangle with vertices:

P1 =

[ √
3/2
1/2

]
,P2 =

[
−
√
3/2

1/2

]
,P3 =

[
0
−1

]
.

The matrix &(2,1)(1,2) acts on the triangle by reflecting about the x-axis, and &(2,1)(1,2,3) by a )/3
counter-clockwise rotation.

In general, there are infinitely many reducible representations. For example, given any dimen-
sion d, there is a representation which maps every element of a group G to the d×d identity matrix
(the direct sum of d copies of the trivial representation). However, for any finite group, there exists
a finite collection of atomic representations which can be used to build up any other representa-
tion (up to equivalence) using the direct sum operation. These representations are referred to as
the irreducibles of a group, and they are defined simply to be the collection of representations (up
to equivalence) which are not reducible. It can be shown that any (complex) representation of a
finite group G is equivalent to a direct sum of irreducibles (Diaconis, 1988), and hence, for any
representation (, there exists a matrixC for which

C−1 · ( ·C =
M

&

z&
M

j=1
&, (2)

where & ranges over all distinct irreducible representations of the group G, and the inner ⊕ refers to
some finite number (z&) of copies of each irreducible &.

As it happens, there are only three irreducible representations of S3 (Diaconis, 1988), up to
equivalence: the trivial representation &(3), the degree 2 representation &(2,1), and the alternating
representation &(1,1,1). The complete set of irreducible representation matrices of S3 are shown in
the Table 2. Unfortunately, the analysis of the irreducible representations for n > 3 is far more
complicated and we postpone this more general discussion for Section 5.

4.2 The Fourier Transform

The link between group representation theory and Fourier analysis is given by the celebrated Peter-
Weyl theorem (Diaconis, 1988; Terras, 1999; Sagan, 2001) which says that the matrix entries of the
irreducibles of G form a complete set of orthogonal basis functions on G.5 The space of functions
on S3, for example, is orthogonally spanned by the 3! functions &(3)(!), [&(2,1)(!)]1,1, [&(2,1)(!)]1,2,
[&(2,1)(!)]2,1, [&(2,1)(!)]2,2 and &(1,1,1)(!), where [&(!)]i j denotes the (i, j) entry of the matrix &(!).

As a replacement for projecting a function f onto a complete set of sinusoidal basis functions
(as one would do on the real line), the Peter-Weyl theorem suggests instead to project onto the basis
provided by the irreducibles of G. As on the real line, this projection can be done by computing the
inner product of f with each element of the basis, and we define this operation to be the generalized
form of the Fourier Transform.
5. Technically the Peter-Weyl result, as stated here, is only true if all of the representation matrices are unitary. That is,
&(!)∗&(!) = I for all ! ∈ Sn, where the matrix A∗ is the conjugate transpose of A. For the case of real-valued (as
opposed to complex-valued) matrices, however, the definitions of unitary and orthogonal matrices coincide.

While most representations are not unitary, there is a standard result from representation theory which shows
that for any representation of G, there exists an equivalent unitary representation.
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! &(3) &(2,1) &(1,1,1)

% 1
[
1 0
0 1

]
1

(1,2) 1
[
−1 0
0 1

]
−1

(2,3) 1
[
1/2

√
3/2√

3/2 −1/2

]
−1

(1,3) 1
[

1/2 −
√
3/2

−
√
3/2 −1/2

]
−1

(1,2,3) 1
[

−1/2 −
√
3/2√

3/2 −1/2

]
1

(1,3,2) 1
[

−1/2
√
3/2

−
√
3/2 −1/2

]
1

Table 2: The irreducible representation matrices of S3.

Definition 3 Let f :G→R be any function on a group G and let & be any representation on G. The
Fourier Transform of f at the representation & is defined to be the matrix of coefficients:

f̂& =#
!
f (!)&(!).

The collection of Fourier Transforms at all irreducible representations of G form the Fourier Trans-
form of f .

There are two important points which distinguish this Fourier Transform from its familiar for-
mulation on the real line—first, the outputs of the transform are matrix-valued, and second, the
inputs to f̂ are representations of G rather than real numbers. As in the familiar formulation, the
Fourier Transform is invertible and the inversion formula is explicitly given by the Fourier Inversion
Theorem.

Theorem 4 (Fourier Inversion Theorem)

f (!) =
1
|G|#*

d&*Tr
[
f̂ T&* ·&*(!)

]
, (3)

where * indexes over the collection of irreducibles of G.

Note that the trace term in the inverse Fourier Transform is just the ‘matrix dot product’ between
f̂&* and &*(!), since Tr

[
AT ·B

]
= 〈vec(A),vec(B)〉, where by vec we mean mapping a matrix to a

vector on the same elements arranged in column-major order.
We now provide several examples for intuition. For functions on the real line, the Fourier

Transform at zero frequency gives the DC component of a signal. The same holds true for functions
on a group; If f : G→ R is any function, then since &(n) = 1, the Fourier Transform of f at the
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trivial representation is constant, with f̂&(n) = #! f (!). Thus, for any probability distribution P, we
have P̂&(n) = 1. If P were the uniform distribution, then P̂& = 0 at every irreducible & except at the
trivial representation.

The Fourier Transform at ((n−1,1) also has a simple interpretation:

[ f̂((n−1,1) ]i j = #
!∈Sn

f (!)[((n−1,1)(!)]i j = #
!∈Sn

f (!)1{!( j) = i} = #
!:!( j)=i

f (!).

The set +i j = {! : !( j) = i} is the set of the (n−1)! possible permutations which map element j to
i. In identity management, +i j can be thought of as the set of assignments which, for example, have
Alice at Track 1. If P is a distribution, then P̂((n−1,1) is a matrix of first-order marginal probabilities,
where the (i, j)-th element is the marginal probability that a random permutation drawn from P
maps element j to i.

Example 4 Consider the following probability distribution on S3:

! % (1,2) (2,3) (1,3) (1,2,3) (1,3,2)
P(!) 1/3 1/6 1/3 0 1/6 0

The set of all first order marginal probabilities is given by the Fourier transform at ((2,1):

P̂((2,1) =





A B C
1 2/3 1/6 1/6
2 1/3 1/3 1/3
3 0 1/2 1/2



 .

In the above matrix, each column j represents a marginal distribution over the possible tracks that
identity j can map to under a random draw from P. We see, for example, that Alice is at Track 1
with probability 2/3, or at Track 2 with probability 1/3. Simultaneously, each row i represents a
marginal distribution over the possible identities that could have been mapped to track i under a
random draw from P. In our example, Bob and Cathy are equally likely to be in Track 3, but Alice
is definitely not in Track 3. Since each row and each column is itself a distribution, the matrix P̂((2,1)
must be doubly stochastic. We will elaborate on the consequences of this observation later.

The Fourier transform of the same distribution at all irreducibles is:

P̂&(3) = 1, P̂&(2,1) =

[
1/4

√
3/4√

3/4 1/4

]
, P̂&(1,1,1) = 0.

The first-order permutation representation, ((n−1,1), captures the statistics of how a random per-
mutation acts on a single object irrespective of where all of the other n−1 objects are mapped, and
in doing so, compactly summarizes the distribution with only O(n2) numbers. Unfortunately, as
mentioned in Section 3, the Fourier transform at the first-order permutation representation cannot
capture more complicated statements like:

P(Alice and Bob occupy Tracks 1 and 2) = 0.
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To avoid collapsing away so much information, we might define richer summary statistics that might
capture ‘higher-order’ effects. We define the second-order unordered permutation representation
by:

[((n−2,2)(!)]{i, j},{k,!} = 1{!({k,!}) = {i, j}} ,

where we index the matrix rows and columns by unordered pairs {i, j}. The condition inside the
indicator function states that the representation captures whether the pair of objects {k,!} maps to
the pair {i, j}, but is indifferent with respect to the ordering; that is, either k &→ i and ! &→ j, or,
k &→ j and ! &→ i.

Example 5 For n= 4, there are six possible unordered pairs: {1,2},{1,3},{1,4},{2,3},{2,4}, and
{3,4}. The matrix representation of the permutation (1,2,3) is:

((2,2)(1,2,3) =





{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}
{1,2} 0 0 0 1 0 0
{1,3} 1 0 0 0 0 0
{1,4} 0 0 0 0 1 0
{2,3} 0 1 0 0 0 0
{2,4} 0 0 0 0 0 1
{3,4} 0 0 1 0 0 0





.

The second order ordered permutation representation, ((n−2,1,1), is defined similarly:

[((n−2,1,1)(!)](i, j),(k,!) = 1{!((k,!)) = (i, j)} ,

where (k,!) denotes an ordered pair. Therefore, [((n−2,1,1)(!)](i, j),(k,!) is 1 if and only if ! maps k to
i and ! to j.

As in the first-order case, the Fourier transform of a probability distribution at ((n−2,2), returns
a matrix of marginal probabilities of the form: P(! : !({k,!}) = {i, j}), which captures statements
like, "Alice and Bob occupy Tracks 1 and 2 with probability 1/2". Similarly, the Fourier transform
at ((n−2,1,1) returns a matrix of marginal probabilities of the form P(! : !((k,!)) = (i, j)), which
captures statements like, "Alice is in Track 1 and Bob is in Track 2 with probability 9/10".

We can go further and define third-order representations, fourth-order representations, and so
on. In general however, the permutation representations as they have been defined above are re-
ducible, intuitively due to the fact that it is possible to recover lower order marginal probabilities
from higher order marginal probabilities. For example, one can recover the normalization constant
(corresponding to the trivial representation) from the first order matrix of marginals by summing
across either the rows or columns, and the first order marginal probabilities from the second order
marginal probabilities by summing across appropriate matrix entries. To truly leverage the machin-
ery of Fourier analysis, it is important to understand the Fourier transform at the irreducibles of
the symmetric group, and in the next section, we show how to derive the irreducible representa-
tions of the Symmetric group by first defining permutation representations, then “subtracting off the
lower-order effects”.

5. Representation Theory on the Symmetric Group

In this section, we provide a brief introduction to the representation theory of the Symmetric group.
Rather than giving a fully rigorous treatment of the subject, our goal is to give some intuition about
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the kind of information which can be captured by the irreducible representations of Sn. Roughly
speaking, we will show that Fourier transforms on the Symmetric group, instead of being indexed
by frequencies, are indexed by partitions of n (tuples of numbers which sum to n), and certain
partitions correspond to more complex basis functions than others. For proofs, we point the reader
to consult: Diaconis (1989), James and Kerber (1981), Sagan (2001) and Vershik and Okounkov
(2006).

Instead of the singleton or pairwise marginals which were described in the previous section,
we will now focus on using the Fourier coefficients of a distribution to query a much wider class of
marginal probabilities. As an example, we will be able to compute the following (more complicated)
marginal probability on S6 using Fourier coefficients:

P



! : !









1 2 3
4 5
6








 =





1 2 6
4 5
3








 , (4)

which we interpret as the joint marginal probability that the rows of the diagram on the left map to
corresponding rows on the right as unordered sets. In other words, Equation 4 is the joint probability
that unordered set {1,2,3} maps to {1,2,6}, the unordered pair {4,5} maps to {4,5}, and the
singleton {6} maps to {3}.

The diagrams in Equation 4 are known as Ferrer’s diagrams and are commonly used to visualize
partitions of n, which are defined to be unordered tuples of positive integers, *= (*1, . . . ,*!), which
sum to n. For example, *= (3,2) is a partition of n= 5 since 3+2= 5. Usually we write partitions
as weakly decreasing sequences by convention, so the partitions of n= 5 are:

(5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1),

and their respective Ferrers diagrams are:

, , , , , , .

A Young tabloid is an assignment of the numbers {1, . . . ,n} to the boxes of a Ferrers diagram for a
partition *, where each row represents an unordered set. There are 6 Young tabloids corresponding
to the partition *= (2,2), for example:

{
1 2
3 4

}
,

{
1 3
2 4

}
,

{
1 4
2 3

}
,

{
2 3
1 4

}
,

{
2 4
1 3

}
,

{
3 4
1 2

}
.

The Young tabloid,
1 2
3 4 , for example, represents the two underordered sets {1,2} and {3,4}, and if

we were interested in computing the joint probability that !({1,2}) = {3,4} and !({3,4}) = {1,2},
then we could write the problem in terms of Young tabloids as:

P
(
! : !

({
1 2
3 4

})
=

{
3 4
1 2

})
.

1011



HUANG, GUESTRIN AND GUIBAS

In general, we will be able to use the Fourier coefficients at irreducible representations to com-
pute the marginal probabilities of Young tabloids. As we shall see, with the help of the James
Submodule theorem (James and Kerber, 1981), the marginals corresponding to “simple” partitions
will require very few Fourier coefficients to compute, which is one of the main strengths of working
in the Fourier domain.

Example 6 Imagine three separate rooms containing two tracks each, in which Alice and Bob are
in room 1 occupying Tracks 1 and 2; Cathy and David are in room 2 occupying Tracks 3 and 4; and
Eric and Frank are in room 3 occupying Tracks 5 and 6, but we are not able to distinguish which
person is at which track in any of the rooms. Then

P



! :









A B
C D
E F








→





1 2
3 4
5 6








 = 1.

It is in fact, possible to recast the first-order marginals which were described in the previous
section in the language of Young tabloids by noticing that, for example, if 1 maps to 1, then the
unordered set {2, . . . ,n} must map to {2, . . . ,n} since permutations are one-to-one mappings. The
marginal probability that !(1) = 1, then, is equal to the marginal probability that !(1) = 1 and
!({2, . . . ,n}) = {2, . . . ,n}. If n= 6, then the marginal probability written using Young tabloids is:

P
(
! : !

({
2 3 4 5 6
1

})
=

{
2 3 4 5 6
1

})
.

The first-order marginal probabilities correspond, therefore, to the marginal probabilities of
Young tabloids of shape *= (n−1,1).

Likewise, the second-order unordered marginals correspond to Young tabloids of shape * =
(n−2,2). If n= 6 again, then the marginal probability that {1,2}maps to {2,4} corresponds to the
following marginal probability for tabloids:

P
(
! : !

({
3 4 5 6
1 2

})
=

{
1 3 5 6
2 4

})
.

The second-order ordered marginals are captured at the partition *= (n−2,1,1). For example,
the marginal probability that {1} maps to {2} and {2} maps to {4} is given by:

P



! : !









3 4 5 6
1
2








 =





1 3 5 6
2
4








 .

And finally, we remark that the (1, . . . ,1) partition of n recovers all original probabilities since it
asks for a joint distribution over !(1), . . . ,!(n). The corresponding matrix of marginals has n!×n!
entries (though there will only be n! distinct probabilities.

To see how the marginal probabilities of Young tabloids of shape * can be thought of as Fourier
coefficients, we will define a representation (which we call the permutation representation) asso-
ciated with * and show that the Fourier transform of a distribution at a permutation representation
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gives marginal probabilities. We begin by fixing an ordering on the set of possible Young tabloids,
{t1},{t2}, . . . , and define the permutation representation (*(!) to be the matrix:

[(*(!)]i j =

{
1 if !({t j}) = {ti}
0 otherwise .

It can be checked that the function (* is indeed a valid representation of the Symmetric group, and
therefore we can compute Fourier coefficients at (*. If P(!) is a probability distribution, then

[
P̂(*

]

i j
= #

!∈Sn
P(!) [(*(!)]i j ,

= #
{! :!({t j})={ti}}

P(!),

= P(! : !({t j}) = {ti}),

and therefore, the matrix of marginals corresponding to Young tabloids of shape * is given exactly
by the Fourier transform at the representation (*.

As we showed earlier, the simplest marginals (the zeroth order normalization constant), corre-
spond to the Fourier transform at ((n), while the first-order marginals correspond to ((n−1,1), and the
second-order unordered marginals correspond to ((n−2,2). The list goes on and on, with the marginals
getting more complicated. At the other end of the spectrum, we have the Fourier coefficients at the
representation ((1,1,...,1) which exactly recover the original probabilities P(!).

We use the word ‘spectrum’ suggestively here, because the different levels of complexity for the
marginals are highly reminiscent of the different frequencies for real-valued signals, and a natural
question to ask is how the partitions might be ordered with respect to the ‘complexity’ of the corre-
sponding basis functions. In particular how might one characterize this vague notion of complexity
for a given partition?

The ‘correct’ characterization, as it turns out, is to use the dominance ordering of partitions,
which, unlike the ordering on frequencies, is not a linear order, but rather, a partial order.

Definition 5 (Dominance Ordering) Let *,µ be partitions of n. Then *"µ (we say * dominates
µ), if for each i, #i

k=1*k ≥ #i
k=1µk.

For example, (4,2) " (3,2,1) since 4 ≥ 3, 4+ 2 ≥ 3+ 2, and 4+ 2+ 0 ≥ 3+ 2+ 1. However,
(3,3) and (4,1,1) cannot be compared with respect to the dominance ordering since 3 ≤ 4, but
3+3≥ 4+1. The ordering over the partitions of n= 6 is depicted in Figure 3(a).

Partitions with fat Ferrers diagrams tend to be greater (with respect to dominance ordering) than
those with skinny Ferrers diagrams. Intuitively, representations corresponding to partitions which
are high in the dominance ordering are ‘low frequency’, while representations corresponding to
partitions which are low in the dominance ordering are ‘high frequency.’6

Having defined a family of intuitive permutation representations over the Symmetric group, we
can now ask whether the permutation representations are irreducible or not: the answer in general,
is to the negative, due to the fact that it is often possible to reconstruct lower order marginals by
summing over the appropriate higher order marginal probabilities. However, it is possible to show

6. The direction of the ordering is slightly counterintuitive given the frequency interpretation, but is standard in the
literature.
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(a) Dominance ordering for
n= 6.

(b) Fourier coefficient matrices for S6.

Figure 3: The dominance order for partitions of n= 6 are shown in the left diagram (a). Fat Ferrer’s
diagrams tend to be higher in the order and long, skinny diagrams tend to be lower. The
corresponding Fourier coefficient matrices for each partition (at irreducible representa-
tions) are shown in the right diagram (b). Note that since the Fourier basis functions form
a complete basis for the space of functions on the Symmetric group, there must be exactly
n! coefficients in total.

that, for each permutation representation (*, there exists a corresponding irreducible representation
&*, which, loosely, captures all of the information at the ‘frequency’ * which was not already cap-
tured at lower frequency irreducibles. Moreover, it can be shown that there exists no irreducible
representation besides those indexed by the partitions of n. These remarkable results are formalized
in the James Submodule Theorem, which we state here without proof (see Diaconis 1988, James
and Kerber 1981 and Sagan 2001).

Theorem 6 (James’ Submodule Theorem)

1. (Uniqueness) For each partition, *, of n, there exists an irreducible representation, &*, which
is unique up to equivalence.

2. (Completeness) Every irreducible representation of Sn corresponds to some partition of n.
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3. There exists a matrix C* associated with each partition *, for which

CT* · (*(!) ·C* =
M

µ!*

K*µ
M

!=1
&µ(!), for all ! ∈ Sn. (5)

4. K** = 1 for all partitions *.

In plain English, part (3) of the James Submodule theorem says that we can always reconstruct
marginal probabilities of *-tabloids using the Fourier coefficients at irreducibles which lie at * and
above in the dominance ordering, if we have knowledge of the matrix C* (which can be precom-
puted using methods detailed in Appendix D), and the multiplicities K*µ. In particular, combining
Equation 5 with the definition of the Fourier transform, we have that

f̂(* =C* ·



M

µ!*

K*µ
M

!=1
f̂&µ



 ·CT* , (6)

and so to obtain marginal probabilities of *-tabloids, we simply construct a block diagonal matrix
using the appropriate irreducible Fourier coefficients, and conjugate by C*. The multiplicities K*µ
are known as the Kostka numbers and can be computed using Young’s rule (Sagan, 2001). To
illustrate using a few examples, we have the following decompositions:

((n) ≡ &(n),

((n−1,1) ≡ &(n)⊕&(n−1,1),

((n−2,2) ≡ &(n)⊕&(n−1,1)⊕&(n−2,2),

((n−2,1,1) ≡ &(n)⊕&(n−1,1)⊕&(n−1,1)⊕&(n−2,2)⊕&(n−2,1,1),

((n−3,3) ≡ &(n)⊕&(n−1,1)⊕&(n−2,2)⊕&(n−3,3),

((n−3,2,1) ≡ &(n)⊕&(n−1,1)⊕&(n−1,1)⊕&(n−2,2)⊕&(n−2,2)⊕&(n−2,1,1)⊕&(n−3,3)⊕&(n−3,2,1).

Intuitively, the irreducibles at a partition * reflect the “pure” *th-order effects of the underlying
distribution. In other words, the irreducibles at * form a basis for functions that have “interesting”
*th-order marginal probabilities, but uniform marginals at all partitions µ such that µ# *.

Example 7 As an example, we demonstrate a “preference” function which is “purely” second-
order (unordered) in the sense that its Fourier coefficients are equal to zero at all irreducible repre-
sentations except &(n−2,2) (and the trivial representation). Consider the function f : Sn → R defined
by:

f (!) =

{
1 if |!(1)−!(2)| ≡ 1 (mod n)
0 otherwise .

Intuitively, imagine seating n people at a round table with n chairs, but with the constraint that
the first two people, Alice and Bob, are only happy if they are allowed to sit next to each other.
In this case, f can be thought of as the indicator function for the subset of seating arrangements
(permutations) which make Alice and Bob happy.

Since f depends only on the destination of the unordered pair {1,2}, its Fourier transform
is zero at all partitions µ such that µ$ (n− 2,2) ( f̂µ = 0). On the other hand, Alice and Bob
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* (n) (n−1,1) (n−2,2) (n−2,1,1) (n−3,3) (n−3,2,1)

dim &* 1 n−1 n(n−3)
2

(n−1)(n−2)
2

n(n−1)(n−5)
6

n(n−2)(n−4)
3

Table 3: Dimensions of low-order irreducible representation matrices.

have no individual preferences for seating, so the first-order “marginals” of f are uniform, and
hence, f̂(n−1,1) = 0. The Fourier coefficients at irreducibles can be obtained from the second-order
(unordered) “marginals” using Equation 5.

CT(n−2,2) · P̂((n−2,2) ·C(n−2,2) =





Z

0

f̂&(n−2,2)





.

The sizes of the irreducible representation matrices are typically much smaller than their corre-
sponding permutation representation matrices. In the case of *= (1, . . . ,1) for example, dim (* = n!
while dim &* = 1. There is a simple combinatorial algorithm, known as the Hook Formula (Sagan,
2001), for computing the dimension of &*. While we do not discuss it, we provide a few dimen-
sionality computations here (Table 3) to facilitate a dicussion of complexity later. Despite providing
polynomial sized function approximations, the Fourier coefficient matrices can grow quite fast, and
roughly, one would need O(n2k) storage to maintain kth order marginals. For example, we would
need to store O(n8) elements to maintain fourth-order marginals. It is worth noting that since the
Fourier transform is invertible, there must be n! Fourier coefficients in total, and so#& d2& = |G|= n!.
See Figure 3(b) for an example of what the matrices of a complete Fourier transform on S6 would
look like.

In practice, since the irreducible representation matrices are determined only up to equivalence,
it is necessary to choose a basis for the irreducible representations in order to explicitly construct
the representation matrices. As in Kondor et al. (2007), we use the Gel’fand-Tsetlin basis which has
several attractive properties, two advantages being that the matrices are real-valued and orthogonal.
See Appendix B for details on constructing irreducible matrix representations with respect to the
Gel’fand-Tsetlin basis.

6. Inference in the Fourier Domain

What we have shown thus far is that there is a principled method for compactly summarizing distri-
butions over permutations based on the idea of bandlimiting—saving only the low-frequency terms
of the Fourier transform of a function, which, as we discussed, is equivalent to maintaining a set of
low-order marginal probabilities. We now turn to the problem of performing probabilistic inference
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using our compact summaries. One of the main advantages of viewing marginals as Fourier coeffi-
cients is that it provides a natural principle for formulating polynomial time approximate inference
algorithms, which is to rewrite all inference related operations with respect to the Fourier domain,
then to perform the Fourier domain operations ignoring high-order terms.

The idea of bandlimiting a distribution is ultimately moot, however, if it becomes necessary to
transform back to the primal domain each time an inference operation is called. Naively, the Fourier
Transform on Sn scales as O((n!)2), and even the fastest Fast Fourier Transforms for functions on
Sn are no faster than O(n2 · n!) (see Maslen 1998 for example). To resolve this issue, we present a
formulation of inference which operates solely in the Fourier domain, allowing us to avoid a costly
transform. We begin by discussing exact inference in the Fourier domain, which is no more tractable
than the original problem because there are n! Fourier coefficients, but it will allow us to discuss
the bandlimiting approximation in the next section. There are two operations to consider: predic-
tion/rollup, and conditioning. While we have motivated both of these operations in the familiar
context of hidden Markov models, they are fundamental and appear in many other settings. The
assumption for the rest of this section is that the Fourier transforms of the transition and observation
models are known. We discuss methods for obtaining the models in Section 8. The main results
of this section (excluding the discussions about complexity) extend naturally to other finite groups
besides Sn.

6.1 Fourier Prediction/Rollup

We will consider one particular class of transition models—that of random walks over a group,
which assumes that !(t+1) is generated from !(t) by drawing a random permutation )(t) from some
distribution Q(t) and setting !(t+1) = )(t)!(t).7 In our identity management example, )(t) represents
a random identity permutation that might occur among tracks when they get close to each other
(what we call a mixing event). For example, Q(1,2) = 1/2 means that Tracks 1 and 2 swapped
identities with probability 1/2. The random walk model also appears in many other applications
such as modeling card shuffles (Diaconis, 1988).

The motivation behind the random walk transition model is that it allows us to write the pre-
diction/rollup operation as a convolution of distributions on a group. The extension of the familiar
notion of convolution to groups simply replaces additions and subtractions by analogous group op-
erations (function composition and inverse, respectively):

Definition 7 Let Q and P be probability distributions on a group G. Define the convolution8 of Q
and P to be the function [Q∗P] (!1) = #!2Q(!1!

−1
2 )P(!2).

Using Definition 7, we see that the prediction/rollup step can be written as:

P(!(t+1)) =#
!(t)

P(!(t+1)|!(t)) ·P(!(t)),

= #
{(!(t),)(t)) :!(t+1)=)(t)·!(t)}

Q(t)()(t)) ·P(!(t)),

7. We place ) on the left side of the multiplication because we want it to permute tracks and not identities. Had we
defined ) to map from tracks to identities (instead of identities to tracks), then ) would be multiplied from the right.
Besides left versus right multiplication, there are no differences between the two conventions.

8. Note that this definition of convolution on groups is strictly a generalization of convolution of functions on the real
line, and is a non-commutative operation for non-Abelian groups. Thus the distribution P ∗Q is not necessarily the
same as Q∗P.
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(Right-multiplying both sides of !(t+1) = )(t)!(t)

by (!(t))−1, we see that )(t) can be replaced by !(t+1)(!(t))−1),

=#
!(t)

Q(t)(!(t+1) · (!(t))−1) ·P(!(t)),

=
[
Q(t) ∗P

]
(!(t+1)).

As with Fourier transforms on the real line, the Fourier coefficients of the convolution of distribu-
tions P and Q on groups can be obtained from the Fourier coefficients of P and Q individually, using
the convolution theorem (see also Diaconis 1988):

Proposition 8 (Convolution Theorem) Let Q and P be probability distributions on a group G. For
any representation &, [

Q̂∗P
]

&
= Q̂& · P̂&,

where the operation on the right side is matrix multiplication.

Therefore, assuming that the Fourier transforms P̂(t)
& and Q̂(t)

& are given, the prediction/rollup update
rule is simply:

P̂(t+1)
& ← Q̂(t)

& · P̂(t)
& .

Note that the update only requires knowledge of P̂ and does not require P. Furthermore, the update
is pointwise in the Fourier domain in the sense that the coefficients at the representation & affect
P̂(t+1)
& only at &. Consequently, prediction/rollup updates in the Fourier domain never increase the
representational complexity. For example, if we maintain third-order marginals, then a single step
of prediction/rollup called at time t returns the exact third-order marginals at time t+1, and nothing
more.

Example 8 We run the prediction/rollup routines on the first two time steps of the example in
Figure 2, first in the primal domain, then in the Fourier domain. At each mixing event, two tracks, i
and j, swap identities with some probability. Using a mixing model given by:

Q()) =






3/4 if )= %
1/4 if )= (i, j)
0 otherwise

,

we obtain results shown in Tables 4 and 5.

6.1.1 COMPLEXITY OF PREDICTION/ROLLUP

We will discuss complexity in terms of the dimension of the largest maintained irreducible Fourier
coefficient matrix, which we will denote by dmax (see Table 3 for irreducible dimensions). If
we maintain 2nd order marginals, for example, then dmax = O(n2), and if we maintain 3rd order
marginals, then dmax = O(n3).

Performing a single prediction/rollup step in the Fourier domain involves performing a single
matrix multiplication for each irreducible and thus requires O(d3max) time using the naive multipli-
cation algorithm.
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! P(0) Q(1) P(1) Q(2) P(2)

% 1 3/4 3/4 3/4 9/16

(1,2) 0 1/4 1/4 0 3/16

(2,3) 0 0 0 0 0

(1,3) 0 0 0 1/4 3/16

(1,2,3) 0 0 0 0 1/16

(1,3,2) 0 0 0 0 0

Table 4: Primal domain prediction/rollup example.

P̂(0) Q̂(1) P̂(1) Q̂(2) P̂(2)

&(3) 1 1 1 1 1

&(2,1)

[
1 0
0 1

] [
1/2 0
0 1

] [
1/2 0
0 1

] [
7/8 −

√
3/8

−
√
3/8 5/8

] [
7/16 −

√
3/8

−
√
3/16 5/8

]

&(1,1,1) 1 1/2 1/2 1/2 1/4

Table 5: Fourier domain prediction/rollup example.

In certain situations, faster updates can be achieved. For example, in the pairwise mixing model
of Example 8, the Fourier transform of Q distribution takes the form: Q̂&* = ,Id* +-&*(i, j), where
Id* is the d*× d* identity matrix (see also Section 8). As it turns out, the matrix &*(i, j) can be
factored into a product of O(n) sparse matrices each with at most O(d*) nonzero entries. To see
why, recall the elementary fact that the transposition (i, j) factors into a sequence of O(n) adjacent
transpositions:

(i, j) = (i, i+1)(i+1, i+2) · · ·( j−1, j)( j−2, j−1) · (i+1, i+2)(i, i+1).

If we use the Gel’fand-Tsetlin basis adapted to the subgroup chain S1 ⊂ · · ·Sn (see Appendix B),
then we also know that the irreducible representation matrices evaluated at adjacent transpositions
are sparse with no more than O(d2max) nonzero entries. Thus by carefully exploiting sparsity during
the prediction/rollup algorithm, one can achieve an O(nd2max) update, which is faster than O(d3max)
as long as one uses more than first-order terms.

6.1.2 LIMITATIONS OF RANDOM WALK MODELS

While the random walk assumption captures a rather general family of transition models, there do
exist certain models which cannot be written as a random walk on a group. In particular, one lim-
itation is that the prediction/rollup update for a random walk model can only increase the entropy
of the distribution. As with Kalman filters, localization is thus impossible without making obser-
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vations.9 Shin et al. (2005) show that the entropy must increase for a certain kind of random walk
on Sn (where ) could be either the identity or the transposition (i, j)), but in fact, the result is easily
generalized for any random walk mixing model and for any finite group.

Proposition 9

H
[
P(t+1)(!(t+1))

]
≥max

{
H
[
Q(t)(((t))

]
,H

[
P(t)(!(t))

]}
,

where H [P(!)] denotes the statistical entropy functional, H[P(!)] = −#!∈GP(!) logP(!).

Proof We have:

P(t+1)(!(t+1)) =
[
Q(t) ∗P(t)

]
(!(t+1))

=#
!(t)

Q(!(t+1) · (!(t))−1)P(t)(!(t))

Applying the Jensen Inequality to the entropy function (which is concave) yields:

H
[
P(t+1)(!(t+1))

]
≥#

!(t)

P(t)(!(t))H
[
Q(t)(! · (!(t))−1)

]
, (Jensen’s inequality)

=#
!(t)

P(t)(!(t))H
[
Q(t)(!)

]
, (translation invariance of entropy)

= H
[
Q(t)(!)

]
, (since #!(t) P(t)(!(t)) = 1).

The proof that H
[
P(t+1)(!(t+1))

]
≥H

[
P(t)(!(t))

]
is similar with the exception that we must rewrite

the convolution so that the sum ranges over ((t).

P(t+1)(!(t+1)) =
[
Q(t) ∗P(t)

]
(!(t+1)),

=#
((t)
Q(t)(((t))P(t)((((t))−1 ·!(t+1)).

Example 9 This example is based on one fromDiaconis (1988). Consider a deck of cards numbered
{1, . . . ,n}. Choose a random permutation of cards by first picking two cards independently, and
swapping (a card might be swapped with itself), yielding the following probability distribution over
Sn:

Q()) =






1
n if )= %
2
n2 if ) is a transposition
0 otherwise

. (7)

9. In general, if we are not constrained to using linear Gaussian models, it is possible to localize with no observations.
Consider a robot walking along the unit interval on the real line (which is not a group). If the position of the robot
is unknown, one easy localization strategy might be to simply drive the robot to the right, with the knowledge that
given ample time, the robot will slam into the ‘wall’, at which point it will have been localized. With random walk
based models on groups however, these strategies are impossible—imagine the same robot walking around the unit
circle—since, in some sense, the group structure prevents the existence of ‘walls’.
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Figure 4: We start with a deck of cards in sorted order, and perform fifteen consecutive shuffles
according to the rule given in Equation 7. The plot shows the entropy of the distribu-
tion over permutations with respect to the number of shuffles for n = 3,4, . . . ,8. When
H(P)/ log(n!) = 1, the distribution has become uniform.

Repeating the above process for generating random permutations ) gives a transition model for
a hidden Markov model over the symmetric group. We can also see (Figure 4) that the entropy of
the deck increases monotonically with each shuffle, and that repeated shuffles with Q()) eventually
bring the deck to the uniform distribution.

6.2 Fourier Conditioning

In contrast with the prediction/rollup operation, conditioning can potentially increase the repre-
sentational complexity. As an example, suppose that we know the following first-order marginal
probabilities:

P(Alice is at Track 1 or Track 2) = .9, and

P(Bob is at Track 1 or Track 2) = .9.

If we then make the following first-order observation:

P(Cathy is at Track 1 or Track 2) = 1,
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then it can be inferred that Alice and Bob cannot both occupy Tracks 1 and 2 at the same time, that
is,

P({Alice,Bob} occupy Tracks {1,2}) = 0,

demonstrating that after conditioning, we are left with knowledge of second-order (unordered)
marginals despite the fact that the prior and likelihood functions were only known up to first-order.
Intuitively, the example shows that conditioning “smears” information from low-order Fourier co-
efficients to high-order coefficients, and that one cannot hope for a pointwise operation as was
afforded by prediction/rollup. We now show precisely how irreducibles of different complexities
“interact” with each other in the Fourier domain during conditioning.

An application of Bayes rule to find a posterior distribution P(!|z) after observing some evi-
dence z requires two steps: a pointwise product of likelihood P(z|!) and prior P(!), followed by a
normalization step:

P(!|z) = . ·P(z|!) ·P(!).

For notational convenience, we will refer to the likelihood function as L(z|!) henceforth. We
showed earlier that the normalization constant .−1 =#!L(z|!) ·P(!) is given by the Fourier trans-
form of L̂(t)P(t) at the trivial representation—and therefore the normalization step of conditioning
can be implemented by simply dividing each Fourier coefficient by the scalar

[
L̂(t)P(t)

]

&(n)
.

The pointwise product of two functions f and g, however, is trickier to formulate in the Fourier
domain. For functions on the real line, the pointwise product of functions can be implemented
by convolving the Fourier coefficients of f̂ and ĝ, and so a natural question is: can we apply a
similar operation for functions over general groups? Our answer to this is that there is an analogous
(but more complicated) notion of convolution in the Fourier domain of a general finite group. We
present a convolution-based conditioning algorithm which we call Kronecker Conditioning, which,
in contrast to the pointwise nature of the Fourier Domain prediction/rollup step, and much like
convolution, smears the information at an irreducible &/ to other irreducibles.

6.2.1 FOURIER TRANSFORM OF THE POINTWISE PRODUCT

Our approach to computing the Fourier transform of the pointwise product in terms of f̂ and ĝ is to
manipulate the function f (!)g(!) so that it can be seen as the result of an inverse Fourier transform
(Equation 3). Hence, the goal will be to find matrices R/ (as a function of f̂ , ĝ) such that for any
! ∈ G,

f (!) ·g(!) =
1
|G|#/

d&/Tr
(
RT/ ·&/(!)

)
, (8)

after which we will be able to read off the Fourier transform of the pointwise product as
[
f̂ g
]

&/
=R/.

For any ! ∈G, we can write the pointwise product in terms of f̂ and ĝ using the inverse Fourier
transform:

f (!) ·g(!) =

[
1
|G|#*

d&*Tr
(
f̂ T&* ·&*(!)

)]
·

[
1
|G|#µ

d&µTr
(
ĝT&µ ·&µ(!)

)]

=

(
1
|G|

)2
#
*,µ
d&*d&µ

[
Tr

(
f̂ T&* ·&*(!)

)
·Tr

(
ĝT&µ ·&µ(!)

)]
. (9)
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1. If A and B are square, Tr(A⊗B) = (TrA) · (TrB).

2. (A⊗B) · (C⊗D) = AC⊗BD.

3. Let A be an n×nmatrix, andC an invertible n×nmatrix. Then TrA= Tr
(
C−1AC

)
.

4. Let A be an n×n matrix and Bi be matrices of size mi×mi where #i mi = n. Then
Tr(A · (

L

i Bi)) = #iTr(Ai ·Bi), where Ai is the block of A corresponding to block
Bi in the matrix (

L

i Bi).

Table 6: Matrix Identities used in Proposition 10.

Now we want to manipulate this product of traces in the last line to be just one trace (as in Equa-
tion 8), by appealing to some properties of the Kronecker Product. The Kronecker product of an
n×n matrixU = (ui, j) by an m×m matrix V , is defined to be the nm×nm matrix

U⊗V =





u1,1V u1,2V . . . u1,nV
u2,1V u2,2V . . . u2,nV
...

... . . . ...
un,1V un,2V . . . un,nV




.

We summarize some important matrix properties in Table 6. The connection to our problem is given
by matrix property 1. Applying this to Equation 9, we have:

Tr
(
f̂ T&* ·&*(!)

)
·Tr

(
ĝT&µ ·&µ(!)

)
= Tr

((
f̂ T&* ·&*(!)

)
⊗
(
ĝT&µ ·&µ(!)

))

= Tr
((
f̂&* ⊗ ĝ&µ

)T · (&*(!)⊗&µ(!))
)

,

where the last line follows by Property 2. The term on the left, f̂&* ⊗ ĝ&µ, is a matrix of coefficients.
The term on the right, &*(!)⊗&µ(!), itself happens to be a representation, called the Kronecker (or
Tensor) Product Representation. In general, the Kronecker product representation is reducible, and
so it can be decomposed into a direct sum of irreducibles. In particular, if &* and &µ are any two
irreducibles of G, there exists a similarity transformC*µ such that, for any ! ∈ G,

C−1
*µ · [&*⊗&µ] (!) ·C*µ =

M

/

z*µ/
M

!=1
&/(!). (10)

The⊕ symbols here refer to a matrix direct sum as in Equation 2, / indexes over all irreducible rep-
resentations of Sn, while ! indexes over a number of copies of &/ which appear in the decomposition.
We index blocks on the right side of this equation by pairs of indices (/,!). The number of copies of
each &/ (for the tensor product pair &*⊗&µ) is denoted by the integer z*µ/, the collection of which,
taken over all triples (*,µ,/), are commonly referred to as the Clebsch-Gordan series. Note that we
allow the z*µ/ to be zero, in which case &/ does not contribute to the direct sum. The matrices C*µ
are known as the Clebsch-Gordan coefficients. The Kronecker Product Decomposition problem is
that of finding the irreducible components of the Kronecker product representation, and thus to find
the Clebsch-Gordan series/coefficients for each pair of irreducible representations (&*,&µ).
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Decomposing the Kronecker product inside Equation 10 using the Clebsch-Gordan series and
coefficients yields the desired Fourier transform, which we summarize in the form of a proposition.
In the case that f and g are defined over an Abelian group, we will show that the following formulas
reduce to the familiar form of convolution.

Proposition 10 Let f̂ , ĝ be the Fourier transforms of functions f and g respectively, and for each or-
dered pair of irreducibles (&*,&µ), define: A*µ !C−1

*µ ·
(
f̂&* ⊗ ĝ&µ

)
·C*µ. Then the Fourier transform

of the pointwise product f g is:

[
f̂ g
]

&/
=

1
d&/ |G|

#
*µ
d&*d&µ

z*µ/

#
!=1

A(/,!)
*µ , (11)

where A(/,!)
*µ is the block of A*µ corresponding to the (/,!) block in

L

/
Lz*µ/

!=1&/ from Equation 10.

Proof We use the fact thatC*µ is an orthogonal matrix for all pairs (&*,&µ), that is,CT*µ ·C*µ = I.

f (!) ·g(!) =

[
1
|G|#*

d&*Tr
(
f̂ T&* ·&*(!)

)]
·

[
1
|G|#µ

d&µTr
(
ĝT&µ ·&µ(!)

)]

=

(
1
|G|

)2
#
*,µ
d&*d&µ

[
Tr

(
f̂ T&* ·&µ(!)

)
·Tr

(
ĝT&µ ·&µ(!)

)]

(by Property 1)=
(
1
|G|

)2
#
*,µ
d&*d&µ

[
Tr

((
f̂ T&* ·&*(!)

)
⊗
(
ĝT&µ ·&µ(!)

))]

(by Property 2)=
(
1
|G|

)2
#
*,µ
d&*d&µTr

((
f̂&* ⊗ ĝ&µ

)T · (&*(!)⊗&µ(!))
)

(by Property 3)=
(
1
|G|

)2
#
*,µ
d&*d&µTr

(
CT*µ ·

(
f̂&* ⊗ ĝ&µ

)T ·C*µ

·CT*µ · (&*(!)⊗&µ(!)) ·C*µ
)

(by definition ofC*µ and A*µ)=
(
1
|G|

)2
#
*,µ
d&*d&µTr

(
AT*µ ·

(
M

/

z*µ/
M

!=1
&/(!)

))

(by Property 4)=
1

|G|2#*µ
d&*d&µ#

/
d&/

z*µ/

#
!=1
Tr

((
d−1&/ A

(/,!)
*µ

)T
&/(!)

)

(rearranging terms)=
1
|G|#/

d&/Tr




(

#
*µ

z*µ/

#
!=1

d&*d&µ
d&/ |G|

A(/,!)
*µ

)T

&/(!)



 .

Recognizing the last expression as an inverse Fourier transform completes the proof.

The Clebsch-Gordan series, z*µ/, plays an important role in Equation 11, which says that the
(&*,&µ) cross-term contributes to the pointwise product at &/ only when z*µ/ > 0. In the simplest
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case, we have that

z(n),µ,/ =

{
1 if µ= /
0 otherwise ,

which is true since &(n)(!) = 1 for all ! ∈ Sn. As another example, it is known that:

&(n−1,1)⊗&(n−1,1) ≡ &(n)⊕&(n−1,1)⊕&(n−2,2)⊕&(n−2,1,1),

or equivalently,

z(n−1,1),(n−1,1),/ =

{
1 if / is one of (n),(n−1,1),(n−2,2), or (n−2,1,1)
0 otherwise .

So if the Fourier transforms of the likelihood and prior are zero past the first two irreducibles ((n)
and (n− 1,1)), then a single conditioning step results in a Fourier transform which, in general,
carries second-order information at (n−2,2) and (n−2,1,1), but is guaranteed to be zero past the
first four irreducibles (n), (n−1,1), (n−2,2) and (n−2,1,1).

As far as we know, there are no analytical formulas for finding the entire Clebsch-Gordan se-
ries or coefficients, and in practice, acquiring the coefficients requires considerable precomputation.
We emphasize however, that as fundamental constants related to the irreducibles of the Symmetric
group, they need only be computed once and for all (like the digits of ), for example) and can be
stored in a table for all future reference. For a detailed discussion of techniques for computing the
Clebsch-Gordan series/coefficients, see Appendix D. We have made a set of precomputed coeffi-
cients available on our lab website,10 but we will assume throughout the rest of the paper that both
the series and coefficients have been made available as a lookup table.

As a final remark, note that Proposition 10 can be rewritten somewhat more intuitively by ab-
sorbing the scalars and submatrices of the Clebsch-Gordan coefficients into projection matrices
P(/,!)
*µ .

Proposition 11 Let f̂ , ĝ be the Fourier transforms of functions f and g respectively. For each triple
of partitions (*,µ,/) there exists a positive integer z*,µ,/ and projection operators P

(/,!)
*µ for each

! ∈ {1,2, . . . ,z*µ/} such that the Fourier transform of the pointwise product f g is:

[
f̂ g
]

&/
=#

*,µ

z*µ/

#
!=1

(P(/,!)
*µ )T ·

(
f̂&* ⊗ ĝ&µ

)
·P(/,!)

*µ . (12)

When f and g are functions on an Abelian group G, then it is a well known fact that all irreducible
representations are one-dimensional, and so Equation 12 reduces to

[
f̂ g
]

&/
=#*,µ

(
f̂&* · ĝ&µ

)
, where

all the tensor products have simply become scalar multiplications and the familiar definition of
convolution is recovered.

6.2.2 COMPLEXITY OF CONDITIONING

The complexity of (bandlimited) conditioning (assuming precomputed Clebsch-Gordan
series/coefficients) depends on the order of the coefficients maintained for both the prior and the

10. See http://www.select.cs.cmu.edu/data/index.html.
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observation model. However, it is difficult to state a general complexity bound for arbitrary finite
groups due to our limited understanding of the Clebsch-Gordan series. Here we consider condi-
tioning only on the symmetric group of order n with the assumption that the number of irreducibles
maintained is very small (and in particular, not allowed to grow with respect to n). Our assumption
is realistic in practice since for moderately large n, it is impractical to consider maintaining higher
than, say, third-order terms. If we denote the dimension of the largest maintained irreducibles of the
prior and likelihood by dpriormax and dobsmax, respectively, then the complexity of conditioning is dom-
inated by the step that forms a matrix CT · (A⊗B) ·C, where the matrices A⊗B and C are each
(dpriormax · dobsmax)-dimensional. Note, however, that since we are only interested in certain blocks of
CT · (A⊗B) ·C, the full matrix need not be computed. In particular, the largest extracted block has
size dpriormax , and so the complexity of conditioning is O

(
(dobsmax)

2(dpriormax )3
)
using the naive matrix

multiplication algorithm.
In some situations (see Section 8), the observation model is fully specified by first-order Fourier

terms. In such cases, dobsmax = O(n) and we can perform conditioning in the Fourier domain in
O(n2 · (dpriormax )3) time. If a model is fully specified by second-order terms, for example, then the
update requires O(n4 · (dpriormax )3) time.

To speed up conditioning, one can often exploit matrix sparsity in two ways. First, we observe
that the Clebsch-Gordan coefficient matrices are often sparse (we cannot yet prove this, see Fig-
ure 10.1) and so we can save a conjectured factor of (dpriormax ·dobsmax) in practice. Secondly, for certain
coset-based observation models (see Section 8), we can show that (under an appropriate relabeling
of identities and tracks), the Fourier coefficient matrices of the observation model are sparse (with
O(dobsmax) or sometimes even O(1) nonzero entries for L̂*). For the simplest observations which take
the form (“Identity j is at track j”), for example, we can obtain O((dpriormax )3) running time (without
accounting for the conjectured sparsity of the Clebsch-Gordan coefficients), which matches the time
required for the prediction/rollup update. See Appendix B for details.

We now conclude our section on inference with a fully worked example of Kronecker condi-
tioning.

Example 10 For this example, refer to Table 2 for the representations of S3. Given functions f ,g :
S3 → R, we will compute the Fourier transform of the pointwise product f ·g.

Since there are three irreducibles, there are nine tensor products &*⊗&µ to decompose, six of
which are trivial either because they are one-dimensional, or involve tensoring against the trivial
representation. The nontrivial tensor products to consider are &(2,1) ⊗&(1,1,1), &(1,1,1) ⊗&(2,1) and
&(2,1)⊗&(2,1). The Clebsch-Gordan series for the nontrivial tensor products are:

z(2,1),(1,1,1),/ z(1,1,1),(2,1),/ z(2,1),(2,1),/
/= (3) 0 0 1
/= (2,1) 1 1 1
/= (1,1,1) 0 0 1

The Clebsch-Gordan coefficients for the nontrivial tensor products are given by the following
orthogonal matrices:

C(2,1)⊗(1,1,1) =

[
0 1
−1 0

]
, C(1,1,1)⊗(2,1) =

[
0 −1
1 0

]
, C(2,1)⊗(2,1) =

√
2
2





1 0 −1 0
0 −1 0 1
0 −1 0 −1
1 0 1 0



 .
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As in Proposition 10, define:

A(2,1)⊗(1,1,1) = CT(2,1)⊗(1,1,1)
(
f̂(2,1)⊗ ĝ(1,1,1)

)
C(2,1)⊗(1,1,1), (13)

A(1,1,1)⊗(2,1) = CT(1,1,1)⊗(2,1)
(
f̂(1,1,1)⊗ ĝ(2,1)

)
C(1,1,1)⊗(2,1), (14)

A(2,1)⊗(2,1) = CT(2,1)⊗(2,1)
(
f̂(2,1)⊗ ĝ(2,1)

)
C(2,1)⊗(2,1), (15)

Then Proposition 10 gives the following formulas:

f̂ ·g&(3)
=
1
3!

·
[
f̂&(3) · ĝ&(3) + f̂&(1,1,1) · ĝ&(1,1,1) +4 ·

[
A(2,1)⊗(2,1)

]
1,1

]
, (16)

f̂ ·g&(2,1)
=
1
3!

·
[
f̂&(2,1) · ĝ&(3) + f̂&(3) · ĝ&(2,1) +A(1,1,1)⊗(2,1)

+A(2,1)⊗(1,1,1) +2 ·
[
A(2,1)⊗(2,1)

]
2:3,2:3

]
, (17)

f̂ ·g&(1,1,1)
=
1
3!

·
[
f̂&(3) · ĝ&(1,1,1) + f̂&(1,1,1) · ĝ&(3) +4 ·

[
A(2,1)⊗(2,1)

]
4,4

]
, (18)

where the notation [A]a:b,c:d denotes the block of entries in A between rows a and b, and between
columns c and d (inclusive).

Using the above formulas, we can continue on Example 8 and compute the last update step in
our identity management problem (Figure 2). At the final time step, we observe that Bob is at track
1 with 100% certainty. Our likelihood function is therefore nonzero only for the permutations which
map Bob (the second identity) to the first track:

L(!) $

{
1 if != (1,2) or (1,3,2)
0 otherwise .

The Fourier transform of the likelihood function is:

L̂&(3) = 2, L̂&(2,1) =

[
−3/2

√
3/2

−
√
3/2 1/2

]
, L̂&(1,1,1) = 0. (19)

Plugging the Fourier transforms of the prior distribution (P̂(2) from Table 5) and likelihood (Equa-
tion 19) into Equations 13, 14, 15, we have:

A(2,1)⊗(1,1,1) =

[
0 0
0 0

]
, A(1,1,1)⊗(2,1) =

1
8

[
1

√
3

−
√
3 −3

]
, A(2,1)⊗(2,1) =

1
32





−7 −
√
3 11 5

√
3

−2
√
3 −10 −6

√
3 −14

20 22
√
3 −4 4

√
3

−11
√
3 −23 −

√
3 −13





To invoke Bayes rule in the Fourier domain, we perform a pointwise product using Equations 16, 17, 18,
and normalize by dividing by the trivial coefficient, which yields the Fourier transform of the poste-
rior distribution as:

[
P̂(!|z)

]

&(3)
= 1,

[
P̂(!|z)

]

&(2,1)
=

[
−1 0
0 1

]
,

[
P̂(!|z)

]

&(1,1,1)
= −1. (20)

Finally, we can see that the result is correct by recognizing that the Fourier transform of the
posterior (Equation 20) corresponds exactly to the distribution which is 1 at != (1,2) and 0 every-
where else. Bob is therefore at Track 1, Alice at Track 2 and Cathy at Track 3.

! % (1,2) (2,3) (1,3) (1,2,3) (1,3,2)
P(!) 0 1 0 0 0 0
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Algorithm 1: Pseudocode for the Fourier Prediction/Rollup Algorithm.
PREDICTIONROLLUP
input : Q̂(t)

&* and P̂
(t)
&* , &* ∈ 0

output: P̂(t+1)
&* , &* ∈ 0

foreach &* ∈ 0 do P̂(t+1)
&* ← Q̂(t)

&* · P̂
(t)
&* ;1

Algorithm 2: Pseudocode for the Kronecker Conditioning Algorithm.
KRONECKERCONDITIONING
input : Fourier coefficients of the likelihood function, L̂&* , &* ∈ 0L, and Fourier coefficients

of the prior distribution, P̂&µ, &µ ∈ 0P
output: Fourier coefficients of the posterior distribution, L̂P&/ , &/ ∈ 0P
foreach &/ ∈ 0P do L̂P&/ ← 0 //Initialize Posterior1
//Pointwise Product
foreach &* ∈ 0L do2
foreach &µ ∈ 0P do3

z←CGseries(&*,&µ) ;4
C*µ←CGcoe f f icients(&*,&µ) ; A*µ←CT*µ ·

(
L̂&* ⊗ P̂&µ

)
·C*µ ;5

for &/ ∈ 0P such that z*µ/ #= 0 do6
for ! = 1 to z*µ/ do7 [

L̂(t)P(t)
]

&/
←

[
L̂(t)P(t)

]

&/
+

d&*d&µ
d&/n!

A(/,!)
*µ ; //A(/,!)

*µ is the (/,!) block of A*µ8

.←
[
L̂(t)P(t)

]−1
&(n)
;

9

foreach &/ ∈ 0 do
[
L̂(t)P(t)

]

&/
← .

[
L̂(t)P(t)

]

&/
//Normalization10

7. Approximate Inference by Bandlimiting

We now consider the consequences of performing inference using the Fourier transform at a reduced
set of coefficients. Important issues include understanding how error can be introduced into the
system, and when our algorithms are expected to perform well as an approximation. Specifically,
we fix a bandlimit *MIN and maintain the Fourier transform of P only at irreducibles which are at
*MIN or above in the dominance ordering:

0= {&* : *"*MIN}.

For example, when *MIN = (n−2,1,1), 0 is the set
{
&(n),&(n−1,1),&(n−2,2) , and &(n−2,1,1)

}
, which

corresponds to maintaining second-order (ordered) marginal probabilities of the form P(!((i, j)) =
(k,!)). During inference, we follow the procedure outlined in the previous section but discard the
higher order terms which can be introduced during the conditioning step. Pseudocode for bandlim-
ited prediction/rollup and Kronecker conditioning is given in Algorithms 1 and 2. We note that it is
not necessary to maintain the same number of irreducibles for both prior and likelihood during the
conditioning step. The first question to ask is: when should one expect a bandlimited approximation
to be close to P(!) as a function? Qualitatively, if a distribution is relatively smooth, then most of its
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Figure 5: In general, smoother distributions are well approximated by low-order Fourier projec-
tions. In this graph, we show the approximation quality of the Fourier projections on
distributions with different entropies, starting from sharply peaked delta distributions on
the left side of the graph, which get iteratively smoothed until they becomes the maxi-
mum entropy uniform distribution on the right side. On the y-axis, we measure how much
energy is preserved in the bandlimited approximation, which we define to be |P′|2

|P|2 , where
P′ is the bandlimited approximation to P. Each line represents the approximation quality
using a fixed number of Fourier coefficients. At one extreme, we achieve perfect signal
reconstruction by using all Fourier coefficients, and at the other, we perform poorly on
“spiky” distributions, but well on high-entropy distributions, by storing a single Fourier
coefficient.

energy is stored in the low-order Fourier coefficients. However, in a phenomenon quite reminiscent
of the Heisenberg uncertainty principle from quantum mechanics, it is exactly when the distribution
is sharply concentrated at a small subset of permutations, that the Fourier projection is unable to
faithfully approximate the distribution. We illustrate this uncertainty effect in Figure 5 by plotting
the accuracy of a bandlimited distribution against the entropy of a distribution.

Even though the bandlimited distribution is sometimes a poor approximation to the true distri-
bution, the marginals maintained by our algorithm are often sufficiently accurate. And so instead
of considering the approximation accuracy of the bandlimited Fourier transform to the true joint
distribution, we consider the accuracy only at the marginals which are maintained by our method.

7.1 Sources of Error During Inference

We now analyze the errors incurred during our inference procedures with respect to the accuracy
at maintained marginals. It is immediate that the Fourier domain prediction/rollup operation is
exact due to its pointwise nature in the Fourier domain. For example, if we have the second order
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(a) n= 5 (b) n= 6

Figure 6: We show the dominance ordering for partitions of n = 5 and n = 6 again. By setting
*MIN = (3,1,1) and (4,1,1) respectively, we keep the irreducibles corresponding to the
partitions in the dotted regions. If we call Kronecker Conditioning with a first-order
observation model, then according to Theorem 12, we can expect to incur some error at
the Fourier coefficients corresponding to (3,1,1) and (3,2) for n = 5, and (4,1,1) and
(4,2) for n= 6 (shown as shaded tableaux), but to be exact at first-order coefficients.

marginals at time t = 0, then we can find the exact second order marginals at all t > 0 if we only per-
form prediction/rollup operations. Instead, the errors in inference are only committed by Kronecker
conditioning, where they are implicitly introduced at coefficients outside of 0 (by effectively setting
the coefficients of the prior and likelihood at irreducibles outside of 0 to be zero), then propagated
inside to the irreducibles of 0.

In practice, we observe that the errors introduced at the low-order irreducibles during inference
are small if the prior and likelihood are sufficiently diffuse, which makes sense since the high-
frequency Fourier coefficients are small in such cases. We can sometimes show that the update is
exact at low order irreducibles if we maintain enough coefficients.

Theorem 12 If *MIN = (n− p,*2, . . .), and the Kronecker conditioning algorithm is called with a
likelihood function whose Fourier coefficients are nonzero only at &µ when µ" (n−q,µ2, . . .), then
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the approximate Fourier coefficients of the posterior distribution are exact at the set of irreducibles:

0EXACT = {&* : *" (n− |p−q|, . . .)}.

Proof See Appendix D.

For example, if we call Kronecker conditioning by passing in third-order terms of the prior and
first-order terms of the likelihood, then all first and second-order (unordered and ordered) marginal
probabilities of the posterior distribution can be reconstructed without error.

7.2 Projecting to the Marginal Polytope

Despite the encouraging result of Theorem 12, the fact remains that consecutive conditioning steps
can propagate errors to all levels of the bandlimited Fourier transform, and in many circumstances,
result in a Fourier transform whose “marginal probabilities” correspond to no consistent joint dis-
tribution over permutations, and are sometimes negative. To combat this problem, we present a
method for projecting to the space of coefficients corresponding to consistent joint distributions
(which we will refer to as the marginal polytope) during inference.

We begin by discussing the first-order version of the marginal polytope projection problem.
Given an n× n matrix, M, of real numbers, how can we decide whether there exists some proba-
bility distribution which has M as its matrix of first-order marginal probabilities? A necessary and
sufficient condition, as it turns out, is forM to be doubly stochastic. That is, all entries ofM must be
nonnegative and all rows and columns of M must sum to one (the probability that Alice is at some
track is 1, and the probability that some identity is at Track 3 is 1). The double stochasticity condi-
tion comes from the Birkhoff-von Neumann theorem (van Lint and Wilson, 2001) which states that
a matrix is doubly stochastic if and only if it can be written as a convex combination of permutation
matrices.

To “renormalize” first-order marginals to be doubly stochastic, some authors (Shin et al., 2003,
2005; Balakrishnan et al., 2004; Helmbold and Warmuth, 2007) have used the Sinkhorn iteration,
which alternates between normalizing rows and columns independently until convergence is ob-
tained. Convergence is guaranteed under mild conditions and it can be shown that the limit is a
nonnegative doubly stochastic matrix which is closest to the original matrix in the sense that the
Kullback-Leibler divergence is minimized (Balakrishnan et al., 2004).

There are several problems which cause the Sinkhorn iteration to be an unnatural solution in
our setting. First, since the Sinkhorn iteration only works for nonnegative matrices, we would
have to first cap entries to lie in the appropriate range, [0,1]. More seriously, even though the
Sinkhorn iteration would guarantee a doubly stochastic higher order matrix of marginals, there are
several natural constraints which are violated when running the Sinkhorn iteration on higher-order
marginals. For example, with second-order (ordered) marginals, it seems that we should at least
enforce the following symmetry constraint:

P(! : !(k,!) = (i, j)) = P(! : !(!,k) = ( j, i)),

which says, for example, that the marginal probability that Alice is in Track 1 and Bob is in Track
2 is the same as the marginal probability that Bob is in Track 2 and Alice is in Track 1. Another
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natural constraint that can be broken is what we refer to as low-order marginal consistency. For
example, it should always be the case that:

P( j) =#
i
P(i, j) =#

k
P( j,k).

It should be noted that the doubly stochastic requirement is a special case of lower-order marginal
consistency—we require that higher-order marginals be consistent on the 0th order marginal.

While compactly describing the constraints of the marginal polytope exactly remains an open
problem, we propose a method for projecting onto a relaxed form of the marginal polytope which
addresses both symmetry and low-order consistency problems by operating directly on irreducible
Fourier coefficients instead of on the matrix of marginal probabilities. After each conditioning step,
we apply a ‘correction’ to the approximate posterior P(t) by finding the bandlimited function in the
relaxed marginal polytope which is closest to P(t) in an L2 sense. To perform the projection, we
employ the Plancherel Theorem (Diaconis, 1988) which relates the L2 distance between functions
on Sn to a distance metric in the Fourier domain.

Proposition 13 (Plancherel Theorem)

#
!

( f (!)−g(!))2 =
1
|G|#/

d&/Tr
((
f̂&/ − ĝ&/

)T ·
(
f̂&/ − ĝ&/

))
. (21)

To find the closest bandlimited function in the relaxed marginal polytope, we formulate a quadratic
program whose objective is to minimize the right side of Equation 21, and whose sum is taken only
over the set of maintained irreducibles, 0, subject to the set of constraints which require all marginal
probabilities to be nonnegative. We thus refer to our correction step as Plancherel Projection. Our
quadratic program can be written as:

minimize f̂ pro j #
*∈0

d*Tr
[(
f̂ − f̂ pro j

)T
&*

(
f̂ − f̂ pro j

)
&*

]

subject to:
[
f̂ pro j

]
(n) = 1,



C*MIN ·



 M

µ!*MIN

K*MIN ,µ
M

!=1
f̂ pro j&µ



 ·CT*MIN





i j

≥ 0, for all (i, j),

where K*MIN andC*MIN are the precomputed constants from Equation 6. We remark that even though
the projection will produce a Fourier transform corresponding to nonnegative marginals which are
consistent with each other, there might not necessarily exist a joint probability distribution on Sn
consistent with those marginals except in the special case of first-order marginals.

Example 11 In Example 10, we ran the Kronecker conditioning algorithm using all of the Fourier
coefficients. If only the first-order coefficients are available, however, then the expressions for zeroth
and first order terms of the posterior (Equations 16,17) become:

f̂ ·g&(3)
=
1
3!

·
[
f̂&(3) · ĝ&(3) +4 ·

[
A(2,1)⊗(2,1)

]
1,1

]
,

f̂ ·g&(2,1)
=
1
3!

·
[
f̂&(2,1) · ĝ&(3) + f̂&(3) · ĝ&(2,1) +2 ·

[
A(2,1)⊗(2,1)

]
2:3,2:3

]
,
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Plugging in the same numerical values from Example 10 and normalizing appropriately yields the
approximate Fourier coefficients of the posterior:

[
P̂(!|z)

]

&(3)
= 1

[
P̂(!|z)

]

&(2,1)
=

[
−10/9 −77/400
77/400 4/3

]
,

which correspond to the following first-order marginal probabilities:

P̂((2,1)





A B C
Track 1 0 11/9 −2/9
Track 2 1 0 0
Track 3 0 −2/9 11/9



 .

In particular, we see that the approximate matrix of ‘marginals’ contains negative numbers. Apply-
ing the Plancherel projection step, we obtain the following marginals:

P̂((2,1)





A B C
Track 1 0 1 0
Track 2 1 0 0
Track 3 0 0 1



 ,

which happen to be exactly the true posterior marginals. It should be noted however, that rounding
the ‘marginals’ to be in the appropriate range would have worked in this particular example as
well.

8. Probabilistic Models of Mixing and Observations

While the algorithms presented in the previous sections are general in the sense that they work on all
mixing and observation models, it is not always obvious how to compute the Fourier transform of a
given model. In this section, we discuss a collection of useful models for which we can efficiently
compute low-order Fourier coefficients or even provide a closed-form expression. See Table 7 for a
summary of the various models covered in this section.

We consider both mixing and observation models. In multiobject tracking, a mixing model
might account for the fact that two tracks may have swapped identities with some probability. Or
in card shuffling, a mixing model might reflect that a card has been inserted somewhere into the
deck. In multiobject tracking, an observation model might tell us that Alice is at some track with
probability one. Or it might reflect the fact that some subset of identities occupies some subset of
tracks with no order information, as in the case of the bluetooth model. In ranking applications, an
observation model might, for example, reflect that some object is ranked higher than, or preferred
over some other object.

This section is divided into three parts, each describing a different approach to computing the
Fourier coefficients of a model, with some being simpler or more efficient to implement in cer-
tain situations than others. In direct constructions, we naively apply the definition of the Fourier
transform to obtain the Fourier coefficients of some model. In marginal based constructions,
we first compute the low-order ‘marginals’ of some probabilistic model, then project the result
onto the irreducible Fourier basis. Finally, in coset-based constructions, we introduce a family
of ‘atomic’ indicator functions of subgroups of the form Sk ⊂ Sn which are then combined using
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Mixing Model Example Semantics Relevant Subgroup
Pairwise mixing Identity confusion at tracks 1 and 2 S2
k-subset mixing Identity confusion at tracks in {1,2,4,6} Sk
Insertion mixing Insert top card somewhere in the deck n/a
Observation Model Example Semantics Relevant Subgroup

Single track observation Alice is at Track 1 Sn−1
Multitrack observation Alice is at Track 1, Bob is at Track 2, etc. Sn−k
Bluetooth observation The girls occupy tracks {1,2,6,8} Sk×Sn−k

Pairwise ranking observation Apples are better than oranges Sn−2

Table 7: Several useful types of mixing and observation models are summarized in the above table.
In many of these cases, computing the appropriate Fourier transform reduces to computing
the Fourier transform of the indicator function of some related subgroup of Sn, and so we
also mention the relevant subgroup in the second column. In the third column we provide
an example illustrating the semantics of each model.

scale/shift/convolution operations to form more complex models. As we discuss in Section 11,
there also remains the open possibility of learning models directly in the Fourier domain. For the
sake of succinctness, many of the results in this section will be stated without proof.

8.1 Direct Construction

In some applications we are fortunate enough to have a model that can be “directly” transformed
efficiently using the definition of the Fourier transform (Definition 3). We provide two examples.

8.1.1 PAIRWISE MIXING

The simplest mixing model for identity management assumes that with probability p, nothing hap-
pens, and that with probability (1− p), the identities for tracks i and j are swapped. The probability
distribution for the pairwise mixing model is therefore:

Qi j()) =






p if )= %
1− p if )= (i, j)
0 otherwise

. (22)

Since Qi j is such a sparse distribution (in the sense that Qi j()) = 0 for most )), it is possible to
directly compute Q̂i j using Definition 3:

[
Q̂i j

]

&*
= pI+(1− p)&*((i, j)),

where I refers to the d*×d* identity matrix (since any representation must map the identity element
% to an identity matrix), and &*((i, j)) is the irreducible representation matrix &* evaluated at the
transposition (i, j) (which can be computed using the algorithms from Appendix C).
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8.1.2 INSERTION MIXING

As another example, we can consider the insertion mixing model (also called the top-in shuffle
Diaconis 1988) in which we take the top card in some deck of n cards, and with uniform probability,
insert it somewhere in the deck, preserving all other original relative orderings. Insertions can be
useful in ranking applications where we might wish to add a new item into consideration without
disturbing the marginal probabilities over relative rankings of existing items. The distribution for
the insertion mixing model is given by:

Qinsertion()) =

{ 1
n if ) is a cycle of the form ( j, j−1, . . . ,1) for some j ∈ {1, . . . ,n}
0 otherwise .

Since the insertion mixing model is supported on n permutations, it is again simple to directly
construct the Fourier transform from the definition. We have:

Q̂insertion
&* =

1
n

n

#
j=1

&*( j, j−1, . . . ,1).

8.2 Marginal Based Construction

Inmarginal based constructions, we first compute the low-order ‘marginals’11 of some probabilistic
model, then project the result onto the irreducible Fourier basis. Thus given a function f : Sn →
R, we compute, for example, the first-order marginals f̂((n−1,1) , and conjugate by an intertwining
operator (Equation 6) to obtain the Fourier coefficients at (n) and (n− 1,1). Sometimes when the
Fourier transform of f is provably non-zero only at low-order terms, a marginal based construction
might be the easiest method to obtain Fourier coefficients.

8.2.1 COLOR HISTOGRAM OBSERVATION

The simplest model assumes that we can get observations of the form: ‘track ! is color k’ (which is
essentially the model considered by Kondor et al. 2007). The probability of seeing color k at track
! given data association ! is

L(!) = P(z! = k|!) = ,!−1(!),k,

where #k,!−1(!),k = 1. For each identity, the likelihood L(!) = P(z! = k|!) depends, for example,
on a histogram over all possible colors. If the number of possible colors is K, then the likelihood
model can be specified by an n×K matrix of probabilities. For example,

,!(!),k =





k = Red k = Orange k = Yellow k = Green
!(Alice) = ! 1/2 1/4 1/4 0
!(Bob) = ! 1/4 0 0 3/4
!(Cathy) = ! 0 1/2 1/2 0



 . (23)

Since the observation model only depends on a single identity, the first-order terms of the Fourier
transform suffice to describe the likelihood exactly. To compute the first-order Fourier coefficients

11. The word ‘marginals’ is technically appropriate only when the function in question is a legal probability distribution
(as opposed to likelihood functions, for example), however we use it to refer to similar summary statistics for general
functions.
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at irreducibles, we proceed by computing the first-order Fourier coefficients at the first-order per-
mutation representation (the first-order “marginals”), then transforming to irreducible coefficients.
The Fourier transform of the likelihood at the first-order permutation representation is given by:

[
L̂((n−1,1)

]

i j
= #

{!:!( j)=i}
P(z! = k|!) = #

{!:!( j)=i}
,!−1(!),k.

To compute the i j-term, there are two cases to consider.

1. If i= ! (that is, if Track i is the same as the track that was observed), then the coefficient L̂i j
is proportional to the probability that Identity j is color k.

L̂i j = #
{!:!( j)=i}

, j,k = (n−1)! ·, j,k. (24)

2. If, on the other hand, i #= ! (Track i is not the observed track)), then the coefficient L̂i j is
proportional to the sum over

L̂i j = #
{!:!( j)=i}

,!−1(!),k = #
m#= j

#
{!:!( j)=i and !(m)=!}

,!−1(!),k = #
m#= j

(n−2)! ·,m,k. (25)

Example 12 We will compute the first-order marginals of the likelihood function on S3 which arises
from observing a "Red blob at Track 1". Plugging the values from the “Red” column of the , matrix
(Equation 23) into Equation 24 and 25 yields the following matrix of first-order coefficients (at the
((n−1,1) permutation representation):

[
L̂(n−1,1)

]
i j =





Track 1 Track 2 Track 3
Alice 1/4 1/2 3/4
Bob 1/4 1/2 3/4
Cathy 1 1/2 0



 .

The corresponding coefficients at the irreducible representations are:

L̂(3) = 1.5, L̂(2,1) =

[
0 0

−
√
3/4 −3/4

]
, L̂(1,1,1) = 0.

8.2.2 UNORDERED SUBSET (BLUETOOTH) OBSERVATION

We sometimes receive measurements in the form of unordered lists. For example, the bluetooth
model is the likelihood function that arises if tracks {1, . . . ,k} are within range of a bluetooth de-
tector and we receive a measurement that identities {1, . . . ,k} are in range. In sports, we might
observe that the first k tracks belong to the red team and that the last n− k tracks belong to the blue
team. And finally, in approval voting, one specifies a subset of approved candidates rather than, for
example, picking a single favorite.

We consider two options for bluetooth-type situations. In the first option, we allow for some
error-tolerance by setting the likelihood to be proportional to the number of tracks that are correctly
returned in the measurement:

Pbluetooth(z{t1,...,tk} = {i1, . . . , ik}|!) $ |{t1, . . . , tk}∩!({i1, . . . , ik})|+U(!), (26)
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whereU(!) is a constant function on Sn allowing for noisy observations. Our first bluetooth model
can be expressed using only first order terms (intuitively because each track makes a linear contribu-
tion) and thus P̂bluetooth* is nonzero only at the first two partitions *= (n),(n−1,1). For simplicity,
we consider the Fourier transform of the function: f (!) = |!({1, . . . ,k})∩ {1, . . . ,k}|. The first-
order ‘marginals’ of f are covered in the following four cases:

• ( j ≤ k and i≤ k): Li j = #!:!( j)=i f (!) = (k−1)2(n−2)!+(n−1)!
• ( j ≤ k and i> k): Li j = #!:!( j)=i f (!) = k(k−1)(n−2)!
• ( j > k and i≤ k): Li j = #!:!( j)=i f (!) = k(k−1)(n−2)!
• ( j > k and i> k): Li j = #!:!( j)=i f (!) = k2(n−2)!

We discuss the second bluetooth-type model after discussing coset based constructions.

8.3 Coset-Based Construction

Most of the time, realistic models are not supported on only a handful of permutations. The ap-
proach we take now is to use a collection of ‘primitive’ functions to form more interesting models
via scale/shift/convolution operations. In particular, we will make use of indicator functions of sub-
sets of the form SX ,Y ⊂ Sn, where X = (x1, . . . ,xk) and Y = (y1, . . . ,yk) are ordered k-tuples with
{x1, . . . ,xk}⊂ {1, . . . ,n}, {y1, . . . ,yk}⊂ {1, . . . ,n} and no repetitions are allowed. SX ,Y denotes the
set of elements in Sn which are constrained to map each xi to yi:

SX ,Y ≡ {! ∈ Sn : !(xi) = yi, for each i=1,. . . ,k}. (27)

The SX ,Y can also be thought of as two-sided cosets associated with subgroups of the form Sn−k⊂ Sn.
For example, if X = (1,2) and Y = (3,4) with n= 4, then SX ,Y is simply the set of all permutations
that map 1 &→ 3 and 2 &→ 4. Thus, SX ,Y = {(1,3)(2,4),(1,3,2,4)}. Since |X |= |Y |= k, then |SX ,Y |=
(n− k)!, and in the special case that X = Y , we have that SX ,Y is in fact a subgroup isomorphic to
Sn−k.

As we show in Appendix C, the Fourier transform of the indicator 1SX ,Y takes a particularly
simple (and low rank) form and can be efficiently computed. The method described in Appendix C is
based on the FFT and exploits the same structure of the symmetric group that is used by Kondor et al.
(2007). It is thus possible to understand why some observation models afford faster conditioning
updates based on sparsity in Fourier domain.

The functions 1SX ,Y can be viewed as a set of function primitives for constructing more compli-
cated models via shift/scale/convolution operations in the Fourier domain. We now discuss the re-
maining models in Table 7 with the assumption that there exists some blackbox function which con-
structs the Fourier coefficients of the indicator function of (two-sided) cosets of the form SX ,Y ⊂ Sn
(see Algorithm 5 in Appendix D).

8.3.1 k-SUBSET MIXING

It is not always appropriate to mix only two people at once (as in Equation 22) and so we would
like to formulate a mixing model which occurs over a subset of tracks, X = {t1, . . . , tk}⊂ {1, . . . ,n}.
One way to ‘mimic’ the desired effect is to repeatedly draw pairs (i, j) from {t1, . . . , tk} and to
convolve against the pairwise mixing models Qi j. A better alternative is to directly construct the
Fourier coefficient matrices for the k-subset mixing model, in which we allow the tracks in X to be
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randomly permuted with uniform probability. In the following, X̄ denotes some fixed ordering of
the complement of X . For example, if n= 5, with X = {1,2,4}, then X̄ is either (3,5) or (5,3). The
k-subset mixing model is defined as:

QX()) =

{ 1
k! if ) ∈ SX̄ ,X̄ ⊂ Sn
0 otherwise . (28)

Note that SX̄ ,X̄ is isomorphic to Sk and that the pairwise mixing model is the special case where k= 2.
Intuitively, Equation 28 fixes all of the tracks outside of X and says that with uniform probability, the
set of tracks in X experience some permutation of their respective identities. Equation 28 can also
be written as QX()) = 1

k!1SX̄ ,X̄ ()), and thus the mixing model is simply a multiple of the indicator
function of SX̄ ,X̄ .

8.3.2 SINGLE/MULTI-TRACK OBSERVATION

In the single track observation model (used in Shin et al. 2005, Schumitsch et al. 2005 and Kondor
et al. 2007, for example), we acquire an identity measurement z j at track j. In the simplest version
of the model, we write the likelihood function as:

P(zi = j|!) =

{
) if !( j) = i
1−)
n−1 otherwise , (29)

where j ranges over all n possible identities. P(zi|!) can also be written as a weighted sum of a
uniform distributionU , and an indicator function:

P(zi = j|!) =

(
)n−1
n−1

)
1S j,i(!)+

(
1−)
n−1

)
U(!).

Equation 29 is useful when we receive measurements directly as single identities (“Alice is
at Track 1 with such and such probability”). It is, however, far more common to receive lower
level measurements that depend only upon a single identity, which we formalize with the following
conditional independence assumption:

P(zi|!) = P(zi|!( j)).

For example, as in Equation 23, we might have a color histogram over each individual (“Alice loves
to wear green”) and observe a single color per timestep. Or we might acquire observations in the
form of color histograms and choose to model a distribution over all possible color histograms. If
for each identity j, P(zi|!( j) = i) = , j, then we can write the likelihood function as a weighted
linear combination of n indicators,

L(!) = P(zi|!) =#
j
, j1S j,i(!),

and by the linearity of the Fourier transform, we can obtain the Fourier coefficients of L:

L̂* =#
j
, j

[
1̂S j,i

]

*
.
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Finally, the single-track observations can be generalized to handle joint observations of multiple
tracks at once with a higher-order model:

P(z(t1,...,tk) = (i1, . . . , ik)|!) =

{
) if !(i!) = t! for each ! ∈ {1, . . . ,k}
1−)
n!

(n−k)!−1
otherwise . (30)

Unsurprisingly, while the Fourier coefficients of Equation 29 can be expressed exactly using first-
order terms, the Fourier coefficients of the multi-track observation model, Equation 30, requires
kth-order terms. It is important to note that joint multi-track observations are distinct from making
k independent identity observations at the same timestep—we can handle the latter case by calling
the Kronecker conditioning algorithm with a single-track observation model k times. Depending
upon the specific sensor setup, one model may be more natural than the other.

8.3.3 BLUETOOTH OBSERVATION

In contrast with the first bluetooth model (Equation 26), our second bluetooth-type model handles a
higher-order form of measurement. Like the single/multi-track observation models, it says that with
some probability we receive the correct unordered list, and with some probability, we receive some
other list drawn uniformly at random:

Pbluetooth2(z{t1,...,tk} = {i1, . . . , ik}|!) =

{
) if !({i1, . . . , ik}) = {t1, . . . , tk}
1−)
(nk)−1

otherwise .

As with the single/multi-track observation models, the bluetooth model can be written as a weighted
linear combination of a uniform distribution and the indicator function of an Sk×Sn−k-coset, where:

Sk×Sn−k = {! ∈ Sn : !({1, . . . ,k}) = {1, . . . ,k}}.

To compute the Fourier transform of Pbluetooth2, it is enough to note that the indicator function of
Sk×Sn−k can be thought of as a convolution of indicator functions of Sk and Sn−k in a certain sense.
More precisely.

Proposition 14 Let X = (1, . . . ,k) and Y = (k+1, . . . ,n). Then: 1Sk×Sn−k = 1SX ,X ∗1SY,Y .

Invoking the convolution theorem (Proposition 8) shows that the Fourier coefficient matrices of
1Sk×Sn−k can be constructed by first computing the Fourier coefficients of SX ,X and SY,Y , and point-
wise multiplying corresponding coefficient matrices. We have:

[
1̂Sk×Sn−k

]

*
=

[
1̂SX ,X

]

*
·
[
1̂SY,Y

]

*
, for all partitions *.

An interesting fact about the bluetooth model is that its Fourier terms are zero at all partitions
with more than two rows.

Proposition 15 Without loss of generality, assume that k ≤ n
2 . The Fourier transform of the blue-

tooth model, P̂bluetooth2* is nonzero only at partitions of the form (n− s,s) where s≤ k.
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8.3.4 PAIRWISE RANKING OBSERVATION

Finally in the pairwise ranking model, we consider observations of the form “object j is ranked
higher than object i” which can appear in various forms of voting and preference elicitation (“I like
candidate x better than candidate y”) or webpage/advertisement ranking. Here we think of ! as a
mapping from objects to ranks. Our pairwise ranking model simply assigns higher probability to
observations which agree with the ordering of i and j in !.

Prank(zk!|!) =

{
) if !(k) < !(!)

1−) otherwise .

When k = n−1, ! = n and )= 1, we have:

Prank(zk!|!) =

{
1 if !(n−1) < !(n)
0 otherwise

=#
i< j

1S(n−1,n),(i, j)(!).

Perhaps unsurprisingly, pairwise ranking models can be sufficiently captured by first-order and
second-order (ordered) Fourier coefficients12.

Proposition 16 The Fourier coefficients of the pairwise ranking model, P̂rank* , are nonzero only at
three partitions: *= (n), (n−1,1), and (n−2,1,1).

9. Related Work

Rankings and permutations have recently become an active area of research in machine learning due
to their importance in information retrieval and preference elicitation. Rather than considering full
distributions over permutations, many approaches, like RankSVM (Joachims, 2002) and RankBoost
(Freund et al., 2003), have instead focused on learning a single ‘optimal’ ranking with respect to
some objective function.

There are also several authors (from both the statistics and machine learning communities) who
have studied distributions over permutations/rankings (Mallows, 1957; Critchlow, 1985; Fligner and
Verducci, 1986; Meila et al., 2007; Taylor et al., 2008; Lebanon andMao, 2008). Taylor et al. (2008)
consider distributions over Sn which are induced by the rankings of n independent draws from n in-
dividually centered Gaussian distributions with equal variance. They compactly summarize their
distributions using an O(n2) matrix which is conceptually similar to our first-order summaries and
apply their techniques to ranking web documents. Most other previous approaches at directly mod-
eling distributions on Sn, however, have relied on distance based exponential family models. For
example, the Mallows model (Mallows, 1957) defines a Gaussian-like distribution over permuta-
tions as:

P(!;c,!0) $ exp(−cd(!,!0)) ,

where the function d(!,!0) is the Kendall’s tau distancewhich counts the number of adjacent swaps
that are required to bring !−1 to !−10 .

12. Additionally, P̂rank(n−1,1) and P̂
rank
(n−2,1,1) are known to be rank 1 matrices, a fact which can potentially be exploited for

faster conditioning updates in practice.
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Distance based exponential family models have the advantage that they can compactly repre-
sent distributions for very large n, and admit conjugate prior distributions (Meila et al., 2007). Es-
timating parameters has been a popular problem for statisticians—recovering the optimal !0 from
data is known as the consensus ranking or rank aggregation problem and is known to be NP-hard
(Bartholdi et al., 1989). Many authors have focused on approximation algorithms instead.

Like Gaussian distributions, distance based models also tend to lack flexibility, and so Lebanon
and Mao (2008) propose a nonparametric model of ranked (and partially ranked) data based on
placing weighted Mallows kernels on top of training examples, which, as they show, can realize
a far richer class of distributions, and can be learned efficiently. However, they do not address
the inference problem, and it is not clear if one can efficiently perform inference operations like
marginalization and conditioning in such models.

As we have shown in this paper, Fourier based methods (Diaconis, 1988; Kondor et al., 2007;
Huang et al., 2007) offer a principled alternative method for compactly representing distributions
over permutations and performing efficient probabilistic inference operations. Our work draws from
two strands of research—one from the data association/identity management literature, and one
from a more theoretical area on Fourier analysis in statistics. In the following, we review several of
the works which have led up to our current Fourier based approach.

9.1 Previous Work in Identity Management

The identity management problem has been addressed in a number of previous works, and is closely
related to, but not identical with, the classical data association problem of maintaining correspon-
dences between tracks and observations. Both problems need to address the fundamental combina-
torial challenge that there is a factorial or exponential number of associations to maintain between
tracks and identities, or between tracks and observations respectively. A vast literature already ex-
ists on the the data association problem, beginning with the multiple hypothesis testing approach
(MHT) of Reid (1979). The MHT is a ‘deferred logic’ method in which past observations are ex-
ploited in forming new hypotheses when a new set of observations arises. Since the number of
hypotheses can grow exponentially over time, various heuristics have been proposed to help cope
with the complexity blowup. For example, one can choose to maintain only the k best hypothe-
ses for some parameter k (Cox and Hingorani, 1994), using Murty’s algorithm (Murty, 1968). But
for such an approximation to be effective, k may still need to scale exponentially in the number
of objects. A slightly more recent filtering approach is the joint probabilistic data association filter
(JPDA) (Bar-Shalom and Fortmann, 1988), which is a suboptimal single-stage approximation of the
optimal Bayesian filter. JPDA makes associations sequentially and is unable to correct erroneous
associations made in the past (Poore, 1995). Even though the JPDA is more efficient than the MHT,
the calculation of the JPDA association probabilities is still a #P-complete problem (Collins and
Uhlmann, 1992), since it effectively must compute matrix permanents. Polynomial approximation
algorithms to the JPDA association probabilities have recently been studied using Markov chain
Monte Carlo (MCMC) methods (Oh et al., 2004; Oh and Sastry, 2005).

The identity management problem was first explicitly introduced in Shin et al. (2003). Identity
management differs from the classical data association problem in that its observation model is
not concerned with the low-level tracking details but instead with high level information about
object identities. Shin et al. (2003) introduced the notion of the belief matrix approximation of
the association probabilities, which collapses a distribution over all possible associations to just
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its first-order marginals. In the case of n tracks and n identities, the belief matrix B is an n×
n doubly-stochastic matrix of non-negative entries bi j, where bi j is the probability that identity i
is associated with track j. As we already saw in Section 4, the belief matrix approximation is
equivalent to maintaining the zeroth- and first-order Fourier coefficients. Thus our current work is
a strict generalization and extension of those previous results.

An alternative representation that has also been considered is an information theoretic ap-
proach (Shin et al., 2005; Schumitsch et al., 2005, 2006) in which the density is parameterized
as:

P(!;2) $ expTr
(
2T · ((n−1,1)(!)

)
.

In our framework, the information form approach can be viewed as a method for maintaining the
Fourier transform of the log probability distribution at only the first two irreducibles. The infor-
mation matrix approach is especially attractive in a distributed sensor network setting, since, if the
columns of the information matrix are distributed to leader nodes tracking the respective targets,
then the observation events become entirely local operations, avoiding the more expensive Kro-
necker conditioning algorithm in our setting. On the other hand, the information matrix coefficients
do not have the same intuitive marginals interpretation afforded in our setting, and moreover, pre-
diction/rollup steps cannot be performed analytically in the information matrix form. As in many
classical data structures problems there are representation trade-off issues: some operations are
less expensive in one representation and some operations in the the other. The best choice in any
particular scenario will depend on the ratio between observation and mixing events.

9.2 Previous Work on Fourier-Based Approximations

The concept of using Fourier transforms to study probability distributions on groups is not new,
with the earliest papers in this area having been published in the 1960s (Grenander, 1963). Will-
sky (1978) was the first to formulate the exact filtering problem in the Fourier domain for finite
and locally compact Lie groups and contributed the first noncommutative Fast Fourier Transform
algorithm (for Metacyclic groups). However, he does not address approximate inference, suggest-
ing instead to always transform to the appropriate domain for which either the prediction/rollup or
conditioning operations can be accomplished using a pointwise product. While providing signifi-
cant improvements in complexity for smaller groups, his approach is still infeasible for our problem
given the factorial order of the Symmetric group.

Diaconis (1988) used the Fourier transform to analyze probability distributions on the Symmet-
ric group in order to study card shuffling and ranking problems. His work laid the ground for much
of the progress made over the last two decades on probabilistic group theory and noncommutative
FFT algorithms (Clausen and Baum, 1993; Rockmore, 2000).

Kondor et al. (2007) was the first to show that the data association problem could be efficiently
approximated using FFT factorizations. In contrast to our framework where every model is assumed
to be have been specified in the Fourier domain, they work with an observation model which can be
written as the indicator function of cosets of subgroups of the form Sk ⊂ Sn.

Conceptually, one might imagine formulating a conditioning algorithm which applies the In-
verse Fast Fourier Transform (IFFT) to the prior distribution, conditions in the primal domain using
pointwise multiplication, then transforms back up to the Fourier domain using the FFT to obtain
posterior Fourier coefficients. While such a procedure would ordinarily be intractable because of
the factorial number of permutations, Kondor et al. (2007) elegantly shows that for certain coset-
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based observation models, it is not necessary to perform the full FFT recursion to do a pointwise
product. They exploit this observation to formulate an efficient conditioning algorithm whose run-
ning time depends on the complexity of the observation model (which can roughly be measured by
the number of irreducibles required to fully specify it).

Our work generalizes the conditioning formulation from Kondor et al. (2007) in the sense that it
can work for any observation model and extends easily to similar filtering problems over any finite
group. In the case that the observation model is specified at sufficiently many irreducibles, our con-
ditioning algorithm (prior to the projection step) returns the same approximate probabilities as the
FFT-based algorithm. For example, we can show that the observation model given in Equation 29
is fully specified by two Fourier components, and that both algorithms have identical output. Addi-
tionally, Kondor et al. (2007) do not address the issue of projecting onto legal distributions, which,
as we show in our experimental results is fundamental in practice.

10. Experimental Results
In this section we present the results of several experiments to validate our algorithm. We evaluate
performance first by measuring the quality of our approximation for problems where the true dis-
tribution is known. Instead of measuring a distance between the true distribution and the inverse
Fourier transform of our approximation, it makes more sense in our setting to measure error only
at the marginals which are maintained by our approximation. In the results reported below, we
measure the L1 error between the true matrix of marginals and the approximation. If nonnegative
marginal probabilities are guaranteed, it also makes sense to measure KL-divergence.

10.1 Simulated Data

We first tested the accuracy of a single Kronecker conditioning step by calling some number of
pairwise mixing events (which can be thought roughly as a measure of entropy), followed by a
single first-order observation. In the y-axis of Figure 7(a), we plot the Kullback-Leibler divergence
between the true first-order marginals and approximate first-order marginals returned by Kronecker
conditioning. We compared the results of maintaining first-order, and second-order (unordered and
ordered) marginals. As shown in Figure 7(a), Kronecker conditioning is more accurate when the
prior is smooth and unsurprisingly, when we allow for higher order Fourier terms. As guaranteed
by Theorem 12, we also see that the first-order terms of the posterior are exact when we maintain
second-order (ordered) marginals.

To understand how our algorithms perform over many timesteps (where errors can propagate to
all Fourier terms), we compared to exact inference on synthetic data sets in which tracks are drawn
at random to be observed or swapped. As a baseline, we show the accuracy of a uniform distribution.
We observe that the Fourier approximation is better when there are either more mixing events (the
fraction of conditioning events is smaller), or when more Fourier coefficients are maintained, as
shown in Figure 7(b). We also see that the Plancherel Projection step is fundamental, especially
when mixing events are rare.

Figures 10(a) and 10(b) show the per-timeslice accuracy of two typical runs of the algorithm.
The fraction of conditioning events is 50% in Figure 10(a), and 70% in Figure 10(b). What we
typically observe is that while the projected and nonprojected accuracies are often quite similar, the
nonprojected marginals can perform significantly worse during certain segments.
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Figure 8: Running times: We compared running times of our polynomial time bandlimited infer-
ence algorithms against an exact algorithm with O(n3n!) time complexity

Finally, we compared running times against an exact inference algorithm which performs pre-
diction/rollup in the Fourier domain and conditioning in the primal domain. While the predic-
tion/rollup step for pairwise mixing models can be implemented in O(n!) time (linear in the size
of the symmetric group), we show running times for the more general mixing models. Instead of
the naive O((n!)2) complexity, its running time is a more efficient O(n3n!) due to the Fast Fourier
Transform (Clausen and Baum, 1993). It is clear that our algorithm scales gracefully compared
to the exact solution (Figure 10.1), and in fact, we could not run exact inference for n > 8 due to
memory constraints. In Figure 10.1, we show empirically that the Clebsch-Gordan coefficients are
indeed sparse, supporting a faster conjectured runtime.
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ducibles. For each fixed tensor product pair, we see that the number of nonzero entries
scales sublinearly with respect to the total number of matrix elements.

10.2 Real Camera Network

We also evaluated our algorithm on data taken from a real network of eight cameras (Fig. 11(a)). In
the data, there are n= 11 people walking around a room in fairly close proximity. To handle the fact
that people can freely leave and enter the room, we maintain a list of the tracks which are external
to the room. Each time a new track leaves the room, it is added to the list and a mixing event is
called to allow for m2 pairwise swaps amongst the m external tracks.

The number of mixing events is approximately the same as the number of observations. For
each observation, the network returns a color histogram of the blob associated with one track. The
task after conditioning on each observation is to predict identities for all tracks which are inside
the room, and the evaluation metric is the fraction of accurate predictions. We compared against
a baseline approach of predicting the identity of a track based on the most recently observed his-
togram at that track. This approach is expected to be accurate when there are many observations and
discriminative appearance models, neither of which our problem afforded. As Figure 11(b) shows,
both the baseline and first order model(without projection) fared poorly, while the projection step
dramatically boosted the prediction accuracy for this problem. To illustrate the difficulty of predict-
ing based on appearance alone, the rightmost bar reflects the performance of an omniscient tracker
who knows the result of each mixing event and is therefore left only with the task of distinguishing
between appearances. We conjecture that the performance of our algorithm (with projection) is near
optimal.

1045



HUANG, GUESTRIN AND GUIBAS

10 20 30 40 50 60 70 80 90 1000

0.05

0.1

0.15

0.2

0.25
Per timeslice accuracy

Timeslice

L 1 e
rro

r a
t 1

st
 o

rd
er

 M
ar

gi
na

ls

 

 

(n−2,1,1), w/o Projection
(n−2,1,1), w/Projection
Uniform distribution

(a) n= 6 with 50% mixing events and 50% observations

10 20 30 40 50 60 70 80 90 1000

0.05

0.1

0.15

0.2

0.25
Per timeslice accuracy

Timeslice

L 1 e
rro

r a
t 1

st
 o

rd
er

 M
ar

gi
na

ls

 

 

(n−2,1,1), w/o Projection
(n−2,1,1), w/Projection
Uniform distribution

(b) n= 6 with 30% mixing events and 70% observations

Figure 10: Accuracy as a function of time on two typical runs.

11. Future Research

There remain several possible extensions to the current work stemming from both practical and
theoretical considerations. We list a few open questions and extensions in the following.

11.1 Adaptive Filtering

While our current algorithms easily beat exact inference in terms of running time, they are still
limited by a relatively high (though polynomial) time complexity. In practice however, it seems
reasonable to believe that the “difficult” identity management problems typically involve only a
small subset of people at a time. A useful extension of our work would be to devise an adaptive
version of the algorithm which allocates more Fourier coefficients towards the identities which
require higher order reasoning. We believe that this kind of extension would be the appropriate way
to scale our algorithm to handling massive numbers of objects at a time.

11.2 Characterizing the Marginal Polytope

In our paper, we presented a projection of the bandlimited distribution to a certain polytope, which
is exactly the marginal polytope for first-order bandlimited distributions, but strictly an outer bound
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Figure 11: Evaluation on data set from a real camera network. In this experiment, there are n= 11
people walking in a room begin tracked by 8 cameras.

for higher orders. An interesting project would be to generalize the Birkhoff-von Neumann theorem
by exactly characterizing the marginal polytope at higher order marginals. We conjecture that the
marginal polytope for low order marginals can be described with polynomially many constraints.

11.3 Learning in the Fourier Domain

Another interesting problem is whether we can learn bandlimited mixing and observation models
directly in the Fourier domain. Given fully observed permutations !1, . . . ,!m, drawn from a distri-
bution P(!), a naive method for estimating P̂& at low-order & is to simply observe that:

P̂& = E!∼P[&(!)],

and so one can estimate the Fourier transform by simply averaging &(!i) over all !i. However,
since we typically do not observe full permutations in real applications like ranking or identity
management, it would be interesting to estimate Fourier transforms using partially observed data.
In the case of Bayesian learning, it may be possible to apply some of the techniques discussed in
this paper.

11.4 Probabilistic Inference on Other Groups

The Fourier theoretic framework presented in this paper is not specific to the symmetric group -
in fact, the prediction/rollup and conditioning formulations, as well as most of the results from
Appendix D hold over any finite or compact Lie group. As an example, the noncommutative group
of rotation operators in three dimensions, SO(3), appears in settings which model the pose of a
three dimensional object. Elements in SO(3) might be used to represent the pose of a robot arm
in robotics, or the orientation of a mesh in computer graphics; In many settings, it would be useful
to have a compact representation of uncertainty over poses. We believe that there are many other
application domains with algebraic structure where similar probabilistic inference algorithms might
apply, and in particular, that noncommutative settings offer a particularly challenging but exciting
opportunity for machine learning research.
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12. Conclusions

In this paper, we have presented a Fourier theoretic framework for compactly summarizing dis-
tributions over permutations. We showed that common probabilistic inference operations can be
performed completely in the Fourier domain and that, using the low-order terms of the Fourier ex-
pansion of a distribution, one can obtain polynomial time inference algorithms. Fourier theoretic
summaries are attractive because they have tuneable approximation quality, have intuitive interpre-
tations in terms of low-order marginals, and have allowed us to leverage results and insights from
noncommutative Fourier analysis to formulate our algorithms.

The main contributions of our paper include methods for performing general probabilistic in-
ference operations completely in the Fourier domain. In particular, we developed the Kronecker
conditioning algorithm, which conditions a distribution on evidence using Bayes rule while oper-
ating only on Fourier coefficients. While prediction/rollup operations can be written as pointwise
products in the Fourier domain, we showed that conditioning operations can be written, in dual
fashion, as generalized convolutions in the Fourier domain. Our conditioning algorithm is general
in two senses: first, one can use Kronecker conditioning to handle any observation model which
can be written in the Fourier domain, and second, the same algorithm can be applied to condition
distributions over arbitrary finite groups. Due to this generality, we are able to efficiently compute
the Fourier transforms of a wide variety of probabilistic models which may potentially be useful in
different applications.

We presented an analysis of the errors which can accumulate in bandlimited inference and ar-
gued that Fourier based approaches work well when the underlying distributions are diffuse and are
thus well approximated by low-frequency basis functions. During inference, errors in high-order
terms due to bandlimiting can be propagated to lower-order terms and bandlimited conditioning can,
on occasion, result in Fourier coefficients which correspond to no valid distribution. We showed,
however, that the problem can be remedied by projecting to a relaxation of the marginal polytope.

Finally, our evaluation on data from a camera network shows that our methods perform well
when compared to the optimal solution in small problems, or to an omniscient tracker in large
problems. Furthermore, we demonstrated that our projection step is fundamental in obtaining these
high-quality results.

Algebraic methods have recently enjoyed a surge of interest in the machine learning community.
We believe that our unified approach for performing probabilistic inference over permutations, as
well as our gentle exposition of group representation theory and noncommutative Fourier analysis
will significantly lower the barrier of entry for machine learning researchers who are interested
in using or further developing algebraically inspired algorithms which are useful for real-world
problems.
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Appendix A. Groups

This section is intended as a quick glossary for the group theoretic definitions used in the paper.
Groups are a generalization of many of the spaces that we typically work with, such as the real
numbers, integers, vector spaces, and matrices. The definition of a group unifies all of these spaces
under a handful of axioms.

Definition 17 (Group) A group is a set G together with a binary operation · : G×G→ G (called
the group operation) such that the following group axioms hold:

1. (Associativity) The group operation is associative. That is, for any group elements g1,g2,g3 ∈
G, we have:

(g1 ·g2) ·g3 = g1 · (g2 ·g3), for all g1,g2,g3 ∈ G.

2. (Identity) There exists an identity element (denoted by %) such that g · % = % · g = g for any
g ∈ G.

3. (Inverses) For every g ∈G, there exists an inverse element g−1 such that g ·g−1 = g−1 ·g= %.

Definition 18 (Abelian Group) If, for any group elements g1,g2 ∈G, we have g1 ·g2 = g2 ·g1, then
G is called an Abelian or commutative group.

Perhaps the most familiar group is the set of integers, Z, with respect to the addition operation. It is
well known that for any integers a,b,c ∈ Z, a+(b+ c) = (a+ b)+ c. The identity element in the
integers is zero, and every element has an additive inverse (a+(−a) = (−a)+a= 0). Additionally,
the integers are an Abelian group since a+b= b+a for any a,b∈Z. Note that the natural numbers
N = {0,1,2,3, . . .} do not form a group with respect to addition because inverses do not exist.

The main example of a group in this paper, of course, is the symmetric group, the set of per-
mutations of {1, . . . ,n}. The group operation on permutations is function composition, which is
associative, and we discussed inverses and the identity element in Section 3.

Example 13 There are many groups besides the integers and the symmetric group. The following
are several examples.

• The positive real numbers R+ form a group with respect to multiplication. The identity ele-
ment of R+ is the multiplicative identity, 1, and given a real number x, there exists an inverse
element 1x .

• As an example of a finite group, the integers modulo n, Z/nZ, form a group with respect to
addition modulo n.

• The invertible n× n matrices over the reals, GLn(R), form a group with respect to matrix
multiplication. The n× n identity matrix serves as the identity element in GLn(R), and by
assumption, every matrix in GLn(R) is invertible.

The group axioms impose strong structural constraints on G, and one of the ways that structure
is manifested in groups is in the existence of subgroups.
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Definition 19 (Subgroup) If G is a group (with group operation ·), a subset H ⊂ G is called a
subgroup if it is itself a group with respect to the same group operation. H is called a trivial
subgroup if it is either all of G or consists only of a single element.

Example 14 We have the following examples of subgroups.

• The even integers, 2Z, form a subgroup of the integers since the sum of any two even integers
is an even integer, and the inverse (negative) of an even integer is again even. However, the
odd integers do not form a subgroup since the sum of two odd integers is not odd.

• The special orthogonal matrices (orthogonal matrices with determinant +1) form a sub-
group of the group of n× n matrices, GLn(R). This can be seen by using the facts (1), that
(detA)(detB) = det(AB) and (2), that the inverse of any orthogonal matrix is also orthogonal.

Appendix B. Constructing Irreducible Representation Matrices

In this section, we present (without proof) some standard algorithms for constructing the irreducible
representation matrices with respect to the Gel’fand-Tsetlin (GZ) basis (constructed with respect
to the subgroup chain S1 ⊂ S2 ⊂ · · · ⊂ Sn).13 None of the techniques in Appendix B are novel.
For a more elaborate discussion, see, for example, Kondor (2006), Chen (1989) and Vershik and
Okounkov (2006). There are several properties which make the irreducible representation matrices,
written with respect to the GZ basis, fairly useful in practice. They are guaranteed to be, for example,
real-valued and orthogonal. And as we will show, the matrices have certain useful sparsity properties
that can be exploited in implementation.

We begin by introducing a few concepts relating to Young tableaux which are like Young
tabloids with the distinction that the rows are considered as ordered tuples rather than unordered
sets. For example, the following two diagrams are distinct as Young tableaux, but not as Young
tabloids:

1 2 3
4 5 #= 1 3 2

5 4 (as Young tableaux).

A Young Tableau t is said to be standard if its entries are increasing to the right along rows and
down columns. For example, the set of all standard Young Tableaux of shape *= (3,2) is:

{
1 3 5
2 4 , 1 2 5

3 4 , 1 3 4
2 5 , 1 2 4

3 5 , 1 2 3
4 5

}
. (31)

Given a permutation ! ∈ Sn, one can always apply ! to a Young tableau t to get a new Young
tableau, which we denote by !◦ t, by permuting the labels within the tableau. For example,

(1,2)◦ 1 2 3
4 5 = 2 1 3

4 5 .

Note, however, that even if t is a standard tableau, !◦ t is not guaranteed to be standard.
The significance of the standard tableaux is that the set of all standard tableaux of shape * can

be used to index the set of GZ basis vectors for the irreducible representation &*. Since there are

13. The irreducible representation matrices in this Appendix are also sometimes referred to as Young’s Orthogonal Rep-
resentation (YOR).
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five total standard tableaux of shape (3,2), we see, for example, that the irreducible corresponding
to the partition (3,2) is 5-dimensional. There is a simple recursive procedure for enumerating the
set of all standard tableaux of shape *, which we illustrate for *= (3,2).

Example 15 If *= (3,2), there are only two possible boxes that the label 5 can occupy so that both
rows and columns are increasing. They are:

5 , and 5 .

To enumerate the set of all standard tableaux of shape (3,2), we need to fill the empty boxes in
the above partially filled tableaux with the labels {1,2,3,4} so that both rows and columns are
increasing. Enumerating the standard tableaux of shape (3,2) thus reduces to enumerating the set
of standard tableaux of shapes (2,2) and (3,1), respectively. For (2,2), the set of standard tableaux
(which, in implementation would be computed recursively) is:

{
1 3
2 4 , 1 2

3 4

}
,

and for (3,1), the set of standard tableaux is:
{
1 3 4
2 , 1 2 4

3 , 1 2 3
4

}
.

The entire set of standard tableaux of shape (3,2) is therefore:
{
1 3 5
2 4 , 1 2 5

3 4

}
[

{
1 3 4
2 5 , 1 2 4

3 5 , 1 2 3
4 5

}
.

Before explicitly constructing the representation matrices, we must define a signed distance on
Young Tableaux called the axial distance.

Definition 20 The axial distance, dt(i, j), between entries i and j in tableau t, is defined to be:

dt(i, j) ≡ (col(t, j)− col(t, i))− (row(t, j)− row(t, i)),

where row(t, i) denotes the row of label i in tableau t, and col(t, i) denotes the column of label i in
tableau t.

Intuitively, the axial distance between i−1 and i in a standard tableau t is equal to the (signed)
number of steps that are required to travel from i−1 to i, if at each step, one is allowed to traverse a
single box in the tableau in one of the four cardinal directions. For example, the axial distance from
3 to 4 with respect to tableau: t = 1 2 3

4 5 is:

dt(3,4) =
(
col

(
1 2 3
4 5 ,4

)
− col

(
1 2 3
4 5 ,3

))
−
(
row

(
1 2 3
4 5 ,4

)
− row

(
1 2 3
4 5 ,3

))

= (1−3)− (2−1) = −3
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B.1 Constructing Representation Matrices for Adjacent Transpositions

In the following discussion, we will consider a fixed ordering, t1, . . . , td* , on the set of standard
tableaux of shape * and refer to both standard tableaux and columns of &*(!) interchangeably.
Thus t1 refers to first column, t2 refers to the second column and so on. And we will index elements
in &*(!) using pairs of standard tableau, (t j, tk).

To explicitly define the representation matrices with respect to the GZ basis, we will first con-
struct the matrices for adjacent transpositions (i.e., permutations of the form (i−1, i)), and then we
will construct arbitrary representation matrices by combining the matrices for the adjacent transpo-
sitions. The rule for constructing the matrix coefficient [&*(i−1, i)]t j,tk is as follows.

1. Define the (t j, tk) coefficient of &*(i−1, i) to be zero if it is (1), off-diagonal ( j #= k) and (2),
not of the form (t j,(i−1, i)◦ tk).

2. If (t j, tk) is a diagonal element, (i.e., of the form (t j, t j)), define:

[&*(i−1, i)]t j,t j = 1/dt j(i−1, i),

where dt j(i−1, i) is the axial distance which we defined earlier in the section.
3. If (t j, tk) can be written as (t j,(i−1, i)◦ t j) define:

[&*(i−1, i)]t j,!◦t j =
√
1−1/d2t j(i−1, i).

Note that the only time that off-diagonal elements can be nonzero under the above rules is when
(i− i, i)◦t j happens to also be a standard tableau. If we apply an adjacent transposition, != (i−1, i)
to a standard tableau t, then !◦ t is guaranteed to be standard if and only if i−1 and i were neither
in the same row nor column of t. This can be seen by examining each case separately.

1. i−1 and i are in the same row or same column of t. If i and i−1 are in the same row of t,
then i− 1 lies to the left of i. Applying ! ◦ t swaps their positions so that i lies to the left of
i−1, and so we see that !◦ t cannot be standard. For example,

(3,4)◦ 1 2 5
3 4 = 1 2 5

4 3 .

Similarly, we see that if i and i−1 are in the same column of t, !◦ t cannot be standard. For
example,

(3,4)◦ 1 3 5
2 4 = 1 4 5

2 3 .

2. i− 1 and i are neither in the same row nor column of t. In the second case, ! ◦ t can be
seen to be a standard tableau due to the fact that i−1 and i are adjacent indices. For example,

(3,4)◦ 1 2 3
4 5 = 1 2 4

3 5 .

Therefore, to see if (i− 1, i) ◦ t is standard, we need only check to see that i− 1 and i are
in different rows and columns of the tableau t. The pseudocode for constructing the irreducible
representation matrices for adjacent swaps is summarized in Algorithm 3. Note that the matrices
constructed in the algorithm are sparse, with no more than two nonzero elements in any given
column.
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Algorithm 3: Pseudocode for computing irreducible representations matrices with respect to
the Gel’fand-Tsetlin basis at adjacent transpositions.
ADJACENTRHO
input : i ∈ {2, . . . ,n},*
output: &*(i−1, i)
&← 0d*×d* ;1
foreach standard tableaux t of shape * do2

d← (col(t, i)− col(t, i−1))− (row(t, i)− row(t, i−1));3
&(t, t) ← 1/d;4
if i−1 and i are in different rows and columns of t then5

&((i−1, i)◦ (t), t) ←
√
1−1/d2;6

return & ;7

Example 16 We compute the representation matrix of &(3,2) evaluated at the adjacent transposition
! = (i− 1, i) = (3,4). For this example, we will use the enumeration of the standard tableaux of
shape (3,2) given in Equation 31.

For each (3,2)-tableau t j, we identify whether !◦ t j is standard and compute the axial distance
from 3 to 4 on the tableau t j.

j 1 2 3 4 5

t j
1 3 5
2 4

1 2 5
3 4

1 3 4
2 5

1 2 4
3 5

1 2 3
4 5

(3,4)◦ t j
1 4 5
2 3

1 2 5
4 3

1 4 3
2 5

1 2 3
4 5

1 2 4
3 5

(3,4)◦ t j Standard? No No No Yes Yes
axial distance (dt j(3,4)) -1 1 1 3 -3

Putting the results together in a matrix yields:,

&(3,2)(3,4) =





t1 t2 t3 t4 t5
t1 −1
t2 1
t3 1
t4 1

3

√
8
9

t5
√

8
9 − 1

3





,

where all of the empty entries are zero.

B.2 Constructing Representation Matrices for General Permutations

To construct representation matrices for general permutations, it is enough to observe that all per-
mutations can be factored into a sequence of adjacent swaps. For example, the permutation (1,2,5)
can be factored into:

(1,2,5) = (4,5)(3,4)(1,2)(2,3)(3,4)(4,5),
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Algorithm 4: Pseudocode for computing irreducible representation matrices for arbitrary per-
mutations.
GETRHO
input : ! ∈ Sn,*
output: &*(!) (a d*×d* matrix)
//Use Bubblesort to factor ! into a product of transpositions1
k← 0 ;2
f actors← /0;3
for i= 1,2, . . . ,n do4
for j = n,n−1, . . . , i+1 do5
if !( j) < !( j−1) then6

Swap(!( j−1),!( j)) ;7
k← k+1 ;8
f actors(k) ← j ;9

//Construct representation matrix using adjacent transpositions10
&*(!) ← Id*×d* ;11
m← length( f actors);12
for j = 1, . . . ,m do13

&*(!) ← GETADJACENTRHO ( f actors( j),*) ·&*(!) ;14

and hence, for any partition *,

&*(1,2,5) = &*(4,5) ·&*(3,4) ·&*(1,2) ·&*(2,3) ·&*(3,4) ·&*(4,5),

since &* is a group representation. Algorithmically, factoring a permutation into adjacent swaps
looks very similar to the Bubblesort algorithm, and we show the pseudocode in Algorithm 4.

Appendix C. Fourier Transforming the Indicator Function 1SX ,Y

In this section, we derive the Fourier transform of the indicator function of the two-sided coset
SX ,Y ⊂ Sn (see Equation 27). To do so, we will need to understand the Gel’fand-Tsetlin basis
at a slightly deeper level. For example, the fact that the basis elements are indexed by standard
tableaux has not been motivated and may seem unintuitive. We begin this section by motivating
the standard tableaux from the perspective of the branching rule, a standard fact taken from the
representation theory of the symmetric group. We then show how the branching rule leads to a
method for computing the desired indicator functions.

C.1 Standard Tableaux and the Gel’fand-Tsetlin Basis

It is straightforward to see that any irreducible representation &* of Sn, can also be seen as a rep-
resentation of Sn−1 when restricted to permutations in Sn−1 (the set of elements which fix n). We
will denote the restricted representation by &* ↓SnSn−1. However, the irreducibility property may not
be preserved by restriction, which is to say that, as a representation of Sn−1, &* is not necessarily
irreducible and might decompose as Equation 2 would dictate. Thus, for all ! ∈ Sn−1 (or more
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precisely, ! ∈ Sn such that !(n) = n), there existsC* and multiplicities z*µ such that:

C−1
* ·&*(!) ·C* =

M

µ

z*µ
M

j=1
&µ(!),

where µ ranges over the partitions of n−1.
The branching rule allows us to state the decomposition even more precisely. Given any parti-

tion * of n, let *− index over the set of partitions of n−1 whose Ferrers diagrams differ from * in
a single box.

Theorem 21 (Branching Rule, see Vershik and Okounkov (2006) for a proof) For each irreducible
representation &* of Sn, there exists a matrix C* such that:

C−1
* ·&*(!) ·C* =

M

*−
&*−(!)

holds for any ! ∈ Sn−1.

Example 17 If * = (3,2), then its corresponding Ferrers diagram is: , and the Ferrers dia-
grams corresponding to partitions of 4 which differ from * in a single box are:

, .

Thus, *− indexes over the set {(2,2),(3,1)}. The branching rule states that given an irreducible
matrix representation &(3,2) of S5, then there is a matrix C(3,2) such that, for any permutation ! ∈ S5
such that !(5) = 5,

C−1
* ·&(3,2)(!) ·C* =

[
&(2,2)(!) 0

0 &(3,1)(!)

]
.

The Gel’fand-Tsetlin basis is constructed such that the branching rule holds with all C* = I.
Thus the irreducible representation matrices constructed with respect to the GZ basis have the prop-
erty that the equation:

&*(!) =
M

*−
&*−(!)

holds identically for all ! ∈ Sn−1. We now can show how the branching rule naturally leads to
indexing the basis elements by standard tableaux. First observe that the branching rule allows us to
associate each column of the irreducible &* with some partition of n−1.

If we recursively apply the branching rule again (thus restricting to Sn−2), we see that the fol-
lowing decomposition holds:

&*(!) =
M

*−

[
M

*−−

&*−−(!)

]
,

where *−− indexes over partitions which differ from *− by a single box. Thus each column can
be associated with a partition of n− 1 and a partition of n− 2. Taking this logic even further, we
can restrict to Sn−3, Sn−4, and so on until we can restrict no further, associating each column with a
sequence of partitions14 µ1 8 1,µ2 8 2 . . . ,µn 8 n, where each partition µi can be obtained by adding

14. Here we use the * 8 n notation to denote the relation that * is a partition of n. For example, (3,2,1) 8 6.
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a single box to the Ferrers diagram of µi−1, and µn = *. We will refer to such a sequence as a
branching sequence. Since the branching rule guarantees multiplicity-free decompositions (that is,
z*µ = 1 for all pairs (*,µ)), it turns out that each column of &* is uniquely specified by a branching
sequence.

Example 18 A possible branching sequence is:

→ → → → ,

or written as partitions, [(1) → (2) → (2,1) → (3,1) → (3,2)].

The set of all possible branching sequences ending in * can be visualized using a branching tree
(shown for * = (3,2) in Figure 12(a)), where each branching sequence is a path between the root
and some leaf node. We will denote the branching tree corresponding to the partition * by T *

and the set of nodes at the rth level of T * by T *
r (where the root node forms the zeroth level by

convention). We can rephrase the branching rule in terms of the branching tree.

Proposition 22 Let &* be an irreducible matrix representation of Sn (constructed with respect to
the Gel’fand-Tsetlin basis). For any ! ∈ Sk ⊂ Sn, &*(!) decomposes as:

&*(!) =
M

µ∈T *
n−k

&µ(!).

Example 19 As an example, consider applying Proposition 22 to &(3,2) with k = 3. The (n− k)th
(second) level of the branching tree for *= (3,2), T (3,2)

2 consists of two copies of the partition (2,1)
and a single copy of the partition (3). Thus for any element ! ∈ S5 which fixes 4 and 5 (!(4) = 4,
!(5) = 5), we have:

&(3,2)(!) =




&(2,1)(!)

&(2,1)(!)
&(3)(!)



 .

As a final remark, observe that branching sequences can be compactly represented as standard
tableaux, where the number in each box indicates the point in the sequence at which the box was
added. For example, the following standard tableau and sequence of partitions are equivalent:

1 2 4
3 5 ←→ [(1) → (2) → (2,1) → (3,1) → (3,2)] .

To summarize, the GZ basis (adapted to the subgroup chain S1 ⊂ · · · ⊂ Sn) is defined so that the
branching rule holds as a matrix identity (with no need of a change of basis matrix), and furthermore,
each basis vector of the representation space for &* can be associated with a branching sequence, or
equivalently, a standard tableau.

C.2 Fourier Transforming 1SX ,Y

We are now in a position to compute the Fourier transform of indicators of the form 1SX ,Y . First, as
a corollary of the branching rule, we see that we can decompose the Fourier transform of functions
that are supported on Sn−1 ⊂ Sn.
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(a) T (3,2) (b) T (3,2)
3

Figure 12: (a) The branching tree for *= (3,2). (b) The 3rd level of T (3,2) (outlined) is denoted by
T

(3,2)
3 and consists of two copies of the partition (1,1) and three copies of the partition

(2).

Corollary 23 If f : Sn→R is supported on the subgroup Sn−1, then for each partition *, the Fourier
transform of f (with respect to the Gel’fand-Tsetlin basis adapted S1 ⊂ S2 ⊂ · · ·⊂ Sn) decomposes
into a direct sum of Fourier transforms on Sn−1. Specifically, we have:

f̂* =
M

*−

[
f̂ ↓nn−1

]
*− ,

where f ↓nn−1 is defined to be the restriction of f to Sn−1.

Consider the Fourier transform of the indicator function of Sk ⊂ Sn:

1Sk(!) =

{
1 if !( j) = j for j ∈ {k+1, . . . ,n}
0 otherwise .

We now apply the branching rule n− k times to the indicator function 1Sk . Since 1Sk is supported
on Sk ⊂ Sn, the Fourier transform of 1Sk at the irreducible &* can be written as a direct sum of
Fourier coefficient matrices at the irreducibles which appear in the n− kth level of the branching
tree corresponding to *. [

1̂Sk
]

*
=

M

µ∈T *
n−k

[
1̂Sk ↓

n
k

]

µ

Furthermore, since the restriction of 1Sk to the subgroup Sk is a constant function, we see that all of
the nontrivial irreducible summands are zero (since the Fourier transform of a constant function is
zero at all nontrivial terms) and that the trivial terms are exactly k!. Because the trivial representation
is one-dimensional, only a subset of the diagonal elements of

[
1̂Sk

]

*
can be nonzero.
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Algorithm 5: Pseudocode for computing the Fourier transform of the indicator function of
Sk ⊂ Sn at the partition *.
Sk-INDICATOR
input : k,n,* (a partition of n)
output:

[
1̂Sk

]

*[
1̂Sk

]

*
← 0d*×d* ;1

foreach standard tableaux t of shape * do2
if t ↓nk= 1 2 3 · · · k then3 [

1̂Sk
]

*
(t, t) ← k!;4

Algorithmically we can construct the Fourier transform of 1Sk at * by enumerating all of the
branching sequences for * and setting the ( j, j) diagonal element of

[
1̂Sk

]

*
to be k! if the corre-

sponding jth branching sequence contains the partition (k). Alternatively, we can state the proce-
dure in terms of standard tableaux. First, we define a restriction operation on a standard tableau
t.

Definition 24 Given a standard tableau t with n boxes and a positive integer k < n, we define the
restriction of t to Sk (denoted by t ↓nk) to be the standard tableau t after removing boxes containing
labels k+1, . . . , n.

To construct the Fourier transform of 1Sk at *, we iterate through the standard tableaux of shape *,
and set the ( j, j) diagonal element of

[
1̂Sk

]

*
to be k! if the restriction of the jth tableau to Sk, t j ↓nk ,

takes the form 1 2 3 · · · k . See Algorithm 5.

Example 20 We compute
[
1̂S2

]

(3,2)
as an example. The branching sequences for *= (3,2) are:

1 3 5
2 4 ←→ [(1) → (1,1) → (2,1) → (2,2) → (3,2)],

1 2 5
3 4 ←→ [(1) → (2) → (2,1) → (2,2) → (3,2)],

1 3 4
2 5 ←→ [(1) → (1,1) → (2,1) → (3,1) → (3,2)],

1 2 4
3 5 ←→ [(1) → (2) → (2,1) → (3,1) → (3,2)],

1 2 3
4 5 ←→ [(1) → (2) → (3) → (3,1) → (3,2)].

Since there are only three sequences which contain the partition (2), only those three basis
elements have nonzero entries. And finally, noting that the appropriate normalization constant here
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is simply |S2| = 2!= 2, we see that:

[
1̂S2

]

(3,2)
=





1 3 5
2 4

1 2 5
3 4

1 3 4
2 5

1 2 4
3 5

1 2 3
4 5

1 3 5
2 4 0 0 0 0 0

1 2 5
3 4 0 2 0 0 0

1 3 4
2 5 0 0 0 0 0

1 2 4
3 5 0 0 0 2 0

1 2 3
4 5 0 0 0 0 2





.

Our discussion has been focused on the indicator function 1Sk , but computing 1SX ,Y with |X |= |Y |=
n−k can be accomplished by first constructing the Fourier coefficient matrices for 1Sk , then relabel-
ing the tracks and identities using a change of basis. More precisely, suppose that, to achieve this
relabeling, we must permute the X (identities) using a permutation )1 and the Y (tracks) using )2.
The Shift Theorem (see Diaconis 1988) can be applied to reorder the Fourier coefficients according
to these new labels.

Proposition 25 (Shift Theorem) Given f : Sn → R, define f ′ : Sn → R by f ′(!) = f ()1!)2) for
some fixed )1,)2 ∈ Sn. The Fourier transforms of f and f ′ are related as: f̂ ′* = &*()1) · f̂* ·&*()2).

We conclude with a comment on sparsity. It is clear from Algorithm 5 that the coefficient
matrices of

[
1̂SX ,Y

]

*
are all, up to an appropriate relabeling of identities and tracks, diagonal matrices

with at most O(d*) nonzero entries. In fact, we can sometimes show that a given model has O(1)
nonzero entries.

Consider, for example, the indicator function 1Sn−1 , corresponding to observations of the form
(“Identity j is at track i”), which is nonzero only at the first two partitions, (n), and (n−1,1). The
zeroth-order term is,

[
1̂Sn−1

]

(n)
= (n−1)!. The first-order Fourier coefficient matrix,

[
1̂Sn−1

]

(n−1,1)
,

is a matrix of all zeroes except for a single element on the diagonal,
[
1̂Sn−1

]

(n−1,1)
(t, t), where

t = 1 2 3 · · ·
n , which takes on the value (n−1)!.

Appendix D. Decomposing the Tensor Product Representation

We now turn to the Tensor Product Decomposition problem, which is that of finding the irreducible
components of the typically reducible tensor product representation. If &* and &µ are irreducible
representations of Sn, then there exists an intertwining operatorC*µ such that:

C*µ−1 · (&*⊗&µ(!)) ·C*µ =
M

/

z*µ/
M

!=1
&/(!). (32)
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In this section, we will present a set of numerical methods for computing the Clebsch-Gordan series
(z*µ/) and Clebsch-Gordan coefficients (C*µ) for a pair of irreducible representations &*⊗&µ. We
begin by discussing two methods for computing the Clebsch-Gordan series. In the second section,
we provide a general algorithm for computing the intertwining operators which relate two equivalent
representations and discuss how it can be applied to computing the Clebsch-Gordan coefficients
(Equation 32) and the matrices which relate marginal probabilities to irreducible Fourier coefficients
(Equation 6). The results of Appendix D.1 are specific to the symmetric group, while the results of
Appendix D.2 can be applied to arbitrary finite groups.

D.1 Computing the Clebsch-Gordan Series

We begin with a simple, well-known algorithm based on group characters for computing the Clebsch-
Gordan series that turns out to be computationally intractable, but yields several illuminating theo-
retical results. See Serre (1977) for proofs of the theoretical results cited in this section.

One of the main results of representation theory was the discovery that there exists a relatively
compact way of encoding any representation up to equivalence with a vector which we call the
character of the representation. If & is a representation of a group G, then the character of the
representation &, is defined simply to be the trace of the representation at each element ! ∈ G:

4&(!) = Tr(&(!)) .

The reason characters have been so extensively studied is that they uniquely characterize a repre-
sentation up to equivalence in the sense that two characters 4&1 and 4&2 are equal if and only if &1
and &2 are equivalent as representations. Even more surprising is that the space of possible group
characters is orthogonally spanned by the characters of the irreducible representations. To make this
precise, we first define an inner product on functions from G.

Definition 26 Let 5,6 be two real-valued functions on G. The inner product of 5 and 6 is defined
to be:

〈5,6〉 ≡
1
|G| #!∈G

5(!)6(!)

With respect to the above inner product, we have the following important result which allows us to
test a given representation for irreducibility, and to test two irreducibles for equivalence.

Proposition 27 Let 4&1 and 4&2 be characters corresponding to irreducible representations. Then

〈4&1 ,4&2〉 =

{
1 if &1 ≡ &2
0 otherwise .

Proposition 27 shows that the irreducible characters form an orthonormal set of functions. The
next proposition says that the irreducible characters span the space of all possible characters.

Proposition 28 Suppose & is any representation of G and which decomposes into irreducibles as:

&≡
M

*

z*
M

!=1
&*,

where * indexes over all irreducibles of G. Then:
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1. The character of & is a linear combination of irreducible characters (4& = #* z*4&*),
2. and the multiplicity of each irreducible, z*, can be recovered using 〈4&,4&*〉 = z*.

A simple way to decompose any group representation &, is given by Proposition 28, which
says that we can take inner products of 4& against the basis of irreducible characters to obtain the
irreducible multiplicities z*. To treat the special case of finding the Clebsch-Gordan series, one
observes that the character of the tensor product is simply the pointwise product of the characters of
each tensor product factor.

Theorem 29 Let &* and &µ be irreducible representations with characters 4*,4µ respectively. Let
z*µ/ be the number of copies of &/ in &*⊗&µ (hence, one term of the Clebsch-Gordan series). Then:

1. The character of the tensor product representation is given by:

4&*⊗&µ = 4* ·4µ =#
/
z*µ/4/.

2. The terms of the Clebsch-Gordan series can be computed using:

z*µ/ =
1
|G| #g∈G

4*(g) ·4µ(g) ·4/(g),

and satisfy the following symmetry:

z*µ/ = z*/µ = zµ*/ = zµ/* = z/*µ = z/µ*. (33)

Dot products for characters on the symmetric group can be done in O(#(n)) time where #(n) is the
number of partitions of the number n, instead of the naive O(n!) time. In practice however, #(n)
also grows too quickly for the character method to be tractable.

D.1.1 MURNAGHAN’S FORMULAS

A theorem by Murnaghan (1938) gives us a ‘bound’ on which representations can appear in the
tensor product decomposition on Sn.

Theorem 30 Let &1,&2 be the irreducibles corresponding to the partition (n− p,*2, . . .) and (n−
q,µ2, . . .) respectively. Then the product &1⊗&2 does not contain any irreducibles corresponding
to a partition whose first term is less than n− p−q.

In view of the connection between the Clebsch-Gordan series and convolution of Fourier coeffi-
cients, Theorem 30 is analogous to the fact that for functions over the reals, the convolution of two
compactly supported functions is also compactly supported.

We can use Theorem 30 to show that Kronecker conditioning is exact at certain irreducibles.
Proof [of Theorem 12] Let 0 denote the set of irreducibles at which our algorithm maintains Fourier
coefficients. Since the errors in the prior come from setting coefficients outside of 0 to be zero, we
see that Kronecker conditioning returns an approximate posterior which is exact at the irreducibles
in

0EXACT = {&/ : z*µ/ = 0, where * /∈ 0 and µ" (n−q,µ2, . . .)}.
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Combining Theorem 30 with Equation 33: if z*µ/ > 0, with * = (n− p,*2,*3, . . .),µ= (n−
q,µ2,µ3, . . .) and / = (n− r,/2,/3, . . .), then we have that: r ≤ p+ q, p ≤ q+ r, and q ≤ p+ r.
In particular, it implies that r ≥ p− q and r ≥ q− p, or more succinctly, r ≥ |p− q|. Hence, if
/= (n− r,/2, . . .), then &/ ∈ 0EXACT whenever r ≤ |p−q|, which proves the desired result.

The same paper (Murnaghan, 1938) derives several general Clebsch-Gordan series formulas for
pairs of low-order irreducibles in terms of n, and in particular, derives the Clebsch-Gordan series
for many of the Kronecker product pairs that one would likely encounter in practice. For example,

• &(n−1,1)⊗&(n−1,1) ≡ &(n)⊕&(n−1,1)⊕&(n−2,2)⊕&(n−2,1,1)

• &(n−1,1)⊗&(n−2,2) ≡ &(n−1,1)⊕&(n−2,2)⊕&(n−2,1,1)⊕&(n−3,3)⊕&(n−3,2,1)

• &(n−1,1)⊗&(n−2,1,1) ≡ &(n−1,1)⊕&(n−2,2)⊕&(n−2,1,1)⊕&(n−3,2,1)⊕&(n−3,1,1,1)

• &(n−1,1)⊗&(n−3,3) ≡ &(n−2,2)⊕&(n−3,3)⊕&(n−3,2,1)⊕&(n−4,4)⊕&(n−4,3,1)

D.2 Computing the Clebsch-Gordan Coefficients

In this section, we consider the general problem of finding an orthogonal operator which decom-
poses an arbitrary complex representation, X(!), of a finite group G.15 Unlike the Clebsch-Gordan
series which are basis-independent, intertwining operators must be recomputed if we change the
underlying basis by which the irreducible representation matrices are constructed. However, for a
fixed basis, we remind the reader that these intertwining operators need only be computed once and
for all and can be stored in a table for future reference. Let X be any degree d group representation
of G, and let Y be an equivalent direct sum of irreducibles, for example,

Y (!) =
M

/

z/
M

!=1
&/(!), (34)

where each irreducible &/ has degree d/. We would like to compute an invertible (and orthogonal)
operatorC, such thatC ·X(!) =Y (!) ·C, for all !∈G. Throughout this section, we will assume that
the multiplicities z/ are known. To compute Clebsch-Gordan coefficients, for example, we would
set X = &*⊗&µ, and the multiplicities would be given by the Clebsch-Gordan series (Equation 32).
To find the matrix which relates marginal probabilities to irreducible coefficients, we would set
X = (*, and the multiplicities would be given by the Kostka numbers (Equation 6).

We will begin by describing an algorithm for computing a basis for the space of all possible
intertwining operators which we denote by:

Int[X ;Y ] = {C ∈ Rd×d : C ·X(!) = Y (!) ·C, ∀! ∈ G}.

We will then discuss some of the theoretical properties of Int[X ;Y ] and show how to efficiently select
an orthogonal element of Int[X ;Y ].

15. Though the fundamental ideas in this section hold for a general finite group, we will continue to index irreducible
by partitions and think of representations as being real-valued. To generalize the results, one can simply replace all
transposes in this section by adjoints and think of . as indexing over the irreducibles of G rather than partitions.
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Our approach is to naively16 view the task of finding elements of Int[X ;Y ] as a similarity matrix
recovery problem, with the twist that the similarity matrix must be consistent over all group ele-
ments. To the best of our knowledge, the technique presented in this section is original. We first
cast the problem of recovering a similarity matrix as a nullspace computation.

Proposition 31 Let A,B,C be matrices and let KAB = I⊗A−BT ⊗ I. Then AC =CB if and only if
vec(C) ∈ Nullspace(KAB).

Proof A well known matrix identity (van Loan, 2000) states that if A,B,C are matrices, then
vec(ABC) =

(
CT ⊗A

)
vec(B). Applying the identity to AC =CB, we have:

vec(ACI) = vec(ICB),

and after some manipulation: (
I⊗A−BT ⊗ I

)
vec(C) = 0,

showing that vec(C) ∈ Nullspace(KAB).

For each ! ∈ G, the nullspace of the matrix K(!) constructed using the above proposition as:

K(!) = I⊗Y (!)−X(!)⊗ I, (35)

where I is a d×d identity matrix, corresponds to the space of matricesC! such that

C! ·X(!) = Y (!) ·C, for all ! ∈ G.

To find the space of intertwining operators which are consistent across all group elements, we need
to find the intersection:

\

!∈G
Nullspace(K(!)).

At first glance, it may seem that computing the intersection might require examining n! nullspaces
if G= Sn, but as luck would have it, most of the nullspaces in the intersection are extraneous, as we
now show.

Definition 32 We say that a finite group G is generated by a set of generators S = {g1, . . . ,gm} if
every element of G can be written as a finite product of elements in S.

For example, the following three sets are all generators for Sn:

• {(1,2),(1,3),. . . ,(1,n)},
• {(1,2),(2,3),(3,4),. . . ,(n−1,n)}, and
• {(1,2),(1,2,3,. . . ,n)}.

To ensure a consistent similarity matrix for all group elements, we use the following proposition
which says that it suffices to be consistent on any set of generators of the group.

16. In implementation, we use a more efficient algorithm for computing intertwining operators known as the Eigenfunc-
tion Method (EFM) (Chen, 1989). Unfortunately, the EFM is too complicated for us to describe in this paper. The
method which we describe in this appendix is conceptually simpler than the EFM and generalizes easily to groups
besides Sn.
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Proposition 33 Let X andY be representations of finite group G and suppose that G is generated by
the elements !1, . . . ,!m. If there exists an invertible linear operator C such that C ·X(!i) =Y (!i) ·C
for each i ∈ {1, . . . ,m}, then X and Y are equivalent as representations with C as the intertwining
operator.

Proof We just need to show that C is a similarity transform for any other element of G as well.
Let ) be any element of G and suppose ) can be written as the following product of generators:
)="n

i=1!i. It follows that:

C−1 ·Y ()) ·C = C−1 ·Y

(

"
i
!i

)
·C =C−1 ·

(

"
i
Y (!i)

)
·C

= (C−1 ·Y (!1) ·C)(C−1 ·Y (!2) ·C) · · ·(C−1 ·Y (!m) ·C)

= "
i

(
C−1 ·Y (!i) ·C

)
="

i
X(!i) = X

(

"
i
!i

)
= X()).

Since this holds for every ) ∈ G, we have shown C to be an intertwining operator between the
representations X and Y .

The good news is that despite having n! elements, Sn can be generated by just two elements, namely,
(1,2) and (1,2, . . . ,n), and so the problem reduces to solving for the intersection of two nullspaces,
(K(1,2)∩K(1,2, . . . ,n)), which can be done using standard numerical methods. Typically, the
nullspace is multidimensional, showing that, for example, the Clebsch-Gordan coefficients for &*⊗
&µ are not unique even up to scale.

Because Int[X ;Y ] contains singular operators (the zero matrix is a member of Int[X ;Y ], for ex-
ample), not every element of Int[X ;Y ] is actually a legitimate intertwining operator as we require
invertibility. In practice, however, since the singular elements correspond to a measure zero subset
of Int[X ;Y ], one method for reliably selecting an operator from Int[X ;Y ] that “works” is to simply select
a random element from the nullspace to be C. It may, however, be desirable to have an orthogonal
matrixC which works as an intertwining operator. In the following, we discuss an object called the
Commutant Algebra which will lead to several insights about the space Int[X ;Y ], and in particular,
will lead to an algorithm for ‘modifying’ any invertible intertwining operatorC to be an orthogonal
matrix.

Definition 34 The Commutant Algebra of a representation Y is defined to be the space of operators
which commute with Y :17

ComY = {S ∈ Rd×d : S ·Y (!) = Y (!) ·S, ∀! ∈ G}.

The elements of the Commutant Algebra of Y can be shown to always take on a particular con-
strained form (shown using Schur’s Lemma in Sagan 2001). In particular, every element of ComY
takes the form

S=
M

/

(Mz/ ⊗ Id/) , (36)

where Mz/ is some z/× z/ matrix of coefficients and Id/ is the d/×d/ identity (recall that the z/ are
the multiplicities from Equation 34). Moreover, it can be shown that every matrix of this form must
necessarily be an element of the Commutant Algebra.

17. Notice that the definition of the Commutant Algebra does not involve the representation X .
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The link between ComY and our problem is that the space of intertwining operators can be
thought of as a ‘translate’ of the Commutant Algebra.

Lemma 35 There exists a vector space isomorphism between Int[X ;Y ] and ComY .

Proof Let R be any invertible element of Int[X ;Y ] and define the linear map f : ComY → Rd×d by:
f : S &→ (S ·R). We will show that the image of f is exactly the space of intertwining operators.
Consider any element ! ∈ G:

(S ·R) ·X(!) · (S ·R)−1 = S ·R ·X(!) ·R−1 ·S−1,
= S ·Y (!) ·S−1 (since R ∈ Int[X ;Y ]),
= Y (!) (since S ∈ ComY ).

We have shown that S ·R ∈ Int[X ;Y ], and since f is linear and invertible, we have that Int[X ;Y ] and
ComY are isomorphic as vector spaces.

Using the lemma, we can see that the dimension of Int[X ;Y ] must be the same as the dimension of
ComY , and therefore we have the following expression for the dimension of Int[X ;Y ].

Proposition 36
dim Int[X ;Y ] =#

/
z2/.

Proof To compute the dimension of Int[X ;Y ], we need to compute the dimension of ComY , which
can be accomplished simply by computing the number of free parameters in Equation 36. Each
matrixMz/ is free and yields z2/ parameters, and summing across all irreducibles / yields the desired
dimension.

To select an orthogonal intertwining operator, we will assume that we are given some invertible
R ∈ Int[X ;Y ] which is not necessarily orthogonal (such as a random element of the nullspace of K
, Equation 35). To find an orthogonal element, we will ‘modify’ R to be an orthogonal matrix by
applying an appropriate rotation, such that R ·RT = I. We begin with a simple observation about
R ·RT .

Lemma 37 If both X andY are orthogonal representations and R is an invertible member of Int[X ;Y ],
then the matrix R ·RT is an element of ComY .

Proof Consider a fixed ! ∈ G. Since R ∈ Int[X ;Y ], we have that:

X(!) = R−1 ·Y (!) ·R.

It is also true that:
X(!−1) = R−1 ·Y (!−1) ·R. (37)

Since X(!) and Y (!) are orthogonal matrices by assumption, Equation 37 becomes:

XT (!) = R−1 ·YT (!) ·R.
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Algorithm 6: Pseudocode for computing an orthogonal intertwining operators
INTXY
input : A degree d orthogonal matrix representation X evaluated at permutations (1,2) and

(1, . . . ,n), and the multiplicity z/, of the irreducible &/ in X
output: A matrixC/ with orthogonal rows such thatCT/ ·⊕z/&/ ·C/ = X
K1 ← Id×d⊗ (⊕z/&/(1,2))−X(1,2)⊗ Id×d;1
K2 ← Id×d⊗ (⊕z/&/(1, . . . ,n))−X(1, . . . ,n)⊗ Id×d;2
K← [K1;K2]; //Stack K1 and K23
v← SparseNullspace

(
K,z2/

)
; //Find the d2/-dimensional nullspace4

R← Reshape(v;z/d/,d); //Reshape v into a (z/d/)×d matrix5
M← KroneckerFactors(R ·RT ); //Find M such that R ·RT =M⊗ Id/6
S/ ← Eigenvectors(M) ;7
C/ ← ST/ ·R ;8
NormalizeRows(C/);9

Taking transposes,

X(!) = RT ·Y (!) · (R−1)T .

We now multiply both sides on the left by R, and on the right by RT ,

R ·X(!) ·RT = R ·RT ·Y (!) · (R−1)T ·RT

= R ·RT ·Y (!).

Since R ∈ Int[X ;Y ],

Y (!) ·R ·RT = R ·RT ·Y (!),

which shows that R ·RT ∈ ComY .

We can now state and prove our orthogonalization procedure, which works by diagonalizing the
matrix R ·RT . Due to its highly constrained form, the procedure is quite efficient.

Theorem 38 Let X be any orthogonal group representation of G and Y an equivalent orthogonal
irreducible decomposition (As in Equation 34). Then for any invertible element R ∈ Int[X ;Y ], there
exists an (efficiently computable) orthogonal matrix T such that the matrix T ·R is an element of
Int[X ;Y ] and is orthogonal.

Proof Lemma 37 and Equation 36 together imply that the matrix R ·RT can always be written in
the form

R ·RT = ⊕/ (Mz/ ⊗ Id/)

Since R ·RT is symmetric, each of the matrices Mz/ is also symmetric and must therefore possess
an orthogonal basis of eigenvectors. Define the matrix Sz/ to be the matrix whose columns are the
eigenvectors of Mz/ .

The matrix S= ⊕/(Sz/ ⊗ Id/) has the following two properties:

1066



FOURIER THEORETIC PROBABILISTIC INFERENCE OVER PERMUTATIONS

1. (ST ·R)(ST ·R)T is a diagonal matrix:
Each column of S is an eigenvector of R ·RT by standard properties of the direct sum and Kro-
necker product. Since each of the matrices, Sz/ , is orthogonal, the matrix S is also orthogonal.
We have:

(ST ·R)(ST ·R)T = ST ·R ·RT ·S,
= S−1 ·R ·RT ·S,
= D,

where D is a diagonal matrix of eigenvalues of R ·RT .

2. ST ·R ∈ Int[X ;Y ]:
By Equation 36, a matrix is an element of ComY if and only if it takes the form ⊕/(Sz/ ⊗ Id/).
Since S can be written in the required form, so can ST . We see that ST ∈ ComY , and by the
proof of Lemma 35, we see that ST ·R ∈ Int[X ;Y ].

Finally, setting T = D1/2 · ST makes the matrix T ·R orthogonal (and does not change the fact
that T ·R ∈ Int[X ;Y ]).

We see that the complexity of computing T is dominated by the eigenspace decomposition
of Mz/ , which is O

(
z3/
)
. Pseudocode for computing orthogonal intertwining operators is given

Algorithm 6.
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Abstract
We present a sound and complete graphical criterion for reading dependencies from the minimal
undirected independence map G of a graphoid M that satisfies weak transitivity. Here, complete
means that it is able to read all the dependencies inM that can be derived by applying the graphoid
properties and weak transitivity to the dependencies used in the construction of G and the inde-
pendencies obtained from G by vertex separation. We argue that assuming weak transitivity is not
too restrictive. As an intermediate step in the derivation of the graphical criterion, we prove that
for any undirected graph G there exists a strictly positive discrete probability distribution with the
prescribed sample spaces that is faithful to G. We also report an algorithm that implements the
graphical criterion and whose running time is considered to be at most O(n2(e+ n)) for n nodes
and e edges. Finally, we illustrate how the graphical criterion can be used within bioinformatics to
identify biologically meaningful gene dependencies.
Keywords: graphical models, vertex separation, graphoids, weak transitivity, bioinformatics

1. Introduction

A minimal undirected independence map G of an independence model M is used to read indepen-
dencies that hold inM. Sometimes, however, G can also be used to read dependencies holding inM.
For instance, if M is a graphoid that is faithful to G then, by definition, lack of vertex separation is
a sound and complete graphical criterion for reading dependencies from G, where complete means
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that it is able to read all the dependencies in M. If M is simply a graphoid, then Bouckaert (1995)
proposes a sound and complete graphical criterion for reading dependencies from G. In this case,
complete means that it is able to read all the dependencies in M that can be derived by applying
the graphoid properties to the dependencies used in the construction of G and the independencies
obtained from G by vertex separation.

In this paper, we introduce a sound and complete graphical criterion for reading dependencies
from G under the assumption that M is a graphoid that satisfies weak transitivity. Here, complete
means that it is able to read all the dependencies in M that can be derived by applying the graphoid
properties and weak transitivity to the dependencies used in the construction of G and the indepen-
dencies obtained from G by vertex separation. Our criterion allows reading more dependencies than
the criterion in Bouckaert (1995) when the graphoid at hand satisfies weak transitivity. We show
that there exist important families of probability distributions that are graphoids and satisfy weak
transitivity. These include, for instance, the regular Gaussian probability distributions.

We think that the work presented in this paper can be of great interest for the machine learning
community. Graphs are one of the most commonly used metaphors for representing knowledge be-
cause they appeal to human intuition (Pearl, 1988). Furthermore, graphs are parsimonious models
because they trade off accuracy for simplicity. Consider, for instance, representing the independence
model induced by a probability distribution as a graph. Though this graph is typically less accurate
than the probability distribution (the graph may not represent all the (in)dependencies and those
that are represented are not quantified), it also requires less space to be stored and less time to be
communicated than the probability distribution, which may be desirable features in some applica-
tions. Thus, it seems sensible developing tools for reasoning with graphs. Our criterion is one such
a tool: As vertex separation makes the discovery of independencies amenable to human reasoning
by enabling to read independencies off G without numerical calculation (Pearl, 1988), so does our
criterion with respect to the discovery of dependencies. There are fields where discovering depen-
dencies is more important than discovering independencies. It is in these fields where we believe
that our criterion has greater potential. In bioinformatics, for instance, the nodes of G represent (the
expression levels of) some genes under study. Bioinformaticians are typically more interested in
discovering gene dependencies than independencies, because the former provide contexts in which
the expression level of some genes is informative about that of some other genes, which may lead to
hypothesize dependencies, functional relations, causal relations, the effects of manipulation experi-
ments, etc. As we will illustrate at the end of the paper, our criterion can be very helpful in such a
scenario. Our criterion also clarifies a misconception that may exist among some bioinformaticians,
namely that two genes are dependent if there exists a path in G between them. We will see that
there must exist exactly one path to draw such a conclusion. Hence, the importance of developing
a formal criterion like ours to prevent drawing erroneous conclusions. Of course, the conclusions
drawn by our criterion may be misleading if G is learnt from a sample, which is most likely the case
in bioinformatics. However, this has nothing to do with the correctness of our criterion, which we
prove in subsequent sections, but with the fact that G is an estimate.

The rest of the paper is organized as follows. We start by reviewing some concepts in Section 2.
We show in Section 3 that assuming weak transitivity is not too restrictive. We prove in Section 4
that for any undirected graph G there exists a strictly positive discrete probability distribution with
the prescribed sample spaces that is faithful to G. This is an important result in itself as well as for
proving the completeness of the graphical criterion that we present in Section 5. An algorithmic im-
plementation of the graphical criterion is described in Section 6. We illustrate in Section 7 how the
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graphical criterion works in practice with a real world example taken from bioinformatics. Finally,
we close with some discussion in Section 8.

2. Preliminaries

The definitions and results in this section are taken from Lauritzen (1996), Pearl (1988) and Studený
(2005). We use the juxtaposition XY to denote X∪Y, and X to denote the singleton {X}. We use
upper-case letters to denote random variables and the same letters in lower-case to denote their
states. We use Val(X) to denote the set of possible states of a random variable X. Let U denote
a set of random variables. Unless otherwise stated, all the probability distributions, independence
models and graphs in this paper are defined overU. LetX,Y, Z andW denote four mutually disjoint
subsets of U. An independence modelM is a set of independencies of the form X is independent of
Y given Z. We represent that an independence is in M by X⊥⊥Y|Z and that an independence is not
in M by X%⊥⊥Y|Z. In the latter case, we may equivalently say that the dependence X%⊥⊥Y|Z is in M.
An independence model is a graphoid when it satisfies the following five properties:

• Symmetry X⊥⊥Y|Z⇒ Y⊥⊥X|Z.

• Decomposition X⊥⊥YW|Z⇒ X⊥⊥Y|Z.

• Weak union X⊥⊥YW|Z⇒ X⊥⊥Y|ZW.

• Contraction X⊥⊥Y|ZW∧X⊥⊥W|Z⇒ X⊥⊥YW|Z.

• Intersection X⊥⊥Y|ZW∧X⊥⊥W|ZY⇒ X⊥⊥YW|Z.

The independence model induced by any strictly positive probability distribution is a graphoid.
Hereinafter, for the sake of simplicity, we do not make any distinction between a probability dis-
tribution and the independence model induced by it and, thus, we always refer to the former. For
instance, instead of saying that the independence model of a probability distribution p is a graphoid,
we simply say that p is a graphoid. In this paper, we pay particular attention to strictly posi-
tive discrete probability distributions and regular Gaussian probability distributions, that is, those
whose covariance matrices are positive definite. For the strictly positive discrete probability dis-
tributions, we assume that each random variable in U has a finite sample space with at least two
possible states. Note that if p is a strictly positive discrete probability distribution, then p(X) and
p(X|Y = y) are uniquely defined, strictly positive and discrete. Likewise, if p is a regular Gaus-
sian probability distribution, then p(X) and p(X|Y= y) are uniquely determined (by a convention)
and regular Gaussian. Moreover, any regular Gaussian probability distribution satisfies composition
X⊥⊥Y|Z∧X⊥⊥W|Z⇒ X⊥⊥YW|Z.

A path between X1 and Xn in a graph G is a sequence of distinct nodes X1, . . . ,Xn (1 ≤ n) such
that there exists an edge in G between every two consecutive nodes in the sequence. Given a path
X1, . . . ,Xn in a directed and acyclic graph (DAG) G, a node Xi (1< i< n) is a collider in the path if
Xi−1 → Xi ← Xi+1 in G. Let sep(X,Y|Z) denote that X is separated from Y given Z in a graph G.
Specifically, sep(X,Y|Z) holds when every path in G between X and Y is blocked by Z. If G is an
undirected graph (UG), then a path in G between X and Y is blocked by Z when there exists some
Z ∈ Z in the path. If G is a DAG, then a path in G between X and Y is blocked by Z when there
exists a node Z in the path such that
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• either Z is not a collider in the path and Z ∈ Z, or

• Z is a collider in the path and neither Z nor any of its descendants in G is in Z.

An independence model M is faithful to an UG or DAG G when X⊥⊥Y|Z iff sep(X,Y|Z). Any
independence model that is faithful to some UG or DAG is a graphoid. An UG (resp. DAG) G
is an undirected (resp. directed) independence map of an independence model M when X⊥⊥Y|Z if
sep(X,Y|Z). Moreover, an UG G is a minimal undirected independence (MUI) map ofM when

(i) G is an undirected independence map ofM, and

(ii) no proper subgraph of G satisfies (i).

A Markov boundary of X ∈ U in an independence model M is any subset MB(X) of U\X such
that

(i) X⊥⊥U\X \MB(X)|MB(X), and

(ii) no proper subset of MB(X) satisfies (i).

IfM is a graphoid, then

(i) MB(X) is unique for each X ∈ U,

(ii) the MUI map G of M is unique, and

(iii) two nodes X and Y are adjacent in G iff X ∈MB(Y ) iff Y ∈MB(X) iff X%⊥⊥Y |U\ (XY ).

A Bayesian network (BN) is a pair (G, p) where G is a DAG and p is a discrete probability
distribution that factorizes as p = !X∈U q(X |Pa(X)), where q(X |Pa(X)) denotes a conditional dis-
crete probability distribution of X given the parents of X in G, Pa(X). Recall that a node Y is called
a parent of X if Y → X is in G. We denote by D(G)+ all the strictly positive discrete probability
distributions that can be represented by a BN with DAG G, that is, those that factorize according to
G as indicated.

3. Weak Transitivity Graphoids

Let X, Y and Z denote three mutually disjoint subsets of U. We define a weak transitivity (WT)
graphoid as a graphoid that satisfies weak transitivity X⊥⊥Y|Z∧X⊥⊥Y|ZV ⇒ X⊥⊥V |Z∨V⊥⊥Y|Z
with V ∈ U \ (XYZ). There exist important families of probability distributions that are WT
graphoids and, thus, we believe that WT graphoids are worth studying: For instance, any proba-
bility distribution that is regular Gaussian or faithful to some UG or DAG is a WT graphoid (Pearl,
1988; Studený, 2005). Other interesting families of probability distributions that are WT graphoids
are presented in this section.

We say that a strictly positive discrete probability distribution p has context-specific dependen-
cies if there exists someW⊆U such that p(U\W|W=w) does not have the same (in)dependencies
for all w. The theorem below proves that for any DAG G, in a measure-theoretic sense (Hal-
mos, 1966), almost all the probability distributions in D(G)+ have no context-specific depen-
dencies. This result is not only relative to the DAG G, but also to the measure considered, the
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Lebesgue measure in our case, as well as to the dimension of D(G)+. For this purpose, we dis-
cuss first how we parameterize the probability distributions in D(G)+. Since each probability
distribution p in D(G)+ factorizes as p = !X∈U q(X |Pa(X)), p can be parameterized by param-
eterizing each probability table q(X |Pa(X)). Let Val(X) = {x1, . . . ,xn(X)} denote the n(X) possible
states of the random variable X . Let "xi,pa (1 ≤ i ≤ n(X)) denote the parameter corresponding
to q(X = xi|Pa(X) = pa) with pa ∈ Val(Pa(X)). Note that the parameters are linearly dependent
because #n(X)

i=1 q(X = xi|Pa(X) = pa) = 1. In order to introduce properly the parameter space for
D(G)+ and the Lebesgue measure on it, we make the convention that "xn(X),pa is linearly depen-
dent on the remaining parameters "xi,pa with 1 ≤ i < n(X). Therefore, the number of linearly
independent parameters for p is n = #X∈U(n(X)− 1)(!Y∈Pa(X) n(Y )). Let $d denote the sim-
plex {(s1, . . . ,sd) ∈ Rd : si ≥ 0 (1 ≤ i ≤ d),#d

i=1 si ≤ 1}. The Lebesgue measure of $d wrt Rd

is 1/d! (Stein, 1966). Let $+
d denote the set {(s1, . . . ,sd) ∈ Rd : si > 0 (1 ≤ i ≤ d),#d

i=1 si < 1}.
The Lebesgue measure of $+

d wrt Rd is also 1/d!, because the difference between $d and $+
d has

Lebesgue measure zero. Then, the parameter space for D(G)+ is ×X∈U ×pa∈Val(Pa(X))$
+
n(X)−1,

whose Lebesgue measure wrt Rn is !X∈U!pa∈Val(Pa(X)) 1/(n(X)−1)!.

Theorem 1 Let G be a DAG.D(G)+ has non-zero Lebesgue measure wrtRn, where n is the number
of linearly independent parameters in the parametrization of the probability distributions inD(G)+

described above. The probability distributions in D(G)+ that are not faithful to G or have context-
specific dependencies have zero Lebesgue measure wrt Rn.

Proof First, we prove that there is a one-to-one correspondence between the elements of the pa-
rameter space for D(G)+ and the probability distributions in D(G)+. This will allow us later to
compute the Lebesgue measure wrt Rn of a subset of D(G)+ as the Lebesgue measure wrt Rn of
the corresponding subset of the parameter space for D(G)+. Obviously, different probability dis-
tributions in D(G)+ must correspond to different elements of the parameter space for D(G)+. On
the other hand, different elements of the parameter space for D(G)+ correspond to different prob-
ability distributions in D(G)+, because the values of the parameters "xi,pa defining a probability
distribution p coincide with the values of the conditional probabilities p(X = xi|Pa(X) = pa) that
are computed from p (Pearl, 1988).

To prove the first statement in the theorem it suffices to note that, as discussed right before the
theorem, the parameter space for D(G)+ has non-zero Lebesgue measure wrt Rn. This implies that
D(G)+ also has non-zero Lebesgue measure wrt Rn because, as proven above, there is a one-to-
one correspondence between the elements of the parameter space for D(G)+ and the probability
distributions in D(G)+.

To prove the second statement in the theorem, we first prove that the probability distributions
in D(G)+ that have context-specific dependencies have zero Lebesgue measure wrt Rn. The proof
basically proceeds in the same way as that of Theorem 7 in Meek (1995). We start by showing that
for a probability distribution in D(G)+ to have context-specific dependencies, some polynomials in
the parameters in the parametrization of the probability distributions in D(G)+ must be satisfied.
Specifically, these polynomials are real polynomials in real variables that we interpret as real func-
tions on a real Euclidean space that includes the parameter space for D(G)+. Let W ⊆ U and let
X, Y and Z denote three disjoint subsets of U\W. Since G is a directed independence map of any
probability distribution p∈D(G)+ (Neapolitan, 2003), for a constraint such asX⊥⊥Y|Z to be true in
p(U\W|W=w) but false in p(U\W|W=w′), two conditions must be met. First, sep(X,Y|ZW)
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must not hold in G and, second, the following equations must be satisfied:

p(X= x,Y= y,Z= z,W= w)p(Z= z,W= w)−

p(X= x,Z= z,W= w)p(Y= y,Z= z,W= w) = 0 (1)

for all x, y and z. Each equation is a polynomial in the parameters in the parametrization of the
probability distributions in D(G)+, because each term p(V = v) in the equations is a polynomial
in the parameters: p(V = v) = #v′ p(V = v,U \V = v′) where each term p(V = v,U \V = v′) is
a polynomial in the parameters, since p=!X∈U q(X |Pa(X)). Let each variable in the polynomials
take values in R. Then, each polynomial in Equation (1) is non-trivial, that is, not all the values of
the variables are solutions to the polynomial. To prove this, it suffices to prove that there exists a
probability distribution p′ ∈D(G)+ for which the polynomial does not hold. Consider the polyno-
mial for x, y and z. Note that there exists a probability distribution p′′ ∈D(G)+ that is faithful to G
(Meek, 1995) and, thus, X%⊥⊥Y|ZW is in p′′ because sep(X,Y|ZW) does not hold in G. Then, there
is some instantiation x′′y′′z′′w′′ of XYZW such that

p′′(X= x′′,Y= y′′,Z= z′′,W= w′′)p′′(Z= z′′,W= w′′)−

p′′(X= x′′,Z= z′′,W= w′′)p′′(Y= y′′,Z= z′′,W= w′′) %= 0.

Then, by permuting the states of the random variables in X, Y, Z andW, we can transform p′′ into
the desired p′. Let V ≡ XYZW, v ≡ xyzw, and v′′ ≡ x′′y′′z′′w′′. One can introduce a permutation
%X on the set of possible states of X for each X ∈ U: For X ∈ V, it is the transposition of the states
of X in v and v′′, and the identical mapping for X ∈ U \V. These random variable permutations
together define a permutation % of the joint sample space of U. Then, p′′ can be transformed by
% to p′ ≡ p′′ ◦%. Note that p′ ∈ D(G)+ because p′′ ∈ D(G)+, and that the parameter values of p′
are obtained from the parameter values of p′′ by local permutations. Finally, note that p′(V= v) =
p′′(V= v′′) and, thus, the polynomial in Equation (1) for x, y and z does not hold for p′.

Let sol(x,y,z,w) denote the set of solutions to the polynomial in Equation (1) for x, y and z.
Then, sol(x,y,z,w) has zero Lebesgue measure wrt Rn because it consists of the solutions to a non-
trivial polynomial in real variables (Okamoto, 1973). Let sol =

S

X,Y,Z,W
S

w
T

x,y,z sol(x,y,z,w)
and recall from above that the outer-most union only involves those cases for which sep(X,Y|ZW)
does not hold in G. Then, sol has zero Lebesgue measure wrt Rn, because the finite union and
intersection of sets of zero Lebesgue measure has zero Lebesgue measure too. Consequently, the
probability distributions in D(G)+ that have context-specific dependencies correspond to a set of
elements of the parameter space for D(G)+ that has zero Lebesgue measure wrt Rn because it
is contained in sol. Since, as proven above, this correspondence is one-to-one, the probability
distributions in D(G)+ that have context-specific dependencies also have zero Lebesgue measure
wrt Rn.

To finish the proof of the second statement, it suffices to note that (i) the probability distributions
in D(G)+ that are not faithful to G have zero Lebesgue measure wrt Rn, because they are a subset
of the probability distributions that factorize according to G but are not faithful to G, and these have
zero Lebesgue measure wrt Rn (Meek, 1995), (ii) the probability distributions in D(G)+ that have
context-specific dependencies have zero Lebesgue measure wrt Rn as proven above, and (iii) the
union of the probability distributions in (i) and (ii) has zero Lebesgue measure wrt Rn, because the
finite union of sets of zero Lebesgue measure has zero Lebesgue measure too.
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Figure 1: Chain graphs in Example 1.

The theorem below proves that the marginals and conditionals of a strictly positive discrete
probability distribution that is a WT graphoid and has no context-specific dependencies are WT
graphoids too.

Theorem 2 Let p be a strictly positive discrete probability distribution that is a WT graphoid.
Then, p(U\W) for anyW ⊆ U is a WT graphoid. If p has no context-specific dependencies, then
p(U\W|W= w) for any w andW⊆ U is a WT graphoid.

Proof LetX,Y and Z denote three mutually disjoint subsets ofU\W. Then,X⊥⊥Y|Z is in p(U\W)
iffX⊥⊥Y|Z is in p and, thus, p(U\W) satisfies the WT graphoid properties because p satisfies them.
Now, note that p(U\W|W= w) is uniquely defined because p is strictly positive. Furthermore, if
p has no context-specific dependencies, then X⊥⊥Y|Z is in p(U\W|W= w) iff X⊥⊥Y|ZW is in p.
Then, p(U\W|W= w) satisfies the WT graphoid properties because p satisfies them.

In a nutshell, Theorem 1 proves that for any DAG G, in the measure-theoretic sense explained
above, almost all the probability distributions inD(G)+ are faithful toG and, thus, areWT graphoids
(Pearl, 1988). On the other hand, the combination of Theorems 1 and 2 proves that, in the measure-
theoretic sense explained above, all the marginals and conditionals of almost all the probability
distributions in D(G)+ are WT graphoids. Finally, we give an example that shows that not all the
probability distributions that are WT graphoids are either regular Gaussian or faithful to some UG
or DAG.

Example 1 Let p be a strictly positive discrete probability distribution that is faithful to the DAG
in the left-hand side of Figure 1 and that has no context-specific dependencies. Such a probabil-
ity distribution exists due to Theorem 1 and, moreover, it is a WT graphoid (Pearl, 1988). Then,
p(X ,Y,Z,V,A,B,C|W = w) for any w, which is uniquely defined because p is strictly positive, is a
WT graphoid by Theorem 2. However, this conditional probability distribution is neither regular
Gaussian nor faithful to any UG or DAG, because it is discrete and faithful to the chain graph in
the right-hand side of Figure 1 (Chickering and Meek, 2002; Peña et al., 2006).

4. Reading Independencies

By definition, sep is sound for reading independencies from the MUI map G of a WT graphoid
M, that is, it only identifies independencies in M. In the regular Gaussian case, sep in G is also
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complete in the sense that it identifies all the independencies in M that are shared by all the WT
graphoids for which G is the MUI map, because (i) it is proven in Lněnička and Matúš (2007) that
there exist regular Gaussian probability distributions that are faithful to G, and (ii) such probability
distributions are WT graphoids (Studený, 2005), G is their MUI map, and they only have the inde-
pendencies that sep identifies from G. In this section, we extend this result to the case where U is
discrete. Specifically, we prove that there exist strictly positive discrete probability distributions that
are faithful to G for any sample spaces (with at least two possible states) of the random variables in
U. Again, such probability distributions are WT graphoids (Pearl, 1988), G is their MUI map, and
they only have the independencies that sep identifies from G. Therefore, when U is discrete sep in
G is also complete in the sense that it identifies all the independencies in M that are shared by all
the WT graphoids for which G is the MUI map. These completeness results, in addition to being
important in themselves, are crucial for reading as many dependencies as possible from G, as we
will see in the next section.

Theorem 3 Let G be an UG. Let us assume that the sample space of each random variable in U
is prescribed and has at least two possible states. Then, there exists a strictly positive discrete
probability distribution with the prescribed sample spaces for the random variables in U that is
faithful to G.

Proof Create an extended DAG H of G as follows. For each edge X −Y in G, create an auxiliary
discrete random variableWXY . LetW denote all the auxiliary random variables created. Let H be
a DAG over UW with no edges. For each edge X −Y in G add X →WXY ← Y to H. No more
edges are added to H. It is easy to see that for any three mutually disjoint subsets X, Y and Z of U,
sep(X,Y|ZW) in H iff sep(X,Y|Z) in G.

Let p(U,W) denote any strictly positive discrete probability distribution inD(H)+ that is faith-
ful toH and has no context-specific dependencies. Such a probability distribution exists by Theorem
1. Now, fix any w and note that p(U|W= w) is uniquely defined because p(U,W) is strictly posi-
tive. Let X, Y and Z denote three mutually disjoint subsets of U. Then, X⊥⊥Y|Z is in p(U|W= w)
iff X⊥⊥Y|ZW is in p(U,W) iff sep(X,Y|ZW) in H iff sep(X,Y|Z) in G. Then, p(U|W = w) is
faithful to G. Obviously, p(U|W= w) is strictly positive and discrete.

Note that the theorem above proves that there exists a strictly positive discrete probability dis-
tribution that is faithful to G for any sample spaces (with at least two possible states) of the random
variables in U. This result is therefore stronger than Theorem 11 in Geiger and Pearl (1993), which
proves that there exists a strictly positive discrete probability distribution that is faithful to G for
some sample spaces (with at least two possible states) of the random variables in U.

The theorem above proves that, when U is discrete, sep in the MUI map G of a WT graphoid
M is complete for any sample spaces of the random variables in U, where complete means that it
is able to identify all the independencies in M that are shared by all the WT graphoids for which G
is the MUI map. However, sep in G is not complete if this is understood as being able to identify
all the independencies in M. Actually, no sound criterion for reading independencies from G is
complete in the latter sense. An example follows.

Example 2 Let p be a discrete probability distribution that is faithful to the DAG {X → Z,Y → Z}.
Such a probability distribution exists (Meek, 1995). Let G denote the MUI map of p, namely the
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complete UG. Note that p is not faithful to G. However, by Theorem 3, there exists a discrete prob-
ability distribution p′ that is faithful to G. As proven in Pearl (1988), p and p′ are WT graphoids.
Let us assume that we are dealing with p. Then, no sound criterion can conclude X⊥⊥Y | /0 by just
studying G because this independence does not hold in p′, and it is impossible to know whether we
are dealing with p or p′ on the sole basis of G.

5. Reading Dependencies

In this section, we propose a sound and complete criterion for reading dependencies from the MUI
map G of a WT graphoid. Here, complete means that it is able to read all the dependencies that can
be derived by applying the WT graphoid properties to the dependencies used in the construction of
G and the independencies obtained from G by sep.

We define the dependence base of an independence model M, denoted bas(M), as the set of
dependencies X%⊥⊥Y |U \ (XY ) with X ,Y ∈ U. Recall from Section 2 that X and Y are adjacent in
the MUI map of M iff X%⊥⊥Y |U \ (XY ). If M is a WT graphoid, then additional dependencies in
M can be derived from bas(M) via the WT graphoid properties. For this purpose, we rephrase the
WT graphoid properties as follows. Let X, Y, Z andW denote four mutually disjoint subsets of U.
Symmetry Y%⊥⊥X|Z⇒ X%⊥⊥Y|Z. Decomposition X%⊥⊥Y|Z⇒ X%⊥⊥YW|Z. Weak union X%⊥⊥Y|ZW⇒
X%⊥⊥YW|Z. Contraction X%⊥⊥YW|Z⇒ X%⊥⊥Y|ZW∨X%⊥⊥W|Z is problematic for deriving new de-
pendencies because it contains a disjunction in the right-hand side and, thus, it should be split into
two properties: Contraction1 X%⊥⊥YW|Z∧X⊥⊥Y|ZW⇒X %⊥⊥W|Z, and contraction2 X%⊥⊥YW|Z∧X
⊥⊥W|Z⇒ X%⊥⊥Y|ZW. Likewise, intersection X%⊥⊥YW|Z⇒ X%⊥⊥Y|ZW∨X%⊥⊥W|ZY gives rise to
intersection1 X%⊥⊥YW|Z∧X⊥⊥Y|ZW⇒ X%⊥⊥W|ZY, and intersection2 X%⊥⊥YW|Z∧X⊥⊥W|ZY⇒
X%⊥⊥Y|ZW. Note that intersection1 and intersection2 are equivalent and, thus, we refer to them
simply as intersection. Finally, weak transitivity X%⊥⊥V |Z∧V %⊥⊥Y|Z⇒ X%⊥⊥Y|Z∨X%⊥⊥Y|ZV with
V ∈U\(XYZ) gives rise to weak transitivity1X%⊥⊥V |Z∧V %⊥⊥Y|Z∧X⊥⊥Y|Z⇒X%⊥⊥Y|ZV , and weak
transitivity2 X%⊥⊥V |Z∧V %⊥⊥Y|Z∧X⊥⊥Y|ZV ⇒ X%⊥⊥Y|Z. The independence in the left-hand side of
any of the properties above holds if the corresponding sep statement holds in the MUI map G of
M. This is the best solution we can hope for because, as discussed in Section 4, sep in G is sound
and complete in the sense that it identifies all and only the independencies in M that are shared by
all the WT graphoids for which G is the MUI map. Moreover, this solution does not require more
information about M than what it is available, because G can be constructed from bas(M). We
denote by sep(G) all the sep statements holding in the MUI map G. We define the WT graphoid
closure of bas(M) wrt sep(G), denotedWTsep(G)

bas(M) , as the set of dependencies in bas(M) plus those
that can be derived from it and sep(G) by applying the WT graphoid properties. We now introduce
our criterion for reading dependencies from the MUI map of a WT graphoid.

Definition 4 Let X, Y and Z denote three mutually disjoint subsets of U. Let con(X,Y|Z) denote
that X is connected to Y given Z in an UG G. Specifically, con(X,Y|Z) holds when there exist
some X1 ∈ X and Xn ∈ Y such that there exists exactly one path in G between X1 and Xn that is not
blocked by (X\X1)(Y\Xn)Z.

As an illustrative example of con, consider the UG in Figure 2. Some con statements holding
in that graph are con(A,B|CD), con(AC,BD| /0), con(A,BCD| /0) and con(A,BD| /0) because in each
of these statement there exists a single path between A and B or D that is not blocked by the rest of
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A
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Figure 2: UG to illustrate the definition of con: con(A,B|CD), con(AC,BD| /0), con(A,BCD| /0) and
con(A,BD| /0) hold in the graph, whereas con(A,B| /0) and con(A,B|D) do not hold.

the nodes in the statement. On the other hand, some con statements that do not hold in the graph
under consideration are con(A,B| /0) and con(A,B|D), because in both cases there exist several paths
between A and B that are not blocked by the rest of the nodes in the statement. Note that the place
the nodes take in the statement matters: For instance, con(A,BD| /0) holds but con(A,B|D) does not.

We now prove that con is sound for reading dependencies from the MUI map G of a WT
graphoid M, that is, it only identifies dependencies in M. Actually, it only identifies dependen-
cies inWTsep(G)

bas(M) . Hereinafter, we abbreviate a path X1, . . . ,Xn in an UG as X1:n.

Theorem 5 Let M be a WT graphoid and G its MUI map. Then, con in G only identifies dependen-
cies in WTsep(G)

bas(M) .

Proof We first prove that if X1:n is the only path in G between X1 and Xn that is not blocked by
Y⊆U\X1:n, then X1%⊥⊥Xn|Y is inWTsep(G)

bas(M) . In other words, we prove that X1%⊥⊥Xn|Y can be derived
from bas(M) and sep(G) using the WT graphoid properties. We prove it by induction over n. We
first prove it for n = 2. Let W denote all the nodes in U \X1:2 \Y that are not separated from X1
given X2Y in G. Since X1 and X2 are adjacent in G, X1%⊥⊥X2|U\X1:2 and, thus, X1W%⊥⊥X2(U\X1:2 \
Y \W)|Y due to weak union and symmetry. This together with sep(X1W,U \X1:2 \Y \W|X2Y),
which follows from the definition ofW, implies X1W%⊥⊥X2|Y due to contraction1. Note that if U \
X1:2 \Y\W= /0, then X1W%⊥⊥X2(U\X1:2 \Y\W)|Y directly implies X1W%⊥⊥X2|Y. In any case, this
dependence together with sep(W,X2|X1Y), because otherwise there exist several unblocked paths
in G between X1 and X2 which contradicts the definition of Y, implies X1%⊥⊥X2|Y due to contraction1
and symmetry. Note that ifW= /0, then X1W%⊥⊥X2|Y directly implies X1%⊥⊥X2|Y.

Let us assume as induction hypothesis that the statement that we are proving holds for all n<m.
We now prove it for n=m. Since the paths X1:2 and X2:m contain less than m nodes and Y blocks all
the other paths inG between X1 and X2 and between X2 and Xm, because otherwise there exist several
unblocked paths in G between X1 and Xm which contradicts the definition of Y, then X1%⊥⊥X2|Y and
X2%⊥⊥Xm|Y due to the induction hypothesis. This together with sep(X1,Xm|YX2), which follows from
the definition of X1:m and Y, implies X1%⊥⊥Xm|Y due to weak transitivity2.

Let X, Y and Z denote three mutually disjoint subsets of U. If con(X,Y|Z) holds in G, then
there exist some X1 ∈ X and Xn ∈ Y such that X1%⊥⊥Xn|(X \X1)(Y \Xn)Z is inWTsep(G)

bas(M) due to the
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paragraph above and, thus, X%⊥⊥Y|Z is also inWTsep(G)
bas(M) due to weak union and symmetry.

We now prove that con is complete for reading dependencies from the MUI map G of a WT
graphoidM, in the sense that it identifies all the dependencies inM that follow from the information
about M that is available, namely the dependencies in bas(M), the independencies in sep(G), and
the fact thatM is a WT graphoid.

Theorem 6 Let M be a WT graphoid and G its MUI map. Then, con in G identifies all the depen-
dencies in WTsep(G)

bas(M) .

Proof It suffices to prove (i) that all the dependencies in bas(M) are identified by con in G, and
(ii) that con satisfies the WT graphoid properties. Since the first point is trivial, we only prove the
second point. Let X, Y, Z andW denote four mutually disjoint subsets of U.

• Symmetry con(Y,X|Z) ⇒ con(X,Y|Z). Trivial.

• Decomposition con(X,Y|Z)⇒ con(X,YW|Z). Trivial ifW contains no node in the path X1:n
in con(X,Y|Z). IfW contains some node in X1:n, then let Xm denote the closest node to X1 that
is in X1:n and W. Then, the path X1:m ensures con(X,YW|Z) because (X \X1)(YW \Xm)Z
blocks all the other paths in G between X1 and Xm, since (X \X1)(Y \Xn)Z blocks all the
paths in G between X1 and Xm except X1:m because otherwise there exist several unblocked
paths in G between X1 and Xn, which contradicts con(X,Y|Z).

• Weak union con(X,Y|ZW) ⇒ con(X,YW|Z). Trivial because W contains no node in the
path X1:n in con(X,Y|ZW).

• Contraction1 con(X,YW|Z) ∧ sep(X,Y|ZW) ⇒ con(X,W|Z). Since ZW blocks all the
paths in G between X and Y, then the path X1:n in con(X,YW|Z) must be between X and
W. To prove that X1:n ensures con(X,W|Z), we have to prove that this is the only path in G
between X1 and Xn that is not blocked by (X\X1)(W\Xn)Z. Assume to the contrary that there
is a second such path in G. This second path cannot contain any node in Y for sep(X,Y|ZW)
to hold. Then, this second path is not blocked by (X \X1)Y(W \Xn)Z either. However, this
contradicts con(X,YW|Z), because we have found two paths in G between X1 and Xn that are
not blocked by (X\X1)Y(W\Xn)Z.

• Contraction2 con(X,YW|Z)∧ sep(X,W|Z) ⇒ con(X,Y|ZW). Since Z blocks all the paths
in G between X andW, the path X1:n in con(X,YW|Z) must be between X and Y and, thus,
it ensures con(X,Y|ZW).

• Intersection con(X,YW|Z)∧ sep(X,Y|ZW) ⇒ con(X,W|ZY). Since ZW blocks all the
paths in G between X and Y, the path X1:n in con(X,YW|Z) must be between X and W
and, thus, it ensures con(X,W|ZY).

• Weak transitivity2 con(X,Xm|Z)∧con(Xm,Y|Z)∧ sep(X,Y|ZXm) ⇒ con(X,Y|Z) with Xm ∈
U \ (XYZ). Let X1:m and Xm:n denote the paths in con(X,Xm|Z) and con(Xm,Y|Z), respec-
tively. For con(X,Xm|Z) to hold, X1:m cannot contain any node in (X\X1)Z. For con(Xm,Y|Z)
to hold, Xm:n cannot contain any node in (Y\Xn)Z. For sep(X,Y|ZXm) to hold, neither X1:m
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Figure 3: UG in Example 4.

can contain a node in Y, nor Xm:n can contain a node in X. Consequently, neither X1:m nor
Xm:n is blocked by (X\X1)(Y\Xn)Z.
Furthermore, X1:m and Xm:n only intersect on Xm. To see this, assume the contrary. Let Xl
(Xl %= Xm) denote the closest node to X1 that is in X1:m and Xm:n. Then, it follows from the
paragraph above that neither X1:l and Xl:n contain a node in ZXm. However, this contradicts
sep(X,Y|ZXm). Consequently, X1:m followed by Xm:n is a path in G between X1 and Xn that,
as shown above, is not blocked by (X \X1)(Y \Xn)Z. It remains to prove that this path is
unique. Assume to the contrary that there exists a second such path in G. For sep(X,Y|ZXm)
to hold, this second path must pass through Xm. However, this implies that either there exists a
second path in G between X1 and Xm that is not blocked by (X\X1)Z, or there exists a second
path in G between Xm and Xn that is not blocked by (Y\Xn)Z. This contradicts con(X,Xm|Z)
or con(Xm,Y|Z).

• Weak transitivity1 con(X,Xm|Z)∧con(Xm,Y|Z)∧ sep(X,Y|Z)⇒ con(X,Y|ZXm) with Xm ∈
U\ (XYZ). Trivial because the antecedent involves a contradiction: It follows from the proof
of weak transitivity2 that con(X,Xm|Z) and con(Xm,Y|Z) imply the existence of a path in G
between some X1 ∈X and Xn ∈Y that is not blocked by (X\X1)(Y\Xn)Z, which contradicts
sep(X,Y|Z).

We devote the rest of this section to some remarks on the two theorems above. Note that con in
G is not complete if this is understood as being able to identify all the dependencies inM. Actually,
no sound criterion for reading dependencies from G alone is complete in this sense. Example 2
illustrates this point. Let us now assume that we are dealing with p′ instead of with p. Then, no
sound criterion can conclude X%⊥⊥Y | /0 by just studying G because this dependence does not hold in
p, and it is impossible to know whether we are dealing with p or p′ on the sole basis of G.

It seems natural to expect that assuming further independence properties will result in more de-
pendencies being readable from the MUI map of an independence model and, thus, in the necessity
of developing a new graphical criterion that identifies them. However, this is not always the case
as the following example shows. First, let us define a weak transitivity and composition (WTC)
graphoid as a WT graphoid that satisfies composition.
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Example 3 The graphical criterion con is still sound and complete for reading dependencies from
the MUI map G of a WTC graphoid M. Here, complete means that it is able to read all the de-
pendencies in M that can be derived from bas(M) and sep(G) by applying the WTC graphoid
properties. The reason is that every dependence that follows from composition also follows from
contraction1. In other words, when rephrased to derive dependencies, composition looks like
X%⊥⊥YW|Z∧X⊥⊥Y|Z⇒ X%⊥⊥W|Z. As before, the independence in the left-hand side holds if the
corresponding sep statement holds in G. However, if sep(X,Y|Z) then sep(X,Y|ZW). Thus, when
composition applies so does contraction1, and both imply the same consequent. Any probability dis-
tribution that is regular Gaussian or faithful to some UG or DAG is a WTC graphoid (Pearl, 1988;
Studený, 2005). Moreover, similarly to Theorem 2, the marginals and conditionals of a strictly
positive discrete probability distribution that is a WTC graphoid and has no context-specific depen-
dencies are WTC graphoids (Chickering and Meek, 2002; Peña et al., 2006).

A sensible question to ask is whether the definition of complete in Theorem 6 coincides with the
definition of complete as able to identify all the dependencies shared by all the WT graphoids for
which G is the MUI map. Currently, we do not have an answer to this question, though we incline
to think that the definition in the theorem above is weaker than the alternative one. For instance, if
we limit ourselves to WTC graphoids, then con in G may not identify every dependency shared by
all the WTC graphoids for which G is the MUI map, as the following example illustrates.

Example 4 Consider any regular Gaussian probability distribution whose MUI map is the UG in
Figure 3. Such probability distributions exist (Lněnička and Matúš, 2007). Recall that any regular
Gaussian probability distribution is a WTC graphoid. Then, X%⊥⊥Y | /0 or X%⊥⊥Z| /0 because otherwise
X⊥⊥YZ| /0 by composition, which is a contradiction as con(X ,YZ| /0) holds in G and thus X%⊥⊥YZ| /0
by Theorem 5.

Assume X%⊥⊥Y | /0. Furthermore, con(Y,V | /0) holds in G and thus Y %⊥⊥V | /0 by Theorem 5. Fur-
thermore, sep(X ,V |Y ) holds in G and thus X⊥⊥V |Y . Consequently, X%⊥⊥V | /0 by weak transitivity2.
Likewise, X%⊥⊥W | /0 when assuming X%⊥⊥Z| /0. Then, X%⊥⊥V | /0 or X%⊥⊥W | /0 and, thus, X%⊥⊥VW | /0 by de-
composition. However, con(X ,VW | /0) does not hold in G.

At the beginning of this section, we have defined bas(M) as the set of dependencies X%⊥⊥Y |U \
(XY ) with X ,Y ∈ U. However, Theorems 5 and 6 remain valid if we redefine bas(M) as the set
of dependencies X%⊥⊥Y |MB(X)\Y with X ∈ U and Y ∈MB(X). A proof follows. Moreover, recall
from Section 2 that X and Y are adjacent in the MUI map ofM iff Y ∈MB(X).
Proof It suffices to prove that, when bas(M) consists of the dependencies in the first definition,
WTsep(G)

bas(M) includes the dependencies in the second definition, and vice versa. If X%⊥⊥Y |U \ (XY ),
then X%⊥⊥Y (U \ (XY )\ (MB(X)\Y ))|MB(X)\Y due to weak union. This together with sep(X ,U \
(XY ) \ (MB(X) \Y )|Y (MB(X) \Y )) implies X%⊥⊥Y |MB(X) \Y due to contraction1. On the other
hand, if X%⊥⊥Y |MB(X) \Y , then X%⊥⊥Y (U \ (XY ) \ (MB(X) \Y ))|MB(X) \Y due to decomposition.
This together with sep(X ,U \ (XY ) \ (MB(X) \Y )|Y (MB(X) \Y )) implies X%⊥⊥Y |U \ (XY ) due to
intersection.

It is proven in Becker et al. (2000) that if M is a WT graphoid whose MUI map is a forest G,
thenM is faithful to G. The soundness of con allows us to give an alternative proof of this result.
Proof Assume to the contrary that M is not faithful to G. Since G is the MUI map of M, the previ-
ous assumption is equivalent to assume that there exists three mutually disjoint subsets of U, say X,
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FirstPath(X ,Y,Z,L)

1 CreatePointers(L)
2 for each nodeW in L do
3 ifW ∈ Z then
4 C[W ] = 0
5 else
6 C[W ] = 1
7 P= /0
8 Push(X ,P)
9 C[X ] = 0
10 while P %= /0 and Top(P) %= Y do
11 W = NextAd j(Top(P),L)
12 ifW = /0 then
13 Pop(P)
14 else
15 ifC[W ] = 1 then
16 Push(W,P)
17 C[W ] = 0
18 return P

Table 1: FirstPath(X ,Y,Z,L).

Y and Z, such that X⊥⊥Y|Z is in M but sep(X,Y|Z) does not hold in G. However, if sep(X,Y|Z)
does not hold in G, then there must exist a path in G between some X1 ∈ X and Xn ∈ Y that is not
blocked by (X \X1)(Y \Xn)Z. Furthermore, since G is a forest, that must be the only path in G
between X1 and Xn that is not blocked by (X\X1)(Y\Xn)Z. Consequently, con(X,Y|Z) holds in G
and, thus, X%⊥⊥Y|Z is inM due to Theorem 5. This is a contradiction and, thus,M is faithful to G.

Finally, we note that the following graphical criterion, denoted bou here, for reading dependen-
cies from the MUI map G of a graphoid M is introduced in Bouckaert (1995): Let X, Y and Z
denote three mutually disjoint subsets of U, then bou(X,Y|Z) holds when there exist some X1 ∈ X
and Xn ∈ Y such that X1 ∈MB(Xn) and either MB(X1)\Xn ⊆ (X\X1)(Y\Xn)Z or MB(Xn)\X1 ⊆
(X\X1)(Y\Xn)Z. The criterion is proven to be sound and complete, where complete means that it
is able to identify all the dependencies inM that can be derived from bas(M) and sep(G) by apply-
ing the graphoid properties. It is clear that con identifies a superset of the dependencies identified
by bou when M satisfies weak transitivity. In such a case, then, con represents an advantage over
bou. As discussed in Section 3, there are important families of probability distributions that are
graphoids and satisfy weak transitivity.
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6. An Algorithm for Reading (In)Dependencies

In this section, we present an algorithm that jointly implements sep and con. We first describe in
Table 1 the algorithm FirstPath(X ,Y,Z,L) which returns a path in an UG G between X and Y that
is not blocked by Z, if such a path exists. We assume that G is represented as a set of adjacency
lists L, that is, each node in G has an associated ordered list containing the nodes that are adjacent
to it in G. In the algorithm, the function CreatePointers(L) creates a pointer for each adjacency
list in L. Each pointer points to the first element of the corresponding list. If the list is empty, the
pointer is NULL. The function NextAd j(W,L) returns the element that is pointed by the pointer
created by CreatePointers(L) for the adjacency list associated to the nodeW and, then, moves the
pointer to the next element in the list. If there is no next element, the pointer takes value NULL.
NextAd j(W,L) returns /0 if the pointer is NULL. In the algorithm, P is a stack storing the path
currently being explored. The function Top(P) returns the element on the top of P. The function
Pop(P) removes the element on the top of P from P. The function Push(W,P) adds the nodeW to
the top of P. Finally, C is an array containing a binary entry for each node in G indicating whether
the node should (1) or should not (0) be considered to extend P. The algorithm sets C[W ] to 0 iff
W is in Z orW was considered before and the algorithm already found a path from X toW that is
not blocked by Z (see lines 4 and 17). A node considered before should not be considered again
because either it is still in P or if it is not in P then it does not lead to Y . To see the latter point,
note that the algorithm works in a depth-first fashion: It extends P with a nodeW that is adjacent to
the top element of P ifW is not in the blocking set Z and has not been considered before (see lines
11, 15 and 16). When P cannot be extended further, the algorithm backtracks by removing the top
element of P from P and exploring an alternative extension (see lines 12 and 13). The algorithm
ends when P is empty, meaning that all the paths in G starting with X were explored and none of
them reached Y without visiting Z, or when the top element of P is Y , meaning that a path in G
between X and Y that is not blocked by Z was found and stored in P.

FirstPath(X ,Y,Z,L) is considered to run in at most O(e+n) time where e and n are the number
of edges and nodes in G, respectively. To see it, note that thanks to the use ofC each node is pushed
into P at most once. For each node V pushed into P, the algorithm performs as many iterations of
lines 10-17 as adjacent nodes V has plus one last iteration whenW = /0. These iterations need not
be consecutive. So, the number of iterations of lines 10-17 that the algorithm performs is bounded
from above by 2e+n. Additionally, the algorithm performs n iterations of lines 2-6 to initialize C.
As described in the paragraph above, CreatePointers(L) is considered to run in O(n) time whereas
any other operation or function in the algorithm is considered to run in O(1) time. Consequently,
FirstPath(X ,Y,Z,L) is considered to require at most O(e+n) time.

Recall from above that we assume that G is represented as a set of adjacency lists L and that
each of these lists is ordered. Let us now reverse the order of the elements in each of these lists and
let L′ denote the resulting set of adjacency lists. Our premise is that producing L′ from L takes O(e)
time. Obviously, L′ is also an adjacency list representation of G. However, FirstPath(X ,Y,Z,L)
and FirstPath(X ,Y,Z,L′) return the same path iff that is the only path in G between X and Y that
is not blocked by Z. We formally prove this assertion below, but first we give an example. Let
G, L and L′ be as shown in Table 2. Then, FirstPath(A,B, /0,L) returns the path A,B whereas
FirstPath(A,B, /0,L′) returns the path A,D,E,B.
Proof First, we introduce a total order for the paths between X and Y in G that are not blocked by
Z. For this purpose, we associate to each such path a sequence of length n− 1 of natural numbers
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A
B

C

D
E

Adjacency lists L

Node Adjacency list
A B, C, D
B A, C, E
C A, B
D A, E
E B, D

Adjacency lists L′

Node Adjacency list
A D, C, B
B E, C, A
C B, A
D E, A
E D, B

Table 2: Example where FirstPath(A,B, /0,L) and FirstPath(A,B, /0,L′) return different paths.

between 0 and n− 1, where n is the number of nodes in G. For a path X = X1, . . . ,Xk = Y , the
sequence is [o1, . . . ,ok−1,0, . . . ,0], where oi is the position of Xi+1 in the adjacency list associated to
Xi. We order the sequences lexicographically, which results in the desired order.

We now prove that if there exists a path between X and Y in G that is not blocked by Z, then
FirstPath(X ,Y,Z,L) returns the first such a path in the order described above. Let X = X1, . . . ,Xk =
Y denote the first such a path. It suffices to prove that at some point P contains (from the bottom to
the top) the nodes X1, . . . ,Xj for any 1≤ j ≤ k. We prove the result by induction over j.

The result is immediate for j = 1. Assume as induction hypothesis that the result holds for all
i< j. We now prove the result for j. By the induction hypothesis, at some point t, P contains (from
the bottom to the top) the nodes X1, . . .Xj−1. Pushing into P a node that is adjacent to Xj−1 and
appears before Xj in the adjacency list associated to Xj−1 cannot lead to a path between X1 and Xk,
because that would contradict the assumption that X = X1, . . . ,Xk = Y is the first path between X
and Y in G that is not blocked by Z. Therefore, the algorithm will eventually pop from P every
element pushed after time t and, then, Xj will be pushed into P.

Finally, note that if we reverse the order of the nodes in each adjacency list in L, then we
also reverse the order of the paths described above. Consequently, X = X1, . . . ,Xk = Y is the last
path in the order considered by FirstPath(X ,Y,Z,L′). Thus, FirstPath(X ,Y,Z,L′) does not return
X = X1, . . . ,Xk = Y unless that is the only path between X and Y in G that is not blocked by Z.

The algorithm that jointly implements sep and con is as follows. If FirstPath(X ,Y,(X\X)(Y\
X)Z,L) and FirstPath(X ,Y,(X \X)(Y \X)Z,L′) return the same path for some X ∈ X and Y ∈ Y,
then con(X,Y|Z). On the other hand, if FirstPath(X ,Y,(X \X)(Y \X)Z) returns no path for all
X ∈ X and Y ∈ Y, then sep(X,Y|Z). Finally, if neither of the two previous conditions is met, then
neither con(X,Y|Z) nor sep(X,Y|Z). The algorithm is considered to require at most O(n2(e+n))
time.

7. An Application to Bioinformatics

Our end-goal is to apply the results in this paper to our project on atherosclerosis gene expression
data analysis in order to learn dependencies between genes. We believe that it is not unrealistic
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to assume that the probability distribution underlying our data satisfies strict positivity and weak
transitivity and, thus, that it is a WT graphoid. We base this belief on the following argument. The
cell is the functional unit of all the organisms and includes all the information necessary to regulate
its function. This information is encoded in the DNA of the cell, which is divided into a set of genes,
each coding for one or more proteins. Proteins are required for practically all the functions in the
cell. The amount of protein produced depends on the expression level of the coding gene which, in
turn, depends on the amount of proteins produced by other genes. Therefore, a dynamic BN seems to
be a relatively accurate model of the cell: The nodes represent the genes and proteins, and the edges
and parameters represent the causal relations between the gene expression levels and the protein
amounts. As a matter of fact, dynamic BNs have become very popular models of gene networks
for the last few years (Bernard and Hartemink, 2005; Friedman et al., 1998; Husmeier, 2003; Kim
et al., 2003; Murphy and Mian, 1999; Ong et al., 2002; Perrin et al., 2003; Zou and Conzen, 2005).
It is important that the BN is dynamic because a gene can regulate some of its regulators and even
itself with some time delay. Since the technology for measuring the state of the protein nodes is not
widely available yet, the data in most projects on gene expression data analysis is a finite sample
of the probability distribution represented by the dynamic BN after marginalizing the protein nodes
out. The probability distribution with no node marginalized out is, in the measure-theoretic sense
discussed in Section 3, almost surely faithful to the dynamic BN (Meek, 1995) and, thus, it satisfies
weak transitivity (Pearl, 1988) and, thus, so does the probability distribution after marginalizing
the protein nodes out (see Theorem 2). The assumption that the probability distribution sampled
is strictly positive is justified because measuring the state of the gene nodes involves a series of
complex wet-lab and computer-assisted steps that introduces noise in the measurements (Sebastiani
et al., 2003). Obviously, the reasoning above can be extended to include any other molecules that,
in addition to proteins, regulate gene expression but are not measured.

In the rest of this section we focus on Gaussian graphical models (GGMs) of gene networks,
which have received increasing attention from the bioinformatics community as a means to gain
insight into gene networks (Castelo and Roverato, 2006; Dobra et al., 2004; Kishino and Waddell,
2000; Li and Gui, 2006; Schäfer and Strimmer, 2005a,b; Toh and Horimoto, 2002; Waddell and
Kishino, 2000; Wang et al., 2003; Wu et al., 2003). Assume that each random variable in U rep-
resents (the expression level of) a gene in the network under study. Assume also that U follows a
regular Gaussian probability distribution N (µ,&). This is a ubiquitous assumption in bioinformat-
ics. The GGM of the gene network is nothing else but the MUI map of N (µ,&) (Lauritzen, 1996;
Whittaker, 1990). Therefore, two genes X and Y are adjacent in the GGM iff X%⊥⊥Y |U \ (XY ) or,
equivalently, iff (&−1)XY %= 0 (Lauritzen, 1996). In practice, & is unknown and the only information
about it that is available is a finite sample from N (µ,&). The usual way of proceeding in practice
consists of two steps: First, estimating & from the sample and, then, making two genes adjacent in
the GGM iff the corresponding entry in the inverse of the estimate of & significantly differs from
zero. We refer the interested reader to the works cited above for different solutions to these two
steps. Recall that regular Gaussian probability distributions are WT graphoids and, thus, that the
results obtained in the previous sections of this paper apply to GGMs of gene networks.

The GGM of a gene network is a powerful tool for discovering gene independencies, because
sep is sound and complete (in the sense discussed in Section 4) for reading independencies from
it. However, bioinformaticians are typically more interested in discovering gene dependencies,
because these provide contexts in which the expression level of some genes is informative about
that of some other genes which, in some cases, can lead to hypothesize dependencies, functional
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Figure 4: Estrogen receptor pathway.
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relations, causal relations, the effects of manipulation experiments, etc. Thanks to con, which is
sound and complete (in the sense discussed in Section 5) for reading dependencies from the GGM
of a gene network, such a model is now a powerful tool for discovering gene dependencies too.
We illustrate this with a real world example. In Dobra et al. (2004), a GGM over 12558 nodes is
learnt from 158 breast cancer samples. Unfortunately, the GGM is neither reported in the paper
nor available from the authors. However, the authors do report in the paper the subgraph of the
GGM that is induced by some genes that are known to be related to the estrogen receptor (ER)
and TFF1 genes. ER is a transcription factor that plays a key role in breast cancer, and TFF1 is a
target of ER. This subgraph, depicted in Figure 4, suffices for our illustrative purposes. Note that
the graph in the figure is not necessarily the GGM over the nodes in the graph. It is also worth
mentioning that the nodes in the subgraph do not correspond to genes but to probe sets. A probe
set is a collection of probes designed to measure the abundance of a particular DNA sequence.
Since this sequence is for technical reasons usually shorter than that of a gene, a gene may have
several probe sets associated with it, each measuring the abundance of a different subsequence of
the gene. This aims at measuring gene expression more accurately. The following genes have
multiple probe sets (nodes) in Figure 4: ER (ESR1, HG3125-HT3301), MYB (U22376, MYBa,
MYBc, MYBd, MYBe, MYBf), AR (AR, ARa), c-MAF (MAF, MAFa), TFF3 (TFF3, TFF3a,
TFF3b), XBP (XBP1, XBP1a), and IGF1R (IGF1R, IGF1Ra). According to Dobra et al. (2004),
it is known that ER regulates TFF1, FOXA1 regulates TFF1, GATA3 possibly regulates TFF1, AR
regulates ER, MAF inhibits MYB, FOXF1 possibly interacts with ER, and AR regulates IGF1R.
Had these relations been unknown, we could have obtained principled clues about them by just
applying con to the subgraph in Figure 4. For instance, if U denotes all the 12558 probe sets
in the GGM, then con enables us to conclude that the following gene dependencies hold in the
underlying probability distribution: ER is conditionally dependent on TFF1 since con(HG3125-
HT3301, TFF1|U \ {HG3125-HT3301, U22376, MYBa, XBP1a, TFF3, TFF3b, TFF1}), FOXA1
is conditionally dependent on TFF1 since con(FOXA1, TFF1|U\{FOXA1, TFF3, TFF3b, TFF1}),
GATA3 is conditionally dependent on TFF1 since con(GATA3, TFF1|U \ {GATA3, CA12, TFF3,
TFF3b, TFF1}), AR is conditionally dependent on ER since con(AR, HG3125-HT3301|U \ {AR,
TFF3, CA12, MYBa, U22376, HG3125-HT3301}), MAF is conditionally dependent onMYB since
con(MAF, MYBa|U \ {MAF, FOXA1, TFF3, CA12, MYBa}), FOXF1 is conditionally dependent
on ER since con(FOXF1, HG3125-HT3301|U \ {FOXF1, MAFa, MAF, FOXA1, TFF3, CA12,
MYBa, U22376, HG3125-HT3301}), and AR is conditionally dependent on IGF1R since con(AR,
IGF1Ra|U \ {AR, TFF3, CA12, MYBa, U22376, IGF1Ra}). Furthermore, con also enables us to
conclude that X%⊥⊥Y |U\{X , U22376, Y} with X ,Y ∈ {MYBa, MYBc, MYBd, MYBe, MYBf} and
X %= Y , and that TFF3 %⊥⊥TFF3a |U \ {TFF3, TFF3b, TFF3a}. These dependencies make sense as
they are between different probe sets of the same gene. Note that none of the dependencies discussed
above was used in the construction of the GGM. Note also that each of the dependencies discussed
above involves a conditioning set of maximum size. It is very likely that these dependencies also
hold for smaller conditioning sets, but we cannot confirm this point without seeing the complete
GGM the subgraph in Figure 4 is part of which, as discussed above, is not available. In any case, it
is clear that con improves the current interpretation of GGMs of gene networks by allowing reading
biologically meaningful gene dependencies.
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8. Discussion

The MUI map G of an independence model M is typically used to identify independencies that
hold in M via vertex separation. However, lack of vertex separation in G does not necessarily im-
ply dependency in M. In this paper, we have studied when lack of vertex separation does imply
dependency. This should be relevant for those interested in graphical models, as it allows to infer
from MUI maps (i.e., without numerical calculation) not only independencies but also dependen-
cies. Specifically, in this paper we have introduced a graphical criterion called con for reading
dependencies from G when M is a WT graphoid, that is, a graphoid that satisfies weak transitivity.
Specifically, con(X,Y|Z) holds when there exist some X1 ∈ X and Xn ∈ Y such that there exists
exactly one path in G between X1 and Xn that is not blocked by (X\X1)(Y\Xn)Z. We have proven
that the criterion is sound and complete, where complete means that it is able to read all the depen-
dencies in M that can be derived by applying the WT graphoid properties to the dependencies used
in the construction of G and the independencies obtained fromG by vertex separation. Note that our
criterion remains inconclusive if there are several unblocked paths between any node in X and any
node in Y, though X and Y may be dependent given Z inM. However, we have shown in Section 5
that neither our criterion nor any other sound criterion can identify all the dependencies in M.

Note that our criterion is antimonotone in the following sense: If some edges are added to G
then some con statements may not longer hold, whereas if some edges are removed from G then
some new con statements may hold. This antimonotone property should be taken into account if one
is to remove ”weak” edges from G to make it sparser, because this may result in false dependencies
being identified. However, this has nothing to do with the correctness of our criterion, something
that we have proved, but with the fact that after removing ”weak” edges G is an approximation
to the true MUI map. One may consider to extend our work with a measure of confidence in the
dependencies identified by our criterion. Such a measure could be a function of the confidence in
the dependencies used in the construction of G. We have not pursued this idea further.

A work that is closely related to ours is Bouckaert (1995), which introduces the following graph-
ical criterion, denoted bou here, for reading dependencies from the MUI map G of a graphoid M:
bou(X,Y|Z) holds when there exist some X1 ∈ X and Xn ∈ Y such that X1 ∈ MB(Xn) and either
MB(X1)\Xn ⊆ (X\X1)(Y\Xn)Z orMB(Xn)\X1 ⊆ (X\X1)(Y\Xn)Z. In other words, bou(X,Y|Z)
holds when there exist two nodes, one in X and the other in Y, that are neighbors in G and, more-
over, the rest of the neighbors of one of them are among the rest of the nodes in the statement. The
criterion is proven to be sound and complete, where complete means that it is able to identify all
the dependencies in M that can be derived by applying the graphoid properties to the dependencies
used in the construction of G and the independencies obtained from G by vertex separation.

Although bou is tailored to the case where M is a graphoid, it can obviously be applied when
M is a WT graphoid. However, there are two main differences between bou and our criterion that
make the latter more powerful when M is a WT graphoid. First, our criterion does not require that
X1 is adjacent to Xn in G, that is, there can be a path of length greater than one between X1 and Xn.
Second, our criterion does not require than all the nodes adjacent to either X1 or Xn in G are among
XYZ, that is, all the paths between X1 and Xn but one can be blocked by nodes that are neither ad-
jacent to X1 nor Xn. Consequently, our criterion represents an advantage over bou when M is a WT
graphoid, as it allows us to identify a superset of the dependencies identified by bou. Interestingly,
WT graphoids are a rich subclass of graphoids, including any regular Gaussian distribution, any
probability distribution that is faithful to some UG or DAG, and all the marginals and conditionals
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of almost all the strictly positive discrete probability distributions that factorize according to a DAG.
We believe that these probability distributions are encountered in many applications and, thus, that
the work presented in this paper is of interest to the machine learning community. For instance, reg-
ular Gaussian distributions are ubiquitous. Likewise, it is rather usual to assume that the probability
distribution underlying the domain at hand is strictly positive and faithful to some DAG, though one
may be forced to work with a marginal of it because only a subset of the nodes in the DAG are
observable. The strict positivity assumptions is usually justified by measurement errors, whereas
the DAG faithfulness assumption is usually justified by the fact that many domains have a causality
structure. For a more concrete case example, recall our discussion on bioinformatics applications in
Section 7.

A problem that remains open is whether our criterion is complete in the sense that it identifies
all the dependencies shared by all the WT graphoids for which G is the MUI map. This is a problem
that we are currently studying though, as we have argued in Section 5, we incline to think that our
criterion only identifies a proper subset of those dependencies. To the best of our knowledge, there
has not been any attempt to solve this problem. As a matter of fact, one can think of an analogous
problem for bou and the graphoids for which G is the MUI map. However, such a problem is not
even mentioned in Bouckaert (1995).

Another problem we are currently working on is the development of a graphical criterion for
reading dependencies from the minimal directed independence maps of WT graphoids. As a first
step, we have derived such a criterion for the case where the minimal directed independence maps
are polytrees (Peña, 2007).

Finally, it is worth recalling that, as an intermediate step in the derivation of our criterion, we
have proved that for any UG G there exists a strictly positive discrete probability distribution that
is faithful to G for any sample spaces (with at least two possible states) of the random variables in
U. For any DAG, an analogous result follows from Meek (1995). Both results are subsumed by our
recent work in Peña (2009), which proves an analogous result for chain graphs. Note that such a
result is stronger than Theorem 7.2 in Studený and Bouckaert (1998), which proves the result for
some sample spaces (with at least two possible states) of the random variables in U but not for any
such sample spaces.
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Juliane Schäfer and Korbinian Strimmer. Learning large-scale graphical Gaussian models from ge-
nomic data. In Science of Complex Networks: From Biology to the Internet and WWW, 2005a.
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Abstract
We propose a novel framework for supervised learning of discrete concepts. Since the 1970’s,
the standard computational primitive has been to find the most consistent hypothesis in a given
complexity class. In contrast, in this paper we propose a new basic operation: for each pair of input
instances, count how many concepts of bounded complexity contain both of them.

Our approach maps instances to a Hilbert space, whose metric is induced by a universal kernel
coinciding with our computational primitive, and identifies concepts with half-spaces. We prove
that all concepts are linearly separable under this mapping. Hence, given a labeled sample and
an oracle for evaluating the universal kernel, we can efficiently compute a linear classifier (via
SVM, for example) and use margin bounds to control its generalization error. Even though exact
evaluation of the universal kernel may be infeasible, in various natural situations it is efficiently
approximable.

Though our approach is general, our main application is to regular languages. Our approach
presents a substantial departure from current learning paradigms and in particular yields a novel
method for learning this fundamental concept class. Unlike existing techniques, we make no struc-
tural assumptions on the corresponding unknown automata, the string distribution or the complete-
ness of the training set. Instead, given a labeled sample our algorithm outputs a classifier with
guaranteed distribution-free generalization bounds; to our knowledge, the proposed framework is
the only one capable of achieving the latter. Along the way, we touch upon several fundamental
questions in complexity, automata, and machine learning.
Keywords: grammar induction, regular language, finite state automaton, maximum margin hyper-
plane, kernel approximation

1. Introduction

We begin by describing the basic problem setting and outlining our approach.

1.1 Background

Perhaps the most fundamental problem in learning from labeled data is to construct a classifier with
guaranteed small generalization error. Typically, given labeled data there exists a nested sequence
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of candidate concept classes with increasing complexity. Of course, a classifier from a rich concept
class can easily achieve a low or even zero training error, but is likely to overfit the data and have a
poor generalization performance. Hence, a major challenge is to choose the hypothesis class with
appropriate complexity. This issue also arises in classical statistics, where it is known as the model
selection problem (Rissanen, 1989). In Vapnik (1982), the structural risk minimization (SRM)
principle was proposed to solve this problem, by quantifying the bias-variance tradeoff between fit
to the data and model complexity, as captured by the VC-dimension.

The basic computational primitive in the SRM framework is finding the most consistent hypoth-
esis in a given concept class. Although SRM resolves the information theoretic problem of model
selection, it offers no method for finding such a hypothesis. Moreover, for discrete concept classes,
finding this hypothesis may be infeasible, as this computational primitive typically requires solving
a hard combinatorial optimization problem.

An important instance of this scenario is the problem of learning a regular language from labeled
examples. Supervised language learning from examples is one of the most fundamental problems
in learning theory, and as such has fascinated philosophers, linguists, computer scientists and math-
ematicians as a quintessential problem of induction. Insofar as the PAC model (Valiant, 1984) is a
natural formalization of learning and the regular languages are the simplest nontrivial class of for-
mal languages, the vast amount of literature devoted to learning regular languages is well justified
(see Rivest and Schapire 1987 and de la Higuera 2005 and the references therein).

Applying the standard SRM principle to learning a regular language requires finding the smallest
automaton consistent with the given labeled sample. However, it was realized early on that this task
is computationally very difficult. Finding the smallest automaton consistent with a set of accepted
and rejected strings was shown to be NP-complete by Angluin (1978) and Gold (1978); this was
further strengthened in the hardness of approximation result of Pitt and Warmuth (1993), where it
was proven that even finding a DFA with a number of states polynomial in the number of states of
the minimum solution is NP-complete.

To make matters worse, it turns out that under cryptographic assumptions the class of regular
languages is inherently hard to learn, regardless of representation. Thus, assuming the average-case
difficulty of the Discrete Cube Root problem, Theorem 7.6 of Kearns and Vazirani (1997) shows
how to construct small automata over {0,1} and distributions over {0,1}n for which it is intractable
to discover a hypothesis with error less than 1/2− 1/p(n), for any fixed polynomial p. A similar
construction shows that this task is also at least as hard as factoring.

Nevertheless, a number of positive learnability results were obtained under various restricted
settings. Trakhtenbrot and Barzdin (1973) showed that the smallest finite automaton consistent with
the input data can be learned exactly from a complete sample of all strings up to a given length.
The worst case complexity of their algorithm is exponential in automaton size, but a better average-
case complexity can be obtained assuming that the topology and the labeling are selected randomly
or even that the topology is selected adversarially (Freund et al., 1993). In a different model of
learnability—“identification in the limit” (Gold, 1967)—positive results were obtained for the k-
reversible languages (Angluin, 1982) and subsequential transducers (Oncina et al., 1993). Some
restricted classes of probabilistic automata such as acyclic probabilistic automata were also shown
to be efficiently learnable by Ron et al. (1998). In a modified model of PAC, and with additional
language complexity constraints, Clark and Thollard (2004) showed a class of probabilistic finite
state automata to be learnable; see also literature review therein.
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In light of the strong negative results mentioned above, the prevailing paradigm in formal lan-
guage learning has been to make structural regularity assumptions about the family of languages
and/or the sampling distribution in question and to employ a state-merging heuristic. Indeed, over
the years a number of clever and sophisticated combinatorial approaches have been proposed for
learning DFAs. Typically, an initial automaton or prefix tree consistent with the sample is first
created. Then, starting with the trivial partition with one state per equivalence class, classes are
merged while preserving an invariant congruence property. The automaton learned is obtained by
merging states according to the resulting classes. Thus, the choice of the congruence determines the
algorithm and generalization bounds are obtained from the structural regularity assumptions. This
rough summary broadly characterizes the techniques of Angluin (1982); Oncina and Garcia (1992);
Ron et al. (1998); Clark and Thollard (2004) and until recently, this appears to have been the only
general-purpose technique available for learning finite automata.

Finally, despite the fact that the problems of inducing a regular language, and specifically find-
ing the smallest automaton consistent with a given sample were proven to be theoretically compu-
tationally hard, in recent years various heuristic search methods have been developed with reported
considerable success in solving these problems for moderately sized DFAs, see for example Lang
(1992), and Oliveira and Silva (2001) and Bugalho and Oliveira (2005). Of course, these heuris-
tic methods find some automaton consistent with the given sample, but provide no generalization
bounds on its expected performance on new samples.

1.2 Learning Languages Via Hyperplanes

In this paper we propose a novel framework for learning a regular language from a finite sample
of positive and negative labeled strings. Rather than attempting to find a single small consistent
automaton, we embed the strings in a Hilbert space and compute a maximum margin hyperplane,
which becomes our classifier for new strings. Hence, we effectively convert a difficult combinatorial
problem into a (high dimensional) geometric one, amenable to efficient techniques using linear
algebra and convex optimization. In particular, our resulting classifier is a linear combination of
potentially smaller automata, each of which is typically not consistent with the training data.

Since the advent of Support Vector Machines (SVMs), maximum margin classifiers have flour-
ished in the machine learning community (Schölkopf and Smola, 2002). Within the context of gram-
matical inference, the first work to apply this methodology was Kontorovich et al. (2006), where a
kernel was used to learn a specific family of regular languages (the piecewise-testable ones). The
authors embed the set of all strings onto a high-dimensional space and achieve language induction
by constructing a maximum-margin hyperplane. This hinges on every language in a family of inter-
est being linearly separable under the embedding, and on the efficient computability of the kernel.
This line of research is continued in Cortes et al. (2007), where linear separability properties of
rational kernels are investigated.

In this paper, we build upon the approach suggested in Kontorovich (2007), where a universal
kernel is given that renders all regular languages linearly separable. We prove that any linearly sep-
arable language necessarily has a positive margin, so standard margin-based generalization guar-
antees apply. A by-product of this result is a novel characterization of the regular languages as
precisely those that are linearly separable under our kernel. A drawback of this kernel is that a
brute-force computation is infeasible, while an efficient one is currently unknown (and conjectured
not to exist unless P= #P). However, we propose a simple randomized scheme for efficiently obtain-
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ing an !-approximation to our universal kernel. We show that the approximate kernel preserves the
distances with low distortion, and therefore may be used as a surrogate for the original one. Random
sampling of embedding features to evaluate otherwise intractable kernels seems to first have been
employed in Kontorovich (2007); Rahimi and Recht (2007) used a similar idea in a somewhat dif-
ferent setting. Also related are the approaches of Garg et al. (2002) and Balcan et al. (2006), where
classifiers and their generalization performance are computed based on low-dimensional random
projections. Note the marked difference between our method and theirs: we take a random subset
of the embedding features as opposed to projecting the embedding space onto a random subspace;
in fact, the setting we consider does not seem to allow the use of random projections. Also, note
that in general, projecting the sample onto a low-dimensional subspace does not guarantee linear
separability; a somewhat delicate margin analysis is needed, as described in Section 5.

From a practical standpoint, our resulting classifier is the sign of a weighted linear combination
of possibly many random DFAs. The fact that a complicated DFA with many states may be written
as a weighted sum of much simpler DFAs is illustrated below and provides additional motivation for
our approach. Our methodology is intimately connected to boosting (see, for example, Bartlett et al.
1998), since our resulting classifier can also be viewed as a weighted sum of weak classifiers—
each being one of the random DFAs. Furthermore, our approach has a natural interpretation in
the structural risk minimization (SRM) framework, where we trade the computational problem of
finding a small consistent hypothesis for the problem of counting the number of small concepts
accepting a given instance. The advantage of the latter is that it admits an efficient approximation
in many cases of interest, including the case of DFAs.

In summary, our proposed algorithm is efficient, simple to implement, comes with strong the-
oretical guarantees, and readily generalizes to many other learning settings, such as context-free
languages. We also present preliminary empirical results as a proof of concept. To our knowl-
edge, the framework we propose is the only one capable of inducing unrestricted regular languages
from labeled samples, without imposing additional structural assumptions—modulo standard cryp-
tographic limitations. Some of the results in this paper first appeared in the conference version
(Kontorovich, 2007).

1.3 Outline of Paper

This paper is organized as follows. In Section 2 we set down the notation and definitions used
throughout the paper. The notion of linearly separable concept classes is defined in Section 3, and
a general theorem regarding their existence via a canonical embedding is proved in Section 4. In
Section 5, the universal kernel oracle is used to obtain an efficient generic learning algorithm, and
in Section 6 an efficient approximation scheme is given for computing the universal kernel, with a
corresponding learning algorithm. In Section 7, these results are applied to the case of the regular
languages, with some experimental results presented in Section 8. Some inherent limitations of such
kernel-based techniques are discussed in Section 9, and concluding remarks are made in Section 10.

2. Preliminaries

We refer the reader to Kearns and Vazirani (1997) for standard learning-theoretic definitions such as
instance space and concept class. We likewise use standard set-theoretic terminology, with |·| de-
noting set cardinalities and {·} representing the 0-1 truth value of the predicate inside the brackets.
We blur the distinctions between subsets c⊂ X and binary functions c : X → {0,1}; when we wish
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to make the distinction explicit, we will use a {±1}-valued characteristic function:

"c(x) := 2 {x∈c}−1.

Recall that if A and B are two sets, BA represents the collection of all functions from A to B. For
countable sets A, we will consider the vector space RA and often index x ∈ RA by elements of A as
opposed to by the naturals. For example, for x,y ∈ RA, we define their inner product as

〈x,y〉 = #
a∈A

[x]a[y]a,

whenever the latter sum is well-defined. Square brackets may be omitted from the indexing notation
for readability.

For any x ∈ RN, we define its support to be the set of its nonzero coordinates:

supp(x) = {i ∈ N : xi (= 0}.

We define the quasinorm ‖·‖0 to be the number of the nonzero coordinates:

‖x‖0 = |supp(x)| ,

and the standard !2 norm by ‖x‖22 = 〈x,x〉.
IfV1 andV2 are two inner product spaces over R, we define their direct product V1⊗V2 to be the

vector space

V1⊗V2 = {(x,y) : x ∈V1,y ∈V2}

which naturally inherits vector addition and scalar multiplication from V1 and V2, and whose inner
product is defined by

〈

(x,y),(x′,y′)
〉

=
〈

x,x′
〉

+
〈

y,y′
〉

.

We will also write (x,y) ∈V1⊗V2 as x⊗ y. Note that ‖x⊗ y‖0 = ‖x‖0+‖y‖0.

3. Linearly Separable Concept Classes

Our main results are actually quite general and most of themmake no use of the properties of regular
languages and automata. The only property we use is the countability of the instance space X and
of the concept class C . Henceforth, X and C are always assumed to be (at most) countable, unless
noted otherwise. Let C be a concept class defined over an instance space X ; thus, C ⊆ 2X . Any
c ∈ C is thus a classifier or a function that induces a {0,1} labeling on the instance space X . Note
that a concept c ⊂ X may contain infinitely many instances, and an instance x ∈ X may belong to
an infinite number of concepts.

We will say that a concept c ∈ C is finitely linearly separable if there exists a mapping $ : X →
{0,1}N and a weight vector w ∈ RN, both with finite support, that is, ‖w‖0 < % and ‖$(x)‖0 < %
for all x ∈ X , such that

c= {x ∈ X : 〈w,$(x)〉 > 0}.
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The concept class C is said to be finitely linearly separable if all c∈ C are finitely linearly separable
under the same mapping $.

Note that the condition ‖$(·)‖0 < % is important; otherwise, we could define the embedding by
concept $ : X → {0,1}C

[$(x)]c = {x∈c}, c ∈ C

and for any target ĉ ∈ C ,

[w]c = {c=ĉ}.

This construction trivially ensures that

〈w,$(x)〉 = {x∈ĉ}, x ∈ X ,

but may not satisfy ‖$(·)‖0 < % since certain x ∈ X may belong to an infinite number of concepts.
Similarly, we disallow ‖w‖0 =% due to the algorithmic impossibility of storing infinitely many

numbers and also because it leads to the trivial construction, via embedding by instance $ : X →
{0,1}X

[$(x)]u = {x=u}, u ∈ X ,

whereby for any target ĉ ∈ C , the corresponding vector

[w]u = {u∈ĉ}

ensures 〈w,$(x)〉 = {x∈ĉ} without doing anything interesting or useful.
An additional important reason to insist on finite linear separability is that it ensures that for each

c ∈ C there is a “separability dimension” D(c) <% such that c is linearly separable in {0,1}D(c) un-
der $ (in particular, if w defines a separating hyperplane for c then D(c) ≤ ‖w‖0). Now any linearly
separable partition of {0,1}D must necessarily be separable with a strictly positive margin; this is
true on any discrete finite space (but false in {0,1}%). The latter in turn provides generalization
guarantees, as spelled out in Section 5. Finally, any embedding $ induces a kernel K via

K(x,y) = 〈$(x),$(y)〉 (1)

for x,y ∈ X . The finite support of $ automatically guarantees that K is everywhere well-defined;
otherwise, additional assumptions are needed.

In light of the discussion above, from now on the only kind of linear separability we shall
consider is in the strong sense defined above, where both the embedding $(·) and the hyperplane
vector w have finite support. The modifiers “countable” (for instance spaces and concept classes),
“finitely” (for linear separability) and “finite support” (for embeddings and hyperplanes) will be
implicitly assumed throughout. Since an embedding $ : X → {0,1}N induces a kernel K as in (1),
and any positive definite1 kernel K : X 2 → R induces an embedding $ : X → {0,1}X via

$(x) = K(x, ·)

(see Schölkopf and Smola 2002), we shall speak of linear separability by $ or by K interchangeably,
as dictated by convenience.

An immediate question is whether, under our conventions, every concept class is linearly sep-
arable. A construction of the requisite $ given any X and C would provide a positive answer; an
example of X and C for which no such embedding exists would resolve the question negatively.
1. In the sense that for any finite set {xi ∈ X : 1≤ i≤m}, the m×m matrix G= (gi j) given by gi j = K(xi,x j) is always
positive definite.
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4. Every Concept Class is Linearly Separable

The question raised in Section 3 turns out to have an affirmative answer, as we prove in the following
theorem.

Theorem 1 Every countable concept class C over a countable instance space X is finitely linearly
separable.

Proof We present a constructive proof, by describing an explicit mapping $ : X → {0,1}N under
which all concepts c ∈ C are finitely linearly separable. Recall that both the embedding by con-
cept and embedding by instance, described in the previous section, rendered all concepts linearly
separable, but were possibly not finitely supported. Hence, the “trick” in our construction is the
introduction of size functions that measure the complexity of both individual instances and individ-
ual concepts, thus providing a notion of capacity control and adaptive regularization, and leading to
finite separability.

We thus begin by defining the notion of a size function f : A → N, mapping any countable set
A to the naturals. We require a size function to have finite level sets:

∣

∣ f−1(n)
∣

∣ < %, ∀n ∈ N.

In words, f assigns at most finitely many elements of A to any fixed size. Any countable A has
such a size function (in fact, there are infinitely many size functions on A). We denote by |·| and
‖·‖ some fixed choices of size functions on X and C , respectively.

Recall that our goal is to construct an embedding $ :X → {0,1}N with ‖$(x)‖0 <% for all x∈X

such that for all c ∈ C there is a w= w(c) ∈ RN with ‖w‖0 < % such that

c= {x ∈ X : 〈w,$(x)〉 > 0}.

We will construct the requisite canonical embedding $ as the direct product of two auxiliary
embeddings, & and ',

$(x) = &(x)⊗'(x). (2)

First, we define the embedding by instance & : X → {0,1}X by

[&(x)]u = {u=x}, u ∈ X ;

obviously, ‖&(x)‖0 = 1 for all x ∈ X (recall our vector-indexing conventions, set down in Section
2). Second, using the size function as notion of complexity, we define a regularized embedding by
concept ' : X → {0,1}C by

['(x)]c = {x∈c} {‖c‖≤|x|}, c ∈ C ; (3)

since size functions have finite level sets, in contrast to the standard embedding by concept, we have
‖'(x)‖0 < % for any x ∈ X .

We now show that the embedding (2) renders all concepts c ∈ C finitely linearly separable, by
explicitly constructing hyperplane vectors w& ∈ RX and w' ∈ RC corresponding to the mappings &
and ', respectively. To this end, it is helpful to keep in mind the dual roles of X and C .

Pick any ĉ ∈C. Since the embedding & involved no regularization, we introduce a complexity
restriction in the corresponding hyperplane vector w& ∈ RX as follows

[w&]u = {u∈ĉ} {|u|<‖ĉ‖}, u ∈ X ;
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since size functions have finite level sets, we have ‖w&‖0 < %. Thus,

〈w&,&(x)〉 = #
u∈X

[w&]u[&(x)]u

= #
u∈X

{u∈ĉ} {|u|<‖ĉ‖} {x=u}

= {x∈ĉ} {|x|<‖ĉ‖}. (4)

For the second embedding ', no further regularization is needed, and we define its corresponding
hyperplane vector w' ∈ RC by

[w']c = {c=ĉ}, c ∈ C ;

note that
∥

∥w'
∥

∥

0 = 1. Now
〈

w','(x)
〉

= #
c∈C

[w']c['(x)]c

= #
c∈C

{c=ĉ} {x∈c} {‖c‖≤|x|}

= {x∈ĉ} {|x|≥‖ĉ‖}. (5)

Since $ is the direct product of the two embeddings & and ', the corresponding hyperplane is
the direct product of the two hyperplanes:

w= w&⊗w'.

Note that by construction, both $ and w are finite:

‖$(x)‖0 = ‖&(x)‖0+‖'(x)‖0 < % and ‖w‖0 = ‖w&‖0+‖w'‖0 < %.

Combining (4) and (5), we get

〈w,$(x)〉 = 〈w&,&(x)〉+
〈

w','(x)
〉

= {x∈ĉ} {|x|<‖ĉ‖} + {x∈ĉ} {|x|≥‖ĉ‖}

= {x∈ĉ}

which shows that w is indeed a linear separator (with finite support) for ĉ.

Next, we observe that linearly separable concepts may be described by finitely many instances,
via the following “representer theorem”. Note that this result holds for any separating embedding—
not just the canonical one constructed in Theorem 1.

Theorem 2 If a concept class C over an instance space X is linearly separable under $ (equiva-
lently, under the induced kernel K(x,y) = 〈$(x),$(y)〉), there are si ∈ X and &i ∈ R, i = 1, . . . ,m,
such that

c =

{

x ∈ X :
m

#
i=1

&iK(si,x) > 0

}

.
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Proof Suppose a concept c ∈ C is linearly separable with vector w, that is, c= {x ∈ X : 〈w,$(x)〉>
0}. It follows that c is also separable under the finite dimensional embedding $D : X → {0,1}D
where D=max{i : wi (= 0} and $D is the truncation of $ by D:

[$D(x)]i = [$(x)]i, i= 1, . . . ,D.

Define the equivalence relation ≡D on X via

x≡D y ⇔ $D(x) = $D(y)

and notice that ≡D partitions X into finitely many equivalence classes. Let x1,x2, . . . ,xm be chosen
arbitrarily, one from each equivalence class, and define yi := "c(xi). Let w′ be the maximum-margin
hyperplane for the labeled sample (xi,yi)mi=1 (see (9) for the definition of margin). This construction
ensures that w′ is a linear separator for c. By the representer theorem of Kimeldorf and Wahba
(1971), it follows that w′ admits a representation of the form

w′ =
m

#
i=1

&i$(xi),

and the claim follows.

A few remarks regarding Theorem 1 are in order. First, note that the construction of the canon-
ical embedding depends on the choice of the size functions |·| and ‖·‖ on X and C . These size
functions induce a natural notion of complexity for instances x ∈ X and concepts c ∈ C . Hence, our
construction has analogies to various settings where classifier complexity can adaptively grow with
the sample, such as structural risk minimization (SRM) in machine learning (Vapnik, 1982), and
minimum description length (MDL) and other information theoretic criteria in statistics (Rissanen,
1989). We shall have more to say about SRM in particular, below.

Observe that any nondecreasing transformation f :N→N of a size function |·| produces another
valid size function |x|′ := f (|x|). These affect the embedding in the following way. Consider a
canonical embedding $ induced by (|·| ,‖·‖), and consider a transformed embedding $′ induced by
( f (|·|),‖·‖). If f is a very rapidly growing function then the truncation in (3) becomes ineffective,
and in the limit of f (·) ≡ %, $′ essentially becomes a pure embedding by concept. In the other
extreme of a very slowly increasing f , the truncation in (3) becomes too restrictive. In the limit of
f (·) ≡ const, $′ effectively becomes an embedding by instance.
A final note is that the separability result does not preclude the trivial scenario where the only

coordinate separating a concept is the concept itself. To parse the last statement, recall that Theorem
1 states that under the canonical embedding, for each concept c ∈ C there is a finite N = N(c) such
that c is separable in {0,1}N . However, it may be the case that the separator w is trivial, in the sense
that wi ≡ {i=c}. In other words, the separability result implies that for each c ∈ C there is a finite
collection of {ci ∈ C : ‖ci‖ ≤ ‖c‖ ,1≤ i≤ m} with coefficients &i ∈ R such that

c =
m

#
i=1

&ici, (6)

where the relation above is symbolic shorthand for the statement that

c = {x ∈ X :
m

#
i=1

&i {x∈ci} > 0}.
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When a relation of type (6) holds, we say that c is linearly decomposable into the concepts {ci}.
No claims of uniqueness are made, and certainly any concept c is trivially decomposable into the
singleton {c}. However, in many situations, concepts indeed decompose. As a simple example,
define the concept c10 to be the set of all binary numbers, written as strings in {0,1}∗, divisible by
ten, and define c1, c2 and c5 analogously. Then it is straightforward to verify that

c10 = c2+ c5− c1,

in the sense of (6), since a number is divisible by 10 iff it is divisible by both 2 and 5.
As far as implications for learnability, Theorem 1 is most relevant when the target concept is

linearly decomposable into a small collection of simpler concepts, as illustrated in the last example.
In such cases, our approach can offer a substantial advantage over existing methods.

We may formalize the latter observation as a “universal learnability” theorem:

Theorem 3 Let C be a concept class over X , both countable, with size functions ‖·‖ and |·|, respec-
tively. Define the family of kernels:

Kn(x,y) = #
c:‖c‖≤n

{x∈c} {y∈c} (7)

for n∈N. Then, given an oracle for computing Kn, we can efficiently learn C from labeled examples.
More explicitly, let c∈C be a fixed concept, and let S be a sequence of m instances independently

sampled from an arbitrary distribution P, and labeled according to c.
There is an efficient algorithm UnivLearn, which inputs a labeled sample and outputs a classi-

fier f̂ : X → {−1,1} which, with probability at least 1−(, achieves a small generalization error:

P{ f̂ (x) (= "c(x)} ≤
2
m

(R(c) log(8em) log(32m)+ log(8m/()) , for m≥ )−1(‖c‖),

(8)

where R(c) does not depend on the distribution P and ),)−1 :N→N are fixed monotone increasing
functions with polynomial growth.

We defer the proof of Theorem 3 to Section 5, as it requires some preliminary definitions and
results. The regularization function ) is chosen by the learner and represents his desired tradeoff
between computational complexity and generalization error; this is further elucidated in Remark 7.
We stress that the size of the target concept, ‖c‖, is unknown to the learner—otherwise regularization
would not be necessary. Finally, Remarks 4 and 5 below point out the non-trivial nature of Theorem
3; we are not aware of any way to obtain it as an immediate corollary of known results.

Remark 4 We emphasize that the bound in Theorem 3 is distribution-free and recall that a
distribution-dependent “learning” bound is trivial to obtain. Define f̂ to be the rote memorizer:
f̂ (x) = y(x) if the example x appears in the sample S with label y and f̂ (x) = −1 otherwise. In this
case, we have

P{ f̂ (x) (= "c(x)}≤ P(x /∈ S) = P(X \S),

and the latter quantity clearly tends to 0 as m → %. All this bound says is that when we have
observed a large enough portion of the world, we can be sure that most test examples will simply
be recycled training examples. However, for any concept containing infinitely many instances, one
can find an adversarial distribution P so that P(X \S) will tend to zero arbitrarily slowly.
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Remark 5 The dependence of the required number of samples on the unknown concept c in the
generalization bound (8) is inevitable whenever C has infinite VC-dimension. As a simple example,
note that to learn an n-state DFA, one needs to observe at least n strings (at least one string ending
at each state).

5. Margin Bounds

In this section, we recall some classic margin bounds and their implications for learnability. Let C
be a concept class over the instance space X . Suppose there is some family of embeddings $d : X →
{0,1}Nd ; at this point, we assume nothing about the relationship between {$d} and C . Let S⊂ X be
a finite sample with labelsY ∈ {−1,1}S consistent with some c∈C , that is,Yx = "c(x) = 2 {x∈c}−1
for all x ∈ S.

We define the sample margin of (S,Y ) under $d as follows:

*̂d(S,Y ) := sup
w∈B(Nd)

min
x∈S

Yx 〈w,$d(x)〉 (9)

where B(k) := {x ∈ Rk : ‖x‖2 ≤ 1}. The sample radius of S under $d is defined to be

+̂d(S) := max
x∈S

‖$d(x)‖2 .

Analogously, define the intrinsic margin of c under $d to be

*d(c) = sup
w∈B(Nd)

inf
x∈X

"c(x)〈w,$d(x)〉

and the radius of $d to be

+d = sup
x∈X

‖$d(x)‖2 .

The case where *d or *̂d is negative is not excluded; it arises when $d fails to separate the given
concept or sample. Note that since for A ⊂ B, we have infA f ≥ infB f and supA f ≤ supB f , the
relation S⊂ X implies that

*̂d(S,Y ) ≥ *d(c) and +̂d(S) ≤ +d . (10)

The following theorem is a slight rewording of Shawe-Taylor et al. (1998, Theorem 4.5):

Theorem 6 (Shawe-Taylor et al. 1998) Suppose m instances are drawn independently from a dis-
tribution whose support is contained in a ball in Rn centered at the origin, of radius +. If we
succeed in correctly classifying all of them by a hyperplane through the origin with margin *, then
with confidence 1−( the generalization error will be bounded from above by

2
m

(R log(8em/R) log(32m)+ log(8m/()) , (11)

where R= R(+,*) =
⌊

577+2/*2
⌋

.
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We are now in a position to prove the “universal learnability” theorem:
Proof [of Theorem 3] Recall that (S,Y ) is our finite labeled sample consistent with some unknown
target concept c. For each n∈N, let $n : X → {0,1}Nn be the embedding associated with Kn, defined
in (7), where

Nn = |Cn| = |{c ∈ C : ‖c‖ ≤ n}|.

Let the margins *n(c), *̂n(S,Y ) and radii +n, +̂n(S) be as defined above. Define the normalized
margins

,n(c) :=
*n(c)
+n

, and ,̂n(S,Y ) :=
*̂n(S,Y )

+̂n(S)
.

Additionally, define n0 = n0(c) to be the smallest n for which Kn linearly separates c:

n0(c) :=min{n ∈ N : *n(c) > 0} (12)

and define

,0(c) := ,n0(c)(c).

The algorithm UnivLearn requires some fixed monotone increasing function ) : N → N, as
mentioned in the statement of the theorem (for a concrete choice, one may take )(m) =

⌈

m1/2
⌉

).
Recall the theorem’s condition that m≥ )−1(‖c‖) which (by Theorem 1) implies that K)(m) indeed
separates the unknown concept c. The algorithm proceeds by computing the normalized sample
margins ,̂n(S,Y ) for n= 1, . . . ,)(m) and sets

,̂∗(S,Y ) :=max{,̂n(S,Y ) : 1≤ n≤ )(m), *̂n(S,Y ) > 0}

with corresponding n∗ ∈ {1, . . . ,)(m)}. The condition m ≥ )−1(‖c‖) ensures that the latter is well
defined.

By (10) we have that ,̂n(S,Y ) ≥ ,n(c) for all {n ∈ N : *n(c) > 0}. In addition, the condition
m≥ )−1(‖c‖) combined with Theorem 1 ensure that

n0(c) ≤ ‖c‖ ≤ )(m).

Therefore, we have

,̂∗(S,Y ) ≥ ,0(c). (13)

The classifier f̂ : X → {−1,1} which UnivLearn outputs is the maximum-margin hyperplane
under the embedding $n∗ . It follows from Theorem 6 that the bound in (8) holds with R(c) =
⌊

577/,0(c)2
⌋

. Note that in (8) we have opted for a slightly coarser but simpler bounds.

Remark 7 To explain the role of the function )(m), let us attempt to simplify the algorithm UnivLearn.
Recall the definition of n0 in (12), and define n̂0 to be the first n for which we perfectly classify the
training set, that is, n̂0 =minn{*̂n(S,Y ) > 0} and let ,̂0(S,Y ) := ,̂n̂0(S,Y ). If it were the case that

,̂0(S,Y ) ≥ ,0(c), (14)
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then the maximum-margin classifier f̂ corresponding to $n̂0 would satisfy the desired bound in (8).
Unfortunately, the assertion in (14) is generally false, since it is possible for a small sample to be
separable under Kn with n < n0 and margin *̂n(S,Y ) 4 *n0(c). Because of this potentially very
small margin, stopping prematurely at this n would render our theorem false. There seems to be no
way around requiring the learner to try every n ∈ N. To make the algorithm terminate in finite time
for each given sample, we cut off the search at n = )(m). Note that the theorem is only claimed
to hold for sufficiently large sample sizes (namely, m ≥ )−1(‖c‖))—but this is a feature of many
bounds, especially where the complexity of the target concept is unknown (cf. Theorem 8). Since
) is a monotonically increasing function, we are guaranteed that eventually the sample size m will
attain )−1(‖c‖), which is what the claim in (13) hinges upon. If ) grows too quickly (say, )(·) =
-(exp(·))), the algorithm will take too long to run. If ) grows too slowly (say, )(·) =O(log(·))), the
generalization bound will only hold for huge sample sizes. The suggested rate of )(m) =

⌈

m1/2
⌉

)
seems a reasonable compromise.

Theorem 3 has a natural interpretation in the structural risk minimization (SRM) framework
(Vapnik, 1982). Let us quote a well-known result, as it appears in Shawe-Taylor et al. (1996); for
a detailed discussion of VC-dimension, see Vapnik’s books (Vapnik, 1982, 1998) or any standard
reference on learning theory such as Kearns and Vazirani (1997).

Theorem 8 (Shawe-Taylor et al. 1996) Let Hi, i = 1,2, . . . be a sequence of hypothesis classes
mapping X to {0,1} such that VCdim(Hi) = i and let P be a probability distribution on X . Let pd
be any set of positive numbers satisfying #%

d=1 pd = 1. With probability 1− ( over m independent
examples drawn according to P, for any d for which the learner finds a consistent hypothesis h in
Hd, the generalization error of h is bounded above by

!(m,d,() =
4
m

(

d log
(

2em
d

)

+ log
(

1
pd

)

+ log
(

4
(

))

,

provided m≥ d.

As a concrete choice of pd , one may always take pd = 2−d . Viewing Theorems 3 and 8 through
a computational lens, the two approaches may be contrasted by their “computational primitives”.
The SRM approach requires one to find a consistent hypothesis in a given complexity class (if one
exists). Whenever the latter problem is efficiently solvable, SRM is quite satisfactory as a learning
paradigm. In many interesting cases, however, the latter problem is intractable—as is the case
for DFAs, for example (see Introduction). Our approach in Theorem 3 is to consider a different
computational primitive—namely, the generic kernel

Kn(x,y) = |{c ∈ C : ‖c‖ ≤ n,x ∈ c,y ∈ c}| .

The margin-based bound may be significantly sharper than the generic SRM bound since it is sen-
sitive to the target concept and its intrinsic margin. Additionally, the SRM bound is not directly
applicable to our setting since the VC-dimension of linear combinations of functions may grow lin-
early with the number of terms (Anthony and Bartlett, 1999). The roles of ) in Theorem 3 and {pd}
in Theorem 8 are analogous in that both encode a prior belief regarding hypothesis complexity.

The performance of UnivLearn is readily quantified:
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Corollary 9 If a labeled sample of size m is consistent with some concept c ∈ C , and there is an
oracle for computing Kn(x,y) in time O(1), then there is an algorithm with running time O(m2)(m))
that achieves, with probability 1−(, a generalization error of at most

2
m

(R(c) log(8em) log(32m)+ log(8m/()) ,

for m≥ )−1(‖c‖).

Proof Using the oracle, the nth Gram matrix, defined by (Gn)i j = Kn(xi,x j), for xi,x j ∈ S, is com-
putable in time O(m2). For a given Gram matrix, the margin may be computed in time O(m) by a
primal algorithm such as Pegasos (Shalev-Shwartz et al., 2007). The different Gram matrices and
margins are computed )(m) times.

Of course, at this point we have simply traded the generally intractable problem of finding a
consistent h ∈ Hd for the problem of evaluating Kn(x,y). The latter is unlikely to have an efficient
solution in general, and may well be intractable in many cases of interest. However, as we shall see
below, under natural assumptions Kn admits an efficient stochastic approximation K̃n and Corollary
9 has a suitable extension in terms of K̃n.

6. Approximating Kn
In the previous section we showed that the generic kernel family Kn renders all concepts c ∈ C

linearly separable. However, exact evaluation of this kernel involves the summation in (7), which
may contain a super-exponential number of terms. For example, a natural size function on DFAs
is the number of states. Since the VC-dimension of n-state DFAs is .(n logn) (Ishigami and Tani,
1997), there are 2.(n logn) such concepts. Hence, a direct brute-force evaluation of the corresponding
Kn is out of the question. Though we consider the complexity of computing Kn for DFAs to be a
likely candidate for #P-complete, we have no proof of this; there is also the possibility that some
symmetry in the problem will enable a clever efficient computation.

Instead, we propose an efficient randomized approximation to the generic Kn. All we require
are oracles for computing |Cn| and for uniform sampling from Cn, where

Cn := {c ∈ C : ‖c‖ ≤ n} : (15)

Assumption 10

(i) There is a sampling algorithm with running time TSAM(C ,n) = O(poly(n)) that outputs ran-
dom concepts c ∈ Cn, each with probability |Cn|−1. Additionally, k distinct concepts may be
drawn (i.e., without replacement) in expected time O(kTSAM(C ,n)).

(ii) There is an algorithm that computes |Cn|, in time O(1).

We make an additional assumption regarding the time complexity of instance/concept membership
queries:

Assumption 11 For each x ∈ X and c ∈ C , the characteristic function "c(x) = 2 {x∈c}−1 is com-
putable in time O(|x|).
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Note that sampling without replacement is a mild condition. Collisions are likely to occur when
sampling from small sets, in which case one could simply enumerate the elements of Cn. When
the latter is large, however, uniform sampling is rather unlikely to generate collisions, and various
hashing schemes can be employed to ensure this in practice.

For the purpose of approximating the kernel, it is convenient to normalize it as follows:

K̄n(x,y) := |Cn|−1Kn(x,y), (16)

Note that the margin bounds of Section 5 are invariant under rescaling of the kernel by any constant.
Having stated our basic assumptions, we are ready to prove some results. The first one deals

with efficient approximation of the generic kernel:

Theorem 12 Let S ⊂ X be a sample of size m and the normalized generic kernel K̄n be defined as
in (16). Then, for any 0< !,(< 1, there is a randomized algorithm with deterministic running time

T = O
(

1
!2
TSAM(C ,n) log

(m
(

)

)

,

that produces a (random) kernel K̃n with the following properties

(a) K̃n is a positive semidefinite function on X 2

(b)

E[K̃n(x,y)] = K̄n(x,y)

for all x,y ∈ X

(c) with probability at least 1−(,
∣

∣K̄n(x,y)− K̃n(x,y)
∣

∣ ≤ !,

for all x,y ∈ S,

(d) for all x,y ∈ X , K̃n(x,y) is computable in deterministic time

O
(

1
!2
log

(m
(

)

(|x|+ |y|)
)

.

Proof The approximation algorithm amounts to sampling T concepts, {ci : 1 ≤ i ≤ T} uniformly
at random (without replacement) from Cn, where Assumption 10 ensures that the latter sampling
scheme is computationally feasible.

The random concepts {ci : 1≤ i≤ T} are used to define the random kernel K̃n:

K̃n(x,y) =
1
T

T

#
i=1

{x∈ci} {y∈ci}, x,y ∈ X . (17)

Since K̃n is constructed as a (semi) inner product, it is non-negative but still not strictly positive
definite, as it may fail to separate distinct points. Hence, (a) is proved.
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To prove (b), fix x,y ∈ X and define Dxy ⊂ Cn by

Dxy = {c ∈ Cn : x,y ∈ c};

this is the set of those c ∈ C with ‖c‖ ≤ n which contain both x and y. Since any c drawn uniformly
from Cn contains both x and y with probability |Dxy|/ |Cn| it follows that the approximate kernel

K̃n(x,y) =
1
T

T

#
i=1

{ci∈Dxy} (18)

is an unbiased estimator for

K̄n(x,y) = |Cn|−1 #
c∈Cn

{c∈Dxy} =
|Dxy|
|Cn|

;

this proves (b).
Our arguments show that the random variable {ci∈Dxy} has a Bernoulli distribution with mean

K̄n(x,y). Hence, applying Hoeffding’s bound (Hoeffding, 1963), which also holds for variables
sampled without replacement, to (18) yields

P
{∣

∣K̃n(x,y)− K̄n(x,y)
∣

∣ > !
}

≤ 2exp(−2T!2). (19)

The latter can be inverted to make the claim in (c) hold for a given x,ywhenever T > (2!2)−1 log(2/().
Applying the union bound to (19), we have established (c), with

T =
1
2!2

log
(

m2+m
(

)

.

Finally, (d) holds by Assumptions 10 and 11.

Our next observation is that perturbing a kernel pointwise by a small additive error preserves
linear separability:

Theorem 13 Let K : X 2 → R be a kernel, and S ⊂ X be a finite sample with labels Y ∈ {−1,1}S.
Assume that (S,Y ) is separable under the kernel K with margin *, that is,

sup
w∈RN

min
s∈S

Ys 〈w,$(s)〉
‖w‖2

≥ *> 0,

where $ is the embedding associated with K. Let K′ be another kernel, which is uniformly close to
K on S:

∣

∣K(s, t)−K′(s, t)
∣

∣ ≤ ! ∀s, t ∈ S. (20)

Then, for !< *2, the sample (S,Y ) is also separable under K′, with a positive margin.
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Proof Let f (x) be the maximum-margin hyperplane classifier corresponding to the training set S,
under the kernel K. By the representer theorem, it can written as

f (x) = 〈$(x),w〉 =#
s∈S

&sK(x,s).

Since (S,Y ) is linearly separable, f (x) satisfies the constraint

Ys f (s) ≥ 1 ∀s ∈ S.

By the KKT conditions (Schölkopf and Smola, 2002), its margin is given by

*−2 = #
s
|&s|.

We now consider the following linear classifier, obtained by replacing K by K′:

f ′(x) =#
s∈S

&sK′(x,s).

By (20), for each x,s ∈ S,

K′(x,s) = K(x,s)+ !/x,s

where |/x,s|≤ 1. Hence, for all x ∈ S,

f ′(x) = f (x)+ !#
s∈S

/x,s&s.

Therefore,

Ys f ′(s) ≥ 1− !#
s
|&s| = 1−

!
*2

,

which shows that f ′ is a linear separator for (S,Y ) as long as !< *2.

The next result quantifies the amount by which the margin may shrink when an approximate
kernel is constructed using a random subset of the features:

Theorem 14 Let a labeled sample (S,Y ) be given, with S ⊂ X . Let the kernel K be induced by the
embedding $ : X → {0,1}F , where F is a finite feature set, as follows:

K(s, t) :=
1
|F|

〈$(s),$(t)〉 .

Consider a feature subset F ′ ⊂ F. Define $′ : X → {0,1}F ′ to be the restriction of $ to {0,1}F ′ and
K′ to be corresponding kernel:

K′(s, t) :=
1
|F ′|

〈

$′(s),$′(t)
〉

.

Suppose that (S,Y ) is linearly separable under K with margin * > 0. If K′ is !-close to K on S in
the sense of (20) with ! < *2, then (S,Y ) is linearly separable under the kernel K′, with margin *′
bounded from below by

*′ ≥
|F ′|
|F|

(

*−
!
*

)

.
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Proof Let f : X → R be the maximum-margin separator under K:

f (x) =#
s∈S

&sK(x,s) =
1
|F|#s∈S

&s 〈$(x),$(s)〉 = 〈w,$(x)〉 .

Let us define f ′ as f with K replaced by K′:

f ′(x) =#
s∈S

&sK′(x,s) =
1
|F ′|#s∈S

&s
〈

$′(x),$′(s)
〉

.

By Theorem 13 we have that f ′ is a linear separator for (S,Y ), satisfying

Ys f ′(s) ≥ 1− !#
s
&s = 1−

!
*2

, s ∈ S.

Observe that

f ′(x) =
|F|
|F ′|

〈

w|F ′ ,$′(x)
〉

where w|F ′ is the restriction of w to RF ′ . Thus, letting

w′ :=
|F|
|F ′|

(

1−
!
*2

)−1
w|F ′ ,

we have that

f ′′(x) :=
〈

w′,$′(x)
〉

linearly separates S and satisfies and Ys f ′′(s) ≥ 1 for s ∈ S. Since the margin attained by the hyper-
plane w is given by 1/‖w‖ (Schölkopf and Smola, 2002), the claim follows.

Our final result for this section—and perhaps the highlight of the paper—is the following “ap-
proximate” version of Corollary 9:

Theorem 15 Let C be a concept class over X . Let S ⊂ X be a sequence of m instances sampled
independently from an arbitrary distribution P, and labeled according to some unknown c ∈ C . For
any (> 0, there is a randomized algorithm ApproxUnivLearn, which outputs a classifier f̂ : X →
{−1,1} such that with probability at least 1−( it achieves a small generalization error,

P{ f̂ (x) (= "c(x)} ≤
2
m

(4R(c) log(8em) log(32m)+ log(16m/()) (21)

for

m≥max{)−1(‖c‖),D(c)/2,R(c)2/8.4×104}, (22)

where 0<D(c),R(c) <% are constants that depend only on c, and ) :N→N is discussed in Remark
7.

Furthermore, ApproxUnivLearn has deterministic polynomial complexity, with running time

O
(

m)(m) log(m/()(!maxm2+TSAM(C ,)(m)))
)

,

where !max :=max{|s| : s ∈ S}).
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Proof Let (S,Y ) denote a training set consisting of m samples, labeled consistently with the target
concept c ∈ C . We define

n0 := min{n ∈ N : *n(c) > 0},
*0(c) := *n0(c),

and

R(c) :=
⌊

577/*0(c)2
⌋

,

D(c) := |Cn0 | ,

where Cn is defined in (15) as the set of concepts with complexity at most n.
Given the training set (S,Y ), our algorithm constructs )(m) different classifiers. According to

Theorem 12, each of these classifiers is constructed as follows: For 1 ≤ n ≤ )(m), we randomly
sample T features, construct the respective approximate kernel, and calculate its resulting max-
margin hyperplane, with sample margin *̃n(S,Y ). Finally, our algorithm chooses the kernel with the
largest empirical margin

*̃∗ :=max{*̃n(S,Y ) : 1≤ n≤ )(m), *̃n(S,Y ) > 0}. (23)

If the latter set is empty, we leave *̃∗ undefined (however, our analysis below will show that under
the conditions of the theorem, this is a highly unlikely event).

To prove the theorem, we need to show that with high probability,

*̃∗ ≥ Const× *0(c). (24)

If this equation holds (whp), then the standard margin bound (11) proves the theorem. There are
two ways in which the theorem’s generalization bound (21) may fail to hold. The first is due to a
particularly unlucky sample whereas the second is due to a bad kernel approximation so that (24)
does not hold. Hence, we split the confidence parameter ( so that each of these kinds of failure
occurs with probability at most (/2.

The first step is to note that by definition *̃∗ ≥ *̃n0 . The next step is to lower bound the approx-
imate sample margin, constructed with a random approximate kernel, in terms of the true sample
margin corresponding to the exact kernel. Such a bound is provided by Theorem 14:

*̃n0(S,Y ) ≥
min{T,D(c)}

D(c)

(

*̂n0(S,Y )−
!

*̂n0(S,Y )

)

.

Note that by condition (22) we have

m ≥ 4/*0(c)4 ≥ 4/*̂n0(S,Y )4, (25)

since *̂n0(S,Y ) ≥ *0(c), as in (10).
Furthermore, in constructing the approximate kernels, we set the precision to be ! = 1/

√
m.

This condition, combined with (25) gives

*̃∗ ≥
1
2
min{T,D(c)}

D(c)
*̂n0(S,Y ) ≥

1
2
min{T,D(c)}

D(c)
*0(c).
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The last step is to bound the factor multiplying *0(c) in the last equation. To this end, recall that
according to Theorem 12, under the condition != 1/

√
m, the number of random concepts T drawn

from Cn is

T =
1
2!2

log
(

m2+m
(/2

)

=
m
2
log

(

m2+m
(/2

)

> m.

Combining this with (22), we have

T > m≥ D(c)/2.

Hence, *̃∗ ≥ *0(c)/4, and applying (11) proves the generalization bound.
It remains to analyze the complexity of ApproxUnivLearn. The main loop is executed )(m)

times. To compute each approximate kernel we sample O(!−2 log(m/()) concepts from Cn, and
evaluate the summation in (17) for each x,y ∈ S. Since ! = m−1/2, the nth Gram matrix is com-
putable in time O

(

m log(m/()(!maxm2+TSAM(C ,n))
)

. For a given Gram matrix, the margin may be
computed in time O(m) by a primal algorithm such as Pegasos (Shalev-Shwartz et al., 2007), which
gets absorbed into the preceding O(m3)(m) log(m)) bound.

Remark 16 For )(m) =
⌈

m1/2
⌉

, ApproxUnivLearn has a running time of O(m3.5 logm). This may
be brought down to m2+& for any & > 0, at the expense of increased sample complexity in (21), by
choosing ! = m−' with '4 1 . The role of )(m) in the tradeoff between running time and sample
complexity is discussed in Remark 7; !(m), taken to be m−1/2 in the proof above, has an analogous
role.

7. Universal Regular Kernel, New Characterization of Regular Languages

Having developed some general tools for learning countable concept classes, we now apply these to
regular languages. For the remainder of the paper, we follow standard formal-language terminology.
Thus, 0 will denote a fixed finite alphabet and 0∗ is the free monoid over 0. Its elements are called
strings (or words) and the length of x ∈ 0∗ is denoted by |x|. The latter will be our default size
function on 0∗.

Our definition of a Deterministic Finite-state Automaton (DFA) is a slight modification of the
standard one. We define the latter to be a tuple A= (0,Q,F,() where

• 0 is a finite alphabet

• Q= {1,2, . . . ,n} is a finite set of states

• F ⊂ Q is the set of the accepting states

• ( : Q×0→ Q is the deterministic transition function.

The only difference between our definition and the common one is that we take the initial state q0
to be fixed at q0 = 1, while most authors allow it to be an arbitrary q0 ∈ Q. We write L(A) for the
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language accepted by the automaton A, and denote the number of states in A by size(A) or ‖A‖,
interchangeably.

Recall that a language L⊆ 0∗ is regular if and only if it is recognized by some DFA. Lewis and
Papadimitriou (1981) and Sipser (2005) are among the standard introductory texts on automata and
formal languages.

In order to apply our results to regular languages, we begin by defining the instance space
X = 0∗ and concept class C = ∪n≥1DFA(n), where DFA(n) is the set of all DFAs on n states; both
are countable. Once the size functions on X and C have been specified, Theorem 1 furnishes an
embedding $ : X → {0,1}N that renders all regular languages linearly separable. It is instructive to
verify that the construction of the canonical embedding yields the following kernel, which we call
a universal regular kernel:

KREG(x,y) = 〈$(x),$(y)〉

= {x=y} +
min{|x|,|y|}

#
n=1

#
A∈DFA(n)

{x∈L(A)} {y∈L(A)}.

In fact, we obtain a novel characterization of the regular languages:

Theorem 17 A language L ⊆ 0∗ is regular if and only if there exists a finite set of strings, si ∈ 0∗

with corresponding weights &i ∈ R, i= 1, . . . ,m such that

L =

{

x ∈ 0∗ :
m

#
i=1

&iKREG(si,x) > 0

}

. (26)

Proof Theorem 1 provides an embedding $ : 0∗ → {0,1}N such that for any regular language L
there is a D ∈ N so that the sets $D(L) and $D(0∗ \ L) are separable by a hyperplane in {0,1}D,
where $D is the restriction of $ to {0,1}D. Thus, by Theorem 2, (26) holds for some finite collection
of strings si and weights &i. Conversely, suppose that L ⊆ 0∗ is expressible as in (26). Writing
w= #m

i=1&i$D(xi) ∈ RD, consider the function f : 0∗ → R defined by

f (x) =
D

#
j=1

wj[$D(x)] j

and note that L= {x : f (x) > 0}. Observe that f can only take on finitely many real values {rk : k=
1, . . . ,k f }. Let Lrk ⊆ 0∗ be defined by

Lrk = f−1(rk).

A subset I ⊆ {1,2, . . . ,N} is said to be rk-acceptable if #i∈I wi = rk. Any such rk-acceptable set
corresponds to a set of strings LI ⊆ 0∗ such that

LI =

(

\

i∈I
[$D]−1i (1)

)

\





[

i∈{1,...,N}\I
[$D]−1i (1)



 .

It remains to show that each [$D]−1i (1) ⊆ 0∗ is a regular language, but this follows immediately
from Theorem 1 and our choice of size functions |·| and ‖·‖. Now each Lrk is the union of finitely
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many rk-acceptable LI’s, and L is the union of the Lrk for rk > 0. This means that L is a finite
Boolean combination of regular languages and is therefore itself regular.

The result above is mainly of theoretical interest. In order to obtain an efficient learning algo-
rithm with generalization bounds, we must stratify KREG into a regularized kernel family {Kn} and
show that these are efficiently computable (or approximable).

For our purposes, A ∈DFA(n) is a directed multigraph on n labeled vertices (states), with edges
labeled by elements in 0, and some of the vertices designated as accepting. Note that a given regular
language has infinitely many representations as various DFAs; we make no attempt to minimize
automata or identify isomorphic ones, nor do we exclude degenerate or disconnected ones.

The first order of business is to verify that Assumptions 10 and 11 hold for the present choice
of X and C , with the specified size functions:

Lemma 18 Let

Cn =
n

[

k=1
DFA(k).

Then

(i) There is a sampling algorithm with running time TSAM(C ,n) = O(|0|n) that outputs random
automata A ∈ Cn, each with probability |Cn|−1

(ii) |Cn| is computable in time O(1)

(iii) for each x ∈ X and A ∈ DFA(k), the characteristic function "A(x) = 2 {x∈L(A)}− 1 is com-
putable in time O(|x|).

Proof Under our definition of DFA(k), each member is specified by a vertex-labeled directed graph.
Equivalently, A ∈DFA(k) is described by the matrix ( ∈QQ×0, where Q= {1,2, . . . ,k}, and by the
set of accepting states F ⊆ Q. This immediately implies that

|DFA(k)| = 2kk|0|k

and |Cn| = #n
k=1 |DFA(k)|; thus (ii) is proved. To sample a ( uniformly from QQ×0, we may inde-

pendently draw each ((q,1) uniformly at random from Q. Since the latter is achievable in constant
time, we have that ( may be sampled in time O(|0|k). Additionally, for each q ∈ Q we may flip a
fair coin to determine whether q ∈ F ; this amounts to a uniform sampling of F . We’ve established
that A ∈ DFA(k) may be uniformly sampled in time O(|0|k).

To sample uniformly from Cn, define first the distribution 2 on {1, . . . ,n} by

2k =
|DFA(k)|

|Cn|
=

2kk|0|k

#n
i=1 2ii|0|i

.

Sampling a k ∈ {1, . . . ,n} according to 2 can be done in time O(n) and then A is drawn uniformly
from DFA(k) as described above. The resulting automaton is a uniform draw from Cn, which took
O(|0|n) steps to perform; this proves (i).

To prove (iii) we simply recall that an automaton evaluates a string by reading it from beginning
to end, each time evolving from state to state as prescribed by (.
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We now state our main learnability result for regular languages. The theorem below is a direct
consequence of Theorem 15, where )(m) :=

⌈

m1/2
⌉

and TSAM(C ,n) = O(n), as per Lemma 18:

Theorem 19 Let L⊆0∗ be a regular language and suppose that S⊂0∗ is a sequence of m instances
sampled independently from an arbitrary distribution P, and labeled according to L. For any (> 0,
there is a randomized algorithm RegLearn, which outputs a classifier f̂ : 0∗ → {−1,1} such that
with probability at least 1−( it achieves a small generalization error,

P{ f̂ (x) (= "L(x)} ≤
2
m

(4R(L) log(8em) log(32m)+ log(16m/())

for m>max{size(L)2,D(L)/2,R(L)2/8.3×104},

where size(L) is the number of states in the smallest automaton recognizing L and D(L), R(L) are
constants depending only on L.

Furthermore, RegLearn has deterministic polynomial complexity, with running time

O
(

!maxm5/2 log(m/()
)

,

where !max :=max{|s| : s ∈ S}).

8. Empirical Results

In this section we present some preliminary empirical results that provide a proof of concept for our
approach. We performed several types of experiments.

8.1 Proof of Concept, Comparisons

In this basic setup, we draw a sample S of m= 300 strings in {0,1}∗ uniformly with mean Poisson
length 15 (that is, the string length ! is a Poisson random variable with mean 15 and the string x is
drawn uniformly from {0,1}!). The target DFA A is uniformly drawn at random from DFA(n) as
described in Lemma 18, where its size is chosen uniformly in the interval 3≤ n≤ 50. This DFA is
then minimized, so that its number of states represents its “true” complexity. The automaton A is
run on the sample S to produce the label vector Y ∈ {−1,1}S.

For the learning process, we randomly sample a fixed number T = 1000 of “feature” automata
Ai, from the set DFA(1 : 18) = ∪18n=1DFA(n), where we chose )(m) =

√
m (note that 18 ≈

√
300).

For each s ∈ S, we compute the embedding vector $(s) ∈ {0,1}T by

[$(s)]i = {s∈L(Ai)}

and arrange the {$(s)}s∈S into the columns of the T ×m matrix 3. Now that (3,Y ) corresponds to
m labeled points in RT , we can apply some standard classification algorithms:

• SVM finds the maximum-margin hyperplane separating the positive and negative examples

• AdaBoost (Freund and Schapire, 1996) uses the feature automata {Ai : 1 ≤ i ≤ T} as weak
classifiers and combines them into a weighted sum
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Figure 1: Performance plots of different linear threshold classifiers (sample size = 300, number of
features = 1000)

• Regress labels a new string x ∈ {0,1}∗ as follows:

y= sgn($(x)(33ᵀ)−13Y )

where ·ᵀ denotes the matrix transpose

as well as two “baseline” classifiers:

• Majority labels every unseen string x ∈ {0,1}∗ by the majority vote of the training labels,
disregarding the actual training strings:

y= sgn

(

#
s∈S
Ys

)

• BestFeature picks the single feature automaton Ai with the best empirical performance.

A test set of 100 strings is drawn from the same distribution as S, and the performance of each
classifier is compared against the true labels given by A. The results are summarized in Figure 1,
averaged over several hundred trials.
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As expected, since in this experiment the sample size is kept fixed, the performance degrades
with increasing automaton complexity. Furthermore, SVM, AdaBoost and Regress have a similar
performance. While the first two methods are margin driven with guaranteed performance bounds,
the success of Regress is somewhat surprising. We currently have no explanation for why such a
seemingly naive approach should work so well. Unsurprisingly, BestFeature and Majority trail
behind the other methods significantly. However, even the latter simplistic approaches perform quite
better than chance on moderately sized automata.

Despite the rather pessimistic impossibility results for learning general automata, our results
seem to indicate that random automata are efficiently learnable. This is in line with the empirical
observations of Lang (1992) and others that random automata are “easy” to learn in practice.

8.2 Role of Adaptive Feature Set

In the second experiment, we demonstrate the importance of having an adaptive feature set. Here,
we chose a single fixed target DFA on 20 states, and study the generalization performance of two
schemes, one with a fixed number of features T , and one where T is chosen adaptively as a function
of sample size. The training and test strings are sampled according to the same scheme as described
above. The sample size m varies from 10 to 400; the test set is fixed at 100. In the fixed T scheme
we set T ≡ 500 while in the adaptive one T =m logm. As expected, the adaptive scheme eventually
outperforms the fixed one (see Figure 2).

8.3 Case Study: Parity Languages

For I = {i1 < i2 . . . < ik}⊂ N, define the language L[I] ⊂ {0,1}∗ by

L[I] = {x ∈ {0,1}∗ : |x|≥ ik,xi1 ⊕ xi2 ⊕ . . .⊕ xik = 1}

where ⊕ is addition modulo 2. Then L[I] is called a parity language. The following facts are easily
verified

Claim 20 For I ⊂ N and L[I], we have

(a) the language L[I] is regular

(b) the minimal DFA accepting L[{1,k}] has size 2k+1.

The minimal DFA for the language

L[{1,2}] = {x ∈ {0,1}∗ : x1⊕ x2 = 1}

is shown in Figure 3. We describe the results of some empirical investigations with parity languages.

8.3.1 EXACT RECOVERY

Recall that the learner is presented with a labeled sample (S,Y ), which is consistent with some target
language L0 ⊂ {0,1}∗. PAC learning entails producing a hypothesis L̂ whose predictions on new
strings will be statistically similar to those of L0. Exact recovery is a more stringent demand: we
are required to produce a hypothesis that is identical to the target language.
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Figure 2: Performance in the fixed and adaptive settings

Figure 3: The minimal DFA for the parity language L[{1,2}]
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Note that the output of our algorithm is not an explicit automaton. Instead, we output a collection
of DFAs {A1,A2, . . . ,AT} with corresponding weights &t ∈ R, with the hypothesis language L̂ given
by

L̂=

{

x ∈ {0,1}∗ :
T

#
t=1

&t {x∈L(At)} > 0

}

. (27)

An interesting question is the relation between L̂ and the true unknown language L0. In principle,
the DFA for L̂ can be recovered exactly, using the algorithmic construction given in the proof of
Theorem 17. However, this procedure has exponential complexity in T and is certainly infeasible for
T ∼ 100. Thus, rather than recovering the exact DFA corresponding to ({At},{&t}), we implement
Angluin’s algorithm for learning DFAs from membership and equivalence queries (Angluin, 1982).
Testing whether a string x belongs to L̂ is achievable in time O(T |x|), so membership queries pose
no problem. As discussed above, testing whether Angluin’s hypothesis language LANGL is equivalent
to L̂ is infeasible (at least using the brute-force construction; we do not exclude the possibility of
some clever efficient approach). Instead, we only compare LANGL and L̂ on the labeled sample (S,Y ).
If "LANGL(x) =Yx for all x ∈ S, we declare the two equal; otherwise, the first string on which the two
disagree is fed as a counterexample into Angluin’s algorithm.

We drew a sample of 300 strings in {0,1}∗ uniformly with mean Poisson length 10, as described
in Section 8.1. These strings were labeled consistently with L[{1,2}]. On this labeled sample we ran
the algorithm RegLearn, as defined in Theorems 15, and 19, which outputs the language L̂, as given
in (27). The hypothesis L̂ attained an accuracy of 91% on unseen strings and our adaptation of An-
gluin’s algorithm recovered L[{1,2}] exactly 88% of the time. When this experiment was repeated
on L[{1,3}], whose minimal DFA has 7 states, prediction accuracy of RegLearn dropped to 86%
while the target automaton was recovered exactly only 1% of the time. It seems that relatively large
sample sizes are needed for exact recovery, though we are not able to quantify (or even conjecture)
a rate at this point.

8.3.2 EMPIRICAL MARGIN

We took the “complete” sample S = {0,1}≤7 (i.e., |S| = 255) and labeled it with L[{1,k}], for
k= 2,3,4,5. The algorithm RegLearn (as a special case of UnivLearn) finds the optimal empirical
margin *̃∗ as defined in (23). We repeated this experiment a few dozen times—since the kernel is
random, the margins obtained are also random. The results are presented in Figure 4, but should
be interpreted with caution. As expected, the margin is decreasing with automaton size (the latter
given by 2k+1, as per Claim 20(b)). It is difficult to discern a trend (polynomial/exponential decay)
from four points, and extending the experiment for moderate-sized k is computationally expensive.

8.3.3 LONG INPUT STRINGS

One of the claimed advantages of our method is that long training strings do not significantly affect
hypothesis complexity. To test this claim empirically, we fixed the target language at L[{1,2}] and
let the mean string length 4 vary from 10 to 100 in increments of 10. For each value of 4, we
drew a sample S of 300 strings in {0,1}∗ uniformly with mean Poisson length 4 (as described in
Section 8.1) and labeled S consistently with L[{1,2}]. On this labeled sample we ran the algorithm
RegLearn, and tested its prediction accuracy on 100 new strings. The results are displayed in
Figure 5 and show a graceful degradation of performance. In particular, for strings of mean length
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Figure 4: Empirical margins of L[{1,k}], for k = 2,3,4,5

100, the learner performs significantly better than chance—even though learning parity languages
from long strings entails high-dimensional feature selection. This example illustrates the tradeoff
between information and computational complexity. If we had unbounded resources, exhaustive
enumeration over all automata would most likely find the correct automaton. It is not clear how
standard methods, such as the RPNI algorithm (Oncina and Garcia, 1992) would process input
strings of such length.

9. Inherent Limitations

An immediate question is, How does the “margin learning rate” R(·) appearing in Theorems 3 and
15 relate to the target concept complexity (say, as measured by ‖·‖)? One might hope for a bound
of the type

R(c) = O(poly(‖c‖)).

Unfortunately, under standard cryptographic assumptions this cannot hold in general, as we
demonstrate for the case of DFAs. For reference, let us state the Discrete Cube Root (DCR) as-
sumption as it appears in Kearns and Vazirani (1997). In what follows, N = pq is an n-bit number
and p,q are randomly chosen primes so that 3 does not divide (p− 1)(q− 1). The multiplicative
group modulo N is denoted by Z∗

N and x is chosen uniformly random in Z∗
N . DCR states that for

every polynomial r, there is no algorithm with running time r(n) that on input N and y= x3 mod N
outputs xwith probability exceeding 1/r(n) (the probability is taken over p, q, x, and the algorithm’s
internal randomization).

The following theorem is implicit in chapters 6 and 7 of Kearns and Vazirani (1997), and is a
combination of results in Pitt and Warmuth (1990) and Kearns and Valiant (1994):
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Figure 5: Prediction accuracy when training on long strings

Theorem 21 For every polynomial p, there is a sequence of distributions Pn on {0,1}n and finite
state automata An, with size(An) = poly(n) such that assuming DCR, there is no algorithm with
running time p(n) that produces a hypothesis that agrees with An on more than 1/2+1/p(n) of Pn.

We will refer to the concept-dependent quantity R(c) appearing in theorems 3, 15, and 19 as
the margin-based rate and the parameter D(c) appearing in Theorems 15, and 19 as the intrinsic
dimension. Under the DCR assumption, these quantities cannot both grow polynomially in the
target automaton size for all automata:

Corollary 22 If DCR is true, there is no efficiently computable (or approximable) universal regular
kernel K and polynomial p such that for every finite state automaton A, we havemax{R(A),D(A)}≤
p(size(A)) under K.

Proof We argue by contradiction. Suppose K is an efficiently computable universal regular kernel,
and that for some polynomial p we have the margin-based rate R(A) ≤ p(size(A)) under K, for
every DFA A. Then by Theorem 3, a sample of size p(size(A))2 suffices to guarantee (with high
probability) the existence of a classifier with polynomially small generalization error, and there is
an efficient algorithm (e.g., SVM) to discover such a classifier. This contradicts Theorem 21. A
similar contradiction is obtained via Theorem 15 if K is efficiently approximable.

Still focusing on the special case of DFAs, another natural line of inquiry is the relationship
between the true target language L and the hypothesis language L̂ induced by our learning algorithm
(note that L̂ is necessarily regular, by Theorem 17). In particular, it would be desirable to have a
handle on the complexity of the minimal DFA accepting L̂ in terms of the corresponding minimal
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DFA for L. To be more concrete, suppose we have observed a finite sample S ⊂ 0∗ with labels
Y ∈ {−1,1}S. We compute a maximum-margin hyperplane (i.e., a set of weights & ∈ RS) for this
sample, and consider the resulting language

L(S,&) = {x ∈ X :#
s∈S

&sK̃(s,x) > 0}

where K̃ is the approximate kernel constructed by the algorithm of Theorem 15; note that L(S,&) is
regular. Let A0(S,Y ) be the smallest DFA consistent with the labeled sample (S,Y ) and let A0(S,&)
denote the smallest DFA recognizing L(S,&). Now approximately recovering A0(S,&) is feasible
via active learning (see Chapter 8 of Kearns and Vazirani 1997). Given a hyperplane representation
for a regular language one may efficiently query the resulting classifier on any string in x∈ 0∗ to see
if x ∈ L(S,&). Using membership and equivalence queries, Angluin’s algorithm (Angluin, 1987)
recovers A0(S,&) exactly. If only membership queries are allowed, we can draw enough strings
x ∈ 0∗ according to a distribution P to simulate an equivalence query efficiently, to arbitrary P-
accuracy. Note that L(A) and L(A′) can differ by only one (very long) word, while the two automata
may be of exponentially different size. We do not currently have either (a) an efficient method of
exactly recovering A0(S,&) nor can we claim that (b)

size(A0(S,&)) ≤ poly(size(A0(S,Y )));

note that if both (a) and (b) were true, that would imply P=NP via the Pitt and Warmuth (1993)
hardness of approximation result.

Another limitation of our approach is the possibility of a “Boolean-independent” concept class
C , in which no c ∈ C may be expressed as a finite Boolean combination of other concepts. One way
to construct such a concept class is by taking X = N and C = {cp : p is prime}, where

x ∈ cp ⇔ x≡ 0 (mod p).

That C is Boolean-independent is seen by taking k distinct primes {pi : 1≤ i≤ k} and an arbitrary
b ∈ {0,1}k. Then the number

Nb :=
k

5
i=1

(pi+bi)

is divisible by pi iff bi = 0; thus the divisibility of N by p1, p2, . . . , pk−1 gives no information regard-
ing its divisibility by pk. In a Boolean-independent class, no concept may be expressed as a finite
linear combination of other concepts (the contrapositive of this claim is established while proving
the “if” direction of Theorem 17). Alas, Boolean independence is an inevitable feature of nontrivial
concept classes:

Theorem 23 Any infinite concept class C contains an infinite Boolean-independent subset.

Proof Suppose C contains no infinite Boolean-independent subsets. This means that every c ∈ C

may be expressed as a finite Boolean combination of elements {ei} from some finite E ⊂ C . But
the Boolean closure of a finite collection of sets is finite, so C must be finite.
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The moral of this section is that our approach is certainly vulnerable to the same classical com-
putational hardness reductions as other discrete concept-learning methodologies. One must keep
in mind, however, that the hardness reductions are pessimistic, based on carefully contrived target
concepts and distributions. As noted in Section 8, “typical” or “random” concepts are often much
easier to learn than their worst-case cousins (which is unsurprising given the numerous NP-hard but
easy-on-average problems; see, for example Chvátal and Szemerédi 1988 or Flaxman 2003).

10. Discussion

We have presented a new generic technique for learning general countable concept classes and ap-
plied it to regular languages. Aside from its generality and ease of implementation, our approach
offers certain advantages over existing techniques. Observe that the complexity of the classifier con-
structed in Theorem 15 does not directly depend on the input string lengths. For the case of learning
regular languages, it means that the training string lengths do not affect hypothesis complexity. This
is not the case for the methods surveyed in the Introduction, which build a prefix tree acceptor in
the initial phase. As already mentioned, we make no structural assumptions on the target automaton
(such as acyclic or nearly so), or on the sampling distribution (such as the sample being “structurally
complete”).

In practice, given m samples, our approach attempts to fit the labeled data by a linear combi-
nation of concepts with bounded complexity, ‖c‖ ≤ )(m). This method may fail for two possible
reasons: Either we don’t have sufficient number of samples to learn the unknown target concept,
or we got unlucky - this specific concept has a very small margin. Note that these sample size
restrictions are inherent also in the SRM framework, for example in Theorem 8.

The experiments presented in Section 8 provide support for our approach. Our basic method
could be easily adapted to learning context-free and other grammars. There are obvious computabil-
ity limitations—thus, if our concept class is all Turing-recognizable languages, the corresponding
universal kernel is provably uncomputable (Blocki, 2007). Modulo these limitations, any concept
class satisfying the efficient sampling and membership evaluation assumptions (Assumptions 10
and 11) is amenable to our approach.

Our work naturally raises some interesting questions—in particular, regarding learning regular
languages. We conclude the paper with a few of them.

1. Can KREG be efficiently computed? Is it a #P-complete problem? Is there any efficiently
computable universal regular kernel?

2. Can A0(S,&) be efficiently recovered from its hyperplane representation? Can size(A0(S,&))
be nontrivially bounded in terms of size(A0(S,Y ))? (The notation is from the previous sec-
tion.)

3. Corollary 22 seems to thwart attempts to bound the margin-based rate for a regular language
in terms of the size of its minimal DFA. Is there a different natural complexity measure for
regular languages which does allow a polynomial bound on the margin-based rate?

4. The intractability results in Theorem 21 are highly pessimistic, in that both the automaton and
the training/testing distribution are contrived to be pathological. What about the complexity
of learning “typical” automata—say, those drawn uniformly from DFA(n)? What can be said
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about the margin distribution of such automata? Similarly, what about their sample margin,
under some natural class of distributions on the strings 0∗?
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José Oncina, Pedro Garcı́a, and Enrique Vidal. Learning subsequential transducers for pattern
recognition interpretation tasks. IEEE Trans. Pattern Anal. Mach. Intell., 15(5):448–458, 1993.

Leonard Pitt and Manfred Warmuth. Prediction-preserving reducibility. Journal of Computer and
System Sciences, 41(3):430–467, 1990.

Leonard Pitt and Manfred Warmuth. The minimum consistent DFA problem cannot be approxi-
mated within any polynomial. Journal of the Assocation for Computing Machinery, 40(1):95–
142, 1993.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In NIPS 2007.
MIT Press, 2007.

Jorma Rissanen. Stochastic Complexity in Statistical Inquiry Theory. World Scientific Publishing
Co., Inc., 1989.

Ronald L. Rivest and Robert E. Schapire. Diversity-based inference of finite automata. In Proc.
28th Annu. IEEE Sympos. Found. Comput. Sci., pages 78–87. IEEE Computer Society Press, Los
Alamitos, CA, 1987.

Dana Ron, Yoram Singer, and Naftali Tishby. On the learnability and usage of acyclic probabilistic
finite automata. Journal of Computer and System Sciences, 56(2):133–152, 1998.

Bernhard Schölkopf and Alex Smola. Learning with Kernels. MIT Press, 2002.

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-gradient
solver for svm. In ICML ’07: Proceedings of the 24th International Conference on Machine
learning, pages 807–814, New York, NY, USA, 2007. ACM. ISBN 9781595937933. doi:
10.1145/1273496.1273598. URL http://portal.acm.org/citation.cfm?id=1273598.

John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, and Martin Anthony. A framework for
structural risk minimisation. In COLT, pages 68–76, 1996.

John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, and Martin Anthony. Structural risk
minimization over data-dependent hierarchies. IEEE transactions on Information Theory, 44:
1926–1940, 1998.

Michael Sipser. Introduction to the Theory of Computation. Course Technology, 2005.

1128



UNIVERSAL REGULAR KERNEL

Boris A. Trakhtenbrot and Janis M. Barzdin. Finite Automata: Behavior and Synthesis, volume 1
of Fundamental Studies in Computer Science. North-Holland, Amsterdam, 1973.

Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Vladimir N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, 1982.

Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

1129



 



Journal of Machine Learning Research 10 (2009) 1131-1186 Submitted 7/08; Revised 3/09; Published 5/09

Multi-task Reinforcement Learning in Partially
Observable Stochastic Environments

Hui Li HL1@EE.DUKE.EDU
Xuejun Liao XJLIAO@EE.DUKE.EDU
Lawrence Carin LCARIN@EE.DUKE.EDU
Department of Electrical and Computer Engineering
Duke University
Durham, NC 27708-0291, USA

Editor: Carlos Guestrin

Abstract
We consider the problem of multi-task reinforcement learning (MTRL) in multiple partially ob-
servable stochastic environments. We introduce the regionalized policy representation (RPR) to
characterize the agent’s behavior in each environment. The RPR is a parametric model of the con-
ditional distribution over current actions given the history of past actions and observations; the
agent’s choice of actions is directly based on this conditional distribution, without an interven-
ing model to characterize the environment itself. We propose off-policy batch algorithms to learn
the parameters of the RPRs, using episodic data collected when following a behavior policy, and
show their linkage to policy iteration. We employ the Dirichlet process as a nonparametric prior
over the RPRs across multiple environments. The intrinsic clustering property of the Dirichlet
process imposes sharing of episodes among similar environments, which effectively reduces the
number of episodes required for learning a good policy in each environment, when data sharing
is appropriate. The number of distinct RPRs and the associated clusters (the sharing patterns) are
automatically discovered by exploiting the episodic data as well as the nonparametric nature of the
Dirichlet process. We demonstrate the effectiveness of the proposed RPR as well as the RPR-based
MTRL framework on various problems, including grid-world navigation and multi-aspect target
classification. The experimental results show that the RPR is a competitive reinforcement learning
algorithm in partially observable domains, and the MTRL consistently achieves better performance
than single task reinforcement learning.
Keywords: reinforcement learning, partially observable Markov decision processes, multi-task
learning, Dirichlet processes, regionalized policy representation

1. Introduction

Planning in a partially observable stochastic environment has been studied extensively in the fields
of operations research and artificial intelligence. Traditional methods are based on partially observ-
able Markov decision processes (POMDPs) and assume that the POMDP models are given (Sondik,
1971; Smallwood and Sondik, 1973). Many POMDP planning algorithms (Sondik, 1971, 1978;
Cheng, 1988; Lovejoy, 1991; Hansen, 1997; Kaelbling et al., 1998; Poupart and Boutilier, 2003;
Pineau et al., 2003; Spaan and Vlassis, 2005; Smith and Simmons, 2005; Li et al., 2006a,b) have
been proposed, addressing problems of increasing complexity as the algorithms become progres-
sively more efficient. However, the assumption of knowing the underlying POMDP model is often

c©2009 Hui Li, Xuejun Liao and Lawrence Carin.



LI, LIAO AND CARIN

difficult to meet in practice. In many cases the only knowledge available to the agent are experi-
ences, that is, the observations and rewards, resulting from interactions with the environment, and
the agent must learn the behavior policy based on such experience. This problem is known as rein-
forcement learning (RL) (Sutton and Barto, 1998). Reinforcement learning methods generally fall
into two broad categories: model-based and model-free. In model-based methods, one first builds
a POMDP model based on experiences and then exploits the existing planning algorithms to find
the POMDP policy. In model-free methods, one directly infers the policy based on experiences.
The focus of this paper is on the latter, trying to find the policy for a partially observable stochastic
environment without the intervening stage of environment-model learning.

In model-based approaches, when the model is updated based on new experiences gathered
from the agent-environment interaction, one has to solve a new POMDP planing problem. Solving
a POMDP is computationally expensive, which is particularly true when one takes into account the
model uncertainty; in the latter case the POMDP state space grows fast, often making it inefficient
to find even an approximate solution (Wang et al., 2005). Recent work (Ross et al., 2008) gives
a relatively efficient approximate model-based method, but still the computation time grows expo-
nentially with the planning horizon. By contrast, model-free methods update the policy directly,
without the need to update an intervening POMDP model, thus saving time and eliminating the
errors introduced by approximations that may be made when solving the POMDP.

Model-based methods suffer particular computational inefficiency in multi-task reinforcement
learning (MTRL), the problem being investigated in this paper, because one has to repeatedly solve
multiple POMDPs due to frequent experience-updating arising from the communications among
different RL tasks. The work in Wilson et al. (2007) assumes the environment states are perfectly
observable, reducing the POMDP in each task to a Markov decision process (MDP); since a MDP
is relatively efficient to solve, the computational issue is not serious there. In the present paper, we
assume the environment states are partially observable, thus manifesting a POMDP associated with
each environment. If model-based methods are pursued, one would have to solve multiple POMDPs
for each update of the task clusters, which entails a prohibitive computational burden.

Model-free methods are consequently particularly advantageous for MTRL in partially observ-
able domains. The regionalized policy representation (RPR) proposed in this paper, which yields an
efficient parametrization for the policy governing the agent’s behavior in each environment, lends
itself naturally to a Bayesian formulation and thus furnishes a posterior distribution of the policy.
The policy posterior allows the agent to reason and plan under uncertainty about the policy itself.
Since the ultimate goal of reinforcement learning is the policy, the policy’s uncertainty is more di-
rect and relevant to the learning goal than the POMDP model’s uncertainty as considered in Ross
et al. (2008).

The MTRL problem considered in this paper shares similar motivations as the work in Wilson
et al. (2007)—that is, in many real-world settings there may be multiple environments for which
policies are desired. For example, a single agent may have collected experiences from previous
environments and wishes to borrow from previous experience when learning the policy for a new
environment. In another case, multiple agents are distributed in multiple environments, and they
wish to communicate with each other and share experiences such that their respective performances
are enhanced. In either case the experiences in one environment should be properly exploited to
benefit the learning in another (Guestrin et al., 2003). Appropriate experience sharing among multi-
ple environments and joint learning of multiple policies save resources, improve policy quality, and
enhance generalization to new environments, especially when the experiences from each individual
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environment are scarce (Thrun, 1996). Many problems in practice can be formulated as an MTRL
problem, with one example given in Wilson et al. (2007). The application we consider in the exper-
iments (see Section 6.2.3) is another example, in which we make the more realistic assumption that
the states of the environments are partially observable.

To date there has been much work addressing the problem of inferring the sharing structure
between general learning tasks. Most of the work follows a hierarchical Bayesian approach, which
assumes that the parameters (models) for each task are sampled from a common prior distribution,
such as a Gaussian distribution specified by unknown hyper-parameters (Lawrence and Platt, 2004;
Yu et al., 2003). The parameters as well as the hyper-parameters are estimated simultaneously in
the learning phase. In Bakker and Heskes (2003) a single Gaussian prior is extended to a Gaussian
mixture; each task is given a corresponding Gaussian prior and related tasks are allowed to share a
common Gaussian prior. Such a formulation for information sharing is more flexible than a single
common prior, but still has limitations: the form of the prior distribution must be specified a priori,
and the number of mixture components must also be pre-specified.

In the MTRL framework developed in this paper, we adopt a nonparametric approach by em-
ploying the Dirichlet process (DP) (Ferguson, 1973) as our prior, extending the work in Yu et al.
(2004) and Xue et al. (2007) to model-free policy learning. The nonparametric DP prior does not
assume a specific form, therefore it offers a rich representation that captures complicated sharing
patterns among various tasks. A nonparametric prior drawn from the DP is almost surely discrete,
and therefore a prior distribution that is drawn from a DP encourages task-dependent parameter
clustering. The tasks in the same cluster share information and are learned collectively as a group.
The resulting MTRL framework automatically learns the number of clusters, the members in each
cluster as well as the associated common policy.

The nonparametric DP prior has been used previously in MTRL (Wilson et al., 2007), where
each task is a Markov decision process (MDP) assuming perfect state observability. To the authors’
knowledge, this paper represents the first attempt to apply the DP prior to reinforcement learning in
multiple partially observable stochastic environments. Another distinction is that the method here is
model-free, with information sharing performed directly at the policy level, without having to learn
a POMDP model first; the method in Wilson et al. (2007) is based on using MDP models.

This paper contains several technical contributions. We propose the regionalized policy repre-
sentation (RPR) as an efficient parametrization of stochastic policies in the absence of a POMDP
model, and develop techniques of learning the RPR parameters based on maximizing the sum of
discounted rewards accrued during episodic interactions with the environment. An analysis of the
techniques is provided, and relations are established to the expectation-maximization algorithm and
the POMDP policy improvement theorem. We formulate the MTRL framework by placing multiple
RPRs in a Bayesian setting and employ a draw from the Dirichlet process as their common nonpara-
metric prior. The Dirichlet process posterior is derived, based on a nonconventional application of
Bayes law. Because the DP posterior involves large mixtures, Gibbs sampling analysis is inefficient.
This motivates a hybrid Gibbs-variational algorithm to learn the DP posterior. The proposed tech-
niques are evaluated on four problem domains, including the benchmark Hallway2 (Littman et al.,
1995), its multi-task variants, and a remote sensing application. The main theoretical results in the
paper are summarized in the form of theorems and lemmas, the proofs of which are all given in the
Appendix.

The RPR formulation in this paper is an extension of the work in Li (2006) and Liao et al.
(2007). All other content in the paper is extended from the work in Li (2006).
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2. Partially Observable Markov Decision Processes

The partially observable Markov decision process (POMDP) (Sondik, 1971; Lovejoy, 1991; Kael-
bling et al., 1998) is a mathematical model for the optimal control of an agent situated in a partially
observable stochastic environment. In a POMDP the state dynamics of the agent are governed by
a Markov process, and the state of the process is not completely observable but is inferred from
observations; the observations are probabilistically related to the state. Formally, the POMDP can
be described as a tuple (S ,A ,T,O,!,R), where S , A , O respectively denote a finite set of states,
actions, and observations; T are state-transition matrices with Tss ′(a) the probability of transiting
to state s ′ by taking action a in state s; ! are observation functions with !s ′o(a) the probability
of observing o after performing action a and transiting to state s ′; and R is a reward function with
R(s,a) the expected immediate reward received by taking action a in state s.

The optimal control of a POMDP is represented by a policy for choosing the best action at
any time such that the future expected reward is maximized. Since the state in a POMDP is only
partially observable, the action choice is based on the belief state, a sufficient statistic defined as the
probability distribution of the state s given the history of actions and observations (Sondik, 1971).
It is important to note that computation of the belief state requires knowing the underlying POMDP
model.

The belief state constitutes a continuous-state Markov process (Smallwood and Sondik, 1973).
Given that at time t the belief state is b and the action a is taken, and the observation received at
time t+1 is o, then the belief state at time t+1 is computed by Bayes rule

bao(s ′) =
"s∈S b(s)Tass ′!

a
s ′o

p(o|b,a)
, (1)

where the superscript a and the subscript o are used to indicate the dependence of the new belief
state on a and o, and

p(o|b,a) = "
s ′∈S
"
s∈S

b(s)Tass ′!
a
s ′o (2)

is the probability of transiting from b to b ′ when taking action a.
Equations (1) and (2) imply that, for any POMDP, there exists a corresponding Markov deci-

sion process (MDP), the state of which coincides with the belief state of the POMDP (hence the
term “belief-state MDP”). Although the belief state is continuous, their transition probabilities are
discrete : from any given b, one can only make a transition to a finite number of new belief states
{bao : a ∈A ,o ∈ O}, assuming A and O are discrete sets with finite alphabets. For any action a ∈A ,
the belief state transition probabilities are given by

p(b ′|b,a) =

{
p(o|b,a), if b ′ = bao

0, otherwise . (3)

The expected reward of the belief-state MDP is given by

R(b,a) = "
s∈S

b(s)R(s,a). (4)

In summary, the belief-state MDP is completely defined by the action set A , the space of belief state

B =

{

b ∈ R
|S | : b(s) ≥ 0,"

s∈S
b(s) = 1

}

,
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along with the belief state transition probabilities in (3) and the reward function in (4).
The optimal control of the POMDP can be found by solving the corresponding belief-state

MDP. Assume that at any time there are infinite steps remaining for the POMDP (infinite horizon),
the future rewards are discounted exponentially with a factor 0 < # < 1, and the action is drawn
from p$(a|b), then the expected reward accumulated over the infinite horizon satisfies the Bellman
equation (Bellman, 1957; Smallwood and Sondik, 1973)

V$(b) = "
a∈A

p$(a|b)

[

R(b,a)+ # "
o∈O

p(o|b,a)V$(bao)

]

,

where V$(b) is called the value function. Sondik (1978) showed that, for a finite-transient deter-
ministic policy,1 there exists a Markov partition B = B1 ∪B2 ∪ · · · satisfying the following two
properties :

(a) There is a unique optimal action ai associated with subset Bi, i = 1,2, · · · . This implies that
the optimal control is represented by a deterministic mapping from the Markov partition to
the set of actions.

(b) Each subset maps completely into another (or itself), that is, {bao : b ∈ Bi,a=$(b),o ∈ O}⊆
B j (i may equal j).

The Markov partition yields an equivalent representation of the finite-transient deterministic policy.
Sondik noted that an arbitrary policy $ is not likely to be finite-transient, and for it one can only
construct a partition where one subset maps partially into another (or itself), that is, there exists
b ∈ Bi and o ∈ O such that b$(b)

o /∈ B j. Nevertheless, the Markov partition provides an approximate
representation for non-finite-transient policies and Sondik gave an error bound of the difference
between the true value function and approximate value function obtained by the Markov partition.
Based on the Markov partition, Sondik also proposed a policy iteration algorithm for POMDPs,
which was later improved by Hansen (1997) and the improved algorithm is referred to as finite state
controller (the partition is finite).

3. Regionalized Policy Representation

We are interested in model-free policy learning, that is, we assume the model of the POMDP is
unknown and aim to learn the policy directly from the experiences (data) collected from agent-
environment interactions. One may argue that we do in fact learn a model, but our model is directly
at the policy level, constituting a probabilistic mapping from the space of action-observation histo-
ries to the action space.

Although the optimal control of a POMDP can be obtained via solving the corresponding belief-
state MDP, this is not true when we lack an underlying POMDPmodel. This is because, as indicated
above, the observability of the belief-state depends on the availability of the POMDP model. When
the model is unknown, one does not have access to the information required to compute the belief
state, making the belief state unobservable.

1. Let$ be a deterministic policy, that is, p$(a|b) =

{
1, if a=$(b)
0, otherwise . Let Sn$ be the set of all possible belief-states

when $ has been followed for n consecutive steps by starting from any initial belief-state. The $ is finite transient if
and only if there exists n< % such that Sn$ is disjoint with {b :$(b) is discontinuous at b} (Sondik, 1978).
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In this paper, we treat the belief-state as a hidden (latent) variable and marginalize it out to
yield a stochastic POMDP policy that is purely dependent on the observable history, that is, the
sequence of previous actions and observations. The belief-state dynamics, as well as the optimal
control in each state, is learned empirically from experiences, instead of being computed from an
underlying POMDP model. Although it may be possible to learn the dynamics and control in the
continuous space of belief state, the exposition in this paper is restricted to the discrete case, that is,
the case for which the continuous belief-state space is quantized into a finite set of disjoint regions.
The quantization can be viewed as a stochastic counterpart of the Markov partition (Sondik, 1978),
discussed at the end of Section 2. With the quantization, we learn the dynamics of belief regions and
the local optimal control in each region, both represented stochastically. The stochasticity manifests
the uncertainty arising from the belief quantization (the policy is parameterized in terms of latent
belief regions, not the precise belief state). The stochastic policy reduces to a deterministic one
when the policy is finitely transient, in which case the quantization becomes a Markov partition.
The resulting framework is termed regionalized policy representation to reflect the fact that the
policy of action selection is expressed through the dynamics of belief regions as well as the local
controls in each region. We also use decision state as a synonym of belief region, in recognition of
the fact that each belief region is an elementary unit to encode the decisions of action selection.

3.1 Formal Framework

Definition 1 A regionalized policy representation (RPR) is a tuple 〈A ,O,Z,W,µ,&〉 specified as
follows. The A and O are respectively a finite set of actions and observations. The Z is a finite set
of decision states (belief regions). The W are decision-state transition matrices with W (z,a,o′,z′)
denoting the probability of transiting from z to z′ when taking action a in decision state z results in
observing o′. The µ is the initial distribution of decision states with µ(z) denoting the probability of
initially being in decision state z. The & are state-dependent stochastic policies with &(z,a) denoting
the probability of taking action a in decision state z.

The stochastic formulation ofW and & in Definition 1 is fairly general and subsumes two special
cases.

1. If z shrinks down to a single belief-state b, z= b becomes a sufficient statistic of the POMDP
(Smallwood and Sondik, 1973) and there is a unique action associated with it, thus &(z,a) is
deterministic and the local policy can be simplified as a= &(b).

2. If the belief regions form a Markov partition of the belief-state space (Sondik, 1978), that
is, B = ∪z∈ZBz, then the action choice in each region is constant and one region transits
completely to another (or itself). In this case, bothW and & are deterministic and, moreover,
the policy yielded by the RPR (see (8)) is finite transient deterministic. In fact this is the same
case as considered in Hansen (1997).

In both of the two special cases, each z has one action choice a = &(z) associated with it, and one
can writeW (z,a,o′,z′) =W (z,&(z),o′,z′), thus the transition of z is driven solely by o. In general,
each z represents multiple individual belief-states, and the belief region transition is driven jointly
by a and o. The action-dependency captures the state dynamics of the POMDP, and the observation-
dependency reflects the partial observability of the state (perception aliasing).

To make notation simple, the following conventions are observed throughout the paper:
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• The elements of A are enumerated as A = {1,2, · · · , |A |}, where |A | denotes the cardinality
of A . Similarly, O = {1,2, · · · , |O|} and Z = {1,2, · · · , |Z|}.

• A sequence of actions (a0,a1, · · · ,aT ) is abbreviated as a0:T , where the subscripts index dis-
crete time steps. Similarly a sequence of observations (o1,o2, · · · ,oT ) is abbreviated as o1:T ,
and a sequence of decision states (z0,z1, · · · ,zT ) is abbreviated as z0:T , etc.

• A history ht is the set of actions executed and observation received up to time step t, that is,
ht = {a0:t−1,o1:t}.

Let ' = {&,µ,W} denote the parameters of the RPR. Given a history of actions and observa-
tions, ht = (a0:t−1,o1:t), collected up to time step t, the RPR yields a joint probability distribution
of z0:t and a0:t

p(a0:t ,z0:t |o1:t ,') = µ(z0)&(z0,a0)
t

(
)=1

W (z)−1,a)−1,o),z))&(z),a)), (5)

where application of local controls &(zt ,at) at every time step implies that a0:t are all drawn ac-
cording to the RPR. The decision states z0:t in (5) are hidden variables and we marginalize them to
get

p(a0:t |o1:t ,') =
|Z|

"
z0,··· ,zt=1

[

µ(z0)&(z0,a0)
t

(
)=1

W (z)−1,a)−1,o),z))&(z),a))

]

. (6)

It follows from (6) that

p(a0:t−1|o1:t ,') =
|A |

"
at=1

p(a0:t |o1:t ,')

=
|Z|

"
z0,··· ,zt−1=1

[

µ(z0)&(z0,a0)
t−1

(
)=1

W (z)−1,a)−1,o),z))&(z),a))

]

×
|A |

"
at=1

|Z|

"
zt=1

W (zt−1,at−1,ot ,zt)&(zt ,at)
︸ ︷︷ ︸

= 1
= p(a0:t−1|o1:t−1,'), (7)

which implies that observation ot does not influence the actions before t, in agreement with expec-
tations. From (6) and (7), we can write the history-dependent distribution of action choices

p(a)|h),') = p(a)|a0:)−1,o1:),') =
p(a0:)|o1:),')

p(a0:)−1|o1:),')
=

p(a0:)|o1:),')

p(a0:)−1|o1:)−1,')
, (8)

which gives a stochastic RPR policy for choosing the action at , given the historical actions and ob-
servations. The policy is purely history-dependent, with the unobservable belief regions z integrated
out.

The history ht forms a Markov process with transitions driven by actions and observations:
ht = ht−1∪{at−1,ot}. Applying this recursively, we get ht = ∪t)=1{a)−1,o)}, and therefore

t

(
)=0

p(a)|h),') =

[
t−2

(
)=0

p(a)|h),')

]

p(at−1|ht−1,')p(at |ht−1,at−1,ot ,')
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=

[
t−2

(
)=0

p(a)|h),')

]

p(at−1:t |ht−1,ot ,')

=

[
t−3

(
)=0

p(a)|h),')

]

p(at−2|ht−2,')p(at−1:t |ht−2,at−2,ot−1,ot ,')

=

[
t−3

(
)=0

p(a)|h),')

]

p(at−2:t |ht−2,ot−1:t ,')

...
= p(a0:t |h0,o1:t ,')
= p(a0:t |o1:t ,'), (9)

where we have used p(a)|h),o)+1:t) = p(a)|h)) and h0 = null. The rightmost side of (9) is the
observation-conditional probability of joint action-selection at multiple time steps ) = 0,1, · · · , t.
Equation (9) can be verified directly by multiplying (8) over )= 0,1, · · · , t

t

(
)=0

p(a)|h),')

= p(a0|')
p(a0:1|o1,')

p(a0|')

p(a0:2|o1:2,')

p(a0:1|o1,')
· · ·

p(a0:t−1|o1:t−1,')

p(a0:t−2|o1:t−2,')

p(a0:t |o1:t ,')

p(a0:t−1|o1:t−1,')
= p(a0:t |o1:t ,'). (10)

It is of interest to point out the difference between the RPR and previous reinforcement learning
algorithms for POMDPs. The reactive policy and history truncation (Jaakkola et al., 1995; Bax-
ter and Bartlett, 2001) condition the action only upon the immediate observation or a truncated
sequence of observations, without using the full history, and therefore these are clearly different
from the RPR. The U-tree (McCallum, 1995) stores historical information along the branches of
decision trees, with the branches split to improve the prediction of future return or utility. The draw-
back is that the tree may grow intolerably fast with the episode length. The finite policy graphs
(Meuleau et al., 1999), finite state controllers (Aberdeen and Baxter, 2002), and utile distinction
HMMs (Wierstra and Wiering, 2004) use internal states to memorize the full history, however, their
state transitions are driven by observations only. In contrast, the dynamics of decision states in the
RPR are driven jointly by actions and observations, the former capturing the dynamics of world-
states and the latter reflecting the perceptual aliasing. Moreover, none of the previous algorithms
is based on Bayesian learning, and therefore they are intrinsically not amenable to the Dirichlet
process framework that is used in the RPR for multi-task examples.

3.2 The Learning Objective

We are interested in empirical learning of the RPR, based on a set of episodes defined as follows.

Definition 2 (Episode) An episode is a sequence of agent-environment interactions terminated in
an absorbing state that transits to itself with zero rewards (Sutton and Barto, 1998). An episode is
denoted by (ak0rk0ok1ak1rk1 · · ·okTka

k
Tkr

k
Tk), where the subscripts are discrete times, k indexes the episodes,

and o, a, and r are respectively observations, actions, and immediate rewards.

1138



MULTI-TASK REINFORCEMENT LEARNING IN PARTIALLY OBSERVABLE STOCHASTIC ENVIRONMENTS

Definition 3 (Sub-episode) A sub-episode is an episode truncated at a particular time step and
retaining the immediate reward only at the time step where truncation occurs. The t-th sub-episode
of episode (ak0rk0ok1ak1rk1 · · ·okTka

k
Tkr

k
Tk) is defined as (ak0ok1ak1 · · ·okt akt rkt ), which yields a total of Tk + 1

sub-episodes for this episode.

The learning objective is to maximize the optimality criterion given in Definition 4. Theorem
5 introduced below establishes the limit of the criterion when the number of episodes approaches
infinity.

Definition 4 (The RPR Optimality Criterion) Let D(K) = {(ak0rk0ok1ak1rk1 · · ·okTka
k
Tkr

k
Tk)}

K
k=1 be a set

of episodes obtained by an agent interacting with the environment by following policy $ to select
actions, where $ is an arbitrary stochastic policy with action-selecting distributions p$(at |ht) > 0,
∀ action at , ∀ history ht . The RPR optimality criterion is defined as

V̂ (D(K);')
de f .
=

1
K

K

"
k=1

Tk
"
t=0

#t rkt
(t
)=0 p$(ak)|hk))

t

(
)=0

p(ak)|hk),'), (11)

where hkt = ak0ok1ak1 · · ·okt is the history of actions and observations up to time t in the k-th episode,
0< #< 1 is the discount, and ' denotes the parameters of the RPR.

Theorem 5 Let V̂ (D(K);') be as defined in Definition 4, then limK→% V̂ (D(K);') is the expected
sum of discounted rewards within the environment under test by following the RPR policy parame-
terized by ', over an infinite horizon.

Theorem 5 shows that the optimality criterion given in Definition 4 is the expected sum of
discounted rewards in the limit, when the number of episodes approaches infinity. Throughout the
paper, we call limK→% V̂ (D(K);') the value function and V̂ (D(K);') the empirical value function.
The ' maximizing the (empirical) value function is the best RPR policy (given the episodes).

It is assumed in Theorem 5 that the behavior policy $ used to collect the episodic data is an
arbitrary policy that assigns nonzero probability to any action given any history, that is,$ is required
to be a soft policy (Sutton and Barto, 1998). This premise assures a complete exploration of the
actions that might lead to large immediate rewards given any history, that is, the actions that might
be selected by the optimal policy.

4. Single-Task Reinforcement Learning (STRL) with RPR

We develop techniques to maximize the empirical value function in (11) and the ' resulting from
value maximization is called a Maximum-Value (MV) estimate (related to maximum likelihood).
An MV estimate of the RPR is preferred when the number of episodes is large, in which case
the empirical value function approaches the true value function and the estimate is expected to
approach the optimal (assuming the algorithm is not trapped in a local minima). The episodes D(K)

are assumed to have been collected in a single partially observable stochastic environment, which
may correspond to a single physical environment or a pool of multiple identical/similar physical
environments. As a result, the techniques developed in this section are for single-task reinforcement
learning (STRL).

By substituting (6) and (9) into (11), we rewrite the empirical value function
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V̂ (D(K);') =
1
K

K

"
k=1

Tk
"
t=0

r̃kt
|Z|

"
zk0,··· ,z

k
t =1

p(ak0:t ,zk0:t |ok1:t ,'), (12)

where

r̃kt =
#t rkt

(t
)=0 p$(ak)|hk))

is the discounted immediate reward #t rkt weighted by the inverse probability that the behavior policy
$ has generated rkt . The weighting is a result from importance sampling (Robert and Casella,
1999), and reflects the fact that rkt is obtained by following $ but the Monte Carlo integral (i.e., the
empirical value function) is with respect to the RPR policy '. For simplicity, r̃kt is also referred to
as discounted immediate reward or simply reward throughout the paper.

We assume rt ≥ 0 (and hence r̃t ≥ 0), which can always be achieved by adding a constant to rt ;
this results in a constant added to the value function (the value function of a POMDP is linear in
immediate reward) and does not influence the policy.

Theorem 6 (Maximum Value Estimation) Let

qkt (zk0:t |'(n)) =
r̃kt

V̂ (D(K);'(n))
p(ak0:t ,zk0:t |ok1:t ,'(n)), (13)

for zkt = 1,2, · · · , |Z|, t = 1,2, · · · ,Tk, and k = 1,2, · · · ,K. Let

'(n+1) = argmax
'̂∈F

1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

qkt (zk0:t |'(n)) ln
r̃kt p(ak0:t ,zk0:t |ok1:t , '̂)

qkt (zk0:t |'(n))
, (14)

where

F =

{

'= (µ,&,W ) :
|Z|

"
j=1

µ̂( j) = 1,
|A |

"
a=1

&̂(i,a) = 1,
|Z|

"
j=1
Ŵ (i,a,o, j) = 1,

i= 1,2, · · · , |Z|, a= 1,2, · · · , |A |, o= 1,2, · · · , |O|

}

is the set of feasible parameters for the RPR in question. Let {'(0)'(1) · · ·'(n) · · ·} be a sequence
yielded by iteratively applying (13) and (14), starting from '(0). Then

lim
n→%

V̂ (D(K);'(n))

exists and the limit is a maxima of V̂ (D(K);').

To gain a better understanding of Theorem 6, we rewrite (13) to get

qkt (zk0:t |') =
*kt (')

V̂ (D(K);')
p(zk0:t |ak0:t ,ok1:t ,'), (15)
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where p(zk0:t |ak0:t ,ok1:t ,') is an standard posterior distribution of the latent decision states given the
' updated in the most recent iteration (the superscript (n) indicating the iteration number has been
dropped for simplicity), and

*kt (')
De f .
= r̃kt p(ak0:t |ok1:t ,') (16)

is called the re-computed reward at time step t in the k-th episode. The re-computed reward rep-
resents the discounted immediate reward r̃kt weighted by the probability that the action sequence
yielding this reward is generated by the RPR policy parameterized by ', therefore *kt (') is a func-
tion of '. The re-computed reward reflects the update of the RPR policy which, if allowed to
re-interact with the environment, is expected to accrue larger rewards than in the previous iteration.
Recall that the algorithm does not assume real re-interactions with the environment so the episodes
themselves cannot update. However, by recomputing the rewards as in (16), the agent is allowed
to generate an internal set of episodes in which the immediate rewards are modified. The internal
episodes represent the new episodes that would be collected if the agent followed the updated RPR
to really re-interact with the environment. In this sense, the reward re-computation can be thought
of as virtual re-interactions with the environment.

By (15), qkt (zk0:t) is a weighted version of the standard posterior of zk0:t , with the weight given by
the reward recomputed by the RPR in the previous iteration. The normalization constant V̂ (D(K);'),
which is also the empirical value function in (11), can be expressed as the recomputed rewards av-
eraged over all episodes at all time steps,

V̂ (D(K);') =
1
K

K

"
k=1

Tk
"
t=0

*kt ('), (17)

which ensures

1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

qkt (zk0:t |') = 1.

The maximum value (MV) algorithm based on alternately applying (13) and (14) in Theorem 6
bears strong resemblance to the expectation-maximization (EM) algorithms (Dempster et al., 1977)
widely used in statistics, with (13) and (14) respectively corresponding to the E-step and M-step in
EM. However, the goal in standard EM algorithms is to maximize a likelihood function, while the
goal of the MV algorithm is to maximize an empirical value function. This causes significant differ-
ences between the MV and the EM. It is helpful to compare the MV algorithm in Theorem 6 to the
EM algorithm for maximum likelihood (ML) estimation in hidden Markov models (Rabiner, 1989),
since both deal with sequences or episodes. The sequences in an HMM are treated as uniformly
important, therefore parameter updating is based solely on the frequency of occurrences of latent
states. Here the episodes are not equally important because they have different rewards associated
with them, which determine their importance relative to each other. As seen in (15), the posterior
of zk0:t is weighted by the recomputed reward *kt , which means that the contribution of episode k (at
time t) to the update of ' is not solely based on the frequency of occurrences of zk0:t but also based
on the associated *kt . Thus the new parameters '̂ will be adjusted in such a way that the episodes
earning large rewards have more “credits” recorded into '̂ and, as a result, the policy parameterized
by '̂ will more likely generate actions that lead to high rewards.

1141



LI, LIAO AND CARIN

The objective function being maximized in (14) enjoys some interesting properties due to the
fact that qkt (zk0:t) is a weighted posterior of zk0:t . These properties not only establish a more formal
connection between the MV algorithm here and the traditional ML algorithm based on EM, they
also shed light on the close relations between Theorem 6 and the policy improvement theorem of
POMDP (Blackwell, 1965). To show these properties, we rewrite the objective function in (14)
(with the subscript (n) dropped for simplicity) as

LB('̂|')
De f .
=

1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

qkt (zk0:t |') ln
r̃kt p(ak0:t ,zk0:t |ok1:t , '̂)

qkt (zk0:t |')

=
1
K

K

"
k=1

Tk
"
t=0

*kt (')

V̂ (D(K);')

|Z|

"
zk0,··· ,z

k
t =1

p(zk0:t |ak0:t ,ok1:t ,') ln
r̃kt p(ak0:t ,zk0:t |ok1:t , '̂)

*kt (')

V̂ (D(K);')
p(zk0:t |ak0:t ,ok1:t ,')

, (18)

where the second equation is obtained by substituting (15) into the left side of it. Since
1
K "

K
k=1"

Tk
t=0

*kt (')

V̂ (D(K);')
= 1 and "|Z|

zk0,··· ,z
k
t =1

p(zk0:t |ak0:t ,ok1:t ,') = 1, one can apply Jensen’s inequality
twice to the rightmost side of (18) to obtain two inequalities

LB('̂|') ≤
1
K

K

"
k=1

Tk
"
t=0

*kt (')

V̂ (D(K);')
ln
r̃kt p(ak0:t |ok1:t , '̂)

*kt (')

V̂ (D(K);')

De f .
= +('̂|')

≤ ln

[
1
K

K

"
k=1

Tk
"
t=0

r̃kt p(ak0:t |ok1:t , '̂)

]

= lnV̂ (D(K); '̂), (19)

where the first inequality is with respect to p(zk0:t |ak0:t ,ok1:t ,') while the second inequality is with
respect to

{
*kt (')

V̂ (D(K);')
: t = 1, · · · ,Tk,k = 1, · · · ,K

}
. Each inequality yields a lower bound to the

logarithmic empirical value function lnV̂ (D(K); '̂). It is not difficult to verify from (18) and (19)
that both of the two lower bounds are tight (the respective equality can be reached), that is,

LB('|') = lnV̂ (D(K);') = +('|'). (20)

The equations in (20) along with the inequalities in (19) show that any '̂ satisfying LB('|') <
LB('̂|') or +('|') < +('̂|') also satisfies V̂ (D(K);') < V̂ (D(K); '̂). Thus one can choose to
maximize either of the two lower bounds, LB('̂|') or +('̂|'), when trying to improve the empir-
ical value of '̂ over that of '. In either case, the maximization is with respect to '̂.

The two alternatives, though both yielding an improved RPR, are quite different in the manner
the improvement is achieved. Suppose one has obtained '(n) by applying (13) and (14) for n itera-
tions, and is seeking '(n+1) satisfying V̂ (D(K);'(n)) < V̂ (D(K);'(n+1)). Maximization of the first
lower bound gives '(n+1) = argmax'̂∈F LB('̂|'(n)), which has an analytic solution that will be
given in Section 4.2. Maximization of the second lower bound yields

'(n+1) = argmax
'̂∈F

+('̂|'(n)). (21)

The definition of + in (19) is substituted into (21) to yield

'(n+1) = argmax
'̂∈F

1
K

K

"
k=1

Tk
"
t=0

*kt ('
(n))

V̂ (D(K);'(n))
ln
r̃kt p(ak0:t |ok1:t , '̂)

*kt ('(n))

V̂ (D(K);'(n))
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= argmax
'̂∈F

K

"
k=1

Tk
"
t=0

*kt ('
(n)) ln p(ak0:t |ok1:t , '̂), (22)

which shows that maximization of the second lower bound is equivalent to maximizing a weighted
sum of the log-likelihoods of {ak0:t}, with the weights being the rewards recomputed by '(n).
Through (22), the connection between the maximum value algorithm in Theorem 6 and the tra-
ditional ML algorithm is made more formal and clearer: with the recomputed rewards given and
fixed, the MV algorithm is a weighted version of the ML algorithm, with +('̂|'(n)) a weighted
log-likelihood function of '̂.

The above analysis also sheds light on the relations between Theorem 6 and the policy improve-
ment theorem in POMDP (Blackwell, 1965). By (19), (20), and (22), we have

lnV (D(K);'(n)) = +('(n)|'(n)) ≤ +('(n+1)|'(n))
≤ lnV (D(K);'(n+1)).

The first inequality, achieved by the weighted likelihood maximization in (22), represents the policy
improvement on the old episodes collected by following the previous policy. The second inequality
ensures that, if the improved policy is followed to collect new episodes in the environment, the
expected sum of newly accrued rewards is no less than that obtained by following the previous
policy. This is similar to policy evaluation. Note that the update of episodes is simulated by reward
computation. The actual episodes are collected by a fixed behavior policy $ and do not change.

The maximization in (22) can be performed using any optimization techniques. As long as the
maximization is achieved, the policy is improved as guaranteed by Theorem 6. Since the latent z
variables are involved, it is natural to employ EM to solve the maximization. The EM solution to
(22) is obtained by solving a sequence of maximization problems: starting from '(n)(0) ='(n), one
successively solves

'(n)( j) = argmax
'̂∈F

LB('̂|'(n)( j−1)) subject to *kt ('(n)( j−1)) = *kt ('
(n)), ∀ t,k, (23)

j = 1,2, · · · ,

where in each problem one maximizes the first lower bound with an updated posterior of {zkt }
but with the recomputed rewards fixed at {*kt ('(n))}; upon convergence, the solution of (23) is
the solution to (22). The EM solution here is almost the same as the likelihood maximization of
sequences for hidden Markov models (Rabiner, 1989). The only difference is that here we have a
weighted log-likelihood function, but with the weights given and fixed. The posterior of {zkt } can
be updated by employing the dynamical programming techniques similar to those used in HMM, as
we discuss below.

It is interesting to note that, with standard EM employed to solve (22), the overall maximum
value algorithm is a “double-EM” algorithm, since reward computation constitutes an outer EM-like
loop.

4.1 Calculating the Posterior of Latent Belief Regions

To allocate the weights or recomputed rewards and update the RPR as in (14), we do not need to
know the full distribution of zk0:t . Instead, a small set of marginals of p(zk0:t |ak0:t ,ok1:t ,') are necessary
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for the purpose, in particular,

,kt,)(i, j) = p(zk) = i,zk)+1 = j|ak0:t ,ok1:t ,'), (24)
-kt,)(i) = p(zk) = i|ak0:t ,ok1:t ,'). (25)

Lemma 7 (Factorization of the , and - Variables) Let

.k)(i) = p(zk) = i|ak0:),ok1:),')

=
p(zk) = i,ak0:)|ok1:),')

()
)′=0 p(ak)′ |h

k
)′ ,')

, (26)

/kt,)(i) =
p(ak)+1:t |zk) = i,ak),ok)+1:t ,')

(t
)′=) p(ak)′ |h

k
)′ ,')

. (27)

Then

,kt,)(i, j) = .k)(i)W (zk) = i,ak),ok)+1,zk)+1 = j)&(zk)+1 = j,ak)+1)/kt,)+1( j), (28)
-kt,)(i) = .k)(i)/kt,)(i)p(ak)|hk)). (29)

The . and / variables in the Lemma 7 are similar to the scaled forward variables and back-
ward variables in hidden Markov models (HMM) (Rabiner, 1989). The scaling factors here are
()
)′=0 p(ak)′ |h

k
)′ ,'), which is equal to p(ak0:)|ok1:),') as shown in (9) and (10). Recall from Defini-

tion 3 that one episode of length T has T +1 sub-episodes with each having a different ending time
step. For this reason, one must compute the / variables for each sub-episode separately, since the
/ variables depend on the ending time step. For . variables, one needs to compute them once per
episode, since it does not involve the ending time step.

Similar to the forward variables and backward variables in HMM models, the . and / variables
can be computed recursively, via dynamical programming,

.k)(i) =






µ(zk0 = i)&(zk0 = i,ak0)
p(ak0|hk0,')

, )= 0

"
|Z|
j=1.

k
)−1( j)W (zk)−1 = j,ak)−1,ok),zk) = i)&(zk) = i,ak))

p(ak)|hk),')
, )> 0

, (30)

/kt,)(i) =






1
p(akt |hkt ,')

, )= t

"
|Z|
j=1W (zk) = i,ak),ok)+1,zk)+1 = j)&(zk)+1 = j,ak)+1)/kt,)+1( j)

p(ak)|hk),')
, )< t

, (31)

for t = 0, · · · ,Tk and k = 1, · · · ,K. Since "|Z|
i=1.

k
)(i) = 1, it follows from (30) that

p(ak)|hk),') =






|Z|

"
i=1

µ(zk0 = i)&(zk0 = i,ak0), )= 0

|Z|

"
i=1

|Z|

"
j=1

.k)−1( j)W (zk)−1 = j,ak)−1,ok),zk) = i)&(zk) = i,ak)), )> 0
. (32)
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4.2 Updating the Parameters

We rewrite the lower bound in (18),

LB('̂|') =
1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

qkt (zk0:t |'(n)) ln
r̃kt p(ak0:t ,zk0:t |ok1:t , '̂)

qkt (zk0:t |'(n))

=
1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

qkt (zk0:t |'(n)) ln p(ak0:t ,zk0:t |ok1:t , '̂)+ constant,

where the “constant” collects all the terms irrelevant to '̂. Substituting (5) and (15) gives

LB('̂|') =
1
K

K

"
k=1

Tk
"
t=0

*kt
V̂ (D(K);')

{
|Z|

"
i=1

-kt,0(i) ln µ̂(i)+
t

"
)=0

|Z|

"
i=1

-kt,)(i) ln &̂(i,ak))

+
t

"
)=1

|Z|

"
i, j=1

,kt,)(i, j) lnŴ (i,ak)−1,ok), j)

}

+ constant.

It is not difficult to show that '̂= argmax'̂∈F LB('̂|') is given by

µ̂(i) =
"K
k=1"

Tk
t=0*

k
t -

k
t,0(i)

"
|Z|
i=1"

K
k=1"

Tk
t=0*

k
t -

k
t,0(i)

, (33)

&̂(i,a) =
"K
k=1"

Tk
t=0*

k
t "

t
)=0-

k
t,)(i)0(ak),a)

"
|A |
a=1"

K
k=1"

Tk
t=0*

k
t "

t
)=0-

k
t,)(i)0(ak),a)

, (34)

Ŵ (i,a,o, j) =
"K
k=1"

Tk
t=0*

k
t "

t−1
)=1 ,

k
t,)(i, j)0(ak),a)0(ok)+1,o)

"
|Z|
j=1"

K
k=1"

Tk
t=0*

k
t "

t−1
)=1 ,

k
t,)(i, j)0(ak),a)0(ok)+1,o)

, (35)

for i, j = 1,2, · · · , |Z|, a = 1, · · · , |A |, and o = 1, · · · , |O|, where 0(a,b) =

{
1, a= b
0, a .= b , and *kt is

the recomputed reward as defined in (16). In computing *kt one employs the equation p(ak0:t |ok1:t ,')=
(t
)=0 p(ak)|hk),') established in (9) and (10), to get

*kt (')
De f .
= r̃kt

t

(
)=0

p(ak)|hk),'), (36)

with p(ak)|hk),') computed from the . variables by using (32). Note that the normalization constant,
which is equal to the empirical value V̂ (D(K);'), is now canceled in the update formulae of '̂.

4.3 The Complete Value Maximization Algorithm for Single-Task RPR Learning

The complete value maximization algorithm for single-task RPR learning is summarized in Table
1. In earlier discussions regarding the relations of the algorithm to EM, we have mentioned that
reward computation constitutes an outer EM-like loop; the standard EM employed to solve (22)
is embedded in the outer loop and constitutes an inner EM loop. The double EM loops are not
explicitly shown in Table 1. However, one may separate these two loops by keeping {*kt } fixed
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Input: D(K), A , O, |Z|.
Output: '= {µ,&,W}.

1. Initialize ', ! = [], iteration= 1.
2. Repeat
2.1 Dynamical programming:

Compute . and / variables with Equations (30)-(32).
2.2 Reward re-computation:

Calculate {*kt } using (36) and (32).
2.3 Convergence check:

Compute !(iteration) = V̂ (D(K);') using (17).
If the sequence of ! converges

Stop the algorithm and exit.
Else

iteration := iteration+1
2.4 Posterior update for z:

Compute the , and - variables using Equations (28)-(29).
2.5 Update of ':

Compute the updated ' using (33), (34), and (35).

Table 1: The value maximization algorithm for single-task RPR learning

when updating ' and the posterior of z’s, until the empirical value converges; see (23) for details.
Once {*kt } are updated, the empirical value will further increase by continuing updating ' and
the posterior of z’s. Note that the {*kt } used in the convergence check are always updated at each
iteration, even though the new {*kt } may not be used for updating ' and the posterior of z’s.

Given a history of actions and observations (a0:t−1,o1:t) collected up to time step t, the single
RPR yields a distribution of at as given by (8). The optimal choice for at can be obtained by either
sampling from this distribution or taking the action that maximizes the probability.

4.3.1 TIME COMPLEXITY ANALYSIS

We quantify the time complexity by the number of real number multiplications performed per it-
eration and present it in the Big-O notation. Since there is no compelling reason for the number
of iterations to depend on the size of the input,2 the complexity per iteration also represents the
complexity of the complete algorithm. A stepwise analysis of the time complexity of the value
maximization algorithm in Table 1 is given as follows.

• Computation of the . variables with (30) and (32) runs in time O(|Z|2"K
k=1Tk).

• Computation of /’s with (31) and (32) runs in time O(|Z|2"K
k=1"

Tk
t=0,rkt .=0

(t+1)), which de-
pends on the degree of sparsity of the immediate rewards {rk0rk2 · · ·rkTk}

K
k=1. In the worst case

2. The number of iterations usually depends on such factors as initialization of the algorithm and the required accuracy,
etc.
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the time isO(|Z|2"K
k=1"

Tk
t=0(t+1)) =O(|Z|2"K

k=1T 2k ), which occurs when the immediate re-
ward in each episode is nonzero at every time step. In the best case the time isO(|Z|2"K

k=1Tk),
which occurs when the immediate reward in each episode is nonzero only at a fixed number
of time steps (only at the last time step, for example, as is the case of the benchmark problems
presented in Section 6).

• The reward re-computation using (36) and (32) requires time O("K
k=1Tk) in the worst case

and O(K) in the best case, where the worse/best cases are as defined above.

• Update of ' using (33), (34), and (35), as well as computation of the , and - variables using
(28) and (29), runs in time O(|Z|2"K

k=1T 2k ) in the worst case and O(|Z|2"K
k=1Tk) in the best

case, where the worse/best cases are defined above.

Since "K
k=1Tk / |A ||O| in general, the overall complexity of the value maximization algorithm is

O(|Z|2"K
k=1T 2k ) in the worst case and O(|Z|2"K

k=1Tk) in the best case, depending on the degree
of sparsity of the immediate rewards. Therefore the algorithm scales linearly with the number of
episodes and to the square of the number of belief regions. The time dependency on the lengths of
episodes is between linear and square. The sparser the immediate rewards are, the more the time is
towards being linear in the lengths of episodes.

Note that in many reinforcement problems, the agent does not receive immediate rewards at ev-
ery time step. For the benchmark problems and maze navigation problems considered in Section 6,
the agent receives rewards only when the goal state is reached, which makes the value maximization
algorithm scale linearly with the lengths of episodes.

5. Multi-Task Reinforcement Learning (MTRL) with RPR

We formulate our MTRL framework by placing multiple RPRs in a Bayesian setting and develop
techniques to learn the posterior of each RPR within the context of all other RPRs.

Several notational conventions are observed in this section. The posterior of ' is expressed in
terms of probability density functions. The notationG0(') is reserved to denote the density function
of a parametric prior distribution, with the associated probability measure denoted by G0 without a
parenthesized ' beside it. For the Dirichlet process (which is a nonparametric prior), G0 denotes
the base measure and G0(') denotes the corresponding density function. The twofold use of G0
is for notational simplicity; the difference can be easily discerned by the presence or absence of a
parenthesized '. The 0 is a Dirac delta for continuous arguments and a Kronecker delta for discrete

arguments. The notation 0' j is the Dirac measure satisfying 0' j(d'm) =

{
1, ' j ∈ d'm
0, otherwise .

5.1 Basic Bayesian Formulation of RPR

Consider M partially observable and stochastic environments indexed by m = 1,2 · · · ,M, each of
which is apparently different from the others but may actually share fundamental common char-
acteristics with some other environments. Assume we have a set of episodes collected from each
environment,D(Km)

m =
{

(am,k
0 rm,k

0 om,k
1 am,k

1 rm,k
1 · · ·om,k

Tm,k
am,k
Tm,k

rm,k
Tm,k

)
}Km

k=1
, for m= 1,2, · · · ,M, where Tm,k

represents the length of episode k in environment m. Following the definitions in Section 3, we
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write the empirical value function of the m-th environment as

V̂ (D
(Km)
m ;'m) =

1
Km

Km
"
k=1

Tm,k

"
t=0

r̃m,k
t p(am,k

0:t |o
m,k
1:t ,'m), (37)

for m = 1,2, · · · ,M, where 'm = {&m,µm,Wm} are the RPR parameters for the m-th individual
environment.

Let G0('m) represent the prior of 'm, where G0(') is assumed to be the density function of a
probability distribution. We define the posterior of 'm as

p('m|D
(Km)
m ,G0)

De f .
=

V̂ (D
(Km)
m ;'m)G0('m)

V̂G0(D
(Km)
m )

, (38)

where the inclusion of G0 in the left hand side is to explicitly indicate that the prior being used is
G0, and V̂G0(D

(Km)
m ) is a normalization constant

V̂G0(D
(Km)
m )

De f .
=

Z

V̂ (D
(Km)
m ;'m)G0('m)d'm, (39)

which is also referred to as themarginal empirical value,3 since the parameters'm are integrated out
(marginalized). The marginal empirical value V̂G0(D

(Km)
m ) represents the accumulated discounted

reward in the episodes, averaged over infinite RPR policies independently drawn from G0.
Equation (38) is literally a normalized product of the empirical value function and a prior

G0('m). Since
R

p('m|D
(Km)
m ,G0)d'm = 1, (38) yields a valid probability density, which we call

the posterior of 'm given the episodes D
(Km)
m . It is noted that (38) would be the Bayes rule if

V̂ (D
(Km)
m ;'m) were a likelihood function. Since V̂ (D

(Km)
m ;'m) is a value function in our case, (38)

is a somewhat non-standard use of Bayes rule. However, like the classic Bayes rule, (38) indeed
gives a posterior whose shape incorporates both the prior information about 'm and the empirical
information from the episodes.

Equation (38) has another interpretation that may be more meaningful from the perspective of
standard probability theory. To see this we substitute (37) into (38) to obtain

p('m|D
(Km)
m ,G0) =

1
Km "

Km
k=1"

Tm,k
t=0 r̃

m,k
t p(am,k

0:t |o
m,k
1:t ,'m)G0('m)

V̂G0(D
(Km)
m )

(40)

=
1
Km "

Km
k=1"

Tm,k
t=0 1

m,k
t p('m|am,k

0:t ,om,k
1:t ,G0)

V̂G0(D
(Km)
m )

, (41)

where

1m,k
t = r̃m,k

t p(am,k
0:t |o

m,k
1:t ,G0)

= r̃m,k
t

Z

p(am,k
0:t |o

m,k
1:t ,'m)G0('m)d'm

=
Z

*m,k
t ('m)G0('m)d'm, (42)

3. The term “marginal” is borrowed from the probability theory. Here we use it to indicate that the dependence of the
value on the parameter is removed by integrating out the parameter.
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with *m,k
t the re-computed reward as defined in (16) and therefore 1m,k

t is the averaged re-computed
reward, obtained by taking the expectation of *m,k

t ('m) with respect to G0('m).
In arriving (41), we have used the fact the RPR parameters are independent of the observations,

which is true due to the following reasons: RPR is a policy concerning generation of the actions,
employing as input the observations (which themselves are generated by the unknown environment);
therefore, observations carry no information about the RPR parameters, that is, p('|observations) =
p(') ≡ G0(').

It is noted that p('m|am,k
0:t ,om,k

1:t ,G0) in (41) is the standard posterior of 'm given the action
sequence am,k

0:t , and p('m|D
(Km)
m ,G0) is a mixture of these posteriors with the mixing proportion

given by 1m,k
t . The meaning of (40) is fairly intuitive: each action sequence affects the posterior of

'm in proportion to its re-evaluated reward. This is distinct from the posterior in the classic hidden
Markov model (Rabiner, 1989) where sequences are treated as equally important.

Since p('m|D
(Km)
m ,G0) integrates to one, the normalization constant V̂G0(D

(Km)
m ) is

V̂G0(D
(Km)
m ) =

1
Km

Km
"
k=1

Tm,k

"
t=0

1m,k
t . (43)

We obtain a more convenient form of the posterior by substituting (6) into (41) to expand the
summation over the latent z variables, yielding

p('m|D
(Km)
m ,G0)=

1
Km "

Km
k=1"

Tm,k
t=0 r̃

m,k
t "

|Z|

zm,k
0 ,··· ,zm,k

t =1
p(am,k

0:t ,z
m,k
0:t |o

m,k
1:t ,'m)G0('m)

V̂G0(D
(Km)
m )

. (44)

To obtain an analytic posterior, we let the prior be conjugate to p(am,k
0:t ,zm,k

0:t |o
m,k
1:t ,'m). As shown

by (5), p(am,k
0:t ,zm,k

0:t |o
m,k
1:t ,'m) is a product of multinomial distributions, and hence we choose the

prior as a product of Dirichlet distributions, with each Dirichlet representing an independent prior
for a subset of parameters in '. The density function of such a prior is given by

G0('m) = p(µm|2)p(&m|3)p(Wm|4), (45)

p(µm|2) = Dir
(
µm(1), · · · ,µm(|Z|)

∣∣∣2
)
, (46)

p(&m|3) =
|Z|

(
i=1
Dir

(
&m(i,1), · · · ,&m(i, |A |)

∣∣∣3i
)
, (47)

p(Wm|4) =
|A |

(
a=1

|O|

(
o=1

|Z|

(
i=1
Dir

(
Wm(i,a,o,1), · · · ,Wm(i,a,o, |Z|)

∣∣∣4i,a,o
)
, (48)

where 2= {21, . . . ,2|Z|}, 3= {31, . . . ,3|Z|}with 3i = {3i,1, . . . ,3i,|A |}, and4= {4i,a,o : i= 1 . . . |Z|,
a = 1 . . . |A |,o = 1 . . . |O|} with 4i,a,o = {4i,a,o,1, . . . ,4i,a,o,|Z|}. Substituting the expression of G0
into (44), one gets

p('m|D
(Km)
m ,G0)

=

1
Km "

Km
k=1"

Tm,k
t=0"

|Z|

zm,k
0 ,··· ,zm,k

t =1
1m,k
t (zm,k

0:t ) p('m|am,k
0:t ,om,k

1:t ,zm,k
0:t ,G0)

V̂G0(D
(Km)
m )

,
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where

1m,k
t (zm,k

0:t ) = r̃m,k
t

Z

p(am,k
0:t ,zm,k

0:t |o
m,k
1:t ,'m)G0('m)d'm

= r̃m,k
t

(i5(2̂m,k,t
i )

5("i 2̂
m,k,t
i )

5("i2
m,k,t
i )

(i5(2m,k,t
i )

(i(a5(3̂m,k,t
i,a )

(i5("a 3̂
m,k,t
i,a )

(i5("a3
m,k,t
i,a )

(i(a5(3m,k,t
i,a )

×
(a(o(i( j5(4̂m,k,t

i,a,o, j)

(a(o(i5(" j 4̂
m,k,t
i,a,o, j)

(a(o(i5(" j4
m,k,t
i,a,o, j)

(a(o(i( j5(4m,k,t
i,a,o, j)

(49)

represents the averaged recomputed reward over a given z sequence zm,k
0:t , and

p('m|am,k
0:t ,om,k

1:t ,zm,k
0:t ,G0) = p(µm|2̂m,k,t)p(&m|3̂m,k,t)p(Wm|4̂m,k,t)

is the density of a product of Dirichlet distributions and has the same form as G0(') in (45) but with
2, 3, 4 respectively replaced by 2̂m,k,t , 3̂m,k,t , 4̂m,k,t as given by

2̂m,k,t
i = 2mi +0(zm,k

0 − i), (50)

3̂m,k,t
i,a = 3mi,a+

t

"
)=0

0(zm,k
) − i)0(am,k

) −a), (51)

4̂m,k,t
i,a,o, j = 4mi,a,o, j +

t

"
)=1

0(zm,k
)−1− i)0(am,k

)−1−a)0(om,k
) −o)0(zm,k

) − j). (52)

The normalization constant V̂G0(D
(Km)
m ) (which is also the marginal empirical value) can now be

expressed as

V̂G0(D
(Km)
m ) =

1
Km

Km
"
k=1

Tm,k

"
t=0

|Z|

"
zm,k
0 ,··· ,zm,k

t =1

1m,k
t (zm,k

0:t ). (53)

5.2 The Dirichlet Process Prior

In order to identify related tasks and introduce sharing mechanisms for multi-task learning, we
employ the Dirichlet process (Ferguson, 1973; Blackwell and MacQueen, 1973; Antoniak, 1974;
Sethuraman, 1994) as a nonparametric prior that is shared by 'm, m = 1,2, · · · ,M. A draw from a
DP has the nice property of being almost surely discrete (Blackwell and MacQueen, 1973), which
is known to promote clustering (West et al., 1994); therefore, related tasks (as judged by the em-
pirical value function) are encouraged to be placed in the same group and be learned simultane-
ously by sharing the episodic data across all tasks in the same group. Assuming the prior of 'm,
m= 1,2, · · · ,M, is drawn from a Dirichlet process with base measure G0 and precision ., we have

'm|G ∼ G,
G|.,G0 ∼ DP(.,G0),

where the precision . provides an expected number of dominant clusters, with this driven by the
number of samples (West, 1992). It usually suffices to set the precision . using the rule in West
(1992). If desired, however, one may also put a Gamma prior on . and draw from its posterior
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(Escobar and West, 1995), which yields greater model flexibility. Note the DP precision is denoted
by the same symbol as the . variables in (26). The difference is easy to recognize, since the former
is a single quantity bearing neither superscripts and nor subscripts while the latter represent a set of
variables and always bear superscripts and subscripts.

By marginalizing out G, one obtains the Polya-urn representation of DP (Blackwell and Mac-
Queen, 1973), expressed in terms of density functions,4

p('m|'−m,.,G0)=
.

.+M−1
G0('m)+

1
.+M−1

M

"
j=1
j .=m

0('m−' j), m= 1, · · · ,M, (54)

where the probability is conditioned on '−m = {'1,'2, · · · ,'M}\{'m}. The Polya-urn represen-
tation in (54) gives a set of full conditionals for the joint prior p('1,'2, · · · ,'M).

The fact that G ∼ DP(.,G0) is almost surely discrete implies that the set {'1, '2, · · · , 'M},
which are iid drawn from G, can have duplicate elements and the number of distinct elements N
cannot exceed M, the total number of environments. It is useful to consider an equivalent represen-
tation of (54) based on the distinct elements (Neal, 1998). Let '= {'1,'2, · · · ,'N} represent the
set of distinct elements of {'1,'2, · · · ,'M}, with N ≤M. Let c= {c1,c2, . . . ,cM} denote the vector
of indicator variables defined by cm = n iff 'm = 'n and c−m = {c1,c2, · · · ,cM}\{cm}. The prior
conditional distribution p(cm|c−m) that arises from the Polya-urn representation of the Dirichlet
process is as follows (MacEachern, 1994)

p(cm|c−m,.) =
.

.+M−1
0(cm)+

N

"
n=1

l−m,n
.+M−1

0(cm−n), (55)

where l−m,n denotes the number of elements in {i : ci = n, i .=m} and cm = 0 indicates a new sample
is drawn from the base G0. Given cm and ', the density of 'm is given by

p('m|cm,',G0) = 0(cm)G0('m)+
N

"
n=1

0(cm−n)0('m−'n). (56)

5.3 The Dirichlet Process Posterior

We take two steps to derive the posterior based on the representation of the DP prior given by (55)
and (56). First we write the conditional posterior of cm, ∀ m ∈ {1, · · · ,M},

p(cm|c−m,',D
(Km)
m ,.,G0) =

R

V̂ (D
(Km)
m ;'m)p('m|cm,',G0)p(cm|c−m,.)d'm

"N
cm=0

R

V̂ (D
(Km)
m ;'m)p('m|cm,',G0)p(cm|c−m,.)d'm

,

which is rewritten, by substituting (55) and (56) into the righthand side, to yield an algorithmically
more meaningful expression

p(cm|c−m,',D
(Km)
m ,.,G0)=

.V̂G0(D
(Km)
m )0(cm)+"N

n=1l−m,nV̂ (D
(Km)
m ;'n)0(cm−n)

.V̂G0(D
(Km)
m )+"N

j=1 l−m, jV̂ (D
(Km)
m ;' j)

, (57)

4. The corresponding expression in terms of probability measures (Escobar and West, 1995) is given by

'm|'−m,.,G0 ∼
.

.+M−1
G0+

1
.+M−1"

M
j=1, j .=m0' j , m= 1, · · · ,M,

where 0' j is the Dirac measure.
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where the V̂G0(D
(Km)
m ) is the marginal empirical value defined in (39) and its expression is given by

(53) when the DP base has a density function as specified in (45).
It is observed from (57) that the indicator cm tends to equal n if V̂ (D

(Km)
m ;'n) is large, which

occurs when the n-th distinct RPR produces a high empirical value in the m-th environment. If
none of the other RPRs produces a high empirical value in the m-th environment, cm will tend to be
equal to zero, which means a new cluster will be generated to account for the novelty. The merit
of generating a new cluster is measured by the empirical value weighted by . and averaged with
respect to G0. Therefore the number of distinct RPRs is jointly dictated by the DP prior and the
episodes.

Given the indicator variables c, the clusters are formed. Let In(c) = {m : cm = n} denote the
indices of the environments that have been assigned to the n-th cluster. Given the clusters, we now
derive the conditional posterior of'n, ∀ n∈ {1, · · · ,N}. If In(c) is an empty set, there is no empirical
evidence available for it to obtain a posterior, therefore one simply removes this cluster. If In(c) is
nonempty, the density function of the conditional posterior of 'n is given by

p('n|
S

m∈In(c)D
(Km)
m ,G0) =

"m∈In(c) V̂ (D
(Km)
m ;'n)G0('n)

R

"m∈In(c) V̂ (D
(Km)
m ;'n)G0('n)d'n

(58)

=
"m∈In(c)

1
Km "

Km
k=1"

Tm,k
t=0 r̃

m,k
t "

|Z|

zm,k
0 ,··· ,zm,k

t =1
p(am,k

0:t ,zm,k
0:t |o

m,k
1:t ,'n)G0('n)

"m∈In(c) V̂G0(D
(Km)
m )

, (59)

where (59) results from substituting (12) into the righthand side of (58). Note that 'n, which
represents the set of parameters of the n-th distinct RPR, is conditioned on all episodes aggregated
across all environments in the n-th cluster. The posterior in (58) has the same form as the definition
in (38) and it is obtained by applying Bayes law to the empirical value function constructed from
the aggregated episodes. As before, the Bayes law is applied in a nonstandard manner, treating the
value function as if it were a likelihood function.

A more concrete expression of (59) can be obtained by letting the DP base G0 have a density
function as in (45),

p('n|
S

m∈In(c)D
(Km)
m ,G0)

=
"m∈In(c)

1
Km "

Km
k=1"

Tm,k
t=0 r̃

m,k
t "

|Z|

zm,k
0 ,··· ,zm,k

t =1
1m,k
t (zm,k

0:t ) p('n|am,k
0:t ,om,k

1:t ,zm,k
0:t ,G0)

"m∈In(c) V̂G0(D
(Km)
m )

, (60)

where V̂G0(D
(Km)
m ) is the marginal empirical value given in (53), 1m,k

t (zm,k
0:t ) is the average recomputed

reward as given in (49), and

p('n|am,k
0:t ,om,k

1:t ,zm,k
0:t ,G0) = p(µn|2̂m,k,t)p(&n|3̂m,k,t)p(Wn

|4̂m,k,t)

is the density of a product of Dirichlet distributions and has the same form as G0(') in (45) but with
2, 3, 4 respectively replaced by 2̂m,k,t , 3̂m,k,t , 4̂m,k,t as given by (50), (51), and (52).

It is noted that, conditional on the indicator variables c and the episodes across all environments,
the distinct RPRs are independent of each other. The indicator variables cluster theM environments
into N ≤M groups, each of which is associated with a distinct RPR. Given the clusters, the envi-
ronments in the n-th group merge their episodes to form a pool, and the posterior of 'n is derived
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based on this pool. Existing clusters may become empty and be removed, and new clusters may be
introduced when novelty is detected, thus the pools change dynamically. The dynamic changes are
implemented inside the algorithm presented below. Therefore, the number of distinct RPRs is not
fixed but is allowed to vary.

5.4 Challenges for Gibbs Sampling

The DP posterior as given by (57) and (60) may be analyzed using the technique of Gibbs sam-
pling (Geman and Geman, 1984; Gelfand and Smith, 1990). The Gibbs sampler successively draws
the indicator variables c1,c2, · · · ,cM and the distinct RPRs '1,'2, · · · ,'N according to (57) and
(60). The samples are expected to represent the posterior when the Markov chain produced by the
Gibbs sampler reaches the stationary distribution. However, the convergence of Gibbs sampling
can be slow and a long sequence of samples may be required before the stationary distribution
is reached. The slow convergence can generally be attributed to the fact that the Gibbs sampler
implements message-passing between dependent variables through the use of samples, instead of
sufficient statistics (Jordan et al., 1999). Variational methods have been suggested as a replacement
for Gibbs sampling (Jordan et al., 1999). Though efficient, variational methods are known to suffer
from bias. A good trade-off is to combine the two, which is the idea of hybrid variational/Gibbs
inference in Welling et al. (2008).

In our present case, Gibbs sampling is further challenged by the particular form of the con-
ditional posterior of 'n in (60), which is seen to be a large mixture resulting from the summa-
tion over environment m, episode k, time step t, and latent z variables. Thus it has a total of
"m∈In"

Km
k=1"

Tm,k
t=0 |Z|

t components and each component is uniquely associated with a single sub-
episode and a specific instantiation of latent z variables. To sample from this mixture, one first
makes a draw to decide a component and then draws 'n from this component. Obviously, any par-
ticular draw of 'n makes use of one single sub-episode only, instead of simultaneously employing
all sub-episodes in the n-th cluster as one would wish.

In essence, mixing with respect to (m,k, t) effectively introduces additional latent indicator vari-
ables, that is, those for locating environment m, episode k, and time step t. It is important to note
that these new indicator variables play a different role than z’s in affecting the samples of 'n. In
particular, the z’s are intrinsic latent variables inside the RPR model, while the new ones are ex-
trinsic latent variables resulting from the particular form of the empirical value function in (37).
Each realization of the new indicators is uniquely associated with a distinct sub-episode while each
realization of z’s is uniquely associated specific decision states. Therefore, the update of 'n based
on one realization of the new indicators employs a single sub-episode, but the update based on one
realization of z’s employs all sub-episodes.

5.5 The Gibbs-Variational Algorithm for Learning the DP Posterior

The fact that the Gibbs sampler cannot update the posterior RPR samples by using more than one
sub-episode motivates us to develop a hybrid Gibbs-variational algorithm for learning the posterior.

We restrict the joint posterior of the latent z variables and the RPR parameters to the variational
Bayesian (VB) approximation that assumes a factorized form. This restriction yields a variational
approximation to p('n|

S

m∈In(c)D
(Km)
m ,G0) that is a single product of Dirichlet density functions,

where the terms associated with different episodes are collected and added up. Therefore, updat-
ing of the variational posterior of 'n in each Gibbs-variational iteration is based on simultaneously
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employing all sub-episodes in the n-th cluster. In addition, the variational method yields an approx-
imation of the marginal empirical value V̂G0(D

(Km)
m ) as given in (39).

The overall Gibbs-variational algorithm is an iterative procedure based on the DP posterior
represented by (57) and (58). At each iteration one successively performs the following for m =

1,2, · · · ,M. First, the cluster indicator variable cm is drawn according to (57), where V̂G0(D
(Km)
m ) is

replaced by its variational Bayesian approximation; accordingly the clusters In = {m : cm = n}, n=
1, . . . ,N are updated. For each nonempty cluster n, the associated distinct RPR is updated by draw-
ing from, or finding the mode of, the variational Bayesian approximation of p('n|

S

m∈In(c)D
(Km)
m ,G0).

The steps are iterated until the variational approximation of "N
n=1 V̂G0(

S

m∈In(c)D
(Km)
m ) converges.

Note that the number of clusters is not fixed but changes with the iteration, since existing clusters
may become empty and be removed and new clusters may be added in.

5.5.1 VARIATIONAL BAYESIAN APPROXIMATION OF V̂G0(D(K)) AND p('|D(K),G0)

In this subsection we drop the variable dependence on environmentm, for notational simplicity. The
discussion assumes a set of episodes D(K) = {(ak0rk0ok1ak1rk1 · · ·okTka

k
Tkr

k
Tk)}

K
k=1, which may come from

a single environment or a conglomeration of several environments.
We now derive the variational Bayesian approximation of the marginal empirical value function

V̂G0(D(K)) as defined in (39). We begin by rewriting (39), using (6) and (37), as

V̂G0(D
(K)) =

1
K

K

"
k=1

Tk
"
t=0

r̃kt
|Z|

"
zk0,··· ,z

k
t =1

Z

p(ak0:t ,zk0:t |ok1:t ,')G0(')d'.

We follow the general variational Bayesian approach (Jordan et al., 1999; Jaakkola, 2001; Beal,
2003)5 to find a variational lower bound to lnV̂G0(D(K)), and the variational Bayesian approximation
of V̂G0(D(K)) is obtained as the exponential of the lower bound. The lower bound is a functional of
a set of factorized forms {qkt (zk0:t)g(') : zkt ∈ Z, t = 1 . . .Tk,k = 1 . . .K} that satisfies the following
normalization constraints:

K

"
k=1

Tk
"
t=1

|Z|

"
zk0,··· ,z

k
t =1

qkt (zk0:t) = K and qkt (zk0:t) ≥ 0 ∀zk0:t , t,k,
Z

g(')d'= 1 and g(') ≥ 0 ∀'.

The lower bound is maximized with respect to
{
qkt (zk0:t)g(')

}
. As will come clear below, maxi-

mization of the lower bound is equivalent to minimization of the Kullback-Leibler (KL) distance
between the factorized forms and weighted true joint posterior of z’s and '. In this sense, the opti-
mal g(') is a variational Bayesian approximation to the posterior p('|D(K),G0). It should be noted
that, as before, the weights result from the empirical value function and are not a part of standard
VB (as applied to likelihood functions).

The variational lower bound is obtained by applying Jensen’s inequality to lnV̂G0(D(K)),

lnV̂G0(D(K))

5. The standard VB applies to a likelihood function. Since we are using a value function instead of a likelihood function,
the VB derivation here is not a standard one, just as the Bayes rule in (38) is non-standard.
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= ln
1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

Z

qkt (zk0:t)g(')
r̃kt G0(')p(ak0:t ,zk0:t |ok1:t ,')

qkt (zk0:t)g(')
d'

≥
1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

Z

qkt (zk0:t)g(') ln
r̃kt G0(')p(ak0:t ,zk0:t |ok1:t ,')

qkt (zk0:t)g(')
d'

= lnV̂G0(D(K))−KL

({
qkt (zk0:t)g(')

}∥∥∥

{
1kt

V̂G0(D(K))
p(zk0:t ,'|ak0:t ,ok1:t)

})

De f .
= LB

({
qkt

}
,g(')

)
, (61)

where 1kt is the average recomputed reward as given in (42), and

KL

({
qkt (zk0:t)g(')

}∥∥∥

{
1kt

V̂G0(D(K))
p(zk0:t ,'|ak0:t ,ok1:t)

})

=
1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

Z

qkt (zk0:t)g(') ln
qkt (zk0:t)g(')

1kt
V̂G0 (D

(K))
p(zk0:t ,'|ak0:t ,ok1:t)

d',

with KL(q||p) denoting the Kullback-Leibler distance.
For any set

{
qkt (zk0:t)g(') : zkt ∈ Z, t = 1 . . .Tk,k = 1 . . .K

}
satisfying the above normalization

constraints, the inequality in (61) holds. In order to obtain the lower bound that is closest to
lnV̂ (D(K)), one maximizes the lower bound by optimizing

({
qkt

}
,g(')

)
subject to the normal-

ization constraints. Since lnV̂G0(D(K)) is independent of ' and {qkt }, it is clear that maximiza-
tion of the lower bound LB

({
qkt

}
,g(')

)
is equivalent to minimization of the KL distance be-

tween
{
qkt (zk0:t)g(')

}
and the weighted posterior

{
1kt

V̂G0 (D
(K))

p(zk0:t ,'|ak0:t ,ok1:t)
}
, where the weight

for episode k at time step t is 1kt
V̂G0 (D

(K))
=K 1kt

"Kk=1"
Tk
t=0 1

k
t
(the equation results directly from (43)), that is,

K times the fraction that the average recomputed reward 1kt occupies in the total average recomputed
reward. Therefore the factorized form

{
qkt (zk0:t)g(')

}
represents an approximation of the weighted

posterior when the lower bound reaches the maximum, and the corresponding g(') is called the
approximate variational posterior of '.

The lower bound maximization is accomplished by solving
{
qkt (zk0:t)

}
and q(') alternately,

keeping one fixed while solving for the other, as shown in Theorem 8.

Theorem 8 Iteratively applying the following two equations produces a sequence of monotonically
increasing lower bounds LB

({
qkt

}
,g(')

)
, which converges to a maxima,

qkt (zk0:t) =
r̃kt
Cz
exp

{
Z

g(') ln p(ak0:t ,zk0:t |ok1:t ,')d'
}

, (62)

g(') =
G0(')

C'
exp





1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1
qkt (zk0:t) ln r̃kt p(ak0:t ,zk0:t |ok1:t ,')





, (63)

where Cz and C' are normalization constants such that
R

g(')d'= 1 and
"K
k=1"

Tk
t=0"

|Z|

zk0,··· ,z
k
t =1

qkt (zk0:t) = K.
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It is seen from (63) that the variational posterior g(') takes the form of a product, where each
term in the product is uniquely associated with a sub-episode. As will be clear shortly, the terms are
properly collected and the associated sub-episodes simultaneously employed in the posterior. We
now discuss the computations involved in Theorem 8.

Calculation of
{
qkt (zk0:t)

}
We uses the prior of ' as specified by (45). It is not difficult to verify

from (63) that the variational posterior g(') takes the same form as the prior, that is,

g(') = p(µ|2̂)p(&|3̂)p(W |4̂), (64)

where the three factors respectively have the forms of (46),(47), and (48); we have put a hat ̂ above
the hyper-parameters of g(') to indicate the difference from those of the prior.

Substituting (5) and (64) into (62), we obtain

qkt (zk0:t)

=
r̃kt
Cz
exp

{
t

"
)=0

〈
ln&(zk),ak))

〉
p(&|3̂)+

〈
lnµ(zk0)

〉
p(µ|2̂)+

t

"
)=1

〈
lnW (zk)−1,ak)−1,ok),zk))

〉

p(W |4̂)

}

=
r̃kt
Cz
µ̃(zk0)&̃(zk0,ak0)

t

(
)=1

W̃ (zk)−1,ak)−1,ok),zk))&̃(zk),ak)), (65)

where 〈·〉p(&|3̂) denotes taking expectation with respect to p(&|3̂), and

µ̃( j) = exp
{〈
lnµ( j)

〉
p(µ|2̂)

}

= exp
{
6(2̂ j)−6(

|Z|

"
j′=1

2̂ j′)

}
, j = 1 . . . |Z|, (66)

&̃(i,m) = exp
{〈
ln&(i,m)

〉
p(&|3̂)

}

= exp
{
6(3̂i,m)−6(

|A |

"
m′=1

3̂i,m′)

}
, m= 1 . . . |A |, (67)

W̃ (i,a,o, j) = exp
{〈
lnW (i,a,o, j)

〉
p(W |4̂)

}

= exp
{
6(4̂i,a,o, j)−6(

|Z|

"
j′=1

4̂i,a,o, j′)

}
, j = 1 . . . |Z|, (68)

each of which is a finite set of nonnegative numbers with a sum less than one. Such a finite set is
called under-normalized probabilities in Beal (2003) and used there to perform variational Bayesian
learning of hidden Markov models (HMM). The 6(·) is the digamma function.

It is interesting to note that the product µ̃(zk0)&̃(zk0,ak0)(
t
)=1W̃ (zk)−1,ak)−1,ok),zk))&̃(zk),ak)) on the

left side of (65) has exactly the same form as the expression of p(ak0:t ,zk0:t |ok1:t ,') in (5), except that
the ' is replaced by '̃= {µ̃, &̃,W̃}. Therefore, one can nominally rewrite (65) as

qkt (zk0:t) =
r̃kt
Cz
p(ak0:t ,zk0:t |ok1:t , '̃),
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with the normalization constant given by

Cz =
1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

r̃kt p(ak0:t ,zk0:t |ok1:t , '̃),

such that the constraint "K
k=1"

Tk
t=0"

|Z|

zk0,··· ,z
k
t =1

qkt (zk0:t) = K is satisfied. One may also find that the
normalization constant Cz is a nominal empirical value function that has the same form as the em-
pirical value function in (12). The only difference is that the normalized ' is replaced by the
under-normalized '̃. Therefore, one may write

Cz = V̂ (D(K); '̃). (69)

Since '̃ = {µ̃, &̃,W̃} are under-normalized, p(ak0:t ,zk0:t |ok1:t , '̃) is not a proper probability distri-
bution. However, one may still write p(ak0:t ,zk0:t |ok1:t , '̃) = p(ak0:t |ok1:t , '̃)p(zk0:t |ak0:t ,ok1:t , '̃), where
p(ak0:t |ok1:t , '̃) = "

|Z|

zk0,··· ,z
k
t =1

p(ak0:t ,zk0:t |ok1:t , '̃) and p(zk0:t |ak0:t ,ok1:t , '̃) =
p(ak0:t ,z

k
0:t |o

k
1:t ,'̃)

p(ak0:t |o
k
1:t ,'̃)

. Note that

p(zk0:t |ak0:t ,ok1:t , '̃) is a proper probability distribution. Accordingly, qkt (zk0:t) can be rewritten as

qkt (zk0:t) =
*kt ('̃)

V̂ (D(K); '̃)
p(zk0:t |ak0:t ,ok1:t , '̃), (70)

where

*kt ('̃) = r̃kt p(ak0:t |ok1:t , '̃)

= r̃kt
t

(
)=0

p(ak)|hk), '̃) (71)

is called variational re-computed reward, which has the same form as the re-computed reward
given in (16) but with ' replaced by '̃. The second equality in (71) is based on the equation
p(ak0:t |ok1:t ,') =(t

)=0 p(ak)|hk),') established in (9) and (10). The nominal empirical value function
V̂ (D(K); '̃) can now be expressed in terms of *kt ('̃),

V̂ (D(K); '̃) =
1
K

K

"
k=1

Tk
"
t=0

*kt ('̃). (72)

Equation (70) shows that qkt (zk0:t) is a weighted posterior of zk0:t . The weights, using (72), can be
equivalently expressed as *kt ('̃)

V̂ (D(K);'̃)
= K7kt ('̃) where

7kt ('̃)
De f .
=

*kt ('̃)

"K
k=1"

Tk
t=0*

k
t ('̃)

. (73)

The weighted posterior has the same form as (15) used in single-task RPR learning. Therefore we
can borrow the techniques developed there to compute the marginal distributions of p(zk0:t |ak0:t ,ok1:t , '̃),
particularly those defined in (24) and (25). For clarity, we rewrite these marginal distributions below
without re-deriving them, with ' replaced by '̃,

,kt,)(i, j) = p(zk) = i,zk)+1 = j|ak0:t ,ok1:t , '̃), (74)

-kt,)(i) = p(zk) = i|ak0:t ,ok1:t , '̃). (75)

These marginals along with the {7kt ('̃)} defined in (73) will be used below to compute the varia-
tional posterior g(').
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Calculation of the Variational Posterior g(') To compute g('), one substitutes (5) and (70)
into (63) and performs summation over the latent z variables. Most z variables are summed out,
leaving only the marginals in (74) and (75). Employing these marginals and taking into account the
weights {K7kt ('̃)}, the variational posterior (with 7kt ('̃) abbreviated as 7kt for notational simplicity)
is obtained as

g(') =
G0(')

C'
exp

{
1
K

K

"
k=1

Tk
"
t=0

K7kt

[
|Z|

"
i=1

-kt,0(i) lnµ(i)

+
t

"
)=1

|Z|

"
i=1

-kt,)(i) ln&(i,ak))+
t

"
)=1

|Z|

"
i, j=1

,kt,)(i, j) lnW (i,ak)−1,ok), j)

]}

=
G0(')

C'

K

(
k=1

Tk
(
t=0

{
|Z|

(
i=1

[
µ(i)

]7kt -kt,0(i)
t

(
)=1

|Z|

(
i=1

[
&(i,ak))

]7kt -kt,)(i)

×
t

(
)=1

|Z|

(
i, j=1

[
W (i,ak)−1,ok), j)

]7kt ,kt,)−1(i, j)
}

= p(µ|2̂)p(&|3̂)p(W |4̂),

where p(µ|2̂), p(&|3̂), p(W |4̂) have the same forms as in (46), (47), and (48), respectively, but with
the hyper-parameters replaced by

2̂i = 2i+
K

"
k=1

Tk
"
t=0

7kt -
k
t,0(i), (76)

3̂i,a = 3i,a+
K

"
k=1

Tk
"
t=0

t

"
)=0

7kt -
k
t,)(i)0(ak),a), (77)

4̂i,a,o, j = 4i,a,o, j +
K

"
k=1

Tk
"
t=0

t

"
)=1

7kt ,
k
t,)−1(i, j)0(ak)−1,a)0(ok),o), (78)

for i, j = 1, . . . , |Z|, a = 1, . . . , |A |, o = 1, . . . , |O|. Note that, for simplicity, we have used {2̂, 3̂, 4̂}
to denote the hyper-parameters of g(') for both before and after the updates in (76)-(78) are made.
It should be kept in mind that the 7’s, -’s, and ,’s are all based on the numerical values of {2̂, 3̂, 4̂}
before the updates in (76)-(78) are made, that is, they are based on the {2̂, 3̂, 4̂} updated in the
previous iteration.

It is clear from (76)-(78) that the update of the variational posterior is based on using all episodes
at all time steps (i.e., all sub-episodes). The 7kt can be thought of as a variational soft count at time t
of episode k, which is appended to the hyper-parameters (initial Dirichlet counts) of the prior. Each
decision state z receives 7kt in the amount that is proportional to the probability specified by the
posterior marginals {-kt,)} and {,kt,)−1}.

Computation of the Lower Bound To compute the lower bound LB({qkt },g(')) given in (61),
one first takes the logarithm of (62) to obtain

lnqkt (zk0:t) = lnC−1
z r̃kt exp

{
Z

g(') ln p(ak0:t ,zk0:t |ok1:t ,')d'
}

= − lnCz+
Z

g(') ln r̃kt p(ak0:t ,zk0:t |ok1:t ,')d',
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which is then substituted into the right side of (82) in the Appendix to cancel the first term, yielding

LB
({

qkt
}

,g(')
)

= lnCz−
Z

g(') ln
g(')

G0(')
d'

= lnCz−KL
(
g(')||G0(')

)

= lnV̂ (D(K); '̃)−KL
(
g(')||G0(')

)
, (79)

where the last equality follows from (69).
The lower bound yields a variational approximation to the logarithm of the marginal empirical

value. As variational Bayesian learning proceeds, the lower bound monotonically increases, as
guaranteed by Theorem 8, and eventually reaches a maxima, at which point one obtains the best
(assuming the maxima is global) variational approximation. By taking exponential of the best lower
bound, one gets the approximated marginal empirical value. The lower bound also provides a
quantitative measure for monitoring the convergence of variational Bayesian learning.

5.5.2 THE COMPLETE GIBBS-VARIATIONAL LEARNING ALGORITHM

A detailed algorithmic description of the complete Gibbs-variational algorithm is given in Table
2. The algorithm calls the variational Bayesian (VB) algorithm in Table 3 as a sub-routine, to find
the variational Bayesian approximations to intractable computations. In particular, the marginal
empirical value V̂G0(D

(Km)
m ) in (57) is approximated by the exponential of the variational lower

bound returned from the VB algorithm by feeding the episodes D(Km)
m . The conditional poste-

rior p('n|
S

m∈In(c)D
(Km)
m ,G0) in (58) is approximated by the variational posterior g('n) returned

from the VB algorithm by feeding the episodes
S

m∈In(c)D
(Km)
m . The variational approximation of

V̂G0(D
(Km)
m ) need be computed only once for each environmentm, before the main loop begins, since

it solely depends on the DP base G0 and the episodes, which are assumed given and fixed. The vari-
ational posterior g('n) and V̂G0

(
S

m∈In(c)D
(Km)
m

)
, however, need be updated inside the main loop,

because the clusters {In(c)} keep changing from iteration to iteration.
Upon convergence of the algorithm, one obtains variational approximations to the posteriors of

distinct RPRs {g('n)}Nn=1, which along with the cluster indicators {c1,c2, · · · ,cM} give the varia-
tional posterior g('m) for each individual environment m. By simple post-processing of the pos-
terior, we obtain the mean or mode of each 'm, which gives a single RPR for each environment
and yields the history-dependent policy as given by (8). Alternatively, one may draw samples from
the variational posterior and use them to produce an ensemble of RPRs for each environment. The
RPR ensemble gives multiple history-dependent policies, that are marginalized (averaged) to yield
the final choice for the action.

It should be noted that the VB algorithm in Table 3 can also be used as a stand-alone algorithm
to find the variational posterior of the RPR of each environment independently of the RPRs of
other environments. In this respect the VB is a Bayesian counterpart of the maximum value (MV)
algorithm for single-task reinforcement learning (STRL), presented in Section 4 and Table 1.

Time Complexity Analysis The time complexity of the VB algorithm in Table 3 is given as
follows where, as in Section 4.3.1, the complexity is quantified by the number of real number
multiplications in each iteration and is presented in the Big-O notation. For the reasons stated in
Section 4.3.1, the complexity per iteration also represents the complexity of the complete algorithm.
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Input: {D(Km)
m }Mm=1, A , O, |Z|, {2,3,4}, .

Output: {2̂n, 3̂n, 4̂n}Nn=1 with N ≤M and {c1,c2, · · · ,cM}.

1. Computing the variational approximations of {V̂G0(D
(Km)
m )}:

1.1 for m= 1 to M
Call the algorithm in Table 3, with the inputs D(Km)

m , A , O, |Z|,
{2,3,4}. Record the returned hyper-parameters as {2̂m, 3̂m, 4̂m} and the
approximate V̂G0(D

(Km)
m ).

2. Initializations: Let j = 1, N=M, ! = 0.
Let 2n = 2̂n, 3n = 3̂n, 4n = 4̂n, for n= 1, · · · ,N.

3. Repeat
3.1 For n= 1 to N

Update 'n by drawing from, or finding the mode of, the G0 with hyper-
parameters {2n,3n,4n}.

3.2 For m= 1 to M
Let coldm = cm and draw cm according to (57).
If cm .= coldm
If cm = 0, start a new cluster IN+1(c) = {m}.
Elseif cm .= 0, move the element m from Icoldm (c) to Icm(c).
For n=

{
coldm ,cm

}

If In(c) is an empty set
Delete the n-th cluster.

Elseif In(c) contain a single element (let it be denoted by m′)
Let 2n= 2̂m′ , 3n= 3̂m′ , 4n= 4̂m′ . Add Km′

"Mi=1Ki
V̂G0(D

(Km′ )
m′ ) to !( j).

Else
Call the algorithm in Table 3, with the inputs

S

i∈In(c)D
(Ki)
i ,

A , O, |Z|, {2,3,4}. Record the returned hyper-parameters as
{2n,3n,4n}. Scale the returned V̂G0

(
S

i∈In(c)D
(Ki)
i

)

by "i∈In(c)Ki
"Mi=1Ki

and add the result to !( j).
If In(c) is not empty
Draw 'n drawn from G0 with hyper-parameters {2n,3n,4n}.

3.3 Updating N:
Let N be the number of nonempty clusters and renumber the
nonempty clusters so that their indices are in {1,2, · · · ,N}.

3.4 Convergence check:
If the sequence of ! converges

stop the algorithm and exit.
Otherwise
Set j := j+1 and !( j) = 0.

Table 2: The Gibbs-variational algorithm for learning the DP posterior
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Input: D(K), A , O, |Z|, {2,3,4}.
Output: {2̂, 3̂, 4̂}, V̂G0(D(K)) ≈ LB({qkt },g(')).

1. Initialize 2̂= 2, 3̂= 3, 4̂= 4, ! = [], iteration= 1.
2. Repeat
2.1 Computing '̃:

Compute the set of under-normalized probabilities '̃ using
Equations (66)-(68).

2.2 Dynamical programming:
Compute . and / variables with (30), (31), and (32), with '
replaced by '̃ in these equations.

2.3 Reward re-computation:
Calculate the variational recomputed reward {*kt ('̃)} using
(71) and (32) and compute the weight {7kt ('̃)} using (73).

2.4 Lower bound computation:
Calculate the variational lower bound LB({qkt },g(')) using
(79) and (72).

2.5 Convergence check:
Let !(iteration) = LB({qkt },g(')).
If the sequence of ! converges

Stop the algorithm and exit.
Else

Set iteration := iteration+1.
2.6 Posterior update for z:

Compute the , and - variables using Equations (28)-(29).
2.7 Update of hyper-paramters:

Compute the updated {2̂, 3̂, 4̂} using (76), (77), and (78).

Table 3: The variational Bayesian learning algorithm for RPR

• The computation of '̃ based on Equations (66)-(68) runs in time O(|Z|), O(|A ||Z|), and
O(|A ||O||Z|2), respectively.

• Computation of the . variables with (30) and (32) (with ' replaced by '̃) runs in time
O(|Z|2"K

k=1Tk).

• Computation of the / variables with (31) and (32) (with ' replaced by '̃) runs in time
O(|Z|2"K

k=1"
Tk
t=0,rkt .=0

(t+1)), which isO(|Z|2"K
k=1T 2k ) in the worst case and isO(|Z|2"K

k=1Tk)
in the best case, where the worst and best cases are distinguished by the sparseness of imme-
diate rewards, as discussed in Section 4.3.1.

• The reward re-computation using (71), (32), and (73) requires time O("K
k=1Tk) in the worst

case and O(K) in the best case.

• Computation of the lower bound using (72) and (79) requires time O(|A ||O||Z|2).
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• Update of the hyper-parameters using (76), (77), and (78), as well as computation of the
, and - variables using (28) and (29), runs in time O(|Z|2"K

k=1T 2k ) in the worst case and
O(|Z|2"K

k=1Tk) in the best case.

The overall complexity of the VB algorithm is seen to be O(|Z|2"K
k=1T 2k ) in the worst case and

O(|Z|2"K
k=1Tk) in the best case, based on the fact that "K

k=1Tk / |A ||O| in general. Thus the VB
algorithm has the same time complexity as the value maximization algorithm in Table 1. Note
that the time dependency on the lengths of episodes is dictated by the sparseness of the immediate
rewards; for most problems considered in Section 6, the agent receives rewards only when the goal
state is reached, in which case the VB algorithm scales linearly with the lengths of episodes.

The complexity of the Gibbs-variational algorithm can be easily obtained based on the complex-
ity analysis above for the VB algorithm. At the beginning and before entering the main loop, the
Gibbs-variational algorithm calls the VB to compute the variational approximation of the marginal
empirical value {V̂G0(D

(Km)
m )} for each environment m, by feeding the associated episodes D(Km)

m .
These computations are performed only once. For each environment the VB runs until convergence,
with a time complexity between O(|Z|2"Km

k=1Tm,k) and O(|Z|2"Km
k=1T

2
m,k) per iteration, depending

on the sparseness of the immediate rewards. Inside the main loop, the Gibbs-variational algorithm
calls the VB to compute the variational posterior of distinct RPR for each cluster n, by feeding
the merged episodes

S

m∈In(c)D
(Km)
m . These computations are performed each time the clusters are

updated, with a time complexity between O(|Z|2"m∈In(c)"
Km
k=1Tm,k) and O(|Z|2"m∈In(c)"

Km
k=1T

2
m,k)

per iteration for cluster n.

6. Experimental Results

We compare the performance of RPR in multi-task reinforcement learning (MTRL) versus single-
task reinforcement learning (STRL), and demonstrate the advantage of MTRL. The RPR for MTRL
is implemented by the Gibbs-variational algorithm in Table 2 and the RPR for STRL is implemented
by the maximum-value (MV) algorithm in Table 1. The variational Bayesian (VB) algorithm in
Table 3, which is a Bayesian counterpart of the MV algorithm, generally performs similar to the
MV for STRL and is thus excluded in the comparisons.

Since the MV algorithm is a new technique developed in this paper, we evaluate the performance
of the MV before proceeding to the comparison of MTRL and STRL. We also compare the MV to
the method of first learning a POMDP model from the episodes and then finding the optimal policy
for the POMDP.

6.1 Performance of RPR in Single-Task Reinforcement Learning (STRL)

We consider the benchmark example Hallway2, introduced in Littman et al. (1995). The Hallway2
problem was originally designed to test algorithms based on a given POMDP model, and it has
recently been employed as a benchmark for testing model-free reinforcement algorithms (Bakker,
2004; Wierstra and Wiering, 2004).

Hallway2 is a navigation problem where an agent is situated in a maze consisting of a number
of rooms and walls that are connected to each other and the agent navigates in the maze with the
objective of reaching the goal within a minimum number of steps. The maze is characterized by 92
states, each representing one of four orientations (south, north, east, west) in any of 23 rectangle
areas, and four of the states (corresponding to a single rectangle area) represent the goal. The
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observations consist of 24 = 16 combinations of presence/absence of a wall as viewed when standing
in a rectangle facing one of the four orientations, and there is an observation uniquely associated
with the goal. There are five different actions that the agent can take: {stay in place, move forward,
turn right, turn left, turn around}. Both state transitions and observations are very noisy (uncertain),
except that the goal is fully identified by the unique observation associated with it. The reward
function is defined in such a way that a large reward is received when the agent enters the goal from
the adjacent states, and zero reward is received otherwise. Thus the reward structure is highly sparse
and both the MTRL and STRL algorithms scale linearly with the lengths of episodes in this case, as
discussed in Sections 4.3.1 and 5.5.2.

6.1.1 PERFORMANCE AS A FUNCTION OF NUMBER OF EPISODES

We investigate the performance of the RPR, as a function of K the number of episodes used in the
learning. For each given K, we learn a RPR from a set of K episodes D(K) that are generated by
following the behavior policy $, and the learning follows the procedures described in Section 4.

The conditions for the policy $, as given in Theorem 5, are very mild, and are satisfied by a
uniformly random policy. However, a uniformly random agent may take a long time to reach the
goal, which makes the learning very slow. To accelerate learning, we use a semi-random policy $,
which is simulated by the rule that, with probability pquery, $ chooses an action suggested by the
PBVI algorithm (Pineau et al., 2003) and, with probability 1− pquery,$ chooses an action uniformly
sampled from A . The use of PBVI here is similar to the meta-queries used in Doshi et al. (2008),
where a meta-query consults a domain expert (who is assumed to have access to the true POMDP
model) for the optimal action at a particular time step. The meta-queries correspond to human-
robot interactions in robotics applications. It should be noted that, by implementing the reward
re-computation in RPR online, the behavior policy in each iteration simply becomes the RPR in the
previous iteration, in which case the use of an external policy like PBVI is eliminated.

In principle, the number of decision states (belief regions) |Z| can be selected by maximizing
the marginal empirical value V̂G0(D(K)) =

R

V̂ (D(K))G0(')d' with respect to |Z|, where an ap-
proximation of V̂ (D(K)) can be found by the VB algorithm in Table 3. Because the MV does not
employ a prior, we make a nominal prior G0(') by letting it take the form of (45) but with all
hyper-parameters uniformly set to one. This leads to G0(') ≡Cmv, where Cmv is a normalization
constant. Therefore maximization of V̂G0(D(K)) is equivalent to maximization of

R

V̂ (D(K);')d',
which serves as an evidence of how good the choice of |Z| fits to the episodes in terms of empirical
value. According to the Occam Razor principle (Beal, 2003), the minimum |Z| fitting the episodes
has the best generalization. In practice, letting |Z| be a multiple of the number of actions is usually
a good choice (here |Z| = 4×5= 20) and we find that the performance of the RPR is quite robust
to the choice of |Z|. This may be attributed to the fact that learning of the RPR is a process of
allocating counts to the decision states—when more decision states are included, they simply share
the counts that otherwise would have been allocated to a single decision state. Provided the sharing
of counts is consistent among µ, &, andW , the policy will not change much.

The performance of the RPR is compared against EM-PBVI, the method that first learns a
predictive model as in Chrisman (1992) and then learns the policy based on the predictive model.
Here the predictive model is a POMDP learned by expectation maximization (EM) based on D(K)

and the PBVI (Pineau et al., 2003) is employed to find the policy given the POMDP. To examine the
effect of the behavior policy $ on the RPR’s performance, we consider three different $’s, which
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respectively have a probability pquery = 5%,30%,50% of choosing the actions suggested by PBVI,
where pquery corresponds to the rate of meta-query in Doshi et al. (2008). The episodes used to learn
EM-PBVI are collected by the behavior policy with pquery = 50%, which is the highest query rate
considered here. Therefore the experiments are biased favorably towards the EM-PBVI, in terms of
the number of expert-suggested actions that are employed to generate the training episodes.

The performance of each RPR, as well as that of EM-PBVI, is evaluated on Hallway2 by fol-
lowing the standard testing procedure as set up in Littman et al. (1995). For each policy, a total of
251 independent trials are performed and each trial is terminated when either the goal is reached
or a maximum budget of 251 steps is consumed. Three performance measures are computed based
on the 251 trials: (a) the discounted accumulative reward (i.e., the sum of exponentially discounted
rewards received over the Nte ≤ 251 steps) averaged over the 251 trials; (b) the goal rate, that is, the
percentage of the 251 trials in which the agent has reached the goal; (c) the number of steps that the
agent has actually taken, averaged over the 251 trials.

The results on Hallway2 are summarized in Figure 1, where we present each of the three perfor-
mance measures plus the learning time, as a function of log10 of the number of episodes K used in
the learning. The four curves in each figure correspond to the EM-PBVI, and the three RPRs with
a rate of PBVI query 5%, 30%, and 50%, respectively. Each curve results from an average over 20
independently generated D(K) and the error bars show the standard deviations. For simplicity, the
error bars are shown only for the RPR with a 50% query rate.

As shown in Figure 1 the performance of the RPR improves as the number of episodes K used
to learn it increases, regardless of the behavior policy$. As recalled from Theorem 5, the empirical
value function V̂ (D(K);') approaches the exact value function as K goes to infinity. Assuming the
RPR has enough memory (decision states) and the algorithm finds the global maxima, the RPR will
approach the optimal policy as K increases. Therefore, Figure 1 serves as an experimental verifica-
tion of Theorem 5. The CPU time shown in Figure 1(d) is exponential in log10K or, equivalently, is
linear in K. The linear time is consistent with the complexity analysis in Section 4.3.1.

The error bars of goal rate exhibits quick shrinkage with K and those of the median number of
steps also shrinks relatively fast. In contrast, the discounted accumulative reward has a very slow
shrinkage rate for its error bars. The different shrinkage rates show that it is much easier to reach
the goal within the prescribed number of steps (251 here) than to reach the goal in relatively less
steps. Note that, when the goal is reached at the t-th step, the number of steps is t but the discounted
accumulative reward is #−t rgoal, where rgoal is the reward of entering the goal state. The exponential
discounting explains the difference between the number of steps and the discounted accumulative
reward regarding the shrinkage rates of error bars.

A comparison of the three RPR curves in Figure 1 shows that the rate at which the behavior
policy $ uses or queries PBVI influences the RPR’s performance and the influence depends on K.
When K is small, increasing the query rate significantly improves the performance; whereas, when
K gets larger, the influence decreases until it eventually vanishes. The decreased influence is most
easily seen between the curves of 30% and 50% query rates. To make the performance not degrade
when the query rate decreases to as low as 5%, a much largerK may be required. These experimental
results confirm that random actions can accomplish a good exploration of available rewards (the
goal state here) by collecting a large number of (lengthy) episodes and the RPR learned from these
episodes perform competitively. With a small number of episodes, however, random actions achieve
limited exploration and the resulting RPR performs poorly. In the latter case, queries to experts like
PBVI plays an important role in improving the exploration and the RPR’s performance.
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Figure 1: Performance comparison on the Hallway2 problem. The horizontal axis is log10 of the
number of episodes K used in learning the RPR. The horizontal axis in each sub-figure
is (a) Goal rate (b) Discounted accumulative reward (c) Number of steps to reach the
goal (d) Time in seconds for learning the RPR. The four curves in each figure correspond
to the EM-PBVI and the RPR based on a behavior policy $ that queries PBVI with a
probability pquery = 5%, 30%, 50%, respectively. The EM-PBVI employs EM to learn a
POMDP model based on the episodes collected by$with pquery = 50% and then uses the
PBVI (Pineau et al., 2003) to find the optimal policy based on the learned POMDP. Each
curve results from an average over 20 independent runs and, for simplicity, the error bars
are shown only for the RPR with a 50% query rate. The performance measures in (a)-(c)
are explained in greater detail in text.

It is also seen from Figure 1 that the performance of EM-PBVI is not satisfactory and grows
slowly with K. The poor performance is strongly related to insufficient exploration of the environ-
ment by the limited episodes. For EM-PBVI, the required amount of episodes is more demanding
because the initial objective is to build a POMDP model instead of learning a policy. This is because
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policy learning is concerned with exploring the reward structure but building a POMDP requires ex-
ploration of all aspects of the environment. This demonstrates the drawback of methods that rely on
learning an intervening POMDP model, with which a policy is designed subsequently.

6.2 Performance of RPR in Multi-task Reinforcement Learning (MTRL)

We investigate the performance of RPR on three MTRL problems. The first two are robotic naviga-
tion in mazes and the last one is multi-aspect classification.

6.2.1 MAZE NAVIGATION

In this problem, there are M = 10 environments and each environment is a grid-world, that is, an
array of rectangular cells. Of the ten environments, three are distinct and are shown in Figure 2,
the remaining are duplicated from the three distinct ones. Specifically, the first three environments
are duplicated from the first distinct one, the following three environments are duplicated from the
second distinct one, and the last four environments are duplicates from the third distinct one. We
assume 10 sets of episodes, with the m-th set collected from the m-th environment.

In each of the distinct environments shown in Figure 2, the agent can take five actions {move
forward, move backward, move left, move right, stay}. In each cell of the grid-world environments,
the agent can only observe the openness of the cell in the four directions. The agent then has a total
of 16 possible observations indicating the 24 = 16 different combinations of the openness of a cell
in the four orientations. The actions (except the action stay) taken by the agent are not accurate and
have some noise. The probability of arriving at the correct cell by taking amove action is 0.7 and the
probability of arriving at other neighboring cells is 0.3. The perception is noisy, with a probability
0.8 of correctly observing the openness and the probability 0.2 of making a mistaken observation.
The agent receives a unit reward when the goal (indicated by a basket of food in the figures) is
reached and zero reward otherwise. The agent does not know the model of any of the environments
but only has access to the episodes, that is, sequences of actions, observations, and rewards.

Algorithm Learning and Evaluation For each environment m = 1,2, · · · ,10, there is a set of
K episodes D(K)

m , collected by simulating the agent-environment interaction using the models de-
scribed above and a behavior policy $ that the agent follows to determine his actions. The behavior
policy is the semi-random policy described in Section 6.1, with a probability pquery = 0.5 of taking
the actions suggested by PBVI.

Reinforcement learning (RL) based on the ten sets of episodes {D(K)
m }10m=1 leads to ten RPRs,

each associated with one of the ten environments. We consider three paradigms of learning: the
MTRL in which the Gibbs-variational algorithm in Table 2 is applied to the ten sets of episodes
jointly, the STRL in which the MV algorithm in Table 1 is applied to each of the ten episode
sets separately, and pooling in which the MV algorithm is applied to the union of the ten episode
sets. The number of decision states is chosen as |Z| = 6 for all environments and all learning
paradigms. Other larger |Z| give similar results and, if desired, the selection of decision states
can be accomplished by maximizing the marginal empirical value with respect to |Z|, as discussed
above.

The RPR policy learned by any paradigm for any environment is evaluated by executing the
policy 1000 times independently, each time starting randomly from a grid cell in the environment
and taking a maximum of 15 steps. The performance of the policy is evaluated by two performance
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Figure 2: The three distinct grid-world environments, where the goal is designated by the basket of
food, each block indicates a cell in the grid world, and the two gray cells are occupied
by a wall. The red dashed lines in (a) and (c) indicate the similar parts in the two
environments. The agent locates himself by observing the openness of a cell in the four
orientations. Both the motion and the observation are noisy.

measures: (a) the average success rate at which the agent reaches the goal within 15 steps, and (b)
the average number of steps that the agent takes to reach the goal. When the agent does not reach
the goal within 15 steps, the number of steps is 15. Each performance measure is computed from
the 1000 instances of policy execution, and is averaged over 20 independent trials.

We examine the performance of each learning paradigm for various choices of K, the number of
episodes per environment. Specifically we consider 16 different choices: K= 3,4,5,6,7,8,9,10,11,
12,24,60,120,240. The performances of the three learning paradigms, averaged over 20 indepen-
dent trials, are plotted in Figure 3 as a function of K. Figures 3(c) and 3(d) are respectively dupli-
cates of Figures 3(a) and 3(b), with the horizontal axis displayed in a logarithmic scale. By (57),
the choice of the precision parameter . in Dirichlet process influences the probability of sampling
a new cluster; it hence influences the resulting number of distinct RPR parameters '. According to
West (1992), the choice of . is governed by the posterior p(.|K,N) 8 p(N|K,.)p(.), where N is
the number of clusters updated in the most recent iteration of the Gibbs-variational algorithm. One
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Figure 3: Comparison of MTRL, STRL, and pooling on the problem of multiple stochastic envi-
ronments summarized in Figure 2. (a) Average success rate for the agent to reach the goal
within 15 steps. (b) Average step for the agent reaching the target. (c) Average success
rate for the agent with the horizontal axis in log scale.(d) Average step with the horizontal
axis in log scale.

may choose . by sampling from the posterior or finding the mean. When K is large and N 3 K
and the prior p(.) is a Gamma distribution, the posterior p(.|K,N) is approximately a Gamma
distribution with the mean E(.) = O(N log(K)). For the different choices of K considered above,
we choose .= 3n, with n= 2,3, . . . ,15 respectively. These choices are based on approximations of
E(.) obtained by fixing N at an initial guess N = 8. We find that the results are relatively robust to
the initial guess provided the logarithmic dependence on K is employed. The density of the DP base
G0 is of the form in (45), with all hyper-parameters set to one, making the base non-informative.

Figures 3(a) and 3(b) show that the performance of MTRL is generally much better than that of
STRL and pooling. The improvement is attributed to the fact that MTRL automatically identifies
and enforces appropriate sharing among the ten environments to ensure that information transfer is
positive. The improvement over STRL indicates that the number of episodes required for finding
the correct sharing is generally smaller that that required for finding the correct policies.

The identification of appropriate sharing is based on information from the episodes. When the
number of episodes is very small (say, less than 25 in the examples here), the sharing found by
MTRL may not be accurate; in this case, simply pooling the episodes across all ten environments
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may be a more reasonable alternative. When the number of episodes increases, however, pooling
begins to show disadvantages since the environments are not all the same and forcing them to share
leads to negative information transfer. The seemingly degraded performance of pooling at the first
two points in Figure 3(c) may not be accurate since the results have large variations when the
episodes are extremely scarce; much more Monte Carlo runs may be required to obtain accurate
results in these cases.

The performance of STRL is poor when the number of episodes is small, because a small set
of episodes do not provide enough information for learning a good RPR. However, the STRL per-
formance improves significantly with the increase of episodes, which whittles down the advantage
brought about by information transfer and allows STRL to eventually catch up with MTRL in per-
formance.
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Figure 4: Hinton diagrams of the between-task similarity matrix inferred by the MTRL for the
problem of multiple stochastic environments 2. The number of episodes per environment
is (a) 3 (b) 10 (c) 60 (d) 120.

Analysis of the Sharing Mechanism We investigate the sharing mechanism of the MTRL by
plotting Hinton diagrams. The Hinton diagram (Hinton and Sejnowski, 1986) is a quantitative way
of displaying the elements of a data matrix. Each element is represented by a square whose size
is proportional to the magnitude. In our case here, the data matrix is the between-task similarity
matrix (Xue et al., 2007) learned by the MTRL; it is defined as follows: the between-task similarity
matrix is a symmetric matrix of size M×M (where M denotes the number of tasks and M = 10 in
the present experiment), the (i, j)-th element measuring the frequency that task i and task j belong
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to the same cluster (i.e., they result in the same distinct RPR). In order to avoid the bias due to any
specific set of episodes, we perform 20 independent trials and average the similarity matrix over
the 20 trials. In each trial, if tasks i and j belong to one cluster upon convergence of the Gibbs-
variational algorithm, we add one at (i, j) and ( j, i) of the matrix. We compute the between-task
similarity matrices when the number of episodes is respectively K = 3,10,60,120, which represent
the typical sharing patterns inferred by the MTRL for the present maze navigation problem. The
Hinton diagrams for these four matrices are plotted in Figure 4.

The Hinton diagrams in Figures 4(a) and 4(b) show that when the number of episodes is small,
environments 1, 2, 3, 7, 8, 9, 10 have a higher frequency of sharing the same RPR. This sharing
can be intuitively justified by first recalling that these environments are duplicates of Figures 2(a)
and 2(c), and then noting that the parts circumscribed by red dashed lines in Figures 2(a) and 2(c)
are quite similar. Meanwhile the Hinton diagrams also show a weak sharing between environments
4,5,6,7,8,9,10, which are duplicates of Figures 2(b) and 2(c). This is probably because the episodes
are very few at this stage, and pooling episodes from environments that are not so relevant to each
other could also be helpful. This explains why, in Figure 3(a), the performance of pooling is as good
as that of the MTRL when the number of episodes is small.

As the number of episodes progressively increases, the ability of MTRL to identify the correct
sharing improves and, as seen in Figures 4(b) and 4(c), only those episodes from relevant environ-
ments are pooled together to enhance the performance—a simple pooling of all episodes together
deteriorates the performance. This explains why the MTRL outperforms pooling with the increase
of episodes. Meanwhile, the STRL does not perform well for limited episodes. However, when
there are more episodes from each environment, the STRL learns and performs steadily better until
it outperforms the pooling and becomes comparable to the MTRL.

6.2.2 MAZE NAVIGATION 2

We consider six environments, each of which results from modifying the benchmark maze problem
Hallway2 (Littman et al., 1995) in the following manner. First the goal state is displaced to a new
grid cell and then the unique observation associated with the goal is changed accordingly. For each
environment the location of the goal state is shown in Figure 5 as a numbered circle, where the
number indicates the index of the environment. Of the six environments the first one is the original
Hallway2. It is seen that environments 1,2,3 have their goal states near the lower right corner
while environments 4,5,6 have their goal states near the upper left corner. Thus we expect that the
environments are grouped into two clusters.

For each environment, a set of K episodes are collected by following a semi-random behavior
policy $ that executes the actions suggested by PBVI with probability pquery = 0.3. As in Sec-
tion 6.2.1 three versions of RPR are obtained for each environment, based respectively on three
paradigms, namely MTRL, STRL, and pooling. The . is chosen as 5 log(K) with 5 corresponding
to an initial guess of N and G0 is of the form of (45) with all hyper-parameters close to one (thus the
prior is non-informative). The number of decision states is |Z|= 20 as in Section 6.1.1. The perfor-
mance comparison, in terms of discounted accumulative reward and averaged over 20 independent
trials, is summarized in Figure 6, as a function of the number of episodes per environment.

Figure 6(a) shows that the MTRL maintains the overall best performance regardless of the num-
ber of episodes K. The STRL and the pooling are sensitive to K, with the pooling outperforming the
STRL when K < 540 but outperformed by the STRL when K > 540. In either case, however, the
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Figure 5: Displacements of goal state in the six environments considered in Maze Navigation 2.
Each environment is a variant of the benchmark Hallway2 (Littman et al., 1995) with
the goal displaced to a new grid cell designated by a numbered circle and the number
indicating the index of the environment. The unique observation associated with the goal
is also changed accordingly in each variant.
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Figure 6: Performance comparison on the six environments modified from the benchmark problem
Hallway2 (Littman et al., 1995). (a) Discounted accumulative reward averaged over the
six environments (b) Discounted accumulative reward in the first environment, which is
the original Hallway2.

MTRL performs no worse than both. The MTRL consistently performs well because it adaptively
adjusts the sharing among tasks as K changes, such that the sharing is appropriate regardless of K.
The adaptive sharing can be seen from Figure 7, which shows the Hinton diagram of the between-
task similarity matrix learned by the MTRL, for various instances of K. When K is small there is a
strong sharing among all tasks, in which case the MTRL reduces to the pooling, explaining why the
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MTRL performs similar to the pooling when K ≤ 250. When K is large, the sharing becomes weak
between any two tasks, which reduces the MTRL to the STRL, explaining why the two perform
similarly when K ≥ 700. As the number of episodes approaches to K = 540, the performances of
the STRL and the pooling tend to become closer and more comparable until they eventually meet
at K = 540. The range of K near this intersection is also the area in which the MTRL yields the
most significant margin of improvements over the STRL and the pooling. This is so because, for
this range of K, the correct between-task sharing is complicated (as shown in Figure 7(b)), which
can be accurately characterized by the fine sharing patterns provided by the MTRL, but cannot be
characterized by the pooling or the STRL.

Figure 6(a) plots the overall performance comparison taking all environments into considera-
tion. As an example of the performances in individual environments, we show in Figure 6(a) the
performance comparison in the first environment, which is also the original Hallway2 problem. The
change of magnitude in the vertical axis is due to the fact the first environment has the goal in a
room (instead in the hallway), which makes it more difficult to reach the goal.
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Figure 7: Hinton diagrams of the between-task similarity matrix learned by the MTRL from the
six environments modified from the benchmark problem Hallway2 (Littman et al., 1995).
The number of episodes is is (a) K = 40 (b) K = 540 (c) K = 810.

6.2.3 MULTI-ASPECT CLASSIFICATION
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Figure 8: A typical configuration of multi-aspect classification of underwater objects.
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Figure 9: Frequency-domain acoustic responses of the five underwater objects (a) Target-1 (b)
Target-2 (c) Target-3 (d) Target-4 (e) Clutter.

Multi-aspect classification refers to the problem of identifying the class label of an object using
observations from a sequence of viewing angles. This problem is generally found in applications
where the object responds to interrogations in a angle-dependent manner. In such cases, an obser-
vation at a single viewing angle carries the information specific to only that angle and the nearby
angles, and one requires observations at many viewing angles to fully characterize the object.

More importantly, the observations at different viewing angles are not independent of each other,
and are correlated in a complicated and yet useful way. The specific form of the angle-dependency
is dictated by the physical constitution of the object as well as the nature of the interrogator—
typically electromagnetic or acoustic waves. By carefully collecting and processing observations
sampled at densely spaced angles, it is possible to form an image, based on which classification can
be performed. An alternative approach is to treat the observations as a sequence and characterize
the angle-dependency by a hidden Markov model (HMM) (Runkle et al., 1999).
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In this section we consider multi-aspect classification of underwater objects based on acoustic
responses of the objects. Figure 8 shows a typical configuration of the problem. The cylinder
represents an underwater object of unknown identity y. We assume that the object belongs to a
finite set of categories Y (i.e., y ∈ Y ). The agent aims to discover the unknown y by moving around
the object and interrogating it at multiple viewing angles 9. We assume the angular motion is one-
dimensional, that is, the agent moves clockwise or counterclockwise on the page, but does not move
out of the page. The set of angles that can be occupied by the agent is then [0◦,360◦], which in
practice is discretized into a finite number of angular sectors denoted by S9.

In the HMM approach (Runkle et al., 1999), S9 constitutes the set of hidden states, and the state
transitions can be computed using simple geometry (Runkle et al., 1999), under the assumptions
that each time the agent moves by a constant angular step and that the specific angles occupied
by the agent are uniformly distributed within any given state. Refinement of state transitions and
estimation of state emissions can be achieved by maximizing the likelihood function constructed
from the training sequences. In the training phase, one trains an HMM for each y ∈ Y . For an
unknown object, one collects a sequence of observations (sensor data) and submit it to the HMM
for each y ∈ Y ; the y yielding the maximum likelihood is then declared to be the identity of the
unknown object. Obviously the agent must follow a common protocol to collect the data sequences
in both the training and test phases, to ensure that their statistics are consistent. Since such a protocol
is not part of the HMMs, a question arises as to how to specify the protocol.

From the perspective of sequential decision-making, multi-aspect classification can be formu-
lated as a reinforcement learning problem, with a state space S = S9×Y , where × is a Cartesian
product. Both S9 and Y are only partially observable (through sensor data). The RL approach
possesses several conspicuous advantages over the HMM approach. First, the sensor data are now
collected in an active manner, under the control of agent actions. When two data sequences are
collected by following the same policy of choosing actions, they are automatically ensured to be
consistent in statistics, hence there is no need to specify a separate common protocol for collecting
the sequential data. Second, unlike maximizing the data likelihood (under a given data collection
protocol), the agent is now free to choose a more flexible learning objective by setting an appropri-
ate reward structure. Third, unlike building a HMM for each y ∈ Y , the different categories are now
coalesced into a single RPR (details are presented below), making the RL a discriminative approach
vis-a-via the generative HMM approach.

In our experiment, there are a total of five objects, four of them are targets of interest and one of
them represents the clutter. The frequency-domain acoustic responses of these objects are shown in
Figure 9, for a full coverage of angles from 0◦ to 360◦; the data are real measurements as described
in Runkle et al. (1999). We aim to distinguish each target from clutter and this gives four tasks,
where task i is defined by the problem of distinguishing target-i from clutter, i = 1,2,3,4, and the
targets and clutter are as shown in Figure 9. Each task is a multi-aspect classification problem.6
From the data in Figure 9 targets 1 and 2 have similar angle-dependent scattering phenomena, and
therefore Tasks 1 and 2 are expected to be related. Targets 3 and 4 also appear to have similar angle-
dependent scattering characteristics, and therefore Tasks 3 and 4 are expected to also be related. In
fact, although the target details are too involved to detail here, targets 1 and 2 are both of a cylindrical
form (like those in Runkle et al., 1999), while targets 3 and 4 are more irregular in shape.

6. The data are available at http://www.ee.duke.edu/˜lcarin/ShellData.zip.
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The RPR for Multi-aspect Classification In applying the RPR to multi-aspect classification,
our approach is distinct from an HMM construction (Runkle et al., 1999) in two important respects.
First, the RPR is a control model and it aims to optimize the value function, instead of the likelihood
function. Since the RPR takes into account a reward structure, it can be more flexible in specifying
the learning objective. Second, the RPR embraces all objects in the same representation, instead of
having a separate model for each individual object. As a result, it is a discriminative model instead
of a generative model (this may be viewed as a discriminative extension of the traditional generative
HMM).

The RPR does not manipulate the angular states—it works directly with observations. Since
classification is treated as a control problem in the RPR, we need two extra components, actions
and rewards, to complete the specification. We consider four actions, that is, A ={declare as target,
declare as clutter, move clockwise and sense, move counterclockwise and sense}. When the agent
takes action move clockwise and sense, it moves 5◦ clockwise and collects an observation; when the
agent takes action move counterclockwise and sense, it moves 5◦ counterclockwise and collects an
observation. The reward structure is specified as follows. A correct declaration receives a reward of
5 units, a false declaration receives a reward of −5, and the actions move clockwise and sense and
move counterclockwise and sense each receives a reward of zero units. The objective, therefore, is
to correctly classify the target with the minimal number of sensing actions.

The episodes used in learning the RPR consist of a number of observation sequences, each
observation is associated with the action move clockwise and sense or move counterclockwise and
sense and the terminal action in each episode is the correct declaration. The correction declaration is
available because the episodes in this problem are the training data in standard classification, hence
the ground truth of class labels is known. Note that the training episodes always terminate with a
correct declaration, thus the agent never actually receives the penalty −5 during the training phase.
Alternatively, one may split each episode into two, respectively terminated with the correct and the
false declaration. Recall the false declaration receives the minimum reward which, after an offset of
5 to make all rewards non-negative, is converted to zero. Since a zero reward received at the end of
an episode nullifies the entire episode, such an alternative is equivalent to excluding the penalized
episodes.

Classification Results The raw data are shown in Figure 9, for the five objects we are considering.
Each datum is the response of an object measured at a particular angle and the data set for an
object consists of measurements collected at 0◦,1◦, · · · ,359◦. Each raw datum is converted into
a feature vector using matching pursuit (McClure and Carin, 1997), and the feature vectors are
further discretized by vector quantization (Gersho and Gray, 1992) to produce a finite code-book.
As mentioned earlier, we have a total of four tasks, each task being to distinguish each of the four
respective targets from the clutter.

Four methods are compared: the MTRL, the STRL, the pooling, and the hidden Markov models
(HMM), where the first three are as described in Section 6.2.1 and the last one is the standard hidden
Markov model (Rabiner, 1989). The four methods yield four corresponding agents, each following
the policy resulting from one of the algorithms.

When the agents collect episodes during the training phase, they start from angles that are uni-
formly drawn from {1◦, 2◦, · · · , 360◦}. For each starting angle, two episodes are collected: the
first is obtained by moving clockwise to collect an observation at every 5◦ and terminating upon
the 10-th observation, and the other is the same as the first but the agent moves counterclockwise.
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During the testing phase, both the RPR agents and the HMM agent start from angles uniformly
drawn from {1◦, 2◦, · · · , 360◦}; however, the RPR agents follow one of the three policies (resulting
respectively from the MTRL, the STRL, and the pooling) to choose an action from A , while the
HMM agent collects n observations by moving consistently clockwise or counterclockwise (either
direction is chosen with a probability of 0.5) and then makes a declaration, where n is adaptively
set to the maximum of the numbers of observations used by the three RPR agents starting from the
same angle.

Figure 10 summarizes the performance as a function of the number of training episodes K,
where the performance is evaluated by the correct classification rate as well as the average number
of sensing actions (i.e., the average number of observations collected) before a declaration is made.
Each point in the figures is an average from 20 independent trials.
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Figure 10: Performance comparison on multi-aspect classification of underwater targets (a) Av-
erage classification rate as a function of the number of training episodes per task (b)
Average number of sensing actions (average number of observations collected) before a
declaration is made, as a function of the number of training episodes per task.

It is seen from Figure 10(a) that the MTRL achieves the highest classification rate regardless
of the number of training episodes K. The pooling performs worse than the STRL and the poor
performance persists even when K is small. The latter is in contrast with the results on the maze
navigation problems in Sections 6.2.1 and 6.2.2, where the pooling performs better than the STRL
with a small K. The reason for this will be clear below from the sharing-mechanism analysis.
It is noted that all three RPR algorithms perform much better than the HMM, demonstrating the
superiority of discriminative models over generative models in classification problems.

As shown by Figure 10(b), pooling takes the least number of sensing actions, which may be at-
tributed to the over-confidence arising from an abundant set of training data, noting that the pooling
agent learns its policy by using the episodes accumulated over all tasks. In contrast, the STRL agent
takes the most number of actions. Considering that the STRL agent bases policy learning on the
episodes collected from a single task, which may contain inadequate information, it is reasonable
that the STRL agent is less confident and would make more observations before coming to a con-
clusion. The sensing steps taken by the MTRL agent lies in between, since it relies on related tasks,
but not all tasks, to provide the episodes for policy learning.

1176



MULTI-TASK REINFORCEMENT LEARNING IN PARTIALLY OBSERVABLE STOCHASTIC ENVIRONMENTS

1 2 3 4

1 

2

3

4

Hinton diagram on shell data: nrSeq = 10

Index of tasks

In
de

x 
of

 ta
sk

s

(a)

1 2 3 4

1

2

3

4

Hinton diagram on shell data: nrSeq = 30

Index of tasks

In
de

x 
of

 ta
sk

s

(b)

1 2 3 4

1

2

3

4

Hinton diagram on shell data: nrSeq = 110

Index of tasks

In
de

x 
of

 ta
sk

s

(c)

1 2 3 4

1

2

3

4

Hinton diagram on shell data: nrSeq = 170

Index of tasks

In
de

x 
of

 ta
sk

s

(d)

Figure 11: Sharing mechanism for multi-aspect classification of underwater targets. Each figure
is the Hinton diagram of the between similarity matrix, with the number of training
episodes per task: (a) 10 (b) 30 (c) 110 (d) 170.

Analysis of the Sharing Mechanism The Hinton diagram of the between-task similarity matrix
is shown in Figures 11(a), 11(b), 11(c), 11(d), for the cases when the number of training episodes K
is equal to 10, 30, 110, 170, respectively.

It is seen that the sharing patterns are dominated by two clusters, the first consisting of Task 1
and Task 2 and the second consisting of Task 3 and Task 4. The second cluster remains unchanged
regardless of K. The first cluster tends to break when K = 30, but is resumed later on. The two
clusters are consistent with Figure 9 which shows that targets 1 and 2 are similar and so are targets
3 and 4. The fact the two clusters are persistent through the entire range of K implies that the tasks
from different clusters are weakly related even when the episodes are scarce, as a result pooling the
episodes across all tasks yields poor policies. This explains the poor performance of the pooling in
Figure 10(a).

To understand the reason why the cluster of tasks 1 and 2 is less stable, one need delve into
some details of the targets. Target 1 and Target 2 both have a cylindrical shape while Task 3 and
Task 4 are more irregular in shape. Similar geometry puts Targets 1 and 2 in one cluster and Targets
3 and 4 in another cluster. Moreover, the measurements of Targets 3 and 4 are more noisy than the
measurements of Targets 1 and 2, because they are collected under different conditions. The low
signal to noise ratio (SNR) increases the similarity between Targets 3 and 4 since their distinctive
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features are buried in the noise. The more noise-free measurements of Target 1 and 2 yields a more
faithful representation of these targets, which tends to magnify their differences and make them
appear less similar.

7. Conclusions

We have presented a multi-task reinforcement learning (MTRL) framework for partially observable
stochastic environments. To our knowledge, this is the first framework proposed for MTRL in the
partially observable domain.

A key element in our MTRL framework is the regionalized policy representation (RPR), which
yields a history-dependent stochastic policy for environments characterized by a partially observ-
able Markov decision process (POMDP). Learning of the RPR is based on episodic experiences
collected from the environment, without requiring the environment’s model. We have developed
two algorithms for learning the RPR, one based on maximum-value estimation and the other based
on the variational Bayesian paradigm. The latter offers the ability for selecting the number of de-
cision states based on the Occam Razor principle and the possibility of transferring experience
between related environments.

Built upon the basic RPR, the proposed MTRL framework consists of multiple RPRs, each
for an environment, coupled by a common Dirichlet process (DP) that is used to produce the non-
parametric prior over all RPRs. By virtue of the discreteness of the nonparametric prior, the en-
vironments are clustered into groups, with each group consisting of a subset of environments that
are related in some manner. The number of groups as well as the associated environments are au-
tomatically identified, and the experiences are shared among the related environments to increase
their respective exploration. A hybrid Gibbs-variational algorithm is presented for learning multiple
RPRs simultaneously under the unified MTRL framework, based on selective use of the experiences
collected across all environments.

Experimental results demonstrate that the proposed MTRL consistently yields superior perfor-
mance regardless of the amount of experiences used in learning. The two competitors, one based
on single-task reinforcement learning (STRL) and other based on simple pooling, are shown to be
sensitive to the amount of experiences. The superior performance is attributed to the ability of the
MTRL to automatically identify useful experiences from related environments to enhance the ex-
ploration. The MTRL adaptively adjusts sharing patterns to offset the changes in the experience and
hence has addressed the problem of how to positively transfer the experience from one environment
to the benefit of improving learning in another. In addition, we have also presented experimental
results on benchmark problems demonstrating the RPR as a powerful stand-alone algorithm for
single-task reinforcement learning.

The work presented in this paper mainly focuses on off-policy batch learning, assuming the
learning is based on a fixed set of episodic experiences collected by following an external behav-
ior policy. In the off-policy batch learning mode, the policy improvement is implemented without
actually re-interacting with the environment; instead the improvement is implemented through vir-
tual “reward re-computation” (discussed after (15)), which simulates the re-interaction with the
environment. By taking reward re-computation out of the algorithm and implementing it via real
re-interaction, we can learn the RPRs in an on-policy online manner. In this case, the need for an
external behavior policy is eliminated and the previous version RPR is employed as the behavior
policy. In the next phase of this work, we will focus on on-policy online learning of RPRs and
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investigate how each environment can be better explored via multi-task reinforcement learning. In
this on-policy MTRL setting, multi-task learning will have two aspects: co-exploitation (already
addressed in the present paper) and co-exploration (not explicitly addressed here). It is of interest
to investigate how much benefit can be gained by simultaneous co-exploitation and co-exploration.

Although the experiments considered in the paper mainly involve robot navigation in grid-
worlds, there are many other interesting practical problems to which the proposed algorithms are
immediately applicable. The multi-aspect classification serves as a preliminary example of such
applications. Other examples include using RPRs as policies to control and coordinate a set of
sub-models such that the collective performance is optimized and more advanced tasks could be
accomplished than by any single sub-model.

For the work presented here, the DP prior is placed directly on '. Because of the discrete
nature of G, this implies that when parameters ' are shared between different environments, they
are shared exactly. This may be too restrictive for some problems; for two environments that are
similar, we may desire the associated parameters to be similar, but not exactly the same. This may
be accommodated, for example, via the following modification to the DP prior

'm|:m ∼ H('m|:m),
:m|G ∼ G,

G|.,G0 ∼ DP(.,G0).

This formulation results in an infinite mixture model for ', where each component is of the form
H. When two environments share, their parameters share a component of this infinite mixture, but
the specific draws will generally differ from each other—this can provide greater flexibility. The
above modification brings some challenges to the inference. Recall that ' is set of probability mass
functions (pmf), it is natural to require H to be a product of Dirichlets. The difficulty now lies in
choosing G that provides a conjugate prior for the parameters of H, which seems not easy. If G is
properly specified, however, the inference should be a straightforward extension of the techniques
developed in this paper. An alternative to the above modification that may avoid the inference
difficulty is to follow the approach in Liu et al. (2008) to impose soft sharing by replacing the Dirac
delta with its soft version.
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Appendix A. Proof of Theorem 5

According to Kaelbling et al. (1998), the expected sum of exponentially discounted reward (value
function) over an infinite horizon can be written as

V = E

[
%

"
t=0

#t rt

]
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where 0 < # < 1 is the discount factor. Let E denote the environment in question and PE the
corresponding probabilistic model (POMDP). Let ' be the parameters specifying the RPR, the
expectation in our situation here is Eepisodes|E,'. Thus

V = Eepisodes|E,'

[
%

"
t=0

#t rt

]

= "
a0r0o1a1r1···

p(a0r0o1a1r1o2 · · · |E,')

[
%

"
t=0

#t rt

]

= "
a0a1···

p(a0a1 · · · |')Er0o1r1o2r2···|a0a1···∼PE

[
%

"
t=0

#t rt

]

= "
a0a1···

p$(a0a1 · · ·)
p(a0a1 · · · |')

p$(a0a1 · · ·)
Er0o1r1o2r2···|a0a1···∼PE

[
%

"
t=0

#t rt

]

(Importance sampling Robert and Casella, 1999)

= "
a0a1···

p$(a0a1 · · ·)Er0o1r1o2r2···|a0a1···∼PE

[
%

"
t=0

#t rt
(t
)=0 p$(a)|h))

t

(
)=0

p(a)|h),')

]

= Ea0a1···∼ p$Er0o1r1o2r2···|a0a1···∼PE

[
%

"
t=0

#t rt
(t
)=0 p$(a)|h))

t

(
)=0

p(a)|h),')

]

= lim
K→%

1
K

K

"
k=1

[
%

"
t=0

#t rkt
(t
)=0 p$(ak)|hk))

t

(
)=0

p(ak)|hk),')

]

(
ak0ak1 · · · ∼ p$, rk0ok1rk1ok2rk2 · · · |ak0ak1 · · · ∼ PE

)

= lim
K→%

1
K

K

"
k=1

[
Tk
"
t=0

#t rkt
(t
)=0 p$(ak)|hk))

t

(
)=0

p(ak)|hk),')

]

= lim
K→%

V̂ (D(K);')

where the sum over 0≤ t <% is equal to the sum over 0≤ t ≤ Tk because rkt = 0 for t > Tk according
to Definition 2. Q.E.D.

Appendix B. Proof of Theorem 6

We begin our derivation by writing the empirical value function in its logarithm

lnV̂ (D(K);') = ln
1
K

K

"
k=1

Tk
"
t=0

r̃kt
|Z|

"
zk0,··· ,z

k
t =1

p(ak0:t ,zk0:t |ok1:t ,')

= ln
K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

qkt (zk0:t)
K

r̃kt p(ak0:t ,zk0:t |ok1:t ,')

qkt (zk0:t)
, (80)

where

qkt (zk0:t) ≥ 0,
1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

qkt (zk0:t) = 1.
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Applying Jensen’s inequality to (80), we obtain

lnV̂ (D(K);') ≥
K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

qkt (zk0:t)
K

ln
r̃kt p(ak0:t ,zk0:t |ok1:t ,')

qkt (zk0:t)
. (81)

The lower bound is maximized when

qkt (zk0:t) = qkt (zk0:t |')
De f .
=

r̃kt
V̂ (D(K);')

p(ak0:t ,zk0:t |ok1:t ,'),

which turns the inequality in into an equality. Define

LB('̂|') =
1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

qkt (zk0:t |') ln
r̃kt p(ak0:t ,zk0:t |ok1:t , '̂)

qkt (zk0:t |')
.

By (81), LB('̂|') ≤ LB('̂|'̂) = lnV̂ (D(K); '̂) holds for any ' and '̂. Therefore, when '̂ =
argmax'̂∈F LB('̂|'), we have

lnV̂ (D(K);') = LB('|') ≤ LB('̂|') ≤ LB('̂|'̂) = lnV̂ (D(K); '̂).

Starting from '(0) we compute

'(1) = argmax
'̂∈F

LB('̂|'(0)),

'(2) = argmax
'̂∈F

LB('̂|'(1)),

...
...

which satisfy V̂ (D(K);'(0)) ≤ V̂ (D(K);'(1)) ≤ V̂ (D(K);'(2)) ≤ · · · . Since the value function is
upper bounded, this monotonically increasing sequence must converge, which happens at a maxima
of V̂ (D(K);'). Q.E.D.

Appendix C. Proof of Lemma 7

Substituting (26) and (27), we have

Right side of (28)=
p(zk) = i,zk)+1 = j,ak0:t |ok1:t ,')

(t
)′=0 p(ak)′ |h

k
)′)

.

Since the denominator is equal to p(ak0:t |ok1:t ,') by (9), we have

Right side of (28)= p(zk) = i,zk)+1 = j|ak0:t ,ok1:t ,') = ,kt,)(i, j).

Similarly,

Right side of (29) =
p(zk) = i,ak0:t |ok1:t ,')

(t
)′=0 p(ak)′ |h

k
)′)

=
p(zk) = i,ak0:t |ok1:t ,')

p(ak0:t |ok1:t ,')

= p(zk) = i|ak0:t ,ok1:t ,')
= -kt,)(i).

Q.E.D.
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Appendix D. Proof of Theorem 8

We rewrite the lower bound in (61) as

LB
({

qkt
}

,g(')
)

=
1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

Z

qkt (zk0:t)g(') ln r̃kt p(ak0:t ,zk0:t |ok1:t ,')d'

−
1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

qkt (zk0:t) lnqkt (zk0:t)−
Z

g(') ln
g(')

G0(')
d'. (82)

We alternatively find the {qkt } and g(') that maximizes the lower bound, keeping one fixed while
finding the other.

Keeping g(') fixed, we solve max{qkt }LB
({
qkt

}
,g(')

)
subject to the normalization constraint

for {qkt }. We construct the Lagrangian

!q = LB
({

qkt
}

,g(')
)
−;



K−
K

"
k=1

Tk
"
t=1

|Z|

"
zk0,··· ,z

k
t =1

qkt (zk0:t)



 ,

where ; is the Lagrangian multiplier. Differentiating !q with respect to qkt (zk0:t) and setting the result
to zero, we obtain

<!q
<
(
qkt (zk0:t)

) =
1
K

Z

g(') ln r̃kt p(ak0:t ,zk0:t |ok1:t ,')d'−
1
K
lnqkt (zk0:t)−

1
K

+;= 0,

which is solved to give

qkt (zk0:t) = eK;−1r̃kt exp
{

Z

g(') ln p(ak0:t ,zk0:t |ok1:t ,')d'
}

.

Using the constraint "K
k=1"

Tk
t=1"

|Z|

zk0,··· ,z
k
t =1

qkt (zk0:t) = K, (62) is arrived with e1−K; =Cz.
Keeping {qkt } fixed, we solve maxg(')LB

({
qkt

}
,g(')

)
subject to the normalization constraint

that
R

g(')d'= 1. Construct the Lagrangian

!g = LB
({

qkt
}

,g(')
)
−;

(
1−

Z

g(')d'
)

,

where ; is the Lagrangian multiplier. Differentiating !g with respect to g(') and setting the result
to zero, we obtain

<!g
<(g('))

=
1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1
qkt (zk0:t) ln r̃kt p(ak0:t ,zk0:t |ok1:t ,')−1− ln

g(')

G0(')
+;= 0,

which is solved to give

g(') =
G0(')

e1−;
exp





1
K

K

"
k=1

Tk
"
t=0

|Z|

"
zk0,··· ,z

k
t =1

qkt (zk0:t) ln r̃kt p(ak0:t ,zk0:t |ok1:t ,')





.

By using the constraint
R

g(')d'= 1, we arrive at (63) with e1−; =C'. Q.E.D.
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Abstract
Directed acyclic graphs (DAGs) have been widely used as a representation of conditional indepen-
dence in machine learning and statistics. Moreover, hidden or latent variables are often an important
component of graphical models. However, DAG models suffer from an important limitation: the
family of DAGs is not closed under marginalization of hidden variables. This means that in general
we cannot use a DAG to represent the independencies over a subset of variables in a larger DAG.
Directed mixed graphs (DMGs) are a representation that includes DAGs as a special case, and
overcomes this limitation. This paper introduces algorithms for performing Bayesian inference in
Gaussian and probit DMG models. An important requirement for inference is the specification of
the distribution over parameters of the models. We introduce a new distribution for covariance ma-
trices of Gaussian DMGs. We discuss and illustrate how several Bayesian machine learning tasks
can benefit from the principle presented here: the power to model dependencies that are generated
from hidden variables, but without necessarily modeling such variables explicitly.
Keywords: graphical models, structural equation models, Bayesian inference, Markov chain
Monte Carlo, latent variable models

1. Contribution

The introduction of graphical models (Pearl, 1988; Lauritzen, 1996; Jordan, 1998) changed the way
multivariate statistical inference is performed. Graphical models provide a suitable language to
decompose many complex real-world processes through conditional independence constraints.

Different families of independence models exist. The directed acyclic graph (DAG) family is
a particularly powerful representation. Besides providing a language for encoding causal state-
ments (Spirtes et al., 2000; Pearl, 2000), it is in a more general sense a family that allows for
non-monotonic independence constraints: that is, models where some independencies can be de-
stroyed by conditioning on new information (also known as the “explaining away” effect — Pearl,
1988), a feature to be expected in many real problems.
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Figure 1: Consider the DAG in (a). Suppose we want to represent the marginal dependencies and
independencies that result after marginalizing out Y6. The simplest resulting DAG (i.e.,
the one with fewest edges) is depicted in (b). However, notice that this graph does not
encode some of the independencies of the original model. For instance, Y3 and Y4 are
no longer marginally independent in the modified DAGs. A different family of graphical
models, encoded with more than one type of edge (directed and bi-directed), is the focus
of this paper. The graph in (c) depicts the solution using this “mixed” representation.

However, DAG independence models have an undesirable feature: they are not closed under
marginalization, as we will illustrate. Consider the regression problem where we want to learn the
effect of a cocktail of two drugs for blood pressure, while controlling for a chemotherapy treatment
of liver cancer. We refer to Y1, Y2 as the dosage for the blood pressure drugs, Y3 as a measure of
chemotherapy dosage, Y4 as blood pressure, and Y5 as an indicator of liver status. Moreover, let Y6
be an hidden physiological factor that affects both blood pressure and liver status. It is assumed that
the DAG corresponding to this setup is given by Figure 1(a).

In this problem, predictions concerning Y6 are irrelevant: what we care is the marginal for
{Y1, . . . ,Y5}. Ideally, we want to take such irrelevant hidden variables out of the loop. Yet the set of
dependencies within the marginal for {Y1, . . . ,Y5} cannot be efficiently represented as a DAG model.
If we remove the edge Y3 → Y4 from Figure 1(b), one can verify this will imply a model where Y3
and Y4 are independent given Y5, which is not true in our original model. To avoid introducing
unwanted independence constraints, a DAG such as the one in Figure 1(b) will be necessary. Notice
that in general this will call for extra dependencies that did not exist originally (such as Y3 and Y4
now being marginally dependent). Not only learning from data will be more difficult due to the
extra dependencies, but specifying prior knowledge on the parameters becomes less intuitive and
therefore more error prone.

In general, it will be the case that variables of interest have hidden common causes. This puts
the researcher using DAGs in a difficult position: if she models only the marginal comprising the
variables of interest, the DAG representation might not be suitable anymore. If she includes all
hidden variables for the sake of having the desirable set of independencies, extra assumptions about
hidden variables will have to be taken into account. In this sense, the DAG representation is flawed.
There is a need for a richer family of graphical models, for which mixed graphs are an answer.

Directed mixed graphs (DMGs) are graphs with directed and bi-directed edges. In particular,
acyclic directed mixed graphs (ADMGs) have no directed cycle, that is, no sequence of directed
edges X → · · · → X that starts and ends on the same node. Such a representation encodes a set
of conditional independencies among random variables, which can be read off a graph by using a
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Figure 2: Different examples of directed mixed graphs. The graph in (b) is cyclic, while all others
are acyclic. A subgraph of two variables where both edges Y1 → Y2 and Y1 ↔ Y2 are
present is sometimes known as a “bow pattern” (Pearl, 2000) due to its shape.

Y4
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Figure 3: After marginalizing variables H1 and H2 from the DAG on the left, one possible DMG
representation of the same dependencies is shown by the graph in the middle. Notice
that there are multiple DMGs within a same Markov equivalence class, that is, encoding
the same set of conditional independencies (Richardson and Spirtes, 2002). The two last
graphs above are on the same class.

criterion known as m-separation, a natural extension of the d-separation criterion used for directed
acyclic graphs (Richardson, 2003).

In a ADMG, two adjacent nodes might be connected by up to two edges, where in this case
one has to be bi-directed and the other directed. A cyclic model can in principle allow for two
directed edges of opposite directions. Figure 2 provides a few examples of DMGs. The appeal
of this graphical family lies on the representation of the marginal independence structure among
a set of observed variables, assuming they are part of a larger DAG structure that includes hidden
variables. This is illustrated in Figure 3.1 More details on DMGs are given in Sections 2 and 8.
In our blood pressure\liver status multiple regression problem, the suitable directed mixed graph is
depicted in Figure 1(c).

The contribution of this paper is how to perform Bayesian inference on two different families
of mixed graph models: Gaussian and probit. Markov chain Monte Carlo (MCMC) and variational
approximations will be discussed. Current Bayesian inference approaches for DMG models have
limitations, as discussed in Section 2, despite the fact that such models are widely used in several
sciences.

The rest of the paper is organized as follows. Section 3 describes a special case of Gaussian
mixed graph models, where only bi-directed edges are allowed. Priors and a Monte Carlo algorithm
are described. This case will be a building block for subsequent sections, such as Section 4, where

1. Notice that it is not necessarily the case that the probability model itself is closed under marginalization. This will
happen to some models, including the Gaussian model treated in this paper. But the basic claim of closure concerns
the graph, that is, the representation of independence constraints.
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Gaussian DMG models are treated. Section 5 covers a type of discrete distribution for binary and
ordinal data that is Markov with respect to an acyclic DMG. In Section 6 we discuss more sophis-
ticated algorithms that are useful for scaling up Bayesian learning to higher-dimensional problems.
Section 7 presents several empirical studies. Since the use of mixed graph models in machine learn-
ing applications is still in its early stages, we briefly describe in Section 8 a variety of possible uses
of such graphs in machine learning applications.

2. Basics of DMGs, Gaussian Models and Related Work

In this section, we describe the Gaussian DMG model and how it complements latent variable
models. At the end of the section, we also discuss a few alternative approaches for the Bayesian
inference problem introduced in this paper.

2.1 Notation and Terminology

In what follows, we will use standard notions from the graphical modeling literature, such as ver-
tex (node), edge, parent, child, ancestor, descendant, DAG, undirected graph, induced subgraph,
Markov condition and d-separation. Refer to Pearl (1988) and Lauritzen (1996) for the standard
definitions if needed. Less standard definitions will be given explicitly when appropriate. A useful
notion is that of m-separation (Richardson, 2003) for reading off which independencies are entailed
by a DMG representation. This can be reduced to d-separation (Pearl, 1988) by the following trick:
for each bi-directed edge Yi ↔ Yj, introduce a new hidden variable Xi j and the edges Xi j → Yi and
Xi j → Yj. Remove then all bi-directed edges and apply d-separation to the resulting directed graph.

As usual, we will refer to vertices (nodes) in a graph and the corresponding random variables in
a distribution interchangeably. Data points are represented by vectors with an upper index, such as
Y(1),Y(2), . . . ,Y(n). The variable corresponding to node Yi in data point Y( j) is represented by Y ( j)

i .

2.2 Gaussian Parameterization

The origins of mixed graph models can be traced back to Sewall Wright (Wright, 1921), who used
special cases of mixed graph representations in genetic studies. Generalizing Wright’s approach,
many scientific fields such as psychology, social sciences and econometrics use linear mixed graph
models under the name of structural equation models (Bollen, 1989). Only recently the graphical
and parametrical aspects of mixed graph models have been given a thorough theoretical treatment
(Richardson and Spirtes, 2002; Richardson, 2003; Kang and Tian, 2005; Drton and Richardson,
2008a). In practice, many structural equation models today are Gaussian models. We will work
under this assumption unless stated otherwise.

For a DMG G with a set of vertices Y, a standard parameterization of the Gaussian model is
given as follows. For each variable Yi with a (possibly empty) parent set {Yi1, ...,Yik}, we define a
“structural equation”

Yi = !i+bi1Yi1 +bi2Yi2 + · · ·+bikYik + "i

where "i is a Gaussian random variable with zero mean and variance vii. Notice that this parameter-
ization allows for cyclic models.

Unlike in standard Gaussian DAG models, the error terms {"i} are not necessarily mutually
independent. Independence is asserted by the graphical structure: given two vertices Yi and Yj,
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the respective error terms "i and " j are marginally independent if Yi and Yj are not connected by a
bi-directed edge.

By this parameterization, each directed edge Yi ← Yj in the graph corresponds to a parameter
bi j. Each bi-directed edge Yi ↔ Yj in the graph is associated with a covariance parameter vi j, the
covariance of "i and " j. Each vertex Yj in the graph is associated with variance parameter v j j, the
variance of " j. Algebraically, let B be a m×m matrix, m being the number of observed variables.
This matrix is such that (B)i j = bi j if Yi ← Yj exists in the graph, and 0 otherwise. Let V be a
m×m matrix, where (V)i j = vi j if i = j or if Yi ↔ Yj is in the graph, and 0 otherwise. Let Y be
the column vector of observed variables, ! the column vector of intercept parameters, and " be the
corresponding vector of error terms. The set of structural equations can be given in matrix form as

Y= BY+!+ "⇒ Y= (I−B)−1("+!)
⇒ #($) = (I−B)−1V(I−B)−T (1)

where A−T is the transpose of A−1 and #($) is the implied covariance matrix of the model, $ ≡
{B,V,!}.

2.2.1 COMPLETENESS OF PARAMETERIZATION AND ANCESTRAL GRAPHS

An important class of ADMGs is the directed ancestral graph. Richardson and Spirtes (2002) pro-
vide the definition and a thorough account of the Markov properties of ancestral graphs. One of the
reasons for the name “ancestral graph” is due to one of its main properties: if there is a directed
path Yi → · · ·→ Yj, that is, if Yi is an ancestor of Yj, then there is no bi-directed edge Yi ↔ Yj. Thus
directed ancestral graphs are ADMGs with this constraint.2

In particular, they show that any Gaussian distribution that is Markov with respect to a given
ADMG can be represented by some Gaussian ancestral graph model that is parameterized as above.
For the ancestral graph family, the given parameterization is complete: that is, for each Markov
equivalence class, it is always possible to choose an ancestral graph where the resulting parameteri-
zation imposes no further constraints on the distribution besides the independence constraints of the
class. Since the methods described in this paper apply to general DMG models, they also apply to
directed ancestral graphs.

In principle, it is possible to define and parameterize a Gaussian DAG model that entails exactly
the same independence constraints encoded in an directed ancestral graph. One possibility, as hinted
in the previous Section, is to replace each bi-directed edge Yi ↔ Yj by a new path Yi ← Xi j → Yj.
Variables {Xi j} are “ancillary” hidden variables, in the sense that they are introduced for the sake of
obtaining the same independence constraints of an ancestral graph. Standard Bayesian methodology
can then be applied to perform inference in this Gaussian DAG model.

However, this parameterization might have undesirable consequences, as discussed in Section
8.6 of Richardson and Spirtes (2002). Moreover, when Markov chain Monte Carlo algorithms
are applied to compute posteriors, the “ancillary” hidden variables will have to be integrated out
numerically. The resulting Markov chain can suffer from substantial autocorrelation when compared
to a model with no ancillary variables. We illustrate this behavior in Section 7.

Further constraints beyond independence constraints are certainly desirable depending on the
context. For instance, general ADMGs that are not ancestral graphs may impose other constraints
(Richardson and Spirtes, 2002), and such graphs can still be sensible models of, for example, the

2. Notice this rules out the possibility of having both edges Yi → Yj and Yi ↔ Yj in the same ancestral graph.
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causal processes for the problem at hand. When many observed variables are confounded by a same
hidden common cause, models based on factor analysis are appropriate (Silva et al., 2006). How-
ever, it is useful to be able to build upon independence models that are known to have a complete
parameterization. In any case, even the latent variables in any model might have dependencies that
arise from other latent variables that were marginalized, and a latent variable ADMG model will be
necessary. When it comes to solving a problem, it is up to the modeler (or learning algorithm) to
decide if some set of latent variables should be included, or if they should be implicit, living their
hidden life through the marginals.

Richardson and Spirtes (2002) provide further details on the advantages of a complete parame-
terization. Drton and Richardson (2004) provide an algorithm for fitting Gaussian ancestral graph
models by maximum likelihood.

2.3 Bayesian Inference

The literature on Bayesian structural equation models is extensive. Scheines et al. (1999) describe
one of the first approaches, including ways of testings such models. Lee (2007) provides details
on many recent advances. Standard Bayesian approaches for Gaussian DMG models rely on either
attempting to reduce the problem to inference with DAG models, or on using rejection sampling.

In an application described by Dunson et al. (2005), the “ancillary latent” trick is employed,
and Gibbs sampling for Gaussian DAG models is used. This parameterization has the disadvan-
tages mentioned in the previous section. Scheines et al. (1999) use the complete parameterization,
with a single parameter corresponding to each bi-directed edge. However, the global constraint of
positive-definiteness in the covariance matrix is enforced only by rejection sampling, which might
be inefficient in models with moderate covariance values. The prior is setup in an indirect way. A
Gaussian density function is independently defined for each error covariance vi j. The actual prior,
however, is the result of multiplying all of such functions and the indicator function that discards
non-positive definite matrices, which is then renormalized.

In contrast, the Bayesian approach delineated in the next sections uses the complete parameter-
ization, does not appeal to rejection sampling, makes use of a family of priors which we believe is
the natural choice for the problem, and leads to convenient ways of computing marginal likelihoods
for model selection. We will also see that empirically they lead to much better behaved Markov
chain Monte Carlo samplers when compared to DAGs with ancillary latent variables.

3. Gaussian Models of Marginal Independence

This section concerns priors and sampling algorithms for zero-mean Gaussian models that are
Markov with respect to a bi-directed graph, that is, a DMG with no directed edges. Focusing on
bi-directed graphs simplifies the presentation, while providing a convenient starting point to solve
the full DMG case in the sequel.

Concerning the notation: the distribution we introduce in this section is a distribution over
covariance matrices. In the interest of generality, we will refer to the random matrix as #. In the
context of the previous section, #≡ #($) = V, since we are assuming B= 0,!= 0.
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3.1 Priors

Gaussian bi-directed graph models are sometimes called covariance graph models. Covariance
graphs are models of marginal independence: each edge corresponds to a single parameter in the
covariance matrix (the corresponding covariance); the absence of an edge Yi ↔Yj is a statement that
%YiYj = 0, %XY being the covariance of random variables X and Y . More precisely, if # is a random
covariance matrix generated by a covariance model, a distribution of # is the distribution over the
(non-repeated) entries corresponding to variances and covariances of adjacent nodes.3

In a model with a fully connected bi-directed graph, this reduces to a space of unrestricted co-
variance matrices. A common distribution for covariance matrices is the inverse Wishart IW (&,U).
In this paper, we adopt the following inverse Wishart parameterization:

p(#) ' |#|−(&+2m)/2 exp
{

−
1
2
tr(#−1U)

}

,# positive definite,

p(·) being the density function, tr(·) the trace function, and m the number of variables (nodes) in
our model.4 We will overload the symbol p(·) wherever it is clear from the context which density
function we are referring to. It is assumed that &> 0 and U is positive definite.

Following Atay-Kayis and Massam (2005), let M+(G) be the cone of positive definite matrices
such that, for a given bi-directed graph G and #∈M+(G), %i j = 0 if nodesYi andYj are not adjacent
in G . It is convenient to choose a distribution that is conjugate to the Gaussian likelihood function,
since one can use the same algorithms for performing inference both in the prior and posterior. In a
zero-mean Gaussian model, the likelihood function for a fixed data set D = {Y(1),Y(2), . . . ,Y(n)} is
defined by the sufficient statistic S= (n

d=1(Y(d))(Y(d))T as follows:

L(#;D) = (2))−nm/2|#|−n/2 exp
{

−
1
2
tr(#−1S)

}

. (2)

We extend the inverse Wishart distribution to the case of constrained covariance matrices in
order to preserve conjugacy. This define the following distribution:

p(#) =
1

IG (&,U)
|#|−(&+2m)/2 exp

{

−
1
2
tr(#−1U)

}

,# ∈M+(G) (3)

which is basically a re-scaled inverse Wishart prior with a different support and, consequently,
different normalizing constant IG (&,U). An analogous concept exists for undirected graphs, where
#−1 ∈M+(G) is given a Wishart-like prior: the “G -Wishart” distribution (Atay-Kayis and Massam,
2005). We call the distribution with density function defined as in Equation (3) the G -Inverse
Wishart distribution (G -IW ). It will be the basis of our framework. There are no analytical formulas
for the normalizing constant.

3. As such, the density function for # is defined with respect to the Lebesgue measure of the non-zero, independent
elements of this matrix.

4. We adopt this non-standard parameterization of the inverse Wishart because it provides a more convenient reparam-
eterization used in the sequel. Notice this is the parameterization used by Brown et al. (1993) and Atay-Kayis and
Massam (2005), which developed other distributions for covariance matrices.
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3.2 The Normalizing Constant

We now derive a Monte Carlo procedure to compute IG (&,U). In the sequel, this will be adapted
into an importance sampler to compute functionals of a G -IW distribution. The core ideas are also
used in a Gibbs sampler to obtain samples from its posterior.

The normalizing constant is essential for model selection of covariance graphs. By combining
the likelihood equation (2) with the prior (3), we obtain the joint

p(D,# | G) = (2))−
nm
2 IG (&,U)−1 × |#|−

&+2m+n
2 exp

{

−
1
2
tr[#−1(S+U)]

}

where we make the dependency on the graphical structure G explicit. By the definition of IG ,
integrating # out of the above equation implies the following marginal likelihood:

p(D | G) =
1

(2)) nm2
IG (&+n,S+U)

IG (&,U)

from which a posterior P (G |D) can be easily derived as a function of quantities of the type IG (·, ·).
The normalizing constant IG (&,U) is given by the following integral:5

IG (&,U) =
Z

M+(G)
|#|−

&+2m
2 exp

{

−
1
2
tr(#−1U)

}

d#. (4)

The space M+(G) can be described as the space of positive definite matrices conditioned on the
event that each matrix has zero entries corresponding to non-adjacent nodes in graph G . We will
reduce the integral (4) to an integral over random variables we know how to sample from. The given
approach follows the framework of Atay-Kayis and Massam (2005) using the techniques of Drton
and Richardson (2003).

Atay-Kayis and Massam (2005) show how to compute the marginal likelihood of non-
decomposable undirected models by reparameterizing the precision matrix through the Cholesky
decomposition. The zero entries in the inverse covariance matrix of this model correspond to con-
straints in this parameterization, where part of the parameters can be sampled independently and the
remaining parameters calculated from the independent ones.

We will follow a similar framework but with a different decomposition. It turns out that the
Cholesky decomposition does not provide an easy reduction of (4) to an integral over canonical,
easy to sample from, distributions. We can, however, use Bartlett’s decomposition to achieve this
reduction.

3.2.1 BARTLETT’S DECOMPOSITION

Before proceeding, we will need a special notation for describing sets of indices and submatrices.
Let {i} represent the set of indices {1,2, . . . , i}. Let #i,{i−1} be the row vector containing the

covariance between Yi and all elements of {Y1,Y2, . . . ,Yi−1}. Let #{i−1},{i−1} be the marginal covari-
ance matrix of {Y1,Y2, . . . ,Yi−1}. Let %ii be the variance of Yi. Define the mapping

#→*≡ {+1,B2,+2,B3,+3, . . . ,Bm,+m},

5. Notice this integral is always finite for any choice of & > 0 and positive definite U, since it is no greater than the
normalizing constant of the inverse Wishart.
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such that Bi is a row vector with i−1 entries, +i is a scalar, and

+1 = %11,
Bi = #i,{i−1}#

−1
{i−1},{i−1}, i> 1,

+i = %ii.{i−1},{i−1} ≡ %ii−#i,{i−1}#
−1
{i−1},{i−1}#{i−1},i, i> 1.

(5)

The set * provides a parameterization of #, in the sense that the mapping (5) is bijective. Given
that %11 = +1, the inverse mapping is defined recursively by

#i,{i−1} = Bi#{i−1},{i−1}, i> 1,
%ii = +i+Bi#{i−1},i, i> 1.

(6)

We call the set * ≡ {+1,B2,+2,B3,+3, . . . ,Bm,+m} the Bartlett parameters of #, since the de-
composition (6) is sometimes known as Bartlett’s decomposition (Brown et al., 1993).

For a random inverse Wishart matrix, Bartlett’s decomposition allows the definition of its density
function by the joint density of {+1,B2,+2,B3,+3, . . . ,Bm,+m}. Define U{i−1},{i−1}, U{i−1},i and
uii.{i−1},{i−1} in a way analogous to the # definitions. The next lemma follows directly from Lemma
1 of Brown et al. (1993):

Lemma 1 Suppose # is distributed as IW (&,U). Then the distribution of the corresponding Bartlett
parameters *≡ {+1,B2,+2,B3,+3, . . . ,Bm,+m} is given by:

1. +i is independent of *\{+i,Bi}

2. +i ∼ IG((&+ i−1)/2,uii.{i−1,i−1}/2), where IG(!,,) is the inverse gamma distribution

3. Bi | +i ∼ N(U−1
{i−1},{i−1}U{i−1},i,+iU−1

{i−1},{i−1}), where N(M,C) is a multivariate Gaussian
distribution and U−1

{i−1},{i−1} ≡ (U{i−1},{i−1})
−1.

3.2.2 BARTLETT’S DECOMPOSITION OF MARGINAL INDEPENDENCE MODELS

What is interesting about Bartlett’s decomposition is that it provides a simple parameterization of
the inverse Wishart distribution with variation independent parameters. This decomposition allows
the derivation of new distributions. For instance, Brown et al. (1993) derive a “Generalized Inverted
Wishart” distribution that allows one to define different degrees of freedom for different submatrices
of an inverse Wishart random matrix. For our purposes, Bartlett’s decomposition can be used to
reparameterize the G -IW distribution. For that, one needs to express the independent elements of #
in the space of Bartlett parameters.

The original reparameterization maps # to * ≡ {+1,B2,+2,B3,+3, . . . ,Bd,+d}. To impose the
constraint that Yi and Yj are uncorrelated, for i> j, is to set

(

Bi#{i−1},{i−1}
)

j = %YiYj(*) = 0. For a
fixed #{i−1},{i−1}, this implies a constraint on (Bi) j ≡ ,i j.

Following the terminology used by Richardson and Spirtes (2002), let a spouse of node Y in
a mixed graph be any node adjacent to Y by a bi-directed edge. The set of spouses of Yi is de-
noted by sp(i). The set of spouses of Yi according to order Y1,Y2, . . . ,Ym is defined by sp≺(i) ≡
sp(i)∩ {Y1, . . . ,Yi−1}. The set of non-spouses of Yi is denoted by nsp(i). Analogously, nsp≺(i) ≡
{Y1, . . . ,Yi−1}\sp≺(i). Let Bi,sp≺(i) be the subvector of Bi corresponding to the the respective
spouses of Yi. Define Bi,nsp≺(i) analogously.
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Given the constraint Bi#{i−1},nsp≺(i) = 0, it follows that

Bi,sp≺(i)#sp≺(i),nsp≺(i) +Bi,nsp≺(i)#nsp≺(i),nsp≺(i) = 0 ⇒

Bi,nsp≺(i) = −Bi,sp≺(i)#sp≺(i),nsp≺(i)#
−1
nsp≺(i),nsp≺(i). (7)

Identity (7) was originally derived by Drton and Richardson (2003). A property inherited
from the original decomposition for unconstrained matrices is that Bi,sp≺(i) is functionally inde-
pendent of #{i−1},{i−1}. From (7), we obtain that the free Bartlett parameters of # are *G ≡
{+1,B2,sp≺(2),+2,B3,sp≺(3),+3, . . . ,Bm,sp≺(m),+m}.

Notice that, according to (5), * corresponds to the set of parameters of a fully connected, zero-
mean, Gaussian DAG model. In such a DAG, Yi is a child of {Y1, . . . ,Yi−1}, and

Yi = BiYi−1 +- j, - j ∼ N(0,+ j)

where Yi−1 is the (i−1)×1 vector corresponding to {Y1, . . . ,Yi−1}.
As discussed by Drton and Richardson (2003), this interpretation along with Equation (7) im-

plies
Yi = Bi,sp≺(i)Zi+- j (8)

where the entries in Zi are the corresponding residuals of the regression of sp≺(i) on nsp≺(i).
The next step in solving integral (4) is to find the Jacobian J(*G ) of the transformation #→*G .

This is given by the following Lemma:

Lemma 2 The determinant of the Jacobian for the change of variable #→*G is

|J(*G)| =
m

.
i=2

|Ri| =
1

.m
i=2 |#nsp≺(i),nsp≺(i) |

m−1

.
i=1

+m−ii

where Ri ≡ #sp≺(i),sp≺(i) −#sp≺(i),nsp≺(i)#
−1
nsp≺(i),nsp≺(i)

#nsp≺(i),sp≺(i) , that is, the covariance matrix of the
respective residual Zi (as parameterized by *G ). If nsp≺(i) = /0, Ri is defined as #sp≺(i),sp≺(i) and
|#nsp≺(i),nsp≺(i) | is defined as 1.

The proof of this Lemma is in Appendix C. A special case is the Jacobian of the unconstrained
covariance matrix (i.e., when the graph has no missing edges):

|J(*)| =
m−1

.
i=1

+m−ii . (9)

Now that we have the Jacobian, the distribution over Bartlett’s parameters given by Lemma 1,
and the identities of Drton and Richardson (2003) given in Equation (7), we have all we need to
provide a Monte Carlo algorithm to compute the normalizing constant of a G -IW with parameters
(&,U).

Let #(*G ) be the implied covariance matrix given by our set of parameters *G . We start
from the integral in (4), and rewrite it as a function of *G . This can be expressed by substituting
# for #(*G ) and multiplying the integrand by the determinant of the Jacobian. Notice that the
parameters in #(*G ) are variation independent: that is, their joint range is given by the product of
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their individual ranges (positive reals for the + variables and the real line for the , coefficients). This
range will replace the original M+(G) space, which we omit below for simplicity of notation:

IG (&,U) =
Z

|J(*G )||#(*G)|−
&+2m

2 exp
{

−
1
2
tr(#(*G)−1U)

}

d*G .

We now multiply and divide the above expression by the normalizing constant of an inverse
Wishart (&,U), which we denote by IIW (&,U):

IG (&,U) = IIW (&,U)
Z

|J(*G )|× I−1
IW (&,U)|#(*G)|−

&+2m
2 exp

{

−
1
2
tr(#(*G)−1U)

}

d*G . (10)

The expression

I−1
IW (&,U)|#|−

&+2m
2 exp

{

−
1
2
tr(#−1U)

}

corresponds to the density function of an inverse Wishart #. Lemma 1 allows us to rewrite the
inverse Wishart density function as the density of Bartlett parameters, but this is assuming no inde-
pendence constraints. We can easily reuse the result of Lemma 1 as follows:

1. write the density of the inverse Wishart as the product of gamma-normal densities given in
Lemma 1;

2. this expression contains the original Jacobian determinant |J(*)|. We have to remove it, since
we are plugging in our own Jacobian determinant. Hence, we divide the reparameterized
density by the expression in Equation (9).
This ratio |J(*G )|/|J(*)| can be rewritten as

|J(*G)|

|J(*)|
=

m

.
i=1

|Ri|
+m−ii

=
1

.m
i=2 |#nsp≺(i),nsp≺(i) |

where |#nsp≺(i),nsp≺(i) |≡ 1 if nsp≺(i) = /0;

3. substitute each vector Bi,nsp≺(i), which is not a free parameter, by the corresponding expres-
sion −Bi,sp≺(i)#sp≺(i),nsp≺(i)#

−1
nsp≺(i),nsp≺(i).

This substitution takes place into the original factors given by Bartlett’s decomposition, as in-
troduced in Lemma 1:

p(Bi,+i) = (2))−(i−1)/2+−(i−1)/2
i |U{i−1},{i−1}|

1/2

× exp
(

−
1

2+i
(BT

i −Mi)
TU{i−1},{i−1}(B

T
i −Mi)

)

×
(uii.{i−1},{i−1}/2)(&+i−1)/2

/((&+ i−1)/2)
+
−( &+i−1

2 +1)
i exp

(

−
1

2+i
uii.{i−1},{i−1}

)

(11)

whereMi ≡ U−1
{i−1},{i−1}U{i−1},i. Plugging in this in (10) results in
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IG (&,U) = IIW (&,U)
Z 1
.m
i=2 |#nsp≺(i),nsp≺(i) |

× p(+1)
m

.
i=2

p(Bi,+i)d*G .

However, after substitution, each factor p(Bi,+i) is not in general a density function for {Bi,sp≺(i),
+i} and will include also parameters {B j,sp≺( j),+ j}, j < i. Because of the non-linear relationships
that link Bartlett parameters in a marginal independence model, we cannot expect to reduce this
expression to a tractable distribution we can easily sample from. Instead, we rewrite each original
density factor p(Bi,+i) such that it includes all information about Bi,sp≺(i) and +i within a canonical
density function. That is, factorize p(Bi,+i) as

p(Bi,+i|*i−1) = pb(Bi,sp≺(i)|+i,*i−1)pg(+i|*i−1)× fi(*i−1) (12)

where we absorb any occurrence of Bi,sp≺(i) within the sampling distribution and factorize the re-
maining dependence on previous parameters *i−1 ≡ {+1,+2,B2,sp≺(2), . . . ,+i−1, Bi−1,sp≺(i−1)} into a
separate function.6 We derive the functions pb(·), pg(·) and fi(·) in Appendix A. The result is as
follows.

The density pb(Bi,sp≺(i)|+i,*i−1) is the density of a Gaussian N(Kimi,+iKi) such that

mi = (Uss−AiUns)Msp≺(i) + (Usn−AiUnn)Mnsp≺(i),

K−1
i = Uss−AiUns−UsnAT

i +AiUnnAT
i ,

Ai = #sp≺(i),nsp≺(i)#
−1
nsp≺(i),nsp≺(i)

(13)

where
[

Uss Usn
Uns Unn

]

≡

[

Usp≺(i),sp≺(i) Usp≺(i),nsp≺(i)
Unsp≺(i),sp≺(i) Unsp≺(i),nsp≺(i)

]

. (14)

The density pg(+i|*i−1) is the density of an inverse gamma IG(g1,g2) such that

g1 =
&+ i−1+#nsp≺(i)

2
,

g2 =
uii.{i−1},{i−1} +Ui

2
,

Ui = MT
i U{i−1},{i−1}Mi−mT

i Kimi.

where uii.{i−1},{i−1} was originally defined in Section 3.2.1.
Finally,

fi(*i−1) ≡ (2))−
(i−1)−#sp≺(i)

2 |Ki|
1/2|U{i−1},{i−1}|

1/2

×
(uii.{i−1},{i−1}/2)(&+i−1)/2

/((&+ i−1)/2)

/((&+ i−1+#nsp≺(i))/2)

((uii.{i−1},{i−1} +Ui)/2)(&+i−1+#nsp≺(i))/2 .

6. A simpler decomposition was employed by Silva and Ghahramani (2006) (notice however that paper used an incorrect
expression for the Jacobian). The following derivation, however, can be adapted with almost no modification to define
a Gibbs sampling algorithm, as we show in the sequel.

1198



BAYESIAN LEARNING WITH MIXED GRAPH MODELS

Density function pb(Bi,sp≺(i)|·, ·) and determinant |Ki|1/2 are defined to be 1 if sp≺(i) = /0. Ui
is defined to be zero if nsp≺(i) = /0, and Ui =MT

i U{i−1},{i−1}Mi if sp≺(i) = /0.
The original normalizing constant integral is the expected value of a function of *G over a

factorized inverse gamma-normal distribution. The density function of this distribution is given
below:

pI(&,U)(*G ) =

(

m

.
i=1

pg(+i|*i−1)

)(

m

.
i=2

pb(Bi,sp≺(i)|+i,*i−1)

)

.

We summarize the main result of this section through the following theorem:

Theorem 3 Let 〈 f (X)〉p(X) be the expected value of f (X) where X is a random vector with density
p(X). The normalizing constant of a G -Inverse Wishart with parameters (&,U) is given by

IG (&,U) = IIW (&,U)×

〈

m

.
i=1

fi(*i−1)

|#nsp≺(i),nsp≺(i) |

〉

pI(&,U)(*G )

.

This can be further simplified to

IG (&,U) =

〈

m

.
i=1

f ′i (*i−1)

|#nsp≺(i),nsp≺(i) |

〉

pI(&,U)(*G )

(15)

where

f ′i (*i−1) ≡ (2))
#sp≺(i)

2 |Ki(*i−1)|
1/2 /((&+ i−1+#nsp≺(i))/2)

((uii.{i−1},{i−1} +Ui)/2)(&+i−1+#nsp≺(i))/2

which, as expected, reduces IG (&,U) to IIW (&,U) when the graph is complete.
A Monte Carlo estimate of IG (&,U) is then given from (15) by obtaining samples {*(1)

G ,*(2)
G ,

. . . ,*(M)
G } according to pI(&,U)(·) and computing:

IG (&,U) ≈
1
M

M

(
s=1

m

.
i=1

f ′i (*
(s)
i−1)

|#nsp≺(i),nsp≺(i)(*
(s)
i−1)|

where here we emphasize that #nsp≺(i),nsp≺(i) is a function of *G as given by (6).

3.3 General Monte Carlo Computation

If Y follows a Gaussian N(0,#) where # is given a G -IW (&,U) prior, then from a sample D =
{Y(1), . . . ,Y(n)} with sufficient statistic S = (n

d=1(Y(d))(Y(d))T, the posterior distribution for #
given S will be a G -IW (&+ n,U+ S). In order to obtain samples from the posterior or to com-
pute its functionals, one can adapt the algorithm for computing normalizing constants. We describe
an importance sampler for computing functionals, followed by a Gibbs sampling algorithm that also
provides samples from the posterior.
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Algorithm SAMPLEGIW-1
Input: a m×m matrix U, scalar &, bi-directed graph G , an ordering ≺

1. Let # be a m×m matrix

2. Define functions sp≺(·), nsp≺(·) according to G and ordering ≺

3. Sample %11 from IG(&/2,u11/2)

4. For i= 2,3, . . . ,m

5. Sample +i ∼ IG((&+ i−1+#nsp≺(i))/2,(uii.{i−1},{i−1} +Ui)/2)

6. Sample Bi,sp≺(i) ∼ N(Kimi,+iKi)

7. Set Bi,nsp≺(i) = −Bi,sp≺(i)#sp≺(i),nsp≺(i)#
−1
nsp≺(i),nsp≺(i)

8. Set #T

{i−1},i = #i,{i−1} = Bi#{i−1},{i−1}

9. Set %ii = +i+Bi#i,{i−1}

10. Set w=.m
i=1 f ′i (*i−1)/|#nsp≺(i),nsp≺(i)|

11. Return (w,#).

Figure 4: A procedure for generating an importance sample # and importance weight w for com-
puting functionals of a G -Inverse Wishart distribution. Variables {Mi,mi,Ki,Ui} and
function f ′i (*i−1) are defined in Section 3.2.2.

3.3.1 THE IMPORTANCE SAMPLER

One way of computing functionals of the G -IW distribution, that is, functions of the type

g(&,U;G) ≡
Z

M+(G)
g(#)p(# | &,U,G)d#

is through the numerical average

g(&,U;G) ≈
(M
s=1wsg(#(s))

(M
s=1ws

,

where weights {w1,w2, . . . ,wM} and samples {#(1),#(2), . . . ,#(M)} are generated by an importance
sampler. The procedure for computing normalizing constants can be readily adapted for this task
using pI(&,U)(·) as the importance distribution and the corresponding weights from the remainder
factors. The sampling algorithm is shown in Figure 4.

3.3.2 THE GIBBS SAMPLER

While the importance sampler can be useful to compute functionals of the distribution, we will
need a Markov chain Monte Carlo procedure to sample from the posterior. In the Gibbs sampling
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Algorithm SAMPLEGIW-2
Input: a m×m matrix U, scalar &, bi-directed graph G , a m×m matrix #start

1. Let # be a copy of #start

2. Define functions sp(·), nsp(·) according to G

3. For i= 1,2,3, . . . ,m

4. Sample +i ∼ IG((&+(m−1)+#nsp(i))/2,(uii.{\i},{\i} +U\i)/2)

5. Sample Bi,sp(i) from a N(K\im\i,+iK\i)

6. Set Bi,nsp(i) = −Bi,sp(i)#sp(i),nsp(i)#
−1
nsp(i),nsp(i)

7. Set #T

{\i},i = #i,{\i} = Bi#{\i},{\i}

8. Set %ii = +i+Bi#i,{\i}

9. Return #.

Figure 5: A procedure for generating a sampled # within a Gibbs sampling procedure.

procedure, we sample the whole i-th row of #, for each 1 ≤ i≤m, by conditioning on the remaining
independent entries of the covariance matrix as obtained on the previous Markov chain iteration.

The conditional densities required by the Gibbs sampler can be derived from (12), which for a
particular ordering ≺ implies

p(#;&,U,G) ' pg(+1)
m

.
i=2

pb(Bi,sp≺(i)|+i,*i−1)pg(+i|*i−1) fi(*i−1).

By an abuse of notation, we used # in the left-hand side and the Bartlett parameters in the righ-hand
side.

The conditional density of {Bm,sp≺(m),+m} given all other parameters is therefore

p(Bm,sp≺(m),+m|*G\{Bm,sp≺(m),+m}) = pb(Bm,sp≺(m)|+m,*m−1)pg(+m|*m−1)

from which we can reconstruct a new sample of the m-th row/column of # after sampling
{Bm,sp≺(m),+m}. Sampling other rows can be done by redefining a new order where the corre-
sponding target variable is the last one.

More precisely: let {\i} denote the set {1,2, . . . , i− 1, i+ 1, . . . ,m}. The Gibbs algorithm is
analogous to the previous algorithms. Instead of sp≺(i) and nsp≺(i), we refer to the original sp(i)
and nsp(i). Matrices #{\i},{\i} and U{\i},{\i} are defined by deleting the respective i-th row and
i-th columns. Row vector #i,{\i} and scalar uii.{\i} are defined accordingly, as well as any other
vector and matrix originally required in the marginal likelihood/importance sampling procedure.
The algorithm is described in Figure 5. The procedure can be interpreted as calling a modification
of the importance sampler with a dynamic ordering ≺i which, at every step, moves Yi to the end of
the global ordering ≺.
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3.4 Remarks

The importance sampler suffers from the usual shortcomings in high-dimensional problems, where
a few very large weights dominate the procedure (MacKay, 1998). This can result in unstable
estimates of functionals of the posterior and the normalizing constant.

The stability of the importance sampler is not a simple function of the number of variables in the
domain. For large but sparse graphs, the number of parameters might be small. For large but fairly
dense graphs, the importance distribution might be a good match to the actual distribution since
there are few constraints. In Section 7, we performe some experiments to evaluate the sampler.

When used to compute functionals, the Gibbs sampler is more computationally demanding con-
sidering the cost per step, but we expect it to be more robust in high-dimensional problems. In
problems that require repeated calculations of functionals (such as the variational optimization pro-
cedure of Section 4.3), it might be interesting to run a few preliminary comparisons between the
estimates of the two samplers, and choose the (cheaper) importance sampler if the estimates are
reasonably close.

Naı̈vely, the Gibbs sampler costs O(m4) per iteration, since for each step we have to invert the
matrix #nsp{\i},nsp{\i}, which is of size O(m) for sparse graphs. However, this inversion can cost
much less than O(m3) if sparse matrix inversion methods are used. Still, the importance sampler
can be even more optimized by using the methods of Section 6.

4. Gaussian Directed Mixed Graph Models

As discussed in Section 2, Gaussian directed mixed graph models are parameterized by the set with
parameters $ = {V,B,!}. Our prior takes the form p($) = p(B)p(!)p(V). We assign priors for
the parameters of directed edges (non-zero entries of matrix B) in a standard way: each parameter
bi j is given a Gaussian N(cBi j,sBi j) prior, where all parameters are marginally independent in the
prior, that is, p(B) =.i j p(bi j). The prior for intercept parameters ! is analogous, with !i being a
Gaussian N(c!i ,s!i ).

Recall from Equation (1) that the implied covariance of the model is given by the matrix
#($) = (I−B)−1V(I−B)−T. Similarly, we have the implied mean vector µ($) ≡ (I−B)−1!.
The likelihood function for data set D = {Y(1),Y(2), . . . ,Y(n)} is defined as

L($;D) = |#($)|−n/2.n
d=1 exp

(

− 1
2(Y(d)−µ($))T#($)−1(Y(d)−µ($))

)

=
{

|(I−B)−1||V||(I−B)−T|
}−n/2 {

exp
(

− 1
2 tr(V

−1(I−B)S(I−B)T)
)}

,

where now S≡ (n
d=1(Y(d)−µ($))(Y(d)−µ($))T.

Given a prior G -IW (&,U) forV, it immediately follows that the posterior distribution ofV given
the data and other parameters is

V | {B,!,D}∼ G -IW (&+n,U+(I−B)S(I−B)T).

Therefore it can be sampled using the results from the previous section. Notice this holds even
if the directed mixed graph G is cyclic.

Sampling !i given {D,$\{!i}} can also be done easily for both cyclic and acyclic models: the
posterior is given by a normal N(c!′

i /s!′

i ,1/s!′

i ) where
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s!
′

i ≡
1
s!i

+n(V−1)ii,

c!
′

i ≡
c!i
s!i

−n
m

(
t=1,t 3=i

(V−1)it!t +
n

(
d=1

m

(
t=1

(V−1)it

(

Y (d)
t −(

pt
bt ptY

(d)
pt

)

,

with pt being an index running over the parents of Yt in G .
However, sampling the non-zero entries of B results in two different cases depending whether

G is cyclic or not. We deal with them separately.

4.1 Sampling from the Posterior: Acyclic Case

The acyclic case is simplified by the fact that I−B can be rearranged in a way it becomes lower
triangular, with each diagonal element being 1. This implies the identity |(I−B)−1||V||(I−B)−T|=
|V|, with the resulting log-likelihood being a quadratic function of the non-zero elements ofB. Since
the prior for coefficient bi j is Gaussian, its posterior given the data and all other parameters will be
the Gaussian N(cb′i j/sb

′

i j ,1/sb′i j) where

sb′i j ≡
1
sbi j

+(V−1)ii
n

(
d=1

(Y (d)
j )2,

cb′i j ≡
cbi j
sbi j

+
n

(
d=1

Y (d)
j

m

(
t=1

(V−1)it

(

Y (d)
t − (

pt ,(t,pt)3=(i, j)
btptY

(d)
pt −!t

)

.
(16)

As before, pt runs over the indices of the parents of Yt in G . Notice that in the innermost
summation we exclude bi jY

(d)
j . We can then sample bi j accordingly.

It is important to notice that, in practice, better mixing behavior can be obtained by sampling the
coefficients (and intercepts) jointly. The joint distribution is Gaussian and can be obtained in a way
similar to the above derivation. The derivation of the componentwise conditionals is nevertheless
useful in the algorithm for cyclic networks.

4.2 Sampling from the Posterior: Cyclic Case

Cyclic directed graph models have an interpretation in terms of causal systems in equilibrium. The
simultaneous presence of directed pathsYi→ · · ·→Yj andYj → · · ·→Yi can be used to parameterize
instantaneous causal effects in a feedback loop (Spirtes, 1995). This model appears also in the
structural equation modeling literature (Bollen, 1989). In terms of cyclic graphs as families of
conditional independence constraints, methods for reading off constraints in linear systems also
exist (Spirtes et al., 2000).

The computational difficulty in the cyclic case is that the determinant |I−B| is no longer a con-
stant, but a multilinear function of coefficients {bi j}. Because bi j will appear outside the exponential
term, its posterior will no longer be Gaussian.

From the definition of the implied covariance matrix #($), it follows that |#($)|−n/2 = (|I−
B||V|−1|I−B|)n/2. As a function of coefficient bi j,

|I−B| = (−1)i+ j+1Ci jbi j +
k=m

(
k=1,k 3= j

(−1)i+k+1Cikbik,

1203



SILVA AND GHAHRAMANI

whereCi j is the determinant of respective co-factor of I−B, bik ≡ 0 if there is no edge Yi ←Yk, and
bii ≡−1. The resulting density function of bi j given D and $\{bi j} is

p(bi j|$\{bi j},D) ' |bi j−0i j|
n exp

{

−
(bi j− cb′i j/sb

′

i j)
2

2sb′i j

}

,

where

0i j ≡C−1
i j

k=m

(
k=1,k 3= j

(−1)k− j+1Cikbik

and {cb′i j ,sb
′

i j} are defined as in Equation (16). Standard algorithms such as Metropolis-Hastings can
be applied to sample from this posterior within a Gibbs procedure.

4.3 Marginal Likelihood: A Variational Monte Carlo Approach

While model selection of bi-directed graphs can be performed using a simple Monte Carlo procedure
as seen in the previous Section, the same is not true in the full Gaussian DMG case. Approaches
such as nested sampling (Skilling, 2006) can in principle be adapted to deal with the full case.
For problems where there are many possible candidates to be evaluated, such a computationally
demanding sampling procedure might be undesirable (at least for an initial ranking of graphical
structures). As an alternative, we describe an approximation procedure for the marginal likelihood
p(D|G) by combining variational bounds (Jordan et al., 1998) with the G -Inverse Wishart samplers,
and therefore avoiding a Markov chain over the joint model of coefficients and error covariances.
This is described for acyclic DMGs only.

We adopt the following approximation in our variational approach, accounting also for possible
latent variables X:

p(V,B,!,X|D) ≈ q(V)q(B,!)
n

.
d=1

q(X(d)) ≡ q(V)q(B,!)q(X)

with q(B,!) being a multivariate Gaussian density of the non-zero elements of B and !. Function
q(X(d)) is also a Gaussian density, and function q(V) is a G -Inverse Wishart density.

From Jensen’s inequality, we obtain the following lower-bound (Beal, 2003, p. 47):

ln p(D|G) = ln
R

p(Y,X|V,B,!)p(V,B,!)dXdBdVd!
≥ 〈ln p(Y,X|V,B,!)〉q(V)q(B,!)q(X)

+〈ln p(V)/q(V)〉q(V)

+〈ln p(B,!)/q(B,!)〉q(B,!)−〈lnq(X)〉q(X)

(17)

where this lower bound can be optimized with respect to functions q(V), q(B), q(X). This can be
done by iterative coordinate ascent, maximizing the bound with respect to a single q(·) function at
a time.

The update of q(V) is given by

qnew(V) = pG -IW (&+d,U+
〈

(I−B)S(I−B)T
〉

q(X)q(B,!)
)
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where pG -IW (·) is the density function for a G -Inverse Wishart, and S is the empirical second mo-
ment matrix summed over the completed data set (X,Y) (hence the expectation over q(X)) centered
at µ($).

The updates for q(B,!) and q(X) are tedious but straightforward derivations, and described in
Appendix B. The relevant fact about these updates is that they are functions of

〈

V−1〉
q(V). For-

tunately, we pay a relatively small cost to obtain these inverses using the Monte Carlo sampler of
Figure 4: from the Bartlett parameters, define a lower triangular m×m matrix B (by placing on the
ith line the row vector Bi, followed by zeroes) and a diagonal matrix / from the respective vector of
+i’s. The matrix V−1 can be computed from (I−B)T/−1(I−B), and the relevant expectation com-
puted according to the importance sampling procedure. For problems of moderate dimensionality,7
the importance sampler might not be recommended, but the Gibbs sampler can be used.

At the last iteration of the variational maximization, the (importance or posterior) samples from
q(V) can then be used to compute the required averages in (17), obtaining a bound on the marginal
log-likelihood of the model. Notice that the expectation 〈ln p(V)/q(V)〉q(V) contains the entropy of
q(V), which will require the computation of G -inverse Wishart normalizing constants.

For large problems, the cost of this approximation might still be prohibitive. An option is to par-
tially parameterize V in terms of ancillary latents and another submatrix distributed as a G -inverse
Wishart, but details on how to best do this partition are left as future work (this approximation will
be worse but less computationally expensive if ancillary latents are independent of the coefficient
parameters in the variational density function q(·)). Laplace approximations might be an alternative,
which have been successfully applied to undirected non-decomposable models (Roverato, 2002).

We emphasize that the results present in this section are alternatives that did not exist before
in previous approaches for learning mixed graph structures through variational methods (e.g., Silva
and Scheines, 2006). It is true that the variational approximation for marginal likelihoods will tend
to underfit the data, that is, generate models simpler than the true model in simulations. Despite
the bias introduced by the method, this is less of a problem for large data sets (Beal and Ghahra-
mani, 2006) and the method has been shown to be useful in model selection applications (Silva
and Scheines, 2006), being consistently better than standard scores such as BIC when hidden vari-
ables are present (Beal and Ghahramani, 2006). An application in prediction using the variational
posterior instead of MCMC samples is discussed by Silva and Ghahramani (2006). It is relevant
to explore other approaches for marginal likelihood evaluation of DMG models using alternative
methods such as annealed importance sampling (Neal, 2001) and nested sampling (Skilling, 2006),
but it is unrealistic to expect that such methods can be used to evaluate a large number of candidate
models. A pre-selection by approximations such as variational methods might be essential.

5. Discrete Models: The Probit Case

Constructing a discrete mixed graph parameterization is not as easy as in the Gaussian case. Ad-
vances in this area are described by Drton and Richardson (2008a), where a complete parameteriza-
tion of binary bi-directed graph models is given. In our Bayesian context, inference with the mixed
graph discrete models of Drton and Richardson would not to be any computationally easier than the
case for Markov random fields, which has been labeled as doubly-intractable (Murray et al., 2006).

7. We observed a high ratio of the highest importance weight divided by the median weight in problems with dimen-
sionality as low as 15 nodes. However, notice that in practice the error covariance matrix V has a block diagonal
structure, and only the size of the largest block is relevant. This is explained in more detail in Section 6.
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Instead, in this paper we will focus on a class of discrete models that has been widely used in
practice: the probit model (Bartholomew and Knott, 1999). This model is essentially a projection of
a Gaussian distribution into a discrete space. It also allows us to build on the machinery developed
in the previous sections. We will describe the parameterization of the model for acyclic DMGs, and
then proceed to describe algorithms for sampling from the posterior distribution.

5.1 Parameterizing Models of Observable Independencies

A probit model for the conditional probability of discrete variable Yi given a set of variables {Yi1, ...,
Yik} can be described by the two following relationships:

Y !
i = !i+bi1Yi1 +bi2Yi2 + · · ·+bikYik + "i

P (Yi = vil | Y
!
i ) = 1(1il−1 ≤ Y !

i < 1il)
(18)

where P (·) is the probability mass function of a given random variable, as given by the context, and
1(·) is the indicator function. Yi assumes values in {vi1,vi1, . . . ,vi0(i)}. Thresholds {1i0 = −2< 1i1 <

1i2 < · · · < 1i0(i) = 2} are used to define the mapping from continuous Y !
i to discrete Yi. This model

has a sensible interpretation for ordinal and binary values as the discretization of some underlying
latent variable (UV) Y !

i . Such a UV is a conditionally Gaussian random variable, which follows
by assuming normality of the error term "i. This formulation, however, is not appropriate for gen-
eral discrete variables, which are out of the scope of this paper. Albert and Chib (1993) describe
alternative Bayesian treatments of discrete distributions not discussed here.

Given this binary/ordinal regression formulation, the natural step is how to define a graphical
model accordingly. As a matter of fact, the common practice does not strictly follow the probit
regression model. Consider the following example: for a given graph G , a respective graphical
representation of a probit model can be built by first replicating G as a graph G!, where each vertex
Yi is relabeled as Y !

i . Those vertices represent continuous underlying latent variables (UVs). To
each vertex Y !

i in G!, we then add a single child Yi. We call this the Type-I UV model. Although
there are arguments for this approach (see, for instance, the arguments by Webb and Forster (2006)
concerning stability to ordinal encoding), this is a violation of the original modeling assumption
as embodied by G : if the given graph is a statement of conditional independence constraints, it
is expected that such independencies will be present in the actual model. The Type-I formulation
does not fulfill this basic premise: by construction there are no conditional independence constraints
among the set of variablesY (the marginal independencies are preserved, though). This is illustrated
by Figure 6(b), where the conditional independence of Y1 and Y3 given Y2 disappears.

An alternative is illustrated in Figure 6(c). Starting from the original graph G (as in Figure 6(a)),
the probit graph model G! shown in the Figure is built from G by the following algorithm:

1. add to empty graph G! the vertices Y of G , and for each Yi ∈ Y, add a respective UV Y !
i and

the edge Y !
i → Yi;

2. for each Yi → Yj in G , add edge Yi → Y !
j to G!;

3. for each Yi ↔ Yj in G , add edge Y !
i ↔ Y !

j to G!;

We call this the Type-II UV model, which has the following property (the proof is in Appendix
C):
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Figure 6: The model in (a) has at least two main representations as a probit network. In (b), the
original structure is given to the underlying variables, with observed variables being chil-
dren of their respective latents. In (c), the underlying variable inherits the parents of the
original variable and the underlying latents of the spouses.

Theorem 4 Suppose G is acyclic with vertex set Y. Yi and Yj are m-separated given Z⊆Y\{Yi,Yj}
in G if and only if Yi and Yj are m-separated given Z in G!.

The parameterization of the Type-II UV model follows from the definition of probit regression:
the conditional distributionYi given its parents in {Yi1, ...,Yik} inG is given as in Equation (18), while
the error terms {"1,"2, . . . ,"m} follow the multivariate Gaussian N(0,V). The entry corresponding
to the covariance of "i and " j is assumed to be zero if there is no bi-directed edge Yi ↔ Yj in G .

In what follows, we discuss algorithms for Type-II models. The approach here described can
be easily adapted to cover Type-I models. We say that Type-II models are models of observable
independencies, since independencies hold even after marginalizing all UVs.

5.2 Algorithm

As before, we provide a Gibbs sampling scheme to sample parameters $ = {!,B,V,T } from the
posterior distribution given data set D = {Y(1),Y(2), . . . ,Y(n)}. The set T = {Ti} is the set of
threshold parameters, Ti = {1i0 =−2< 1i1 < 1i2 < · · ·< 1i0(i) =2} for each random variable Yi with
0(i) different values. We will not discuss priors and algorithms for sampling T given the other
parameters: this can be done by standard approaches (e.g., Albert and Chib, 1993).8

For the purposes of the Gibbs procedure, we augment the data set with the underlying variables
D! = {Y!(1),Y!(2), . . . ,Y!(n)} at each sampling step.

From the set of structural equations

Y!(d) = !+BY(d) + "

it follows that the conditional distribution of Y!(d) given the D ∪$ is a truncated Gaussian with
mean !+BY(d) and covariance matrix V. The truncation levels are given by the thresholds and
observed data Y(d): for each Y (d)

i = vil , the range for Y !(d)
i becomes [1il−1,1

i
l). Sampling from a

truncated Gaussian is a standard procedure. We used the algorithm of Kotecha and Djuric (1999) in
our implementation.

To sample V from its conditional, we will rely on the following result.

8. In Section 7, we perform experiments with binary data only. In this case, the thresholds are set to fixed values:
{1i0 = −2,1i1 = 0,1i2 = 2} for all 0 ≤ i≤ m.
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Proposition 5 Let G be an acyclic DMG, and (!,B,V,T ) be the respective set of parameters that
defines the probit model. For a fixed (!,B,T ), there is a bijective function fB!T (·) mapping Y! to
". This is not true in general if G is cyclic.

Proof: If the graph is acyclic, this follows directly by recursively solving the model equations,
starting from those corresponding to Y !

j vertices with no parents. This results in "= Y! −!−BY,
as expected.

For cyclic graphs, the following model provides a counter-example. Let the graph be Y !
1 →

Y1 → Y !
2 → Y2 → Y !

1 . Let the model be Y !
1 = Y2 + "1,Y !

2 = Y1 + "2, that is, b12 = b21 = 1 and != 0.
Let the variables be binary, with a threshold at zero (Yi = 1 if and only if Y !

i ≥ 0). Then the two
instantiations (Y !

1 = −0.8,Y !
2 = 0), (Y !

1 = 0.2,Y !
2 = 1) imply the same pair ("1 = −0.8,"2 = 0). !

The negative result for discrete models with cycles is the reason why such models are out of the
scope of the paper.

Let D!
" = {"(1), . . . ,"(n)}, where "(d) = fB!T (y(d)!). Due to this bijection (and the determinism

mapping Y! to Y), the density p(V | $\V,D,D!) = p(V | $\V,D!) = p(V | $\V,y(1)!, . . . ,y(d)!)
is equivalent to

p(V | $\V,D!) = p(V | !,B,T ,D!,D!
" )

= p(V | !,B,T ,D!
" )

' p(V | !,B,T )p(D!
" | !,B,T ,V)

' p(V).n
d=1 p("(d)| V).

For the given data set D∪D!, define S! as the sum of (Y!(d)−!−BY(d))(Y!(d)−!−BY(d))T

over all d ∈ {1,2, . . . ,n}. Since p(" | V) is normal with zero mean and covariance matrix V, the
posterior for V given all other parameters and variables is

V | {$\V,D,D!}∼ G -IW (&+n,U+S!).

Sampling B and ! is analogous to the Gaussian case, except that we have to consider that the
left-hand side of the structural equations now refer to Y!. We give the explicit conditional for !i,
with the conditional for bi j being similarly adapted from Section 4. The posterior for !i is given by
a normal N((s′i)−1m′

i,s′i) where

s!
′

i =
1
s!i

+n(V−1)ii,

c!
′

i =
c!i
s!i

−n
m

(
t=1,t 3=i

(V−1)it!t +
n

(
d=1

m

(
t=1

(V−1)it

(

Y !(d)
t −(

pt
bt ptY

(d)
pt

)

.

5.3 A Note on Identifiability

The scale of the underlying latent variables in the probit model is arbitrary. As such, it has been
often suggested that such latents should have constant (e.g., unity) variance (Pitt et al., 2006). There
are two usual arguments for fixing the variance: improving the interpretability of the model, and im-
proving the mixing of the Markov chain. The interpretability argument is not particularly appealing
within the Bayesian setting with proper priors, such as the one proposed in this paper: the posterior
distribution of the parameters is well-defined by the prior uncertainty and the data.
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The goal of improving the mixing of the chain might be important: if some parameters can
assume arbitrary values and still allow for the same model over the observables, then fixing such
parameters may help sampling by eliminating largely flat regions from the posterior (which will
happen for large data sets and broad priors). In practice, however, scaling UVs might not be ad-
vantageous. In some cases it might increase the computational cost of each sampling step, while
sampling from the non-scaled model might work just fine. Many MCMC algorithms work well on
highly unidentifiable models such as multilayer perceptrons (Neal, 1996). In our experiments, we
do not use any scaling.

5.4 Remarks

It is clear that the given approach can be generalized to other generalized linear models by changing
the link function that maps underlying latent variables (UVs) to observables. For instance, a model
containing discrete and continuous variables can be constructed by using the identity link function
instead of probit for the continuous variables. Notice that the continuous variables will not nec-
essarily be marginally Gaussian if some of its parents are discrete. Other link functions will have
different parameters besides thresholds, such as in multivalued (“polychotomous”) discrete distri-
butions. A Bayesian account of Gaussian copula models is given by Pitt et al. (2006), to which a
DMG-based family could in principle be defined. For continuous, marginally non-Gaussian, vari-
ables joined by a Gaussian copula, it is possible that all link functions are invertible. In this case,
it is easier in principle to define cyclic models through Type-I UV models (e.g., Figure 6(b)) while
preserving the observable independencies.

It is important to point out that Type-II probit models with Markov equivalent graphs will not,
in general, be likelihood equivalent. A simple example is given by the two-node graphs Y1 →Y2 and
Y1 ↔Y2: ifY1 is binary, then the marginal forY2 in the first case is equivalent to having an underlying
latent variable that follows a mixture of two Gaussians. While some of these issues can be solved
by adopting a mixture of Gaussians marginal independence model to account for bi-directed edges
(Silva and Ghahramani, 2009), details need to be worked out. When the goal of model selection
is to find causal structures (Spirtes et al., 2000), the usual guarantees of search methods based on
Markov equivalence classes do not hold. However, it remains to be seen whether the parametric
constraints implied by the Type-II formulation will allow for other consistent approaches for causal
discovery, as shown in the case of non-linearities with additive noise (Hoyer et al., 2008).

6. Scaling Up: Factorizations and Perfect Sequences

Each Monte Carlo sampling step for the given mixed graph models is theoretically tractable, but not
necessarily practical when the dimensionality m of the data is high. By using clever factorizations
of the graph and ordering of the variables, it is possible to sometimes scale to high-dimensional
problems. In this section, we describe approaches to minimize the run-time of the marginal likeli-
hood computation for bi-directed graphs, which is also important for computing variational bounds
for DMG models. We start, however, with a discussion on factorizations of the posterior density for
coefficient parameters B. The context is the Gibbs sampler for acyclic models.
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Figure 7: The coefficients b31 and b32, represented as nodes in (a), become dependent after condi-
tioning on Y. However, they are still independent of b54. This a general property of DAG
models. In DMG models, a sequence of bi-directed edges will connect extra coefficients.
In graph (b), coefficients b21,b32 and b43 will all be dependent given Y. Coefficients
into nodes in different districts will still be independent. The graph in (c) has districts
{Y1,Y2,Y3,Y4} and {Y5,Y6}.

6.1 Factorizations

Our prior for coefficients {bi j} is fully factorized. In directed acyclic graphs, this is particularly
advantageous: coefficients corresponding to edges into different nodes are independent in the pos-
terior.9 One can then jointly sample a whole set of {bi j} coefficients with same i index, with no
concern for the other coefficients. Figure 7(a) illustrates this factorization. This means that, in
Equation (16), the summation over t does not go over all variables, but only for t = i. This also
follows from the fact that (V)−1

it = 0 unless i= t, since V is diagonal.
In ADMGs, however, this is not true anymore. For any pair of vertices linked by a path of

bi-directed edges, for example, Yi ↔Yi+1 ↔ · · ·↔Yt , one will have in general that (V)−1
it 3= 0. This

can be shown by using the graphical properties of the model when conditioning on some arbitrary
datapoint Y:

Proposition 6 Let G be an acyclic DMG with vertex set Y, and G ′ the DMG obtained by aug-
menting G with a vertex for each parameter bi j and a respective edge bi j → Yi. Then if there is a
bi-directed path Yi ↔ · · ·↔ Yt in G , {bi j,btv} are not m-separated given Y in G ′.

Proof: The joint model for {Y,B} with independent priors on the non-zero entries of B is Markov
with respect to G ′. The sequence of bi-directed edges between Yi and Yt implies a path between bi j
and btv where every vertex but the endpoints is a collider in this path. Since every collider is in Y,
this path is active. !

This Proposition is illustrated by Figure 7(b). The practical implication is as follows: m-
connection means that there is no further graphical property that would entail (V)−1

it = 0 (i.e., only
particular cancellations on the expression of the inverse, unlikely to happen in practice, would hap-
pen to generate such zeroes).

9. Sampling in Gaussian DAG models is still necessary if the model includes latent variables (Dunson et al., 2005).
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Consider the maximal sets of vertices in an ADMG such that each pair of elements in this set
is connected by a path of bi-directed edges. Following Richardson (2003), we call this a district.10

It follows that is not possible in general to factorize the posterior of B beyond the set of districts of
G . Figure 7(c) illustrates a factorization. Fortunately, for many DMG models with both directed
and bi-directed edges found in practical applications (e.g., Bollen, 1989), the maximum district size
tends to be considerably smaller than the dimensionality of the problem.

6.2 Perfect Sequences

It is still important to speed up marginal likelihood (or variational bound) computations for models
with districts of moderate size, particularly if many models are to be evaluated.

Without loss of generality, assume our graph G is a bi-directed graph with a single district, since
the problem can be trivially separated into the disjoint bi-directed components. We will consider
the case where the bi-directed graph is sparse: otherwise there is little to be gained by exploring the
graphical structure. In that case, we will assume that the largest number of spouses of any node in
G is bounded by a constant 0 that is independent of the total number of nodes, m. The goal is to
derive algorithms that are of lower complexity in m than the original algorithms.

The bottleneck of our procedure is the computation of the #−1
nsp≺(i),nsp≺(i) matrices, required

in the mapping between independent and dependent Bartlett parameters (Equation 7), as well as
computing the determinants |#nsp≺(i),nsp≺(i)|. Since in sparse districts nsp≺(i) grows linearly with
m, the cost of a naı̈ve algorithm for a single sampling step isO(m3) per node. Iterating over all nodes
implies a cost ofO(m4) for a Monte Carlo sweep. Therefore, our goal is to find a procedure by which
such mappings can be computed in less thanO(m3) time. The general framework is reusing previous
inverses and determinants instead of performing full matrix inversion and determinant calculation
for each Yi. The difficulty on applying low-rank updates when we traverse the covariance matrix
according to ≺ is that the sets of non-spouses nsp≺(i) and nsp≺(i+ 1) might differ arbitrarily. We
want sensible orderings where such sets vary slowly and allow for efficient low-rank updates, if any.

The foundation of many scaling-up procedures for graphical models is the graph decompo-
sition by clique separators (Tarjan, 1985), usually defined for undirected graphs. The definition
for bi-directed graphs is analogous. Such a decomposition identifies overlapping prime subgraphs
{GP(1),GP(2), . . . ,GP(k)} of the original graph G . A prime graph is a graph that cannot be partitioned
into a triple (Y′,S,Y′′) of non-empty sets such that S is a complete separator (i.e., S is a clique and
removing S disconnects the graph). Notice that a clique is also a prime subgraph.

The prime components of a graph can be ordered in a perfect sequence {YP(1), . . . ,YP(k)} of
subsets of Y (Roverato, 2002; Lauritzen, 1996). DefineH j ≡YP(1)∪ · · ·∪YP( j) as the history of the
perfect sequence up to the j-th subgraph. Let R j ≡ YP( j)\H j−1 be the residual of this history (with
R1 ≡YP(1)), and S j ≡H j−1∩YP( j) the separator. In a perfect sequence, the triple (H j−1\S j,S j,R j)
forms a decomposition of the subgraph of G induced by the vertex set H j.

Surprisingly, although bi-directed and undirected graph models have very different Markov
properties (in undirected models, conditioning removes dependencies; in bi-directed models, it adds
dependencies), perfect prime graph sequences prove to be also useful, but in an entirely different

10. Kang and Tian (2005) call such structures c-components and reserve the word “district” to refer to the function map-
ping a vertex to its respective c-component, as originally introduced by Richardson (2003). We choose to overload
the word and call “district” both the structure and the mapping.
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Y7

Y5Y3 Y6

Y1 Y2 Y4

V1 = {Y1,Y2,Y3}
V2 = {Y4,Y5}
V3 = {Y6}

Figure 8: On the left, we have a bi-directed graph of 7 vertices arranged and ordered such that nodes
are numbered by a depth-first numbering starting from “root” Y7, with {Y1,Y2,Y4,Y6}
being leaves. Vertices {Y1,Y2, . . . ,Y6} can be partitioned as the union ∪3

t=1Vt , as illustrated
on the right.

way. The next subsection describes the use of prime graph decompositions in a particularly inter-
esting class of bi-directed graphs: the decomposable case. The general case is treated in the sequel.

6.2.1 DECOMPOSABLE MODELS

In a recursively decomposable graph, all prime subgraphs are cliques. We will assume that any
perfect sequence in this case contains all and only the (maximal) cliques of the graph. The resulting
decomposition can be interpreted as a hypergraph where nodes are the maximal cliques of the origi-
nal graph, and edges correspond to the separators. In the statistics literature, a decomposable model
is defined as a model that is Markov with respect to a recursively decomposable undirected graph
(Lauritzen, 1996). Its widespread presence on applications of Markov random fields is due to nice
computational properties, with tree-structured distributions being a particular case. Our definition
of bi-directed decomposable models is analogous: a model Markov with respect to a recursively
decomposable bi-directed graph.

Given the residual sequence {R1,R2, . . . ,Rk} obtained through a perfect sequence of maximal
cliques ofG , we define a perfect ordering≺ by numbering nodes inRt before nodes inR1, . . . ,Rt−1,
1 < t ≤ k and ordering nodes according to this numbering.11 Any ordering that satisfies this restric-
tion is a perfect ordering. Such an ordering has the following property.

Theorem 7 Let G be a recursively decomposable bi-directed graph such that the indexing of its
vertices Y = {Y1,Y2, . . . ,Ym} follows a perfect ordering ≺. Then for each 1 < i ≤ m, the set
{Y1,Y2, . . . ,Yi−1} can be partitioned as ∪

K(i)
t=1Vt such that:

1. each Vt induces a connected subgraph of G , and for each Yt ∈ Vt and Yt ′ ∈ Vt ′ , t 3= t ′, Yt is
not adjacent to Yt ′ in G ;

11. Lauritzen (1996) describes other uses of perfect sequences in undirected graphs. Notice that the notion of perfect
numbering described by Lauritzen (1996) is not equivalent to our notion of perfect ordering, which is always derived
from a perfect sequence of prime graphs.
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2. for each {Yp,Yq}⊆ Vt , if Yp is a spouse of Yi, and Yq is a non-spouse of Yi, then p> q;

The proof is in Appendix C. This result is easier to visualize in trees. One can take as a perfect
ordering some depth-first ordering for a given choice of root. Then for each vertex Yi, the set
{Y1,Y2, . . . ,Yi−1} is partitioned according to the different branches “rooted” at Yi. The starting point
of each branch is a spouse of Yi, and all other vertices are non-spouses of Yi. The ordering result
then follows directly from the definition of depth-first traversal, as illustrated in Figure 8.

Let # be the covariance matrix of a bi-directed decomposable model with graph G , where #
follows a G -inverse Wishart distribution. Let ≺ be a perfect ordering for G . By the construction of
Bartlett’s decomposition, mapping between parameters is given by

#sp≺(i),nsp≺(i)#
−1
nsp≺(i),nsp≺(i),

the computational bottleneck being the inversion. Notice this corresponds to the multiple regression
coefficients of sp≺(i) on nsp≺(i). But according to Theorem 7, using a perfect ordering implies
that within each Vs for a fixed Yi, all preceding non-spouses of Yi are ordered before the preceding
spouses. Elements {Yp,Yq} in differentVs are marginally independent given {Y1, . . . ,Yi−1}\{Yp,Yq}.
This implies that the regression coefficient of spouse Yp on non-spouse Yq will be zero if Yp and Yq
are on different components Vs, and will be identical to the previously computed Bp,q if they are
in the same component. Splitting the set {Y1,Y2, . . .Yi−1} into preceding spouses Ysp≺(i) and non-
spouses Ynsp≺(i), we have

Ysp≺(i) = Bsp≺(i),sp≺(i)Ysp≺(i) +Bsp≺(i),nsp≺(i)Ynsp≺(i) + "sp≺(i) ⇒

Ysp≺(i) = (I−Bsp≺(i),sp≺(i))
−1(Bsp≺(i),nsp≺(i)Ynsp≺(i) + "sp≺(i))

where each " j is an independent Gaussian with variance + j, and each element (p,q) in Bsp≺(i),nsp≺(i)
corresponds to the known (i.e., previously computed) regression coefficient of the spouse Yp on the
non-spouse Yq. Matrix Bsp≺(i),sp≺(i) is defined analogously. Hence, the regression coefficients of
Ysp≺(i) on Ynsp≺(i) are given by

#sp≺(i),nsp≺(i)#
−1
nsp≺(i),nsp≺(i) = (I−Bsp≺(i),sp≺(i))

−1Bsp≺(i),nsp≺(i). (19)

No inversion of #nsp≺(i),nsp≺(i) is ever necessary. Moreover, the determinant |#nsp≺(i),nsp≺(i)| is given
by .{q s.t. Yq∈nsp≺(i)} +q, since all non-spouses precede the spouses (which means their marginal
covariance matrix is given by the previously computed Bartlett parameters).

Hence, calculating Bi,nsp≺(i) for all 1 ≤ i≤m according to a perfect ordering has as a bottleneck
the inversion (of a triangular matrix) and multiplication in Equation (19), with a cost ofO(02 +m02),
0 being the maximum number of spouses for any given node. The cost of the remaining operations
for the i-th stage in the importance sampler is O(03). As a function of m, the cost of the parameter
sampling step falls from O(m3) to O(m). The cost of computing the weights is dominated by the
computation of Ki from Equation (13), which is O(03 + 0m2) = O(m2). Figure 9 illustrates the
derivation of the new ordering in a tree-structured model.

6.2.2 NON-DECOMPOSABLE MODELS

In a non-decomposable model, some prime graphs YP(t) will no longer be cliques. In what follows,
we once again assume that ≺ is a perfect ordering. Unlike in the decomposable case, the product
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YC YD Y YC DYCY YB CYCY YA C

(a) (b)

Figure 9: The tree-structured (i.e., cycle-free) bi-directed graph in (a) has as maximal cliques the
adjacent pairs. Such cliques can be ordered in a perfect sequence as shown in (b), where
rectangles indicate the separators. Notice that R1 = {YA,YC},R2 = {YB},R3 = {YD}. One
possible perfect ordering is {YD,YB,YC,YA}.

#sp≺(i),nsp≺(i)#
−1
nsp≺(i),nsp≺(i) does not simplify in general. Instead we will focus only on fast methods

to compute #−1
nsp≺(i),nsp≺(i).

As we shall see, the function of the perfect sequence is now to provide a sensible choice of
which inverse submatrices {#−1

W,W}, W ⊆ Y, to cache and reuse when computing #−1
nsp≺(i),nsp≺(i).

The same can be done to compute determinants |#nsp≺(i),nsp≺(i)|.
A simple way of reusing the results from the previous section is by triangulating the non-

decomposable graph G , transforming it into a decomposable one, G ′, which is then used to generate
the perfect sequence. We need to distinguish between the “true” spouses of a node Yi in G and the
artificial spouses in G ′ that result from the extra edges added.

Let nsp≺G ′(i) be the non-spouses of Yi in G ′ that precede it according to ≺: by construction,
these are also non-spouses of Yi in G . Let sp3≺G ′(i) be the spouses of Yi in G ′ that are not spouses
of Yi in G . That is, the set of preceding non-spouses of Yi in G is given by nsp≺(i) = nsp≺G ′(i) ∪
sp3≺G ′(i).

Recall that the inverse of a partitioned matrix can be given by the following identity:

(

A B
C D

)−1
=

(

A−1 +A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

)

. (20)

In order to compute #−1
nsp≺(i),nsp≺(i), we consider its partitioned version

#−1
nsp≺(i),nsp≺(i) =

(

#nsp≺G ′ (i),nsp≺G ′ (i) #nsp≺G ′ (i),sp3≺G ′ (i)

#sp3≺G ′ (i),nsp≺G ′ (i) #sp3≺G ′ (i),sp3≺G ′ (i)

)−1

. (21)

Let 0nsp be the maximum number of non-spouses among all Yi within any prime subgraph in-
duced by YP(t). By using relation (20), where we assume for now that we know A−1 ≡

#−1
nsp≺G ′ (i),nsp≺G ′ (i), the cost of computing (21) is O(m20nsp)+O(03

nsp) =O(m20nsp) (the cost of com-
puting D−CA−1B is O(m20nsp)+O(02

nsp) = O(m20nsp), while the cost of inverting it is O(03
nsp)).

Treating 0nsp as a constant, this reduces the complexity of sampling the i-th row of # from O(m3)
to O(m2). A similar procedure applies to the computation of the determinant |#nsp≺(i),nsp≺(i)|, using
in this case the relationship (26).
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The advantage of using the perfect sequence is to allow for the computation of all A−1 ≡
#−1
nsp≺G ′ (i),nsp≺G ′ (i) at a total cost, across all nodes, of O(m3): each set nsp≺G ′(i) is guaranteed to

be equal to {Y1,Y2, . . . ,Ylns} where Ylns is the last non-spouse of Yi in G ′ that antecedes Yi. This
follows from the result in the previous section, since all non-spouses of a node in a decomposable
graph precede its spouses. Therefore, if we store the inverse covariance matrices for {Y1,Y2, . . . ,Yi},
1 ≤ i ≤ m, we can obtain the required matrices A−1. This requires the storage of O(m) matrices,
and each matrix can be obtained by the previous one by a low-rank update (20) with a O(m2) cost.

Arbitrary orderings do not guarantee such an incremental pattern and, hence, no efficient low-
rank updates. Notice that depending on the problem, many of such inverse matrices can be dynam-
ically removed from memory if they are not used by any node placed after a particular position.

6.3 Remarks

In Gaussian undirected models, the problem of covariance matrix sampling can also be reduced to
sampling within each prime graph at the cost of O(|P |4), |P | being the size of the largest prime
component (Atay-Kayis and Massam, 2005). Since both 0 and 0nsp are O(|P |), our procedure
costs O(m2|P |2 + |P |4) per prime graph, plus a cost of O(m2) per node to compute the importance
weights. Considering a number of m/|P | prime graphs and |P | < m, the total cost is O(m3|P |),
down fromO(m4). For undirected models, the corresponding cost by sampling step using the perfect
ordering decomposition is O(m|P |3). The higher-order dependency on m in bi-directed models is
to be expected, since the Markov blanket of any node Yt in a connected bi-directed graph is V\{Yt}.
It is clear that inference with a given bi-directed graph model will never scale at the same rate
of a undirected model with the same adjacencies, but this does not justify adopting an undirected
representation if it is ill-suited to the problem at hand. One has also to consider that in problems
with directed and bi-directed edges, the actual maximum district size might be much smaller than the
number of variables. For large problems, however, further approximation schemes will be necessary.
Drton and Richardson (2008b) describe some reduction techniques for transforming bi-directed
edges into directed edges such that the resulting Gaussian model remains the same. As future work,
such methods could be adapted to the G -inverse Wishart sampling procedures and combined with
the ordering techniques developed here into a single framework. It will also be interesting to develop
similar schemes for the Gibbs sampler.

7. Experiments

We now evaluate the advantages of the Gaussian and probit models in Bayesian inference on real
problems.

7.1 Industrialization and Democratization Study

Bollen (1989) describes a structural equation model of political and democratization factors within
nations. “Democratization” and “industrialization” levels are abstract notions, but nevertheless of
clearly observable impact. They are tied to empirical observations through different sets of indi-
cators. For instance, an indicator of industrialization level is the gross national product. Hence,
democratization and industrialization levels are here defined as scalar latent variables never ob-
served directly, while the observed data is composed of indicators. In this model, there is a total
of three indicators of industrialization, and four indicators of democratization. Democratization is
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11

Y1 Y3

Industrialization 1960

Y2

Democratization 1960 Democratization 1965

Y Y Y5 6 7Y4 Y YY8 Y9 10

1. Gross national product (GNP) 1960
2. Energy consumption per capita 1960
3. Percentage of labor force in industry 1960
4. Freedom of press 1960
5. Freedom of opposition 1960
6. Fairness of elections 1960
7. Elective nature of legislative body 1960
8. Freedom of press 1965
9. Freedom of opposition 1965

10. Fairness of elections 1965
11. Elective nature of legislative body 1965

Figure 10: A directed mixed graph representing dependencies between 11 observed political and
economical indicators and three latent concepts (shaded nodes) (Dunson et al., 2005;
Bollen, 1989).

measured in a longitudinal study, where data was collected in two years (1960 and 1965). The
indicators of democratization are pooled expert opinions summarized in an ordinal number scaled
from 1 to 10. Following Bollen, we will treat the model as multivariate Gaussian, which provides
an excellent fit (a p-value greater than 0.3 using a chi-square test) for a sample of 75 countries.

The corresponding mixed graph is depicted in Figure 10, along with a description of all indica-
tors. The graph is taken from Bollen (1989). Other hidden common causes affect the democratiza-
tion indicators over time, but the nature of such hidden variables is irrelevant to the problem at hand:
that is, the bi-directed edges are motivated by unmeasured causes of variability in the observed in-
dicators that exist over time. For instance, the records of freedom of press in 1960 (Y4) and 1965
(Y8) co-vary due to other unmeasured factors not accounted by democratization factors.
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Figure 11: An embedding of 75 countries in a two-dimensional latent space: democratization level
in 1960 and 1965. Boxplots of the Bayesian posterior distribution of the projection
in the two dimensions are depicted in the vertical axis. Countries are arranged in the
horizontal axis by the increasing order of their posterior expected industrialization level.
Figure adapted from Dunson et al. (2005).

An example of Bayesian inference application is shown in Figure 11. Boxplots of the posterior
values of Democratization Level 1960 and Democratization Level 1965 are generated. Dunson
et al. (2005) use this information to, for instance, find clusters of countries in the latent space. An
example of a cluster is the one formed by the bottom 16 countries in the industrialization level
ranking: the growing trend of democratization levels after the first 16 countries is interrupted. This
type of analysis might provide new insights to a polical scientist, for example, by revealing particular
characteristics for such a group of nations.

7.1.1 EVALUATING THE MCMC ALGORITHM FOR DIFFERENT MODELS

In our analysis, we fix to unity the coefficients corresponding to the edges Industrialization 1960
→ Y1, Democratization 1960→ Y4 and Democratization 1965→ Y8, since the scale and sign of the
latent variables is arbitrary. The intercept terms of the equations for Y1,Y4 and Y8 are set to zero,
since the mean of the latents is also arbitrary. The resulting model is identifiable.

We apply the Gibbs sampling procedure to three different models. The Gaussian DMG model as
described in this paper, and two modified DAG models. The first DAG model is the one described
by Dunson et al. (2005), where each bi-directed edge is substituted by an “ancillary” latent (as
mentioned in Section 2.3). For instance, the pathway corresponding to Y4 ↔Y8 is substituted by the
chain Y4 ← D48 → Y8, where D48 is unobserved. Dunson et al. further assume that all covariances
due to such ancillary latents are positive. As such, the coefficients from Di j into {Yi,Yj} are set
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Figure 12: Posterior distribution of parameters associated with the respective edges in the industri-
alization/democratization domain. Smoothed posterior obtained using the output of our
Gibbs sampler and the DENSITY function of R 2.6.0.
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Figure 13: The first three plots show the initial 5,000 iterations of a run of the Gibbs sampling
algorithm for the DMG model for three different parameters associated with edges in
the graph. The last plot depicts the posterior distribution the error covariance associated
with the edge Y7 ↔ Y11 (smoothed with the kernel density estimator from the statistical
software R).

to unity, with the variance of Di j corresponding to the residual covariance of {Yi,Yj} given their
parents. Means of ancillary latents are fixed at zero.

However, even for covariance matrices with positive covariances, this parameterization is not
complete. This result is evident from the fact that the variances of Yi and Yj will both be larger than
their covariance, which is not true of covariance matrices in general. For this particular problem,
however, this extra restriction provides no measurable difference in terms of fitness. It does serve
as a reminder, however, that “intuitive” parameterizations might hide undesirable constraints.

The second DAG model is an extension of the DAG model suggested by Dunson et al., the only
difference being that the coefficients corresponding to edges Di j →Yi, i< j, are free to vary (instead
of being fixed to 1). In general, there are Gaussian DMG models that cannot be parameterized this
way (Richardson and Spirtes, 2002). Notice also that because of chains such as Democratization
1960 → Y4 ↔ Y8 ← Democratization 1965, the set of independence constraints in this graph can
only be represented by a DAG if we include the ancillary latents Di j. That is, there is no DAG with
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Figure 14: Comparison of the effective sample size of the MCMC algorithm applied to the three
models, DMG, DAG with positive covariances (posDAG) and general DAG, as ex-
plained in the main text. The horizontal axis is the boxplot for each independent en-
try of the observed covariance matrix, 66 in total. The boxplots are obtained from 80
independent chains initialized randomly, where each chain runs for 50,000 iterations.

exactly the same set of independence constraints as the given DMG, unless ancillary latent variables
are added.

We study the behavior of the MCMC algorithm for these three models.12 It turns out that the
mixing properties of the chain are considerably affected by the choice of model. Recall that, in
the Gibbs sampling algorithm for the DMG model, a whole row of the error covariance matrix is
sampled jointly conditioning on the other parameters. For the DAG models all entries of the error
covariance matrix are independent and can be sampled jointly, but this requires conditioning on the
ancillary latents, which do not exist in the DMG model and have to be sampled only in the DAG
case.

For the majority of the covariance entries, the MCMC procedure mixed quite well, as illustrated
in Figure 13. Notice how about 12% of the sampled DMG error covariances forY7 ↔Y11 were under
zero, which could raise suspicion over the assumption of positive covariances. Autocorrelation is

12. A few technical notes: we used the priors suggested in Dunson et al. (2005), except that we changed the confidence
in the prior of the covariance of the error terms V to be smaller (in order to minimize the influence of the priors in the
models, since in this particular problem the DMG and DAG models are nearly likelihood equivalent but not posterior
distribution equivalent − the priors belong to different families). We used 1 degree of freedom in our G -Inverse
Wishart, with the matrix parameter being the expected value of Dunson et al.’s prior. For the DAG models, we also
used the G -inverse Wishart prior for the error terms, but where all error terms are independent. For the DAG model
with a free coefficient per ancillary latent, we assigned a standard Gaussian prior to such coefficients. The chains
were initialized randomly by sampling standard Gaussians for the coefficients and latent variables. Error covariance
matrices were initialized to diagonal matrices with diagonal entries sampled uniformly in [1,2]. Coefficient parame-
ters were sampled jointly given the error covariance matrix and latent variables. Latent variables were also sampled
jointly, given the parameters.
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Figure 15: Comparison of the effective sample size of the MCMC algorithm applied to the three

models. Here we plot the average effective sample sizes over 80 trials of 50,000 sam-
ples for each of the 66 entries of the covariance matrix. Points over the line indicate
parameters where the DMG approach performed better.

essentially zero for most parameters at a lag of 50. The degree of autocorrelation, however, varied
significantly between the DMG model and each DAG model. The chains for the DMG model
mixed considerably better. To summarize such behavior, we calculated the effective sample size
of the samples obtained from several chains. The parameters of interest in this comparison are the
independent entries in the 11× 11 dimensional observed covariance matrix. This is a total of 66
parameters. The effective sample size statistics were obtained by 80 independent chains of 50,000
samples each, for the three models. For each chain and each parameter, we compute the desired
statistic using the EFFECTIVESIZE function implemented in the R package CODA, freely available
in the Internet.

Results are summarized by boxplots in Figure 14. Parameters are ordered in the x-axis following
the upper triangular covariance matrix, scanning it in the order {%Y1Y1 ,%Y1Y2 , . . . , %Y1Y11 ,%Y2Y2 , . . . ,
%Y11Y11}. White boxplots correspond to the distribution of effective sample size statistics with the
DMG model across the 80 independent chains. Gray boxplots correspond to the two DAG variants.
There is no significant difference between the behaviour of the Gibbs sampling procedure for the
two DAG models. The procedure with the DMG model is clearly better behaved. As a summary
statistic, the average effective sample size over 80 trials was steadly larger in the DMG outcome
than in the positive DAG outcome (61 out of 66 parameters) and unconstrained DAG (59 out of 66).
The comparison of averages is illustrated by Figure 15.

By caching the sufficient statistics of the data and factorizing the sampling procedure according
to the districts of the graph, the running time for generating 50,000 samples out of the DMG model
was of 34 seconds in a dual core Pentium IV 2.0 GHz. Depending on the connectivity of the bi-
directed components of the graph and on the implementation of matrix inversion, sampling from the
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DAG model might be faster than sampling from the DMG. In this particular study, sampling from the
DAG models was substantially slower, an approximate average of 60 seconds for both variants. This
can be explained by the fact that sampling latent variables is very expensive, especially considering
that in the given DAG models all ancillary latents become dependent when conditioning on the data.
To summarize, the DMG approach allowed for a complete parameterization with significantly better
mixing properties, while still resulting in a faster MCMC procedure.

7.2 Structure Learning Applications

When trying to find a point estimate of graphical structures (i.e., returning a single graph that ex-
plains the data well), simple approaches such as testing for marginal independencies are reasonable
learning algorithms under the Gaussian assumption. The Bayesian approach, however, allows one
to compute odds and distributions over graphs and graph statistics, for example, the joint probability
of small substructures (Friedman and Koller, 2003). Moreover, it is not clear how the independence
test procedure controls for the predictive ability of the model, which is not a straightforward function
of the edges that are selected due to the quantitative aspects of the dependencies.

We evaluate our Bayesian model selection contribution, focusing on the Monte Carlo sampler
for bi-directed models. Jones et al. (2005) propose the following priors for graphs:

P (G |,) = ,|E|(1−,)0.5m(m−1)−|E|

where , is a hyperparameter, |E| is the number of edges in G , and m is the number of nodes. As
suggested by Jones et al., we choose ,= 0.5/(m−1), which puts more mass on graphs with O(m)
edges than the uniform prior.

We start with a brief synthetic study to compare the approach against a simple but effective
approach based on the BIC approximation.13 An experiment with gene expression data closes this
subsection.

7.2.1 SYNTHETIC STUDIES

As a sanity check for the procedure, we generate synthetic 10-dimensional Gaussian data from
models that are Markov with respect to a bi-directed graph. One hundred data sets of 50 datapoints
each are generated, each coming from a different model.14 We initially find a structure by marginal
independence tests using the Fisher’s Z statistic at a 0.05 level. From this starting point, we perform
two searches: one using the BIC score, and the other using the marginal likelihood with a G -IW
prior.15 Given the best model for each procedure, we evaluate the predictive log-likelihood on a test
set of 2,000 points which are independently sampled for each of the 100 models.

13. The BIC approach is an asymptotically consistent score for selecting the maximum a posteriori Gaussian bi-directed
graph model (Richardson and Spirtes, 2002).

14. The details of the simulated data are as follows: we start with DAG with no edges, with observed nodes
{Y1,Y2, . . . ,Y10} and hidden nodes {X1,X2,X3,X4}. Each individual edge Xi → Yj is added with probability 0.35,
and no other edges are allowed. We reject graphs with fewer than 10 edges. All coefficient parameters are sampled
from a standard Gaussian, and variances from an uniform distribution in [0,1]. The model over Y corresponds to
a bi-directed graph, where the edge Yi ↔ Yj exists if and only if Yi and Yj have a common latent parent Xk in the
DAG. We then store 50 samples for the Y variables in a data set. The procedure is repeated 100 times with different
parameters and graphical structures each time. The average number of edges in the resulting simulation was of 18.4
edges per graph.

15. In both cases, we center the data at the empirical mean of the training set and assume the data to have been generated
from a zero-mean Gaussian. The G -Inverse Wishart is an empirical prior: a diagonal matrix with the training variance
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Figure 16: The differente in predictive log-likelihood with models learned with the G -IW prior
and the best BIC models found by greedy search. Although the difference per point is
small, it reflects a persistent advantage of the full Bayesian approach. Figure (a) shows
the estimated density of the distribution of differences when predicting points using
the Bayesian predictive log-likelihood. Since the BIC search method does not atempt
to maximize the finite sample posterior distribution, we provide Figure (b) for com-
pleteness: in this case, the predictive log-likelihood for the BIC model was calculated
using the maximum likelihood estimator. The difference hardly changes, and the fully
Bayesian model still wins (density estimates produced by the DENSITY(·) function of R
2.6.0.).

The average difference in log-likelihood prediction16 between the structure learned with the
Bayesian prior and the BIC-induced model is depicted in Figure 16(a). This is computed by con-
ditioning on the learned structures (fully Bayesian vs. BIC maximum a posteriori graphs) and
marginalizing over the posterior of the parameters. The parameter priors are those used for the
structure learning step. This might be unfair for the BIC procedure, since it is not designed to max-
imize the finite sample posterior: hence we also show in Figure 16(b) the results obtained when the
predictions given the BIC model are obtained by using the maximum likelihood estimators of the

of each variable used as the diagonal. The number of degrees of freedom is set to 1. The search is a standard greedy
procedure: we evaluate the marginal log-likelihood or BIC score for each graph that differs from the current candidate
by one edge (i.e., graphs with one more or one fewer edge) and pick the one with the highest score. We stop when
no improvement is possible.

16. In terms of incorrect edge additions and deletions, the procedures behave about the same: an average of one third
of the edges is missed, and 7% of edges are incorrectly added (individual percentages are with respect to total
number of possible mistakes in each graph). Unlike BIC, however, our procedure allows for different trade-offs
by using different priors. It should also be pointed out that counting edge errors is just one possible measure. A
more global quantitative score such as predictive log-likelihood takes into account, indirectly, the magnitude of the
errors—although it is not a direct measure of model fitness.
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parameters. The average difference in the first case is 400.07, and only slightly less for the second
case (389.63). Most of the mass of the difference distribution is positive (85 out of 100 for the first
case, 89 out of 100 in the second case), which passes a sign test at a 0.05 level. The difference is
still relatively small, suggesting that informative prior knowledge might be necessary to produce
substantially better predictions.

7.2.2 GENE EXPRESSION ANALYSIS

To illustrate the use of Bayesian model selection approaches, we analyse the gene expression data
previously studied by Drton and Perlman (2007), also as Gaussian bi-directed models. As before,
our goal will be to compare the predictive power of models learned by greedy search with BIC and
greedy search with the Bayesian posterior.

The data consists of 13 gene expression measurements from a metabolic network. A total of
118 points is available. Using all data, the BIC-induced graph has 39 edges, while the finite sample
posterior graph had 44. The same procedure used in the synthetic studies, for initializing graphs
and choosing priors and centering the data, was applied in this case with two choices of degrees of
freedom & for the G -IW prior: &= 1 and &= 5. Preliminary experiments where 90% of the samples
are assigned to the training set showed a negligible difference between methods. We then generate
10 random splits of the data, 50% of them assigned to the training set. Predictive results using the
MCMC method for evaluating the Bayesian predictions (with half a million samples) are shown in
Table 1. The BIC graphs are by definition the same in the three sets of evaluation, but parameters
are learned in three different ways (maximum likelihood point estimation and Bayesian averaging
with two different priors). There is a steady advantage for the Bayesian approach, although a small
one. Notice that using Bayesian averaging over parameters given the BIC graph improves prediction
when compared to using the maximum likelihood point estimate, despite the simplistic choice of
prior in this study. Notice also that the cases where the Monte Carlo method has small or no
advantage over the BIC method were the ones where the maximum likelihood estimators produced
their best results.

7.2.3 REMARKS

The procedure based on the sampler is doable for reasonably sized problem on the order of a few
dozen variables in desktop machines. Further improvements are necessary for larger problems.
One aspect that was not explored here was re-using previous computations when calculating the
probability of a new candidate, in a way similar to the local updates in DAG models (Chickering,
2002). How to combine local updates with the ordering-based improved sampler of Section 6 is
left as future research. Several practical variations can also be implemented, such as vetoing the
inclusion of edges associated with high p-values in the respective independence tests. Such tabu
lists can significantly shrink the search space.

It is important to evaluate how the Monte Carlo procedure for computing normalizing constants
behaves in practice. For all practical purposes, the procedure is an importance sampler and as such
is not guaranteed to work within a reasonable amount of time for problems of high dimensionality
(MacKay, 1998). We can, however, exploit the nature of the problem for our benefit. Notice that the
procedure depends upon a choice of ordering ≺ for the variables. Different orderings correspond
in general to different importance distributions. We can play with this feature to choose an suitable
ordering. Consider the following algorithm for choosing an ordering given a bi-directed graph G :
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MLE &= 1 &= 5
Folder BIC BIC MC BIC MC

1 -6578.44 -6382.45 -6308.19 -6342.82 -6296.14
2 -6392.67 -6284.64 -6277.94 -6279.54 -6285.26
3 -8194.54 -6567.89 -6433.51 -6553.88 -6452.15
4 -6284.00 -6265.16 -6285.77 -6252.54 -6258.42
5 -9428.00 -6473.93 -6400.51 -6483.43 -6469.45
6 -7111.45 -6573.85 -6572.74 -6528.76 -6513.02
7 -6411.43 -6329.53 -6317.18 -6313.05 -6309.18
8 -6350.44 -6319.87 -6295.19 -6299.53 -6297.80
9 -6374.31 -6307.13 -6308.21 -6297.47 -6304.25
10 -7247.82 -6584.96 -6468.51 -6528.61 -6444.55

Table 1: Results for the 10 random splits of the gene expression data, with 50% of the points as-
signed to the training set. The first column shows the predictive log-likelihood for the
graph learned with the BIC criterion and parameters fit by maximum likelihood. The next
two columns show predictive log-likelihood results for the graphs learned with BIC and
the Monte Carlo (MC) marginal likelihood method using a G -IW prior with degrees of
freedom &= 1. The last two columns are the results of a prior where &= 5. Best results in
bold.

1. Let ≺ be an empty queue.

2. Let G ′ be the graph complement of G , that is, the graph where {Yi,Yj} are neighbors if and
only if they are not adjacent in G .

3. Let C be an arbitrary maximum clique of G ′. Add all elements of C to the end of ≺ in any
arbitrary order.

4. For each pair {Yi,Yj}, not intersecting C , such that the path Yi ↔ Yk ↔ Yj exists in G and
Yk ∈ C , add the edge Yi ↔ Yj to G .

5. Remove all elements Yk ∈ C from G , including any edge into Yk.

6. Iterate Steps 2-5 until G is an empty graph.

The resulting queue ≺ is an ordering that attempts to maximize the number of variables that are
marginally independent given their common predecessors. This is just one possibility to simplify the
importance sampling distribution: perfect orderings and the approaches for simplifying maximum
likelihood estimation described by Drton and Richardson (2008b) could be adapted to provide even
better orderings, but we leave this as future work.17

17. In our actual implementation used in the experiments in this Section, we implemented an even simpler approach:
instead of finding maximum cliques, we start to build a clique from a particular node, “greedily” adding other nodes
to the clique according to the column order of the data set. Each node generates a candidate clique, and we pick an
arbitrary clique of maximal size to be our new set C .
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Figure 17: An evaluation on the stability of the Monte Carlo normalizing function procedure. The
top row depicts the marginal likelihood estimates for the gene problem using two dif-
ferent distributions implied by two different orderings, as explained in the text. Experi-
ments with synthetic data are shown in the bottom, and the bottom-right figure illustrates
major differences.

Figure 17 illustrates the difference that a smart choice of ordering can make. The top left graph
in Figure 17 depicts the progress of the marginal likelihood Monte Carlo estimator for the gene
expression problem using the graph given by the hypothesis testing procedure. The model has 55
parameters. We obtain three estimates, each using a sample of 100,000 points, which allows us
to observe how the estimates change at the initial stages. The variable ordering in this case is the
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ordering present in the original database (namely, DXPS1, DXPS2, DXPS3, DXR, MCT, CMK,
MECPS, HDS, HDR, IPPI1, GPPS, PPDS1 and PPDS2). The top right graph shows three runs
using the optimized ordering criterion. Convergence is much faster in this case, and both samplers
agree on the normalizing constant estimate.

As an illustration of the power of the procedure and its limitations, we generated a synthetic
sample of 1,000 training points from a graph with 25 nodes, using the same procedure of Section
7.2.1. A run of two different samplers is shown at the bottom left of Figure 17. They are seemingly
well-behaved, the ratio between the largest and median weight being at the order of one hundred
in the “optimally” ordered case. In contrast, the bottom right corner of Figure 17 illustrates the
method with a covariance matrix of 50 random variables and 1,000 training points. Notice this is a
particularly dense graph. Much bigger jumps are observed in this case and there is no clear sign of
convergence at 100,000 iterations.

While there is no foolproof criterion to evaluate the behavior of an importance sampler, the
relationship between orderings provides a complementary technique: if the normalizing constant
estimators vary substantially for a given set of random permutations of the variables, then the out-
comes are arguably not to be trusted even if the respective estimators appear to have converged.

Concerning the choice of priors, in this Section we exploited empirical priors. The G -Inverse
Wishart matrix hyperparameter is a diagonal matrix where variance entries are the sample variances.
While this adds an extra bias towards diagonal matrices, at least in our experiments we performed
close to or better than other approaches—it is however not clear whether we could have done much
better. It is still an open question which practical “default” hyperparameters will prove useful for the
G -IW . Elicitation of subjective priors in the context of structural equation models can benefit from
pre-existing work on Bayesian regression, although again practical matters might be different for
the G -IW . Dunson et al. (2005) describe some limitations of default priors for structural equation
models. A thorough evaluation of methods for eliciting subjective priors is out of the context of
this work, but existing work on inverse Wishart elicitation provides a starting point (Al-Awadhi
and Garthwaite, 1998). As in the case of the inverse Wishart, the G -Inverse Wishart has a single
hyperparameter for specifying degrees of freedom, a limitation which might motivate new types of
priors (Brown et al., 1993).

7.3 Discrete Data Applications

We now show results on learning a discrete distribution that factorizes according to a mixed graph.
Drton and Richardson (2008a) describe applications on real-world binary data modeled according
to bi-directed graphs. The empirical contingency tables for two studies can be found in the corre-
sponding technical report (Drton and Richardson, 2005). Drton and Richardson used a complete
parameterization for bi-directed binary models and a maximum likelihood estimation procedure.
In this section, we analyze these two data sets to illustrate the behavior of our Bayesian procedure
using the probit model. Our model imposes probit constraints that are not enforced by Drton and
Richardson, but it allows us to obtain Bayesian credible intervals and predictions.

The graphs used in the two studies are depicted in Figure 18. The first problem is a study on the
dependence between alcoholism and depression, as shown in Figure 18(a). A data point is collected
for a given pair of mono-zygotic twins. For each sibling Si, it is recorded whether Si is/is not
alcoholic (Ai), and whether Si suffers/does not suffer from depression (Di). The hypothesis encoded
by the graph is that alcoholism and depression do not share a common genetic cause, despite A and
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Figure 18: Two learning problems with discrete data. In (a), the graph shows dependencies con-
cerning alcoholism (Ai) and depression (Di) symptoms for paired twins {1,2}. In (b), a
model for dependencies among features of a study on parole appeals, including the suc-
cess of the parole, if the type of offense was a person offense or not, and if the offender
had a dependency on drugs and was over 25 years old. All variables in these studies are
binary and further details and references are provided by Drton and Richardson (2008a).
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Figure 19: Posterior distribution of some of the marginal contingency table entries for the twin
model.

D having some hidden (but different) genetic causes. If A and D did have genetic common causes,
one would expect that the edges A1 ↔ D2 and A2 ↔ D1 would be also required. The compounded
hypothesis of marginal independencies for Ai and Dj, i 3= j, can be tested jointly by testing a bi-
directed model. Notice that no reference to particular genetic hidden causes of alcoholism and
depression is necessary, which again illustrates the power of modeling by marginalizing out latent
variables.

The second study, as shown in Figure 18(b), concerns the dependencies among several variables
in an application for parole. The model implies, for instance, that the success of a parole application
(Success node, in the Figure) is independent of the age of the offender being under 25 (Age node).
However, if it is known that the offender had a prior sentence, these two variables become dependent
(through the path Success↔ Prior sentence↔ Age). As reported by Drton and Richardson, their
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Entry Estimates Entry Estimates
A1A2D1D2 E[$|D] MLE uMLE A1A2D1D2 E[$|D] MLE uMLE

0000 0.461 0.461 0.482 1000 0.018 0.018 0.013
0001 0.136 0.138 0.134 1001 0.003 0.004 0.007
0010 0.157 0.159 0.154 1010 0.021 0.020 0.013
0011 0.097 0.096 0.085 1011 0.009 0.009 0.015
0100 0.032 0.032 0.025 1100 0.008 0.010 0.005
0101 0.022 0.021 0.015 1101 0.003 0.002 0.003
0110 0.007 0.008 0.012 1110 0.003 0.005 0.007
0111 0.012 0.012 0.017 1111 0.006 0.005 0.012

Figure 20: The posterior expected value of the 16 entries in the twin study table (E[$|D]). Results
generated with a chain of 5,000 points. We also show the maximum likelihood estimates
of Drton and Richardson (MLE) and the maximum likelihood values obtained using an
unconstrained model (uMLE). Despite the probit parameterization, in this particular
study there is a reasonable agreement between the Bayesian estimator and the estimator
of Drton and Richardson.

binary bi-directed model passes a significance test. Drton and Richardson also attempted to learn
an undirected (Markov) network structure with this data, but the outcome was a fully connected
graph. This is expected, since Markov networks cannot represent marginal independencies unless
the graph is disconnected, which would introduce all sorts of other independencies and possibly
not fit the data well. If many marginal independencies exist in the data generating process, Markov
networks might be a bad choice of representation. For problems with symmetries such as the twin
study, DAGs are not a natural choice either.

7.3.1 RESULTS

For the twin data problem, we used a simple prior for the covariance matrix of the underlying latent
variables: a G -inverse Wishart with 1 degree of freedom and a complete covariance with a value
of 2 for each element in the diagonal and 1 outside the diagonals. Thresholds are fixed at zero,
since we have binary data. We present the expected posterior values of the contingency table entries
in Figure 20. The outcome is essentially identical to the maximum likelihood estimates of Drton
and Richardson despite the probit parameterization. Moreover, with our procedure we are able to
generate Bayesian confidence intervals, as illustrated in Figure 19. The results are very stable for a
chain of 1,000 points.

For the parole data, we used a G -inverse Wishart prior for the covariance matrix of underlying
variables Y! with 1 degree of freedom and the identity matrix as hyperparameters. We compare the
effective sample size of the Gibbs sampler for our DMG model and the DAG model obtained by
using the ancillary latent parameterization of Section 7.1 for the underlying latent variable covari-
ance matrix.18 Boxplots for the 16 contingency table entries of the twin network and the 32 entries
of the parole study are shown in Figure 21. The setup is the same as in the democratization and

18. The priors used are as follows: the ancillary representation was given a prior with mean 1 and variance 1 for the
coefficients Xi j → Y !

j , for j > i, and set constant to 1, if i < j. The means of the ancillary latents were fixed at
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industrialization experiment, where we run 80 independent chains and plot the distribution of the
effective sample sizes to measure the mixing time. We ran a shorter chain of 2,000 points, since
computing the contingency table entries is expensive.

There is a substantial difference in effective sample size for the parole study. Notice that we are
comparing MCMC samples for the entries in the contingency table, which in the DAG case requires
integrating out not only the underlying latent variables implicit in the probit parameterization, but
also the ancillary latents that account for the bi-directed edges. This hierarchy of latent variables,
which does not exist in the DMG case, causes a considerable increase on autocorrelation of the
chain compared to the DMG model. The standard DMG parameterization can be seen as a way
of obtaining a collapsed Gibbs sampler, where the parameterization by construction reflects latent
variables that were analytically marginalized.
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Figure 21: Comparison of effective sample sizes for the twin data (a) and parole data (b). 80 in-
dependent chains of 2,000 points were obtained using the Gibbs sampling algorithm,
and the respective box-plots shown above. The Markov chain with the DMG approach
easily dominates the DAG one. For the parole data, the average effective sample size for
the DAG was as low as 60 points.

8. Conclusion

Directed mixed graph models are a generalization of directed graph models. Whenever a machine
learning application requires directed graphs, one should first consider whether directed mixed
graphs are a better choice of representation instead. DMGs represent conditional independencies
of DAGs where hidden variables have been marginalized out. Given that in most applications it is

0. Variance parameters were given (0.5,0.5) inverse gamma priors, which approximately matches the priors in the
DMG model.
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Figure 22: In (a), a simple bi-directed chain with four random variables. In (b), the respec-
tive factor graph that is obtained from a Bartlett parameterization using the order-
ing ≺≡ {Y1,Y2,Y3,Y4}. In this case, the factors are p(Y1)× p(Y2|Y1)× p(Y3|Y1,Y2)×
p(Y4|Y1,Y2,Y3). A different choice of ordering (e.g., the perfect ordering) could pro-
vide simpler factors on average, but the presence of a factor linked to all variables is
unavoidable.

unlikely that all relevant variables are known, DMGs are a natural representation to use. In this pa-
per, we introduced priors and inference algorithms for Bayesian learning with two popular families
of mixed graph models: Gaussian and probit. We discussed some implementations and approxima-
tions to scale up algorithms. We showed examples of applications with real data, and demonstrated
that Bayesian inference in Gaussian and probit DMG models using MCMC can have substantially
faster mixing than in comparable DAGs.

It is part of the machine learning folklore that factor graphs can subsume directed networks.
In an important sense, this is known not to be true: undirected and factor graphs only allow for
monotonic independence models, where explaining away is ruled out. This excludes a vast number
of realistic, non-monotonic, models. While factor graphs are perhaps the data structures of choice
for general message-passing algorithms (e.g., Yedidia et al., 2005), they are far from being universal
modeling languages for independencies.

What is true is that for any distribution that is Markov with respect to a DAG or DMG there
is at least one corresponding factor graph model, but this is a vacuous claim of little interest: any
distribution can be represented by a single-factor model involving all variables. Some will require
a factor with all variables, even under the presence of a large number of independence constraints.
For instance, a factor graph corresponding to any given bi-directed chain will necessarily include
a factor node adjacent to all variable nodes, as illustrated in Figure 22. When parameterizing a
distribution with many marginal independencies (e.g., a bi-directed tree), the respective factor graph
would be no more than an unhelpful drawing. A better strategy for solving real-world problems is
to define a family of models according to the (directed/undirected/factor) graphs of choice, and let
the inference algorithm decide which re-expression of the model suits the problem. This has been
traditional in graphical modeling literature (Lauritzen, 1996). The strategy adopted in this paper
followed this spirit.

An alternative has been recently introduced by Huang and Frey (2008). This paper discusses
graphical families of marginal independence constraints (essentially identical to bi-directed graphs,
although other types of constraints might implicitly follow from the parameterization). Models are
parameterized using a very different strategy. The idea is to parameterize cumulative distribution
functions (CDFs) instead of densities or probability mass functions. A simple factorization criterion
can be defined in the space of CDFs, but densities have to be computed by a novel message-passing
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scheme. The particular application discussed by Huang and Frey (2008) could in principle be ap-
proached using the Gaussian bi-directed probit model of Section 5, but the parameterization in
Huang and Frey (2008) does not need to rely on Gaussian distributions. It is not clear, however,
how to efficiently perform Bayesian inference in this case and which constraints are implicitly im-
plied by the different choices of parameterization. The different perspective given by products of
CDFs is novel and promising. It should point out to new directions in mixed graph modeling.

The structural equation modeling literature also describes several pragmatic ways of specifying
non-linearities in the structural equations (Lee, 2007). Less common is the specification of non-
Gaussian models for the joint density of the error terms. Silva and Ghahramani (2009) introduce a
flexible mixture of Gaussians approach for models of marginal independence. There is a need on
how to combine this approach with flexible families of structural equations in a computationally
efficient way. Also, models with non-additive error terms remain to be explored.

Current interest in estimating sparse statistical models has lead to approaches that estimate struc-
tured covariance matrices (e.g., Bickel and Levina, 2008). This development could also lead to new
families of priors. In particular, different matrix decompositions have motivated different ways of
specifying priors on covariance matrices. For instance, Chen and Dunson (2003) propose a modified
Cholesky decomposition for the covariance matrix of random effect parameters: standard devia-
tions are parameterized separately with a prior that puts positive mass on zero variances (effectively
allowing the random effect to be neutralized). Wong et al. (2003) describe a prior for inverse corre-
lation matrices that is uniform conditioned on the number of structural zeros. Metropolis-Hastings
schemes are necessary in this case.

Shrinkage methods have also been applied to the estimation of covariance matrices. A common
approach, shrinkage towards a diagonal matrix (e.g., Daniels and Kass, 1999), could be generalized
towards some sparse matrix corresponding to a bi-directed graph. Although shrinkage will not
generate structural zeros in the resulting matrix, allowing for sparse shrinkage matrices other than
the identity matrix could be interesting in prediction problems.

Some approaches can exploit an ordering for the variables, which is natural in some domains
such as time-series analysis. While the G -Inverse Wishart is invariant to a permutation of the vari-
ables, new types of priors that exploit a natural variable ordering should be of interest, as in the
original work of Brown et al. (1993) that motivated our approach.

Other directions and applications are suggested by recent papers:

• learning measurement models: the industrialization and democratization problem of Sec-
tion 7.1 provides an example of a measurement model. In such a family of problems, observed
variables are children of latent variables, and connections from latents to observables define
the measurement model. Sparsity in the measurement can be exploited to allow for more
general dependencies connecting latent variables. One role of the bi-directed component is
to allow for extra dependencies connecting observed variables that are not accounted by the
explicit latent variables in the model. Silva et al. (2006) describes a learning algorithm for
mixed graph measurement models using the “ancillary” parameterization. The natural ques-
tion is which alternative optimization strategies could be used and how to scale them up;

• structural and relational learning: in prediction problems where given an input vector X
we have to predict an output vector Y, the dependence structure of Y given X can also lie
within the directed mixed graph family. Silva et al. (2007) introduces mixed graph models
within the context of relational classification, where Y are labels of different data points
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not independently distributed. In such a class of problems, novel kinds of parameterization
are necessary since the dimensionality of the covariance matrix increases with the sample
size. Structural features of the graph are used to propose different parameterizations of the
dependencies, and many other alternatives are possible;

• causal inference: mixed graphs have been consistently used as a language for represent-
ing causal dependencies under unmeasured confounding. Zhang (2008) describes recent ad-
vances in identifying causal effects with ancestral graphs. Algorithms for learning mixed
graph structures are described by Spirtes et al. (2000) and the recent advances in parameter-
izing such models should result in new algorithms;

Many challenges remain. For instance, more flexible models for DMG discrete models are
being developed (Drton and Richardson, 2008a), but for large graphs they pose a formidable com-
putational problem. An important question is which other less flexible, but more tractable, pa-
rameterizations could be used, and which approximation algorithms to develop. The probit family
discussed here was a choice among many. The parameterization by Drton and Richardson (2008a)
could be a starting point for trading-off flexibility and computational effort. And while it is true
that Gaussian copula models (Pitt et al., 2006) can be adapted to generalize the approach introduced
here, it remains to be seen if other copula parameterizations easily lead to DMG models.
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Appendix A. Deriving the Sampling Distribution for the Monte Carlo Computation
of Normalizing Constants

We give here the details on how to derive the sampling distribution used for computing normalizing
constants IG (&,U), as described in Section 3.2.2.

Let Ai ≡ #sp≺(i),nsp≺(i)#
−1
nsp≺(i),nsp≺(i). Recall from Equation (7) that Bi,nsp≺(i) = −Bi,sp≺(i)Ai.

The original density p(Bi | +i), as given by Lemma 1, is a multivariate Gaussian with the following
kernel:
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 (22)

where U{i−1},{i−1} in Lemma 1 was rearranged above as the partitioned matrix in (14). The pair
{Msp≺(i),Mnsp≺(i)} corresponds to the respective partition of the mean vector Mi. Plugging in the
expression for Bi,nsp≺(i) in (22), we obtain the modified kernel
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which can be rewritten as

pb(Bi,sp≺(i);Kimi,+iKi) × (2))#sp≺(i)/2|+i|
#sp≺(i)/2|Ki(*i−1)|

1/2

× exp
{

−
1
2
+−1
i Ui

}

(24)

where #sp≺(i) is the size of set sp≺(i), pb(·;!,#) is the density function of a multivariate Gaussian
distribution with mean ! and covariance #,Ki(*i−1)≡Ki to emphasize the contribution of previous
parameters, and

mi = (Uss−AiUns)Msp≺(i) + (Usn−AiUnn)Mnsp≺(i),

K−1
i = Uss−AiUns−UsnAT

i +AiUnnAT
i ,

Ui = MT
i U{i−1},{i−1}Mi−mT

i Kimi.

If sp≺(i) = /0, it follows that Bi = Bi,nsp≺(i) = 0. The kernel (23) reduces to exp(−0.5Ui/+i),
and Ui ≡MT

i U{i−1},{i−1}Mi. If nsp≺(i) = /0, then the expression for the kernel does not change
(Ui ≡ 0), and Equation (24) corresponds to the original kernel in Equation (11).

Inserting the re-expressed kernel into the original function (11), we obtain

pb(Bi,sp≺(i);Kimi,+iKi)pg
(

+i;
&+ i−1+#nsp≺(i)

2
,
uii.{i−1},{i−1} +Ui

2

)

fi(*i−1)

where pg(·;!,,) is an inverse gamma density function and

fi(*i−1) ≡ (2))−
(i−1)−#sp≺(i)

2 |Ki(*i−1)|
1/2|U{i−1},{i−1}|

1/2

×
(uii.{i−1},{i−1}/2)(&+i−1)/2

/((&+ i−1)/2)

/((&+ i−1+#nsp≺(i))/2)

((uii.{i−1},{i−1} +Ui)/2)(&+i−1+#nsp≺(i))/2 .

Appendix B. Variational Updates for Gaussian Mixed Graph Models

The variational updates for the coefficient and intercept parameters are essentially identical to their
joint conditional distribution givenV andX, where occurrences ofV andX are substituted by expec-
tations

〈

V−1〉
q(V) and 〈X〉q(X), respectively. Let Vi j be the i j-th entry of

〈

V−1〉
q(V). The covariance

matrix of (B,!) is the covariance matrix of the vector vec(B,!). Such vector is constructed using
all (non-zero) coefficients and intercepts. We denote this covariance matrix by #B,!. For simplicity
of notation, we will treat !i as the coefficient bi(m+1), m being the number of variables. We will
also adopt the notation Y (d)

m+1 ≡ 1 in the following derivations. As an abuse of notation, let Y also
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refer to latent variables. In this case, if Yi and Yj refer to latent variables Xhi and Xhj , then define
Yi ≡ 〈Xhi〉q(X), and YiYj ≡

〈

XhiXhj
〉

q(X)
.

Let bi j and btv be the r-th and s-th entries of vec(B,!), respectively. The rs-th entry of the
inverse matrix #−1

B! is given by

(#−1
B!)rs = Vit

n

(
d=1

Y (d)
j Y (d)

v +1(i= t)1( j = v)
cbi j
sbi j

where bxpx ≡ 0 if no edge Yx ← Ypx exists in the graph, 1(·) is the indicator function, and cbi j, sbi j are
the given prior parameters defined in Section 4. Similarly to the factorization criterion explained
in Section 6, the matrix q(V) will in general be block-diagonal, and this summation can be highly
simplified.

Define now a vector cb analogous to the Gibbs sampling case, where

cbr =
m

(
t=1

Vit

n

(
d=1

Y (d)
j Y (d)

t +
cbi j
sbi j

.

The variational distribution q(B,!) is then a N(#B,!c,#B,!). The variational distribution for the
latent variables will exactly the same as the Gibbs distribution, except that references to B,!,V−1

are substituted by 〈B〉q(B,!) ,〈!〉q(B,!) and
〈

V−1〉
q(V).

Appendix C. Proofs

Proof of Lemma 2: Arrange the columns of the Jacobian such that their order corresponds to the
sequence %11,%21,%22,%31,%32,%33, . . . ,%mm, excluding the entries %i j that are identically zero by
construction. Arrange the rows of the Jacobian such that their order corresponds to the sequence
+1,,21,+2,,31,,32, . . . ,+m, excluding the entries ,i j that are not in *G (i.e., exclude any ,i j corre-
sponding to a pair {Yi,Yj} that is not adjacent in the graph).

By the definition of Bartlett’s decomposition, #{i},{i} and ,st are functionally independent for
s > i. The same holds for #{i},{i} and +s. As such, 7%i j/7,st = 0 and 7%i j/7+s = 0 for s > i.
This implies that J(*G ) is a (lower) block triangular matrix of 2m− 1 blocks: for k odd, the k-th
block is the singleton 7%ii/7+i = 1, where i = (k+ 1)/2. For k even, the k-th block is the Jacobian
7#i,sp≺(i)/7Bi,sp≺(i) , where i= 1+k/2 and #i,sp≺(i) is the vector of covariances of Yi and its preceding
spouses.

From the interpretation given by Equation (8), it follows that Bi,sp≺(i) can also be defined by the
regression of Yi on Zi. That is

Bi,sp≺(i) = #Yi,Zi#
−1
Zi,Zi ≡ #Yi,ZiR

−1
i . (25)

However, #Yi,Zi =#i,sp≺(i), sinceYi is independent of its non-spouses. From (25) we get #i,sp≺(i) =
Bi,sp≺(i)Ri, and as such the submatrix 7#i,sp≺(i)/7Bi,sp≺(i) turns out to be Ri.

Since the determinant of the block triangular Jacobian J(*G ) is given by the determinant of the
blocks, this implies

|J(*G )| =
m

.
i=2

|Ri|.

By the matrix identity
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∣

∣

∣

∣

A B
C D

∣

∣

∣

∣

= |A||D−CA−1B|, (26)

|#{i−1},{i−1}| = |#nsp≺(i),nsp≺(i) ||#sp≺(i),sp≺(i) − #sp≺(i),nsp≺(i)#
−1
nsp≺(i),nsp≺(i)

#nsp≺(i),sp≺(i) | ≡

|#nsp≺(i),nsp≺(i) ||Ri|. Since |#{i−1},{i−1}| =.i−1
t=1 +t , the second equality holds. !

Proof of Theorem 4: We first describe a mapping from each path in G to a path in G!, and vice-
versa (such mappings are not inverse functions of each other, since the number of paths in G! is
larger than in G ). By construction, all bi-directed edges in G∗ have two UVs as endpoints, with
an one-to-one mapping between each Y !

s ↔ Y !
t in G! and each Ys ↔ Yt in G . All directed edges in

G! are of two types: Ys → Y !
t , with s 3= t, or Y !

s → Ys. Therefore, one can define an unique path P
in G as a function of a path P! in G!, obtained by relabeling each Y ! as Y , and by collapsing any
Y →Y edges that might result from this relabeling into a single vertex Y . A mapping in the opposite
direction is analogous as given by the construction rule of Type-II models.

A collider in a path is any vertex within a head-to-head collision in the path, that is, any vertex
Yt where the preceding and the next vertex in the path are connected to Yt with an edge (directed
or bi-directed) into Yt . Yi and Yj are m-separated by Z in an acyclic DMG if and only if there is no
active path connectingYi andYj. Like in d-separation, a path is active if all of its colliders have some
descendant in Z, and none of its non-colliders is in Z (Richardson, 2003). The mappings between
paths P and P! are such that Yt is a collider in P if and only if Yt is in P! and is a collider, or Y !

t is in
P! and is a collider. Since by construction any Y !

t will have the same Y-descendants in G! as Yt has
in G , and Z⊂ Y, the result follows. !

Proof of Theorem 7: The first of the two claims of the theorem trivially holds, since connectivity is
a transitive property and as such this partition will always exist (where K(i) = 1 is a possibility). We
will prove the validity of the second claim by induction. Let {R1, . . . ,Rk} be the perfect sequence
that generated our perfect ordering. The second claim automatically holds for all vertices in Rk,
since Rk is a clique.

Assume the second claim holds for the subsequence {Rl+1,Rl+2, . . . ,Rk}. Let Yi be an element
of Rl . Assume there is some non-spouse Yq of Yi in Rl′ , and some spouse Yp of Yi in Rl′′ , such that
l < l′ ≤ l′′. We will assume that both Yq and Yp belong to the same component Vt and show this
leads to a contradiction.

Without loss of generality, we can assume that Yq and Yp are adjacent: otherwise, the fact that
Yq and Yp are in the connected set Vt will imply there is a path connecting Yq and Yp in the subgraph
induced by {Rl+1, . . . ,Rk}. We can redefine {Yq,Yp} to be the endpoints of the first edge in the path
containing a non-spouse and a spouse of Yi. It will still be the case that q > p, by the induction
hypothesis.

Since Yp ∈Rl′′ , there is a separator Sl′′ betweenHl′′\Sl′′ and Rl′′ . But Yi ∈Hl′′ , and Yi is adjacent
to Yp, which implies Yi ∈ Sl′′ . If l′ < l′′, this will also imply that Yq ∈ Sl′′ , which is a contradiction,
since Sl′′ is a complete set. If l′ = l′′, this implies that Yi and Yq are both in YP(l′′), which is also a
contradiction since YP(l′′) is a clique. !
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Abstract
Incorporating prior knowledge of a particular task into the architecture of a learning algorithm can
greatly improve generalization performance. We study here a case where we know that the function
to be learned is non-decreasing in its two arguments and convex in one of them. For this purpose we
propose a class of functions similar to multi-layer neural networks but (1) that has those properties,
(2) is a universal approximator of Lipschitz1 functions with these and other properties. We apply
this new class of functions to the task of modelling the price of call options. Experiments show
improvements on regressing the price of call options using the new types of function classes that
incorporate the a priori constraints.
Keywords: neural networks, universal approximation, monotonicity, convexity, call options

1. Introduction

Incorporating a priori knowledge of a particular task into a learning algorithm helps reduce the nec-
essary complexity of the learner and generally improves performance, if the incorporated knowledge
is relevant to the task and brings enough information about the unknown generating process of the
data. In this paper we consider prior knowledge on the positivity of some first and second deriva-
tives of the function to be learned. In particular such constraints have applications to modelling

1. A function f is Lipschitz in ! if ∃c> 0, ∀x,y ∈!, | f (y)− f (x)|≤ c|y− x| (Delfour and Zolésio, 2001).

c©2009 Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau and René Garcia.
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the price of stock options. Based on the Black-Scholes formula, the price of a call stock option
is monotonically increasing in both the “moneyness” and time to maturity of the option, and it is
convex in the “moneyness”. Section 4 better explains these terms and stock options. For a function
f (x1,x2) of two real-valued arguments, this corresponds to the following properties:

f ≥ 0,
" f
"x1

≥ 0,
" f
"x2

≥ 0,
"2 f
"x21

≥ 0. (1)

The mathematical results of this paper (Section 2) are the following: first we introduce a class of
one-argument functions that is positive, non-decreasing and convex in its argument. Second, we
use this new class of functions as a building block to design another class of functions that is a
universal approximator for functions with positive outputs. Third, once again using the first class
of functions, we design a third class that is a universal approximator to functions of two or more
arguments, with the set of arguments partitioned in two groups: those arguments for which the
second derivative is known positive and those arguments for which we have no prior knowledge on
the second derivative. The first derivative is positive for any argument. The universality property of
the third class rests on additional constraints on cross-derivatives, which we illustrate below for the
case of two arguments:

"2 f
"x1"x2

≥ 0,
"3 f

"x21"x2
≥ 0. (2)

Thus, we assume that f ∈ C 3, the set of functions three times continuously differentiable. Compara-
tive experiments on these new classes of functions were performed on stock option prices, showing
improvements when using these new classes rather than ordinary feedforward neural networks. The
improvements appear to be non-stationary but the new class of functions shows the most stable
behavior in predicting future prices. Detailed experimental results are presented in section 6.

2. Theory

Definition 1 A class of functions F̂ from Rn to R is a universal approximator for a class of
functions F from Rn to R if for any f ∈ F , any compact domain D ⊂ Rn, and any positive #, one
can find a f̂ ∈ F̂ with supx∈D | f (x)− f̂ (x)|≤ #.

It has already been shown that the class of artificial neural networks with one hidden layer:

N̂ =

{

f (x) = w0+
H

$
i=1

wi ·h

(

bi+$
j
vi jx j

)}

, (3)

for example, with a sigmoid activation function h(s) = 1/(1+ e−s), is a universal approximator
of continuous functions (Cybenko, 1988, 1989; Hornik et al., 1989; Barron, 1993). Furthermore,
Leshno et al. (1993) have shown that any non-polynomial activation function will suffice for uni-
versal approximation. The number of hidden units H of the neural network is a hyper-parameter
that controls the accuracy of the approximation and it should be chosen to balance the trade-off (see
also Moody, 1994) between accuracy (bias of the class of functions) and variance (due to the finite
sample used to estimate the parameters of the model). Because of this trade-off, in the finite sample
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case, it may be advantageous to consider a “simpler” class of functions that is appropriate to the
task.

Since the sigmoid h is monotonically increasing (h′(s) = h(s)(1−h(s)) > 0), it is easy to force
the first derivatives with respect to x to be positive by forcing the weights to be positive, for example
with the exponential function:

N̂+ =

{

f (x) = ew0 +
H

$
i=1

ewi ·h

(

bi+$
j
evi j x j

)}

. (4)

Note that the positivity of f (x) and f ′(x) is not affected by the values of the {bi} parameters. Since
the sigmoid h has a positive first derivative, its primitive, which we call softplus, is convex:

%(s) = ln(1+ es)

where ln(·) is the natural logarithm operator. Note that d%(s)/ds= h(s) = 1/(1+ e−s).

2.1 Universality for Functions with Positive Outputs

Using the softplus function introduced above, we define a new class of functions, all of which have
positive outputs:

N̂>0 = { f (x) = %(g(x)),g(x) ∈ N̂ }.

Theorem 2 Within the set of continuous functions from Rn to R+ = {x : x ∈ R,x > 0}, the class
N̂>0 is a universal approximator.

Proof Consider a positive function f (x), which we want to approximate arbitrarily well. Consider
g(x) = %−1( f (x)) = ln(e f (x)−1), the inverse softplus transform of f (x). Choose ĝ(x) from N̂ such
that supx∈D |g(x)− ĝ(x)| ≤ #, where D is any compact domain over Rn and # is any positive real
number. The existence of ĝ(x) is ensured by the universality property of N̂ . Set f̂ (x) = %(ĝ(x)) =
ln(1+ eĝ(x)). Consider any particular x and define a = min(ĝ(x),g(x)) and b = max(ĝ(x),g(x)).
Since b−a≤ #, we have,

| f̂ (x)− f (x)| = ln(1+ eb)− ln(1+ ea)

= ln
(

1+(eb− ea)/(1+ ea)
)

≤ ln(1+(e#−1)ea/(1+ ea))
< #.

!

Thus, the use of the softplus function to transform the output of a regular one hidden layer
artificial neural network ensures the positivity of the final output without hindering the universality
property.

2.2 The Class c,nN̂++

In this section, we use the softplus function, in order to define a new class of functions with posi-
tive outputs, positive first derivatives w.r.t. all input variables and positive second derivatives w.r.t.
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some of the input variables. The basic idea is to replace the sigmoid of a sum by a product of ei-
ther softplus or sigmoid functions over each of the dimensions (using the softplus over the convex
dimensions and the sigmoid over the others):

c,nN̂++ =

{

f (x) = ew0 +
H

$
i=1

ewi
(

c

&
j=1

%(bi j + evi j x j)

)(

n

&
j=c+1

h(bi j + evi j x j)

)}

. (5)

One can readily check that the output is necessarily positive, the first derivatives w.r.t. x j are positive,
and the second derivatives w.r.t. x j for j ≤ c are positive. However, this class of functions has other
properties that are summarized by the following:

"m f
"m1x1"m2x2 · · ·"mnxn

≥ 0, (6)

mj ∈

{

{0,1,2} 1≤ j ≤ c
{0,1} c+1≤ j ≤ n,

n

$
j=1

mj = m.

Here, we have assumed that f ∈ C c+n, the set of functions that are c+ n times continuously dif-
ferentiable. We will also restrict ourselves to Lispschitz functions since the proof of the theorem
relies on the fact that the derivative of the function is bounded. The set of functions that respect
these derivative conditions will be referred to as c,nF̂++. Note that, as special cases we find that
f is positive (m = 0), and that it is monotonically increasing w.r.t. any of its inputs (m = 1), and
convex w.r.t. the first c inputs (m = 2,∃ j : mj = 2). Also note that, when applied to our particular
case where n = 2 and c = 1, this set of equations corresponds to Equations (1) and (2). We now
state the main universality theorem:

Theorem 3 Within the set c,nF̂++ of Lipschitz functions from Rn to R whose set of derivatives as
specified by Equation (6) are non-negative, the class c,nN̂++ is a universal approximator.

The proof of the theorem is given in Section A.

2.3 Parameter Optimization

In our experiments, conjugate gradient descent was used to optimize the parameters of the model.
The backpropagation equations are obtained as the derivatives of f ∈ c,nN̂++ (Equation 5) w.r.t. to
its parameters. Let zi, j = bi j + evi j x j, ui = ewi(&c

j=1 %(zi, j))(&n
j=c+1 h(zi j)) and f = ew0 +$H

i=1 ui.
Then, we have

" f/"w0 = ew0 ,
" f/"wi = ui,

" f/"bi,k =

{

ui ·h(zi,k)/%(zi,k) 1≤ k ≤ c
ui · (1−h(zi,k)) c+1≤ k ≤ n,

(7)

" f/"vi,k = evikxk ·" f/"bi,k.

Except for terms h(zi,k), k ≤ c of Equation (7), all values are computed through the forward phase,
that is, while computing the value of f . Error backpropagation can thus be performed efficiently if
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careful attention is paid, during the forward phase, to store the values to be reused in the backprop-
agation phase.

Software implementing parameter optimization of the proposed architecture and the numerical
experiments of the following section is available on-line.2 Code was written using the “R” statistical
software package.3

3. Experiments with Artificial Data

In this section, we present a series of controlled experiments in order to assess the potential improve-
ments that can be gained from using the proposed architecture in cases where some derivatives of
the target function are known to be positive. The emphasis is put on analyzing the evolution of the
model bias and model variance values w.r.t. various noise levels and training set sizes.

The function we shall attempt to learn is

f (!x) = %(x1)%(x2)%(x3)h(x4),
y = f (!x)+',

where %(·) is the softplus function defined above and h(·) is the sigmoid function. The input values
are drawn from a uniform distribution over the [0,1] interval, that is, xi ∼U(0,1). The noise term
' is added to the true function f (!x) to generate the target value y. Finally, '∼N (0,(2), that is, we
used additive Gaussian noise. Different values for ( have been tested.

For each combination of noise level (( ∈ {1e-2, 3e-2, 1e-1}) and training set size (25, 50, 100,
200, 400), we chose the best performing combination of number of hidden units and weight decay.
In order to perform model selection, 100 models were trained using different random training sets,
for each combination. Based on validation set performance, 50 models were retained and their
validation set performances were averaged. The best performing combination was chosen based
on this average validation performance. Bias and variance were measured using these 50 selected
models when applied on another testset of 10000 examples. In each case, the number of training
epochs was 10000. The process was repeated for two architectures: the proposed architecture of
products of softplus and sigmoid functions over input dimensions with constrained weights (CPSD)
and regular unconstrained multi-layered perceptrons with a single hidden layer (UMLP).

In order to compute the bias and variance values, we first computed, for each test example, the
average of the ND = 50 model outputs:

ḡ(!xi) =
1
ND

ND
$
j=1

g j(!xi),

where g j(!xi) is the output of the jth model associated to the ith input vector!xi.
The variance was unbiasedly approximated as the average over all test examples (Ni = 10000),

of the sample variance of model outputs g j(!xi) w.r.t. the corresponding mean output ḡ(!xi):

v̂(!xi) =
1

ND−1

ND
$
j=1

(g j(!xi)− ḡ(!xi))2,

v̂ =
1
Ni$i

v̂(!xi).

2. Software can be found at http://www.dms.umontreal.ca/˜dugas/convex/.
3. Code found at http://www.r-project.org/.
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The bias was unbiasedly estimated as the average over all test examples, of the squared deviation
of the mean output ḡ(!xi) w.r.t. the known true function value f (!xi), less a variance term:

b̂(!xi) = (ḡ(!xi)− f (!xi))2− v̂(!xi)/ND,

b̂ =
1
Ni$i

b̂(!xi).

Let b(!xi) = (EG(g(!xi))− f (!xi))2 be the true bias, at point !xi where EG() denotes expectation
taken over training set distribution, which induces a distribution of the function g produced by the
learning algorithm. Let us show that EG(b̂(!xi)) = b(!xi):

EG(b̂(!xi)) = EG[(ḡ(!xi)− f (!xi))2− v̂(!xi)/ND],

= EG[(ḡ(!xi)−g(!xi)+g(!xi)− f (!xi))2]− v(!xi)/ND,

= EG[(ḡ(!xi)−g(!xi))2]+EG[(g(!xi)− f (!xi))2]− v(!xi)/ND,

= v(!xi)/ND+b(!xi)− v(!xi)/ND,

= b(!xi).

Table 1 reports the results for these simulations. In all cases, the bias and variance are lower
for the proposed architecture than for a regular neural network architecture, which is the result we
expected. The variance reduction is easy to understand because of the appropriate constraints on
the class of functions. The bias reduction, we conjecture to be a side effect of the bias-variance
tradeoff being performed by the model selection on the validation set: to achieve a lower validation
error, a larger bias is needed with the unconstrained artificial neural network. The improvements are
generally more important for smaller sample sizes. A possible explanation is that the proposed ar-
chitecture helps reduce the variance of the estimator. With small sample sizes, this is very beneficial
and becomes less important as the number of points increases.

4. Estimating Call Option Prices

An option is a contract between two parties that entitles the buyer to a claim at a future date T
that depends on the future price, ST of an underlying asset whose price at current time t is St . In
this paper we consider the very common European call options, in which the buyer (holder) of the
option obtains the right to buy the asset at a fixed price K called the strike price. This purchase can
only occur at maturity date (time T ). Thus, if at maturity, the price of the asset ST is above the strike
price K, the holder of the option can exercise his option and buy the asset at price K, then sell it back
on the market at price ST , thus making a profit of ST −K. If, on the other hand, the price of the asset
at maturity ST is below the strike price K, then the holder of the option has no interest in exercising
his option (and does not have to) and the option simply expires worthless and unexercised. For this
reason, the option is considered to be worth max(0,ST −K) at maturity and our goal is to estimate
Ct , the value of that worth at current time t.

In the econometric literature, the call function is often expressed in terms of the primary eco-
nomic variables that influence its value: the actual market price of the security (St), the strike price
(K), the remaining time to maturity ()= T − t), the risk free interest rate (r), and the volatility of the
return ((). One important result is that under mild conditions, the call option function is homoge-
neous of degree one with respect to the strike price and so we can perform dimensionality reduction
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Bias and Variance Analysis on Artificial Data
Ntrain Noise Architecture Bias Variance Sum

UMLP 2.31e-04 9.20e-05 3.23e-041e-02 CPSD 1.04e-04 3.97e-05 1.43e-04
UMLP 1.06e-03 3.46e-04 1.40e-0325 3e-02 CPSD 9.37e-04 2.30e-04 1.17e-03
UMLP 1.07e-02 2.68e-03 1.33e-021e-01 CPSD 1.02e-02 2.45e-03 1.27e-02
UMLP 1.55e-04 9.41e-05 2.49e-041e-02 CPSD 1.03e-04 1.99e-05 1.23e-04
UMLP 1.05e-03 1.28e-04 1.18e-0350 3e-02 CPSD 9.35e-04 9.29e-05 1.03e-03
UMLP 1.03e-02 1.22e-03 1.15e-021e-01 CPSD 1.02e-02 1.11e-03 1.13e-02
UMLP 1.27e-04 3.98e-05 1.67e-041e-02 CPSD 1.02e-04 1.01e-05 1.12e-04
UMLP 9.82e-04 2.11e-04 1.19e-03100 3e-02 CPSD 9.39e-04 4.77e-05 9.87e-04
UMLP 1.04e-02 6.28e-04 1.10e-021e-01 CPSD 1.02e-02 5.30e-04 1.07e-02
UMLP 1.07e-04 2.24e-05 1.29e-041e-02 CPSD 1.02e-04 5.01e-06 1.07e-04
UMLP 9.45e-04 1.10e-04 1.05e-03200 3e-02 CPSD 9.15e-04 4.31e-05 9.58e-04
UMLP 1.03e-02 3.38e-04 1.07e-021e-01 CPSD 1.02e-02 3.21e-04 1.05e-02
UMLP 1.03e-04 1.14e-05 1.15e-041e-02 CPSD 1.02e-04 2.41e-06 1.04e-04
UMLP 9.32e-04 6.15e-05 9.94e-04400 3e-02 CPSD 9.15e-04 2.10e-05 9.36e-04
UMLP 1.04e-02 1.75e-04 1.05e-021e-01 CPSD 1.02e-02 1.43e-04 1.03e-02

Table 1: Comparison of the bias and variance values for two neural network architectures, three
levels of noise, and five sizes of training sets (Ntrain), using artificial data. In bold, the
best performance between the two models.

by letting our approximating function depend on the “moneyness” ratio (M = St/K) instead of the
current asset price St and the strike price K independently. We must then modify the target to be the
price of the option divided by the strike price: Ct/K.

Most of the research on call option modelling relies on strong parametric assumptions of the un-
derlying asset price dynamics. Any misspecification of the stochastic process for the asset price will
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DUGAS, BENGIO, BÉLISLE, NADEAU AND GARCIA

lead to systematic mispricings for any option based on the asset (Hutchinson et al., 1994). The well-
known Black-Scholes formula (Black and Scholes, 1973) is a consequence of such specifications
and other assumptions:

f (M,),r,() = M*(d1)− e−r)*(d2),

where *(·) is the cumulative Gaussian function evaluated in points

d1,d2 =
lnM+(r±(2/2))

(
√
)

,

that is, d1 = d2 + (
√
). In particular, two assumptions on which this formula relies have been

challenged by empirical evidence: the assumed lognormality of returns on the asset and the assumed
constance of volatility over time.

On the other hand, nonparametric models such as neural networks do not rely on such strong
assumptions and are therefore robust to model specification errors and their consequences on option
modelling and this motivates research in the direction of applying nonparametric techniques for
option modelling.

Analyzing the primary economic variables that influence the call option price, we note that the
risk free interest rate (r) needs to be somehow extracted from the term structure of interest rates
and the volatility (() needs to be forecasted. This latter task is a field of research in itself. Dugas
et al. (2000) have previously tried to feed in neural networks with estimates of the volatility using
historical averages but the gains have remained insignificant. We therefore drop these two features
and rely on the ones that can be observed (St ,K,)) to obtain the following:

Ct/K = f (M,)).

The novelty of our approach is to account for properties of the call option function as stated
in Equation (1). These properties derive from simple arbitrage pricing theory.4 Now even though
we know the call option function to respect these properties, we do not know if it does respect the
additional cross derivative properties of Equation (2). In order to gain some insight in this direction,
we confront the Black-Scholes formula to our set of constraints:

" f
"M

= *(d1), (8)

"2 f
"M2 =

+(d1)√
)M(

, (9)

" f
")

= e−r)
(

+(d2)(
2
√
)

+ r*(d2)
)

, (10)

"2 f
"M")

=
+(d1)
2()3/2

(

(r+(2/2))− lnM
)

, (11)

"3 f
"M2")

=
+(d1)

2M(3)5/2
(

ln2M−(2)− (r+(2/2)2)2
)

, (12)

where +(·) is the Gaussian density function. Equations (8), (9) and (10) confirm that the Black-
Scholes formula is in accordance with our prior knowledge of the call option function: all three

4. The convexity of the call option w.r.t. the moneyness is a consequence of the butterfly spread strategy (Garcia and
Gençay, 1998).
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derivatives are positive. Equations (11) and (12) are the cross derivatives which will be positive
for any function chosen from 1,2N̂++. When applied to the Black-Scholes formula, it is less clear
whether these values are positive, too. In particular, one can easily see that both cross derivatives
can not be simultaneously positive. Thus, the Black-Scholes formula is not within the set 1,2F̂++.
Then again, it is known that the Black-Scholes formula does not adequately represent the market
pricing of options, but it is considered as a useful guide for evaluating call option prices. So, we do
not know if these constraints on the cross derivatives are present in the true price function.

Nonetheless, even if these additional constraints are not respected by the true function on all of
its domain, one can hope that the increase in the bias of the estimator due to the constraints will be
offset (because we are searching in a smaller function space) by a decrease in the variance of that
estimator and that overall, the mean-squared error will decrease. This strategy has often been used
successfully in machine learning (e.g., regularization, feature selection, smoothing).

5. Experimental Setup

As a reference model, we use a simple multi-layered perceptron with one hidden layer (Equation 3).
For UMLP models, weights are left unconstrained whereas for CMLP models, weights are con-
strained, through exponentiation, to be positive. We also compare our results with a recently pro-
posed model (Garcia and Gençay, 1998) that closely resembles the Black-Scholes formula for op-
tion pricing (i.e., another way to incorporate possibly useful prior knowledge):

y = ,+M ·
nh
$
i=1

-1,i ·h(.i,0+ .i,1 ·M+ .i,2 · ))

+ e−r) ·
nh
$
i=1

-2,i ·h(.i,3+ .i,4 ·M+ .i,5 · )), (13)

with inputs M,), parameters r,,,-,. and hyperparameter nh (number of hidden units). We shall
refer to Equation (13) as the UBS models. Constraining the weights of Equation (13) through
exponentiation leads to a different architecture we refer to as the CBS models.

We evaluate two new architectures incorporating all of the constraints defined in Equation (6).
The proposed architecture involves the product of softplus and sigmoid functions over input dimen-
sions, hence the UPSD models and CPSD models labels for an unconstrained version of the pro-
posed architecture and the proposed constrained architecture, respectively. Finally, we also tested
another architecture derived from the proposed one by simply summing, instead of multiplying,
softplus and sigmoid functions. For that last architecture (with constrained weights), positivity,
monotonicity and convexity properties are respected but in that case, cross-derivatives are all equal
to zero. We do not have a universality proof for that specific class of functions. The unconstrained
and constrained architectures are labelled as USSD models and CSSD models, respectively.

We used European call option data from 1988 to 1993. A total of 43518 transaction prices on
European call options on the S&P500 index were used. In Section 6, we report results on 1988
data. In each case, we used the first two quarters of 1988 as a training set (3434 examples), the
third quarter as a validation set (1642 examples) for model selection and the fourth quarter as a
test set (each with around 1500 examples) for final generalization error estimation. In tables 2 and
3, we present results for networks with unconstrained weights on the left-hand side, and weights
constrained to positive and monotone functions through exponentiation of parameters on the right-
hand side. For each model, the number of hidden units varies from one to nine. The mean squared
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error results reported were obtained as follows: first, we randomly sampled the parameter space
1000 times. We picked the best (lowest training error) model and trained it up to 1000 more epochs.
Repeating this procedure 10 times, we selected and averaged the performance of the best of these 10
models (those with training error no more than 10% worse than the best out of 10). In figure 1, we
present tests of the same models on each quarter up to and including 1993 (20 additional test sets)
in order to assess the persistence (conversely, the degradation through time) of the trained models.

6. Forecasting Results

As can be seen in tables 2 and 3, unconstrained architectures obtain better training, validation and
testing (test 1) results but fail in the extra testing set (test 2). A possible explanation is that con-
strained architectures capture more fundamental relationships between variables and are more ro-
bust to nonstationarities of the underlying process. Constrained architectures therefore seem to give
better generalization when considering longer time spans.

The importance in the difference in performance between constrained and unconstrained archi-
tectures on the second test set lead us to look even farther into the future and test the selected models
on data from later years. In Figure 1, we see that the Black-Scholes similar constrained model per-
forms slightly better than other models on the second test set but then fails on later quarters. All
in all, at the expense of slightly higher initial errors our proposed architecture allows one to fore-
cast with increased stability much farther in the future. This is a very welcome property as new
derivative products have a tendency to lock in values for much longer durations (up to 10 years)
than traditional ones.
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Figure 1: Out-of-sample results from the third quarter of 1988 to the fourth of 1993 (incl.) for
models with best validation results. Left: unconstrained models; results for the UBS
models. Other unconstrained models exhibit similar swinging result patterns and levels
of errors. Right: constrained models. The proposed CPSD architecture (solid) does
best. The model with sums over dimensions (CSSD) obtains similar results. Both CMLP
(dotted) and CBS (dashed) models obtain poorer results. (dashed).
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Mean Squared Error Results on Call Option Pricing (×10−4)
Hidden Units UMLP CMLP

Train Valid Test1 Test2 Train Valid Test1 Test2
1 2.38 1.92 2.73 6.06 2.67 2.32 3.02 3.60
2 1.68 1.76 1.51 5.70 2.63 2.14 3.08 3.81
3 1.40 1.39 1.27 27.31 2.63 2.15 3.07 3.79
4 1.42 1.44 1.25 27.32 2.65 2.24 3.05 3.70
5 1.40 1.38 1.27 30.56 2.67 2.29 3.03 3.64
6 1.41 1.43 1.24 33.12 2.63 2.14 3.08 3.81
7 1.41 1.41 1.26 33.49 2.65 2.23 3.05 3.71
8 1.41 1.43 1.24 39.72 2.63 2.14 3.07 3.80
9 1.40 1.41 1.24 38.07 2.66 2.27 3.04 3.67

Hidden Units UBS CBS
Train Valid Test1 Test2 Train Valid Test1 Test2

1 1.54 1.58 1.40 4.70 2.49 2.17 2.78 3.61
2 1.42 1.42 1.27 24.53 1.90 1.71 2.05 3.19
3 1.40 1.41 1.24 30.83 1.88 1.73 2.00 3.72
4 1.40 1.39 1.27 31.43 1.85 1.70 1.96 3.15
5 1.40 1.40 1.25 30.82 1.87 1.70 2.01 3.51
6 1.41 1.42 1.25 35.77 1.89 1.70 2.04 3.19
7 1.40 1.40 1.25 35.97 1.87 1.72 1.98 3.12
8 1.40 1.40 1.25 34.68 1.86 1.69 1.98 3.25
9 1.42 1.43 1.26 32.65 1.92 1.73 2.08 3.17

Table 2: Left: the parameters are free to take on negative values. Right: parameters are constrained
through exponentiation so that the resulting function is both positive and monotone in-
creasing everywhere w.r.t. both inputs as in Equation (4). Top: regular feedforward ar-
tificial neural networks. Bottom: neural networks with an architecture resembling the
Black-Scholes formula as defined in Equation (13). The number of hidden units varies
from 1 to 9 for each network architecture. The first two quarters of 1988 were used for
training, the third of 1988 for validation and the fourth of 1988 for testing. The first quarter
of 1989 was used as a second test set to assess the persistence of the models through time
(figure 1). In bold: test results for models with best validation results.

In another series of experiments, we tested the unconstrained multi-layered perceptron against
the proposed constrained products of softplus convex architecture using data from years 1988
through 1993 incl. For each year, the first two quarters were used for training, the third quarter
for model selection (validation) and the fourth quarter for testing. We trained neural networks for
50000 epochs and with a number of hidden units ranging from 1 through 10. In Table 4, we report
training, validation and test results for the two chosen architectures. Model selection was performed
using the validation set in order to choose the best number of hidden units, learning rate, learning
rate decrease and weight decay. In all cases, except for 1988, the proposed architecture outper-
formed the multi-layered perceptron model. This might explain why the proposed architecture did
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Mean Squared Error Results on Call Option Pricing (×10−4)
Hidden Units UPSD CPSD

Train Valid Test1 Test2 Train Valid Test1 Test2
1 2.27 2.15 2.35 3.27 2.28 2.14 2.37 3.51
2 1.61 1.58 1.58 14.24 2.28 2.13 2.37 3.48
3 1.51 1.53 1.38 18.16 2.28 2.13 2.36 3.48
4 1.46 1.51 1.29 20.14 1.84 1.54 1.97 4.19
5 1.57 1.57 1.46 10.03 1.83 1.56 1.95 4.18
6 1.51 1.53 1.35 22.47 1.85 1.57 1.97 4.09
7 1.62 1.67 1.46 7.78 1.86 1.55 2.00 4.10
8 1.55 1.54 1.44 11.58 1.84 1.55 1.96 4.25
9 1.46 1.47 1.31 26.13 1.87 1.60 1.97 4.12

Hidden Units USSD CSSD
Train Valid Test1 Test2 Train Valid Test1 Test2

1 1.83 1.59 1.93 4.10 2.30 2.19 2.36 3.43
2 1.42 1.45 1.26 25.00 2.29 2.19 2.34 3.39
3 1.45 1.46 1.32 35.00 1.84 1.58 1.95 4.11
4 1.56 1.69 1.33 21.80 1.85 1.56 1.99 4.09
5 1.60 1.69 1.42 10.11 1.85 1.52 2.00 4.21
6 1.57 1.66 1.39 14.99 1.86 1.54 2.00 4.12
7 1.61 1.67 1.48 8.00 1.86 1.60 1.98 3.94
8 1.64 1.72 1.48 7.89 1.85 1.54 1.98 4.25
9 1.65 1.70 1.52 6.16 1.84 1.54 1.97 4.25

Table 3: Similar results as in table 2 but for two new architectures. Top: products of softplus
along the convex axis with sigmoid along the monotone axis. Bottom: the softplus and
sigmoid functions are summed instead of being multiplied. Top right: the fully constrained
proposed architecture (CPSD).

not perform as well as other architectures on previous experiments using only data from 1988. Also
note that the MSE obtained in 1989 is much higher. This is a possible explanation for the bad results
obtained in tables 2 and 3 on the second test set. A hypothesis is that the process was undergoing
nonstationarities that affected the forecasting performances. This shows that performance can vary
by an order of magnitude from year to year and that forecasting in the presence of nonstationary
processes is a difficult task.

7. Conclusions

Motivated by prior knowledge on the positivity of the derivatives of the function that gives the price
of European options, we have introduced new classes of functions similar to multi-layer neural
networks that have those properties. We have shown universal approximation properties for these
classes. On simulation experiments, using artificial data sets, we have shown that these classes of
functions lead to a reduction in the variance and the bias of the associated estimators. When applied
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Mean Squared Error Results
on Call Option Pricing (×10−5)

Year Architecture Units Train Valid Test
UMLP 9 2.09 1.45 3.281988 CPSD 9 3.86 2.70 5.23
UMLP 4 9.10 28.89 51.391989 CPSD 2 9.31 23.96 48.22
UMLP 9 2.17 4.81 5.611990 CPSD 9 1.58 4.18 5.39
UMLP 9 2.69 1.76 3.411991 CPSD 8 2.62 1.25 2.74
UMLP 8 3.46 1.16 1.521992 CPSD 8 3.27 1.28 1.27
UMLP 9 1.34 1.47 1.761993 CPSD 10 0.68 0.54 0.65

Table 4: Comparison between a simple unconstrained multi-layered architecture (UMLP) and the
proposed architecture (CPSD). Data from the first two quarters of each year was used as
training set, data from the third quarter was used for validation and the fourth quarter was
used for testing. We also report the number of units chosen by the model selection process.

in empirical tests of option pricing, we showed that the architecture from the proposed constrained
classes usually generalizes better than a standard artificial neural network.

Appendix A. Proof of the Universality Theorem for Class c,nN̂++

In this section, we prove theorem 2.2. In order to help the reader through the formal mathematics, we
first give an outline of the proof, that is, a high-level informal overview of the proof, in Section A.1.
Then, in Section A.2, we make use of two functions namely, the threshold /(x) = Ix≥0 and positive
part x+ =max(0,x) functions. These two functions are part of the closure of the set c,nN̂++ since

/(x) = lim
t→0

h(tx),

x+ = lim
t→0

%(tx).

This extended class of functions that includes /(x) and x+ shall be referred to as c,nN̂ 0
++. In Section

A.3, we give an illustration of the constructive algorithm used to prove universal approximation.
Now the proof, as it is stated in Section A.2, only involves functions /(x) and x+, that is, the limit
cases of the class c,nN̂ 0

++ which are actually not part of class c,nN̂++. Functions /(x) and x+
assume the use of parameters of infinite value, making the proof without any practical bearing. For
this reason, in Section A.4, we broaden the theorem’s application from c,nN̂ 0

++ to c,nN̂++, building
upon the proof of Section A.2.
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DUGAS, BENGIO, BÉLISLE, NADEAU AND GARCIA

A.1 Outline of the Proof

The proof of the first main part (Section A.2) works by construction: we start by setting the approx-
imating function equal to a constant function. Then, we build a grid over the domain of interest
and scan through it. At every point of the grid we add a term to the approximating function. This
term is a function itself that has zero value at every point of the grid that has already been visited.
Thus, this term only affects the current point being visited and some of the points to be visited. The
task is therefore to make sure the term being added is such that the approximating function matches
the actual function at the point being visited. The functions to be added are chosen from the set
c,nN̂ 0

++ so that each of them individually respects the constraints on the derivatives. The bulk of
the work in the proof is to show that, throughout the process, at each scanned point, we need to add
a positive term to match the approximating function to the true function. For illustrative purposes,
we consider the particular case of call options of Section A.3.

In the second part (Section A.4), we build upon the proof of the first part. The same constructive
algorithm is used with the same increment values. We simply consider sigmoidal and softplus
functions that are greater or equal, in every point, than their limit counterparts, used in the first part.
Products of these softplus and sigmoidal functions are within c,nN̂++. Consequently, the function
built here is always greater than or equal to its counterpart of the first main part. The main element
of the second part is that the difference between these two functions, at gridpoints, is capped.
This is done by setting the sigmoid and softplus parameter values appropriately. Universality of
approximation follows from (1) the capped difference, at gridpoints, between the functions obtained
in the first and second parts, (2) the exact approximation obtained at gridpoints in the first part and
(3) the bounded function variation between gridpoints.

A.2 Proof of the Universality Theorem for Class c,nN̂ 0
++

Let D be the compact domain over which we wish to obtain an approximation error below # in
every point. Suppose the existence of an oracle allowing us to evaluate the function in a certain
number of points. Let T be the smallest hyperrectangle encompassing D. Let us partition T in
hypercubes with sides of length L so that the variation of the function between two arbitrary points
of any hypercube is bounded by #/2. For example, given s, an upper bound on the derivative of the
function in any direction, setting L≤ #

2s
√
n would do the trick. Since we have assumed the function

to be approximated is Lipschitz, then its derivative is bounded and s does exist. The number of
gridpoints is N1+ 1 over the x1 axis, N2+ 1 over the x2 axis, . . ., Nn + 1 over the xn axis. Thus,
the number of points on the grid formed within T is H = (N1 + 1) · (N2 + 1) · . . . · (Nn + 1). We
define gridpoints !a = (a1,a2, · · · ,an) and !b = (b1,b2, · · · ,bn) as the innermost (closest to origin)
and outermost corners of T , respectively. Figure 2 illustrates these values. The points of the grid
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are defined as:

!p1 = a,
!p2 = (a1,a2, . . . ,an+L),

!pNn+1 = (a1,a2, . . . ,bn),
!pNn+2 = (a1,a2, . . .an−1+L,an),
!pNn+3 = (a1,a2, . . .an−1+L,an+L), . . . ,

!p(Nn+1)(Nn−1+1) = (a1,a2, . . . ,an−2,bn−1,bn),
!p(Nn+1)(Nn−1+1)+1 = (a1,a2, . . . ,an−2+L,an−1,an), . . . ,

!pH = b. (14)

!

"

# $

%

Figure 2: Two dimensional illustration of the proof of universality: ellipse D corresponds to the do-
main of observation over which we wish to obtain a universal approximator. Rectangle T
encompasses D and is partitioned in squares of length L. Points!a and!b are the innermost
(closest to origin) and outermost corners of T , respectively.

We start with an approximating function f̂0 = f (!a), that is, the function f̂0 is initially set to
a constant value equal to f (!a) over the entire domain. Note that, for the remainder of the proof,
notations f̂h, fh, ĝh, without any argument, refer to the functions themselves. When an argument is
present, such as in fh(!p), we refer to the value of the function fh evaluated at point !p.

After setting f̂0 to its initial value, we scan the grid according to the order defined in Equation
(14). At each point along the grid, we add a term (ĝh, a function) to the current approximating
function so that it becomes exact at point {!ph}:

f̂h = ĝh+ f̂h−1,

=
h

$
k=0

ĝk,

where we have set ĝ0 = f̂0.
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The functions f̂h, ĝh and f̂h−1 are defined over the whole domain and the increment function
ĝh must be such that at point !ph, we have f̂h(!ph) = f (!ph). We compute the constant term 1h as
the difference between the value of the function evaluated at point !ph, f (!ph), and the value of the
currently accumulated approximating function at the same point f̂h−1(!ph):

1h = f (!ph)− f̂h−1(!ph).

Now, the function ĝh must not affect the value of the approximating function at gridpoints that
have already been visited. According to our sequencing of the gridpoints, this corresponds to having
ĝh(!pk) = 0 for 0 < k < h. Enforcing this constraint ensures that ∀k ≤ h, f̂h(!pk) = f̂k(!pk) = f (!pk).
We define

-̂h(!pk) =
c

&
j=1

(pk( j)− ph( j)+L)+/L ·
n

&
j=c+1

/(pk( j)− ph( j)), (15)

where pk( j) is the jth coordinate of !pk and similarly for !ph. We have assumed, without loss of
generality, that the convex dimensions are the first c ones. One can readily verify that -̂h(!pk) = 0
for 0< k < h and -̂h(!ph) = 1. We can now define the incremental function as:

ĝh(!p) = 1h-̂h(!p), (16)

so that after all gridpoints have been visited, our final approximation is

f̂H(!p) =
H

$
h=0

ĝh(!p),

with f (!p) = f̂H(!p) for all gridpoints.
So far, we have devised a way to approximate the target function as a sum of terms from the

set c,nN̂ 0
++. We know our approximation to be exact in every point of a grid and that the grid is

tight enough so that the approximation error is bounded above by #/2 anywhere within T (thus
within D): take any point !q within a hypercube. Let !q1 and !q2 be the innermost (closest to origin)
and outermost gridpoints of !q’s hypercube, respectively. Then, we have f (!q1) ≤ f (!q) ≤ f (!q2)
and, assuming 1h ≥ 0 ∀h, f (!q1) = f̂H(!q1) ≤ f̂H(!q) ≤ f̂H(!q2) = f (!q2). Thus, | f̂H(!q)− f (!q)| ≤
| f (!q2)− f (!q1)| ≤ Ls

√
n ≤ #/2, since we have set L ≤ #

2s
√
n . And there remains to be shown that,

effectively, 1h ≥ 0 ∀h. In order to do so, we will express the target function at gridpoint !ph, f (!ph)
in terms of the 1k coefficients (0< k ≤ h), then solve for 1h and show that it is necessarily positive.

First, let pk( j) = a( j) +!2k( j)L and define!2k = (ik(1), ik(2), . . . , ik(n)) so that !pk = !a+ L ·!2k.
Now, looking at Equations (15) and (16), we see that ĝk(!p) is equal to zero if, for any j, pk( j) >
p( j). Conversely, ĝk(!p) can only be different from zero if pk( j) ≤ p( j), ∀ j or, equivalently, if
ik( j) ≤ i( j), ∀ j.

Next, in order to facilitate the derivations to come, it will be convenient to define some subsets
of {1,2, . . . ,H}, the indices of the gridpoints of T . Given index h, define Qh,l ⊂ {1,2, . . . ,H} as

Qh,l = {k : ik( j) ≤ ih( j) if j ≤ l and ik( j) = ih( j) if j > l}.
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In particular, Qh,n = {k : ik( j) ≤ ih( j)∀ j} and Qh,0 = {h}. Thus, we have

f (!ph) = f̂H(!ph)
= $

k∈Qh,n
ĝk(!ph)

= $
k∈Qh,n

1k
c

&
j=1

(ih( j)− ik( j)+1)+

n

&
j=c+1

/(ih( j)− ik( j))

= $
k∈Qh,n

1k
c

&
j=1

(ih( j)− ik( j)+1). (17)

Now, let us define the finite difference of the function along the lth axis as

3l f (!ph) = f (!ph)− f (!phl ), (18)

where !phl is the neighbor of !ph on T with all coordinates equal except along the lth axis where
ihl (l) = ih(l)−1. The following relationship shall be useful:

Qh,l\Qhl ,l = {k : ik( j) ≤ ih( j) if j < l, ik(l) ≤ ih(l) and ik( j) = ih( j) if j > l}\
{k : ik( j) ≤ ih( j) if j < l, ik(l) < ih(l) and ik( j) = ih( j) if j > l}

= {k : ik( j) ≤ ih( j) if j ≤ l−1 and ik( j) = ih( j) if j > l−1}
= Qh,l−1. (19)

We now have the necessary tools to solve for 1h by differentiating the target function. Using Equa-
tions (17), (18) and (19) we get:

3n f (!ph) = $
k∈Qh,n

1k
c

&
j=1

(ih( j)− ik( j)+1)

− $
k∈Qhn,n

1k
c

&
j=1

(ihn( j)− ik( j)+1).

Since ihn( j) = ih( j) for j ≤ c, then

3n f (!ph) = $
k∈Qh,n−1

1k
c

&
j=1

(ih( j)− ik( j)+1).

This process is repeated for non-convex dimensions n−1,n−2, . . . ,c+1 until we obtain

3c+1 . . .3n f (!ph) = $
k∈Qh,c

1k
c

&
j=1

(ih( j)− ik( j)+1),
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at which point we must consider differentiating with respect to convex dimensions:

3c . . .3n f (!ph) = $
k∈Qh,c

1k
c

&
j=1

(ih( j)− ik( j)+1)

− $
k∈Qhc,c

1k
c

&
j=1

(ihc( j)− ik( j)+1)

= $
k∈Qh,c

1k(ih(c)− ik(c)+1)
c−1

&
j=1

(ih( j)− ik( j)+1)

− $
k∈Qhc,c

1k(ih(c)− ik(c))
c−1

&
j=1

(ih( j)− ik( j)+1).

According to Equation (19), Qh,c\Qhc,c = Qh,c−1 and by definition ik(c)− ih(c) = 0 ∀k ∈ Qh,c−1.
Using this, we subtract a sum of zero terms from the last equation in order to simplify the result:

3c . . .3n f (!ph) = $
k∈Qh,c

1k(ih(c)− ik(c)+1)
c−1

&
j=1

(ih( j)− ik( j)+1)

− $
k∈Qhc,c

1k(ih(c)− ik(c))
c−1

&
j=1

(ih( j)− ik( j)+1)

− $
k∈Qh,c−1

1k(ih(c)− ik(c))
c−1

&
j=1

(ih( j)− ik( j)+1)

= $
k∈Qh,c

1k(ih(c)− ik(c)+1)
c−1

&
j=1

(ih( j)− ik( j)+1)

− $
k∈Qh,c

1k(ih(c)− ik(c))
c−1

&
j=1

(ih( j)− ik( j)+1)

= $
k∈Qh,c

1k
c−1

&
j=1

(ih( j)− ik( j)+1).

Differentiating once again with respect to dimension c:

32c . . .3n f (!ph) = $
k∈Qh,c

1k
c−1

&
j=1

(ih( j)− ik( j)+1)

− $
k∈Qhc,c

1k
c−1

&
j=1

(ihc( j)− ik( j)+1).

and since ihc( j) = ih(c)∀ j ≤ c−1, then

32c . . .3n f (!ph) = $
k∈Qh,c−1

1k
c−1

&
j=1

(ih( j)− ik( j)+1).
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This process of differentiating twice is repeated for all convex dimensions so that

321 . . .3
2
c3c+1 . . .3n f (!ph) = $

k∈Qh,0
1k.

= 1h

Now, by definition of the integral operator,

3 f = f (b)− f (a)
b−a =

1
b−a

Z b

a
f ′ dx,

so that if f ′ ≥ 0 over the range [a,b], then consequently, 3 f ≥ 0. Since, according to Equation (6),
we have

"n+c f (ph)
"x21"x22 . . ."x2c"xc+1 . . ."xn

≥ 0,

then 321 . . .32c3c+1 . . .3n f (!ph) ≥ 0 and 1h ≥ 0.
For gridpoints with either ih( j) = 1 for any j or with ih( j) = 2 for any j ≤ c, solving for 1h

requires fewer than n+ c differentiations. Since the positivity of the derivatives of f corresponding
to these lower order differentiations are covered by Equation (6), then we also have that 1h ≥ 0
for these gridpoints laying at or near some of the boundaries of T . Thus, c,nN̂ 0

++ is a universal
approximator of c,nF̂++.

!

A.3 Illustration of the Constructive Algorithm

In order to give the reader a better intuition regarding the constructive algorithm and as how to solve
for 1h, we apply the developments of the previous subsection to 1,2N̂++, the set of functions that
include call price functions, that is, positive convex w.r.t. the first variable and monotone increasing
w.r.t. both variables. Figure 3 illustrates the two dimensional setting of our example with the points
of the grid labelled in the order in which they are scanned according the constructive procedure.
Here, we will solve 16.

For the set 1,2N̂++, we have,

f (!ph) =
H

$
k=1

1k · (ph(1)− pk(1)+L)+ ·/(ph(2)− pk(2)).

Applying this to the six gridpoints of Figure 3, we obtain f (!p1) = 11, f (!p2) = (11+ 12), f (!p3) =
(211+ 13), f (!p4) = (211+ 212+ 13+ 14), f (!p5) = (311+ 213+ 15), f (!p6) = (311+ 312+ 213+
214+15+16).

Differentiating w.r.t. the second variable, then the first, we have:

32 f (!p6) = f (!p6)− f (!p5)
3132 f (!p6) = ( f (!p6)− f (!p5))− ( f (!p4)− f (!p3))
32132 f (!p6) = ( f (!p6)− f (!p5))− ( f (!p4)− f (!p3))

−( f (!p4)− f (!p3))+( f (!p2)− f (!p1))
= 16.
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2 p4 p6

p

p

p p1 3 5

Figure 3: Illustration in two dimensions of the constructive proof. The points are labelled according
to the order in which they are visited. The function is known to be convex w.r.t. to the
first variable (abscissa) and monotone increasing w.r.t. both variables.

The conclusion associated with this result is that the third finite difference of the function must
be positive in order for 16 to be positive as well. As stated above, enforcing the corresponding
derivative to be positive is a stronger condition which is respected by all element functions of
c,nN̂++. In the illustration above, other increment terms (11 through 15) can be solved for with
fewer differentiations. As mention in the previous subsection, derivatives associated to these lower
order differentiations are all positive.

A.4 Proof of the Universality Theorem for Class c,nN̂++

In Section A.2, we obtained an approximating function f̂H ∈ c,nN̂ 0
++ such that | f̂H− f |≤ #/2. Here,

we will build a function f̃H ∈ c,nN̂++ everywhere greater or equal to f̂H , but we will show how the
difference between the two functions can be bounded so that f̃H − f̂H ≤ #/2 at all gridpoints.

We start with an approximating function f̃0 = f̂0 = f (!a), that is, f̃0 is initially set to a constant
value equal to f (!a) over the entire domain. Then, we scan the grid in an orderly manner, according
to the definition of the set of points {!ph}. At each point !ph along the grid, we add a term g̃h (a
function) to the current approximating function f̃h−1:

f̃h = g̃h+ f̃h−1

=
h

$
k=1

g̃k

=
h

$
k=1

1k-̃k,

where the 1k are kept equal to the ones found in Section A.2 and we define the set of -̃k functions
as a product of sigmoid and softplus functions, one for each input dimension:

-̃h(!p) =
n

&
j=1

-̃h, j(!p).

For each of the convex coordinates, we set:

-̃h, j(!p) =
1
,
%(, · (p( j)− ph( j)+L)). (20)
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Figure 4: Illustration of the difference between -̃h, j (solid) and -̂h, j (dotted) for convex (left) and
non-convex (right) dimensions.

where , > 0. Now, note that 4, the maximum of the difference between the softplus function of
Equation (20) and the positive part function -̂h, j(!p) = (p( j)− ph( j)+L)+, is attained for p( j) =
ph( j)− L where the difference is ln2/,. Thus, in order to cap the difference resulting from the
approximation along the convex dimensions, we simply need to set 4 (,) to a small (large) enough
value which we shall soon define. Let us now turn to the non-convex dimensions where we set:

-̃h, j(!p) = (1+4) h(. · p( j)+5)

and add two constraints:

h(.(ph( j)−L)+5) =
4

1+4
,

h(. · ph( j)+5) =
1

1+4
.

Solving for . and 5, we obtain:

. = −
2
L
ln4, (21)

5 =

(

2ph( j)
L

−1
)

ln4. (22)

For non-convex dimensions, we have -̂h, j(!p) = /(p( j)− ph( j)). Thus, for values of p( j) such that
ph( j)−L< p( j) < ph( j), we have a maximum difference -̃h, j− -̂h, j of 1. For other values of p( j),
the difference is capped by 4. In particular, the difference is bounded above by 4 for all gridpoints
and is zero for gridpoints with p( j) = ph( j). These values are illustrated in Figure 4.

We now compare incremental terms. Our goal is to cap the difference between g̃h and ĝh by
#/2H. This will lead us to bound the value of 4. At gridpoints, -̂h is equal to

-̂h =
n

&
j=1

mj,
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where mj ∈ {0,1} along non-convex dimensions and mj is equal to a non-negative integer along the
convex dimensions. Also, since -̃h, j− -̂h, j ≤ 4 at gridpoints, then

-̃h ≤
n

&
j=1

(mj +4).

In order find a bound on the value of 4, we need to consider two cases. First, consider the case
where mj > 0 ∀ j:

g̃h− ĝh ≤ 1h

(

n

&
j=1

(mj +4)−
n

&
j=1

mj

)

≤ 1h

(

n

&
j=1

mj(1+4)−
n

&
j=1

mj

)

= 1h((1+4)n−1)
n

&
j=1

mj

≤ 1h((1+4)n−1)
n

&
j=1

(Nj +1)

≤ #((1+4)n−1)H.

In that case, we have g̃h− ĝh < #/2H if

4 ≤ (1/2H2+1)1/n−1. (23)

Now, consider cases where ∃ j : mj = 0. Let d = #{ j : mj = 0}. Then,

g̃h− ĝh ≤ 1h

(

n

&
j=1

(mj +4)−
n

&
j=1

mj

)

≤ 1h4
d &
mj .=0

(Nj +1)(1+4)

≤ 1h4
d(1+4)n−dH

≤ #4d2n−dH
≤ #42n−1H,

so that here, the bound on 4 is:

4 ≤
1

2nH2
. (24)

Depending on the relative values of n and H, one of the two bounds may be effective so that both
values of Equations (23) and (24) must be considered in order to set an upper bound on 4:

4 ≤ min
(

(1/2H2+1)1/n−1,
1

2nH2

)

.
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Values for ,= ln2/4, ., and 5 (Equations 21 and 22) are derived accordingly.
Thus, for any gridpoint, we have:

f̃h− f̂h =
H

$
k=1

g̃h− ĝh

≤ H · #/2H
= #/2.

In Section A.2, we developed an algorithm such that f̂ = f for any gridpoint. In this present
subsection, we showed that softplus and sigmoid parameters could be chosen such that f̂ ≤ f̃ ≤
f̂ + #/2 for any gridpoint. Note that f , f̂ , and f̃ are increasing along each input dimension.
As in Section A.2, consider any point !q ∈ D. Let !q1 and !q2 be the innermost and outermost

gridpoints of !q ’s encompassing hypercube of side length L. In Section A.2, we showed how a grid
could be made tight enough so that f (!q2)− f (!q1) ≤ #/2.

With these results at hand, we can set upper and lower bounds on f̃ (!q). First, observe that
f̃H(!q) ≥ f̃H(!q1) ≥ f̂H(!q1) = f (!q1), which provides us with a lower bound on f̃H(!q). Next, for the
upper bound we have: f̃H(!q) ≤ f̃H(!q2) ≤ f̂H(!q2)+ #/2 = f (!q2)+ #/2 ≤ f (!q1)+ #. Thus, f̃H(!q) ∈
[ f (!q1), f (!q1)+ #] and f (!q) ∈ [ f (!q1), f (!q1)+ #/2] ⊂ [ f (!q1), f (!q1)+ #]. Since both f (!q) and f̃ (!q)
are within a range of length #, then | f̃ (!q)− f (!q)|≤ #.

!
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Abstract
Bayesian inference is intractable for many interesting models, making deterministic algorithms
for approximate inference highly desirable. Unlike stochastic methods, which are exact in the
limit, the accuracy of these approaches cannot be reasonably judged. In this paper we show how
low order perturbation corrections to an expectation-consistent (EC) approximation can provide
the necessary tools to ameliorate inference accuracy, and to give an indication of the quality of
approximation without having to resort to Monte Carlo methods. Further comparisons are given
with variational Bayes and parallel tempering (PT) combined with thermodynamic integration on
a Gaussian mixture model. To obtain practical results we further generalize PT to temper from
arbitrary distributions rather than a prior in Bayesian inference.
Keywords: Bayesian inference, mixture models, expectation propagation, expectation consistent,
perturbation correction, variational Bayes, parallel tempering, thermodynamic integration

1. Introduction

Approximate methods for Bayesian inference have recently enjoyed a limelight of attention. These
methods can be either deterministic or stochastic. Deterministic methods, which typically turn
integration and summation problems of Bayesian marginalization into optimization problems, in-
clude the Laplace approximation, mean field (or variational) methods like variational Bayes (VB),
expectation propagation (EP), and expectation consistent (EC) and Bethe/Kikuchi approximations
(also known as loopy belief propagation or generalized belief propagation). Their attraction lies in
the precise but tractable inferences that they typically provide, but their drawback is the lack of a
built-in sanity check, as we cannot assess the approximation error. Stochastic methods like Markov
chain Monte Carlo (MCMC) algorithms, which give exact estimates in a large enough sample limit,
lie orthogonal to deterministic methods. They are normally much slower than their deterministic
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counterparts, but given a skilled user and enough computational resources stochastic methods are
capable of giving more precise answers. Whether inference errors (of unknown size) are acceptable
of course depends on the application in question. In statistical applications one might prefer simple
models which allow for exact inferences, whereas in communication systems intractability is an
inherent property of communication channels and to counter this, one instead designs fault tolerant
error-correcting protocols.

The problem under consideration can be stated in general terms: We are presented with a data
set of N independent and identically distributed (i.i.d.) examples D = {xn}Nn=1, which we model by
a generative model specified by the distribution p(x|!), such that p(D|!) ="n p(xn|!). In Bayesian
inference we introduce a prior distribution p(!) over model parameters !, and to infer unobserved
random variables we compute different averages over the posterior distribution

p(!|D) =
1
Z
p(D|!)p(!) with Z =

Z

d! p(D|!)p(!) . (1)

In model selection or model averaging the normalizer (marginal likelihood) Z = p(D) needs to be
computed for different models under consideration, that is, p(D|Mm), m = 1, . . . , |M |. Another
central inference is about the density at a new (test) example, the so-called predictive density (or
distribution):

p(x|D) =
Z

d! p(x|!)p(!|D) . (2)

This paper mostly specializes to modelling the density with a mixture model

p(x|!) =
K

#
k=1

p(k)p(x|!k)

such that mixing proportions p(k) sum to one, and ! = {p(k),!k}Kk=1. A mixture of Gaussians
(MoG) corresponds to p(x|!k) being Gaussian. The prior distribution and the likelihood term for
each component term p(k)p(x|!k) are chosen to be conjugate, such that their product is in the same
distribution family as the prior and thus tractable. Intractability for the mixture model arises not
because integration is intractable, but because the number of terms in the marginal likelihood is KN .

This paper starts from the vantage point of an expectation consistent (EC) approximation (Opper
and Winther, 2005) (and its algorithmic realisation by expectation propagation (EP) Minka 2001a)
and substantiates these main contributions and findings:

1. We express the exact posterior distribution by an approximating distribution which is given
by EC plus a series of error terms with increasing complexity. When low order corrections
are small, one might hope that the remaining contributions will also decrease with the order,
suggesting that the approximation can be improved by retaining only the lowest orders in
the series. One can thus expect corrections to improve an already good approximation, but
not a poor one. On the other hand, large lower order terms may indicate a poor approxima-
tion, providing an error check on the approximation without having to resort to Monte Carlo
methods.

2. We derive corrections both for the marginal likelihood and the predictive distribution in the
form of an expansion in terms of “clusters” of likelihood terms of the posterior. This ex-
pansion resembles the loop series expansions which were derived for correcting loopy be-
lief propagation (LBP) (Chertkov and Chernyak, 2006, Gómez et al., 2007, Sudderth et al.,
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2008).1 All these methods hold in common that the correction terms are expressed as aver-
ages over the approximating solution and can thus be calculated after the convergence of the
EP or LBP iterative scheme.

3. We show that our first order correction to the posterior can be simply expressed by quantities
already computed by the EP algorithm. No further averages are needed. In contrast, the
lowest non-trivial correction to the marginal likelihood is of second order, with the number of
terms growing as O(N2). Corrections to the marginal likelihood can be tractably computed,
for example, for models where the likelihood is a mixture distribution. Each of error terms
contains the original K-component mixture, such that a correction up to order j requires the
computation of O((NK) j) terms.

4. When the true distribution is multi-modal, EP will in most cases provide a local (single)
mode approximation, with lower-order corrections also being local. One such example is the
K!-fold labelling symmetry of the latent space of mixture models, which may cause O(K!)
separated modes in the posterior distribution. While the predictive distribution is invariant to
this symmetry, the log marginal likelihood usually has to be further corrected by a factor of
O(logK!), a correction that is typically much larger than a low-order perturbation correction.

5. Thorough empirical tests of EP validate its precision, and show errors that do not scale with
N. The perturbation corrected predictions are almost uniformly more precise than EP. As a
tool for improving inference accuracy, we show in a practical example that the first nontriv-
ial correction term to the marginal likelihood approximation can make a clear difference in
predicting which K maximizes the marginal likelihood, compared to when the correction was
not used.

In this paper EC or EP and its resulting corrections are compared with variational Bayes (VB),
Minka’s $-divergence message passing scheme, and a gold standard benchmark of parallel temper-
ing (PT) and thermodynamic integration (TI). PT is a Markov chain Monte Carlo (MCMC) method
whose Markov chain operates on a “tempered posterior” and has very good convergence proper-
ties. Contrary to more standard Monte Carlo methods (for example Metropolis-Hastings or Gibbs
sampling) it can also provide estimates of the marginal likelihood by TI, which interpolates the ex-
pected value of the log likelihood between the prior and the posterior. To increase the stability of
estimates obtained by TI, we give a novel generalization of PT, which allows interpolation of the
value of the log likelihood between any choice of distribution and the posterior. A good choice may
also improve sampling when the tempered posterior exhibits phase transition-like properties. This
choice might be obtained by some deterministic approximation, and although not investigated in
this paper, provides a springboard for combining deterministic and stochastic inference algorithms.

As a further example it is also shown how the “cluster” perturbation expansion can be applied
to Gaussian Process classification models, where the evaluation of integrals for Bayesian marginal-
ization are not analytically tractable.

The rest of the paper follows with a description of EC and EP in Section 2. Section 3 shows
an example of corrections for a marginal distribution in a Gaussian Process classification model.

1. An information geometrical expansion for LBP is given by Ikeda et al. (2004), and for EP by Matsui and Tanaka
(2008). LBP can also be improved with a message passing algorithm that corrects for the influence of loops (Mooij
et al., 2007).
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In Section 4 an inference algorithm is presented for mixture weights, that is, a mixture model with
fixed component densities, while Appendix D treats the fully multivariate MoG. Section 5 contains
short descriptions of PT with TI and a generalization suitable for statistical inference. Results are
presented for real world examples in Section 6, and we conclude in Section 7.

2. Expectation Consistent Inference

The expectation consistent approximation provides a framework for finding a surrogate distribution
q(!) for p(!|D) in Bayesian inference (Opper and Winther, 2005).2 The message passing scheme
of expectation propagation gives rise to an identical marginal likelihood approximation, and the
following interpretation sheds light on both methods by looking at them as a set of self-consistent
approximations to marginal or predictive distributions. The outline presented here allows for further
perturbation corrections to be derived.

For the purpose of this paper the EC approximation rests on the observation that the predictive
density p(x|D) in (2) can be fairly precisely approximated without averaging over the actual poste-
rior. The entire posterior can be replaced with a simpler distribution q(!) if it produces the correct
statistics for this average, that is,

p(x|D) =
Z

d! p(x|!)p(!|D) ≈
Z

d! p(x|!)q(!) .

It is sufficient for q(!) to share some key properties, namely low order statistics, with p(!|D). This
is an ambitious demand that is generally not realizable, but we can transfer the principle of moment
matching to the “cavity” posteriors p(!|D\n), which correspond to reduced training sets D\n where
the nth example has been left out. By introducing a similar approximation to the “cavity” predictive
distributions

p(xn|D\n) =
Z

d! p(xn|!)p(!|D\n) ≈
Z

d! p(xn|!)q\n(!)

for each xn in the training set, a computationally efficient approximation can be derived. We shall
now rather require q(!) to share key properties, namely lower order statistics, with each of the
distributions qn(!) % p(xn|!)q\n(!); this is explored in the next section.

2.1 EC and EP with Exponential Families

EC defines a tractable approximation q(!) through expectation consistency with each qn(!). Our
view of EC shall be narrowed to models factorizing in likelihood terms p(xn|!), and an exponential
family prior

p(!) =
1
Z0
exp
(

&T0 '(!)
)

h(!) ,

where Z0 is the normalizing constant, '(!) is a fixed vector of the corresponding sufficient statistics—
for example for a univariate Gaussian we can choose '(!) =

(

!,−!2/2
)

, &0 is the associated pa-
rameter vector and the fixed function h(!) encodes additional constraints (positivity, normalizations,
etc.). The desired quality of approximation, and the possible convenience of obtaining tractable mo-
ments, typically guide the choice of '(!).

2. A more general interpretation is possible, but for clarity we show the approximation for the generative model in (1).
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The posterior will be approximated with a tractable density of the same exponential family as
the prior,

q(!) =
1

Z(&,0)
exp
(

&T'(!)
)

p(!) . (3)

By adding the condition & = #n&n, we allow each likelihood factor p(xn|!) of the posterior in (1)
to correspond to simpler factor proportional to &\n = &−&n in (3): the &n’s therefore parameter-
ize the likelihood term contributions to the approximation.3 We here introduced a definition for
normalization as

Z(&,a) =
Z

d!"
n

[

p(xn|!)
]an
exp
(

&T'(!)
)

p(!) ,

with a being a vector with elements an. The cavity posterior p(!|D\n) should then be approximated
by a member of the same exponential family

q\n(!) % exp
(

&T\n'(!)
)

p(!) ,

where &\n = &−&n. This is obtained from (3) by removing a single likelihood approximation and
renormalizing.

Let 1n be a unit-vector in the nth direction. We can now formalize our concluding remark: q(!)
is required to share lower order statistics with the tilted distributions

qn(!) =
1

Z(&−&n,1n)
p(xn|!)exp

(

(&−&n)
T'(!)

)

p(!) , (4)

each of which are obtained from the posterior p(!|D) by replacing the cavity posterior by its ap-
proximation. We therefore require consistency of the generalized moments, that is,

〈

'(!)
〉

q =
〈

'(!)
〉

qn
, n= 1, . . . ,N .

One can also show that the corresponding marginal likelihood approximation is given by

ZEC = Z(&,0)"
n

Z(&−&n,1n)
Z(&,0)

(5)

(Minka, 2005, Opper andWinther, 2005). In Appendix A we relate this approximation to variational
bounds on the marginal likelihood.

2.1.1 EXPECTATION PROPAGATION

The final expression for the EC partition function in (5) depends upon the partition functions for two
distributions q and qn in (3) and (4), and consistency on the statistics '(!) determines the &n param-
eters. This moment consistency can be achieved via a message passing framework called EP, which
appear, together with VB,4 as special cases of a more generic message passing framework recently

3. In this context the likelihood terms (factors) are sometimes referred to as sites, and hence the &n’s as site parameters
of site functions that are proportional to exp(&Tn '(!)) (Seeger, 2003).

4. VB finds its approximation q(!) by lower-bounding the log marginal likelihood with Jensen’s inequality (Jordan
et al., 1999), giving logZVB ≤ log p(D). By writing

logZVB = −KL(q(!)‖p(!|D))+ log p(D)

the bound can be made as tight as possible by adjusting q(!); this is achieved by minimizing the KL-divergence
between q(!) and p(!|D).
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Algorithm 1 EP message passing (Minka, 2001a)
1: initialize: Set all &n to zero, &n ← 0, n = 1, . . . ,N. This choice corresponds to initializing in
the prior, setting the sufficient statistics to µ← 〈'(!)〉p(!).

2: repeat
3: Randomly choose example n, and make the following update steps:
4: Update sufficient statistics

µ←
〈

'(!)
〉

qn(!;&n)
.

5: Determine q(!;&) from µ, that is, solve
〈

'(!)
〉

q(!;&′) = µ

with respect to &′ and update

(&← &′ −& followed by &← &+(& .

The EP updates can also be damped by ) ∈ [0,1] through (&← )(&′ −&).
6: Update qn(!;&n):

&n ← &n+(& .

This update ensures that & = #n&n; q and qn are therefore in the forms of (3) and (4). We
have no guarantee in this step that qn stays a proper distribution. A robust heuristic is to skip
any update that makes qn improper.

7: until expectation consistency 〈'(!)〉qn(!;&n) = 〈'(!)〉q(!;&) = µ holds for n= 1, . . . ,N.

proposed by Minka (2005). EP defines a specific message algorithm which iteratively refines each
&n by minimising local Kullback-Leibler divergences KL(qn(!)‖q(!)); in other words it iteratively
performs the required moment matching 〈'(!)〉q = 〈'(!)〉qn . EP is presented in Algorithm 1 for our
choice of q and qn, and we shall henceforth use the terms EP and EC interchangeably.

If EP converges we will have expectation consistency 〈'(!)〉qn(!) = 〈'(!)〉q(!) = µ because of
the moment matching in lines 4 and 5 of Algorithm 1. Line 6 ensures that q and qn follow the forms
in (3) and (4). Solving for q in line 5 is analytical for most of the parameters as long as q is in
the exponential family. (In the mixture of Gaussian examples in this paper, one has to solve two
independent scalar non-linear equations for Dirichlet and Wishart densities. All other vector and
matrix parameters can be found analytically.)

EP is not guaranteed to converge, in which case double-loop algorithms may be used. It has been
observed by Heskes and Zoeter (2002) that when EP does not converge to a stable fixed point, even
when considerable damping (choosing ) small in Algorithm 1) is used, the corresponding double-
loop algorithm has a Hessian with a significantly negative eigenvalue(s). It has been suggested that
the failure of convergence of canonical EP usually implies an inaccurate solution, with the choice
of approximating family not being rich enough (Minka, 2001a).

2.2 Perturbation Corrections

The goal of this section is to derive formal expressions for the errors of the EC approximation to
the marginal likelihood and the predictive distribution and to discuss ways of how this error can be
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computed using a formal perturbation expansion. In order to expand the EC approximation we use
(4) to express each likelihood term by the approximating densities as

p(xn|!) =
Z(&−&n,1n)

Z(&,0)
qn(!)
q(!)

exp
(

&Tn '(!)
)

,

to find that
p(!)"

n
p(xn|!) = ZEC q(!)"

n

(

qn(!)
q(!)

)

. (6)

If we define
*n(!) =

qn(!)−q(!)
q(!)

such that qn(!)q(!) = 1+ *n(!), we should expect *n(!) to be on average small over a suitable measure
when the EC approximation works well. Bearing this definition in mind, the exact posterior and the
exact marginal likelihood can be written as

p(!|D) =
1
R
q(!)"

n
(1+ *n(!)) and Z = ZEC R , (7)

with
R=

Z

d!q(!)"
n

(1+ *n(!)) .

We expect that an expansion of posterior and Z in terms of *n(!) truncated at low orders might give
the dominant corrections to EC. Hence, we get the (2N term finite) expansion

R= 1+ #
n1<n2

〈

*n1(!)*n2(!)
〉

q
+ #

n1<n2<n3

〈

*n1(!)*n2(!)*n3(!)
〉

q
+ . . . , (8)

showing that EC is correct to the first order as the term #n 〈*n(!)〉q = 0 vanishes. The posterior in
(7) can be similarly expanded with

p(!|D) =
q(!)

(

1+#n *n(!)+#n1<n2 *n1(!)*n2(!)+ . . .
)

1+#n1<n2 〈*n1(!)*n2(!)〉q+ . . .
, (9)

where we should keep as many terms in the numerator as in the denominator in order to keep the
resulting density normalized to one.

The corresponding predictive distribution is

p(x|D) =
Z

d! p(x|!) p(!|D)

=

R

d!q(!) p(x|!)
(

1+#n *n(!)+#n1<n2 *n1(!)*n2(!)+ . . .
)

1+#n1<n2 〈*n1(!)*n2(!)〉q+ . . .
, (10)

where again as many terms in the numerator as in the denominator should be kept to ensure proper
normalization.

If the expansions in (9) and (10) are truncated, the approximations are not guaranteed to be valid
probability distributions, since as functional approximations they may be negative. Nevertheless, the
quality of EC approximation is still improved, as is illustrated in Figures 1, 8, 12, and Table 1.
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2.3 Tractability of Corrections

For the case where qn is just a finite mixture of K simpler densities from the exponential family to
which q belongs, then the number of mixture components in the j-th term of the expansion of R is
just of the order O(K j) and an evaluation of low order terms is tractable and can be computed in
O((KN) j) after q has been found.

In other cases, an exact computation of even the low order terms may be analytically intractable.
If the dimensionality of necessary integrations is proportional to the order of the correction one may
still resort to numerical quadratures. A different approach would be to re-expand each term *n in
a different “measure of closeness” of densities which takes into account the moments '(!) of the
densities. This can be for example achieved in the case where q(!) is Gaussian and the statistics '(!)
denote just the set of all first and a subset of second moments (or cumulants) of the random variable
!. Then we could resort to the use of characteristic functions +(,) and +n(,) defined through

q(!) =
Z

d, ei,
T !+(,), qn(!) =

Z

d, ei,
T !+n(,)

for all n. The coefficients in a formal multivariate Taylor expansion of log+n(,) in powers of the
vector , define (up to a factor) the cumulants of qn. Hence, the multivariate Taylor expansion of
rn(,) ≡ log+n(,)− log+(,) in powers of , contains only those cumulants in which qn and q differ.
Thus, we may write

qn(!)−q(!) =
Z

d, ei,
T !+(,)

(

1− elog
(

+n(,)
+(,)

))

=
Z

d, ei,
T !+(,)

(

1− ern(,)
)

(11)

=−
Z

d, ei,
T !+(,)

(

rn(,)+
1
2
r2n(,)+ . . .

)

.

Hence, when the statistics '(!) contain all first and all second moments of !, the integral is ex-
pressed through cumulants of order 3 and higher. In this way the error of the EC approximation can
be expressed in terms of higher order cumulants.

If we expand rn in powers of ,, it is possible to express the integral (11) explicitly in a series
containing derivatives of increasing order of the Gaussian q(!) =

R

d, ei,T !+(,) with respect to !.
This is because each such derivative creates a factor , in the Fourier integral via differentiations
of the exponential ei,T !. Finally, each term *n(!) = qn(!)−q(!)

q(!) can then be expressed by a series of
Hermite polynomials in a standard way. This alternative expansion is introduced by Opper et al.
(2008); its details and applications will be presented in a future paper.

2.4 First Order Correction

We have seen that in general, higher order correction terms require the computation of extra expecta-
tions. Remarkably, in contrast, the first order correction to the EC posterior (9) is obtained as simple
sum of terms which where already computed in the EC approximation. Hence, it provides a simple
and efficiently computable quantity to improve on EC/EP or judge its validity. A straightforward
calculation gives

p(!|D) ≈#
n
qn(!)− (N−1)q(!) . (12)

The first order correction does not change the moments which are consistent in EC, but provides an
approximation to nontrivial higher cumulants, which, for example, in the case of a Gaussian q(!)
would be zero in EC.
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3. Gaussian Process Classification

The cluster expansion can be applied in a limited setting to non-parametric models with a Gaussian
process prior. This section provides as an introductory case a correction to the marginal distribution,
illustrating that a lower-order correction can be very accurate. For this family of models corrections
to other quantities of interest, for example the log marginal likelihood and predictive distribution,
have to rely on cumulant expansions (Opper et al., 2008), and will be treated in detail a companion
paper.

A Gaussian process prior forms the cornerstone of many popular non-parametric Bayesian meth-
ods. It has been used to great effect on various regression and classification problems. A Gaussian
prior is placed on an N-dimensional unobserved variable f , for example

p( f ) =N ( f ; 0, K) ,

where each fn is associated with an input vector xn, and K is a kernel matrix with entries k(xn,xn′)
(Rasmussen and Williams, 2005). A binary classification task attaches a class label yn ∈ {−1,+1}
to each input xn, and a typical prediction would be the class of a new input x∗ given the data D =
{xn,yn}Nn=1. It is common to use the cumulative Normal distribution function -(·) as a likelihood
for correctly classifying a data point (Opper and Winther, 2000). The likelihood is dependent on the
unobserved fn associated with xn, and hence

p(yn| fn) =-(yn fn) .

The posterior distribution of f is therefore

p( f |D) =
1
Z

N

"
n=1

p(yn| fn)N ( f ; 0, K) .

With this factorization the site functions are chosen to depend on only fn such that the posterior is
approximated by the same exponential family distribution (Gaussian) as the prior,

q( f ) %
N

"
n=1
exp
(

.̃n fn−
1
2
s̃n f 2n
)

N ( f ; 0, K) .

The notation in this section is deliberately chosen to be consistent with that of Rasmussen and
Williams (2005, chapter 3), and we refer the reader to the reference for an example EP algorithm.
We assume that a fixed point of EP has been reached. Let S̃ be a diagonal matrix containing s̃n,
and .̃ be a vector containing .̃n. The posterior approximation is therefore q( f ) = N ( f ;µ,/), with
/= (K−1+ S̃)−1 and µ= /.̃.

The cavity posterior approximations q\n( f ) = N ( f ;µ\n,/\n) arise from setting .̃n = s̃n = 0
(giving diagonal matrix S̃\n and vector .̃\n), where /\n can be determined with a rank one update of
/. The tilted distributions are therefore qn( f ) % q\n( f )-(yn fn).

The first order correction (12) can be applied to compute a correction to the marginal distribution
of f∗, the latent function associated with a novel input x∗. Integrating p( f∗| f ) with (12) yields

p( f∗|D) ≈
N

#
n=1

qn( f∗)− (N−1)q( f∗) . (13)
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Figure 1: The first-order correction (13) is shown in black, with q( f∗) in blue. Full details about the
data set in question, as well as the individual terms in (13), are illustrated in Figure 13 in
Appendix B. An MCMC estimate for the true marginal is overlayed in orange, and comes
from averaging p( f∗| f ) over 20,000 MCMC samples from the posterior of p( f |D). The
“spikiness” is a result of the variance of p( f∗| f ) being very narrow: if the “noise-free”
latent f is given, then f∗ is highly correlated with f and well determined for this example.
The first-order correction gives an excellent approximation.

Notice that corrections for the predictive distribution and log marginal likelihood cannot be ex-
pressed analytically in this way. Hence numerical quadrature or an expansion in terms of cumulants
(Opper et al., 2008) is required. Higher-order terms of the above correction are also analytically
intractable.

The detailed derivation of the correction is presented in Appendix B. Figure 1 provides a sum-
mary comparison of a first-order correction, q( f∗), and a MCMC estimate of p( f∗|D). The cor-
rection is very accurate and provides a much better fit than EC or EP at a negligible additional
computational cost. Figure 13 in Appendix B gives further illustrations to accompany Figure 1. In
Section 2.4 it was noted that the first order correction provides an approximation to nontrivial higher
cumulants which would otherwise be zero in EC, even though the moments which are consistent in
EC are not changed. Figure 2 illustrates this observation, showing an accurate approximation of the
third cumulant for various distributions p( f∗|D).

4. Mixture of Gaussians

We shall empirically examine the corrections to EP approximations through a multivariate mixture
of Gaussians (MoG). Mixture models provide a more challenging testbed for EP than the Gaussian
Process model illustrated in Section 3, as the posterior is multi-modal with many symmetries, and
the site distributions are not log-concave. For clarity we relegate the MoG derivations to Appendix
D, favouring a simpler but similar model here. As an outline to deriving an algorithm for a MoG we
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Figure 2: For different inputs x∗—and hence latent function f∗—the third cumulant of the first-
order correction (13) is shown in red. It closely matches the true third cumulant of
p( f∗| f ), which is plotted in black. The EC approximation q( f∗)’s higher cumulants are
all zero. Figure 1 shows the particular approximations at x∗ = −2, with further details
appearing in Figure 13 and Appendix B.

consider the task of inferring the mixing proportions 0k = p(k) in a model of the form

p(x|!) =#
k
0k p(x|k) ,

with p(x|k) being fixed (Minka, 2001b). Since the mixing proportions should sum to one a Dirichlet
prior for 0 is is a natural choice, and Appendix C gives a detailed description of all its properties
needed in this context. We give the explicit EP message passing updates for the mixing proportions
with fixed component densities in Algorithm 2 (this scheme is generalized to adaptive components
in a straightforward way in Appendix D). Details for the required computations in Algorithm 2 are
given below.

4.1 Variational and Predictive Distributions

The prior—and thus also the q-distribution in (3)—are Dirichlet,

q(0) =D(0;1) ,

with D(0;1) given in Appendix C by (23). The parameters of q are 1k = 1k,0+#n1k,n (here 10 are
the parameters of the prior, which we include into 1 for simplicity).

We can also get the EC approximation to the predictive distribution both for new datum x,
p(x|D) and the cavity predictive distribution: p(xn|D\n). For the new datum x the approximation is
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straightforward using q(0) as an approximate posterior:

p(x|D) ≈
Z

d0 p(x|0)q(0) =#
k

〈

0k
〉

q p(x|k) , (14)

with the mean value being
〈

0k
〉

q =
1k

#k′ 1k′
.

For the “within data set” version we introduce the cavity distribution q\n(0) = D(0;1\n), using
1k\n = 1k−1k,n, and derive a result that is very similar to the one above:

p(xn|D\n) ≈#
k

〈

0k
〉

q\n
p(xn|k) . (15)

For message passing we also need expectations of qn(0) from (4):

qn(0) =
1

Zn(1\n,1n)
e#k′ (1k′\n−1) log0k′ 2

(

#
k′
0k′ −1

)

#
k
0k p(xn|k) .

The above normalizer can easily be found by noting that

qn(0) =
Z(1\n,0)
Zn(1\n,1n)

q\n(0)#
k
0k p(xn|k) ,

such that
Zn(1\n,1n) = Z(1\n,0)#

k

〈

0k
〉

q\n
p(xn|k) .

In this simple case we have Z(1\n,0) = ZD (1\n), with the normalization ZD of the Dirichlet being
given by (24) in Appendix C.

4.2 Expectations

When updating µ← 〈'(!)〉qn(!;&n) in Algorithm 2 the sufficient statistics can be computed using
logZn(1\n) as a generating function:

〈

log0k
〉

qn
=
d logZn(1\n)

d1k\n
=
〈

log0k
〉

q\n
+

rnk
1k\n

−
1

#k′ 1k′\n
, (16)

where the expression for 〈log0k〉q\n is given by (25) in Appendix C with 1→ 1\n, and the “respon-
sibility” rnk was introduced as

rnk =
1k\np(xn|k)

#k′ 1k′\np(xn|k′)
.
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Algorithm 2Message Passing for Mixing Proportions
1: initialize: Set 1k,n← 0, for n= 1, . . . ,N and k= 1, . . . ,K, initializing q(0) to the prior. Set µk ←

〈log0k〉p(0) =3(0k,0)−3(#k 0k,0), where the digamma function3(x) is defined as log4(x)/dx.
2: repeat
3: Randomly choose example n, and make the following update steps:
4: Update the sufficient statistics

µk ←
〈

log0k
〉

qn(0;1n)
= 3(1k−1k,n)−3

(

#
k

(1k−1k,n)

)

.

5: Determine q(0;1′) from µ, that is, by solving 〈log0k〉q(0;1′) = µk with respect to 1′. As
shown in Appendix C, this involves solving for $ ≡ 3(#k3

−1(µk +$)), followed by with
1′k = 3−1(µk +$). Update

(1k ← 1′k−1k and 1k ← 1′k .

6: Update qn(0;1n) with
1k,n ← 1k,n+(1k ,

ensuring that 1k = 1k,0+#n1k,n.
7: until expectation consistency 〈log0k〉qn(0;1n) = 〈log0k〉q(0;1) = µ holds ∀n,k.
8: Compute logZEC from (5) with

logZEC =#
n
logZ(1−10−1n,1n)− (N−1) logZ(1−10,0)

=#
n
log
[ZD (1\n)

ZD (1)
p(xn|D\n)

]

+ logZD (10)+ logZD (1) ,

where p(xn|D\n) signifies the “cavity” predictive distribution from (15).

5. Parallel Tempering and Thermodynamic Integration

Having considered deterministic inference algorithms, the last bit of machinery that we shall need
is a stochastic method to provide exact estimates in a large enough sample limit. Parallel tempering
(PT) and thermodynamic integration (TI) are ideal for our purposes: PT is an efficient method of
combining separate Monte Carlo simulations to sample across different modes of a target distri-
bution and, as a by-product, TI can be used to estimate the normalizing constant or log marginal
likelihood.

We conclude this section with a new practical generalization of PT and TI, which can in prin-
ciple be used to combine stochastic and approximate methods. A further novel extension to the
generalization is given in Appendix E.2.

5.1 Parallel Tempering (Replica Exchange)

A single MCMC simulation may run into difficulties if the target distribution is multimodal. The
chain may get stuck in a local mode, and fail to fully explore other areas of the parameter space
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that have significant probability. A conceptual solution to this problem is to create a series of
progressively flatter distributions through an inverse temperature parameter 5, which ranges from
zero to one. This gives a “tempered” posterior

p(!|D,5) =
1

Z(5)
p(D|!)5p(!) , (17)

where the normalizing constant (partition function) is Z(5) =
R

d! p(D|!)5p(!). The prior is recap-
tured with 5= 0, and the posterior with 5= 1. We now simulate N5 replicas of (17) in parallel, each
using a 5 ∈ {5i}

N5
i=1. Let the set {5i} be ordered as a ladder with 5i < 5i+1. The parameter space is

replicated N5 times to {!i}
N5
i=1, and the full target distribution that is being sampled from is

p({!i}) =
N5

"
i=1

1
Z(5i)

exp
(

5i log p(D|!i)
)

p(!i) .

We run the N5 chains independently to sample from distributions p(!|D,5i), and add an additional
replica-exchange Metropolis-Hastings move to swap two 5’s, or equivalently two parameters, be-
tween chains. Let {!i}new be a parameter set with !i and ! j swapped. The acceptance probability
of the move is p(accept) =min(1, p({!i}new)/p({!i})), and the acceptance ratio simplifies to

p({!i}new)

p({!i})
= exp

(

(5i−5 j)
(

log p(D|! j)− log p(D|!i)
)

)

. (18)

The temperatures of the two replica i and j have to be close to ensure non-negligible acceptance
rates; neighboring pairs are typically taken as candidates. To fully satisfy detailed balance, pairs
{i, i+1} can be uniformly chosen, for example. With this formulation the states of the replicas are
effectively propagated between chains, and the mixing of the Markov chain is facilitated by the fast
relaxation at small 5’s.

From (18), the acceptance probability depends on the difference between log p(D|!i) and
log p(D|!i+1), and for some swaps to be accepted this difference should not be “too big”; there
should be an overlap of some of the log likelihood evaluations of adjacent chains, as illustrated in
Figure 3. For a simulation at inverse temperature 5, define the mean evaluation of the log likelihood
as

〈

log p(D|!)
〉

5 =
Z

d! log p(D|!) p(!|D,5) .

If we knew the variance in chain 5, 625 = 〈[log p(D|!)]2〉5−〈log p(D|!)〉25, then it can be shown that
temperatures should be chosen according to the density Q(5) % 65 (Iba, 2001). This is obviously
difficult, as 625 is not known in advance, and has to be estimated. Good results can be achieved
under the assumption 625 % 1/5

2 (the equivalent of assuming a constant heat capacity in a physical
system), giving a geometric progression, hence choosing 5i/5i+1 constant (Kofke, 2002).

5.2 Thermodynamic Integration

The samples from parallel tempering can be used for model comparison (Gregory, 2005, Skilling,
1998), as the marginal likelihood can be obtained from tempering. Firstly, notice that the integral

Z 1

0
d logZ(5) =

Z 1

0
d5

d logZ(5)
d5

= logZ(1)− logZ(0) = logZ(1) = log p(D)

1276



PERTURBATION CORRECTIONS IN APPROXIMATE INFERENCE

−350 −300 −250 −200 −150 −100
0

0.05

0.1

0.15

0.2

0.25

p
β

[

lo
g

{

p
(D

|θ
)p

(θ
)/

q
(θ

)}

]

log
{

p(D|θ)p(θ)/q (θ)
}

 

 

0

0.25

0.5

0.75

1

Figure 3: The density of log{p(D|!)p(!)/q(!)} under replicas at different temperatures,
p(!|D,5), defined in (20). These densities correspond to “energy histograms,” and fol-
lowing (18) there should be an overlap between adjacent replicas at different tempera-
tures, so that acceptance of configuration or parameter swaps is allowed for. For interest,
the log marginal likelihood log p(D) is indicated with a ×. The color bar indicates the
inverse temperature 5. This illustration comes from the galaxy data set with K = 3 com-
ponents.

is equal to the log marginal likelihood, as 5= 0 gives the prior, which integrates to one. We therefore
have to determine the derivative d

d5 logZ(5). By taking the derivative of the log normalizer (log
partition function), we see that it evaluates as an average over the posterior

d logZ(5)
d5

=
1

Z(5)

Z

d! log p(D|!)× p(D|!)5p(!) =
〈

log p(D|!)
〉

5 .

The log marginal likelihood equals

log p(D) =
Z 1

0
d5
〈

log p(D|!)
〉

5 (19)

and can be numerically estimated from the Markov chain samples. If {!(t)
i } represents the samples

for tempering parameter 5i, then the expectation is approximated with

〈

log p(D|!)
〉

5i
≈
1
T

T

#
t=1
log p(D|!(t)

i ) .

We assume that a burn-in sample is discarded in the sum over t. As a set of chains are run in
parallel at different inverse temperatures 0 = 51 < · · · < 5N5 = 1, the integral can be evaluated
numerically by interpolating the N5 expectations between zero and one (say with a piecewise cubic
Hermite interpolation, available as part of Matlab and other standard software packages), and using
for example the trapesium rule to obtain the desired result. Figure 4 illustrates how log p(D) is
estimated.
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Figure 4: The log likelihood averages 〈log p(D|!)〉5 are estimated from each of the MCMC sim-
ulations at temperatures {5i}, and interpolated, so that Equation (19)’s integral can be
evaluated numerically. This illustration comes from the galaxy data set with K = 3 com-
ponents.

Parallel tempering can be done complementary to any Monte Carlo method at a single tem-
perature. Appendix E presents Gibbs sampling to sample from p(!|D,5) for the MoG problem.

5.3 A Practical Generalization of Parallel Tempering

The success of the interpolation obtaining 〈log p(D|!)〉5, illustrated in Figure 4, is dependent on the
slope

d〈log p(D|!)〉5
d5

=
d2 logZ(5)

d52
= 625

at 5≈ 0. Consider the following thought exercise: Imagine a non-informative (infinitely wide) prior
at 5 = 0. Samples from this prior will strictly speaking have an infinite variance 620. With 5 ≈ 0
we introduce the likelihood, practically infinitely decreasing the variance of our samples, causing
〈log p(D|!)〉5 to asymptotically diverge at zero. As we narrow our prior the change in this mean
should be less rapid, and this motivates a generalization of PT and TI such that we get a more stable
interpolation.

We introduce a new distribution q(!), which might be a narrower version of the prior, and
modify (17) to

p(!|D,5) =
1

Z(5)

[

p(D|!)
p(!)
q(!)

]5

q(!) . (20)

The log marginal likelihood can, as before, be determined with

log p(D) =
Z 1

0
d5
〈

log p(D|!)+ log
p(!)
q(!)

〉

5
.

1278



PERTURBATION CORRECTIONS IN APPROXIMATE INFERENCE

It is evident that setting q(!) = p(!|D) gives an integral over a constant function, log p(D) =
R 1
0 d5〈log p(D)〉5. This suggests a wealth of possibilities of approximating p(!|D) with q(!) to
effectively combine deterministic methods of inference with Markov chains. This comes with a
cautionary note as VB, for example, may give a q(!) that captures (lower-bounds) a mode of a
possibly multimodal posterior, causing PT to lose its pleasing property of fast relaxation at high
temperatures. In our results presented in Section 6, we have found it completely adequate to use a
narrower version of the prior where necessary. Appendix E concludes with a short generalization to
sample from (20) for the MoG problem.

6. Results

Low order corrections provide the tools to both improve inference accuracy, and to give an indi-
cation of the quality of approximate solutions. We illustrate and elaborate on these claims, with
comparisons between various deterministic and stochastic methods, through this practical discus-
sion. Data is viewed as being observed from a mixture model p(x|!) = #K

k=10kN (x;µk,4−1k ), as is
discussed in Appendices D, E, and F. A Dirichlet prior is placed on 0, and Normal-Wishart priors
on µk and 4k; the approximating distribution q(!) = q(0)"k q(µk,4k) follows the same distribution
as the prior.

6.1 Modes and Symmetries

Mixture models are invariant under component relabelling, with a K! growth in the number of
permutations also manifesting itself in symmetries in the posterior density. In aid of interpreting
later results, we present some basic understanding of VB, EP, and low order corrections under
this property. Our aim in this section is to use simple toy posteriors to facilitate discussion on
the behavior of q under various scenarios and discuss how that might affect the estimation of the
marginal likelihood and predictive distribution.

The labelling of hidden units of a two-layer neural network gives rise to symmetries similar to
those observed in mixture models. For neural networks a statistical mechanics analysis shows that
for small N the posterior is uni-modal and “star-like,” as convex combinations of parameters with
high posterior value which are equivalent under permutations will also have high density (Engel
et al., 1992). The symmetry is broken into equivalent disconnected modes for large N.

For mixture models we can analyze the situation where q is restricted to approximate the pos-
terior in one of the symmetric modes, as what will typically be the solution for both VB and EP/C
when N is large. Minimizing the KL-divergence KL(q‖p) leads to a solution where q is propor-
tional to p within the mode (and by construction zero otherwise). If there are K! modes contributing
equally to the normalizer and q is restricted to one of them, then q’s normalizer is a factor of K!
smaller than p’s and consequently KL(q‖p) = logK! at the minimum (Bishop, 2006, page 484).
However, groups of equivalent modes are often present. A simple example is a 3-component mix-
ture with three “clusters” of data. If each component is associated with a cluster, there are 3! la-
belling symmetries. Another VB or EP fixed point may prune one mixture component (see MacKay
2001 for VB and Figure 11 for EP), leaving one component to cover two clusters of data, and one
component the other; this solution has yet another 3! labelling symmetries, albeit possibly with a
lesser contribution to the normalizer. In effect the correction is rather O(logK!), as illustrated in
Figure 9. A useful approximation would be to correct the marginal likelihood estimate by a factor
of K! when N is large. The predictive distribution is invariant under the symmetry and will thus
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Figure 5: Symmetries and averages: The likelihood p(x|{µ1,µ2}) = 0.4N (x;µ1,1)+0.6N (x;µ2,1)
is plotted as red contours for the novel observation x = 1

2 at the arrow in the top figure.
Observing x centres the likelihood function at (x,x) along the µ1–µ2 axis in the bottom fig-
ure. The predictive density p(x|D) is average of the likelihood over the bi-modal posterior
(black contours), while the approximate predictive density is the average of the likelihood
function over the uni-modal EC approximation (overlaid in blue). The near-symmetry of
the posterior implies that each mode contributes approximately half its mass. When the
EC approximation puts all its mass on one mode, and the modes are well separated, the
two predictive densities are therefore similar. The top figure shows the ratio between the
true and approximate p(x|D); the discrepancy at negative x is due to the fact that the pos-
terior is not perfectly symmetrical (e.g., when x = −2 its likelihood is centred at (-2,-2)
and overlaps less with the EC mode).

not be greatly affected by q approximating only one mode, as is shown in Figure 5. For small to
intermediate values of N the situation is less clear, as the following example illustrates.

In Table 1 we illustrate a number of posterior distributions, with the VB and EC approximations
overlaid. We also overlay the first order correction to q(!), given from (12) by p(!|D)≈#n qn(!)−
(N− 1)q(!). For Table 1 all parameters but the means were kept fixed, such that with K = 2 the
approximation q(!) = q(µ1)q(µ2) is a factorised Gaussian. Both component variances were equal,
and we used (01,02) = (0.4,0.6). The modes are thus not completely symmetric but this set-up still
illustrates the points made above well. We chose the component variances (set to one) such that the
posterior modes overlap when N is small, with bimodality arising as N increases. We will see in the
following sections that even though q is a rather crude approximation to the posterior the predictions
for the predictive distribution are fairly precise.

The correction given by (12) integrates to one but is not guaranteed to be nonnegative, as it
follows from discarding the higher order terms in (7). The first order correction to the predictive
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(a) With overlapping mixture components, damped EP does not necessarily con-
verge for smallN (e.g., EP failed, in the sense that the 2nd order correction cannot
be computed, on all 30 random data sets of size 8). The corrections are on av-
erage (blue line) large for broadly overlapping posterior modes, as EP does not
necessarily lock onto one of them.
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(b) With well separated clusters the 2nd order corrections indicate for which N,
on average, EP prefers a modal solution. Note the better convergence of EP for
larger N, with on average stabler fixed points than Figure 6(a). This is reflected
in the corrections being close to zero.

Figure 6: The second order term of (8) on 3600 random data sets.

density, however, usually remains nonnegative because it is an average of p(x|!) over (12). This
underlines the fact that average properties will not be strongly affected by imprecision in approxi-
mating distributions.

Other local minima that we did not show in Table 1 was for N small, where q(µ1) remains as
broad as the prior and the component is effectively pruned, while q(µ2), on the other hand, caters
for both mixture components (MacKay, 2001).

6.2 Corrections

The illustrations in Table 1 suggest that the lowest nontrivial corrections can provide insight into
the quality of approximation, as we expect corrections to be small for good approximations. To
illustrate this claim, 30 random data sets DN were drawn for each size N = 1, . . . ,60 according to
DN ∼ p(x), with p(x) being a three-component mixture with 0= (0.2,0.3,0.5) and µ= (−2,0,2).
Two cases were used for the variance: firstly, 4−1k = 0.5 provides a model with overlapping mixture
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Figure 7: The growth of logZEC for the random data sets DN used to obtain Figure 6(b).

components; secondly, 4−1k = 0.1 gives a model with components that are further separated. EP
was run with damping ) = 0.5, and the second order corrections to the log marginal likelihood
approximations were computed where possible (i.e., EP converged, etc.); see Appendices D and F.

Figures 6(a) and 6(b) illustrate the “overlapping” and “separate” examples, showing that when
N is small compared to logK!, and the posterior is “starlike” and comparatively unimodal, EP often
fails, and the nature of the problem is reflected in the large corrections. When N becomes large EP
often converges (to one of K! equivalent modes); small corrections immediately tell us that solution
is close to exact, apart from here a logK! correction to the marginal likelihood.

We also observe that the corrections do not scale with N, whereas the free energy logZEC does,
as shown in Figure 7. This is an important property, as it means that the quality of approximation
does not deteriorate with increasing N.

When the observationsDN ∼ p(x) are i.i.d. we expect that logZEC/N, by its form as an empirical
average over N terms, should converge to a non-random cZ as N → 7. In fact a linear scaling
logZEC → cZN is observed in Figure 7. When and whether the expected correction 〈logR〉DN

=
cR(N) → 0 as N → 7 (and hence EP becomes exact) is an open question. This does not seem true
for Figure 6(a): If the the posterior modes were well-separated then for large N, a change in one
mean parameter in a factorized approximation will not greatly affect the other. If, in this case, the
means are close compared to the standard deviations of the normal densities, the mean parameters
will stay correlated also for large data sets, and the corrections will persistently stay bigger for large
N.

6.3 Toy Example

To illustrate the difference between EC and VB, and show additional gains from perturbation correc-
tions, we generated a small data set (N = 7) from a mixture of two Gaussians. The hyperparameters
followed that of Section 6.4.

Under two model assumptions we show in Figure 8 that EC or EP (labeled “EC/P”) gives a
predictive density that is generally closer to the truth than that given by VB. Each example in the
toy data set was duplicated (see Figure 8(b)) to show that this gain decreases under larger data sets;
this decrease is due to the predictive density being an average of p(x|!) over now more concentrated
VB and EC posterior approximations. Secondly, meaningful improvements can be achieved through
perturbation corrections. Figure 8(d) shows a second order correction to the log marginal likelihoods
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Figure 8: Predictive densities p(x|D,MK) given by VB, EC, and a perturbation correction (EC+R),
with accompanying log marginal likelihood estimates andMCMC “truth” baselines. Note
that if we “correct” with a factor logK! we get very close to the “truth” for VB and to a
even higher degree for EC. EC+R overshoots in two cases but that might be because the
perturbation corrected posterior is actually multi-modal. The lower figures in 8(a) to 8(c)
show the ratio between each of the approximate predictive densities and the “truth.”

of the examples in question, labeled “EC+R” (see Appendix F). A lower bound to the log marginal
likelihood is provided by VB. The improvement is also visible when we are concerned with the
predictive density, for which we show a first order correction.
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6.4 A Practical Comparison

In this section we draw a comparison between the approximate log marginal likelihoods and predic-
tive distributions given by VB, EP, and various corrections, and use estimations given by PT and TI
as a benchmark. For interest we also include results from an implementation of $ = 1

2 in Minka’s
general $-divergence message passing scheme for this problem, but refer the interested reader to
Minka (2005) for further details. Finding a VB approximation follows directly from the expectation
maximisation algorithm given by Attias (2000), with a slightly different parameterization of the
Wishart distribution.

From the results that follow, we observe that the growth of logZ, as a function of model size,
gives a characteristic “Ockham hill” (defined in more detail later in this section), where the “peak”
of the hill indicates the model with highest approximate log p(D). This graph can be used for model
comparison or selection, as its form closely matches the MCMC evaluation of log p(D). We will
also see that, following Section 6.1’s discussion, the discrepancy between a logZ estimate and the
true log p(D) grows as the model size is increased. Furthermore, the EC approximation gives a
predictive distribution that is closer to the truth than VB, with the gain decreasing with increasing
N. We will show that a principled algorithm initialization can circumvent many spurious local
minima in the log marginal likelihood estimate. If completely arbitrary initialization schemes are
implemented, one may note that the number of local solutions is influenced by the width of the prior
distribution, with more local minima arising under broader prior distributions.

The data sets under investigation have been well studied, for example, by Richardson and
Green (1997) for a reversible jump MCMC, and by Corduneanu and Bishop (2001) for variational
Bayesian model selection: the galaxy data set contains the velocities (in 1000s of km/second) of 82
galaxies, diverging from our own, in the Corona Borealis region; the acidity data set contains the log
measured acid neutralizing capacity indices for 155 lakes in North-central Wisconsin (USA); the en-
zyme data set contains enzymatic activity measurements, for an enzyme involved in the metabolism
of carcinogenic substances, taken from 245 unrelated individuals; the old faithful data set contains
222 observation pairs consisting of eruption time and waiting time to the next eruption, from the
Old Faithful Geyser in the Yellowstone National Park.

6.4.1 THE APPROXIMATE LOG MARGINAL LIKELIHOOD

Ockham hills are useful for visualizing log marginal likelihood estimates for a set of plausible
models with increasing explanatory power, for example, mixture models with increasing K. The
largest estimates of logZ for the various models typically form a hill, peaking at the “optimal”
model. As models become less complex, the hill falls steeply due to a poorer explanation of the
data. For more complex models the plots show a slower downward trend, as an improvement in data
fit is counterbalanced by a penalty from a larger parameter space in Bayesian marginalization. For
mixture models this downward trend is even slower when the true log marginal is considered; this is
mainly due to the number of modes in the true posterior increasing with the number of components,
with an approximation possibly only capturing one of them.5

In the case of VB, the logZ approximation provides a lower bound to the marginal likelihood
p(D|M ), and this quantity is often used for model selection (Beal and Ghahramani, 2003, Bishop
and Svensén, 2003, Corduneanu and Bishop, 2001). The model with the largest bound is typi-
cally kept, although the bound can also be used for model averaging. Regardless of our method of

5. Rasmussen and Ghahramani (2001) present an account which includes “Ockham plateaus.”
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(a) acidity data set
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(b) enzyme data set
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(c) galaxy data set
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(d) old faithful data set

Figure 9: Ockham hills for various data sets. VB is shown as red squares, $= 1
2 as magenta trian-

gles, EC/P as blue circles, and EC+R as green diamonds. An estimate of log p(D|MK)
found by PT and TI is shown as a line. The effect of an O(logK!) correction on any of
the approximate solutions can be seen by comparing them against the dashed-line plot
of log p(D|MK)− logK!. (For Figure 9(d)’s K = 6 the EP and $ = 1

2 schemes did not
converge.)

approximation, poor local minima in the objective function have to be avoided in order to obtain
meaningful results.

Figure 9 shows such hills for the marginal likelihood approximations for different data sets for
VB, $ = 1

2 message passing, EP, and a second-order perturbation correction. The prior hyperpa-
rameters were 1k,0 = 1, mk,0 = 0, .k,0 = 10−2, ak,0 = 1 and Bk,0 = 0.11. For Figure 9(d) we took
Bk,0 = [0.11,0.01;0.01,0.11]. For each of the modelsMK , with K mixture components, the figures
show twenty approximations for each method, with the colour intensity of each plot corresponding
to the frequency of reaching different approximations for logZ. Each plot is complemented with
estimates of log p(D|MK). The estimates—shown as lines—were obtained form an average over
ten PT and TI simulations, with two standard deviation error bars also being shown.
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Finally, it is evident that the “true peak” in Figure 9(a) does not match the peak obtained by
approximate inference. Without having to resort to MCMC and TI, the second order correction for
K = 3 already confirms that the approximation might be inadequate.

6.4.2 THE EFFECT OF A GOOD INITIALIZATION

Finding the best VB/EP solution is strongly seed-dependent in the problem considered here. In this
council of despair an educated guess may take us a long way: many inferior local minima in the
VB/EP objective functions can be suppressed with a good algorithm initialization.

We base our factor initializations around a scaled version of the solution obtained by the VB
expectation maximisation algorithm,

exp(&Tn '(!)) % exp
(

Z

dzn q(zn) log p(xn,zn|!)
)

,

which was seeded with a data clustering based on the k-means algorithm.6 This is illustrated in
Figure 9.

When using an “out of the box” EP scheme, starting with a slight asymmetric prior that is later
corrected for, many lower minima are also found. The same behavior arises when the VB parameters
are randomly initialized. Figure 10 shows more local minima than Figure 9(c), and the results in
Bishop (2006, chapter 10), where the same principled initial guess for VB was used.7

The canonical EP scheme (and indeed $ = 1
2 ) sometimes did not converge to a fixed point.

This is evident in Figure 10 and has been observed in practice (Minka, 2001a): when EP does not
converge, the reason can be traced back to the approximating family being a poor match to the exact
posterior distribution.

6.4.3 THE PREDICTIVE DISTRIBUTION

Given a specific model M , the predictive distribution can be approximated by using p(x|D) ≈
R

d! p(x|!)q(!), as is shown for example in Figure 11. The final predictive distribution strongly
depends on whether or not a global minimum in the objective function in (5) has been found, as
is clear from Figure 11. To illustrate how much the approximate predictive distribution differs
from the true predictive distribution, the figures show p(x|D) obtained from an average over ten
thousand 5= 1 samples from a parallel tempered Markov chain. Figure 12 shows the gain achieved
by EC/P over VB, and in turn the further improvement from a perturbation correction to the EC
approximation (see Appendix F).

7. Conclusion and Outlook

In this paper we presented a method for computing systematic corrections to EC approximations in
Bayesian inference. These corrections are useful not only in improving estimates like log marginal
likelihood and predictive density approximations, but can also provide insight into the quality of an
approximation in polynomial time. When the corrections are large the EC approximation may be

6. Similar to Appendix E, z indicates latent variables, with p(!,z|D) approximated by q(!)q(z). We point the interested
reader to Attias (2000).

7. Markus Svensén, personal communication.
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Figure 10: The effect of random algorithm initializations using the galaxy data set: For the left
figure a broader prior with .k,0 = 10−6, and for the right figure a much narrower prior
with .k,0 = 10−2, was used. Compared to Figure 9(c), note for example the additional
local maxima at K = 3, and the greater number of local minima under a broader prior.
(For K = 6 the EP scheme failed to converge without a sensible initialization.)
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Figure 11: EP can have more than one stable fixed point: The predictive distribution p(x|D,M3),
from two different approximations for the galaxy data set. For K = 3 under narrower
prior in Figure 10, we see three local maxima of the EC objective function in (5): the
predictive distribution shown on the left coincided with logZEC = −243.8, whereas the
approximation on the right coincided with a much higher logZEC = −232.4. The true
predictive distribution, obtained from an average over a PT MCMC sample, is shown
with a dotted line.

questioned or discarded, and we hope to address the question of how it is done in practice in future
work.

A juxtaposition of VB, EC and EP, PT with TI, and EC with corrections, was given in the
context of Gaussian mixture models. We argued that EC can give improvements over VB, and can
in turn be improved through a perturbation expansion. Throughout the paper our “gold standard”
was given by PT, and we presented possible ways of improving it. We would like to include better
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Figure 12: The ratio between each of the approximate predictive densities and the MCMC “truth”
of p(x|D,M3) for the galaxy data set. This figure corresponds to Figure 11 (right).

MCMC algorithms in this rich tapestry of methods: PT is not the best choice for near first-order
phase transitions. In Figure 3 the high probability regions are very different above and below the
transition at 5 ≈ 0.5, suggesting multicanonical sampling as a viable alternative, since it aims at
sampling from a distribution that is flat in the log likelihood and will therefore not have this “bottle-
neck.”

The choice of a unimodal q(!) to capture the characteristics of a typically multimodal p(!|D)
also leads to various questions. When there are symmetries in the parameter space, with overlapping
modes, we may ask whether or not we would achieve a better predictive density with EC, say, if
the approximation is restricted to one mode. In the case where p(!|D) is multimodal (large N) then
fairly general arguments suggest that we should correct the marginal likelihood estimate by a factor
of K!—higher order corrections may clarify for which N and under which conditions this transition
will typically take place.

One way be improve the approximation is to generalize q(!) for example by including a small
fraction of the data points (similar to the proposed generalization of PT). However, that poses an
additional problem an the matching of moments step in EP message passing gets much more com-
plicated.

Finally, we focused on a MoG where the lower order terms in the correction R are tractable.
For models where this is not the case, R can be expanded in terms of the higher order cumulants of
qn(!) and q(!). This approach will be presented in a companion paper.
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Appendix A. Bounds on the Marginal Likelihood

It is interesting to compare the marginal likelihood approximation (5) with the one given by a
variational approximation. Here one would use the fact that the relative entropy

〈

log q(!)
p(!|D)

〉

q
≥ 0

to approximate the free energy − logZ by the upper bound

− logZ ≤

〈

log
(

q(!)
p(!) "n p(xn|!)

)

〉

q

.

To compare with (5) we use the definition (3) to get

Z(&−&n,1n)
Z(&,0)

=
〈

p(xn|!)exp
(

−&Tn '(!)
)〉

q
.

After inserting this expression into (5), taking logs and applying Jensen’s inequality we arrive at

− logZEC ≤

〈

log





exp
(

#n&
T
n '(!)

)

"n p(xn|!)





〉

q

− logZ(&,0) =

〈

log
(

q(!)
p(!) "n p(xn|!)

)

〉

q

,

where in the last step we have used #n&n = &. This shows that if one would use the distribution
q(!) derived from EC within the variational approximation, the EC approximation achieves a lower
free energy. Since approximating densities in the variational approximation will usually differ from
the EC result (by the way they are optimised) this does not imply that variational free energies are
always higher than the EC counterpart. Also we cannot draw any conclusion about the relation to
the true free energy.

Appendix B. Gaussian Process Classification

This appendix provides the details of the derivation of first order correction to marginal distribution
p( f∗|D) for Gaussian process classification, as introduced in Section 3. Let k∗ be the kernel vector
with entries k(x∗,xn) for all n, and ,∗ = k(x∗,x∗). It is well-established that

q( f∗) =N ( f∗ ; µ∗, 62∗), (21)
µ∗ = kT∗K−1µ,
62∗ = ,∗ − kT∗ (K+ S̃−1)−1k∗

where p( f∗| f ) =N ( f∗ ; k3∗ K−1 f , ,∗ −k3∗ K−1k∗) was averaged over q( f ). To determine qn( f∗), we
have to average p( f∗| f ) over qn( f ): a lengthy derivation shows that the required integral qn( f∗) =
R

d f p( f∗| f )qn( f ) simplifies to

qn( f∗) =-

(

ynmn( f∗)√
1+Vn

)

/

-

(

yn µ\n;n
√

1+/\n;n,n

)

×N ( f∗ ; µ∗\n, 6 2
∗\n), (22)

µ∗\n = kT∗K−1µ\n,
6 2
∗\n = ,∗ − kT∗ (K+ S̃−1\n )−1k∗ .
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These distributions are accumulated into the correc-
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the non-linear “weight-function” of f∗ in (22), the
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Figure 13(a) are plotted as (thin) black lines.

Figure 13: An illustration of all the terms occurring in the first-order correction in (13) for an ex-
ample data set.

This “tilted” predictive marginal in (22) has exactly the same form as q( f∗) in (21), except8 for its
use of µ\n and S̃\n, and the nonlinear “weight” that is still a function of f∗, so that qn( f∗) is ultimately
non-Gaussian. /\n;n,n and µ\n;n denote elements (n,n) and n in /\n and µ\n.

In the ratio of cumulative Normals in (22) we have

Vn = /\n;n,n−
82

6 2
∗\n

,

mn( f∗) = µ\n;n+
8( f∗ −µ∗\n)

6 2
∗\n

,

where we define 8= kT∗K−1cn, with cn being column n of /\n.
When comparingVn and /\n;n,n in the numerator and denominator in (22), we see thatVn is close

to /\n;n,n whenever 8 is small compared to 6∗\n. Function mn( f∗) adjusts µ\n;n with a term linear
in how far f∗ differs from the Gaussian mean in (22), and is similarly close to µ\n;n when 8 is small
compared to 62∗\n.

Figure 13 provides an illustration of how the correction in (13) works. A squared exponential
kernel k(xn,xn′) = aexp(− 1

2‖xn− xn′‖2/!2) was used, with a being the (positive) amplitude, and !

8. This representation is chosen for simplicity, although S̃\n contains a zero on its diagonal.
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the characteristic length-scale of the latent function. In Figure 13 the marginals q( f∗) and qn( f∗)
are shown, leading to the first-order correction originally shown in Figure 1.

Appendix C. Useful Distributions in the Exponential Family

In this paper we use the Dirichlet, Normal-Gamma and Normal-Wishart distributions for the MoG
problem. For these distribution have to 1) compute their sufficient statistics, 2) for message passing
solve the inverse problem: given the sufficient statistics we must solve for the parameters of the
distribution and 3) for the predictions with the mixture models compute their predictive distribution.

C.1 Dirichlet

The Dirichlet distribution over the probability simplex 0, #k 0k = 1, is commonly used in two
contexts: here as a prior over mixing proportions in the mixture model, and as a prior/posterior for
the parameters of multinomial distribution. We denote the Dirichlet with parameters 1k by

D(0;1) =
1

ZD (1)
e#k(1k−1) log0k2

(

#
k
0k−1

)

, (23)

ZD (1) =
"k4(1k)
4(#k 1k)

. (24)

C.1.1 SUFFICIENT STATISTICS

The sufficient statistic of the Dirichlet is

〈

log0k
〉

=
9 logZD (1)

91k
= 3(1k)−3

(

#
k
1k

)

, (25)

where 3 is the digamma-function d log4(x)/dx.

C.1.2 INVERSE

In line 5 of the Algorithms 1 and 2 we have to solve the inverse problem: given the statistics
mk = 〈log0k〉 find the parameters 1. This can be done effectively by first solving for

$≡ 3

(

#
k
1k

)

= 3

(

#
k
3−1(mk +$)

)

by Newton’s method, and then setting 1k := 3−1(mk +$).

C.1.3 PREDICTIVE DISTRIBUTION

The Dirichlet can also be used as a prior for the parameters of the multinomial distribution. This
distribution is used multi-category either counts or sequence data. For counts, x = (x1, . . . ,xd) is a
vector of counts for each of the possible d outcomes. For sequence data x is an indicator variable
being one for the outcome and zero in all other entries. The multinomial distribution is:

p(x|0) =
(#k xk)!
x1! . . .xd!

d

"
k=1

0xkk ,
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where the combinatorial prefactor goes away in the sequence case. The predictive distribution for
multinomial data and Dirichlet distributed posterior is straightforward to calculate using the result
for the normalizer of the Dirichlet:

p(x|1) =
Z

d0p(x|0)D(0;1) =
(#l xl)!
x1! . . .xd!

ZD (x+1)
ZD (1)

.

C.2 Normal-Gamma

The Normal-Gamma (or Gauss-Gamma) model is use for a joint distribution of one dimensional
mean and precision (inverse variance) variables:

N G(µ,);m,.,a,b) =
1

Z
N G

(m,.,a,b)
exp



















m.
− 1
2.

−b− 1
2.m

2

a− 1
2









T







µ)
µ2)
)
log)



















,

Z
N G

(m,.,a,b) =

√

20
.
4(a)
ba

,

where this distribution is obtained by multiplying the Normal and Gamma distributions:

N (µ;m,(.))−1) =

√

.)
20
exp
(

−
1
2
(µ−m)2.)

)

,

G();a,b) =
ba

4(a)
exp((a−1) log)−b)) ,

where a and b must be positive.

C.2.1 SUFFICIENT STATISTICS

The sufficient statistics are obtained by using logZ
N G

(m,.,a,b) as a generating function for the
sufficient statistic. By taking derivatives of logZ

N G
with respect to the parameters {m,.,a,b},

.〈µ)〉−.m〈)〉 = 0,

m〈µ)〉−
1
2
〈µ2)〉−m2〈)〉 = −

1
2.

,

〈log)〉 = 3(a)− logb,
−〈)〉 = −a/b ,

we can solve for 〈µ)〉, 〈µ2)〉, 〈)〉 and 〈log)〉.

C.2.2 INVERSE

We can use these expressions to solve for the parameters in terms of the sufficient statistics in the
same fashion as above. We get closed form expressions for three of parameters

m=
〈µ)〉
〈)〉

, .=
1

〈µ2)〉−m2〈)〉
, b=

a
〈)〉

,
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and a should be found from
3(a)− loga= 〈log)〉− log〈)〉

by for example Newton’s method.

C.2.3 PREDICTIVE DISTRIBUTION

The predictive distribution can be calculated straightforwardly from the normalizer and is a univari-
ate Student-t distribution:

p(x|m,.,a,b) =
1√
20

Z
N G

( x+.m
.+1 ,.+1,a+ 1

2 ,b+ .
.+1(x−m)2

)

Z
N G

(m,.,a,b)

= T

(

x; m,
b
a
.+1
.

, 2a
)

,

where T
(

x;µ,62,df
)

is a Student-t distribution with mean µ, variance 62 and df degrees of freedom:

T
(

x;µ,62,df
)

=
1

Z
T
(µ,62,df)

exp

[

−
df+1
2

log

(

1+
1
df

(

x−µ
6

)2
)]

,

Z
T
(µ,62,df) =

√
2062

√

df
2

4
(

df
2

)

4
(

df+1
2

) .

C.3 Normal-Wishart

The Normal-Wishart is the multidimensional generalization of the Normal-Gamma. We will write
the Wishart distribution over positive definite symmetric matrices in the same form as the Gamma
distribution:

W (4;a,B) % exp
((

a−
d+1
2

)

logdet4− trB4
)

,

where the degrees of freedom 2a should be greater than d−1 for the distribution to be normalizable.
The Normal-Wishart is given by

NW (µ,4;m,.,a,B) =
1

Z
NW

(m,.,a,B)

exp











.m
− 1
2.

a− d
2





T



4µ
µT4µ
logdet4



− tr(B+
1
2
.mmT )4






,

Z
NW

(m,.,a,B) = 0d(d−1)/4
(

20
.

)d/2 d

"
l=1

4

(

a+
1− l
2

)

e−a logdetB .

C.3.1 SUFFICIENT STATISTICS

The sufficient statistics follow from a straightforward generalization of the results from the Normal-
Gamma model:

〈4〉 = aB−1,
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〈4µ〉 = 〈4〉m,

〈µT4µ〉 =
d
.

+mT 〈4〉m,

〈logdet4〉 =
d

#
l=1

3

(

a+
1− l
2

)

− logdetB .

C.3.2 INVERSE

From the sufficient statistics we can get closed form expressions for the parameters

m= 〈4〉−1〈4µ〉 , .=
d

〈µT4µ〉−mT 〈4〉m
, B= a〈4〉−1 ,

whereas a should be found from

d

#
l=1

3

(

a+
1− l
2

)

−d loga= 〈logdet4〉− logdet〈4〉 .

C.3.3 PREDICTIVE DISTRIBUTION

A generalization of the result for the predictive distribution in one dimension to the multivariate
case gives:

p(x|m,.,a,b) = T

(

x; m,
2B

2a−d+1
.+1
.

, 2a−d+1
)

,

where T (x;µ,/,df) is the d-dimensional multivariate Student-t distribution with mean µ, covariance
/ and df degrees of freedom:

T (x;µ,/,df) =
1

Z
T
(µ,/,df)

exp
[

−
df+d
2

log
(

1+
1
df

(x−µ)T/−1(x−µ)
)]

,

Z
T
(µ,62,df) =

√

det(20/)

(

df
2

)d/2 4
(

df
2

)

4
(

df+d
2

) .

Appendix D. Inference for a Mixture of Gaussians

When we have unconstrained d-dimensional data we can model this with a Normal (or Gaussian)
distribution,

p(x|µ,4) =N (x;µ,4−1) =

√

det4
(20)d

exp
(

−
1
2
(x−µ)T4(x−µ)

)

,

where µ and 4 are respectively the mean vector and precision (or inverse covariance) matrix. The
conjugate prior for the mean and precision is the Normal-Wishart distribution, which we describe
in appendix C. In the following we choose Gaussians p(x|µk,4k) as components densities p(x|k) in
the mixture.
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D.1 Variational and Predictive Distributions

The q distribution follows the prior and is conveniently chosen to factorise over mixture compo-
nents:

q(!) = q(0)"
k
q(µk,4k)

with q(µk,4k|mk,.k,ak,Bk) being a Normal-Wishart distribution; see Appendix C. We can use the
same machinery as Section 4 to derive the EC approximation to the predictive distribution and the
statistics needed for message passing.

The predictive distribution p(x|D) is again approximated by the form given in (14), with p(x|k)
replaced by

p(x|k) ≡ p(x|mk,.k,ak,Bk) = T

(

x; mk,
2Bk

2ak−d+1
.k +1
.k

, 2ak−d+1
)

. (26)

Here T is a Student-t distribution, which we describe in greater detail in Appendix C.
Likewise, the within data set predictive distribution p(xn|D\n) follows (15); only now p(xn|k)

is replaced with p(xn|k\n), which takes the same form as (26) above, with & replaced by &\n.
The Dirichlet cavity parameters are again 1k\n = 1k,0+#n′ 6=n1k,n′ . The other cavity parameters are
similarly defined in terms of the appropriate parameter vector components, for instance .k\nmk\n =
.k,0mk,0+#n′ 6=n.k,n′mk,n′ .

We can again use the cavity parameters to write qn in terms of q\n:

qn(!) =
Z(&\n,0)
Zn(&\n,1n)

q\n(!)#
k
0k p(xn|µk,4k) .

The normalizer is given by

Zn(&\n,1n) = Z(&\n,0)#
k
〈0k〉q\n p(xn|k\n) , (27)

where the explicit form of Z(&\n,0) is

Z(&\n,0) = ZD (1\n)"
k
Z
NW

(mk\n,.k\n,ak\n,Bk\n) .

D.2 Expectations

The statistics of qn(!) for the mixture of Gaussians are computed by using logZn(&\n) from (27) as a
generating function. To simplify the derivative with respect to the predictive distribution p(xn|k\n),
we introduce another component-specific Normal-Wishart distribution

qk,n(µk,4k) % p(xn|µk,4k)q\n(µk,4k) ,

and write the predictive distribution as a ratio between the normalizers of qk,n and q\n:

p(xn|k\n) =

(20)−d/2Z
NW

(.k\nmk\n+xn
.k\n+1

,.k\n+1,ak\n+ 1
2 ,Bk\n+ 1

2
.k\n

.k\n+1
(xn−mk\n)(xn−mk\n)

T )

Z
NW

(mk\n,.k\n,ak\n,Bk\n)
.
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For example, for 〈4kµk〉 we get

〈

4kµk
〉

qn
=

1
.k\n

d logZn(&\n)

dmk\n
= (1− rnk)

〈

4kµk
〉

q\n
+ rnk

〈

4kµk
〉

qk,n
, (28)

where the “responsibility” (the probability of example n being generated by the kth mixture compo-
nent) is defined as

rnk =
1k\np(xn|k\n)

#k′ 1k′\np(xn|k′\n)
. (29)

The expectation in (28) is expressed as a weighed sum of a “prior” expectation over the cavity
distribution q\n(µk,4k), and a “posterior” expectation over qk,n(µk,4k). The other moments 〈4k〉,
〈µTk 4kµk〉 and 〈logdet4k〉 can be expressed as weighed sums similar to (28):

〈

4k
〉

qn
= (1− rnk)

〈

4k
〉

q\n
+ rnk

〈

4k
〉

qk,n
,

〈

µTk 4kµk
〉

qn
= (1− rnk)

〈

µTk 4kµk
〉

q\n
+ rnk

〈

µTk 4kµk
〉

qk,n
,

〈

logdet4k
〉

qn
= (1− rnk)

〈

logdet4k
〉

q\n
+ rnk

〈

logdet4k
〉

qk,n
.

The explicit expressions for the qk,n are given below, whereas those for q\n can be obtained from
Appendix C:

〈

4k
〉

qk,n
=

(

ak\n+
1
2

)[

Bk\n+
1
2

.k\n
.k\n+1

(xn−mk\n)(xn−mk\n)
T
]−1

,

〈

4kµk
〉

qk,n
=
〈

4k
〉

qk,n

.k\nmk\n+ xn
.k\n+1

,

〈

µTk 4kµk
〉

qk,n
=

d
vk\n+1

+

(

.k\nmk\n+ xn
.k\n+1

)T
〈

4k
〉

qk,n

(

.k\nmk\n+ xn
vk\n+1

)

,

〈

logdet4k
〉

qk,n
=

d

#
i=1

3

(

ak\n+
1
2

+
1− i
2

)

− logdet
(

Bk\n+
1
2

.k\n
.k\n+1

(xn−mk\n)(xn−mk\n)
T
)

.

We have already seen how to solve for 〈log0k〉qn , the only difference being rnk in (16), which we
now take from (29).

Appendix E. Gibbs Sampling for Parallel Tempering

Parallel tempering of a mixture of Gaussian distributions p(xn|!) = #K
k=10kN (xn;µk,4−1k ) requires

a Monte Carlo simulation at inverse temperature 5. We can either sample from p(!|D,5) us-
ing a Metropolis-Hastings (MH) method, or augment the parameter space with latent allocation
variables z so that we can sample from p(!,z|D,5) with Gibbs sampling. We may also define
p(z|D,5) =

R

d! p(!,z|D,5), and devise a MH scheme on this distribution by making random as-
signment changes to z.

The road of Gibbs sampling is pathed with tractable conditional distributions of p(!,z|D,5), and
it is the one we choose. We extend the parameter space to include a binary latent allocation vector zn
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for each data point n to indicate which mixture component was responsible for generating it (Diebolt
and Robert, 1994); consequently znk ∈ {0,1}, and #k znk = 1. The complete joint distribution is
therefore

p(D,z|!)p(!) ="
n
"
k

[

0kN (xn;µk,4−1k )
]znk

p(!) .

We can write the complete data likelihood as p(D,z|!) = p(D|z,!)p(z|!), and in this form the
likelihood, to the power 5, multiplied by the prior over z and !, is

p(D|z,!)5× p(z,!) ="
n
"
k
N (xn;µj,4−1k )5znk ×"

n
"
k
0znkk p(!) .

(Note that the introduction of zmoves 0 to the prior.) With inverse temperature parameter 5 the tem-
pered posterior distribution is p(!,z|D,5) % p(D|z,!)5p(z,!), and can be treated as any missing-
value Gibbs sampling problem. The allocation variables are sampled with

znk|0,µ,4∼
0kN (xn;µk,4−1k )5

#k′ 0k′N (xn;µk′ ,4−1k′ )5
.

Given the allocation variables, we define

rnk = 5znk, x̄k =
1
Nk#n

rnkxn,

Nk =#
n
rnk /k, =

1
Nk#n

rnk(xn− x̄k)(xn− x̄k)T ,

to give the conditional distributions needed for sampling the mixture parameters as

0|z∼D
(

0;11,0+ 1
5N1, . . . ,1K,0+

1
5NK
)

,

µk,4k|z∼NW
(

µk,4k;m,.,a,B
)

, (30)

with

m=
.k,0mk,0+Nkx̄k

.k,0+Nk
,

.= .k,0+Nk,
a= ak,0+Nk/2,

B= Bk,0+
1
2
Nk/k +

1
2
Nkvk,0(x̄k−mk,0)(x̄k−mk,0)T

.k,0+Nk
. (31)

As p(D) =
R

d!dz p(D,!,z), we use the samples over ! and z to estimate the average log likelihood.
If {{0(t)

k,i ,µ
(t)
k,i ,4

(t)
k,i}

K
k=1,{z

(t)
n,i}Nn=1}Tt=1 indicates the samples of chain i (after a burn-in period), then

〈log p(D|!,z)〉5i ≈
1
T #t #n #k

z(t)nk,i logN
(

xn;µ
(t)
k,i ,4

(t)
k,i

−1)
. (32)

Notice that the samples of the mixing weights 0(t)
k,i are not used in estimating the log likelihood

average over the posterior, but occur in the prior.
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E.1 A Practical Generalization (I)

The generalization of PT and TI from Section 5.3 can be made by writing the tempered posterior
distribution as

p(!,z|D,5) %"
n
"
k
N (xn;µk,4−1k )5znk 0znkk p(!)5 q(!)1−5 ,

where "n,k 0
znk
k = p(z|!)5q(z|!)1−5 follows from p(z|!) = q(z|!). To do Gibbs sampling as before,

we have to determine the parameters of the “effective” prior in the above scenario. Here we let q(!)
be in the same family—for example a narrower version—of the prior. If superscripts p and q now
differentiate between the parameters of p(!) and q(!), we use

10 = 51p0 +(1−5)1q0,

mk,0 =
5.pk,0m

p
k,0+(1−5).qk,0m

q
k,0

5.pk,0+(1−5).qk,0
,

.k,0 = 5.pk,0+(1−5).qk,0,

ak,0 = 5apk,0+(1−5)aqk,0,

Bk,0 = 5Bpk,0+(1−5)Bqk,0+
1
2

5.pk,0(1−5).qk,0
5.pk,0+(1−5).qk,0

(mp
k,0−mq

k,0)(m
p
k,0−mq

k,0)
T

as substitute for the usual prior in (30) and (31). The empirical expectation given in (32) should be
generalized—simplifying the left hand side below with p(z,!)/q(z,!) = p(!)/q(!)—to

〈

log p(D|!,z)+ log
p(!)
q(!)

〉

5i
≈
1
T #t

[

log p(0(t)
i )− logq(0(t)

i )+#
k

[

log p(µ(t)
k,i ,4

(t)
k,i)

− logq(µ(t)
k,i ,4

(t)
k,i)+#

n
z(t)nk,i logN

(

xn;µ
(t)
k,i ,4

(t)
k,i

−1)]
]

.

E.2 A Practical Generalization (II)

We implemented a further possible generalization, which arises from choosing q(!) = p(!|D ′),
whereD ′ contains a small subset of data points fromD . This sensibly restricts q to parameter space
closer to the posterior, with the benefit that the normalizer of q needs to be calculated only once.
With |D ′| being small, q can be evaluated analytically without feeling the effect of the exponentially
expanding number of terms. This brings an interesting tradeoff, as setting D ′ ← D solves our
original (difficult) problem. (Figure 3 used this choice of surrogate prior, with D ′ containing 3 out
of a possible 82 data points.)

We can construct q(!) as follows: Let N′ = |D ′| be the number of data points inD ′, so that q(!)
expands as a sum over (N′)K terms. Allow 1, . . . ,K to be the digit set of a number system in base K.
Make a list S of the first (N′)K numbers in base K, such that each number s consists of N′ digits, and
each xn′ ∈D ′ can be associated with a corresponding digit position. Each s ∈ S therefore defines a
unique allocation for all xn′ ∈D ′ to clusters 1, . . . ,K (xn′’s digit value). We shall use the shorthand
D ′
s to indicate a data set with a data point to cluster allocation given by s.
The surrogate prior is a weighted sum of various posteriors

q(!) = p(!|D ′) = #
s∈S

wsp(0|D ′
s)"

k
p(µk,4k|D ′

s) .
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If Zs =
R

d! p(!,D ′
s), the weights are determined with ws = Zs/#s′ Zs′ .

Instead of merely raising q to the power 1− 5, we first turn q into a product amenable to
Gibbs sampling by augmenting it with binary indicator variables y = {ys}s∈S that pick a partic-
ular component of q; #s ys = 1. With q(y) = p(y) ="s w

ys
s , the surrogate prior now takes the form

q(z|!)q(!|y)q(y); the prior becomes p(z|!)p(!)p(y). The empirical expectation in (32) generalizes
to

〈

log p(D|!,z)+ log
p(!)
q(!|y)

〉

5i
≈
1
T #t

[

log p(0(t)
i )−#

s
y(t)s,i log p(0

(t)
i |D ′

s)

+#
k

[

log p(µ(t)
k,i ,4

(t)
k,i)−#

s
y(t)s,i log p(µ

(t)
k,i ,4

(t)
k,i |D

′
s)

+#
n
z(t)nk,i logN

(

xn;µ
(t)
k,i ,4

(t)
k,i

−1)]
]

.

Appendix F. Perturbation Corrections for Mixture of Gaussians

In this appendix we show how to compute the second-order terms of (8),

R= 1+ #
n1<n2

〈

*n1(!)*n2(!)
〉

q
+ #

n1<n2<n3

〈

*n1(!)*n2(!)*n3(!)
〉

q
+ . . . , (33)

and the first-order term in the numerator of (10),

p(x|D) =

R

d!q(!) p(x|!)
(

1+#n *n(!)+#n1<n2 *n1(!)*n2(!)+ . . .
)

1+#n1<n2〈*n1(!)*n2(!)〉q+ . . .
. (34)

The sum in the second order term runs over all distinct pairs and the complexity thus grows as
O(N2). However, one would expect that the largest contribution comes from nearby points, or more
precisely points that belong to the same component, as indicated by a large responsibility for the
same component. Although not done here, it is plausible to restrict the summation to only include
these pairs without sacrificing much precision.

Let & = {1,{mk,vk,ak,Bk}Kk=1} be the parameters that solve the EC equations. We also have
access to the parameters of each of the cavity distributions &\n.

For each n the parameters of qn(!) is given by the parameters of p(xn|!)q\n(!), which expands
as a sum over the K mixture components. Each element k in the sum contains a product of a
Dirichlet density and K Normal-Wishart densities. The Dirichlet parameter vector will have element
k incremented by one, and as xn is associated with component k, it will affect only the parameters
of the kth Normal-Wishart. Therefore, apart from the cavity parameters &\n, we will also need for
each k = 1, . . . ,K:

1∗k\n = 1k\n+1 and 1∗k′\n = 1k′\n for k′ 6= k,

v∗k\n = vk\n+1,

m∗
k\n =

vk\nmk\n+ xn
vk\n+1

,

a∗k\n = ak\n+ 1
2 ,
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B∗
k\n = Bk\n+

1
2

vk\n
vk\n+1

(mk\n− xn)(mk\n− xn)T . (35)

The normalizer of qn(!) follows from (27) to be
R

d!′p(xn|!′)q\n(!′) = #k〈0k〉q\n p(xn|k\n) = Zn.

F.1 Corrections for the Marginal Likelihood

A single second-order term in (33) can be evaluated with

〈

*n1(!)*n2(!)
〉

q
=

Z

d!
qn1(!)qn2(!)

q(!)
−1

= −1+
1
Zn1

1
Zn2

(20)−d
K

#
k=1

K

#
l=1

{

ZD (1)ZD (1(k,l))

ZD (1\n1)ZD (1\n2)

· · ·×
K

"
j=1

Z
NW

(mj,v j,a j,Bj)ZNW
(m(k,l)

j ,v(k,l)j ,a(k,l)
j ,B(k,l)

j )

Z
NW

(mj\n1 ,v j\n1 ,a j\n1 ,Bj\n1)ZNW
(mj\n2 ,v j\n2 ,a j\n2 ,Bj\n2)

}

.

The above sum over k relates xn1 to coming from a particular mixture component k, while the sum
over l does the same for xn2 . For a particular element in the sum over k and l we need parameters
relating to each of the j= 1, . . . ,K mixture components. For the Dirichlet normalizer the parameters
1(k,l)
j depend on whether k= l, implying that both xn1 and xn2 were generated from the same mixture
component, or whether k 6= l, implying that xn1 and xn2 came from different mixture components.
The elements of 1(k,l) are:

1(k,l)
j = 1 j\n1 +1 j\n2 −1 j for j 6= k, l .

When k 6= l two indices j remain to be defined; if k = l we will have one remaining index to take
care of:

1(k,l)
j = 1∗j\n1 +1 j\n2 −1 j for j = k and k 6= l,

1(k,l)
j = 1 j\n1 +1∗j\n2 −1 j for j = l and k 6= l,

1(k,l)
j = 1∗j\n1 +1∗j\n2 −1 j for j = k = l .

For each element in the sum over k and l the Normal-Wishart parameters are similarly defined.
When j 6= k, l we have:

v(k,l)j = v j\n1 + v j\n2 − v j,

m(k,l)
j =

v j\n1mj\n1 + v j\n2mj\n2 − v jm j

v j\n1 + v j\n2 − v j
,

a(k,l)
j = a j\n1 +a j\n2 −a j,

B(k,l)
j = Bj\n1 +

1
2
v j\n1mj\n1m

T
j\n1 +Bj\n2 +

1
2
v j\n2mj\n2m

T
j\n2

· · ·−Bj−
1
2
v jm jmT

j −
1
2
v(k,l)j m(k,l)

j m(k,l)T
j .
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As was seen for the mixture weights, we will need further definitions: when j = k and k 6= l we
shall use v(k,l)j = v∗j\n1 + v j\n2 − v j; a similar definition follows when j = l. Finally, when j = k = l

we find that v(k,l)j = v∗j\n1 + v∗j\n2 − v j. The other Normal-Wishart parameters follow the same route.
The correction evaluates in O(N2K2) complexity.

F.2 Corrections for the Predictive Distribution

From (34) we can compute a first-order correction to the predictive distribution with p(x|D) ≈
R

d!q(!)p(x|!)(1+#n *n(!)), which we rewrite as

p(x|D) ≈#
n

Z

d! p(x|!)qn(!)− (N−1)
Z

d! p(x|!)q(!) .

Each predictive density in the above equation simplifies as

Z

d! p(x|!)qn(!) =
1
Zn#k

#
l























1k\n1l\n
(#k′ 1k′\n+1)#k′ 1k′\n

p(xn|k\n) p(x|l\n) if k 6= l

(1k\n+1)1k\n
(#k′ 1k′\n+1)#k′ 1k′\n

p(xn|k\n) p(x|xn,k\n) if k = l.

We have seen how to compute p(xn|k\n) in (26) and the discussion that followed it; we similarly de-
fine p(x|l\n). Density p(x|xn,k\n) is again the Student-t distribution of (26), but now & is replaced
with &∗

\n from (35). The correction evaluates in O(NK2) complexity.
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Abstract
Process discovery is the automated construction of structured process models from information sys-
tem event logs. Such event logs often contain positive examples only. Without negative examples,
it is a challenge to strike the right balance between recall and specificity, and to deal with problems
such as expressiveness, noise, incomplete event logs, or the inclusion of prior knowledge. In this
paper, we present a configurable technique that deals with these challenges by representing process
discovery as a multi-relational classification problem on event logs supplemented with Artificially
Generated Negative Events (AGNEs). This problem formulation allows using learning algorithms
and evaluation techniques that are well-know in the machine learning community. Moreover, it
allows users to have a declarative control over the inductive bias and language bias.
Keywords: graph pattern discovery, inductive logic programming, Petri net, process discovery,
positive data only

1. Introduction

Learning descriptive or predictive models from sequence data is an important data mining task
with applications in Web usage mining, fraud detection, bio-informatics, and process discovery.
The learning task can be formulated as follows: given a sequence database that contains a finite
number of sequences, find a useful generative model that describes or predicts its spatio-temporal
properties. Depending on the application domain, a variety of sequence models and corresponding
learning algorithms are available. For instance, probabilistic generative models such as (hidden)
Markov models have been successfully applied in speech analysis, and bio-informatics (Durbin
et al., 1998), whereas deterministic models such as partial orders have been applied in domains
such as Web usage mining (Mannila and Meek, 2000; Pei et al., 2006). In this paper, we focus on
the problem of process discovery, the discovery of business process models from event-based data
generated by information systems. Process models typically contain structures such as sequences,
or-splits, and-splits (parallel threads), or-joins, and-joins, loops (iterations), non-local, non-free,
history-dependent or-splits, and duplicate activities. Because Petri nets can represent these con-
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structs, they are known to be a convenient process modeling language (van der Aalst, 1998; Alves
de Medeiros, 2006) provides a detailed overview of how these structures can be represented with
Petri nets.

The motivation for process discovery is the abundant availability of information system event
logs. The analysis of such event logs can provide insight into how processes actually take place,
and to what extent actual processes deviate from a normative process model. Information system
events keep track of, among others, the completion of an activity of a particular activity type. For
example, an event can report that a particular activity of type ‘apply for license’ has completed. The
goal of process discovery is to construct a useful process model that describes the event sequences
recorded in the event log. Example 1, illustrates the learning problem for a fictitious driver’s license
application process. Given the event sequence database in Example 1, a useful process models is to
be conceived.

Example 1 DriversLicensel—discovery of a driver’s license application process with loop. The
transitions correspond to activity types that have the following meaning: a start, b apply for li-
cense, c attend classes cars, d attend classes motor bikes, e obtain insurance, f theoretical exam, g
practical exam cars, h practical exam motor bikes, i get result, j receive license, and k end.

!1 abcefgijk
!2 abdfehijk
!3 abdefhijbdfehijk
!4 abcfegik
. . . . . .

a

b
cd

e

f

g

h i
j

k b

b

c

d

g

hf
i

e

a

k

kj

(a) sequences (b) general (c) specific and general

d

d

a

a

a

a

b

b

b

b

c

c

f

f

f

f

e

e

e

e

k

k

k

k

...

...

...

...

(d) over-specific

The construction of useful process models from an event log is subjected to many challenging
problems. An inherent difficulty is that process discovery is limited to a setting of unsupervised
learning. Event logs rarely contain negative information about state transitions that were prevented
from taking place. Such negative information can be useful to discover the discriminating properties
of the underlying process. In the absence of negative information, it is necessary to provide a learner
with a particular inductive bias, to accurately strike the right balance between generality and speci-
ficity. The absence of negative information, makes the learning task aim at accurately summarizing
an event log such that the discovered process model allows the observed behavior (recall) but does
not include unintended, random behavior that is not present in the event log (specificity). In addition
to accuracy, the learning problem faces challenges such as expressiveness, noise, incomplete event
logs, and the inclusion of prior knowledge:

• accuracy: accuracy refers to the extent to which the induced model fits the behavior in the
event log. Accuracy necessitates a tradeoff between specificity and recall. The Petri net in
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Example 1, called a flower model, is capable of parsing every sequence in the event log. How-
ever, it can be considered to be overly general as it allows any activity to occur in any order.
In contrast, the Petri net in Example 1 is overly specific, as it provides a mere enumeration
of the different sequences in the event log. The Petri net in Example 1 is likely to be the
more suitable process model. It is well-structured, and strikes a reasonable balance between
specificity and generality, allowing for instance an unseen sequence abcefgik, but disallowing
random behavior. An additional difficulty is that in the absence of negative information, the
specificity of a learned process model is difficult to quantify.

• expressiveness: expressiveness relates to the ability to comprehensively summarize an event
log using a rich palette of structures such as sequences, or-splits, and-splits (parallel threads),
or-joins, and-joins, loops (iterations), history-dependent or-splits, and duplicate activities.

• noise: human-centric processes are prone to exceptions and logging errors. This causes ad-
ditional low-frequent behavior to be present in the event log that is unwanted in the process
model to be learned. Process discovery algorithms face the challenge of not overfitting this
noise.

• incomplete logs: incomplete event logs do not contain the complete set of sequences that
occur according to the underlying, real-life process. This is particularly the case for pro-
cesses that portray a large amount of concurrent and recurrent behavior. In this case, process
discovery algorithms must be capable of generalizing beyond the observed behavior.

• prior knowledge: the problem of consolidating the knowledge extracted from the data with
the knowledge representing the experience of domain experts, is called the knowledge fusion
problem (Dybowski et al., 2003). Prior knowledge constrains the hypothesis space of a se-
quence mining algorithm. In the context of process discovery, prior knowledge might refer
to knowledge about concurrency (parallelism), locality, or exclusivity of activities. When a
learner produces a process model that is not in line with the prior knowledge of a domain
expert, the expert might refuse using the discovered process model. For instance, a domain
expert might refuse a process model in which a pair of activities cannot take place concur-
rently, whereas in reality such parallelism is actually allowed.

In this paper, these challenges addressed by representing process discovery as an ILP classi-
fication learning problem on event logs supplemented with artificially generated negative events
(AGNEs). The AGNEs technique is capable of constructing Petri net models from event logs and
has been implemented as a mining plugin in the ProM framework. A benchmark experiment with
34 artificial event logs and comparison to four state-of-the-art process discovery algorithms indicate
that the technique is expressive, robust to noise, and capable of dealing with incomplete event logs.
A second contribution of the paper is the definition of a new metric for quantifying the specificity
of an induced process model, based on these artificially generated negative events.

The remainder of this paper is structured as follows. Section 2 introduces some preliminaries
and notations about inductive logic programming, event logs, and Petri nets. Section 3 explains
the rationale for generating artificial negative events and provides a detailed description of the used
algorithms. Section 4 discusses the process discovery technique. Section 5 introduces the new
specificity metric that is based on negative events. Sections 6 and 7 provide both an experimental
and practical evaluation of the process discovery technique. Finally, Section 8 provides an overview
of the work in the area of process discovery and outlines the contributions made.
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2. Preliminaries

This section introduces the most important concepts and notations that are used in the remainder of
this paper.

2.1 Inductive Logic Programming

Inductive Logic Programming (ILP) (Muggleton, 1990; Džeroski and Lavrač, 1994, 2001; Džeroski,
2003) is a research domain in machine learning involving learners that use logic programming
to represent data, background knowledge, the hypothesis space, and the learned hypothesis. ILP
learners are called multi-relational learners and extend classical, uni-relational learners in the sense
that they can not only learn patterns that occur within single tuples (within rows), but can also find
patterns that may range over different tuples of different relations (between multiple rows of a single
or multiple tables). For process discovery, this multi-relational property is much desired, as it allows
discovering patterns that relate the occurrence of an event to the occurrence of any other event in
the event log.

Within ILP, concept learning is an important learning task. An ILP classification learner will
search for a hypothesis H in a hypothesis space S that best discriminates between the positive P
and negative examples N (E = P∪N) in combination with some given background knowledge B.
A particularly salient feature of such learners is that they have a highly configurable language bias.
The language bias L specifies the hypothesis space S of logic programs H that can be considered.
In addition, users of ILP learners can specify background knowledge B as a logic program. Such
background knowledge is a more parsimonious encoding of knowledge that is true about every
example, than is the case for the attribute-value encoding of propositional learners. In addition to
their multi-relational capabilities, the power of ILP concept learners lies with the configurability of
their language bias L and background knowledge B. The effectiveness by which an ILP learner can
be applied to a learning task depends on the choices that are made in representing the examples E,
the background knowledge B and the language bias L.

In this text, we make use of TILDE (Blockeel and De Raedt, 1998), a first-order decision tree
learner available in the ACE-ilProlog data mining system (Blockeel et al., 2002). Blockeel (1998)
formalizes the learning task of TILDE as follows:
given:

• a set of classesC

• a set of classified examples E, each example (e,c) ∈ E is an independent logic program for
which the predicate Class(c) denotes that e is classified into class c.

• a logic program B that represents the background knowledge

• a language bias L that specifies a hypothesis space S of logic programs.

find: a hypothesis H ∈ S (a logic program) such that for all labeled examples (e,c) ∈ E,

• ∀e ∈ E : H ∧ e∧B !Class(c)

• ∀e ∈ E,∀c′ ∈C\{c} : H ∧ e∧B !Class(c′).
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TILDE is a first-order generalization of the well-known C4.5 algorithm for decision tree induc-
tion (Quinlan, 1993). Like C4.5, TILDE (Blockeel and De Raedt, 1998; Blockeel et al., 2002) ob-
tains classification rules by recursively partitioning the data set according to logical conditions that
can be represented as nodes in a tree. This top-down induction of logical decision trees (TILDE) is
driven by refining the node criteria according to the provided language bias L. Unlike C4.5, TILDE
is capable of inducing first-order logical decision trees (FOLDT). A FOLDT is a tree that holds
logical formula containing variables instead of propositions. Blockeel and De Raedt (1998) show
how each FOLDT can be converted into a logic program.

2.2 Event Logs

In process discovery, an event log is a database of event sequences. Each event reports an instan-
taneous state change of an activity of a particular activity type. Activities and events that pertain
to the same process instance are identified by a so-called case identifier. In process discovery, the
MXML format for event logs (van Dongen and van der Aalst, 2005a) is the commonly accepted
format for event logs. To use event logs with TILDE event logs have to be represented as a logi-
cal program. Let X be a set of event identifiers, P a set of case identifiers, the alphabet A a set of
activity types, and E = {completed,completeRejected} a set of event types. An event predicate is
a quintuple Event(x, p,a,e, t), where x ∈ X is the event identifier, p ∈ P is the case identifier, a ∈ A
the activity type, e ∈ E the event type, and t ∈N the time of occurrence of the event. The function
Case ∈ X ∪L→ P denotes the case identifier of an event or a sequence. The function AT ∈ X → A
denotes the activity type of an event. The function ET ∈ X → E denotes the event type of an event.
The function Time∈X→N denotes the time of occurrence of an event. The set X of identifiers has a
complete ordering, such that ∀x,y∈ X : x< y∨y< x and ∀x,y∈ L : x< y⇒ Time(x)≤ Time(y). The
event types E = {completed,completeRejected} respectively indicate the completion of a particular
activity or that the completion of a particular activity could not take place, a negative event.

Let an event log L be a set of sequences !. Let ! ∈ L be an event sequence, an ordered set of
event identifiers x ∈ X of events pertaining to the same process instance as denoted by the case id;
! = {x | x ∈ X ∧Case(x) = Case(!)}. The function Position ∈ X ×L→ N0 denotes the position
of an event with identifier x ∈ X in the sequence ! ∈ L. Two subsequent event identifiers within a
sequence ! can be represented as a sequence x.y⊆ !. We define the .-predicate as follows

x.y⇔∃x,y ∈ ! : x< y∧"z ∈ ! : x< z< y.

In the text, this predicate is used within the context of a single sequence ! which is therefore left
implicit. Given that AT(x) = a,AT(y) = b the information in the sequence can be further abbreviated
as ab, because the order of the activity types in a sequence is the most important information for the
purpose of process discovery. This notation is used to represent the event log in Example 1. Each
row !i in the event log represents a different execution sequence that corresponds to a particular
process instance.

2.3 Petri Nets

Example 1 is a Petri net representation of a simplified driver’s license application process. Petri nets
represent a graphical language with a formal semantics that has been used to represent, analyze,
verify, and simulate dynamic behavior (Murata, 1989). Petri nets consist of places, tokens, and
arcs. Places (drawn as circles) can contain tokens and are a distributed representation of state.
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Each different distribution of tokens over the places of a Petri net indicate a different state. Such a
state is called a marking. Transitions (drawn as rectangles) can consume and produce tokens and
represent a state change. Arcs (drawn as arrows) connect places and transitions and represent a flow
relationship. More formally, a marked Petri net is a pair ((P,T,F),s) where,

• P is a finite set of places,

• T is a finite set of transitions such that P∩T = /0, and

• F ⊆ (P×T )∪ (T ×P) is a finite set of direct arcs, and

• s ∈ P→N is a bag over P denoting the marking of the net (van der Aalst, 1997, 1998).

Petri nets are bipartite directed graphs, that means that each arc must connect a transition to a place
or a place to a transition. The transitions in a Petri net can be labeled or not. Transitions that are
not labeled are called silent transitions. Different transitions that bear the same label are called
duplicate transitions.

The behavior of a Petri net is determined by the firing rule. A transition t is enabled iff each input
place p of t contains at least one token. When a transition is enabled it can fire. When a transition
fires, it brings about a state change in the Petri net. In essence, it consumes one token from each
input place p and produces one token in each output place p of t. To evaluate the extent to which a
Petri net is capable of parsing an event sequence, transitions might be forced to fire. A transition that
is not enabled, can be forced to fire. When a transition is forced to fire, it consumes one token from
each input place that contains a token—if any—and produces one token in each output place. Petri
nets are capable of representing structures such as sequences, or-splits, and-splits (parallel threads),
or-joins, and-joins, loops (iterations), history-dependent or-splits, and duplicate activities that are
typical for organizational processes.

3. Artificial Negative Events

Event logs generally contain sequences of positive events only. To make a tradeoff between overly
general or overly specific process models, learners make additional assumptions about the given
event sequences. Such assumptions are part of the inductive bias of a learner. Process discovery
algorithms generally include the assumption that event logs portray the complete behavior of the
underlying process and implicitly use this completeness assumption to make a tradeoff between
overly general and overly specific process models. Our technique makes this completeness assump-
tion explicit by inducing artificial negative information from the event log in a configurable way.

For processes that contain a lot of recurrent and concurrent behavior, the completeness assump-
tion can become problematic. For example, a process containing five parallel activities (ten parallel
pairs) that are placed in a loop, has "n

i=1(5!)i different possible execution sequences (n being the
maximum number of allowed loops).

The more recurrent behavior a process has, the more different kinds of event sequences a process
can produce. This makes a given event log less likely to contain all possible behavior. The problem
of recurrent behavior is addressed by restricting the window size (parameter: windowSize). Window
size is the number of events in the subsequence one hopes to detect at least once in the sequence
database. The larger the window size, the less probable that a similar subsequence is contained by
the other sequences in the event log. A limited window size can be advantageous in the presence
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of loops (recurrent behavior) in the underlying process. Limiting the window size to a smaller sub-
sequence of the event log, makes the completeness assumption less strict. An unlimited window
size (windowSize= −1) results in the most strict completeness assumption.

The problem of concurrent behavior is addressed by exploiting some available parallelism in-
formation, discovered by induction or provided as prior knowledge by a domain expert. Given a
subsequence and parallelism information, all parallel variants of the subsequence can be calculated.
Taking into account the parallel variants of a subsequence makes the completeness assumption less
strict.The function AllParallelVariants(#) returns the set of all parallel variants that can be obtained
by permuting the activities in each sub-sequence of # while preserving potential dependency rela-
tionships among non-parallel activities.

Negative events record that at a particular position in an event sequence, a particular event
cannot occur. At each position k in each event sequence #i, it is examined which negative events can
be induced for this position. Algorithm 1 gives an overview of the negative event induction and is
discussed in the next paragraphs. In a first step, the event log is made more compact, by grouping
process instances ! ∈ L that have identical sequences into grouped process instances # ∈ M (line
1). By grouping similar process instances, searching for similar behavior in the event log can be
performed more efficiently.

In the next step, all negative events are induced for each grouped process instance (lines 2–12).
Making a completeness assumption about an event log boils down to assuming that behavior that
does not occur in the event log, should not occur in the process model to be learned. Negative
examples can be introduced in grouped process instances #i by checking at any given positive event
xk ∈ #i at position k = Position(xk,#i) whether another event of interest zk of activity type b ∈
A\{AT(xk)} also could occur. For each event xk ∈ #i, it is tested whether there exists a similar
sequence #‖j ∈AllParallelVariants(# j) : # j 3= #i in the event log in which at that point a state transition
yk has taken place that is similar to zk (line 6). If such a state transition does not occur in any other
sequence, such behavior is not present in the event log L. This means under the completeness
assumption that the state transition cannot occur. Consequently, zk can be added as a negative event
at this point k in the event sequence #i (lines 7–8). On the other hand, if a similar sequence is found
with this behavior, no negative event is generated.

Finally, the negative events in the grouped process instances are used to induce negative events
into the similar non-grouped sequences. If a grouped sequence # contains negative events at position
k, then the ungrouped sequence ! contains corresponding negative events at position k. At each
position, a large number of negative events can generally be generated. To avoid an imbalance in the
proportion of negative versus positive events the addition of negative events can be manipulated with
a negative event injection probability $ (line 13). $ is a parameter that influences the probability that
a corresponding negative event is recorded in an ungrouped trace !. The smaller $, the less negative
events are generated at each position in the ungrouped event sequences. A value of $ = 1.0 means
that every induced negative event for a grouped sequence is included in every similar, corresponding,
non-grouped sequence. A value of $= 0 will result in no negative events being induced for any of
the corresponding, non-grouped sequences.

Example 2 illustrates how in an event log of two (grouped) sequences #1 and #2 artificial negative
events can be generated. The event sequences originate from a simplified driver’s license process,
depicted at the bottom. Given the parallelism information, Parallel(e, f ), the event sequences each
have two parallel variants. When generating negative events into event sequence #1, it is examined
whether instead of the first event b the events c,d,e, f ,g,h, or i could also have occurred at the
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Algorithm 1 Generating artificial negative events
1: Group similar sequences ! ∈ L into # ∈M
2: for all #i ∈M do
3: for all xk ∈ #i do
4: k = Position(xk,#i)
5: for all b ∈ A\{AT(xk)} do
6: if "#‖j ∈ AllParallelVariants(# j) : ∀# j ∈M∧ # j 3= #i∧

∀yl ∈ #‖j ,Position(yl,#
‖
j) = l = Position(xl,# j),k − windowSize < l < k : AT(yl) =

AT(xl)∧
yk ∈ #‖j ,Position(yk,#

‖
j) = k,AT(yk) = b then

7: zk = event with AT(zk) = b,ET(zk) = completeRejected
8: recordNegativeEvent(zk,k,#i)
9: end if

10: end for
11: end for
12: end for
13: Induce negative events in the non-grouped sequences ! ∈ L according to an injection frequency

$

first position. Because there is no similar sequence #‖j in which c,d,e, f ,g,h, or i occur at this
position, it can be concluded that they are negative events. Consequently ¬c,¬d,¬e,¬ f ,¬g,¬h,
and ¬i are added as negative events at this position. Other artificial negative events are generated
in a similar fashion. Notice that history-dependent processes generally will require a larger window
size to correctly detect all non-local dependencies. In Example 2, an unlimited window size is used.
Should the window size be limited to 1, for instance, then it would no longer be possible to take into
account the non-local dependency between the activity pairs c–g and d–h. In the experiments at the
end of this paper, an unlimited window size has been used (parameter value -1).

4. Process Discovery

Having an algorithm to artificially generate negative events, it becomes possible to represent process
discovery as a binary classification problem, that learns the conditions that discriminate between the
occurrence of an activity (a positive event), or the non-occurrence of an activity (a negative event).
Algorithm 2 outlines four major steps in the AGNEs process discovery procedure. These four steps
are addressed this section.

4.1 Step 1: Induce Parallelism and Locality Information

The starting point is the gathering of information about local dependency (Local(a,b)), and par-
allelism relationships (Parallel(a,b), or Serial(a,b)) that exist between pairs of activities a,b ∈ A
in an event log L. Locality information is used in the language bias of the classification learner,
to constrain the hypothesis space to locally discriminating preconditions when required. Without
locality information, the classification learner is likely also to come up with non-local dependencies
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Example 2 (Continued from example 1.) DriversLicense—Generating artificial negative events for
a simplified event log with two abbreviated event sequences.

#1 b c e f g i
#2 b d f e h i

Parallel(e, f ).

(a) given event log and background knowledge

#‖1 b c f e g i
#‖1 b c e f g i
#‖2 b d f e h i
#‖2 b d e f h i

(b) the derived parallel variants

#1 b c e f g i
¬c ¬b ¬b ¬b ¬b ¬b
¬d ¬e ¬c ¬c ¬c ¬c
¬e ¬ f ¬d ¬d ¬d ¬d
¬ f ¬g ¬g ¬g ¬e ¬e
¬g ¬h ¬h ¬h ¬ f ¬ f
¬h ¬i ¬i ¬i ¬h ¬g
¬i ¬i ¬h

#2 b d f e h i
¬c ¬b ¬b ¬b ¬b ¬b
¬d ¬e ¬c ¬c ¬c ¬c
¬e ¬ f ¬d ¬d ¬d ¬d
¬ f ¬g ¬g ¬g ¬e ¬e
¬g ¬h ¬h ¬h ¬ f ¬ f
¬h ¬i ¬i ¬i ¬g ¬g
¬i ¬i ¬h

(c) the induced negative events

b
c

d

g

hf
i

e

(d) the underlying Petri net

Algorithm 2 Process discovery by AGNEs: overview
1: step 1: induce parallelism and locality from frequent temporal constraints
2: step 2: generate artificial negative events
3: step 3: learn the preconditions of each activity type
4: step 4: transform the preconditions into a Petri net

that cannot easily be transformed into a graphical model. Parallelism information is used to prevent
the construction of sequential models, where in reality concurrency is expected.

This information is either gathered by the analysis of frequent temporal constraints that hold
in the event log or by means of user-specified prior knowledge. Frequent temporal constraints
are temporal constraints that hold in a sufficient number of sequences ! within an event log L.
Goedertier (2008), defines a number of temporal constraints and shows how local dependency and
parallelism information can be derived from it.

Additionally, the end-user can also specify locality and parallelism information in terms of prior
knowledge. In particular, the following predicates can be used: PriorParallel(a,b), PriorSerial(a,b),
PriorLocal(a,b), and PriorNonLocal(a,b). Information specified using these predicates defeats any
inference about locality or parallelism made on the basis of the information gathered from frequent
temporal constraints.

4.2 Step 2: Generate Artificial Negative Events

A second step in the process discovery technique is the induction of artificial negative events, as
described in Section 3. The inferred information about parallel activity pairs can be used for parallel
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variant calculation. Furthermore, the induction of negative events is dependent on the window size
windowSize, and negative event injection probability $ parameters.

4.3 Step 3: Learn the Preconditions of each Activity Type

It is now possible to represent process discovery as a multiple, first-order classification learning
problem that learns the preconditions that discriminate between the occurrence of either a positive
or a negative completion event for each activity type. In our experiments, we make use of TILDE,
an existing multi-relational classification learner, to perform the actual classification learning.

The motivation for representing process discovery as a classification problem is that it allows
using classification learning and evaluation techniques that are well-known in the machine learning
community. Furthermore, classification learners have the potential to deal with so-called duplicate
tasks. Duplicate tasks refer to the reoccurrence of identically labeled transitions, homonyms, in
different contexts within the event logs. Classification learning can detect the different execution
contexts for these transitions and derive different preconditions for them. Transforming these pre-
conditions into graphs will eventually result in duplicate, homonymic activities in the graph model
that correspond to the different usage contexts. Techniques for process discovery, such as heuris-
tics miner and genetic miner, which have causal matrices as internal representation (Weijters et al.,
2006; Alves de Medeiros et al., 2007), are unable to discover duplicate activities. Alves de Medeiros
(2006), however, presents a non-trivial extension of the genetic miner that includes duplicate tasks.

The motivation for using a multi-relational, first-order representation is that first-order learning
allows relating the occurrence of an event to the occurrence of any other event. This enables the
detection of patterns that involve non-local, historic, dependencies between events. Alternatively,
the history of each event could in part be represented as extra propositions, for instance by including
all preceding positive events as extra columns in the event log. This propositional representation
would have many difficulties.

Being able to detect non-local, historic patterns in an event log can also produce counter-intuitive
results. A non-local relationship might have more discriminating power than a local one and can
therefore be preferred by a learner. Unfortunately, an excess of non-local patterns makes it more
difficult to generate a graphical model, a Petri net, containing local connections. Because TILDE al-
lows specifying a language bias with dynamic refinement (Blockeel and De Raedt, 1998), it becomes
possible to constrain the hypothesis space to locally discriminating patterns whenever necessary.
One technique is the dynamic generation of constants, that can be used to constrain the combina-
tions of activity type constants that are to be considered for a particular language bias construct.
Additionally, it is also possible to constrain the occurrence of particular literals in a hypothesis H,
given the presence or absence of other literals that are already part of the hypothesis.

The classification task of TILDE is to predict whether for a given activity type a ∈ A, at a given
time point t ∈ N in a given sequence ! ∈ L, a positive or a negative event takes place. In the
case of a positive event, the target predicate evaluates to Class(a,!, t,completed). In the case of
a negative event, the target predicate evaluates to Class(a,!, t,completeRejected). In the language
bias, the target activity, indicated by a, will be used for dynamically constraining the combinations
of activity type constants generated.

The primary objective of AGNEs being the construction of a graphical model from an event log,
the language bias consists of a logical predicate that can represent the conditions under which a Petri
net place contains a token. This predicate is called the “no-sequel” predicate, NS(a1,a,!, t). Let
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a1,a ∈ A be activity types, ! ∈ L the sequence of a process instance, and t the time of observation.
The NS predicate is defined as follows:

∀a1,a ∈ A, t ∈N : ∃x ∈ ! : AT(x) = a1 ∧ Time(x) < t
∧ "y ∈ ! : AT(y) = a ∧ Time(x) < Time(y) < t ⇒ NS(a1,a,!, t).

In the remainder of this text, the arguments ! and t will be implicitly assumed and therefore left
out. The predicate NS(a1,a) evaluates to true when at the time of observation, an activity a1 has
completed, but has not (yet) been followed by an activity a. In combination with conjunction (∧),
disjunction (∨) and negation-as-failure (∼), the NS(a1,a) predicate makes it possible to learn frag-
ments of Petri nets using a multi-relational classification learner.

Example 3 shows how the preconditions in the Petri net can be represented as conjunctions and
disjunctions of NS atoms. This representation accounts for the different contexts in which the activ-
ities applyForLicense and end can take place and derives different preconditions for these activities.
In addition, it can represent the non-local, non-free, history-dependent choice construct between the
activities attendClassesCars–doPracticalExamCars and attendClassesMotorBikes–
doPracticalExamMotorBikes and the maximum recurrence of the activity applyForLicense. The
Petri net fragments included in the language bias of AGNEs are enumerated in Figure 1 and are
briefly discussed in the remainder of this section.

Example 3 (Continued from example 2) DriversLicensel—A Petri net in terms of NS preconditions

activity precondition
a start true
b applyForLicense NS(a,b)
b applyForLicense (NS(i,b) ∧ NS(i, j) ∧ NS(i,k))

∧ OccursLessThan(b,3)
c attendClassesCars NS(b,c) ∧ NS(b,d)
d attendClassesMotorBikes NS(b,c) ∧ NS(b,d)
e obtainInsurance NS(c,e) ∨ NS(d,e)
f doTheoreticalExam NS(c, f ) ∨ NS(d, f )
g doPracticalExamCars (NS( f ,g) ∧ NS( f ,h)) ∧

(NS(e,g) ∧ NS(e,h)) ∧ NS(c,g)
h doPracticalExamMtrBikes (NS( f ,g) ∧ NS( f ,h)) ∧

(NS(e,g) ∧ NS(e,h)) ∧ NS(d,h)
i getResult NS(g, i) ∨ NS(h, i)
j receiveLicense NS(i,b) ∧ NS(i, j) ∧ NS(i,k)
k end NS( j,k)
k end NS(i,b) ∧ NS(i, j) ∧ NS(i,k)

applyForLicense applyForLicense

[OccursLessThan(applyForLicense, 3)]

[OccursLessThan(applyForLicense, 3)]

attendClassesCars attendClassesMotorBikes

doPracticalExamCars doPracticalExamMotorBikes

doTheoreticalExam

getResult

obtainInsurance

start

receiveLicense

end

end

(a) DriversLicensel—activity preconditions (b) DriversLicensel—Petri net

Figure 1(a) shows a graphical representation of the local sequence predicate that is part of the
language bias. A local sequence of two transitions labeled a1,a∈ A in a Petri net can be represented
by NS(a1,a). In the language bias, the following constraints apply:
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a1 a

NS(a1,a)

(a) local sequence

a

[OccursLessThan(a, N)]

OccursLessThan(a,N)

(b) max occurrence

a

[: Attribute = V alue]

: Attribute=Value

(c) data condition

a1

a2

a

NS(a1,a)∧NS(a1,a2)

(d) or-split

a1 a

NS(a1,a)

(e) global sequence

a1

a2

a

NS(a1,a)∨NS(a2,a)

(f) or-join

a1 a2

a

NS(a1,a)∧NS(a1,a2)

(g) skip sequence

Figure 1: Petri net patterns in the language bias

sequence NS(a1,a)
constraints: Local(a1,a). (1)

"l ∈ H : l = [NS( ,a1)]. (2)

The conversion fromNS-based preconditions into Petri nets requires the conditions to refer to lo-
cal, immediately preceding events as much as possible. Therefore, constraint (1) requires to restrict
the generation of constants a1 to constants that are local to a. In constraint (1) we do not require a1
and a to be different activity types. This is sufficient for the discovery of length-one loops. Graphi-
cally, a conjunction of NS constructs can be considered to be the logical counterpart of a single Petri
net place. Besides the case of length-one loops—that can be expressed with a single NS construct—
there is no reason for a Petri net place to contain both an input and an output arc that is connected
to the same transition. Constraint (2) has been put in place to keep a multi-relational learner from
constructing such useless hypotheses. The constraint stipulates that the construct NS(a1,a) can only
be added to the current hypothesis H, if H does not already contain a logical condition that boils
down to an output arc towards a1.

The same NS(a1,a) construct, with different constraints, can be used to keep track of a global
sequence (see Figure 1(e)). Global sequences are used to represent non-local, non-free choice con-
structs. We require TILDE only to consider global sequence between activity types for which both
a precedence and a response relationship has been detected from the event log, this is expressed as
a language bias constraint. Because we assume that any transition must be locally connected, that
is connected to other transitions to which it is local in the event log, we require as an additional
constraint that the global sequence construct must not be added first to any hypothesis. The other
Petri net based language constructs depicted in Figure 1 have similar definitions and are described
in detail by Goedertier (2008).
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The language bias of TILDE is limited to conjunctions and disjunctions of NS constructs of
length two and three. Or-splits and or-joins that involve more activity types are obtained by grouping
conjunctions and disjunctions of NS constructs into larger conjunctions and disjunctions in step 4.
However, this limitation in length sometimes leads to TILDE make inadequate refinements. Solving
this language bias issue, requires constructing a proprietary ILP classification algorithm that during
each refinement step allows considering conjunctions of NS constructs of variable lengths. We leave
this improvements to future work.

4.4 Step 4: Transform the Preconditions into a Petri Net

In the previous step, TILDE has learned preconditions for each activity type independently. In
a Petri net, the preconditions for each activity type are nonetheless interrelated. Therefore, the
logic programs of activity preconditions are submitted to several rule-level pruning steps, to make
sure that they do not produce redundant duplicate places in the Petri net to be constructed. These
pruning steps occur among the conditions within a single precondition, within a set of preconditions
to the same activity type and among preconditions of activity types that pertain to the same or-split.
Given a pruned rule set of preconditions for each activity type, the construction of a Petri net is
fairly straightforward. Each induced precondition corresponds to a different transition in a Petri
net to be constructed. Because AGNEs may produce several preconditions for an activity type, the
constructed Petri net may contain duplicate transitions. Algorithm 3 provides an overview of these
procedures. In the remainder of this section, these different pruning steps will be discussed and
illustrated for a sample of rules from the DriversLicensel example.

The logic programs constructed by TILDE contain rules that classify the occurrence of either
a positive or a negative event. By construction, the language bias of AGNEs is such that TILDE
will never consider a negation of an NS construct to be explanatory for the occurrence of a positive
event. Therefore, TILDE will never construct a tree in which a right leaf predicts a positive event.
The latter entails that, in equivalent the logic program, the rules with a class(a,!, t,comleted) rule
head can be taken from the logic programs without loss of information (line 1). Example 4 depicts
the preconditions that are induced by TILDE for the apply for license and end activities in the
DriversLicensel example.

In a second step, a number of intra-rule pruning operations take place (lines 2–6). The top-
down refinement of hypotheses, can result in the derivation of logically redundant conditions. These
logical redundancies are removed for each rule (line 3). Each rule in the logic program consists of
conjunctions of groups of NS constructs. A conjunction of a pair of or-split constructs that originate
from the same activity a1 can be combined into a larger or-split (line 4). Likewise, a conjunction
of a pair of or-joins can be combined into a larger or-join (line 5). Example 4 illustrates intra-rule
pruning for the DriversLicensel example.

In a third step, a number of inter-rule pruning operations are performed for the preconditions that
pertain to each activity type. In particular, a precondition that subsumes another precondition for the
same activity type, is redundant and thus removed from consideration (lines 10–12). Furthermore,
it is examined whether a more specific or-join can be constructed out of the groups of NS constructs
within the different preconditions of the same rule (lines 13–15). Finally, all rules are examined to
find the most specific or-split condition from the preconditions extracted by TILDE (lines 18–26).
Example 4 illustrates this pruning for the DriversLicensel example.
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Example 4 (Continued from example 3.) DriversLicensel—pruning

rules induced by TILDE :
b apply for license (NS(i,b)∨NS(a,b))∧ (NS(i,b)∧NS(i, j)).
b apply for license (NS(i,b)∨NS(a,b)).
k end (NS( j,k)).
k end (NS(i,b)∧NS(i,k)).
intra-rule pruning:
b apply for license (NS(i,b)∧NS(i, j)). (line 3)
b apply for license (NS(i,b)∨NS(a,b)).
k end (NS( j,k)).
k end (NS(i,b)∧NS(i,k)).
inter-rule pruning, most specific or split:
b apply for license (NS(i,b)∧NS(i, j)∧NS(i,k)). (lines 18–26)
b apply for license (NS(a,b)). (lines 10–12)
k end (NS( j,k)).
k end (NS(i,b)∧NS(i, j)∧NS(i,k)). (lines 18–26)

5. Evaluation Metrics

Discovered process models preferably allow the behavior in the event log (recall) but no other,
unobserved, random behavior (specificity). Having formulated process discovery as a binary classi-
fication problem on event logs supplemented with artificial negative events, it becomes possible to
use the true positive and true negative rate from classification learning theory to quantify the recall
and specificity of a process model:

• true positive rate TPrate or recall: the percentage of correctly classified positive events in
the event log. This probability can be estimated as follows: TPrate = TP

TP+FN , where TP is the
amount of correctly classified positive events and FN is the amount of incorrectly classified
positive events.

• true negative rate TNrate or specificity: the percentage of correctly classified negative events
in the event log. This probability can be estimated as follows: TNrate = TN

TN+FP , where TN
is the amount of correctly classified negative events and FP is the amount of incorrectly
classified negative events.

Accuracy is the sum of the true positive and true negative rate, weighted by the respective class
distributions. The fact that accuracy is relative to the underlying class distributions can lead to
unintuitive interpretations. Moreover, in process discovery, these class distributions can be quite
different and have no particular meaning. In order to make abstraction of the proportion of negative
and positive events, we propose, from a practical viewpoint to attach equal importance to both
recall and specificity: acc = 1

2recall+
1
2specificity. According to this definition, the accuracy of

a majority-class predictor is 1
2 . Flower models, such as the one in Example 1(b), are an example

of such a majority-class predictors. Because a flower model represents random behavior, it has a
perfect recall of the all behavior in the event log but it also has much additional behavior compared
to the event log. Because of the latter fact, the flower model has zero specificity, and an accuracy of
1
2 . Any useful process model should have an accuracy higher than 1

2 .
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Algorithm 3 Rule-level pruning
1: R+ = {r ∈ R | r has rule head class(a,!, t,comleted) }.
// intra-rule pruning:

2: for all r ∈ R+ do
3: reduce r according to (NS1 ∨NS2)∧NS1 ≡ NS1.
4: group or-splits: NS(a1,a)∧NS(a1,a2) ∈ r and NS(a1,a)∧NS(a1,a3) ∈ r into NS(a1,a)∧

NS(a1,a2)∧NS(a1,a3).
5: group or-joins: NS(a1,a) ∨ NS(a2,a) ∈ r and NS(a3,a) ∨ NS(a4,a) ∈ r into NS(a1,a) ∨

NS(a2,a)∨NS(a3,a)∨NS(a4,a).
6: end for
//inter-rule pruning:

7: for all a ∈ A do
8: R+

a = {r ∈ R+ | r is a precondition of a}
9: for all r ∈ R+

a do
10: if ∃s ∈ R+

a : s is more specific than r then
11: remove r.
12: end if
13: if ∃s ∈ R+

a : s combined with r lead to a more specific or-join than r then
14: replace the or-join in r with the more specific or-join.
15: end if
16: end for
17: end for

//keep the most specific or-split:
18: for all a ∈ A do
19: Rsplita = {r ∈ R+ | r contains an or-split going out a }.
20: s = the most specific or-split by combining the or-splits going out a in Rsplita .
21: for all r ∈ Rsplita do
22: if s is more specific than r then
23: replace the or-split in r with the or-split in s.
24: end if
25: end for
26: end for

The metrics that are introduced in this section will be used to evaluate the performance of
AGNEs in the following sections. They have been defined and implemented for Petri nets. However,
they can also be applied to other generative models.

5.1 Existing Metrics

Weijters et al. (2006) define a metric that has a somewhat similar interpretation as TPrate: the parsing
measure PM. The measure is defined as follows:

• parsing measure PM: the number of sequences in the event log that are correctly parsed by
the process model, divided by the total number of sequences in the event log. For efficiency,
the similar sequences in the event log are grouped. Let k represent the number of grouped
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sequences, ni the number of process instances in a grouped sequence i, ci a variable that is
equal to 1 if grouped sequence i can be parsed correctly, and 0 if grouped sequence i cannot
be parsed correctly. The parsing measure can be defined as follows Weijters et al. (2006):

PM =
"k
i=1 nici
"k
i=1 ni

.

PM is a coarse-grained metric. A single missing arc in a Petri net can result in parsing failure for all
sequences. A process model with a single point of failure is generally better than a process model
with more points of failure. This is not quantified by the parsing measure PM.

Rozinat and van der Aalst (2008) define two metrics that have a somewhat similar interpretation
as TPrate and TNrate: the fitness metric f and the advanced behavioral appropriateness metric a′

B:

• fitness f : Fitness is a metric that is obtained by trying whether each (grouped) sequence in
the event log can be reproduced by the generative model. This procedure is called sequence
replay. The metric assumes the generative model to be a Petri net. At the start of the sequence
replay, f has an initial value of one. During replay, the transitions in the Petri net will produce
and consume tokens to reflect the state transitions. However, the proportion of tokens that
must additionally be created in the marked Petri net, so as to force a transition to fire, is
subtracted from this initial value. Likewise, the fitness measure f punishes for extra behavior
by subtracting the proportion of remaining tokens relative to the total number of produced
tokens from this initial value. Let k represent the number of grouped sequences, ni the number
of process instances, ci the number of tokens consumed, mi the number of missing tokens, pi
the number of produced tokens, and ri the number of remaining tokens for each grouped
sequence i (1 ≤ i ≤ k). The fitness metric can be defined as follows (Rozinat and van der
Aalst, 2008):

f =
1
2

(

1− "k
i=1 nimi

"k
i=1 nici

)

+
1
2

(

1− "k
i=1 niri

"k
i=1 nipi

)

.

• behavioral appropriateness a′

B: Behavioral appropriateness is a metric that is obtained by
an exploration of the state space of a Petri net and by comparing the different types of follows
and precedes relationships that occur in the state space with the different types of follows and
precedes relationships that occur in the event log. The metric is defined as the proportion of
number of follows and precedes relationships that the Petri net has in common with the event
log vis-à-vis the number of relationships allowed by the Petri net. Let SmF be the SF relation
and SmP be the SP relation for the process model, and SlF the SF relation and SlP the SP relation
for the event log. The advanced behavioral appropriateness metric a′

B is defined as follows
(Rozinat and van der Aalst, 2008):

a
′

B =

(

|SlF ∩SmF |
2.|SmF |

+
|SlP∩SmP |

2.|SmP |

)

.

Rozinat and van der Aalst (2008) also report a solution to two non-trivial problems that are encoun-
tered when replaying Petri nets with silent steps and duplicate activities. In the presence of silent
steps (or invisible tasks) it is non-trivial to determine whether there exist a suitable firing sequence
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of invisible tasks such that the right activities become enabled for the Petri net to optimally replay a
given sequence of events. Likewise, in the presence of multiple enabled duplicate activities, it is a
non-trivial problem of determining the optimal firing, as the firing of one duplicate activity affects
the ability of the Petri net to replay the remaining events in a given sequence of events. Rozinat and
van der Aalst (2008) present two local approaches that are based on heuristics involving the next
activity event in the given sequence of events.

Fitness f and behavioral appropriateness a′

B are particularly useful measures to evaluate the
performance of a discovered process model. Moreover, these metrics have been implemented in
the ProM framework. However, the interpretation of the fitness measure requires some attention:
although it accounts for recall as it punishes for the number of missing tokens that had to be created,
it also punishes for the number of tokens that remain in a Petri net after log replay. The latter can be
considered extra behavior. Therefore, the fitness metric f also has a specificity semantics attached
to it. Furthermore, it is to be noted that the behavioral appropriateness a′

B metric is not guaranteed
to account for all non-local behavior in the event log (for instance, a non-local, non-free, history-
dependent choice construct that is part of a loop will not be detected by the measure). In addition,
the a′

B metric requires an analysis of the state space of the process model or a more or less exhaustive
simulation to consider all allowable sequences by the model.

5.2 New Metrics

The availability of an event log supplemented with artificial negative events, allows for the definition
of a new specificity metric that does not require a state space analysis. Instead, specificity can be
calculated by parsing the (grouped) sequences, supplemented with negative events. We therefore
define:

• behavioral recall rpB: The behavioral recall rpB metric is obtained by parsing each grouped
event sequence. The values for TP and FN are initially zero. Starting from the initial marking,
each sequence is parsed. Whenever an enabled transitions fires, the value for TP is increased
by one. Whenever a transition is not enabled, but must be forced to fire the value for FN is
increased. As an optimization, identical sequences are only replayed once. Let k represent
the number of grouped sequences, ni the number of process instances, TPi number of events
that are correctly parsed, and FNi the number events for which a transition was forced to fire
for each grouped sequence i (1 ≤ i≤ k). At the end of the sequence replay, rpB is obtained as
follows:

rpB =

(

"k
i=1 niTPi

"k
i=1 niTPi+"k

i=1 niFNi

)

.

In the case of multiple enabled duplicate transitions, sequence replay fires the transition of
which the succeeding transition is the next positive event (or makes a random choice). In
the case of multiple enabled silent transitions, log replay fires the transition of which the
succeeding transition is the next positive event (or makes a random choice). Unlike the fitness
metric f , rpB does not punish for remaining tokens. Whenever after replaying a sequence
tokens remaining tokens cause additional behavior by enabling particular transitions, this is
punished by our behavioral specificity metric snB.

• behavioral specificity snB: The behavioral specificity snB metric can be obtained during the
same replay as rpB. The values for TN and TP are initially zero. Whenever during replay,
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a negative event is encountered for which no transitions are enabled, the value for TN is
increased by one. In contrast, whenever a negative event is encountered during sequence
replay for which there is a corresponding transition enabled in the Petri net, the value for FP
is increased by one. As an optimization, identical sequences only are to be replayed once. Let
k represent the number of grouped sequences, ni the number of process instances, TNi number
of negative events for which no transition was enabled, and FPi the number negative events
for which a transition was enabled during the replay of each grouped sequence i (1 ≤ i≤ k).
At the end of the sequence replay, snB is obtained as follows:

snB =

(

"k
i=1 niTNi

"k
i=1 niTNi+"k

i=1 niFPi

)

.

Because the behavioral specificity metric snB checks whether the Petri net recalls negative event, it
is inherently dependent on the way in which these negative events are generated. For the moment,
the negative event generation procedure is configurable by the negative event injection probability
$, and whether or not it must account for the parallel variants of the given sequences of positive
events. For the purpose of uniformity, negative events are generated in the test sets with $ equal to
1.0 and account for parallel variants = true.

6. Experimental Evaluation

AGNEs has been implemented in Prolog. In particular, the frequent temporal constraint induction,
the artificial negative event generation, the language bias constraints, and the pruning and graph
construction algorithms all have been written in Prolog. As mentioned before, AGNEs makes use
of TILDE, an existing multi-relational classifier (Blockeel and De Raedt, 1998), available in the
ACE-ilProlog data mining system (Blockeel et al., 2002). To be able to benefit from the facilities of
the ProM framework, a plugin was written that makes AGNEs accessible in ProM.1 Figure 3 depicts
a screen shot of AGNEs in ProM.

In this section the results of an experimental evaluation of AGNEs are presented. First we
will discuss the properties of the event logs and the parameter settings that have been used. Then,
in Section 6.1, we analyse the expressiveness of AGNEs and benchmark the ability of AGNEs
to generalize from incomplete event logs. In Section 6.2, we analyze the results of a number of
noise experiments with different types and levels of noise that have been carried out to test how the
learning algorithm behaves in the presence of noise.

In order to evaluate and compare the performance of AGNEs, a benchmark experiment with 34
event logs has been set up. These event logs have previously been used by Alves de Medeiros (2006)
and Alves de Medeiros et al. (2007) to evaluate the genetic miner algorithm. Table 1 describes the
properties of the underlying artificial process models of the event logs. The number of different
process instance sequences (column “3= process inst.”) gives an indication of the amount of different
behavior that is present in the event log. This number is to be compared with the total number of
process instances in the event logs. In general, the presence of loops and parallelism exponentially
increases the amount of different behavior that can be produced by a process. Therefore, the number
of activity types that are pairwise parallel and the number and type of loops have been reported in
Table 1. In correspondence with the naming conventions used by Alves de Medeiros, nfc stands for

1. The AGNEs plugin is available from http://www.processintelligence.be/AGNEs.php.
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non-free-choice, l1l and l2l stands for the presence of a length-one and length-two loop respectively,
and st and unst stands for structured and unstructured loops. Furthermore, the presences of special
structures such as skip activities and (parallel or serial) duplicate activities have been indicated. For
most of the event logs in the experiment, a reference model was available that can be assumed to
represent the behavior in the event log. Columns “rpB reference model” and “snB reference model”
indicate the behavioral recall and specificity of the reference models with respect to the original
event logs.

In the experiments, the performance of AGNEs is compared to the performance of four state-
of-the-art process discovery algorithms: %+ (van der Aalst et al., 2004; Alves de Medeiros et al.,
2004), %++ (Wen et al., 2007), genetic miner (Alves de Medeiros et al., 2007) and heuristics miner
(Weijters et al., 2006). Being the first large-scale, comparative benchmark study in the literature
of process discovery, we have chosen to include algorithms that already have appeared as journal
publications (%+, %++, and genetic miner) or that are much referenced in the literature (heuristics
miner).

During all experiments, the algorithms were run with the same, standard parameter settings of
their ProM 4.2 implementation, as reported in Table 2. These parameter settings coincide with the
ones used to run similar experiments by the authors of the algorithms. To enable a comparison on
the same terms, AGNEs was not provided with prior knowledge regarding parallelism or locality
of activity types. In particular, the thresholds used to induce frequent temporal patterns have been
given the following values (tabsence = 0.9, tchain = 0.08, tsucc = 0.8, tordering = 0.08, ttriple = 0.10). In
practice, a good threshold depends on the amount of low-frequent behavior (noise) one is willing to
accept within the discovered process model. The negative event injection probability $ influences
the proportion of artificially generated negative events in an event log. A strong imbalance of this
proportion may bias a classification learner towards a majority class prediction, without deriving
any useful preconditions for a particular activity type. As a rule of thumb, it is a good idea to set
this parameter value as low as possible, without the learner making a majority class prediction. In
the experiments $ has been given a default value of 0.08. Ex-post, AGNEs warns the user when too
low a value for $ has led to a majority-class prediction. TILDE’s C4.5 gain metric was used as a
heuristic for selecting the best branching criterion. In addition, TILDE’s C4.5 post pruning method
was used with a standard confidence level of 0.25. Furthermore, TILDE is forced to stop node
splitting when the number of process instances in a tree node drops below 5. The same parameter
settings have been used on all 34 data sets. Empirical validation has shown the parameter settings
to work well across all data sets.

The AGNEs technique, has run times in between 20 seconds and 2 hours for the data sets in the
experiments on a Pentium 4, 2.4 Ghz machine with 1GB internal memory. These processing times
are well in excess of the processing times of %+, %++ and heuristics miner. In comparison to the run
times of the genetic miner algorithm, processing times are considerably shorter. Most of the time
is required by TILDE to learn the preconditions for each activity type. The generation of negative
events also can take up some time. As process discovery generally is not a real-time data mining
application, less attention has been given to computation times.

6.1 Zero-noise, Cross Validation Experiment

To evaluate AGNEs’ expressiveness and ability to generalize, a 10-fold cross-validation experiment
has been set up. In the literature on process discovery, cross-validation has only been considered by
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a10skip 12 6 300 1.000 1.000 1 1
a12 14 5 300 1.000 1.000 2
a5 7 13 300 1.000 1.000 1 1 l1l
a6nfc 8 3 300 1.000 1.000 1 1
a7 9 14 300 1.000 1.000 4
a8 10 4 300 1.000 1.000 1
al1 9 98 300 1.000 0.996 n.a. 1 unst
al2 13 92 300 1.000 0.992 n.a. 2 unst
betaSimplified 13 4 300 1.000 1.000 0 1 1 2
bn1 42 4 300 1.000 1.000 0
bn2 42 25 300 1.000 1.000 0 1 st
bn3 42 150 300 1.000 0.999 0 2 st
choice 12 16 300 1.000 1.000 0
DriversLicense 9 2 300 1.000 1.000 0
DriversLincensel 11 87 350 1.000 0.986 1 1 st 1 1 1
herbstFig3p4 12 32 300 1.000 0.999 3 1 st
herbstFig5p19 8 6 300 1.000 1.000 1 1
herbstFig6p18 7 153 300 1.000 0.977 0 1 l1l, 1 l2l
herbstFig6p19 5 136 300 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
herbstFig6p31 9 4 300 1.000 1.000 0 1
herbstFig6p33 10 4 300 1.000 1.000 0 1
herbstFig6p36 12 2 300 1.000 1.000 0 1
herbstFig6p37 16 135 300 1.000 0.996 36
herbstFig6p38 7 5 300 1.000 1.000 3 1 par.
herbstFig6p39 7 12 300 1.000 1.000 1
herbstFig6p41 16 12 300 1.000 1.000 4
herbstFig6p45 8 12 300 1.000 1.000 5
l1l 6 69 300 1.000 0.988 1 2 l1l
l1lSkip 6 269 300 1.000 0.732 0 2 l1l
l2l 6 10 300 1.000 1.000 0 1 l2l
l2lOptional 6 9 300 1.000 1.000 0 1 l2l
l2lSkip 6 8 300 1.000 0.999 0 1 l2l
parallel5 10 109 300 1.000 1.000 10
repair2 8 48 1000 0.998 0.995 2 1 unst

Table 1: Event log properties

Goedertier et al. (2008) and Rozinat et al. (2007). The reason for the absence of cross-validation
experiments, is that process discovery is an inherently descriptive learning task rather than a pre-
dictive one. The primary intent of process discovery is to produce a model that accurately describes
the event log at hand. Nonetheless, it is interesting to test the predictive ability of process discovery
algorithms in an experimental setting. To apply cross-validation, a randomization routine has been

1324



ROBUST PROCESS DISCOVERY WITH ARTIFICIAL NEGATIVE EVENTS

Algorithm (Ref.) Parameter settings

%+

(Alves de Medeiros et al., 2004)

derive succession from partial order information = true
enforce causal dependencies within events of the same activity = false
enforce parallelism by overlapping events = false

%++

(Wen et al., 2007)
(no settings)

heuristics miner
Weijters et al. (2006)

relative to best threshold = 0.05
positive observations = 10
dependency threshold = 0.9
length-one-loops threshold = 0.9
length-two-loops threshold = 0.9
long-distance threshold = 0.9
dependency divisor = 1
and threshold = 0.1
use all-activities-connected heuristic = true
use long-distance dependency heuristic = false

genetic miner
(Alves de Medeiros et al., 2007)

population size = 100
max number generations = 1000
initial population type = possible duplicates
power value = 1
elitism rate = 0.2
selection type = tournament 5
extra behavior punishment with & = 0.025
enhanced crossover type with crossover probability = 0.8
enhanced mutation type with mutation probability = 0.2

AGNEs

prior knowledge none
temporal constraints tabsence = 0.9, tchain = 0.08, tsucc = 0.8,

tordering = 0.08, ttriple = 0.1
negative event generation injection probability $ = 0.08

calculate parallel variants = true
include global sequences = true

language bias: include occurrence count = false
data conditions = none

TILDE splitting heuristic: gain
minimal cases in tree nodes = 5
C4.5 pruning with confidence level = 0.25

graph construction tconnect = 0.4

Table 2: Parameter settings

written in SWI-Prolog that groups similar sequences, randomly partitions the grouped event log in
n = 10 uniform subgroups, and produces n pairs of training and test event logs. Training event
logs are used for the purpose of process discovery. Test event logs are used for evaluation, this is
for calculating the specificity and recall metrics. For the purpose of this experiment, no noise was
added to the event logs.

Specificity metrics must be calculated based on the combination of training and test event logs,
the entire event log. Although this might seem unintuitive, specificity and specificity metrics make
a completeness assumption as well, as they account for the amount of extra behavior in a process
model vis-à-vis the event log (Rozinat and van der Aalst, 2008). To correctly evaluate the proposed
learning technique, it is important that the negative events in the test set accurately indicate the state
transitions that are not present in the event log. For this reason, the negative events in the test log are
created with information from the entire event log. Should the negative event generation be based
on training set instances only, it is possible that additional, erroneous negative events are injected
because it is possible that some behavior is not present in the test set. In short, the experiment applies
the above-described partitioning, after having generated negative events for each grouped process
instance. Intended to be used by the evaluation metric, the negative events have been generated with
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an injection probability $ equal to 1, an infinite window size, and by considering parallel variants.
Evidently, the thus generated negative events were not retained in the training set. For training
purposes, negative events have been calculated based on the information in the training set only.
For the same reasons, the behavioral appropriateness metric a′

B has also been calculated based on
the whole of training and test set data.

In the experiment, only 19 out of the 34 event logs were retained, as the other event logs have
less than 10 different sequences. Table 3 shows the aggregated, average results of the 10-fold cross
validation experiment over 190 event logs. The best average performance over the 34 event logs
is underlined and denoted in bold face for each metric. We then use a paired t-test to test the
significance of the performance differences (Van Gestel et al., 2004). Performances that are not
significantly different at the 5% level from the top-ranking performance with respect to a one-
tailed paired t-test are tabulated in bold face. Statistically significant underperformances at the 1%
level are emphasized in italics. Performances significantly different at the 5% level but not at the
1% level are reported in normal font. For the PM measure, no paired t-tests could be performed,
because the metric could not be calculated on some of the process models discovered by %+ and
%++. The latter is the case when the discovered process models have disconnected elements.

From the results for the parsing measure PM, the fitness measure f , and behavioral recall mea-
sures rpB, it can be concluded that genetic miner scores slightly better on the recall requirement.
Moreover, the behavioral specificity metric snB shows genetic miner and heuristics miner to produce
slightly more specific models.

PM f a′

B acc rpB snB accpnB
zero noise %+ 0.72 0.96 0.96 0.96 0.97 0.83 0.90

%++ 0.77 0.97 0.81 0.88 0.97 0.90 0.93
AGNEs 0.80 0.98 0.81 0.89 0.98 0.91 0.94
genetic 0.83 0.99 0.84 0.91 0.98 0.93 0.95
heuristics 0.79 0.97 0.85 0.91 0.97 0.93 0.95

Table 3: 10-fold cross validation experiment - aggregated results

From the cross-validation experiment, we conclude that AGNEs portrays similar generalization
behavior to other process discovery algorithms. The reason that it is not sensitive to incomplete
event logs can be attributed to the following. Given an incomplete event log, AGNEs is likely
to generate a proportion of incorrect negative events. However, this proportion of negative events
is relatively small, as the negative event injection parameter $ is not required to be excessively
large. More importantly, the coarse-grained language bias that combines NS constructs into larger
structures, prevents TILDE from overfitting the incomplete event log and allows it to generalize,
to some extent, beyond the observed behavior. The additional incorporation of process knowledge
expressed by a domain expert would only add to this benefit. Finally, the negative event injection
procedure takes into account parallelism and window size. Concurrent and recurrent behavior are
the root causes of incomplete event logs. The ability to include information about parallel variants
and window size, gives our learning technique a configurable inductive bias, with different strategies
to account for incompleteness.
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(b) heuristics miner result

Figure 2: herbstFig6p33: AGNEs detects the duplicate activity A

The metrics rpB and snB do not indicate a large or significant difference for the performance of
%++, AGNEs, genetic miner, and heuristics miner. Only by looking at the individual process mod-
els, the expressiveness of AGNEs with respect to the detection of non-local, non-free choice con-
structs or the discovery of duplicate tasks becomes apparent. Example 3, discussed in Section 4.3,
shows how AGNEs is capable of detecting non-local, non-free choice constructs, even within the
loop of the DriversLicensel reference problem. AGNEs is also particularly suited for the detection
of duplicate activities. In the herbstFig6p33 event log, the activity A occurs in three different con-
texts and AGNEs draws three different, identically labeled transitions correspondingly. Figure 2
compares the results of heuristics miner and AGNEs on this event log.

The goal of process discovery is to give an idea of how the processes recorded in the event log
actually have taken place. This goal makes process discovery an inherently descriptive learning
task. To evaluate the accuracy of the discovered process model, it is therefore justified to compare
the learned process models on the same sequence the process models are learned from. In the
process discovery literature, this training-log-based evaluation has been the dominant evaluation
paradigm (Alves de Medeiros et al., 2007; Weijters et al., 2006). Consequently, the remaining
experiments of this paper use training-log-based evaluation.

6.2 Training-log-based Noise Experiment

In these experiments we have stirred up the 34 event logs with artificial noise. In the literature,
six artificial noise types have been described (Maruster, 2003; Alves de Medeiros et al., 2007): (1)
missing head: the removal of the head of a sequence, (2) missing body: the removal of the mid
section of a sequence, (3) missing tail: the removal of the end section of a sequence, (4) swap tasks:
the interchange of two random events in a sequence, (5) remove task: the removal of a random
event in a sequence, and (6) mix all: a combination of all of the above. The noise has been added
with the AddNoiseLogFilter event log filter available in the ProM framework. This filter has been
applied after ungrouping the 34 event logs. To keep the size of the experiment under control, we
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have limited the noise types used in our experiments to mix all and swap tasks. For both noise types,
the used noise levels of 5%, 10%, 20% and 50% are applied.

Table 4 reports the average results of the discovered process models over the all 34 correspond-
ing zero noise event logs. As is known from the literature, heuristics miner is resilient to noise,
whereas the formal approaches of %+ and %++ and the genetic miner are known to overfit the noise
in event logs. On 11 event logs from the bn1, bn2, and bn3 processes, the %++ implementation was
incapable of producing an outcome. These missing values resulted in a score of 0 for each measure.
Furthermore, the state space analysis required to calculate the behavioral appropriateness measure
a′

B produces invalid outcomes that occur 27 times for the results of the genetic miner algorithm out
of a total of 272 (34 x 8) experiments, the reported results for the genetic miner are less suitable
for comparison. For this reason, we only indicate the significance of the rpB and snB outcomes with
respect to the top ranking performance. For the PM, f , and a′

B metrics, the algorithm that has ob-
tained the best average score, is underlined. For every noise level, AGNEs obtains accuracy results
that are robust and not significantly different from the results obtained by heuristics miner. This is a
remarkable result, as AGNEs is a more expressive algorithm than heuristics miner, also capable of
detecting more complex structures such as non-local dependencies and duplicate activities.

To calibrate the metrics, we also report their evaluation of the so-called flower model for the
zero-noise case. Because the flower model parses every possible sequence, it has a perfect recall but
zero specificity. These properties are to some extent reflected in the metrics in Table 4. The fitness
measure f and the behavioral recall measure rpB are both 1.0, whereas the behavioral specificity
metric snB amounts to 0. The behavioral appropriateness measure a′

B does not really seem to quantify
the lack of specificity of the flower model.

The reasons why AGNEs is robust to noise can be put down to the following. First of all, the
generation of negative events is not invalidated by the presence of noise. Noise is additional low-
frequent behavior that will result in less negative events being generated by AGNEs. However, the
presence of noisy positive events does not lead to the generation of noisy negative ones. Another
property that adds to robustness, is that the constraints in AGNEs ’ language bias allows it to come
up with structured patterns and to some extent prevents the construction of arbitrary connections
between transitions, while remaining expressive with regard to short loops, duplicate tasks and
non-local behavior. Finally, the formulation of process discovery as a classification allows for the
application of an already robust classification algorithm (TILDE). Like many classification learners,
TILDE takes into account the frequency of an anomaly, when constructing the preconditions for
each activity type. Moreover, TILDE applies the same tree-level pruning method as C4.5 (Quinlan,
1993).

7. A Case Study

This section shows the result of the AGNEs process discovery algorithm applied to an event log of
customer-initiated processes, recorded by a European telecom provider. The goal of the case study
was to investigate whether AGNEs can be usefully applied to map the routing choices that are made
between queues of a workflow management system (WfMS). With 18721 process instances and 127
queues, the obtained log file has a size of over 130 megabytes in the form of a comma-separated
text file. The case study gives an idea of the scalability of the algorithm towards large event logs
and the usefulness of the AGNEs process discovery algorithm on realistic, real-life processes.
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PM f a′

B acc rpB snB accpnB
zero-noise %+ 0.72 0.96 0.92 0.94 0.96 0.85 0.91

%++ 0.82 0.98 0.87 0.92 0.98 0.93 0.96
AGNEs 0.90 0.99 0.87 0.93 0.99 0.96 0.98
genetic 0.91 1.00 0.83 0.91 0.99 0.95 0.97
heuristics 0.88 0.99 0.86 0.92 0.99 0.95 0.97
flower 1.00 1.00 0.23 0.61 1.00 0.00 0.50

mix all0.05 %+ 0.11 0.83 0.85 0.84 0.87 0.62 0.74
%++ 0.00 0.79 0.65 0.72 0.75 0.63 0.69
AGNEs 0.89 0.99 0.87 0.93 0.99 0.95 0.97
genetic 0.74 0.99 0.63 0.81 0.98 0.91 0.95
heuristics 0.88 0.98 0.87 0.93 0.98 0.94 0.96

mix all0.1 %+ 0.08 0.80 0.84 0.82 0.84 0.59 0.72
%++ 0.00 0.73 0.80 0.76 0.64 0.64 0.64
AGNEs 0.83 0.99 0.89 0.94 0.99 0.96 0.97
genetic 0.51 0.97 0.59 0.78 0.94 0.78 0.86
heuristics 0.88 0.99 0.86 0.92 0.99 0.95 0.97

mix all0.2 %+ 0.00 0.77 0.91 0.84 0.82 0.51 0.67
%++ 0.00 0.65 0.65 0.65 0.49 0.63 0.55
AGNEs 0.79 0.97 0.87 0.92 0.97 0.94 0.96
genetic 0.47 0.96 0.53 0.74 0.93 0.73 0.83
heuristics 0.86 0.98 0.85 0.92 0.98 0.94 0.96

mix all0.5 %+ 0.00 0.63 0.75 0.69 0.67 0.46 0.56
%++ 0.00 0.51 0.61 0.58 0.26 0.70 0.48
AGNEs 0.54 0.96 0.77 0.87 0.97 0.90 0.93
genetic 0.20 0.95 0.43 0.69 0.86 0.53 0.69
heuristics 0.66 0.97 0.74 0.85 0.96 0.88 0.92

swap tasks0.05 %+ 0.00 0.65 0.85 0.75 0.76 0.45 0.60
%++ 0.00 0.59 0.67 0.63 0.52 0.61 0.56
AGNEs 0.90 0.99 0.87 0.93 0.99 0.96 0.97
genetic 0.44 0.95 0.61 0.78 0.90 0.74 0.82
heuristics 0.88 0.99 0.85 0.92 0.99 0.95 0.97

swap tasks0.1 %+ 0.00 0.58 0.86 0.72 0.69 0.48 0.58
%++ 0.00 0.53 0.66 0.59 0.38 0.61 0.49
AGNEs 0.78 0.98 0.87 0.93 0.98 0.94 0.96
genetic 0.38 0.94 0.53 0.74 0.89 0.65 0.77
heuristics 0.80 0.97 0.86 0.92 0.98 0.94 0.96

swap tasks0.2 %+ 0.00 0.54 0.77 0.66 0.59 0.52 0.55
%++ 0.00 0.45 0.65 0.55 0.27 0.67 0.47
AGNEs 0.73 0.97 0.86 0.92 0.98 0.93 0.95
genetic 0.19 0.93 0.62 0.77 0.84 0.52 0.68
heuristics 0.69 0.96 0.87 0.92 0.96 0.88 0.92

swap tasks0.5 %+ 0.00 0.41 0.61 0.51 0.40 0.63 0.51
%++ 0.00 0.36 0.61 0.48 0.16 0.77 0.46
AGNEs 0.32 0.91 0.72 0.81 0.95 0.82 0.89
genetic 0.07 0.93 0.77 0.85 0.79 0.40 0.59
heuristics 0.45 0.94 0.66 0.80 0.94 0.83 0.89

Table 4: noise experiments - average, zero-noise training-log-based results

The event log consists of events about customer-initiated processes that are handled at three
different locations by the employees of the telecom provider. The handling of cases is organized in a
first line and a second line. First-line operators are junior operators that deal with frequent customer
requests for which standardized procedures have been put in place. When a first-line operator cannot
process a case, it is routed to a queue of the second line. Second-line case handling is operated by
senior experts who have the authority to make decisions to solve the more involved cases. The
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Figure 3: AGNEs in ProM 4.2

second-line processes are coordinated and supported by means of a workflow management system
(WfMS). The obtained event log consists of these second-line case handling events. The second-
line WfMS is organized as a system of 127 logical queues. Each queue corresponds to a number
of similar types of activities that are to be carried out. At any given moment each active case
resides in exactly one queue. Employees can process a case by taking it out of the queue into their
personal work bin. Every evolution of a case is documented by adding notes. Moreover, employees
can classify the nature of the case according to a number of data fields. In addition, a worker or
dispatcher has the ability to reroute cases to different queues whenever this is necessary. The system
imposes no restrictions with regard to the routing of cases. Queues represent a work distribution
system and are akin to roles in WfMS. For the purpose of this analysis, queues are considered to
be activity types. The 40 most frequently occurring queues were retained for further analysis. Nine
process instances that did not involve at least one of these 40 queues were retained from the event
log.

We compare the mining results of AGNEs, genetic miner, and heuristics miner. Some parameter
settings that are different from the experimental evaluation in the previous section. In particular,
AGNEs was provided with the prior knowledge that no activity can occur concurrently: ∀a,b ∈ A :
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PM f a′

B acc rpB snB accpnB
AGNEs 0.06 0.94 0.67 0.80 0.93 0.67 0.80
genetic 0.03 x.xx x.xx x.xx 0.83 0.62 0.73
heuristics 0.80 0.97 0.72 0.85 0.96 0.88 0.92
flower model 0.00 1.00 0.76 0.88 1.00 0.00 0.50

Table 5: telecom—training-log-based results

PriorSerial(a,b). This prior knowledge is justifiable, as no case can be routed to or reside in several
queues at the same time. Genetic miner has been running for 5000 generations, with a population
size of 10. These parameter settings correspond to the parameter settings in the case study described
by Alves de Medeiros et al. (2007). To account for the prior knowledge that no concurrent behavior
is contained in the event log, heuristics miner needs to have an infinite AND threshold. In general
AGNEs allows to provide a-priori locality and parallelism information for individual pairs of activity
types. This fine-grained a-priori knowledge cannot be provided by fine-tuning the AND threshold
with heuristics miner. Currently, it is not possible to constrain the search space of genetic miner
with this a-priori knowledge.

The results of applying these process discovery algorithms on the filtered event log are displayed
in Figure 4. Table 5 gives an overview of the metrics that compare the discovered process models to
the original event log. As the purpose of the case study is to provide the most accurate description
of the event log, the use of training data for evaluation is justified. To calibrate the metrics, we also
report their evaluation of the so-called flower model. Because the flower model represents random
behavior, it has a perfect recall of the all behavior in the event log but it also has much additional
behavior compared to the event log. Because of the latter fact, the flower model has zero specificity.
These properties are to some extent reflected in the metrics in Table 5. The fitness measure f and the
behavioral recall measure rpB are both 1.0, whereas the behavioral specificity metric snB amounts to 0.
The table also indicates the usefulness of the metrics proposed in this paper. The parsing measure
PM does not reflect the recall of the flower model. Furthermore, the behavioral appropriateness
measure a′

B does not really seem to quantify the lack of specificity of the flower model. For the
genetic miner mining result, the ProM implementations of f , and a′

B did not produce an outcome. To
calculate these metrics, a conversion of the heuristics nets into Petri nets is required. The resulting
Petri nets, which have many invisible transitions, are seemingly too complex to calculate the metric.
These results are an indication of the usefulness of the new specificity metric proposed in this paper.

Comparing the available rpB and snB outcomes, it can be observed that AGNEs performs better
than genetic miner, but worse than heuristics miner on the obtained event log. The discovered pro-
cess model by AGNEs has an accuracy of 80%, whereas the models discovered by genetic miner
and heuristics miner have an accuracy of 73% and 92% respectively. This case study brings forward
that human-centric processes contained in the event log can take place in a less structured fashion
than often is assumed by process discovery algorithms. In this particular case, for instance, it seems
that OR-splits and OR-joins can involve a rather high number of outgoing or incoming activities. In
the current implementation, the language bias of TILDE is limited to conjunctions and disjunctions
of NS constructs of length two and three. This imposes limitations on the hypotheses that can be
learned by AGNEs. As indicated in Section 4.3, solving this language bias issue, requires construct-
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Figure 4: telecom—mining results

ing a proprietary ILP classification algorithm that during each refinement step allows considering
conjunctions of NS constructs of variable lengths. In this regard, the language bias of Heuristics
Miner seems to be less limiting, although Heuristics Miner does not have many of the declarative
properties of AGNEs. Another outcome of the case study, is that the proposed measures for behav-
ioral recall rpB and behavioral specificity snB in practice turn out to be valuable metrics for assessing
the accuracy of a discovered process model.

8. Related Work

Process discovery can be seen as an application of the machine learning of grammars from posi-
tive data, of which Angluin and Smith (1983) provide an overview. Gold (1967) has shown that
important classes of recursively enumerable languages cannot be identified in the limit from a finite
number of positive examples only. Instead, both positive and negative examples are required for
grammar learning to distinguish the right hypothesis among an infinite number of grammars that fit
the positive examples. Whereas Gold’s negative learnability result applies to the learning of gram-
mars with perfect accuracy, process discovery is more concerned with the ability to discover process
models that have only a good recall and specificity. Learning grammars from only positive examples
requires a tradeoff between overly general and overly specific hypotheses. Muggleton (1996) shows
that in a Bayesian framework, logic programs are learnable with arbitrarily low error from positive
examples only. Bayes’ theorem allows to formulate this tradeoff as a tradeoff between size and
generality of the hypotheses and learning can be considered to maximization the posterior proba-
bility over all hypotheses. In this paper, a new approach for making the tradeoff between generality
and specificity is proposed, by inducing artificial negative events using a (highly configurable) as-
sumption about the completeness of the behavior displayed by the positive examples in the event
log. Another difference with grammar learning is that in grammar learning, the hypothesis space
is often expressed as production rules, automata or regular expressions, whereas process discovery
uses formalisms that can represent the concurrency and synchronization concerns of processes more
elegantly.
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Process models are in general deterministic. In the literature, there are many formalisms to
represent and learn the probability distributions of stochastic, generative grammars over sequences
of observed characters and unobserved state variables. Historically, techniques like Markov mod-
els, hidden Markov models, factorial hidden Markov models, and dynamic Bayesian networks have
been first applied to speech recognition, and bio-informatics (Durbin et al., 1998). Each representa-
tion has its own particular modeling features that makes it more or less suited for representing the
human-centric behavior of business processes. Factorial hidden Markov models, for instance, have
a distributed state representation that allows for the modeling of concurrent behavior (Ghahramani
and Jordan, 1997). Hidden Markov models have furthermore been provided with a first-order, ex-
tension that allows for the representation of sequences of logical atoms rather than alphabets of flat
characters (Kersting et al., 2006). Other authors describe learning mixture models to identify mean-
ingful clusters of (hidden) Markov models (Smyth, 1997; Cadez et al., 2003). Whereas stochastic
models provide useful information, their probabilistic nature tends to compromise the comprehen-
sibility of discovered process models. Business processes have well-defined start, end, split, and
synchronization nodes. The network structure of stochastic models does not visualize this. For
instance, although hidden states could be useful in representing duplicate activities—the same ac-
tivity label is logged in different contexts—a hidden Markov model is unlikely to be capable of
comprehensively representing its different usage contexts.

In contrast, Mannila and Meek (2000) describe a technique to learn two-component mixture
models of global partial orders that provide an understandable, global view of the sequential data.
The authors assume the presence of one dominant, global partial order and consider a generic par-
tial order with random behavior to deal with low-frequent variations (noise) from the former model.
Silva et al. (2005) describe a probabilistic model and algorithm for process discovery that discov-
ers so-called and/or graphs in polynomial time. These and/or graphs are comprehensible, directed
acyclic graphs that have the advantage over global partial order representations that they can dif-
ferentiate between parallel and serial split and join points. Pei et al. (2006) describe a scalable
technique for discovering the complete set of frequent, closed partial orders from sequential data.
The three aforementioned techniques assume each item to occur only once within a sequence, and
do not consider recurrent behavior (cycles), nor duplicate activities.

The term process discovery was coined by Cook and Wolf (1998), who apply it in the field
of software engineering. Their Markov algorithm can only discover sequential patterns as Markov
chains cannot elegantly represent concurrent behavior. The idea of applying process discovery in
the context of workflow management systems stems from Agrawal et al. (1998) and Lyytinen et al.
(1998). The value of process discovery for the general purpose of process mining (van der Aalst
et al., 2007) is well illustrated by the plugins within the ProM framework. In analogy with the
WEKA toolset for data mining (Witten and Frank, 2000), the ProM Framework consists of a large
number of plugins for the analysis of event logs (Process Mining Group, TU/Eindhoven, 2008). The
Conformance Checker plugin (Rozinat and van der Aalst, 2008), for instance, allows identifying the
discrepancies between an idealized process model and an event log. Moreover, with a model that
accurately describes the event log, it becomes possible to use the time-information in an event log
for the purpose of performance analysis, using, for instance, the Performance Analysis with Petri
nets plugin.

Table 6 provides a chronological overview of process discovery algorithms that have been ap-
plied to the context of workflow management systems. The % algorithm can be considered to be a
theoretical learner for which van der Aalst et al. (2004) prove that it can learn an important class

1333



GOEDERTIER, MARTENS, VANTHIENEN AND BAESENS

of workflow nets, called structured workflow nets, from complete event logs. The % algorithm as-
sumes event logs to be complete with respect to all allowable binary sequences and assumes that
the event log does not contain any noise. Therefore, the % algorithm is sensitive to noise and in-
completeness of event logs. Moreover, the original % algorithm was incapable of discovering short
loops or non-local, non-free choice constructs. Alves de Medeiros et al. (2004) have extended the %
algorithm to mine short loops and called it %+. Wen et al. (2007) made an extension for detecting
implicit dependencies, for detecting non-local, non-free choice constructs. None of the algorithms
can detect duplicate activities. The main reason why the % algorithms are sensitive to noise, is that
they does not take into account the frequency of binary sequences that occur in event logs. Weijters
and van der Aalst (2003) and Weijters et al. (2006) have developed a robust, heuristic-based method
for process discovery, called heuristics miner, that is known to be noise resilient. Heuristics miner
can discover short loops, and non-local, non-free choice as it can consider non-local dependencies
within an event log. However, heuristics miner cannot detect duplicate activities.

Algorithm (Ref.) Summary
global partial orders
(Mannila and Meek, 2000)

Learns a two-component mixture model of a dominant series-parallel partial order and
a trivial partial order by searching for the dominant partial order that yields the highest
probability for generating the observed sequence database.

little thumb, heuristics miner
(Weijters and van der Aalst, 2003)
(Weijters et al., 2006)

Extends the % algorithm by taking into account the frequency of the follows relation-
ship, to calculate dependency/frequency tables from the event log and uses heuristics to
convert this information into a heuristics net.

%,%+

(van der Aalst et al., 2004)
(Alves de Medeiros et al., 2004)

Derives a Petri net from local, binary ordering relations detected within an event log.

splitpar—InWoLvE
(Herbst and Karagiannis, 2004)

Derives a so-called stochastic activity graph and converts it into a structured process
model in the Adonis Modeling language.

multi-phase miner
(van Dongen and van der Aalst, 2005b)

Constructs a process model for every sequence in the log and aggregates the model into
an event-driven process chain.

%++

(Wen et al., 2007)
Extends the % algorithm to discover non-local, non-free choice constructs.

–
(Silva et al., 2005)

A probabilistic approach to process discovery.

frecpo
(Pei et al., 2006)

A scalable technique for discovering the complete set of frequent, closed partial orders
from sequential data.

FSM/Petrify miner
(van der Aalst et al., 2006)

Derives a highly configurable finite state machine from the event log and folds the finite
state machine into regions using the theory of regions.

–
(Ferreira and Ferreira, 2006)

Learns the case data preconditions and effects of activities with ILP classification tech-
niques and user-supplied negative events.

genetic miner
(Alves de Medeiros et al., 2007)

A genetic algorithm that selects the more complete and precise heuristics nets over gen-
erations of nets.

DecMiner
(Lamma et al., 2007)

A classification technique that learns the preconditions of activities with the ICL ILP
learner from event logs with user-supplied negative sequences.

fuzzy miner
(Günther and van der Aalst, 2007)

An adaptive simplification and visualization technique based on significance and corre-
lation measures to visualize unstructured processes.

Table 6: Chronological overview of process discovery algorithms

van Dongen and van der Aalst (2005b) present a multi-phase approach to process mining that
starts from the individual process sequences, constructs so-called instance graphs for each sequence
that account for parallelism, and then aggregates these instance graphs according to previously
detected binary relationships between activity types. Interestingly, the aggregation ensures that
every discovered process model has a perfect recall, but generally scores less on specificity. Herbst
and Karagiannis (2004) describe the working of the splitpar algorithm that is part of the InWoLvE
framework for process analysis. This algorithm derives a so-called stochastic activity graph and
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converts it into a structured process model. The splitpar algorithm is capable of detecting duplicate
activities, but it is not able to discover non-local dependencies.

Alves de Medeiros et al. (2007) describe a genetic algorithm for process discovery. The fitness
function of this genetic algorithm incorporates both a recall and a specificity measure that drives
the genetic algorithm towards suitable models. The genetic miner is capable of detecting non-local
patterns in the event log and is described to be fairly robust to noise. In her PhD, Alves de Medeiros
(2006) describes an extension to this algorithm for the discovery of duplicate tasks.

van der Aalst et al. (2006) present a two-phase approach to process discovery that allows to
configure when states or state transitions are considered to be similar. The ability to manipulate
similarity is a good approach to deal with incomplete event logs. In particular, several criteria can
be considered for defining similarity of behavior and states: the inclusion of future or past events,
the maximum horizon, the activities that determine state, whether ordering matters, the activities
that visibly can bring about state changes, etcetera. Using these criteria, a configurable finite state
machine can be constructed from the event log. In a second phase, the finite state machine is folded
into regions using the existing theory of regions (Cortadella et al., 1998). For the moment, the
second phase of the algorithm still poses difficulties with respect to constructing suitable process
models. The approach presented in this paper considers window size (maximum horizon) and par-
allel variants as similarity criteria when generating artificial negative events.

Günther and van der Aalst (2007) present an adaptive simplification and visualization technique
based on significance and correlation measures to visualize the behavior in event logs at various
levels of abstraction. The contribution of this approach is that it can also be applied to less structured,
or unstructured processes of which the event logs cannot easily be summarized in concise, structured
process models.

Several authors have used classification techniques for the purpose of process discovery. Maruster
et al. (2006), for instance, were among the first to investigate the use of rule-induction to predict
dependency relationships between activities from a corpus of reference logs that portray various
levels of noise and imbalance. To this end, the authors use a propositional rule induction technique,
the uni-relational classification learner RIPPER (Cohen, 1995), on a table of direct metrics for each
process task in relation to each other process task, which is generated in a pre-processing step.

Ferreira and Ferreira (2006) apply a combination of ILP learning and partial-order planning
techniques to process mining. Rather than generating artificial negative events, negative examples
are collected from the users who indicate whether a proposed execution plan is feasible or not. By
iteratively combining planning and learning, a process model is discovered that is represented in
terms of the case data preconditions and effects of its activities. In addition to this new process
mining technique, the contribution of this work is in the truly integrated BPM life cycle of process
generation, execution, re-planning and learning. Lamma et al. (2007) also describe the use of ILP
to process mining. The authors assume the presence of negative sequences to guide the search
algorithm. Unlike the approach of Ferreira and Ferreira, who use partial-order planning to present
the user with an execution plan to accept or reject (a negative example), this approach does not
provide an immediate answer to the origin of the negative events. Contrary to our approach, the
latter two approaches are not concerned with the construction of a graphical, control-flow based
process model and do not consider the generation of artificial negative events.
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9. Conclusion

Process discovery aims at accurately summarizing an event log in a structured process model. So
far, the discovery of structured processes by supplementing event logs with artificial negative events
has not been considered in the literature. The advantage is that it allows representing process dis-
covery as a multi-relational classification problem to which existing classification learners can be
applied. In this paper, the generation of artificial negative events gives rise to a new process dis-
covery algorithm and to new metrics for quantifying the recall and specificity of a process model
vis-à-vis an event log.

Process discovery algorithms must deal with challenges such as expressiveness, noise, incom-
plete event logs and the inclusion of prior knowledge. Dealing with one challenge sometimes leads
to poor performance with respect to another. The technique presented in this paper, simultaneously
addresses many of these challenges. This can be concluded from the results of a large benchmark
study applied to AGNEs and four state-of-the art process discovery algorithms. A comparative
benchmark study of this scale is the first in the field of process discovery. The benchmark exper-
iments indicate that our technique can discover complex structures such as short loops, duplicate
activities, and non-free choice constructs, while remaining robust to noise. In addition, our tech-
nique has a new, declarative way of dealing with incomplete event logs that diminishes the effects
of concurrent and recurrent behavior on the generation of artificial negative events. Finally, our
technique is capable of having prior knowledge constrain the hypothesis space during process dis-
covery. These declarative aspects—the inclusion of prior knowledge, the configurability of the
negative event generation procedure and the language bias—potentially make it very useful in prac-
tical applications. Another outcome of the benchmark study is the usefulness of the new specificity
metric, which in contrast to existing metrics can always be calculated and produces intuitive results.
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Abstract

Predictive models benefit from a compact, non-redundant subset of features that improves inter-
pretability and generalization. Modern data sets are wide, dirty, mixed with both numerical and
categorical predictors, and may contain interactive effects that require complex models. This is a
challenge for filters, wrappers, and embedded feature selection methods. We describe details of
an algorithm using tree-based ensembles to generate a compact subset of non-redundant features.
Parallel and serial ensembles of trees are combined into a mixed method that can uncover masking
and detect features of secondary effect. Simulated and actual examples illustrate the effectiveness
of the approach.

Keywords: trees, resampling, importance, masking, residuals

1. Introduction

Large data sets are becoming the norm and traditional methods designed for data sets with a modest
number of features will struggle in the new environment. This problem area was described by
Guyon and Elisseeff (2003) along with other publications in the same issue, and it has increased
in importance since then. Additional comments and examples have been provided by Liu and Yu
(2005) in a recent survey article.
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1.1 Feature Selection

There are three major categories of feature selection methods. Filter methods score variables, typi-
cally individually, and eliminate some before a model is constructed. The filter needs to be generated
carefully to relate well to the requirements of the modeling task. In particular, the filter may not
consider the value of one variable in the presence of others. For example, the widely-used value
difference metric (VDM) (Stanfill and Waltz, 1986) and its modified version (MVDM) (Cost and
Salzberg, 1993) consider the conditional probability distribution of the response at a predictor value.
Such a measure is not sensitive to the effects of some predictors in a model with others present even
though interactions among predictors might be critical for an effective subset. A sequential, sub-
set search is sometimes implemented to improve the performance when interactions are important,
although a greedy search also has disadvantages in the presence of interactions. Several common
filter methods such as ReliefF (Robnik-Sikonja and Kononenko, 2003), CFS (Hall, 2000), and FO-
CUS (Almuallin and Dietterich, 1994) were modified with sequential search and compared by Yu
and Liu (2004).

Wrapper methods form a second group of feature selection methods. The prediction accuracy
(or the change in accuracy) of a model directly measures the value of a feature set. Although
effective, the exponential number of possible subsets places computational limits for the wide data
sets that are the focus of this work.

Embedded methods form a third group for feature selection. These methods use all the vari-
ables to generate a model and then analyze the model to infer the importance of the variables.
Consequently, they directly link variable importance to the learner used to model the relationship.

1.2 Subset Feature Selection

Fundamentally, the goal of feature selection is to model a target response (or output) variable y,
with a subset of the (important) predictor variables (inputs). This is a general goal and several
more specific objectives can be identified. Each can lead to different strategies and algorithms. In
filtering the interest is to remove irrelevant variables. Another objective is variable ranking where
the interest is in obtaining relative relevance for all input variables with respect to the target. Finally,
we might be interested in a compact, yet effective model, where the goal is to identify the smallest
subset of independent features with the most predictive power, although a few alternative groups
might be reasonable. An important concept here is the masking relationships among the predictor
variables. Masking occurs when one variable can effectively represent others in a model. Along
with the related issue of masking, this paper focuses on the subset selection.

1.3 Contributions of this Paper

Existing tree ensembles such as random forest (Breiman, 2001) or gradient boosting trees (Fried-
man, 1999) were developed primarily for predictive modeling. In addition, they can provide an
importance ranking of the features, but this information has been considered an ad hoc benefit.
Random forest (RF) is a random subspace method, and is capable of efficiently ranking features for
large data sets. We exploit this property of RF, augment the original data with artificial contrast
variables constructed independently from the target, and use their ranking for removal of irrelevant
variables from the original set. The tree construction method is also modified to produce a more
reliable variable ranking in the presence of high cardinality variables. A variable masking measure
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is then introduced that incorporates surrogate variable scores from ensembles of trees. This forms
the basis for redundancy elimination. Residual effects are calculated to enable the method to detect
variables of secondary importance. These elements are integrated into an efficient algorithm for
subset selection called ACE (artificial contrasts with ensembles).

The structure of this paper is as follows. In Section 2 we describe previous work and outline
directions taken in this paper. Section 3 describes variable importance measures defined through
tree ensembles and explains how they could be used to remove irrelevant features using random,
artificial features. Next, we introduce a masking measure and use it for redundancy elimination.
Section 4 describes the details of the ACE algorithm to generate the selected subset, and compares
ACE with its closest competitors in detail. Section 5 provides results from experiments. Section 6
provides conclusions.

2. Background

This section defines the problem of finding the best susbset of features, discusses previous ap-
proaches, and outlines our solution.

2.1 Markov Boundaries

Let F be a full set of features. A feature selection solution can be described in terms of a Markov
blanket (Koller and Sahami, 1996). Given a target feature Y , let M ⊂ F and Y /∈M. M is said to be
a Markov blanket for Y if Y⊥(F−M)|M. That is, Y is conditionally independent of other features
given M. A minimal Markov blanket is referred to as Markov boundary (MB) and such a subset
might be considered a feature selection solution. However, an important issue is that a MB need not
be unique. Redundant features can replace others in a feature subset. Usually feature redundancy is
defined in terms of feature correlation (Hall, 2000). For example, two features are redundant to each
other if their values are completely correlated. In reality, it is not so straightforward to determine
feature redundancy if a feature is partially correlated to a set of features.

Our goal is to focus on the important case with redundant features and obtain at least one MB. In
most real-life problems exactly determining the MB or measuring feature relevance is very difficult
because of a limited sample size, high time complexity, and noise in the data. Furthermore, evalua-
tion of the distribution of the input variables and the response always relies on some model (linear,
support vector machine, frequency tables, trees, etc.). In practice, most algorithms just try to remove
irrelevant features and then apply some heuristics that remove “possibly” redundant variables.

2.2 Existing Approaches in Feature Selection

The nature of real life data sets provides strong restrictions for model fitting and feature selection
methods. First, data sets may be very large both in terms of the number of predictors and in the
number of samples (tens of thousands × tens of millions). Second, the predictors and the response
can be of mixed type (both numeric and categoric), and can contain missing values. Lastly and
also very importantly, dependency of the response on predictors can be highly non-linear, noisy and
multivariate.

This leaves most existing methods out of scope for such problems. For example, wrapper meth-
ods (forward selection or backward elimination) are simply computationally unfeasible when deal-
ing with thousands of predictors. Filter methods are also useless for the minimal subset selection
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problem, as they do not deal with the notion of redundancy and most of them are inherently uni-
variate. However, there are filters that use a“local” feature importance measure (like RELIEF) that
can be considered multivariate (Kira and Rendell, 1992), but still they do not deal with redundancy
giving just a ranked list of features instead of a selected minimal subset.

Subset evaluation filter methods such as CFS (Hall, 2000) are neither suitable because they do
not deal explicitly with redundancy, and have to iterate over many feature subsets incurring a high
time complexity. For example, the time complexity of the CFS is at least quadratic in the number
of features and linear in number of samples. Also CFS is highly sensitive to outliers as it uses
correlations between features.

Many embedded methods that use a built-in feature relevance measurement, such as SVM-RFE
(Guyon et al., 2002) and linear regression with backward feature elimination are heavily dependent
on the model (linear or SVM), that can fail to fit the data well. These methods have at least quadratic
complexity in the number of samples for fitting an SVM and at least cubic complexity in the number
of features (O(nm2+m3), where m is the number of features, and n is number of samples) for fitting
a regression model. Data sets with tens of thousands of features or samples become very time
consuming and impractical to handle. For example, SVM-RFE involves retraining the SVM after
features with smallest relevance are removed, thus incurring at least cubic complexity in number of
samples (O(max(m,n)n2)).

An issue that discourages using regression methods and methods that rely on some kind of
distance measure between observations (linear regression, SVM, Kernel-based methods, RELIEF)
is the difficulty of dealing with outliers in the input (predictor) space. Also, selection of important
model parameters (kernel width and type, feature relevance thresholds, etc) is non-obvious, and the
results of feature selection depend heavily on them.

Most methods return just a ranked list of features instead of an optimal subset. These methods
include RELIEF, Koller’s Markov blanket based backward elimination (referred to here as MBBE)
(Koller and Sahami, 1996), and SVM-RFE. Some methods such as FCBS use a relevance threshold
that is not clear how to adjust (Yu and Liu, 2004). In reality, the user also obtains a number of
feature subsets corresponding to different values of parameters without a hint of how to choose the
best subset.

Many methods work with frequency tables. They can thus deal well with categorical inputs
only. For numerical inputs, they require discretization. Such methods are not always able to deal
with interacting variables and have great difficulties with multivariate dependencies on numerical
inputs. Examples of such methods are FCBS and MBBE. These two algorithms need discretization
because they use an entropy measure computed on frequency tables. If the number of categories is
large, or if we use frequency tables with more than two inputs, the tables can be sparse and may
not represent the data distribution well. Another issue for MBBE is computational complexity.
Considering all feature pairs incurs a quadratic complexity on the number of features.

Hence we see that most methods at hand are either not applicable at all to the best subset selec-
tion problem, or have some major problems. The most useful methods in such a setting (that ap-
peared to be applicable to the examples of large “real-life” data in the challenge data sets discussed
in Sec. 5.3) are methods based on backward feature elimination using an approximate Markov blan-
ket concept (Koller and Sahami, 1996; Yu and Liu, 2004). Our method approximates the optimal
Markov blanket redundancy elimination procedure, but without most of the drawbacks of previous
methods.
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2.3 Towards Efficient and Approximately Optimal Feature Selection

We propose a method that uses an idea similar to those proposed by Koller and Sahami (1996) and
Yu and Liu (2004) that tries to overcome their limitations. It does not have quadratic time complexity
in the number of features, can deal with thousands of predictors, uses a model (ensembles of trees)
that can be applied to mixed variable types, thus eliminating need for discretization of numeric
inputs, does not require imputation of missing values, captures local information (like RELIEF), is
invariant to a monotone transformation of inputs, thus not very sensitive to noise and outliers, and
deals well with multivariate dependencies.

It is well known that trees and especially ensembles of trees can provide robust and accurate
models in “real-life” data settings. They handle mixed and noisy data, and are scale insensitive.
Ensembles of trees have high predictive power and are resistant to over-fitting (Breiman, 2001).
Our approach relies heavily on ensembles of trees.

First, we find irrelevant features that are conditionally independent of the response given the
rest of the features. It is accomplished by comparing the relevance of the original variables with
the relevance of random, artificial features (appended to the original data) constructed from the
same distribution, but independently from the response. These features are referred to as artificial
contrasts. We measure feature relevance as variable importance in random forests with a modified
robust splitting criteria. We assume that if an original variable had a relevance score not statistically
higher than that of an artificial probe (independent from the target by construction) then it is also
independent from the target, irrelevant, and should be removed. Note that we try to remove irrelevant
features by directly assessing conditional independence without searching for a MB, the existence
of which is a much stronger requirement. Although the idea of artificial contrasts was already used
by other researchers in simple filter methods with success (Stoppiglia et al., 2003), its application to
tree ensembles is novel and promising. Actually, our approach can be considered as non-parametric
because all parameters in our algorithm can be assigned reasonable default values that work well
for wide range of problems.

Then the redundant feature elimination step is performed. Redundancy between features is
measured using surrogate scores. The variable with the largest impurity reduction score at a node is
the primary splitter. If surrogate variables (ones that partition the node in same way as the primary
variable) are present, these surrogate variables are considered as “masked”. Masking scores between
all pairs of important variables are computed and evaluated using a statistical test, and variables
masked by more important variables (“approximately redundant”) are removed iteratively.

Finally, after a set of non-redundant relevant features has been found, our method removes the
influence of the found subset with an ensemble and proceeds. Because redundancy elimination is
approximate in nature this iterative approach is another advantage of our method. It allows one to
recover variables with small importance and to reduce the chance to lose important variables during
redundancy elimination.

3. Tree Ensembles for Feature Selection

For our embedded method, we focus on ensembles of decision trees for the following reasons. Trees
can be applied in ubiquitous scenarios so that they provide a good entry point for feature selection for
interdisciplinary, wide data sets. They apply to either a numerical or a categorical response. They
are nonlinear, simple and fast learners that handle also both numerical and categorical predictors
well. They are scale invariant and robust to missing values. A simple decision tree also provides an
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embedded measure of variable importance that can be obtained from the number and the quality of
splits that are generated from a predictor variable. However, a single tree is produced by a greedy
algorithm that generates an unstable model. A small change to the data can result in a very different
model. Consequently, ensemble methods have been used to counteract the instability of a single
tree.

Supervised ensemble methods construct a set of simple models, called base learners, and use
their weighted outcome (or vote) to predict new data. That is, ensemble methods combine outputs
from multiple base learners to form a committee with improved performance. Numerous empiri-
cal studies confirm that ensemble methods often outperform any single base learner (Freund and
Schapire, 1996; Bauer and Kohavi, 1999; Dietterich, 2000a). The improvement can be dramatic
when a base algorithm is unstable. More recently, a series of theoretical developments (Bousquet
and Elisseeff, 2001; Poggio et al., 2002; Mukherjee et al., 2006; Poggio et al., 2004) also confirmed
the fundamental role of stability for the generalization of a learning algorithm. More comprehensive
overviews of ensemble methods were presented by Dietterich (2000b) and Valentini and Masulli
(2002). There are two primary approaches to ensemble construction: parallel and serial.

A parallel ensemble combines independently constructed and diverse base learners. That is,
different base learners should make different errors on new data. An ensemble of such base learners
can outperform any single one of its components since diverse errors cancel out (Hansen and Sala-
mon, 1990; Amit and Geman, 1997). Parallel ensembles are variance-reduction techniques, and in
most cases, they are applied to unstable, high-variance algorithms (such as trees). Also, Valentini
and Dietterich (2003) showed that ensembles of low-bias support vector machines (SVMs) often
outperformed a single, best-tuned, canonical SVM (Boser et al., 1992).

Random forest (RF) is an exemplar for parallel ensembles (Breiman, 2001). It is an improved
bagging method (Breiman, 1996) that extends the “random subspace” method (Ho, 1998). It grows
a forest of random decision trees on bagged samples showing excellent results comparable with the
best known classifiers. A RF can be summarized as follows: (1) Grow each tree on a bootstrap sam-
ple of the training set to maximum depth, (2) GivenM predictors, select at random m<M variables
at each node, and (3) Use the best split selected from the possible splits on these m variables. Note
that for every tree grown in RF, about one-third of the cases are out-of-bag (out of the bootstrap
sample). The out-of-bag (OOB) samples can serve as a test set for the tree grown on the non-OOB
data. We discuss later how OOB samples can be used for feature selection.

In serial ensembles, every new learner relies on previously built learners so that the weighted
combination forms an accurate model. A serial ensemble algorithm is often more complex. It is
targeted to reduce both bias and variance. A serial ensemble results in an additive model built by
a forward-stagewise algorithm. The adaboost algorithm was introduced by Freund and Schapire
(1996). At every step of ensemble construction the boosting scheme adds a new base learner that is
forced (by iteratively reweighting the training data) to concentrate on the training observations that
are misclassified by the previous sequence. Boosting showed dramatic improvement in accuracy
even with very weak base learners (like decision stumps, single split trees). Breiman (1998) and
Friedman et al. (2000) showed that the adaboost algorithm is a form of gradient optimization in
functional space, and is equivalent to a forward-stagewise, additive algorithm with the exponential
loss function !(y,F(x)) = exp(−yF(x)) referred to as a gradient boosted tree (GBT).
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3.1 Relative Variable Importance Metrics
A single decision tree partitions the input space into a set of disjoint regions, and assigns a response
value to each corresponding region. It uses a greedy, top-down recursive partitioning strategy. At
every step an exhaustive search is used to test all variables and split points to achieve the maximum
reduction in impurity. Therefore, the tree constructing process itself can be considered as a type
of variable selection (a kind of forward selection, embedded algorithm), and the impurity reduction
due to a split on a specific variable indicates the relative importance of that variable to the tree model
(Breiman et al., 1984). For ensembles, the metric is averaged over the collection of base learners.
Note, that this relative importance automatically incorporates variable interaction effects thus being
very different from the relevance measured by a univariate filter method.

For a single decision tree the measure of variable importance is

VI(Xi,T ) = "
t∈T

#I(Xi, t), (1)

where #I(Xi, t) is the decrease in impurity due to an actual (or potential) split on variable Xi at a
node t of the optimally pruned tree T (Breiman et al., 1984). Node impurity I(t) for regression is
defined as "i∈t(yi− ȳ)2/N(t) where the sum and mean are taken over all observations i in node t,
and N(t) is the number of observations in node t. For classification I(t) = Gini(t) where Gini(t) is
the Gini index of node t defined as

Gini(t) ="
i'= j

pti ptj,

and pti is the proportion of observations in t whose response label equals i (y = i) and i, j run
through all response class numbers. The Gini index is in the same family of functions as cross-
entropy=−"i ptilog(pti), and measures node impurity. It is zero when t has observations only from
one class, and is maximum when classes are perfectly mixed. The decrease #I(Xi, t) computes the
impurity at the node t and the weighted average of impurities at each child node of t. The weights
are proportional to the number of observations that are assigned to each child from the split at node
t so that #I(Xi, t) = I(t)− pLI(tL)− pRI(tR).

For an ensemble ofM trees this importance measure is easily generalized. It is simply averaged
over the trees

E(Xi) =
1
M

M

"
m=1

VI(Xi,Tm). (2)

The averaging makes this measure more reliable.
This split weight measure #I(Xi, t) in Equation (1) can be improved if OOB samples are used.

The split value for a variable is calculated using the training data as usual. However, the variable
selected as the primary splitter uses only the OOB samples. Also, the variable importance measure
is calculated from only the OOB samples. This provides a more accurate and unbiased estimate of
variable importance in each tree and improves the filtering of noise variables.

Breiman (2001) also proposed a sensitivity based measure of variable relevance evaluated by a
RF. For a classification problem it is summarized as follows: (1) Classify the OOB cases and count
the number of votes cast for the correct class in every tree grown in the forest, (2) randomly permute
the values of variable m in the OOB cases and classify these cases down the tree, (3) Subtract the
number of votes for the correct class in the variable-m-permuted OOB data from the original OOB
data, and (4) Average this number over all trees in the forest to obtain the raw importance score for
variablem. Similar ideas were presented by Parmanto et al. (1996) and a similar resampling strategy
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was successfully used in a more traditional model by Wisnowski et al. (2003). The sensitivity
measure is computationally expensive. Furthermore, it does not account for masking, nor does it
consider an iterative process with residuals (that we describe in Sec. 4.2). Experiments by Tuv
(2006) demonstrated that weaker but independent predictors can rank higher than stronger, but
related predictors. Also, related predictors can all be identified as important. Neither of these
results are desirable for a best subset model and a more effective algorithm is described in Sec. 4.

With the importance measure (2) we can thus merely rank the variables. The following two
subsections discuss how to amend the ranking so that irrelevant variables can be reliably detected,
and how the redundancies among the remaining relevant variables can then be handled.

3.2 Removing Irrelevant Features by Artificial Contrasts

Although an ensemble can be used to calculate a relative feature ranking from the variable im-
portance score in (2) the metric does not separate relevant features from irrelevant. Only a list of
importance values is produced without a clear indication which variables to include, and which to
discard. Also, trees tend to split on variables with more distinct values. This effect is more pro-
nounced for categorical predictors with many levels. It often makes a less relevant (or completely
irrelevant) input variable more “attractive” for a split only because it has high cardinality.

The variable importance score in (2) is based on the relevance of an input variable to the target.
Consequently, any stable feature ranking method should favor a relevant input Xi over an artificially
generated variable with the same distribution as Xi but generated to be irrelevant to the target. That
is, a higher variable importance score is expected from a true relevant variable than from an artifi-
cially generated contrast variable. With sufficient replicates in an analysis one can select important
variables from those that have statistically significantly higher variable importance scores than the
contrast variables (Tuv et al., 2006). Here, these contrast variables are integrated into a subset
algorithm. We discuss this in detail in Section 4.

Also, artificial contrasts can be applied to masking discussed in the next subsection. Given a
selected subset of relevant variables, one computes the masking scores of all variables by elements
of this subset, and the masking of contrast variables by this subset. Masking scores statistically
higher than the contrast variables are considered to be real masking. Variables that are masked are
dropped from the relevant subset list over a sequence of iterations of the algorithm.

3.3 Masking Measures

An important issue for variable importance in tree-based models is how to evaluate or rank variables
that were masked by others with slightly higher splitting scores, but could provide as accurate a
model if used instead. One early approach in the CARTmethodology used surrogate splits (Breiman
et al., 1984). The predictive association of a surrogate variable Xs for the best splitter X∗ at a tree
node T is defined through the probability that Xs predicts the action of X∗ correctly and this is
estimated as

p(Xs,X∗) = pL(Xs,X∗)+ pR(Xs,X∗),

where pL(Xs,X∗) and pR(Xs,X∗) define the estimated probabilities that both Xs and X∗ send a case
in T left (right). The predictive measure of association $(X∗|Xs) between split Xs and primary split
X∗ is defined as

$(X∗|Xs) =
min(%L,%R)− [1− p(Xs,X∗)]

min(%L,%R)
,
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where %L,%R are the proportions of cases sent to the left(or right) by X∗. It measures the relative
reduction in error (1− p(Xs,X∗)) due to using Xs to predict X∗ as compared with the “naive” rule
that matches the action with max(%L,%R) (with error min(%L,%R)). If $(X∗|Xs) < 0 then Xs is
disregarded as a surrogate for X∗. Sometimes a small, nonnegative threshold is used instead. The
variable importance sum in Equation (1) is taken over all internal tree nodes where Xi is a primary
splitter or a surrogate variable ($(X∗|Xi) > 0 for a primary splitter X∗). Often a variable that does not
appear as a primary splitter in a tree is still ranked high on the variable importance list constructed
using surrogate variables.

We extend the surrogate concept to define a masking score as follows. Variable i is said to mask
variable j in a tree, if there is a split in variable i in a tree with a surrogate on variable j. We define
the masking measure for a pair of variables i, j in tree T as

Mi j(T ) = "
{t∈T |split on Xi}

w(Xi, t)$(Xi|Xj),

where w(Xi, t) = #I(Xi, t) is the decrease in impurity from the primary split on variable Xi, and
summation is done over the nodes where primary split was made on variable Xi. Here we take into
account both the similarity between variables Xi,Xj at the node, and the contribution of the actual
split of variable Xi to the model. For an ensemble the masking measure is simply averaged over the
trees. Note that in general the measure is not symmetric in the variables. One variable may mask
several others, but for a single selected masked variable the reverse may not be true.

4. Algorithm: Ensemble-Based Feature Selection with Artificial Variables and
Redundancy Elimination

We now integrate the previously described concepts and metrics into a subset selection algorithm.
The fundamental steps outlined in Section 2.3 consist of using the advantages of a parallel ensemble
to detect important variables among potentially a very large feature set, using the advantages of a
serial ensemble to de-mask the important variables, and calculating residuals and repeating in order
to recover variables of secondary importance.

Within the algorithm, artificial contrast variables are re-generated a number of times. Then
the significance from a paired t-test over the replicates is used to identify important variables and
masked variables. Essentially the t-test is used to define thresholds for selection and masking. These
thresholds could also be set as tunable parameters. An advantage of the statistical test is that the
significance of selected variables relative to noise can be quantified.

4.1 Algorithm Details

1. Identify Important Variables: Artificially generated noise variables are used to determine
a threshold to test for statistically significant variable importance scores. The test is used
to remove irrelevant variables. Details are presented in the displayed algorithms and further
described as follows.
In each replicate r, r= 1,2, . . . ,R artificial variables are constructed as follows. For every real
variable Xj j = 1,2, . . . ,M a corresponding artificial variable Zj is generated from a random
permutation. Then in each replicate a small RF is trained and variable importance scores
are computed for real and artificial variables. The scores from each replicate r are compiled
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into the rth row of a matrix V R× 2M. Furthermore, the 1−& percentile of the importance
scores in replicate r is calculated from only the artificial variables. This is denoted as vr and
the vector of percentiles over the R replicates is v R× 1. For each real variable Xj a paired
t-test compares importance scores for Xj (obtained from the jth column of V) to the vector of
scores v. A test that results in statistical significance identifies an important variable.

Significance is evaluated through a suitably small p-value. The use of a p-value requires a
feature to consistently score higher than the artificial variables over multiple replicates. Fur-
thermore, this statistical testing framework also allows any method to control false selections
to be applied. We routinely use the Bonferroni adjustment, but a false discovery rate approach
is also reasonable. Each replicate uses a RF with L = 20-50 trees to score the importance of
the original and artificial noise variables. Also, the split weight calculation for variable im-
portance in (2) only uses OOB samples as described previously.

2. Calculate Masking Scores: A masking matrix is computed from independent replicates in
order to evaluate the statistical significance of masking results. Suppose there are m impor-
tant variables from step 1. For similar reasons as in the previous step, replicates and noise
variables are used to detect masking among the relevant variables. These are currently the
same replicates that are used for variable importance. A set of R independent GBT models
are generated each with L= 10-50 trees. Note that all variables are tested in each node in each
tree in a serial ensemble. Therefore, richer, more effective masking information is obtained
from a serial ensemble than from a random subspace method like RF. In these calculations,
the surrogate scores and the split weights are calculated from the OOB samples as in the
previous step. Let Mr

i, j denote the masking score for variables Xi and Xj from the ensemble
in replicate r, for r = 1,2, . . . ,R. Also, let Mr

i,& denote the (1−&)-percentile of the masking
score in replicate r from the distribution of scores between variable Xi and the noise variables.
That is,Mr

i,& denotes the (1−&)-percentile ofMr
i, j for j=m+1, . . . ,2m. Similar to the check

for variable importance, a paired t-test compares the masking score between variables (Xi,Xj)
with masking score Mr

i,& computed from the noise variables. There is a significant masking
between variables (Xi,Xj) if the paired t-test is significant. Variable Xj is masked by variable
Xi if the test is significant.

3. Eliminate Masked Variables: Masked variables are removed from the list of important vari-
ables as follows. Given a list of important variables upon entry to this step, the variables are
sorted by the importance score calculated in step 2. The most important variable is added to
an exit list, and dropped from the entry list. Assume this is variable Xi. All variables that are
masked by Xi are dropped from the entry list. This is repeated until the entry list is empty.
The exit list represents the unmasked important variables.

4. Generate Residuals for Incremental Adjustment: An iteration is used to enhance the abil-
ity of the algorithm to detect variables that are important, but possibly weaker than a primary
set. Given a current subset of important variables, only this subset is used to predict the
target. Residuals are calculated and form a new target. For a numerical target the residuals
are simply the actual minus the predicted values. For a classification problem residuals are
calculated from a multiclass logistic regression procedure (Friedman et al., 2000). We pre-
dict the log-odds of class probabilities for each class (typically GBT is used), and then take
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pseudo residuals as summarized in the following multi-class logistic regression algorithm.
The algorithms are described using the notation in Table 1.

The iterations are similar to those used in forward selection. See, for example, Stoppiglia
et al. (2003). The Gram-Schmidt procedure first selects the variable with highest correlation
with the target. To remove the information from this variable the remaining predictors and the
target are othogonalized with respect to the selected variable. This provides residuals from the
fit of the target to the first selected variable. In the feature selection method here we do not re-
quire orthogonal predictors, but we adjust the target for the variables already selected through
residuals. We also can select more than a single variable in each iteration. The method also
uses a conservative selection criterion (Bonferroni adjustment) and the residuals allow a vari-
able to enter on another iteration. There are similar procedures used elsewhere in regression
model building. Least angle regression (Efron et al., 2004) and projection pursuit methods
(Friedman et al., 1981) are well known examples that use residuals in forward-stagewise
modeling.

The algorithm returns to step 1 and continues until no variables with statistically significant
importance scores remain. The current subset of important variables is used for the prediction
model. Whenever step 1 is calculated, all variables are used to build the ensembles—not only the
currently important ones. This approach allows the algorithm to recover partially masked variables
that still contribute predictive power to the model. This can occur after the effect of a masking
variable is completely removed, and the partial masking is eliminated. The algorithms for numerical
(regression) and categorical (classification) targets are presented as algorithms 1 and 2. A separate
algorithm 3 describes the variable masking calculations.

Algorithm 1: Ensemble-Based Feature Selection, Regression

1. Set '← {}; set F ← {X1, . . . ,XM}; setW = 0 (|W | =M).
2. for r = 1, . . . ,R do
3. {Z1, . . . ,ZM}← permute{X1, . . . ,XM}
4. set FP ← F ∪{Z1, . . . ,ZM}
5. rth row of V = Vr. = gI(FP,Y );

endfor
6. R×1 vector (element wise) v= Percentile1−&(V[·,M+1, . . . ,2M])
7. Set '̂ to those {Xj} for which element wise V. j > v

with specified paired t-test significance (0.05)
8. Set '̂= RemoveMasked('̂,W +gI(FP,Y ))
9. If '̂ is empty, then quit.
10. '←'∪ '̂;
11. Y = Y −gY ('̂,Y )
12. W ('̂) =W ('̂)+gI('̂,Y )
13. Go to 2.
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Algorithm 2: Ensemble-Based Feature Selection, Classification

1. set '← {}; Gk(F) = 0,Wk = 0
2. for k = 1, . . . ,K do
3. set V = 0.
4. for r = 1, . . . ,R do

{Z1, . . . ,ZM}← permute{X1, . . . ,XM}
set F ← X ∪{Z1, . . . ,ZM}
Compute class proportion pk(x) = exp(Gk(x))/"K

l=1 exp(Gl(x))
Compute pseudo-residuals Yki = I(Yi = k)− pk(xi)
Vr. = Vr. +gI(F,Yk);
endfor

5. Element wise v= Percentile1−&(V[·,M+1, . . . ,2M])
6. Set '̂k to those {Xk} for which V.k > v

with specified paired t-test significance (0.05)
7. Set '̂k = RemoveMasked('̂k,Wk +gI(F,Yk))
8. '←'∪ '̂k;

for k = 1, ...,K do
9. Gk(F) = Gk(F)+gY ('̂k,Yk)
10. Wk('̂k) =Wk('̂k)+gI('̂k,Yk)

endfor
endfor

11. If '̂k for all k = 1, . . . ,K is empty, then quit.
12. Go to 2.

4.2 Comparison to Previous Work

Two earlier methods are closely related to ACE, FCBS (Yu and Liu, 2004) and MBBE (Koller
and Sahami, 1996). We compare our method in detail to these two methods. Because we use a
multivariate model (tree) instead of frequency tables, our method fits in the category of embedded
methods. This is unlike FCBS and MBBE that can be considered as correlation filters, although
Koller works with frequency tables of 2-5 variables.

FCBS first sorts features by correlation with the response using a symmetric uncertainty, op-
tionally removing the bottom of the list by a user-specified threshold, then

1. The feature most correlated to the response is selected.

2. All features that have correlation with the selected feature higher than it’s correlation with
response are considered redundant and removed. The feature is added to the minimal subset
(and this is an approximate heuristic for Markov blanket filtering).

3. Return to 1).

FCBS is similar in structure to our method, with the following important differences.
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Algorithm 3: RemoveMasked(F,W)

1 Let m= |F|.
2. for r = 1, . . . ,R do
3. {Z1, . . . ,Zm}← permute{X1, . . . ,Xm}
4. set FP ← F ∪{Z1, . . . ,Zm}
5. Build GBT model Gr = GBT (FP).
6. Calculate masking matrixMr =M(Gr) (2m×2m matrix).

endfor
7. SetMr

i,&m = Percentile1−&m(Mr[i,m+1, . . . ,2m]), r = 1, . . . ,R
8. SetM∗

i j = 1 for those i, j = 1 . . .m for which Mr
i j >Mr

i,&m , r = 1, . . . ,R
with specified paired t-test significance (0.05), otherwise setM∗

i j = 0
9. Set L= F,L∗ = {}.
10. Move Xi ∈ L with i= argmaxiWi to L∗.
11. Remove all Xj ∈ L from L, for whichM∗

i j = 1.
12. Return to step 10 if L '= {}.

1. We use tree importance instead of univariate correlation with the response. This makes ACE
much more robust and accurate.

2. We use a surrogate masking measure instead of correlation. This takes the response into
account, not only the correlations between inputs. No arbitrary thresholds for correlation are
used.

3. We compute residuals to find smaller effects reducing the chance to drop a non-redundant
feature.

Koller’s MBBE works as follows:

1. For each feature Xi, find the set Mi of K features (K = 1− 4) that are most correlated to it.
(That is, which provide little information on the response when added to the selected feature in
frequency table models.) Additional information is measured as KL-distance (Kullback and
Liebler, 1951) D(P(y|Xi,Xj),P(y|Xi)). The set Mi is called the approximate Markov blanket
for feature Xi. The authors state that K = 1−2 gives the best results.

2. For each feature compute the relevance score (i = D(P(y|Mi,Xi),P(y|Mi)). This represents
the additional information it brings when added to its approximate Markov blanket, and re-
move features that have the smallest relevance scores (i.e., most redundant).

3. Repeat (1,2) until all features are ranked in the order they are deleted. This method returns a
ranked list of features rather than one subset.

Our ACE algorithm works more like FCBS as it uses only one feature as an approximate MB for
each feature (as does the MBBE algorithm with K = 1). Furthermore, it filters features by relevance
before computing redundancy between the features, and reports a final minimum feature subset.
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K Number of classes (if classification problem)
X set of original variables
Y target variable
M Number of variables
R Number of replicates for t-test
& quantile used for variable importance estimation
&m quantile used for variable masking estimation
Z permuted versions of X
W cumulative variable importance vector.
Wk cumulative variable importance vector for k-th class in classification.
F current working set of variables
' set of important variables
V variable importance matrix (R×2M)
Vr. rth row of variable importance matrix V, r = 1 . . .R
V. j jth column of matrix V
gI(F,Y ) function that trains an ensemble of L trees based on

variables F and target Y , and returns a row vector
of importance for each variable in F

gY (F,Y ) function that trains an ensemble based on variables F
and target Y , and returns a prediction of Y

Gk(F) current predictions for log-odds of k-th class
GBT (F) GBT model built on variable set F
M(G) Masking measure matrix calculated from model G
Mk Masking matrix for k-th GBT ensemble Gt .
M∗ Masking flags matrix

Table 1: Notation in Algorithms 1-3

However, the major difference is that our redundancy measure approximates KL-distance taking the
response into account and uses local information. Thus, it can deal with multivariate dependencies.
MBBE for K > 1 will incur three (or more) dimensional frequency tables that are hard to deal with
if number of categories is large.

The learner g(., .) in the ACE algorithms is an ensemble of trees. Any classifier/regressor func-
tion can be used, from which the variable importance from all variable interactions can be derived.
To our knowledge, only ensembles of trees can provide this conveniently.

The computational complexity of the algorithm is of the same order as the maximal complexity
of a RF on the whole feature set and a GBT model on the selected important feature subset. A
GBT model is usually more complex, because all surrogate splits at every tree node are computed.
However, a smaller tree depth setting for the GBT model reduces the calculations in this part of the
algorithm. The complexity is proportional to

(Fsel+Fimpvar)∗N ∗ logN ∗Ntrees∗Nensembles∗Niter+Niter ∗Fimpvar2,
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where the variables are defined as follows: Niter is the number of iterations of the ACE algorithm
(for example, for the challenge discussed in Sec. 5.3 this was always less than 10 and usually
3-4); Nensembles is the number of replicates for t-tests (equal to 20 in the challenge); Ntrees is
the number of trees in the RF or ensemble (equal to 20-100 in the challenge); N is the number
of samples; Fsel is the number of selected variables per tree split in RF (equal to the square root
of the total number features or less); Fimpvar is the number of selected important variables (for
example, for the challenge data set NOVA discussed in Section 5.3 this was approximately 400-800
depending on parameters). The algorithm is very fast with approximately a minute for one feature
selection iteration on the challenge NOVA data set with 16K variables with 20 replicates with 70
trees on a Windows XP-based four-processor Xeon (2 x HT) 3.4GHz workstation.

5. Experiments

In order to evaluate the goodness of feature selection algorithms, two options have been used in
the literature. The first is not to evaluate the actual feature selection performance at all, but the
performance of a subsequent learner in some task. This facilitates the use of any data set in the
“evaluation” but does not give much useful information at all in characterizing the actual feature
selection. The second option is to directly evaluate the feature selection performance without using
a subsequent proxy task. The latter dictates the need to know the ground truth behind the data,
which typically means that the data must be artificially generated, either completely, or by adding
some redundant and/or irrelevant features to some known data.

As the topic of the paper at hand is a method for the subset feature selection, the first evaluation
method is affected by the choice of the classifier. The effects of feature selection are mixed in
with how well the learner is able to handle redundant or irrelevant features. The results would thus
depend on the choice of learners and on the choice of data sets. Therefore we will mainly describe
experiments with two types of simulated data with known ground truth.

Experiments on data with linear relationships are presented first. Then a nonlinear data generator
is used to study the sensitivity to multiple variable interactions with nonlinear relations. Further
results are from the 2007 International Joint Conference on Neural Networks (IJCNN), “Agnostic
learning vs. prior knowledge challenge & data representation discovery workshop”. The algorithm
described here had the second best performance in the agnostic track. Here we demonstrate the
effect of the subset to predictor performance as compared to the full set of features. Also, an actual
manufacturing data set as well as a comparison to a previous analysis of the well known Hepatitis
data are also presented in terms of predictive power of the resulting feature set.

5.1 Generated Data with Linear Relationships

The data in this experiment has an additive structure with one numeric response variable and 203
input variables. Inputs x1, . . . ,x100 are highly correlated with one another, and they are all reasonably
predictive of the response (regression R2 ∼ 0.5). But a,b, and c are independent variables that are
much weaker predictors (regression R2 ∼ 0.1). Further u1, . . . ,u100 are i.i.d. N(0,1) variables that
are unrelated to the target. The target variable was generated as an additive model with additional
noise using y = x1+ a+ b+ c+ ), where ) ∼ N(0,1). This structure is chosen because it is well
known that linear (oblique) relationships are not optimal for a tree representation. However, they
are ideal for correlation-based methods. Thus we have here the worst possible case for ACE and the
best possible case for CFS. The methods were evaluated on 50 data sets of size 400 samples.
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Figure 1: Artificial data with linear relationships. Subset discovery methods (ACE, CFS, CFS-gen)
and methods finding a subset of predefined size four (RFE4, Relief4) are compared. The
results for each method consist of three bars. The first is the percentage of relevant vari-
ables detected (out of four), the second is the percentage of redundant variables detected
(out of 100), and the third is the percentage of irrelevant variables detected (out of 100).
The results are averages over 50 data sets.

Figure 1 depicts the performance of ACE against methods that also discover the subsets (CFS
with best-first search, CFS with genetic search), as well as against some subset ranking methods
(RFE, Relief).

RFE and Relief are ranking methods. In this experiment they were given the advantage of know-
ing the number of relevant features beforehand, that is, their task was to “find the best possible four
variable subset” (RFE4, Relief4), whereas ACE and CFS had to also find the number themselves.
A further advantage was given to RFE by matching the underlying support vector regressor to the
problem with a linear kernel (using the standard RBF kernel produced inferior results). This ex-
periment demonstrates one aspect of the advantages of ACE. In a task ideal for correlation-based
methods but hard for trees, we show equal performance.

5.2 Generated Nonlinear Data

Next, experiments were conducted using a well-known data generator (Friedman, 1999), which
produces data sets with multiple non-linear interactions between input variables. The true model
can be designed with relevant, redundant, and noise inputs. We selected 10 relevant inputs plus
random, uniform (0, 1) noise. Also, 20 redundant inputs were used. Each was a random linear
combination of three inputs plus random, uniform noise. Finally, 40 noise inputs were added, so
that 70 features were available to the full model. The target function was generated as a weighted
sum of 10 multidimensional Gaussians, each Gaussian at a time involving about four input variables
randomly drawn from the relevant 10 variables. Thus all of the relevant 10 input variables are
involved in the target, to a varying degree. The Gaussian functions also have a random mean vector
and a random covariance matrix as described by Friedman (1999). Weights for the Gaussians were
randomly drawn fromU [−1,1].

The data generator produces continuous-valued variables. Thus the data sets can be used as such
for regression problems. Data sets of two different sizes were generated, 1000 and 4000 samples. In
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order to generate classification problems, the target variable was discretized to two levels. Mixed-
type data was generated by randomly discretizing half of the variables, each to a random number
of levels drawn from U [2,32]. There are thus eight different experiments altogether. For each
experiment, 50 data sets were generated with different seeds. Figure 2 presents the results for each
case as average percentages of features selected in each group (relevant, redundant, or noise) over
the 50 generated data sets.
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Figure 2: Artificial data with nonlinear relationships. Subset discovery methods (ACE, CFS, CFS-
gen, FCBS) and methods finding a subset of predefined size 10 (RFE10, Relief10) are
compared. FCBS works only in classification problems. The results for each method
consist of three bars. The first is the percentage of relevant variables detected (out of 10),
the second is the percentage of redundant variables detected (out of 20), and the third is
the percentage of irrelevant variables detected (out of 40). The results are averages over
50 data sets.

RFE and Relief were again given the advantage of knowing the number of relevant features
beforehand, that is, their task was to “find the best possible ten-variable subset”, whereas ACE,
CFS, and FCBS had to also find the number by themselves. A further advantage was given to RFE
by matching the underlying support vector classifier to the problem with an RBF kernel. Using a
linear kernel produced inferior results.
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The notable failure of FCBS on this data can be explained as follows. Most numerical important
variables are dropped at the discretization step of FCBS, because MDL discretization works as a
filter method, and it cannot deal with the multivariate dependency from Friedmans’s generator. It
works well with discrete variables only when the number of categories is small and the response is
categorical with a small number of categories.

This experiment demonstrates another aspect of the universality of ACE. The only case where
another method (RFE10) showed a superior result was a classification problem with a smaller sam-
ple size and mixed type inputs. Again RFE10 was given the advantage of knowing the number of
relevant features and an appropriate kernel beforehand.

5.3 IJCNN 2007 Agnostic Learning vs. Prior Knowledge Challenge

In this experiment we show the effect of the selected subset within various classification tasks. The
ACE feature selection algorithm was applied to the data sets in the Agnostic Learning Challenge.
The number of training/validation/testing instances and the number of features are shown in the
following list:

• ADA, Marketing, 4147/415/41471, 48 features

• GINA, Handwriting recognition, 3153/315/31532, 970 features

• HIVA, Drug discovery, 3845/384/38449, 1617 features

• NOVA, Text, 1754/175/17537, 16969 features

• SYLVA, Ecology, 13086/1309/130857, 216 features

For feature selection with ACE, the number of trees, importance and masking quantiles were pa-
rameters that were optimized. Next GBT with embedded feature selection (to prevent overfitting)
(Borisov et al., 2006) was built on the subset. The following parameters of GBT were optimized:
number of trees, tree depth, shrinkage, number of selected features per tree node, and the impor-
tance adjustment rate for embedded feature selection, stratified sampling for 0/1 class proportions,
and priors. The optimization strategy (manual) was to set reasonable parameter values, and then
try to adjust each parameter sequentially, so that the test error decreased. The model was trained
on 60% of the training data during parameter optimization. Several passes over all the GBT pa-
rameters were used, and one for the feature selection parameters. Priors were selected using cross
validation. Feature selection and GBT were used on K partitions of the data and then optimal priors
were selected on the remaining part.

Table 2 shows the results before and after subset selection for the five challenge data sets. The
CV-error was either preserved or reduced through a good subset. The overall results were the sec-
ond best in the agnostic learning challenge. Redundancy elimination was applied on ADA, HIVA,
SYLVA, and feature selection without redundancy elimination was used on NOVA and GINA.

5.4 TIED Data Set

A data set with multiple Markov boundaries was generated by Statnikov and Aliferis (2009). The
data was obtained from a discrete Bayesian network with 1000 variables and a target variable
with four classes. A training set was constructed with 750 instances simulated from the network.
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Original Features CV-error from Best CV-error from
all features subset size selected subset

Ada 47 0.1909 16 0.1855
Gina 970 0.0527 75 0.0506
Hiva 1617 0.2847 221 0.2559
Nova 12993 0.0591 400 0.0518
Sylva 212 0.0133 69 0.0129

Table 2: IJCNN 2007 Agnostic Learning vs. Prior Knowledge Challenge results.

Variable p-value Importance Score
3 0 100.0%
2 0 98.4%
10 0 96.4%
1 1.E-10 96.4%
11 3.E-07 83.3%
12 2.E-07 83.3%
13 5.E-07 79.1%
18 3.E-09 67.5%
19 2.E-07 67.5%
15 2.E-07 41.4%
20 2.E-06 39.5%
29 2.E-06 29.8%
8 3.E-06 26.2%
14 1.E-08 11.6%
4 8.E-06 9.5%
9 6.E-06 8.3%

Table 3: Feature selection scores for the TIED data set. Variables in any Markov boundary are
recovered as significant with three false alarms.

The network contained 72 Markov boundaries. Each boundary contained five variables (one from
each of the following subsets):(1){X9}, (2) {X4,X8}, (3){X11,X12,X13}, (4) {X18,X19,X20}, and (5)
{X1,X2,X3,X10}.

The ACE feature selection method described here was used to remove irrelevant features. After
three iterations of the residual calculations described previously the algorithm stopped with the im-
portant variables (and p-values from the artificial contrasts) shown in Table 3. The list of statistically
significant variables reproduces all the variables in any of the Markov boundaries listed above, with
false alarms from variables X14,X15, and X29.

Although ACE recovered the variables in the Markov boundaries, there are limitations with
the masking methods for a multi-class target. The GBT ensembles model each class (versus the
rest) with a binary logistic function and averages variable masking scores over the binary models.
Consequently, some attenuation of the importance scores are expected. Redundancy elimination did
not effectively eliminate masking in the TIED data. However, we used the TIED network and TIED
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data for binary problems with each class versus the rest. For example, for class 1 versus the rest
the TIED network generates the same collection of 72 Markov boundaries. The results from ACE
without redundancy elimination for the binary target are shown in Table 4. The list of statistically
significant variables reproduces all the variables in any of the Markov boundaries, with no false
alarms.

Variable Importance Score
4 100.0%
8 100.0%
19 88.1%
18 88.1%
20 88.1%
9 64.8%
13 39.5%
12 39.5%
11 39.5%
10 21.9%
2 21.9%
3 21.9%
1 21.9%
6 0.0%

Table 4: Variable importance for TIED data modified for a binary target (class 1 versus the rest).
All variables in the true Markov boundaries are identified with no false alarms.

As the importance scores are arranged in decreasing order in Table 4, groups of variables with
similar scores become noticeable and these groups correspond to the subsets (equivalence classes)
in the cross-product that defines the Markov boundaries. That is, the most important variables in
Table 4 are those in the subset {X4,X8} in the Markov boundaries and the last group matches the
subset {X1,X2,X3,X10}. The equivalent groups are clear from their importance scores in this case.

The analysis with redundancy elimination generated the list of significantly significant variables
in Table 5. One equivalent variable from the subset {X1,X2,X3,X10} was missed in the recovery of
a Markov boundary. The contribution from this subset was, however, small. The predictive perfor-
mance of a tree ensemble on the recovered variables is nearly identical to a model on a true Markov
boundary. In addition, the three variables {X18,X20,X4} are identified in Table 5 as important, but
they are redundant in the true network. Although these comprise false alarms, the magnitudes of
the importance scores indicate that the last three variables are much less important than the others.
Similar results (not shown here) were obtained for the binary target class 2 (versus the rest). Results
without any errors were obtained for classes 0 and 3 (each versus the rest). Specifically, for class 0
the Markov boundaries from the TIED network consist of one element from {X1,X2,X3,X10}. In this
case the ACE analysis without redundancy elimination recovered these four variables without false
alarms. The analysis with redundancy elimination correctly recovered a single variable from this
set. Similarly for class 3, without redundancy elimination all variables in the Markov boundaries
{X12,X13,X14} were recovered, and only one variable from this set was recovered with redundancy
elimination.
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Variable Importance Score
8 100.0%
9 61.3%
19 43.8%
1 10.2%
18 2.6%
20 0.9%
4 0.3%

Table 5: Variable importance for TIED data modified for a binary target (class 1 versus the rest)
with redundancy elimination.

5.5 Manufacturing Data

In multiple real world applications collecting unnecessary variables is a cost issue and finding a
suitable subset is critical in terms of cost-efficiency. As an example we present manufacturing data
from a process that contained approximately 10K rows and consisted of 35 predictors that were all
numerical, continuous measurements. The target was a binary response and approximately 20%
of the data belonged in the rare class. Because the data is actual manufacturing data, the specific
variable names are not provided. The data was analyzed extensively with traditional regression
methods (the response was coded as 0 and 1) and models obtained were complex and not accurate.
A list of the results from our algorithm is shown in Table 6. It is not unusual for manufacturing
data to consist of related predictors. Without redundancy elimination, 20 variables were identified
as related to the target. However, after masking scores were used to remove redundant predictors
the final subset model consisted of only five predictors.

The predictive accuracy for the binary target was nearly identical using a GBT model with these
5 predictors to the full set of 35 predictors. Table 6 also compares other subset selection algorithms
to ACE in terms of their predictive accuracy and the size of the selected feature set.

A previous analysis of this data by Berrado and Runger (2007) used association rules applied
after the predictors were discretized with simple equal-frequency discretization. Only rules with
consequent equal to the rare target class were considered. A total of 25 rules were detected that met
the minimum support threshold. These rules contained 14 variables and 13 out of 14 are listed in
the Table 6. Although the objectives of the association analysis were different, the relatively high
proportion of important variables is consistent with the results in Table 6.

5.6 Hepatitis Data

The hepatitis data available from the UC-Irvine repository has been widely analyzed. There are 155
patients and 19 predictors and the response is a binary survival result. Breiman (2001) considered
this data and cited a previous analysis from the Stanford Medical School and another analysis by
Diaconis and Efron (1983). The analysis from the medical school concluded that the important
variables were 6, 12, 14, 19. But Breiman (2001) concluded after a set of analyses that number 12
or 17 provided predictive power nearly equivalent to the full set of variables, and that these masked
each other. A notable difficulty is the small sample size in this example.
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ACE without ACE with CFS CFS-gen FCBS
Variables redundancy elim. redundancy elim.

V11 100.0% 72.4% 1 1
V4 96.1% 100.0% 1 1
V5 49.8% 49.4% 1 1 1
V12 48.6% 1 1
V14 46.6% 1 1
V10 43.5% 1 1
V2 43.3% 36.4% 1 1
V13 38.7% 21.6%
V8 30.3% 1
V1 27.9% 1
V9 23.7%
V3 23.6% 1
V19 21.8%
V7 21.5%
V20 20.4%
V26 1
V27 1

Errors 0.145 0.144 0.145 0.190

Table 6: Manufacturing data with a binary target with redundancy elimination excludes many vari-
ables. Only a smaller subset of the relevant predictors remain. We compare the extracted
variables to other subset selection algorithms (selected variables are marked as ’1’ in the
table). The error rate for the full set of variables was 0.146.

We confirmed the strong masking between variables 12 and 17 (and vice versa) from our mask-
ing matrix. We also obtained a subset model that consists of variables 6, 17, 14, 19, and 11, similar
to medical school. Variable 11 was also identified in unpublished lecture notes by Breiman. The
subset selected by our algorithm has the lowest cross-validation error using logistic regression.

6. Conclusions

We have presented an efficient method for feature subset selection that builds upon the known
strengths of the tree ensembles and is designed explicitly to discover a non-redundant, effective
subset of features in large, dirty, and complex data sets.

Our method attempts to eliminate irrelevant variables using statistical comparisons with artificial
contrasts to obtain a threshold for importance estimated from the parallel ensembles of trees capable
of scoring very large number of variables.

It uses serial ensembles to discover significant masking effects for redundancy elimination. Fur-
thermore we have showed that the redundancy elimination based on feature masking approximates
the Markov blanket redundancy filtering. It also uses an iterative strategy to allow for weaker pre-
dictors to be identified after stronger contributors.
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Variables ACE CFS CFS-gen FCBS
malaise-6 1 1 1
albumin-17 1
bilirubin-14 1 1 1
histology-19 1 1 1
spiders-11 1 1 1 1

age-1 1 1
sex-2 1 1 1

ascites-12 1 1 1
varices-13 1 1

Errors 0.142 0.155 0.155 0.194

Table 7: Hepatitis data. Features selected from ACE compared to other subset selection algorithms
(selected variables are marked as ’1’ in the table). The baseline error rate for the full set
of variables was 0.148.

The superior performance of the algorithm is illustrated with a number of experiments on both
artificial and real data as well as by its success in the agnostic learning challenge.
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Abstract
With the rapid growth of computer storage capacities, available data and demand for scoring models
both follow an increasing trend, sharper than that of the processing power. However, the main
limitation to a wide spread of data mining solutions is the non-increasing availability of skilled data
analysts, which play a key role in data preparation and model selection.

In this paper, we present a parameter-free scalable classification method, which is a step to-
wards fully automatic data mining. The method is based on Bayes optimal univariate conditional
density estimators, naive Bayes classification enhanced with a Bayesian variable selection scheme,
and averaging of models using a logarithmic smoothing of the posterior distribution. We focus on
the complexity of the algorithms and show how they can cope with data sets that are far larger
than the available central memory. We finally report results on the Large Scale Learning challenge,
where our method obtains state of the art performance within practicable computation time.
Keywords: large scale learning, naive Bayes, Bayesianism, model selection, model averaging

1. Introduction

Data mining is “the non-trivial process of identifying valid, novel , potentially useful, and ultimately
understandable patterns in data” (Fayyad et al., 1996). Several industrial partners have proposed to
formalize this process using a methodological guide named CRISP-DM, for CRoss Industry Stan-
dard Process for Data Mining (Chapman et al., 2000). The CRISP-DM model provides an overview
of the life cycle of a data mining project, which consists in the following phases: business un-
derstanding, data understanding, data preparation, modeling, evaluation and deployment. Practical
data mining projects involve a large variety of constraints, like scalable training algorithms, under-
standable models, easy and fast deployment. In a large telecommunication companies like France
Telecom, data mining applies to many domains: marketing, text mining, web mining, traffic classifi-
cation, sociology, ergonomics. The available data is heterogeneous, with numerical and categorical
variables, target variables with multiple classes, missing values, noisy unbalanced distributions, and
with numbers of instances or variables which can vary over several orders of magnitude. The most
limiting factor which slows down the spread of data mining solutions is the data preparation phase,
which consumes 80% of the process (Pyle, 1999; Mamdouh, 2006) and requires skilled data an-
alysts. In this paper, we present a method1 (Boullé, 2007) which aims at automatizing the data
preparation and modeling phases of a data mining project, and which performs well on a large vari-
ety of problems. The interest of the paper, which extends the workshop abstract (Boullé, 2008), is

1. The method is available as a shareware, downloadable at http://perso.rd.francetelecom.fr/boulle/.

c©2009 Marc Boullé.
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to introduce the algorithmic extensions of the method to large scale learning, when data does not fit
into memory, and to evaluate them in an international challenge.

The paper is organized as follows. Section 2 summarizes the principles of our method and
Section 3 focuses on its computational complexity, with a detailed description of the extensions in-
troduced for large scale learning. Section 4 reports the results obtained on the Large Scale Learning
challenge (Sonnenburg et al., 2008). Finally, Section 5 gives a summary and discusses future work.

2. A Parameter-Free Classifier

Our method, introduced in Boullé (2007), extends the naive Bayes classifier owing to an optimal
estimation of the class conditional probabilities, a Bayesian variable selection and a compression-
based model averaging.

2.1 Optimal Discretization

The naive Bayes classifier has proved to be very effective on many real data applications (Langley
et al., 1992; Hand and Yu, 2001). It is based on the assumption that the variables are independent
within each output class, and solely relies on the estimation of univariate conditional probabili-
ties. The evaluation of these probabilities for numerical variables has already been discussed in the
literature (Dougherty et al., 1995; Liu et al., 2002). Experiments demonstrate that even a simple
equal width discretization brings superior performance compared to the assumption using a Gaus-
sian distribution. In the MODL approach (Boullé, 2006), the discretization is turned into a model
selection problem and solved in a Bayesian way. First, a space of discretization models is defined.
The parameters of a specific discretization are the number of intervals, the bounds of the intervals
and the output frequencies in each interval. Then, a prior distribution is proposed on this model
space. This prior exploits the hierarchy of the parameters: the number of intervals is first chosen,
then the bounds of the intervals and finally the output frequencies. The choice is uniform at each
stage of the hierarchy. Finally, the multinomial distributions of the output values in each interval
are assumed to be independent from each other. A Bayesian approach is applied to select the best
discretization model, which is found by maximizing the probability p(Model|Data) of the model
given the data. Owing to the definition of the model space and its prior distribution, the Bayes
formula is applicable to derive an exact analytical criterion to evaluate the posterior probability of a
discretization model. Efficient search heuristics allow to find the most probable discretization given
the data sample. Extensive comparative experiments report high performance.

The case of categorical variables is treated with the same approach in Boullé (2005), using a
family of conditional density estimators which partition the input values into groups of values.

2.2 Bayesian Approach for Variable Selection

The naive independence assumption can harm the performance when violated. In order to better
deal with highly correlated variables, the selective naive Bayes approach (Langley and Sage, 1994)
exploits a wrapper approach (Kohavi and John, 1997) to select the subset of variables which opti-
mizes the classification accuracy. Although the selective naive Bayes approach performs quite well
on data sets with a reasonable number of variables, it does not scale on very large data sets with
hundreds of thousands of instances and thousands of variables, such as in marketing applications
or text mining. The problem comes both from the search algorithm, whose complexity is quadratic
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in the number of variables, and from the selection process which is prone to overfitting. In Boullé
(2007), the overfitting problem is tackled by relying on a Bayesian approach, where the best model
is found by maximizing the probability of the model given the data. The parameters of a variable
selection model are the number of selected variables and the subset of variables. A hierarchic prior
is considered, by first choosing the number of selected variables and second choosing the subset of
selected variables. The conditional likelihood of the models exploits the naive Bayes assumption,
which directly provides the conditional probability of each label. This allows an exact calculation
of the posterior probability of the models. Efficient search heuristic with super-linear computation
time are proposed, on the basis of greedy forward addition and backward elimination of variables.

2.3 Compression-Based Model Averaging

Model averaging has been successfully exploited in Bagging (Breiman, 1996) using multiple clas-
sifiers trained from re-sampled data sets. In this approach, the averaged classifier uses a voting
rule to classify new instances. Unlike this approach, where each classifier has the same weight, the
Bayesian Model Averaging (BMA) approach (Hoeting et al., 1999) weights the classifiers accord-
ing to their posterior probability. In the case of the selective naive Bayes classifier, an inspection
of the optimized models reveals that their posterior distribution is so sharply peaked that averaging
them according to the BMA approach almost reduces to the maximum a posteriori (MAP) model.
In this situation, averaging is useless. In order to find a trade-off between equal weights as in bag-
ging and extremely unbalanced weights as in the BMA approach, a logarithmic smoothing of the
posterior distribution, called compression-based model averaging (CMA), is introduced in Boullé
(2007). Extensive experiments demonstrate that the resulting compression-based model averaging
scheme clearly outperforms the Bayesian model averaging scheme.

3. Complexity Analysis

In this section, we first recall the algorithmic complexity of the algorithms detailed in Boullé (2005,
2006, 2007) in the case where all the data fits in central memory, then introduce the extension of the
algorithms when data exceeds the central memory.

3.1 When Data Fits into Central Memory

The algorithm consists in three phases: data preprocessing using discretization or value grouping,
variable selection and model averaging.

3.1.1 PREPROCESSING

In the case of numerical variables, the discretization Algorithm 1 exploits a greedy-heuristic. It first
sorts the input values, then starts with initial single value intervals and searches for the best merge
between adjacent intervals. This merge is performed if the cost (evaluation) of the discretization
decreases after the merge and the process is reiterated until no further merge can decrease the dis-
cretization cost. With a straightforward implementation of the algorithm, the method runs in O(N3)
time, where N is the number of instances. However, the method can be optimized in O(N logN) time
owing to the additivity of the discretization cost with respect to the intervals and using a maintained
sorted list of the evaluated merges (such as an AVL binary search tree for example).
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Algorithm 1 Discretization
Input: Xk // Numerical input variable
Output: D // Best discretization
1: // Initialization
2: Sort the input values
3: D= Elementary discretization with one interval per value value
4: // Optimization
5: costbest = cost(D),mbest = /0
6: repeat
7: for all merge m between adjacent intervals do
8: if (cost(D∪m) < costbest) then
9: costbest = cost(D∪m),mbest = m
10: end if
11: end for
12: if (costbest = cost(D)) then
13: D= D∪mbest
14: end if
15: until no improvement

The case of categorical variables is handled using a similar greedy heuristic. Overall, the pre-
processing phase is super-linear in time and requires O(KN logN) time, where K is the number of
variables and N the number of instances.

3.1.2 VARIABLE SELECTION

In the variable selection Algorithm 2, the method alternates fast forward and backward variable
selection steps based on randomized reorderings of the variables, and repeats the process several
times in order to better explore the search space and reduce the variance caused by the dependence
over the order of the variables.

Evaluating one variable selection for the naive Bayes classifier requires O(KN) time, since
the conditional probabilities, which are linear in the number of variables, require O(K) time per
instance. Updating the evaluation of a variable subset by adding or dropping one single variable
requires only O(1) time per instance and thus O(N) time for all the instances. Therefore, one loop
of fast forward or backward variable selection, which involves O(K) adds or drops of variables, can
be evaluated in O(KN) time.

In order to bound the time complexity, each succession of fast forward and backward variable
selection is repeated only twice (MaxIter = 2 in algorithm 2), which is sufficient in practice to be
close to convergence within a small computation time.

The number of repeats of the outer loop is fixed to log2N + log2K, so that the overall time
complexity of the variable selection algorithm is O(KN(logK+ logN)), which is comparable to
that of the preprocessing phase.
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Algorithm 2 Variable Selection
Input: X = (X1,X2, . . .XK) // Set of input variables
Output: B // Best subset of variables
1: B= /0 // Start with an empty subset of variables
2: for Step=1 to log2KN do
3: // Fast forward backward selection
4: S= /0 // Initialize an empty subset of variables
5: Iter = 0
6: repeat
7: Iter = Iter+1
8: X ′ = Shuffle(X) // Randomly reorder the variables to add
9: // Fast forward selection
10: for Xk ∈ X ′ do
11: if (cost(S∪{Xk}) < cost(S)) then
12: S= S∪{Xk}
13: end if
14: end for
15: X ′ = Shuffle(X) // Randomly reorder the variables to remove
16: // Fast backward selection
17: for Xk ∈ X ′ do
18: if (cost(S−{Xk}) < cost(S)) then
19: S= S−{Xk}
20: end if
21: end for
22: until no improvement or Iter ≥MaxIter
23: // Update best subset of variables
24: if (cost(S) < cost(B)) then
25: B= S
26: end if
27: end for

3.1.3 MODEL AVERAGING

The model averaging algorithm consists in collecting all the models evaluated in the variable selec-
tion phase and averaging then according to a logarithmic smoothing of their posterior probability,
with no overhead on the time complexity.

Overall, the preprocessing, variable selection and model averaging have a time complexity of
O(KN(logK+ logN)) and a space complexity of O(KN).

3.2 When Data Exceeds Central Memory

Whereas standard scalable approaches, such as data sampling or online learning, cannot process
all the data simultaneously and have to consider simpler models, our objective is to enhance the
scalability of our algorithm without sacrificing the quality of the results.
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With the O(KN) space complexity, large data sets cannot fit into central memory and training
time becomes impracticable as soon as memory pages have to be swapped between disk and central
memory.2 To avoid this strong limitation, we enhance our algorithm with a specially designed
chunking strategy.

3.2.1 CHUNKING STRATEGY

First of all, let us consider the access time from central memory (tm) and from sequential read (tr)
or random disk access (ta). In modern personal computers (year 2008), tm is in the order of 10
nanoseconds. Sequential read from disk is so fast (based on 100 Mb/s transfer rates) that tr is in
the same order as tm: CPU is sometimes a limiting factor, when parsing operations are involved.
Random disk access ta is in the order of 10 milliseconds, one million times slower than tm or tr.
Therefore, the only way to manage very large amounts of memory space is to exploit disk in a
sequential manner.

Let S=O(KN) be the size of the data set and M the size of the central memory. Our chunking
strategy consists in minimizing the number of exchanges between disk and central memory. The
overhead of the scalable version of the algorithms will be expressed in terms of sequential disk read
time tr.

3.2.2 PREPROCESSING

For the preprocessing phase of our method, each variable is analyzed once after being loaded into
central memory. The discretization Algorithm 1 extensively accesses the values of the analyzed
variable, both in the initialization step (values are sorted) and in the optimization step. We partition
the set of input variables into C = 'S/M( chunks of K1, . . . ,KC variables, such that each chunk can
be loaded into memory (KcN < M,1 ≤ c ≤ C). The preprocessing phase loops on the C subsets,
and at each step of the loop, reads the data set, parses and loads the chunk variables only, as shown
in Figure 1. Each memory chunk is preprocessed as in Algorithm 1, in order to induce conditional
probability tables (CPT) for the chunk variables.

After the preprocessing, the chunk variables are recoded by replacing the input values by their
index in the related CPT. The recoded chunk of variables are stored in C files of integer indexes,
as shown in Figure 2. These recoded chunks are very fast to load, since the chunk variables only
need to be read, without any parsing (integer indexes are directly transfered from disk to central
memory).

The scalable version of the preprocessing algorithm is summarized in Algorithm 3. Each input
variable is read C times, but parsed and loaded only once as in the standard case. The overhead
in terms of disk read time is O((C− 1)KNtr) time for the load steps. In the recoding step, each
variable is written once on disk, which involves an overhead of O(KNtr) (disk sequential write time
is similar to disk sequential read time). Overall, the overhead is O(CKNtr) time.

This could be improved by first splitting the input data file into C initial disk chunks (without
parsing), with an overall overhead of only O(3KNtr) time (read and write all the input data before
preprocessing, and write recoded chunks after preprocessing). However, this involves extra disk
space and the benefit is small in practice, since even C read steps are not time expensive compared
to the rest of the algorithm.

2. On 32 bits CPU, central memory is physically limited to 4 Go, or even to 2 Go on Windows PCs.
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Figure 1: Preprocessing: the input file on disk is read several times, with one chunk of variables
parsed and loaded into central memory one at a time.
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Figure 2: Recoding: the input file on disk is read and recoded once, and several recoded chunks of
variables are written on disk.
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Algorithm 3 Scalable preprocessing
Input: input data on disk
Output: recoded data on several recoded disk chunks, conditional probability tables
1: // Compute chunking parameters
2: estimate input data size S and available central memory sizeM
3: compute number of chunks: C = 'S/M(
4: partition the set of variables into C balanced chunks of variables
5: // Main loop
6: for all chunk do
7: // Load chunk into central memory
8: for all variable do
9: read input data
10: if (variable in current chunk) then
11: parse and load variable
12: end if
13: end for
14: // Preprocessing
15: for all variable in memory chunk do
16: call the discretization or value grouping algorithm
17: keep the conditional probability table (CPT) into memory
18: end for
19: // Recoding
20: for all variable in memory chunk do
21: write a recoded chunk by replacing each input value by its index in the CPT
22: end for
23: end for

3.2.3 VARIABLE SELECTION

In the variable selection phase, the algorithm performs O(logK+ logN) steps of fast forward back-
ward variable selection, based on random reordering of the variables. Each step evaluates the add
or drop of one variable at a time, so that the whole input data has to be read.

In the scalable version of the variable selection phase, we exploit the recoded chunks of vari-
ables as shown in Figure 3: one single chunk is loaded in memory at a time. Instead of reordering
randomly all the variables, we first reorder randomly the list of recoded chunks, then reorder ran-
domly the subset of variables in the recoded chunk currently loaded in memory. This “double stage”
reordering is the only place where the scalable algorithm does not exactly mirror the behavior of the
standard algorithm.

Each step of fast forward backward variable selection involves reading each recoded chunk O(1)
times (exactly 2∗MaxIter times withMaxIter= 2), thus implies an overhead of O(KNtr) read time.

Overall, the algorithmic overhead consists of additional steps for reading the input data: C ≈
S/M steps for the preprocessing phase and (logK+ logN) read for variable selection phase, with
an overhead of O(KN(S/M+ logK+ logN)tr) time. Since sequential disk read time ts is compa-
rable to memory access time, we expect that the scalable version of the algorithm has a practicable
computation time.
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Figure 3: Read: the recoded chunks of variables are read and loaded (no parsing) into central mem-
ory one at a time.

4. Results on the Large Scale Learning Challenge

In this section, we summarize the Pascal Large Scale Learning Challenge (Sonnenburg et al., 2008)
and describe our submission. We then analyze the advantages and limitations of our non-parametric
modeling approach on large scale learning and evaluate our chunking strategy. We finaly report the
challenge results.

4.1 Challenge Data Sets and Protocol

The challenge is designed to enable a direct comparison of learning methods given limited resource.
The data sets, summarized in Table 1 represent a variety of domains and contain up to millions of
instances, thousands of variables and tens of gigabytes of disk space.

The challenge data sets are a convenient way to evaluate the scalability of our offline method,
when data set size is larger than the central memory by one order of magnitude (on computers
with 32 bit CPU). In the Wild Competition Track of the challenge, the participants are “free to
do anything that leads to more efficient, more accurate methods, for example, perform feature
selection, find effective data representations, use efficient program-code, tune the core algorithm
etc”. The method have to be trained on subsets of the train data set of increasing size, with sizes
102,103,104,105, . . . up to the maximum number of train examples.

For all the training sessions, the accuracy is estimated using the area over the precision recall
curve (aoPRC) criterion. The training time is estimated by the organizer in the final evaluation by
a re-run of the algorithm on a single CPU Linux machine, 32 Gb RAM. It is noteworthy that the
evaluated training time is the computation time for the optimal parameter settings, excluding data
loading times and any kind of data preparation or model selection time.
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Data set Domain Training Validation Dimensions Best Our
aoPRC aoPRC

alpha artificial 500000 100000 500 0.1345 0.2479
beta artificial 500000 100000 500 0.4627 0.4627
gamma artificial 500000 100000 500 0.0114 0.0114
delta artificial 500000 100000 500 0.0798 0.0798
epsilon artificial 500000 100000 2000 0.0343 0.0625
zeta artificial 500000 100000 2000 0.0118 0.0305
fd face detection 5469800 532400 900 0.1829 0.1829
ocr character recognition 3500000 670000 1156 0.1584 0.1637
dna dna split point detection 50000000 1000000 200 0.8045 0.8645
webspam webspam detection 350000 50000 variable 0.0004 0.0031

Table 1: Challenge data sets and final best vs our results for the aoPRC criterion.

The overall results are summarized based on performance figures: displaying training time vs.
test error, data set size vs. test error and data set size vs. training time. A final ranking is computed
by aggregating a set of performance indicators computed from these figures.

4.2 Our Submission

We made one fully automatic submission, using the raw representation of the data sets, which is
numerical for all the data sets except for dna where the variables are categorical.

For the two image-based data sets (fd and ocr), we also studied the impact of initial represen-
tation using centered reduced rows, and finally chose the representation leading to the best results:
raw for ocr and centered-reduced for fd.

The webspam data set is represented using a tri-gram representation, which implies 16 millions
of potential variables (K = 2563 ≈ 16 ∗ 106). Although this is a sparse data set, our algorithm
exploits a dense representation and cannot manage such a large number of variables. We applied a
simple dimensionality reduction method inspired from the random projection technique (Vempala,
2004). We choose to build a compact representation, using a set of K′ = 10007 (first prime number
beyond 10000) constructed variables: each constructed feature is the sum of the initial variables
having the same index modulo K′:

∀k′,0≤ k′ < K′,Vark′ = !
k,k mod K′=k′

Vark.

As our method is available as a scoring tool for Windows end users, it is implemented for 32
bits CPUs and limited to 2 Gb RAM, thus does not benefit from the 32 Gb RAM allowed in the
challenge. The algorithmic extensions presented in Section 3.2 are thus extensively exploited for
the largest training sessions.

4.3 Non-Parametric Modeling with Large Data Sets

In Boullé (2007), we have analyzed the accuracy performance of our method using extensive ex-
periments. In the section, we give new insights on our non-parametric approach and its impact on
large scale learning. Actually, the MODL method considers a space of discretization models which
grows with the size of the training data set. The number of intervals is taken between 1 to N in-
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tervals, where N is the number of training instances, the boundaries come from the input data and
the class conditional parameters per interval are confined to a finite number of frequencies (rather
than continuous distributions in [0, 1]), on the basis on instance counts in the data. Both the space
of discretization models and the prior distribution on the model parameters are data-dependent.
More precisely, they depends on the input data, and the best model, with the maximum a posteriori
probability, is selected using the output data.

To illustrate this, we chose the delta data set and exploit the 500000 labeled instances for our
experiment. We use training sets of increasing sizes 100, 1000, 10000, 100000 and 400000, and
keep the last 100000 instances as a test set. The best variable according to the MODL criterion is
Var150 for all data set sizes above 1000. In Figure 4, we draw the discretization (with boundaries
and conditional probability of the positive class) of Var150, using the MODL method and the unsu-
pervised equal frequency method with 10 intervals, as a baseline. For data set size 100, the empirical
class distribution is noisy, and the MODL method selects a discretization having one single interval,
leading to the elimination of the variable. When the data set size increases, the MODL discretiza-
tions contain more and more intervals, with up to 12 intervals in the case of data set size 400000.
Compared to the fixed size equal frequency discretization, the MODL method builds discretizations
which are both more accurate and robust and obtain a good approximation of the underlying class
distribution.

This also demonstrates how the univariate MODL preprocessing method behaves as a variable
ranking method with a clear threshold: any input variable discretized into one single interval does
not contain any predictive information and can be eliminated. In Figure 5, we report the number of
selected variables per data set size, which goes from 6 for data set size 100 to about 350 for data
set size 400000. Figure 5 also report the test AUC (area under the ROC curve (Fawcett, 2003)),
which significantly improves with the data set size and exhibits a clear correlation with the number
of selected variables.

One drawback of this approach is that all the training data have to be exploited simultaneously
to unable a deep optimization of the model parameters and fully benefit from their expressiveness.
Although learning with very large data sets is possible, as shown in this paper, the approach is
limited to offline learning and does not apply to the one-pass learning paradigm or to learning on
stream.

Overall, our non-parametric approach build models of increasing complexity with the size of
the training data set, in order to better approximate the underlying class distribution. Small train-
ing data sets lead to simple models, which are fast to deploy (few selected variables with simple
discretization), whereas large training data sets allow more accurate models at the expense of more
training time and deployment time.

4.4 Impact of the Chunking Strategy

In Section 3.2, we have proposed a chunking strategy that allows to learn with training data sets
which size is far larger than central memory. The only difference with the standard algorithm is
the “double stage” random reordering of the variables, which is performed prior to each step of fast
forward or backward variable selection in Algorithm 2. In this section, we evaluate our chunking
strategy and its impact on training time and test AUC.

We exploit the delta data set with trainings sets of increasing sizes 100, 1000, 10000, 10000,
400000, and a test set of 100000 instances. The largest training size fits into central memory on our
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Figure 4: Discretization of Var150 for the delta data set, using the MODL method (in black) and
the 10 equal frequency method (in gray).
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Figure 5: Data set size versus selected variable number and test AUC for the delta data set.

machine (Pentium 4, 3.2 Ghz, 2 Go RAM, Windows XP), which allows to compare the standard al-
gorithm with the chunking strategy. In Figure 6, we report the wall-clock variable selection training
time and the test AUC for the standard algorithm (chunk number = 1) and the chunking strategy, for
various numbers of chunks.
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Figure 6: Impact on the chunking strategy on the wall-clock variable selection training time and the
test AUC for the delta data set.

The results show that the impact on test AUC is insignificant: the largest differences go from
0.003 for data set size 100 to 0.0004 for data set size 400000. The variable selection training time is
almost constant with the number of chunks. Compared to the standard algorithm, the time overhead
is only 10% (for data set size above 10000), whatever be the number of chunks. Actually, as
analyzed in Section 3.2, the recoded chunks of variables are extremely quick to load into memory,
resulting in just a slight impact on training time.

We perform another experiment using the fd data set, with up to 5.5 millions of instances and
900 variables, which is one order of magnitude larger than our central memory resources. Figure 7
reports the wall-clock full training time, including load time, preprocessing and variable selection.
When the size of the data sets if far beyond the size of the central memory, the overhead in wall-
clock time is by only a factor two. This overhead mainly comes from the preprocessing phase of the
algorithm (see Algorithm 3), which involves several reads of the initial training data set. Overall,
the wall-clock training time is about one hour per analyzed gigabyte.
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Figure 7: Training time for the fd data set.

Rank Score Submitter Title
1 2.6 chap - Olivier Chapelle Newton SVM
2 2.7 antoine - Antoine Bordes SgdQn
3 3.2 yahoo - Olivier Keerthi SDM SVM L2
4 3.5 yahoo - Olivier Keerthi SDM SVM L1
5 5 MB - Marc Boulle Averaging of Selective Naive Bayes Classifiers final
6 5.8 beaker - Gavin Cawley LR
7 6.8 kristian - Kristian Woodsend IPM SVM 2
8 7.3 ker2 - Porter Chang CTJ LSVM01
9 7.7 antoine - Antoine Bordes LaRankConverged
10 8 rofu - Rofu yu liblinear

Table 2: Challenge final ranking.

4.5 Challenge Results

The challenge attracted 49 participants who registered, for a total of 44 submissions. In the final
evaluation, our submission is ranked 5th using the the aggregated performance indicator of the
organizers, as shown in Table 2. To go beyond this aggregated indicator and analyze the intrinsic
multi-criterion nature of the results, we now report and comment separately the training time and
accuracy performance of our method.

4.5.1 TRAINING TIME

Most of the other competitors exploit linear SVM, using for example Newton based optimization in
the primal (Chapelle, 2007), Sequential Dual Method optimization (Hsieh et al., 2008) or stochastic
gradient optimization (Bordes and Bottou, 2008). These method were applied using a specific data
preparation per data set, such as 0-1, L1 or L2 normalization, and the model parameters were tuned
using most of the available training data, even for the smallest training sessions. They exploit
incremental algorithms, similar to online learning methods: they are very fast and need only a few
passes on the data to reach convergence.
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We report in Figure 8 the training time vs data set size performance curves (in black for our
results).3 As far as the computation time only is considered, our offline training time is much
longer than that of the online methods of the other competitors, by about two orders of magnitude.
However, when the overall process is accounted for, with data preparation, model selection and
data loading time, our training time becomes competitive, with about one hour of training time per
analyzed gigabyte.

4.5.2 ACCURACY

Table 1 reports our accuracy results in the challenge for the area over the precision recall curve
(aoPRC) criterion in the final evaluation of the challenge. The detailed results are presented in
Figure 9, using the data set size vs accuracy performance curves.

On the webspam data set, the linear SVM submissions of Keerthi obtain excellent performance,
which confirms the effectiveness of SVM for text categorization (Joachims, 1998). On the alpha
data set, our method (based on the naive Bayes assumption) fails to exploit the quadratic nature of
this artificial data set and obtains poor results. Except for this data set, our method always ranks
among the first competitors and obtains the 1st place with a large margin on four data sets: beta,
gamma, delta and fd. This is a remarkable performance for a fully automatic method, which exploits
the limited naive Bayes assumption.

Overall, our method is highly scalable and obtains competitive performance fully automatically,
without tuning any parameter.

5. Conclusion

We have presented a parameter-free classification method that exploits the naive Bayes assumption.
It estimates the univariate conditional probabilities using the MODL method, with Bayes optimal
discretizations and value groupings for numerical and categorical variables. It searches for a subset
of variables consistent with the naive Bayes assumption, using an evaluation based on a Bayesian
model selection approach and efficient add-drop greedy heuristics. Finally, it combines all the
evaluated models using a compression-based averaging schema. In this paper, we have introduced
a carefully designed chunking strategy, such that our method is no longer limited to data sets that fit
into central memory.

Our classifier is aimed at automatically producing competitive predictions in a large variety of
data mining contexts. Our results in the Large Scale Learning Challenge demonstrates that our
method is highly scalable and automatically builds state-of-the art classifiers. When the data set
size is larger than the available central memory by one order of magnitude, our method exploits an
efficient chunking strategy, with a time overhead of only a factor two.

Compared to alternative methods, our method requires all the data simultaneously to fully ex-
ploit the potential of our non-parametric preprocessing: it is thus dedicated to offline learning, not to
online learning. Another limitation is our selective naive Bayes assumption. Although this is often
leveraged in practice when large number of features can be constructed using domain knowledge,
alternative methods might be more effective when their bias fit the data. Overall, our approach is

3. For readability reasons in this paper, we have represented our results in black and the others in gray, which allows
to present our performance relatively to the distribution of all the results. On the challenge website, Figures 8 and 9
come in color, which allows to discriminate the performance of each method.
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Figure 8: Final training time results: data set size versus training time (excluding data loading).
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Figure 9: Final accuracy results: data set size versus test error.
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of great interest for automatizing the data preparation and modeling phases of data mining, and
exploits as much as possible all the available training data in its initial representation.

In future work, we plan to further improve the method and extend it to classification with large
number of class values and to regression.
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Abstract
This paper presents Model Monitor (M2), a Java toolkit for robustly evaluating machine learning
algorithms in the presence of changing data distributions. M2 provides a simple and intuitive frame-
work in which users can evaluate classifiers under hypothesized shifts in distribution and therefore
determine the best model (or models) for their data under a number of potential scenarios. Addi-
tionally, M2 is fully integrated with the WEKA machine learning environment, so that a variety of
commodity classifiers can be used if desired.
Keywords: machine learning, open-source software, distribution shift, scenario analysis

1. Introduction

Most work in machine learning implicitly assumes a stationary distribution, meaning that the pop-
ulation from which our data is drawn does not change over time. However, a number of real-world
applications present the challenge of a drift in distribution between training and testing (Quiñonero
et al., 2008). At the same time, the prevalent evaluation paradigm does not take into account the
effect of changing distributions on the performance of the models being compared. We posit that
it is important to effectively evaluate the generalization capacity of models or classifiers on a range
of distribution divergences. We propose M2, a Java toolkit that is designed to help researchers
and practitioners grapple with potential shifts in data distribution. The fundamental issues that we
address in this toolkit are: a) which of several competing models is most robust to changing distri-
butions? b) when, why, and how may the learned model fail? Specifically, it carries the following
fundamental capabilities.

1. Detection of distribution shift: M2 contains methods for isolating features whose distribution
has changed significantly between training and testing sets. This allows for following: a)
sensitivity/fragility analysis on features with respect to distributional shifts; b) if a testing
set is available, determination of features that change significantly between the training and
testing sets; and c) if an effective model is beginning to degrade in performance, problematic
features can be isolated and the model can be updated before its performance gets worse.

2. Exploration of hypothetical scenarios: If a user is building a model on new data and expects
the distribution to change over time, he or she can inject these changes into the test data and

c©2009 Troy Raeder and Nitesh V. Chawla.
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determine which classifiers1 (trained on current data) perform best on both the current and
hypothetical future distributions.

3. Empirical comparison of classifiers: M2 can compare classifiers on performance across sev-
eral data sets and distribution shifts. This capability allows researchers to objectively evalu-
ate the robustness of the classifiers under distribution shift. This can guide the selection of
a classifier that is more robust to distributional drifts. Various cross-validation schemes are
available, and we implement statistical tests, so that the user knows whether the observed
differences are statistically significant.

M2 is, to our knowledge, the only publicly-available software to tackle the important problem
of learning under changing distributions. At present, it is designed mainly for two-class problems.
Most of the currently-implemented performance measures will compare the performance of the
positive class (i.e., class 1) against the performance on all other classes.

The current version is available on mloss.org, and its distribution package contains a user’s
guide, developer’s guide, JavaDoc documentation, and examples. To afford flexibility to the user
M2 fully integrates with WEKA (Witten et al., 1999), but also provides support for interfacing with
arbitrary custom classifiers. Input data can either be in the WEKA format or the comma-delimited
format of traditional UCI repository data sets (often called C4.5 style).

2. Implementation

M2 is implemented in Java and is therefore fully cross-platform. It provides a Swing graphical user
interface, and implements several different distribution shifts, methods of evaluation such as 10-
fold, 5x2 CV, etc., performance measures, and statistical measures for the comparison of classifiers.
Each of these critical components has been validated by a series of automated unit tests to insure
correct operation and protect against regression.

2.1 Performance Measures

In addition to the standard performance measures (Accuracy, AUROC,Precision, Recall, F1-Measure),
we have implemented other performance and loss measures commonly used for binary classifica-
tion tasks, including Brier Score and Negative Cross Entropy. For any of the tasks described above,
M2 supports all of the standard validation measures including cross-validation (5-by-2 and 10-fold
from the GUI, arbitrary configurations otherwise), splitting a data set into training and testing, and
specifying an entirely separate file of test data.

2.2 Distribution Shifts

M2 can introduce a number of different changes in distribution, including missing at random, miss-
ing not at random, random noise,mean shift, variance change, and a prior probability shift. Specific
details on how each of the distribution shifts are implemented is available in the user’s guide.

1. Model and classifier will be used inter-changeably in this paper.
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(a) Detecting distribution shift (b) Plot of classifier sensitivity to
MAR bias.

(c) Comparison of classifiers across mul-
tiple data sets.

Figure 1: Types of data presented to the user.

2.3 Statistical Measures

The bulk of the implementation has to do with methods for detecting and evaluating the effect of
shifts in distribution. For detecting shifts in distribution, we provide both Hellinger distance and
the Kolmogorov-Smirnov (KS) test. Recent work by Cieslak and Chawla (2007) has shown that
systematic shifts in distribution tend to cause significant changes in Hellinger distance. The KS
test helps to distinguish between changes caused by random fluctuation and changes caused by
systematic bias.

For comparing the performance of multiple classifiers, we have implemented the Friedman
test and the Bonferroni-Dunn test. The average performance of several classifiers, across multiple
data sets is compared with the Friedman test, as suggested by Demšar (2006), and if a significant
difference in performance is found, the Bonferroni-Dunn test determines the classifiers or sets of
classifiers between which the significant difference exists.

3. Functionality

Here we provide a quick overview of the toolkit’s major functionality. Each feature is described in
greater detail in the user’s guide.

3.1 Detecting Distribution Shift

When a user startsM2, he or she can load any data set in either C4.5 names/data format or theWEKA
ARFF format. The user then specifies a test set (either by selecting hold-out or cross-validation or
by choosing a separate test file).

At this point, the user can begin evaluating the training and test data sets for shifts in distribution.
Each attribute in the data set is automatically displayed, and selecting it will produce a histogram of
both distributions so that any differences can be visually inspected. Additionally M2 automatically
calculates the Hellinger distance for each feature between the training and test sets. If a feature’s
distribution fails the KS test (at the != 0.05 confidence level), the Hellinger distance for that feature
is highlighted. In this way, users can quickly locate features whose distribution may have changed.
A simple example appears in Figure 1(a).
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3.2 Exploration of Hypothetical Scenarios

After loading a data set, the user has the opportunity to introduce any of a number of distribution
shifts into the test data. Upon doing so, the histograms displayed on the screen will be updated, and
new Hellinger distances and KS-test p-values are calculated. The user can then quickly evaluate
any classifier on both the original and new (“biased”) test sets to compare the results. WEKA
classifiers can be chosen from a GUI chooser, whereas for general classifiers, a commandline must
be specified.

For more sophisticated sensitivity analysis, the user may specify a range of distribution shifts.
In this case, he or she provides a set of increasingly severe biases, and then the tool evaluates the
classifier’s performance under each one. The results are presented to the user both graphically
(plotting classifier preformance against severity of shift) and in tabular form, to facilitate further
offline processing.

3.3 Empirical Comparison of Classifiers

Finally, users may test any one classifier against several others across multiple data sets and distri-
bution shifts. For each specified distribution shift, the software will evaluate each classifier on all
the data sets. It ranks the classifiers on each data set, calculates the average rank for each classifier,
and then performs the Friedman test for analysis of variance on the resulting table of ranks. If the
Friedman test determines (again at the 0.05 level) that there is a significant difference between the
classifiers, we run the Bonferroni-Dunn test to determine exactly which classifiers are different from
the specified reference classifier.

In addition to producing an annotated table of ranks containing the statistical test information,
this step produces all the same output that the other portions of the program produce. Taken together,
these results provide a complete picture of the classifiers’ relative performance in the relevant sce-
narios.
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Abstract
We address the problem of estimating the ratio of two probability density functions, which is often
referred to as the importance. The importance values can be used for various succeeding tasks
such as covariate shift adaptation or outlier detection. In this paper, we propose a new importance
estimation method that has a closed-form solution; the leave-one-out cross-validation score can also
be computed analytically. Therefore, the proposed method is computationally highly efficient and
simple to implement. We also elucidate theoretical properties of the proposed method such as the
convergence rate and approximation error bounds. Numerical experiments show that the proposed
method is comparable to the best existing method in accuracy, while it is computationally more
efficient than competing approaches.
Keywords: importance sampling, covariate shift adaptation, novelty detection, regularization
path, leave-one-out cross validation

1. Introduction

In the context of importance sampling (Fishman, 1996), the ratio of two probability density func-
tions is called the importance. The problem of estimating the importance is attracting a great deal of
attention these days since the importance can be used for various succeeding tasks such as covariate
shift adaptation or outlier detection.

Covariate Shift Adaptation: Covariate shift is a situation in supervised learning where
the distributions of inputs change between the training and test phases but the con-
ditional distribution of outputs given inputs remains unchanged (Shimodaira, 2000;
Quiñonero-Candela et al., 2008). Covariate shift is conceivable in many real-world

∗. A MATLAB R© or R implementation of the proposed importance estimation algo-
rithm, unconstrained Least-Squares Importance Fitting (uLSIF), is available from
http://sugiyama-www.cs.titech.ac.jp/∼sugi/software/uLSIF/.

c©2009 Takafumi Kanamori, Shohei Hido and Masashi Sugiyama.



KANAMORI, HIDO AND SUGIYAMA

applications such as bioinformatics (Baldi and Brunak, 1998; Borgwardt et al., 2006),
brain-computer interfaces (Wolpaw et al., 2002; Sugiyama et al., 2007), robot control
(Sutton and Barto, 1998; Hachiya et al., 2008), spam filtering (Bickel and Scheffer,
2007), and econometrics (Heckman, 1979). Under covariate shift, standard learning
techniques such as maximum likelihood estimation or cross-validation are biased and
therefore unreliable—the bias caused by covariate shift can be compensated by weight-
ing the loss function according to the importance (Shimodaira, 2000; Zadrozny, 2004;
Sugiyama and Müller, 2005; Sugiyama et al., 2007; Huang et al., 2007; Bickel et al.,
2007).
Outlier Detection: The outlier detection task addressed here is to identify irregular
samples in a validation data set based on a model data set that only contains regular
samples (Schölkopf et al., 2001; Tax and Duin, 2004; Hodge and Austin, 2004; Hido
et al., 2008). The values of the importance for regular samples are close to one, while
those for outliers tend to be significantly deviated from one. Thus the values of the
importance could be used as an index of the degree of outlyingness.

Below, we refer to the two sets of samples as the training set and the test set.
A naive approach to estimating the importance is to first estimate the training and test density

functions from the sets of training and test samples separately, and then take the ratio of the esti-
mated densities. However, density estimation is known to be a hard problem particularly in high-
dimensional cases if we do not have simple and good parametric density models (Vapnik, 1998;
Härdle et al., 2004). In practice, such an appropriate parametric model may not be available and
therefore this naive approach is not so effective.

To cope with this problem, direct importance estimation methods which do not involve den-
sity estimation have been developed recently. The kernel mean matching (KMM) method (Huang
et al., 2007) directly gives estimates of the importance at the training inputs by matching the two
distributions efficiently based on a special property of universal reproducing kernel Hilbert spaces
(Steinwart, 2001). The optimization problem involved in KMM is a convex quadratic program, so
the unique global optimal solution can be obtained using a standard optimization software. How-
ever, the performance of KMM depends on the choice of tuning parameters such as the kernel pa-
rameter and the regularization parameter. For the kernel parameter, a popular heuristic of using the
median distance between samples as the Gaussian width could be useful in some cases (Schölkopf
and Smola, 2002; Song et al., 2007). However, there seems no strong justification for this heuristic
and the choice of other tuning parameters is still open.

A probabilistic classifier that separates training samples from test samples can be used for di-
rectly estimating the importance, for example, a logistic regression (LogReg) classifier (Qin, 1998;
Cheng and Chu, 2004; Bickel et al., 2007). Maximum likelihood estimation of LogReg models
can be formulated as a convex optimization problem, so the unique global optimal solution can be
obtained. Furthermore, since the LogReg-based method only involves a standard supervised clas-
sification problem, the tuning parameters such as the kernel width and the regularization parameter
can be optimized based on the standard cross-validation procedure. This is a very useful property
in practice.

TheKullback-Leibler importance estimation procedure (KLIEP) (Sugiyama et al., 2008b; Nguyen
et al., 2008) also directly gives an estimate of the importance function by matching the two distribu-
tions in terms of the Kullback-Leibler divergence (Kullback and Leibler, 1951). The optimization
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problem involved in KLIEP is convex, so the unique global optimal solution—which tends to be
sparse—can be obtained, when linear importance models are used. In addition, the tuning parame-
ters in KLIEP can be optimized based on a variant of cross-validation.

As reviewed above, LogReg and KLIEP are more advantageous than KMM since the tuning
parameters can be objectively optimized based on cross-validation. However, optimization proce-
dures of LogReg and KLIEP are less efficient in computation than KMM due to high non-linearity
of the objective functions to be optimized—more specifically, exponential functions induced by the
LogReg model or the log function induced by the Kullback-Leibler divergence. The purpose of
this paper is to develop a new importance estimation method that is equipped with a build-in model
selection procedure as LogReg and KLIEP and is computationally more efficient than LogReg and
KLIEP.

Our basic idea is to formulate the direct importance estimation problem as a least-squares
function fitting problem. This formulation allows us to cast the optimization problem as a con-
vex quadratic program, which can be efficiently solved using a standard quadratic program solver.
Cross-validation can be used for optimizing the tuning parameters such as the kernel width or the
regularization parameter. We call the proposed method least-squares importance fitting (LSIF).
We further show that the solutions of LSIF is piecewise linear with respect to the !1-regularization
parameter and the entire regularization path (that is, all solutions for different regularization pa-
rameter values) can be computed efficiently based on the parametric optimization technique (Best,
1982; Efron et al., 2004; Hastie et al., 2004). Thanks to this regularization path tracking algorithm,
LSIF is computationally efficient in model selection scenarios. Note that in the regularization path
tracking algorithm, we can trace the solution path without a quadratic program solver—we just need
to compute matrix inverses.

LSIF is shown to be efficient in computation, but it tends to share a common weakness of reg-
ularization path tracking algorithms, that is, accumulation of numerical errors (Scheinberg, 2006).
The numerical problem tends to be severe if there are many change points in the regularization
path. To cope with this problem, we develop an approximation algorithm in the same least-squares
framework. The approximation version of LSIF, which we call unconstrained LSIF (uLSIF), allows
us to obtain the closed-form solution that can be computed just by solving a system of linear equa-
tions. Thus uLSIF is numerically stable when regularized properly. Moreover, the leave-one-out
cross-validation score for uLSIF can also be computed analytically (cf. Wahba, 1990; Cawley and
Talbot, 2004), which significantly improves the computational efficiency in model selection scenar-
ios. We experimentally show that the accuracy of uLSIF is comparable to the best existing method
while its computation is faster than other methods in covariate shift adaptation and outlier detection
scenarios.

Our contributions in this paper are summarized as follows. A proposed density-ratio estima-
tion method, LSIF, is equipped with cross-validation (which is an advantage over KMM) and is
computationally efficient thanks to regularization path tracking (which is an advantage over KLIEP
and LogReg). Furthermore, uLSIF is computationally even more efficient since its solution and
leave-one-out cross-validation score can be computed analytically in a stable manner. The proposed
methods, LSIF and uLSIF, are similar in spirit to KLIEP, but the loss functions are different: KLIEP
uses the log loss while LSIF and uLSIF use the squared loss. The difference of the log functions
allows us to improve computational efficiency significantly.

The rest of this paper is organized as follows. In Section 2, we propose a new importance
estimation procedure based on least-squares fitting (LSIF) and show its theoretical properties. In
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Section 3, we develop an approximation algorithm (uLSIF) which can be computed efficiently. In
Section 4, we illustrate how the proposed methods behave using a toy data set. In Section 5, we dis-
cuss the characteristics of existing approaches in comparison with the proposed methods and show
that uLSIF could be a useful alternative to the existing methods. In Section 6, we experimentally
compare the performance of uLSIF and existing methods. Finally in Section 7, we summarize our
contributions and outline future prospects. Those who are interested in practical implementation
may skip the theoretical analyses in Sections 2.3, 3.2, and 3.3.

2. Direct Importance Estimation

In this section, we propose a new method of direct importance estimation.

2.1 Formulation and Notation

Let D ⊂ (Rd) be the data domain and suppose we are given independent and identically distributed
(i.i.d.) training samples {xtri }

ntr
i=1 from a training distribution with density ptr(x) and i.i.d. test samples

{xtej }
nte
j=1 from a test distribution with density pte(x):

{xtri }
ntr
i=1

i.i.d.∼ ptr(x),

{xtej }
nte
j=1

i.i.d.∼ pte(x).

We assume that the training density is strictly positive, that is,

ptr(x) > 0 for all x ∈D.

The goal of this paper is to estimate the importance w(x) from {xtri }
ntr
i=1 and {xtej }

nte
j=1:

w(x) =
pte(x)
ptr(x)

,

which is non-negative by definition. Our key restriction is that we want to avoid estimating densities
pte(x) and ptr(x) when estimating the importance w(x).

2.2 Least-squares Approach to Direct Importance Estimation

Let us model the importance w(x) by the following linear model:

ŵ(x) =
b

!
!=1

"!#!(x), (1)

where "= ("1,"2, . . . ,"b)& are parameters to be learned from data samples, & denotes the transpose
of a matrix or a vector, and {#!(x)}b!=1 are basis functions such that

#!(x) ≥ 0 for all x ∈D and for ! = 1,2, . . . ,b.

Note that b and {#!(x)}b!=1 could be dependent on the samples {xtri }
ntr
i=1 and {xtej }

nte
j=1, for example,

kernel models are also allowed. We explain how the basis functions {#!(x)}b!=1 are chosen in
Section 2.5.
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We determine the parameters {"!}b!=1 in the model ŵ(x) so that the following squared error J0
is minimized:

J0(") =
1
2

Z

(ŵ(x)−w(x))2 ptr(x)dx

=
1
2

Z

ŵ(x)2ptr(x)dx−
Z

ŵ(x)w(x)ptr(x)dx+
1
2

Z

w(x)2ptr(x)dx

=
1
2

Z

ŵ(x)2ptr(x)dx−
Z

ŵ(x)pte(x)dx+
1
2

Z

w(x)2ptr(x)dx,

where in the second term the probability density ptr(x) is canceled with that included in w(x).
The squared loss J0(") is defined as the expectation under the probability of training samples. In
covariate shift adaptation (see Section 6.2) and outlier detection (see Section 6.3), the importance
values on the training samples are used. Thus, the definition of J0(") well agrees with our goal.

The last term of J0(") is a constant and therefore can be safely ignored. Let us denote the first
two terms by J:

J(") =
1
2

Z

ŵ(x)2ptr(x)dx−
Z

ŵ(x)pte(x)dx

=
1
2

b

!
!,!′=1

"!"!′

(
Z

#!(x)#!′(x)ptr(x)dx
)
−

b

!
!=1

"!

(
Z

#!(x)pte(x)dx
)

=
1
2
"&H"−h&", (2)

where H is the b×b matrix with the (!,!′)-th element

H!,!′ =
Z

#!(x)#!′(x)ptr(x)dx, (3)

and h is the b-dimensional vector with the !-th element

h! =
Z

#!(x)pte(x)dx.

Approximating the expectations in J by empirical averages, we obtain

Ĵ(") =
1
2ntr

ntr
!
i=1

ŵ(xtri )2−
1
nte

nte
!
j=1

ŵ(xtej )

=
1
2

b

!
!,!′=1

"!"!′

(
1
ntr

ntr
!
i=1

#!(xtri )#!′(xtri )

)

−
b

!
!=1

"!

(
1
nte

nte
!
j=1

#!(xtej )

)

=
1
2
"&Ĥ"− ĥ

&
",

where Ĥ is the b×b matrix with the (!,!′)-th element

Ĥ!,!′ =
1
ntr

ntr
!
i=1

#!(xtri )#!′(xtri ), (4)
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and ĥ is the b-dimensional vector with the !-th element

ĥ! =
1
nte

nte
!
j=1

#!(xtej ). (5)

Taking into account the non-negativity of the importance function w(x), we can formulate our opti-
mization problem as follows.

min
"∈Rb

[
1
2
"&Ĥ"− ĥ

&
"+$1&b "

]

subject to "≥ 0b, (6)

where 0b and 1b are the b-dimensional vectors with all zeros and ones, respectively; the vector
inequality "≥ 0b is applied in the element-wise manner, that is, "! ≥ 0 for ! = 1,2, . . . ,b. In Eq. (6),
we included a penalty term $1&b " for regularization purposes, where $ (≥ 0) is a regularization
parameter. The above is a convex quadratic programming problem and therefore the unique global
optimal solution can be computed efficiently by a standard optimization package. We call this
method Least-Squares Importance Fitting (LSIF).

We can also use the !2-regularizer "&" instead of the !1-regularizer 1&b " without changing the
computational property. However, using the !1-regularizer would be more advantageous since the
solution tends to be sparse (Williams, 1995; Tibshirani, 1996; Chen et al., 1998). Furthermore, as
shown in Section 2.6, the use of the !1-regularizer allows us to compute the entire regularization
path efficiently (Best, 1982; Efron et al., 2004; Hastie et al., 2004). The !2-regularization method
will be used for theoretical analysis in Section 3.3.

2.3 Convergence Analysis of LSIF

Here, we theoretically analyze the convergence property of the solution "̂ of the LSIF algorithm;
practitioners may skip this theoretical analysis.

Let "̂($) be the solution of the LSIF algorithm with regularization parameter $, and let "∗($)
be the optimal solution of the ‘ideal’ problem:

min
"∈Rb

[
1
2
"&H"−h&"+$1&b "

]

subject to "≥ 0b. (7)

Below, we theoretically investigate the learning curve (Amari et al., 1992) of LSIF, that is, we
elucidate the relation between J("̂($)) and J("∗($)) in terms of the expectation over all possible
training and test samples as a function of the number of samples.

Let E be the expectation over all possible training samples of size ntr and all possible test sam-
ples of size nte. Let A ⊂ {1,2, . . . ,b} be the set of active indices (Boyd and Vandenberghe, 2004),
that is,

A = {! | "∗
!($) = 0, ! = 1,2, . . . ,b}.

For the active setA = { j1, j2, . . . , j|A |}with j1 < j2 < · · ·< j|A |, let E be the |A |×b indicator matrix
with the (i, j)-th element

Ei, j =

{
1 j = ji,
0 otherwise.
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Similarly, let Â be the active set of "̂($):

Â = {! | "̂!($) = 0, ! = 1,2, . . . ,b}.

For the active set Â = { ĵ1, ĵ2, . . . , ĵ|Â|}with ĵ1 < ĵ2 < · · ·< ĵ|Â |, let Ê be the |Â |×b indicator matrix
with the (i, j)-th element similarly defined by

Êi, j =

{
1 j = ĵi,
0 otherwise.

(8)

First, we show the optimality condition of (6) which will be used in the following theoretical
analyses. The Lagrangian of the optimization problem (6) is given as

L(",%) =
1
2
"&Ĥ"− ĥ

&
"+$1&b "−%&",

where % is the b-dimensional Lagrange multiplier vector. Then the Karush-Kuhn-Tucker (KKT)
conditions (Boyd and Vandenberghe, 2004) are expressed as follows:

Ĥ"− ĥ+$1b−%= 0b, (9)
"≥ 0b,
%≥ 0b,
%!"! = 0 for ! = 1,2, . . . ,b. (10)

Let %̂
′
($) be the |Â |-dimensional vector with the i-th element being the ĵi-th element of %̂($):

%̂′i($) = %̂ ĵi($), i= 1, . . . , |Â|. (11)

We assume that %̂
′
($) only contains non-zero elements of %̂($). Let Ĝ be

Ĝ=

(
Ĥ −Ê&

−Ê O|Â |×|Â|

)

,

where O|Â |×|Â| is the |Â |× |Â| matrix with all zeros. Then Eqs. (9) and (10) are together expressed
in a matrix form as

Ĝ

(
"̂($)

%̂
′
($)

)

=

(
ĥ−$1b
0|Â |

)

. (12)

Regarding the matrix Ĝ, we have the following lemma:

Lemma 1 The matrix Ĝ is invertible if Ĥ is invertible.

The proof of the above lemma is given in Appendix A. Below, we assume that Ĥ is invertible.
Then the inverse of Ĝ exists and multiplying Ĝ

−1
from the left-hand side of Eq. (12) yields

(
"̂($)

%̂
′
($)

)

= Ĝ
−1

(
ĥ−$1b
0|A |

)
. (13)
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The following inversion formula holds for block matrices (Petersen and Pedersen, 2007):
(
M1 M2
M3 M4

)−1
=

(
M−1
1 +M−1

1 M2M−1
0 M3M−1

1 −M−1
1 M2M−1

0
−M−1

0 M3M−1
1 M−1

0

)
, (14)

where
M0 =M4−M3M−1

1 M2.

Applying Eq. (14) to Eq. (13), we have

"̂($) = Â(ĥ−$1b), (15)

where Â is defined by
Â= Ĥ−1− Ĥ−1Ê&

(ÊĤ−1Ê&
)−1ÊĤ−1

. (16)
When the Lagrange multiplier vector satisfies

%∗!($) > 0 for all ! ∈ A , (17)

we say that the strict complementarity condition is satisfied (Bertsekas et al., 2003). An important
consequence of strict complementarity is that the optimal solution and the Lagrange multipliers of
convex quadratic problems are uniquely determined. Then we have the following theorem.

Theorem 2 Let P be the probability over all possible training samples of size ntr and test samples of
size nte. Let %∗($) be the Lagrange multiplier vector of the problem (7) and suppose %∗($) satisfies
the strict complementarity condition (17). Then, there exists a positive constant c> 0 and a natural
number N such that for min{ntr,nte}≥ N,

P(Â += A) < e−cmin{ntr,nte}.

The proof of the above theorem is given in Appendix B. Theorem 2 shows that the probability
that the active set Â of the empirical problem (6) is different from the active set A of the ideal
problem (7) is exponentially small. Thus we may regard Â = A in practice.

Let A be the ‘ideal’ counterpart of Â:

A= H−1−H−1E&(EH−1E&)−1EH−1,

and letCw,w′ be the b×b covariance matrix with the (!,!′)-th element being the covariance between
w(x)#!(x) and w′(x)#!′(x) under ptr(x). Let

w∗(x) =
b

!
!=1

"∗
!($)#!(x),

v(x) =
b

!
!=1

[A1b]!#!(x).

Let
f (n) = &(g(n))

denote that f (n) asymptotically dominates g(n); more precisely, for all C > 0, there exists n0 such
that

|Cg(n)| < | f (n)| for all n> n0.
Then we have the following theorem.
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Theorem 3 Assume that

(a) The optimal solution of the problem (7) satisfies the strict complementarity condition (17).

(b) ntr and nte satisfy
nte = &(n2tr). (18)

Then, for any $≥ 0, we have

E[J("̂($))] = J("∗($))+
1
2ntr

tr(A(Cw∗,w∗ −2$Cw∗,v))+o
(
1
ntr

)
. (19)

The proof of the above theorem is given in Appendix C. This theorem elucidates the learning
curve of LSIF up to the order of n−1tr . In Section 2.4.1, we discuss practical implications of this
theorem.

2.4 Model Selection for LSIF

The practical performance of LSIF depends on the choice of the regularization parameter $ and
basis functions {#!(x)}b!=1 (which we refer to as a model). Since our objective is to minimize the
cost function J defined in Eq. (2), it is natural to determine the model such that J is minimized.

However, the value of the cost function J is inaccessible since it includes the expectation over
unknown probability density functions ptr(x) and pte(x). The value of the empirical cost Ĵ may be
regarded as an estimate of J, but this is not useful for model selection purposes since it is heavily
biased—the bias is caused by the fact that the same samples are used twice for learning the parameter
" and estimating the value of J. Below, we give two practical methods of estimating the value of J
in more precise ways.

2.4.1 INFORMATION CRITERION

In the same way as Theorem 3, we can obtain an asymptotic expansion of the empirical cost
E

[
Ĵ("̂($))

]
as follows:

E[Ĵ("̂($))] = J("∗($))−
1
2ntr

tr(A(Cw∗,w∗ +2$Cw∗,v))+o
(
1
ntr

)
. (20)

Combining Eqs. (19) and (20), we have

E[J("̂($))] = E[Ĵ("̂($))]+
1
ntr
tr(ACw∗,w∗)+o

(
1
ntr

)
.

From this, we can immediately obtain an information criterion (Akaike, 1974; Konishi and Kita-
gawa, 1996) for LSIF:

Ĵ(IC) = Ĵ("̂($))+
1
ntr
tr(ÂĈŵ,ŵ),

where Â is defined by Eq. (16). Ê is defined by Eq. (8) and Ĉw,w′ is the b×b covariance matrix with
the (!,!′)-th element being the covariance between w(x)#!(x) and w′(x)#!′(x) over {xtri }

ntr
i=1. Since

Â and Ĉŵ,ŵ are consistent estimators of A andCw∗,w∗ , the above information criterion is unbiased up
to the order of n−1tr .
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Note that the term tr(ÂĈŵ,ŵ)may be interpreted as the effective dimension of the model (Moody,
1992). Indeed, when ŵ(x) = 1, we have Ĥ = Ĉŵ,ŵ and thus

tr(ÂĈŵ,ŵ) = tr(Ib)− tr(EĈ
−1
ŵ,ŵE&(EĈ

−1
ŵ,ŵE&)−1) = b− |Â |,

which is the dimension of the face on which "̂($) lies.

2.4.2 CROSS-VALIDATION

Although the information criterion derived above is more accurate than just a naive empirical estima-
tor, its accuracy is guaranteed only asymptotically. Here, we employ cross-validation for estimating
J("̂), which has an accuracy guarantee for finite samples.

First, the training samples {xtri }
ntr
i=1 and test samples {xtej }

nte
j=1 are divided into R disjoint subsets

{X trr }Rr=1 and {X ter }Rr=1, respectively. Then an importance estimate ŵX trr ,X ter (x) is obtained using
{X trj } j +=r and {X tej } j +=r (that is, without X trr and X ter ), and the cost J is approximated using the
held-out samples X trr and X ter as

Ĵ(CV)
X trr ,X ter

=
1

2|X trr |
!

xtr∈X trr

ŵX trr ,X ter (xtr)2−
1

|X ter |
!

xte∈X ter

ŵX trr ,X ter (xte).

This procedure is repeated for r = 1,2, . . . ,R and its average Ĵ(CV) is used as an estimate of J:

Ĵ(CV) =
1
R

R

!
r=1

Ĵ(CV)
X trr ,X ter

.

We can show that Ĵ(CV) gives an almost unbiased estimate of the true cost J, where the ‘almost’-ness
comes from the fact that the number of samples is reduced in the cross-validation procedure due to
data splitting (Luntz and Brailovsky, 1969; Wahba, 1990; Schölkopf and Smola, 2002).

Cross-validation would be more accurate than the information criterion for finite samples. How-
ever, it is computationally more expensive than the information criterion since the learning proce-
dure should be repeated R times.

2.5 Heuristics of Basis Function Design for LSIF

A good model may be chosen by cross-validation or the information criterion, given that a family of
promising model candidates is prepared. As model candidates, we propose using a Gaussian kernel
model centered at the test points {xtej }

nte
j=1, that is,

ŵ(x) =
nte
!
!=1

"!K'(x,xte! ),

where K'(x,x′) is the Gaussian kernel with kernel width ':

K'(x,x′) = exp
(
−
‖x− x′‖2

2'2

)
. (21)

The reason why we chose the test points {xtej }
nte
j=1 as the Gaussian centers, not the training points

{xtri }
ntr
i=1, is as follows (Sugiyama et al., 2008b). By definition, the importance w(x) tends to take
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large values if the training density ptr(x) is small and the test density pte(x) is large; conversely,
w(x) tends to be small (that is, close to zero) if ptr(x) is large and pte(x) is small. When a function
is approximated by a Gaussian kernel model, many kernels may be needed in the region where the
output of the target function is large; on the other hand, only a small number of kernels would be
enough in the region where the output of the target function is close to zero. Following this heuristic,
we allocate many kernels at high test density regions, which can be achieved by setting the Gaussian
centers at the test points {xtej }

nte
j=1.

Alternatively, we may locate (ntr+nte)Gaussian kernels at both {xtri }
ntr
i=1 and {xtej }

nte
j=1. However,

in our preliminary experiments, this did not further improve the performance, but just slightly in-
creased the computational cost. When nte is large, just using all the test points {xtej }

nte
j=1 as Gaussian

centers is already computationally rather demanding. To ease this problem, we practically propose
using a subset of {xtej }

nte
j=1 as Gaussian centers for computational efficiency, that is,

ŵ(x) =
b

!
!=1

"!K'(x,c!), (22)

where c!, ! = 1,2, . . . ,b are template points randomly chosen from {xtej }
nte
j=1 without replacement

and b (≤ nte) is a prefixed number. In the rest of this paper, we usually fix the number of template
points at

b=min(100,nte),

and optimize the kernel width ' and the regularization parameter $ by cross-validation with grid
search.

2.6 Entire Regularization Path for LSIF

We can show that the LSIF solution "̂ is piecewise linear with respect to the regularization parameter
$ (see Appendix D). Therefore, the regularization path (that is, solutions for all $) can be computed
efficiently based on the parametric optimization technique (Best, 1982; Efron et al., 2004; Hastie
et al., 2004).

A basic idea of regularization path tracking is to check violation of the KKT conditions—which
are necessary and sufficient for optimality of convex programs—when the regularization parameter
$ is changed. The KKT conditions of LSIF are summarized in Section 2.3. The strict comple-
mentarity condition (17) assures the uniqueness of the optimal solution for a fixed $, and thus the
uniqueness of the regularization path. A pseudo code of the regularization path tracking algorithm
for LSIF is described in Figure 1—its detailed derivation is summarized in Appendix D. Thanks to
the regularization path algorithm, LSIF is computationally efficient in model selection scenarios.

The pseudo code implies that we no longer need a quadratic programming solver for obtaining
the solution of LSIF—just computing matrix inverses is enough. Furthermore, the regularization
path algorithm is computationally more efficient when the solution is sparse, that is, most of the
elements are zero since the number of change points tends to be small for such sparse solutions.

Even though the regularization path tracking algorithm is computationally efficient, it tends to
be numerically unreliable, as we experimentally show in Section 4. This numerical instability is
caused by near singularity of the matrix Ĝ. When Ĝ is nearly singular, it is not easy to accurately
obtain the solutions u,v in Figure 1, and therefore the change point $(+1 cannot be accurately com-
puted. As a result, we cannot accurately update the active set of the inequality constraints and thus
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Input: Ĥ and ĥ % see Eqs. (4) and (5) for the definitions
Output: entire regularization path "̂($) for $≥ 0

(←− 0;
k←− argmaxi{ĥi | i= 1,2, . . . ,b};
$( ←− ĥk;
Â ←− {1,2, . . . ,b}\{k};
"̂($() ←− 0b; % the vector with all zeros
While $( > 0

Ê ←− O|Â |×b; % the matrix with all zeros
For i= 1,2, . . . , |Â|

Êi, ĵi ←− 1; % Â = { ĵ1, ĵ2, . . . , ĵ|Â| | ĵ1 < ĵ2 < · · · < ĵ|Â |}
end

Ĝ←−

(
Ĥ −Ê&

−Ê O|Â |×|Â|

)

;

u←− Ĝ
−1

(
ĥ
0|Â |

)

;

v←− Ĝ
−1

(
1b
0|Â |

)

;

If v≤ 0b+|Â| % the final interval
$(+1 ←− 0;
"̂($(+1) ←− (u1,u2, . . . ,ub)&;

else % an intermediate interval
k←− argmaxi{ui/vi | vi > 0, i= 1,2, . . . ,b+ |Â|};
$(+1 ←−max{0,uk/vk};
"̂($(+1) ←− (u1,u2, . . . ,ub)&−$(+1(v1,v2, . . . ,vb)&;
If 1≤ k ≤ b

Â ←− Â ∪{k};
else

Â ←− Â\{ ĵk−b};
end

end
(←− (+1;

end

"̂($) ←−

{
0b if $≥ $0
$(+1−$
$(+1−$( "̂($()+ $−$(

$(+1−$( "̂($(+1) if $(+1 ≤ $≤ $(

Figure 1: Pseudo code for computing the entire regularization path of LSIF. When the computation
of Ĝ

−1
is numerically unstable, we may add small positive diagonals to Ĥ for stabilization

purposes.
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the obtained solution "̂($) becomes unreliable; furthermore, such numerical error tends to be accu-
mulated through the path-tracking process. This instability issue seems to be a common pitfall of
solution path tracking algorithms in general (see Scheinberg, 2006).

When the Gaussian width ' is very small or very large, the matrix Ĥ tends to be nearly singular
and thus the matrix Ĝ also becomes nearly singular. On the other hand, when the Gaussian width ' is
not too small or too large compared with the dispersion of samples, the matrix Ĝ is well-conditioned
and therefore the path-following algorithm would be stable and reliable.

3. Approximation Algorithm

Within the quadratic programming formulation, we have proposed a new importance estimation
procedure LSIF and showed its theoretical properties. We also gave a regularization path tracking
algorithm that can be computed efficiently. However, as we experimentally show in Section 4, it
tends to suffer from a numerical problem and therefore is not practically reliable. In this section, we
give a practical alternative to LSIF which gives an approximate solution to LSIF in a computation-
ally efficient and reliable manner.

3.1 Unconstrained Least-squares Formulation

The approximation idea we introduce here is very simple: we ignore the non-negativity constraint
of the parameters in the optimization problem (6). This results in the following unconstrained
optimization problem.

min
)∈Rb

[
1
2
)&Ĥ)− ĥ

&
)+

$
2
)&)

]
. (23)

In the above, we included a quadratic regularization term )&)/2, instead of the linear one 1&b ) since
the linear penalty term does not work as a regularizer without the non-negativity constraint. Eq. (23)
is an unconstrained convex quadratic program, so the solution can be analytically computed as

)̃($) = (Ĥ+$Ib)−1ĥ,

where Ib is the b-dimensional identity matrix. Since we dropped the non-negativity constraint ) ≥
0b, some of the learned parameters could be negative. To compensate for this approximation error,
we modify the solution by

)̂($) =max(0b, )̃($)),

where the ‘max’ operation for a pair of vectors is applied in the element-wise manner. This is the
solution of the approximation method we propose in this section.

An advantage of the above unconstrained formulation is that the solution can be computed just
by solving a system of linear equations. Therefore, its computation is stable when $ is not too small.
We call this method unconstrained LSIF (uLSIF). Due to the !2 regularizer, the solution tends to
be close to 0b to some extent. Thus, the effect of ignoring the non-negativity constraint may not be
so strong—later, we analyze the approximation error both theoretically and experimentally in more
detail in Sections 3.3 and 4.5.

Note that LSIF and uLSIF differ only in parameter learning. Thus, the basis design heuristic of
LSIF given in Section 2.5 is also valid for uLSIF.

1403



KANAMORI, HIDO AND SUGIYAMA

3.2 Convergence Analysis of uLSIF

Here, we theoretically analyze the convergence property of the solution )̂($) of the uLSIF algo-
rithm; practitioners may skip Sections 3.2 and 3.3.

Let )◦($) be the optimal solution of the ‘ideal’ version of the problem (23):

min
)∈Rb

[
1
2
)&H)−h&)+

$
2
)&)

]
.

Then the ideal solution )∗($) is given by

)∗($) =max(0b,)◦($)),
)◦($) = B−1

$ h, (24)
B$ = H+$Ib.

Below, we theoretically investigate the learning curve of uLSIF.
Let B ⊂ {1,2, . . . ,b} be the set of negative indices of )◦($), that is,

B = {! | )◦!($) < 0, ! = 1,2, . . . ,b},

and B̃ ⊂ {1,2, . . . ,b} be the set of negative indices of )̃($), that is,

B̃ = {! | )̃!($) < 0, ! = 1,2, . . . ,b}.

Then we have the following theorem.

Theorem 4 Assume that )◦!($) += 0 for ! = 1,2, . . . ,b. Then, there exists a positive constant c and
a natural number N such that for min{ntr,nte}≥ N,

P(B += B̃) < e−cmin{ntr,nte}.

The proof of the above theorem is given in Appendix E. The assumption that )◦!($) += 0 for
! = 1,2, . . . ,b corresponds to the strict complementarity condition (17) in LSIF. Theorem 4 shows
that the probability that B̃ is different from B is exponentially small. Thus we may regard B̃ = B in
practice.

Let D be the b-dimensional diagonal matrix with the !-th diagonal element

D!,! =

{
0 ! ∈ B,

1 otherwise.

Let

w◦(x) =
b

!
!=1

)◦!($)#!(x),

u(x) =
b

!
!=1

[B−1
$ D(H)∗($)−h)]!#!(x).

Then we have the following theorem.
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Theorem 5 Assume that

(a) )◦!($) += 0 for ! = 1,2, . . . ,b.

(b) ntr and nte satisfy Eq. (18).

Then, for any $≥ 0, we have

E[J()̂($))] = J()∗($))+
1
2ntr

tr(B−1
$ DHDB−1

$ Cw◦,w◦ +2B−1
$ Cw◦,u)+o

(
1
ntr

)
. (25)

The proof of the above theorem is given in Appendix F. Theorem 5 elucidates the learning curve
of uLSIF up to the order of n−1tr . An information criterion may be obtained in the same way as
Section 2.4.1. However, as shown in Section 3.4, we can have a closed-form expression of the
leave-one-out cross-validation score for uLSIF, which would be practically more useful. For this
reason, we do not go into the detail of information criterion.

3.3 Approximation Error Bounds for uLSIF

The uLSIF method is introduced as an approximation of LSIF. Here, we theoretically evaluate the
difference between the uLSIF solution )̂($) and the LSIF solution "̂($). More specifically, we use
the following normalized L2-norm on the training samples as the difference measure and derive its
upper bounds:

diff($) =
inf$′≥0

√
1
ntr !

ntr
i=1

(
ŵ(xtri ; "̂($′))− ŵ(xtri ; )̂($))

)2

!ntr
i=1 ŵ(xtri ; )̂($))

, (26)

where the importance function ŵ(x;") is given by

ŵ(x;") =
b

!
!=1

"!#!(x).

In the theoretical analysis below, we assume

ntr
!
i=1

ŵ(xtri ; )̂($)) += 0.

For p ∈ N∪{*}, let ‖ ·‖p be the Lp-norm, and let ‖"‖Ĥ be

‖"‖Ĥ =
√
"&Ĥ", (27)

where Ĥ is the b×b matrix defined by Eq. (4). Then we have the following theorem.

Theorem 6 (Norm bound) Assume that all basis functions satisfy

0< #!(x) ≤ 1.

1405



KANAMORI, HIDO AND SUGIYAMA

Then we have

diff($) ≤
‖)̂($)‖Ĥ

!ntr
i=1 ŵ(xtri ; )̂($))

(28)

≤ b2
(
1+

b
$

)
1

min!!
ntr
i=1#!(xtri )

·
nte

min!!
nte
j=1#!(xtej )

, (29)

where b is the number of basis functions. The upper bound (29) is reduced as the regularization
parameter $ increases. For the Gaussian basis function model (22), the upper bound (29) is reduced
as the Gaussian width ' increases.

The proof of the above theorem is given in Appendix G. We call Eq. (28) the norm bound since
it is governed by the norm of )̂. Intuitively, the approximation error of uLSIF would small if $ is
large since )̃ ≥ 0 may not be severely violated due to the strong regularization effect. The upper
bound (29) justifies this intuitive claim since the error bound tends to be small if the regularization
parameter $ is large. Furthermore, the upper bound (29) shows that for the Gaussian basis function
model (22), the error bound tends to be small if the Gaussian width ' is large. This is also intuitive
since the Gaussian basis functions are nearly flat when the Gaussian width ' is large—a difference
in parameters does not cause a significant change in the learned importance function ŵ(x). From
the above theorem, we expect that uLSIF is a nice approximation of LSIF when $ is large and ' is
large. In Section 4.5, we numerically investigate this issue.

Below, we give a more sophisticated bound on diff($). To this end, let us introduce an interme-
diate optimization problem defined by

min
+∈Rb

[
1
2
+&Ĥ+− ĥ

&
++

$
2
+&+

]

subject to +≥ 0b, (30)

which we refer to as LSIF with quadratic penalty (LSIFq). LSIFq bridges LSIF and uLSIF since
the ‘goodness-of-fit’ part is the same as LSIF but the ‘regularization’ part is the same as uLSIF. Let
+̂($) be the optimal solution of LSIFq (30). Based on the solution of LSIFq, we have the following
upper bound.

Theorem 7 (Bridge bound) For any $≥ 0, the following inequality holds:

diff($) ≤

√
$
(
‖+̂($)‖1 ·‖+̂($)‖*−‖+̂($)‖22

)
+‖+̂($)− )̂($)‖Ĥ

!ntr
i=1 ŵ(xtri ; )̂($))

. (31)

The proof of the above theorem is given in Appendix H. We call the above bound the bridge
bound since the bridged estimator +̂($) plays a central role in the bound. Note that, in the bridge
bound, the inside of the square root is assured to be non-negative due to Hölder’s inequality (see
Appendix H for detail). The bridge bound is generally much sharper than the norm bound (28), but
not always (see Section 4.5 for numerical examples).
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3.4 Efficient Computation of Leave-one-out Cross-validation Score for uLSIF

A practically important advantage of uLSIF over LSIF is that the score of leave-one-out cross-
validation (LOOCV) can be computed analytically—thanks to this property, the computational
complexity for performing LOOCV is the same order as just computing a single solution.

In the current setup, we are given two sets of samples, {xtri }
ntr
i=1 and {xtej }

nte
j=1, which generally

have different sample size. For simplicity, we assume that ntr < nte and the i-th training sample xtri
and the i-th test sample xtei are held out at the same time; the test samples {xtej }

nte
j=ntr+1 are always

used for importance estimation. Note that this assumption is only for the sake of simplicity; we can
change the order of test samples without sacrificing the computational advantages.

Let ŵ(i)(x) be an estimate of the importance obtained without the i-th training sample xtri and the
i-th test sample xtei . Then the LOOCV score is expressed as

LOOCV=
1
ntr

ntr
!
i=1

[
1
2
(ŵ(i)(xtri ))2− ŵ(i)(xtei )

]
. (32)

Our approach to efficiently computing the LOOCV score is to use the Sherman-Woodbury-Morrison
formula (Golub and Loan, 1996) for computing matrix inverses: for an invertible square matrix A
and vectors u and v such that v&A−1u += −1,

(A+uv&)−1 = A−1−
A−1uv&A−1

1+ v&A−1u
. (33)

Efficient approximation schemes of LOOCV have often been investigated under asymptotic
setups (Stone, 1974; Hansen and Larsen, 1996). On the other hand, we provide the exact LOOCV
score of uLSIF, which follows the same line as that of ridge regression (Hoerl and Kennard, 1970;
Wahba, 1990).

A pseudo code of uLSIF with LOOCV-based model selection is summarized in Figure 2—its
detailed derivation is described in Appendix I. Note that the basis-function design heuristic given
in Section 2.5 is used in the pseudo code, but the analytic form of the LOOCV score is available for
any basis functions.

4. Illustrative Examples

In this section, we illustrate the behavior of LSIF and uLSIF using a toy data set.

4.1 Setup

Let the dimension of the domain be d = 1 and the training and test densities be

ptr(x) =N (x;1,(1/2)2),
pte(x) =N (x;2,(1/4)2),

where N (x;µ,'2) denotes the Gaussian density with mean µ and variance '2. These densities are
depicted in Figure 3. The task is to estimate the importance w(x) = pte(x)/ptr(x).
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Input: {xtri }
ntr
i=1 and {xtej }

nte
j=1

Output: ŵ(x)

b←−min(100,nte); n←−min(ntr,nte);
Randomly choose b centers {c!}b!=1 from {xtej }

nte
j=1 without replacement;

For each candidate of Gaussian width '

Ĥ!,!′ ←−
1
ntr

ntr
!
i=1
exp

(
−
‖xtri − c!‖2+‖xtri − c!′‖2

2'2

)
for !,!′ = 1,2, . . . ,b;

ĥ! ←−
1
nte

nte
!
j=1
exp

(

−
‖xtej − c!‖2

2'2

)

for ! = 1,2, . . . ,b;

X tr!,i ←− exp
(
−
‖xtri − c!‖2

2'2

)
for i= 1,2, . . . ,n and ! = 1,2, . . . ,b;

X te!,i ←− exp
(
−
‖xtei − c!‖2

2'2

)
for i= 1,2, . . . ,n and ! = 1,2, . . . ,b;

For each candidate of regularization parameter $

B̂←− Ĥ+
$(ntr−1)

ntr
Ib;

B0 ←− B̂−1ĥ1&n + B̂−1X tr diag

(
ĥ
&
B̂−1X tr

ntr1&n −1&b (X tr ∗ B̂−1X tr)

)

;

B1 ←− B̂−1X te+ B̂−1X tr diag

(
1&b (X te ∗ B̂−1X tr)

ntr1&n −1&b (X tr ∗ B̂−1X tr)

)

;

B2 ←−max
(
Ob×n,

ntr−1
ntr(nte−1)

(nteB0−B1)
)
;

wtr ←− (1&b (X tr ∗B2))&; wte ←− (1&b (X te ∗B2))&;

LOOCV(',$) ←−
w&
trwtr
2n

−
1&n wte
n

;
end

end
('̂, $̂) ←− argmin(',$)LOOCV(',$);

H̃!,!′ ←−
1
ntr

ntr
!
i=1
exp

(
−
‖xtri − c!‖2+‖xtri − c!′‖2

2'̂2

)
for !,!′ = 1,2, . . . ,b;

h̃! ←−
1
nte

nte
!
j=1
exp

(

−
‖xtej − c!‖2

2'̂2

)

for ! = 1,2, . . . ,b;

"̂←−max(0b,(H̃+ $̂Ib)−1h̃);

ŵ(x) ←−
b

!
!=1

"̂! exp
(
−
‖x− c!‖2

2'̂2

)
;

Figure 2: Pseudo code of uLSIF algorithm with LOOCV. B ∗B′ denotes the element-wise multi-
plication of matrices B and B′ of the same size, that is, the (i, j)-th element is given by
Bi, jB′

i, j. For n-dimensional vectors b and b
′, diag

( b
b′

)
denotes the n× n diagonal matrix

with i-th diagonal element bi/b′i. A MATLAB R© or R implementation of uLSIF is avail-
able from http://sugiyama-www.cs.titech.ac.jp/∼sugi/software/uLSIF/.
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4.2 Importance Estimation

First, we illustrate the behavior of LSIF and uLSIF in importance estimation. We set the number
of training and test samples at ntr = 200 and nte = 1000, respectively. We use the Gaussian kernel
model (22), and the number of basis functions is set at b= 100. The centers of the kernel function
are randomly chosen from the test points {xtei }n

te
j=1 without replacement (see Section 2.5).

We test different Gaussian widths ' and different regularization parameters $. The following
two setups are examined:

(A) $ is fixed at $= 0.2 and ' is changed as 0.1≤ '≤ 1.0,

(B) ' is fixed at '= 0.3 and $ is changed as 0≤ $≤ 0.5.

Figure 4 depicts the true importance and its estimates obtained by LSIF and uLSIF, where all
importance functions are normalized so that

R

w(x)dx = 1 for better comparison. Figures 4(a) and
4(b) show that the estimated importance ŵ(x) tends to be too peaky when the Gaussian width '
is small, while it tends to be overly smoothed when ' is large. If the Gaussian width is chosen
appropriately, both LSIF and uLSIF seem to work reasonably well. As shown in Figures 4(c)
and 4(d), the solutions of LSIF and uLSIF also significantly change when different regularization
parameters $ are used. Again, given that the regularization parameter is chosen appropriately, both
LSIF and uLSIF tend to perform well.

From the graphs, we also observe that model selection based on cross-validation works rea-
sonably well for both LSIF (5-fold) and uLSIF (leave-one-out) to choose appropriate values of the
Gaussian width or the regularization parameter; this will be analyzed in more detail in Section 4.4.

4.3 Regularization Path

Next, we illustrate how the regularization path tracking algorithm for LSIF behaves. We set the
number of training and test samples at ntr = 50 and nte = 100, respectively. For better illustration,
we set the number of basis functions at a small value as b = 30 in the Gaussian kernel model (22)
and use the Gaussian kernels centered at equidistant points in [0,3] as basis functions.

We use the algorithm described in Figure 1 for regularization path tracking. Theoretically, the
inequality $(+1 < $( is assured. In numerical computation, however, the inequality is occasionally
violated. In order to avoid this numerical problem, we slightly regularize Ĥ for stabilization (see
also the caption of Figure 1).

Figure 5 depicts the values of the estimated coefficients {"!}b!=1 as functions of ‖"‖1 for
' = 0.1,0.3, and 0.5. Note that small ‖"‖1 corresponds to large $. The figure indicates that the
regularization parameter $ works as a sparseness controlling factor of the solution, that is, the larger
(smaller) the value of $ (‖"‖1) is, the sparser the solution is.

The path following algorithm is computationally efficient and therefore practically very attrac-
tive. However, as the above experiments illustrate, the path following algorithm is numerically
rather unstable. Modification of Ĥ can ease to solve this problem, but this in turn results in accu-
mulating numerical errors through the path tracking process. Consequently, the solutions for small
$ tend to be inaccurate. This problem becomes prominent if the number of change points in the
regularization path is large.
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Figure 3: The solid line is the probability density of training data, and the dashed line is the proba-
bility density of test data.
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(b) uLSIF for $= 0.2, '= 0.1,0.3,1.0.
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Figure 4: True and estimated importance functions obtained by LSIF and uLSIF for various differ-
ent Gaussian widths ' and regularization parameters $.
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Figure 5: Regularization path of LSIF: the values of the estimated coefficients {"!}b!=1 are depicted
as functions of the L1-norm of the estimated parameter vector for ' = 0.1,0.3, and 0.5.
Small ‖"‖1 corresponds to large $.

4.4 Cross-validation

Here we illustrate the behavior of the cross-validation scores of LSIF and uLSIF. We set the number
of training and test samples at ntr = 200 and nte = 1000, respectively. The number of template
points is b = 100 and the Gaussian kernel model (22) is used. The centers of the kernel functions
are randomly chosen from the test points as described in Section 4.2. The left column of Figure 6
depicts the expectation of the true cost J("̂) over 50 runs for LSIF and its estimate by 5-fold CV (25,
50, and 75 percentiles are plotted in the figure) as functions of the Gaussian width ' for $= 0.2, 0.5,
and 0.8. We used the regularization path tracking algorithm for computing the solutions of LSIF.
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Figure 6: The true cost J and its cross-validation estimate as functions of Gaussian width ' for
different values of $. The solid line denotes the expectation of the true cost J over 50
runs, while ‘◦’ and error bars denote the 25, 50, and 75 percentiles of the cross-validation
score.
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The right column shows the expected true cost and its LOOCV estimates for uLSIF in the same
manner.

The graphs show that overall CV gives reasonably good approximations of the expected cost,
although CV for LSIF with small $ and small ' is rather inaccurate due to numerical problems—the
solution path of LSIF is computed from $= * to $= 0, and the numerical error is accumulated as
the tracking process approaches to $= 0. This phenomenon seems problematic when ' is small.

4.5 Difference between LSIF and uLSIF

In Section 3.3, we analyzed the approximation error of uLSIF against LSIF. Here we numerically
investigate the behavior of the approximation error (26) as well as the norm bound (28) and the
bridge bound (31). We set the number of training and test samples at ntr = 200 and nte = 1000,
respectively. The number of template points in the Gaussian kernel model (22) is set at b = 100.
The centers of the kernel functions are randomly chosen from the test points (see Section 4.2).

Figure 7 depicts the true approximation error as well as its upper bounds as functions of the reg-
ularization parameter $; $ is varied from 0.001 to 10 and the three Gaussian widths '= 0.1,0.5,1.0
are tested. The graphs show that when $ and ' are large, the approximation error tends to be small;
this is in good agreement with the theoretical analysis given in Section 3.3. The bridge bound is
fairly tight in the entire range and is sharper than the norm bound except when ' is small and $ is
large.

4.6 Summary

Through the numerical examples, we overall found that LSIF and uLSIF give qualitatively similar
results. However, the computation of the solution-path tracking algorithm for LSIF tends to be
numerically unstable, which can result in unreliable model selection performance. On the other
hand, only a system of linear equations needs to be solved in uLSIF, which turned out to be much
more stable than LSIF. Thus, uLSIF would be practically more reliable than LSIF.

Based on the above findings, we will focus on uLSIF in the rest of this paper.

5. Relation to Existing Methods

In this section, we discuss the characteristics of existing approaches in comparison with the pro-
posed methods.

5.1 Kernel Density Estimator

The kernel density estimator (KDE) is a non-parametric technique to estimate a probability density
function p(x) from its i.i.d. samples {xk}nk=1. For the Gaussian kernel (21), KDE is expressed as

p̂(x) =
1

ntr(2,'2)d/2
n

!
k=1

K'(x,xk).

The performance of KDE depends on the choice of the kernel width '. The kernel width ' can
be optimized by likelihood cross-validation (LCV) as follows (Härdle et al., 2004): First, divide
the samples {xi}ni=1 into R disjoint subsets {Xr}Rr=1. Then obtain a density estimate p̂Xk(x) from
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Figure 7: The approximation error of uLSIF against LSIF as functions of the regularization param-
eter $ for different Gaussian width '. Its upper bounds are also plotted in the graphs.

{Xr}r +=k (i.e., without Xk) and compute its log-likelihood for Xk:

1
|Xk| !x∈Xk

log p̂Xk(x).

Repeat this procedure for r= 1,2, . . . ,R and choose the value of ' such that the average of the above
hold-out log-likelihood over all r is maximized. Note that the average hold-out log-likelihood is an
almost unbiased estimate of the Kullback-Leibler divergence from p(x) to p̂(x), up to an irrelevant
constant.

KDE can be used for importance estimation by first obtaining density estimators p̂tr(x) and
p̂te(x) separately from {xtri }

ntr
i=1 and {xtej }

nte
j=1, and then estimating the importance by ŵ(x) =

p̂te(x)/p̂tr(x). A potential limitation of this approach is that KDE suffers from the curse of dimen-
sionality (Vapnik, 1998; Härdle et al., 2004), that is, the number of samples needed to maintain the
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same approximation quality grows exponentially as the dimension of the domain increases. This is
critical when the number of available samples is limited. Therefore, the KDE-based approach may
not be reliable in high-dimensional problems.

5.2 Kernel Mean Matching

The kernel mean matching (KMM) method allows us to directly obtain an estimate of the impor-
tance values at training points without going through density estimation (Huang et al., 2007). The
basic idea of KMM is to find ŵ(x) such that the mean discrepancy between nonlinearly transformed
samples drawn from pte(x) and ptr(x) is minimized in a universal reproducing kernel Hilbert space
(Steinwart, 2001). The Gaussian kernel (21) is an example of kernels that induce universal repro-
ducing kernel Hilbert spaces and it has been shown that the solution of the following optimization
problem agrees with the true importance:

min
w(x)

∥∥∥∥
Z

K'(x, ·)pte(x)dx−
Z

K'(x, ·)w(x)ptr(x)dx
∥∥∥∥
2

H

subject to
Z

w(x)ptr(x)dx= 1 and w(x) ≥ 0,

where ‖ ·‖H denotes the norm in the Gaussian reproducing kernel Hilbert space and K'(x,x′) is the
Gaussian kernel (21).

An empirical version of the above problem is reduced to the following quadratic program:

min
{wi}

ntr
i=1

[
1
2

ntr
!
i,i′=1

wiwi′K'(xtri ,xtri′ )−
ntr
!
i=1

wi-i

]

subject to

∣∣∣∣∣

ntr
!
i=1

wi−ntr

∣∣∣∣∣
≤ ntr. and 0≤ w1,w2, . . . ,wntr ≤ B,

where
-i =

ntr
nte

nte
!
j=1

K'(xtri ,xtej ).

B (≥ 0) and . (≥ 0) are tuning parameters that control the regularization effects. The solution
{ŵi}ntri=1 is an estimate of the importance at the training points {xtri }

ntr
i=1.

Since KMM does not involve density estimation, it is expected to work well even in high dimen-
sional cases. However, the performance is dependent on the tuning parameters B, ., and ', and they
cannot be simply optimized, for example, by CV since estimates of the importance are available
only at the training points. A popular heuristic is to use the median distance between samples as
the Gaussian width ', which is shown to be useful (Schölkopf and Smola, 2002; Song et al., 2007).
However, there seems no strong justification for this heuristic. For the choice of ., a theoretical
result given in Huang et al. (2007) could be used as guidance, although it is still hard to determine
the best value of . in practice.

5.3 Logistic Regression

Another approach to directly estimating the importance is to use a probabilistic classifier. Let us
assign a selector variable /= −1 to training samples and /= 1 to test samples, that is, the training
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and test densities are written as

ptr(x) = p(x|/= −1),
pte(x) = p(x|/= 1).

Note that / is regarded as a random variable.
Application of the Bayes theorem yields that the importance can be expressed in terms of / as

follows (Qin, 1998; Cheng and Chu, 2004; Bickel et al., 2007):

w(x) =
p(/= −1)
p(/= 1)

p(/= 1|x)
p(/= −1|x)

.

The probability ratio of test and training samples may be simply estimated by the ratio of the num-
bers of samples:

p(/= −1)
p(/= 1)

≈
ntr
nte

.

The conditional probability p(/|x) could be approximated by discriminating test samples from train-
ing samples using a logistic regression (LogReg) classifier, where / plays the role of a class variable.
Below we briefly explain the LogReg method.

The LogReg classifier employs a parametric model of the following form for expressing the
conditional probability p(/|x):

p̂(/|x) =
1

1+ exp(−/!m
!=1 0!1!(x))

,

where m is the number of basis functions and {1!(x)}m!=1 are fixed basis functions. The parameter 0
is learned so that the negative regularized log-likelihood is minimized:

0̂= argmin
0

[
ntr
!
i=1
log

(

1+ exp

(
m

!
!=1

0!1!(xtri )

))

+
nte
!
j=1
log

(

1+ exp

(

−
m

!
!=1

0!1!(xte)

))

+$0&0

]

.

Since the above objective function is convex, the global optimal solution can be obtained by standard
nonlinear optimization methods such as Newton’s method, the conjugate gradient method, and the
BFGS method (Minka, 2007). Then the importance estimate is given by

ŵ(x) =
ntr
nte
exp

(
m

!
!=1

0!1!(x)

)

. (34)

An advantage of the LogReg method is that model selection (that is, the choice of the basis
functions {1!(x)}m!=1 as well as the regularization parameter $) is possible by standard CV since the
learning problem involved above is a standard supervised classification problem.
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5.4 Kullback-Leibler Importance Estimation Procedure

The Kullback-Leibler importance estimation procedure (KLIEP) (Sugiyama et al., 2008a) also di-
rectly gives an estimate of the importance function without going through density estimation by
matching the two distributions in terms of the Kullback-Leibler divergence (Kullback and Leibler,
1951).

Let us model the importance w(x) by the linear model (1). An estimate of the test density pte(x)
is given by using the model ŵ(x) as

p̂te(x) = ŵ(x)ptr(x).

In KLIEP, the parameters " are determined so that the Kullback-Leibler divergence from pte(x) to
p̂te(x) is minimized:

KL[pte(x)‖p̂te(x)] =
Z

D
pte(x) log

pte(x)
ŵ(x)ptr(x)

dx

=
Z

D
pte(x) log

pte(x)
ptr(x)

dx−
Z

D
pte(x) log ŵ(x)dx. (35)

The first term is a constant, so it can be safely ignored. Since p̂te(x) (= ŵ(x)ptr(x)) is a probability
density function, it should satisfy

1=
Z

D
p̂te(x)dx=

Z

D
ŵ(x)ptr(x)dx. (36)

Then the KLIEP optimization problem is given by replacing the expectations in Eqs. (35) and (36)
with empirical averages as follows:

max
{"!}b!=1

[
nte
!
j=1
log

(
b

!
!=1

"!#!(xtej )

)]

subject to
b

!
!=1

"!

(
ntr
!
i=1

#!(xtri )

)

= ntr and "1,"2, . . . ,"b ≥ 0.

This is a convex optimization problem and the global solution—which tends to be sparse (Boyd and
Vandenberghe, 2004)—can be obtained, for example, by simply performing gradient ascent and
feasibility satisfaction iteratively. Model selection of KLIEP is possible by LCV.

Properties of KLIEP-type algorithms have been theoretically investigated in Nguyen et al. (2008)
and Sugiyama et al. (2008b) (see also Qin, 1998; Cheng and Chu, 2004). Note that the importance
model of KLIEP is the linear model (1), while that of LogReg is the log-linear model (34). A variant
of KLIEP for log-linear models has been studied in Tsuboi et al. (2008).

5.5 Discussions

Table 1 summarizes properties of proposed and existing methods.
KDE is efficient in computation since no optimization is involved, and model selection is pos-

sible by LCV. However, KDE may suffer from the curse of dimensionality due to the difficulty of
density estimation in high dimensions.
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Methods Density
estimation

Model
selection Optimization Out-of-sample

prediction
KDE Necessary Available Analytic Possible
KMM Not necessary Not available Convex quadratic program Not possible
LogReg Not necessary Available Convex non-linear Possible
KLIEP Not necessary Available Convex non-linear Possible
LSIF Not necessary Available Convex quadratic program Possible
uLSIF Not necessary Available Analytic Possible

Table 1: Relation between proposed and existing methods.

KMM can potentially overcome the curse of dimensionality by directly estimating the impor-
tance. However, there is no objective model selection method. Therefore, model parameters such as
the Gaussian width need to be determined by hand, which is highly unreliable unless we have strong
prior knowledge. Furthermore, the computation of KMM is rather demanding since a quadratic pro-
gramming problem has to be solved.

LogReg and KLIEP also do not involve density estimation, but different from KMM, they give
an estimate the entire importance function, not only the values of the importance at training points.
Therefore, the values of the importance at unseen points can be estimated by LogReg and KLIEP.
This feature is highly useful since it enables us to employ CV for model selection, which is a sig-
nificant advantage over KMM. However, LogReg and KLIEP are computationally rather expensive
since non-linear optimization problems have to be solved. Note that the LogReg method is slightly
different in motivation from other methods, but has some similarity in computation and implemen-
tation, for example, the LogReg method also involves a kernel smoother.

The proposed LSIF method is qualitatively similar to LogReg and KLIEP, that is, it can avoid
density estimation, model selection is possible, and non-linear optimization is involved. LSIF is
advantageous over LogReg and KLIEP in that it is equipped with a regularization path tracking
algorithm. Thanks to this, model selection of LSIF is computationally much more efficient than
LogReg and KLIEP. However, the regularization path tracking algorithm tends to be numerically
unstable.

The proposed uLSIF method inherits good properties of existing methods such as no density
estimation involved and a build-in model selection method equipped. In addition to these preferable
properties, the solution of uLSIF can be computed in an efficient and numerically stable manner.
Furthermore, thanks to the availability of the closed-form solution of uLSIF, the LOOCV score can
be analytically computed without repeating hold-out loops, which highly contributes to reducing
the computation time in the model selection phase.

In the next section, we experimentally show that uLSIF is computationally more efficient than
existing direct importance estimation methods, while its estimation accuracy is comparable to the
best existing methods.

6. Experiments

In this section, we compare the experimental performance of the proposed and existing methods.
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6.1 Importance Estimation

Let the dimension of the domain be d and

ptr(x) =N (x;(0,0, . . . ,0)&, Id),
pte(x) =N (x;(1,0, . . . ,0)&, Id).

The task is to estimate the importance at training points:

wi = w(xtri ) =
pte(xtri )
ptr(xtri )

for i= 1,2, . . . ,ntr.

We compare the following methods:

KDE(CV): The Gaussian kernel (21) is used, where the kernel widths of the training and test
densities are separately optimized based on 5-fold LCV.

KMM(med): The performance of KMM is dependent on B, ., and '. We set B = 1000 and . =
(
√ntr−1)/

√ntr following the original paper (Huang et al., 2007), and the Gaussian width ' is
set at the median distance between samples within the training set and the test set (Schölkopf
and Smola, 2002; Song et al., 2007).

LogReg(CV): The Gaussian kernel model (22) are used as basis functions. The kernel width ' and
the regularization parameter $ are chosen based on 5-fold CV.1

KLIEP(CV): The Gaussian kernel model (22) is used. The kernel width ' is selected based on
5-fold LCV.

uLSIF(CV): The Gaussian kernel model (22) is used. The kernel width ' and the regularization
parameter $ are determined based on LOOCV.

All the methods are implemented using the MATLAB R© environment, where the CPLEX R© opti-
mizer is used for solving quadratic programs in KMM and the LIBLINEAR implementation is used
for LogReg (Lin et al., 2007).

We fixed the number of test points at nte = 1000 and consider the following two setups for the
number ntr of training samples and the input dimensionality d:

(a) ntr is fixed at ntr = 100 and d is changed as d = 1,2, . . . ,20,

(b) d is fixed at d = 10 and ntr is changed as ntr = 50,60, . . . ,150.

We run the experiments 100 times for each d, each ntr, and each method, and evaluate the quality of
the importance estimates {ŵi}ntri=1 by the normalized mean squared error (NMSE):

NMSE=
1
ntr

ntr
!
i=1

(
ŵi

!ntr
i′=1 ŵi′

−
wi

!ntr
i′=1wi′

)2
.

1. In Sugiyama et al. (2008b) where KLIEP has been proposed, the performance of LogReg has been experimentally
investigated in the same setup. In that paper, however, LogReg was not regularized since KLIEP was not also
regularized. On the other hand, we use a regularized LogReg method and choose the regularization parameter in
addition to the Gaussian kernel width by CV here. Thanks to the regularization effect, the results of LogReg in the
current paper tends to be better than that reported in Sugiyama et al. (2008b).
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In practice, the scale of the importance is not significant and the relative magnitude among wi is
important. Thus the above NMSE would be a suitable error metric for evaluating the performance
of each method.

NMSEs averaged over 100 trials (a) as a function of input dimensionality d and (b) as a function
of the training sample size ntr are plotted in log scale in Figure 8. Error bars are omitted for clear
visibility—instead, the best method in terms of the mean error and comparable ones based on the
t-test at the significance level 1% are indicated by ‘◦’; the methods with significant difference from
the best methods are indicated by ‘×’.

Figure 8(a) shows that the error of KDE(CV) sharply increases as the input dimensionality
grows, while LogReg, KLIEP, and uLSIF tend to give much smaller errors than KDE. This would
be the fruit of directly estimating the importance without going through density estimation. KMM
tends to perform poorly, which is caused by an inappropriate choice of the Gaussian kernel width.
On the other hand, model selection in LogReg, KLIEP, and uLSIF seems to work quite well. Fig-
ure 8(b) shows that the errors of all methods tend to decrease as the number of training samples
grows. Again LogReg, KLIEP, and uLSIF tend to give much smaller errors than KDE and KMM.

Next we investigate the computation time. Each method has a different model selection strategy,
that is, KMM does not involve CV, KDE and KLIEP involve CV over the kernel width, and LogReg
and uLSIF involve CV over both the kernel width and the regularization parameter. Thus the naive
comparison of the total computation time is not so meaningful. For this reason, we first investigate
the computation time of each importance estimation method after the model parameters are fixed.

The average CPU computation time over 100 trials are summarized in Figure 9. Figure 9(a)
shows that the computation time of KDE, KLIEP, and uLSIF is almost independent of the input
dimensionality, while that of KMM and LogReg is rather dependent on the input dimensionality.
Note that LogReg for d ≤ 3 is slow due to some convergence problem of the LIBLINEAR package.
Among them, the proposed uLSIF is one of the fastest methods. Figure 9(b) shows that the compu-
tation time of LogReg, KLIEP, and uLSIF is nearly independent of the number of training samples,
while that of KDE and KMM sharply increase as the number of training samples increases.

Both LogReg and uLSIF have high accuracy and their computation time after model selection
is comparable. Finally, we compare the entire computation time of LogReg and uLSIF including
CV, which is summarized in Figure 10. We note that the Gaussian width ' and the regularization
parameter $ are chosen over the 9×9 grid in this experiment for both LogReg and uLSIF. Therefore,
the comparison of the entire computation time is fair. Figures 10(a) and 10(b) show that uLSIF is
approximately 5 times faster than LogReg.

Overall, uLSIF is shown to be comparable to the best existing method (LogReg) in terms of the
accuracy, but is computationally more efficient than LogReg.

6.2 Covariate Shift Adaptation in Regression and Classification

Next, we illustrate how the importance estimation methods could be used in covariate shift adap-
tation (Shimodaira, 2000; Zadrozny, 2004; Sugiyama and Müller, 2005; Huang et al., 2007; Bickel
and Scheffer, 2007; Bickel et al., 2007; Sugiyama et al., 2007). Covariate shift is a situation in
supervised learning where the input distributions change between the training and test phase but the
conditional distribution of outputs given inputs remains unchanged. Under covariate shift, standard
learning techniques such as maximum likelihood estimation or cross-validation are biased—the bias
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(a) When input dimensionality is changed
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Figure 8: NMSEs averaged over 100 trials in log scale for the artificial data set. Error bars are
omitted for clear visibility. Instead, the best method in terms of the mean error and
comparable ones based on the t-test at the significance level 1% are indicated by ‘◦’; the
methods with significant difference from the best methods are indicated by ‘×’.
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Figure 9: Average computation time (after model selection) over 100 trials for the artificial data set.
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Figure 10: Average computation time over 100 trials for the artificial data set (including model
selection of the Gaussian width ' and the regularization parameter $ over the 9× 9
grid).
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caused by covariate shift can be asymptotically canceled by weighting the loss function according
to the importance.

In addition to training input samples {xtri }
ntr
i=1 drawn from a training input density ptr(x) and test

input samples {xtej }
nte
j=1 drawn from a test input density pte(x), suppose that we are given training

output samples {ytri }
ntr
i=1 at the training input points {xtri }

ntr
i=1. The task is to predict the outputs for

test inputs {xtej }
nte
j=1 based on the input-output training samples {(xtri ,ytri )}

ntr
i=1.

We use the following kernel model for function learning:

f̂ (x;2) =
t

!
!=1

2!Kh(x,m!),

whereKh(x,x′) is the Gaussian kernel (21) andm! is a template point randomly chosen from {xtej }
nte
j=1

without replacement. We set the number of kernels at t = 50. We learn the parameter 2 by impor-
tance weighted regularized least-squares (IWRLS) (Evgeniou et al., 2000; Sugiyama and Müller,
2005):

2̂IWRLS ≡ argmin
2

[
ntr
!
i=1

ŵ(xtri )
(
f̂ (xtri ;2)− ytri

)2
+ +‖2‖2

]

. (37)

It is known that IWRLS is consistent when the true importancew(xtri ) is used as weights—unweighted
RLS is not consistent due to covariate shift, given that the true learning target function f (x) is not
realizable by the model f̂ (x) (Shimodaira, 2000).

The solution 2̂IWRLS is analytically given by

2̂IWRLS = (K&ŴK+ +Ib)−1K&Ŵytr,

where

Ki,! = Kh(xtri ,m!),

Ŵ = diag
(
ŵ(xtr1 ), ŵ(xtr2 ), . . . , ŵ(xtrntr)

)
,

ytr = (ytr1 ,ytr2 , . . . ,ytrntr)
&.

diag(a,b, . . . ,c) denotes the diagonal matrix with the diagonal elements a,b, . . . ,c.
The kernel width h and the regularization parameter + in IWRLS (37) are chosen by importance

weighted CV (IWCV) (Sugiyama et al., 2007). More specifically, we first divide the training samples
{ztri | ztri = (xtri ,ytri )}

ntr
i=1 into R disjoint subsets {Ztrr }Rr=1. Then a function f̂r(x) is learned using

{Ztrj } j +=r by IWRLS and its mean test error for the remaining samples Ztrr is computed:

1
|Ztrr |

!
(x,y)∈Ztrr

ŵ(x)loss
(
f̂r(x),y

)
,

where

loss(ŷ,y) =

{
(ŷ− y)2 (Regression),
1
2(1− sign{ŷy}) (Classification).

We repeat this procedure for r = 1,2, . . . ,R and choose the kernel width h and the regularization
parameter + so that the average of the above mean test error over all r is minimized. We set the
number of folds in IWCV at R = 5. IWCV is shown to be an (almost) unbiased estimator of the
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Data Uniform KDE
(CV)

KMM
(med)

LogReg
(CV)

KLIEP
(CV)

uLSIF
(CV)

kin-8fh 1.00(0.34) 1.22(0.52) 1.55(0.39) 1.31(0.39) 0.95(0.31) 1.02(0.33)
kin-8fm 1.00(0.39) 1.12(0.57) 1.84(0.58) 1.38(0.57) 0.86(0.35) 0.88(0.39)
kin-8nh 1.00(0.26) 1.09(0.20) 1.19(0.29) 1.09(0.19) 0.99(0.22) 1.02(0.18)
kin-8nm 1.00(0.30) 1.14(0.26) 1.20(0.20) 1.12(0.21) 0.97(0.25) 1.04(0.25)
abalone 1.00(0.50) 1.02(0.41) 0.91(0.38) 0.97(0.49) 0.94(0.67) 0.96(0.61)
image 1.00(0.51) 0.98(0.45) 1.08(0.54) 0.98(0.46) 0.94(0.44) 0.98(0.47)
ringnorm 1.00(0.04) 0.87(0.04) 0.87(0.04) 0.95(0.08) 0.99(0.06) 0.91(0.08)
twonorm 1.00(0.58) 1.16(0.71) 0.94(0.57) 0.91(0.61) 0.91(0.52) 0.88(0.57)
waveform 1.00(0.45) 1.05(0.47) 0.98(0.31) 0.93(0.32) 0.93(0.34) 0.92(0.32)
Average 1.00(0.38) 1.07(0.40) 1.17(0.37) 1.07(0.37) 0.94(0.35) 0.96(0.36)
Comp. time — 0.82 3.50 3.27 2.23 1.00

Table 2: Mean test error averaged over 100 trials for covariate shift adaptation in regression and
classification. The numbers in the brackets are the standard deviation. All the error values
are normalized by that of ‘Uniform’ (uniform weighting, or equivalently no importance
weighting). For each data set, the best method in terms of the mean error and comparable
ones based on the Wilcoxon signed rank test at the significance level 1% are described in
bold face. The upper half corresponds to regression data sets taken from DELVE (Ras-
mussen et al., 1996), while the lower half correspond to classification data sets taken from
IDA (Rätsch et al., 2001). All the methods are implemented using theMATLAB R© environ-
ment, where the CPLEX R© optimizer is used for solving quadratic programs in KMM and
the LIBLINEAR implementation is used for LogReg (Lin et al., 2007).

generalization error, while unweighted CV with misspecified models is biased due to covariate shift
(Zadrozny, 2004; Sugiyama et al., 2007).

The data sets provided by DELVE (Rasmussen et al., 1996) and IDA (Rätsch et al., 2001)
are used for performance evaluation. Each data set consists of input/output samples {(xk,yk)}nk=1.
We normalize all the input samples {xk}nk=1 into [0,1]d and choose the test samples {(xtej ,ytej )}

nte
j=1

from the pool {(xk,yk)}nk=1 as follows. We randomly choose one sample (xk,yk) from the pool and
accept this with probability min(1,4(x(c)k )2), where x(c)k is the c-th element of xk and c is randomly
determined and fixed in each trial of the experiments. Then we remove xk from the pool regardless
of its rejection or acceptance, and repeat this procedure until nte samples are accepted. We choose
the training samples {(xtri ,ytri )}

ntr
i=1 uniformly from the rest. Thus, in this experiment, the test input

density tends to be lower than the training input density when x(c)k is small. We set the number of
samples at ntr = 100 and nte = 500 for all data sets. Note that we only use {(xtri ,ytri )}

ntr
i=1 and {xtej }

nte
j=1

for training regressors or classifiers; the test output values {ytej }
nte
j=1 are used only for evaluating the

generalization performance.
We run the experiments 100 times for each data set and evaluate the mean test error:

1
nte

nte
!
j=1
loss

(
f̂ (xtej ),ytej

)
.
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The results are summarized in Table 2, where ‘Uniform’ denotes uniform weights (or equivalently,
no importance weight). The numbers in the brackets are the standard deviation. All the error values
are normalized so that the mean error of Uniform is one. For each data set, the best method in terms
of the mean error and comparable ones based on the Wilcoxon signed rank test at the significance
level 1% are described in bold face. The upper half of the table corresponds to regression data sets
taken from DELVE (Rasmussen et al., 1996), while the lower half correspond to classification data
sets taken from IDA (Rätsch et al., 2001). All the methods are implemented using the MATLAB R©

environment, where the CPLEX R© optimizer is used for solving quadratic programs in KMM and
the LIBLINEAR implementation is used for LogReg (Lin et al., 2007).

The table shows that the generalization performance of uLSIF tends to be better than that of
Uniform, KDE, KMM, and LogReg, while it is comparable to the best existing method (KLIEP).
The mean computation time over 100 trials is described in the bottom row of the table, where the
value is normalized so that the computation time of uLSIF is one. This shows that the computation
time of uLSIF is much shorter than KLIEP. Thus, uLSIF is overall shown to be useful in covariate
shift adaptation.

6.3 Outlier Detection

Finally, we apply importance estimation methods in outlier detection.
Here, we consider an outlier detection problem of finding irregular samples in a data set (“eval-

uation data set”) based on another data set (“model data set”) that only contains regular samples.
Defining the importance over two sets of samples, we can see that the importance values for regular
samples are close to one, while those for outliers tend to be significantly deviated from one. Thus
the importance values could be used as an index of the degree of outlyingness in this scenario. Since
the evaluation data set has wider support than the model data set, we regard the evaluation data set
as the training set {xtri }

ntr
i=1 (that is, the denominator in the importance) and the model data set as

the test set {xtej }
nte
j=1 (that is, the numerator in the importance). Then outliers tend to have smaller

importance values (that is, close to zero).
We again test KMM(med), LogReg(CV), KLIEP(CV), and uLSIF(CV) for importance estima-

tion; in addition, we include native outlier detection methods for comparison purposes. The outlier
detection problem that the native methods used below solve is to find outliers in a single data set
{xk}nk=1—the native methods can be employed in the current scenario just by finding outliers from
all samples:

{xk}nk=1 = {xtri }
ntr
i=1∪{xtej }

nte
j=1.

One-class support vector machine (OSVM): The support vector machine (SVM) (Vapnik, 1998;
Schölkopf and Smola, 2002) is one of the most successful classification algorithms in machine
learning. The core idea of SVM is to separate samples in different classes by the maximum
margin hyperplane in a kernel-induced feature space.

OSVM is an extension of SVM to outlier detection (Schölkopf et al., 2001). The basic idea
of OSVM is to separate data samples {xk}nk=1 into outliers and inliers by a hyperplane in a
Gaussian reproducing kernel Hilbert space. More specifically, the solution of OSVM is given
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as the solution of the following convex quadratic programming problem:

min
{wk}nk=1

1
2

n

!
k,k′=1

wkwk′K'(xk,xk′)

subject to
n

!
k=1

wk = 1 and 0≤ w1,w2, . . . ,wn ≤
1
3n

,

where 3 (0≤ 3≤ 1) is the maximum fraction of outliers.
We use the inverse distance of a sample from the separating hyperplane as an outlier score.
The OSVM solution is dependent on the outlier ratio 3 and the Gaussian kernel width ', and
there seems to be no systematic method to determine the values of these tuning parameters.
Here we use the median distance between samples as the Gaussian width, which is a popular
heuristic (Schölkopf and Smola, 2002; Song et al., 2007). The value of 3 is fixed at the true
output ratio, that is, the ideal optimal value. Thus the simulation results below should be
slightly in favor of OSVM.

Local outlier factor (LOF): LOF is the score to detect a local outlier which lies relatively far from
the nearest dense region (Breunig et al., 2000). For a prefixed natural number k, the LOF value
of a sample x is defined by

LOFR(x) =
1
k

k

!
i=1

imdk(nearesti(x))
imdk(x)

,

where nearesti(x) denotes the i-th nearest neighbor of x and imdk(x) denotes the inverse mean
distance from x to its k nearest neighbors:

imdk(x) =
1

1
k !

k
i=1 ‖x−nearesti(x)‖

.

If x alone is apart from a cloud of points, imdk(x) tends to become smaller than than imdk(nearesti(x))
for all i. Then the LOF value gets large and therefore such a point is regarded as an outlier.
The performance of LOF depends on the choice of the parameter k and there seems no sys-
tematic way to find an appropriate value of k. Here we test several different values of k.

Kernel density estimator (KDE’): A naive density estimation of all data samples {xk}nk=1 can also
be used for outlier detection since the density value itself could be regarded as an outlier score.
We use KDE with the Gaussian kernel (21) for density estimation, where the kernel width is
determined based on 5-fold LCV.

All the methods are implemented using the R environment—we use the ksvm routine in the
kernlab package for OSVM (Karatzoglou et al., 2004) and the lofactor routine in the dprep package
for LOF (Fernandez, 2005).

The data sets provided by IDA (Rätsch et al., 2001) are used for performance evaluation. These
data sets are binary classification data sets consisting of positive/negative and training/test samples.
We allocate all positive training samples for the “model” set, while all positive test samples and a
fraction 4 (= 0.01,0.02,0.05) of negative test samples are assigned in the “evaluation” set. Thus,
we regard the positive samples as regular and the negative samples as irregular.
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In the evaluation of the performance of outlier detection methods, it is important to take into
account both the detection rate (the amount of true outliers an outlier detection algorithm can find)
and the detection accuracy (the amount of true inliers that an outlier detection algorithm misjudges
as outliers). Since there is a trade-off between the detection rate and the detection accuracy, we
adopt the area under the ROC curve (AUC) as our error metric (Bradley, 1997).

The mean AUC values over 20 trials as well as the computation time are summarized in Table 3,
showing that uLSIF works fairly well. KLIEP works slightly better than uLSIF, but uLSIF is com-
putationally much more efficient. LogReg overall works reasonably well, but it performs poorly for
some data sets and the average AUC performance is not as good as uLSIF or KLIEP. KMM and
OSVM are not comparable to uLSIF in AUC and they are computationally inefficient. Note that we
also tested KMM and OSVM with several different Gaussian widths and experimentally found that
the heuristic of using the median sample distance as the Gaussian kernel width works reasonably
well in this experiment. Thus the AUC values of KMM and OSVM are close to optimal. LOF with
large k is shown to work well, although it is not clear whether the heuristic of simply using large k
is always appropriate or not. The computational cost of LOF is high since nearest neighbor search
is computationally expensive. KDE’ works reasonably well, but its performance is not as good as
uLSIF and KLIEP.

Overall, uLSIF is shown to work well with low computational costs.

7. Conclusions

The importance is useful in various machine learning scenarios such as covariate shift adaptation
and outlier detection. In this paper, we proposed a new method of importance estimation that can
avoid solving a substantially more difficult task of density estimation. We formulated the importance
estimation problem as least-squares function fitting and casted the optimization problem as a convex
quadratic program (we referred to it as LSIF). We theoretically elucidated the convergence property
of LSIF and showed that the entire regularization path of LSIF can be efficiently computed based
on a parametric optimization technique. We further developed an approximation algorithm (we
called it uLSIF), which allows us to obtain the closed-form solution. We showed that the leave-one-
out cross-validation score can be computed analytically for uLSIF—this makes the computation of
uLSIF highly efficient. We carried out extensive simulations in covariate shift adaptation and outlier
detection, and experimentally confirmed that the proposed uLSIF is computationally more efficient
than existing approaches, while the accuracy of uLSIF is comparable to the best existing methods.
Thanks to the low computational cost, uLSIF would be highly scalability to large data sets, which
is very important in practical applications.

We have given convergence proofs for LSIF and uLSIF. A possible future direction to pursue
along this line is to show the convergence of LSIF and uLSIF in non-parametric cases, for example,
following Nguyen et al. (2008) and Sugiyama et al. (2008b). We are currently exploring various
possible applications of important estimation methods beyond covariate shift adaptation or outlier
detection, for example, feature selection, conditional distribution estimation, independent compo-
nent analysis, and dimensionality reduction—we believe that importance estimation could be used
as a new versatile tool in statistical machine learning.
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Data uLSIF KLIEP LogReg KMM OSVM LOF KDE’
Name 4 (CV) (CV) (CV) (med) (med) k = 5 k = 30 k = 50 (CV)

banana
0.01 0.851 0.815 0.447 0.578 0.360 0.838 0.915 0.919 0.934
0.02 0.858 0.824 0.428 0.644 0.412 0.813 0.918 0.920 0.927
0.05 0.869 0.851 0.435 0.761 0.467 0.786 0.907 0.909 0.923

b-cancer
0.01 0.463 0.480 0.627 0.576 0.508 0.546 0.488 0.463 0.400
0.02 0.463 0.480 0.627 0.576 0.506 0.521 0.445 0.428 0.400
0.05 0.463 0.480 0.627 0.576 0.498 0.549 0.480 0.452 0.400

diabetes
0.01 0.558 0.615 0.599 0.574 0.563 0.513 0.403 0.390 0.425
0.02 0.558 0.615 0.599 0.574 0.563 0.526 0.453 0.434 0.425
0.05 0.532 0.590 0.636 0.547 0.545 0.536 0.461 0.447 0.435

f-solar
0.01 0.416 0.485 0.438 0.494 0.522 0.480 0.441 0.385 0.378
0.02 0.426 0.456 0.432 0.480 0.550 0.442 0.406 0.343 0.374
0.05 0.442 0.479 0.432 0.532 0.576 0.455 0.417 0.370 0.346

german
0.01 0.574 0.572 0.556 0.529 0.535 0.526 0.559 0.552 0.561
0.02 0.574 0.572 0.556 0.529 0.535 0.553 0.549 0.544 0.561
0.05 0.564 0.555 0.540 0.532 0.530 0.548 0.571 0.555 0.547

heart
0.01 0.659 0.647 0.833 0.623 0.681 0.407 0.659 0.739 0.638
0.02 0.659 0.647 0.833 0.623 0.678 0.428 0.668 0.746 0.638
0.05 0.659 0.647 0.833 0.623 0.681 0.440 0.666 0.749 0.638

satimage
0.01 0.812 0.828 0.600 0.813 0.540 0.909 0.930 0.896 0.916
0.02 0.829 0.847 0.632 0.861 0.548 0.785 0.919 0.880 0.898
0.05 0.841 0.858 0.715 0.893 0.536 0.712 0.895 0.868 0.892

splice
0.01 0.713 0.748 0.368 0.541 0.737 0.765 0.778 0.768 0.845
0.02 0.754 0.765 0.343 0.588 0.744 0.761 0.793 0.783 0.848
0.05 0.734 0.764 0.377 0.643 0.723 0.764 0.785 0.777 0.849

thyroid
0.01 0.534 0.720 0.745 0.681 0.504 0.259 0.111 0.071 0.256
0.02 0.534 0.720 0.745 0.681 0.505 0.259 0.111 0.071 0.256
0.05 0.534 0.720 0.745 0.681 0.485 0.259 0.111 0.071 0.256

titanic
0.01 0.525 0.534 0.602 0.502 0.456 0.520 0.525 0.525 0.461
0.02 0.496 0.498 0.659 0.513 0.526 0.492 0.503 0.503 0.472
0.05 0.526 0.521 0.644 0.538 0.505 0.499 0.512 0.512 0.433

twonorm
0.01 0.905 0.902 0.161 0.439 0.846 0.812 0.889 0.897 0.875
0.02 0.896 0.889 0.197 0.572 0.821 0.803 0.892 0.901 0.858
0.05 0.905 0.903 0.396 0.754 0.781 0.765 0.858 0.874 0.807

waveform
0.01 0.890 0.881 0.243 0.477 0.861 0.724 0.887 0.889 0.861
0.02 0.901 0.890 0.181 0.602 0.817 0.690 0.887 0.890 0.861
0.05 0.885 0.873 0.236 0.757 0.798 0.705 0.847 0.874 0.831

Average 0.661 0.685 0.530 0.608 0.596 0.594 0.629 0.622 0.623
Comp. time 1.00 11.7 5.35 751 12.4 85.5 8.70

Table 3: Mean AUC values for outlier detection over 20 trials for the benchmark data sets. All the
methods are implemented using the R environment, where quadratic programs in KMM
are solved by the ipop optimizer (Karatzoglou et al., 2004), the ksvm routine is used for
OSVM (Karatzoglou et al., 2004), and the lofactor routine is used for LOF (Fernandez,
2005).
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Appendix A. Existence of the Inverse Matrix of Ĝ

Here we prove Lemma 1.
Let us consider the following system of linear equations:

(
Ĥ −Ê&

−Ê O|Â |×|Â|

)(
x
y

)
=

(
0b
0|Â |

)

, (38)

where x and y are b- and |Â |-dimensional vectors, respectively. From the upper half of Eq. (38), we
have

x= Ĥ−1Ê&y.

Substituting this into the lower half of Eq. (38), we have

ÊĤ−1Ê&y= 0|Â |.

From the definition, the rank of the matrix Ê is |Â |, that is, Ê is a row-full rank matrix. As a result,
the matrix ÊĤ−1Ê& is invertible. Therefore, Eq. (38) has the unique solution x = 0b and y = 0|Â |.
This implies that Ĝ is invertible.

Appendix B. Active Set of LSIF

Here, we prove Theorem 2.
We prove that the active set A does not change under the infinitesimal shift of H and h if the

strict complementarity condition is satisfied. We regard the pair of a symmetric matrix and a vector
(H ′,h′) as an element in the (b(b+1)2 +b)-dimensional Euclidean space. We consider the following
linear equation:

(
"′

%′

)
=

(
H ′ −E&

−E O|A |×|A |

)−1(h′ −$1b
0|A |

)
,

where E is the |A |× b indicator matrix determined from the active set A (see Section 2.3 for the
detailed definition). If H ′ = H and h′ = h hold, the solution ("′,%′) = ("∗($),%∗($)) satisfies

"′
! = 0, %′! > 0, ∀! ∈ A ,

"′
! > 0, %′! = 0, ∀! +∈ A ,

(39)

because of the strict complementarity condition. On the other hand, if the norm of (H ′,h′)− (H,h)
is infinitesimal, the solution ("′,%′) also satisfies Eq. (39) because of the continuity of the relation
between (H ′,h′) and ("′,%′).
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As a result, there exists an .-ball B. in R
b(b+1)
2 +b such that the equality A = {! | "′

! = 0} holds
for any (H ′,h′) ∈ B.. Therefore, we have P(A += Â) ≤ P((Ĥ, ĥ) +∈ B.). Due to the large deviation
principle (Dembo and Zeitouni, 1998), there is a positive constant c such that

−
1

min{ntr,nte}
logP((Ĥ, ĥ) +∈ B.) > c> 0,

if min{ntr,nte} is large enough. Thus, asymptotically P(Â += A) < e−cmin{ntr,nte} holds.

Appendix C. Learning Curve of LSIF

Here, we prove Theorem 3.
Let us consider the ideal problem (7). Let "∗($) and %∗($) be the optimal parameter and La-

grange multiplier (that is, the KKT conditions are fulfilled; see Section 2.3) and let %∗′($) be the
vector of non-zero elements of %∗($) defined in the same way as Eq. (11). Then "∗($) and %∗′($)
satisfy

G
(
"∗($)
%∗′($)

)
=

(
h−$1b
0|A |

)
, (40)

where
G=

(
H −E&

−E O|A |×|A |

)
.

From the central limit theorem and the assumption (18), we have

ĥ= h+Op

(
1

√nte

)
= h+op

(
1
ntr

)
, (41)

where Op and op denote the asymptotic order in probability. The assumption (a) implies that the
equality

Ê = E (42)

holds with exponentially high probability due to Theorem 2. Note that Ĝ is the same size as G if
Ê = E. Thus we have

Ĝ= G+5G,

where

5G=

(
5H Ob×|A |

O|A |×b O|A |×|A |

)
,

5H = Ĥ−H. (43)

Combining Eqs. (12), (40), (41), and (42), we have
(
"̂($)

%̂
′
($)

)

= Ĝ
−1
G

(
"∗($)
%∗′($)

)
+op

(
1
ntr

)
. (44)

The matrix Taylor expansion (Petersen and Pedersen, 2007) yields

Ĝ
−1

= G−1−G−15GG−1+G−15GG−15GG−1− · · · , (45)
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and the central limit theorem asserts that

5H = Op

(
1

√ntr

)
. (46)

Combining Eqs. (44), (45), (14), and (46), we have

5"= "̂($)−"∗($) (47)

= −A5H"∗($)+A5HA5H"∗($)+o
(
1
ntr

)
. (48)

Through direct calculation, we can confirm that

AHA= A. (49)

Similar to Eq. (15), it holds that
"∗($) = A(h−$1b). (50)

From Eqs. (49) and (50), we have

A(H"∗($)−h) = −$A1b. (51)

Eqs. (43), (4), and (3) imply
E[5H] = Ob×b. (52)

From Eqs. (2) and (47), we have

J("̂($)) = J("∗($))+
1
2
5"&H5"+(H"∗($)−h)&5". (53)

From Eqs. (46), (48), and (49), we have

E

[
5"&H5"

]
= tr(H E

[
5"5"&

]
)

= tr(AHA E

[
(5H"∗($))(5H"∗($))&

]
)+o

(
1
ntr

)

= tr(A E

[
(5H"∗($))(5H"∗($))&

]
)+o

(
1
ntr

)
. (54)

From Eqs. (48), (51), and (52), we have

E

[
5"&(H"∗($)−h)

]
=−E

[
(5H"∗($)−5HA5H"∗($))&A(H"∗($)−h)

]
+o

(
1
ntr

)

=E

[
(5H"∗($)−5HA5H"∗($))&$A1b

]
+o

(
1
ntr

)

=−$tr(A E

[
(5H"∗($))(5HA1b)&

]
)+o

(
1
ntr

)
. (55)
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Combining Eqs. (53), (54), and (55), we have

E [J("̂($))] =J("∗($))+
1
2ntr

tr(A E

[
(
√
ntr5H"∗($))(

√
ntr5H"∗($))&

]
)

−
$
ntr
tr(A E

[
(
√
ntr5H"∗($))(

√
ntr5HA1b)&

]
)+o

(
1
ntr

)
.

According to the central limit theorem, √ntr5Hi, j asymptotically follows the normal distribution
with mean zero and variance

Z

#2i (x)#2j(x)ptr(x)dx−H2i, j,

and the asymptotic covariance between√ntr5Hi, j and
√ntr5Hi′, j′ is given by

Z

#i(x)# j(x)#i′(x)# j′(x)ptr(x)dx−Hi, jHi′, j′ .

Then we have

lim
ntr→*

E

[
(
√
ntr5H"∗($))(

√
ntr5H"∗($))&

]
=Cw∗,w∗ ,

lim
ntr→*

E

[
(
√
ntr5H"∗($))(

√
ntr5HA1b)&

]
=Cw∗,v,

where Cw,w′ is the b×b covariance matrix with the (!,!′)-th element being the covariance between
w(x)#!(x) and w′(x)#!′(x) under ptr(x). Then we obtain Eq. (19).

Appendix D. Regularization Path of LSIF

Here, we derive the regularization path tracking algorithm given in Figure 1.
When $ is greater than or equal to maxk ĥk, the solution of the KKT conditions (9)–(10) is

provided as " = 0b, % = $1b− ĥ ≥ 0b. Therefore, the initial value of $0 is maxk ĥk, and the corre-
sponding optimal solution is "̂($0) = 0b.

Since %̂
′
($) corresponds to non-zero elements of %̂($) as shown in Eq. (11), we have

%̂ j($) =

{
%̂′i($) if j = ĵi,
0 otherwise.

(56)

When $ is decreased, the solutions "̂($) and %̂($) still satisfy Eqs. (12) and (56) as long as the
active set Â remains unchanged. Change points of the active set can be found by examining the non-
negativity conditions of "̂($) and %̂($) as follows. Suppose $ is decreased and the non-negativity
condition

(
"̂($)

%̂($)

)

≥ 02b

is violated at $ = $′. That is, both "̂($′) ≥ 0b and %̂($′) ≥ 0b hold, and either "̂($′ − .) ≥ 0b or
%̂($′ − .) ≥ 0b is violated for any .> 0. If "̂ j($′) = 0 for j +∈ Â , j should be added to the active set
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Â ; on the other hand, if %̂ j($′) = 0 for some j ∈ Â , "̂ j($′) will take a positive value and therefore
j should be removed from the active set Â . Then, for the updated active set, we compute the
solutions by Eqs. (12) and (56). Iterating this procedure until $ reaches zero, we can obtain the
entire regularization path.

Note that we omitted some minor exceptional cases for the sake of simplicity—treatments for all
possible exceptions and the rigorous convergence property are exhaustively studied in Best (1982).

Appendix E. Negative Index Set of )◦($)

Here we prove Theorem 4.
As explained in Appendix B, we regard the pair of a symmetric matrix and a vector (H ′,h′) as

an element in the (b(b+1)2 +b)-dimensional Euclidean space.
We consider the linear equation

)′ = (H ′ +$Ib)−1h′.

Due to the assumption, for H ′ = H and h′ = h, we have

)′! += 0, ! = 1,2, . . . ,b. (57)

On the other hand, if the norm of (H ′,h′)− (H,h) is infinitesimal, the solution )′ also satisfies
Eq. (57), and the sign of )′! is same as that of )! for ! = 1,2, . . . ,b, because of the continuity of the
relation between (H ′,h′) and )′.

As a result, there exists an .-ball B. in R
b(b+1)
2 +b such that the equality B = B̃ holds for any

(H ′,h′) ∈ B.. Therefore, we have P(B += B̃) ≤ P((Ĥ, ĥ) +∈ B.). Due to the large deviation principle
(Dembo and Zeitouni, 1998), there is a positive constant c such that

−
1

min{ntr,nte}
logP((Ĥ, ĥ) +∈ B.) > c> 0,

if min{ntr,nte} is large enough. Thus, asymptotically P(B += B̃) < e−cmin{ntr,nte} holds.

Appendix F. Learning Curve of uLSIF

Here, we prove Theorem 5.
Let

B̂$ = Ĥ+$Ib.

The matrix Taylor expansion (Petersen and Pedersen, 2007) yields

B̂−1
$ = B−1

$ −B−1
$ 5HB−1

$ +B−1
$ 5HB−1

$ 5HB−1
$ − · · · . (58)

Let B̃ ⊂ {1,2, . . . ,b} be the set of negative indices of )̃($), that is,

B̃ = {! | )̃!($) < 0, ! = 1,2, . . . ,b}.

Let D̂ be the b-dimensional diagonal matrix with the !-th diagonal element

D̂!,! =

{
0 ! ∈ B̃,

1 otherwise.
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The assumption (a) implies that the equality

D̂= D (59)

holds with exponentially high probability due to Theorem 4. Combining Eqs. (59), (41), (58), and
(24), we have

5)= )̂($)−)∗($)

= D̂B̂−1
$ ĥ−DB−1

$ h

= −DB−1
$ 5H)◦($)+DB−1

$ 5HB−1
$ 5H)◦($)+o

(
1
ntr

)
. (60)

From Eqs. (46) and (60), we have

E

[
5)&H5)

]
= tr(B−1

$ DHDB−1
$ E

[
(5H)◦($))(5H)◦($))&

]
)+o

(
1
ntr

)
. (61)

From Eqs. (52) and (24), we have

E

[
5)&(H)∗($)−h)

]
=E

[
(−5H)◦($)+5HB−1

$ 5H)◦($))&B−1
$ D(H)∗($)−h)

]

+o
(
1
ntr

)

=E

[
tr(B−1

$ (5H)◦($))(5HB−1
$ D(H)∗($)−h))&)

]

+o
(
1
ntr

)
. (62)

Combining Eqs. (53), (61), and (62), we have

E

[
J()̂($))

]
=J()∗($))+

1
2ntr

tr(B−1
$ DHDB−1

$ E[(
√
ntr5H)◦($))(

√
ntr5H)◦($))&)

+
1
ntr
tr(B−1

$ E[(
√
ntr5H)◦($))(

√
ntr5HB−1

$ D(H)∗($)−h))&)+o
(
1
ntr

)
.

According to the central limit theorem, we have

lim
ntr→*

E[(
√
ntr5H)◦($))(

√
ntr5H)◦($))&] =Cw◦,w◦ ,

lim
ntr→*

E[(
√
ntr5H)◦($))(

√
ntr5HB−1

$ D(H)∗($)−h))&] =Cw◦,u.

Then we obtain Eq. (25).

Appendix G. ‘Norm’ Upper Bound of Approximation Error for uLSIF

Here we prove Theorem 6.
Using the weighted norm (27), we can express diff($) as

diff($) =
inf$′≥0 ‖"̂($′)− )̂($)‖Ĥ

!ntr
i=1 ŵ(xtri ; )̂($))

.
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As shown in Appendix D, "̂($′) = 0b holds for some large $′. Then we immediately have

diff($) ≤
‖)̂($)‖Ĥ

!ntr
i=1 ŵ(xtri ; )̂($))

,

which proves Eq. (28). Let -max be the largest eigenvalue of Ĥ. Then ‖)̂($)‖Ĥ can be upper bounded
as

‖)̂($)‖Ĥ ≤
√
-max‖)̂($)‖2 ≤

√
-max‖)̃($)‖2,

where the first inequality may be confirmed by eigen-decomposing Ĥ and the second inequality is
clear from the definitions of )̂($) and )̃($). Let -min be the smallest eigenvalue of Ĥ. Then an upper
bound of ‖)̃($)‖22 is given as

‖)̃($)‖22 = ĥ
&
(Ĥ+$Ib)−2ĥ≤

1
(-min+$)2

‖ĥ‖22 ≤
1
$2

‖ĥ‖22,

where the last inequality follows from -min > 0 .
Now we have

‖)̂($)‖Ĥ
!ntr
i=1w(xtri ; )̂($))

≤
1

!ntr
i=1w(xtri ; )̂($))

√
-max‖ĥ‖2
$

=
1

!ntr
i=1!

b
!=1#!(xtri ))̂!($)/‖)̂($)‖1

√
-max‖ĥ‖2
$‖)̂($)‖1

.

For the denominator of the above expression, we have

ntr
!
i=1

b

!
!=1

#!(xtri )
)̂!($)

‖)̂($)‖1
≥ min

!′
(
ntr
!
i=1

#!′(xtri )) ·
b

!
!=1

)̂!($)

‖)̂($)‖1
= min

!

ntr
!
i=1

#!(xtri ),

where the last equality follows from the non-negativity of )̂!($). The reciprocal of ‖ĥ‖2/‖)̂($)‖1 is
lower bounded as follows:

‖)̂($)‖1
‖ĥ‖2

=

∥∥∥∥∥
max

{
)̃($)

‖ĥ‖2
, 0

}∥∥∥∥∥
1

≥

∥∥∥∥∥
max

{
)̃($)

‖ĥ‖2
, 0

}∥∥∥∥∥
*

= max
!

)̃!($)

‖ĥ‖2
,

where the last equality follows from the fact that there is an ! such that )̃!($) > 0; otherwise, we
have !ntr

i=1w(xtri ; )̂) = 0 which contradicts to the assumption of the theorem. Let us put

-e=
)̃($)

‖ĥ‖2
,

where -> 0 and e ∈ Rb such that ‖e‖2 = 1. Then we have

(-max+$)−1 ≤ - and e&ĥ> 0.
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Note that there exists an ! such that e! > 0. Then, we have

max
!

)̃!($)

‖ĥ‖2
= max

!
-e! = -max

!
e! ≥

1
-max+$

max
!
e!

≥
1

-max+$
min
e
{max

!
e! | e&e= 1, e&ĥ/‖ĥ‖1 > 0}.

Now we prove the following lemma.

Lemma 8 Let p1, p2, . . . , pb (b≥ 2) be positive numbers such that

b

!
!=1

p! = 1,

and let
.=

1√
b
min

!

p!

1− p!
.

Then, there exists no e= (e1,e2, . . . ,eb) ∈ Rb such that the three conditions,

b

!
!=1

e2! = 1,
b

!
!=1

p!e! > 0, and e! < . for ! = 1,2, . . . ,b

are satisfied at the same time.

Proof We suppose that e ∈ Rb satisfies the three conditions. If min! p!/(1− p!) > 1, we have
p! > 1/2 for all !. However, this is contradictory to !b

!=1 p! = 1. Therefore, we have

min
!
p!/(1− p!) ≤ 1,

from which we have
.≤ 1/

√
b.

The equality constraint!b
!=1 e2! = 1 implies the condition that there exists an ei such that |ei|≥ 1/

√
b.

Moreover, we have e1,e2, . . . ,eb < .≤ 1/
√
b, and thus there is an ei such that ei ≤−1/

√
b. Hence,

we have
pi√
b

≤ − piei < !
!+=i

p!e! < !
!+=i

p!
1√
b
min
k

pk
1− pk

= (1− pi)
1√
b
min
k

pk
1− pk

≤
pi√
b
.

This results in contradiction.

Let p! = ĥ!/‖ĥ‖1 and we use Lemma 8. Note that any element of ĥ is positive. Then, we have

‖)̂($)‖1
‖ĥ‖2

≥
1

-max+$
·
1√
b
min

!

p!

!i+=! pi
.

Moreover, we have

min
!

p!

!i+=! pi
≥

min! ĥ!

!b
!′=1 ĥ!′

=
min!!

nte
j=1#!(xtej )

!b
!′=1!

nte
j=1#!′(xtej )

≥
min!!

nte
j=1#!(xtej )
nteb

,
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where the last inequality follows from the assumption 0 < #!(x) ≤ 1. Therefore, we have the in-
equality

1
!n
i=1w(xtri ; )̂($))

√
-max‖ĥ‖2
$

≤ b
√
b-max

(
1+

-max
$

) 1
min!!

ntr
i=1#!(xtri )

·
nte

min!′!
nte
j=1#!′(xtej )

. (63)

An upper bound of -max is given as follows. For all a ∈ Rb, the inequality

−
b

!
!=1

|a!|#!(x) ≤
b

!
!=1

a!#!(x) ≤
b

!
!=1

|a!|#!(x) (64)

holds because of the positivity of #!(x). Let us define ā ∈ Rb for given a ∈ Rb as

ā = (|a1|, |a2|, . . . , |ab|)&.

Note that ‖ā‖2 = ‖a‖2 holds. Then, using Eq. (64), we obtain the inequality

a&Ĥa=
1
ntr

ntr
!
i=1

(
b

!
!=1

a!#!(xtri )

)2

≤
1
ntr

ntr
!
i=1

(
b

!
!=1

|a!|#!(xtri )

)2

= ā&Ĥā,

for any a ∈ Rb. Therefore, we obtain

max
‖a‖2=1

a&Ĥa≤ max
‖a‖2=1

ā&Ĥā= max
‖a‖2=1, a≥0b

a&Ĥa, (65)

where the last equality is derived from the relation,

{ā | ‖a‖2 = 1, a ∈ R
b} = {a | ‖a‖2 = 1, a≥ 0b, a ∈ R

b}.

On the other hand, due to the additional constraint a≥ 0b, the inequality

max
‖a‖2=1, a≥0b

a&Ĥa ≤ max
‖a‖2=1

a&Ĥa (66)

holds. From Eqs. (65) and (66), we have

-max = max
‖a‖2=1

a&Ĥa= max
‖a‖2=1,a≥0b

a&Ĥa= max
‖a‖2=1, a≥0b

1
ntr

ntr
!
i=1

(
b

!
!=1

a!#!(xtri )

)2

.

Using the assumption 0< #!(x) ≤ 1, we have

-max = max
‖a‖2=1, a≥0b

1
ntr

ntr
!
i=1

(
b

!
!=1

a!#!(xtri )

)2

≤ max
‖a‖2=1, a≥0b

1
ntr

ntr
!
i=1

(
b

!
!=1

a!

)2

= max
‖a‖2=1, a≥0b

(
b

!
!=1

a!

)2

≤ max
‖a‖2=1, a≥0b

b ·
b

!
!=1

a2!

= b, (67)

where the Schwarz inequality for a and 1b is used in the last inequality. The inequalities (63) and
(67) lead to the inequality (29).

It is clear that the upper bound (29) is a decreasing function of $ (> 0). For the Gaussian basis
function, #!(x) is an increasing function with respect to the Gaussian width '. Thus, Eq. (29) is a
decreasing function of '.
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Appendix H. ‘Bridge’ Upper Bound of Approximation Error for uLSIF

Here we prove Theorem 7.
From the triangle inequality, we obtain

diff($) ≤
inf$′≥0 ‖"̂($′)− +̂($)‖Ĥ +‖+̂($)− )̂($)‖Ĥ

!ntr
i=1 ŵ(xtri ; )̂($))

. (68)

We derive an upper bound of the first term.
First, we show that the LSIF optimization problem (6) is equivalently expressed as

min
"∈Rb

[
1
2
"&Ĥ"− ĥ

&
"

]

subject to "≥ 0b, 1&b "≤ c,

which we refer to as LSIF′. The KKT conditions of LSIF (6) are given as
{
Ĥ"− ĥ+$1b−µ= 0b,
"≥ 0b, µ≥ 0b, "&µ= 0,

where µ is the Lagrange multiplier vector. Similarly, the KKT conditions of LSIF′ are given as





Ĥ"− ĥ+µ01b−µ= 0b,
"≥ 0b, µ≥ 0b, "&µ= 0,
1&b "− c≤ 0, µ0 ≥ 0, (1&b "− c)µ0 = 0,

(69)

where µ and µ0 are the Lagrange multipliers. Let ("̂($), µ̂($)) be the solution of the KKT conditions
of LSIF. Then, we find that (",µ,µ0) = ("̂($), µ̂($),$) is the solution of Eq. (69) with c= 1&b "̂($).
Note that LSIF′ is a strictly convex optimization problem, and thus "̂($) is the unique optimal
solution. Conversely, when the solution of Eq. (69) is provided as ("̂, µ̂,µ0), LSIF with $ = µ0 has
the same optimal solution "̂.

When the optimal solution of LSIFq is +̂($), the KKT conditions of LSIFq (30) are given as

Ĥ +̂($)− ĥ+$+̂($)− /̂= 0b, (70)
+̂($) ≥ 0b, /̂≥ 0b, +̂($)&/̂= 0, (71)

where /̂ is the Lagrange multiplier vector.
Let "̂($1) be the optimal solution of LSIF′ with c= 1&b +̂($), and suppose that the solution "̂($1)

coincides with that of LSIF with $= $1. Then, from Eq. (69), we have

Ĥ"̂($1)− ĥ+$11b− µ̂($1) = 0b, (72)
"̂($1) ≥ 0b, µ̂($1) ≥ 0b, "̂($1)

&µ̂($1) = 0, (73)
1&b "̂($1)−1&b +̂($) ≤ 0, $1 ≥ 0, (1&b "̂($1)−1&b +̂($))$1 = 0. (74)

From Eqs. (70) and (72), we obtain

Ĥ("̂($1)− +̂($)) = −$11b+$+̂($)+ µ̂($1)− /̂. (75)
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Applying Eqs. (71), (73), (74), and (75), we have

inf
$′≥0

‖"̂($′)− +̂($)‖2Ĥ ≤ ("̂($1)− +̂($))&Ĥ("̂($1)− +̂($))

= −$1("̂($1)− +̂($))&1b+$("̂($1)− +̂($))&+̂($)

+("̂($1)− +̂($))&(µ̂($1)− /̂)

= $("̂($1)
&+̂($)−‖+̂($)‖22)− "̂($1)

&/̂− +̂($)&µ̂($1)
≤ $("̂($1)&+̂($)−‖+̂($)‖22). (76)

From "̂($1) ≥ 0b, +̂($) ≥ 0b, and 1&b "̂($1) ≤ 1&b +̂($), we have

‖"̂($1)‖1 = 1&b "̂($1) ≤ 1&b +̂($) ≤ ‖+̂($)‖1.

Then we have the following inequality:

"̂($1)
&+̂($) ≤ "̂($1)

&(‖+̂($)‖*1b)
= ‖"̂($1)‖1 ·‖+̂($)‖* ≤ ‖+̂($)‖1 ·‖+̂($)‖*. (77)

For p and q such that 1/p+1/q= 1 and 1≤ p,q≤ *, Hölder’s inequality states that

‖"∗)‖1 ≤ ‖"‖p ·‖)‖q,

where "∗) denotes the element-wise product of " and ). Setting p= 1, q= *, and "= )= +̂($)
in Hölder’s inequality, we have

‖+̂($)‖1 ·‖+̂($)‖*−‖+̂($)‖22 ≥ 0. (78)

Combining Eqs. (68), (76), (77), and (78), we obtain

diff($) ≤

√
$(‖+̂($)‖1 ·‖+̂($)‖*−‖+̂($)‖22)+‖+̂($)− )̂($)‖Ĥ

!ntr
i=1 ŵ(xtri ; )̂($))

.

Appendix I. Closed Form of LOOCV Score for uLSIF

Here we derive a closed form expression of the LOOCV score for uLSIF (see Figure 2 for the
pseudo code).

Let
#(x) = (#1(x),#2(x), . . . ,#b(x))&.

Then the matrix Ĥ and the vector ĥ are expressed as

Ĥ =
1
ntr

ntr
!
i=1

#(xtri )#(xtri )&,

ĥ=
1
nte

nte
!
j=1

#(xtej ),
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and the coefficients )̃($) can be computed by

)̃($) = B̂−1
$ ĥ.

Let )̂
(i)
be the estimator obtained without the i-th training sample xtri and the i-th test sample xtei .

Then the estimator has the following closed form:

)̂
(i)

($) =max(0b, )̃
(i)

($)),

)̃
(i)

($) =

(
1

ntr−1
(ntrĤ−#(xtri )#(xtri )&)+$Ib

)−1 1
nte−1

(nteĥ−#(xtej )).

Let B̂ = Ĥ+ $(ntr−1)
ntr Ib and )̃ = B̂−1ĥ in the following calculation. Using the Sherman-Woodbury-

Morrison formula (33), we can simplify the expression of )̃
(i)

($) as follows:

)̃
(i)

($) =
ntr−1
ntr

(
B̂−

1
ntr
#(xtri )#(xtri )&

)−1( nte
nte−1

ĥ−
1

nte−1
#(xtei )

)

=
ntr−1
ntr

(
B̂−1

+
1

ntr−#(xtri )&B̂
−1
#(xtri )

B̂−1
#(xtri )#(xtri )&B̂

−1
)

×
(

nte
nte−1

ĥ−
1

nte−1
#(xtei )

)

=
(ntr−1)nte
ntr(nte−1)

(

)̃+
#(xtri )&)̃

ntr−#(xtri )&B̂
−1
#(xtri )

B̂−1
#(xtri )

)

−
(ntr−1)
ntr(nte−1)

(

B̂−1
#(xtei )+

#(xtri )&B̂
−1
#(xtei )

ntr−#(xtri )&B̂
−1
#(xtri )

B̂−1
#(xtri )

)

.

Thus the matrix inversion required for computing )̃
(i)

($) for all i= 1,2, . . . . ,ntr is only B̂. Applying
this to Eq. (32) and rearrange the formula, we can compute the LOOCV score analytically.
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Abstract
This paper considers binary classification algorithms generated from Tikhonov regularization
schemes associated with general convex loss functions and varying Gaussian kernels. Our main
goal is to provide fast convergence rates for the excess misclassification error. Allowing varying
Gaussian kernels in the algorithms improves learning rates measured by regularization error and
sample error. Special structures of Gaussian kernels enable us to construct, by a nice approxima-
tion scheme with a Fourier analysis technique, uniformly bounded regularizing functions achieving
polynomial decays of the regularization error under a Sobolev smoothness condition. The sample
error is estimated by using a projection operator and a tight bound for the covering numbers of re-
producing kernel Hilbert spaces generated by Gaussian kernels. The convexity of the general loss
function plays a very important role in our analysis.
Keywords: reproducing kernel Hilbert space, binary classification, general convex loss, varying
Gaussian kernels, covering number, approximation

1. Introduction

In this paper we study binary classification algorithms generated from Tikhonov regularization
schemes associated with general convex loss functions and varying Gaussian kernels.

Let X be a compact subset of Rn (input space) and Y = {1,−1} (representing the two classes).
Classification algorithms produce binary classifiers C : X → Y . The misclassification error is used
to measure the prediction power of a classifier C . If ! is a probability distribution on Z := X ×Y ,
then the misclassification error of C is defined by

R (C ) = Prob{C (x) $= y} =
Z

X
P(y $= C (x)|x)d!X .

Here !X is the marginal distribution of ! on X and P(y|x) is the conditional distribution at x ∈ X .
The classifier minimizing the misclassification error is called the Bayes rule fc and is given by

fc(x) =

{
1, if P(y= 1|x) ≥ P(y= −1|x),
−1, otherwise.

The performance of a classifier C can be measured by the excess misclassification error R (C )−
R ( fc).

The classifiers considered here are induced by real-valued functions f : X → R as C f = sgn( f )
which is defined by sgn( f )(x) = 1 if f (x) ≥ 0 and sgn( f )(x) = −1 otherwise. The real-valued

c©2009 Dao-Hong Xiang and Ding-Xuan Zhou.
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functions are generated from Tikhonov regularization schemes associated with general convex loss
functions and varying Gaussian kernels.

Definition 1 We say that " : R → R+ is a classifying loss (function) if it is convex, differentiable at
0 with "′(0) < 0, and the smallest zero of " is 1.

Examples of classifying loss functions include the least-square loss "ls(t) = (1− t)2, the hinge
loss "h(t) = (1−t)+ =max{1−t,0} for support vector machine (SVM) algorithms, and the r-norm
SVM loss with 1≤ r < # defined by "r(t) = ("h(t))r.

The Gaussian kernel with variance $> 0 is the function on X×X given by

K$(x,x′) = exp
{
−

|x− x′|2

2$2
}
. (1)

It defines (Aronszajn, 1950) a reproducing kernel Hilbert space (RKHS) H$.
With the loss " and Gaussian kernel K$, the Tikhonov regularization scheme is defined (Wahba,

1990; Evgeniou et al., 2000; Cristianini and Shawe-Taylor, 2000) with a sample z= {(xi,yi)}mi=1 ∈
Zm as the solution fz = f "z,$,% to the following minimization problem

fz = arg min
f∈H$

{ 1
m

m

&
i=1

"(yi f (xi))+%‖ f‖2H$

}
. (2)

Here % is a positive constant called the regularization parameter. Throughout the paper we assume
that the sample z is drawn independently according to the distribution !.

The purpose of this paper is to estimate the excess misclassification error R (sgn( fz))−R ( fc)
as m→ #. Convergence rates will be derived under the choice of the parameters

%= %(m) = m−', $= $(m) = %( = m−'( (3)

for some ',( > 0 and conditions on the distribution ! and the loss ". This has been done for the
SVM in Steinwart and Scovel (2007) with the loss "h. Here we consider the error analysis with a
general loss function " (De Vito et al., 2004).

Let us demonstrate our main results by stating learning rates for the least-square loss " = "ls.
The rates will be proved in Section 4. They are given by means of a Tsybakov noise condition
(Tsybakov, 2004) and a function smoothness condition stated in terms of Sobolev spaces. Since
"ls(y f (x)) = (1− y f (x))2 = (y− f (x))2 for y ∈ Y , a minimizer of

R

Z "ls(y f (x))d! is the regression
function defined by

f!(x) =
Z

Y
yd!(y|x) = P(y= 1|x)−P(y= −1|x), x ∈ X . (4)

Definition 2 Let 0≤ q≤ #. We say that ! satisfies the Tsybakov noise condition with exponent q if
there exists a constant Cq > 0 such that

!X({x ∈ X : | f!(x)|≤Cqt}) ≤ tq, ∀t > 0. (5)
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Note that (5) always holds for q = 0 with Cq = 1. So setting the index q = 0 in (5) is the same
as removing the Tsybakov noise condition. The case q = # means | f!(x)| ≥ Cq for almost every
x ∈ (X ,!X).

Recall the Sobolev space Hs(Rn) with index s > 0 consisting of all functions in L2(Rn) with

the semi-norm | f |Hs(Rn) =
{
(2))−n

R

Rn |*|2s| f̂ (*)|2d*
} 1
2 finite where f̂ is the Fourier transform of

f defined for f ∈ L1(Rn) as f̂ (*) =
R

Rn f (x)e−ix·* dx.

Theorem 1 Let " = "ls. Assume (5) for some q ∈ [0,#] and d!X
dx ∈ L2(X). If for some s > 0, f!

equals the restriction onto X of some function in Hs(Rn)∩ L#(Rn), then by taking $ = %( with
0< (≤ 1

n+s and %= m− 1
((s+2n+2) , for any 0< +< 1, with confidence 1−+, we have

R (sgn( fz))−R ( fc) ≤ C̃!,s,q,nm−,ls log
2
+

with ,ls =
(q+1)s

(q+2)(s+2n+2)
, (6)

where C̃!,s,q,n is a constant independent of m or +.

When Tsybakov noise condition (5) is not assumed, we can still use Theorem 1 by setting q= 0
and obtain learning rate (6) with ,ls = s

2s+4n+4 .
When q tends to infinity, the power index ,ls in (6) has the limit s

s+2n+2 which can be very close
to 1 for large s. So the learning rate can be O(m-−1) for arbitrarily small - > 0 when q and s are
large enough. To be more specific, for 0< -< 1, when q> 1

- −2 and s≥ (2n+2)(q+2) 1−-
-(q+2)−1 ,

we have ,ls ≥ 1− -.

Remark 1 We show that the power index ,ls for learning rate (6) can be 1−- for arbitrarily small
- > 0. This result is new for scheme (2) associated with " = "ls and a single Gaussian kernel
with changing variance $ = $(m). The same learning rates are achieved in the literature in two
different settings: one is for the same least square regularization scheme associated with a single
fixed Gaussian kernel, but under the much stronger condition that f! lies in the range of powers
of an integral operator associated with a fixed Gaussian kernel, requiring f! ∈C# (Zhang, 2004;
De Vito et al., 2005; Smale and Zhou, 2007). The other setting is to allow flexible variances of
Gaussians in (2), see Ying and Zhou (2007) and Wu et al. (2007).

When the decision boundary {x∈X : f!(x) = 0} has measure zero and d!X
dx ∈ L2(X), the smooth-

ness condition for an extension of f! implies (5) for some q> 0. In general, noise condition (5) does
not require smoothness of f! in domains away from the decision boundary.

Note that as t → −#, the hinge loss "h for the SVM studied in Steinwart and Scovel (2007)
increases slowly: "h(t) = O(|t|), while the least-square loss "ls in Theorem 1 increases moderately
with "ls(t) =O(|t|2). Difficulty arises for the error analysis with a general loss "when "(t) increases
fast such as "= "r with very large r or the exponential-hinge loss we introduce in this paper as

"eh(t) =max{e1−t−1,0} =

{
e1−t−1, if t ≤ 1,
0, otherwise.

The reason is random variables of form * = "(y f (x)) with (x,y) = z ∈ (Z,!) are involved and
large norms ‖ f‖L#(X) would lead to large bounds for *. We shall use special properties of Gaussian
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kernels and construct functions f$,% which are uniformly bounded and have powerful approximation
ability (see (9) and (10) below). With this construction, we can do the analysis well for the general
loss " by dealing with uniformly bounded random variables in an error decomposition approach
(see (13) below). In particular, explicit learning rates will be given in Section 4 for the r-norm SVM
loss "r (Theorem 4) and the exponential-hinge loss "eh (Theorem 5). Comparing with Theorem 1,
we shall provide at the end of Section 4 an approximation theory viewpoint to the effect of various
loss functions for learning algorithm (2): the exponential-hinge loss has some advantages over "ls
and "r, the r-norm SVM loss "r may have worse performance when r > 2.

We list key notations used in the paper in a table given in Appendix B.

2. Two Special Properties of Gaussians and Key Bounds

The novelty in our approach for general " and kernels K$ arises from two special properties of the
Gaussian kernels with changing variance $ > 0: nice approximation scheme and low capacity of
the RKHS, described in Sections 2.1 and 2.3.

2.1 Regularizing Functions Generated by Gaussians

A data-free limit of (2) is a function f̃$,% defined in terms of the generalization error E" as

f̃$,% := arg min
f∈H$

{E"( f )+%‖ f‖2H$
}, where E"( f ) =

Z

Z
"(y f (x)) d!. (7)

This is the regularizing function used in the literature (De Vito et al., 2005; Yao, 2008; Zhang, 2004).
It works well for the error analysis when the loss " increases slowly or moderately (as t→−#) such
as "= "h or "ls.

In this paper we consider a general loss ". When "(t) increases fast (as t → −#), applying
the regularizing function f̃$,% in the error analysis (described in Section 2.2) may lead to a random
variable "(y f̃$,%(x)) of large bound.

The first novelty of this paper is to construct a function f$,% (which plays the role of a regular-
izing function in an error decomposition approach discussed in subsection 2.2) by special approxi-
mation ability of Gaussian kernels. The constructed function has two advantages. On one hand, it is
uniformly bounded (with respect to both % and $) so that the random variable "(y f$,%(x)) involved
in the error analysis is bounded. On the other hand, it plays the same role as f̃$,% in achieving nice
bounds for the approximation error. The construction of the explicit approximation scheme for f$,%

is done under a Sobolev smoothness condition of a measurable function f "! minimizing E", that is,
for a. e. x ∈ X ,

f "! (x) = argmin
t∈R

Z

Y
"(yt) d!(y|x) = argmin

t∈R
{"(t)P(y= 1|x)+"(−t)P(y= −1|x)} .

Theorem 2 Assume that for some s> 0,

f "! = f̃ "! |X for some f̃
"
! ∈ Hs(Rn)∩L#(Rn) and

d!X
dx

∈ L2(X). (8)

Then we can find functions { f$,% ∈H$ : 0< $≤ 1,%> 0} such that

‖ f$,%‖L#(X) ≤ B̃, (9)

D($,%) := E"( f$,%)−E"( f "! )+%‖ f$,%‖2H$
≤ B̃($s+%$−n) (10)
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for 0< $≤ 1,%> 0, where B̃≥ 1 is a constant independent of $ or %.

Theorem 2 will be proved in Appendix A in a more general form as Theorem 6 where the
constant B̃ is given explicitly.

Remark 2 A usual assumption in the literature (Zhang, 2004) for deriving learning rates is that
for some 0< .≤ 1 and C. > 0,

D̃(%) = min
f∈H$

{E"( f )−E"( f "! )+%‖ f‖2H$
}≤C.%. ∀%> 0. (11)

This is hardly satisfied for a single fixed K$ due to the analyticity of the Gaussian kernel (Smale and
Zhou, 2003; Cucker and Zhou, 2007). When we choose a changing Gaussian kernel with $= %( for
some (> 0, decay (11) of the approximation error is valid in many cases (as shown in Theorem 2).
Under assumption (11), one has the bound

‖ f̃$,%‖L#(X) ≤ ‖ f̃$,%‖H$
≤

√
D̃(%)/%≤

√
C.%

.−1
2 .

Hence a natural bound for the random variable "eh(y f̃$,%(x)) would be exp{
√
C.%

.−1
2 } which in-

creases exponentially fast as %→ 0 (polynomially fast with degree r(1−.)
2 for "= "r when r is very

large). This shows difficulty in choosing f̃$,% and demonstrates novelty in choosing the function f$,%

from Theorem 2 for the error analysis with a general loss ".

When $ = %( for some 0 < ( < 1
n , (10) of Theorem 2 tells us that the function f$,% yields

an approximation order similar to (11) while (9) ensures the uniform boundedness of "(y f$,%(x)),
better than the function f̃$,% for the error decomposition described below.

2.2 Error Decomposition and Projection Operator

The excess misclassification error R (sgn( f ))−R ( fc) for the classifier sgn( f ) can be bounded by
means of the excess generalization error E"( f ))−E"( f "! ) according to some comparison theorems
(Zhang, 2004; Chen et al., 2004; Bartlett et al., 2006). For example, it was proved in Zhang (2004)
that for "= "h and any measurable function f : X → R, we have

R (sgn( f ))−R ( fc) ≤ E"h( f )−E"h( fc).

For a classifying loss " with "′′(0) > 0, it was proved in Chen et al. (2004) and Bartlett et al. (2006)
that for some c" > 0,

R (sgn( f ))−R ( fc) ≤ c"
√
E"( f )−E"( f "! ). (12)

For the least square loss and ! satisfying the Tsybakov noise condition, a comparison theorem
improving (12) will be given in Section 4 and will be used to prove Theorem 1.

Classifiers in this paper are obtained by taking signs of real-valued functions. Since the smallest
zero of " is 1, we can take f "! (x) ∈ [−1,1] for each x ∈ X , which we shall assume throughout
the paper. We may improve the error estimates (Chen et al., 2004) by replacing values of f by
projections onto [−1,1].
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Definition 3 The projection operator ) on the space of functions on X is defined by

)( f )(x) =






1 if f (x) > 1,
−1 if f (x) < −1,
f (x) if −1≤ f (x) ≤ 1.

Trivially sgn()( f )) = sgn( f ). Then we can use (12) with f = )( fz) to bound the excess misclas-
sification errorR (sgn( fz))−R ( fc) by means of the excess generalization errorE"()( fz))−E"( f "! )
which in turn can be estimated by an error decomposition technique (Wu and Zhou, 2006). Define
the empirical error associated with the loss " as

E
"
z ( f ) =

1
m

m

&
i=1

"(yi f (xi)) for f : X → R.

Then we have the following error decomposition which will be proved in Section 3.

Lemma 1 Let " be a classifying loss, fz be defined by (2) and f$,% ∈H$. Then

E"()( fz))−E"( f "! ) ≤D($,%)+Sz( f$,%)−Sz()( fz)), (13)

where the quantity Sz( f ) is defined for f ∈C(X) by

Sz( f ) = [E"
z ( f )−E

"
z ( f "! )]− [E"( f )−E"( f "! )].

When we use the regularizing function f$,% given in Theorem 2, the bound (10) deals with
D($,%), the first term of (13). The uniform bound (9) for ‖ f$,%‖L#(X) ensures that the second
term Sz( f$,%) of (13), which can be expressed as 1

m &
m
i=1 *(zi)−E(*) with the random variable

*(z) = "(y f$,%(x))−"(y f "! (x)), can be easily handled. The crucial remaining term Sz()( fz)) of (13)
involves the set of functions { fz}z∈Zm and can be treated by various empirical process techniques
such as Rademacher average and entropy integral. Here we use the specialty of the Gaussians that
the RKHS has low capacity, hence the last term of (13) can be estimated efficiently and simply by
means of covering numbers.

2.3 Applying Tight Bounds for Covering Numbers

The second novelty of this paper is to make full use of the special low capacity property of the
Gaussian kernels that a tight bound for covering numbers of the unit ball of the RKHS H$ leads to
nice estimates for the last term Sz()( fz)) of (13) for the error analysis.

Definition 4 For a subset S of C(X) and /> 0, the covering numberN (S,/) is the minimal integer
l ∈ N such that there exist l disks with radius / covering S.

The covering numbers of unit balls of classical function spaces have been well studied in the
literature (Edmunds and Triebel, 1996). As an example, take X = [0,1]n and s > 0. The covering
numbers of the unit ball B1(Cs(X)) of the space Cs(X) has the asymptotic behavior

c′s(
1
/

)n/s ≤ logN (B1(Cs(X)),/) ≤ c′′s (
1
/

)n/s, (14)
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where the positive constants c′s, and c′′s are independent of 0< /< 1. In particular, since a Gaussian
kernel K$ isC#, an embedding result from Zhou (2003) tells us that logN (B1,/) ≤C′′

s (
1
/)n/s( 1$)2n

where s> 0 can be arbitrarily large but the constant C′′
s depends on s. Here B1 = B1,$ = { f ∈ H$ :

‖ f‖H$
≤ 1} is the unit ball of H$ and is regarded as a compact subset of C(X). A crucial improved

bound for the covering number of B1 was given in Zhou (2002) with ( 1/)n/s replaced by (log 1/)n+1

as follows.

Proposition 1 There exists a constant C0 > 0 depending only on X and n such that

logN (B1,/) ≤C0
(
(log

1
/

)n+1+
1

$2(n+1)

)
∀ 0< /< 1,0< $≤ 1. (15)

The constant C0 can be taken as (124n)n+2 when X = [0,1]n. Bound (15) is almost sharp in the
sense that for someC′

0 > 0 given in Zhou (2003),

logN (B1,/) ≥C′
0

(
(log

1
/

)n/2+
1
$n

)
.

The logarithmic term (log 1/)n+1 appearing in the tight bound (15) is better than the polyno-
mial term ( 1/)n/s in (14). This enables us to derive efficient error bounds for the algorithm (2)
involving Gaussian kernels, by a simple covering number argument without other empirical process
techniques or iteration techniques used in Steinwart and Scovel (2007) and Wu et al. (2007). To
demonstrate explicitly why tight bound (15) helps, we state the following result which is needed for
estimating confidence and will be proved in Appendix B.

Lemma 2 Let 0 ≤ 0 ≤ 1 and C1 > 0. Let 0 < + < 1 and %,$ take form (3) with some ' > 0 and
0< (< 1

2'(n+1) . Denote -
∗(m,%,$,+/2) as the smallest positive number - satisfying

1−N
(
B1,

%-
√
"(0)|"′+(−1)|

)
exp

{

−
m-2−0

2C1+ 2
3"(−1)-1−0

}

≥ 1−
+
2
. (16)

Then we have
-∗(m,%,$,+/2) ≤C2m− 1−2'((n+1)

2−0 log
2
+
, (17)

where C2 is the constant independent of m,%,$ or +.

2.4 Key Bounds

We are in a position to present our key bounds for the excess generalization error E"()( fz))−
E"( f "! ) which will be used to get rates for the excess misclassification error R (sgn( fz))−R ( fc).
To achieve tight bounds, we need the following definition.

Definition 5 A variancing power 0= 0",! of the pair (",!) is a number 0 in [0,1] such that for any
B̃≥ 1, there exists some constant C1 =C1(B̃) > 0 satisfying

E
{[

"(y f (x))−"(y f "! (x))
]2}

≤C1
[
E"( f )−E"( f "! )

]0
∀ f : X → [−B̃, B̃]. (18)
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Remark 3 For "= "ls, we can take 0= 1, see Evgeniou et al. (2000) and Cucker and Zhou (2007).
For "= "h, we can take 0= 0, and an improved power 0= q

q+1 if the Tsybakov noise condition (5) is
satisfied (Steinwart and Scovel, 2007; Wu and Zhou, 2005). In general, 0",! depends on the strong
convexity of " and noise conditions for !.

Theorem 3 Let $ = %( and % = m−' for some 0 < ( < 1
n and 0 < ' < 1

2((n+1) . If (8) is valid for
some s> 0, then for any 0< +< 1, with confidence 1−+ we have

E"()( fz))−E"( f "! ) ≤ C̃m−, log
2
+

(19)

where
,=min

{
s(','(1−n(),

1−2'((n+1)
2− 0

}
, (20)

and C̃ is a constant independent of m and +.

Theorem 3 will be proved in the next section and the constant C̃ will be given explicitly.

3. Error Analysis

In this section we derive the key error bounds stated in Theorem 3 by estimating the right-hand side
of (13) in Lemma 1 (which is proved here).

3.1 Proof of Lemma 1

Write the regularized excess generalization error as

E"()( fz))−E"( f "! )+%‖ fz‖2H$
=

{
E"()( fz))−E

"
z ()( fz))

}

+
{[

E
"
z ()( fz))+%‖ fz‖2H$

]
−

[
E
"
z ( f$,%)+%‖ f$,%‖2H$

]}

+
{
E
"
z ( f$,%)−E"( f$,%)

}
+

{
E"( f$,%)−E"( f "! )+%‖ f$,%‖2H$

}
.

Since " is convex and its smallest zero is 1, we find a special property of the projection operator
that "(y)( f )(x))≤ "(y f (x)) for any function f on X . Hence E"

z ()( f ))≤E
"
z ( f ). This in connection

with the definition of fz tells us that the second term on the right-hand side above is at most zero. By
subtracting and adding E"( f "! ) in the first and third terms we see E"()( fz))−E"( f "! ) is bounded
as in (13). This proves Lemma 1.

Let us turn to estimate E"()( fz))−E"( f "! ) by (13). We first bound Sz( f$,%), the term involving
f$,%. It can be written as 1

m &
m
i=1 *(zi)−E(*) with * the random variable on (Z,!) given by *(z) =

"(y f$,%(x))−"(y f "! (x)).

Lemma 3 Let 0= 0",! and f$,% ∈H$ satisfy (9). For any 0< +< 1, with confidence 1− +
2 , the term

Sz( f$,%) of (13) can be bounded as

Sz( f$,%) ≤ 2(‖"‖C[−B̃,B̃] +C1) log
2
+
m− 1

2−0 +E"( f$,%)−E"( f "! ).
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Proof Consider the random variable *(z) = "(y f$,%(x))−"(y f
"
! (x)) on (Z,!). It satisfies−"(−1)≤

* ≤ ‖"‖C[−B̃,B̃]. Hence |*−E(*)| ≤ 2‖"‖C[−B̃,B̃]. We apply the one side Bernstein inequality and
know that

Probz∈Zm
{ 1
m

m

&
i=1

*(zi)−E(*) > -
}
≤ exp

{
−

m-2

2($2(*)+ 2
3‖"‖C[−B̃,B̃]-)

}
∀-> 0.

Here $2(*) is the variance of *. Solving the quadratic equation for - by setting the above probability
bound to be +/2, we see that with confidence at least 1−+/2,

1
m

m

&
i=1

*(zi)−E(*) ≤
4‖"‖C[−B̃,B̃] log

2
+

3m
+

√
2m$2(*) log 2+

m
.

Using (18) involving the variancing power 0 = 0",! in Definition 5, we have $2(*) ≤ E(*2) ≤
C1(E(*))0. This in connection with Young’s inequality implies

√
2m$2(*) log 2+

m
≤

√
2log 2+C1(E(*))0

m
≤ (1−

0
2
)
(2log 2+C1

m

) 1
2−0

+
0
2
E(*).

Therefore, with confidence at least 1−+/2,

1
m

m

&
i=1

*(zi)−E(*) ≤
4‖"‖C[−B̃,B̃] log

2
+

3m
+

(2log 2+C1
m

) 1
2−0

+E(*).

Since E(*) = E"( f$,%)−E"( f "! ), our conclusion follows.

The sample error term −Sz()( fz)) in (13) can be expressed as
R

*zd!− 1
m &

m
i=1 *z(zi) with

*z(z) = "(y fz(x))− "(y f "! (x)). However, *z is not a single random variable since z is a random
sample itself. This is the essential difficulty. Here we use the specialty of low capacity of the RKHS
H$ and overcome the difficulty by a simple covering number argument over a ball of H$ where fz
lies.

Lemma 4 For any %> 0 and z ∈ Zm, there holds

‖ fz‖H$
≤

√
"(0)/%.

The proof follows easily by taking f = 0 in the definition of fz as in De Vito et al. (2005), De
Vito et al. (2004) and Hardin et al. (2004).

Let * be a random variable on Z with mean µ≥ 0 and variance $2 ≤ cµ0 for some 0≤ 0≤ 2 and
c≥ 0. If |*−µ|≤ B almost surely for some B≥ 0, then the one-side Bernstein inequality implies

Probz∈Zm
{µ− 1

m &
m
i=1 *(zi)√

µ0+ -0
> -1−

0
2

}
≤ exp

{
−

m-2−0

2(c+ 1
3B-1−0)

}
∀ -> 0.

Applying this probability inequality to random variables of type *(z) = "(y() f )(x))− "(y f "! (x))
and using a standard argument (Wu et al., 2007; Yao, 2008; Ying, 2007) with covering numbers for
the ball { f ∈H$ : ‖ f‖H$

≤
√
"(0)/%} of the RKHS H$, we find the following bound.
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Lemma 5 Let 0= 0",! satisfy (18) with B̃ being 1. For any -> 0, we have

Probz∈Zm
{

sup
‖ f‖H$≤

√
"(0)/%

[E"()( f ))−E"( f "! )]− [E"
z ()( f ))−E

"
z ( f "! )]

√
(E"()( f ))−E"( f "! ))0+ -0

≤ 4-1−
0
2

}

≥ 1−N
(
B1,

√
%-

√
"(0)|"′+(−1)|

)
exp

{
−

m-2−0

2C1+ 2
3"(−1)-1−0

}
.

Recall the definition of -∗(m,%,$,+/2) in Lemma 2. It satisfies (16) which means that the
probability in Lemma 5 is bounded by 1− +

2 from below when -= -∗(m,%,$,+/2).

Proposition 2 Let f$,% ∈H$ satisfy (9). For any 0< +< 1, with confidence at least 1−+, we have

E"()( fz))−E"( f "! ) ≤ 4D($,%)+40-∗(m,%,$,+/2)+4(‖"‖C[−B̃,B̃] +C1) log
2
+
m− 1

2−0 .

Proof Applying Lemma 3, we know that there is a subsetV1 of Zm with measure at least 1− +
2 such

that for z ∈V1,

Sz( f$,%) ≤ 2(‖"‖C[−B̃,B̃] +C1) log
2
+
m− 1

2−0 +D($,%).

By Lemma 5 and Lemma 4, taking - = -∗(m,%,$,+/2), we see that there exists another subset V2
of Zm with measure at least 1− +

2 such that for z ∈V2,

−Sz()( fz)) = [E"()( fz))−E"( f "! )]− [E"
z ()( fz))−E

"
z ( f "! )]

≤ 4 [-∗(m,%,$,+/2)]1−
0
2

√[
E"()( fz))−E"( f "! )

]0
+[-∗(m,%,$,+/2)]0

≤
(
1−

0
2

)
4

2
2−0 -∗(m,%,$,+/2)+

0
2
[E"()( fz))−E"( f "! )]+4-∗(m,%,$,+/2).

Here we have used the elementary inequality
√
a+b≤

√
a+

√
b and Young’s inequality.

Adding the above two bounds and observing that 0 ≤ 0 ≤ 1 implies 1
1−0/2 ≤ 2 we know from

Lemma 1 that for z ∈V1∩V2,

E"()( fz))−E"( f "! ) ≤ 4D($,%)+40-∗(m,%,$,+/2)+4(‖"‖C[−B̃,B̃] +C1) log
2
+
m− 1

2−0 .

Since the measure of V1∩V2 is at least 1−+, our conclusion holds true.

Now we are in a position to prove Theorem 3.

3.2 Proof of Theorem 3

From condition (8) and the parameter form $= %( with 0< (< 1
n , we know by Theorem 2 that

D($,%) ≤ B̃%min{s(,1−n(}.
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Putting bound (17) for -∗(m,%,$,+/2) from Lemma 2 into Proposition 2, we see from the
parameter form %= m−' that with confidence at least 1−+,

E"()( fz))−E"( f "! ) ≤ 4B̃%min{s(,1−n(} +40C2m− 1−2'((n+1)
2−0 log

2
+

+4(‖"‖C[−B̃,B̃] +C1) log
2
+
m− 1

2−0 ≤ C̃m−, log
2
+
.

Here , is given by (20) and C̃ is the constant independent of m and + given by

C̃ = 4B̃+40C2+4(‖"‖C[−B̃,B̃] +C1).

This proves (19) and hence Theorem 3.

4. Deriving Learning Rates

In this section we apply Theorem 3 to derive learning rates with various loss functions. For the least
square loss, to prove Theorem 1 we need the following comparison theorem improving (12).

Proposition 3 If " = "ls and ! satisfies noise condition (5) for some q ∈ [0,#], then for every
measurable function f : X → R, we have

R (sgn( f ))−R ( fc) ≤ 2C
− q

q+2
q

{
E"ls( f )−E"ls( f!)

} q+1
q+2 .

Proof Denote Xf = {x∈X : sgn( f )(x) $= fc(x)}. It is known thatR (sgn( f ))−R ( fc)=
R

Xf | f!(x)|d!X .
See, for example, Equation (9.14) of Cucker and Zhou (2007).

When q < #, take t =
(
‖ f − f!‖L2!X /Cq

) 2
q+2

> 0. We separate the set Xf into two parts,
one with | f!(x)| ≤ Cqt and the other with | f!(x)| > Cqt where | f!(x)| ≤ | f!(x)|2/(Cqt) ≤ | f (x)−
f!(x)|2/(Cqt). We find from (5) that

Z

Xf
| f!(x)|d!X ≤

Z

{x∈Xf : | f!(x)|≤Cqt}
Cqtd!X +

Z

{x∈Xf : | f!(x)|>Cqt}
| f (x)− f!(x)|2/(Cqt)d!X

≤ Cqt!X({x ∈ X : | f!(x)|≤Cqt})+‖ f − f!‖2L2!X
/(Cqt)

≤ Cqtq+1+‖ f − f!‖2L2!X
/(Cqt) = 2Cq

(
‖ f − f!‖L2!X /Cq

) 2q+2
q+2

.

This gives the desired bound for the case q< # since ‖ f − f!‖2L2!X
= E"ls( f )−E"ls( f!).

When q=#, noise condition (5) means | f!(x)|≥Cq and hence | f!(x)|≤ | f!(x)|2/Cq for almost
every x ∈ (X ,!X). So

R

Xf | f!(x)|d!X ≤
R

Xf | f (x)− f!(x)|2/Cqd!X = ‖ f − f!‖2L2!X
/Cq which is what

we want.

Now we can derive learning rates with the least square loss.
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4.1 Proof of Theorem 1

The assumptions on d!X
dx and f! verify condition (8). Then by Theorem 2 with " = "ls, we find

functions f$,% satisfying (9) and (10) for 0< $≤ 1,%> 0.
The choice $ = %( with 0 < ( ≤ 1

n+s < 1
n and % = m−' with ' = 1

((s+2n+2) tell us that 0 < ' <
1

2((n+1) . Therefore all conditions of Theorem 3 are valid. Moreover, a specialty of the least square
loss is 0= 1 in (18). So by Theorem 3, for any 0< +< 1, with confidence 1−+, (19) holds with

,=min
{ s
s+2n+2

,
1−n(

((s+2n+2)
,1−

2(n+1)
s+2n+2

}
=

s
s+2n+2

.

This bound for the excess generalization error E"()( fz))−E"( f "! ) together with Proposition 3
yields the desired bound (6) for the excess misclassification error R (sgn( fz))−R ( fc) with the
constant C̃!,s,q,n = 2C

− q
q+2

q C̃
q+1
q+2 . The proof of Theorem 1 is complete.

Let us derive learning rates with the r-norm SVM loss " = "r (1 < r < #) for which we have
(Chen et al., 2004)

f "! (x) = f "r! (x) =
(1+ f!(x))1/(r−1)− (1− f!(x))1/(r−1)

(1+ f!(x))1/(r−1) + (1− f!(x))1/(r−1) , x ∈ X . (21)

Theorem 4 Let "= "r with 1 < r < #. Assume (8) for some s > 0. Take $ = %( with 0 < ( ≤ 1
n+s

and %=m−' with '= 1
((s+2n+2) for 1< r ≤ 2 and '= 1

((2s(1−1/r)+2n+2) for 2< r <#. Then for any
0< +< 1, with confidence 1−+, we have

R (sgn( fz))−R ( fc) ≤ C̃!,rm−,r log
2
+

with ,r =

{
s

2(s+2n+2) , if 1< r ≤ 2,
s

4(s(1−1/r)+n+1) , if 2< r < #.
(22)

Proof The convexity of "r gives the variancing power (Bartlett et al., 2006) as

0= 0"r,! =

{
1, if 1< r ≤ 2,
2
r , if 2< r < #.

Take $ = %( with 0 < ( ≤ 1
n+s < 1

n and choose % = m−' with ' = 1
(((2−0)s+2n+2) . We see that

0< '< 1
2((n+1) . Hence all conditions of Theorem 3 are valid and we conclude that for any 0< +< 1,

with confidence 1−+, (19) holds with ,= s
(2−0)s+2n+2 . This bound for the excess generalization er-

ror together with comparison relation (12) caused by "′′r (0) = r(r−1) > 0 yields the desired bound
(22) for the excess misclassification error with the constant C̃!,r = c"r

√
C̃. The proof of Theorem 4

is complete.

When "= "eh, a simple computation shows that the function f "! is given by

f "eh! (x) =






1
2 log

1+ f!(x)
1− f!(x) , if − (e2−1)/(e2+1) ≤ f!(x) ≤ (e2−1)/(e2+1),

1, if f!(x) > (e2−1)/(e2+1),
−1, if f!(x) < −(e2−1)/(e2+1).

(23)
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Theorem 5 Let " = "eh. Assume (8) for some s > 0. Take $ = %( with 0 < ( ≤ 1
n+s and % =

m− 1
((2s+2n+2) . Then for any 0< +< 1, with confidence 1−+, we have

R (sgn( fz))−R ( fc) ≤ C̃!,ehm−,eh log
2
+

with ,eh =
s

4s+4n+4
. (24)

Proof Take 0= 0 and $= %( with 0< (≤ 1
n+s < 1

n . Choose %= m−' with '= 1
((2s+2n+2) in The-

orem 3. We see that for any 0 < + < 1, with confidence 1− +, (19) holds with , = s
2s+2n+2 . This

bound together with comparison relation (12) again (as "′′eh(0) = e > 0) yields the desired bound
(24) with C̃!,eh = c"eh

√
C̃. This proves Theorem 5.

Remark 4 When s≤ 1
r−1 , the extension condition of f! stated in Theorem 1 implies assumption (8)

of f "r! required in Theorem 4. In fact, the extension of the function f "r! onto Rn can be defined by
taking values of the extended function of f! in (21). After composing with the function t → t1/(r−1)

on R, smoothness of functions in the Sobolev space Hs is kept for s ≤ 1
r−1 . When s ≤ 1, the same

condition for f! implies assumption (8) of f "eh! needed for Theorem 5, as seen from expression (23).
It is possible to refine learning rates (22) and (24) by improving comparison relation (12) when

Tsybakov noise condition (5) is satisfied. We omit the discussion here.
Error analysis with "= "r was done in Chen et al. (2004) under assumption (11). Our learning

rates in Theorem 4 are new since our assumption on Sobolev smoothness is weaker. The learning
rates for "= "eh in Theorem 5 are also new.

We are in a position to get from Theorems 1, 4 and 5 some theoretical clues on the effect
of various loss functions for learning algorithm (2). We know from Smale and Zhou (2003) that
when " = "ls the approximation error and hence learning rates can essentially be characterized
by regularities of the function f!. So here we give some comparisons under the same regularity
assumption (8) for the function f "! with some s> 0. Under this assumption (removing the Tsybakov
noise condition by taking q = 0 in Theorem 1), the learning rates derived in Theorems 1, 4 and 5
for "= "ls,"r,"eh take the same form R (sgn( fz))−R ( fc) = O(m−, log 2+) with the power index ,
very close, all lying in the range [ s

4s+4n+4 ,
s

2s+4n+4 ]. However, the index s in regularity assumption
(8) for the function f "! might vary dramatically, leading to varying power index , for the learning
rates.

Note that the function f "! with " = "r,"eh depends explicitly on the regression function f! cor-
responding the least-square loss. The dependence of the function f "eh! on f! has an advantage of
ignoring any irregularity appearing in the domain where | f!(x)| > (e2− 1)/(e2+ 1). This can be
seen from the following example where f! has a singularity at 0 while f "eh! ≡ 1 isC#.

Example 1 Let X = [−1,1], 0< 1< 1
14 and ! be the distribution given by d!X = 1

2dx and f!(x) =
1− 1

5 |x|
1 which means P(y = 1|x) = 1− 1

10 |x|
1. It is well known that the function |x|1 lies in the

Sobolev space Hs(X) if and only if s < 1+ 1
2 . So regularity assumption (8) is satisfied for "ls

if and only if s < 1+ 1
2 . Then from Theorem 1, we see the learning rate R (sgn( fz))−R ( fc) =

O(m−,ls log 2+) with ,ls = s
s+2+2 arbitrarily close to

1+21
9+21 < 1

8 . However, for the exponential-hinge
loss "eh, we have f

"eh
! ≡ 1 which follows from expression (23) and the definition f!(x) = 1− 1

5 |x|
1 ≥
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1− 1
5 > (e2− 1)/(e2+ 1) on X. Therefore, regularity assumption (8) is satisfied for an arbitrarily

large s and Theorem 5 yields the learning rate R (sgn( fz))−R ( fc) =O(m−,eh log 2+) with ,eh arbi-
trarily close to 1

4 . Thus for learning algorithm (2), the exponential-hinge loss has some advantages
over "ls (and "r as shown in the next example).

The dependence of the function f "r! on f! involves a power function u→ u1/(r−1) which might
cause irregularity. This is demonstrated by the following example where the singularity of the
function f! at 0 is worsened for the function f "r! when r is large.

Example 2 Let X and ! be as in Example 1. When "= "r with r> 2, the function f "r! in (21) equals

f "r! (x) =
(2− 1

5 |x|
1)1/(r−1)− (15 |x|

1)1/(r−1)

(2− 1
5 |x|1)

1/(r−1) + (15 |x|1)
1/(r−1) .

Regularity assumption (8) is satisfied for "r if and only if s < 1
r−1 + 1

2 . Then Theorem 4 yields the
learning rate R (sgn( fz))−R ( fc) = O(m−,r log 2+) with ,r = s

4(s(1−1/r)+1+1) arbitrarily close to
r(21+r−1)

4(5r+21−1)(r−1) . This power index is always less than that of "ls or "eh. It shows that the loss "r has
worse performance than "ls and "eh, at least for some distributions.

5. Further Discussion

Let us discuss further generalizations and connections briefly here. More details will be provided in
our future study.

The first extension is to a manifold setting. If X is a connected compact C# submanifold of
Rn without boundary and its dimension is d ≤ n, then the covering number estimate (15) holds
with n replaced by the manifold dimension d. Proposition 2 and Lemma 2 are still valid with n
replaced by d. Learning rates in Theorems 1, 4 and 5 can be improved with n replaced by d if
approximation error estimates similar to Theorem 2 can be established in the manifold setting. One
can use ideas for convolution type approximation schemes on Rn (Pan, et al., 2008) to define higher
order operators on manifolds and then get estimates for the regularization error.

The second connection is to multi-kernel regularization schemes (Wu et al., 2007; Argyriou et
al., 2006; Chapelle et al., 2002) defined as

f "z,% = arg min
0<$<#

min
f∈H$

{ 1
m

m

&
i=1

"(yi f (xi))+%‖ f‖2H$

}
.

In this scheme the variance parameter $ is chosen automatically while the learning rate derived in
Ying and Zhou (2007) is at most O(m−1/6). It would be interesting to investigate how to choose the
parameter $ in (2).

The last questions is about more general loss functions. In our analysis we assume that the
convex loss " has a zero which excludes the logistic loss "(t) = log(1+ e−t). One might generalize
our analysis to get some error bounds for the scheme with loss functions without zero by using a
general projection operator )M with level M > 0 given by

)M( f )(x) =






M if f (x) >M,
−M if f (x) < −M,
f (x) if −M ≤ f (x) ≤M.
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Appendix A. Approximation Scheme by Gaussians

This appendix provides a proof of Theorem 2 which is a corollary of the following more general
theorem. The approximation error is estimated by means of a convolution type scheme constructed
by Gaussians with a Fourier analysis technique (Schaback and Werner, 2006; Steinwart and Scovel,
2007; Steinwart et al. , 2006).

Theorem 6 Assume that for some s> 0, f "! is the restriction of some f̃
"
! ∈ Hs(Rn) onto X , and the

density function g= d!X
dx exists and lies in L2(X).

(1) If f̃ "! ∈ L#(Rn), then we can find a set of functions { f$,% ∈H$}0≤$≤1,%>0 such that

‖ f$,%‖L#(X) ≤ B̃, (25)
D($,%) ≤ B̃($s+%$−n), ∀ 0< $≤ 1,%> 0, (26)

where B̃ is a constant independent of $ or %.
(2) If for some r ≥ 1 and C" > 0,

|"′+(t)|≤C"|t|r−1 ∀|t|≥ 1. (27)

then we can find { f$,% ∈H$} such that

‖ f$,%‖L#(X) ≤ B̃′$−
n
2 , (28)

D($,%) ≤ B̃′($s−
n(r−1)
2 +%$−n), ∀ 0< $≤ 1,%> 0, (29)

where B̃′ is a constant independent of $ or %.

Proof Take some trigonometric polynomial ã(*) = & j∈J a je−i j·* on Rn with a finite subset J of Zn

such that for someCs > 0 depending only on s and n, we have

|e−
|*|2
2 ã(*)−1|≤Cs|*|s ∀ * ∈ R

n.

This can be done by choosing the coefficients (a j) j∈J of ã satisfying the linear system

ã(0) = 1 and D1(e−
|*|2
2 ã(*))(0) = 0, 1 ∈ Z

n,0< |1| < s.

So J and (a j) j∈J depend only on s and n.
Define

f̃$(x) =
( 1√

2)$

)n Z

Rn
K$(x,y)&

j∈J
a j f̃ "! (y−$ j) dy, x ∈ R

n.
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We first estimate ‖ f̃$− f̃ "!‖L2(Rn).

Define a function k̃$ onRn by k̃$(x) =
(

1√
2)$

)n
e−

|x|2

2$2 ,we know that ˆ̃k$(*) = e−
|$*|2
2 and f̃$(x) =

k̃$ ∗ (& j∈J a j f̃
"
! (·−$ j)). This in connection with the fact that the Fourier transform of f̃ "! (·−$ j)

equals e−i$ j·* ˆ̃f "! (*) implies

ˆ̃f $(*) = ˆ̃k$(*)&
j∈J
a je−i$ j·*

ˆ̃f "! (*) = e−
|$*|2
2 ã($*) ˆ̃f "! (*).

It follows that

‖ f̃$− f̃ "!‖2L2(Rn) = (2))−n‖ ˆ̃f $−
ˆ̃f "!‖2L2(Rn) = (2))−n

R

Rn |e−
|$*|2
2 ã($*)−1|2| ˆ̃f "! (*)|2 d*

≤ (2))−nC2s
R

Rn |$*|2s| ˆ̃f "! (*)|2 d*≤C2s$2s(2))−n
R

Rn |*|2s| ˆ̃f "! (*)|2 d*.

That is,
‖ f̃$− f̃ "!‖L2(Rn) ≤Cs‖ f̃ "!‖Hs(Rn)$

s. (30)

Then we bound ‖ f̃$‖H$(Rn). Here H$(Rn) is the RKHS generated by the Mercer kernel K$(x,y)
on Rn. By the inner product in H$(Rn), we know that 〈K$(·,y),K$(·,z)〉H$(Rn) = K$(y,z). So we
have

‖ f̃$‖2H$(Rn) =
( 1√

2)$

)2n Z

Rn

Z

Rn
K$(y,z)&

j∈J
a j f̃ "! (y−$ j) dy&

l∈J
al f̃

"
! (z−$l) dz.

By the elementary inequality |uv|≤ u2+v2
2 and

R

Rn K$(y,z) dz= (
√
2)$)n, we see that

‖ f̃$‖2H$(Rn) ≤
( 1√

2)$

)2n
&
j∈J
&
l∈J

|a j||al|
Z

Rn

Z

Rn
K$(y,z)

| f̃ "! (y−$ j)|2+ | f̃ "! (z−$l)|2

2
dydz

=
( 1√

2)$

)2n
&
j,l∈J

|a j||al|(
√
2)$)n‖ f̃ "!‖2L2(Rn).

That is,
‖ f̃$‖H$(Rn) ≤C′

s‖ f̃
"
!‖L2(Rn)(

√
2)$)−

n
2

whereC′
s := & j∈J |a j| is a constant depending only on s and n.

Take f$,% = f̃$|X , the restriction of f̃$ onto X . By basic facts about RKHS (Aronszajn, 1950),
we know that f$,% = f̃$|X ∈H$ and

‖ f$,%‖H$
≤ ‖ f̃$‖H$(Rn) ≤C′

s‖ f̃
"
!‖L2(Rn)(

√
2)$)−

n
2 . (31)

Now we can derive the desired bounds.
(1) When f̃ "! ∈ L#(Rn), for any x ∈ Rn, we have

| f̃$(x)|≤&
j∈J

|a j|
( 1√

2)$

)n Z

Rn
e−

|x−y|2

2$2 dy‖ f̃ "!‖L#(Rn) =C′
s‖ f̃

"
!‖L#(Rn).
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It follows that (25) holds true and

E"( f$,%)−E"( f "! ) ≤
Z

X

Z

Y
sup

{
|"′+(*)| : |*|≤max{C′

s‖ f̃
"
!‖L#(Rn),‖ f

"
!‖L#(X)}

}

| f$,%(x)− f "! (x)|d!(y|x)g(x)dx.

By the Schwarz inequality we see that

E"( f$,%)−E"( f "! ) ≤ sup{|"′+(*)| : |*|≤ (C′
s+1)‖ f̃

"
!‖L#(Rn)}‖ f$,%− f "!‖L2(X)‖g‖L2(X).

This bound in connection with (30) and (31) implies (26) with the constant B̃ given by

B̃ = max
{
C′
s‖ f̃

"
!‖L#(Rn),(C′

s)
2‖ f̃ "!‖2L2(Rn)(2))

− n
2 ,

sup{|"′+(*)| : |*|≤ (C′
s+1)‖ f̃

"
!‖L#(Rn)}Cs‖ f̃

"
!‖Hs(Rn)‖g‖L2(X),

}
.

(2) Without the condition f̃ "! ∈ L#(Rn), we bound ‖ f$,%‖L#(X) directly from the expression of
f̃$. For x ∈ Rn, we have

| f̃$(x)| ≤ &
j∈J

|a j|
( 1√

2)$

)n{Z

Rn
(K$(x,y))2 dy

} 1
2
{Z

Rn
| f̃ "! (y−$ j)|2 dy

} 1
2

= &
j∈J

|a j|(2
√
)$)−

n
2 ‖ f̃ "!‖L2(Rn).

It follows that ‖ f$,%‖L#(X) ≤C′
s(2

√
))−

n
2 ‖ f̃ "!‖L2(Rn)$

− n
2 .

To derive the bound for the excess generalization error, we notice from (27) that

E"( f$,%)−E"( f "! ) =
Z

X

Z

Y
("(y f$,%(x))−"(y f "! (x))) d!(y|x)d!X(x)

≤
Z

X

Z

Y
sup

{
|"′+(*)| : |*|≤max{C′

s(2
√
)$)−

n
2 ‖ f̃ "!‖L2(Rn),‖ f

"
!‖L#(X)}

}

| f$,%(x)− f "! (x)|d!(y|x)g(x)dx.

If we denoteC′′
s =max{C",C"‖ f "!‖r−1L#(X),C"[C

′
s(2

√
))−

n
2 ‖ f̃ "!‖L2(Rn)]

r−1}, then

E"( f$,%)−E"( f "! ) ≤C′′
s $

− n(r−1)
2 ‖ f$,%− f "!‖L2(X)‖g‖L2(X) ≤C′′

s ‖g‖L2(X)Cs‖ f̃
"
!‖Hs(Rn)$

s− n(r−1)
2 .

Therefore,

D($,%) ≤C′′
s ‖g‖L2(X)Cs‖ f̃

"
!‖Hs(Rn)$

s− n(r−1)
2 +%(C′

s)
2‖ f̃ "!‖2L2(Rn)(

√
2)$)−n.

This verifies (28) and (29) by taking

B̃′ =max
{
C′
s(2

√
))−

n
2 ‖ f̃ "!‖L2(Rn),C′′

s ‖g‖L2(X)Cs‖ f̃
"
!‖Hs(Rn),(C′

s)
2‖ f̃ "!‖2L2(Rn)(2))

−n/2
}

.

The proof of Theorem 6 is complete.
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In our main results, only part (1) of Theorem 6, that is, Theorem 2 is used. A main assumption,
condition (8), gives the restriction f̃ "! ∈ Hs(Rn)∩L#(Rn). When we do not know whether f "! can
be extended to a uniformly bounded function on Rn, we can use part (2) of Theorem 6. This might
be the case when "= "h, as mentioned in the following.

A geometric noise condition was introduced in Steinwart and Scovel (2007). This condition
with exponent 1> 0 means

Z

X
| f!(x)|exp

{
−
02x
t

}
d!X(x) = O

(
t
1n
2

)
(32)

where

0x =






inf f!(u)≥0 |x−u|, if f!(x) < 0,
inf f!(u)≤0 |x−u|, if f!(x) > 0,
0, otherwise.

It does not assume smoothness of functions. An interesting result in Steinwart and Scovel (2007) as-
serts that when "= "h, geometric noise condition (32) with exponent 0< 1<# leads toD($,%)≤
B̃′′′($1n + %$−n). With this estimate, under Tsybakov noise condition (5), learning rates are ob-
tained in Steinwart and Scovel (2007). For example, when 1 > q+2

2q , for an arbitrarily small - > 0,
with confidence 1−+,

R (sgn( fz))−R ( fc) ≤ C̃-
(
log

4
+

)2( 1
m

) 21(q+1)
21(q+2)+3q+4−-

. (33)

Since no Sobolev smoothness is assumed for f "h! = fc (Wahba, 1990), we need to use the regular-
izing function f̃$,% defined by (7) and derive by some detailed computations that with confidence
1−+,

R (sgn( fz))−R ( fc) ≤ C̃!,h log
4
+

( 1
m

) (q+1)1n
(q+2)1n+2(q+1)(n+1)

.

This rate is slightly worse than (33), though the estimate for the confidence is slightly better. It
raises the question of improving Theorem 6 under various noise conditions.

Appendix B. Role of Tight Bounds for Covering Numbers

In this appendix we prove Lemma 2 which shows a special role of the tight bound (15) for covering
numbers concerning Gaussian kernels. In fact, we have the following more general result.

Proposition 4 Let 2≥ 1 be arbitrary. Then -∗(m,%,$,+/2) defined by (16) satisfies

-∗(m,%,$,+/2) ≤ C̃2

(
log 2+ +$−2(n+1)/(2−0) + (logm)(n+1)/(2−0)

m
1
2−0

+
$−2(n+1)

m
+

√
"(0)√
%m2

)

,

where C̃2 is the constant depending on C0,C1,0,"′+(−1),"(−1),2 and is given by

C̃2 =max
{
|"′+(−1)|,(4C1)

1
2−0 ,2(4C0C1)

1
2−0 2n+1,2"(−1)(1+C0+C02n+1)

}
.
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Proof Observe from (15) that as a function on (0,+#), the logarithm of the middle term of (16) is
bounded by

h(-) :=C0
((
log

√
"(0)|"′+(−1)|√

%-

)n+1
+

1
$2(n+1)

)
−g(-),

where g is the strictly increasing function on (0,#) defined by

g(-) =
m-2−0

2C1+ 2
3"(−1)-1−0

.

Set

B =

√
"(0)|"′+(−1)|√

%m2
+

(
4C1(log 2+ + C0

$2(n+1)
)+4C0C1(2 logm)n+1

m

) 1
2−0

+
4"(−1)
3m

(
log

2
+

+
C0

$2(n+1)
+C0(2 logm)n+1

)
.

If 23"(−1)B
1−0 ≤ 2C1, then

g(B) ≥
mB2−0

4C1
≥ log

2
+

+
C0

$2(n+1)
+C0(2 logm)n+1.

If 23"(−1)B
1−0 > 2C1, then

g(B) ≥
mB2−0

4
3"(−1)B1−0

=
mB

4
3"(−1)

≥ log
2
+

+
C0

$2(n+1)
+C0(2 logm)n+1.

Thus in either case we have

g(B) ≥ log
2
+

+
C0

$2(n+1)
+C0(2 logm)n+1.

On the other hand, since B ≥
√
"(0)|"′+(−1)|√

%m2 , we also see that log
√
"(0)|"′+(−1)|

B
√
%

≤ 2 logm. It fol-
lows that

h(B) ≤C0(2 logm)n+1− log
2
+
−C0(2 logm)n+1 = log

+
2
.

But the function h is strictly decreasing. So -∗(m,%,$,+/2) ≤ B . The the desired bound for
-∗(m,%,$,+/2) follows with the constant C̃2. The proof of Proposition 4 is complete.

Now we can prove Lemma 2 by the special form of %,$.

B.1 Proof of Lemma 2

Take 2= '
2 +1 in Proposition 4. Then we know from the special form (3) of % and $ that

-∗(m,%,$,+/2) ≤ C̃2

{
log 2+
m

1
2−0

+
( 1
m

) 1−2'((n+1)
2−0

+
((logm)n+1

m

) 1
2−0

+

√
"(0)
m

}

.
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notation meaning pages
R (C ) misclassification error for a classifier C 1447
fc Bayes rule which minimizes R 1447
R (C )−R ( fc) excess misclassification error 1447
" loss function for classification 1448
$ variance parameter for the Gaussian kernel 1448, 1449, 1458
% regularization parameter 1448, 1449, 1458
fz learning scheme (2) 1448
R (sgn( fz))−R ( fc) excess misclassification error for classifier sgn( fz) 1448, 1449, 1458
f! regression function 1448, 1449, 1457
E"( f ) generalization error for a function f 1450
f "! minimizer of E" 1450
E"( f )−E"( f "! ) excess generalization error for a function f 1451, 1452, 1454, 1457
f$,% regularizing function constructed in Theorem 2 1450, 1452, 1454, 1461
D($,%) regularization error or approximation error 1450, 1452, 1456, 1461
0= 0",! variancing power defined in Definition 5 1453, 1454, 1456, 1458

Table 1: NOTATIONS

Observe the elementary inequality (Yao, 2008; Ye and Zhou, 2007)

exp{−cx}≤ (
a
ec

)ax−a ∀x,c,a> 0.

Taking x= logm, a= n+1 and c= 2'((n+1), we have

(logm)n+1 ≤ (
1
2e'(

)n+1m2'((n+1).

Hence (17) holds true with the constantC2 = C̃2(4+2
√
"(0)). The proof of Lemma 2 is complete.
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Abstract

We present a procedure for effective estimation of entropy and mutual information from small-
sample data, and apply it to the problem of inferring high-dimensional gene association networks.
Specifically, we develop a James-Stein-type shrinkage estimator, resulting in a procedure that is
highly efficient statistically as well as computationally. Despite its simplicity, we show that it out-
performs eight other entropy estimation procedures across a diverse range of sampling scenarios
and data-generating models, even in cases of severe undersampling. We illustrate the approach
by analyzing E. coli gene expression data and computing an entropy-based gene-association net-
work from gene expression data. A computer program is available that implements the proposed
shrinkage estimator.

Keywords: entropy, shrinkage estimation, James-Stein estimator, “small n, large p” setting, mu-
tual information, gene association network

1. Introduction

Entropy is a fundamental quantity in statistics and machine learning. It has a large number of ap-
plications, for example in astronomy, cryptography, signal processing, statistics, physics, image
analysis neuroscience, network theory, and bioinformatics—see, for example, Stinson (2006), Yeo
and Burge (2004), MacKay (2003) and Strong et al. (1998). Here we focus on estimating entropy
from small-sample data, with applications in genomics and gene network inference in mind (Mar-
golin et al., 2006; Meyer et al., 2007).

To define the Shannon entropy, consider a categorical random variable with alphabet size p and
associated cell probabilities !1, . . . ,!p with !k > 0 and"k !k = 1. Throughout the article, we assume

c©2009 Jean Hausser and Korbinian Strimmer.
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that p is fixed and known. In this setting, the Shannon entropy in natural units is given by1

H = −
p

"
k=1

!k log(!k). (1)

In practice, the underlying probability mass function are unknown, hence H and !k need to be
estimated from observed cell counts yk ≥ 0.

A particularly simple and widely used estimator of entropy is the maximum likelihood (ML)
estimator

ĤML = −
p

"
k=1

!̂MLk log(!̂MLk )

constructed by plugging the ML frequency estimates

!̂MLk =
yk
n

(2)

into Equation 1, with n= "
p
k=1 yk being the total number of counts.

In situations with n$ p, that is, when the dimension is low and when there are many observa-
tion, it is easy to infer entropy reliably, and it is well-known that in this case the ML estimator is
optimal. However, in high-dimensional problems with n% p it becomes extremely challenging to
estimate the entropy. Specifically, in the “small n, large p” regime the ML estimator performs very
poorly and severely underestimates the true entropy.

While entropy estimation has a long history tracing back to more than 50 years ago, it is only
recently that the specific issues arising in high-dimensional, undersampled data sets have attracted
attention. This has lead to two recent innovations, namely the NSB algorithm (Nemenman et al.,
2002) and the Chao-Shen estimator (Chao and Shen, 2003), both of which are now widely consid-
ered as benchmarks for the small-sample entropy estimation problem (Vu et al., 2007).

Here, we introduce a novel and highly efficient small-sample entropy estimator based on James-
Stein shrinkage (Gruber, 1998). Our method is fully analytic and hence computationally inexpen-
sive. Moreover, our procedure simultaneously provides estimates of the entropy and of the cell
frequencies suitable for plugging into the Shannon entropy formula (Equation 1). Thus, in compar-
ison the estimator we propose is simpler, very efficient, and at the same time more versatile than
currently available entropy estimators.

2. Conventional Methods for Estimating Entropy

Entropy estimators can be divided into two groups: i) methods, that rely on estimates of cell fre-
quencies, and ii) estimators, that directly infer entropy without estimating a compatible set of !k.
Most methods discussed below fall into the first group, except for the Miller-Madow and NSB
approaches.

1. In this paper we use the following conventions: log denotes the natural logarithm (not base 2 or base 10), and we
define 0log0= 0.
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2.1 Maximum Likelihood Estimate

The connection between observed counts yk and frequencies !k is given by the multinomial distri-
bution

Prob(y1, . . . ,yp;!1, . . . ,!p) =
n!

#
p
k=1 yk!

p

#
k=1

!ykk . (3)

Note that !k > 0 because otherwise the distribution is singular. In contrast, there may be (and
often are) zero counts yk. The ML estimator of !k maximizes the right hand side of Equation 3 for
fixed yk, leading to the observed frequencies !̂MLk = yk

n with variances Var(!̂
ML
k ) = 1

n!k(1−!k) and
Bias(!̂MLk ) = 0 as E(!̂MLk ) = !k.

2.2 Miller-Madow Estimator

While !̂MLk is unbiased, the corresponding plugin entropy estimator ĤML is not. First order bias
correction leads to

ĤMM = ĤML+
m>0−1
2n

,

wherem>0 is the number of cells with yk > 0. This is known as the Miller-Madow estimator (Miller,
1955).

2.3 Bayesian Estimators

Bayesian regularization of cell countsmay lead to vast improvements over theML estimator (Agresti
and Hitchcock, 2005). Using the Dirichlet distribution with parameters a1,a2, . . . ,ap as prior, the
resulting posterior distribution is also Dirichlet with mean

!̂Bayesk =
yk +ak
n+A

,

where A="
p
k=1 ak. The flattening constants ak play the role of pseudo-counts (compare with Equa-

tion 2), so that A may be interpreted as the a priori sample size.
Some common choices for ak are listed in Table 1, along with references to the corresponding

plugin entropy estimators,

ĤBayes = −
p

"
k=1

!̂Bayesk log(!̂Bayesk ).

ak Cell frequency prior Entropy estimator

0 no prior maximum likelihood
1/2 Jeffreys prior (Jeffreys, 1946) Krichevsky and Trofimov (1981)
1 Bayes-Laplace uniform prior Holste et al. (1998)

1/p Perks prior (Perks, 1947) Schürmann and Grassberger (1996)√
n/p minimax prior (Trybula, 1958)

Table 1: Common choices for the parameters of the Dirichlet prior in the Bayesian estimators of
cell frequencies, and corresponding entropy estimators.
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While the multinomial model with Dirichlet prior is standard Bayesian folklore (Gelman et al.,
2004), there is no general agreement regarding which assignment of ak is best as noninformative
prior—see for instance the discussion in Tuyl et al. (2008) and Geisser (1984). But, as shown later
in this article, choosing inappropriate ak can easily cause the resulting estimator to perform worse
than the ML estimator, thereby defeating the originally intended purpose.

2.4 NSB Estimator

The NSB approach (Nemenman et al., 2002) avoids overrelying on a particular choice of ak in the
Bayes estimator by using a more refined prior. Specifically, a Dirichlet mixture prior with infinite
number of components is employed, constructed such that the resulting prior over the entropy is
uniform. While the NSB estimator is one of the best entropy estimators available at present in
terms of statistical properties, using the Dirichlet mixture prior is computationally expensive and
somewhat slow for practical applications.

2.5 Chao-Shen Estimator

Another recently proposed estimator is due to Chao and Shen (2003). This approach applies the
Horvitz-Thompson estimator (Horvitz and Thompson, 1952) in combination with the Good-Turing
correction (Good, 1953; Orlitsky et al., 2003) of the empirical cell probabilities to the problem of
entropy estimation. The Good-Turing-corrected frequency estimates are

!̂GTk = (1−
m1
n

)!̂MLk ,

where m1 is the number of singletons, that is, cells with yk = 1. Used jointly with the Horvitz-
Thompson estimator this results in

ĤCS = −
p

"
k=1

!̂GTk log !̂GTk
(1− (1− !̂GTk )n)

,

an estimator with remarkably good statistical properties (Vu et al., 2007).

3. A James-Stein Shrinkage Estimator

The contribution of this paper is to introduce an entropy estimator that employs James-Stein-type
shrinkage at the level of cell frequencies. As we will show below, this leads to an entropy estimator
that is highly effective, both in terms of statistical accuracy and computational complexity.

James-Stein-type shrinkage is a simple analytic device to perform regularized high-dimensional
inference. It is ideally suited for small-sample settings - the original estimator (James and Stein,
1961) considered sample size n= 1. A general recipe for constructing shrinkage estimators is given
in Appendix A. In this section, we describe how this approach can be applied to the specific problem
of estimating cell frequencies.

James-Stein shrinkage is based on averaging two very different models: a high-dimensional
model with low bias and high variance, and a lower dimensional model with larger bias but smaller
variance. The intensity of the regularization is determined by the relative weighting of the two
models. Here we consider the convex combination

!̂Shrinkk = $tk +(1−$)!̂MLk , (4)
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where $ ∈ [0,1] is the shrinkage intensity that takes on a value between 0 (no shrinkage) and 1
(full shrinkage), and tk is the shrinkage target. A convenient choice of tk is the uniform distribution
tk = 1

p . This is also the maximum entropy target. Considering that Bias(!̂MLk ) = 0 and using the

unbiased estimator V̂ar(!̂MLk ) =
!̂MLk (1−!̂MLk )

n−1 we obtain (cf. Appendix A) for the shrinkage intensity

$̂! =
"
p
k=1 V̂ar(!̂MLk )

"
p
k=1(tk− !̂MLk )2

=
1−"

p
k=1(!̂

ML
k )2

(n−1)"p
k=1(tk− !̂MLk )2

. (5)

Note that this also assumes a non-stochastic target tk. The resulting plugin shrinkage entropy esti-
mate is

ĤShrink = −
p

"
k=1

!̂Shrinkk log(!̂Shrinkk ). (6)

Remark 1 There is a one to one correspondence between the shrinkage and the Bayes estimator. If
we write tk = ak

A and $= A
n+A , then !̂

Shrink
k = !̂Bayesk . This implies that the shrinkage estimator is an

empirical Bayes estimator with a data-driven choice of the flattening constants—see also Efron and
Morris (1973). For every choice of A there exists an equivalent shrinkage intensity $. Conversely,
for every $ there exist an equivalent A= n $

1−$ .

Remark 2 Developing A = n $
1−$ = n($+ $2 + . . .) we obtain the approximate estimate Â = n$̂,

which in turn recovers the “pseudo-Bayes” estimator described in Fienberg and Holland (1973).

Remark 3 The shrinkage estimator assumes a fixed and known p. In many practical applications
this will indeed be the case, for example, if the observed counts are due to discretization (see also
the data example). In addition, the shrinkage estimator appears to be robust against assuming a
larger p than necessary (see scenario 3 in the simulations).

Remark 4 The shrinkage approach can easily be modified to allow multiple targets with different
shrinkage intensities. For instance, using the Good-Turing estimator (Good, 1953; Orlitsky et al.,
2003), one could setup a different uniform target for the non-zero and the zero counts, respectively.

4. Comparative Evaluation of Statistical Properties

In order to elucidate the relative strengths and weaknesses of the entropy estimators reviewed in the
previous section, we set to benchmark them in a simulation study covering different data generation
processes and sampling regimes.

4.1 Simulation Setup

We compared the statistical performance of all nine described estimators (maximum likelihood,
Miller-Madow, four Bayesian estimators, the proposed shrinkage estimator (Equations 4–6), NSB
und Chao-Shen) under various sampling and data generating scenarios:

• The dimension was fixed at p= 1000.

• Samples size n varied from 10, 30, 100, 300, 1000, 3000, to 10000. That is, we investigate
cases of dramatic undersampling (“small n, large p”) as well as situations with a larger number
of observed counts.
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The true cell probabilities !1, . . . ,!1000 were assigned in four different fashions, corresponding to
rows 1-4 in Figure 1:

1. Sparse and heterogeneous, following a Dirichlet distribution with parameter a= 0.0007,

2. Random and homogeneous, following a Dirichlet distribution with parameter a= 1,

3. As in scenario 2, but with half of the cells containing structural zeros, and

4. Following a Zipf-type power law.

For each sampling scenario and sample size, we conducted 1000 simulation runs. In each run, we
generated a new set of true cell frequencies and subsequently sampled observed counts yk from the
corresponding multinomial distribution. The resulting counts yk were then supplied to the various
entropy and cell frequencies estimators and the squared error "1000i=k (!k− !̂k)2 was computed. From
the 1000 repetitions we estimated the mean squared error (MSE) of the cell frequencies by averaging
over the individual squared errors (except for the NSB, Miller-Madow, and Chao-Shen estimators).
Similarly, we computed estimates of MSE and bias of the inferred entropies.

4.2 Summary of Results from Simulations

Figure 1 displays the results of the simulation study, which can be summarized as follows:

• Unsurprisingly, all estimators perform well when the sample size is large.

• The maximum likelihood and Miller-Madow estimators perform worst, except for scenario 1.
Note that these estimators are inappropriate even for moderately large sample sizes. Further-
more, the bias correction of the Miller-Madow estimator is not particularly effective.

• The minimax and 1/p Bayesian estimators tend to perform slightly better than maximum
likelihood, but not by much.

• The Bayesian estimators with pseudocounts 1/2 and 1 perform very well even for small sam-
ple sizes in the scenarios 2 and 3. However, they are less efficient in scenario 4, and com-
pletely fail in scenario 1.

• Hence, the Bayesian estimators can perform better or worse than the ML estimator, depending
on the choice of the prior and on the sampling scenario.

• The NSB, the Chao-Shen and the shrinkage estimator all are statistically very efficient with
small MSEs in all four scenarios, regardless of sample size.

• The NSB and Chao-Shen estimators are nearly unbiased in scenario 3.

The three top-performing estimators are the NSB, the Chao-Shen and the prosed shrinkage esti-
mator. When it comes to estimating the entropy, these estimators can be considered identical for
practical purposes. However, the shrinkage estimator is the only one that simultaneously estimates
cell frequencies suitable for use with the Shannon entropy formula (Equation 1), and it does so
with high accuracy even for small samples. In comparison, the NSB estimator is by far the slowest
method: in our simulations, the shrinkage estimator was faster by a factor of 1000.
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Figure 1: Comparing the performance of nine different entropy estimators (maximum likelihood,
Miller-Madow, four Bayesian estimators, the proposed shrinkage estimator, NSB und
Chao-Shen) in four different sampling scenarios (rows 1 to 4). The estimators are com-
pared in terms of MSE of the underlying cell frequencies (except for Miller-Madow, NSB,
Chao-Shen) and according to MSE and Bias of the estimated entropies. The dimension
is fixed at p= 1000 while the sample size n varies from 10 to 10000.
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5. Application to Statistical Learning of Nonlinear Gene Association Networks

In this section we illustrate how the shrinkage entropy estimator can be applied to the problem of in-
ferring regulatory interactions between genes through estimating the nonlinear association network.

5.1 From Linear to Nonlinear Gene Association Networks

One of the aims of systems biology is to understand the interactions among genes and their products
underlying the molecular mechanisms of cellular function as well as how disrupting these interac-
tions may lead to different pathologies. To this end, an extensive literature on the problem of gene
regulatory network “reverse engineering” has developed in the past decade (Friedman, 2004). Start-
ing from gene expression or proteomics data, different statistical learning procedures have been
proposed to infer associations and dependencies among genes. Among many others, methods have
been proposed to enable the inference of large-scale correlation networks (Butte et al., 2000) and
of high-dimensional partial correlation graphs (Dobra et al., 2004; Schäfer and Strimmer, 2005a;
Meinshausen and Bühlmann, 2006), for learning vector-autoregressive (Opgen-Rhein and Strim-
mer, 2007a) and state space models (Rangel et al., 2004; Lähdesmäki and Shmulevich, 2008), and
to reconstruct directed “causal” interaction graphs (Kalisch and Bühlmann, 2007; Opgen-Rhein and
Strimmer, 2007b).

The restriction to linear models in most of the literature is owed at least in part to the already
substantial challenges involved in estimating linear high-dimensional dependency structures. How-
ever, cell biology offers numerous examples of threshold and saturation effects, suggesting that
linear models may not be sufficient to model gene regulation and gene-gene interactions. In order
to relax the linearity assumption and to capture nonlinear associations among genes, entropy-based
network modeling was recently proposed in the form of the ARACNE (Margolin et al., 2006) and
MRNET (Meyer et al., 2007) algorithms.

The starting point of these two methods is to compute the mutual information MI(X ,Y ) for all
pairs of genes X and Y , where X and Y represent the expression levels of the two genes for instance.
The mutual information is the Kullback-Leibler distance from the joint probability density to the
product of the marginal probability densities:

MI(X ,Y ) = Ef (x,y)

{
log

f (x,y)
f (x) f (y)

}
. (7)

The mutual information (MI) is always non-negative, symmetric, and equals zero only if X and Y
are independent. For normally distributed variables the mutual information is closely related to the
usual Pearson correlation,

MI(X ,Y ) = −
1
2
log(1−%2).

Therefore, mutual information is a natural measure of the association between genes, regardless
whether linear or nonlinear in nature.

5.2 Estimation of Mutual Information

To construct an entropy network, we first need to estimatemutual information for all pairs of genes.
The entropy representation

MI(X ,Y ) = H(X)+H(Y )−H(X ,Y ), (8)
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shows that MI can be computed from the joint and marginal entropies of the two genes X and Y .
Note that this definition is equivalent to the one given in Equation 7 which is based on the Kullback-
Leibler divergence. From Equation 8 it is also evident that MI(X ,Y ) is the information shared
between the two variables.

For gene expression data the estimation of MI and the underlying entropies is challenging due
to the small sample size, which requires the use of a regularized entropy estimator such as the
shrinkage approach we propose here. Specifically, we proceed as follows:

• As a prerequisite the data must be discrete, with each measurement assuming one of K lev-
els. If the data are not already discretized, we propose employing the simple algorithm of
Freedman and Diaconis (1981), considering the measurements of all genes simultaneously.

• Next, we estimate the p= K2 cell frequencies of the K×K contingency table for each pair X
and Y using the shrinkage approach (Eqs. 4 and 5). Note that typically the sample size n is
much smaller than K2, thus simple approaches such as ML are not valid.

• Finally, from the estimated cell frequencies we calculate H(X), H(Y ), H(X ,Y ) and the de-
sired MI(X ,Y ).

5.3 Mutual Information Network for E. Coli Stress Response Data
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Figure 2: Left: Distribution of estimated mutual information values for all 5151 gene pairs of the
E. coli data set. Right: Mutual information values after applying the ARACNE gene
pair selection procedure. Note that the most MIs have been set to zero by the ARACNE
algorithm.

For illustration, we now analyze data from Schmidt-Heck et al. (2004) who conducted an ex-
periment to observe the stress response in E. Coli during expression of a recombinant protein. This
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data set was also used in previous linear network analyzes, for example, in Schäfer and Strimmer
(2005b). The raw data consist of 4289 protein coding genes, on which measurements were taken
at 0, 8, 15, 22, 45, 68, 90, 150, and 180 minutes. We focus on a subset of G = 102 differentially
expressed genes as given in Schmidt-Heck et al. (2004).

Discretization of the data according to Freedman and Diaconis (1981) yielded K = 16 distinct
gene expression levels. From theG= 102 genes, we estimatedMIs for 5151 pairs of genes. For each
pair, the mutual information was based on an estimated 16×16 contingency table, hence p= 256.
As the number of time points is n= 9, this is a strongly undersampled situation which requires the
use of a regularized estimate of entropy and mutual information.

The distribution of the shrinkage estimates of mutual information for all 5151 gene pairs is
shown in the left side of Figure 2. The right hand side depicts the distribution of mutual information
values after applying the ARACNE procedure, which yields 112 gene pairs with nonzero MIs.

The model selection provided by ARACNE is based on applying the information processing
inequality to all gene triplets. For each triplet, the gene pair corresponding to the smallest MI is dis-
carded, which has the effect to remove gene-gene links that correspond to indirect rather than direct
interactions. This is similar to a procedure used in graphical Gaussian models where correlations
are transformed into partial correlations. Thus, both the ARACNE and the MRNET algorithms can
be considered as devices to approximate the conditional mutual information (Meyer et al., 2007).
As a result, the 112 nonzero MIs recovered by the ARACNE algorithm correspond to statistically
detectable direct associations.

The corresponding gene association network is depicted in Figure 3. The most striking feature
of the graph are the “hubs” belonging to genes hupB, sucA and nuoL. hupB is a well known DNA-
binding transcriptional regulator, whereas both nuoL and sucA are key components of the E. coli
metabolism. Note that a Lasso-type procedure (that implicitly limits the number of edges that can
connect to each node) such as that of Meinshausen and Bühlmann (2006) cannot recover these hubs.

6. Discussion

We proposed a James-Stein-type shrinkage estimator for inferring entropy and mutual information
from small samples. While this is a challenging problem, we showed that our approach is highly
efficient both statistically and computationally despite its simplicity.

In terms of versatility, our estimator has two distinct advantages over the NSB and Chao-Shen
estimators. First, in addition to estimating the entropy, it also provides the underlying multinomial
frequencies for use with the Shannon formula (Equation 1). This is useful in the context of using
mutual information to quantify non-linear pairwise dependencies for instance. Second, unlike NSB,
it is a fully analytic estimator.

Hence, our estimator suggests itself for applications in large scale estimation problems. To
demonstrate its application in the context of genomics and systems biology, we have estimated an
entropy-based gene dependency network from expression data in E. coli. This type of approach may
prove helpful to overcome the limitations of linear models currently used in network analysis.

In short, we believe the proposed small-sample entropy estimator will be a valuable contribution
to the growing toolbox of machine learning and statistics procedures for high-dimensional data
analysis.
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Figure 3: Mutual information network for the E. coli data inferred by the ARACNE algorithm based
on shrinkage estimates of entropy and mutual information.
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Appendix A. Recipe For Constructing James-Stein-type Shrinkage Estimators

The original James-Stein estimator (James and Stein, 1961) was proposed to estimate the mean of
a multivariate normal distribution from a single (n = 1!) vector observation. Specifically, if x is a
sample from Np(µ, I) then James-Stein estimator is given by

µ̂JSk = (1−
p−2
"
p
k=1 x2k

)xk.

Intriguingly, this estimator outperforms the maximum likelihood estimator µ̂MLk = xk in terms of
mean squared error if the dimension is p ≥ 3. Hence, the James-Stein estimator dominates the
maximum likelihood estimator.

The above estimator can be slightly generalized by shrinking towards the component average
x̄= "

p
k=1 xk rather than to zero, resulting in

µ̂Shrinkk = $̂!x̄+(1− $̂!)xk

with estimated shrinkage intensity

$̂! =
p−3

"
p
k=1(xk− x̄)2

.

The James-Stein shrinkage principle is very general and can be put to to use in many other
high-dimensional settings. In the following we summarize a simple recipe for constructing James-
Stein-type shrinkage estimators along the lines of Schäfer and Strimmer (2005b) and Opgen-Rhein
and Strimmer (2007a).

In short, there are two key ideas at work in James-Stein shrinkage:

i) regularization of a high-dimensional estimator !̂ by linear combination with a lower-
dimensional target estimate !̂Target, and

ii) adaptive estimation of the shrinkage parameter $ from the data by quadratic risk minimiza-
tion.

A general form of a James-Stein-type shrinkage estimator is given by

!̂
Shrink

= $!̂
Target

+(1−$)!̂. (9)

Note that !̂ and !̂Target are two very different estimators (for the same underlying model!). !̂ as a
high-dimensional estimate with many independent components has low bias but for small samples
a potentially large variance. In contrast, the target estimate !̂Target is low-dimensional and therefore
is generally less variable than !̂ but at the same time is also more biased. The James-Stein estimate
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is a weighted average of these two estimators, where the weight is chosen in a data-driven fashion
such that !̂Shrink is improved in terms of mean squared error relative to both !̂ and !̂Target.

A key advantage of James-Stein-type shrinkage is that the optimal shrinkage intensity $! can be
calculated analytically and without knowing the true value !, via

$! =
"
p
k=1Var(!̂k)−Cov(!̂k, !̂

Target
k )+Bias(!̂k)E(!̂k− !̂Targetk )

"
p
k=1E[(!̂k− !̂Targetk )2]

. (10)

A simple estimate of $! is obtained by replacing all variances and covariances in Equation 10 with
their empirical counterparts, followed by truncation of $̂! at 1 (so that $̂! ≤ 1 always holds).

Equation 10 is discussed in detail in Schäfer and Strimmer (2005b) and Opgen-Rhein and Strim-
mer (2007a). More specialized versions of it are treated, for example, in Ledoit and Wolf (2003) for
unbiased !̂ and in Thompson (1968) (unbiased, univariate case with deterministic target). A very
early version (univariate with zero target) even predates the estimator of James and Stein, see Good-
man (1953). For the multinormal setting of James and Stein (1961), Equation 9 and Equation 10
reduce to the shrinkage estimator described in Stigler (1990).

James-Stein shrinkage has an empirical Bayes interpretation (Efron and Morris, 1973). Note,
however, that only the first two moments of the distributions of !̂Target and !̂ need to be specified in
Equation 10. Hence, James-Stein estimation may be viewed as a quasi-empirical Bayes approach
(in the same sense as in quasi-likelihood, which also requires only the first two moments).

Appendix B. Computer Implementation

The proposed shrinkage estimators of entropy and mutual information, as well as all other inves-
tigated entropy estimators, have been implemented in R (R Development Core Team, 2008). A
corresponding R package “entropy” was deposited in the R archive CRAN and is accessible at the
URL http://cran.r-project.org/web/packages/entropy/ under the GNU General Public
License.
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