
Unsupervised and Transfer Learning
Challenges in Machine Learning, Volume 7

Unsupervised and Transfer Learning
Challenges in Machine Learning, Volume 7

Isabelle Guyon, Gideon Dror, Vincent Lemaire, Graham Taylor, and Daniel

Silver, editors

Nicola Talbot, production editor

Microtome Publishing

Brookline, Massachusetts

www.mtome.com

Unsupervised and Transfer Learning
Challenges in Machine Learning, Volume 7

Isabelle Guyon, Gideon Dror, Vincent Lemaire, Graham Taylor, and Daniel Silver, editors

Nicola Talbot, production editor

Collection copyright

c� 2013 Microtome Publishing, Brookline, Massachusetts, USA.

Copyright of individual articles remains with their respective authors.

ISBN-13: 978-0-9719777-7-8

Foreword

Over the years, machine learning has grown to be a major computer science discipline
with wide applications in science and engineering. Despite its phenomenal success, a
fundamental challenge to machine learning is the lack of sufficient training data to build
accurate and reliable models in many practical situations. We may make the best choice
of learning algorithms, but when quality data are in short supply, the resulting models
can perform very poorly on a new domain.

The lack of training data problem can be taken as an opportunity to developing new
theories of machine learning for developing models of complex phenonmena. As hu-
mans, we observe that we often have the ability to adapt what we have learned in one
area to a new area, provided that these areas are somewhat related. We often learn in
a continual fashion by standing on the shoulders of earlier models, rather than learning
new models from scratch each time. We also come to recognize features that are com-
monly used across a set of related models. And finally, in concept learning, we often
learn via not millions of examples, but through only a selected few. These phenomena
call for new insights into unsupervised and transfer learning.

In the past, researchers in different subfields of machine learning have been making
advances in their separate ways in the areas listed above. Recently, many of these ad-
vances have started to overlap and suggest synergistic opportunities for impact on the
field. Holding a joint workshop in 2011 to bring together researchers in unsupervised
and transfer learning researchers was timely. Exploring the intersection of these two
fields holds strong promises for us to gain new insights, especially in their respective
abilities to discover ‘deep’ features for domain representation. It is also an innova-
tive idea to hold an international machine-learning contest together with the workshop,
which inspires many new approaches to the difficult problem.

This volume represents a significant effort of the editors and workshop organizers,
who not only put in much time in organizing the proceedings and papers, but also the
challenge itself. The authors have made excellent effort in bringing us a high-quality
collection with a wide coverage of topics. This collection starts with a survey paper by
the editors on the state of the art of the field of unsupervised and transfer learning. It
then presents papers related to theoretical advances in deep learning, model selection
and clustering. The next part consists of articles by the Challenge winners on their
approaches in solving the unsupervised and transfer learning contest problems. Finally,
the last part consists of articles that cover various applications and specific approaches
to unsupervised and transfer learning. All these articles give a complete picture of
researchers’ efforts for this important and challenging problem.

Looking forward, we can see several strands of emerging themes in unsupervised
and transfer learning. As we march into the era of Big Data, questions on how to

i

Foreword

separate quality patterns from noise will become more pressing. The recent Google
experiments on deep learning have given have show that it is possible to train a very
large unsupervised neural network (16,000 computer processors with one billion con-
nections) to automatically develop features for recognizing cat faces. The data sparsity
problem associated with extremely large-scale recommendation systems provides us
with strong motivation for finding new ways to transfer knowledge from auxiliary data
sources. New questions about the scalability, reliability and adaptability of the unsu-
pervised and transfer learning models will take central stage in much of ML research
in the coming decade. Indeed, for unsupervised and transfer learning research, we live
in very interesting times!

Qiang Yang, Huawei Noah’s Ark Research Lab and Hong Kong University of Science
and Technology

ii

Preface

Machine learning is a subarea of artificial intelligence that is concerned with systems
that improve with experience. It is the science of building hardware or software that
can achieve tasks by learning from examples. While much of the efforts in this field
over the past twenty years have been devoted to “supervised learning”, that is learning
under the supervision of a “teacher” providing guidance in the form of labeled data
(input output pairs), recent advances in unsupervised and transfer learning have seen
a complete paradigm shift in machine learning. Unsupervised learning considers the
problem of discovering regularities, features or structure in unlabeled data. Transfer
learning considers the use of prior knowledge, such as learned features, from one or
more source tasks when developing a hypothesis for a new target task. While human
beings are adept at transfer learning using mixtures of labeled and unlabeled examples,
even across widely disparate domains, we have only begun to develop machine learning
systems that exhibit the combined use of unsupervised learning and knowledge transfer.

This book is a result of an international challenge on Unsupervised and Transfer
Learning (UTL) that culminated in a workshop of the same name at the ICML-2011
conference in Bellevue, Washington, on July 2, 2011; it captures the best of the chal-
lenge findings and the most recent research presented at the workshop.

The book is targeted for machine learning researchers and data mining practitioners
interested in “lifelong machine learning systems” that retain the knowledge from prior
learning to create more accurate models for new learning problems. Such systems will
be of fundamental importance to intelligent software agents and robotics in the 21st
century. The articles include new theories and new theoretically grounded algorithms
applied to practical problems. It addressed an audience of experienced researchers in
the field as well as Masters and Doctoral students undertaking research in machine
learning.

The book is organized in three major sections that can be read independently of
each other. The introductory chapter is a survey on the state of the art of the field of
unsupervised and transfer learning providing an overview of the book articles. The first
section includes papers related to theoretical advances in deep learning, model selection
and clustering. The second section presents articles by the challenge winners. The final
section consists of the best articles from the ICML-2011 workshop; covering various
approaches to and applications of unsupervised and transfer learning.

This project was sponsored in part by the DARPA Deep Learning program and is
an activity of the Causality Workbench supported by the Pascal network of excellence
funded by the European Commission and by the U.S. National Science Foundation
under Grant N0. ECCS-0725746. The UTL Challenge was organized by ChaLearn
(http://www.chalearn.org/); a society that works to stimulate research in the

iii

Foreword

field of machine learning through international challenges. Any opinions, findings, and
conclusions or recommendations expressed in this book are those of the authors and do
not necessarily reflect the views of the sponsors.

This volume reprints papers from JMLR W&CP volume 27.

November 2012

The Editorial Team:

Daniel Silver
Acadia University
danny.silver@acadiau.ca

Isabelle Guyon
Clopinet
isabelle@clopinet.com

Gideon Dror
Academic College of Tel-Aviv-Yaffo
gideon@mta.ac.il

Vincent Lemaire
Orange Labs
vincent.lemaire@orange-ftgroup.com

Graham Taylor
University of Guelph
gwtaylor@uoguelph.ca

iv

Table of Contents

Foreword i

Introduction

ICML2011 Unsupervised and Transfer Learning Workshop 1
D.L. Silver, I. Guyon, G. Taylor, G. Dror & V. Lemaire; JMLR W&CP 27:1–16,
2012.

Fundamentals and theory

Deep Learning of Representations for Unsupervised and Transfer Learning 19
Y. Bengio; JMLR W&CP 27:17–36, 2012.

Autoencoders, Unsupervised Learning, and Deep Architectures 43

P. Baldi; JMLR W&CP 27:37–50, 2012.

Information Theoretic Model Selection for Pattern Analysis 57
J.M. Buhmann, M.H. Chehreghani, M. Frank & A.P. Streich; JMLR W&CP
27:51–64, 2012.

Clustering: Science or Art? 73
U. von Luxburg, R.C. Williamson & I. Guyon; JMLR W&CP 27:65–80, 2012.

Challenge contributions

Transfer Learning by Kernel Meta-Learning 91

F. Aiolli; JMLR W&CP 27:81–95, 2012.

Unsupervised and Transfer Learning Challenge: a Deep Learning Approach 109

G. Mesnil et al; JMLR W&CP 27:97–110, 2012.

Stochastic Unsupervised Learning on Unlabeled Data 125
C. Liu, J. Xie, Y. Ge & H. Xiong; JMLR W&CP 27:111–122, 2012.

Advances in transfer learning

Transfer Learning with Cluster Ensembles 139
A. Acharya, E.R. Hruschka, J. Ghosh & S. Acharyya; JMLR W&CP 27:123–132,
2012.

v

TABLE OF CONTENTS

Divide and Transfer: an Exploration of Segmented Transfer to Detect Wikipedia

Vandalism 151

S.-C. Chin & W.N. Street; JMLR W&CP 27:133–144, 2012.

Self-measuring Similarity for Multi-task Gaussian Process 165
K. Hayashi, T. Takenouchi, R. Tomioka & H. Kashima; JMLR W&CP
27:145–154, 2012.

Transfer Learning for Auto-gating of Flow Cytometry Data 177

G. Lee, L. Stoolman & C. Scott; JMLR W&CP 27:155–166, 2012.

Inductive Transfer for Bayesian Network Structure Learning 191

A. Niculescu-Mizil & R. Caruana; JMLR W&CP 27:167–180, 2012.

Unsupervised dimensionality reduction via gradient-based matrix factorization

with two adaptive learning rates 207
V. Nikulin & T.-H. Huang; JMLR W&CP 27:181–194, 2012.

One-Shot Learning with a Hierarchical Nonparametric Bayesian Model 225

R. Salakhutdinov, J. Tenenbaum & A. Torralba; JMLR W&CP 27:195–206, 2012.

Multitask Learning in Computational Biology 239

C. Widmer & G. Rätsch; JMLR W&CP 27:207–216, 2012.

Transfer Learning in Sequential Decision Problems: A Hierarchical Bayesian

Approach 251
A. Wilson, A. Fern & P. Tadepalli; JMLR W&CP 27:217–227, 2012.

Appendices

Datasets of the Unsupervised and Transfer Learning Challenge 265
Isabelle Guyon

vi

JMLR: Workshop and Conference Proceedings 27:1–16, 2012 Unsupervised and Transfer Learning

ICML2011 Unsupervised and Transfer Learning Workshop

Daniel L. Silver danny.silver@acadiau.ca
Acadia University, Canada

Isabelle Guyon isabelle@clopinet.com
Clopinet, California, USA

Graham Taylor gwtaylor@cs.nyu.edu
New York University, USA

Gideon Dror gideon@mta.ac.il
Academic College of Tel-Aviv-Yaffo, Israel

Vincent Lemaire vincent.lemaire@orange-ftgroup.com

Orange Labs, France

Editor: Neil Lawrence

Abstract

We organized a data mining challenge in “unsupervised and transfer learning” (the
UTL challenge) followed by a workshop of the same name at the ICML 2011 con-
ference in Bellevue, Washington1. This introduction presents the highlights of the
outstanding contributions that were made, which are regrouped in this issue of JMLR
W&CP. Novel methodologies emerged to capitalize on large volumes of unlabeled
data from tasks related (but different) from a target task, including a method to learn
data kernels (similarity measures) and new deep architectures for feature learning.

Keywords: transfer learning, unsupervised learning, metric learning, kernel learning,
unlabeled data, challenges

1. Introduction

Unsupervised learning considers the problem of discovering regularities or structure in
unlabeled data (e.g., finding sub-manifolds or clustering examples) based on a repre-
sentation of the domain. Transfer learning considers the use of prior knowledge (such
as labeled training examples, or shared features) from one or more source tasks when
developing a hypothesis for a new target task. While human beings are adept at transfer
learning using mixtures of labeled and unlabeled examples, even across widely dis-
parate domains, we have only begun to develop machine learning systems that exhibit
the combined use of unsupervised learning and knowledge transfer.

To foster greater research in this area we organized a international challenge on Un-
supervised and Transfer Learning that culminated in a workshop of the same name at
the ICML-2011 conference in Bellevue, Washington, on July 2, 2011. This workshop

1. http://clopinet.com/isabelle/Projects/ICML2011/.

© 2012 D.L. Silver, I. Guyon, G. Taylor, G. Dror & V. Lemaire.

Silver Guyon Taylor Dror Lemaire

addressed a question of fundamental and practical interest in machine learning: the de-
velopment and assessment of methods that can generate data representations (features)
that can be reused across domains of tasks.

This edition of JMLR W&CP presents the challenge results and a collection of
outstanding contributed articles on the subject of transfer learning and unsupervised
learning. This paper and the edition focuses on unsupervised and transfer learning
for classification problems based on real-valued feature representations that are related
more closely to data mining tasks. Methods of transfer learning have also been investi-
gated for reinforcement learning (Ramon et al., 2007; Taylor and Stone, 2007), however
these are outside the scope of this edition.

2. Overview of Transfer Learning and Unsupervised Learning

2.1. Transfer Learning

Transfer learning refers to use of knowledge for one or more source tasks to develop
efficiently a more accurate hypothesis for a new target task. Transfer learning has most
frequently been applied to sets of labeled data that have a supervised target value for
each example. For instance, there would be significant benefit in using an accurate diag-
nostic model of one disease to develop a diagnostic model for a second related disease
for which you have few training examples. While all learning involves generalization
across problem instances, transfer learning emphasizes the transfer of knowledge across
domains, tasks, and distributions that are similar but not the same. Inductive transfer
has gone by a variety of names: bias learning, learning to learn, machine life-long learn-
ing, knowledge transfer, transfer learning, meta-learning, and incremental, cumulative,
and continual learning.

Research in inductive transfer began in the early 1980s with discussions on induc-
tive bias, generalization and the necessity of heuristics for developing accurate hypothe-
ses from small numbers of training examples (Mitchell, 1980; Utgoff, 1986). This early
research suggested that the accumulation of prior knowledge for the purposes of select-
ing inductive bias is a useful characteristic for any learning system. Following the first
major workshop on inductive transfer (NIPS1995 Workshop, 1995) a series of articles
were published in special issues of Connection Science (Lorien Pratt (Editor), 1996)
and Machine Learning (Pratt and Sebastian Thrun (Editors), 1997), and a book entitled
“Learning to Learn” (Thrun and Lorien Y. Pratt (Editors), 1997) .

Since that time, research on inductive transfer has occurred using traditional ma-
chine learning methods (Caruana, 1997; Baxter, 1997; Silver and Mercer, 1996; Hes-
kes, 2000; Thrun and Lorien Y. Pratt (Editors), 1997; Bakker and Heskes, 2003; Ben-
David and Schuller, 2003), statistical regression methods (Greene, 2002; Zellner, 1962;
Breiman and Friedman, 1998), Bayesian methods involving constraints such as hyper
priors (Allenby and Rossi, 1999; Arora et al., 1998; Bakker and Heskes, 2003), and
more recently kernel methods such as support vector machines (SVMs) (Jebara, 2004;
Allenby and Rossi, 2005). All of these approaches rely upon the development of a
hypothesis for a target task under a constraint or regularization that characterizes a sim-

2

UTL Workshop

ilarity or relatedness to one or more source tasks. In 2005, a second major workshop on
inductive transfer occurred at NIPS. Papers from this workshop can be found in (Silver
and Bennett, 2008) as well as at (NIPS2005 Workshop, 2005).

More recently, there has been work on inductive transfer in the areas of self-taught
learning (Raina et al., 2007b), transductive learning (Arnold et al., 2007), context-

sensitive multiple task learning (Silver et al., 2008), the learning of model structure
(Niculescu-Mizil and Caruana, 2007), unsupervised transfer learning [Yu,Wang], and
a variety of methods that mix unsupervised and supervised learning to be discussed in
greater detail below.

2.2. Unsupervised Learning

Unsupervised learning refers to the process of finding structure in unlabeled data re-
sulting in new data representations (including feature representations) and/or clustering
data into categories of similar examples, based on such representations (Hinton and
Sejnowski, 1999). The unlabeled data distinguishes unsupervised learning from super-
vised learning and reinforcement learning. Important recent progress has been made in
purely unsupervised learning (Smola et al., 2001; Bengio et al., 2003; Globerson and
Tishby, 2003; Ghahramani, 2004; Luxburg, 2007). However, these advances tend to
be ignored by practitioners who continue using a handful of popular algorithms like
PCA and ICA (for feature extraction and dimensionality reduction), and K-means, and
various hierarchical clustering methods for clustering (Jain et al., 1999).

2.3. Combining Unsupervised and Transfer Learning

It is often easier to obtain large quantities of unlabeled data from databases and sources
on the web, for example images of unlabeled objects. For this reason the idea of using
unsupervised learning in combination with supervised learning has attracted interest for
some time. Semi-supervised learning is a machine learning approach that is halfway
between supervised and unsupervised learning. In addition to the labeled data for a
given task of interest, the algorithm is provided with unlabeled data for the same task
- typically a small amount of labeled data and a large amount of unlabeled data (Blum
and Mitchell, 1998). Note that these approaches usually assume that the categories of
the unlabeled data, even though unknown to the learning machine, are the same as the
categories of the labeled data, i.e., that the “tasks” are the same.

In contrast, in the transfer learning setting, the unlabeled data does not need to come
from the same task. There has been considerable progress in the past decade in devel-
oping cross-task transfer using both discriminative and generative approaches in a wide
variety of settings (Pan and Yang, 2010). These approaches include multi-layer struc-
tured learning machines from the “Deep Learning” family such as convolutional neural
networks, Deep Belief Networks, and Deep Boltzmann Machines (Bengio, 2009; Gut-
stein, 2010; Erhan et al., 2010), sparse coding (Lee et al., 2007; Raina et al., 2007a),
and metric or kernel learning methods (Bromley et al., 1994; WU et al., 2009; Kulis,
2010). The “Learning to learn” and “Lifelong Learning” veins of research have con-

3

Silver Guyon Taylor Dror Lemaire

tinued to provide interesting results in both machine learning and cognitive science in
terms of short-term learning with transfer and long-term retention of learned knowledge
(Silver et al., 2008). These references include recent evidence of the value of combin-
ing unsupervised generative learning with transfer learning to generate a rich set of
representation (features) upon which to build related supervised discriminative tasks.
The goal of the challenge we organized was to perform an evaluation of unsupervised
and transfer learning algorithms free of inventor bias to help to identify and popularize
algorithms that have advanced the state of the art.

3. Overview of the UTL Challenge

Part of the ICML workshop was devoted to the presentation of the results of the Unsu-
pervised and Transfer Learning challenge (UTL challenge Guyon et al., 2011a,b). The
challenge, which started in December 2010 and ended in April 2011, was organized in 2
phases. The aim of Phase 1 was to benchmark unsupervised learning algorithms used
as preprocessors for supervised learning, in the context of transfer learning problems.
The aim of phase 2 was to encourage researchers to exploit the possibilities offered by
new cutting-edge cross-task transfer learning algorithms, which transfer supervised

learning knowledge from task to task.
To that end, the competitors were presented with five datasets illustrating classifica-

tion problems from different domains: handwriting recognition, video processing, text
processing, object recognition, and ecology. Each dataset was split into 3 subsets: de-
velopment, validation, and final evaluation sets. In phase 1, all subsets were provided
without labels to the participants. The labels remained known only to the organizers
throughout the challenge. The goal of the participants was to produce the best possible
data representation for the final evaluation data. This representation was then evaluated
by the organizers on supervised learning classification tasks by training and testing a
linear classifier on subsets of the final evaluation data, such than a learning curve would
be produced. The evaluation metric was the area under the learning curve, which is a
means of aggregating performance results over a range of number of training examples
considered.

To avoid the possibility of participants selecting their model based on final evalu-
ation set performance, the final results remained secret until the end of the challenge.
Rather, feed-back was provided on-line during the challenge on the performance ob-
tained on validation data, and the final evaluation set data was used only for the final
ranking. For both phases, the participants could either submit a data representation
(for validation data and final evaluation data) or a matrix of similarity between exam-
ples (a kernel). Hence, the competition was equivalently a data representation learning
challenge and a kernel learning challenge.

In contrast with a classical evaluation of unsupervised learning as a preprocessing,
the three subsets (development, validation, and final evaluation sets) were not drawn

from the same distribution. In fact, they all had different sets of class labels. Pic-
ture for instance a problem of optical character recognition (OCR), the development set

4

UTL Workshop

could contain only lowercase alphabetical letters, the validation set could contain up-
percase letters, and the final evaluation set, digits and symbols. This setting is typical of
real world problems in which there is an abundance of data available for training from
a source domain, which is distinct from the target domain of interest. For instance,
in face recognition, there is an abundance of pictures from unknown strangers that are
available on the Internet, compared to the few images of your close family members
that you care to classify. The development set represents a source domain whereas
the validation and final evaluation sets represent alternative target domains on which
different sets of tasks can be defined2.

In the second phase of the challenge, a few labels of the development set were
provided, offering to the participants the possibility of using supervised learning in
some way to produce better data representations for the validation and final evaluation
sets. The setting remained otherwise unchanged.

One of the main findings of this challenge is the power of unsupervised learning
as a preprocessing tool. For all the datasets of the challenge, unsupervised learning
produced results significantly better than the baseline methods (raw data or simple
normalizations). The participants exploited effectively the feed-back received on the
validation set to select the best data representations. The skepticism around the effec-
tiveness of unsupervised learning is justified when no performance on a supervised task
is available. However, unsupervised learning can be the object of model selection us-
ing a supervised task, similarly to preprocessing, feature selection, and hyperparameter
selection. An interesting new outcome of this challenge is that the supervised tasks
used for model selection can be distinct from the tasks used for the final evaluation. So,
even though the learning algorithms are unsupervised, transfer learning is happening
at the model selection level. This setting is related to the “self-taught learning” setting
proposed in (Raina et al., 2007a). Another interesting finding is that, perhaps the de-
velopment set is not useful at all. The winners of phase 1 did not use it. They devised
a method to select a cascade of preprocessing steps to be used to produce a new ker-
nel. The same cascade was then applied to produce the kernel of the final evaluation
set(Aiolli, 2012). The importance of the degree of resemblance of the validation task
and final task remains to be determined.

In phase 1, there was a danger of overfitting by trying too many methods and relying
too heavily on the performance on the validation set. One team for instance overfitted
in phase 1, ranking 1st on the validation set, but only 4th on the final evaluation set.
Possibly, criteria involving both the reconstruction error and the classification accuracy
on the validation tasks may be more effective for model selection. This should be the
object of further research. In phase 2, the participants had available “transfer labels”
for a subset of the development data (for classification tasks distinct from the classifi-
cation tasks of the validation set and the final evaluation set). Therefore, they had the

2. In this paper, we call “domain” the input space (e.g., a feature vector space) and we call “task” the
output space (represented by labels for classification problems). We use the adjective “source” for an
auxiliary problem, for which we have an abundance of data (e.g., pictures of strangers in the Internet),
and “target” for the problem of interest (e.g., pictures of family members).

5

Silver Guyon Taylor Dror Lemaire

opportunity to use such labels to devise transfer learning strategies. The most effective
strategy seems to have been to use the transfer labels for model selection again. None
of the participants used those labels for learning.

Overall, an array of algorithms were used (Aiolli, 2012; Le Borgne, 2011; Liu
et al., 2012; Mesnil et al, 2012; Saeed, 2011; Xu et al, 2011), including linear methods
like Principal Component Analysis (PCA), and non-linear methods like clustering (K-
means and hierarchical clustering being the most popular), Kernel-PCA (KPCA), non-
linear auto-encoders and restricted Bolzmann machines (RBMs). A general methodol-
ogy seems to have emerged. Most top ranking participants used simple normalizations
(like variable standardization and/or data sphering using PCA) as a first step, followed
by one or several layers of non-linear processing (stacks of auto-encoders, RBMs,
KPCA, and/or clustering). Finally, “transduction” played a key role in winning first
place: either the whole preprocessing chain was applied directly to the final evaluation
data (this is the strategy of Fabio Aiolli who won first place in phase 1, Aiolli, 2012);
or alternatively, the final evaluation data, preprocessed with a preprocessor trained on
development+validation data, was post-processed with PCA (so-called “transductive
PCA” used by the LISA team, who won the second phase, Mesnil et al, 2012).

4. Overview of Proceedings

The following provides an overview of the workshop proceedings including the tutori-
als, invited presentations, challenge winner articles and other refereed articles submit-
ted to the workshop.

4.1. Tutorials

The workshop provided two foundational tutorials included in this proceeding. The
morning tutorial covered Deep Learning of Representations for Unsupervised and

Transfer Learning with Yoshua Bengio from the Université de Montréal (Bengio, 2012).
Deep learning algorithms seek to exploit the unknown structure in the input distribu-
tion in order to discover good representations, often at multiple levels, with higher-level
learned features defined in terms of lower-level features. The paper focusses on why
unsupervised pre-training of representations using autoencoders and Restricted Boltz-
mann Machines can be useful, and how it can be exploited in the transfer learning
scenario, where we care about predictions on examples that are not from the same dis-
tribution as the training distribution.

The afternoon tutorial entitled Towards Heterogeneous Transfer Learning was pre-
sented by Qiang Yang, Hong Kong University of Science, co-author of an authoritative
review of transfer learning (Pan and Yang, 2010). Transfer learning has focused on
knowledge transfer between domains with the same or similar input spaces. The het-
erogeneous transfer approach considers the ability to use knowledge from very different
task domains and input spaces. The authors demonstrated heterogeneous transfer learn-
ing between text classification and image classification domains even when there are
no explicit feature mappings provided. They explained that the key is to identify and

6

UTL Workshop

maximize the commonalities among the internal structures (features) of the different
domains.

4.2. Challenge Winner Articles

Three teams were presented awards at the workshop for their winning performances
on the UTL Challenge and their authorship. This section will summarize the papers
describing these winning entries.

The first place award for phase 1 of the UTL challenge (unsupervised learning) as
well as the Pascal2 best challenge paper award for phase 1 went to Fabio Aiolli and his
paper Transfer Learning by Kernel Meta-Learning (Aiolli, 2012). Recently, there have
been a number of researchers who have investigated the problem of finding a good
kernel matrix for a task. This is known as kernel learning. Kernel learning can be
transformed into a semi-supervised learning problem by using a large set of unlabeled
data and a smaller set of labeled data. The paper presents a novel approach to transfer
learning based on kernel learning with both labeled and unlabeled data. Starting from a
basic kernel, the method attempts to learn chains of kernel transforms that produce good
kernel matrices for a set of source tasks. The same sequence of transformations are then
applied to learn the kernel matrix for a target task. The application of this method to
the five datasets of the Unsupervised and Transfer Learning (UTL) challenge produced
the best results for the first phase of the competition.

The LISA team of the Université de Montréal, Canada, ranked first in the second
phase of the UTL challenge (transfer learning), and their paper entitled Unsupervised

and Transfer Learning Challenge: A Deep Learning Approach (Mesnil et al, 2012)
won the Pascal2 best challenge paper award for phase 2. The LISA team demonstrated
the usefulness of Deep Learning architectures to extract internal representations from a
large set of unlabeled training examples. This is accomplished by introducing gradually
network layers trained in an unsupervised way using the feature representation of lower
layers. The final representation is then used to train a simple linear classifier with a
small number of labeled training examples.

The team “1055a” of Chuanren Liu, Jianjun Xie, Hui Xiong, and Yong Ge of Core-
Logic and Rutgers University won the second place award for phase 1 of the UTL chal-
lenge (unsupervised learning) and came in at third place in phase 2 (transfer learning)
(Liu et al., 2012). Their paper entitled Stochastic Unsupervised Learning on Unla-

beled Data was also selected for inclusion in these proceedings. The paper introduces
a stochastic unsupervised learning method that performs as a preprocessing K-means
clustering on principal components extracted from the raw unlabeled data. This re-
moves the effect of noise and less-relevant features improving the methods robustness.
The approach utilizes a stochastic process to combine multiple clustering assignments
on each data point to alleviate over-fitting.

We also include in the supplemental material poster presentations and technical
reports of work, which was not yet ready for publication, but shows interesting new
directions of research:

7

Silver Guyon Taylor Dror Lemaire

The team of Zhixiang Xu (Airbus), Washington University in St. Louis, who took
third place in phase 1 of the UTL challenge presented a poster entitled “Rapid Feature
Learning with Stacked Linear Denoisers” (Xu et al, 2011). They investigated unsu-
pervised pre-training of deep architectures as feature generators for shallow classifiers.
They implemented a computationally efficient algorithm that mimics stacked denois-
ing auto-encoders (SdAs). Their feature transformation improves the results of SVM
classification, sometimes outperforming SdAs and deep neural networks.

Mehreen Saeed (Aliphlaila team), fourth place phase 2 UTL challenge), FAST,
Pakistan, communicated a technical report entitled “Use of Representations in High Di-
mensional Spaces for Unsupervised and Transfer Learning Challenge” (Saeed, 2011).
The author shows how manifold learning and simple similarity kernels can be used to
get good results.

Yann-Aël Le Borgne (Tryan team, fourth place in second ranking of phase 2 UTL
challenge), VUB, Belgium, showed a poster entitled “Supervised Dimensionality Re-
duction in the Unsupervised and Transfer Learning 2011 Competition” (Le Borgne,
2011). The author presented preliminary results on a technique making use of all
three subsets provided for each dataset (development, validation, and final evaluation
datasets) to assign labels to samples. The author then uses partial least square (PLS) to
extract features of interest.

4.3. Fundamentals and Algorithms

The UTL workshop papers gathered in these proceedings follow two main axes. One
axis ranges from theory to application of transfer learning and the other from su-

pervised learning, to unsupervised learning and hybrid approaches. The following
summarizes each of articles along those two dimensions.

In Autoencoders, Unsupervised Learning, and Deep Architectures, Pierre Baldi of
UC Irvine, investigates the theoretical underbelly of autoencoders (Baldi, 2012). He
presents a mathematical framework for the study of both linear and non-linear autoen-
coders - particularly the non-linear case of a Boolean autoencoder. He shows that learn-
ing with a Boolean autoencoder is equivalent to a clustering problem that can be solved
in polynomial time when the number of clusters is small and becomes NP complete
when the number of clusters is large. The framework sheds light on the connections be-
tween different kinds of autoencoders, their learning complexity and their composition
in deep architectures. The paper brings together much of the theory on autoencoders,
clustering, Hebbian learning, and information theory.

Joachim Buhmann et al. of ETH, Zurich, present a paper entitled, “Information
Theoretic Model Selection for Pattern Analysis” (Buhmann et al, 2012). The authors
propose a method of model and model-order selection for unsupervised data clustering
based on information theory. Their approach ranks competing pattern cost functions
according to their ability to extract context sensitive information from noisy data with
respect to the hypothesis class. Sets of approximative solutions serve as a basis for
an information theoretic communication protocol. Inferred models maximize the so-
called “approximation capacity” that measures the mutual information between training

8

UTL Workshop

data patterns and test data patterns, each of which have been made optimally “coarse”
through the controlled addition of random noise. The approach is demonstrated using
a Gaussian mixture model.

4.4. Supervised, Unsupervised and Transductive Approaches

4.4.1. Supervised

The workshop provided new insights into supervised learning approaches to transfer.
Ruslan Salakhutdinov et al. of MIT, USA, presented their paper on One-Shot Learn-

ing with a Hierarchical Nonparametric Bayesian Model (Salakhutdinov et al., 2012).
One-shot learning is the ability to develop a general classification model from a single
training example. The authors develop a hierarchical Bayesian model that can trans-
fer acquired knowledge from previously learned categories to a novel category, in the
form of a prior over category means and variances. The model discovers how to group
categories into meaningful super-categories and infer to which super-category a novel
example belongs, and thereby estimate not only the new category’s mean but also an
appropriate similarity metric. The method is tested using the MNIST and MSR Cam-
bridge image datasets and shown to perform significantly better than simpler hierar-
chical Bayesian approaches, discovering new categories in a completely unsupervised
fashion.

In Inductive Transfer for Bayesian Network Structure Learning, Alexandru Nicules-
cu-Mizil (NEC Laboratories America) and Rich Caruana (Microsoft Research) consider
the problem of jointly learning the structures of Bayesian network models from multiple
related datasets (Niculescu-Mizil and Caruana, 2012). They present an algorithm that
simultaneously learns a multi-task Bayesian network structure by transferring useful
information between the different datasets. The algorithm extends the heuristic search
techniques used in traditional structure learning to the multi-task case by defining a
scoring function for sets of structures (one structure for each dataset) and an efficient
procedure for searching for a set of structures that has a high score across all tasks. The
approach assumes that the true dependency structures of related problems are similar:
the presence or absence of arcs in some of the structures provides evidence for the
presence or absence of those same arcs in the other structures.

Kohei Hayashi and Takashi Takenouchi of the Nara Institute of Science and Tech-
nology, Japan, in their paper Self-measuring Similarity for Multi-task Gaussian Pro-

cess extend work by Bonilla et al. (2008) on a multi-task Gaussian process framework
(Hayashi et al, 2012). Their approach incorporates similarities between tasks based
on the observed responses, which allows for the representation of much more com-
plex data structures. The proposed approach is able to construct covariance matrices
via kernel functions even when additional information such as example target values
are available. The authors propose an efficient conjugate-gradient-based algorithm that
implements the approach. The method is shown to perform the best to date on the
Movielens 100k dataset.

9

Silver Guyon Taylor Dror Lemaire

4.4.2. Unsupervised

The workshop also provided a number of new approaches to transfer using unsuper-
vised learning or combinations of supervised and unsupervised transfer learning. In
Clustering: Science or Art?, Ulrike von Luxburg et al. examine whether the quality of
different clustering algorithms can be compared by a general, scientifically sound pro-
cedure, which is independent of particular clustering algorithms (von Luxburg et al.,
2012). They conclude that clustering should not be treated as an application-
independent mathematical problem, but should always be studied in the context of its
end-use. Different reasons for clustering bring with it different metrics for success.
They argue that research spent on developing a “taxonomy of clustering problems”
will be more fruitful than efforts spent on developing a domain independent clustering
algorithm.

Preferably, high dimensional data, such as pixels of an image, are better described
in terms of a small number of meta-features. In their paper Unsupervised dimensional-

ity reduction via gradient-based matrix factorization with two learning rates and their

automatic updates , Vladimir Nikulin and Tian-Hsiang Huang, of University of Queens-
land, Australia prescribe three related methods that combine to reduce noise while still
capturing the essential features of the original data (Nikulin and Huang, 2012). The
resulting features can then be used to do supervised classification. The proposed meth-
ods are demonstrated on the classification of gene expression data from cancer research
where the number of labeled samples is relatively small compared to the number of
genes in each sample.

4.4.3. Transductive

Ayan Acharya et al. report in their paper Transfer Learning with Cluster Ensembles

a method of transferring learned knowledge from a set of source tasks when the tar-
get task has no labeled examples (Acharya et al, 2012). They present an optimization
framework that applies the outputs of a cluster ensemble on a target task to moderate
posterior probability estimates provided by classifiers previously induced on a related
domain of tasks, so that the posterior probabilities are better adapted to the new con-
text. This framework is general in that it admits a wide range of loss functions and
classification/clustering methods. Empirical results on both text and hyperspectral data
indicate that the proposed method can yield substantially superior classification results
as compared to competing transductive learning techniques (Transductive SVM, Lo-
cally Weighted Ensemble).

4.5. Case studies

The final five papers from the workshop can be considered applications or case studies
of unsupervised and transfer learning. The first paper, entitled Transfer Learning in

Computational Biology applies multiple task learning to several problems in computa-
tional biology where the generation of training labels is often very costly (Widmer and
Rätsch, 2012). The authors, Christian Widmer and Gunnar Raetsch, of MPI in Ger-

10

UTL Workshop

many, received the Pascal2 best paper award at the workshop for this work. The paper
presents two problems from sequence biology and uses regularization (SVM) based
transfer learning methods, with a special focus on the case of a hierarchical relation-
ship between tasks. The authors propose strategies to learn or refine a measure of task
relatedness so as to optimize the transfer from source to target task.

In Transfer Learning in Sequential Decision Problems: A Hierarchical Bayesian

Approach, Aaron Wilson et al, of Oregon State University, show that transfer is doubly
beneficial in reinforcement learning where the agent not only needs to generalize from
sparse experience, but also needs to discover good opportunities to learn in the first
place (Wilson et al., 2012). They show that the hierarchical Bayesian framework can
be readily adapted to sequential decision problems and provides a natural formalization
of transfer learning.

Transfer Learning for Auto-gating of Flow Cytometry Data. by Gyemin Lee et al.
of the University of Michigan, Ann Arbor, apply transfer learning to flow cytometry, a
technique for rapidly quantifying physical and chemical properties of large numbers of
cells (Lee et al., 2012). In clinical applications, flow cytometry data must be manually
“gated”(scored) to identify cell populations of interest. The authors leverage exist-
ing datasets, previously gated by experts, to automatically gate a new flow cytometry
dataset while accounting for biological variation. An empirical study demonstrates the
approach by automatically gating lymphocytes from peripheral blood samples. The
authors received the Pascal2 best student paper award for this work.

Philemon Brakel and Benjamin Schrauwen, of Ghent University, Belgium, use a
hierarchical Bayesian logistic regression model to perform a binary document classi-
fication task in the paper Transfer Learning for Document Classification: Sampling

Informative Priors Their approach estimates the covariance matrix of a multivariate
Gaussian prior over the model parameters using a set of related tasks. Inference was
done using a combination of Hybrid Monte Carlo and Gibbs sampling. They demon-
strate that the obtained priors contain information that is beneficial for developing a
model for document classification from small training sets.

Finally, in Divide and Transfer: an Exploration of Segmented Transfer to Detect

Wikipedia Vandalism, Si-Chi Chin and W. Nick Street, of the University of Iowa, apply
knowledge transfer methods to the problem of detecting Wikipedia vandalism (Chin
and Street, 2012). Transfer is used to address the problem of small amounts of la-
beled data by leveraging unlabeled data and previously acquired knowledge from re-
lated source tasks. Avoiding negative transfer becomes a primary concern given the
diverse nature of Wikipedia modifications that can occur. The proposed two segmented
transfer approaches map unlabeled data from the target task to the most related clus-
ter from the source task, classifying the unlabeled data using the most relevant learned
models.

5. Summary

Challenges foster progress in particular scientific domains, but their specific formu-
lation may bias research in too narrow ways. For that reason, our workshop invited

11

Silver Guyon Taylor Dror Lemaire

diverse contributions on the theme of transfer learning, in addition to discussing the
results of the challenge we organized. As a result, it is more difficult to draw general
conclusions summarizing the enormous body of work that this represents. In some
sense, transfer learning covers all the aspects of machine learning, with the only par-
ticularity that training data includes “source” domains and/or tasks that do are different
from the “target” domains and/or tasks of interest. Within this general setting, many
types of transfer learning formulations have been made. From our point of view, the
most notable contribution of these proceedings is to demonstrate the effectiveness of
recently proposed methods in the context of a wide variety of real world applications,
both through the results of the challenge and other contributed papers. We hope that
the mix of articles collected in this proceedings issue will spark further interest and
curiosity in transfer learning. There is much work to be done in this area in terms
of new computational learning theory and the application of existing algorithms and
techniques.

Acknowledgements

We are very grateful to all authors for their submissions to the workshop and for their
work in improving and polishing their articles for this proceedings issue. We would
also like to thank the referees for their reviews and helpful comments to authors that
have led to improvements in content and format. Finally, we are particularly grateful
to the Editor-in-Chief, Neil Lawrence, for the opportunity to compile this proceedings
issue and to the editorial staff of JMLR Workshop and Conference Proceedings for
their kind assistance. Our generous sponsors and data donors and our dedicated ad-
visors, beta testers listed on our challenge website (http://clopinet.com/ul)
are gratefully acknowledged. This project is part of the DARPA Deep Learning pro-
gram and is an activity of the Causality Workbench supported by the Pascal network
of excellence funded by the European Commission and by the U.S. National Science
Foundation under Grant N0. ECCS-0725746. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not nec-
essarily reflect the views of the funding agencies.

References

Ayan Acharya et al. Transfer learning with cluster ensembles. In ICML 2011 Unsuper-

vised and Transfer Learning Workshop. JMLR W&CP, this volume, 2012.

Fabio Aiolli. Transfer learning by kernel meta-learning. In ICML 2011 Unsupervised

and Transfer Learning Workshop. JMLR W&CP, this volume, 2012.

G. M. Allenby and P. E. Rossi. Marketing models of consumer heterogeneity. Journal

of Econometrics, 89:57–78, 1999.

G. M. Allenby and P. E. Rossi. Learning multiple tasks with kernel methods. Journal

of Machine Learning Research, 6:615–637, 2005.

12

UTL Workshop

Andrew Arnold, Ramesh Nallapati, and William W. Cohen. A comparative study of
methods for transductive transfer learning. In In ICDM Workshop on Mining and

Management of Biological Data, 2007.

N. Arora, G.M Allenby, and J. Ginter. A hierarchical bayes model of primary and
secondary demand. Marketing Science, 17(1):29–44, 1998.

B. Bakker and T. Heskes. Task clustering and gating for bayesian multi-task learning.
Journal of Machine Learning Research, 4:83–99, 2003.

Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In ICML

2011 Unsupervised and Transfer Learning Workshop. JMLR W&CP, this volume,
2012.

Jonathan Baxter. Theoretical models of learning to learn. Learning to Learn, pages
71–94, 1997.

S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning.
In Proceedings of Computational Learning Theory (COLT), pages 185–192, 2003.

Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in Ma-

chine Learning, 2(1):1–127, 2009. doi: 10.1561/2200000006. Also published as a
book. Now Publishers, 2009.

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learn-
ing. In ICML 2011 Unsupervised and Transfer Learning Workshop. JMLR W&CP,
this volume, 2012.

Yoshua Bengio, Jean-François Paiement, Pascal Vincent, Olivier Delalleau, Nicolas Le
Roux, and Marie Ouimet. Out-of-sample extensions for lle, isomap, mds, eigenmaps,
and spectral clustering. In NIPS03, 2003.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training.
In COLT’ 98 Proceedings of the eleventh annual conference on Computational learn-

ing theory, pages 92–100. Morgan Kaufmann Publishers, 1998.

L. Breiman and J.H Friedman. Predicting multivariate responses in multiple linear
regression. Royal Statistical Society Series B, 1998.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Sig-
nature verification using a ”siamese” time delay neural network. In In NIPS Proc,
1994.

Joachim Buhmann et al. Information theoretic model selection for pattern analysis.
In ICML 2011 Unsupervised and Transfer Learning Workshop. JMLR W&CP, this
volume, 2012.

R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

13

Silver Guyon Taylor Dror Lemaire

Si-Chi Chin and W. Nick Street. Divide and transfer: an exploration of segmented
transfer to detect wikipedia vandalism. In ICML 2011 Unsupervised and Transfer

Learning Workshop. JMLR W&CP, this volume, 2012.

D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. Why
does unsupervised pre-training help deep learning? JMLR, 11:625–660, 2010.

Zoubin Ghahramani. Unsupervised Learning, volume 3176, pages 72–112. Springer-
Verlag, Berlin, 2004.

Amir Globerson and Naftali Tishby. Sufficient dimensionality reduction. J. Mach.

Learn. Res., 3:1307–1331, March 2003. ISSN 1532-4435. URL http://

portal.acm.org/citation.cfm?id=944919.944975.

W. Greene. Econometric Analysis, 5th Edition. Prentice Hall, 2002.

S. M. Gutstein. Transfer Learning Techniques for Deep Neural Nets. PhD thesis, The
University of Texas at El Paso, 2010.

Isabelle Guyon, Gideon Dror, Vincent Lemaire, Danny Silver, Graham Taylor, and Aha
David W. Analysis of the ijcnn 2011 utl challenge. Neural Networks, In press 2011a.

Isabelle Guyon, Gideon Dror, Vincent Lemaire, Graham Taylor, and Aha David W.
Unsupervised and transfer learning challenge. In The 2011 International Join Con-

ference on Neural Networks, pages 793–800, July 2011b.

Kohei Hayashi et al. Self-measuring similarity for multi-task gaussian process. In ICML

2011 Unsupervised and Transfer Learning Workshop. JMLR W&CP, this volume,
2012.

T. Heskes. Empirical bayes for learning to learn. In P. Langley, editor, Proceedings

of the International Conference on Machine Learning (ICML’00), pages 367–374,
2000.

G.E. Hinton and T.J. Sejnowski. Unsupervised learning: foundations of neural compu-

tation. Computational neuroscience. MIT Press, 1999. ISBN 9780262581684. URL
http://books.google.ca/books?id=yj04Y0lje4cC.

A K Jain, M N Murty, and P. J. Flynn. Data clustering: A review, 1999.

Tony Jebara. Multi-task feature and kernel selection for svms. In Proceedings of the

International Conference on Machine Learning (ICML 04), pages 185–192, 2004.

Brian Kulis. Icml tutorial on metric learning, 2010. URL http://www.cs.

berkeley.edu/˜kulis/icml2010_tutorial.htm.

Yann-Aël Le Borgne. Supervised dimensionality reduction in the unsupervised and
transfer learning 2011 competition, 2011.

14

UTL Workshop

Gyemin Lee, Lloyd Stoolman, and Clayton Scott. Transfer learning for auto-gating of
flow cytometry data. In ICML 2011 Unsupervised and Transfer Learning Workshop.
JMLR W&CP, this volume, 2012.

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficient sparse coding
algorithms. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural

Information Processing Systems 19, pages 801–808. MIT Press, Cambridge, MA,
2007.

Chuanren Liu, Jianjun Xie, Hui Xiong, and Yong Ge. Stochastic unsupervised learning
on unlabeled data. In ICML 2011 Unsupervised and Transfer Learning Workshop.
JMLR W&CP, this volume, 2012.

Lorien Pratt (Editor). Reuse of neural networks through transfer. Connection Science,
8(2), 1996.

Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17:395–
416, December 2007. ISSN 0960-3174. doi: 10.1007/s11222-007-9033-z. URL
http://portal.acm.org/citation.cfm?id=1288822.1288832.

Grégoire Mesnil et al. Unsupervised and transfer learning challenge: a deep learning
approach. In ICML 2011 Unsupervised and Transfer Learning Workshop. JMLR
W&CP, this volume, 2012.

Tom M. Mitchell. The need for biases in learning generalizations. Readings in Machine

Learning, pages 184–191, 1980. ed. Jude W. Shavlik and Thomas G. Dietterich.

Alexandru Niculescu-Mizil and Rich Caruana. Inductive transfer for bayesian network
structure learning. Journal of Machine Learning Research - Proceedings Track, 2:
339–346, 2007.

Alexandru Niculescu-Mizil and Richard Caruana. Inductive transfer for bayesian net-
work structure learning. In ICML 2011 Unsupervised and Transfer Learning Work-

shop. JMLR W&CP, this volume, 2012.

Vladimir Nikulin and Tian-Hsiang Huang. Unsupervised dimensionality reduction via
gradient-based matrix factorization with two adaptive learning rates. In ICML 2011

Unsupervised and Transfer Learning Workshop. JMLR W&CP, this volume, 2012.

NIPS1995 Workshop. Learning to learn. http://plato.acadiau.ca/

courses/comp/dsilver/NIPS95_LTL/transfer.workshop.1995.

html, 1995.

NIPS2005 Workshop. Inductive transfer – 10 years later. http://iitrl.

acadiau.ca/itws05/, 2005.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on

Knoweledge and Data Engineering, 22(10):1345–1359, October 2010.

15

Silver Guyon Taylor Dror Lemaire

Lorien Pratt and Sebastian Thrun (Editors). Transfer in inductive systems. Machine

Learning, 28(1), 1997.

Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y. Ng. Self-
taught learning: Transfer learning from unlabeled data. In Proceedings of the Twenty-

fourth International Conference on Machine Learning, 2007a.

Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y. Ng. Self-
taught learning: transfer learning from unlabeled data. In Proceedings of the 24th in-

ternational conference on Machine learning, ICML ’07, pages 759–766, New York,
NY, USA, 2007b. ACM. ISBN 978-1-59593-793-3. doi: 10.1145/1273496.1273592.
URL http://doi.acm.org/10.1145/1273496.1273592.

J. Ramon, K. Driessens, and T. Croonenborghs. Transfer learning in reinforcement
learning problems through partial policy recycling. Proc. 18th European Conf. Ma-

chine Learning (ECML 2007), pages 699–707, 2007.

Mehreen Saeed. Use of representations in high dimensional spaces for unsupervised
and transfer learning challenge, 2011.

Ruslan Salakhutdinov, Josh Tenenbaum, and Antonio Torralba. One-shot learning with
a hierarchical nonparametric bayesian model. In ICML 2011 Unsupervised and

Transfer Learning Workshop. JMLR W&CP, this volume, 2012.

Daniel L. Silver and Kristin P. Bennett. Special issue on inductive transfer. Machine

Learning, 73, 2008.

Daniel L. Silver and Robert E. Mercer. The parallel transfer of task knowledge us-
ing dynamic learning rates based on a measure of relatedness. Connection Science

Special Issue: Transfer in Inductive Systems, 8(2):277–294, 1996.

Daniel L. Silver, Ryan Poirier, and Duane Currie. Inductive transfer with context-
sensitive neural networks. Machine Learning, 73:323–336, 2008.

Alexander J. Smola, Sebastian Mika, Bernhard Schölkopf, and Robert C. Williamson.
Regularized principal manifolds. JMLR, 1:179–209, 2001.

M.E. Taylor and P. Stone. Cross-domain transfer for reinforcement learning. Proc. 24th

International Conf. Machine Learning (ICML 2007), pages 879–886, 2007.

Sebastian Thrun and Lorien Y. Pratt (Editors). Learning To Learn. Kluwer Academc
Publisher, Boston, MA, 1997.

Paul E. Utgoff. Machine Learning of Inductive Bias. Kluwer Academc Publisher,
Boston, MA, 1986.

Ulrike von Luxburg, Robert C. Williamson, and Isabelle Guyon. Clustering: Science or
art? In ICML 2011 Unsupervised and Transfer Learning Workshop. JMLR W&CP,
this volume, 2012.

16

UTL Workshop

Christian Widmer and Gunnar Rätsch. Multitask learning in computational biology.
In ICML 2011 Unsupervised and Transfer Learning Workshop. JMLR W&CP, this
volume, 2012.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. Transfer learning in sequential deci-
sion problems: A hierarchical bayesian approach. In ICML 2011 Unsupervised and

Transfer Learning Workshop. JMLR W&CP, this volume, 2012.

Xiao-Ming WU, Anthony Man-Cho So, Zhenguo Li, and Shuo-Yen Robert Li. Fast
graph laplacian regularized kernel learning via semidefinite quadratic linear pro-
gramming. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Cu-
lotta, editors, Advances in Neural Information Processing Systems 22, pages 1964–
1972. Curran Associates, Inc., 2009.

Zhixiang Xu et al. Rapid feature learning with stacked linear denoisers, 2011.

A. Zellner. An efficient method for estimating seemingly unrelated regression equations
and tests for aggregation bias. Journal of the American Statistical Association, 57:
348–368, 1962.

17

18

JMLR: Workshop and Conference Proceedings 27:17–36, 2012 Unsupervised and Transfer Learning

Deep Learning of Representations for Unsupervised and

Transfer Learning

Yoshua Bengio yoshua.bengio@umontreal.ca

Dept. IRO, Université de Montréal. Montréal (QC), H2C 3J7, Canada

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

Deep learning algorithms seek to exploit the unknown structure in the input distribu-
tion in order to discover good representations, often at multiple levels, with higher-
level learned features defined in terms of lower-level features. The objective is to
make these higher-level representations more abstract, with their individual features
more invariant to most of the variations that are typically present in the training dis-
tribution, while collectively preserving as much as possible of the information in the
input. Ideally, we would like these representations to disentangle the unknown fac-
tors of variation that underlie the training distribution. Such unsupervised learning
of representations can be exploited usefully under the hypothesis that the input dis-
tribution P(x) is structurally related to some task of interest, say predicting P(y|x).
This paper focuses on the context of the Unsupervised and Transfer Learning Chal-
lenge, on why unsupervised pre-training of representations can be useful, and how it
can be exploited in the transfer learning scenario, where we care about predictions on
examples that are not from the same distribution as the training distribution.

Keywords: Deep Learning, unsupervised learning, representation learning, trans-
fer learning, multi-task learning, self-taught learning, domain adaptation, neural net-
works, Restricted Boltzmann Machines, Autoencoders.

1. Introduction

Machine learning algorithms attempt to discover structure in data. In their simpler
forms, that often means discovering a predictive relationship between variables. More
generally, that means discovering where probability mass concentrates in the joint dis-
tribution of all the observations. Many researchers have found that the way in which
data are represented can make a huge difference in the success of a learning algorithm.

Whereas many practitioners have relied solely on hand-crafting representations,
thus exploiting human insights into the problem, there is also a long tradition of learning
algorithms that attempt to discover good representations. Representation learning is the
general context where this paper is situated. What can a good representation buy us?
What is a good representation? What training principles might be used to discover good
representations?

Supervised machine learning tasks can be abstracted in terms of (X,Y) pairs, where
X is an input random variable and Y is a label that we wish to predict given X. This

© 2012 Y. Bengio.

Bengio

paper considers the use of representation learning in the case where labels for the task of

interest are not available at the time of learning the representation. One wishes to learn
the representation either in a purely unsupervised way, or using labels for other tasks.
This type of setup has been called self-taught learning (Raina et al., 2007) but also falls
in the areas of transfer learning, domain adaptation, and multi-task learning (where
typically one also has labels for the task of interest) and is related to semi-supervised
learning (where one has many unlabeled examples and a few labeled ones).

In order to address this challenge (and the Unsupervised and Transfer Learning

Challenge1), the algorithms described here exploit Deep Learning, i.e., learning mul-

tiple levels of representation. The intent is to discover more abstract features in the
higher levels of the representation, which hopefully make it easier to separate from

each other the various explanatory factors extent in the data.

1.1. The Context of The Unsupervised and Transfer Learning Challenge

The challenge was organized according to the following learning setup. The test (and
validation) sets have examples from classes not well represented in the training set.
They have only a small number of unlabeled examples (4096) and very few labeled
examples (1 to 64 per class) available to a Hebbian linear classifier (which discrimi-
nates according to the median between the centroids of two classes compared) applied
separately to each class against the others. In the second phase of the competition,
some labeled examples (from classes other than those in the test or validation sets) are
available for the training set. Participants can use the training set (with some irrele-
vant labels, in the second phase) to construct a representation for test set examples.
Typically this is achieved by learning a transformation of the raw input vectors into a
new space, which hopefully captures the most important factors of variation present in
the unknown generating distribution. That transformation can then be applied to test
examples. The challenge server then trains the Hebbian linear classifier on top of that
representation, on a small random subset of the test set, and evaluates generalization
on the rest of the test set (many random subsets are computed to get an average score).
The main difficulties are the following:

1. The input distribution is very different in the test (or validation) set, compared to
the training set (for example, the set of classes to be discriminated in the test set
may be absent or rare in the training set), making it unclear if anything can be
transfered from the training to the test set.

2. Very few labels are available to the linear classifier on the test set, meaning that
generalization of the classifier is inherently difficult and sensitive to the particu-
lars of the representation chosen.

3. No labels for the classes of interest (of the test set) are available at all when
learning the representation. The labels from the training set might in fact mis-
lead a representation-learning algorithm, because the directions of discrimination

1. http://www.causality.inf.ethz.ch/unsupervised-learning.php

20

Deep Learning of Representations

which are useful among the training set classes could be useless to discriminate
among the test set classes.

This puts great pressure on the representation learning algorithm applied on the
training set (unlabeled, in the experiments we performed) to discover really generic

features likely to be of interest for many classification tasks on such data. Our intuition
is that more abstract features are more likely to fit that stringent requirement, which
motivates the use of Deep Learning algorithms.

1.2. Representations as Coordinate Systems

Representation learning is also intimately related to the research in manifold learn-

ing (Hinton et al., 1997; Tenenbaum et al., 2000; Saul and Roweis, 2002; Belkin and
Niyogi, 2003). The objective of manifold learning algorithms is two-fold: identify
low-dimensional regions of high-density (called manifold), and construct a coordinate
system on these manifolds, i.e., a low-dimensional representation for input examples.
Principal Components Analysis (PCA) is the linear ancestor of manifold learning algo-
rithms: it provides a projection of each input vector to a low-dimensional coordinate
vector, implicitly defining a low-dimensional hyperplane in input space near which den-
sity is hopefully concentrating. The extent of this mass concentration can be measured
by the proportion of variance explained by principal eigenvectors of the data covariance
matrix. Changes in the directions of the principal components are perfectly captured
by the PCA, whereas changes in the orthogonal directions are completely lost. The
proportion of the variance in the data captured by the PCA is a good measure of the
effectiveness of a PCA dimensionality reduction (for a given choice of number of di-
mensions). The assumption is that directions where there is very little change in the data
do not matter and can be considered noise, but this is not always true, especially when
one assumes that the manifold is linear (as with PCA). Non-linear manifold learning
algorithms avoid the linear assumption but retain the notion of a drastic dimensionality
reduction.

As we argue more at the end of this paper, although cutting the low-variance di-
rections out (i.e., considering those directions as noise) is often very effective, it is not

always clear what is signal and what is noise: although the extent of variability is a
good hint, it is not perfect. As an example, consider images of faces, and two factors:
person identity and pose. Most of the variation in pixel space can be explained by pose
(especially the 2-D translation, scaling, and rotation), and two persons of the same sex,
age, and hair type will be distinguishable only by looking at low variance components.
That is why one often starts by preprocessing such images to align them as much as
possible or focus only on images of faces in the same pose, e.g. frontal view.

It is a good thing to test, for one’s data, if one can get better classification by simply
removing the low-variance components, and in that case one should definitely do it2.

2. and in fact, removing some of the low-variance directions with a preliminary PCA has worked well in
the challenge.

21

Bengio

However, we believe that a more encompassing and more conservative but more ambi-
tious approach is to use a learning algorithm that separates the explanatory factors from
each other as much as possible, and let a discriminant classifier pick out those that are
relevant to a particular task.

In this context, overcomplete3 sparse4 representations have often (Ranzato et al.,
2007b, 2008; Goodfellow et al., 2009) been found to work better than dense under-
complete representations (such as produced by PCA). Consider a sparse overcomplete
representation in the neighborhood of an input example x. Most local changes around
x involve a continuous change of the “active” (non-zero) elements of the representa-
tion. Hence the set of active elements of the representation defines a local chart, a
local coordinate system. Those charts are stitched together through the zero/non-zero
transitions that occur when crossing some boundaries in input space. Goodfellow et al.
(2009) have found that sparse autoencoders gave rise to more invariant representations
(compared to non-sparse ones), in the sense that a subset of the representation elements
(also called features) were more insensitive to input transformations such as translation
or rotation of the camera. One advantage of such as an overcomplete representation
is that it is not “cramped” in a small-dimensional space. The effective dimensionality
(number of non-zeros) can vary depending on where we look. It is very plausible that
in some regions of space it may be more appropriate to have more dimensions than in
others.

Let h(x) denote the mapping from an input x to its representation h(x). Overcom-
plete representations which are not necessarily sparse but where h is non-linear are
characterized at a particular input point x by a “soft” dimensionality and a “soft” subset
of the representation coordinates that are active. The degree to which hi(x) is active
basically depends on ‖∂hi(x)

∂x ‖. When ‖∂hi(x)
∂x ‖ is close to zero, coordinate i is inactive

and unresponsive to changes in x, while the active coordinates encode (i.e., respond
to) local changes around x. This is what happens with the Contracting Autoencoder
described a bit more in section 3.5.

1.3. Depth

Depth is a notion borrowed from complexity theory, and that is defined for circuits. A
circuit is a directed acyclic graph where each node is associated with a computation.
The results of the computation of a node are used as input by the successors of that node.
In the circuit, input nodes have no predecessor and output nodes have no successor.
The depth of a circuit is the longest path from an input to an output node. A long-
standing question in complexity theory is the extent to which depth-limited circuits can
efficiently represent functions that can otherwise be efficiently represented. A depth-2
circuit (with appropriate choice of computational elements, e.g. logic gates or formal
neurons) can compute or approximate any function, but it may require an exponentially
large number of nodes. This is a relevant question for machine learning, because many
learning algorithms learn “shallow architectures” (Bengio and LeCun, 2007), typically

3. overcomplete representation: with more dimensions than the raw input
4. sparse representation: with many zeros or near-zeros

22

Deep Learning of Representations

of depth 1 (linear predictors) or 2 (most non-parametric predictors). If AI-tasks require
deeper circuits (and human brains certainly appear deep), then we should find ways
to incorporate depth into our learning algorithms. The consequences of using a too
shallow predictor would be that it may not generalize well, unless given huge numbers
of examples and capacity (i.e., computational resources and statistical resources).

The early results on the limitations of shallow circuits regard functions such as the
parity function (Yao, 1985), showing that logic gates circuits of depth-2 require ex-
ponential size to implement d-bit parity where a deep circuit of depth O(log(d)) could
implement it with O(d) nodes. Håstad (1986) then showed that there are functions com-
putable with a polynomial-size logic gate circuit of depth k that require exponential size
when restricted to depth k−1 (Håstad, 1986). Interestingly, a similar result was proven
for the case of circuits made of linear threshold units (formal neurons) (Håstad and
Goldmann, 1991), when trying to represent a particular family of functions. A more re-
cent result brings an example of a very large class of functions that cannot be efficiently
represented with a small-depth circuit (Braverman, 2011). It is particularly striking that
the main theorem regards the representation of functions that capture dependencies in
joint distributions. Basically, dependencies that involve more than r variables are dif-
ficult to capture by shallow circuits. An r-independent distribution is one that cannot
be distinguished from the uniform distribution when looking only at r variables at a
time. The proof of the main theorem (which concerns distribution over bit vectors)
relies on the fact that order-r polynomials over the reals cannot capture r-independent
distributions. The main result is that bounded-depth circuits cannot distinguish data
from r-independent distributions from independent noisy bits. We have also recently
shown (Bengio and Delalleau, 2011) results for sum-product networks (where nodes
either compute sums or products, over the reals). We found two families of polynomi-
als that can be efficiently represented with deep circuits, but require exponential size
with depth-2 circuits. Interestingly, sum-product networks were recently proposed to
efficiently represent high-dimensional joint distributions (Poon and Domingos, 2010).

Besides the complexity-theory hints at their representational advantages, there are
other motivations for studying learning algorithms which build a deep architecture. The
earliest one is simply inspiration from brains. By putting together anatomical knowl-
edge and measures of the time taken for signals to travel from the retina to the frontal
cortex and then to motor neurons (about 100 to 200 ms), one can gather that at least 5
to 10 feedforward levels are involved for some of the simplest visual object recognition
tasks. Slightly more complex vision tasks require iteration and feedback top-down sig-
nals, multiplying the overall depth by an extra factor of 2 to 4 (to about half a second).

Another motivation derives from what we know of cognition and abstractions: as
argued in Bengio (2009), it is natural for humans to represent concepts at one level of
abstraction as the composition of concepts at lower levels. Engineers often craft rep-
resentations at multiple levels, with higher levels obtained by transformation of lower
levels. Instead of a flat main program, software engineers structure their code to ob-
tain plenty of re-use, with functions and modules re-using other functions and modules.
This inspiration is directly linked to machine learning: deep architectures appear well

23

Bengio

suited to represent higher-level abstractions because they lend themselves to re-use.
For example, some of the features that are useful for one task may be useful for an-
other, making Deep Learning particularly well suited for transfer learning and multi-

task learning (Caruana, 1995; Collobert and Weston, 2008). Here one is exploiting
the existence of underlying common explanatory factors that are useful for both tasks.
This is also true of semi-supervised learning, which exploits connections between the
input distribution P(X) and a target conditional distribution P(Y |X). In general these
two distributions, seen as functions of x, may be unrelated to each other. But in the
world around us, it is often the case that some of the factors that shape the distribution
of input variables X are also predictive of the output variables Y . Deep Learning relies
heavily on unsupervised or semi-supervised learning, and assumes that representations

of X that are useful to capture P(X) are also in part useful to capture P(Y |X).
In the context of the Unsupervised and Transfer Learning Challenge, the assump-

tion exploited by Deep Learning algorithms goes even further, and is related to the Self-
Taught Learning setup (Raina et al., 2007). In the unsupervised representation-learning
phase, one may have access to examples of only some of the classes, and the represen-
tation learned should be useful for other classes. One therefore assumes that some of
the factors that explain P(X|Y) for Y in the training classes, and that will be captured by
the learned representation, will be useful to predict different classes, from the test set.
In phase 1 of the competition, only X’s from the training classes are observed, while in
phase 2 some corresponding labels are observed as well, but no labeled examples from
the test set are ever revealed. In our team (LISA), we only used the phase 2 training set
labels to help perform model selection, since selecting and fine-tuning features based
on their dicriminatory ability on training classes greatly increased the risk of removing
important information for test classes. See Mesnil et al. (2011) for more details.

2. Greedy Layer-Wise Learning of Representations

The following basic recipe was introduced in 2006 (Hinton and Salakhutdinov, 2006;
Hinton et al., 2006; Ranzato et al., 2007a; Bengio et al., 2007):

1. Let h0(x) = x be the lowest-level representation of the data, given by the observed
raw input x.

2. For " = 1 to L

Train an unsupervised learning model taking as observed data
the training examples h"−1(x) represented at level "− 1, and
after training, producing representations h"(x) = R"(h"−1(x))
at the next level.

From this point on, several variants have been explored in the literature. For super-
vised learning with fine-tuning, which is the most common variant (Hinton et al., 2006;
Ranzato et al., 2007b; Bengio et al., 2007):

24

Deep Learning of Representations

3. Initialize a supervised predictor whose first stage is the parametrized represen-
tation function hL(x), followed by a linear or non-linear predictor as the second
stage (i.e., taking hL(x) as input).

4. Fine-tune the supervised predictor with respect to a supervised training criterion,
based on a labeled training set of (x,y) pairs, and optimizing the parameters in
both the representation stage and the predictor stage.

A supervised variant involves using all the levels of representation as input to the pre-
dictor, keeping the representation stage fixed, and optimizing only the predictor param-
eters (Lee et al., 2009a,b):

3. Train a supervised learner taking as input (hk(x),hk+1(x), . . . ,hL(x)) for some
choice of 0 ≤ k ≤ L, using a labeled training set of (x,y) pairs.

A special case of the above is to have k = L, i.e., we keep only the top level as input to
the classifier without supervised fine-tuning of the representation. Since labels for the
test classes are not available (for fine-tuning) in the Unsupervised and Transfer Learn-
ing Challenge, the latter approach makes more sense, but in other settings (especially
when the number of labeled examples is large) we have often found fine-tuning to be
helpful (Lamblin and Bengio, 2010).

Finally, there is a common unsupervised variant, e.g. for training deep autoen-
coders (Hinton and Salakhutdinov, 2006) or a Deep Boltzmann Machine (Salakhutdi-
nov and Hinton, 2009):

3. Initialize an unsupervised model of x based on the parameters of all the stages.

4. Fine-tune the unsupervised model with respect to a global (all-levels) training
criterion, based on the training set of examples x.

As detailed in Mesnil et al. (2011), it turned out for the challenge to always work
better to have a low-dimensional hL (i.e. the input to the classifier), e.g., a handful
of dimensions. This top-level representation was typically obtained by choosing PCA
as the last stage of the hierarchy. In experiments with other kinds of data, with many
more labeled examples, we had obtained better results with high-dimensional top-level
representations (thousands of dimensions). We found higher dimensional top-level rep-
resentations to be most hurtful for the cases where there are very few labeled examples.
Note that the challenge criterion is an average over 1, 2, 4, 8, 16, 32 and 64 labeled
examples per class. Because the cases with very few labeled examples were those on
which there was most room for improvement (compared to other competitors), it makes
sense that the low-dimensional solutions were the most successful.

Another remark is important here. On datasets with a larger labeled training set,
we found that the supervised fine-tuning variant (where all the levels are finally tuned
with respect to the supervised training criterion) can perform substantially better than
without supervised fine-tuning (Lamblin and Bengio, 2010).

25

Bengio

2.1. Transductive Specialization to Transfer Learning and Domain Adaptation

On the other hand, in the context of the challenge, there were no training labels for
the task of interest, i.e., the classes of the test set, so it would not even have been
possible to perform meaningful supervised fine-tuning. Worse than that in fact, the
input distribution as well was very different between the training set and the test set.
The large majority of examples from the training set were from classes other than those
in the test set. This is a particularly extreme transfer learning or domain adaptation

setup.
How could one hope to generalize in this context? If the training set input distri-

bution had nothing to do with the test set input distribution, then even unsupervised
representation-learning on the training set might not be helpful as a learned preprocess-
ing for the test set. The only hope is that a representation-learning algorithm would
discover features that capture the generic factors of variation present in all the classes,
and that the classifier trained on the test set would then just need to pick up those factors
relevant to the discrimination among test set classes. Unfortunately, because of the very
small number of labeled examples available to the test set classifier, we found that we
could not obtain good results (on the validation set) with high-dimensional represen-
tations. This implied that some selection of the relevant features had to be performed
even before seeing any label from the test set. We believe that we achieved some of
that by using a transductive strategy. The top levels(s) of the unsupervised feature-

learning hierarchy were trained purely or mostly on the test set examples. Since the
training set was much larger, we used it to extract a large set of general-purpose fea-
tures that covered the variations across many classes. The unlabeled test set was then
used transductively to select among the non-linear factors extracted from the training

set those few factors varying most in the test set. Typically this was simply achieved by
a simple PCA applied at the last level, trained only on test examples, and with very few
leading eigenvectors selected.

3. A Zoo of Possible Layer-Wise Unsupervised Learning Algorithms

3.1. PCA, ICA, Normalization

Existing linear models such as PCA or ICA can be useful as one or more of the lev-
els of a deep hierarchy. In fact, on several of the challenge datasets, we found that
using a PCA as the first and the last level often worked very well. PCA preserves
the global linear directions of maximum variance, and separates them into orthogonal
components. The representation learned is the projection on the principal eigenvec-
tors of the input covariance matrix. This corresponds to a coordinate system associated
with a linear manifold spanned by these eigenvectors (centered at the center of mass
of the data). For the first PCA layer, we typically kept a fairly large number of direc-
tions, so the main effect of that step is to smooth the input distribution by eliminating
some of the variations involved in the least globally varying directions. Optionally, the
PCA transformation can include a whitening step which means that the projections are

26

Deep Learning of Representations

normalized to variance 1 (by dividing each projection by the square root of the corre-
sponding eigenvalue, i.e., component variance).

Whereas PCA can already perform a kind of normalization across examples (by
subtracting the mean over examples and dividing by the standard deviation over exam-
ples, in the chosen directions), there is a complementary form of normalization which
we have found useful. It is a simple variant of the contrast normalization commonly
employed as an intermediate step in deep convolutional neural networks (LeCun et al.,
1989, 1998a). The idea is to normalize across the elements of each input vector, by sub-
tracting the mean and dividing by the standard deviation across elements of the input
vector.

3.2. Autoencoders

An autoencoder defines a reconstruction r(x) = g(h(x)) of the input x from the com-
position of an encoder h(·) and a decoder g(·). In general both are parametrized and
the most common parametrization corresponds to r(x) being the output of a one-hidden
layer neural network (taking x as input) and h(x) being the non-linear output of the
hidden layer. Training proceeds by minimizing the average of reconstruction errors,
L(r(x), x). If the encoder and decoder are linear and L(r(x), x) = ||r(x)− x||2 is the square
error, then h(x) learns to span the principal eigenvectors of the input, i.e., being equiva-
lent (up to a rotation) to a PCA (Bourlard and Kamp, 1988). However, with a non-linear
encoder, one obtains a representation that can be greedily stacked and often yields bet-
ter representations with deeper encoders (Bengio et al., 2007; Goodfellow et al., 2009).
A probabilistic interpretation of reconstruction error is simply as a particular form of
energy function (Ranzato et al., 2008) (the logarithm of an unnormalized probability
density function). It means that examples with low reconstruction error have higher
probability according to the model. A sparsity term in the energy function has been
used to allow overcomplete representations (Ranzato et al., 2007b, 2008) and shown to
yield features that are (for some of them) more invariant to geometric transformations
of images (Goodfellow et al., 2009). A successful alternative (Bengio et al., 2007; Vin-
cent et al., 2008) to the square reconstruction error in the case of inputs that are binary
or in the (0,1) interval (like pixel intensities) is the sum of KL divergences between the
binomial probabilities associated with each input xi and with each reconstruction ri(x)
(both seen as binary probabilities).

3.3. RBMs

As shown in Bengio and Delalleau (2009), the reconstruction error gradient for autoen-
coders can be seen as an approximation of the Contrastive Divergence (Hinton, 1999,
2002) update rule for Restricted Boltzmann Machines (Hinton et al., 2006). Boltzmann
Machines are undirected graphical models, defined by an energy function which is re-
lated to the joint probability of inputs (visible) x and hidden (latent) variables h through

P(x,h) = e−energy(x,h)/Z

27

Bengio

where the normalization constant Z is called the partition function, and the marginal
probability of the observed data (which is what we want to maximize) is simply P(x) =∑

h P(x,h) (summing or integrating over all possible configurations of h). A Boltzmann
Machine is the equivalent for binary random variables of the multivariate Gaussian dis-
tribution for continuous random variables, in the sense that it is defined by an energy
function that is a second-order polynomial in the random bit values. Both are partic-
ular kinds of Markov Random Fields (undirected graphical models), but the partition
function of the Boltzmann Machine is intractable, which means that approximations of
the log-likelihood gradient ∂ log P(x)

∂θ must be employed to train it (where θ is the set of
parameters).

Restricted Boltzmann Machines (RBMs) are Boltzmann Machines with a restriction
in the connection pattern of the graphical model between variables, forming a bipartite
graph with two groups of variables: the input (or visible) and latent (or hidden) vari-
ables. Whereas the original RBM employs binomial hidden and visible units, which
worked well on data such as MNIST (where grey levels actually correspond to proba-
bilities of turning on a pixel), the original extension of RBMs to continuous data (the
Gaussian RBM) has not been as successful as more recent continuous-data RBMs such
as the mcRBM (Ranzato and Hinton, 2010), the mPoT model (Ranzato et al., 2010)
and the spike-and-slab RBM (Courville et al., 2011), which was used in the challenge.
The spike-and-slab RBM energy function allows hidden units to either push variance
up or down in different directions, and it can be efficiently trained thanks to a 3-way
block Gibbs sampling procedure.

RBMs are defined by their energy function, and when it is tractable (which is usu-
ally the case), their free energy function is:

FreeEnergy(x) = − log
∑

h

e−energy(x,h).

The log-likelihood gradient can be defined in terms of the gradient of the free energy on
observed (so-called positive) data samples x and on (so-called negative) model samples
x̃ ∼ P(x̃):

−
∂ log P(x)

∂θ
=
∂FreeEnergy(x)

∂θ
−E[

∂FreeEnergy(x̃)

∂θ
]

where the expectation is over x̃ ∼ P(x̃). When the free energy is tractable, the first term
can be computed readily, whereas the second term involves sampling from the model.
Various kinds of RBMs can be trained by approximate maximum likelihood stochastic
gradient descent, often involving a Monte-Carlo Markov Chain to obtain those model
samples. See Bengio (2009) for a much more complete tutorial on this subject, along
with Hinton (2010) for tips and tricks.

3.4. Denoising Autoencoders

Denoising autoencoders training is a simple variation on autoencoder training: try to
reconstruct the clean original input from an artificially and stochastically corrupted ver-
sion of it, by minimizing the denoising reconstruction error. Denoising autoencoders

28

Deep Learning of Representations

are simply trained by stochastic gradient descent, typically using mini-batches (of 20 to
200 examples) in order to take advantage of faster matrix-matrix operations on CPUs or
GPUs. Denoising autoencoders solve one of the thorny limitations of ordinary autoen-
coders: the representation can be overcomplete without causing any problem. More
hidden units just means that the model can more finely represent the input distribution.
Denoising autoencoders have recently been shown to be directly related to score match-
ing (Vincent, 2011), an induction principle that can replace maximum likelihood when
it is not tractable (and the inputs are continuous-valued). The score matching crite-
rion is the squared norm of the difference between the model’s score (gradient ∂ log P(x)

∂x

of the log-likelihood with respect to the input x) and the score of the true data gen-
erating density (which is unknown, but from which we have samples). A simple way
to understand the connection between denoising autoencoders and score matching is
the following. Considering that reconstruction error is an energy function, the recon-
struction from an autoencoder normally goes from a lower-probability (higher energy)
input configuration to a nearby higher-probability (lower energy) one, so the difference
r(x̃)− x̃ between reconstruction and input is the model’s view of a direction of max-
imum increase in probability (i.e., the model’s score). On the other hand, when one
takes a training sample x and one randomly corrupts it into x̃, one typically obtains
a lower probability neighbor, i.e., the vector x− x̃ is nature’s hint about a direction
of rapid increase in probability (when starting at x̃). The squared difference of these
two differences is just the denoising reconstruction error (r(x̃)− x)2, in the case of the
squared error reconstruction loss.

In the challenge, we used (Mesnil et al., 2011) particular denoising autoencoders
that are well suited for data with sparse high-dimensional inputs. Instead of the usual
sigmoid or tanh non-linear hidden unit activations, these autoencoders are based on rec-

tifier units (max(x,0) instead of tanh) with L1 penalty in the training criterion, which
tends to make the hidden representation sparse. Stochastic rectifier units had been in-
troduced in the context of RBMs earlier (Nair and Hinton, 2010) and we have found
them to be extremely useful for deterministic deep networks (Glorot et al., 2011a) and
denoising autoencoders (Glorot et al., 2011b). A recent extension of denoising autoen-
coders is particularly useful for two of the challenge datasets in which the input vectors
are very large and sparse. It addresses a particularly troubling issue when training au-
toencoders on large sparse vectors: whereas the encoder can take advantage of the nu-
merous zeros in the input vector (it does not need to do any computation for them), the
decoder needs to make reconstruction predictions and compute reconstruction error for
all the inputs, including the zeros. With the sampled reconstruction algorithm (Dauphin
et al., 2011), one only needs to compute reconstructions and reconstruction error for a
small stochastically selected subset of the zeros, yielding very substantial speed-ups
(20-fold in the experiments of Dauphin et al. (2011)), the more so as the fraction of
non-zeros decreases.

29

Bengio

3.5. Contractive Autoencoders

Contractive autoencoders (Rifai et al., 2011) minimize a training criterion that is the
sum of a reconstruction error and a “contraction penalty”, which encourages the learnt
representation h(x) to be as invariant as possible to the input x, while still allowing to
distinguish the training examples from each other (i.e., to reconstruct them). As a con-
sequence, the representation is faithful to changes in input space in the directions of the
manifold near which examples concentrate, but it is highly contractive in the orthogonal
directions. This is similar in spirit to a PCA (which only keeps the leading directions of
variation and completely ignores the others), but is softer (no hard cutting at a particular
dimension), is non-linear and can contract in different directions depending on where
one looks in the input space (hence can capture non-linear manifolds). To prevent a
trivial solution in which the encoder weights go to zero and the decoder weights to
infinity, the contractive autoencoder uses tied weights (the decoder weights are forced
to be the transpose of the encoder weights). Because of the contractive criterion, what
we find empirically is that for any particular input example, many of the hidden units
saturate while a few remain sensitive to changes in the input (corresponding to changes
in the directions of changes expected under the data distribution). That subset of active
units changes as we move around in input space, and defines a kind of local chart, or lo-
cal coordinate system, in the neighborhood of each input point. This can be visualized
to some extent by looking at the singular values and singular vectors of the Jacobian
matrix ∂h(x)

∂x (containing the derivatives of each hidden unit output with respect to each
input unit). Contrary to other autoencoders, one tends to find only few dominant eigen-
values, and their number corresponds to a local rank or local dimension (which can
change as we move in input space). This is unlike other dimensionality reduction al-
gorithms in which the number of dimensions is fixed by hand (rather than learnt) and
fixed across the input domain. In fact the learnt representation can be overcomplete
(larger than the input): it is only in the sense of its Jacobian that it has an effective small
dimensionality for any particular input point. The large number of hidden units can be
exploited to model complicated non-linear manifolds.

4. Tricks and Tips

A good starting point for tricks and tips relevant to training deep architectures, and in
particular Restricted Boltzmann Machines (RBMs), is Hinton (2010). An older guide
which is also useful to some extent is Orr and Muller (1998), and in particular LeCun
et al. (1998b), since many of the ideas from neural networks training can be exploited
here.

4.1. Monitoring Performance During Training

RBMs are tricky because although there are good estimators of the log-likelihood gra-

dient, there are no known cheap ways of estimating the log-likelihood itself (Annealed
Importance Sampling (Murray and Salakhutdinov, 2009) is an expensive way of doing
it). A poor man’s option is to measure reconstruction error (as if the parameters were

30

Deep Learning of Representations

those of an autoencoder), which works well for the beginning of training but does not
help to choose a stopping point (e.g. to avoid overfitting). The practical solution is to
save the model weights at different numbers of epochs (e.g., 5, 10, 20, 50) and plug the
learned representation into a supervised classifier (for each of these training durations)
in order to decide what training duration to select.

In the case of denoising autoencoders, on the other hand, the denoising reconstruc-
tion error is a good measure of the model’s progress (since it corresponds to the training
criterion) and it can be used for early stopping. However, the best generative model or
the one with the best denoising is not always the one that works best in terms of provid-
ing a good representation for a classifier. This is especially true in the transfer setting of
the competition, where the training distribution is different from the test and validation
distributions. In that case, the expensive solution of evaluating validation classification
error at different training durations is the approach we have chosen. The training cri-
terion of contractive autoencoders can also be used as a good monitoring device (and
its value on a validation set used to perform early stopping). Note that we did not re-
ally “stop” training, we only recorded representations at different points in the training
trajectory and estimated Area under the Learning Curve (ALC5) or other criteria asso-
ciated with each. The advantage is that we do not need to retrain a separate model from
scratch for each of the possible durations tested.

4.2. Random Search and Greedy Layer-wise Strategy

Because one can have a different type of representation-learning model at each layer,
and because each of these learning algorithms has several hyper-parameters, there is
a huge number of possible configurations and choices one can make in exploring the
kind of deep architectures that led to the winning entry of the challenge. There are two
approaches that practitioners of machine learning typically employ to deal with hyper-
parameters. One is manual trial and error, i.e., a human-guided search. The other is
a grid search, i.e., choosing a set of values for each hyper-parameter and training and
evaluating a model for each combination of values for all the hyper-parameters. Both
work well when the number of hyper-parameters is small (e.g. 2 or 3) but break down
when there are many more7. More systematic approaches are needed. An approach
that we have found to scale better is based on random search and greedy exploration.
The idea of random search (Bergstra and Bengio, 2011, 2012) is simple and can advan-
tageously replace grid search. Instead of forming a regular grid by choosing a small
set of values for each hyper-parameter, one defines a distribution from which to sam-
ple values for each hyper-parameter, e.g., the log of the learning rate could be taken as
uniform between log(0.1) and log(10−6), or the log of the number of hidden units or
principal components could be taken as uniform between log(2) and log(5000). The
main advantage of random (or quasi-random) search over a grid is that when some

5. The ALC is the sum of the accuracy measure for different number of labeled training examples. The
accuracy measure used here is the AUC or Area Under the Curve. See 6

7. Experts can handle many hyper-parameters, but results become less reproducible and algorithms less
accessible to non-experts.

31

Bengio

hyper-parameters have little or no influence, random search does not waste any compu-
tation, whereas grid search will redo experiments that are equivalent and do not bring
any new information (because many of them have the same value for hyper-parameters
that matter and different values for hyper-parameters that do not). Instead, with ran-
dom search, every experiment is different, thus bringing more information. In addition,
random search is convenient because even if some jobs are not finished, one can draw
conclusions from the jobs that are finished. In fact, one can use the results on subsets
of the experiments to establish confidence intervals (the experiments are now all iid),
and draw a curve (with confidence interval) showing how performance improves as we
do more exploration. Of course, it would be even better to perform a sequential opti-
mization (Bergstra et al., 2011) (such as Bayesian Optimization (Brochu et al., 2009))
in order to take advantage of results of training experiments as they are obtained and
sample in more promising regions of configuration space, but more research needs to
be done towards this. On the other hand, random search is very easy and does not
introduce hyper-hyper-parameters.

Another trick that we have used successfully in the past and in the challenge is the
idea of a greedy search. Since the deep architecture is obtained by stacking layers and
each layer comes with its own choices and hyper-parameters, the general strategy is the
following. First optimize the choices for the first layer (e.g., try to find which single-
layer learning algorithm and its hyper-parameters give best results according to some
criterion such as validation set classification error or ALC). Then keep that best choice
(or a few of the best choices found) and explore choices for the second layer, keeping
only the best overall choice (or a few of the best choices found) among the 2-layer
systems tested. This procedure can then be continued to add more layers, without the
computational cost exploding with the number of layers (it just grows linearly).

4.3. Hyper-Parameters

The single most important hyper-parameter for most of the algorithms described here is
the learning rate. A too small learning rate means slow convergence, or convergence to
a poor performance given a finite budget of computation time. A too large learning rate
gives poor results because the training criterion may increase or oscillate. The optimal
learning rate for one data set and architecture may be too large or too small for another
one, so it is worth optimizing the learning rate. Like most numerical hyper-parameters,
the learning rates should be explored in the log-domain, and there is not much to be
gained by refining it more than a factor of 2, whereas the dynamic range explored could
be around 106 learning rates are typically below 1. To efficiently search for a good
learning rate, a greedy heuristic that we used is based on the following strategy. Start
with a large learning rate and reduce it (by a factor 3) until training does not diverge.
The largest learning rate which does not give divergent training (increasing training
error) is usually a very good choice of learning rate.

For the challenge, another very sensitive hyper-parameter is the number of dimen-
sions of the top-level representation fed to the classifier. It should probably be close to

32

Deep Learning of Representations

or related to the true number of classes (more classes would require more dimensions
to be separated easily by a linear classifier).

Early stopping is another handy trick to speed-up model search, since it can be used
to detect overfitting (even in the unsupervised learning sense) for a low computational
cost. After each training iteration one can compute an indicator of generalization error
(either from the application of the unsupervised learning criterion on the validation set
or even by training a linear classifier on a pseudo-validation set, as described below,
sec. 4.5).

4.4. Visualization

Since the validation set ALC was an unreliable indicator of test set ALC, we used sev-
eral strategies in the second phase of the competition to help guide the model selection.
One of them is simply visualization of the representations as cloud points. One can
visualize 3 dimensions at a time, either the leading 3 or a subset of the leading ones.
To order dimensions we used PCA or t-SNE dimensionality reduction (van der Maaten
and Hinton, 2008).

4.5. Simulating the Final Evaluation Scenario

Another strategy that often comes handy is to simulate (as much as possible) the final
evaluation scenario, even in the absence of the test labels. In the case of the second
phase of the competition, some of the training classes labels are available. Thus we
could simulate the final evaluation scenario by choosing a subset of the training classes
as “pseudo training set” and the rest as “pseudo test set”, doing unsupervised training on
the pseudo training set (or the union of pseudo training and pseudo test sets) and training
the linear classifier using the pseudo test set. We then considered hyper-parameter
settings that led not only to high accuracy in average across different choices of class
subsets (for the pseudo train/test split), but also to high robustness (low variance) across
these splits.

5. Examples in Transfer Learning

Deep Learning seems well suited to transfer learning because it focuses on learning
representations and in particular “abstract” representations, representations that ideally
disentangle the factors of variation present in the input.

This has been demonstrated already not only in this competition (see Mesnil et al.
(2011)) for more details), but also in several other instances. For example, in Bengio
et al. (2011), it has been shown that a deep learner can take more advantage of out-
of-distribution training examples (whose distribution differs from the test distribution)
than a shallow learner. Two settings were explored, with both results illustrated in
Figure 1. In the first one (left hand side of figure), training examples (character images)
are distorted by adding all kinds of noises and random transformations (coherent with
character images), but the target distribution contains clean examples. Training on
the distorted examples was found to help the deep learners (SDA{1,2}) more than the

33

Bengio

shallow ones (MLP{1,2}), when the goal is to test on the clean examples. In the second
setting (right hand side of figure), i.e., the multi-task setting, training is on all 62 classes
available, but the target distribution of interest is a restriction to a subset of the classes.

Figure 1: Relative improvement in character classification error rate due to out-of-
distribution examples. Left: Improvement (or loss, when negative) induced
by out-of-distribution examples (perturbed data). Right: Improvement (or
loss, when negative) induced by multi-task learning (training on all char-
acter classes and testing only on either digits, upper case, or lower-case).
The deep learner (stacked denoising autoencoder) benefits more from out-
of-distribution examples, compared to a shallow MLP. {SDA,MLP}1 and
{SDA,MLP}2 are trained on different types of distortions. The NIST set
includes all 62 classes while NIST digits include only the 10 digits. Re-
produced from Bengio et al. (2011).

Another successful transfer example also using stacked denoising autoencoders
arises in the context of domain adaptation, i.e., where one trains an unsupervised rep-
resentation based on examples from a set of domains but a classifier is then trained
from few examples of only one domain. In that case, unlike in the challenge, the output
variable always has the same semantics, but the input distribution (and to a lesser extent
the relation between input and output) changes from domain to domain. Glorot et al.
(2011b) applied stacked denoising autoencoders with sparse rectifiers (the same as used
for the challenge) to domain adapation in sentiment analysis (predicting whether a user
liked a disliked a product based on a short review). Some of the results are summa-
rized in Figure 2, comparing transfer ratio, which indicates relative error when testing
in-domain vs out-of-domain, i.e., how well transfer works (see Glorot et al. (2011b) for
more details). The stacked denoising autoencoders (SDA) are compared with the state
of the art methods: SCL (Blitzer et al., 2006) or Structural Correspondence Learning,
MCT (Li and Zong, 2008) or Multi-label Consensus Training, SFA (Pan et al., 2010) or
Spectral Feature Alignment, and T-SVM (Sindhwani and Keerthi, 2006) or Transduc-
tive SVM. The SDAsh (Stacked Denoising Autoencoder trained on all domains) clearly
beats the state-of-the-art.

34

Deep Learning of Representations

Figure 2: Transfer ratios on the Amazon benchmark. Both SDA-based systems out-
performs the rest, and SDAsh (unsupervised training on all domains) is best.
Reproduced from Glorot et al. (2011b).

6. Moving Forward: Disentangling Factors of Variation

In spite of all the nice results described here, and in spite of winning the final evaluation
of the challenge, it is clear to the author that research in Deep Learning of representa-
tions is only in its infancy, and that much more should be done to improve the learning
algorithms. In particular, it is the author’s belief that these algorithms would be much
more useful in transfer learning if they could better disentangle the underlying factors

of variation. In a sense it is obvious that if we had algorithms that could do that really
well, than most learning tasks (supervised learning, transfer learning, reinforcement
learning, etc.) would become much easier, and the effect would be most felt when
only very few labeled examples for the final task of interest are present. The question is
whether we can actually improve in this direction, and the hypothesis we propose is that
by explicitly designing the models and training criterion towards that objective, there
is much to be gained. Ultimately, one can view the problem of learning from very few
labeled examples of the task of interest almost as a an inference problem (“given that
I define a new class based on this particular example, what is the probability that this
other example also belongs to it?”), where the parameters of the model (i.e., the repre-

35

Bengio

sentation) have already been established through prior training on many more related
examples (labeled or not) which help to capture the underlying factors of variation,
some of which are relevant in the target task.

Acknowledgments

The author wants to thank NSERC, the CRC, mPrime, Compute Canada and FQRNT
for their support, and the other authors of the companion paper (Mesnil et al., 2011) for
their contributions to many of the results and ideas illustrated here.

References

Mikhail Belkin and Partha Niyogi. Using manifold structure for partially labeled clas-
sification. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural

Information Processing Systems 15 (NIPS’02), Cambridge, MA, 2003. MIT Press.

Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in Ma-

chine Learning, 2(1):1–127, 2009. Also published as a book. Now Publishers, 2009.

Yoshua Bengio and Olivier Delalleau. Justifying and generalizing contrastive diver-
gence. Neural Computation, 21(6):1601–1621, June 2009.

Yoshua Bengio and Olivier Delalleau. Shallow versus deep sum-product networks,
2011. The Learning Workshop, Fort Lauderdale, Florida.

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In L. Bottou,
O. Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines. MIT
Press, 2007.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-
wise training of deep networks. In Bernhard Schölkopf, John Platt, and Thomas
Hoffman, editors, Advances in Neural Information Processing Systems 19 (NIPS’06),
pages 153–160. MIT Press, 2007.

Yoshua Bengio, Frédéric Bastien, Arnaud Bergeron, Nicolas Boulanger-Lewandowski,
Thomas Breuel, Youssouf Chherawala, Moustapha Cisse, Myriam Côté, Dumitru
Erhan, Jeremy Eustache, Xavier Glorot, Xavier Muller, Sylvain Pannetier Lebeuf,
Razvan Pascanu, Salah Rifai, François Savard, and Guillaume Sicard. Deep learn-
ers benefit more from out-of-distribution examples. In JMLR W&CP: Proceedings

of the Fourteenth International Conference on Artificial Intelligence and Statistics

(AISTATS 2011), April 2011.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization,
2011. The Learning Workshop, Fort Lauderdale, Florida.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 2012.

36

Deep Learning of Representations

James Bergstra, Rémy Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for
hyper-parameter optimization. In NIPS’2011, 2011.

John Blitzer, Ryan McDonald, and Fernando Pereira. Domain adaptation with struc-
tural correspondence learning. In Proc. of EMNLP ’06, 2006.

Hervé Bourlard and Yves Kamp. Auto-association by multilayer perceptrons and sin-
gular value decomposition. Biological Cybernetics, 59:291–294, 1988.

Mark Braverman. Poly-logarithmic independence fools bounded-depth boolean cir-
cuits. Communications of the ACM, 54(4):108–115, April 2011.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian optimization
of expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. Technical Report TR-2009-23, Department of Computer
Science, University of British Columbia, November 2009.

Rich Caruana. Learning many related tasks at the same time with backpropagation. In
G. Tesauro, D.S. Touretzky, and T.K. Leen, editors, Advances in Neural Information

Processing Systems 7 (NIPS’94), pages 657–664, Cambridge, MA, 1995. MIT Press.

Ronan Collobert and Jason Weston. A unified architecture for natural language process-
ing: Deep neural networks with multitask learning. In William W. Cohen, Andrew
McCallum, and Sam T. Roweis, editors, Proceedings of the Twenty-fifth International

Conference on Machine Learning (ICML’08), pages 160–167. ACM, 2008.

Aaron Courville, James Bergstra, and Yoshua Bengio. Unsupervised models of images
by spike-and-slab RBMs. In Proceedings of the Twenty-eight International Confer-

ence on Machine Learning (ICML’11), June 2011.

Yann Dauphin, Xavier Glorot, and Yoshua Bengio. Sampled reconstruction for large-
scale learning of embeddings. In Proceedings of the Twenty-eight International Con-

ference on Machine Learning (ICML’11), June 2011.

Xavier Glorot, Antoire Bordes, and Yoshua Bengio. Deep sparse rectifier neural net-
works. In JMLR W&CP: Proceedings of the Fourteenth International Conference on

Artificial Intelligence and Statistics (AISTATS 2011), April 2011a.

Xavier Glorot, Antoire Bordes, and Yoshua Bengio. Domain adaptation for large-scale
sentiment classification: A deep learning approach. In Proceedings of the Twenty-

eight International Conference on Machine Learning (ICML’11), June 2011b.

Ian Goodfellow, Quoc Le, Andrew Saxe, and Andrew Ng. Measuring invariances in
deep networks. In Yoshua Bengio, Dale Schuurmans, Christopher Williams, John
Lafferty, and Aron Culotta, editors, Advances in Neural Information Processing Sys-

tems 22 (NIPS’09), pages 646–654, 2009.

37

Bengio

Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings

of the 18th annual ACM Symposium on Theory of Computing, pages 6–20, Berkeley,
California, 1986. ACM Press.

Johan Håstad and Mikael Goldmann. On the power of small-depth threshold circuits.
Computational Complexity, 1:113–129, 1991.

G. E. Hinton, P. Dayan, and M. Revow. Modelling the manifolds of images of hand-
written digits. IEEE Transactions on Neural Networks, 8:65–74, 1997.

Geoffrey E. Hinton. Products of experts. In Proceedings of the Ninth International

Conference on Artificial Neural Networks (ICANN), volume 1, pages 1–6, Edinburgh,
Scotland, 1999. IEE.

Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14:1771–1800, 2002.

Geoffrey. E. Hinton. A practical guide to training restricted Boltzmann machines. Tech-
nical Report UTML TR 2010-003, Department of Computer Science, University of
Toronto, 2010.

Geoffrey E. Hinton and Ruslan Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507, July 2006.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for
deep belief nets. Neural Computation, 18:1527–1554, 2006.

Pascal Lamblin and Yoshua Bengio. Important gains from supervised fine-tuning of
deep architectures on large labeled sets. NIPS*2010 Deep Learning and Unsuper-
vised Feature Learning Workshop, 2010.

Yann LeCun, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E. Howard,
Wayne Hubbard, and Lawrence D. Jackel. Backpropagation applied to handwritten
zip code recognition. Neural Computation, 1(4):541–551, 1989.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
November 1998a.

Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient back-
prop. In Neural Networks, Tricks of the Trade, Lecture Notes in Computer Science
LNCS 1524. Springer Verlag, 1998b.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional
deep belief networks for scalable unsupervised learning of hierarchical representa-
tions. In Léon Bottou and Michael Littman, editors, Proceedings of the Twenty-sixth

International Conference on Machine Learning (ICML’09). ACM, Montreal (Qc),
Canada, 2009a.

38

Deep Learning of Representations

Honglak Lee, Peter Pham, Yan Largman, and Andrew Ng. Unsupervised feature learn-
ing for audio classification using convolutional deep belief networks. In Yoshua
Bengio, Dale Schuurmans, Christopher Williams, John Lafferty, and Aron Culotta,
editors, Advances in Neural Information Processing Systems 22 (NIPS’09), pages
1096–1104, 2009b.

Shoushan Li and Chengqing Zong. Multi-domain adaptation for sentiment classifica-
tion: Using multiple classifier combining methods. In Proc. of NLP-KE ’08, 2008.

Grégoire Mesnil, Yann Dauphin, Xavier Glorot, Salah Rifai, Yoshua Bengio, Ian Good-
fellow, Erick Lavoie, Xavier Muller, Guillaume Desjardins, David Warde-Farley,
Pascal Vincent, Aaron Courville, and James Bergstra. Unsupervised and transfer
learning challenge: a deep learning approach. In Isabelle Guyon, G. Dror, V Lemaire,
G. Taylor, and D. Silver, editors, JMLR W& CP: Proceedings of the Unsupervised

and Transfer Learning challenge and workshop, volume 7, 2011.

Iain Murray and Ruslan Salakhutdinov. Evaluating probabilities under high-
dimensional latent variable models. In Daphne Koller, Dale Schuurmans, Yoshua
Bengio, and Leon Bottou, editors, Advances in Neural Information Processing Sys-

tems 21 (NIPS’08), volume 21, pages 1137–1144, 2009.

V. Nair and G. E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proc. of ICML ’10, 2010.

Genevieve Orr and Klaus-Robert Muller, editors. Neural networks: tricks of the trade,
volume 1524 of Lecture Notes in Computer Science. Springer-Verlag Inc., New York,
NY, USA, 1998. ISBN 3-540-65311-2 (paperback).

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang Yang, and Zheng Chen. Cross-
domain sentiment classification via spectral feature alignment. In Proc. of WWW ’10,
2010.

H. Poon and P. Domingos. Sum-product networks: A new deep architecture. In NIPS

2010 Workshop on Deep Learning and Unsupervised Feature Learning, Whistler,
Canada, 2010.

Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y. Ng. Self-
taught learning: transfer learning from unlabeled data. In Zoubin Ghahramani, editor,
Proceedings of the Twenty-fourth International Conference on Machine Learning

(ICML’07), pages 759–766. ACM, 2007.

M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse repre-
sentations with an energy-based model. In NIPS’06, 2007a.

M. Ranzato, V. Mnih, and G. Hinton. Generating more realistic images using gated
MRF’s. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta,
editors, Advances in Neural Information Processing Systems 23 (NIPS’10), pages
2002–2010, 2010.

39

Bengio

M.A. Ranzato and G.E. Hinton. Modeling pixel means and covariances using factor-
ized third-order Boltzmann machines. In Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pages 2551–2558. IEEE, 2010.

Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun. Effi-
cient learning of sparse representations with an energy-based model. In B. Schölkopf,
J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems

19 (NIPS’06), pages 1137–1144. MIT Press, 2007b.

Marc’Aurelio Ranzato, Y-Lan Boureau, and Yann LeCun. Sparse feature learning for
deep belief networks. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Ad-

vances in Neural Information Processing Systems 20 (NIPS’07), pages 1185–1192,
Cambridge, MA, 2008. MIT Press.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Con-
tracting auto-encoders: Explicit invariance during feature extraction. In Proceedings

of the Twenty-eight International Conference on Machine Learning (ICML’11), June
2011.

Ruslan Salakhutdinov and Geoffrey E. Hinton. Deep Boltzmann machines. In Proceed-

ings of The Twelfth International Conference on Artificial Intelligence and Statistics

(AISTATS’09), volume 5, pages 448–455, 2009.

L. Saul and S. Roweis. Think globally, fit locally: unsupervised learning of low dimen-
sional manifolds. Journal of Machine Learning Research, 4:119–155, 2002.

Vikas Sindhwani and S. Sathiya Keerthi. Large scale semi-supervised linear svms. In
Proc. of SIGIR ’06, 2006.

Joshua Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, December
2000.

Laurens van der Maaten and Geoffrey E. Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9:2579–2605, November 2008. URL
http://www.jmlr.org/papers/volume9/vandermaaten08a/

vandermaaten08a.pdf.

Pascal Vincent. A connection between score matching and denoising autoencoders.
Neural Computation, to appear, 2011.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and composing robust features with denoising autoencoders. In Andrew
McCallum and Sam Roweis, editors, Proceedings of the 25th Annual International

Conference on Machine Learning (ICML 2008), pages 1096–1103. Omnipress, 2008.

40

Deep Learning of Representations

Andrew Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of

the 26th Annual IEEE Symposium on Foundations of Computer Science, pages 1–10,
1985.

41

42

JMLR: Workshop and Conference Proceedings 27:37–50, 2012 Unsupervised and Transfer Learning

Autoencoders, Unsupervised Learning, and Deep

Architectures

Pierre Baldi pfbaldi@ics.uci.edu

Department of Computer Science

University of California, Irvine

Irvine, CA 92697-3435

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor and D. Silver

Abstract

Autoencoders play a fundamental role in unsupervised learning and in deep architec-
tures for transfer learning and other tasks. In spite of their fundamental role, only
linear autoencoders over the real numbers have been solved analytically. Here we
present a general mathematical framework for the study of both linear and non-linear
autoencoders. The framework allows one to derive an analytical treatment for the
most non-linear autoencoder, the Boolean autoencoder. Learning in the Boolean au-
toencoder is equivalent to a clustering problem that can be solved in polynomial time
when the number of clusters is small and becomes NP complete when the number of
clusters is large. The framework sheds light on the different kinds of autoencoders,
their learning complexity, their horizontal and vertical composability in deep architec-
tures, their critical points, and their fundamental connections to clustering, Hebbian
learning, and information theory.

Keywords: autoencoders, unsupervised learning, compression, clustering, principal
component analysis, boolean, complexity, deep architectures, hebbian learning, infor-
mation theory

1. Introduction

Autoencoders are simple learning circuits which aim to transform inputs into outputs
with the least possible amount of distortion. While conceptually simple, they play an
important role in machine learning. Autoencoders were first introduced in the 1980s by
Hinton and the PDP group (Rumelhart et al., 1986) to address the problem of “back-
propagation without a teacher”, by using the input data as the teacher. Together with
Hebbian learning rules (Hebb, 1949; Oja, 1982), autoencoders provide one of the fun-
damental paradigms for unsupervised learning and for beginning to address the mystery
of how synaptic changes induced by local biochemical events can be coordinated in a
self-organized manner to produce global learning and intelligent behavior.

More recently, autoencoders have taken center stage again in the “deep architec-
ture” approach (Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Bengio and Le-
Cun, 2007; Erhan et al., 2010) where autoencoders, particularly in the form of Re-
stricted Boltzmann Machines (RBMS), are stacked and trained bottom up in unsuper-

© 2012 P. Baldi.

Baldi

vised fashion, followed by a supervised learning phase to train the top layer and fine-
tune the entire architecture. The bottom up phase is agnostic with respect to the final
task and thus can obviously be used in transfer learning approaches. These deep archi-
tectures have been shown to lead to state-of-the-art results on a number of challenging
classification and regression problems.

In spite of the interest they have generated, and with a few exceptions (Baldi and
Hornik, 1988; Sutskever and Hinton, 2008; Montufar and Ay, 2011), little theoretical
understanding of autoencoders and deep architectures has been obtained to this date.
Additional confusion may have been created by the use of the term “deep”. A deep ar-
chitecture from a computer science perspective should have nα polynomial-size layers,
for some small α > 0, where n is the size of the input vectors (see Clote and Kranakis
(2002) and references therein). But that is not the case in the architectures described
in Hinton et al. (2006) and Hinton and Salakhutdinov (2006), which seem to have con-
stant or at best logarithmic depth, the distinction between finite and logarithmic depth
being almost impossible for the typical values of n used in computer vision, speech
recognition, and other typical problems. Thus the main motivation behind this work
is to derive a better theoretical understanding of autoncoders, with the hope of gaining
better insights into the nature of unsupervised learning and deep architectures.

If general theoretical results about deep architectures exist, these are unlikely to
depend on a particular hardware realization, such as RBMs. Similar results ought to be
true for alternative, or more general, forms of computation. Thus the strategy proposed
here is to introduce a general framework and study different kinds of autoencoder cir-
cuits, in particular Boolean autoencoders which can be viewed as the most extreme form
of non-linear autoencoders. The expectation is that certain properties of autoencoders
and deep architectures may be easier to identify and understand mathematically in sim-
pler hardware embodiments, and that the study of different kinds of autoencoders may
facilitate abstraction and generalization through the identifications of common proper-
ties.

For this purpose, we begin in Section 2 by describing a fairly general framework
for studying autoencoders. In Section 3, we review and extend the known results on
linear autoencoders. In the light of deep architectures, we look at novel properties such
a vertical composition (stacking) and connection of critical points to stability under
recycling (feeding outputs back to the input layer). In Section 4, we study Boolean
autoencoders, and prove several properties including their fundamental connection to
clustering. In Section 5, we address the complexity of Boolean autoencoder learning.
In Section 6, we study autoencoders with large hidden layers, and introduce the notion
of horizontal composition of autoencoders. In Section 7, we address other classes of
autoencoders and generalizations. Finally, in Section 8, we summarize the results and
their possible consequences for the theory of deep architectures.

2. A General Autoencoder Framework

To derive a fairly general framework, an n/p/n autoencoder (Figure 1) is defined by a
t-uple n, p,m,F,G,A,B,X,∆ where:

44

Autoencoders

Figure 1: An n/p/n Autoencoder Architecture.

1. F and G are sets.

2. n and p are positive integers. Here we consider primarily the case where 0 < p <

n.

3. A is a class of functions from Gp to Fn.

4. B is a class of functions from Fn to Gp.

5. X = {x1, . . . , xm} is a set of m (training) vectors in Fn. When external targets are
present, we let Y = {y1, . . . , ym} denote the corresponding set of target vectors in
Fn.

6. ∆ is a dissimilarity or distortion function (e.g. Lp norm, Hamming distance)
defined over Fn.

For any A ∈ A and B ∈ B, the autoencoder transforms an input vector x ∈ Fn into an
output vector A◦B(x) ∈ Fn (Figure 1). The corresponding autoencoder problem is to
find A ∈A and B ∈ B that minimize the overall distortion function:

min E(A,B) =min
A,B

m∑

t=1

E(xt) =min
A,B

m∑

t=1

∆
(
A◦B(xt), xt

)
(1)

In the non auto-associative case, when external targets yt are provided, the minimization
problem becomes:

min E(A,B) =min
A,B

m∑

t=1

E(xt,yt) =min
A,B

m∑

t=1

∆
(
A◦B(xt),yt

)
(2)

Note that p < n corresponds to the regime where the autoencoder tries to implement
some form of compression or feature extraction. The case p ≥ n is discussed towards
the end of the paper.

Obviously, from this general framework, different kinds of autoencoders can be
derived depending, for instance, on the choice of sets F and G, transformation classes
A and B, distortion function ∆, as well as the presence of additional constraints,such
as regularization. To the best of our knowledge, neural network autoencoders were

45

Baldi

first introduced by the PDP group as a special case of this definition, with all vectors
components in F=G=R and A and B corresponding to matrix multiplications followed
by non-linear sigmoidal transformations with an L2

2 error function. [For regression
problems, the non-linear sigmoidal transformation is typically used only in the hidden
layer]. As an approximation to this case, in the next section, we study the linear case
with F = G = R. More generally, linear autoencoders correspond to the case where F
and G are fields and A and B are the classes of linear transformations, hence A and B

are matrices of size p×n and n× p respectively. The linear real case where F = G = R
and ∆ is the squared Euclidean distance was addressed in Baldi and Hornik (1988) (see
also Bourlard and Kamp (1988)). More recently the theory has been extended also to
complex-valued linear autoencoders (Baldi et al., 2011)

3. The Linear Autoencoder

We partly restate without proof the results derived in Baldi and Hornik (1988) for the
linear real case with ∆ = L2

2, but organize them in a way meant to highlight the connec-
tions to other kinds of autoencoders, and extend their results from a deep architecture
perspective. We use At to denote the transpose of any matrix A.
1) Group Invariance. Every solution is defined up to multiplication by an invertible
p× p matrix C, or equivalently up to a change of coordinates in the hidden layer. This
is obvious since since AC−1CB = AB.
2) Problem Complexity. While the cost function is quadratic and all the operations
are linear, the overall problem is not convex because the hidden layer limits the rank of
the overall transformation to be at most p, and the set of matrices of rank p or less is
not convex. However the linear autoencoder problem over R can be solved analytically.
Note that in this case one is interested in finding a low rank approximation to the iden-
tity function.
3) Fixed Layer Solution. The problem becomes convex if A is fixed, or if B is
fixed. When A is fixed, assuming A has rank p and that the data covariance ma-
trix ΣXX =

∑
i xix

t
i is invertible, then at the optimum B∗ = B(A) = (AtA)−1At. When

B is fixed, assuming B has rank p and that ΣXX is invertible, then at the optimum
A∗ = A(B) = ΣXX Bt(BΣXX Bt)−1.
4) The Landscape of E. The overall landscape of E has no local minima. All the crit-
ical points where the gradient of E is zero, correspond to projections onto subspaces
associated with subsets of eigenvectors of the covariance matrix ΣXX . Projections onto
the subspace associated with the p largest eigenvalues correspond to the global min-
imum and Principal Component Analysis. All other critical point, corresponding to
projections onto subspaces associated with other set of eigenvalues, are saddle points.
More precisely, if I = i1, . . . , ip (1 ≤ ii < . . . < ip ≤ n) is any ordered list of indices, let
UI = [u1, . . . ,up] denote the matrix formed by the orthonormal eigenvectors of ΣXX as-
sociated with the eigenvalues λi1 , . . . ,λip . Then two matrices A and B of rank p define
a critical point if and only if there is a set I and an invertible p× p matrix C such that
A =UIC, B =C−1Ut

I, and W = AB = PUI , where PUI is the orthogonal projection onto
the subspace spanned by the columns of UI. At the global minimum, assuming that

46

Autoencoders

C = I, the activities in the hidden layer are given by the dot products ut
1x . . .ut

px and
correspond to the coordinates of x along the first p eigenvectors of ΣXX .
5) Clustering. The global minimum performs a form of clustering by hyperplane, with
respect to KerB, the kernel of B. For any given vector x, all the vectors of the form
x+Ker(B) are mapped onto the same vector y = AB(x) = AB(x+KerB).
6) Recycling Stability. At any critical point, AB is a projection operator and thus recy-
cling outputs is stable at the first pass: (AB)n(x) = AB(x) = UIUt

I(x) for any n ≥ 1.
7) Generalization. At any critical point, for any x, AB(x) is equal to the projection of
x onto the corresponding subspace and the corresponding error can be expressed easily
as the squared distance of x to the projection space.
8) Vertical Composition. The global minimum of E remains the same if additional
matrices of rank greater or equal to p are introduced between the input layer and the
hidden layer or the hidden layer and the output layer. Thus there is no reduction in over-
all distortion by introducing such matrices. However, if such matrices are introduced
for other reasons, there is a composition law so that the optimum solution for a deep
autoencoder with a stack of matrices, can be obtained by combining the optimal solu-
tions of shallow autoencoders. More precisely, consider an autoencoder network with
layers of size n/p1/p/p1/n (Figure 2) with n> p1 > p. Then the optimal solution of this
network can be obtained by first computing the optimal solution for an n/p1/n autoen-
coder network, and combining it with the optimal solution of an p1/p/p1 autoencoder
network using the activities in the hidden layer of the first network as the training set for
the second network, exactly as in the case of stacked RBMs (Hinton et al., 2006; Hinton
and Salakhutdinov, 2006). This is because the projection onto the subspace spanned by
the top p eigenvectors can be composed by a projection onto the subspace spanned by
the top p1 eigenvectors, followed by a projection onto the subspace spanned by the top
p eigenvectors.
9) External Targets. With the proper adjustments, the results above remain essentially
the same if a set of target output vectors y1, . . . ,ym is provided, instead of x1, . . . , xm

serving as the targets (see (Baldi and Hornik, 1988)).
10) Symmetries and Hebbian Rules. At the global minimum, for C = I, A = Bt. The
constraint A = Bt can be imposed during learning by “weight sharing” and is consistent
with a Hebbian rule that is symmetric between the pre- and post synaptic neurons and
is applied to the network by clamping the output units to be equal to the input units (or
having a folded autoencoder).

4. The Boolean Autoencoder

The Boolean autoencoder is the most extreme form of non-linear autoencoder. In the
purely Boolean case, we have F=G= {0,1}, A and B are unrestricted Boolean functions,
and ∆ is the Hamming distance. Many variants of this problem can be obtained by
restricting the classes A and B of Boolean functions, for instance by bounding the
connectivity of the hidden units. The linear case with F = G = {0,1} = F2, where F2 is
the Galois field with two elements, is a special case of the Boolean case and will be
discussed later. For lack of space, proofs are only briefly sketched.

47

Baldi

Figure 2: Vertical Composition of Autoencoders.

1) Group Invariance. Every solution is defined up to a permutation of the 2p points of
the hypercube Hp. This is because the Boolean function are unrestricted and therefore
their lookup tables can accommodate any such permutation, or relabeling of the hidden
states.
2) Problem Complexity. In general, the overall optimization problem is NP-hard. To
be more precise, one must specify the regime of interest characterized by which vari-
ables among n, m, and p are going to infinity. Obviously one must have n→∞. If
p does not go to infinity, then the problem can be polynomial, for instance when the
centroids must belong to the training set. If p→∞ and m is a polynomial in n, which
is the case of interest in machine learning where typically m is a low degree polynomial
in n, then the problem of finding the best boolean mapping (i.e. the Boolean mapping
that minimizes the distortion E associated with the Hamming distance on the training
set) is NP hard, or the corresponding decision problem is NP-complete. More precisely
the optimisation problem is NP-hard in the regime where p ∼ ε log2 m with ε > 0. A
proof of this result is given in the next section.
3) Fixed Layer Solution. If the A mapping is fixed, then it is easy to find the optimal B

mapping. Conversely if the B mapping is fixed, it is easy to find the optimal A mapping.
To see this, assume first that A is fixed. Then for each of the 2p possible Boolean vectors
h1, . . . ,h2p of the hidden layer, A(h1) . . . ,A(h2p) provide 2p points (centroids) in the hy-
percube Hn. One can build the corresponding Voronoi partition by assigning each point
of Hn to its closest centroid, breaking ties arbitrarily, thus forming a partition of Hn into
2p corresponding clusters C1, . . . ,C2p , with Ci = CVor(A(hi)). The optimal mapping B∗

is then easily defined by setting B∗(x) = hi for any x in Ci =CVor(A(hi)). Conversely, as-
sume that B is fixed. Then for each of the 2p possible Boolean vectors h1, . . . ,h2p of the
hidden layer, let CB(hi) = {x ∈ Hn : B(x) = hi}. To minimize the reconstruction error, A∗

must map hi onto a point y of Hn minimizing the sum of Hamming distances to points
in X∩CB(hi). It is easy to see that the minimum is realized by the component-wise
majority vector A∗(hi) = Ma jority[X∩CB(hi)], breaking ties arbitrarily (e.g. by a coin
flip).
4) The Landscape of E. In general E has many local minima (e.g with respect to the
Hamming distance applied to the lookup tables of A and B). Critical points are defined
to be the points satisfying simultaneously the equations above for A∗ and B∗.

48

Autoencoders

5) Clustering. The overall optimization problem is a problem of optimal clustering.
The clustering is defined by the transformation B. Approximate solutions can be sought
by many algorithms, such as k-means, belief propagation (Frey and Dueck, 2007), min-
imum spanning paths and trees (Slagle et al., 1975), and hierarchical clustering.
6) Recycling Stability. At any critical point, recycling outputs is stable at the first pass
so that for any x (AB)n(x) = AB(x) (and is equal to the majority vector of the corre-
sponding Voronoi cluster).
7) Generalization. At any critical point, for any x, AB(x) is equal to the centroid of the
corresponding Voronoi cluster and the corresponding error can be expressed easily.
8) Vertical Composition. The global optimum remains the same if additional Boolean
layers of size equal or greater to p are introduced between the input layer and the hidden
layer and/or the hidden layer and the output layer. Thus there is no reduction in overall
distortion E by adding such layers. Consider a Boolean autoencoder network with lay-
ers of size n, p1, p, p1,n (Figure 2) with n > p1 > p. Then the optimal solution of this
network can be obtained by first computing the optimal solution for an n, p1,n autoen-
coder network, and combining it with the optimal solution of an p1, p, p1 autoencoder
network using the activity in the hidden layer of the first network as the training set,
exactly as in the case of stacked RBMs. The reason for this is that the global optimum
correspond to clustering into 2p clusters, and this can be obtained by first clustering into
2p1 clusters, and then clustering these clusters into 2p clusters. The stack of Boolean
functions performs hierarchical clustering with respect to the input space.
9) External Targets. With the proper adjustments, the results above remain essentially
the same if a set of target output vectors y1, . . . ,ym is provided, instead of x1, . . . , xm

serving as the targets. To see this, consider a deep architecture consisting of a stack of
autoencoders along the lines of Hinton et al. (2006). For any activity vector h in the
last hidden layer before the output layer, compute the set of points C(h) in the training
set that are mapped to h by the stacked architecture. Assume, without any loss of gen-
erality, that C(h) = {x1, . . . , xk} with corresponding targets {y1, . . . ,yk}. Then it is easy to
see that the final output for h produced by the top layer ought to be the centroid of the
targets given by Ma jority(y1, . . . ,yk)

5. Clustering Complexity on the Hypercube

In this section, we briefly review some results on clustering complexity and then prove
that the hypercube clustering decision problem is in general NP-complete. The com-
plexity of various clustering problems, in different spaces, or with different objective
functions, has been studied in the literature. There are primarily two kind of results: (1)
graphical results derived on graphs G = (V,E,∆) where the dissimilarity ∆ is not nec-
essarily a distance; and (2) geometric results derived in the Euclidean space Rd where
∆ = L2

2, L2, or L1. In general, the clustering decision problem is NP-complete and
the clustering optimization problem is NP-hard, except in some simple cases involv-
ing either a constant number k of clusters or clustering in the 1-dimensional Euclidean
space. In general, the results in Euclidean spaces are harder to derive than the results
on graphs. When polynomial time algorithms exist, geometric problems tend to have

49

Baldi

faster solutions taking advantage of the geometric properties. However, none of the
existing complexity theorems directly addresses the problem of clustering on the hy-
percube with respect to the Hamming distance.

Figure 3: Embedding of a 3×4 Square Lattice onto H7 by Edge Coloring. All edges in
the same row or column are given the same color. Each color corresponds to
one of the dimensions of the 7-dimensional hypercube. For any pair of points,
their Manhattan distance on the lattice is equal to the Hamming distance
between their images in the 7-dimensional hypercube.

To deal with the hypercube clustering problem one must first understand which
quantities are allowed to go to infinity. If n is not allowed to go to infinity, then the
number m of training examples is also bounded by 2n and, since we are assuming
p < n, there is no quantity that can scale. Thus by necessity we must have n→∞. We
must also have m→∞. The case of interest for machine learning is when m is a low
degree polynomial of n. Obviously the hypercube clustering problem is in NP, and it is
a special case of clustering in Rn. Thus the only important problem to be addressed is
the reduction of a known NP-complete problem to a hypercube clustering problem.

For the reduction, it is natural to start from a known NP-complete graphical or
geometric clustering problem. In both case, one must find ways to embed the original
problem with its original metric into the hypercube with the Hamming distance. There
are theorems for homeomorphic or squashed-embedding of graphs into the hypercube
(Hartman, 1976; Winkler, 1983), however these emebeddings do not map the original
dissimilarity function onto the the Hamming metric. Thus here we prefer to start from
some of the known geometric results and use a strict cubical graph embedding. A
graph is cubical if it is the subgraph of some hypercube Hd for some d (Harary, 1988;
Livingston and Stout, 1988). Although deciding whether a graph is cubical is NP-
complete (Afrati et al., 1985), there is a theorem (Havel and Morávek, 1972) providing
a necessary and sufficient condition for a graph to be cubical. A graph G(V,E) is cubical
and embeddable in Hd if and only if it is possible to color the edges of G with d colors

50

Autoencoders

such that: (1) All edges incident with a common vertex are of different color; (2) In
each path of G, there is some color that appears an odd number of times; and (3) In
each cycle of G, no color appears an odd number of times. We can now state and prove
the following theorem.
Theorem. Consider the following hypercube clustering problem:
Input: m binary vectors x1, . . . , xm of length n and an integer k.
Output: k binary vectors c1, . . . ,ck of length n (the centroids) and a function f from
{x1, . . . , xm} to {c1, . . . ,ck} that minimizes the distortion E =

∑m
t=1∆(xt, f (xt) where ∆ is

the Hamming distance. The hypercube clustering problem is NP hard when k ∼ mε

(ε > 0).
Proof. To sketch the reduction, we start from the problem of clustering m points in the
plane R2 using cluster centroids and the L1 distance, which is NP-complete (Megiddo
and Supowit, 1984) by reduction from 3-SAT (Garey and Johnson, 1979) when k ∼ mε

(ε > 0) (see, also related results in Mahajan et al. (2009) and Vattani (2010)). Without
any loss of generality, we can assume that the points in these problems lie on the ver-
tices of a square lattice. Using the theorem in Havel and Morávek (1972), one can show
that a n×m square lattice in the plane can be embedded into Hn+m. In fact, an explicit
embedding is given in Figure 3. It is easy to check that the L1 or Manhattan distance
between any two points on the square lattice is equal to the corresponding Hamming
distance in Hn+m. This polynomial reduction completes the proof that if the number of
cluster satisfies k = 2p ∼ mε , or equivalently p ∼ ε log2 m ∼ C logn, then the hypercube
clustering problem associated with the Boolean autoencoder is NP-hard, and the corre-
sponding decision problem NP-complete. If the numbers k of clusters is fixed and the
centroids must belong to the training set, there are only

(
m
k

)
∼ mk possible choices for

the centroids inducing the corresponding Voronoi clusters. This yields a trivial, albeit
not efficient, polynomial time algorithm. When the centroids are not required to be
in the training set, we conjecture also the existence of polynomial time algorithms by
adapting the corresponding theorems in Euclidean space.

6. The Case p ≥ n

When the hidden layer is larger than the input layer and F = G, there is an optimal
0-distortion solution involving the identity function. Thus this case is interesting only
if additional constraints are added to the problem. These can come in the form of
regularization, for instance to ensure sparsity of the hidden-layer representation, or
restrictions on the classes of functions A and B, or noise in the hidden layer (see next
section). When these constraints force the hidden layer to assume only k different values
and k < m, for instance in the case of a sparse Boolean hidden layer, then the previous
analyses hold and the problem reduces to a k clustering problem.

In this context of large hidden layers, in addition to vertical composition, there is
also a natural horizontal composition for autoencoders that can be used to create large
hidden layer representations (Figure 4) simply by horizontally combining autoencoders.
Two (or more) autoencoders with architectures n/p1/n and n/p2/n] can be trained and
the hidden layers can be combined to yield an expanded hidden representation of size

51

Baldi

p1 + p2 that can then be fed to the subsequent layers of the overall architecture. Dif-
ferences in the p1 and p2 hidden representations could be introduced by many different
mechanisms, for instance using different learning algorithms, different initializations,
different training samples, different learning rates, or different distortion measures. It
is also possible to envision algorithms that incrementally add (or remove) hidden units
to the hidden layer (Reed, 1993; Kwok and Yeung, 1997). In the linear case over R,
for instance, a first hidden unit can be trained to extract the first principal component,
a second hidden unit can then be added to extract the second principal component, and
so forth.

Figure 4: Horizontal Composition of Autoencoders to Expand the Hidden Layer Rep-
resentation. The hidden layers of two separate autoencoders can be combined
to yield a larger hidden representation of size p1+ p2 (see text).

7. Other Generalizations

Within the general framework introduced here, other kinds of autoencoders can be con-
sidered. First, one can consider mixed autoencoders with different constraints on F and
G, or different constraints onA and B. A simple example is when the input and output
layers are real F = R and the hidden layer is binary G = {0,1} (and ∆ = L2

2). It is easy
to check that in this case, as long as 2p = k < m, the autoencoder aims at clustering the
real data into k clusters and all the results obtained in the Boolean case are applicable
with the proper adjustments. For instance, the centroid associated with a hidden state
h should be the center of mass of the input vectors mapped onto h. In general, this
mixed autoencoder is also NP hard when k ∼mε and, from a probabilistic view point, it
corresponds to a mixture of k Gaussians model.

A second natural direction is to consider autoencoders that are linear but over fields
other than the real numbers, for instance over the field C of complex numbers (Baldi
et al., 2011), or over finite fields. For all these linear autoencoders, the Kernel of B

plays an important role since inputs vectors are basically clustered modulo this kernel.
These autoencoders are not without theoretical and practical interests. Consider the

52

Autoencoders

linear autoencoder over the Galois field with two elements GF(2) = F2. It is easy to
see that this is a special case of the Boolean autoencoder, where the Boolean functions
are restricted to parity functions. This autoencoder can also be seen as implementing a
linear code (McEliece, 1977). When there is noise in the ‘transmission” of the hidden
layer and p> n, one can consider solutions where n units in the hidden layer correspond
to the identity function and the remaining p−n units implement additional parity check
bits that are linearly computed from the input and used for error correction. Thus all
well known linear codes, such as Hamming or Reed-Solomon codes, can be viewed
within this linear autoencoder framework. While the linear autoencoder over F2 will be
discussed elsewhere, it is worth noting that it is likely to yield an NP-hard problem, as
for the case of the unrestricted Boolean autoencoder. This can be seen by considering
that finding the minimum (non-zero) weight vector in the kernel of a binary matrix,
or the radius of a code, are NP-complete problems (McEliece and van Tilborg, 1978;
Frances and Litman, 1997). A simple overall classification of autoencoders is given in
Figure 5.

Figure 5: Simple Autoencoder Classification.

8. Discussion

Studying the linear and Boolean autoencoder in detail enables one to gain a general
perspective on autoencoders, define key properties that are shared by different autoen-
coders and that ought to be checked systematically in any new kind of autoencoder
(e.g. group invariances, clustering, recycling stability). The general perspective also
shows the intimate connections between autoencoders and information and coding the-
ory: (1) autoencoders with n < p and a noisy hidden layer correspond to the classical

53

Baldi

noisy channel transmission and coding problem, with linear code over finite fields as
a special case; (2) autoencoders with n > p correspond to compression which can be
lossy when the number of states in the hidden layer is less than the number of training
examples (m > k) and lossless otherwise (m < k).

When n > p the general emerging picture is that autoencoders learning is in gen-
eral NP-complete 1 except in simple but important cases (e.g. linear over R, Boolean
with fixed k) and that in essence all autoencoders are performing some form of clus-
tering suggesting a unified view of different forms of unsupervised learning, where
Hebbian learning, autoencoders, and clustering are three faces of the same die. While
autoencoders and Hebbian rules provide unsupervised learning implementations, it is
clustering that provides the basic conceptual operation that underlies them. In addition,
it is important to note that in general clustering objects without providing a label for
each cluster is useless for subsequent higher levels of processing. In addition to clus-
tering, autoencoders provide a label for each cluster through the activity in the hidden
layer and thus elegantly address both the clustering and labeling problems at the same
time.

RBMs and their efficient contrastive learning algorithm may provide an efficient
form of autoencoder and autoencoder learning, but it is doubtful that there is anything
special about RBMs at a deeper conceptual level. Thus it ought to be possible to derive
results comparable to those described in Hinton et al. (2006) and Hinton and Salakhut-
dinov (2006) by stacking other kinds of autoencoders, and more generally by hierar-
chically stacking a series of clustering algorithms using vertical composition, perhaps
also in combination with horizontal composition. As pointed out in the previous sec-
tions, it is easy to add a top layer for supervised regression or classification tasks on
top of the hierarchical clustering stack. In aggregate, these results suggest that: (1) the
so-called deep architectures may in fact have a non-trivial but constant (or logarithmic)
depth, which is also consistent with what is observed in sensory neuronal circuits; (2)
the fundamental unsupervised operation behind deep architectures, in one form or the
other, is clustering, which is composable both horizontally and vertically–in this view,
clustering may emerge as the central and almost sufficient ingredient for building intel-
ligent systems; and (3) the generalization properties of deep architectures may be easier
to understand when ignoring many of the hardware details, in terms of the most simple
forms of autoencoders (e.g Boolean), or in terms of the more fundamental underlying
clustering operations.

Acknowledgments

Work in part supported by grants NSF IIS-0513376, NIH LM010235, and NIH-NLM
T15 LM07443 to PB.

1. RBM learning is NP-complete by similarity with minimizing a quadratic form over the hypercube.

54

Autoencoders

References

F. Afrati, C.H. Papadimitriou, and G. Papageorgiou. The complexity of cubical graphs.
Information and control, 66(1-2):53–60, 1985.

P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning
from examples without local minima. Neural Networks, 2(1):53–58, 1988.

P. Baldi, S. Forouzan, and Z. Lu. Complex-Valued Autoencoders. Neural Networks,
2011. Submitted.

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In L. Bottou,
O. Chapelle, D. DeCoste, and J. Weston, editors, Large-Scale Kernel Machines. MIT
Press, 2007.

H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular
value decomposition. Biological cybernetics, 59(4):291–294, 1988. ISSN 0340-
1200.

P. Clote and E. Kranakis. Boolean functions and computation models. Springer Verlag,
2002.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal
Vincent, and Samy Bengio. Why does unsupervised pre-training help deep learning?
Journal of Machine Learning Research, 11:625–660, February 2010.

M. Frances and A. Litman. On covering problems of codes. Theory of Computing

Systems, 30(2):113–119, 1997.

B.J. Frey and D. Dueck. Clustering by passing messages between data points. Science,
315(5814):972, 2007.

M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman San Francisco,
1979.

F. Harary. Cubical graphs and cubical dimensions. Computers & Mathematics with

Applications, 15(4):271–275, 1988.

J. Hartman. The homeomorphic embedding of Kn in the m-cube* 1. Discrete Mathe-

matics, 16(2):157–160, 1976.

I. Havel and J. Morávek. B-valuations of graphs. Czechoslovak Mathematical Journal,
22(2):338–351, 1972.

D.O. Hebb. The organization of behavior: A neurophychological study. WileyInter-

science, New York, 1949.

G.E. Hinton and R.R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504, 2006.

55

Baldi

G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep belief nets.
Neural Computation, 18(7):1527–1554, 2006.

T. Kwok and D. Yeung. Constructive Algorithms for Structure Learning in Feedforward
Neural Networks for Regression Problems. IEEE Transactions on Neural Networks,
8:630–645, 1997.

M. Livingston and Q.F. Stout. Embeddings in hypercubes. Mathematical and Computer

Modelling, 11:222–227, 1988.

M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The planar k-means problem is NP-
hard. WALCOM: Algorithms and Computation, pages 274–285, 2009.

R. McEliece and H. van Tilborg. On the inherent intractability of certain coding prob-
lems(Corresp.). IEEE Transactions on Information Theory, 24(3):384–386, 1978.

R. J. McEliece. The Theory of Information and Coding. Addison-Wesley Publishing
Company, Reading, MA, 1977.

N. Megiddo and K.J. Supowit. On the complexity of some common geometric location
problems. SIAM J. COMPUT., 13(1):182–196, 1984.

G. Montufar and N. Ay. Refinements of Universal Approximation Results for Deep
Belief Networks and Restricted Boltzmann Machines. Neural Computation, pages
1–14, 2011. ISSN 0899-7667.

E. Oja. Simplified neuron model as a principal component analyzer. Journal of mathe-

matical biology, 15(3):267–273, 1982.

R. Reed. Pruning algorithms-a survey. Neural Networks, IEEE Transactions on, 4(5):
740–747, 1993.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations
by error propagation. In Parallel Distributed Processing. Vol 1: Foundations. MIT
Press, Cambridge, MA, 1986.

JL Slagle, CL Chang, and SR Heller. A clustering and data reorganization algorithm.
IEEE Transactions on Systems, Man and Cybernetics, 5:121–128, 1975.

I. Sutskever and G.E. Hinton. Deep, narrow sigmoid belief networks are universal
approximators. Neural Computation, 20(11):2629–2636, 2008.

A. Vattani. A simpler proof of the hardness of k-means clustering in the plane. UCSD

Technical Report, 2010.

P.M. Winkler. Proof of the squashed cube conjecture. Combinatorica, 3(1):135–139,
1983.

56

JMLR: Workshop and Conference Proceedings 27:51–64, 2012 Unsupervised and Transfer Learning

Information Theoretic Model Selection for Pattern Analysis

Joachim M. Buhmann jbuhmann@inf.ethz.ch

Morteza Haghir Chehreghani morteza.chehreghani@inf.ethz.ch

Mario Frank mario.frank@inf.ethz.ch

Andreas P. Streich andreas.streich@alumni.ethz.ch

Department of Computer Science, ETH Zurich, Switzerland

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

Exploratory data analysis requires (i) to define a set of patterns hypothesized to ex-
ist in the data, (ii) to specify a suitable quantification principle or cost function to
rank these patterns and (iii) to validate the inferred patterns. For data clustering,
the patterns are object partitionings into k groups; for PCA or truncated SVD, the
patterns are orthogonal transformations with projections to a low-dimensional space.
We propose an information theoretic principle for model selection and model-order
selection. Our principle ranks competing pattern cost functions according to their
ability to extract context sensitive information from noisy data with respect to the
chosen hypothesis class. Sets of approximative solutions serve as a basis for a com-
munication protocol. Analogous to Buhmann (2010), inferred models maximize the
so-called approximation capacity that is the mutual information between coarsened
training data patterns and coarsened test data patterns. We demonstrate how to ap-
ply our validation framework by the well-known Gaussian mixture model and by a
multi-label clustering approach for role mining in binary user privilege assignments.

Keywords: Unsupervised learning, data clustering, model selection, information the-
ory, maximum entropy, approximation capacity

1. Model Selection via Coding

Model selection and model order selection [Burnham and Anderson (2002)] are fun-
damental problems in pattern analysis. A variety of models and algorithms has been
proposed to extract patterns from data, i.e., for clustering, but a comprehensive theory
on how to choose the “right” pattern model given the data is still missing. Statistical
learning theory as in Vapnik (1998) advocates to measure the generalization ability of
models and to employ the prediction error as a measure of model quality. In particular,
stability analysis of clustering solutions has shown very promising results for model or-
der selection in clustering [Dudoit and Fridlyand (2002); Lange et al. (2004)], although
discussed controversially by Ben-David et al. (2006). Stability is, however, only one
aspect of statistical modeling, e.g., for unsupervised learning. The other aspect of the
modeling tradeoff is characterized by the informativeness of the extracted patterns. A
tolerable decrease in the stability of inferred patterns in the data (data model) might be

© 2012 J.M. Buhmann, M.H. Chehreghani, M. Frank & A.P. Streich.

Buhmann Chehreghani Frank Streich

compensated by a substantial increase of their information content (see also the discus-
sion in Tishby et al. (1999)).

We formulate a principle that balances these two antagonistic objectives by trans-
forming the model selection problem into a coding problem for a generic communi-
cation scenario. Thereby, the objective function or cost function that maps patterns
to quality scores is considered as a noisy channel. Different objectives are ranked ac-
cording to their transmission properties and the cost function with the highest channel
capacity is then selected as the most informative model for a given data set. Thereby,
we generalize the set-based coding scheme proposed by Buhmann (2010) to sets of
weighted hypotheses in order to simplify the embedding of pattern inference problems
in a communication framework. Learning, in general, resembles communication from
a conceptual viewpoint: For communication, one demands a high rate (a large amount
of information transferred per channel use) together with a decoding rule that is stable
under the perturbations of the messages by the noise in the channel. For learning pat-
terns in data, the data analyst favors a rich model with high complexity (e.g., a large
number of clusters in grouping), while the generalization error of test patterns is ex-
pected to remain stable and low. We require that solutions of pattern analysis problems
are reliably inferred from noisy data.

This article first summarizes the information theoretic framework of weighted ap-
proximation set coding (wASC) for validating statistical models. We then demonstrate,
for the first time, how to practically transform a pattern recognition task into a commu-
nication setting and how to compute the capacity of clustering solutions. The feasibility
of wASC is demonstrated for mixture models and real world data.

2. Brief Introduction to Approximation Set Coding

In this section, we briefly describe the theory of weighted Approximation Set Coding
(wASC) for pattern analysis as proposed by Buhmann (2010).

Let X = {X1, . . . ,Xn} ∈X be a set of n objects O and n measurements in a data space
X, where the measurements characterize the objects. Throughout the paper, we assume
the special case of a bijective map between objects and measurements, i.e., the ith object
is isomorphic to the vector xi ∈RD. In general, the (object, measurement) relation might
be more complex than an object-specific feature vector.

A hypothesis, i.e. a solution of a pattern analysis problem, is a function c that
assigns objects (e.g. data) to patterns of a pattern space P:

c : X→ P, X -→ c(X). (1)

Accordingly, the hypothesis class is the set of all such functions, i.e. C(X) := {c(X) :
X ∈ X}. For clustering, the patterns are object partitionings P = {1, . . . ,k}n. A model
for pattern analysis is characterized by a cost or objective function R(c,X) that assigns
a real value to a pattern c(X). To simplify the notation, model parameters θ (e.g.,
centroids) are not explicitly listed as arguments of the objective function. Let c⊥(X)
be the pattern that minimizes the cost function, i.e. c⊥(X) ∈ argminc R(c,X). As the

58

Model Selection for Pattern Analysis

measurements X are random variables, the global minimum c⊥(X) of the empirical
costs is a random variable as well. In order to rank all solutions of the pattern analysis
problem, we introduce approximation weights

w : C×X×R+→ [0,1] , (c,X,β) -→ wβ(c,X) . (2)

The weights are chosen to be non-negative wβ(c,X)≥ 0, the maximal weight is allocated
to the global minimizer c⊥ and it is normalized to one (wβ(c

⊥,X) = 1). Semantically,
the weights wβ(c,X) quantify the quality of a solution w.r.t. the global minimizer of
R(.,X). The scaling parameter β controls the size of the solution set. Large β yields a
small solution set and small β renders many solutions as good approximations of the
minimizer c⊥(X) in terms of costs, i.e., wβ(c,X) > 1− ε denotes that c is regarded as
an ε/β-good approximation of the minimal costs R(c⊥,X). Therefore, we also require
that weights fulfil the inverse order constraints compared to costs, i.e., a solution c with
lower or equal costs than c̃ should have a larger or equal weight, i.e.,

R(c,X) ≤ R(c̃,X) ⇐⇒ wβ(c,X) ≥ wβ(c̃,X) . (3)

Given a cost function R(c,X)) these order constraints determine the weights up to a
monotonic (possibly nonlinear) transformation f (.) which effectively rescales the costs
(R̃(c,X) = f (R(c,X))). The family of (Boltzmann) weights

wβ(c,X) := exp
(
−β∆R(c,X)

)
, with ∆R(c,X) := R(c,X)−R(c⊥,X)) (4)

parameterized by the inverse computational temperature β, fulfils these requirements.
Although the Boltzmann weights are a special choice, all other weighting schemes can
be explained by a monotonic rescaling of the costs.

Conceptually, wASC assumes a “two sample set scenario” as in Tishby et al. (1999).
Let X(q),q ∈ {1,2}, be two datasets with the same inherent structure but different noise
instances. In most cases, their sets of global minima differ, i.e. {c⊥(X(1))}∩ {c⊥(X(2))} =
∅, demonstrating that the global minimizers often lack robustness to fluctuations. The
approximation weights (2) have been introduced to cure this instability. Solutions with
large approximation weights wβ(c,X) ≥ 1− ε, ε 2 1 can be accepted as substitutes of
the global minimizers. Adopting a learning theoretic viewpoint, the set of solutions
with large weights generalizes significantly better than the set of global minimizers,
provided that β is suitably chosen. The concept wASC serves the purpose to determine
such an appropriate scale β. The two data sets X(q),q ∈ {1,2}, define two weight sets
wβ(c,X

(q)). These weights give rise to the two weight sumsZq and the joint weight sum

Z12

Zq :=Z(X(q)) =
∑

c∈C(X(q))

exp
(
−β∆R(c,X(q))

)
, q = 1,2 (5)

Z12 :=Z(X(1),X(2)) =
∑

c∈C(X(2))

exp
(
−β(∆R(c,X(1))+∆R(c,X(2)))

)
, (6)

where exp(−β(∆R(c,X(1)) + ∆R(c,X(2)))) measures how well a solution c minimizes
costs on both datasets. The sums (5,6) play a central role in our framework. If β = 0,

59

Buhmann Chehreghani Frank Streich

all weights wβ(c,X) = 1 are independent of the costs. In this case, Zq = |C(X(q))| in-
dicates the size of the hypothesis space, and Z12 =Z1 =Z2. For high β, all weights
are small compared to the weight wβ(c

⊥,X(q)) of the global optimum and the weight
sum essentially counts the number of globally optimal solutions. For intermediate β,
Z(·) takes a value between 0 and |C(X(q))|, giving rise to the interpretation of Z(·) as
the effective number of patterns that approximately fit the dataset X(q), where β defines
the precision of this approximation. Essentially, Zq counts all statistically indistin-
guishable data patterns that approximate the minimum of the objective function. The
global optimum c⊥(X) can change whenever we optimize on another random subset
of the data, whereas, for a well-tuned β, the set of weights {wβ(c,X)} remains approx-
imately invariant. Therefore, β defines the resolution of the hypothesis class that is
relevant for inference. Noise in the measurements X reduces this resolution and thus
coarsens the hypothesis class. As a consequence, the key problem of learning is to con-
trol the resolution optimally: How high can β be chosen to still ensure identifiability
of {wβ : wβ(c,X) ≥ 1− ε} in the presence of data fluctuations? Conversely, choosing β
too low yields a too coarse resolution of solutions and does not capture the maximal
amount of information in the data.

We answer this key question by means of a communication scenario. The commu-
nication architecture includes a sender S and a receiver R with a problem generator

PG between the two terminals S, R (see Fig. 1). The communication protocol is or-
ganized in two stages: (i) design of a communication code and (ii) the communication
process.

For the communication code, we adapt Shannon’s random coding scenario, where
a codebook of random bit strings covers the space of all bit strings. In random coding,
the sender sends a bit string and the receiver observes a perturbed version of this bit
string. For decoding, the receiver has to find the most similar codebook vector in the
codebook which is the decoded message. In the same spirit, for our scenario, the sender
must communicate patterns to the receiver via noisy datasets. Since we are interested
in patterns with low costs, the optimal pattern c⊥(X(1)) can serve as a message. The
other patterns in the codebook are generated by transforming the training data τ ◦X(1)

with the transformation τ ∈ T := {τ1, ...,τ2nρ}. The number of codewords is 2nρ and ρ is
the rate of the protocol. The choice of such transformations depends on the hypothesis
class and they have to be equivariant, i.e., the transformed optimal pattern equals the
optimal pattern of the transformed data τ ◦ c(X(1)) = c(τ ◦X(1)). In data clustering,
permuting the indices of the objects defines the group of transformations to cover the
pattern space. Each clustering solution c ∈ C(X(1)) can be transformed into another
solution by a permutation τ on the indices of c.

To communicate, S selects a transformation τs ∈ T and sends it to a problem gen-

erator PG as depicted in Fig. 1. PG then generates a new dataset X(2), applies the
transformation τs, and sends the resulting data X̃ := τs ◦X(2) to R. On the receiver side,
the lack of knowledge on the transformation τs is mixed with the stochastic variability
of the source generating the data X. R has to estimate the transformation τ̂ based on X̃.
The decoding rule of R selects the pattern transformation τ̂ that yields the highest joint

60

Model Selection for Pattern Analysis

sender S

problem
generator
PG

receiver R τ̂
encoding

τ

decoding

τ◦X(2)

Figure 1: Communication process: (1) the sender selects transformation τ, (2) the
problem generator draws X(2) ∼ P(X) and applies τ to it, and (3) the receiver
estimates τ̂ based on X̃ = τ◦X(2).

weight sum of τ̂◦X(1) and X̃, i.e.,

τ̂ ∈ argmax
τ∈T

∑

c∈C(X(1))

exp(−β(R(c,τ◦X(1))+R(c, X̃))) . (7)

In the absence of noise in the data, we have X(1) = X(2), and error-free communication
works even for β→ ∞. The higher the noise level, the lower we have to choose β
in order to obtain weight sums that are approximately invariant under the stochastic
fluctuations in the measurements thus preventing decoding errors. The error analysis
of this protocol investigates the probability of decoding error P(τ̂ ! τs|τs). As derived
for an equivalent channel in Buhmann (2011), an asymptotically vanishing error rate is
achievable for rates

ρ ≤ Iβ(τs, τ̂) =
1

n
log

(
|{τs}|Z12

Z1 ·Z2

)
=

1

n

(
log
|{τs}|
Z1
+ log

|C(2)|
Z2
− log

|C(2)|
Z12

)
(8)

The three logarithmic terms in eq.(8) denote the mutual information between the coars-
ening of the pattern space on the sender side and the coarsening of the pattern space on
the receiver side.

The cardinality |{τs}| is determined by the number of realizations of the random
transformation τ, i.e. by the entropy of the type (in an information theoretic sense) of
the empirical minimizer c⊥(X). As the entropy increases for a large number of patterns,
|{τs}| accounts for the model complexity or informativeness of the solutions. For noisy
data, the communication rate is reduced as otherwise the solutions can not be resolved
by the receiver. The relative weights are determined by the termZ12/(Z1 ·Z2) ∈ [0,1]
which accounts for the stability of the model under noise fluctuations.

In analogy to information theory, we define the approximation capacity as

CAP(τs, τ̂) =max
β
Iβ(τs, τ̂) . (9)

Using these entities, we can describe how to apply the wASC principle for model se-
lection from a set of cost functions R: Randomly split the given dataset X into two
subsets X(1) and X(2). For each candidate cost function R(c,X) ∈R, compute the mutual
information (eq. 8) and maximize it with respect to β. Then select the cost function that
achieves highest capacity at the best resolution β*.

61

Buhmann Chehreghani Frank Streich

There exists a long history of information theoretic approaches to model selection,
which traces back at least to Akaike’s extension of the Maximum Likelihood principle.
AIC penalizes fitted models by twice the number of free parameters. The Bayesian
Information Criterion (BIC) suggests a stronger penalty than AIC, i.e., number of model
parameters times logarithm of the number of samples. Rissanen’s minimum description
length principles is closely related to BIC (see e.g. Hastie et al. (2008) for model
selection penalties). Tishby et al. (1999) proposed to select the number of clusters
according to a difference of mutual informations which they called the imformation
bottleneck. This asymptotic concept is closely related to rate distortion theory with
side information (see Cover and Thomas (2006)). Finite sample size corrections of
the information bottleneck allowed Still and Bialek (2004) to determine an optimal
temperature with a prefered number of clusters.

3. Approximation Capacity for Parametric Clustering Models

Let X(q),q ∈ {1,2} be two datasets drawn from the same source. We consider a paramet-
ric clustering model with K clusters. Then the cost function can be written as

R(c,X) =
n∑

i=1

εi,c(i) with ∀i, c(i) ∈ {1, ..,K} . (10)

εi,c(i) indicates the costs of assigning object i to cluster c(i). These costs εi,c(i) also
contains all relevant parameters to identify a clustering solution, e.g. centroids. In the
well-known case of k-means clustering we derive εi,c(i) = ‖xi− yc(i)‖2.

Calculating the approximation capacity requires the following steps:

1. Identify the hypothesis space of the models and compute the cardinality of the
set of possible transformations |{τs}|.

2. Calculate the weight sumsZq , q = 1,2, and the joint weight sumZ12.

3. Maximize Iβ in Eq. (8) with respect to β.

In clustering problems, the hypothesis space is spanned by all possible assignments
of objects to sources. The appropriate transformation in clustering problems is the
permutation of objects. Albeit a solution contains the cluster assignments and cluster
parameters like centroids, the centroid parameters contribute almost no entropy to the
solution. With given cluster assignments the solution is fully determined as the objects
of each cluster pinpoint the centroids to a particular vector. With the permutation trans-
formations one can construct all clusterings starting from a single clustering. However,
as the mutual information in Eq. (8) is estimated solely based on the identity trans-
formation, one can ignore the specific kind of transformations when computing this
estimate. The cardinality |{τs}| is then the number of all distinct clusterings on X(1).

62

Model Selection for Pattern Analysis

We obtain the individual weight sums and the joint weight sum by summing over
all possible clustering solutions

Zq =
∑

c∈C(X(q))

exp

−β

n∑

i=1

ε
(q)
i,c(i)

 =

n∏

i=1

K∑

k=1

exp
(
−βε(q)

i,k

)
,q = 1,2, (11)

Z12 =
∑

c∈C(X(2))

exp

−β

n∑

i=1

(ε(1)
i,c(i)+ ε

(2)
i,c(i))

 =

n∏

i=1

K∑

k=1

exp
(
−β

(
ε

(1)
i,k
+ ε

(2)
i,k

))
. (12)

By substituting these weight sums to Eq. (8), the mutual information amounts to

Iβ =
1

n
log |{τs}|+

1

n

n∑

i=1

log

K∑

k=1

e−β
(
ε

(1)
i,k
+ε

(2)
i,k

)
− log

K∑

k=1

e−βε
(1)
i,k

K∑

k′=1

e
−βε(2)

i,k′

 . (13)

The approximation capacity is numerically determined as the maximum of Iβ over β.

4. Approximation Capacity for Mixtures of Gaussians

In this section, we demonstrate the principle of maximum approximation capacity on
the well known Gaussian mixture model (GMM). We first study the approximation set
coding for GMMs and then we experimentally compare it against other model selection
principles.

4.1. Experimental Evaluation of Approximation Capacity

A GMM with K components is defined as p(x) =
∑K

k=1πk N(x | µk,Σ), with non-
negative πk and

∑
k πk = 1. For didactical reasons, we do not optimize the covariance

matrix Σ and simply fix it to Σ = 0.5 · I. Then, maximizing the GMM likelihood es-
sentially reduces to centroid-based clustering. Therefore, εi,k := ‖xi−µk‖2 indicates the
costs of assigning object i to cluster k.

For experimental evaluation, we define K = 5 Gaussians with parameters πk =

1/K, µ ∈ {(1,0), (0,1.5), (−2,0), (0,−3), (4.25,−4)}, and with covariance Σ = 0.5 · I. Let
X(q),q ∈ {1,2} be two datasets of identical size n = 10,000 drawn from these Gaussians.
We optimize the assignment variables and the centroid parameters of our GMM model
via annealed Gibbs sampling [Geman and Geman (1984)]. The computational tempera-
ture in Gibbs sampling is equivalent to the assumed width of the distributions. Thereby,
we provide twice as many clusters to the model in order to enable overfitting. Start-
ing from a high temperature, we successively cool down while optimizing the model
parameters. In Figure 2(a), we illustrate the positions of the centroids with respect to
the center of mass. At high temperature, all centroids coincide, indicating that the op-
timizer favors one cluster. As the temperature is lowered further, the centroids separate
into increasingly many clusters until, finally, the sampler uses all 10 clusters to fit the
data.

Figure 2(b) shows the numerical analysis of the mutual information in Eq. (13).
When the stopping temperature of the Gibbs sampler coincides with the temperature

63

Buhmann Chehreghani Frank Streich

β−1 that maximizes mutual information, we expect the best tradeoff between robustness
and informativeness. And indeed, as illustrated in Figure 2(a), the correct model-order
K̂ = 5 is found at this temperature. At lower stopping temperatures, the clusters split
into many instable clusters which increases the decoding error, while at higher temper-
atures informativeness of the clustering solutions decreases.

4.2. Comparison with other principles

We compare approximation capacity against two other model order selection principles:
i) generalization ability, and ii) BIC score.

Relation to generalization ability: A properly regularized clustering model explains
not only the dataset at hand, but also new datasets from the same source. The inferred
model parameters and assignment probabilities from the first dataset X(1) can be used
to compute the costs for the second dataset X(2). The appropriate clustering model
yields low costs on X(2), while very informative but unstable structures and also very
stable but little informative structures have high costs due to overfitting or underfitting,
respectively.

We measure this generalization ability by computing the “transfer costs” R(c(1),X(2))
[Frank et al. (2011)]: At each stopping temperature of the Gibbs sampler, the current
parameters µ(1) and assignment probabilities P(1) inferred from X(1) are transfered to
X(2). The assignment probabilities P(1) assume the form of a Gibbs distribution

p(µ(1)
k
|x(1)

i
) = Z−1

x exp
(
−β‖x(1)

i
−µ(1)

k
‖2

)
, (14)

with Zx as the normalization constant. The expected transfer costs with respect to these
probabilities are then

〈
R(c(1),X(2))

〉
=

n∑

i=1

K∑

k=1

p(x(1)
i
,µ

(1)
k

)‖x(2)
i
−µ(1)

k
‖2 ≈

1

n

n∑

n=1

K∑

k=1

p(µ(1)
k
|x(1)

i
)‖x(2)

i
−µ(1)

k
‖2 ,

(15)
Figure 2(b) illustrates the transfer costs as a function of β and compares it with

the approximation capacity. The optimal transfer costs are obtained at the stopping
temperature that corresponds to the approximation capacity.

Relation to BIC Arguably the most popular criterion for model-order selection is
BIC as proposed by Schwarz (1978). It is, like wASC, an asymptotic principle, i.e. for
sufficiently many observations, the fitted model preferred by BIC ideally corresponds
to the candidate which is a posteriori most probable. However, the application of BIC is
limited to models where one can determine the number of free parameters as here with
GMM. Figure 2(c) confirms the consistency of wASC with BIC in finding the correct
model order in our experiment.

5. Model Selection for Boolean matrix factorization

To proceed with studying different applicability aspects of wASC, we now consider
the task to select one out of four models for factorizing a Boolean matrix with the

64

Model Selection for Pattern Analysis

(a) Clustering hierarchy (b) Mutual info. and transfer costs

(c) BIC measure

Figure 2: Annealed Gibbs sampling for GMM: Influence of the stopping temperature
for annealed optimization on the mutual information, on the transfer costs
and on the positions of the cluster centroids. The lowest transfer cost is
achieved at the temperature with highest mutual information. This is the
lowest temperature at which the correct number of clusters K̂ = 5 is found.
The hierarchy in Fig. 2(a) is obtained by projecting the two-dimensional cen-
troids at each stopping temperature to the optimal one-dimensional subspace
using multidimensional scaling. BIC verifies correctness of K̂ = 5.

clustering method proposed in Streich et al. (2009). Experiments with known ground
truth allow us to rank these models according to their parameter estimation accuracy.
We investigate whether wASC reproduces this ranking.

5.1. Data and Models

Consider binary data X ∈ {0,1}n×D in D dimensions, where a row xi describes a single
data item. Each data item i is assigned to a set of sourcesLi, and these sources generate
the measurements xi of the data item. The probabilities vk,d of a source k to emit a
zero in dimension d parameterize the sources. To generate a data item i, one sample
is drawn from each source in Li. In each dimension d, the individual samples are then
combined via the Boolean OR to obtain the structure part of the data item x̃i. Finally,
a noise process generates the xi by randomly selecting a fraction of ε elements and

65

Buhmann Chehreghani Frank Streich

replacing them with random values. Following this generative process, the negative
log-likelihood is R =

∑
i Ri,Li , where the individual costs of assigning data item i to

source set Li are

Ri,Li = −
D∑

d=1

log
(
(1− ε)

(
1− vLi,d

)xid v1−xid

Li,d
+ ε rxid (1− r)1−xid

)
. (16)

Multi-Assignment Clustering (MAC) supports the simultaneous assignment of one data
item to more than one source, i.e. the source sets can contain more than one element
(|Li| ≥ 1), while Single-Assignment Clustering (SAC) has the constraint |Li| = 1 for
all i. Hence, when MAC has K sources and L different source combinations, the SAC
model needs L independent sources for an equivalent model complexity. For MAC,
vLi,d :=

∏
λ∈Li

vλ,d is the product of all source parameters in assignment set Li, while
for SAC, vLi,d is an independent parameter of the cluster indexed by Li. SAC thus has
to estimate L ·D parameters, while MAC uses the data more efficiently to only learn
K ·D parameters of the individual modes.

The model parameter ε is the mixture weight of the noise process, and r is the
probability for a noisy bit to be 1. Fixing ε = 0 corresponds to a generative model
without noise process.

In summary, there are four model variants, each one defined by the constraints of
its parameters: MAC models are characterized by |Li| ≥ 1, v ∈ [0,1]K·D, SAC models
by |Li| = 1, v ∈ [0,1]L·D; generative models without noise are described by ε = 0 and its
noisy version by ε ∈ [0,1[.

5.2. Computation of the approximation capacity.

For the cost function in Eq. (16) the models. solutions in the hypothesis space. the
hypothesis space is spanned by all possible assignments of objects to source combi-
nations. A solution (a point in this hypothesis space) is encoded by the n source-sets
Li, i ∈ {1, ..,n} with |Li| ∈ {1, ..,K}. We explained in the last section that L has the same
magnitude for all four model variants. Therefore, the hypothesis space of all four mod-
els equals in cardinality. In the following, we use the running index L to sum over all
L possible assignment sets.

As the probabilistic model factorizes over the objects (and therefore the costs are a
sum over object-wise costs R(vLi∗,x

(q)
i∗) in Eq. (16)) we can conveniently sum over the

entire hypothesis space by summing over all possible assignment sets for each object,
similar as described in Section 3. The weight sums are then

Z(q) =

n∏

i=1

L∑

L=1

exp
(
−βR(vL∗,x

(q)
i∗)

)
, q = 1,2 , (17)

Z12 =

n∏

i=1

L∑

L=1

exp
(
−β(R(vL∗,x

(1)
i∗)+R(vL∗,x

(2)
i∗))

)
. (18)

66

Model Selection for Pattern Analysis

where the two datasets must be aligned before computing R(vL∗,x
(2)
i∗) such that x(1)

i∗ and

x(2)
i∗ have a high probability to be generated by the same sources. In this particular

experiment we guaranteed alignment by generation of the data. With real-world data
one must use a mapping function as, for instance, in Frank et al. (2011).

The weight sums of the four model variants differ only in the combined source es-
timates vL∗,∀L. We train these estimates on the first dataset x(1) prior to computing the
mutual information Eq. (8). Having the formulas for the weight sums, one can readily
evaluate the mutual information as a function of the inverse computational temperature
β. We maximize this function numerically for each of the model variants.

5.3. Experiments

We investigate the dependency between the accuracy of the source parameter estima-
tion and the approximation capacity. We choose a setting with 2 sources and we draw
100 samples from each source as well as from the combination of the two sources. The
sources have 150 dimensions and a Hamming distance of 40 bits. To control the diffi-
culty of the inference problem, the fraction ε of random bits varies between 0 and 0.99.
The parameter of the Bernoulli-noise process is set to r = 0.75. The model parameters
are then estimated by MAC and SAC both with and without a noise model. We use
the true model order, i.e. K = 2 and L = 3 and infer the parameters by deterministic
annealing Rose (1998).

The mismatch of the estimates to the true sources and the approximation capacity
are displayed in Figures 3(a) and 3(b), both as a function of the noise fraction ε. Each
method has very precise estimates up to a model-dependent critical noise level. For
higher noise values, the accuracy breaks down. For both MAC and SAC, adding a noise
model shifts this performance decay to a higher noise level. Moreover, MACmix esti-
mates the source parameters more accurately than SACmix and shows its performance
decay at a significantly increased noise levels. The approximation capacity (Fig. 3(b))
confirms this ranking. For noise-free data (ε = 0), all four models attain the theoretical
maximum of the approximation capacity, log2(3) bits. As ε increases, the approxima-
tion capacity decreases for all models, but we observe vast differences in the sensitivity

(a) Source Estimation Mismatch (b) Approximation Capacity

Figure 3: Error of source parameter estimation versus approximation capacity.

67

Buhmann Chehreghani Frank Streich

of the capacity to the noise level. Two effects decrease the capacity: inaccurately es-
timated parameters and (even with perfect estimates) the noise in the data that favors
the assignment probabilities of an object to clusters to be more uniform (for ε = 1 all
clusters are equally probable). In conclusion, the wASC agrees with the ranking by
parameter accuracy. We emphasize that parameter accuracy requires knowledge of the
true source parameters while wASC requires only the data at hand.

6. Phase Transition in Inference

This section discusses phase transitions and learnability limits. We review theoretical
results and show how the wASC principle can be employed to verify them.

6.1. Phase Transition of Learnability

Let the two centroids µk, k = 1,2, be orthogonal to each other and let them have equal
magnitudes: |µ1| = |µ2|. The normalized separation u is defined as u := |µ1−µ2|/

√
2σ0,

where σ0 indicates the variance of the underlying Gaussian probability distributions
with Σ = σ0 · I. We consider the asymptotic limit D→∞ while α := n/D, σ0 and u

are kept finite as described in Barkai et al. (1993). In this setting, the complexity of
the problem, measured by the Bayes error, is proportional to

√
1/D. Therefore, we

decrease the distance between the centroids by a factor of
√

1/D when going to higher
dimensions in order to keep the problem complexity constant. Similar to the two di-
mensional study, we use annealed Gibbs sampling to estimate the centroids µ1, µ2 at
different temperatures. The theory of this problem is studied in Barkai and Sompolinsky
(1994) and Witoelar and Biehl (2009). The study shows the presence of different phases
depending on the values of stopping temperature and α. We introduce the same param-
eters as in Barkai and Sompolinsky (1994): The separation vector ∆µ̂ = (µ̂1 − µ̂2)/2,
as well as the order parameters s = σ0|∆µ̂|2 (the separation between the two estimated
centers) and r = ∆µ̂ ·∆µ/u (the projection of the distance vector between the estimated

(a) Phase Diagram (b) Overlap (c) Mutual Information

Figure 4: Experimental study of the overlap r and the mutual information Iβ in dif-
ferent learnability limits. The problem complexity is kept constant while
varying the number of objects per dimension α.

68

Model Selection for Pattern Analysis

centroids onto the distance vector between the true centroids). Computing these or-
der parameters guides to construct the phase diagram. Thereby, we sample n = 500
data items from two Gaussian sources with orthogonal centroids µ1, µ2 and equal prior
probabilities π1 = π2 = 1/2, and fix the variance σ0 at 1/2. We vary α by changing
the dimensionality D. To keep the Bayes error fixed, we simultaneously adapt the nor-
malized distance. For different values of α we perform Gibbs sampling and infer the
estimated centroids µ̂1 and µ̂2 at varying temperature. Then we compute the order pa-
rameters and thereby obtain the phase diagram shown in Fig. 4(a) which is consistent
with the theoretical and numerical study in Barkai and Sompolinsky (1994):

Unsplit phase: s= r=0. For high temperature and large α the estimated cluster cen-
troids coincide, i.e. µ̂1 = µ̂2.

Ordered split phase: s,r!0. For values of α > αc = 4u−4, the single cluster obtained
in the unsplit phase splits into two clusters such that the projection of the distance
vector between the two estimated and the two true sources is nonzero.

Random split phase: s! 0,r = 0. For α<αc, the direction of the split between the two
estimated centers is random. Therefore, r vanishes in the asymptotic limits. The
experiments also find such a meta-stability at low temperatures which correspond
to the disordered spin-glass phase in statistical physics.

Therefore, as temperature decreases, different types of phase transitions can be ob-
served:

1. α7 αc: Unsplit → Ordered. We investigate this scenario by choosing D = 100
and then α = 5. The order parameter r in Fig. 4(b) shows the occurrence of such
a phase transition.

2. α ! αc: Unsplit→ Ordered→ Random. With n = D = 500, we then have α = 1.
The behavior of the parameter r is consistent with the phase sequence “Unsplit
→ Ordered → Random” as the temperature decreases. This result is consistent
with the previous study in Barkai and Sompolinsky (1994).

3. α2 αc: Random phase. With the choice of D = 3000,α = 1/6 then r is always
zero. This means there is almost no overlap between the true and the estimated
centroids.

As mentioned before, changing the dimensionality affects the complexity of the prob-
lem. Therefore, we adapt the distance between the true centroids to keep the Bayes
error fixed. In the following, we study the approximation capacity for each of these
phase transitions and compare them with the results we obtain in simulations.

6.2. Approximation Capacity of Phase Transition in Learnability Limits

Given the two datasets X(1) and X(2) drawn from the same source, we calculate the
mutual information between the first and the second datasets according to Eq. 13. We
again numerically compute the mutual information Iβ for the entire interval of β to
obtain the approximation capacity (Eq. 9). Figure 4(c) shows this numerical analysis for
the three different learnability limits. The approximation capacity reflects the difference
between the three scenarios described above:

69

Buhmann Chehreghani Frank Streich

1. Unsplit→ Ordered: The centroids are perfectly estimated. The approximation
capacity attains the theoretical maximum of 1 bit at low temperature.

2. Unsplit→Ordered→Random: The strong meta-stability for low temperatures
prevents communication. The mutual information is maximized at the lowest
temperature above this random phase.

3. Random: The centroids are randomly split. Therefore, there is no information
between the true and the estimated centroids over the entire temperature range.
In this regime the mutual information is always 0 over all values of β.

We extend the study to a hypothesis class of 4 centroids, thus enabling the sampler
to overfit. Using Gibbs sampling on X(1) ∈ R500×100 (scenario (1)) under an annealing
schedule, we compute the clustering c(X(1)). At each temperature, we then compute
the mutual information and the transfer costs. In this way, we study the relationship
between approximation capacity and generalization error in the asymptotic limits. Fig-
ure 5 illustrates the consistency of the costs of the transferred clustering solution with
the approximation capacity. Furthermore, in the annealing procedure, the correct model
order, i.e. K̂ = 2, is attained at the temperature that corresponds to the maximal approx-
imation capacity.

7. Conclusion

Model selection and model order selection pose critical design issues in all unsuper-
vised learning tasks. The principle of maximum approximation capacity (wASC) offers
a theoretically well-founded approach to answer these questions. We have motivated
this principle and derived the general form of the capacity. As an example, we have
studied the approximation capacity of Gaussian mixture models (GMM). Thereby, we
have demonstrated that the choice of the optimal number of Gaussians based on the ap-
proximation capacity coincides with the configurations yielding optimal generalization
ability. Weighted approximation set coding finds the true number of Gaussians used to
generate the data.

Weighted approximation set coding is a very general model selection principle
which is applicable to a broad class of pattern recognition problems (for SVD see
Frank and Buhmann (2011)). We have shown how to use wASC for model selection
and model order selection in clustering. Future work will address the generalization of
wASC to discrete continuous optimization problems, such as sparse regression, and to
algorithms without cost functions.

Acknowledgments

This work has been partially supported by the DFG-SNF research cluster FOR916, by
the FP7 EU project SIMBAD, and by the Zurich Information Security Center.

70

Model Selection for Pattern Analysis

Figure 5: Expected transfer costs and approximation capacity when the number of ob-
servations per dimensions α = 5. The Gibbs sampler is initialized with four
centroids.

References

N. Barkai and H. Sompolinsky. Statistical mechanics of the maximum-likelihood den-
sity estimation. Phys. Rev. E, 50(3):1766–1769, 1994.

N. Barkai, H. S. Seung, and H. Sompolinsky. Scaling laws in learning of classification
tasks. Phys. Rev. Lett., 70(20):3167–3170, 1993.

Shai Ben-David, Ulrike von Luxburg, and Dávid Pál. A sober look at clustering sta-
bility. In G. Lugosi and H.U. Simon, editors, COLT’06, Pittsburgh, PA, USA, pages
5–19, 2006.

Joachim M. Buhmann. Information theoretic model validation for clustering. In Inter-

national Symposium on Information Theory, pages 1398 – 1402. IEEE, 2010.

Joachim M. Buhmann. Context sensitive information: Model validation by information
theory. In MCPR 2011, volume 6718 of LNCS, pages 21–21. Springer, 2011.

Kenneth P. Burnham and David R. Anderson. Model selection and inference: a practi-

cal information-theoretic approach, 2nd ed. Springer, New York, 2002.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, 2006.

Sandrine Dudoit and Jane Fridlyand. A prediction-based resampling method for esti-
mating the number of clusters in a dataset. Genome Biology, 3(7), 2002.

Mario Frank and Joachim M. Buhmann. Selecting the rank of SVD by maximum
approximation capacity. In ISIT 2011. IEEE, 2011.

Mario Frank, Morteza Chehreghani, and Joachim M. Buhmann. The minimum transfer
cost principle for model-order selection. In ECML PKDD ’11: Machine Learning

and Knowledge Discovery in Databases, volume 6911 of Lecture Notes in Computer

Science, pages 423–438. Springer Berlin / Heidelberg, 2011.

71

Buhmann Chehreghani Frank Streich

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE PAMI, 6(6):721–741, 1984.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer Verlag, New York,
2008.

Tilman Lange, Mikio Braun, Volker Roth, and Joachim M. Buhmann. Stability-based
validation of clustering solutions. Neural Computation, 16(6):1299–1323, June
2004.

Kenneth Rose. Deterministic annealing for clustering, compression, classification, re-
gression, and related optimization problems. IEEE PAMI, 86(11):2210–2239, 1998.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464,
1978.

Susanne Still and William Bialek. How many clusters? an information-theoretic per-
spective. Neural Computation, 16:2483–2506, 2004.

Andreas P. Streich, Mario Frank, David Basin, and Joachim M. Buhmann. Multi-
assignment clustering for Boolean data. In ICML’09, pages 969–976, 2009.

Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck
method. In Proc. of the 37-th Annual Allerton Conference on Communication, Con-

trol and Computing, pages 368–377, 1999.

Vladimir N. Vapnik. Statistical learning theory. Wiley, New York, 1998.

Aree Witoelar and Michael Biehl. Phase transitions in vector quantization and neural
gas. Neurocomputing, 72(7-9):1390–1397, 2009.

72

JMLR: Workshop and Conference Proceedings 27:65–80, 2012 Unsupervised and Transfer Learning

Clustering: Science or Art?

Ulrike von Luxburg ulrike.luxburg@tuebingen.mpg.de
Max Planck Institute for Intelligent Systems, Tübingen, Germany

Robert C. Williamson Bob.Williamson@anu.edu.au
Australian National University and NICTA, Canberra ACT 0200, Australia

Isabelle Guyon isabelle@clopinet.com

ClopiNet, 955 Creston Road, Berkeley, CA 94708, USA

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

We examine whether the quality of different clustering algorithms can be compared by
a general, scientifically sound procedure which is independent of particular clustering
algorithms. We argue that the major obstacle is the difficulty in evaluating a cluster-
ing algorithm without taking into account the context: why does the user cluster his
data in the first place, and what does he want to do with the clustering afterwards?
We argue that clustering should not be treated as an application-independent mathe-
matical problem, but should always be studied in the context of its end-use. Different
techniques to evaluate clustering algorithms have to be developed for different uses
of clustering. To simplify this procedure we argue that it will be useful to build a
“taxonomy of clustering problems” to identify clustering applications which can be
treated in a unified way and that such an effort will be more fruitful than attempting
the impossible — developing “optimal” domain-independent clustering algorithms or
even classifying clustering algorithms in terms of how they work.

1. Introduction

Knuth (1974) said of computer programming that “It is clearly an art, but many feel

that a science is possible and desirable.” Whether clustering is art or science is an
old question: “Is taxonomy art, or science, or both?” asked Anderson (1974) whilst
reviewing the state of systematic biological taxonomy. He justifiably went on to claim

Discussions of taxonomic theory or practice that refer to the concepts

“science” and “art” without finer delineation will be less clear and less

productive than discussions that first attempt definitions of specific con-

cepts in the panoply of science such as precision or objectivity or repeata-

bility or confidence and then apply these explicitly in evaluating alter-

natives and specific steps within the taxonomic process (Anderson, 1974,
p. 59).

The purpose of this paper is to provide such a finer delineation taking as our starting
point the means by which clustering algorithms are evaluated. Our original motivation

© 2012 U. von Luxburg, R.C. Williamson & I. Guyon.

von LuxburgWilliamson Guyon

was to develop better benchmark challenge problems for clustering. Our reflections on
this lead us to grapple with the broader issue of the point and purpose of clustering (and
abandon the idea of such benchmarks).

Clustering is “unsupervised classification” or “unsupervised segmentation”. The
aim is to assign instances to classes that are not defined a priori and that are (usually)
supposed to somehow reflect the “underlying structure” of the entities that the data
represents. In the broader, non machine learning literature it is common to use the
word “classification” when talking of clustering (Bowker and Star, 1999; Farris, 1981).
“Taxonomy” refers to what machine learners would call hierarchical clustering.

Clustering relates data to knowledge and is a basic human activity. Bowker and
Star (1999) have argued how fundamental it is in understanding the world1. It affects
knowledge representation and discovery (Kwasnik, 1999). It defines infrastructures
that have real political significance (Bowker and Star, 1999). It forms the basis for
systematic biology, and the need for classification remains ever-present (Ruepp et al.,
2004). It is pervasive.

Clustering holds a fascination for many mathematicians and engineers and as a
consequence there is a large literature on domain independent clustering techniques.
However, this literature rarely finds its way to practitioners and has long been criticized
for its lack of relevance: Farris (1981) wrote of a 1976 symposium on “Classification
and Clustering” that

The technical skill shown by many of the contributors to this sympo-

sium might well produce valuable new methods, if it could be directed to

problems of systematic importance.

The lack of appreciation is puzzling. Supervised classification techniques are widely
appreciated (and used) for solving real problems. And clustering seems to simply be
“unsupervised classification.” However, there is a fundamental difference: supervised
clustering can be easily made into a well defined problem with a loss function, which
precisely formalizes what one is trying to do (and furthermore can be grounded in a
rational way in the real underlying problem). The loss function can be viewed as an
abstraction of the ultimate end-use problem. The difficulty with unsupervised cluster-
ing is that there are a huge number of possibilities regarding what will be done with
it and (as yet) no abstraction akin to a loss function which distills the end-user intent.

1. The reason why Borges’ famous strange classification quoted below strikes us as so bizarre is precisely
because it makes us wonder what on earth would it be like to understand the world in that extraordinary
manner — “the impossibility of thinking that” (Foucault, 1970).

These ambiguities, redundancies, and deficiencies recall those attributed by Dr. Franz
Kuhn to a certain Chinese encyclopedia called the Heavenly Emporium of Benevolent
Knowledge. In its distant pages it is written that animals are divided into (a) those that
belong to the emperor; (b) embalmed ones; (c) those that are trained; (d) suckling pigs; (e)
mermaids; (f) fabulous ones; (g) stray dogs; (h) those that are included in this classifica-
tion; (i) those that tremble as if they were mad; (j) innumerable ones; (k) those drawn with
a very fine camel’s-hair brush; (l) etcetera; (m) those that have just broken the flower vase;
(n) those that at a distance resemble flies. (Borges, 1999)

74

Clustering: Science or Art?

Depending on the use to which a clustering is to be put, the same clustering can either
be helpful or useless.

It is often presumed that for any situation where clustering may be used there is
a single “right” clustering. (“The goal of data clustering . . . is to discover the natural

grouping(s) of a set of patterns points, or objects” (Jain, 2010, p. 3)2) Others take this
further and maintain that the right answer is determinable by the data (alone, without
reference to intended use): “the data should vote for their preferred model type and
model complexity” (Buhmann, 2010). The presumption seems to be based on the notion
that categories exist independently of human experience and intent (a sort of Platonic
“carving nature at its joints”). Such a doctrine of “natural kinds” has been convincingly
discredited (see e.g. Gilmour and Walters (1964)). Philosophical analysis of “natural
kinds” reveals substantial difficulties (Bird and Tobin, 2010), see also Lakoff (1987)
for a cognitive science perspective. The problems of such “absolute” approaches to
clustering are also demonstrated in Kleinberg (2003).

Users of classification methods often reject the notion that clustering is a domain-
independent subject:

I suspect that one of the reasons for the persistence of the view that

classification is subject-independent is that classificatory theorists have

been largely insulated from sources that would inform them otherwise (Far-
ris, 1981, p. 213).

The same problem occurs in supervised classification: if one is not prepared to
commit to a particular loss function (as a formal codification of the use to which your
classifier will be put) one can just estimate the underlying probability distribution. But
then one is stuck with the question of how to judge the quality of such a distribution es-

timate. There can be no loss-independent way of doing this that is universally superior
to other methods; pace the use of the area under the receiver operating characteristic
curve (Hand, 2008).

Many of the arguments about the right way to cluster or how to compare cluster-
ing methods are side-effects of the fact that there is a very wide diversity of clustering
problems. Even within a particular domain of application (say the classification of bio-
logical organisms) there can be very diverse and opposing views as to what constitutes
a valuable classification: see the account of Hull (1988) of the battles between phe-

netics, which attempts to classify on the basis of observable characteristics ignoring
phylogeny, and cladistics, which is avowedly phylogenetic. The arguments between
adherents of either of these camps are not resolvable (even in principle) by domain-
independent means — their conflict stems from a disagreement regarding what is the
real problem that needs solving.

2. Ironically, in the same paper Jain recognizes the point, which contradicts any notion of “natural” that
“the representation of the data is closely tied with the purpose of the grouping. The representation
must go hand in hand with the end goal of the user” (Jain, 2010, p. 11). We do not believe there can
be a “true” clustering definable solely in terms of the data — truth is relative to the problem being
solved.

75

von LuxburgWilliamson Guyon

The focus of the present paper is on problem solving with clustering and how clus-
tering methods are used rather than on the algorithmic details of the techniques; there
are already many comprehensive reviews of techniques available (e.g., Jain et al., 1999;
Xu and Wunsch, 2005; Berkhin, 2006). In this paper we do not really care how a
clustering algorithm works, as long as it achieves the goal we have set. From this
perspective it is pointless to argue whether clustering is essentially density-level set es-
timation, information-compression3 or an instance of a problem in graph theory. We
argue that theoretical or methodological motivations of clustering algorithms alone are
insufficient to qualify clustering as a scientific method. Some practitioners think that in
the past research focused too much on this methodological side. Johnson (1968, p. 224)
expressed his frustration caustically:

The theoreticians of numerical taxonomy have enjoyed themselves im-

mensely over the past decade (though not without developing several

schools with scant respect for each other!). The mushrooming literature

is quite fascinating and new developments tumble after each other. Anyone

who is prepared to learn quite a deal of matrix algebra, some classical

mathematical statistics, some advanced geometry, a little set theory, per-

haps a little information theory and graph theory, and some computer tech-

nique, and who has access to a good computer and enjoys mathematics (as

he must if he gets this far!) will probably find the development of new taxi-

metric methods much more rewarding, more up-to-date, more ‘general’,

and hence more prestigious than merely classifying plants or animals or

working out their phylogenies.

Arguably, it is the most important part of the scientific process to evaluate whether
methods serve the end goals they have been designed for. We believe that there is an
urgent need for such evaluation procedures for clustering.

2. Deficiencies in current clustering evaluation

In this section we discuss why most of the methods used in the clustering literature to
evaluate clustering algorithms are very problematic and do not serve their purpose. The
point we want to make is that clustering algorithms cannot be evaluated in a problem-
independent way: whether a clustering of a particular data set is good or bad cannot be
evaluated without taking into account what we want to do with the clustering once we
have it. This insight is remarkably old. Gilmour and Walters (1964, p. 5) quote Mercier
(1912):

The nature of the classification that we make . . . must have direct re-

gard to the purpose for which the classification is required. In as far as

it serves the purpose, the classification is a good classification, however

3. Shannon’s prophetic words are still true: “the use of a few exciting words like information, entropy,

redundancy, do not solve all our problems” (Shannon, 1956).

76

Clustering: Science or Art?

‘artificial’ it may be. In as far as it does not serve this purpose, it is a bad

classification, however ‘natural’ it may be.

In this section we argue that this insight is completely ignored by most of the current
literature on clustering. Scanning the current literature on clustering algorithms one
will find that one or several of the following methods are typically used to argue for the
success of a clustering algorithm. We think that all these methods are insufficient and
can be completely misleading.

Evaluation on artificial data sets. Clustering algorithms are applied to artificial
data sets, for example points drawn from a mixture of Gaussians. Then the clustering
results are compared against the “ground truth”. Such a procedure can make sense to
evaluate the statistical performance of a clustering algorithm under particular assump-
tions on the data generating process. It cannot be used to evaluate the usefulness of the
clustering — usefulness cannot be evaluated without a particular purpose in mind.

Evaluation on classification benchmark data sets. Clustering algorithms are ap-
plied to classification data sets, that is data sets where samples come with class labels.
Then the class labels are treated as the ground truth against which the clustering results
of different algorithms are compared (using one out of various scores as the (adjusted)
Rand index, misclassification error, F-measure, normalized mutual information, varia-
tion of information, and so on). High agreement with the ground truth is interpreted as
good clustering performance.

We believe this approach is dangerous and misleading: It is an assumption that
class labels coincide with cluster structure and that the “best” clustering of the data set
coincides with the labels. This assumption might be true for some data sets but not for
others. There might even exist a more “natural” clustering of the data points that is not
reflected in the current class labels. Or, as it is often the case in high-dimensional data,
different subspaces of features support completely different clusters. Consider a set of
images that is labeled according to whether it contains a car, but a clustering algorithm
decides to cluster the images according to whether they are greyscale or color. In such
a case, the clustering algorithm discovers a very reasonable clustering, but achieves a
very bad classification error. The classification error by itself cannot be used as a valid
score to compare clusterings.

Evaluation on real world data sets. Sometimes people run their algorithm on a
real data set, and then try to convince the reader that the clusters “make sense” in
the application; this is claimed by some to be “the best way to evaluate clustering
algorithms” (Kogan, 2007, p. 156)4. For example, proteins are grouped according to
some known structure. This is more or less a qualitative version of the approach using
benchmark data sets. It can make sense if the clustering algorithm is intended for use

4. Compare Farris (1981, p. 208): “A clustering method is selected in each application for its ability
to manufacture a grouping most in accord with the subjective feelings of a ‘professional taxonomist.’
(That taxonomist, of course, will then claim vindication of his views; they have been verified by an
‘objective’ method!) One must wonder what value might be attributed to a method chosen primarily
for its failure to contradict preconceptions.”

77

von LuxburgWilliamson Guyon

in exploratory data analysis in this particular application, but does not carry any further
meaning otherwise.

Internal clustering quality scores. There exist many internal scores to measure
how “good” a clustering is (sum of square distances to cluster centers, ratio of between-
cluster to within-cluster similarities, graph cut measures like the normalized cut or the
Cheeger cut, likelihood scores, and so on). We argue that all these scores are unsuitable
to evaluate the quality of clustering algorithms in an objective way. Such scores are

useful on the level of algorithms where they can be used as an objective function in an
optimization problem, and it is a valid research question how different scores can be
optimized efficiently. However, across different algorithms these scores tell only little
about the usefulness of the clustering. For every score preferring one clustering over the
other one can invent another score which does the opposite. A unique, global, objective
score for all clustering problems does not exist.

In supervised classification we are faced with a similar problem. Depending on
whether we compare algorithms based on the zero-one loss or the area under the ROC
curve, say, we may get different answers (that is different algorithms will be superior
depending on the measure used). However, the advantage we have in supervised learn-
ing is that we can abstract from the real problem we have to solve by introducing a loss
function which can guide the choice of solution. In clustering, this cannot be achieved
in a domain-independent function, which makes the situation much worse.

Universal “Benchmark data sets”. The UCI approach to supervised classification
(whereby there is a small fixed collection of data sets, divorced from their real end use,
that are used as a simple one-dimensional means of evaluating machine learning solu-
tions) is widely used to compare supervised learning algorithms. However its value can
be questioned even in the supervised case. For example, although lip-service is often
paid to the idea that a loss function can be derived from utilities (arising in the particular
end-use problem one is solving) these benchmark problems are typically only evaluated
on a single loss function. Given the diversity of end uses to which clustering is put, any
such approach seems hopeless for clustering. One need only look at how problematic
it is to study taxonomic repeatability within a particular domain to be daunted (Moss,
1971).

We believe it makes sense to study particular applications of clustering and find out
what procedures are good or bad per application. But this is a process of interaction
between algorithm developers and practitioners. We need input from practitioners to
help judge whether results are good or bad. We do not believe that such a process can
be automated — the data sets would need to have a “true classification”, and then we
are in the situation described above.

78

Clustering: Science or Art?

3. Proposed method of evaluation: measure the usefulness for the
particular task under consideration

As we have discussed above, clusterings or clustering algorithms cannot be evaluated
without taking into account the use the clustering will be put to. To sketch how evalua-
tion procedures might look like if they do take into account the use the clustering is put
to, let us consider the two following, very distinct scenarios.

3.1. Evaluating the usefulness of clustering: Two example scenarios

Clustering for data pre-processing. Often “one does not learn structure for its own
sake, but rather to facilitate solving some higher level task” (Seldin and Tishby, 2010).
Clustering is often used as an automated pre-processing step in a whole data process-
ing chain. For example, we cluster customers and products to compress the contents
of a huge sales data base before building a recommender system. Or we cluster the
search results of a search engine query to discover whether the search term was am-
biguous, and then use the clustering results to improve the ranking of the answers. In
such situations, the whole purpose of clustering is to improve the overall performance
of the system. This overall performance can usually be quantified by some problem-

dependent score.

From a methodological point of view it is relatively straightforward and uncontro-
versial how clustering can be evaluated in this scenario. One can interpret the clustering
as just one element in a whole chain of processing steps. Put more extremely, the clus-
tering (algorithm) is just one more “parameter” which has to be tuned, and this tuning
can be achieved similarly as for all other parameters, for example by cross validation
over the final outcome of our system as a whole. We do not directly evaluate the “qual-
ity” of the clustering, and we are not interested in whether the clustering algorithm
discovers “meaningful groups”. All we care about is the usefulness of the clustering
for achieving our final goal. For example, to build a music recommender system it
might be a useful preprocessing step to cluster songs or users into groups to decrease
the size of the underlying data set. In this application we do not care whether the clus-
tering algorithm yields a meaningful clustering of songs or users, as long as the final
recommender system works well. If it performs better when a particular clustering
algorithm is used, this is all we need to know about the clustering step.

If the final application in mind is indeed supervised classification and clustering is
performed as a pre-processing step, then one can evaluate the quality of the clustering
in terms of the degradation of classification performance, when quantized observations
are used in place of the original observations (Bock, 1992), or the improvement in
performance arising from the additional information in the class labels, along with the
original observations (Candillier et al., 2006).

Clustering for exploratory data analysis. Here, clustering is used to discover as-
pects of the data which are either completely new, or which are already suspected to
exist, or which are hoped not to exist. For example, one can use clustering to define

79

von LuxburgWilliamson Guyon

certain sub-categories of diseases in medicine, or as a means for quality control to de-
tect undesirable groupings that suggest experimental artifacts or confounding factors in
the data. Exploratory data analysis should “present the data to the analyst such that he
can see patterns in the data and formulate interesting hypotheses about the data” (Good,
1983).

As far as we know, no systematic attempt has been made to assess whether clus-
tering in general (or a particular clustering algorithm) is useful for exploratory data
analysis. In addition to the technical question concerning how to perform the cluster-
ing, this question has a psychological aspect. Ultimately it is a human user who will
explore the data and hopefully detect a pattern. One approach to evaluate the perfor-
mance of a certain clustering algorithm might be to ask humans to use a particular
clustering algorithm to generate hypotheses, and later evaluate the quality of the hy-
potheses on independent data. Major obstacles to this endeavor are how to evaluate
whether a hypothesis is “interesting,” and how to perform a “placebo clustering” as a
null model to compare with.

Data exploration is often performed visually. If clustering and visualization are
treated as two independent components of some data exploration software, we believe
it likely that the particular choice of the clustering algorithm is not very relevant com-
pared to the design of the human computer interaction interface — the visualization
and data manipulation capabilities of the system will likely be responsible for success
or failure of the attempt to discover structure in the data. As opposed to treating clus-
tering and visualization independently from each other, it is a promising approach to
consider them jointly. For example, it might make sense to sacrifice a bit of accuracy
in the clustering algorithm if this leads to a performance gain in the visualization part
(consider the t-SNE algorithm of van der Maaten and Hinton (2008) as an example).
The evaluation of such a system has to take into account the human user as well.

3.2. Can we optimize the “usefulness” directly?

The information bottleneck approach (Tishby et al., 1999) attempts to directly opti-
mize the usefulness of a clustering. It tries to find a cluster assignment of all input points
that is as “informative as possible” (in terms of mutual information) about a particular
“property of interest”. At first glance, this framework seems to be exactly what we are
looking for. At second glance, one realizes that it is not so obvious how to implement
it in practice. Often it is very hard to quantify a “feature of interest”. In the exploratory
data analysis setting this seems close to impossible. In the data pre-processing setting,
we are interested in a high classification accuracy in the end, which is too abstract a
target for the information bottleneck approach (one may as well directly optimize clas-
sification performance (Bock, 1992)). Furthermore, the method unjustifiably assumes
that Shannon information is “intrinsic” and captures the essence of meaning in the data.
There are in fact many different notions of information and even just “gathering infor-
mation” from the data implicitly presumes a loss function (DeGroot, 1962). Formally
the choice of a notion of information is tantamount to the choice of a loss function in

80

Clustering: Science or Art?

a supervised learning problem (Reid and Williamson, 2011). Nevertheless we believe
that of all the literature on clustering, the information bottleneck is closest in intent to
what we are interested in as it at least tries to take into account “what we are interested
in.”

3.3. How are meta-criteria like clustering stability related to the usefulness?

In a statistical setting, it is assumed that the given data points are samples from some
underlying probability distribution. There are many data sets where such an assumption
makes sense (customers are samples from the “set of humans”; a particular set of hand-
written digits just contains a few instances out of a much larger set of “all possible hand
written digits”). In such a setting, it has often been advocated that it is important to
ascertain whether a particular clustering just “fits noise” or uncovers “true structure” of
the data. There are several different tools that attempt to distinguish between these two
cases. Below are four such notions (sorted by increasing stringency).

Stability. The same clustering algorithm is applied repeatedly to perturbed versions
of the original data. Then a stability score is computed that evaluates whether the
results of the algorithm are “stable” or “unstable”. If the results are unstable, they are
considered unreliable and unsuitable for further use. See von Luxburg (2010) for a
large list of references.

Convergence of clustering algorithms. The question is whether, for increasing
amounts of data, the results of a clustering algorithm converge to a particular solution
and whether this solution is reasonable. See Pollard (1981) or von Luxburg et al. (2008)
for examples.

Generalization bounds. One computes generalization bounds that tell how much
the clustering results obtained on a finite sample are different from the ones one would
obtain on the full underlying distribution. These bounds are in the tradition of statistical
learning theory and depend on the size of the class of models from which the clustering
is chosen. See Buhmann (2010) for an approach where the richness of the hypothesis
is balanced against the stability of the clustering results and Seldin and Tishby (2010)
for PAC-Bayesian generalization bounds for the expected out-of-sample performance
of clustering.

Statistical significance. Here the goal is to assign confidences scores to clustering
results. They should tell how confident we are that the clustering results significantly
deviate from some null model of “unclustered” data. In many branches of science it is
a strong requirement to report such confidence scores. There exist numerous ways to
compute confidence scores in the literature, see Efron et al. (1996) for an example.

None of the criteria listed above directly evaluates the quality of a particular clus-
tering of a particular data set; they always take into account the clustering algorithm

(respectively, the model class from which the clustering solution was chosen). The pur-

81

von LuxburgWilliamson Guyon

pose of all the criteria mentioned above is to handle the statistical uncertainty in the
data.

How are these criteria related the usefulness of a clustering? Their importance also
depends on the particular use of the clustering. In the pre-processing setting. statistical
considerations do not play any role, as long as the system works. If the clustering
algorithm gives different results on different samples, but the system works on either of
these results, then we are fine. For example, many people use k-means to cluster a huge
set of texts, say, into a set of manageable size. If we want to cluster a data set of 106

items into 103 clusters, it does not really matter whether the clusters correspond to true
underlying structure — they only have to serve for data compression. We can have a
completely different clustering each time we get a new data set, but the overall system
might still work fine on any of these data sets.

Interestingly, it is in the setting of “discovering structure” that statistical signifi-
cance is important. In the exploratory setting, a user does not have infinite time to
inspect all sorts of meaningless clusterings, and we cannot hope to generate a mean-
ingful hypothesis from nothing. In this sense, statistical significance is a necessary (but
not sufficient) criterion for an algorithm to be useful. Similarly, significance is impor-
tant in taxonomic applications, for example when defining species in biology. Here we
want to define categories based on underlying structure and not on noise. This insight is
quite striking: it is the “soft” exploratory data analysis and discovering structure setting
where we have the “hardest” statistical requirements for our clustering algorithms.

It is conceivable that one could define the problem of “structure discovery” pre-
cisely enough to allow one to then analyse the statistical significance of structures so
discovered, but we do not have any concrete ideas concerning this. We imagine that at
best it would be “discovery” from a predetermined set of structures. Ideally such a test
would condition on the data (Reid, 1995).

4. A suggestion for future research

We have seen that clustering is used in a variety of contexts with very different goals
and that clustering results cannot be evaluated without taking into account this context.
We are left with the question as to what can be done. We take our lead from Tukey
(1954):

Difficulties in identifying problems have delayed statistics far more

than difficulties in solving problems. This seems likely to be the case in

the future too. Thus it is appropriate to be as systematic as we can about

unsolved problems. . . . Different ends require different means and differ-

ent logical structures. . . . While techniques are important in experimental

statistics, knowing when to use them and why to use them are more impor-

tant.

82

Clustering: Science or Art?

4.1. A systematic catalog of clustering problems

We believe that it would be valuable (and relatively straight-forward) to compile a ta-
ble of different clustering problems and corresponding evaluation procedures. A more
effective approach might be to come up with a way to treat several clustering prob-
lems with similar methods, so one does not have to start from scratch for every new
application. We believe that the most effective approach would be to systematically
build a taxonomy or catalog of clustering problems (Hartigan, 1977). We believe that
this should be done in a solution agnostic way: define the problem in a purely declar-
ative manner without trying to say how it should be solved. We conjecture that such
a taxonomy will be of considerable help. This proposal is tantamount to the research
program “left to the reader as an exercise” in the self-referentially titled The Botryology

of Botryology (Good, 1977). This proposal is quite different to the several clusterings of
clustering algorithms that have appeared Jain et al. (2004); Jain (2010); Andreopoulos
et al. (2009) and which do not really address an end-users’ concerns. We emphasize
that our focus is on distinguishing properties of clustering problems, not algorithms.
Hence, for our catalogue of clustering problems it is irrelevant to take into account
distinctions like parametric vs. non-parametric, frequentist vs. Bayesian, model-based
vs. model free, information-theoretic vs. probabilistic, etc. Of course different algo-
rithms “solve” different problems — but we are suggesting to attempt a classification
of problems in a manner independent of how to solve it. Such a declarative approach
has proved valuable in computer programming and other branches of engineering.

We do not yet attempt to suggest how this catalog of clustering problems will look
in any detail, but do suggest several “dimensions” of clustering applications which
may be important in such an endeavor. These dimensions are largely independent of
application domain or clustering algorithm.

Exploratory — confirmatory. We expect that exploratory/confirmatory distinction
(Tukey, 1977) mentioned earlier will be central. While exploratory data analysis is
used to discover patterns in data and to formulate concrete hypotheses about the data,
confirmatory data analysis deals with the question of how to validate a given hypoth-
esis based on empirical data. Clustering is employed in both contexts. Examples for
exploratory uses of clustering are: Detecting latent structure, defining categories in data
for later use (e.g. different subcategories of a disease), verifying that there is structure
in the data, verifying that no unexpected clusters show up (quality control), verifying
that expected clusters are there. For confirmative clustering consider the following ex-
ample from medicine. Assume that one hypothesizes a particular categorization among
patients (e.g., according to a syndrome). Then data are collected from a different fea-
ture space (say, gene expressions). The confirmation comes from looking at the clusters
in the new space and comparing them to the hypothesized categorization.

Qualitative — quantitative. A fundamental distinction is whether the clustering
results are used in a quantitative or qualitative context, that is whether we can compute
a score to evaluate the overall performance of our system. The exploratory context is
often “qualitative”. We are interested in certain properties of the clusterings, but not in

83

von LuxburgWilliamson Guyon

any final scores. Examples for quantitative uses of clustering are data preprocessing,
data compression, or clustering for semi-supervised learning. Here, a final score can
be used to evaluate the clustering performance. Note that quantitative clustering is not
necessarily the same as confirmatory data analysis. In this sense, the distinction “ex-
ploratory — confirmative” is not necessarily the same as “quantitative — qualitative”.

Unsupervised — supervised. There are different degrees of supervision in cluster-
ing problems. Situations where one does not have a clue what one is looking for are
rare, and in many cases additional information can be used. For example, in exploratory
data analysis the analyst usually has a good idea what he is looking for and he might
bias the clustering with a particular choice of features or a particular choice of similar-
ity measure between patterns. Further, the assessment of the usefulness of clustering
as a preprocessing is often an iterative process: if clustering is found useful in a super-
vised task, it may be more likely to be useful in similar tasks. For instance, clustering
has become a mainstream technique to build codebooks of phonemes or subwords in
speech recognition. In some transfer learning methods, a set of clusters selected as a
good preprocessing for one supervised task might used for another similar supervised
task. In some transduction learning approaches, clustering might be carried out on both
labeled and unlabeled data and the classification of labeled data performed according
to the majority of labels found in a given cluster.

Bias towards particular solutions. In most uses of clustering, one has a “bias”
concerning what one is looking for. This bias affects the type of clusters one tries to
construct. In some applications the focus might be to join similar data points; for ex-
ample, when detecting a chemical compound with similar properties to a given one.
In other applications, it might be more important to separate different points, for ex-
ample to identify emerging topics in a stream of news. Other examples are compact
clusters vs. chain-like clusters, peak-based vs. gap-based clusters, flat clustering vs.
hierarchical clustering.

Modeling the data-generating process. Do we need to find clusters that represent
some understanding of how the data were generated? Not necessarily. For instance, in
speech recognition it is common to use vector quantization as preprocessing, a method
making no assumption about how data were generated. Similarly, in image processing,
connected component methods do not attempt to uncover the mechanism by which
data were generated. However, in some applications, clustering can be understood as
a method for uncovering latent data structure, and prior knowledge may guide users to
select the most suitable approach. Below are three examples illustrating how such prior
knowledge could be exploited.

1. Phylogenies are usually modeled as a diffusion process. Clustering approaches
to such problems usually attempt to uncover the underlying hierarchy, hence are
tackled using hierarchical clustering methods.

2. If instead the data were generated by a shallow process, there is no reason to
use a hierarchical model. For instance, handwriting used to be taught with a few

84

Clustering: Science or Art?

methods in the US, hence, handwriting styles could be clustered by assuming just
a two level random process: drawing the method, then drawing the writer; Gaus-
sian mixtures or k-means type of algorithms are appropriate for such problems.

3. A third type of model is constraint-based and assumes interactions between sam-
ples (like in a Markov random field of an Ising model of magnetism). For in-
stance, dress-code can be assumed to emerge from peer-pressure and result in
clusters of people dressing in a similar way. Graph partitioning methods may
lend themselves to such cases.

Evidently, in each of these three cases using clustering methods that do not attempt
to model the data generative process might “work well”, if all we are interested in is
representing groups efficiently for compression or prediction. But using a data gener-
ative model may make a lot of difference from the point of view of gaining insight.
For instance, we may want to predict the consequences of actions or devise policies to

attain a desired goal. Consider an example from epidemiology. Patients with the same
symptoms may be clustered assuming one of the three models described above. The
first model (hierarchical model) can be appropriate if a genetic mutation is responsible
for a disease. Then, based on the hierarchical model one can try to trace a population
to a common ancestor and use this knowledge to diagnose and treat patients. If patients
may have a disease because of one categorical factor of variability (environment, diet,
etc.) like in the case of scurvy and lack of vitamin C, then a mixture model might be
more appropriate. If the disease is transmitted by contagion, then modeling the data
with an interaction model (third case above) is appropriate, and a corresponding dis-
ease prevention policy can be devised.

We stress that a catalog of clustering problems is likely to be quite complex, which
is no different to, say, a catalog of structural engineering problems. Many real problems
require multiple factors dealt with at once (a wall keeps out the rain, wind and noise,
but also holds up the roof and provides somewhere to hang a painting). Nevertheless
these aspects can be described declaratively (in terms of water-resistance, wind load,
sound attenuation, static and dynamic load bearing and visual aesthetics).

5. Conclusions

We asked whether clustering was art or science, but concluded that it is meaningless
to view clustering as a domain-independent method. We deliberately duck our original
question by claiming it unhelpful and irrelevant. If one wants an abstract label, a better
one is engineering, which embraces different ways of knowing (“art” and “science”),
recognizes the intrinsic psychological component of many problems, has standardized
language and problem descriptions to avoid undue technique-focus and most certainly
is focussed on solving the end-user problem (Vincenti, 1990).

If clustering researchers want real impact in applications, then it is time to step
back from a purely mathematical and algorithmic point of view. What is missing is

85

von LuxburgWilliamson Guyon

not “better” clustering algorithms but a problem-centric perspective in order to devise
meaningful evaluation procedures.

Acknowledgements

We are most grateful for inspiring discussions and comments on earlier drafts by the
following people (without implying that they agree with our opinions or conclusions):
Shai Ben-David, Kristin Bennett, Léon Bottou, Joachim Buhmann, Lawrence Cayton,
Christian Hennig, Stefanie Jegelka, Vincent Lemaire, Mark Reid, Volker Roth, Naftali
Tishby, and one anonymous reviewer from Machine Learning Journal.
RW is supported by the Australian Research Council and NICTA through Backing Aus-
tralia’s Ability.

References

S. Anderson. Some Suggested Concepts for Improving Taxonomic Dialogue. System-

atic Zoology, 23(1):58–70, 1974.

B. Andreopoulos, A. An, X. Wang, and M. Schroeder. A roadmap of clustering algo-
rithms: finding a match for a biomedical application. Briefings in Bioinformatics,
10:297–314, 2009.

P. Berkhin. A survey of clustering data mining techniques. In Jacob Kogan, Charles
Nicholas, and Marc Teboulle, editors, Grouping Multidimensional Data, pages 25–
71. Springer, Berlin, 2006.

A. Bird and E. Tobin. Natural kinds. In Edward N. Zalta, editor, The Stanford Encyclo-

pedia of Philosophy (Summer 2010 Edition). Stanford University, 2010.

H.H. Bock. A clustering technique for maximizing φ-divergence, noncentrality and
discriminating power. In M. Schader, editor, Analyzing and Modeling Data and

Knowledge, pages 19–36. Springer Verlag, 1992.

J. L. Borges. El idioma analytico de John Wilkins. In La Nación. Penguin, London, 8
February 1999. Translated and Republished as “John Wilkins’ Analytical Language,”
pages 229–232 in The Total Library: Non-fiction, 1922–1986.

G. C. Bowker and S. Star. Sorting Things Out: Classification and its Consequences.
MIT Press, Cambridge, Massachusetts, 1999.

J.M. Buhmann. Information theoretic model validation for clustering. In Proceedings of

the IEEE International Symposium on Information Theory (ISIT), pages 1398–1402.
IEEE, 2010.

L. Candillier, I. Tellier, F. Torre, and O. Bousquet. Cascade evaluation of clustering
algorithms. In Machine Learning: ECML 2006, pages 574–581. Springer, 2006.

86

Clustering: Science or Art?

M.H. DeGroot. Uncertainty, Information, and Sequential Experiments. The Annals of

Mathematical Statistics, 33(2):404–419, 1962.

B. Efron, E. Halloran, and S. Holmes. Bootstrap confidence levels for phylogenetic
trees. Proceedings of the National Academy of Sciences, 93(23):7085 – 7090, 1996.

J. S. Farris. Classification Among the Mathematicians (Review of “Classification and
Clustering,” by J. Van Ryzin). Systematic Zoology, 30(2):208–214, 1981.

M. Foucault. The Order of Things: An Archaeology of the Human Sciences. Random
House, 1970.

J.S.L. Gilmour and S.M. Walters. Philosophy and classification. In W.B. Turrill, editor,
Vistas in Botany, Volume IV: Recent Researches in Plant Taxonomy, pages 1–22.
Pergamon Press, Oxford, 1964.

I.J. Good. The botryology of botryology. In J. van Ryzin, editor, Classification and

Clustering: Proceedings of an Advanced Seminar conducted by the Mathematics Re-

search Center, The University of Wisconsin-Madison, pages 73–94. Academic Press,
1977.

I.J. Good. The philosophy of exploratory data analysis. Philosophy of Science, 50(2),
1983.

D. J. Hand. Comment on “The skill-plot: A graphical technique for evaluating contin-
uous diagnostic tests”. Biometrics, 63:259, 2008.

J. A. Hartigan. Distribution problems in clustering. In J. Van Ryzin, editor, Classifica-

tion and Clustering: Proceedings of an Advanced Seminar conducted by the Math-

ematics Research Center, The University of Wisconsin-Madison. Academic Press,
1977.

D. L. Hull. Science as a Process. University of Chicago Press, 1988.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Comput.

Surv., 31(3):264 – 323, 1999.

A.K. Jain. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31
(8):651–666, 2010.

A.K. Jain, A. Topchy, M.H.C. Law, and J.M. Buhmann. Landscape of clustering algo-
rithms. In Proceedings of the 17th International Conference on Pattern Recognition

(ICPR04), volume 1, pages 260–263, 2004.

L.A.S. Johnson. Rainbow’s End: The Quest for an Optimal Taxonomy. Proceedings of

the Linnean Society of New South Wales, 93(1):1–45, 1968. Reprinted in Systematic

Zoology, 19(3), 203–239 (September 1970).

87

von LuxburgWilliamson Guyon

J. Kleinberg. An impossibility theorem for clustering. In S. Thrun S. Becker and
K. Obermayer, editors, Advances in Neural Information Processing Systems 15,
pages 446 – 453. MIT Press, Cambridge, MA, 2003.

D. E. Knuth. Computer Programming as an Art. Communications of the ACM, 17(12):
667–673, December 1974.

J. Kogan. Introduction to Clustering Large and High-Dimensional Data. Cambridge
University Press, 2007.

B.H. Kwasnik. The role of classification in knowledge representation and discovery.
Library Trends, 48(1):22–47, 1999.

G. Lakoff. Women, Fire, and Dangerous Things: What Categories Reveal About the

Mind. The University of Chicago Press, 1987.

C. Mercier. A New Logic. William Heineman, London, 1912. URL http://www.

archive.org/details/newlogic00merciala.

W. W. Moss. Taxonomic repeatability: An experimental approach. Systematic Zoology,
20(3):309–330, 1971.

D. Pollard. Strong consistency of k-means clustering. Annals of Statistics, 9(1):135 –
140, 1981.

M. D. Reid and R. C. Williamson. Information, divergence and risk for binary experi-
ments. Journal of Machine Learning Research, 12:731 – 817, 2011.

N. Reid. The roles of conditioning in inference. Statisitical Science, 10(2):138–157,
May 1995.

A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko,
U. Guldener, G. Mannhaupt, M. Münsterkötter, and H. Mewes. The FunCat, a
functional annotation scheme for systematic classification of proteins from whole
genomes. Nucleic Acids Research, 32(18):5539, 2004.

Y. Seldin and N. Tishby. PAC-Bayesian Analysis of Co-clustering and Beyond. Journal

of Machine Learning Research, 11:3595–3646, 2010.

C. E. Shannon. The bandwagon. IRE Transactions on Information Theory, 2(3):3,
1956.

N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. In Pro-

ceedings of the 37th Annual Allerton Conference on Communication, Control and

Computing, pages 368–377, 1999.

J. Tukey. We need both exploratory and confirmatory. The American Statistician, 34
(1), 1977.

88

Clustering: Science or Art?

J. W. Tukey. Unsolved problems of experimental statistics. Journal of the American

Statistical Association, 49(268):706–731, December 1954.

L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine

Learning Research, 9:2579–2605, 2008.

W. G. Vincenti. What Engineers Know and How They Know It: Analytical Studies from

Aeronautical History. The Johns Hopkins University Press, Baltimore, 1990.

U. von Luxburg. Clustering stability: An overview. Foundations and Trends in Machine

Learning, 2(3):235–274, 2010.

U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral clustering. An-

nals of Statistics, 36(2):555 – 586, 2008.

R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transactions on Neural

Networks, 16(3):645–678, May 2005.

89

90

JMLR: Workshop and Conference Proceedings 27:81–95, 2012 Unsupervised and Transfer Learning

Transfer Learning by Kernel Meta-Learning

Fabio Aiolli aiolli@math.unipd.it

Dept. of Mathematics, University of Padova, Via Trieste 63, 35121 Padova, Italy

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

A crucial issue in machine learning is how to learn appropriate representations for
data. Recently, much work has been devoted to kernel learning, that is, the problem
of finding a good kernel matrix for a given task. This can be done in a semi-supervised
learning setting by using a large set of unlabeled data and a (typically small) set of
i.i.d. labeled data. Another, even more challenging problem, is how one can exploit
partially labeled data of a source task to learn good representations for a different, but
related, target task. This is the main subject of transfer learning.

In this paper, we present a novel approach to transfer learning based on kernel
learning. Specifically, we propose a kernel meta-learning algorithm which, starting
from a basic kernel, tries to learn chains of kernel transforms that are able to produce
good kernel matrices for the source tasks. The same sequence of transformations
can be then applied to compute the kernel matrix for new related target tasks. We
report on the application of this method to the five datasets of the Unsupervised and
Transfer Learning (UTL) challenge benchmark1, where we won the first phase of the
competition.

Keywords: transfer learning, kernel meta-learning, unsupervised learning, UTL chal-
lenge

1. Introduction

Transfer learning (Pan and Yang, 2010; Caruana, 1997) shares some properties with
semi-supervised learning: in both cases a large set of unlabeled data and a (generally
far smaller) set of labeled data are available. However, in transfer learning, labeled data
are only provided for a set of source tasks that are related, but different than the target

task. In this paper, we assume all tasks are defined within a single domain, e.g. face
recognition data, handwritten character recognition data, or textual data, just to name a
few.

Kernel learning is a state-of-the-art paradigm for semi-supervised learning (Chap-
elle et al., 2006; Zhu and Goldberg, 2009). The goal of kernel learning is to learn a
kernel matrix using available data (labeled and unlabeled) that optimizes an objective
function that enforces the agreement between the kernel and the set of i.i.d. labeled
data, e.g., by maximizing their alignment (Lanckriet et al., 2004). On the other hand,
unlabeled data are used to regularize the generated models by constraining the discrim-

1. http://clopinet.com/ul

© 2012 F. Aiolli.

Aiolli

inant function to be smooth (that is, it should not vary too much on similar examples).
However, in transfer learning, the distribution over the training/validation datasets (on
examples and their labels) are generally different from the distribution over the target
dataset, thus standard kernel learning methods do not directly apply.

In this paper, we explore kernel-based transfer learning and show we can indeed
learn something for a task by exploiting other related tasks. In particular, rather than
direct learning a kernel for a particular target task, we use source tasks to learn how

a good kernel can be (algorithmically) generated for any task defined over the same
domain. In a sense, we propose a kernel meta-learner (a learner which learns how
to learn kernels from data). To the best of our knowledge this is a novel approach to
kernel learning that seems promising for learning kernels and transferring knowledge
in multi-task settings. Related work can be found in Pan and Yang (2010) and in the
papers cited therein.

Using the technique presented in this paper, we won the first phase of the Unsuper-
vised and Transfer Learning (UTL) challenge. Our algorithm was the best performing
on three of five final competition datasets. Although we did not participate in the sec-
ond phase of the challenge, experiments are presented in this paper demonstrating that
the same approach can naturally be adapted to a pure transfer learning setting with
competitive results.

Notation We first introduce notation used throughout the paper. Unless otherwise
stated, we assume that a dataset is given as an m× n matrix X ∈ Rm×n formed by m

rows Xi, i = 1, . . . ,m, representing n-dimensional examples. We use the symbol ◦ as the
Hadamard product (entry-wise) matrix multiplication. We also denote by 1 the column
vector where each entry is set to 1, and 0 the null column vector, the dimensionality of
which should be clear from the context they appear in.

Background In this paper, we mainly focus on positive semi-definite (PSD) matrices,
that is the class of real matrices K ∈Rm×m such that v8Kv≥ 0 for any real vector v ∈Rm.
Given any representation {xi}i=1,...,m for the examples, it is well known that the kernel
matrix K ∈ Rm×m formed by the dot products between examples, that is K(i, j) = x8i x j,
is a PSD matrix. Additionally, for PSD matrices, it is always possible to perform the
spectrum decomposition, K = UDU8, where U is an orthogonal matrix formed by
the eigenvectors of K, and D is the diagonal matrix with the diagonal formed by the
associated (non negative and decreasing) eigenvalues. So, we can always write K =

HH8 where H = UD
1
2 . As a result, any PSD matrix of order m can be seen as a kernel

matrix for a dataset of m examples with the examples represented according to the
matrix H. This highlights an important aspect of kernels, that any kernel matrix induces
a representation of examples (e.g. by the matrix H) which only considers similarity
relations between pairs of examples in the dataset. Furthermore, given a kernel matrix
K, there can be infinitely many representations for the set of examples that have K as
their kernel matrix.

Synopsis We briefly describe the UTL competition setting in Section 2. An algorithm
for kernel meta-learning is described in Section 3 and the set of kernel transforms we

92

Transfer Learning by KernelMeta-learning

have used for the challenge is described in Section 4. In Section 5, we discuss an
adaptation of the basic algorithm for its use on the UTL challenge as well as some tricks
that reduce the risk of overfitting. Additional post-challenge results are also reported. In
Section 6, we propose a general strategy to learn the optimal sequence of transforms and
present the results obtained on the UTL benchmark. Finally, in Section 7, we conclude
the paper with some final considerations and subjective ideas concerning future work.

2. The UTL Challenge

The UTL challenge benchmark2 contains data related to five different real-world, mul-
ticlass problems. For each of these domains, three datasets (development, valid, final)
have been prepared using different subsets of the original problem classes. Thus, each
dataset contains a sample of a subset of classes of the original domain. Multiple binary
tasks were also defined on each of these datasets by splitting the classes in two parts in
a number of different ways (obtaining positive and negative labels for the tasks). Here,
we briefly describe the UTL challenge setting. Please, refer to Guyon et al. (2011) for
more details.

2.1. The Competition

For each dataset, a data matrix represented as feature vectors (m examples in rows and
n features in columns) was provided to the participants. The goal of the challenge was
to produce a new kernel matrix K ∈ Rm×m between examples such that the transformed
representation would lead to good performance on supervised learning tasks defined
over the valid and final datasets. The actual labels of the supervised tasks used by the
organizers were unknown to the participants. The evaluation was made using cross
validation by partitioning data several times into training and test sets. On each run, a
simple (Hebbian) linear classifier defined on the training data (and the associated kernel
matrix) is used to build the scoring function. The ranking produced is then evaluated
in terms of the Area Under the ROC curve (AUC) and averaged over the random splits.
The size of training data varies between 1 and 64 examples and the AUC is plotted on
a log scale against the number of examples. Finally, the area under the learning curve
(ALC) is used as the overall evaluation metric.

Note that the labels of the supervised tasks used for the evaluation were not avail-
able in the first or second phase. Additional labels (from the development set) were
made available for transfer learning in the second phase only.

2.2. The Hebbian classifier

In this section, we give a brief description of the classifier used in the challenge. Let
X be the matrix containing the vectorial representation of the examples (i.e. dataset
as rows). For a given task defined over the set of examples X, the (Hebbian) linear
classifier, or linear scoring function, f = Xw ∈ Rm is constructed by setting w = X8y,

2. http://www.causality.inf.ethz.ch/ul_data/DatasetsUTLChallenge.pdf

93

Aiolli

y ∈Rm, yi = +
1

m+
(resp. yi = − 1

m−
) if the point Xi is positive (resp. negative) for the task,

and yi = 0 if the point does not belong to the training set of the given task. The values
m− and m+ represent the number of negative and positive training points, respectively.

Note that, the scoring function on the set of points X can be written as

f = Xw = XX8y = Ky = Ktrytr,

where K = XX8 is the kernel matrix, Ktr is the subset of kernel rows/columns corre-
sponding to the training data of the task, and ytr are the corresponding entries in y.
In other words, for any example Xi, fi represents the difference between the average
of kernels K(i,+) across positive examples minus the average of kernels K(i,−) across
negative examples of the training set for the task. Thus, given a task, the score simply
represents the algebraic difference of the similarities of an example with the centroids
of positive and negative examples of the task.

This type of classifier has a number of nice properties. Firstly, the ranking of ex-
amples induced by the classifier does not depend on the scaling of the kernel matrix,
that is, defining K′ = αK, with α > 0 a scalar, does not change the ranking produced by
the corresponding scoring function. Secondly, if we add a constant value to every entry
of a kernel matrix, K′ = K + β118, the values of the scoring function do not change.
In fact, f = K′y = Ky+ β118y = Ky = Ktrytr, since 18y = 0 by construction. These
two properties make it possible to standardize the kernel without changing the ranking
produced. Thus, an equivalent kernel taking values in [0,1] can be obtained by using
the linear transformation K′ = (max(K)−min(K))−1(K −min(K)118). We found this
type of standardization useful as a preliminary step prior to discretization of the kernel
matrix, a step that was required before the submission to the challenge server.

Finally, this linear classifier can also be seen as a strongly regularized version of an
SVM variant (see for example Aiolli et al. (2008) for details) and it makes this kind of
classifiers suitable when very few training data are used.

3. The Kernel Meta Learning (KML) Algorithm

The basic idea of this paper is to learn a chain of kernel transformations that, starting
from an initial kernel matrix, leads to a better kernel for a target dataset. For this, a set
of available validation (or source) supervised tasks are used to train the learner. The
expected output of this procedure is an unsupervised “algorithm”, or a sequence of
operations, to perform on a given dataset and related kernel matrix. It is important to
stress that we are not interested in the kernel matrices computed by this algorithm (in
fact those kernel matrices cannot be used over different tasks and data) but we mainly
focus on the sequence of operations used to obtain them from data.

We propose a greedy algorithm starting with a seed kernel on the available source
data, and iteratively transforming it so that each transform results in a kernel with im-
proved performance on the available source tasks. Labeled data is used to find the
optimal transformation parameters during each step. Our intuition is that, by keeping

94

Transfer Learning by KernelMeta-learning

the number of parameters involved in this optimization small, the method should gen-
eralize well on new tasks. It should produce chains of kernel transformations that are
suitable for other related tasks as well.

Many strategies can be used to implement the idea above and optimize the param-
eters of these kernel transformations, and in Section 6 we propose a general strategy
that finds an optimal sequence of such transformations. In this section, we describe the
initial strategy we used in the first phase of the UTL challenge.

Assume an initial set of m examples (a dataset) as rows in a matrix X ∈ Rm×n. Start-
ing from a linear kernel matrix K(1) = XX8 computed on this dataset, each step t =

1, . . . , t̄ of the algorithm computes a new kernel matrix K′(t) by transforming the kernel
K(t) using one of a set of given operators (possible sets of operators will be described in
detail in the following section). The next (perturbed) kernel K(t+ 1) will be produced
as a convex combination of K(t) and K′(t), i.e. K(t+1) = (1−a) ∗K(t)+a ∗K′(t). The
combination coefficient 0 ≤ a ≤ 1 is determined by validating over the set of labeled
examples. Once a good kernel has been obtained for the validation tasks, or a prede-
fined number of steps is reached, the algorithm stops and outputs the optimal sequence
of transformations along with their combination parameters. Then, when the compu-
tation of a kernel matrix for another (related) task is needed, the same (unsupervised)
sequence of transformations can be applied on the new set of unlabeled data.

Note that, since in the UTL challenge the labeled examples for the validation set
were not directly available, a raw (in fact manual) validation was performed on each
step (i.e. by submitting kernels and looking at the validation set results). In addition
to the general algorithm we have given here, its real application to the challenge and
methods to reduce the risk of overfitting on validation tasks will be explained in detail
in Section 5.

4. Kernel Transforms

For the algorithm in Section 3 to work we must use kernel transforms that do not require
direct access to feature vectors. Fortunately, we can exploit the kernel trick (Schölkopf
et al., 1999), where pattern-pattern similarities can indirectly represent examples. An
additional contribution of the present work is to characterize some types of data trans-
formations that have this characteristic. Below, we describe in detail the four classes
of kernel transformations we used in the UTL challenge. In particular, we consider:
a subset of affine transformations, transformations of the kernel spectrum, polynomial
transformations, and an algorithmic transformation based on Hierarchical Agglomera-
tive Clustering (HAC). All the proposed transforms will produce PSD matrices when
they are applied to PSD matrices.

4.1. Affine Transformations: Centering and Normalization in Feature Space

Consider a kernel matrix K ∈Rm×m and any matrix X ∈Rm×n, such that K = XX8. Here,
we show how a set of affine transformations on the rows {Xi}i=1,...,m of X can directly be
performed by transforming the kernel matrix and hence they are suitable for use by our

95

Aiolli

algorithm. Specifically, if we take any transformation of the form:

X′i = βiXi+γ
8X (1)

with β ∈ Rm, γ ∈ Rm, then it can be shown that the following holds:

K′ = X′X′8 = (β18)◦K ◦ (1β8)+1γ8K +Kγ18+ (γ8Kγ)118.

Hence, every linear transformation like this can be given as a kernel transformation.
Well-known instances of this class of transformations are briefly described next.

A first simple transformation is the centering of examples in feature space. In this
case, we have X′i = Xi− 1

m

∑m
j=1 X j, which corresponds to the setting in Eq. 1 when β = 1

and γ = − 1
m 1. By applying the formula above, we get the well known centering kernel

transformation (see Shawe-Taylor and Cristianini, 2004),

Kc = K −
1

m
118K −

1

m
K118+

1

m2
(18K1)118. (Tc)

Similar transforms exist for other kinds of data processing. Pattern normalization,
for example, corresponds to the same class of transformations given above with βi =

1/
√

K(i, i) and γ = 0. In this case, K′(i, i) = X′i X′8i = ||X
′
i ||

2 = 1 and trace(K′) = m, the
number of examples in the set.

We notice some interesting facts about kernel centering. If K = XX8 is centered,
then for every α ∈ R+ we have αK = αXX8 = (

√
αX)(

√
αX)8, which is also centered.

Furthermore, the sum of centered kernels K′ =
∑s

j=1 K j is also a centered kernel since
it can be seen as the kernel obtained by concatenating the individual feature space
representations, X′i = [Xi,1,Xi,2, . . . ,Xi,s] and is clearly centered. From these two facts,
it follows that any linear combination of centered kernels is also a centered kernel.

Similar results can be given for the trace of kernel matrices. For instance, any
matrix obtained as a convex combination of matrices with the same trace t, will have
trace t. Also, any convex combination of normalized kernels is a normalized kernel.

4.2. Kernel Spectrum Transformation

Another variety of valid kernels can be computed by modifying the spectrum of a
given kernel matrix through a function with codomain in R+. Considering a positive
semi-definite matrix (a kernel) K, this can always be written as K =

∑m
i=1λiuiu

8
i where

{λ1, ..,λm|λi ≥ 0,λi ≥ λi+1} are the eigenvalues (in decreasing order) and {u1, ..,um} the
corresponding eigenvectors of K. Our proposal here is to transform the eigenvalues via
a function σ(λ) taking values in R+, i.e.

Kσ =

m∑

i=1

σ(λi)uiu
8
i . (Tσ)

96

Transfer Learning by KernelMeta-learning

Different types of spectrum transformation functions can be defined on the spectrum
of the eigen-decomposition of a kernel matrix. The two we have used for the UTL
challenge3 are:

Step: σ(λ) = 1 when λ ≥ ελ1, 0 ≤ ε ≤ 1, and σ(λ) = 0 otherwise. This transformation
corresponds to the principal directions.

Power: σ(λ) = λq where q ≥ 0. This transformation corresponds to exponentiating the
kernel matrix, i.e. K′ = Kq.

Interestingly, the effect obtained when using Power as the spectrum transformation
function is related to a softer version of the (kernel) PCA on the features of the kernel K.
In fact, after performing an orthogonalization of the features, the weight of components
having small eigenvalues are relatively reduced (when q > 1) or increased (when q < 1).
Note that the complexity of the obtained kernel decreases with q, as the higher we set
q, the smaller will be the number of significant directions we are using. Viceversa,
when q tends to 0, the transformed matrix tends to the identity matrix and the data
has orthogonal representations. This transform also has interesting connections with
diffusion maps (Coifman and Lafon, 2006).

In order to better analyze the effect of this transform, we consider the spectral de-
composition of the matrix K = UDU8, where U contains the eigenvectors {u j} j=1,...,m

as columns and D is a diagonal matrix with the eigenvalues of K in decreasing order.
This decomposition exposes the new representations of the examples. Specifically, we
have

x′i = [
√
σ(λ1)u1i; . . . ;

√
σ(λm)umi].

It is apparent that the above corresponds to a reweighting of the components. When
q is large, more emphasis is given to the most important components and when q is
small, all the components have more equal importance.

Note that when this transformation is used on a centered kernel matrix, the trans-
formed matrix is also centered since all features are scaled by the same amount, while
the trace changes according to trace(K’) =

∑m
i=1σ(λi).

4.3. Polynomial-Cosine Kernel Transformation

So far, the proposed transformations do not modify the original feature space, rather
they perform only linear transformations of the feature vectors. An alternate, non linear,
way to transform the feature vectors is to apply a polynomial transformation. For this,
we propose the following kernel transformation:

Kπ(i, j) =

(
cos(xi,x j)+u

)p

(1+u)p
=

1

(1+u)p

K(i, j)
√

K(i, i)
√

K(j, j)
+u

p

(Tπ)

3. Note that, since the kernel obtained after this transformation is not normalized, consistently with other
transformations presented in this paper, a subsequent normalization of the obtained kernel can be
performed. In fact, this is what we did in the challenge.

97

Aiolli

where p ∈ N and u ≥ 0. Specifically, with this transformation, the original kernel is
used to compute cosine similarity in feature space, and a polynomial transformation is
computed on the result. Finally, the normalization term makes Kπ(i, i) = 1 for every
i. It is easy to show that this is a valid kernel using the closure properties of kernels
(see e.g. Shawe-Taylor and Cristianini (2004)). One effect of the polynomial kernel,
and this transformation in particular, is to further deemphasize similarities of dissimilar
examples.

4.4. Algorithmic Transformations: a Kernel based on HAC

A clustering resulting from an unsupervised algorithm can be used to define a kernel.
This is another way to exploit a similarity or kernel function to generate a new ker-
nel. Hierarchical Agglomerative Clustering (HAC) is a popular method for clustering
data. It starts by treating each pattern as a singleton cluster, subsequently, merging
pairs of clusters until a single cluster contains all patterns. To do this, it requires (i) a
pattern-pattern similarity function and (ii) a merge strategy that decides which pair of
clusters to merge based on a cluster-cluster similarity function. In our case, the kernel to
be transformed is used as the pattern-pattern similarity matrix. Popular cluster-cluster
similarity measures are often based on single-linkage, complete-linkage, or average-

linkage strategies. In the single-linkage (resp. complete-linkage) strategy, the similarity
between two clusters is defined as the similarity of the most (resp. least) similar mem-
bers. In the average-linkage strategy, the similarity between two clusters is defined as
the average of similarities between all members of the two clusters.

A generalization of these measures can be defined as:

S (c1,c2) =

∑
xi∈c1,x j∈c2

K(i, j) · eηK(i, j)

∑
xi∈c1,x j∈c2

eηK(i, j)
, (2)

where η ∈ R. The single-linkage strategy corresponds to η = +∞, the complete-linkage
strategy corresponds to η = −∞, and the average-linkage strategy is obtained by setting
η = 0.

We now propose a kernel defined on the basis of agglomerative clustering. Let Ct ∈
Rm×m, t ∈ {1, . . . ,m}, be the matrix with binary entries such that Ct(i, j) = 1 whenever the
examples i and j are in the same cluster at the t-th agglomerative step, and 0 otherwise.
Clearly, C1 = I, as this refers to the initial clustering where each example represents a
different cluster, and Cm = 118 is the matrix with all entries set to 1, as in this case there
is a single cluster. Finally, the HAC kernel can be defined by:

Kh =
1

m

m∑

t=1

Ct. (Th)

In this way Kh(i, j) represents the fraction of times the examples i and j are assigned
to the same cluster in the HAC agglomerative process. It is a valid kernel since Kh(i, j)=
1
m x8i x j, where xi is one possible representation of the i-th example consisting of a binary
vector having a component for each node of the dendrogram generated through the

98

Transfer Learning by KernelMeta-learning

agglomerative process. Specifically, we have xis = 1 whenever the node s belongs to
the dendrogram path starting from the root and ending on the leaf corresponding to the
example i. It is also possible to show this kernel is proportional to the depth in the HAC
dendrogram of the Lowest Common Ancestor (LCA) of the two examples.

4.5. Other kernel transforms

We conclude this section with additional examples of classes of transformations that
were not used in the challenge but could be studied and added in the future.

A first interesting transform that can be used is K′ = KAK with A an opportune PSD
matrix. It is possible to show that KPCA (Schölkopf et al., 1998) is an instance of this
transformation obtained by setting A = UkD−1

k
U8

k
, where Uk are the first k columns of

the spectral decomposition of K, and Dk ∈Rk×k is the associated submatrix of D. More-
over, for any n > 0 and C ∈ Rm×n, the matrix C8KC is positive definite and thus, this
transformation can be used by our algorithm. Another easy transform can be obtained
by using the RBF kernel K(i, j) = exp(−β(K(i, i)+K(j, j)−2K(i, j))) with β > 0.

5. Adaptation of the KML algorithm to the UTL challenge and Results

In the first phase of the UTL challenge, labeled examples were not directly available
and the algorithm described in Section 3 was not applicable as it is. So, we adapted the
algorithm by simplifying the validation procedure to make it practical to be performed
manually. As a side effect, this simplification reduced the effective hypothesis space and
also the danger of overfitting. More specifically, we fixed the order of application of
the transforms (based on their “complexity”, from low to high complexity transforms)
and limited the set of possible parameter choices. Moreover, a transformation was only
accepted (i.e. a > 0) if it improved the ALC on validation significantly. In this way
we avoided overtuning parameters. In this section we give additional details about the
above-mentioned criteria.

The kernel centering transform, Tc, was only performed at the very beginning (i.e.
data preprocessing) and only when its application improved the ALC on validation over
a raw linear kernel. After that, the other transforms were validated one by one, starting
from Tσ, then Tπ, and finishing with Th. This procedure was then iterated until there
was no significant ALC improvement.

The Tσ transformation was validated with parameter q = 0.2 ·q0,q0 ∈ {1, . . . ,10}. In
order to decrease the actual number of values to try, we assumed a convex behavior
of the ALC(q) curve and limited ourselves by performing a binary search for the best
q. The combination coefficient assigned to this type of transform was always a binary
value, i.e. a ∈ {0,1}, meaning the transform was simply accepted or not. This choice
was made depending on whether the resulting improvement was considered significant.

The Tπ transformation was validated with parameters p ∈ {1, . . . ,6}, and u ∈ {0,1}.
We started with p = 1 and increased the value until the ALC on validation could not
be further improved. Even in this case, the combination coefficient was chosen to be

99

Aiolli

binary, depending on the significance of the real ALC improvement on the validation
set.

Finally, the Th transformation was validated with parameter η ∈ {−10,0,+10}. How-
ever, we noticed that η = 0 was almost always the best choice. Moreover, since in this
case the transformed kernel is expected to be fairly different than the original, the com-
bination coefficient has been more accurately validated by doing a binary search on the
set of values a = 0.05 ·a0,a0 ∈ {0, . . . ,20}.

In Table 1, detailed results obtained at post-challenge time are reported. In particu-
lar, we used the same validation performed during the challenge in order to investigate
possible overfitting. Notice that in some (very few) cases, the obtained results can
slightly differ from the official results reported for the challenge due to minor differ-
ences4. The results confirm that the method is quite robust to overfitting. Although this
behavior was absolutely expected, it could not be given as granted during the challenge.

6. A general strategy for Transfer Learning

As described in previous sections, kernel validation was performed manually for the
challenge. In this section, we propose a general (and automatic) strategy for use when
binary labels for the source tasks are available. Specifically, validation performs a
greedy search over the space of transform sequences. We assume access to a predefined
and finite set of transforms.

6.1. The TKML strategy: The Algorithm

The pseudo-code in Algorithm 1 describes a general strategy to find the optimal set of
transformations according to a given notion of accuracy on source tasks. This procedure
will be provided with a set of source datasets, X, and a set of binary tasks, L, defined
over the source data. Solely to simplify notation, we assume each source dataset has
the same number of binary tasks defined over it. However, it is trivial to adapt it to the
case where the number of tasks per dataset varies. Finally, we assume the existence and
access to a finite set of predefined transformations in T .

The algorithm maintains a priority queue of transformed kernels and additional in-
formation about them: the sequence of transformations that have already been applied,
and the evaluation of the kernel produced (e.g. the ALC observed on the associated
source tasks). The priority of an element of the queue is defined as a function of the
ALCs obtained on the associated tasks (e.g. their average). On each iteration, an ele-
ment of the queue (i.e. a kernel set, the list of applied transforms, and the evaluation
of the transformed kernels) is extracted and all transformations available in the set T
are applied, in turn, to the current kernels. After each transform has been applied, the
obtained kernels are evaluated and inserted into the queue if it increases the relative
performance.

4. In particular, during the challenge some transforms were (erroneously) applied to the integer matrix
used for submission instead of applying them to the correct real valued kernel matrix to transform.

100

Transfer Learning by KernelMeta-learning

Algorithm 1 General Search Strategy for Transfer kernel Meta-learning (TKML).

Input : X = {X1, . . . ,Xs}: A set of source data matrices Xi ∈ Rm×n

L = {L1, . . . ,Ls}: A set of source binary tasks Li ∈ Rm×q

T = {T1, . . . ,Tk}: A set of k transforms

K = {Ki = XiX
8
i }i=1,...,s (current set of kernel matrices)

BestEval = Evaluate(K ,L) (best evaluation so far)
Q = [(K , [],BestEval)] (priority queue)
W∗ = [] (optimal list of transforms so far)

while not empty Q do
(K ,W,E) = Q.Dequeue()
if E > BestEval then

BestEval = E

W∗ =W
end

foreach Ti ∈ T do
K ′ = Transform(K ,Ti)
Eval = Evaluate(K ′,L)
if AcceptTransform(Eval,E) then

Q.Enqueue((K ′, [W |Ti],Eval))
end

end

end

Output: W∗ : Optimal list of transforms

101

Aiolli

Table 1: Details of the validation procedure performed by the KML algorithm on the
five datasets of the UTL challenge (Phase 1). RawVal is the ALC result ob-
tained by the linear kernel on the validation set. BestFin is the ALC result
obtained by the best scoring competitor algorithm (its final rank in parenthe-
sis). For each dataset, the ALC on validation and the ALC on the final datasets
are presented. Note that only those transformations accepted by the algorithm
(a > 0) are reported with their optimal parameters.

AVICENNA RawVal: 0.1034 BestFin: 0.217428(2) Val ALC Fin ALC

Tc k.s1.t0c1n0 0.124559 0.172279
Tσ(q = 0.4),a = 1 k.s1.t0c1n0.q04n 0.155804 0.214540
Tπ(p = 6,u = 1),a = 1 k.s1.t0c1n0.q04n.p6u1 0.165728 0.216307
Th(η = 0),a = 0.2 k.s1.t0c1n0.q04n.p6u1.d0.a02 0.167324 0.216075
Tσ(q = 1.4),a = 1 k.s1.t0c1n0.q04n.p6u1.d0.a02.q1 4n 0.173641 0.223646(1)

HARRY RawVal: 0.6264 BestFin: 0.806196(1) Val ALC Fin ALC

Tc k.s2.t0c1n0 0.627298 0.609275
Tπ(p = 1,u = 0),a = 1 k.s2.t0c1n0.p1u0 0.604191 0.678578
Th(η = 10),a = 1 k.s2.t0c1n0.p1u0.d10 0.861293 0.716070
Tσ(q = 2),a = 1 k.s2.t0c1n0.p1u0.d10.q2n 0.863983 0.704331(6)

RITA RawVal: 0.2504 BestFin: 0.489439(2) Val ALC Fin ALC

Tc k.s3.t0c1n0 0.281439 0.462083
Tπ(p = 5,u = 1),a = 1 k.s3.t0c1n0.p5u1 0.293303 0.478940
Th(η = 0),a = 0.4 k.s3.t0c1n0.p5u1.d0.a04 0.309428 0.495082(1)

SYLVESTER RawVal: 0.2167 BestFin: 0.582790(1) Val ALC Fin ALC

Tσ(ε = 0.00003),a = 1 k.s4.t0c0n0.e000003n 0.643296 0.456948(6)

TERRY RawVal: 0.6969 BestFin: 0.843724(2) Val ALC Fin ALC

Tc k.s5.t0c1n0 0.712477 0.769590
Tσ(q = 2),a = 1 k.s5.t0c1n0.q2n 0.795218 0.826365
Th(η = 0),a = 0.95 k.s5.t0c1n0.q2n.d0.a095 0.821622 0.846407(1)

At this point, it is important to note that the effectiveness of this algorithm depends
very much on the type, and number, of transforms. In general, we can have up to |T |v

different sequences of length v. This dimension represents the size of the hypothesis
space. As hypothesis space size increases, we can expect higher accuracies of the
optimal sequence generated by the algorithm. However, there is also the danger of
overfitting the source data, producing sequences that will not generalize well to other
data and tasks.

One way to keep the size of the hypothesis space small, while maintaining good
performance, is to utilize the granularity of the available transformations. In particu-
lar, we can use a coarse-grained set T containing more complex transformations (i.e.

102

Transfer Learning by KernelMeta-learning

transformations which are composition of other simpler transformations). We will give
an example of application of this criterium in the following experiments.

6.2. TKML strategy: Experimental Setting

At the end of the challenge, we were provided with labels for both the validation
datasets and for the transfer datasets for all problems. We now present additional ex-
periments based on these new datasets. Specifically, we were curious to see if adding
transfer labels to the validation process could improve results. For each challenge prob-
lem, we used only a subsample of the transfer set and corresponding labels, with size
equal to the validation and final datasets.

We applied the general strategy described earlier to find the optimal set of transfor-
mations. The evaluation of a sequence of transforms (function Evaluate() in Algorithm
1) is performed by averaging the ALCs obtained on the tasks defined on the two source
datasets. The acceptance condition (function AcceptTransform() in Algorithm 1) veri-
fies whether adding a new kernel transform improves the performance of the sequence.

As already stated, a crucial factor is the choice of transforms, T . After preliminary
experiments performed on validation datasets and considering the criteria presented in
Section 6.1, we have chosen the small set of transforms given in Table 2. Note that
most of these transforms actually consist of sequences of simpler transforms. We also
have performed experiments using a larger set of transforms and a finer selection of the
transformations. As expected, the algorithm tended to overfit some source tasks in this
case.

6.3. TKML strategy: Results

The initial seed kernel for all five challenge datasets is the linear kernel K = XX8,
centered and scaled to trace m, the number of examples of the set (i.e. trace standard-

ization). The validation and transfer datasets have been used as source datasets. The
results for the five datasets are as follows (refer to Table 2 for a detailed description):

• AVICENNA: T2, T3, T1, T3 for 3 times;

• HARRY: T2 for 3 times, T3, T2, T3 for 3 times;

• RITA: T3 for 4 times, T1, T3 for 6 times, T1, T3;

• SYLVESTER: T5, T3 for 10 times;

• TERRY: T1 for 2 times, T3 for 3 times, T4.

In Table 3, the results on the final datasets are reported. Interestingly, there is a clear
improvement when additional source tasks are used. Sometimes this improvement is
dramatic, as in HARRY and SYLVESTER, two datasets where the strategy used in the
challenge particularly suffered from overfitting. The new strategy is very competitive
with other challenge participant entries as it gives the best results on the RITA and
TERRY datasets, and the second best results for AVICENNA and HARRY datasets.

103

Aiolli

Table 2: The five transforms (the set T of the TKML strategy) used in our experiments.

1 Spectral σ(λ) = λ
√

2

(a) Centering (Tc) and trace standardization

(b) Spectral Transform with σ(λ) = λ
√

2

(c) Normalization

2 Spectral σ(λ) = λ1/
√

2

(a) Centering (Tc) and trace standardization

(b) Spectral Transform with σ(λ) = λ1/
√

2

(c) Normalization

3 Polynomial Transform with p = 2

4 HAC Transform with d = 0

5 Step Spectral
(a) Centering (Tc) and trace standardization
(b) Spectral Transform with σ(λi) = 1 whenever i ≤ 5, 0 otherwise
(c) Normalization

Table 3: Results obtained with the TKML strategy of Section 6 and comparison with
Phase 1 and Phase 2 challenge results. All the results refer to the final datasets.
ALC(T0) corresponds to the ALC obtained by the algorithm we used in the
challenge and described in Section 5. ALC(T1) corresponds to the ALC ob-
tained by the TKML strategy with the set of transformations in Table 2. In
parenthesis the rank we would have obtained in final challenge results for
Phase 1 and 2. Finally, the last two columns report the best ALC obtained by
our competitors in Phase 1 and 2.

DATASET ALC(T0) ALC(T1) BestALC Phase 1 BestALC Phase 2

AVICENNA 0.223646 0.221256 (1,2) 0.218265 0.227307

HARRY 0.704331 0.815374 (1,2) 0.806196 0.861933

RITA 0.495082 0.507535 (1,1) 0.489439 0.502948
SYLVESTER 0.456948 0.547636 (3,4) 0.582790 0.593283

TERRY 0.846407 0.849543 (1,1) 0.843724 0.843724

7. Final remarks

We conclude the paper with some final considerations about the proposed paradigm and
future work.

Suitability of the method for Transfer Learning. The method proposed in this pa-
per seems particularly well suited for transfer learning tasks, as it tries to learn a set

104

Transfer Learning by KernelMeta-learning

of (unsupervised) kernel transformations. On the other hand, standard methods for
semi-supervised learning typically optimize an objective function which needs of i.i.d.
labeled data. We advocate that learning a sequence of data transformations should make
the obtained solution depend more on the domain and less on the particular tasks used
for optimization.

Needs of few labeled data. The method is expected to require very few labeled
examples, since the labels are used only for validation. Although the ALC measure
clearly depends on particular tasks for which it is computed, in the UTL challenge, the
ALC measure is computed averaging over several binary tasks. This characteristic is
important to prevent possible overfitting with respect to each particular task.

Generality of the method. The method is able to combine very different kinds of
kernels that individually perform well on varied domains. For example, the HAC based
kernel seems to be suited for data with some structure. In particular, this transform
has been crucial to obtain the best result on TERRY, a dataset related to textual data.
Another example, exponentiating the kernel matrix (via the eigenvalues obtained by
its spectral decomposition) produces an orthogonalization of the features together with
a reweighting of its components. This transform turned out to be very useful for all
the challenge datasets. Specifically, its contribution is apparent when data lay on a
subspace of reduced dimensions, or when a decorrelation of the features, as whitening

(Duda et al., 2000) for example, can be beneficial. Finally, as briefly discussed in this
paper, additional kernel transforms can be plugged into the algorithm proposed.

Low computational burden. The computational requirements mainly depends on
SVD computations needed for the Tσ transform. Interestingly, note that computing the
Tσ transform with different parameters requires only a single SVD. In fact, let K =

UDU8 be the SVD decomposition of K, then, any different transform with exponent
q can be obtained by a matrix multiplication K′ = HH8 where H = UD

q
2 (since D

is diagonal, this last computation does not affect the computational complexity of the
transform and it is fast to compute). We used Scilab5 for the linear algebra routines,
such as the SVD computation and matrix manipulation. C++ has been used for the
computation of the HAC based kernel and for combining kernels.

Future works on Transfer Learning. A study about the connection between ours
and other paradigms, such as deep learning, will be the subject of future work. In fact,
our method can be considered a sort of ‘deep kernel learning’ similar in principle to
a deep learning architecture where kernel transformations correspond to the different
levels of a deep neural network. However, unlike deep learning, we do not use explicit
representation of data as examples are represented on the basis of similarities with
other examples. In the near future, we plan to investigate whether this method can be
extended to transfer knowledge across varied domains. It would be interesting to define
a metric between chains of transformations obtained in such a setting. This metric can
be used to decide what type of knowledge could be transferred from one domain to
another based on domain similarity.

5. http://www.scilab.org/

105

Aiolli

Acknowledgments

This work was supported by ATENEO 2009/2011 “Methods for the integration of back-
ground knowledge in kernel-based learning algorithms for the robust identification of
biomarkers in genomics”. We warmly thank the challenge organizers, and Isabelle
Guyon in particular, for their support, Dav Zimak and the anonymous reviewers for
their useful comments and suggestions.

References

Fabio Aiolli, Giovanni Da San Martino, and Alessandro Sperduti. A kernel method for
the optimization of the margin distribution. In International Conference on Artificial

Neural Networks (ICANN), pages 305–314, 2008.

Rich Caruana. Multitask learning. In Machine Learning, pages 41–75, 1997.

O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT
Press, Cambridge, MA, 2006. URL http://www.kyb.tuebingen.mpg.de/

ssl-book.

R.R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic

Analysis: Special issue on Diffusion Maps and Wavelets, 21:5–30, 2006.

R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification (2nd Edition). Wiley-
Interscience, 2000. ISBN 0471056693.

I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D.W. Aha. Unsupervised and transfer
learning challenge. In International Joint Conference on Neural Networks (IJCNN),
pages 793–800, 2011.

Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El Ghaoui, and
Michael I. Jordan. Learning the kernel matrix with semidefinite programming. Jour-

nal of Machine Learning Research, 5:27–72, 2004.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on

Knoweledge and Data Engineering, 22(10):1345–1359, October 2010.

B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors. Advances in Kernel Methods—

Support Vector Learning. MIT Press, Cambridge, MA, 1999.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear compo-
nent analysis as a kernel eigenvalue problem. Neural Computation, 10:1299–1319,
July 1998.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, New York, NY, USA, 2004. ISBN 0521813972.

106

Transfer Learning by KernelMeta-learning

Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi-Supervised Learning. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2009.

107

108

JMLR: Workshop and Conference Proceedings 27:97–110, 2012 Unsupervised and Transfer Learning

Unsupervised and Transfer Learning Challenge:

a Deep Learning Approach

Grégoire Mesnil1,2
mesnilgr@iro.umontreal.ca

Yann Dauphin1
dauphiya@iro.umontreal.ca

Xavier Glorot1
glorotxa@iro.umontreal.ca

Salah Rifai1 rifaisal@iro.umontreal.ca

Yoshua Bengio1
bengioy@iro.umontreal.ca

Ian Goodfellow1
goodfeli@iro.umontreal.ca

Erick Lavoie1
lavoeric@iro.umontreal.ca

Xavier Muller1
mullerx@iro.umontreal.ca

Guillaume Desjardins1
desjagui@iro.umontreal.ca

David Warde-Farley1
wardefar@iro.umontreal.ca

Pascal Vincent1
vincentp@iro.umontreal.ca

Aaron Courville1
courvila@iro.umontreal.ca

James Bergstra1
bergstrj@iro.umontreal.ca

1 Dept. IRO, Université de Montréal. Montréal (QC), H2C 3J7, Canada
2 LITIS EA 4108, Université de Rouen. 76 800 Saint Etienne du Rouvray, France

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

Learning good representations from a large set of unlabeled data is a particularly
challenging task. Recent work (see Bengio (2009) for a review) shows that train-
ing deep architectures is a good way to extract such representations, by extracting
and disentangling gradually higher-level factors of variation characterizing the input
distribution. In this paper, we describe different kinds of layers we trained for learn-
ing representations in the setting of the Unsupervised and Transfer Learning Chal-
lenge. The strategy of our team won the final phase of the challenge. It combined and
stacked different one-layer unsupervised learning algorithms, adapted to each of the
five datasets of the competition. This paper describes that strategy and the particular
one-layer learning algorithms feeding a simple linear classifier with a tiny number of
labeled training samples (1 to 64 per class).

Keywords: Deep Learning, Unsupervised Learning, Transfer Learning, Neural Net-
works, Restricted Boltzmann Machines, Auto-Encoders, Denoising Auto-Encoders.

1. Introduction

The objective of machine learning algorithms is to discover statistical structure in data.
In particular, representation-learning algorithms attempt to transform the raw data into
a form from which it is easier to perform supervised learning tasks, such as classifica-
tion. This is particularly important when the classifier receiving this representation as

© 2012 G. Mesnil et al.

Mesnil et al.

input is linear and when the number of available labeled examples is small. This is the
case here with the Unsupervised and Transfer Learning (UTL) Challenge 1.

Another challenging characteristic of this competition is that the training (devel-
opment) distribution is typically very different from the test (evaluation) distribution,
because it involves a set of classes different from the test classes, i.e., both inputs and la-
bels have a different nature. What makes the task feasible is that these different classes
have things in common. The bet we make is that more abstract features of the data are

more likely to be shared among the different classes, even with classes which are very
rare in the training set. Another bet we make with representation-learning algorithms
and with Deep Learning algorithms in particular is that the structure of the input dis-
tribution P(X) is strongly connected with the structure of the class predictor P(Y |X) for
all of the classes Y . It means that representations h(X) of inputs X are useful both to
characterize P(X) and to characterize P(Y |X), which we will think of as parametrized
through P(Y |h(X)). Another interesting feature of this competition is that the input fea-
tures are anonymous, so that teams are compared based on the strength of their learning
algorithms and not based on their ability to engineer hand-crafted features based on
task-specific prior knowledge. More material on Deep Learning can be found in a com-
panion paper Bengio (2011).

The paper is organized as follows. The pipeline going from bottom (raw data) to
top (final representation fed to the classifier) is described in Section 2. In addition to the
score returned by the competition servers, Section 3 presents other criteria that guided
the choice of hyperparameters. Section 4 precisely describes the layers we chose to
combine for each of the five competition datasets, at the end of the exploration phase
that lasted from January 2011 to mid-April 2011.

2. Method

We obtain a deep representation by stacking different single-layer blocks, each taken
from a small set of possible learning algorithms, but each with its own set of hyper-
parameters (the most important of which is often just the dimension of the repre-
sentation). Whereas the number of possible combinations of layer types and hyper-
parameters is exponential as depth increases, we used a greedy layer-wise approach
(Bengio et al., 2007) for building each deep model. Hence, the first layer is trained on
the raw input and its hyper-parameters are chosen with respect to the score returned by
the competition servers (on the validation set) and different criteria to avoid overfitting
to a particular subset of classes (discussed in Section 3). We then fix the ith layer (or
keep only a very small number of choices) and search for a good choice of the i+ 1th

layer, pruning and keeping only a few good choices. Depth is thus increased without
an explosion in computation until the model does not improve significantly the perfor-
mance according to our criteria.

The resulting learnt pipeline can be divided in three types of stages: preprocessing,
feature extraction and transductive postprocessing.

1. http://www.causality.inf.ethz.ch/unsupervised-learning.php

110

Unsupervised and Transfer Learning Challenge: a Deep Learning Approach

2.1. Preprocessing

Before the feature extraction step, we preprocessed the data using various techniques.
LetD = {x(j)} j=1,...,n be a training set where x(j) ∈ Rd.

Standardization One option is to standardize the data. For each feature, we compute
its mean µk = (1/n)

∑n
j=1 x

(j)
k

and variance σk. Then, each transformed feature x̃
(j)
k
=

(x
(j)
k
−µk)/σk has zero mean and unit variance.

Uniformization (t-IDF) Another way to control the range of the input is to uni-
formize the feature values by restricting their possible values to [0,1] (and non-
parametrically and approximately mapping each feature to a uniform distribution). We
rank all the x

(j)
k

and map them to [0,1] by dividing the rank by the number of observa-
tions sorted. In the case of sparse data, we assigned the same range value (0) for zeros
features. One option is to aggregate all the features in these statistics and another is to
do it separately for each feature.

Contrast Normalization On datasets which are supposed to correspond to images,
each input d-vector is normalized with respect to the values in the given input vector
(global contrast normalization). For each sample vector x(j) subtract its mean µ(j) =

(1/d)
∑d

k=1 x
(j)
k

and divide by its standard deviation σ(j) (also across the elements of the
vector). In the case of images, this would discard the average illumination and contrast
(scale).

Whitened PCA The Karhulen-Loève transform constantly improved the quality of
the representation for each dataset. Assume the training setD is stored as a matrix X ∈
MR(n,d). First, we compute the empirical mean µ = (1/n)

∑n
i=1 Xi. where Xi. denotes

row i of the matrix X, i.e., example i. We center the data X̃ = X − µ and compute
the covariance matrix C = (1/n)X̃T X̃. Then, we obtain the eigen-decomposition of the
covariance matrix C = V−1UV i.e U ∈ Rd contains the eigen-values and V ∈MR(d,d)
the corresponding eigen-vectors (each row corresponds to an eigen-vector). We build a
diagonal matrix U

′
where U

′

ii =
√

Cii. By the end, the output of the whitened PCA is
given by Y = (X−µ)VU

′
. In our experiments, we used the PCA implementation of the

scikits 2 toolbox.

Feature selection In the datasets where the input is sparse, a preprocessing that we
found very useful is the following: only the features active on the training (develop-

ment) and test (resp. validation) datasets are retained for the test set (resp. validation)
representations. We removed those whose frequency was low on both datasets (this in-
troduces a new hyper-parameter that is the cut-off threshold, but we only tried a couple
of values).

2. http://scikits.appspot.com/

111

Mesnil et al.

2.2. Feature extraction

Feature extraction is the core of our pipeline and has been crucial for getting the first
ranks during the challenge. Here we briefly introduce each method that has been used
during the competition. See also Bengio (2011) along with the citations below for more
details.

2.2.1. µ-ss-RBM

The µ-spike and slab Restricted Boltzmann Machine (µ-ssRBM) (Courville et al., 2011)
is a recently introduced undirected graphical model that has demonstrated some promise
as a model of natural images. The model is characterized by having both a real-valued
slab vector and a binary spike variable associated with each hidden unit. The model
possesses some practical properties such as being amenable to block Gibbs sampling
as well as being capable of generating similar latent representations of the data to the
mean and covariance Restricted Boltzmann Machine (Ranzato and Hinton, 2010).

The µ-ssRBM describes the interaction between three random vectors: the visible
vector v representing the observed data, the binary “spike” variables h and the real-
valued “slab” variables s. Suppose there are N hidden units and a visible vector of
dimension D: v ∈ RD. The ith hidden unit (1 ≤ i ≤ N) is associated with a binary spike
variable: hi ∈ {0,1} and a real valued vector si ∈ RK , pooling over K linear filters. This
kind of pooling structure allows the model to learn over which filters the model will
pool – a useful property in the context of the UTL challenge where we cannot assume
a standard “pixel structure” in the input. The µ-ssRBM model is defined via the energy
function

E(v, s,h) = −
N∑

i=1

vT Wisihi+
1

2
vT

Λ+

N∑

i=1

Φihi

v

+

N∑

i=1

1

2
sT

i αi si −
N∑

i=1

µT
i αi sihi−

N∑

i=1

bihi+

N∑

i=1

µT
i αiµihi,

in which Wi refers to the ith weight matrix of size D×K, the bi are the biases associated
with each of the spike variables hi, and αi and Λ are diagonal matrices that penalize
large values of ‖si‖22 and ‖v‖22 respectively.

Efficient learning and inference in the µ-ssRBM is rooted in the ability to itera-
tively sample from the factorial conditionals P(h | v), p(s | v,h) and p(v | s,h) with a
Gibbs sampling procedure. For a detailed derivation of these conditionals, we refer the
reader to (Courville et al., 2011). In training the µ-ssRBM, we use stochastic maximum
likelihood (Tieleman, 2008) to update the model parameters.

2.2.2. Denoising Autoencoder

Traditional autoencoders map an input x ∈ Rdx to a hidden representation h (the learnt
features) with an affine mapping followed by a non-linearity s (typically a sigmoid):
h = f (x) = s(Wx+b). The representation is then mapped back to input space, initially
producing a linear reconstruction r(x) =W′ f (x)+br, where W′ can be the transpose of

112

Unsupervised and Transfer Learning Challenge: a Deep Learning Approach

W (tied weights) or a different matrix (untied weights). The autoencoder’s parameters
θ =W,b,br are optimized so that the reconstruction is close to the original input x in the
sense of a given loss function L(r(x), x) (the reconstruction error). Common loss func-
tions include squared error ‖r(x)− x‖2, squared error after sigmoid ‖s(r(x))− x‖2, and
sigmoid cross-entropy −

∑
i xi log s(ri(x))+ (1− xi) log(1− s(ri(x))). To encourage ro-

bustness of the representation, and avoid trivial useless solutions, a simple and efficient
variant was proposed in the form of the Denoising Autoencoders (Vincent et al., 2008,
2010). Instead of being trained to merely reconstruct its inputs, a Denoising Autoen-
coder is trained to denoise artificially corrupted training samples, a much more difficult
task, which was shown to force it to extract more useful and meaningful features and
capture the structure of the input distribution (Vincent et al., 2010). In practice, in-
stead of presenting the encoder with a clean training sample x, it is given as input a
stochastically corrupted version x̃. The objective remains to minimize reconstruction
error L(r(x̃), x) with respect to clean sample x, so that the hidden representation has to
help denoise. Common choices for the corruption include additive Gaussian noise, and
masking a fraction of the input components at random by setting them to 0 (masking
noise).

2.2.3. Contractive Autoencoder

To encourage robustness of the representation f (x) obtained for a training input x, Rifai
et al. (2011) propose to penalize its sensitivity to that input, measured as the Frobenius
norm of the Jacobian J f (x) of the non-linear mapping. Formally, if input x ∈ Rdx is
mapped by an encoding function f to a hidden representation h ∈ Rdh , this sensitivity
penalization term is the sum of squares of all partial derivatives of the extracted features
with respect to input dimensions:

‖J f (x)‖2F =
∑

i j

(
∂h j(x)

∂xi

)2

.

Penalizing ‖J f ‖2F encourages the mapping to the feature space to be contractive in
the neighborhood of the training data. The flatness induced by having small first deriva-
tives will imply an invariance or robustness of the representation for small variations
of the input.

While such a Jacobian term alone would encourage mapping to a useless constant
representation, it is counterbalanced in auto-encoder training by the need for the learnt
representation to allow a good reconstruction of the training examples.

2.2.4. Rectifiers

Recent works investigated linear rectified activation function variants. Nair and Hin-
ton (2010) used Noisy Rectified Linear Units (NReLU) (i.e. max(0, x + N(0,σ(x)))
for Restricted Boltzmann Machines. Compared to binary units, they observed signifi-
cant improvements in term of generalization performance for image classification tasks.

113

Mesnil et al.

Following this line of work, Glorot et al. (2011) used the rectifier activation func-
tion (i.e. max(0, x)) for deep neural networks and Stacked Denoising Auto-Encoders
(SDAE) (Vincent et al., 2008, 2010) and obtained similarly good results.

This non-linearity has various mathematical advantages. First, it naturally creates
sparse representations with true zeros which are computationally appealing. In addi-
tion, the linearity on the active side of the activation function allows gradient to flow
well on the active set of neurons, possibly reducing the vanishing gradients problem.

In a semi-supervised setting similar to that of the Unsupervised and Transfer learn-
ing Challenge setup, Glorot et al. (2011) obtained state-of-the-art results for a sentiment
analysis task (the Amazon 4-task benchmark) for which the bag-of-words input were
highly sparse.

But learning such embeddings for huge sparse vectors with the proposed approach
is still very expensive. Even though the training cost only scales linearly with the di-
mension of the input, it can become too expensive when the input becomes very large.
Projecting the input vector to its embedding can be made quite efficient by using a
sparse matrix-vector product. However, projecting the embedding back to the input
space is quite expensive during decoding because one has to compute a reconstruction
(and reconstruction error) for all inputs and not just the non-zeros. If the input dimen-
sion is 50,000 and the embedding dimension 1,000 then decoding requires 50,000,000
operations. In order to speed-up training for huge sparse input distributions, we use
reconstruction sampling (Dauphin et al., 2011). The idea is to reconstruct all the non-
zero elements of the input and a small random subset of the zero elements, and to use
importance sampling weights to exactly correct the bias thus introduced.

The learning objective is sampled in the following manner:

L̂(x,z) =
d∑

k

p̂k

qk
H(xk,zk)

where p̂ ∈ {0,1}dx with p̂ ∼ P(p̂|x). The sampling pattern p̂ is resampled for each pre-
sentation of the input and it controls which input unit will participate in the training
cost for this presentation. The bias introduced by sampling can be corrected by setting
the reweighting term 1/q such that qk = E[p̂k|k,x, x̃].

The optimal sampling probabilities P(p̂|x) are those that minimize the variance of
the estimator L̂. Dauphin et al. (2011) show that reconstructing all non-zeros and a
small subset of zeros is a good heuristic. The intuition is that the model is more likely
to be wrong on the non-zeros than the zeros. Let C(x, x̃) = {k : xk = 1 or x̃k = 1}. Then
bit k is reconstructed with probability

P(p̂k = 1|xk) =

{
1 if k ∈ C(x, x̃)
|C(x, x̃)|/dx otherwise

(1)

Dauphin et al. (2011) show that the computational speed-up is on the order of
dS MP/dx where dS MP is the average number of units that are reconstructed and dx is the
input dimension. Furthermore, reconstruction sampling yields models that converge

114

Unsupervised and Transfer Learning Challenge: a Deep Learning Approach

as fast as the non-sampled networks in terms of gradient steps (but where each step is
much faster).

2.3. Postprocessing

The competition servers use a Hebbian classifier. Specifically, the discriminant function
applied to a test set matrix Z (one row per example) after training the representation on
a training set matrix X (one row per example) is given by

f (Z) = ZXT y

where yi = 1/np if training example i is positive, or −1/nn if training example i is
negative, where np and nn are the number of positive and negative training examples,
respectively. One classifier per class (one against all) is trained.

This classifier does not have any regularization hyperparameters. We were inter-
ested in discovering whether some postprocessing of our features could result in Heb-
bian learning behaving as if it was regularized. It turns out that in a sense, Hebbian
learning is already maximally regularized. Fisher discriminant analysis can be solved
as a linear regression problem (Bishop, 2006), and the L2 regularized version of this
problem yields this discriminant function:

gλ(Z) = Z(XT X+λI)XT y

where λ is the regularization coefficient. Note that

lim
λ→∞

gλ(Z)

||gλ(Z)||
=

f (Z)

|| f (Z)||
.

Since scaling does not affect the final classification decision, Hebbian learning may be
seen as maximally regularized Fisher discriminant analysis. It is possible to reduce
Hebbian learning’s implicit L2 regularization coefficient to some smaller λ by multi-
plying Z by (XT X+λI)−1/2), but it is not possible to increase it.

Despite this implicit regularization, overfitting is still an important obstacle to good
performance in this competition due to the small number of training examples used. We
therefore explored other means of avoiding overfitting, such as reducing the number of
features and exploring sparse codes that would result in most of the features appearing
in the training set being 0. However, the best results and regularization where obtained
by a transductive PCA.

2.3.1. Transductive PCA

A Transductive PCA is a PCA transform trained not on the training set but on the
test (or validation) set. After training the first k layers of the pipeline on the training
set, we trained a PCA on top of layer k, either on the validation set or on the test
set (depending on whether we were submitting to the validation set or the test set).
Regarding the notation used in 2.1, we apply the same transformation with X replaced
by the representation on top of layer k of the validation set or the test set i.e h(Xvalid).

115

Mesnil et al.

This transductive PCA thus only retains variations that are the dominant ones in the
test or validation set. It makes sure that the final classifier will ignore the variations
present in the training set but irrelevant for the test (or validation) set. In a sense, this
is a generalization of the strategy introduced in 2.1 of removing features that were not
present in the both training and test / validation sets. The lower layers only keep the
directions of variation that are dominant in the training set, while the top transductive
PCA only keeps those that are significantly present in the validation (or test) set.

We assumed that the validation and test sets contained the same number of classes
to validate the number of components on the validation set performance. In general, one
needs at least k− 1 components in order to separate k classes by a set of one-against-
all classifiers. Transductive PCA has been decisive for winning the competition as it
improved considerably the performance on all the datasets. In some cases, we also used
a mixed strategy for the intermediate layers, mixing examples from all three sets.

2.3.2. Other methods

After the feature extraction process, we were able to visualize the data as a three-
dimensional scatter plot of the representation learnt. On some datasets, a very clear
clustering pattern became visually apparent, though it appeared that several clouds
came together in an ambiguous region of the latent space discovered.

In order to attempt to disambiguate this ambiguous region without making hard-
threshold decisions, we fit a Gaussian mixture model with the EM algorithm and a
small number of Gaussian components chosen by visual inspection of these clouds. We
then used the posterior probabilities of the cluster assignments as an alternate encoding.

K-means, by contrast with Gaussian mixture models, makes a hard decision as to
cluster assignments. Many researchers were recently impressed when they found out
that a certain kind of feature representation (the “triangle code”) based on K-means,
combined with specialized pre-processing, yielded state of the art performance on the
CIFAR-10 image classification benchmark (Coates et al., 2011). Therefore, we tried
K-means with a large number of means and the triangle code as a post-processing step.

In the end, though, none of our selected final entries included a Gaussian mixture
model or K-means, as the transductive PCA always worked better as a post-processing
layer.

3. Criterion

The usual kind of overfitting is due to specializing to particular labeled examples. In
this transfer learning context, another kind of overfitting arose: overfitting a represen-
tation to particular classes. Since the validation set and test set have non-intersecting
sets of classes, finding representations that work well on the validation set was not a
guarantee for good behavior on the test set, as we learned from our experience with
the competition first phase. Note also that the competition was focused on a particular
criterion, the Area under the Learning Curve (ALC)3 which gives much weight to the

3. http://www.causality.inf.ethz.ch/ul_data/DatasetsUTLChallenge.pdf

116

Unsupervised and Transfer Learning Challenge: a Deep Learning Approach

cases with very few labeled examples (1, 2, or 4, per class, in particular, get almost half
of the weight). So the question we investigated in the second and final phase (where
some training set labels were revealed) was the following: does the ALC of a represen-
tation computed on a particular subset of classes correlate with the ALC of the same
representation computed on a different set of classes?

Overfitting on a specific subset of classes can be observed by training a PCA sep-
arately on the training, validation and test sets on ULE (this data set corresponds to
MNIST digits). The number of components maximizing the ALC will be different, de-
pending on the choice of the subset of classes. Figure 1(a) illustrates the effect of the
number of components retained on the training, validation and test ALCs. While the
best number of components on the validation set would be 2, choosing this number of
components for the test set significantly degrades the test ALC.

During the first phase, we noticed the absence of correlation between the validation
ALC and test ALC computed on the ULE dataset. During the second phase, we tried to
reproduce the competition setting using the labels available for transfer with the hope
of finding a criteria that would guarantee generalization. The ALC was computed on
every subset of at least two classes found in the transfer labels and metrics were derived.
Those metrics are illustrated in Figure 1(b). We observed that the standard deviation
seems to be inversely proportional to the generalization accuracy, therefore substracting
it from the mean ALC ensures that the choice of hyper-parameters is done in a range
where the training, validation and test ALCs are correlated. In the case of a PCA,
optimizing the µ−σ criteria correctly returns the best number of PCA components,
ten, where the training, validation and test ALCs are all correlated.

It appears that this criterion is a simple way to use the small amount of labels given
to the competitors for the phase 2. However, this criterion has not been heavily tested
during the competition since we always selected our best models with respect to the
validation ALC returned by the competition servers. From the phase 1 to the phase 2,
we only explored the space of the hyperparameters of our models using a finer grid.

4. Results

For each of the five datasets, AVICENNA, HARRY, TERRY, SYLVESTER and
RITA, the strategy retained for the final winning submission on the phase 2 is precisely
described. Training such a deep stack of layers from preprocessing to postprocessing
takes at most 12 hours for each dataset once you have found the good hyperparameters.
All our models are implemented in Theano (Bergstra et al., 2010), a Python library that
allows transparent use of GPUs. During the competition, we used a cluster of GPUs,
Nvidia GeForce GTX 580.

4.1. AVICENNA

Nature of the data It corresponds to arabic manuscripts and consists of 150,205
training samples of dimension 120.

117

Unsupervised and Transfer Learning Challenge: a Deep Learning Approach

tion. Then, the second layer consisted in a Denoising Autoencoder of 600 hidden units
trained with a binomial noise, i.e, each component of the input had a probability p= 0.3
of being masked (set to 0). The top layer was a transductive PCA with only the 7 prin-
cipal components.

Results This strategy ranked first with a validation and final ALC score of 0.1932 and
0.2273 respectively. Training a contractive auto-encoder gives similar results on the
validation set i.e a validation and final ALC score of 0.1930 and 0.1973 respectively.

4.2. HARRY

Nature of the data It corresponds to human actions and consists of 69,652 train-
ing samples of dimension 5,000, which are sparse: only 2% of the components are
typically non-zero.

Best Architecture For the first layer, we uniformized the non-zero feature values (ag-
gregating all features) across the concatenation of the training, validation and test sets.
For the second layer, we trained on the union of the 3 sets a Denoising Auto-Encoder
with rectifier units and reconstruction sampling. We used the binomial masking noise
(p = 0.5) as corruption process, the logistic sigmoid as reconstruction activation func-
tion and the cross entropy as reconstruction error criterion. The size of the hidden layer
was 5000 and we added an L1 penalty on the activation values to encourage sparsity
of the representation. For the third layer, we applied a transductive PCA and kept 3
components.

Results We obtained the best validation ALC score of the competition. This was
also the case for the final evaluation score with an ALC score of 0.861933, whereas
the second best obtained 0.754497. Figure 3 shows the final data representation we
obtained for the test (evaluation) set.

4.3. TERRY

Nature of the data This is a natural language processing (NLP) task, with 217,034
training samples of dimension 41,236, and a high level of sparsity: only 1% of the
components are non-zero in average.

Best Architecture A setup similar to HARRY has been used for TERRY. For the
first layer, we kept only the features that were active on both training and validation
sets (and similarly with the test set, for preparing the test set representations). Then, we
divided the non-zero feature values by their standard deviation across the concatenation
of the training, validation and test set. For the second layer, we trained on the three sets
a Denoising Auto-Encoder with rectifier units and reconstruction sampling. We used
binomial masking noise (p = 0.5) as corruption process, the logistic sigmoid as recon-
struction activation function and the squared error as reconstruction error criterion. The
size of the hidden layer was 5000 and we added an L1 penalty on the activation values to
encourage sparsity of the representation. For the third layer, we applied a transductive
PCA and kept the leading 4 components.

119

Mesnil et al.

Figure 3: HARRY evaluation set after the transductive PCA, the data is nicely clus-
tered, suggesting that the learned preprocessing has discovered the underly-
ing class structure.

Results We ranked second on this dataset with a validation and final score of 0.816752
and 0.816009.

4.4. SYLVESTER

Nature of the data It corresponds to ecology data and consists of 572,820 training
samples of dimension 100.

Best Architecture For the first layer, we extracted the meaningful features and dis-
carded the apparent noise dimensions using PCA. We used the first 8 principal dimen-
sions as the feature representation produced by the layer because it gave the best per-
formance on the validation set. We also whitened this new feature representation by
dividing each dimension by its corresponding singular value (square root of the eigen-
value of the covariance matrix, or corresponding standard deviation of the component).
Whitening gives each dimension equal importance both for the classifier and subse-
quent feature extractors. For the second and third layers, we used a Contractive Auto-
Encoder (CAE). We have selected a layer size of 6 based on validation ALC. For the
fourth layer, we again apply a transductive PCA.

Figure 4 shows the evolution of the ALC curve for each layer of the hierarchy. Note
that at each layer, we only use the top-level features as the representation.

Results This yielded an ALC of 0.85109 for the validation set and 0.476341 for the
test set. The difference in ALC may be explained by the fact that Sylvester is the only

120

Unsupervised and Transfer Learning Challenge: a Deep Learning Approach

(a) Raw Data (b) 1st Layer (c) 2nd Layer

(d) 3rd Layer (e) t-PCA

Figure 4: Validation performance increases with the depth of our feature hierarchy for
the SYLVESTER dataset. ALC: Raw Data (0.2167), 1st Layer (0.6238),
2nd Layer (0.7878), 3rd Layer (0.8511), t-PCA(0.9316)

dataset where the test set contains more classes than the validation set and, and thus our
assumpptions of equal number of classes might have hurt test performance here.

4.5. RITA

Nature of the data It corresponds to the CIFAR RGB image dataset and consists of
111,808 training samples of dimension 7,200.

Best Architecture The µ-ssRBM was initially developed as a model for natural im-
ages. As such, it was a natural fit for the RITA dataset. Their ability to learn the
pooling structure was also a clear advantage, since the max-pooling strategy typically
used in vision tasks with convolutional networks LeCun et al. (1998) could no longer
be employed due to the obfuscated nature of the dataset.

For pre-processing, each image has been contrast-normalized. Then, we reduced
the dimensionality of the training dataset by learning on the first 1,000 principal com-
ponents. For feature extraction, we chose the number of hidden units to be large enough
(1000) while still being computationally efficient on GPUs. The learning rate of 10−3

and number of training updates (110,000 updates with minibatches of size 16) are cho-
sen such that hidden units have sparse activations through pools of size 9, hovering
around 10-25%. The post-processing was consistent with the other datasets: we used
the transductive PCA method using only the first 4 principal components.

Results This yielded an ALC score of 0.286 and 0.437 for the validation and final test
sets respectively. We also tried to stack 3 layers of contractive auto-encoders directly on

121

Mesnil et al.

the raw data and it achieved a valid ALC of 0.3268. As it appeared actually transductive,
we prefered to keep the µ-ssRBM in our competition entries because it was trained on
the whole training set.

5. Conclusion

The competition setting with different class labels in the validation and the test sets
was quite unusual. The similarity between two classes must be sufficient for transfer
learning to be possible. More formal assessments of class similarity might be useful in
such settings. It is not obvious that the similarity between the subsets of classes chosen
for the different datasets in the context of the competition is sufficient for an effective
generalization, neither that the similarity between the subsets of classes found in the
transfer labels is representative of the similarity between the classes found in the train-
ing, validation and test datasets. Finally, for assessing transfer across classes properly
would require a larger number of classes. In a future competition, we suggest that both
similarity and representativeness (including number of classes) should be ensured in a
more formal or empirical way.

On all five tasks, we have found the idea of stacking different layer-wise
representation-learning algorithms to work very well. One surprise was the effective-
ness of PCA both as a first layer and a last layer, in a transductive setting. As core
feature-learning blocks, the contractive auto-encoder, the denoising auto-encoder and
spike-and-slab RBM worked best for us on the dense datasets, while the sparse rectifier
denoising auto-encoder worked best on the sparse datasets.

Acknowledgements

The authors acknowledge the support of the following agencies for research funding
and computing support: NSERC, RQCHP, CIFAR. This is also funded in part by the
French ANR Project ASAP ANR-09-EMER-001.

References

Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in Ma-

chine Learning, 2(1):1–127, 2009. Also published as a book. Now Publishers, 2009.

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learn-
ing. In Workshop on Unsupervised and Transfer Learning (ICML’11), June 2011.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-
wise training of deep networks. In Bernhard Schölkopf, John Platt, and Thomas
Hoffman, editors, Advances in Neural Information Processing Systems 19 (NIPS’06),
pages 153–160. MIT Press, 2007.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio.

122

Unsupervised and Transfer Learning Challenge: a Deep Learning Approach

Theano: a CPU and GPU math expression compiler. In Proceedings of the Python for

Scientific Computing Conference (SciPy), June 2010. URL http://www.iro.

umontreal.ca/˜lisa/pointeurs/theano_scipy2010.pdf. Oral.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

A. Coates, H. Lee, and A. Ng. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the Thirteenth International Conference on Arti-

ficial Intelligence and Statistics (AISTATS 2011), 2011.

Aaron Courville, James Bergstra, and Yoshua Bengio. Unsupervised models of images
by spike-and-slab RBMs. In Proceedings of the Twenty-eight International Confer-

ence on Machine Learning (ICML’11), June 2011.

Yann Dauphin, Xavier Glorot, and Yoshua Bengio. Sampled reconstruction for large-
scale learning of embeddings. In Proceedings of the Twenty-eight International Con-

ference on Machine Learning (ICML’11), June 2011.

Xavier Glorot, Antoire Bordes, and Yoshua Bengio. Deep sparse rectifier neural net-
works. In JMLR W&CP: Proceedings of the Fourteenth International Conference on

Artificial Intelligence and Statistics (AISTATS 2011), April 2011.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient based learning applied to
document recognition. IEEE, 86(11):2278–2324, November 1998.

V. Nair and G. E Hinton. Rectified linear units improve restricted Boltzmann machines.
In Proc. 27th International Conference on Machine Learning, 2010.

M. Ranzato and G. H. Hinton. Modeling pixel means and covariances using factorized
third-order Boltzmann machines. In Proceedings of the Computer Vision and Pattern

Recognition Conference (CVPR’10), pages 2551–2558. IEEE Press, 2010.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Con-
tractive auto-encoders: Explicit invariance during feature extraction. In Proceedings

of the Twenty-eight International Conference on Machine Learning (ICML’11), June
2011.

Tijmen Tieleman. Training restricted Boltzmann machines using approximations to the
likelihood gradient. In William W. Cohen, Andrew McCallum, and Sam T. Roweis,
editors, Proceedings of the Twenty-fifth International Conference on Machine Learn-

ing (ICML’08), pages 1064–1071. ACM, 2008.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and composing robust features with denoising autoencoders. In William W.
Cohen, Andrew McCallum, and Sam T. Roweis, editors, Proceedings of the Twenty-

fifth International Conference on Machine Learning (ICML’08), pages 1096–1103.
ACM, 2008.

123

Mesnil et al.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine
Manzagol. Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion. Journal of Machine Learning Re-

search, 11(3371–3408), December 2010.

124

JMLR: Workshop and Conference Proceedings 27:111–122, 2012 Unsupervised and Transfer Learning

Stochastic Unsupervised Learning on Unlabeled Data

Chuanren Liu chuanren.liu@rutgers.edu
Rutgers, the State University of New Jersey, Newark, NJ 07102, USA

Jianjun Xie jianjunxie@gmail.com
CoreLogic, 12395 First American Way, Poway, CA 92064, USA

Yong Ge yongge@rutgers.edu

Hui Xiong hxiong@rutgers.edu

Rutgers, the State University of New Jersey, Newark, NJ 07102, USA

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

In this paper, we introduce a stochastic unsupervised learning method that was used
in the 2011 Unsupervised and Transfer Learning (UTL) challenge. This method is
developed to preprocess the data that will be used in the subsequent classification
problems. Specifically, it performs K-means clustering on principal components in-
stead of raw data to remove the impact of noisy/irrelevant/less-relevant features and
improve the robustness of the results. To alleviate the overfitting problem, we also
utilize a stochastic process to combine multiple clustering assignments on each data
point. Finally, promising results were observed on all the test data sets. Indeed, this
proposed method won us the second place in the overall performance of the challenge.

Keywords: Stochastic Unsupervised Learning, Clustering, K-means, Principal Com-
ponent Analysis (PCA)

1. Introduction

Data preprocessing is usually critical for the success of building classification models.
There are many unsupervised learning techniques which can be exploited for data pre-
processing in a complementary way. First, clustering techniques target on dividing data
objects into different groups such that the objects in the same cluster are more similar to
one another than to those from different clusters. Clustering techniques are widely used
for summarizing data objects and capturing key data characteristics (Jain and Dubes,
1988). Among various clustering algorithms, K-means clustering has been identified
as one of the top 10 algorithms in data mining by the IEEE International Conference on
Data Mining (ICDM) in December 2006 (Wu et al., 2008).

Also, principal Component Analysis (PCA) (Jolliffe, 2002) is an effective technique
for dimension reduction and feature preprocessing. It transforms the data into a new
coordinate system such that the greatest variance is achieved by projecting the data into
the first coordinate (called the first principal component), the second greatest variance
achieved into the second coordinate, and so on. Many researchers combined the K-

© 2012 C. Liu, J. Xie, Y. Ge & H. Xiong.

Liu Xie Ge Xiong

means and PCA together to achieve more stable results (Ben-Hur and Guyon, 2003).
It has been shown that the principal components are the continuous solutions to the
discrete cluster membership indicators for K-means clustering (Ding and He, 2004).

The 2011 Unsupervised and Transfer Learning Challenge (Guyon et al., 2011) pro-
vided a platform for participants to learn good data representations through data pre-
processing that can be re-used across tasks by building models that capture regularities
of the input space. The representations are evaluated by the organizers on supervised
learning target tasks which are unknown to the participants. In the first phase of the
challenge, the competitors are given only unlabeled data to learn their data representa-
tion. In the second phase of the challenge, the competitors have available, in addition
to unlabeled data, a limited amount of labeled data from source tasks distinct from the
target tasks.

In this paper, we present the method that we used in the unsupervised learning
challenge (first phase). By exploiting the advantages of both PCA and cluster ensemble
techniques, we propose a stochastic unsupervised learning method for data processing.
This unsupervised learning method is developed to preprocess the data that will be used
in the subsequent binary classification problems. There are two challenging issues for
the proposed task. First, there is no labeled data in support of this data preprocessing.
Without ground truth, it is difficult to identify noisy or irrelevant features. Second, un-
supervised learning methods like K-means start by randomly choosing initial cluster
seeds. The results obtained in this way are not only dependent on the chosen seeds, but
can also be locally optimal. For the first issue, we use K-means to cluster data repre-
sented only with the first P principal components by PCA. In this way, it is expected
to remove the negative impact of noisy/irrelevant/less-relevant features. For the sec-
ond issue, we apply a stochastic strategy to combine clustering results of multiple runs
of K-means with random initialization. An ensemble of cluster labels is produced for
each data point, which is expected to help alleviate the problem of robustness, cluster-
ing quality, and overfitting. This stochastic clustering process has been explored in the
semi-supervised learning problems (Xie and Xiong, 2011).

The effectiveness of the data representation obtained by unsupervised learning is
evaluated by the organizers on supervised learning tasks (i.e. using labeled data not
available to the participants) using Hebbian classifier. Specifically, with the training
data matrix X (one row per instance), the classifier computes the wieght w as XT y,
where y = (y1,y2, · · · ,yn)T , yi = 1/np if the ith training instance is positive, yi = −1/nn

otherwise, where np,nn are the number of positive and negative training examples re-
spectively. The test instance x (column vector) will be classified according to the linear
discriminant wT x. It is noted that the size of training data X is very small (no more than
64 per classification problem) in this challenge. The model performance is reported
with the metric of Area under the Learning Curve (ALC) which is referred to as the
global score. The participants are ranked by ALC for each individual data set. The
winner is determined by the best average rank over all data sets for the results of their
last complete experiment. We will see the proposed method is effective especially in
such a small training set scenario.

126

Stochastic Unsupervised Learning

Such a linear discriminant classifier assumes the instances lying in the feature space
are linearly separable. However, it is not necessarily true in many real-world data sets.
For example, Figure 1 illustrates a situation of a mixture model, where the positive in-
stances indicated by the plus marks are surrounded by 3 groups of negative instances
indicated by the circles. Noises are indicated by green dots. With clustering algorithms,
we can cluster the data set into 4 groups, whose representation becomes linearly sepa-
rable by the Hebbian classifier. The above can be reflected in the experimental results.

Overview. The remainder of this paper is organized as follows. In Section 2,
we describe the stochastic unsupervised learning method based on K-means and PCA.
Section 3 shows the results. In Section 4, we discuss the limitations of the proposed
approaches and describe the potential directions for future work.

2. The Stochastic Clustering Algorithm

2.1. The Algorithm

Algorithm 1 details the common strategy we used for all 5 data sets in the challenge.
The output is the final data representation, which is a binary representation of derived
cluster labels. If K is 3 for a given data set, the binary representations of label 1, 2 and 3
are (1 0 0), (0 1 0) and (0 0 1), respectively. Therefore, our final data representation will
be a bagged N ×KT matrix, where N is the number of examples, K is the number of
clusters and T is the number of stochastic iterations. Each data element in the matrix is
either 1 or 0. Such a binary representation is chosen to eliminate the numeric meaning
of clustering labels which is misleading for the Hebbian classifier.

It is noted that the data set X is not the raw data set. It is the first P principal com-
ponents of the raw data set. In the challenge, we used different P and necessary variants
of naive PCA for each data set based on online feedback from the validation set. For
example, instead of analyzing the principal components of covariance matrix for all
features, we also tried to decomposing the correlation matrix, which implies dividing
by standard deviation prior to computing the covariances. The transformation of the
raw data to retrieved principal components also can be followed by additional process-
ing strategies, such as standardization (to subtract mean and divide deviation for each
feature) and weighting (to weight each component by its corresponding eigenvalue).

For the clustering algorithm K-means, the number of clusters was also determined
based on online feedback during this challenge. For nearly every data set, we found
the real number of classes to be predicted. The only exception is SYLVESTER, where
the real numbers of classes in the validation set and the final set are 2 and 3 respec-
tively, and we used 3 as the number of clusters. In addition to K, we also used different
distance/similarity metrics for different data sets. Basically, for low dimensional X,
Euclidean distance is used. Otherwise in the high dimensional case, cosine similarity
is preferred. Cosine performs an implicit instance-level standardization, i.e., the in-
stance vector is normalized to be of unit length. We found feature-level standardization
could also improve the clustering results, such as HARRY. For TERRY, which is in text

127

Liu Xie Ge Xiong

Figure 1: An example of a mixture model.

recognition domain, the well-known TF-IDF transformation is used prior to computing
cosine similarities.

Another parameter in Algorithm 1 is the number of stochastic iterations. The mo-
tivation of the stochastic process is to settle the overfitting phenomenon. Although the
binary matrix generated from only one clustering solution can be directly fed to the
classifier, the final classification result will vary a lot with the clustering solution. By
combining several different clustering solutions, we found the final classification result
could be improved better than that based on any single clustering solution. Ideally,
the final result will converge along with the increasing number of stochastic iterations.
When the result becomes stable on the validation set, we believe the overfitting problem
on the final set has also been circumvented. We analyzed the results of 20,40,60,80
and 100 iterations. For most of the data sets, stable results are observed on the val-
idation set after 60 iterations. Thus, in our submission to the challenge, we set the
number of stochastic iterations as 100. Details of these variations on each data set will
be described in Section 3.

2.2. Cluster Assumption

In fact, the proposed algorithm maps the data from the original data space to the space
discovered by the underlying clustering algorithm, in the hope that the class does not
change in regions of high density within clusters. Such a cluster assumption can be
explained using cluster kernels. Specifically, with the achieved clustering solution

l : z -→ l(z) ∈ {1,2, · · · ,K}

128

Stochastic Unsupervised Learning

Algorithm 1 The Stochastic Clustering Algorithm

Input Data set X, the number of clusters K, the number of stochastic iterations T

Output Data set Y

1. For t = 1,2, · · · ,T

(a) Randomly choose K seeds from X for K-means to generate clusters. Denote
the clustering assignments by I.

(b) Transform I to binary format, i.e. for each assignment

i -→ ei = (ei1,ei2, · · · ,eiK)

where ei j =

1 i = j

0 i ! j
. Denote the binary matrix by

Bt =

eI1

eI2

...

eIN

where In is the assignment of the nth instance.

2. Combine Bt, t = 1,2, · · · ,T together as Y = (B1|B2| · · · |BT).

where l(z) is the clustering assignment for any clustered instance z, the mapping func-
tion is

φ(z) = ([l(z) = 1], [l(z) = 2], · · · , [l(z) = K])T ,

and the inner product kernel

φ(x)Tφ(z) = [l(x) = l(z)]

will be used by Hebbian classifier. By combining multiple clustering solutions together,
the inner product of x and z in the mapped space is

∑T
t=1[lt(x) = lt(z)], where lt is the tth

clustering solution. Such a combination is also used in the study of consensus clustering
(Hu and Sung, 2005).

2.3. An Illustrative Example

To illustrate the effectiveness and rationale of the proposed algorithm, especially of
the clustering component, we analyzed the results of 100 runs of K-means for the toy
data set ULE whose true labels are available. For each clustering solution, in addition
to mean squared error (MSE) as the clustering criterion function, we also computed

129

Liu Xie Ge Xiong

ALC and purity (the fraction of correctly classified data when all data in each cluster is
classified as the majority class in that cluster). As shown by the representative solutions
in Table 1, one can see that better classification results really come along with better
clustering solutions. The best ALC value of 0.83764 is achieved with the lowest MSE
value of 0.9102239 and the highest purity value of 0.93872. More interestingly, by
combining all 100 clustering solutions, we can achieve an ALC value of 0.86642, which
is significantly better than that of the best single solution. Such an ensemble effect is
the key motivation of the proposed algorithm.

3. Results

In this section, we provide an empirical study of the proposed stochastic unsupervised
learning method. In most of the data sets studied, the proposed method achieves better
performances than that of the raw data and PCA.

3.1. AVICENNA: Arabic manuscripts

The results on the AVICENNA data set are shown in Table 2. It seems difficult to get
good results on either the validation set or the final set, for the best global score on
the leader board turns out less than 0.2 for the validation set. This is the only data set
in our experiments where the PCA itself has better global scores on the final data set
than K-means. We believe this is due to the label overlaps in this data set; that is, one
example can belong to multiple classes.

The learning curves of the three scenarios (raw data, PCA and K-Means) are shown
in Figure 2. The PCs are standardized for this data set such that each feature has zero
mean and unit variance. We did notice that the K-means underperforms PCA dur-
ing the first phase of the challenge through the on-line feedback on the validation set.
Therefore, we chose the PCA results as our final experiment. However, we did some
improvements on K-means during the second phase. We found that if we first did a
record level normalization on each variables (this is equivalent to a Term-Frequency
transformation in document classification), then did PCA on the normalized variables

Table 1: A Comparison of MSE, purity and ALC.

MSE Purity ALC

0.9102239 0.93872 0.83764
0.9782505 0.65332 0.51611
0.9959307 0.64429 0.51231
1.0049960 0.63550 0.48539
1.0049971 0.63550 0.48545
1.0050026 0.63501 0.48563
1.0050027 0.63452 0.48586
1.0050034 0.63599 0.48262

130

Stochastic Unsupervised Learning

Table 2: The Results on AVICENNA.

Validation Final Algorithm details

Raw Data 0.1034 0.1501 Original data
PCA 0.1386 0.1906 First 50 standardized PCs from Covariance Matrix

and First 50 standardized PCs from Correlation Ma-
trix

K-Means 0.1668 0.1511 Stochastic K-means on first 100 standardized PCs.
Cluster number = 5.

and stochastic K-means on the first 100 PCs, we could lift the global score on the val-
idation set from 0.1386 to 0.1668. Unfortunately, this improvement on the validation
set did not hold on the final set. Our K-means results on the final set actually dropped
to 0.1511 from 0.1906.

3.2. HARRY: Human action recognition

Table 3 lists our experimental results on both PCA and K-means on the HARRY data
set. In the table, we can observe that PCA works very well on the validation set. The
first 5 weighted PCs (weighted by the corresponding eigenvalue of each principal com-
ponent) can achieve a 0.8056 global score in the validation set. For this data, which is
high dimensional and very sparse, the stochastic K-means on standardized data works
better than that on PCs. We used the Cosine similarity as the distance measure in K-
means clustering. The number of clusters is set to 3. In Table 3, we can see that, while
PCA works pretty well, the stochastic K-means without PCA works much better. Such
a phenomenon was also observed in TERRY, which is also high dimensional and very
sparse.

The learning curves on both the validation and the final sets are illustrated in Figure
3. We can see that the improvements on the validation set do hold well on the final set.

3.3. RITA: Object recognition

RITA is another difficult data set in addition to AVICENNA. Our experimental results
on both PCA and K-means on the RITA data set are shown in Table 4. The first 50
principal components achieve ALC = 0.2834, 0.4622 on the validation set and the final
set, respectively. The stochastic K-means gives the best results. We find that Euclidian

Table 3: The Results on HARRY.

Validation Final Algorithm details

Raw Data 0.6264 0.6017 Original data
PCA 0.8056 0.6243 First 5 weighted PCs from correlation matrix
K-Means 0.9085 0.7357 Stochastic K-means on standardized data. Cluster

number = 3.

131

Liu Xie Ge Xiong

(a) Validation (b) Final

Figure 2: The learning curve on AVICENNA

(a) Validation (b) Final

Figure 3: The Learning curves on HARRY

132

Stochastic Unsupervised Learning

Table 4: The results on RITA.

Validation Final Algorithm details

Raw Data 0.2504 0.4133 Original data
PCA 0.2834 0.4622 First 50 PCs from covariance matrix
K-Means 0.3737 0.4782 Stochastic K-means on standardized 50 PCs. Cluster

number = 3.

distance is better than the Cosine similarity in this case. The number of clusters is set
to 3. The learning curves on both validation and final sets are illustrated in Figure 4.
We can see that the improvements on the global score from PCA and K-means over the
raw data mainly come from the beginning of the learning curve, which may correspond
to small number of training samples.

(a) Validation (b) Final

Figure 4: The learning curve on RITA

3.4. SYLVESTER: Ecology

Table 5 lists our experimental results on both PCA and K-means on the SYLVESTER
data set. SYLVESTER has only 100 features and is not sparse. In the table, we can
see that the first 7 principal components can do much better than the original data.

Table 5: The results on SYLVESTER.

Validation Final Algorithm details

Raw Data 0.2167 0.3095 Original data
PCA 0.5873 0.4436 First 7 standardized PCs from correlation matrix
K-Means 0.7146 0.5828 Stochastic K-means on standardized 15 PCs. Cluster

number = 3.

133

Liu Xie Ge Xiong

The stochastic K-means using K = 3 further improves the PCA results from 0.4436 to
0.5828 on the final set. Indeed, our result on the final set was ranked No. 1 in the first
phase of the challenge.

Also, Figure 5 shows the learning curves on both the validation set and the final set.
In the figure, a similar trend of performances can be observed as in Table 5.

3.5. TERRY: Text recognition

Table 6: The results on TERRY.

Validation Final Algorithm details

Raw Data 0.6969 0.7550 Original data
PCA 0.7949 0.8317 First 5 PCs from covariance matrix
K-Means 0.8176 0.8437 Stochastic K-means on TF-IDF data. Cluster num-

ber = 5.

Table 6 lists our experimental results on both PCA and K-means on the TERRY
data set. This is another high dimensional and very sparse data set similar to HARRY.
We find the PCA can generate much better results than the original data like those of
HARRY. The first 5 principal components can achieve a global score of 0.8317 on the
final set.

However, standardization does not help the clustering anymore. The TERRY data
set is from the text recognition domain, where the TF-IDF weight (term frequency-
inverse document frequency) is often used for information retrieval and text mining.
This weight is a statistical measure used to evaluate how important a word is to a doc-
ument in a collection or corpus. Thus, instead of standardization, we first did TF-IDF
transformation on the raw data, then did stochastic K-means using K = 5 based on the
Cosine similarity.

The learning curves on the validation and final sets are illustrated in Figure 6. We
can see that the improvements on the validation set hold well on the final set. The
greatest lift on the learning curve over raw data happens in the middle range of the
x-axis. Our results on the final set is ranked No. 2 in the challenge.

4. Discussion

In this section, we first show a comparison of the proposed method with the overall
winner. Then, we conclude this study by discussing its limitations and potential exten-
sions.

First, by combining PCA and K-means, the proposed stochastic unsupervised learn-
ing method achieves the stable results on most of the data sets. Table 7 lists our
global scores on all 5 data sets against those of the overall winner. We are ranked 1st
on SYLVESTER, 2nd on TERRY and 3rd on HARRY. Although the results on AVI-
CENNA and RITA are not impressive in rank compared to others, they are within about

134

Stochastic Unsupervised Learning

(a) Validation (b) Final

Figure 5: The learning curve on SYLVESTER.

Table 7: A Comparison of our results with the overall winner’s results. The winner is
determined by the average rank on all 5 final data sets. Our results are ranked
No. 2.

Data Winner-Valid Winner-Final Winner-Rank Our-Valid Our-Final Our-Rank

AVICENNA 0.1744 0.2183 1 0.1386 0.1906 6
HARRY 0.8640 0.7043 6 0.9085 0.7357 3
RITA 0.3095 0.4951 1 0.3737 0.4782 5
SYLVESTER 0.6409 0.4569 6 0.7146 0.5828 1
TERRY 0.8195 0.8465 1 0.8176 0.8437 2

135

Liu Xie Ge Xiong

(a) Validation (b) Final

Figure 6: The learning curve on TERRY.

0.02 in ALC from the winner’s results. Our overall performance in rank was placed
2nd in the challenge.

Indeed, the performance of the proposed method significantly depends on its com-
ponent: K-means clustering. Although we employed a stochastic strategy of cluster
ensemble, the inherent characteristics of K-means still have impact on the final results.
For instance, since K-means tends to favor globular clusters with similar sizes (Xiong
et al., 2006, 2009), it cannot handle some of the data sets in the challenge that have
different shapes or sizes of clusters. Also, K-means is very sensitive to data density.
In the case that data have various densities, some density based clustering algorithms,
such as DBSCAN (Ester et al., 1996), could be used in the proposed method. More-
over, some fuzzy clustering methods could be used to handle the data with overlapping
labels (Nock and Nielsen, 2006), such as AVICENNA. Finally, when the labels of the
data sets are available, we can explore the relationship between the quality of the clus-
tering results and the accuracy of the final classification results. Such information may
help to make informed decision in both generation and combination phases of cluster
ensemble.

Acknowledgments

First, we would like to thank the challenge organizers for setting up an excellent plat-
form and providing real-world data for this challenge. This research was supported in
part by National Science Foundation (NSF) via grant number CCF-1018151.

References

A. Ben-Hur and I. Guyon. Detecting stable clusters using principal component analysis.
Methods in Molecular Biology, 224:159–182, 2003.

136

Stochastic Unsupervised Learning

C. Ding and X. He. K-means clustering via principal component analysis. In Pro-

ceedings of the twenty-first international conference on Machine learning, page 29.
ACM, 2004.

M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Proceedings of the 2nd International

Conference on Knowledge Discovery and Data mining, volume 1996, pages 226–
231. Portland: AAAI Press, 1996.

I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. W. Aha. Unsupervised and transfer
learning challenge. In Proc. IJCNN, 2011.

T. Hu and S.Y. Sung. Consensus clustering. Intelligent Data Analysis, 9(6):551–565,
2005.

A.K. Jain and R.C. Dubes. Algorithms for clustering data. Prentice-Hall, Inc., 1988.

I. Jolliffe. Principal component analysis. Encyclopedia of Statistics in Behavioral

Science, 2002.

S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory,
28(2):129–137, 1982.

R. Nock and F. Nielsen. On weighting clustering. IEEE transactions on pattern analysis

and machine intelligence, pages 1223–1235, 2006.

X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan,
A. Ng, B. Liu, P.S. Yu, et al. Top 10 algorithms in data mining. Knowledge and

Information Systems, 14(1):1–37, 2008.

Jianjun Xie and Tao Xiong. Stochastic semi-supervised learning on partially labeled
imbalanced data. In Proc. AISTATS Workshop on Active Learning and Experimental

Design, pages 85–98, 2011.

H. Xiong, J. Wu, and J. Chen. K-means clustering versus validation measures: a data
distribution perspective. In Proceedings of the 12th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 779–784. ACM, 2006.

H. Xiong, J. Wu, and J. Chen. K-means clustering versus validation measures: a data-
distribution perspective. IEEE Transactions on Systems, Man, and Cybernetics, Part

B: Cybernetics, 39(2):318–331, 2009.

137

138

JMLR: Workshop and Conference Proceedings 27:123–132, 2012 Unsupervised and Transfer Learning

Transfer Learning with Cluster Ensembles

Ayan Acharya1
masterayan@gmail.com

Eduardo R. Hruschka1,2
erh@icmc.usp.br

Joydeep Ghosh1
ghosh@ece.utexas.edu

Sreangsu Acharyya1
sreangsu@gmail.com

1University of Texas (UT) at Austin, USA
2University of Sao Paulo (USP) at Sao Carlos, Brazil

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

Traditional supervised learning algorithms typically assume that the training data and
test data come from a common underlying distribution. Therefore, they are chal-
lenged by the mismatch between training and test distributions encountered in trans-
fer learning situations. The problem is further exacerbated when the test data actually
comes from a different domain and contains no labeled example. This paper describes
an optimization framework that takes as input one or more classifiers learned on the
source domain as well as the results of a cluster ensemble operating solely on the
target domain, and yields a consensus labeling of the data in the target domain. This
framework is fairly general in that it admits a wide range of loss functions and clas-
sification/clustering methods. Empirical results on both text and hyperspectral data
indicate that the proposed method can yield superior classification results compared
to applying certain other transductive and transfer learning techniques or naı̈vely ap-
plying the classifier (ensemble) learnt on the source domain to the target domain.

Keywords: Transfer Learning, Ensembles, Classification, Clustering.

1. Introduction

Transfer learning emphasizes the transfer of knowledge across related domains and
tasks (Silver and Bennett, 2008). and distributions that are similar but not the same.
This contribution deals with learning scenarios where training and test distributions are
different, as they represent (potentially) related but not identical tasks. In addition it
is also assumed that the training and test domains involve the same set of class labels,
which are only available from the training domain. There are certain application do-
mains such as the problem of land-cover classification of spatially separated regions
studied in this paper, where the setting of this paper is appropriate.

The literature on transfer learning is fairly rich and varied (e.g., see Pan and Yang
(2010); Silver and Bennett (2008) and references therein), with much work done in the
past 15 years (Thrun and Pratt, 1997). The tasks may be learnt simultaneously (Caru-
ana, 1997) or sequentially (Bollacker and Ghosh, 2000). Typically these methods
assume that if the target problem involves classification, then at least some labeled ex-

© 2012 A. Acharya, E.R. Hruschka, J. Ghosh & S. Acharyya.

Acharya Hruschka Ghosh Acharyya

amples are available for the target task, which is not the case here. To address this
added challenge, we leverage the theory of both classifier and cluster ensembles, which
is a new aspect, though there is a recent paper that uses a single clustering to modify
the weights of base classifiers in an ensemble in order to provide some transfer learning
capability (Gao et al., 2008).

Recently we formulated an optimization based approach called C3E (Consensus
between Classification and Clustering Ensembles) (Acharya et al., 2011) — which can
be used to aid weak classifiers via additional clustering results. This work was aimed
at situations where the weakness is caused by lack of training data. In this paper, we
provide a reformulation of C3E for transfer learning settings, and then demonstrate its
effectiveness via empirical studies.

Notation. Vectors and matrices are denoted by bold faced lowercase and capital
letters, respectively. Scalar variables are written in italic font. A set is denoted by a
calligraphic uppercase letter. The effective domain of a function f (y), i.e., the set of all
y such that f (y) < +∞ is denoted by dom(f), while the interior and the relative interior
of a set Y are denoted by int(Y) and ri(Y), respectively. Also, for yi,y j ∈ Rk, 〈yi,y j〉
denotes their inner product.

2. Description of C3E for Transfer Learning

The overall framework of C3E, depicted in Fig.1, employs one or more classifiers learnt
on the source domain and one or more “clusterers” (clustering algorithms) applied to
the target domain. So without lack of generality we can assume the presence of both a
classifier ensemble as well as a cluster ensemble. Suppose an ensemble of classifiers
has been previously induced from the source domain. The target domain is represented
by a separate set X = {xi}ni=1, that has not been used to build the ensemble of classifiers
and does not contain any labeled information.

The ensemble of classifiers is first employed to estimate the initial class proba-
bilities for every instance xi ∈ X. These probability distributions are stored as a set
of vectors {πi}ni=1. The objective of our approach is to improve upon these estimated
class probability assignments with the help of a cluster ensemble applied to the target
domain. From this point of view, the cluster ensemble provides supplementary con-
straints for classifying the instances of X, with the rationale that similar instances are
more likely to share the same class label. Each of the πi’s is of dimension k so that,
in total, there are k classes denoted by C = {C"}k"=1. In order to capture the similarities
between the instances of X, C3E also takes as input a similarity (co-association) matrix
S. Each entry of this matrix corresponds to the relative co-occurrence of two instances
in the same cluster (Strehl and Ghosh, 2002) — considering all the data partitions that
form the cluster ensemble induced from X. Note that C3E can also receive as input a
proximity matrix obtained from computing pair-wise similarities between instances and
a cophenetic matrix resulting from running a hierarchical clustering algorithm. To sum-
marize, C3E receives as inputs a set of vectors {πi}ni=1 and the similarity matrix S. After
processing these inputs, C3E outputs a consolidated classification — represented by a

140

Transfer Learning with Cluster Ensembles

set of vectors {yi}ni=1, where yi = P̂(C | xi) — for every instance in X. This procedure is
described in more detail in the sequel.

Figure 1: Overview of C3E for Transfer Learning.

2.1. C3E Algorithm

Consider that r1 classifiers, indexed by q1, and r2 clusterers, indexed by q2, are em-
ployed to obtain a consolidated classification. The following steps (A-C) outline the
proposed approach. Steps A and B can be seen as preliminary steps to get the inputs
for C3E, and Step C is, in fact, the C3E Algorithm.

Step A - Obtain input from classifier ensemble. The output of classifier q1 for
instance xi is a k-dimensional class probability vector π

(q1)
i

. From the set of such vectors

{π(q1)
i
}r1

q1=1, an average vector can be computed for xi as:

πi =
1

r1

r1∑

q1=1

π
(q1)
i
. (1)

Step B - Obtain input from cluster ensemble. After applying r2 clustering algo-
rithms (clusterers) to X, a similarity (co-association) matrix S is computed. Assuming
each clustering is a hard data partition, the similarity between two instances xi and x j

is simply given by si j = ri j/r2, where ri j is the number of clustering solutions in which
these two instances lie in the same cluster and r2 is the number of clustering solutions1.
Note that such similarity matrices are byproducts of several cluster ensemble solutions.

Step C - Obtain consolidated results from C3E. Having defined the inputs for
C3E, the problem of combining ensembles of classifiers and clusterers can be posed as
an optimization problem whose objective is to minimize J in (2) w.r.t. the set of prob-
ability vectors {yi}ni=1, where yi = P̂(C | xi), i.e., yi is the new and hopefully improved
estimate of the aposteriori class probability distribution for a given instance in X.

J =
∑

i∈X

L(πi,yi)+α
∑

(i, j)∈X

si jL(yi,y j) (2)

1. A similarity matrix can also be defined for soft clusterings — e.g., see (Punera and Ghosh, 2008).

141

Acharya Hruschka Ghosh Acharyya

The quantity L(·, ·) denotes a (non-negative) loss function. Informally, the first term in
Eq. (2) captures dissimilarities between the class probabilities provided by the ensem-
ble of classifiers and the output vectors {yi}ni=1. This term tries to drive the yi’s towards
πi’s. The second term encodes the cumulative weighted dissimilarity between all possi-
ble pairs (yi,y j). The weights to these pairs are assigned in proportion to the similarity
values si j ∈ [0,1] of matrix S. Intuitively, if the objective function J, given in Eq. 2,
is minimized over {yi}ni=1 and si j is high for a pair of instances (xi,x j), then L(yi,y j)
tends to go down, implying that yi and y j are more in agreement with each other. The
coefficient α ∈ R+ controls the relative importance of classifier and cluster ensembles.
Therefore, minimizing the objective function over {yi}ni=1 involves combining the evi-
dence provided by the ensembles in order to build a more consolidated classification.
Note that the final clustering, and consequently the similarity matrix computed from
cluster ensemble, is pretty robust compared to individual clustering results as it has
been empirically shown in (Strehl and Ghosh, 2002).

The approach taken in this paper is quite general in that any Bregman divergence
(Banerjee et al., 2005) can be used as the loss function L(·, ·) in Eq. (2). Bregman
divergences include a large number of useful loss functions such as the well-known
squared loss, hinge loss, logistic loss, KL divergence and I-divergence. A specific
Bregman Divergence (e.g. KL-divergence) can be identified by a corresponding convex
function φ (e.g. negative entropy for KL-divergence), and hence be written as dφ(yi,y j).
Using this notation, the optimization problem can be rewritten as:

min
{yi}ni=1

∑

i∈X

dφ(πi,yi)+α
∑

(i, j)∈X

si jdφ(yi,y j)

 . (3)

All Bregman divergences have the remarkable property that the single best (in terms of
minimizing the net loss) representative of a set of vectors, is simply the expectation of
this set (!) provided the divergence is computed with this representative as the second
argument of dφ(·, ·) — see Theorem 1 in the sequel for a more formal statement of
this result. Unfortunately this simple form of the optimal solution is not valid if the
variable to be optimized occurs as the first argument. In that case, however, one can
work in the (Legendre) dual space, where the optimal solution has a simple form —
see Banerjee et al. (2005) for details. Re-examining Eq. (3), we notice that the yi’s to
be minimized over occur both as first and second arguments of a Bregman divergence.
Hence optimization over {yi}ni=1 is not available in closed form.

We circumvent this problem by creating two copies for each yi — the left copy,
y(l)

i
, and the right copy, y(r)

i
. The left(right) copies are used whenever the variables are

encountered in the first(second) argument of the Bregman divergences. The right and
left copies are updated iteratively, and an additional constraint is used to ensure that the
two copies of a variable remain close during the updates. First, keeping {y(l)

i
}n
i=1 and

{y(r)
i }

n
i=1 \ {y

(r)
j } fixed, the part of the objective function that only depends on y(r)

j can be
written as:

142

Transfer Learning with Cluster Ensembles

J
[y(r)

j
]
= dφ(π(r)

j ,y
(r)
j)+α

∑

i(l)∈X

si(l) j(r)dφ(y(l)
i ,y

(r)
j). (4)

Note that the optimization of J
[y(r)

j
]

in (4) w.r.t. y(r)
j

is constrained by the fact that the

left and right copies of y j should be equal. Therefore, a soft constraint is added in (4),
and the optimization problem now becomes:

min
y(r)

j

[
dφ(π(r)

j
,y

(r)
j

)+α
∑

i(l)∈X

si(l) j(r) dφ(y(l)
i
,y

(r)
j

)+λ(r)
j

dφ(y(l)
j
,y

(r)
j

)

]
, (5)

where λ
(r)
j

is the corresponding penalty parameter. For every valid assignment of

{y(l)
i
}n
i=1, it can be shown that there is a unique minimizer y(r)

j

∗
for the optimization

problem in (5). For that purpose, a new Corollary is developed from the results of
Theorem 1 Banerjee et al. (2005) which is stated below.

Theorem 1 (Banerjee et al. (2005)) Let Y be a random variable that takes values in

Y = {yi}ni=1 ⊂ S ⊆ R
k following a probability measure v such that Ev[Y] ∈ ri(S). Given

a Bregman divergence dφ : S× ri(S)→ [0,∞), the optimization problem

min
s∈ri(S)

Ev[dφ(Y,s)]

has a unique minimizer given by s∗ = µ = Ev[Y].

Corollary 2 Let {Yi}ni=1 be a set of random variables, each of which takes values in

Yi = {yi j}ni

j=1 ⊂ S ⊆ R
d following a probability measure vi such that Evi[Yi] ∈ ri(S).

For a Bregman divergence dφ : S× ri(S) → [0,∞), the function of the form Jφ(s) =
m∑

i=1

αiEvi[dφ(Yi,s)] with αi ∈ R+ ∀i has a unique minimizer given by

s∗ = µ =

m∑

i=1

αiEvi[Yi]

/

m∑

i=1

αi

 .

Proof The proof is similar to that of Theorem 1 as given in Banerjee et al. (2005) but

omitted here for space constraints.

From these results, the unique minimizer of the optimization problem in (5) is obtained
as:

y(r)
j

∗
=

π
(r)
j +γ

(r)
j

∑

i(l)∈X

δi(l) j(r)y
(l)
i +λ

(r)
j

y(l)
j

1+γ(r)
j
+λ

(r)
j

, (6)

143

Acharya Hruschka Ghosh Acharyya

where γ(r)
j = α

∑
i(l)∈X si(l) j(r) and δi(l) j(r) = si(l) j(r)/

[∑
i(l)∈X si(l) j(r)

]
. The same optimization

in (5) is repeated over all the y(r)
j

’s. After the right copies are updated, the objective

function is (sequentially) optimized w.r.t. all the y(l)
i

’s. Like in the first step, {y(l)
j
}n

j=1 \
{y(l)

i
} and {y(r)

j
}n

j=1 are kept fixed, and the equality of the left and right copies of yi is

added as a soft constraint, so that the optimization w.r.t. y(l)
i

can be rewritten as:

min
y(l)

i

α

∑

j(r)∈X

si(l) j(r)dφ(y(l)
i ,y

(r)
j)+λ(l)

i dφ(y(l)
i ,y

(r)
i)

 , (7)

where λ(l)
i is the corresponding penalty parameter. As mentioned earlier, one needs to

work in the dual space now, using the convex function ψ (Legendre dual of φ):

ψ(yi) = 〈yi,"φ
−1(yi)〉−φ("φ−1(yi)). (8)

One can show that ∀yi,y j ∈ int(dom(φ)), dφ(yi,y j) = dψ("φ(y j),"φ(yi)) — see Banerjee
et al. (2005) for more details. Thus, the optimization problem in (7) can be rewritten in
terms of the Bregman divergence associated with ψ as follows:

min
"φ(y(l)

i
)

α

∑

j(r)∈X

si(l) j(r)dψ("φ(y(r)
j

),"φ(y(l)
i

))+λ(l)
i

dψ("φ(y(r)
i

),"φ(y(l)
i

))

 . (9)

The unique minimizer of the problem in (9) can be computed using Corollary 2. "φ is
monotonic and invertible for φ being strictly convex and hence the inverse of the unique
minimizer for problem (9) is unique and equals to the unique minimizer for problem
(7). Therefore, the unique minimizer of problem (7) w.r.t. y(l)

i
is given by:

y(l)
i

∗
= "φ−1

γ
(l)
i

∑

j(r)∈X

δi(l) j(r)"φ(y(r)
j

)+λ(l)
i
"φ(y(r)

i
)

γ
(l)
i
+λ

(l)
i

, (10)

where γ(l)
i
= α

∑
j(r)∈X si(l) j(r) and δi(l) j(r) = si(l) j(r)/

[∑
j(r)∈X si(l) j(r)

]
.

For the experiments reported in this paper, the generalized I-divergence defined as:

dφ(yi,y j) =
k∑

"=1

yi"log(
yi"

y j"
)−

k∑

"=1

(yi" − y j"),∀yi,y j ∈ Rk
+, (11)

has been used. Thus, Eq. (10) can be rewritten as:

y(l)
i

∗,I
= exp

γ
(l)
i

∑

j(r)∈X

δi(l) j(r)"φ(y(r)
j

)+λ(l)
i
"φ(y(r)

i
)

γ
(l)
i +λ

(l)
i

−1. (12)

144

Transfer Learning with Cluster Ensembles

Optimization over the left and right arguments of all the data points constitutes one
pass (iteration) of the algorithm. These two steps are repeated till convergence. Since,
at each step, the algorithm minimizes the objective in (3) which is lower bounded by
zero and the minimizer is unique due to the strict convexity of φ, the algorithm is
guaranteed to converge. On convergence, all yi’s are normalized to unit L1 norm, to
yield the individual class probability distributions for every instance xi ∈ X. The main
steps of C3E are summarized in Algorithm 1.

2.2. Pedagogical Example

This example illustrates, via a simple experiment, how the supplementary constraints
provided by the clustering algorithms can be useful for improving the generalization
capability of classifiers using C3E. Consider the two-dimensional dataset known as
Half-Moon, which has two classes, each of which represented by 400 instances. From
this dataset, 2% of the instances are used for training (source domain), whereas the
remaining instances are used for testing (target domain). A classifier ensemble formed
by three well-known classifiers (Decision Tree, Linear Discriminant, and Generalized
Logistic Regression) is adopted. In order to get a cluster ensemble, a single linkage (hi-
erarchical) clustering algorithm is chosen. The cluster ensemble is then obtained from
five data partitions represented in the dendrogram, which is cut for different number of
clusters (from 4 to 8). Fig. 2 shows the target data class labels obtained from the stan-
dalone use of the classifier ensemble, whereas Fig. 3 shows the corresponding results
achieved by C3E. Comparing Fig. 2 to Fig. 3, one can see that C3E does a better job,
since the cluster ensemble is able to indicate the class-continuity at the edges of the two
moons showing that the information provided by the similarity matrix can improve the
generalization capability of classifiers.

3. Experimental Evaluation

The real-world datasets employed in the experiments are:
a) Text Documents — (Pan and Yang, 2010): From the well-known text collections

20 newsgroup and Reuters-21758, 9 cross-domain learning tasks are generated. The

Algorithm 1 C3E

Inputs: {πi},S. Output: {yi}.
Step 0: Initialize {y(r)

i
}, {y(l)

i
} so that y(r)

i"
= y(l)

i"
= 1

k ∀" ∈ {1,2, · · · ,k}.
Loop until convergence:
Step 1: Update y(r)

j
using Eq. (6) ∀ j ∈ {1,2, · · · ,n}.

Step 2: Update y(l)
i

using Eq. (10) ∀i ∈ {1,2, · · · ,n}.
End Loop
Step 3: Compute yi = 0.5[y(l)

i
+ y(r)

i
] ∀i ∈ {1,2, · · · ,n}.

Step 4: Normalize yi ∀i ∈ {1,2, · · · ,n}.

145

Acharya Hruschka Ghosh Acharyya

Figure 2: Results from Classifier Ensemble.
Figure 3: Results from C3E.

two-level hierarchy in both of these datasets is exploited to frame a learning task involv-
ing a top category classification problem with training and test data drawn from differ-
ent sub categories — e.g., to distinguish documents from two top newsgroup categories
(rec and talk), the training set is built from “rec.autos”, “rec.motorcycles”,
“talk.politics”, and “talk.politics.misc”, and the test set is formed
from the sub-categories “rec.sport.baseball”, “rec.sport.hockey”,
“talk.politics.mideast”, and “talk.religions.misc” (see Dai et al.
(2007) for more details).

b) Botswana — (Rajan et al., 2006): This is an application of transfer learning
to the pixel-level classification of remotely sensed images, which provides a real-life
scenario where such learning will be useful (in contrast to the contrived setting of text
classification, which is chosen as it has previously been used, e.g. Dai et al. (2007).
It is relatively easy to acquire an image, but expensive to label each pixel manually.
This is because images typically have about a million pixels and might often represent
inaccessible terrain. Thus, typically, only part of an image gets labeled. Moreover,
when the satellite again flies over the same area, the new image can be quite different
due to change of season, thus a classifier induced on the previous image becomes sig-
nificantly degraded for the new task. These hyperespectral data sets used are from a
1476×256 pixel study area located in the Okavango Delta, Botswana. It has nine dif-
ferent land-cover types consisting of seasonal swamps, occasional swamps, and drier
woodlands located in the distal portion of the delta. Data from this region for different
months (May, June, and July) were obtained by the Hyperion sensor of the NASA EO-1
satellite for the calibration/validation portion of the mission in 2001. Data collected for
each month was further segregated into two different areas. While the May scene is
characterized by the onset of the annual flooding cycle and some newly burned areas,
the progression of the flood and the corresponding vegetation responses are seen in the
June and July data. The acquired raw data was further processed to produce 145 fea-
tures. From each area of Botswana, different transfer learning tasks are generated: the
classifiers are trained on either May, June or {May ∪ June} data and tested on either
June or July data.

146

Transfer Learning with Cluster Ensembles

For text data, logistic regression (LR), Support Vector Machines (SVM)2, and Win-
now (WIN) are used as baseline classifiers. For clustering the target data, the well-
known CLUTO package (Karypis, 2002) is used (with default settings and two clus-
ters). We also compare C3E with two transfer learning algorithms from the literature
— Transductive Support Vector Machines (TSVM) and the Locally Weighted Ensem-
ble (LWE) (Gao et al., 2008).

For the hyperspectral data, two baseline classifiers are used: the well-known naı̈ve
Bayes Wrapper (NBW) and the Maximum Likelihood (ML) classifier (which performs
well when used with a best bases feature extractor (Kumar et al., 2001)). The target set
instances are clustered by k-means, using a varied number of clusters (from 30 to 50).
PCA is used for reducing the number of features employed by ML. The parameters of
C3E are manually optimized for better performance.

The results for text data are reported in Table 1. The different learning tasks corre-
sponding to different pairs of categories are listed as “Mode”. As it can be seen, C3E

improves the performance of the classifier ensemble (formed by combining WIN, LR
and SVM via output averaging) for all learning tasks, except for O vs Pl, where ap-
parently the training and test distributions are similar. Also, the C3E accuracies are
much better than those achieved by both TSVM and LWE in most of the datasets. Ex-
cept for WIN, the performances of the base classifiers and clustereres (and hence of
C3E) are quite invariant, thereby resulting in very low standard deviations. For the ex-
periments, Bayesian Logistic Regression http://www.bayesianregression.
org/ is used for running the logistic regression classifier, LIBSVM (http://www.
csie.ntu.edu.tw/˜cjlin/libsvm/) for SVM, SNoW Learning Architecture
http://cogcomp.cs.illinois.edu/page/software_view/1 for Win-

now, and SVMlight http://svmlight.joachims.org/ for transductive SVM.
The posterior class probabilities from SVM are also obtained using the LIBSVM pack-
age with linear kernel. For SNoW, “-S 3 -r 5” is used and the remaining parameters of all
the packages are set to their default values. The values of (α,λ) are set as (0.01,0.1) for
the transfer learning tasks corresponding to 20 Newsgroup datasets. For Reuters-21578,
the values of the parameters (α,λ) are set as (0.01,0.1), (0.00001,0.1), and (0.1,0.1) for
O vs Pe, O vs Pl, and Pe vs Pl, respectively (see Table 1). For hyperspectral data, Table
2 reports the results. Note that C3E provides consistent accuracy improvements for
both NBW and ML.3 The column “PCs” indicate the number of principal components
used for dimension reduction while training/testing with ML classifier.

4. Conclusions

We described an optimization framework that takes the outputs of a cluster ensem-
ble applied to the target task to moderate posterior probability estimates provided by
classifiers previously induced on a related (source domain) task, so that they are bet-
ter adapted to the new context. The framework is quite general and has shown very

2. The posterior class probabilities are obtained by using the package LIBSVM.
3. Standard deviations of the accuracies from NBW and ML were close to 0 and hence not shown.

147

Acharya Hruschka Ghosh Acharyya

Table 1: Classification of Text Data — 20 newsgroup and Reuters-21758.

Dataset Mode WIN LR SVM Ensemble TSVM LWE C3E

20 Newsgroup

C vs S 66.61 67.17 67.02 69.58 76.97 77.07 94.61

R vs T 60.43 68.79 63.87 65.98 89.95 87.46 92.78

R vs S 80.11 76.51 71.40 77.39 89.96 87.81 94.19

S vs T 73.93 72.16 71.51 75.11 85.59 81.99 96.39

C vs R 89.00 77.36 81.50 85.18 89.64 91.09 96.75

C vs T 93.41 91.76 93.89 93.48 88.26 98.90 98.90

Reuters-21758
O vs Pe 70.57 66.19 69.25 73.30 76.94 76.77 81.81

O vs Pl 65.10 67.87 69.88 69.21 70.08 67.59 68.92
Pe vs Pl 56.75 56.48 56.20 57.59 59.72 59.90 68.61

Table 2: Classification of Hyperspectral Data — Botswana.

Data Source-Target NBW NBW+C3E ML ML+C3E α λ PCs

Area1

may-june 70.68 73.58 (±0.42) 74.47 82.52 (±0.52) 0.0070 0.1 9
may-july 61.85 62.22 (±0.29) 58.58 66.47 (±0.53) 0.0001 0.2 12
june-july 70.55 73.50 (±0.17) 79.71 82.44 (±0.26) 0.0070 0.1 127

may/june-july 75.53 81.42 (±0.31) 85.78 86.25 (±0.23) 0.0010 0.1 123

Area2

may-june 66.10 70.08 (±0.28) 70.16 81.48 (±0.43) 0.0040 0.1 9
may-july 61.55 63.74 (±0.14) 52.78 65.05 (±0.22) 0.0001 0.2 12
june-july 54.89 59.93 (±0.53) 75.62 77.12 (±0.37) 0.0050 0.1 80

may/june-july 63.79 63.96 (±0.16) 77.33 80.97 (±0.23) 0.0080 0.1 122

promising results. An extensive study across a wide variety of problem domains will
further reveal its capabilities as well as potential limitations, and is worth undertaking
in light of what we have observed so far.

A promising venue for future work involves investigating how to perform the au-
tomatic selection of the parameter α. To that end, strategies based on methods like
Covariate Shift (Sugiyama et al., 2007) may be useful. Covariate Shift assumes that the
training and test distributions are known or, more realistically, can be estimated from
data, which is a difficult problem. Note that C3E does not require the densities to be
known. In all of our controlled experiments, we tuned the parameter α using some
cross-validation in the training set. This approach may not be a suitable practice for
transfer learning applications, where ideally we should have some mechanism to select
α based on the density differences between the source and the target domains. This
leads to the analogous difficulties faced as when using Covariate Shift. We shall note
that, unlike covariate shift, C3E takes similarity information from the target domain
and does not require the conditional distribution of classes given instances to be same
in both source and target domains. Finally, for high-dimensional data, the use of a clus-

148

Transfer Learning with Cluster Ensembles

ter ensemble is additionally attractive as it can potentially project the data onto lower
subspaces, and this aspect is worth exploring further.

Acknowledgments

This work has been supported by NSF Grants (IIS-0713142 and IIS-1016614) and by
the Brazilian Research Agencies FAPESP and CNPq. We thank the anonymous review-
ers for their insightful comments and Dr. Goo Jun for providing the data and code for
experiments with hyperspectral data.

References

A. Acharya, E. R. Hruschka, J. Ghosh, and S. Acharyya. C3E: A Framework for Com-
bining Ensembles of Classifiers and Clusterers. In 10th International Workshop on

Multiple Classifier Systems, pages 86–95. LNCS Vol.6713, Springer, 2011.

A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh. Clustering with Bregman diver-
gences. Jl. Machine Learning Research (JMLR), 6:1705–1749, October 2005.

K. D. Bollacker and J. Ghosh. Knowledge transfer mechanisms for characterizing im-
age datasets. In Soft Computing and Image Processing. Physica-Verlag, Heidelberg,
2000.

R. Caruana. Multitask learning. Mach. Learn., 28:41–75, July 1997.

W. Dai, G. Xue, Q. Yang, and Y. Yu. Co-clustering based classification for out-of-
domain documents. In Proceedings of KDD, pages 210–219, New York, NY, USA,
2007.

J. Gao, W. Fan, J. Jiang, and J. Han. Knowledge transfer via multiple model local
structure mapping. In Proceedings of KDD, pages 283–291, 2008.

George Karypis. CLUTO - A Clustering Toolkit. Dept. of Computer Science, University
of Minnesota, May 2002.

S. Kumar, J. Ghosh, and M. M. Crawford. Best-bases feature extraction algorithms for
classification of hyperspectral data. IEEE TGRS, 39(7):1368–79, 2001.

S. J. Pan and Q. Yang. A survey on transfer learning. IEEE TKDE, 22:1345–1359,
2010.

K. Punera and J. Ghosh. Consensus based ensembles of soft clusterings. In Applied

Artificial Intelligence, volume 22, pages 780–810, August 2008.

S. Rajan, J. Ghosh, and M. M. Crawford. Exploiting class hierarchies for knowledge
transfer in hyperspectral data. IEEE TGRS, 44(11):3408–3417, 2006.

149

Acharya Hruschka Ghosh Acharyya

D. L. Silver and K. P. Bennett. Guest editor’s introduction: special issue on inductive
transfer learning. Mach. Learn., 73:215–220, December 2008.

A. Strehl and J. Ghosh. Cluster ensembles – a knowledge reuse framework for combin-
ing multiple partitions. Jl. Machine Learning Research (JMLR), 3 (Dec):583–617,
2002.

Masashi Sugiyama, Matthias Krauledat, Klaus-robert Müller, and Yoshua Bengio. Co-
variate shift adaptation by importance weighted cross validation. Journal of Machine

Learning Research, 8, 2007.

S. Thrun and L.Y. Pratt, editors. Learning to Learn. Kluwer Academic, 1997.

150

JMLR: Workshop and Conference Proceedings 27:133–144, 2012 Unsupervised and Transfer Learning

Divide and Transfer: an Exploration of Segmented Transfer

to Detect Wikipedia Vandalism

Si-Chi Chin si-chi-chin@uiowa.edu
Information Science, The University of Iowa

W. Nick Street nick-street@uiowa.edu

Management Sciences Department, The University of Iowa

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

The paper applies knowledge transfer methods to the problem of detecting Wikipedia
vandalism detection, defined as malicious editing intended to compromise the in-
tegrity of the content of articles. A major challenge of detecting Wikipedia vandalism
is the lack of a large amount of labeled training data. Knowledge transfer addresses
this challenge by leveraging previously acquired knowledge from a source task. How-
ever, the characteristics of Wikipedia vandalism are heterogeneous, ranging from a
small replacement of a letter to a massive deletion of text. Selecting an informative
subset from the source task to avoid potential negative transfer becomes a primary
concern given this heterogeneous nature. The paper explores knowledge transfer
methods to generalize learned models from a heterogeneous dataset to a more uni-
form dataset while avoiding negative transfer. The two novel segmented transfer (ST)

approaches map unlabeled data from the target task to the most related cluster from
the source task, classifying the unlabeled data using the most relevant learned models.

Keywords: Transfer learning, classifier reuse, Wikipedia vandalism detection

1. Introduction

Transfer learning discusses how to transfer knowledge across different data distribu-
tions, providing solutions when labeled data are scarce or expensive to obtain. Moti-
vated by the problem of Wikipedia vandalism detection (Potthast and Gerling, 2007;
Chin et al., 2010), this paper investigates the question: how do we transfer a classifier

trained to detect vandalism in one article to another? We introduce two novel seg-

mented transfer (ST) approaches to learn from a labeled but diverse source task, which
exhibits a wide-ranging distribution of both positive and negative examples over the
feature space, and then selectively transfer the classifier to predict an unlabeled and
more uniform target task. Our methods are also tested when transferring between arti-
cles with similar distributions.

Our work is related to the source task selection problem, investigating methods to
enhance transfer learning performance and to minimize negative transfer. We concen-
trate specifically on transfer at the knowledge level, i.e. the reuse of learned classifiers
from a source task, as opposed to transfer at level of instances, priors, or functions as

© 2012 S.-C. Chin & W.N. Street.

Chin Street

exemplified by Pan and Yang (2010). We investigate two methods to exploit a single
source task to predict a target task with no available labels. To improve knowledge
transfer, it is useful to identify an effective method to transfer knowledge from the
source task to the target task. In this paper, we assume that perhaps not all the source

task is useful and perhaps not all the target task can learn from the available source

task. Our work aims to address the following questions:

- If not all the source task is related to the target task, how do we select the most
relevant subset from the source task?

- If not all the target task can be explained or learned from the source task, how
do we identify the subset from the target task that can benefit from most the
knowledge transfer?

Wikipedia, the online encyclopedia, is a popular and influential collaborative in-
formation system. The collaborative nature of authoring has exposed it to malicious
editing, or vandalism, defined as “any addition, removal, or change of content made in
a deliberate attempt to compromise the integrity of Wikipedia1.” Wikipedia vandalism
detection, an adversarial information retrieval task, is a recently emerging research area.
The goal of the task is to determine, for each newly edited revision, whether it could
be a vandalism instance and to create a ranked list of probable vandalism edits to alert
Wikipedia users (usually the stewards for an article). However, determining if an edit
is malicious is challenging and acquiring reliable class labels is non-trivial. To classify
a new and unlabeled dataset, it is useful to leverage knowledge from prior tasks.

Wikipedia vandalism instances exhibit heterogeneous characteristics. A vandalism
instance can be a large-scale editing or a small change of stated facts. Each type of
vandalism may demonstrate different feature characteristics and an article may contain
more instances of one type of vandalism than others. Moreover, the distribution of dif-
ferent types of vandalism may vary from article to article. For example, ‘Microsoft’
article may contain higher ratio of graffiti instances whereas ‘Abraham Lincoln’ arti-
cle may be more vulnerable to misinformation instances. The heterogeneous nature
of Wikipedia vandalism detection could potentially introduce negative transfer (Rosen-
stein et al., 2005). It requires a selective mechanism to assure the quality of knowledge
transfer, for example, leveraging knowledge about “graffiti” instances from the source
task to detect graffiti, as opposed to other types of vandalism instances, in the target
task. To resolve the problem of a heterogeneous source task, we introduce two methods
to identify the informative segments from the source task in the absence of class labels.

In this paper, instead of learning from multiple source, we focus on the problem
setting in which only a single source task is available. Both the source and target task
have the same input and output domains, but their samples are drawn from different
populations. Each sample in both the source and target task is a revision of a given
Wikipedia article, preprocessed into a feature space representing a collection of sta-
tistical language model features. The output labels indicate whether the article is a
vandalism instance.

1. http://en.wikipedia.org/wiki/Wikipedia:Vandalism

152

Divide and Transfer

We organize the rest of paper as follows. Section 2 introduces the two segmented

transfer approaches. Section 3 describes the experimental setups, including the datasets,
the features, and the six experimental settings. Sections 4 and 5 present the experimen-
tal results and evaluations. In Section 6, we discuss related work, and we conclude the
paper with future directions.

2. Segmented Transfer (ST)

In this paper, we propose segmented transfer (ST) to enrich the capability of transfer
learning and to address the issue of potential negative transfer. The goal of ST is to
identify and learn from the most related segment, a subset from the training samples,
from the source task. Our motivation comes from two assumptions:

- Not all of the source task is useful, and

- Not all of the target task can benefit from the available source task.

We propose the source task segmented transfer (STST) and the target task seg-

mented transfer (TTST) approaches to address each assumption and summarize the two
approaches in Table 1.

Source task segmented transfer (STST) The STST approach clusters the source
task, assigning cluster membership to the target task. In Figure 1, the labeled source
task is first segmented into clusters. Each cluster has its own classifier. We then assign
cluster membership to the unlabeled target task and transfer the classifier trained from
the corresponding cluster of the source task. Because the distribution of the feature
space is different between the source and target tasks, it is likely that some source task
data will not be used. The approach aims to transfer knowledge acquired only from the
related segment to minimize negative transfer.

Target task segmented transfer (TTST) The TTST approach clusters the target task,
assigning cluster membership to the source task. The goal of the TTST is to differentiate

Table 1: Tabular comparison of STST and TTST

STST TTST

Primary assumption: Not all the source task is
useful

Not all the target task
can benefit from the
available source task

Train cluster models at: Source task Target task

Assign cluster membership to: Target task Source task

Max number of classifiers: Number of clusters
found in the source task

Number of clusters
found in the target task

Transferred object: Classifiers trained from the source task

153

Chin Street

Figure 1: Flowchart of source task segmented transfer (STST).

samples that can be better learned from the provided source task. In Figure 2, the
unlabeled target task is first segmented into clusters. We then assign cluster membership
to the labeled source task and train a classifier for each cluster. Finally, the classifiers
are transferred to the corresponding clusters in the target task. As shown in Figure
2, some data from the target task may not be well learned because of the lack of an
appropriate source task.

Figure 2: Flowchart of target task segmented transfer (TTST).

3. Experiments

This section describes the datasets used for experiments, the input feature space, the
six experimental settings, and the cluster membership assignment distributions for each
setting.

154

Divide and Transfer

Dataset description In four of the experiments, we clustered and trained on the Webis
Wikipedia vandalism (Webis) corpus (Potthast and Gerling, 2007) and tested on the
revision history of the “Microsoft” and “Abraham Lincoln” articles on Wikipedia (Chin
et al., 2010). The other two experiments use Microsoft as the source task and transfer
to the Lincoln article.

The Webis dataset contained randomly sampled revisions of different Wikipedia
articles, drawn from different categories. The Microsoft and Lincoln datasets contained
the revision history of those articles. Although class labels were available for both
datasets, the class information was ignored during the clustering and was used to build
classifiers and to demonstrate the performance of the two methods. Table 2 is a tabular
description of the three datasets. The AUC and AP scores for the Microsoft and Lincoln
dataset were computed by 10-fold cross validation using the provided class labels using
an SVM classifier with RBF kernel. The parameters γ and C were chosen empirically
to achieve the best performance.

Table 2: Dataset description

Positive Negative Total

Webis 301 639 940

Microsoft 268 206 474

Lincoln 178 223 401

Feature description All three datasets used features generated by statistical language
modeling (SLM) using the CMU SLM toolkit (Clarkson and Rosenfeld, 1997). SLM
computes the distribution of tokens in natural language text and assigns a probability
to the occurrence of a string S or a sequence of m words. The evallm tool evaluates the
language model dynamically, providing statistics such as perplexity, number of n-gram
hits, number of OOV (out of vocabulary), and the percentage of OOV from a given text.
The evallm tool generates features separately from the diff data for the new revision and
the full new revision to build classifiers. In addition to the 18 attributes (9 for the diff
and 9 for the full revision) generated from SLM, three features: ratio of insertion, ratio
of change, and ratio of deletion, were added to the set of attributes. The 21 attributes
were generated for each revision in the dataset. Table 3 summarizes features used for
the classification.

Experimental setup and clustering algorithm Table 4 describes six experimental set-
tings. STST and TTST each have three experiments with different combinations of the
source and target task. We used the Weka (Hall et al., 2009) implementation of cluster-
ing, using the Expectation Maximization (EM) algorithm to optimize Gaussian mixture
models to cluster the source and target tasks. Using cross validation, the EM algorithm
determined the number of clusters to generate. To evaluate the ranked results from the
experiments, we used AUC and Average Precision (AP). The ranked list was sorted by
the probability of the predictions generated by SVM classifiers.

155

Chin Street

Table 3: Definition of Features

Feature Definition

word num(d) Number of known words (from diff)
perplex(d) Perplexity value (from diff)
entropy(d) Entropy value (from diff)
oov num(d) Number of unknown words (from diff)
oov per(d) Percentage of unknown words (from diff)
bigram hit(d) Number of known bigrams (from diff)
bigram per(d) Percentage of known bigrams (from diff)
unigram hit(d) Number of known unigrams (from diff)
unigram per(d) Percentage of known unigrams (from diff)
ratio a Ratio of added text from previous revision
ratio c Ratio of changed text from previous revision
ratio d Ratio of deleted text from previous revision

Table 4: Six experimental settings for STST and TTST

Method Exp Source Task Target Task

STST
1 Webis Microsoft
2 Webis Lincoln
3 Microsoft Lincoln

TTST
4 Webis Microsoft
5 Webis Lincoln
6 Microsoft Lincoln

156

Divide and Transfer

ClusterMembership Distribution This paragraph describes the cluster memberships
and the distributions of positive and negative instances for the six experimental settings.
Tables 5 and 6 present the cluster assignment distribution for STST. In Experiments 1
and 2, the source Webis dataset is segmented into 16 clusters (see Table 5). The target
Microsoft and Lincoln datasets are mapped to 9 and 8 of these clusters respectively.
The results of cluster assignment confirm the assumption that not all the source task
is useful for the target task. However, the source task can still be fully exploited. In
Experiment 3, as shown in Table 6, all the source task (Microsoft) instances are useful
for the target task (Lincoln), both of which were determined to contain three clusters.

Table 7 shows the cluster assignment distributions for the TTST approach (Experi-
ments 4, 5, and 6). The distribution shows that sometimes part of the target task would
not have available source task to learn from. For example, in Experiment 4, the source
task is only useful for cluster 2 of the target task; in Experiment 5, it is only useful for
cluster 1.

Table 5: Cluster membership distributions for Experiments 1 and 2.

Source Task Target Task

Webis Microsoft (Exp:1) Lincoln (Exp:2)

Source cluster Data Distri. (+,−) Data Distri. (+,−) Data Distri. (+,−)

1 75 (9,66) 43 (22,21) 48 (27,21)

2 24 (1,23) 192 (116,76) 85 (41,44)

3 16 (10,6) 153 (80,73) 215 (86,129)

4 25 (8,17) 18 (6,12)

5 46 (24,22) 49 (20,29)

6 40 (35,5) 16 (16,0) 11 (5,6)

7 41 (3,38) 2 (2,0) 1 (1,0)

8 130 (9,121)

9 63 (50,13)

10 43 (9,34) 1 (0,1)

11 75 (2,73)

12 43 (6,37)

13 62 (28,34) 17 (12,5) 22 (11,11)

14 60 (60,0)

15 149 (8, 141)

16 48 (39,9) 1 (0,1) 1 (1,0)

Total 940 (301,639) 474 (268, 206) 400 (178,223)

4. Experimental results

This section describes the experimental results for STST and TTST. Our results show
that the two proposed approaches improved the ranking, moving more actual vandalism

157

Chin Street

Table 6: Cluster membership distribution for Experiment 3.

Source Task Target Task

Microsoft Lincoln

Exp Source cluster Data Distri. (+,−) Data Distri. (+,−)

3

1 344 (186, 158) 357 (146, 211)
2 125 (80, 45) 42 (30,12)
3 5 (2,3) 2 (2,0)

Total 474 (268,206) 401 (178,223)

Table 7: Cluster membership distribution for Experiments 4, 5, and 6

Target Task Source Task

Exp Target cluster Data Distri. (+,−) Data Distri. (+,−)

4

1 344 (186, 158) 0
2 125 (80, 45) 940 (301,639)
3 5 (2,3) 0

Total 474 (268,206) 940 (301,639)

5

1 56 (36,20) 940 (301,639)
2 115 (45,70) 0
3 230 (97,133) 0

Total 401 (178,223) 940 (301,639)

6

1 56 (36,20) 159 (93,66)
2 115 (45,70) 121 (56,65)
3 230 (97,133) 194 (119,75)

Total 401 (178,223) 474 (268,206)

instances to the top of the ranked list. Table 8 shows the performance of the baseline,
a direct transfer without either STST or TTST, using an SVM classifier with linear and
RBF kernels. In this section, results that outperform the baseline are marked with a †.

Table 8: Baseline performance.

Exp Classifier AUC AP

1 and 4
SVM w/ linear kernel (C=1) 0.5333 0.6002
SVM w/ RBF kernel (C=1, γ = 0.1) 0.5466 0.5862

2 and 5
SVM w/ linear kernel (C=1) 0.5276 0.4528
SVM w/ RBF kernel (C=0.8, γ = 0.16) 0.5396 0.4454

3 and 6
SVM w/ linear kernel (C=500) 0.6089 0.6134
SVM w/ RBF kernel (C=500, γ = 0.02) 0.6215 0.6021

158

Divide and Transfer

4.1. STST Evaluation

Table 9 shows the experimental results for the STST approach. We compared the per-
formance of STST with the best performance for direct transfer, i.e. train on the source
task and transfer directly to the target task, using the SVM classifier with RBF kernel
(see Table 8). The results indicate that the STST approach consistently outperforms the
baseline across the three experiments.

Table 9: Experiment results for STST

Experiment 1 Experiment 2 Experiment 3

AUC AP AUC AP AUC AP

0.5541† 0.6095† 0.5519† 0.5063† 0.6883† 0.6514†

4.2. TTST Evaluation

Table 10 shows the experimental results for the TTST approach. As shown in Table 7,
only cluster 2 in Experiment 4 and cluster 1 in Experiment 5 have the source task to
learn from. Therefore, presumably, the classifier trained for the assigned cluster in the
target task will perform better on the assigned cluster than on other clusters.

The results in Experiment 4 support the assumption. The performance of cluster 2
is much higher than cluster 1 when we used the same classifier trained from the source
task for both clusters. Although the cluster 3 in Experiment 4 has high AUC and AP
results, it is noted that the size of the cluster is quite small and the results might be
insignificant.

Experiment 5 presents mixed results on AUC and AP. We observe that the AP, but
not the AUC, is higher in cluster 1, to which all the source task was assigned. In general,
AP is more sensitive to the order at the top of the ranked list whereas AUC evaluates
the overall number of correctly ranked pairs. In the case that AP is higher but not AUC,
it indicates that the algorithm performs better at the top of the list; however, it doesn’t
create more correctly ranked pairs. To support this observation, we evaluated the results
using Normalized Discounted Cumulative Gain (NDCG) at the rank position 5 and 10.
Figure 3 shows that cluster 1 outperforms the other two clusters. The results suggest
the occurrence of negative transfer when the learned classifier was used on less related
datasets. The results also demonstrate how negative transfer could be minimized when
the target task only learned from more informative segments in the source task.

In Experiment 6, all three clusters from the target task (Lincoln) have assigned
instances from the source task (Microsoft). The combined result (the ‘Total’ row) out-
performs the baseline (i.e., direct transfer of a classifier trained from the entire source
task).

159

Chin Street

Table 10: Experiment results for TTST, breakdown by cluster.

Experiment 4 Experiment 5 Experiment 6

AUC AP # AUC AP # AUC AP

1 0.5082 0.5503 1 0.4472 0.6346† 1 0.6792† 0.7959†
2 0.6569† 0.7201† 2 0.4942 0.3641 2 0.6288† 0.495

3 0.8333† 0.8333† 3 0.5603† 0.4393 3 0.738† 0.6637†
Total 0.6627† 0.6426†

Figure 3: NDCG results for Experiment 5

5. Related Work

Source task selection Research on multi-task learning and reinforcement learning
has discussed the measurement of task relatedness and the selection of related tasks
(Silver and McCracken, 2003; Ben-David and Borbely, 2008; Taylor et al., 2007). In
this paper, we focus on the problem setting in which only a single source task is avail-
able, and no labels are available for the target task. Research has used semi-supervised
learning methods such as EM algorithm combined with NaiveBayes classifier (Nigam
et al., 2000) and co-clustering (Dai et al., 2007) to improve text classifiers. In contrast
with current research, our approach does not require labeled data in the target task,
selecting the source task segments solely based on the feature distribution.

A common approach to select a related source task is to measure the relatedness
between the source and target task. Silver and Mercer (1996) employed a learning
rate as a function to measure relatedness between a source task and the target task.

160

Divide and Transfer

Kuhlmann and Stone (2007) constructed a graph for each task based on the elements
and rules and then compared the graph isomorphism to select similar tasks. Thrun
and O’Sullivan (1998) clustered multiple source tasks into a hierarchy. Their method
transferred knowledge from the cluster most related to the target task to emphasize the
knowledge among similar and discriminating instances. The authors used class label
information to construct clusters, matching the target distribution of a given task with
the most similar cluster.

Classifier reuse Knowledge transfer emphasizes the reuse of previously acquired
knowledge, i.e. the classifiers, from the source task to the target task. A common
approach to reuse classifiers is to select among candidate solutions from the source
tasks. Zhang et al. (2005) constructed an ensemble of decision trees trained from re-
lated tasks to improve prediction on the problem with limited labeled data. Eaton and
Desjardins (2006) developed an ensemble framework where each member classifier fo-
cuses on one resolution level. The multi-resolution learning facilitates transfer between
related tasks. Yang et al. (2007) described methods to select auxiliary classifiers from
a set of existing classifiers. The authors used the EM algorithm to estimate the distri-
bution respective to each between-class score distribution, creating “pseudo” labels to
evaluate each classifier and then selecting classifiers of average precision scores.

By comparison, our approach aims to transfer classifiers learned only from the re-
lated segment, as opposed to the entire set, of the source task. The experimental results
demonstrate the promise of the proposed segmented transfer approach.

6. Conclusion and Future Work

In this paper, we investigated two segmented transfer approaches to transfer knowledge
while avoiding negative transfer. The objective of the proposed approach is to address
the heterogeneous characteristics of Wikipedia vandalism. We clustered the source and
the target task to map unlabeled data from the target task to the most related cluster
from the source task, classifying the unlabeled data using the most relevant learned
models. Our results show enhanced performance (e.g. AUC and AP) on ranking the
probable vandalism instances. In the future, we will explore the soft clustering method,
assign each instance in the target task a probability of cluster membership, and combine
predictions. We will also consider enhancing the methods’ ability to avoid negative
transfer by implementing an overall “relatedness” measure, so that points in the target
task are not classified using distant clusters.

Acknowledgments

Our special thanks go to anonymous reviewers and ICML’11 conference attendees for
their constructive feedback to improve this work. This publication was made possible
by Grant Number UL1RR024979 from the National Center for Research Resources
(NCRR), a part of the National Institutes of Health (NIH). Its contents are solely the

161

Chin Street

responsibility of the authors and do not necessarily represent the official views of the
CTSA or NIH.

References

S. Ben-David and R. S. Borbely. A notion of task relatedness yielding provable
multiple-task learning guarantees. Machine Learning, 73:273–287, December 2008.

S.-C. Chin, W. N. Street, P. Srinivasan, and D. Eichmann. Detecting Wikipedia vandal-
ism with active learning and statistical language models. In Proceedings of the 4th

Workshop on Information Credibility, WICOW ’10, page 3–10, 2010.

P. Clarkson and R. Rosenfeld. Statistical language modeling using the CMU-
Cambridge toolkit. In Fifth European Conference on Speech Communication and

Technology, pages 2707–2710, 1997.

W. Dai, G.-R. Xue, Q. Yang, and Y. Yu. Co-clustering based classification for out-of-
domain documents. In Proceedings of the 13th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, KDD ’07, page 210–219, 2007.

E. Eaton and M. Desjardins. Knowledge transfer with a multiresolution ensemble of
classifiers. In ICML Workshop on Structural Knowledge Transfer for Machine Learn-

ing, 2006.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
WEKA data mining software: An update. SIGKDD Explor. Newsl., 11:10–18,
November 2009. ISSN 1931-0145.

G. Kuhlmann and P. Stone. Graph-based domain mapping for transfer learning in gen-
eral games. Machine Learning: ECML 2007, page 188–200, 2007.

K. Nigam, A.K. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled
and unlabeled documents using EM. Machine Learning, 39(2):103–134, 2000.

S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge

and Data Engineering, 22(10):1345–1359, 2010.

M. Potthast and R. Gerling. Wikipedia vandalism corpus Webis-WVC-07, 2007. URL
http://www.uni-weimar.de/medien/webis/research/corpora.

M. T. Rosenstein, Z. Marx, L. P. Kaelbling, and T. G. Dietterich. To transfer or not to
transfer. In NIPS’05 Workshop, Inductive Transfer: 10 Years Later, 2005.

D. L. Silver and P. McCracken. Selective transfer of task knowledge using stochas-
tic noise. In Y. Xiang and B. Chaib-draa, editors, Advances in Artificial Intelli-

gence, volume 2671 of Lecture Notes in Computer Science, page 994–994. Springer
Berlin/Heidelberg, 2003.

162

Divide and Transfer

D. L. Silver and R. E. Mercer. The parallel transfer of task knowledge using dynamic
learning rates based on a measure of relatedness. In Connection Science Special

Issue: Transfer in Inductive Systems, pages 277–294, 1996.

M. E. Taylor, G. Kuhlmann, and P. Stone. Accelerating search with transferred heuris-
tics. In ICAPS-07 Workshop on AI Planning and Learning, September 2007.

S. Thrun and J. O’Sullivan. Clustering learning tasks and the selective cross-task trans-
fer of knowledge. In Learning to Learn, page 235–257. Kluwer, 1998.

J. Yang, R. Yan, and A. G. Hauptmann. Cross-domain video concept detection using
adaptive SVMs. In Proceedings of the 15th International Conference on Multimedia,
MULTIMEDIA ’07, page 188–197, New York, NY, USA, 2007.

Y. Zhang, W.N. Street, and S. Burer. Sharing classifiers among ensembles from related
problem domains. In Fifth IEEE International Conference on Data Mining, pages
522–529. IEEE Computer Society, 2005.

163

164

JMLR: Workshop and Conference Proceedings 27:145–154, 2012 Unsupervised and Transfer Learning

Self-measuring Similarity for Multi-task Gaussian Process

Kohei Hayashi hayashi.kohei@gmail.com
Takashi Takenouchi ttakashi@is.naist.jp
Graduate School of Information Science,

Nara Institute of Science and Technology,

8916-5 Takayama, Ikoma, Nara, 630-0192, Japan

Ryota Tomioka tomioka@mist.i.u-tokyo.ac.jp

Hisashi Kashima kashima@mist.i.u-tokyo.ac.jp

Department of Mathematical Informatics,

The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

Multi-task learning aims at transferring knowledge between similar tasks. The multi-
task Gaussian process framework of Bonilla et al. models (incomplete) responses of
C data points for R tasks (e.g., the responses are given by an R×C matrix) by using
a Gaussian process; the covariance function takes its form as the product of a covari-
ance function defined on input-specific features and an inter-task covariance matrix
(which is empirically estimated as a model parameter). We extend this framework
by incorporating a novel similarity measurement, which allows for the representation
of much more complex data structures. The proposed framework also enables us to
exploit additional information (e.g., the input-specific features) when constructing the
covariance matrices by combining additional information with the covariance func-
tion. We also derive an efficient learning algorithm which uses an iterative method
to make predictions. Finally, we apply our model to a real data set of recommender
systems and show that the proposed method achieves the best prediction accuracy on
the data set.

Keywords: Multi-task Gaussian process, conjugate gradient, collaborative filtering.

1. Introduction

Multi-task learning (Caruana, 1997) is a machine learning framework that aims to im-
prove performance through the learning of multiple tasks at the same time, and sharing
the information of each task. An application of multi-task learning is a recommender
system. For example, a recommender system of movies makes recommendations of
movies which a user may prefer based on the history of the user’s preferences. Since
the total number of movies is much larger than the number of movies which one user
has watched in the past, one user’s preferences are insufficient for accurate prediction.
Multi-task learning enhances the prediction performance by regarding each user as a

© 2012 K. Hayashi, T. Takenouchi, R. Tomioka & H. Kashima.

Hayashi Takenouchi Tomioka Kashima

relevant task and by sharing the preferences information of the users whose preferences
are similar to each other. Such techniques are called collaborative filtering and are
widely applied in recommender systems.

Several methods for multi-task learning have been proposed (Pan and Yang, 2010),
which includes a method based on a Gaussian process (GP) called the multi-task GP
(Bonilla et al., 2008). GP models can make predictions as a distribution, and they pro-
vide not only a mean of the prediction but also a variance, which can be used as a
reliability of the prediction. Another advantage of the GP approach is that the learning
of a model and prediction making are consistently done within the Bayesian framework.
As the GP models represent the similarities of each data sample as a covariance ma-
trix, the multi-task GP parametrizes the similarities between tasks and the similarities
between data points as two independent covariance matrices, which enables to transfer
knowledge among different tasks and data points efficiently. The multi-task GP is a
special case of a tensor GP (Yu et al., 2007), and it has various applications such as a
robotic manipulation (Chai et al., 2009).

However, if either inputs or task-specific features are not provided, the multi-task
GP cannot measure the similarities and thus we cannot construct the corresponding
covariance matrix with kernel functions. Since task-specific features are generally dif-
ficult to obtain, the method proposed by Bonilla et al. estimates a full covariance matrix
over tasks in an empirical Bayesian framework. They also provide a parametric estima-
tion procedure for the covariance with low-rank constraint. The method proposed by
Yu et al. (2007) directly estimates the outputs of the GP as parameters, which can be
seen as a matrix-factorization-like approximation.

These parametric approaches work well when the model includes the true distribu-
tion of the observations, e.g., the observed responses have a low-rank structure. How-
ever, such modeling is sometimes too restrictive for real data. In addition, when given
responses are sparse and have high dimensionality, i.e., the dimension of the covariance
matrix is large compared to the number of the observations, the empirical estimation
of the full covariance matrix would be unstable, which may cause a negative effect for
prediction.

Another challenge is to improve scalability. The naive computation of the mean
of the predictive distribution requires O(M3) complexity, where M denotes the number
of observed responses. When applying the multi-task GP to a large-scale data set, it
is inevitable to introduce some approximations such as limitations of kernel functions
(e.g., linear kernel) and low-rank approximations of the Gram matrix. The empirical
Bayes approach also raises further the computational cost; it is only applicable when
the number of tasks or data points is small.

In this paper, we propose a new GP framework for multi-task learning problems.
Our main contributions are as follows:

Self-measuring similarities We use the responses themselves to measure the similari-
ties between the tasks and the data points. The response-based similarities allow
for the flexible representation of more complex data structures. Additional fea-

166

Self-measuring Similarity forMulti-task GP

tures (e.g., input-specific features) would enhance the prediction accuracy but
that is not a requirement in our framework.

Efficient and exact inference scheme We propose an efficient algorithm which com-
putes the predictive mean of the GP with O(RC(R+C)) computational cost with-
out any approximations, where R and C denote the number of tasks and data
points, respectively.

We evaluate our method in a collaborative filtering problem with a real data set and
show that it attains the lowest prediction error.

2. Multi-task Gaussian Process

Suppose that we are given R tasks and the i-th task has incomplete outputs xi: ∈ RC

which may contain unknown values. Our purpose is to predict unobserved elements in
a response matrix X = (x81:, . . . , x

8
R:)
8 ∈ RR×C in which xi: denotes the i-th row vector of

X. In some situations, additional information for data points S = (s1, . . . , sC) and those
for tasks T ≡ (t1, . . . , tR) are also given. Figure 1 is a summary of the problem setting,
which is particularly called multi-label learning, a special case of multi-task learning.

2.1. Notations

We define the “vec” operator which creates a vector “vec X” by stacking the column
vectors of X, i.e.,

vec X =

x:1
...

x:C

where x:k is the k-th column vector. We denote I as an index set of the observed
elements, and we have M = |I| observations {xik|(i,k) ∈ I}. We also denote xI as an
M-dimensional vector which contains the observed elements of X in a certain order

Figure 1: A problem setting of multi-task learning in this paper. Additional informa-
tion S and T are not indispensable.

167

Hayashi Takenouchi Tomioka Kashima

without overlapping. For later convenience, we introduce an observation matrix P ∈
{0,1}M×RC which removes the unobserved elements, i.e., xI = P(vec X).

2.2. Modeling, Learning, and Predicting

The multi-task GP models X as

xik = mik +µ+εik, εik ∼ N(0,σ2) (1)

where µ is a common bias and εik is an i.i.d. spherical Gaussian noise. mik follows a
tensor GP (Yu et al., 2007), which is defined as

m ∼ GP(0,Σ⊗Ω) (2)

where ⊗ denotes the Kronecker product and both Σ ∈RC×C andΩ ∈RR×R are symmetric
and PSD. Each Σ and Ω represents a covariance over columns and rows (i.e., data
points and tasks), respectively. From the definition, the covariance between xik and x jl

is written as

cov[xik, x jl] =Ωi jΣkl+δi jδklσ
2 (3)

where δi j is the Kronecker’s delta, i.e., δi j = 1 if i = j otherwise δi j = 0. Equation (3)
shows that the multi-task GP assumes the similarity (i.e., covariance) between the two
responses xik and x jl can be factorized into product of the task similarityΩi j and the data
point similarity Σkl. The joint distribution of X is given by the Gaussian distribution

∫
p(X | M,µ,σ2)p(M | Σ,Ω)dM = N(vec X | µ,K) (4)

where µ= (µ, . . . ,µ) ∈RRC and K =Σ⊗Ω+σ2I. Note that the multi-task GP is a special
case of GP in which the covariance matrix has the structure of the Kronecker product.

By following the GP’s framework, we need to determine the covariance matrices
Σ and Ω in a nonparametric way. On one hand, Bonilla et al. (2008) construct the
covariance Σ via a covariance function k(·, ·) with the input-specific features S as

Σkl = k(sk, sl). (5)

On the other hand, the task covarianceΩ is estimated as the empirical Bayesian method.
We consider obtaining a maximum-likelihood solution Ω̂ by maximizing the log-
likelihood function of the observed elements, which is given by marginalizing out the
unobserved elements from the joint distribution (4), i.e.,

ln

∫
N(vec X | µ,K)

∏

(i,k)"I

dxik

= −
1

2
(xI−µI)8K−1

I (xI−µI)−
1

2
lndet |KI|+ const. (6)

168

Self-measuring Similarity forMulti-task GP

where µI = Pµ and KI = PKP8 ∈ RM×M is a covariance matrix over the observed
elements. The common bias µ is also estimated as a maximum-likelihood solution
µ̂ = 1

M

∑
(i,k)∈I xik.

Given the partially observed response matrix and the input-specific features D =
{X,S}, the multi-task GP predicts an unobserved response xab by a corresponding mean
of the predictive distribution

E[xab | D,Ω̂] = (ka⊗ ω̂b)8IK−1
I (xI− µ̂I)+ µ̂ (7)

where ka = (k(sa, s1), . . . ,k(sa, sC))8 and ω̂b denotes the b-th row vector of Ω̂. Since
Equation (7) contains the inverse K−1

I , the naive computational complexity of the pre-
dictive means is O(M3).

3. Multi-task Gaussian Process with Self-measuring Similarity

Now we extend the multi-task GP model. First we introduce a way to construct the co-
variance matrices from the response matrix itself. Then we derive an efficient learning
algorithm using the conjugate gradient method.

3.1. Self-measuring Similarities

We construct the covariance matrices by using the responses themselves:

Ωi j = k(xi:, x j:) and Σkl = g(x:k, x:l), (8)

where k and g are arbitrary PSD kernel functions. As previously mentioned that xi:

denotes the i-th row vector and x:k denotes k-th column vector of X. We call this
idea Self-measuring Similarity. The self-measuring similarity allows us to compute
the covariance matrices without any additional information. The computation of the
self-measuring similarity is simply done with evaluate the values of the covariance
functions; it is much faster than the empirical Bayesian approach.

Figure 2: The idea of self-measuring similarities.

169

Hayashi Takenouchi Tomioka Kashima

We introduce latent variables {zik} for the missing elements {xik|(i,k) " I} to com-
pute the kernel function in which the input contains missing values. After learning
the latent variables, we use the completed matrix X̃ as kernel inputs, where x̃ik = xik if
(i,k) ∈ I otherwise x̃ik = zik. We use the means of the predictive distribution as estima-
tors of the latent variables, i.e., ẑik = E[xik|D] in a heuristic way.1 Note that, however,
the EM-like heuristic can be seen as an approximate marginalization (see Appendix A
for more details).

Since the values of {ẑik} affect the predictive mean (7) through the kernel functions,
the heuristic can be performed iteratively. Note that if the number of the missing el-
ements (i.e. the latent variables) is larger than that of the observed elements, many
iterations may cause over-fitting. We avoid this problem by early stopping of the it-
erations with a randomly picked validation set. For an initial value of ẑik, we use a
row-wise mean x̄i· or a column-wise mean x̄·k:

x̄i· =
1

Mi·

∑

k,(i,k)∈I

xik, x̄·k =
1

M·k

∑

i,(i,k)∈I

xik,

where Mi· and M·k are the number of observed elements of xi: and x:k, respectively.
If we have additional information such as input-specific features {sk|k = 1, . . . ,C} for

each data point, we exploit them by combining them with the self-measuring covariance
function. For example, we extend the covariance function into a sum form

Σkl = g(x:k, x:l)+g′(sk, sl) (9)

or a product form

Σkl = g(x:k, x:l)g
′(sk, sl). (10)

Note that if both g and g′ are PSD, then the resulting kernel functions are still PSD (Ras-
mussen and Williams, 2006).

3.2. Computation for Prediction

As mentioned, we need to compute the inverse of KI in Equation (7) for the predictive
means, and it requires O(M3) computational cost. Instead, we solve the linear equation

xI− µ̂I = KIβ (11)

with respect to β. Note that KI is positive definite when σ2 > 0. After obtaining the
solution β̂, we simply compute the predictive mean of xab as an inner product

E[xab | D, Ẑ] = (ga⊗ kb)8I β̂+ µ̂. (12)

1. One of the proper estimation methods for the latent variables is the empirical Bayesian. However, the
optimization of the log-likelihood (4) with respect to {zik} is computationally infeasible especially for
large-scale data.

170

Self-measuring Similarity forMulti-task GP

We solve Equation (11) using the conjugate gradient method (Shewchuk, 1994),
which is an iterative method to solve a linear system in which the matrix is positive
definite. Each iteration of the conjugate gradient needs to perform a matrix-vector
multiplication; in our case that corresponds to the multiplication of KI and an M-
dimensional vector, which requires O(M2) computation and O(M) memory space.

The computational cost of the multiplication can still be reduced by exploiting a
special structure in the matrix. Because of the structure of the Kronecker product in
KI, a multiplication of KI and an M-dimensional vector v is rewritten as

KIv = P(Σ⊗Ω+σ2I)P8v

= vec P(ΩVΣ+σ2V) (13)

where V ∈ RR×C is a matrix form of P8v, i.e., vec V = P8v. This technique, called
vec-trick (Vishwanathan et al., 2007; Kashima et al., 2009), reduces the computational
complexity from O(M2) to O(RC(R+C)).

Suppose we stop the iteration of the conjugate gradient when the "2 error of β̂l (i.e.,
between the solution at the l-th iteration and a true solution β∗) is less than the error of
the initial values β̂0 with a tolerance ε, i.e., ||β∗ − β̂l||2 ≤ ε||β∗ − β̂0||2. Then the maximum
number of iterations is bounded

l ≤
1

2

√
κ log

(
2

ε

)
(14)

where κ is the condition number of KI, which is defined as the ratio of the maximum
and the minimum eigenvalue of KI. The total cost for obtaining the solution β̂ is
O(
√
κRC(R+C)).

With an observation rate α, the number of observations has a relation M = αRC.
If X is nearly square, i.e., R @ C, then the computational complexity can be rewritten
as O((

√
κ/α

3
2)M

3
2), which is much faster than the naive complexity O(M3). Finally we

summarize the entire algorithm as a pseudo code in Algorithm 1.

Algorithm 1 Computation of predictive means with conjugate gradient.

1. Initialize Ẑ0 with row-means or column-means of X

2. For l = 1 to maximum number of iterations

(a) Construct Σ and Ω with Ẑl−1 and additional features

(b) Solve xI = KIβ by the conjugate gradient with a tolerance ε

(c) Compute predictive means {E[xab | D, Ẑl−1] | (a,b) " I} of unobserved ele-
ments

(d) Construct Ẑl from the predictive means

3. Return Ẑl

171

Hayashi Takenouchi Tomioka Kashima

4. Experimental Results

We evaluate the proposed method by applying it to a collaborative filtering problem.
We use the Movielens 100k data set2, which contains 100,000 ratings xik ∈ {1,2,3,4,5}
for 1,682 movies (data points) labeled by 943 users (tasks). The observation ratio α is
@ 0.06. The data set contains user-specific features S (e.g., age, gender, . . .) and movie-
specific features T (release date, genre, . . .). The data set provides 90,570 ratings
for training and remaining 9,430 ratings for testing. After learning with the training
data set, we evaluate the root-mean-squared-error (RMSE) for the testing data set. All
experiments are done with a Xeon 2.93 GHz 8 core machine.

In the experiment, we prepare three forms of covariance functions: a covariance
measured by the user-specific and the movie-specific features (“Feature”), a self-
measuring covariance (“Self-measuring”), and a combination of them with the prod-
uct form (10) (“Product”). Note that our model with “Feature” setting is equivalent to
the kernel method proposed by Bonilla et al. (2007). We summarize the covariance
functions in Table 1.

Table 1: Settings of the covariance functions.

Feature Self-measuring Product

Σi j k(si, s j) k(xi:, xi:) k(xi:, xi:)k(si, s j)
Ωkl g(tk, tl) g(x:k, x:l) g(x:k, x:l)g(tk, tl)

We use the RBF kernel k(x, x′) = g(x, x′) = exp(−λ ||x− x′||2) for the covariance
functions. We choose the hyper-parameters as (σ2,λ) = (0.5,0.001) for “Feature” and
(σ2,λ) = (0.1,0.1) for {“Self-measuring”, “Product”}, selected by three-fold cross vali-
dation from candidates σ2 ∈ {1,0.5,0.1,0.05} and λ ∈ {10−1,10−2,10−3,10−4,10−5}. We
set the tolerance of the conjugate gradient ε as 10−3. As the initial values of {zik} we
use the row-mean for Σ and the column mean for Ω.

For fair comparison, the number of the EM-like iteration is determined by early
stopping with a validation set randomly drawn 5% of the training set. We compare
with standard methods for recommendation system which includes user- and movie-
based K-nearest neighbour (KNN) with the Pearson correlation and matrix factorization
(see Su and Khoshgoftaar (2009) for more details.) We use MyMediaLite3 as these
implementations and set the hyper-parameters by following the examples specially rec-
ommended for the Movielens 100k dataset.

We summarize the prediction errors in Table 2. The result shows that “Feature”
is the worst performance; it suggests that the additional information-based similarity
is not enough to capture the observed data structure, and the self-measuring similar-
ity is much more important for the prediction. Nevertheless, the combination with the
additional information (“Product”) further improves the prediction performance com-

2. http://www.grouplens.org/node/73
3. http://www.ismll.uni-hildesheim.de/mymedialite

172

Self-measuring Similarity forMulti-task GP

Table 2: RMSEs on the Movielens 100k dataset. Lower RMSE indicates higher pre-
diction performance. (Left) The RMSE behaviour of the EM-like heuristic.
l indicates the number of iterations. (Right) Existing methods v.s. proposed
method with early stopping.

l Feature Self-measuring Product

1 1.0517 0.9431 0.9393
2 – 0.9276 0.9231
3 – 0.9329 0.9292
4 – 0.9439 0.9410

Method RMSE time

User-KNN 0.9507 7s
Movie-KNN 0.9354 42s
Matrix Factorization 0.9345 1m38s
Feature 1.0517 7m01s

Self-measuring 0.9308 16m22s
Product 0.9256 18m25s

pared to using the self-measuring alone (“Self-measuring”). The left panel of Table 2
shows the EM-like heuristic drastically improves the prediction accuracy at the second
iteration, while the third or further iterations produce worse results. The best score
(“Product”) in the right panel of Table 2 is also the best over other 76 methods listed in
mlcomp.org4 as of May, 2011.

5. Conclusion

In this paper, we have presented a new framework to solve multi-task problems by using
a Gaussian process based on self-measuring similarities. We proposed the efficient
algorithm based on the conjugate gradient method with the vec-trick. Our method
achieved the best score of the Movielens 100k data set.

Acknowledgments

We thank the anonymous reviewers for insightful comments and Mauricio Alexandre
Parente Burdelis for helpful advices.

References

Edwin V. Bonilla, Felix V. Agakov, and Christopher K. I. Williams. Kernel multi-
task learning using task-specific features. In Proceedings of the 11th International

4. http://mlcomp.org/datasets/341

173

Hayashi Takenouchi Tomioka Kashima

Conference on Artificial Intelligence and Statistics. Omnipress, March 2007. URL
aistats07.pdf.

Edwin V. Bonilla, Kian M. Chai, and Christopher K. I. Williams. Multi-task Gaussian
process prediction. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Ad-

vances in Neural Information Processing Systems 20. MIT Press, Cambridge, MA,
2008. URL nips08.pdf.

Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, July 1997. ISSN
08856125. doi: 10.1023/A:1007379606734. URL http://dx.doi.org/10.

1023/A:1007379606734.

Kian M. Chai, Christopher Williams, Stefan Klanke, and Sethu Vijayakumar. Multi-
task gaussian process learning of robot inverse dynamics. In NIPS 2008,
http://eprints.pascal-network.org/archive/00004640/, 2009.

Hisashi Kashima, Tsuyoshi Kato, Yoshihiro Yamanishi, Masashi Sugiyama, and Koji
Tsuda. Link propagation: A fast semi-supervised learning algorithm for link predic-
tion. In SDM, pages 1099–1110. SIAM, 2009.

Sinno J. Pan and Qiang Yang. A survey on transfer learning. Knowledge and Data

Engineering, IEEE Transactions on, 22(10):1345–1359, October 2010. ISSN 1041-
4347. doi: 10.1109/TKDE.2009.191. URL http://dx.doi.org/10.1109/

TKDE.2009.191.

Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for

Machine Learning. The MIT Press, November 2006. ISBN 026218253X.
URL http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20&path=ASIN/026218253X.

J. R. Shewchuk. An introduction to the conjugate gradient method without the agoniz-
ing pain. Technical report, Carnegie Mellon University, Pittsburgh, PA, USA, 1994.
URL http://portal.acm.org/citation.cfm?id=865018.

Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering techniques.
Adv. in Artif. Intell., 2009:1–19, January 2009. ISSN 1687-7470. URL http:

//dx.doi.org/10.1155/2009/421425.

S. V. N. Vishwanathan, Karsten M. Borgwardt, and Nicol N. Schraudolph. Fast compu-
tation of graph kernels. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances

in Neural Information Processing Systems 19, pages 1449–1456. MIT Press, Cam-
bridge, MA, 2007.

Kai Yu, Wei Chu, Shipeng Yu, Volker Tresp, and Zhao Xu. Stochastic relational mod-
els for discriminative link prediction. In B. Schölkopf, J. Platt, and T. Hoffman,
editors, Advances in Neural Information Processing Systems 19, pages 1553–1560.
MIT Press, Cambridge, MA, 2007.

174

Self-measuring Similarity forMulti-task GP

Appendix A. Interpretation of EM-like Heuristic

The EM-like heuristic can be interpreted as an approximation of the marginalization
of the predictive distribution with respect to Z. First, given estimated latent variables
Ẑl−1, we consider to use the predictive distribution p(X|D, Ẑl−1) as a posterior of Z,
i.e., p(Z|D) ≈ p(X|D, Ẑl−1). If we further approximate the posterior distribution as a
delta function ∆(Z−E[X|D, Ẑl−1]), then we have

∫
E[X | D,Z]p(Z | D)dZ ≈

∫
E[X | D,Z]∆(Z−E[X|D, Ẑl−1])dZ = Ẑl

Note that (Ẑl)ab is also a predictive mean for an observation xab.

175

176

JMLR: Workshop and Conference Proceedings 27:155–166, 2012 Unsupervised and Transfer Learning

Transfer Learning for Auto-gating of Flow Cytometry Data

Gyemin Lee gyemin@eecs.umich.edu

Lloyd Stoolman stoolman@umich.edu

Clayton Scott cscott@eecs.umich.edu

University of Michigan, Ann Arbor, MI, USA

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

Flow cytometry is a technique for rapidly quantifying physical and chemical proper-
ties of large numbers of cells. In clinical applications, flow cytometry data must be
manually “gated” to identify cell populations of interest. While several researchers
have investigated statistical methods for automating this process, most of them falls
under the framework of unsupervised learning and mixture model fitting. We view the
problem as one of transfer learning, which can leverage existing datasets previously
gated by experts to automatically gate a new flow cytometry dataset while accounting
for biological variation. We illustrate our proposed method by automatically gating
lymphocytes from peripheral blood samples.

Keywords: flow cytometry, automatic gating, transfer learning, low-density separa-
tion

1. Introduction

Flow cytometry is a technique widely used in many clinical and biomedical laboratories
for rapid cell analysis (Shapiro, 1994). It plays an important role in the diagnosis of
blood-related diseases such as acute or chronic leukemias and malignant lymphomas.

Mathematically, a flow cytometry data can be represented as D = {xi}Ni=1, where
xi ∈ Rd is an attribute vector of the ith cell. The attributes include the cell’s size (FS),
granularity (SS) and expression levels of different antigens (CD45, CD3, CD4, etc.).
The number of cells N can range from 10,000 to 1,000,000, and d is usually between
7-12. In clinical settings, each data corresponds to a particular patient, where the cells
are typically drawn from a peripheral blood, lymph node, or bone marrow sample.

To make a diagnosis, a pathologist will use a computer to visualize different two-
dimensional scatter plots of a flow cytometry data as in Fig. 1. These plots illustrate
the presence of several clusters of cells within each dataset. They also illustrate the
variation of measured data from one patient to another. This variation arises from both
biological (e.g., health condition) and technical (e.g., instrument calibration) sources.

The pathologist will typically visualize a certain type of cell (e.g., lymphocytes in
the diagnosis of leukemias) and diagnose based on its shape, range and other distribu-
tional characteristics. A necessary preprocessing is to label every cell as belonging to
the cell type of interest or not, a process known as “gating.” This amounts to assigning

© 2012 G. Lee, L. Stoolman & C. Scott.

Lee Stoolman Scott

binary labels yi ∈ {−1,1}, i = 1, . . . ,N, to every cell. Fig. 1 indicates lymphocytes with
an alternate color. Without gating, cells of other types will overlap with the targeted
cell type in the scatter plots used for diagnosis. After gating, only the cells of interest
are visualized.

Figure 1: Clinicians analyze flow cytometry data using a series of scatter plots on at-
tributes pairs. The distribution differs from patient to patient, and changes
after treatments. Lymphocytes, a type of white blood cell, are marked dark-
/blue and others are marked bright/green. These were manually selected by
a domain expert.

Unfortunately, in clinical settings gating is still performed manually. It is a labor-
intensive task in which a pathologist visualizes the data from different two-dimensional
scatter plots, and uses special software to draw a series of boundaries (“gates”) to elim-
inate a portion of the cells outside of the desired type. The person performing gating
must utilize specialized domain knowledge together with iterative refinement. Since
modern clinical laboratories can see dozens of cases per day, it would be highly desir-
able to automate this process.

Because of this need, several researchers have tackled the auto-gating problem. A
recent survey on flow cytometry analysis revealed that more than 70% of studies fo-
cus on auto-gating techniques (Bashashati and Brinkman, 2009). However, the vast
majority of approaches rely on a clustering/mixture modeling, using a parametric rep-
resentation for each cell type (Chan et al., 2008; Lo et al., 2008; Pyne et al., 2009).
The mixture modeling approach has a number of difficulties, however. One is that the
clusters are typically not elliptical, meaning complex parametric models must be em-
ployed, such as skewed Gaussians, leading to challenging inference problems. Another
limitation is that human intervention is necessary to interpret the clustering results and
to select some of the clusters for the task. Finally, these algorithms are unsupervised,
and do not fully leverage expert knowledge.

We propose to view auto-gating as a transfer learning problem. In particular, we as-
sume that a collection of expert-gated datasets are available. Although different datasets

178

Transfer Learning for Auto-gating of Flow Cytometry Data

have different distributions, there is enough similarity, (e.g., lymphocytes show low
levels of SS while expressing high levels of CD45) that this expert knowledge can be
transferred to the new data. Our approach is to train classifiers on expert-gated data,
and to summarize these classifiers to form a baseline classifier. This baseline is then
adapted to the new data by optimizing a “low-density separation” criterion. The transfer
learning problem we study is, to our knowledge, a new one, although it has similarities
to previously studied transfer learning problems, as well as multi-task learning. These
connections are reviewed below.

2. Problem Setup

There are M labeled datasetsDm = {(xm,i,ym,i)}Nm

i=1, m = 1, · · · ,M, each a random sample
from a distribution Pm. Dm corresponds to the mth flow cytometry dataset and its labels
are determined by experts. There is also an unlabeled dataset T = {xt,i}Nt

i=1, a random
sample from a new distribution Pt corresponding to a new flow cytometry dataset. The
labels {yt,i}Nt

i=1 are not observed. The goal is to assign labels {̂yt,i}Nt

i=1 to T so that the
misclassification rate is minimized. All the distributions are different, but defined on
the same space Rd × {−1,+1}.

3. Related Work

As a transfer learning problem, our problem is characterized by having multiple source
domains (the expert-gated datasets), and a single target domain (the unlabeled dataset).
Using the taxonomy of Pan and Yang (2010), our setting can be described as follows:

(1) the source and target domains are different, because the marginal distributions
of x are different,

(2) the source and target tasks are different, because each dataset requires a different
gating,

(3) there are no labeled examples in the target domain.
To the best of our knowledge, previous work has not addressed this combination of char-
acteristics. Many previous works fall under the heading of inductive transfer learning,
where at least a few labels are given for the target domain (Ando and Zhang, 2005;
Rettinger et al., 2006). In transductive transfer learning (Arnold et al., 2007), and the
related problems of sample selection bias and covariate shift, the source and target tasks
are assumed to be the same.

Another closely related area is multi-task learning (Caruana, 1997; Evgeniou and
Pontil, 2004). However, our problem contrasts to this line of studies in the sense that
our ultimate goal is achieving high performance for the target task only, and not the
source tasks.

Toedling et al. (2006) explore using support vector machines (SVMs) for flow cy-
tometry data from multiple patients. They merge all the datasets to form a single large
data, and build a classifier on this data. However, due to its size of the combined dataset,
the training requires demanding computational and memory resources. Furthermore,
this approach ignores the variability among multiple datasets and treats all the datasets

179

Lee Stoolman Scott

as arising from the same distribution. This reduces the problem to standard single-task
supervised learning.

4. Algorithm

We describe our approach to the problem. In this section, we show how our algorithm
summarizes knowledge from the source data and adapts it to the new task.

4.1. Baseline Classifier for Summarizing Expert Knowledge

We suppose that the knowledge contained in the source tasks can be represented by a
set of decision functions f1, · · · , fM. The sign of a decision function fm provides a class
prediction of a data point x: ŷ = sign(fm(x)). Each fm is separately learned from each
of the M source datasets. Then these decision functions form the pool of knowledge.

In this work, we consider linear decision functions f (x) = 〈w,x〉+b. Then f defines
a hyperplane {x : f (x) = 0} with a normal vector w ∈ Rd and a bias b ∈ R. The SVM
is among the most widely used methods for learning a linear classifier (Schölkopf and
Smola, 2002). It finds a separating hyperplane based on the maximal margin principle.
We use the SVM to fit a decision function fm or a hyperplane (wm,bm) to the mth source
dataDm.

We devise a baseline classifier f0 = 〈w0,x〉+ b0 by letting (w0,b0) be the mean of
(wm,bm). Instead of the simple mean, Algorithm 1 uses a robust mean to prevent f0 from
being unduly influenced by atypical variations among datasets. Algorithm 2 presents
the robust estimator as formulated in Campbell (1980). Here ψ is a weight function
corresponding to a robust loss, and we use the Huber loss function. Note that we also
robustly estimate the covariance of the wm, which is used below in Section 4.2.3.

The learning of f0 does not involve T at all. Thus, it is not expected to provide
a good prediction for the target task. Next we describe a way to adapt this baseline
classifier to the target data based on the low-density separation principle.

4.2. Transferring Knowledge to Target Task

Low-density separation is a concept used extensively in machine learning. This notion
forms the basis of many algorithms in clustering analysis, semi-supervised classifica-
tion, novelty detection and transductive learning. The underlying intuition is that the
decision boundaries between clusters or classes should pass through regions where the
marginal density of x is low. Thus, our approach is to adjust the hyperplane parameters
so that it passes through a region where the marginal density of T is low.

4.2.1. Preprocessing

Instrument calibration often introduces different shifting and scaling to each flow cy-
tometry data along coordinate axis. While a typical solution is aligning all datasets via
some global d-dimensional shift/scale transformation, it is sufficient for our purposes
to align datasets in the direction of the baseline normal vector w0. Specifically, for each

180

Transfer Learning for Auto-gating of Flow Cytometry Data

Algorithm 1 Baseline Classifier
Input: source task data Dm for m = 1, · · · ,M,

regularization parameters {Cm}Mm=1
1: for m = 1 to M do
2: (wm,bm)← S V M(Dm, Cm)
3: end for
4: Robust Mean:

(w0,b0)← Algorithm 2({(wm,bm)}m)
Output: (w0,b0) or f0(x) = 〈w0,x〉+b0

Algorithm 2 Robust Mean and Covariance
Input: (wm,bm) for m = 1, · · · ,M

1: Concatenate: um← [wm,bm], ∀m

2: Initialize: µ←mean(um), C← cov(um)

3: repeat

4: dm←
(
(um−µ)T C−1(um−µ)

)1/2

5: wm← ψ(dm)/dm

6: Update: µnew←
∑

m wmum∑
m wm

Cnew←
∑

m w2
m(um−µnew)(um−µnew)T

∑
m w2

m−1

7: until Stopping conditions are satisfied
Output: µ = [w0,b0], C0 = C(1 : d,1 : d)

dataset, we compute a kernel density estimate (KDE) of the projection onto w0. Then,
we align the target data to each source data using maximum cross-correlation (denoted
by * in Algorithm 3), and modify the baseline bias by the median of these shifts. This
new bias b will serve as the initial bias when adapting the baseline to T .

4.2.2. Varying Bias

We first describe adapting the bias variable to the unlabeled target data T based on
low-density separation. The process is illustrated in Algorithm 4.

To assess whether a linear decision boundary is in a low density region, we count
data points near the hyperplane. As the hyperplane moves, this number will be large
in a high density region and small in a low density region. In particular, we define a
margin, as in SVMs, to be a region of a fixed distance from a hyperplane, say ∆, and
count data points within this margin. We use ∆ = 1. Given a hyperplane (w,b), basic

linear algebra shows that 〈w,x〉+b
‖w‖ is the signed distance from x to the hyperplane. Hence,

computing

∑

i

I{
|〈w,xt,i〉+b|
‖w‖

< ∆}

over a range of b followed by locating a minimizer near the baseline hyperplane gives
the desired solution. Algorithm 4 implements this on a grid of biases {s j} and builds∑

j c j δ(z− s j) where δ is the Dirac delta. The grid points and the counts at each grid
point are denoted by s j and c j.

Before searching for the minimizing bias, we smooth these counts over the grid

by convolving with a Gaussian kernel kh(z,z′) = 1√
2πh

exp
(
− |z−z′ |2

2h2

)
. The bandwidth h

controls the smoothness of the kernel. This operation yields a smooth function p̂(z) =∑
j c jkh(z, s j). Running a gradient descent algorithm on this smoothed function p̂(z)

returns a local minimum near 0 if initialized at 0 (the second parameter in Line 8).
To facilitate a streamlined process for practical use, we automatically select the

kernel bandwidth h as shown in Algorithm 5. This kernel choice is motivated from the
rule of thumb for kernel density estimation suggested in Silverman (1986).

181

Lee Stoolman Scott

Algorithm 3 Shift Compensation
Input: hyperplane (w,b), source task data
{Dm}Mm=1, target task data T

1: zt,i← 〈w,xt,i〉+b, ∀i

2: for m = 1 to M do
3: zm,i← 〈w,xm,i〉+b, ∀i

4: em ← argmaxz KDE(z,zt,i) *
KDE(z,zm,i)

5: end for
6: b← b−median(em)

Output: b

Algorithm 4 Bias Update
Input: hyperplane (w,b), target task data T

1: Compute: zi← 〈w,xt,i〉+b, ∀i

2: Build a Grid: si← sort (zi)
3: for j = 1 to Nt do

4: c j←
∑

i I{
|zi−s j |
‖w‖ < 1}

5: end for
6: h← kernel bandwidth ({(s j,c j)} j)
7: Smooth: p̂(z)←

∑
j c jkh(z, s j)

8: z∗ ← gradient descent (p̂(z), 0)
9: bnew← b− z∗

Output: bnew or fb(x) = 〈w,x〉+bnew

4.2.3. Varying Normal Vector

We can also adjust the normal vector of a hyperplane. Given a normal vector w, we
update the normal vector by wnew = w+ atvt where vt is the direction of change and
at is the amount of the change. Thus, the new normal vector is from an affine space
spanned by vt.

Now we explain in detail the ways of choosing vt and at. We find a direction of
change from the covariance matrix of the normal vectors w1, · · · ,wM obtained from
Algorithm 2. We choose the first principal eigenvector for vt after making it orthogonal
to w0, the baseline normal vector, because changes in the direction of w0 do not affect
the decision boundary.

To determine the amount of change at, we proceed similarly to the method used to
update the bias. We count the number of data points inside the margin as the normal
vector varies by a regular increment in the direction of vt. Convolving with a Gaussian
kernel smooths these quantities over the range of variation. Then a gradient descent
algorithm can spot at that leads to a low density solution near the baseline hyperplane.
Algorithm 6 summarizes this process.

4.2.4. Putting It All Together

Once the normal vector is updated, we build a new hyperplane by combining it with an
updated bias so that the hyperplane accords to a low density region of T . Algorithm 7
outlines the overall scheme. In the algorithm, one can repeatedly update the bias and the
normal vector. A simple method is running a fixed number of times. In our experience,
one round of iteration was sufficient for good solutions.

Although the presented algorithm limits the varying direction of normal vector to
a single vector vt, we can generalize this to multiple directions. To do this, more than
one eigenvector can be chosen in Step 5 of Algorithm 7. Then the Gram-Schmidt
process (Golub and Van Loan, 1996) generates a set of orthonormal vectors that spans
a subspace for a new normal vector. The counting in-margin points in Algorithm 6 can
be extended to a multivariate grid with little difficulty.

182

Transfer Learning for Auto-gating of Flow Cytometry Data

Algorithm 5 Kernel Bandwidth
Input: grid points and counts {(sk,ck)}

1: N←
∑

k ck

2: s← 1
N

∑
k skck

3: σ̂←
(

1
N−1

∑
k ck(sk − s)2

)1/2

4: h← 0.9 · σ̂ ·N−1/5

Output: h

Algorithm 6 Normal Vector Update
Input: hyperplane (w,b), direction of change

vt, target task data T
1: for ak = −0.5 to 0.5 step 0.01 do
2: wk← w+akvt

ck←
∑

i I{
∣∣∣∣
〈wk ,xt,i〉+b

‖wk‖

∣∣∣∣ < 1}
3: end for
4: h← kernel bandwidth ({(ak,ck)}k)
5: Smooth: g(a)←

∑
k ckkh(a,ak)

6: at← gradient descent (g(a), 0)
7: wnew← w+atvt

Output: wnew

Algorithm 7 Set Estimation based on
Low-Density Separation

Input: source task data {Dm}Mm=1, target task

data T , regularization parameters {Cm}Mm=1

1: for m = 1 to M do
2: (wm,bm)← S V M(Dm,Cm)
3: end for
4: Initialize:

((w0,b0),C0)← Alg 2({(wm,bm)}m)
v0← eig(C0)

5: Normalize:
wt← w0/‖w0‖, bt← b0/‖w0‖

vt ←
orthonormalize v0 with respect to w0

6: Compensate Shift:
bt← Alg 3(wt,bt, {Dm},T)

7: Update Bias:
bt← Alg 4(wt,bt,T)

8: repeat
9: Update Normal Vector:

wt← Alg 6(wt,bt,vt,T)
10: Update Bias:

bt← Alg 4(wt,bt,T)
11: until Stopping conditions are satisfied
Output: (wt,bt) or ft = 〈wt,x〉+bt

Figure 2: Number of total events and lymphocytes in each flow cytometry dataset.

183

Lee Stoolman Scott

5. Experiments

We demonstrate the proposed methods on clinical flow cytometry data. Specifically, we
apply them to detect lymphocytes from peripheral blood samples. In diagnosing dis-
eases such as leukemias, identifying these cells is the first step in most clinical analysis.
Since the gating tools for this task are still primitive and unsatisfactory, a streamlined
automatic gating procedure will be highly valuable in practice.

For the experiments, peripheral blood sample datasets were obtained from 35 nor-
mal patients. These datasets are provided by the Department of Pathology at the Uni-
versity of Michigan. The number of events in a dataset ranges from 10,000 to 100,000
with a varying portion of lymphocytes among them (see Fig. 2). An event in a dataset
has six attributes (FS, SS, CD45, CD4, CD8 and CD3) and a corresponding binary la-
bel (+1 for lymphocytes and −1 for others) from the manual gates set by experts (see
Fig. 1).

For the experiments, we adopt a leave-one-out setting: choose a dataset as a tar-
get task T , hide its labels, and treat the other datasets as source tasks Dm. Each Dm

constitutes a binary classification problem with the goal of predicting the correct labels.
On each source dataDm, we trained a SVM classifier fm. We used LIBSVM pack-

age (Chang and Lin, 2001) with the default setting (Cm = 1). Then we applied the al-
gorithms described in Section 4 and evaluated the prediction accuracy on the unlabeled
target data T . The considered transfer learning algorithms are:
• f0 : baseline classifier with no adaptation, referred to as “baseline.”
• fb : classifier adapted to T by varying the bias-only, referred to as “bias.”
• ft : classifier adapted to T by varying both the direction and the bias, referred to
as “dir. and bias.”

In addition to the above classifiers, we compared the error rates from the following
classifiers as points of reference:
• Pooling : A SVM is trained after merging all source data as in Toedling et al.
(2006).
• Transductive : A transductive SVM is also trained on the merged source
data and the target data using SVM-light package (Joachims, 1999).
• fm for m = 1, · · · ,M : Each fm learned from a source data Dm is applied straight
to T . This emulates a supervised learning setup with a train sample Dm and a
test sample T while implicitly assuming Dm and T are drawn from the same
distribution. A box plot in Fig. 3 displays the range of results with some ‘+’
indicating extreme values. Table 1 numbers f Best

m , the best of the 34 error rates.
• Oracle : We also applied the standard SVM with the true labels of T . Its
performance is computed by 5-fold cross validation. This quantity is what we can
expect when a sufficient amount of labeled data are available for the target task.

For each dataset, we repeated these and reported their results in Fig. 3 and Table 1.
As can be seen in the figure and table, applying one of the fm to the target task result

in a wide range of accuracy. A classifier performing well on a dataset can perform
poorly on other datasets due to relative difficulty of a task, dataset shift, or dissimilarity
between tasks.

184

Transfer Learning for Auto-gating of Flow Cytometry Data

The Pooling performs poorly on many datasets. The merging step of the
Pooling makes the classification problem more difficult. Even if classes are well-
separated in each dataset, the separation will be lost in the merged dataset. Additionally,
the classifier from Pooling can be biased toward larger source data. The optimization
algorithm might also terminate prematurely before it converges to an optimal solution
because the merged dataset is very large. Therefore, the Pooling can perform poorly,
sometimes even worse than the worst fm.

Because Transductive merges all the labeled and unlabeled datasets for train-
ing, it shares the similar problems as the Pooling. Moreover, the objective function
is non-convex, and the solutions from an optimization algorithm are often suboptimal.
The obtained results are very high error rates and low gating quality as shown in the
table.

The baseline classifier f0 typically improves when we adapt f0 by changing the bias
variable in most cases except Case 14 and Case 23. They further improve by adaptively
varying both the direction and the bias. The differences among the f Best

m , Oracle and
ft are very small. This reveals that our strategy can successfully replicate what experts
do in the field without labeled training set for the target task.

6. Conclusion

We cast flow cytometry auto-gating as a novel kind of transfer learning problem. By
combining existing ideas from transfer learning, together with a low-density separation
criterion for class separation, our approach can leverage expert-gated datasets for the
automatic gating of a new unlabeled dataset.

Although linear classifiers are sufficient to gate lymphocytes in peripheral blood,
nonlinear classifiers may be necessary for other kinds of auto-gating. For example,
a bone marrow sample contains cells of whole range of developmental stages and is
known to be more difficult to gate. Depending on diseases being screened for, other
types of cells need to be separated or the separated lymphocytes need to be further
gated. Our approach accommodates the incorporation of inner-product kernels, which
may offer a solution to such problems. It is also quite likely that several other strategies
from the transfer learning literature can be adapted to this problem.

Biological and technical variation pose challenges for the analysis of many types of
biomedical data. Typically one or both types of variation is accounted for by performing
task-independent “normalization” prior to analysis. Our approach to flow cytometry
auto-gating can be viewed as a task-dependent approach. The application of transfer
learning to overcome biological and/or technical variations in other kinds of biomedical
data is an interesting problem for future work.

185

Lee Stoolman Scott

Table 1: The error rates (%) of various classifiers on each flow cytometry dataset, with
the other 34 treated as labeled datasets. The results from ft adapted to the
unlabeled target data are comparable to Oracle trained on labeled target
data, and make less errors than Pooling.

Case Trans Pool f0 fb ft f B
m Oracle

1 44.64 38.65 2.91 3.05 3.17 2.87 2.79
2 70.66 20.27 5.44 2.09 2.10 2.06 1.71
3 18.46 2.05 1.66 1.00 0.94 0.91 0.74
4 19.27 2.93 2.62 2.54 2.67 2.44 2.56
5 34.10 5.06 1.50 1.40 1.44 1.41 1.58
6 31.90 1.60 1.84 1.60 1.80 1.62 1.56
7 90.82 7.00 0.91 0.82 0.77 0.80 0.79
8 89.28 2.44 0.65 0.60 0.50 0.52 0.47
9 16.92 8.31 2.19 1.91 1.83 1.78 1.71
10 37.14 26.65 2.16 1.09 1.09 1.03 1.03
11 73.47 2.67 5.11 1.86 1.86 1.77 1.79
12 65.48 21.89 6.69 1.60 1.63 1.78 1.54
13 58.44 39.44 1.69 1.63 1.65 1.59 1.64
14 75.60 3.67 2.29 3.55 0.87 0.71 0.81
15 32.68 5.90 1.78 1.16 1.22 1.11 1.11
16 64.41 4.34 3.79 3.19 3.23 2.82 2.83
17 56.92 7.70 2.75 3.49 3.51 2.47 2.44
18 63.88 2.53 1.86 1.64 1.67 1.59 1.60
19 84.48 8.25 3.44 3.45 3.14 2.46 2.29
20 31.01 3.03 4.48 2.39 2.37 2.56 2.45
21 63.61 10.14 7.71 6.28 6.30 5.64 5.08
22 18.69 4.16 1.60 1.81 1.82 1.54 1.42
23 75.95 21.73 2.89 7.51 1.58 1.61 1.43
24 29.89 2.79 2.41 2.06 2.06 1.91 1.89
25 6.57 1.98 2.22 2.25 2.32 2.04 1.47
26 56.89 1.55 2.13 1.82 1.83 1.42 1.39
27 56.83 11.34 11.22 9.02 9.18 8.17 8.72
28 53.73 2.21 1.68 2.23 2.17 1.56 1.48
29 80.58 9.19 1.06 0.96 0.97 0.77 0.73
30 14.20 7.80 1.25 1.24 1.25 1.25 1.24
31 61.83 16.08 13.46 4.57 4.59 4.80 4.45
32 80.56 20.39 12.66 2.62 2.62 2.72 2.21
33 75.87 5.57 4.58 5.74 5.74 2.28 1.77
34 20.82 4.66 2.10 1.90 1.93 1.79 1.80
35 55.84 9.33 6.68 5.46 5.49 5.56 5.59

avg 51.76 9.80 3.70 2.73 2.49 2.21 2.12
std err 4.12 1.68 0.54 0.33 0.30 0.26 0.27

186

Transfer Learning for Auto-gating of Flow Cytometry Data

F
ig

ur
e

3:
T

he
er

ro
r

ra
te

s
of

va
ri

ou
s

cl
as

si
fi

er
s

on
ea

ch
un

la
be

le
d

da
ta

se
t.

T
he

bo
x

pl
ot

co
rr

es
po

nd
s

to
th

e
ra

ng
e

of
re

su
lt

s
w

he
n

on
e

of
f m

is
ap

pl
ie

d
to
T

.
‘+

’
m

ar
ks

an
ex

tr
em

e
va

lu
e

th
at

de
vi

at
es

fr
om

th
e

ot
he

rs
.

T
he

re
su

lt
s

fr
om

f t
,O
r
a
c
l
e

an
d

th
e

be
st

of
f m

ar
e

us
ua

ll
y

in
di

st
in

gu
is

ha
bl

e.

187

Lee Stoolman Scott

References

R. K. Ando and T. Zhang. A high-performance semi-supervised learning method for
text chunking. Proceedings of the 43rd Annual Meeting on Association for Compu-

tational Linguistics (ACL 05), pages 1–9, 2005.

A. Arnold, R. Nallapati, and W.W. Cohen. A comparative study of methods for trans-
ductive transfer learning. Seventh IEEE International Conference on Data Mining

Workshops, pages 77–82, 2007.

A. Bashashati and R. R. Brinkman. A survey of flow cytometry data analysis methods.
Advances in Bioinformatics, 2009:Article ID 584603, 2009. doi: 10.1155/2009/
584603.

N. A. Campbell. Robust procedures in multivariate analysis I: Robust covariance es-
timation. Journal of the Royal Statistical Society. Series C (Applied Statistics), 29:
231–237, 1980.

R. Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.

C. Chan, F. Feng, J. Ottinger, D. Foster, M. West, and T.B. Kepler. Statistical mixture
modeling for cell subtype identification in flow cytometry. Cytometry Part A, 73:
693–701, 2008.

C. Chang and C. Lin. LIBSVM: a library for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

T. Evgeniou and M. Pontil. Regularized multi–task learning. Proceedings of the tenth

ACM SIGKDD international conference on Knowledge Discovery and Data mining

(KDD 04), pages 109–117, 2004.

G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University
Press, 1996.

T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges,
and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, chap-
ter 11, pages 169–184. MIT Press, Cambridge, MA, 1999.

K. Lo, R. R. Brinkman, and R. Gottardo. Automated gating of flow cytometry data via
robust model-based clustering. Cytometry Part A, 73:321 – 332, 2008.

S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge

and Data Engineering, 22:1345–1359, 2010.

S. Pyne, X. Hu, K. Wang, E. Rossin, T. Lin, L. M. Maier, C. Baecher-Allan, G. J.
McLachlan, P. Tamayo, D. A. Hafler, P. L. De Jager, and J. P. Mesirov. Automated
high-dimensional flow cytometric data analysis. PNAS, 106:8519–8524, 2009.

A. Rettinger, M. Zinkevich, and M. Bowling. Boosting expert ensembles for rapid
concept recall. Proceedings of the 21st National Conference on Artificial Intelligence

(AAAI 06), 1:464–469, 2006.

B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

H. Shapiro. Practical Flow Cytometry. Wiley-Liss, 3rd edition, 1994.

188

Transfer Learning for Auto-gating of Flow Cytometry Data

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and
Hall, London, 1986.

J. Toedling, P. Rhein, R. Ratei, L. Karawajew, and R. Spang. Automated in-silico de-
tection of cell populations in flow cytometry readouts and its application to leukemia
disease monitoring. BMC Bioinformatics, 7:282, 2006.

189

190

JMLR: Workshop and Conference Proceedings 27:167–180, 2012 Unsupervised and Transfer Learning

Inductive Transfer for Bayesian Network Structure Learning∗

Alexandru Niculescu-Mizil alex@nec-labs.com
NEC Laboratories America, 4 Independence Way, Princeton, NJ 08540

Rich Caruana rcaruana@microsoft.com

Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

We study the multi-task Bayesian Network structure learning problem: given
data for multiple related problems, learn a Bayesian Network structure for each of
them, sharing information among the problems to boost performance. We learn the
structures for all the problems simultaneously using a score and search approach that
encourages the learned Bayes Net structures to be similar. Encouraging similarity
promotes information sharing and prioritizes learning structural features that explain
the data from all problems over features that only seem relevant to a single one. This
leads to a significant increase in the accuracy of the learned structures, especially
when training data is scarce.

1. Introduction

Bayes Nets (Pearl, 1988) provide a compact description of the dependency structure
of a domain by using a directed acyclic graph to encode probabilistic dependencies
between variables. The ability to learn this structure from data makes Bayes Nets an
appealing data analysis tool, as the learned structure can convey, in an intuitive manner,
a wealth of information about the domain at hand.

Until now, Bayes Net structure learning research has focused on learning a single

structure for a single problem (task) in isolation (e.g. learn the structure for only one
species of yeast from the gene expression data from that one species alone) (e.g. Cooper
and Hersovits, 1992; Heckerman, 1999; Spirtes et al., 2000; Teyssier and Koller, 2005).
In many situations, however, we are faced with multiple problems (tasks) that are re-
lated in some way (e.g. learn about the gene regulatory structure of several species of
yeast, not just one). In these cases, rather than learning the Bayes Net structure for
each problem in isolation, and ignoring the relationships with the other tasks, it would
be beneficial to learn all the structure for all the problems jointly. Indeed, the transfer
learning literature (e.g. Caruana, 1997; Baxter, 1997; Thrun, 1996) suggests that signif-
icant benefits can be obtained by transferring relevant information among the related
problems.

∗ A version of this paper appeared in (Niculescu-Mizil and Caruana, 2007). The work was done while
both authors were at Cornell University.

© 2012 A. Niculescu-Mizil & R. Caruana.

Niculescu-Mizil Caruana

In this paper we present a transfer learning approach that jointly learns multiple
Bayesian Network structures from multiple related datasets. We follow a score and
search approach, where the search is performed over sets of DAGs rather than over
single DAGs as in case of traditional structure learning. We derive a principled measure
of the quality of a set of structures that rewards both a good fit of the training data as
well as high similarity between the structures in the set. This score is then used to
guide a greedy hill climbing procedure in a properly defined search space to find a high
quality set of Bayes Net structures.

We evaluate the proposed technique on problems generated from the benchmark
ALARM (Beinlich et al., 1989) and INSURANCE (Binder et al., 1997) networks, as
well as on a real bird ecology problem. The results of the empirical evaluation show
that learning the Bayes Net structures jointly in a multi-task manner does indeed yield
a boost in performance and leads to learning significantly more accurate structures than
when learning each structure independently. As with other transfer learning techniques,
the benefit is especially large when the training data is scarce.

2. Background: Learning the Bayes Net Structure for a Single Problem

A Bayesian NetworkB= {G,θ} compactly encodes the joint probability distribution of a
set of n random variables X = {X1,X2, . . . ,Xn}. It is specified by a directed acyclic graph
(DAG) G and a set of conditional probability functions parametrized by θ (Pearl, 1988).
The Bayes Net structure, G, encodes the probabilistic dependencies in the data: the
presence of an edge between two variables means that there exists a direct dependency
between them. An appealing feature of Bayes Nets is that the dependency graph G is
easy to interpret and can be used to aid understanding the problem domain.

Given a dataset D= {x1, . . . , xm}where each xi is a complete assignment of variables
X1, . . . ,Xn, it is possible to learn both the structure G and the parameters θ (Cooper and
Hersovits, 1992; Heckerman, 1999; Spirtes et al., 2000). In this paper we will focus on
structure learning, and more specifically on the score and search approach to it.

Following the Bayesian paradigm, the posterior probability of the structure given
the data is estimated via Bayes rule:

P(G | D) ∝ P(G)P(D |G) (1)

The prior, P(G), indicates the belief, before seeing any data, that the structure G is
correct. If there is no reason to prefer one structure over another, one should assign the
same probability to all structures. If there exists a known ordering on the nodes in G

such that all the parents of a node precede it in the ordering, a prior can be assessed
by specifying the probability that each of the n(n − 1)/2 possible arcs is present in
the correct structure (Buntine, 1991). Alternately, when there is access to a structure
believed to be close to the correct one (e.g. from an expert), P(G) can be specified
by penalizing each difference between G and the given structure by a constant factor
(Heckerman et al., 1995).

The marginal likelihood, P(D | G), is computed by integrating over all parameter
values:

192

Inductive Transfer for Bayesian Network Structure Learning

P(D |G) =

∫
P(D |G,θ)P(θ |G)dθ (2)

When the local conditional probability distributions are from the exponential fam-
ily, the parameters θi are mutually independent, we have conjugate priors for these
parameters, and the data is complete, P(D |G) can be computed in closed form (Heck-
erman, 1999).

Treating the posterior, P(G | D), as a score, one can search for a high scoring net-
work using heuristic search (Heckerman, 1999). Greedy search, for example, starts
from an initial structure, evaluates the score of all the neighbors of that structure and
moves to the neighbor with the highest score. A common definition of the neighbor of
a structure G is a DAG obtained by removing or reversing an existing arc in G, or by
adding an arc that is not present in G. The search terminates when the current structure
is better than all it’s neighbors. Because it is possible to get stuck in a local minima, this
procedure is usually repeated a number of times starting from different initial structures.

3. Learning Bayes Net Structures for Multiple Related Problems

In the previous section we reviewed how to learn the Bayes Net structure for a single
problem. What if we have data for a number of related problems (e.g., gene expression
data for several species) and we want to jointly learn Bayes Net structures for each of
them?

Given k data-sets, D1, . . . ,Dk, defined on overlapping but not necessarily identical
sets of variables, we want to learn the structures of the Bayes Nets B1 = {G1,θ1}, . . . ,
Bk = {Gk,θk}. In what follows, we will use the term configuration to refer to a set of
structures (G1, . . . ,Gk).

From Bayes rule, the posterior probability of a configuration given the data is:

P(G1, . . . ,Gk | D1, . . . ,Dk) ∝ P(G1, . . . ,Gk)P(D1, . . . ,Dk |G1, . . . ,Gk) (3)

The marginal likelihood P(D1, . . . ,Dk |G1, . . . ,Gk) is computed by integrating over
all parameter values for all the k networks:

P(D1, . . . ,Dk |G1, . . . ,Gk) =
∫

P(D1, . . . ,Dk |G1, . . . ,Gk,θ1, . . . ,θk) ·P(θ1, . . . ,θk |G1, . . . ,Gk)dθ1 . . .dθk

=

∫
P(θ1, . . . ,θk |G1, . . . ,Gk)

k∏

p=1

P(Dp |Gp,θp)dθ1 . . .dθk (4)

If we make the parameters of different networks independent a priori (i.e.
P(θ1, . . . ,θk | G1, . . . ,Gk) = P(θ1 | G1) . . .P(θk | Gk)), the marginal likelihood factorizes
into the product of the marginal likelihoods of each data set given its network structure.
In this case the posterior probability of a configuration is:

193

Niculescu-Mizil Caruana

P(G1, ..,Gk | D1, ..,Dk) ∝ P(G1, ..,Gk)
k∏

p=1

P(Dp |Gp) (5)

Making the parameters independent a priori is unfortunate, and contradicts the in-
tuition that related problems should have similar parameters, but it is needed in order
to make the learning efficient (see Section 3.3). Note that this is not a restriction on the
model. Unlike Naive Bayes for instance, where the attribute independence assumption
restricts the class of models that can be learned, here the learned parameters will be sim-
ilar if the data supports it. The only downside of making the parameters independent a

priori is that it prevents multi-task structure learning from taking advantage of the simi-
larities between the parameters during the structure learning phase. After the structures
have been learned, however, such similarities could be leveraged to learn more accurate
parameters. Finding ways to allow for some a priori parameter dependence while still
maintaining computational efficiency is an interesting direction for future work.

3.1. The Prior

The prior knowledge of how related the different problems are and how similar their
structures should be is encoded in the prior P(G1, . . . ,Gk). If there is no reason to
believe that the structures for each task should be related, then G1, . . . ,Gk should be
made independent a priori (i.e. P(G1, . . . ,Gk) = P(G1) · . . . · P(Gk)). In this case the
structure-learning can be performed independently on each problem.

At the other extreme, if the structures for all the different tasks should be identical,
the prior P(G1, . . . ,Gk) should put zero probability on any configuration that contains
nonidentical structures. In this case one can efficiently learn the same structure for all
tasks by creating a new data set with attributes X1, . . . ,Xn,TS K, where TS K encodes
the problem each case is coming from.1 Then learn the structure for this new data set
under the restriction that TS K is always the parent of all the other nodes. The common
structure for all the problems is exactly the learned structure, with the node TS K and
all the arcs connected to it removed. This approach, however, does not easily generalize
to the case where the problems have only partial overlap in their attributes.

Between these two extremes, the prior should encourage configurations with similar
network structures. One way to generate such a prior for two structures is to penalize
each arc (Xi,X j) that is present in one structure but not in the other by a constant δ ∈
[0,1]:

P(G1,G2) = Zδ · (P(G1)P(G2))
1

1+δ

∏

(Xi ,X j)∈
G1∆G2

(1−δ) (6)

where Zδ is a normalization constant and G1∆G2 represents the symmetric difference
between the edge sets of the two DAGs (in case some variables are only present in one
of the tasks, arcs connected to such variables are not counted).

1. This is different from pooling the data, which would mean that not only the structures, but also the
parameters will be identical for all problems.

194

Inductive Transfer for Bayesian Network Structure Learning

If δ = 0 then P(G1,G2) = P(G1)P(G2), so the structures are learned independently.
If δ = 1 then P(G1,G2) =

√
P(G)P(G) = P(G) for G1 = G2 = G and P(G1,G2) = 0 for

G1 !G2, leading to learning identical structures for all problems. For δ between 0 and
1, the higher the penalty, the higher the probability of more similar structures. The
advantage of this prior is that P(G1) and P(G2) can be any structure priors that are
appropriate for the task at hand.

One way to interpret the above prior is that it penalizes by δ each edit (i.e. arc
addition, arc removal or arc reversal) that is necessary to make the two structures iden-
tical (arc reversals can count as one or two edits). This leads to a natural extension to
more than two tasks: penalizes each edit that is necessary to obtain a set of identical
structures:

P(G1, . . . ,Gk) = Zδ,k ·
∏

1≤s≤k

P(Gs)
1

1+(k−1)δ ×
∏

i, j

(1−δ)editsi, j (7)

where editsi, j is the minimum number of edits necessary to make the arc between Xi

and X j the same in all the structures. We will call this prior the Edit prior. The expo-
nent 1/(1+ (k− 1)δ) is used to transition smoothly between the case where structures
should be independent (i.e. P(G1, . . . ,Gk) = (P(G1) . . .P(Gk))1 for δ = 0) and the case
where structures should be identical (i.e. P(G, ..,G) = (P(G) . . .P(G))1/k for δ = 1). This
prior can be easily generalized by using different penalties for different edges, and/or
different penalties for different edit operations.

Another way to specify a prior in configurations for more than two tasks is to mul-
tiply the penalties incurred between all pairs of structures:

P(G1, . . . ,Gk) = Zδ,k ·
∏

1≤s≤k

P(Gs)
1

1+(k−1)δ ×
∏

1≤s<t≤k

∏

(Xi ,X j)∈
Gs∆Gt

(1−δ)

1
k−1

(8)

We will call this prior the Paired prior. The exponent 1/(k−1) is used because each
individual structure is involved in k−1 terms (one for each other structure).

One advantage that the Paired prior has over the Edit prior is that it can be gener-
alized by specifying different penalties between different pairs of structures. This can
handle situations where there is reason to believe that Task1 is related to Task2, and
Task2 is related to Task3, but the relationship to between Task1 and Task3 is weaker.

There are, of course, other priors that encourage finding similar networks for each
task in different ways. In particular, if the process that generated the related tasks is
know, it might be possible to design a suitable prior.

3.2. Greedy Structure Learning

Treating P(G1, . . . ,Gk | D1, . . . ,Dk) as a score, we can search for a high scoring con-
figuration using an heuristic search algorithm. If we choose to use greedy search for
example, we start from an initial configuration, compute the scores of the neighboring

195

Niculescu-Mizil Caruana

configurations, then move to the configuration that has the highest score. The search
ends when no neighboring configuration has a higher score than the current one.

One question remains: what do we mean by the neighborhood of a configuration?
An intuitive definition of a neighbor is the configuration obtained by modifying a single
arc in a single DAG in the configuration, such that the resulting graph is still a DAG.
With this definition, the size of the neighborhood of a configuration is O(k ∗ n2) for k

problems and n variables. Unfortunately, this definition introduces a lot of local minima
in the search space and leads to significant loss in performance. Consider for example
the case where there is a strong belief that the structures should be similar (i.e. the
penalty parameter of the prior, δ, is near one resulting in a prior probability near zero
when the structures in the configuration differ). In this case it would be difficult to take
any steps in the greedy search since modifying a single edge for a single DAG would
make it different from the other DAGs, resulting in a very low posterior probability
(score).

To correct this problem, we have to allow all structures to change at the same time.
Thus, we will define the neighborhood of a configuration to be the set of all configura-
tions obtained by changing the same arc in any subset of the structures. Examples of
such changes are removing an existing arc from all the structures, or just removing it
from half of the structures, or removing it from one structure, reverse it in another, and
leave it unchanged in the rest. This way we avoid creating local minimas in the search
space while still ensuring that every possible configuration can be reached. Given this
definition, the size of a neighborhood is O(n23k), which is exponential in the number
of problems, but only quadratic in the number of nodes.2 When setting δ = 1, leading
to learning identical structures, multi-task learning with this definition of neighborhood
will find the same structures as the specialized algorithm described in Section 3.1.

3.3. Searching for the Best Configuration

At each iteration, the greedy procedure described in the previous section must find
the best scoring configuration from a set N of neighboring configurations. In a naive
implementation, the score of every configuration in N has to be computed to find the
best one, which can quickly become computationally infeasible given our definition of
neighborhood.

In this section we show how one can use branch-and-bound techniques to find the
best scoring configuration without evaluating all configurations inN . Let a partial con-
figuration of order l, Cl = (G1, ..,Gl), be a configuration where only the first l structures
are specified and the rest of k− l structures are not specified. We say that a configura-
tion C matches a partial configuration Cl if the first l structures in C are the same as the
structures in Cl.

A search strategy for finding the best scoring configuration inN can be represented
via a search tree of depth k with the following properties: a) each node at level l contains

2. The restriction that changes, if any, have to be made to the same arc in all structures could be dropped,
but this would lead to a neighborhood that is exponential in both n and k. Considering the assumption
that the structures should be similar, such a restriction is not inappropriate.

196

Inductive Transfer for Bayesian Network Structure Learning

a valid partial configuration of order l; b) all nodes in the subtree rooted at node Cl

contain only (partial) configurations that match Cl (i.e. the first l structures are the
same as in Cl.)

If, given a partial configuration, the score of any complete configuration that
matches it can be efficiently upper bounded, and the upper bound is lower than the
current best score, then the entire subtree rooted at the respective partial configuration
can be pruned.

Let editsl,i, j be the minimum number of edits necessary to make the arc between

Xi and X j the same in the first l structures, and let Bestq = maxGq{P(Gq)
1

1+(k−1)δ P(Dq |
Gq)}. If the marginal likelihood of a configuration factorizes in the product of the
marginal likelihoods of the individual structures, as in equation 5, then the score of
any configuration that matches the partial configuration Cl = (G1, . . . ,Gl) can be upper
bounded by:

UE
N (Cl) =

∏

i, j

(1−δ)editsl,i, j

 ·

∏

1≤p≤l

P(Gp)
1

1+(k−1)δ P(Dp |Gp)

 ·

∏

l+1≤q≤k

Bestq

 (9)

if using the Edit prior (equation 7), and by

UP
N (Cl) =

∏

1≤s<t≤l

∏

(Xi ,X j)∈
Gs∆Gt

(1−δ)

1
k−1

·

∏

1≤p≤l

P(Gp)
1

1+(k−1)δ P(Dp |Gp)

 ·

∏

l+1≤q≤k

Bestq

 (10)

if using the Paired prior (equation 8).
This branch and bound search significantly reduces the number of partial config-

urations (and consequently complete configurations) that need to be explored. As an
example of how much the branch and bound search can help, Figure 1 shows the frac-
tion of configurations that are evaluated by branch and bound as the multi-task penalty
parameter δ is varied, for a problem with five tasks and thirty seven variables. In this
case, branch and bound evaluates four orders of magnitude less configurations than a
naive search would.

4. Experimental Results

We evaluate the performance of multi-task structure learning using multi-task problems
generated by perturbing the ALARM (Beinlich et al., 1989) and INSURANCE (Binder
et al., 1997) networks, and on a real problem in bird ecology.

Multi-task structure learning is compared to single-task structure learning, and
learning identical structures for all tasks. Single-task structure learning uses greedy
hill-climbing with 100 restarts and tabu lists to learn the structure of each task indepen-
dently of the others. The learning of identical structures is performed via the algorithm

197

Niculescu-Mizil Caruana

 0
 2e-05
 4e-05
 6e-05
 8e-05

 0.0001
 0.00012
 0.00014

 0 1e-30 1e-25 1e-20 1e-15 1e-10 1e-05 1

Figure 1: Fraction of partial configurations evaluated as a function of the penalty

presented in Section 3.1 and also uses greedy hillclimbing with 100 restarts and tabu
lists.3 Multi-task structure learning uses the greedy algorithm described in Section 3.2
with the solution found by single-task learning as the starting point.4 The penalty pa-
rameter of the multi-task prior, δ, is selected from a logarithmic grid to maximize the
mean log-likelihood of a small validation set. For all methods, the Bayes net parameters
are learned using Bayesian updating ((see e.g. Cooper and Hersovits, 1992)) indepen-
dently for each problem.

The goal is to recover as closely as possible the true Bayes Net structures for all
the related tasks, so the main measure of performance we use is average edit distance5

between the true structures and learned structures. Edit distance directly measures the
quality of the learned structures, independently of the parameters of the Bayes Net.
We also measure the average empirical KL-divergence (computed on a large test set)
between the distributions encoded by the true networks and the learned ones. Since
KL-Divergence is also sensitive to the parameters of the Bayes Net it does not measure
directly the quality of the learned structures, but, in general, more accurate structures
should lead to models with lower KL-Divergence. For the bird ecology problem, where
the true networks are unknown, we measure performance in terms of mean log likeli-
hood on a large independent test set.

4.1. The ALARM and INSURANCE problems

For the experiments with the ALARM and INSURANCE networks, we generate five
related tasks by perturbing the original structures. We use two qualitatively different
methods for perturbing the networks: randomly deleting edges with some probability,
and changing entire subgraphs. In the first case, we create five related tasks by starting
with the original network and deleting arcs with probability Pdel. This way, the struc-
tures of the five tasks can be made more or less similar by varying Pdel (For Pdel = 0

3. Learning identical structures and single-task structure learning can be viewed as learning an aug-
mented naive Bayesian network and a Bayesian multi-net (Friedman et al., 1997) respectively, where
the “class” of each example is the task it belongs to . Unlike in the usual setting, however, here we are
not interested in predicting to which task an example belongs to. We are only interested in recovering
accurate network structures for each task.

4. Initializing MTL search with the STL solution does not provide an advantage to MTL, but makes the
search more efficient.

5. Edit distance measures how many edits (arc additions, deletions or reversals) are needed to get from
one structure to the other.

198

Inductive Transfer for Bayesian Network Structure Learning

all the structures are identical. Given the restriction we imposed in Section 3 that pa-
rameters for different tasks should be independent a priori, we want to investigate the
performance of multi-task structure learning in settings where the parameters are in-
deed independent between tasks (ALARM-IND and INSURANCE-IND), as well as
in settings where the parameters are actually correlated between tasks (ALARM and
INSURANCE).

We also experiment with a qualitatively different way of generating related tasks
(ALARM-COMP). We split the ALARM network in 4 subgraphs with disjoint sets of
nodes. For each of the five tasks, we randomly change the structure and parameters of
zero, one or two of the subgraphs, while keeping the rest of the Bayes net (including
parameters) unchanged. This way parts of the structures are shared between tasks while
other parts are completely unrelated.

Figures 2 and 3 show the average percent reduction in loss, in terms of edit dis-
tance and KL-divergence, achieved by multi-task learning over single-task learning for
a training set of 1000 points on the ALARM and INSURANCE-IND problems. The
figures for the ALARM-IND, ALARM-COMP, and INSURANCE problems are simi-
lar and are not included. On the x-axis we vary the penalty parameter of the multi-task
prior on a log-scale. Note that the x-axis plots 1− δ. The higher the penalty (the lower
1− δ), the more similar the learned structures will be, with all the structures being
identical for a penalty of one (1− δ = 0, left end of graphs). Each line in the figure
corresponds to a particular value of Pdel. Error bars are omitted to maintain the figure
readable.

The trends in the graphs are exactly as expected. For all values of Pdel, as the
penalty increases, the performance increases because the learning algorithm takes into
account information from the other tasks when deciding whether to add a new arc or
not. If the penalty is too high, however, the algorithm loses the ability to find true dif-
ferences between tasks and the performance drops. As the tasks become more similar
(lower values of Pdel), the best performance is obtained at higher penalties. Also as the
tasks become more similar, more information can be extracted from the related tasks, so
usually multi-task learning provides more benefit. Multi-task learning provides similar
benefits whether the tasks have highly correlated parameters (ALARM and INSUR-
ANCE problems) or independent parameters (ALARM-IND and INSURANCE-IND
problems). This shows that making the parameters independent a priori (see Section 3)
does not hurt the performance of multi-task learning.

One thing to note is that multi-task structure learning provides a larger relative im-
provement in edit distance than in KL-divergence. This happens because multi-task
structure learning helps to correctly identify the arcs that encode weaker dependencies
(or independences) which have a smaller effect on KL-divergence. The arcs that en-
code strong dependencies, and have the biggest effect on KL-divergence, can be easily
learned without help from the other tasks.

Figure 4 shows the edit distance and KL-Divergence performance for single task
learning (STL), learning identical networks (IDENTICAL), and multi-task learning
(MTL). The training set has 1000 instances with 50 instances used to select the penalty

199

Niculescu-Mizil Caruana

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0 1e-40 1e-35 1e-30 1e-25 1e-20 1e-15 1e-10 1e-05 1

 %
 R

ed
uc

tio
n

in
 L

os
s

fo
r

E
di

t D
is

ta
nc

e

 1 - penalty

Pdel = 0
Pdel = 0.05

Pdel = 0.1
Pdel = 0.2

-5

 0

 5

 10

 15

 20

 0 1e-40 1e-35 1e-30 1e-25 1e-20 1e-15 1e-10 1e-05 1

 %
 R

ed
uc

tio
n

in
 L

os
s

fo
r

K
L-

D
iv

er
ge

nc
e

 1 - penalty

Pdel = 0
Pdel = 0.05

Pdel = 0.1
Pdel = 0.2

Figure 2: Reduction in edit distance (left) and KL-Divergence (right) for ALARM

-10

-5

 0

 5

 10

 15

 20

 25

 0 1e-40 1e-35 1e-30 1e-25 1e-20 1e-15 1e-10 1e-05 1

 %
 R

ed
uc

tio
n

in
 L

os
s

fo
r

E
di

t D
is

ta
nc

e

 1 - penalty

Pdel = 0
Pdel = 0.05

Pdel = 0.1
Pdel = 0.2

-10

-5

 0

 5

 10

 0 1e-40 1e-35 1e-30 1e-25 1e-20 1e-15 1e-10 1e-05 1

 %
 R

ed
uc

tio
n

in
 L

os
s

fo
r

K
L-

D
iv

er
ge

nc
e

 1 - penalty

Pdel = 0
Pdel = 0.05

Pdel = 0.1
Pdel = 0.2

Figure 3: Reduction in edit distance (left) and KL-Divergence (right) for
INSURANCE-IND

parameter for the multi-task prior. Single-task learning and identical structure learning
use all the data for learning since they do not have free parameters. The figure shows
that multi-task learning yields a 10%-54% reduction in edit distance and a 2% - 13%
reduction in KL-divergence when compared to single task structure learning. All dif-
ferences except for KL-divergence on ALARM-IND and INSURANCE-IND problems
are .95 significant according to paired T-tests. When compared to learning identical
structures, multi-task learning reduces the KL-divergence 7% - 32% and the number
of incorrect arcs in the learned structures by 4% - 60%. All differences are .95 signif-
icant, except for edit distance on the ALARM-IND problem. Since the five tasks for
the ALARM, INSURANCE, and ALARM-COMP problems share a large number of
their parameters, one might believe that simply pooling the data would work well. This
is, however, not the case. Except for the ALARM problem, where it achieves about
the same edit distance as learning identical structures, pooling the data has much worse
performance both in terms of edit distance and in terms of KL-divergence.

Figure 5 shows the performance of single and multi-task learning as the train set
size varies from 250 to 16000 cases (MTL uses 5% of the training points as a validation
set to select the penalty parameter). As expected, the benefit from multi-task learning is

200

Inductive Transfer for Bayesian Network Structure Learning

 0

 5

 10

 15

 20

 25

ALARM-IND ALARM INSURANCE-IND INSURANCE ALARM-COMP

E
di

t D
is

ta
nc

e

MTL
STL

IDENTICAL

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

ALARM-COMPINSURANCEINSURANCE-INDALARMALARM-IND

K
L-

D
iv

er
ge

nc
e

MTL
STL

IDENTICAL

Figure 4: Edit distance (left) and KL-Div (right) for STL, learning identical structures
and MTL

 0

 5

 10

 15

 20

 25

 30

 250 500 1000 2000 4000 8000 16000

 E
di

t D
is

ta
nc

e

 Training Set Size

STL
MTL

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 250 500 1000 2000 4000 8000 16000

 K
L-

D
iv

er
ge

nc
e

 Training Set Size

STL
MTL

Figure 5: Edit distance (left) and KL-Divergence (right) vs. train set size for ALARM-
COMP.

larger when the data is scarce and it diminishes as more training data is available. This
is consistent with the behavior of multi-task learning in other learning setting (see e.g.
(Caruana, 1997)). For smaller training set sizes multi-task learning needs about half as
much data as single-task learning to achieve the same edit distance. In terms of KL-
divergence, multi-task learning provides smaller savings in sample size. One reason
for this is that, as discussed before, multi-task learning yields lower improvements in
KL-divergence than in edit distance. For the most part however, the smaller savings in
sample size are due to the fact that more training data leads not only to more accurate
structures, but also to more accurate parameters. Since multi-task structure learning
only improves the structure and not the parameters, it is not able to make up for the loss
of large amounts of training data.

4.2. The Bird Ecology Problem

We also evaluate the performance of multi-task structure learning on a real bird ecology
problem. The data for this problem comes from Project FeederWatch (PFW)6, a winter-
long survey of North American birds observed at bird feeders. Each PFW submission is

6. http://birds.cornell.edu/pfw

201

Niculescu-Mizil Caruana

described by multiple attributes, which can be roughly grouped into features related to
which birds have been observed, observer effort, weather during the observation period,
and attractiveness of the location and neighborhood area for birds. The goal is to gain
a better understanding of the various bird species by identifying environmental factors
that attract or detract certain bird species, as well as how different bird species interact
with each other.

Ecologists have divided North America into a number of ecologically distinct Bird
Conservation Regions (BCRs; see Figure 6). This division naturally splits the data into
multiple tasks, one task per BCR. For the results in this section we use six related tasks
corresponding to BCRs 30, 29, 28, 22, 13 and 23. Because each bird species lives in
some BCRs but not in others, this is an instance of a problem where the different tasks
are not defined over identical sets of variables.

The results on the BIRD problem mimic the ones in the previous section. Figure 7
shows the average (across the 6 BCRs/tasks) mean log likelihood on a large independent
test set for multi-task structure learning as a function of the penalty parameter of the
multi-task prior. Each line corresponds to a different type of multi-task prior. The x-
axis plots 1−δ, so the right most point corresponds to no penalty (single task learning)
and the leftmost point corresponds to a penalty of one (learning identical structures).
Higher mean log likelihood represents better performance. As the penalty parameter
increases (1− δ decreases), information starts to be transferred between the different
tasks and the performance quickly increases. After reaching a peak, the performance
starts to decrease slowly as the penalty increases further. Since the tasks are not all
defined on the same set of variables, the algorithm for learning identical structures for
all tasks from Section 3.1 can not be easily applied. Our algorithm on the other hand can
handle this situation and learns a set of identical structures for all tasks that performs
reasonably well (left end of the plot). The type of multi-task prior does not have a
significant impact on the performance for this problem.

Figure 8 shows the average mean log likelihood performance of multi-task struc-
ture learning and single task structure learning as a function of the training set size.
Multi-task learning uses 5% of the training data to select the penalty parameter for
the multi-task prior. Again, the benefit from multi-task learning is largest for smaller
training set sizes. As the training size increases single-task learning catches up and
eventually outperforms multi-task learning. Unfortunately, since we do not know the
real network structures for this problem, we can not directly asses the quality of the
learned structures. The results on the ALARM and INSURANCE problems, however,
suggest that the improvement provided by multi-task learning in terms of structural ac-
curacy (edit distance) would probably be even larger than the improvement in terms of
average mean log likelihood.

5. Conclusions and Discussion

Learning the structure of Bayes Nets from data has received a lot of attention in the
literature and numerous techniques have been developed to solve this problem (e.g.
(Cooper and Hersovits, 1992; Heckerman, 1999; Buntine, 1996; Spirtes et al., 2000)).

202

Inductive Transfer for Bayesian Network Structure Learning

Figure 6: North American Bird Conservation Regions.

-40.42

-40.4

-40.38

-40.36

-40.34

-40.32

-40.3

-40.28

-40.26

-40.24

-40.22

 0 1e-40 1e-35 1e-30 1e-25 1e-20 1e-15 1e-10 1e-05 1

 M
ea

n
Lo

g
Li

ke
lih

oo
d

 1 - penalty

Paried/Double
Edit

Figure 7: Average mean log likelihood vs. the penalty parameter for multi-task struc-
ture learning on the BIRD problem.

In this paper, we have focused on, arguably, the most basic one: score-and-search using
greedy hill-climbing in the space of network structures (DAG-search), and extended this
technique to the multi-task learning scenario. The key ingredients in achieving this have
been: defining a principled scoring function that takes into account the data from all the

203

Niculescu-Mizil Caruana

-41.8

-41.6

-41.4

-41.2

-41

-40.8

-40.6

-40.4

-40.2

-40

-39.8

-39.6

 250 500 750 1000

 M
ea

n
Lo

g
Li

ke
lih

oo
d

 Training Set Size

STL
MTL

Figure 8: Average mean log likelihood vs. training set size for the BIRD problem.

tasks and encourages the learning of similar structures, defining a suitable search space,
and devising a branch and bound procedure that enables efficient moves in this search
space. We experimented with perturbed ALARM and INSURANCE networks and a
real bird ecology problem, and showed that the multi-task structure learning technique
yields significantly more accurate Bayes Net structures, especially when training data
is scarce.

Even though in the paper we have focused on DAG-search, one can straightfor-
wardly obtain multi-task Bayes Net structure learning algorithms based on other tech-
niques such as greedy search in the space of equivalence classes (Chickering, 1996),
obtaining confidence measures on the structural features of the configurations via boot-
strap analysis (Friedman et al., 1999), and structure learning from incomplete datasets
via the structural EM algorithm (Friedman, 1998). Other extensions such as obtaining a
sample from the posterior distribution via MCMC methods might be more problematic.
Because of the larger search space, MCMC methods might not converge in reasonable
time. Evaluating different MCMC schemes is a direction for future work.

Another open question is whether we can relax the requirement that the parameters
of the Bayes Nets for the different related tasks are independent a priori. Relaxing
this requirement might further improve the performance of multi-task learning since
the task would be able to share not only the structures but also the parameters, thus
having more opportunities for inductive transfer. Further improvement is also possible
by eliminating the need for the user to specify the penalty parameter δ. At this point,
one has to rely on cross-validation to determine a reasonable value for this parameter,
which leads to a loss in performance and an increase in computational time. It would
be very desirable to find techniques to infer δ directly from the data, or integrate over it
in a bayesian manner.

Multi-task structure learning might also prove useful in learning Bayesian multi-
nets (Friedman et al., 1997). In Bayesian multi-nets a special attribute is selected (usu-
ally the class attribute), and a separate network is learned for each value of that attribute.
To the best of our knowledge, all work in learning Bayesian multi-nets treats each sep-

204

Inductive Transfer for Bayesian Network Structure Learning

arate network as an independent learning problem, in a single-task manner. Since it
is reasonable to assume that the networks for the different values of the class attribute
should be similar, learning all the networks jointly using multi-task structure learning
might yield improved performance.

References

J. Baxter. A bayesian/information theoretic model of learning to learn via multiple task
sampling. Mach. Learn., 28(1):7–39, 1997. ISSN 0885-6125.

I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F. Cooper. The ALARM moni-
toring system: A case study with two probabilistic inference techniques for belief
networks. In Proceedings of the Second European Conference on Artificial Intelli-

gence in Medicine, 1989.

J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks
with hidden variables. Machine Learning, 29, 1997.

W. Buntine. Theory refinement on bayesian networks. In Proc. 7th Conference on

Uncertainty in Artificial Intelligence (UAI ’91), 1991.

W. Buntine. A guide to the literature on learning probabilistic networks from data.
IEEE Trans. On Knowledge and data Engineering, 8:195–210, 1996. URL http:

//citeseer.nj.nec.com/buntine96guide.html.

R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

D. Chickering. Learning equivalence classes of Bayesian network structures.
In Proc. 12th Conference on Uncertainty in Artificial Intelligence (UAI’96),
1996. ISBN 1-55860-412-X. URL http://citeseer.nj.nec.com/

chickering96learning.html.

G. Cooper and E. Hersovits. A bayesian method for the induction of probabilistic
networks from data. Maching Learning, 9:309–347, 1992.

N. Friedman. The Bayesian structural EM algorithm. In Proc. 14th Conference on Un-

certainty in Artificial Intelligence (UAI ’98), 1998. URL citeseer.ist.psu.

edu/article/friedman98bayesian.html.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian Network Classifiers. Machine

Learning, 29(2):131–163, 1997.

N. Friedman, M. Goldszmidt, and A. J. Wyner. Data analysis with bayesian networks:
A bootstrap approach. In Proc. 15th Conference on Uncertainty in Artificial Intelli-

gence, 1999.

D. Heckerman. A tutorial on learning with bayesian networks. Learning in graphical

models, pages 301–354, 1999.

205

Niculescu-Mizil Caruana

D. Heckerman, A. Mamdani, and M.P. Wellman. Real-world applications of Bayesian
networks. Communications of the ACM, 38(3):24–30, 1995.

A. Niculescu-Mizil and R. Caruana. Inductive transfer for bayesian network structure
learning. In Proc. 11th International Conf. on AI and Statistics, 2007.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-

ence. Morgan Kaufmann, San Mateo, CA, 1988.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. The MIT
Press, Cambridge, MA, second edition, 2000.

M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm
for learning bayesian networks. In Proceedings of the Twenty-first Conference on

Uncertainty in AI (UAI), pages 584–590, Edinburgh, Scottland, UK, July 2005.

S. Thrun. Is learning the n-th thing any easier than learning the first? In Advances in

Neural Information Processing Systems, 1996.

206

JMLR: Workshop and Conference Proceedings 27:181–194, 2012 Unsupervised and Transfer Learning

Unsupervised dimensionality reduction via gradient-based

matrix factorization with two adaptive learning rates

Vladimir Nikulin vnikulin.uq@gmail.com

Tian-Hsiang Huang huangtx@gmail.com

Department of Mathematics, University of Queensland, Australia

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

The high dimensionality of the data, the expressions of thousands of features in a
much smaller number of samples, presents challenges that affect applicability of the
analytical results. In principle, it would be better to describe the data in terms of
a small number of meta-features, derived as a result of matrix factorization, which
could reduce noise while still capturing the essential features of the data. Three novel
and mutually relevant methods are presented in this paper: 1) gradient-based matrix
factorization with two adaptive learning rates (in accordance with the number of fac-
tor matrices) and their automatic updates; 2) nonparametric criterion for the selection
of the number of factors; and 3) nonnegative version of the gradient-based matrix
factorization which doesn’t require any extra computational costs in difference to the
existing methods. We demonstrate effectiveness of the proposed methods to the su-
pervised classification of gene expression data.

Keywords: matrix factorization, unsupervised learning, clustering, nonparametric
criterion, nonnegativity, bioinformatics, leave-one-out, classification

1. Introduction

The analysis of gene expression data using matrix factorization has an important role to
play in the discovery, validation, and understanding of various classes and subclasses
of cancer. One feature of microarray studies is the fact that the number of samples col-
lected is relatively small compared to the number of genes per sample which are usually
in the thousands. In statistical terms this very large number of predictors compared to
a small number of samples or observations makes the classification problem difficult.

Many standard classification algorithms have difficulties in handling high dimen-
sional data and due to a relatively low number of training samples, they tend to overfit.
Moreover, usually only a small subset of examined genes is relevant in the context of
a given task. For these reasons, feature selection methods are an inevitable part of any
successful microarray data classification algorithm.

Another approach to reduce the overfitting is to describe the data in terms of meta-
genes as a linear combinations of the original genes.

Recently, models such as independent component analysis and nonnegative matrix
factorization (NMF) have become popular research topics due to their obvious useful-

© 2012 V. Nikulin & T.-H. Huang.

Nikulin Huang

ness (Oja et al., 2010). All these blind latent variable models in the sense that no prior
knowledge on the variables is used, except some broad properties like gaussianity, sta-
tistical independence, or nonnegativity.

As pointed out by Tamayo et al. (2007), the metagene factors are a small number
of gene combinations that can distinguish expression patterns of subclasses in a data
set. In many cases, these linear combinations of the genes are more useful in capturing
the invariant biological features of the data. In general terms, matrix factorization, an
unsupervised learning method, is widely used to study the structure of the data when
no specific response variable is specified.

Examples of successful matrix factorization methods are singular value decompo-
sition and nonnegative matrix factorization (Lee and Seung, 1999). In addition, we de-
veloped a novel and very fast algorithm for gradient-based matrix factorization (GMF),
which was introduced in our previous study (Nikulin and McLachlan, 2009).

The main subject of this paper is a more advanced version of the GMF. We call
this algorithm as GMF with two learning rates and their automatic updates (A2GMF).
Details about this algorithm are given in Section 2.1. The main features of the A2GMF
are two flexible (adaptive) learning rates in accordance to the number of factor matri-
ces. By the definition, the learning rates will be updated during learning process. The
explicit update formulas are given in Section 2.1.

Clearly, the number of factors is the most important input parameter for any matrix
factorization algorithm. In Section 2.2 we are proposing a novel unsupervised method
for the selection of the number of factors. This method is absolutely general, and we
show in Section 4.5 one possible extension to the clustering methodology, see Figure 3.
Using supervised classification with leave-one-out (LOO) evaluation criterion, we can
develop another approach to select the numbers of factors. Classification results, which
are based on five well-known and publicly available datasets, and presented in Section 4
demonstrate correspondence between the outcomes of both methods. However, speed
is the main advantage of the proposed here nonparametric criterion.

The third proposed novelty is a nonnegative version of GMF (NN-GMF), see Sec-
tion 2.3. Essentially, an implementation of the NN-GMF doesn’t require any extra
computational costs. Consequently, the NN-GMF is as fast as GMF, and may be par-
ticularly useful for a wide range of the professionals who are working with real data
directly and who are interested to find out an interpretation of the data in terms of
meta-variables.

2. Methods

Let
(
x j,y j

)
, j = 1, . . . ,n, be a training sample of observations where x j ∈ Rp is p-

dimensional vector of features, and y j is a multiclass label, which will not be used
in this section. Boldface letters denote vector-columns, whose components are labelled
using a normal typeface. Let us denote by X = {xi j, i = 1, . . . , p, j = 1, . . . ,n} the matrix
containing the observed values on the n samples.

For gene expression studies, the number p of genes is typically in the thousands,
and the number n of experiments is typically less than 100. The data are represented by

208

Unsupervised dimensionality reduction

an expression matrix X of size p× n, whose rows contain the expression levels of the
p genes in the n samples. Our goal is to find a small number k2 p of metagenes or
factors. We can then approximate the gene expression patterns of samples as a linear
combinations of these metagenes. Mathematically, this corresponds to factoring matrix
X into two matrices

X ∼ AB, (1)

where weight matrix A has size p× k, and the matrix of metagenes B has size k× n,
with each of k rows representing the metagene expression pattern of the corresponding
sample.

Algorithm 1 A2GMF.
1: Input: X - microarray matrix.
2: Select m - number of global iterations; k - number of factors; λa,λb > 0 - initial learning

rates, 0 < τ(") ≤ 1 is a scaling function of the global iteration ".
3: Initial matrices A and B are generated randomly.
4: Global cycle: for " = 1 to m repeat steps 5 - 16:
5: genes-cycle: for i = 1 to p repeat steps 6 - 15:
6: samples-cycle: for j = 1 to n repeat steps 7 - 15:
7: compute prediction S i j =

∑k
f=1 ai f b f j;

8: compute error of prediction: Ei j = xi j−S i j;
9: internal factors-cycle: for f = 1 to k repeat steps 10 - 15:

10: compute α = ai f b f j;
11: update ai f ⇐ ai f −τ(") ·λa ·gi f j;
12: Ei j⇐ Ei j+α−ai f b f j;
13: compute α = ai f b f j;
14: update b f j⇐ b f j−τ(") ·λb ·hi f j;
15: Ei j⇐ Ei j+α−ai f b f j;
16: update λa and λb according to (5) and (7);
17: Output: A and B - matrices of metagenes or latent factors.

2.1. A2GMF algorithm under the stochastic gradient descent framework

Let us consider the following loss function

L(A,B) =

p∑

i=1

n∑

j=1

E2
i j, (2)

where Ei j = xi j−
∑k

f=1 ai f ·b f j.

The above target function (2) includes in total k(p+ n) regulation parameters and
may be unstable if we minimise it without taking into account the mutual dependence
between elements of the matrices A and B.

209

Nikulin Huang

Derivatives of the function E are given below:

gi f j =
∂E2

i j

∂ai f
= −2 ·Ei j ·b f j, (3a)

hi f j =
∂E2

i j

∂b f j
= −2 ·Ei j ·ai f . (3b)

Considering step 11 of Algorithm 1, we can replace in (2) ai f by its update ai f −
λagi f j, assuming that τ(") = 1, where scaling function τ is defined in Remark 2.1. After
that, we can rewrite (2) in the following way

L(A,B,λa) =

p∑

i=1

n∑

j=1

(Ei j+λaUi j)
2, (4)

where

Ui j =

k∑

f=1

gi f j ·b f j = −2Ei j

k∑

f=1

b2
f j.

Minimising (4) as a function λa, we shall find

λa = −

∑p
i=1

∑n
j=1 Ei jUi j

∑p
i=1

∑n
j=1 U2

i j

=
1

2

∑n
j=1

∑k
f=1 b2

f j

∑p
i=1 E2

i j
∑n

j=1(
∑k

f=1 b2
f j

)2
∑p

i=1 E2
i j

=
1

2

∑n
j=1 b jφ j

∑n
j=1 b2

j
φ j

, (5)

where

b j =

k∑

f=1

b2
f j, φ j =

p∑

i=1

E2
i j.

Considering step 14 of Algorithm 1, we can replace in (2) b f j by its update b f j −
λbhi f j, assuming that τ(") = 1. After that, we can re-write (2) in the following way

L(A,B,λb) =

p∑

i=1

n∑

j=1

(Ei j+λbVi j)
2, (6)

where

Vi j =

k∑

f=1

hi f j ·ai f = −2Ei j

k∑

f=1

a2
i f .

Minimising (6) as a function λb, we shall find

λb = −

∑p
i=1

∑n
j=1 Ei jVi j

∑p
i=1

∑n
j=1 V2

i j

210

Unsupervised dimensionality reduction

=
1

2

∑p
i=1

∑k
f=1 a2

i f

∑n
j=1 E2

i j
∑p

i=1(
∑k

f=1 a2
i f

)2
∑n

j=1 E2
i j

=
1

2

∑p
i=1 aiψi

∑p
i=1 a2

i
ψi

, (7)

where

ai =

k∑

f=1

a2
i f , ψi =

n∑

j=1

E2
i j.

Figure 1(a-e) illustrates clear advantage of the A2GMF compared to the GMF al-
gorithm. We did not try to optimize performance of the A2GMF, and used the same
regulation parameters against all five datasets described in Section 3.

Remark 1 Scaling function τ is a very important in order to ensure stability of Algo-

rithm 1. Assuming that the initial values of matrices A and B were generated randomly,

we have to use smaller values of τ during the first few global iterations. The following

structure of the function τ(") was used for the illustrations given in Figure 1:

τ(") = 0.005(1− r)+0.2r,r =

√
"

m
,

where parameters " and m are defined in the body of Algorithm 1.

Remark 2 We note an important fact: a significant difference in behavior of the learn-

ing rates λa and λb as functions of the global iteration, see Figure 1(f). This difference

reflects, also, the main conceptual difference between A2GMF and GMF algorithms.

Definition 3 We define GMF algorithm as Algorithm 1 but without the scaling function

τ and with constant and equal learning rates λa = λb = 0.01 (Nikulin and McLachlan,

2009). The value 0.01 was used in the comparison experiments Figure 1(a-e). However,

the optimal settings may be different depending on the particular dataset.

2.2. Nonparametric unsupervised criterion for selection of the number of

meta-variables

The basic idea of nonparametric inference is to use data to infer an unknown quantity
while making as few assumptions as possible (Wasserman, 2006). The criterion, which
we propose in this section is the most general and may attract interest as a self-target
in fundamental sense, but not only as an application for the selection of the number of
meta-variables. It is very logical to assume that the microarray matrix contains some
systematic dependencies, which will be discovered or revealed by the matrix factor-
ization. We can easily destroy those hidden dependencies by randomly re-shuffling
the elements within any column. Note, also, that all the columns will be re-shuffled
independently.

211

Nikulin Huang

Figure 1: Convergence of the GMF (black line) and A2GMF (dashed blue line, Al-
gorithm 1) algorithms in the cases of (a) colon, (b) leukaemia,(c) Sharma,
(d) Khan and (e) lymphoma sets. The last window (f) illustrates the differ-
ence in behavior between learning rates λa (red) and λb (dashed green), see
Algorithm 1.

Let us denote by X(γ),γ = 1, . . . ,3 three random re-shuffling of the original matrix X.
By A(γ) and B(γ) we shall denote the corresponding factor matrices. Figure 2 illustrates
behavior of

Dk =
1

3

3∑

γ=1

Φ
(γ)
k
−Φk, (8)

as a function of k, where

Φk =

√
L(Ak,Bk)

pn
,Φ

(γ)
k
=

√
L(A

(γ)
k
,B

(γ)
k

)

pn
,γ = 1, . . . ,3.

As expected, the values ofDk are always positive. Initially, and because of the small
number of factors k, the values ofDk are low. This fact has very simple explanation, as
far as the number of metagenes is small, those metagenes are not sufficient to contain
the hidden dependencies and relations. Then, the values of Dk will grow to some

212

Unsupervised dimensionality reduction

Figure 2: Nonparametric feature selection with criterion (8), where (a) colon, (b)
leukaemia, (c) Sharma, (d) Khan and (e) lymphoma datasets. Window (f)
illustrates the numbers of misclassified samples as a function of k - number
of metagenes, where we used evaluation scheme Alg.1+LOO{lm} applied to
the colon dataset.

higher level. The pick point appears to be an appropriate criterion for the selection of
the optimal number of meta-variables. After that point, the values of Dk will decline
because of the overfitting.

2.3. On the nonnegative modification of the GMF (NN-GMF)

Many real-world data are nonnegative and the corresponding hidden components have a
physical meaning only when nonnegative (Cichocki et al., 2009). Suppose that microar-
ray matrix X is nonnegative (that means, all the elements of the matrix are nonnegative).
Then, it is very logical to have factor matrices A and B in (1) to be nonnegative as well.
In order to implement this, we can easily create a special modification of Algorithm 1.

The main idea behind this modification is a remarkably simple. Let us consider a
generalization of (1)

X ∼ ξ(A)ξ(B), (9)

213

Nikulin Huang

where ξ is a differentiable function, and ξ(A) is a matrix with the same dimensions as
matrix A and elements {ξ(ai j), i = 1, . . . , p, j = 1, . . . ,k}.

Taking into account the fact that an exponential function is always nonnegative, we
can consider ξ(·) = exp(·). Equation (9) represents a flexible framework, where we can
apply any suitable function. For example, we can create another modification of the
NN-GMF with squared or logistic function.

According to Gao and Church (2005), it is obvious that dimension reduction to a
much lower dimension (smaller than the number of observations) is appropriate. Princi-
pal component analysis (PCA) or singular value decomposition and partial least squares
are two such methods that have been applied to cancer classification with satisfactory
results. However, due to the holistic nature of PCA, the resulting components are global
interpretations and lack intuitive meaning. To solve this problem, Lee and Seung (1999)
demonstrated that NMF is able to learn localized features with obvious interpretation.
Their work was applied elegantly to image and text analysis.

According to Fogel et al. (2007), singular value decomposition (SVD) attempts to
separate mechanisms in an orthogonal way, although nature is all but orthogonal. As a
consequence, SVD components are unlikely to match with real mechanisms and so are
not easily interpreted. On the contrary, NMF appears to match each real mechanism
with a particular component.

Clearly, we can extend above two statements to the NN-GMF algorithm.
As it was pointed by Lin (2007), there are many existing methods for NMF. Most

of those method are presented in (Cichocki et al., 2009). However, NN-GMF is an
essentially novel algorithm (based on the different platform), and can not be regarded
as a modification of NMF (Lee and Seung, 1999).

2.4. Sparsity and Regularization

A sparse representation of the data by a limited number of components is an important
research problem. In machine learning, sparseness is closely related to feature selec-
tion and certain generalizations in learning algorithms, while nonnegativity relates to
probability distributions (Cichocki et al., 2009).

The most standard way to achieve sparsity is to include regularization term in (2),
which penalises usage of the elements of the matrices A and B. We shall exploit here
flexibility of Algorithm 1. The structure of the regularized GMF will be the same, but
we have to make some changes in the formulas for derivatives (3a) and (3b), which may
be found using standard techniques (Nikulin and McLachlan, 2010).

2.5. Handling missing values

Suppose that some elements of the matrix X have low level of confidence or missing.
Based on the principles of the stochastic gradient descent technique, we are considering
during any global iteration not the whole target function, but particular terms of the
target function. Accordingly, we can easily exclude from an update process those terms,
which have low level of confidence or missing. Using GMF algorithm we can make

214

Unsupervised dimensionality reduction

possible factorization of a huge matrices, for example, in the case of the well known
Netflix Cup (marketing applications) we are dealing with hundreds of thousands of
customers and tens of thousands of items, assuming that only about 5% or 10% of true
relationships or preferences are available (Koren, 2009).

2.6. Boosting with GMF

Algorithm 1 represents a flexible framework, where we can easily insert suitable model
as a component. For example, we can use the idea of boosting (Dettling and Buhlmann,
2003) in the following way. In the case if the element xi j has been approximated poorly
(step N8), we can increase the value of learning rate. On the other hand, in the case if
an absolute value of Ei j is small enough, we can overpass the steps NN9-15. As a direct
consequence, the algorithm will run faster and faster in line with general improvement
of the quality of approximation.

3. Data

All experiments were conducted against 5 well known and publicly available microar-
ray datasets named colon, leukaemia, Sharma, Khan and lymphoma. Some basic statis-
tical characteristics of the datasets are given in Table 2, and more details are presented
in (Nikulin et al., 2011).

4. Experiments

After decomposition of the original matrix X, we used the leave-one-out (LOO) evalua-
tion scheme, applied to the matrix of metagenes B. This means that we set aside the ith
observation and fit the classifier by considering remaining (n−1) data points. We con-
ducted experiments with lm function in R, which is a standard linear regression without
any regulation parameters.

4.1. Evaluation scheme

We shall denote such a scheme (Nikulin and McLachlan, 2009) as

Alg.1+LOO{lm}. (10)

Above formula has very simple interpretation as a sequence of two steps: 1) compute
the matrix of metagenes B using Algorithm 1 (dimensionality reduction), and 2) run
LOO evaluation scheme with lm as a base classification model.

As a reference, we mention that similar evaluation model was employed in (Li and
Ngom, 2010) to classify samples in NMF space using kNN algorithm. In accordance
with the evaluation framework (10), we can express this model in the following way:
NMF +LOO{kNN}.

Remark 4 As far as Algorithm 1 is an unsupervised (labels are not used), we do not

have to include it into the LOO internal loop in (10).

215

Nikulin Huang

Table 1: Classification results (numbers of misclassified samples) in the case of the
scheme: S VD+LOO{lm}.

k colon leukaemia Sharma Khan lymphoma

2 22 8 24 48 6
4 10 5 22 27 2
6 9 2 18 15 1
8 7 1 14 5 0

10 8 1 9 6 0
12 8 1 10 2 0
14 8 2 9 0 0
16 10 2 10 0 0
18 9 2 10 0 0
20 10 2 11 0 0
22 11 5 10 0 0
24 13 3 13 0 0
26 13 1 15 1 1
28 11 1 16 1 1
30 14 2 16 1 2
32 13 3 16 3 1
34 9 2 18 2 1
36 12 3 18 3 1
38 14 4 18 3 2
40 15 6 20 3 3

Table 2: Comparison between the numbers of factors (metagenes) kNP and k∗, where
kNP was selected according to the nonparametric criterion of Section 2.2
as a point on the horizontal axis corresponding to the maximum loss, see
Figure 2(a-e); and k∗ was selected according to the independent scheme
S VD + LOO{lm}, see Table 2 (in supplementary material), where column
“NM” indicates the numbers of corresponding misclassified samples.

Data n p k∗ kNP NM

Colon 62 2000 8 10 7

Leukaemia 72 1896 8 8 1

Sharma 60 1368 10 8 9

Khan 83 2308 14 12 0

Lymphoma 62 4026 8 8 0

216

Unsupervised dimensionality reduction

Table 3: Classification results in the case of the scheme Alg.1+ LOO{lm}, where we
used 20 runs against colon dataset with random initial settings, columns “min,

mean, max, std” represent the corresponding statistical characteristics for the
numbers of misclassified samples. In the column “SVD” we presented the
numbers of misclassified samples in the case of the scheme Alg.1+LOO{lm},
where initial settings were generated using S VD method.

k min mean max std SVD

2 16 21.89 28 4.50 21
4 7 15.22 19 3.53 10
6 7 10.56 18 3.39 9
8 5 8.50 11 2.09 7
10 6 8.92 12 1.72 6
12 6 9.33 12 2 7
14 8 9.22 11 1.09 9
16 7 9.89 12 1.54 10
18 8 10 11 1.12 10
20 8 10.33 13 1.58 10
22 11 12.56 15 1.59 10
24 11 12.78 15 1.20 13
26 12 12.56 14 0.73 12
28 10 12.67 16 2.06 12
30 10 13.22 16 1.64 14
32 12 14.33 17 1.58 14
34 12 15.11 18 1.90 12
36 11 14 17 2.18 14
38 13 14.78 17 1.39 14
40 13 15 17 1.22 14

217

Nikulin Huang

4.2. Singular value decomposition (SVD)

An alternative factorisation may be created using svd function in Matlab or R:

X = UDV,

where U is p× n matrix of orthonormal eigenvectors, D is n× n diagonal matrix of
nonnegative eigenvalues, which are sorted in a decreasing order, and V is n×n matrix
of orthonormal eigenvectors.

The absolute value of an eigenvalue indicates the significance of the corresponding
eigenvector relative to the others. Accordingly, we shall use the matrix Vk with k first
eigenvectors (columns) taken from the matrix V as a replacement to the matrix X. Ac-
cording to (10), we shall denote above model by S VD+LOO{lm}, where classification
results are presented in Table 1.

It is a well known fact that principal components, or eigenvectors corresponding to
the biggest eigenvalues, contain the most important information. However, the other
eigenvectors, which may contain some valuable information will be ignored. In con-
trast, nothing will be missed by definition in the case of the GMF, because the required
number of metavariables will be computed using the whole microarray matrix. The
main weakness of the GMF algorithm is its dependence on the initial settings, see Ta-
ble 3. By combining SVD and GMF algorithms together, we can easily overcome this
weakness: it appears to be logical to use matrices Vk and Uk as an initial for the GMF
algorithm, where Uk is defined according to U using the same method as in the case of
Vk and V .

In the column “SVD”, Table 3, we presented classification results, which were cal-
culated using the model Alg.1 + LOO{lm} with initial setting produced by the SVD
method. These results demonstrate some improvement compared to the “colon” col-
umn of Table 1. Similar improvements were observed in application to four remaining
datasets.

4.3. Partial least squares and selection bias

Partial least squares (PLS) (Nguyen and Rocke, 2002) is an essentially different com-
pared to GMF or to PCA, because it is a supervised method. Therefore, the evaluation
scheme (10) with PLS as a first component will not be free of a selection bias. As an
alternative, we can apply evaluation model

LOO{PLS + lm}, (11)

which is about n times more expensive computationally compared to (10). According
to (11), we have to exclude from the training process features of the test sample (that
means we have to run PLS within any LOO evaluation loop), and this may lead to the
overpessimistic results, because those features are normally available and may be used
in the real life.

Very reasonably (Cawley and Talbot, 2006), the absence of the selection bias is
regarded as a very significant advantage of the model, because, otherwise, we have to

218

Unsupervised dimensionality reduction

deal with nested cross-validation, which is regarded as an impractical (Jelizarow et al.,
2010, p.1996) in general terms.

Based on our own experience with the nested CV, this tool should not be used until
it is absolutely necessary, because nested CV may generate secondary serious problems
as a consequence of 1) the dealing with an intense computations, and 2) very complex
software (and, consequently, high level of probability to make some mistakes) used for
the implementation of the nested CV. Moreover, we do believe that in most of the cases
scientific results produced with the nested CV are not reproducible (in the sense of an
absolutely fresh data, which were not used prior). In any case, “low skills bias” could
be much more damaging compared to the selection bias.

We fully agree with Jelizarow et al. (2010), p.1990, that the superiority of new
algorithms should always be demonstrated on an independent validation data. In this
sense, an importance of the data mining contests is unquestionable. The rapid popu-
larity growth of the data mining challenges demonstrates with confidence that it is the
best known way to evaluate different models and systems.

4.4. Classification results

As it was noticed in (Nikulin and McLachlan, 2009), the number of factors/metagenes
must not be too large (in order to prevent overfitting), and must not be too small. In
the latter case, the model will suffer because of the over-smoothing and loss of essen-
tial information as a consequence, see Figure 2(f), Tables 2 and 3 (in supplementary
material).

As we reported in our previous studies (Nikulin and McLachlan, 2009, Nikulin
et al., 2010a), classification results observed with the model GMF+LOO{lm} are com-
petitive with those in (Dettling and Buhlmann, 2003, Hennig, 2007). Further improve-
ments may be achieved using A2GMF algorithm, because an adaptive learning rates
make the factorization model more flexible. In addition, the results of Tables 2 and 3
(in supplementary material) may be easily improved if we shall apply instead of func-
tion lm more advanced classifier with parameter tuning depending on the particular
dataset.

The numbers of factors kNP and k∗, reported in Table 2, were computed using ab-
solutely different methods, and we can see quite close correspondence between kNP

and k∗. In two cases (leukaemia and lymphoma), when NM = 0, we observed an exact
correspondence. This fact indicates that the nonparametric method of Section 2.2 is
capable to discover some statistical fundamentals in microarray datasets.

Remark 5 Additionally, we conducted extensive experiments with NMF and SVD ma-

trix factorizations. The observed classification results were similar in terms of the

numbers of misclassified. However, misclassified samples were not the same. This fact

may be exploited by the suitable ensembling technique.

219

Nikulin Huang

Figure 3: Illustrative examples based on two simulated datasets with known solutions
(numbers of clusters) in support to the nonparametric criterion for the selec-
tion of the numbers of factors, Section 2.2. See for more details Section 4.5.

4.5. Illustrative example

The goal of cluster analysis is to partition the observations into groups (clusters) so
that the pairwise dissimilarities between those assigned to the same cluster tend to be
smaller than those in different clusters (Hastie et al.., 2008).

Figure 3 illustrates two experiments with kmeans algorithm, which were conducted
against simulated 2D data with known numbers of clusters, see Figure 3(a) - five clus-
ters (n = 10000); Figure 3(d) - eight clusters (n = 20000).

As a next step we re-shuffled independently the coordinates (columns) of the data,
see Figure 3(b); Figure 3(e).

Figures 3(c) and (f) illustrate behavior of

D̂k = R̂k −Rk, (12)

as a function of the number of the clusters k, where 1) R̂ and 2) R are two averaged
dissimilarity measures with squared loss functions corresponding to 1) the re-shuffled
and to 2) the original data.

In both cases, we can see correct detection: Figures 3(c) - k = 5, and (f) - k = 8.

4.6. Computation time

A multiprocessor Linux workstation with speed 3.2GHz was used for most of the com-
putations. The time for 100 global iterations (see, for example, trajectory of Figure 1)
against colon set in the cases of the GMF and A2GMF algorithm was 6 and 8 sec.
(expenses for the other sets were similar).

220

Unsupervised dimensionality reduction

5. Concluding remarks

It seems natural to use different learning rates applied to two factor matrices. Also, the
values of the learning rates must not be fixed and it is proposed to update them after
any global iteration according to the given formulas. Based on our experimental results,
the A2GMF algorithm presented in this paper is significantly faster. That means, less
number of global iterations will be required in order to achieve the same quality of
factorization. Besides, the final results have smaller value of the loss function. This
fact indicates that the A2GMF algorithm is better not only technically in the sense of
speed, but is better in principle: to achieve essentially better quality of factorization for
the given number of factors.

The proposed criterion for the selection of the number of factors/metagenes is non-
parameteric and general. By application of such criterion (as an alternative to an exten-
sive LOO experiments) it will be possible to save valuable computational time. Besides,
we are confident that similar method is applicable elsewhere. An example with kmeans

algorithm in given in Section 4.5.
An implementation of the third proposed novelty, a nonnegative modification of

GMF, doesn’t require any extra computational time. As an outcome, the NN-GMF is as
fast as GMF algorithm itself. We can expect that practitioners in many fields will find
this algorithm to be a competitive alternative to the well-known NMF.

Acknowledgments

This work was supported by a grant from the Australian Research Council. Also, we are
grateful to three anonymous reviewers for the very helpful and constructive comments.

References

A. Cichocki, R. Zdunek, A. Phan and S. Amari. Nonnegative Matrix and Tensor Fac-
torizations. Wiley, 2009.

M. Dettling and P. Buhlmann. Boosting for tumor classification with gene expression
data. Bioinformatics, 19(9), 1061-1069, 2003.

Q. Dong, X. Wang and L. Lin. Application of latent semantic analysis to protein remote
homology detection, Bioinformatics, 22, 285-290, 2006.

S. Dudoit, J. Fridlyand and T. Speed. Comparison of discrimination methods for the
classification of tumors using gene expression data. Journal of American Statistical

Association, 97(457), 77-87, 2002.

P. Fogel, S. Young, D. Hawkins and N. Ledirac. Inferential, robust nonnegative matrix
factorization analysis of microarray data, Bioinformatics, 23(1), 44-49, 2007.

Y. Gao and G. Church. Improving molecular cancer class discovery through sparse
nonnegative matrix factorization, Bioinformatics, 21(21), 3970-3975, 2005.

221

Nikulin Huang

G. Cawley and N. Talbot Gene selection in cancer classification using sparse logistic
regression with Bayesian regularization. Bioinformatics, 22(19), 2348-2355.

M. Jelizarow, V. Guillemot, A. Tenenhaus, K. Strimmer and A.-L. Boulesteix Over-
optimism in bioinformatics: an illustration, Bioinformatics, 26(16), 1990-1998.

T. Hastie, R. Tibshirani and J. Friedman. The Elements of Statistical Learning,
Springer-Verlag, 2008.

C. Hennig. Cluster-wise assessment of cluster stability. Computational Statistics and

Data Analysis, 52, 258-271, 2007.

Y. Koren. Collaborative filtering with temporal dynamics. KDD, Paris, 447-455, 2009.

D. Lee and H. Seung. Learning the parts of objects by nonnegative matrix factorization.
Nature, 401, 788-791, 1999.

Y. Li and A. Ngom. Nonnegative matrix and tensor factorization based classification of
clinical microarray gene expression data. In Proceedings of 2010 IEEE International

Conference on Bioinformatics and Biomedicine, Hong Kong, 438-443, 2010.

C.-J. Lin. Projected gradient method for nonnegative matrix factorization. Neural Com-

putation, 19, 2756-2779, 2007.

D. Nguyen and D. Rocke Tumor classification by partial least squares using microarray
gene expression data, Bioinformatics, 18(1), 39-50.

V. Nikulin and G. J. McLachlan. Classification of imbalanced marketing data with bal-
anced random sets. JMLR: Workshop and Conference Proceedings, 7, pp. 89-100,
2009.

V. Nikulin and G. J. McLachlan. On a general method for matrix factorization applied
to supervised classification. Proceedings of the 2009 IEEE International Conference

on Bioinformatics and Biomedicine Workshops, Washington D.C., 44-49, 2009.

V. Nikulin and G. J. McLachlan. On the gradient-based algorithm for matrix factorisa-
tion applied to dimensionality reduction. Proceedings of BIOINFORMATICS 2010,

Edited by Ana Fred, Joaquim Filipe and Hugo Gamboa, Valencia, Spain, 147-152,
2010.

V. Nikulin, T.-H. Huang and G.J. McLachlan. A Comparative Study of Two Ma-
trix Factorization Methods Applied to the Classification of Gene Expression Data.
In Proceedings of 2010 IEEE International Conference on Bioinformatics and

Biomedicine, Hong Kong, 618-621, 2010.

V. Nikulin, T.-H. Huangb, S.-K. Ng, S. Rathnayake, G.J. McLachlan. A very fast algo-
rithm for matrix factorization. Statistics and Probability Letters, 81, 773-782, 2011.

222

Unsupervised dimensionality reduction

E. Oja, A. Ilin, J. Luttinen and Z. Yang. Linear expansions with nonlinear cost func-
tions: modelling, representation, and partitioning. Plenary and Invited Lectures,

WCCI 2010, Edited by Joan Aranda and Sebastia Xambo, Barcelona, Spain, 105-
123, 2010.

P. Tamayo et al. Metagene projection for cross-platform, cross-species characterization
of global transcriptional states. Proceedings of the National Academy of Sciences

USA, 104(14) 5959-5964, 2007.

L. Wasserman. All of Nonparametric Statistics. Springer, 2006.

223

224

JMLR: Workshop and Conference Proceedings 27:195–206, 2012 Unsupervised and Transfer Learning

One-Shot Learning with a Hierarchical

Nonparametric Bayesian Model

Ruslan Salakhutdinov rsalakhu@mit.edu
Department of Statistics, University of Toronto

Toronto, Ontario, Canada

Josh Tenenbaum jbt@mit.edu
Department of Brain and Cognitive Sciences, MIT

Cambridge, MA, USA

Antonio Torralba torralba@mit.edu

CSAIL, MIT

Cambridge, MA, USA

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

We develop a hierarchical Bayesian model that learns categories from single training
examples. The model transfers acquired knowledge from previously learned cate-
gories to a novel category, in the form of a prior over category means and variances.
The model discovers how to group categories into meaningful super-categories that
express different priors for new classes. Given a single example of a novel cate-
gory, we can efficiently infer which super-category the novel category belongs to, and
thereby estimate not only the new category’s mean but also an appropriate similarity
metric based on parameters inherited from the super-category. On MNIST and MSR
Cambridge image datasets the model learns useful representations of novel categories
based on just a single training example, and performs significantly better than simpler
hierarchical Bayesian approaches. It can also discover new categories in a completely
unsupervised fashion, given just one or a few examples.

1. Introduction

In typical applications of machine classification algorithms, learning curves are mea-
sured in tens, hundreds or thousands of training examples. For human learners, how-
ever, the most interesting regime occurs when the training data are very sparse. Just a
single example is often sufficient for people to grasp a new category and make meaning-
ful generalizations to novel instances, if not to classify perfectly (Pinker, 1999). Human
categorization often asymptotes after just three or four examples (Xu and Tenenbaum,
2007; Smith et al., 2002; Kemp et al., 2006; Perfors and Tenenbaum, 2009). To illus-
trate, consider learning entirely novel “alien” objects, as shown in Fig. 1, left panel.
Given just three examples of a novel “tufa” concept (boxed in red), almost all human
learners select just the objects boxed in gray (Schmidt, 2009). Clearly this requires very
strong but also appropriately tuned inductive biases. A hierarchical Bayesian model we

© 2012 R. Salakhutdinov, J. Tenenbaum & A. Torralba.

Salakhutdinov Tenenbaum Torralba

describe here takes a step towards this “one-shot learning” ability by learning abstract
knowledge that support transfer of useful inductive biases from previously learned con-
cepts to novel ones.

At a minimum, categorizing an object requires information about the category’s
mean and variance along each dimension in an appropriate feature space. This is a
similarity-based approach, where the mean represents the category prototype, and the
inverse variances (or precisions) correspond to the dimensional weights in a category-
specific similarity metric. One-shot learning may seem impossible because a single
example provides information about the mean or prototype of the category, but not
about the variances or the similarity metric. Giving equal weight to every dimension in
a large a priori-defined feature space, or using the wrong similarity metric, is likely to
be disastrous.

Our model leverages higher-order knowledge abstracted from previously learned
categories to estimate the new category’s prototype as well as an appropriate similarity
metric from just one example. These estimates are also improved as more examples
are observed. To illustrate, consider how human learners seeing one example of an
unfamiliar animal, such as a wildebeest (or gnu), can draw on experience with many
examples of “horse”, “cows”, “sheep”, and more familiar related categories. These
similar categories have similar prototypes – horses, cows, and sheep look more like
each other than like furniture or vehicles – but they also have similar variability in
their feature-space representations, or similar similarity metrics: The ways in which
horses vary from the “horse” prototype are similar to the ways in which sheep vary
from the “sheep” prototype. We may group these similar basic-level categories into
an “animal” super-category, which captures these classes’ similar prototypes as well as
their similar modes of variation about their respective prototypes, as show in Fig. 1,
right panel. If we can identify the new example of “wildebeest” as belonging to this
“animal” super-category, we can transfer an appropriate similarity metric and thereby
generalize informatively even from a single example.

Learning similarity metric over the high-dimensional input spaces has become an
important task in machine learning as well. A number of recent approaches (Wein-
berger and Saul, 2009; Babenko et al., 2009; Singh-Miller and Collins, 2009; Gold-
berger et al., 2004; Salakhutdinov and Hinton, 2007; Chopra et al., 2005) have demon-
strated that learning a class-specific similarity metric can provide some insights into
how high-dimensional data is organized and it can significantly improve the perfor-
mance of algorithms like K-nearest neighbours that are based on computing distances.
Most this work, however, focused on learning similarity metrics when many labeled
examples are available, and did not attempt to address the one-shot learning problem.

Although inspired by human learning, our approach is intended to be broadly use-
ful for machine classification and AI tasks. To equip a robot with human-like object
categorization abilities, we must be able to learn tens of thousands of different cate-
gories, building on (and not disrupting) representations of old ones (Bart and Ullman,
2005; Biederman, 1995). In these settings, learning from one or a few labeled examples
and performing efficient inference will be crucial. Our method is designed to scale up

226

One-Shot Learning

Learning from Three Examples Learning Class-specific Similarity Metric

from One Example

Horse
Sheep

Car Van Truck

Vehicle
Cow

Wildebeest

Animal

Figure 1: Left: Given only three examples (boxed in red) of a novel “tufa” object,
which other objects are tufas? Most human learners select just the objects
boxed in gray, as shown by Schmidt (2009). Right: Learning a similarity
metric for a novel “wildebeest” class based on one example. The goal is to
identify that the new “wildebeest” belongs to the “animal” super-category,
which would allow to transfer an appropriate similarity metric and thereby
generalize informatively from a single example.

in precisely these ways: a nonparametric prior allows new categories to be formed at
any time in either supervised or unsupervised modes, and conjugate distributions allow
most parameters to be integrated out analytically for very fast inference.

2. Related Prior Work

Hierarchical Bayesian models have previously been proposed (Kemp et al. (2006);
Heller et al. (2009)) to describe how people learn to learn categories from one or
a few examples, or learn similarity metrics, but these approaches were not focused
on machine learning settings – large-scale problems with many categories and high-
dimensional natural image data. A large class of models based on hierarchical Dirich-
let processes (Teh et al. (2006)) have also been used for transfer learning (Sudderth
et al. (2008); Canini and Griffiths (2009)). There are two key difference: First, HDPs
typically assume a fixed hierarchy of classes for sharing parameters, while we learn the
hierarchy in an unsupervised fashion. Second, HDPs are typically given many examples
for each category rather than the one-shot learning cases we consider here. Recently
introduced nested Dirichlet processes can also be used for transfer learning (Rodriguez
and Vuppala (2009); Rodriguez et al. (2008)). However, this work assumes a fixed num-
ber of classes (or groups) and did not attempt to address one-shot learning problem. A
recent hierarchical model of Adams et al. (2011) could also be used for transfer learning
tasks. However, this model does not learn hierarchical priors over covariances, which
is crucial for transferring an appropriate similarity metric to new basic-level categories

227

Salakhutdinov Tenenbaum Torralba

in order to support learning from few examples. These recently introduced models are
complementary to our approach, and can be combined productively, although we leave
that as a subject for future work.

There are several related approaches in the computer vision community. A hier-
archical topic model for image features (Bart et al. (2008); Sivic et al. (2008)) can
discover visual taxonomies in an unsupervised fashion from large datasets but was not
designed for one-shot learning of new categories. Perhaps closest to our work, Fei-Fei
et al. (2006) also gave a hierarchical Bayesian model for visual categories with a prior
on the parameters of new categories that was induced from other categories. However,
they learned a single prior shared across all categories and the prior was learned only
from three categories, chosen by hand.

More generally, our goal contrasts with and complements that of computer vision
efforts on one-shot learning. We have attempted to minimize any tuning of our approach
to specifically visual applications. We seek a general-purpose hierarchical Bayesian
model that depends minimally on domain-specific representations but instead learns to
perform one-shot learning by finding more intelligent representations tuned to specific
sub-domains of a task (our “super-categories”).

3. Hierarchical Bayesian Model

Consider observing a set of N i.i.d input feature vectors {x1, . . . ,xN}, xn ∈RD. In general,
features will be derived from high-dimensional, highly structured data, such as images
of natural scenes, in which case the feature dimensionality D can be quite large (e.g.
50,000). For clarity of presentation, let us first assume that our model is presented
with a fixed two-level category hierarchy. In particular, suppose that N objects are
partitioned into C basic-level (or level-1) categories. We represent such partition by
a vector zb of length N, each entry of which is zb

n ∈ {1, . . . ,C}. We also assume that
our C basic-level categories are partitioned into K super-categories (level-2 categories),
which we represent by zs of length C, with zs

c ∈ {1, . . . ,K}.
For any basic-level category c, the distribution over the observed feature vectors is

assumed to be Gaussian with a category-specific mean µc and a category-specific diag-

onal precision matrix, whose entries are {τc
d
}D
d=1. The distribution takes the following

product form:

P(xn | zb
n = c,θ1) =

D∏

d=1

N(xn
d | µ

c
d,1/τ

c
d), (1)

where N(x | µ,1/τ) denotes a Gaussian distribution with mean µ and precision τ and
θ1 = {µc,τc}C

c=1 denotes the level-1 category parameters. We next place a conjugate
Normal-Gamma prior over {µc,τc}. Let k = zs

c, i.e. let the level-1 category c belong
to level-2 category k, where θ2 = {µk,τk,αk}K

k=1 denote the level-2 parameters. Then:

P(µc,τc | θ2,zs) =
∏D

d=1 P(µc
d
,τc

d
| θ2,zs), where for each dimension d we have:

P(µc
d,τ

c
d | θ

2) = P(µc
d | τ

c
d,θ

2)P(τc
d | θ

2) =N(µc
d | µ

k
d,1/(ντ

c
d)Γ(τc

d | α
k
d,α

k
d/τ

k
d). (2)

228

One-Shot Learning

• For each super-category k = 1, ..,∞:

draw θ2 using Eq. 4.

• For each basic category ck = 1, ..,∞,
placed under each super-category k:

draw θ1 using Eq. 2.

• For each observation n = 1, . . . ,N

draw zn ∼ nCRP(γ)
draw xn ∼N(xn | θ1,zn) using Eq. 1

Figure 2: Left: Hierarchical Bayesian model that assumes a fixed tree hierarchy for
sharing parameters. Right: Generative process of the corresponding non-
parametric model.

Our parameterization of the Gamma density is in terms of its shape αk and mean τk

parameters:

Γ(τ | αk,αk/τk) =
(αk/τk)α

k

Γ(αk)
τα

k−1 exp

(
−τ
αk

τk

)
. (3)

Such a parameterization is more interpretable, since E[τ]= τk. In particular, from Eq. 2,
we can easily derive that E[µc]= µk and E[τc]= τk. This gives our model a very intuitive
interpretation: the expected values of the basic level-1 parameters θ1 are given by the
corresponding level-2 parameters θ2. The parameter αk further controls the variability
of τc around its mean, i.e. Var[τc] = (τk)2/αk. For the level-2 parameters θ2, we shall
assume the following conjugate priors:

P(µk
d) =N(µk

d | 0,1/τ
0), P(αk

d | α
0) = Exp(αk

d | α
0), P(τk

d | θ
0) = IG(τk

d | a
0,b0), (4)

where Exp(x | α) denotes an exponential distribution with rate parameter α, and IG(x |
α,β) denotes an inverse-gamma distribution with shape parameter α and scale param-
eter β. We further place a diffuse Gamma prior Γ(1,1) over the level-3 parameters
θ3 = {α0,τ0}. Throughout our experimental results, we also set a0 = 1 and b0 = 1.

3.1. Modelling the number of super-categories

So far we have assumed that our model is presented with a two-level partition z =

{zs,zb}. If, however, we are not given any level-1 or level-2 category labels, we need
to infer the distribution over the possible category structures. We place a nonparamet-
ric two-level nested Chinese Restaurant Prior (CRP) (Blei et al. (2003, 2010)) over z,
which defines a prior over tree structures and is flexible enough to learn arbitrary hier-
archies. The main building block of the nested CRP is the Chinese restaurant process,
a distribution on partition of integers. Imagine a process by which customers enter a
restaurant with an unbounded number of tables, where the nth customer occupies a table
k drawn from:

P(zn = k | z1, . . . ,zn−1) =

nk

n−1+γ nk > 0
γ

n−1+γ k is new
, (5)

229

Salakhutdinov Tenenbaum Torralba

where nk is the number of previous customers at table k and γ is the concentration
parameter.

The Nested CRP, nCRP(γ), extends CRP to nested sequence of partitions, one for
each level of the tree. In this case each observation n is first assigned to the super-
category zs

n using Eq. 5. Its assignment to the basic-level category zb
n, that is placed un-

der a super-category zs
n, is again recursively drawn from Eq. 5 (for details see Blei et al.

(2010)). For our model, a two-level nested CRP allows flexibility of having a potentially
unbounded number of super-categories as well as an unbounded number of basic-level
categories placed under each super-category. Finally, we also place a Gamma prior
Γ(1,1) over γ. The full generative model is given in Fig. 2, right panel. Unlike in many
conventional hierarchical Bayesian models, here we infer both the model parameters as
well as the hierarchy for sharing those parameters.

Our model can be readily used in unsupervised or semi-supervised modes, with
varying amounts of label information. Here we focus on two settings. First, we assume
basic-level category labels have been given for all examples in a training set, but no
super-category labels are available. We must infer how to cluster basic categories into
super-categories at the same time as we infer parameter values at all levels of the hi-
erarchy. The training set includes many examples of familiar basic categories but only
one (or few) example for a novel class. The challenge is to generalize the new class
intelligently from this one example by inferring which super-category the new class
comes from and exploiting that super-category’s implied priors to estimate the new
class’s prototype and similarity metric most accurately. This training regime reflects
natural language acquisition, where spontaneous category labeling is frequent, almost
all spontaneous labeling is at the basic level (Rosch et al., 1976) yet children’s general-
izations are sensitive to higher superordinate structure (Mandler, 2004), and where new
basic-level categories are typically learned with high accuracy from just one or a few
labeled examples. Second, we consider a similar labeled training set but now the test set
consists of many unlabeled examples from an unknown number of basic-level classes
– including both familiar and novel classes. This reflects the problem of “unsupervised
category learning” a child or robot faces in discovering when they have encountered
novel categories, and how to break up new instances into categories in an intelligent
way that exploits knowledge abstracted from a hierarchy of more familiar categories.

4. Inference

Inferences about model parameters at all levels of hierarchy can be performed by
MCMC. When the tree structure z of the model is not given, the inference process
will alternate between fixing z while sampling the space of model parameters θ and
fixing θ while sampling category assignments.

Sampling level-1 and level-2 parameters: Given level-2 parameters θ2 and z, the con-
ditional distribution P(µc,τc | θ2,z,x) is Normal-Gamma (Eq. 2), which allows us to
easily sample level-1 parameters {µc,τc}. Given z, θ1, and θ3, the conditional distri-
butions over the mean µk and precision τk take Gaussian and Inverse-Gamma forms.

230

One-Shot Learning

The only complicated step involves sampling αk that control the variation of the pre-
cision term τc around its mean (Eq. 3). The conditional distribution over αk cannot be
computed in closed form and is proportional to:

p(αk | z,θ1,θ3,τk) ∝
(αk/τk)α

knk

Γ(αk)nk
exp

(
−αk

(
α0+S k/τk −T k

))
, (6)

where S k =
∑

c:z(c)=k τ
c and T k =

∑
c:z(c)=k log(τc). For large values of αk the density,

specified by Eq. 6, is similar to a Gamma density (Wiper et al. (2001)). We therefore
use Metropolis-Hastings with a proposal distribution given by the Gamma density. In
particular, we generate a new candidate

α∗ ∼ Q(α∗ | αk) with Q(α∗ | αk) = Γ(α∗ | t, t/αk)

and accept it with M-H rule. In all of our experiments we use t = 3, which gave an
acceptance probability of about 0.6. Sampling level-3 parameters is similar to sampling
level-2 parameters.

Sampling assignments z: Given model parameters θ = {θ1,θ2}, combining the likeli-
hood term with the nCRP(γ) prior, the posterior over the assignment zn can be calcu-
lated as follows:

p(zn | θ,z−n,x
n) ∝ p(xn | θ,zn)p(zn | z−n), (7)

where z−n denotes variables z for all observations other than n. We can further exploit
the conjugacy in our hierarchical model when computing the probability of creating
a new basic-level category. Using the fact that Normal-Gamma prior p(µc,τc) is the
conjugate prior of a normal distribution, we can easily compute the following marginal
likelihood:

p(xn | θ2,zn) =

∫

µc,τc

p(xn,µc,τc | θ2,zn) =

∫

µc,τc

p(xn | µc,τc)p(µc,τc | θ2,zn).

Integrating out basic-level parameters θ1 lets us more efficiently sample over the tree
structures1. When computing the probability of placing xn under a newly created super-
category, its parameters are sampled from the prior.

5. One-shot Learning

One of the key goals of our work is to develop a model that has the ability to generalize
from a single example. Consider observing a single new instance x∗ of a novel category

c∗ 2. Conditioned on the current setting of the level-2 parameters θ2 and our current tree
structure z, we can first infer which super-category the novel category should belong
to, i.e. we can compute the posterior distribution over the assignments z∗c using Eq. 7.

1. In the supervised case, inference in simplified by only considering which super-category each basic-
level category is assigned to.

2. Observing several examples of a new category is treated similarly.

231

Salakhutdinov Tenenbaum Torralba

We note that our new category can either be placed under one of the existing super-
categories, or create its own super-category, if it is sufficiently different from all of the
existing super-categories.

Given an inferred assignment z∗c and using Eq. 2, we can infer the posterior mean
and precision terms (or similarity metric) {µ∗,τ∗} for our novel category. We can now
test the ability of the HB model to generalize to new instances of a novel category
by computing the conditional probability that a new test input xt belongs to a novel
category c∗:

p(c∗ | xt) =
p(xt | z∗c)p(z∗c)
∑

z p(xt | z)p(z)
, (8)

where the prior is given by the nCRP(γ) and the log-likelihood takes form:

log p(xt | c∗) =
1

2

∑

d

log(τ∗d)−
1

2

∑

d

τ∗d(xt
d −µ

∗
d)2+C,

where C is a constant that does not depend on the parameters. Observe that the relative
importance of each feature in determining the similarity is proportional to the category-
specific precision of that feature. Features that are salient, or have higher precision,
within the corresponding category contribute more to the overall similarity of an input.

6. Experimental results

We now present experimental results on the MNIST handwritten digit and MSR Cam-
bridge object recognition image datasets. During the inference step, we run our hierar-
chical Bayesian (HB) model for 200 full Gibbs sweeps, which was sufficient to reach
convergence and obtain good performance. We normalize input vectors to zero mean
and scale the entire input by a single number to make the average feature variance be
one.

In all of our experiments, we compare performance of the HB model to the follow-
ing four alternative methods for one-shot learning. The first model, “Euclidean”, uses
a Euclidean metric, i.e. all precision terms are set to one and are never updated. The
second model, that we call “HB-Flat”, always uses a single super-category. When pre-
sented with a single example of a new category, HB-Flat will inherit a similarity metric
that is shared by all existing categories, as done in Fei-Fei et al. (2006). Our third
model, called “HB-Var”, is similar in spirit to the approach of Heller et al. (2009) and
is based on clustering only covariance matrices without taking into account the means
of the super-categories. Our last model, “MLE”, ignores hierarchical Bayes altogether
and estimates a category-specific mean and precision from sample averages. If a cate-
gory contains only one example, the model uses the Euclidean metric. Finally, we also
compare to the “Oracle” model that is the same as our HB model, but always uses the
correct, instead of inferred, similarity metric.

232

One-Shot Learning

6.1. MNIST dataset

The MNIST dataset contains 60,000 training and 10,000 test images of ten handwritten
digits (zero to nine), with 28×28 pixels. For our experiments, we randomly choose
1000 training and 1000 test images (100 images per class). We work directly in the
pixel space because all handwritten digits were already properly aligned. In addition,
working in the pixel space allows us to better visualize the kind of transfer of similarity
metrics our model is performing. Fig. 3, left panel, shows a typical partition over the
basic level categories, along with corresponding mean and similarity metrics, that our
model discovers.

We first study the ability of the HB model to generalize from a single training
example of handwritten digit “nine”. To this end, we trained the HB model on 900
images (100 images of each of zero-to-eight categories), while withholding all images
that belong to category “nine”. Given a single new instance of a novel “nine” category
our model is able to discover that the new category is more like categories that contain
images of seven and four, and hence this novel category can inherit the mean and the
similarity metric, shared by categories “seven” and “four”.

Table 1 further quantifies performance using the area under the ROC curve (AU-
ROC) for classifying 1000 test images as belonging to the ”nine” vs. all other cate-
gories. (an area of 0.5 corresponds to the classifier that makes random predictions). The
HB model achieves an AUROC of 0.81, considerably outperforming HB-Flat, HB-Var,
Euclidean, and MLE that achieve an AUROC of 0.71, 0.72, 0.70, and 0.69 respectively.
Moreover, with just four examples, the HB model is able to achieve performance close
to that of the Oracle model. This is in sharp contrast to HB-Flat, MLE and Euclidean
models, that even with four examples perform far worse.

6.2. MSR Cambridge Dataset

We now present results on a considerably more difficult MSR Cambridge dataset3, that
contains images of 24 different categories. Fig. 3, right panel, shows 24 basic-level
categories along with a typical partition that our model discovers. We use a simple
“texture-of-textures” framework for constructing image features (DeBonet and Viola
(1997)).

We first tested the ability of our model to generalize from a single image of a cow.
Similar to the experiments on the MNIST dataset, we first train the HB model on images
corresponding to 23 categories, while withholding all images of cows. In general, our
model is able to discover that the new “cow” category is more like the “sheep” category,
as opposed to categories that contain images of cars, or forks, or buildings. This allows
the new “cow” category inherit sheep’s similarity metric.

Table 2 show that the HB model, based on a single example of cow, achieves an
AUROC of 0.77. This is compared to an AUROC of only 0.62, 0.61, 0.59, and 0.58
achieved by the HB-Flat, HB-Var, Euclidean, and MLE models. Similar to the results

3. Available at http://research.microsoft.com/en-us/projects/

objectclassrecognition/

233

Salakhutdinov Tenenbaum Torralba

Table 1: Performance results using the area under the ROC curve (AUROC) on the
MNIST dataset. The Average panel shows results averaged over all 10 cate-
gories, using leave-one-out test format.

Model
Category: Digit 9 Category: Digit 6 Average

1 ex 2 ex 4 ex 20 ex 1 ex 2 ex 4 ex 20 ex 1 ex 2 ex 4 ex 20 ex

HB 0.81 0.85 0.88 0.90 0.85 0.89 0.92 0.97 0.85 0.88 0.90 0.93
HB-Flat 0.71 0.77 0.84 0.90 0.73 0.79 0.88 0.97 0.74 0.79 0.86 0.93
HB-Var 0.72 0.81 0.86 0.90 0.72 0.83 0.90 0.97 0.75 0.82 0.89 0.93
Euclidean 0.70 0.73 0.76 0.80 0.74 0.77 0.82 0.86 0.72 0.76 0.80 0.83
Oracle 0.87 0.89 0.90 0.90 0.95 0.96 0.96 0.97 0.90 0.92 0.92 0.93
MLE 0.69 0.75 0.83 0.90 0.72 0.78 0.87 0.97 0.71 0.77 0.84 0.93

Mean

Variance

aeroplanes

benches and chairs

bicycles/single

cars/front

cars/rear

cars/side

signs

buildings

chimneys

doors’

scenes/office

scenes/urban

windows

cloudsforks

knives

spoons

trees

birds

flowers

leaves

animals/cows

animals/sheep

scenes/countryside

Figure 3: Left: MNIST Dataset: A typical partition over the 10 categories discov-
ered by the HB model. Top panels display means and bottom panels display
variances (white encodes larger values). Right: MSR Dataset: A typical
partition over the 24 categories discovered by the HB model.

on the MNIST dataset, the HB model with just one example performs comparably the
HB-Flat and MLE models that make use of four examples. Fig. 4 further displays
retrieval results based on a single image of a cow. As expected, the HB model performs
much better compared to the Euclidean model that does not learn a similarity metric.

6.3. Unsupervised Category Discovery

Another key advantage of the hierarchical nonparametric Bayesian model is its ability
to infer category structure in an unsupervised fashion, discovering novel categories at
both levels 1 and 2 of the hierarchy. We explored the HB model’s category discovery
ability by training on labeled examples of 21 basic-level MSR categories, leaving out
clouds, trees, and chimneys. We then provided six test images: one in each of the three
unseen categories and one in each of three familiar basic-level categories (car, airplane,
bench). For each test image, using Eq. 8, we can easily compute the posterior probabil-
ity of forming a new basic-level category. Figure 5, left panel, shows six representative
test images, sorted by the posterior probability of forming a novel category. The model
correctly identifies the car, the airplane and the bench as belonging to familiar cate-

234

One-Shot Learning

Table 2: Performance results using the area under the ROC curve (AUROC) on the
MSR dataset. The Average panel shows results averaged over all 24 cate-
gories, using leave-one-out test format.

Model
Category: Cow Category: Flower Average

1 ex 2 ex 4 ex 20 ex 1 ex 2 ex 4 ex 20 ex 1 ex 2 ex 4 ex 20 ex

HB 0.77 0.81 0.84 0.89 0.71 0.75 0.78 0.81 0.76 0.80 0.84 0.87
HB-Flat 0.62 0.69 0.80 0.89 0.59 0.64 0.75 0.81 0.65 0.71 0.78 0.87
HB-Var 0.61 0.73 0.83 0.89 0.60 0.68 0.77 0.81 0.64 0.74 0.81 0.87
Euclidean 0.59 0.61 0.63 0.66 0.55 0.59 0.61 0.64 0.63 0.66 0.69 0.71
Oracle 0.83 0.84 0.87 0.89 0.77 0.79 0.80 0.81 0.82 0.84 0.86 0.87
MLE 0.58 0.64 0.78 0.89 0.55 0.62 0.72 0.81 0.62 0.67 0.77 0.87

Figure 4: Retrieval results based on observing a single example of cow. Top five most
similar images were retrieved from the test set, containing 360 images corre-
sponding to 24 categories.

gories, and places much higher probability on forming novel categories for the other
images. With only one unlabeled example of these novel classes, the model still prefers
two of them in familiar categories: the “tree” is interpreted as an atypical example of
“countryside” while the “chimney” is classified as an atypical “building”.

The model, however, can correctly discover novel categories given only a little
more unlabeled data. With 18 unlabeled test images (see Fig. 5), after running a Gibbs
sampler for 100 steps, the model correctly places nine “familiar” images in nine dif-
ferent basic-level categories, while also correctly forming three novel basic-level cate-
gories with three examples each. Most interestingly, these new basic-level categories
are placed at the appropriate level of the category hierarchy: the novel “tree” category
is correctly placed under the super-category containing “leaves” and “countrysides”;
the novel “chimney” category is placed together with “buildings” and “doors”; while
“clouds” category is placed in its own super-category – all consistent with the hierarchy
we originally found from a fully labeled training set (see Fig. 3). Other models we tried
for this unsupervised task perform much worse; they confuse “chimneys” with “cows”
and “trees” with “countrysides”.

235

Salakhutdinov Tenenbaum Torralba

Figure 5: Unsupervised category discovery. Left: Six representative test images,
sorted by the posterior probability of forming a novel category. Right: When
presented with 18 unlabeled test images, the model correctly places nine “fa-
miliar” images in nine different basic-level categories, while also correctly
forming three novel basic-level categories with three examples each.

7. Conclusions

In this paper we developed a hierarchical nonparametric Bayesian model for learning
a novel category based on a single training example. Our experimental results further
demonstrate that our model is able to effectively transfer appropriate similarity metric
from the previously learned categories to a novel category based on observing a sin-
gle example. There are several key advantages to our model. First, due to efficient
Gibbs moves that can exploit conjugacy, the model can be efficiently trained. Many
of the Gibbs updates can be run in parallel, which will allow our model to potentially
handle a large number of basic-level categories. Second, the model is able to discover
meaningful super-categories and be able to form coherent novel categories. Finally,
given a single example of a novel category, the model is able to quickly infer which
super-category the new basic-level category should belong to. This in turns allows us
to efficiently infer the appropriate similarity metric for this novel category.

References

R. Adams, Z. Ghahramani, and M. Jordan. Tree-structured stick breaking processes for
hierarchical data. In To appear in NIPS. MIT Press, 2011.

B. Babenko, S. Branson, and S. J. Belongie. Similarity functions for categorization:
from monolithic to category specific. In ICCV, 2009.

E. Bart and S. Ullman. Cross-generalization: Learning novel classes from a single
example by feature replacement. In CVPR, pages 672–679, 2005.

E. Bart, I. Porteous, P. Perona, and M. Welling. Unsupervised learning of visual tax-
onomies. In CVPR, pages 1–8, 2008.

236

One-Shot Learning

I. Biederman. Visual object recognition. An Invitation to Cognitive Science, 2:152–165,
1995.

D. M. Blei, T. L. Griffiths, M. I. Jordan, and Joshua B. Tenenbaum. Hierarchical topic
models and the nested Chinese restaurant process. In NIPS. MIT Press, 2003.

D. M. Blei, T. L. Griffiths, and M. I. Jordan. The nested Chinese restaurant process and
Bayesian nonparametric inference of topic hierarchies. J. ACM, 57(2), 2010.

K. R. Canini and T. L. Griffiths. Modeling human transfer learning with the hierarchical
Dirichlet process. In NIPS 2009 workshop: Nonparametric Bayes, 2009.

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively,
with application to face verification. In IEEE Computer Vision and Pattern Recogni-

tion or CVPR, pages I: 539–546, 2005.

J. S. DeBonet and P. A. Viola. Structure driven image database retrieval. In Michael I.
Jordan, Michael J. Kearns, and Sara A. Solla, editors, NIPS. The MIT Press, 1997.

Li Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE

Trans. Pattern Analysis and Machine Intelligence, 28(4):594–611, April 2006.

J. Goldberger, S. T. Roweis, G. E. Hinton, and R. R. Salakhutdinov. Neighbourhood
components analysis. In Advances in Neural Information Processing Systems, 2004.

K. Heller, A. Sanborn, and N. Chater. Hierarchical learning of dimensional biases in
human categorization. In NIPS, 2009.

C. Kemp, A. Perfors, and J. Tenenbaum. Learning overhypotheses with hierarchical
Bayesian models. Developmental Science, 10(3):307–321, 2006.

J.M. Mandler. The foundations of mind: Origins of conceptual thought. Oxford Uni-
versity Press, USA, 2004.

A. Perfors and J.B. Tenenbaum. Learning to learn categories. In 31st Annual Confer-

ence of the Cognitive Science Society, pages 136–141, 2009.

S. Pinker. How the Mind Works. W.W. Norton, 1999.

A. Rodriguez and R. Vuppala. Probabilistic classification using Bayesian nonparamet-
ric mixture models. Technical Report, 2009.

A. Rodriguez, D. Dunson, and A. Gelfand. The nested Dirichlet process. Journal of

the American Statistical Association, 103:1131–1144, 2008.

E. Rosch, C.B. Mervis, W.D. Gray, D.M. Johnson, and P. Boyes-Braem. Basic objects
in natural categories* 1. Cognitive psychology, 8(3):382–439, 1976.

237

Salakhutdinov Tenenbaum Torralba

R. R. Salakhutdinov and G. E. Hinton. Learning a nonlinear embedding by preserving
class neighbourhood structure. In Proceedings of the International Conference on

Artificial Intelligence and Statistics, volume 11, 2007.

L. Schmidt. Meaning and compositionality as statistical induction of categories and
constraints. Ph.D Thesis, Massachusetts Institute of Technology, 2009.

N. Singh-Miller and M. Collins. Learning label embeddings for nearest-neighbor multi-
class classification with an application to speech recognition. In Advances in Neural

Information Processing Systems. MIT Press, 2009.

J. Sivic, B. C. Russell, A. Zisserman, W. T. Freeman, and A. A. Efros. Unsupervised
discovery of visual object class hierarchies. In CVPR, pages 1–8, 2008.

L.B. Smith, S.S. Jones, B. Landau, L. Gershkoff-Stowe, and L. Samuelson. Object
name learning provides on-the-job training for attention. Psychological Science,
pages 13–19, 2002.

E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky. Describing visual scenes
using transformed objects and parts. International Journal of Computer Vision, 77
(1-3):291–330, 2008.

Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes.
Journal of the American Statistical Association, 101(476):1566–1581, 2006.

K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Research, 3, 2009.

M. Wiper, D. R. Insua, and F. Ruggeri. Mixtures of Gamma distributions with applica-
tions. Journal of Computational and Graphical Statistics, 10(3), September 2001.

F. Xu and J. B. Tenenbaum. Word learning as Bayesian inference. Psychological

Review, 114(2), 2007.

238

JMLR: Workshop and Conference Proceedings 27:207–216, 2012 Unsupervised and Transfer Learning

Multitask Learning in Computational Biology

Christian Widmer cwidmer@tue.mpg.de and Gunnar Rätsch raetsch@tue.mpg.de

FML, Max Planck Society, Spemannstr. 39, 72076 Tübingen, Germany

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

Computational Biology provides a wide range of applications for Multitask Learning
(MTL) methods. As the generation of labels often is very costly in the biomedical do-
main, combining data from different related problems or tasks is a promising strategy
to reduce label cost. In this paper, we present two problems from sequence biology,
where MTL was successfully applied. For this, we use regularization-based MTL
methods, with a special focus on the case of a hierarchical relationship between tasks.
Furthermore, we propose strategies to refine the measure of task relatedness, which is
of central importance in MTL and finally give some practical guidelines, when MTL
strategies are likely to pay off.

Keywords: Transfer Learning, Multitask Learning, Domain Adaptation, Computa-
tional Biology, Bioinformatics, Sequences, Support Vector Machines, Kernel Meth-
ods

1. Introduction

In Computational Biology, supervised learning methods are often used to model bio-
logical mechanisms in order to describe and ultimately understand them. These models
have to be rich enough to capture the often considerable complexity of these mecha-
nisms. Having a complex model in turn requires a reasonably sized training set, which
is often not available for many applications. Especially in the biomedical domain, ob-
taining additional labeled training examples can be very costly in terms of time and
money. Thus, it may often pay off to combine information from several related tasks as
a way of obtaining more accurate models and reducing label cost.

In this paper, we will present several problems where MTL was successfully ap-
plied. We will take a closer look at a common special case, where different tasks cor-
respond to different organisms. Examples of such a scenario are splice-site recognition
and promoter prediction for different organisms. Because these basic mechanisms tend
to be relatively well conserved throughout evolution, we can benefit from combining
data from several species. This special case is interesting because we are given a tree
structure that relates the tasks at hand. For most parts of the tree of life, we have a good
understanding of how closely related two organisms are and can use this information
in the context of Multitask Learning. To illustrate that the relevance of MTL to Com-
putational Biology goes beyond the organisms-as-tasks scenario, we present a problem

© 2012 C. Widmer & G. Rätsch.

Widmer Rätsch

from a setting, where different tasks correspond to different related protein variants,
namely Major Histocompatibility Complex (MHC)-I binding prediction.

Clearly, there exists an abundance of problems in Bioformatics that could be ap-
proached from the MTL point of view (e.g. Qi et al., 2010). For instance, different
tasks could correspond to different cell lines, pathways (Park et al., 2010), tissues,
genes (Mordelet and Vert, 2011), proteins (Heckerman et al., 2007), technology plat-
forms such as microarrays, experimental conditions, individuals, tumor subtypes, just
to name a few. This illustrates that MTL methods are of interest to many applications
in Computational Biology.

2. Methods

Our methods strongly rely on regularization based supervised learning methods, such
as the Support Vector Machine (SVM) (Boser et al., 1992) or Logistic Regression. In
its most general form, it consists of a loss-term that captures the error with respect to
the training data and a regularizer that penalizes model complexity

J(Θ) = L(Θ|X,Y)+R(Θ).

This formulation can easily be generalized to the MTL setting, where we are interested
in obtaining several models parameterized by Θ1, ...,ΘM, where M is the number of
tasks. The above formulation can be extended by introducing an additional regulariza-
tion term RMT L that penalizes the discrepancy between the individual models (Evgeniou
et al., 2005; Agarwal et al., 2010).

J(Θ1, ...,ΘM) =
M∑

i=1

L(Θi|X,Y)+
M∑

i=1

R(Θi)+RMT L(Θ1, ...,ΘM).

2.1. Taxonomy-based transfer learning: Top-down

In this section, we present a regularization-based method that is applicable when tasks
are related by a taxonomy (Widmer et al., 2010a). Hierarchical relations between tasks
are particularly relevant to Computational Biology where different tasks may corre-
spond to different organisms. In this context, we expect that the longer the common
evolutionary history between two organisms, the more beneficial it is to share informa-
tion between these organisms. In the given taxonomy, tasks correspond to leaves (i.e.
taxons) and are related by its inner nodes. The basic idea of the training procedure is
to mimic biological evolution by obtaining a more specialized classifier with each step
from root to leaf. This specialization is achieved by minimizing the training error with
respect to training examples from the current subtree (i.e. the tasks below the current
node), while similarity to parent classifier is enforced through regularization.

240

MTL in Computational Biology

The primal of the Top-down formulation is given by

min
w,b

B

2
||w||2+

1−B

2

∣∣∣
∣∣∣w−wp

∣∣∣
∣∣∣2+C

∑

(x,y)∈S
" (〈x,w〉+b,y) , (1)

where " is the hinge loss "(z,y) = max{1− yz,0}, wp is the parameter vector from the
parent model and B ∈ [0,1] is the hyper-parameter that controls the degree of MTL
regularization. The dual of the above formulation is given by Widmer et al. (2010a):

max
α
−

1

2

n∑

i=1

n∑

j=1

αiα jyiy jk(xi,x j)−
n∑

i=1

αi

B

m∑

j=1

α′jyiy
′
jk(xi,x

′
j)

−1

︸!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!︸
pi

s.t. αT y = 0, 0 ≤ αi ≤C ∀i ∈ {1,n},

where n and m are the number of training examples at the current level and the level of
the parent model, respectively.

The αi represent the dual variables of the current learning problem, whereas the α′j
represent the dual variables obtained from the parent model wp; in the case of the linear
kernel, it is described as wp =

∑m
j=1α

′
jy
′
jx
′
j. The resulting predictor is given by

f (x) =
n∑

i=1

αiyik(x, xi)+
m∑

j=1

α′jy
′
jk(x, x j)+b.

To clarify the algorithm, an illustration of the training procedure is given in Fig-
ure 1. If the nodes in the taxonomy represent species, then interior nodes correspond
to extant species. Thus, interior nodes are trained on the union of training data from
descendant leaves (see Figure 1). In the dual of the standard SVM, the term p (cor-
responding to the pi in the equation above) is set to p = (−1, . . . ,−1)T (i.e. there is no
parent model). In our extended formulation, the pi is pre-computed and passed to the
SVM-solver as the linear term of the corresponding quadratic program (QP). There-
fore, the solution of the above optimization problem can be efficiently computed using
well established SVM solvers. We have extended LibSVM, SVMLight and LibLin-
ear to handle a custom linear term p and provide the implementations as part of the
SHOGUN-toolbox (Sonnenburg et al., 2010).

2.2. Graph-based transfer learning

Following Evgeniou et al. (2005) we use the following formulation

min
w1,...,wM

1

2

M∑

s=1

M∑

t=1

Ast ||ws−wt||2+C

M∑

s=1

∑

(x,y)∈S
" (〈x,ws〉+b,y) , (2)

241

MTL in Computational Biology

of this was presented by Daumé (2007) in the context of Domain Adaptation, where
φT (t) = (1,1,0) was used as the source task descriptor and φT (t) = (1,0,1) for the target
task, corresponding to KT (s, t) = (1+δs,t).

2.3. Learning Task Similarity

An essential component of MTL is finding measure of task similarity that represents
the improvement we expect from the information transfer between two tasks. Often, we
are provided with external information on task relatedness (e.g. evolutionary history of
organisms). However, the given similarity often only roughly corresponds to the task
similarity relevant for the MTL algorithm and therefore one may need to find a suitable
transformation to convert one into the other. For this, we propose several approaches,
starting with a very simple parameterization of task similarities up to a sophisticated
Multiple Kernel Learning (MKL) based formulation that learns task similarity along
with the classifiers.

2.3.1. A simple approach: Cross-validation

The most general approach to refine a given task-similarity matrix As,t is to introduce
a mapping function ψ, parameterized by a vector Θ. The goal is to choose Θ such that
the empirical loss is minimized. For example, we could choose a linear transformation
ψΘ(s, t) = Θ1+As,tΘ2 or non-linear transformation ψΘ(s, t) = Θ1 · exp(

As,t

Θ2
). A straight-

forward way of finding a good mapping is using cross-validation to choose an optimal
value for Θ.

A cross-validation based strategy may also be used in the context of the Top-down
method. In principle, each edge e in the taxonomy could carry its own weight Be.
Because tuning a grid of all Be in cross-validation would be quite costly, we propose
to perform a local cross-validation and optimize the current Be at each step from top
to bottom independently. This can be interpreted as using the taxonomy to reduce the
parameter search space.

2.3.2. MultitaskMultiple Kernel Learning

In the following section, we present a more sophisticated technique to learn task sim-
ilarity based on MKL. To be able to use MKL for Multitask Learning, we need to re-
formulate the Multitask Learning problem as a weighted linear combination of kernels
(Widmer et al., 2010c). In contrast to Equation 5, the basic idea of our decomposition
is to define task-based block masks on the kernel matrix of KB. Given a list of tasks
T = {t1, ..., tT }, we define a kernel KS on a subset of tasks S ⊆ T as follows:

KS (x,y) =
{

KB(x,y), if t(x) ∈ S ∧ t(y) ∈ S

0, else

where t(x) denotes the task of example x. Here, each S corresponds to a subset
of tasks. In the most general formulation, we define a collection I =

{
S 1, ...,S p

}
of

an arbitrary number p of task sets S i, which defines the latent structure over tasks.

243

Widmer Rätsch

This collection leads to the following linear combination of kernels, which is positive
semi-definite for βi ≥ 0:

K̂(x,z) =
∑

S i∈I

βiKS i(x,z).

Using K̂, we can readily utilize existing MKL methods to learn the weights βi. This
corresponds to identifying the groups of tasks S i for which sharing information leads
to improved performance. We use the following formulation of q-norm MKL by Kloft
et al. (2011):

min
β

max
α

1Tα−
1

2

∑

i, j

αiα jyiy j

|I|∑

t=1

βtKS t (xi, x j)

s.t. ||β||qq ≤ 1,β ≥ 0

YTα = 0,0 ≤ α ≤C

To solve the above optimization problem, we follow ideas presented by Kloft et al.
(2011) to iteratively solve a convex optimization problem involving only the β’s and
then to solve for α only. This method is known to converge fast even for a relatively
large number of kernels (Kloft et al., 2011).

After training using MKL, a classifier ft for each task t is given by:

ft(z) =
N∑

i=0

αiyi

∑

S j∈I;t∈S j

β jKS j(xi,z),

where N is the total number of training examples of all tasks combined. What remains
to be discussed is how to define the collection I of candidate subsets S i, which are
subsequently to be weighted by MKL.

Powerset MT-MKL With no prior information given, a natural choice is to take into
account all possible subsets of tasks. Given a set of tasks T , this corresponds to the
power set P of T (excluding the empty set) IP = {S |S ∈ P(T)∧S ! ∅}. Clearly, this
gives us an exponential number (i.e. 2T) of task sets S i of which only a few will be
relevant. To identify the relevant task sets, we propose to use an L1-regularized MKL
approach to obtain a sparse solution. Most subset weights will be set to zero, leaving
us with only a few relevant subsets with non-zero weights. By summing the weights
of the groups containing a particular pair of tasks (s, t), we can recover the similarity
As,t. As we do not assume prior information on task structure, this approach may be
used to learn the task similarity matrix de novo (only for a small number of tasks due
to computational complexity of the naı̈ve implementation).

Hierarchical MT-MKL Next, we assume that we are given a tree structure G that
relates our tasks at hand (see Figure 2). In this context, a task ti corresponds to a leaf in
G. We can exploit the hierarchical structure G to determine which subsets potentially
play a role for Multitask Learning. In other words, we use the hierarchy to restrict the

244

MTL in Computational Biology

space of possible task sets. Let leaves(n) = {l|l is descendant of n} be the set of leaves
below the sub-tree rooted at node n. Then, we can give the following definition for the
hierarchically decomposed kernel function

K̂(x,y) =
∑

ni∈G

βiKleaves(ni).

As an example, consider the kernel defined by a hierarchical decomposition accord-
ing to Figure 2. In contrast to Power-set MT-MKL, we seek a non-sparse weighting of
the task sets defined by the hierarchy and will therefore use L2-norm MKL (Kloft et al.,
2011).

Figure 2: Example of a hierarchical decomposition. According to a simple binary tree,
it is shown that each node defines a subset of tasks (a block in the corre-
sponding kernel matrix on the left). Here, the decomposition is shown for
only one path: The subset defined by the root node contains all tasks, the
subset defined by the left inner node contains t1 and t2 and the subset defined
by the leftmost leaf only contains t1. Accordingly, each of the remaining
nodes defines a subset S i that contains all descendant tasks.

Alternatively, one can use a variation of the approach provided above and use boost-
ing algorithms instead of MKL, as similarly done by Gehler and Nowozin (2009) and
Widmer et al. (2010b).

2.4. When does MTL pay off?

In this section, we give some practical guide lines about when it is promising to use
MTL algorithms. First, the tasks should neither be too similar nor too different (Widmer
et al., 2010a). If the tasks are too different one will not be able to transfer information,
or even end up with negative transfer (Pan and Yang, 2009). On the other hand, if tasks
are almost identical, it might suffice to pool the training examples and train a single
combined classifier. Another integral factor that needs to be considered is whether the
problem is easy or hard with respect to the available training data. In this context, the
problem can be considered easy if the performance of a classifier saturates as a func-
tion of the available training data. In that case using more out-of-domain information
will not improve classification performance, assuming that none of the out-of-domain
datasets are a better match for the in-domain test set than the in-domain training set.

In order to control problem difficulty in the sense defined above, we can compute
a learning curve (i.e. number of examples vs. auROC) and check whether we observe

245

Widmer Rätsch

saturation. If this is the case, we do not expect transfer learning to be beneficial as
model performance is most likely limited only by label noise. The same idea can be
applied to empirically checking similarity between two tasks. For this, we compute
pair-wise saturation curves (i.e. train on data from one task, test on the other) between
tasks, giving us a useful measure to check whether transferring information between
two tasks may be beneficial.

3. Applications

In this section, we give a two examples of applications in Computational Biology, where
we have successfully employed Multitask Learning.

3.1. Splice-site prediction

The recognition of splice sites is an important problem in genome biology. By now it
is fairly well understood and there exist experimentally confirmed labels for a broad
range of organisms. In previous work, we have investigated how well information can
be transfered between source and target organisms in different evolutionary distances
(i.e. one-to-many) and training set sizes (Schweikert et al., 2009). We identified TL al-
gorithms that are particularly well suited for this task. In a follow-up project we investi-
gated how our results generalize to the MTL scenario (i.e. many-to-many) and showed
that exploiting prior information about task similarity provided by taxonomy can be
very valuable (Widmer et al., 2010a). An example how MTL can improve performance
compared to baseline methods plain (i.e. learn a classifier for each task independently)
and union (i.e. pool examples from all tasks and obtain a global classifier) is given in
Figure 3(a). For an elaborate discussion of our experiments with splice-site predic-
tion, please consider the original publications (Schweikert et al., 2009; Widmer et al.,
2010a).

3.2. MHC-I binding prediction

The second application we want to mention is MHC-I binding prediction. MHC class I
molecules are key players in the human immune system. They bind small peptides de-
rived from intracellular proteins and present them on the cell surface for surveillance by
the immune system. Prediction of such MHC class I binding peptides is a vital step in
the design of peptide-based vaccines and therefore one of the major problems in com-
putational immunology. Thousands of different types of MHC class I molecules exist,
each displaying a distinct binding specificity. We consider these different MHC types
to be different tasks in a MTL setting. Clearly, we expect information sharing between
tasks to be fruitful, if the binding pockets of the molecules exhibit similar properties.
These properties are encoded in the protein sequence of the MHC proteins. Thus, we
can use the externally provided similarity between MHC proteins to estimate task re-
latedness. In agreement with previous reports (Jacob and Vert, 2008), we observed that
using the approach provided in Equation 5 with KT defined on the externally provided
sequences considerably boosts prediction accuracy compared to baseline methods, as

246

Widmer Rätsch

coefficient of 0.67). From this, we conclude that MT-MKL may be of value in MTL
settings, where relevant external information on the relatedness of tasks is absent.

4. Conclusion

We have presented an overview of applications for MTL methods in the field of Com-
putational Biology. Especially in the context of biomedical data, where generating
training labels can be very expensive, MTL can be viewed as a means of obtaining
more cost-effective predictors. We have presented several regularization-based MTL
methods centered around the SVM, amongst them an approach for the special case of
hierarchical task structure. Furthermore, we have outlined several strategies how to
learn or refine the degree of task relatedness, which is of central importance when ap-
plying MTL methods. Lastly, we gave some practical guidelines to quickly check for
a given dataset if one can expect MTL strategies to boost performance over straight-
forward baseline methods.

Acknowledgments

We would like to acknowledge Jose Leiva, Yasemin Altun, Nora Toussaint, Sören Son-
nenburg, Klaus-Robert Müller, Bernhard Schölkopf, Oliver Stegle, Alexander Zien and
Jonas Behr.

References

A. Agarwal, H. Daumé III, and S. Gerber. Learning Multiple Tasks using Manifold
Regularization. In NIPS Proceedings. NIPS, 2010.

B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the fifth annual workshop on Computational learning

theory, pages 144–152. ACM, 1992.

H. Daumé. Frustratingly easy domain adaptation. In Annual meeting-association for

computational linguistics, volume 45:1, page 256, 2007.

T. Evgeniou, C.A. Micchelli, and M. Pontil. Learning multiple tasks with kernel meth-
ods. Journal of Machine Learning Research, 6(1):615–637, 2005. ISSN 1532-4435.

P. Gehler and S. Nowozin. On feature combination for multiclass object classification.
In Proc. ICCV, volume 1:2, page 6, 2009.

D. Heckerman, C. Kadie, and J. Listgarten. Leveraging information across HLA alle-
les/supertypes improves epitope prediction. Journal of Computational Biology, 14
(6):736–746, 2007. ISSN 1066-5277.

L. Jacob and J. Vert. Efficient peptide-MHC-I binding prediction for alleles with few
known binders. Bioinformatics (Oxford, England), 24(3):358–66, February 2008.

248

MTL in Computational Biology

M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien. lp-Norm Multiple Kernel Learning.
Journal of Machine Learning Research, 12:953–997, 2011.

F. Mordelet and J.P. Vert. ProDiGe: PRioritization Of Disease Genes with multitask
machine learning from positive and unlabeled examples. Arxiv preprint, 2011.

S.J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge

and Data Engineering, pages 1345–1359, 2009.

C.Y. Park, D.C. Hess, C. Huttenhower, and O.G. Troyanskaya. Simultaneous genome-
wide inference of physical, genetic, regulatory, and functional pathway components.
PLoS computational biology, 6(11):e1001009, 2010.

Y. Qi, O. Tastan, J.G. Carbonell, J. Klein-Seetharaman, and J. Weston. Semi-supervised
multi-task learning for predicting interactions between hiv-1 and human proteins.
Bioinformatics, 26(18):i645, 2010.

G. Schweikert, C. Widmer, B. Schölkopf, and G. Rätsch. An Empirical Analysis of Do-
main Adaptation Algorithms for Genomic Sequence Analysis. In D Koller, D Schu-
urmans, Y Bengio, and L Bottou, editors, Advances in Neural Information Process-

ing Systems 21, pages 1433–1440. NIPS, 2009.

S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, A. Zien, F. de Bona, C. Gehl,
A. Binder, and V. Franc. The SHOGUN machine learning toolbox. Journal of Ma-

chine Learning Research, 2010.

C. Widmer, J. Leiva, Y. Altun, and G. Rätsch. Leveraging Sequence Classification by
Taxonomy-based Multitask Learning. In B. Berger, editor, Research in Computa-

tional Molecular Biology, pages 522–534. Springer, 2010a.

C. Widmer, N.C. Toussaint, Y. Altun, O. Kohlbacher, and G. Rätsch. Novel machine
learning methods for MHC Class I binding prediction. In Pattern Recognition in

Bioinformatics, pages 98–109. Springer, 2010b.

C. Widmer, N.C. Toussaint, Y. Altun, and G. Rätsch. Inferring latent task structure for
Multitask Learning by Multiple Kernel Learning. BMC bioinformatics, 11 Suppl 8
(Suppl 8):S5, January 2010c. doi: 10.1186/1471-2105-11-S8-S5.

249

250

JMLR: Workshop and Conference Proceedings 27:217–227, 2012 Unsupervised and Transfer Learning

Transfer Learning in Sequential Decision Problems:

A Hierarchical Bayesian Approach

Aaron Wilson wilsonaa@eecs.oregonstate.edu

Alan Fern afern@eecs.oregonstate.edu

Prasad Tadepalli tadepall@eecs.oregonstate.edu

School of Electrical Engineering and Computer Science

Oregon State University

Corvallis, OR 97331

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

Transfer learning is one way to close the gap between the apparent speed of human
learning and the relatively slow pace of learning by machines. Transfer is doubly ben-
eficial in reinforcement learning where the agent not only needs to generalize from
sparse experience, but also needs to efficiently explore. In this paper, we show that
the hierarchical Bayesian framework can be readily adapted to sequential decision
problems and provides a natural formalization of transfer learning. Using our frame-
work, we produce empirical results in a simple colored maze domain and a complex
real-time strategy game. The results show that our Hierarchical Bayesian Transfer
framework significantly improves learning speed when tasks are hierarchically re-
lated.

Keywords: Reinforcement Learning, Markov Decision Processes, Transfer Learning,
Hierarchical Bayesian Framework

1. Introduction

The goal of the current paper is to explain transfer in sequential decision-making do-
mains using the hierarchical Bayesian framework. Unlike the standard supervised set-
ting, in sequential decision making, the training examples are not independently iden-
tically distributed. When learning behaviors from demonstrations, examples consist of
states and desired action sequences, which is similar to the supervised setting. How-
ever, in the more typical reinforcement learning setting, the target action sequences are
not provided. The learner must explore action sequences to determine which are are
the most rewarding. Prior knowledge informing the agent’s exploration strategy would
considerably enhance the speed of convergence. Transfer is especially attractive in re-
inforcement learning since both the discovery of good policies and their generalization
would be potentially impacted by learning from related domains.

There are opportunities to learn different kinds of knowledge through transfer in re-
inforcement learning. We describe two kinds of knowledge transfer: transfer of domain
model knowledge, and transfer of policy knowledge. In the model-based approach,

© 2012 A. Wilson, A. Fern & P. Tadepalli.

Wilson Fern Tadepalli

model learning is improved by incorporating an informative hierarchical Bayesian prior
learned from experience in early tasks. The prior represents knowledge about the world.
In the policy search approach, a prior is placed on the policy parameters themselves.
The prior represents direct knowledge of what the agent should do. In each approach, it
is assumed that there is a small but unknown number of component types which can be
learned and transferred to new tasks. When the discovered components can be reused
Transfer is successful.

2. Sequential Decision Problems and Hierarchical Transfer Hypothesis

We formulate the transfer learning problem in sequential decision making domains us-
ing the framework of Markov Decision Processes (MDPs). An MDP M is defined by a
6-tuple (S ,A,C,T, I,F), where S is a set of states and A is a set of actions. C(s,a) is the
immediate cost of executing action a in state s. Function T (s,a, s′) defines the probabil-
ity of reaching state s′ given that action a is taken in state s. I is a distribution of initial
states and F is a set of final or terminating states. A policy π for M is a mapping from
S to A. The expected cost of a policy π starting from a state s is the cumulative sum
of action costs starting from state s, and ending when the agent reaches a terminating
state. A solution to an MDP is an optimal policy that minimizes the total expected cost
from all states. The minimum expected cost from state s is the unique solution to the
following Bellman equations:

V∗(s) =

{
0 if s is a terminal state
mina C(s,a)+

∑
s′(T (s,a, s′)V∗(s′)), else

The actions that minimize the right hand side of this equation constitute the optimal
policy.

While most work in RL is concerned with solving a single unknown MDP (task),
here we are concerned with transfer across MDPs. Our objective is to develop a life-
long learning algorithm that is able to leverage experience in previous MDPs M1, . . .Mn

to more quickly learn an optimal policy in a newly drawn MDP Mn+1. If each task
faced by an agent is arbitrarily different from the previous tasks, the agent has no way
to benefit from having solved the previous tasks. To explain the apparently fast learn-
ing of people, and duplicate this learning speed in machines, we explicitly formulate
the hierarchical transfer hypothesis. It is the claim that tasks have a latent hierarchi-
cal relationship, which can be explicated and exploited to transfer knowledge between
tasks. We propose a hierarchical Bayesian framework to capture the task similarities.
We apply this framework to both model-based RL and to model-free policy search. In
model-based RL, the hierarchy represents similarities between MDP models. In the
policy search approach, the hierarchy represents similarities between policies. Below
we discuss each of these approaches in more detail.

252

Transfer Learning in Sequential Decision Problems

3. Hierarchical Model-Based Transfer

In this section, we outline our hierarchical Bayesian approach to model-based transfer
for RL problems. Figure 1(a)(bottom) illustrates our fundamental assumptions of the
task generation process. Classes of MDPs are generated from a task prior distribution,
and each task generates an MDP. The hierarchical structure assumes that each MDP Mi

is an iid sample from one of the unobserved classes. We propose a hierarchical prior
distribution, based on the Dirichlet Process (DP), in order to capture this hierarchical
structure. We aim to exploit this structure when exploring new tasks.

We describe the generative process for MDP models using Figure 1(b). The gen-
erative model is shown in plate notation. Rectangles indicate probability distributions
that are replicated a certain number of times. The number of replications is shown in
the bottom-right corner of each plate. The figure shows a distribution over N MDPs.
In each MDP the agent has made R observations. Each class C = c is associated with a
vector of parameters θc. These parameter vectors define distributions from which indi-
vidual MDPs will be drawn. The parameters ci indicate the class of MDP Mi. G0 is a
distribution over classes that corresponds to the Task Class Prior in Figure 1(a)(bottom).
Finally the parameter α is the concentration parameter of the Dirichlet Process (DP)
model. Ψ refers to the tuple of parameters Ψ = (θ,c,α). The DP generalizes the case
of a known finite number of MDP classes to a infinite number of classes. This non-
parametric model allows us to (a) model a potentially unbounded number of classes,
(b) adapt to and make inferences about classes we have not seen before, and (c) learn
the shared structure that constitutes each class, rather than predefining class specifica-
tions.

The key steps in our approach to exploiting this model are outlined in Algorithm 1.
The Hierarchical DP model is used as a prior for Bayesian RL in a new MDP. Before
any MDPs are experienced, the hierarchical model parameters Ψ are initialized to un-
informed values. The Sample function (line 5) uses the DP model to generate a sample
of several MDPs from Pr(Mi | Oi,Ψ). From this sample, the M̂i with the highest proba-
bility is selected. To select an action we solve M̂i using value iteration (line 6) and then
follow the greedy policy for k steps (line 7). Observations gathered while executing the
greedy policy are added to the collection of observation tuples Oi for the current MDP.
Next, the posterior distribution is updated, and a new sample of MDPs is taken from the
updated posterior distribution. This loop is repeated for MDP Mi until the policy has
converged. After convergence, we update the hierarchical model parameters Ψ based
on the parameter estimates M̂i. This is done using the SampleMap procedure. Sam-
pleMap uses the machinery of the DP to assign (possibly new) classes to each observed
MDPM̂1, . . . , M̂i. Given the assignments, we compute the parameters associated with
each class distribution. This process is iterated until convergence. Intuitively, as the
agent gains experience with more tasks, the samples generated by this procedure will
tend to represent the hierarchical class structures generating the MDPs. Learning speed
will improve if a new task is usefully described by the sampled hierarchical structure.

253

Wilson Fern Tadepalli

Algorithm 1 Hierarchical Model-Based Transfer Algorithm HMBT

1: Initialize the hierarchical model parameters Ψ
2: for each MDP Mi from i = 1,2, . . . do

3: Oi = ∅ //Initialize the set of observation tuples (s,a,r,s’,a’) for Mi

4: while policy π has not converged do

5: M̂i← Sample(P(M | Oi,Ψ))
6: π = Solve(M̂i) //Solve the sampled MDP using value iteration.
7: Run π in Mi for k steps.
8: Oi = Oi∪ {observations from k steps}
9: end while

10: Ψ← Sample(P(Ψ | M̂1, . . . , M̂i)) //Given fixed estimates of the MDP model pa-
rameters generate samples from the posterior distribution and select the best.

11: end for

Details for this algorithm, including specifications of the posterior sampling algorithm,
are found in Wilson et al. (2007).

Experimental Results. To test our hypotheses, we consider a simple colored maze
domain. An example maze is shown in Figure 2. The goal of the agent is to traverse the
least cost path from the start location to the final goal location. To do so, the agent may
navigate to adjacent squares by executing one of four directional actions. The agent’s
reward function is a linear function combining the costs of all squares adjacent to the
agent’s location on the map. The contributed cost of each adjacent square is a function
of its color. To do well, the agent must determine which colors have low cost and
identify a path minimizing the total cost from start to finish. In the multi-task setting the
parameters of the reward function, governing the penalty for traversing certain colors,
characterize each task, and are assumed to be generated from a hierarchical structure.
To generate a task, the world first generates a class and then generates a vector of color
costs from the sampled class. Each map is randomly colored before the agent begins its
interaction.

In the first instance of this domain the goal location is fixed. The agent must tra-
verse from the top left to the bottom right of the map. The objective is to maximize
the total reward per episode. Episodes end only after the goal is reached. Map squares
have 8 different colors and reward functions are generated from 4 distinct classes. Fig-
ure 3 shows results for this setting. Good performance is possible with a small number
of steps in each sampled MDP. Even so the benefit of transfer is obvious. Given ex-
perience in 16 MDPs the number of exploratory moves is reduced from 2500 to 100
steps – an order of magnitude difference. The curves also indicate that the algorithm
avoids negative transfer. Exploring according to the learned prior results in consistently
improved performance even when early tasks are not related to the current task.

In order to better illustrate the benefit of transfer, we consider a more difficult prob-
lem. We no longer assume that goal locations are fixed. Instead, goal locations are
sampled from a hierarchical distribution. This confounds the exploration problem for
uninformed agents, which must now identify the goal location and the color costs. Ter-

254

Transfer Learning in Sequential Decision Problems

mination is achieved when the agent finds the goal location. We present results for
larger maps, 30x30 squares, with 4 underlying classes of goal locations (each class has
goal locations distributed around a fixed map square). Results are shown in Figure 4.
The graph depicts the average performance in the first episode given a fixed number
of prior tasks. By comparison, we show the performance of the algorithm with zero
prior tasks. Improvements indicate a reduction in the number of steps needed to find
the goal. The observed improvement in average total reward is dramatic. After ten
tasks the agent has inferred a reasonable representation of the hierarchical structure
that generates the goal locations. Knowledge of this hierarchical structure reduces the
exploration problem. The agent only checks regions where goals are likely to exist.
Exploiting this hierarchical knowledge reduces the cost of exploration by an order of
magnitude.

4. Hierarchical Bayesian Policy Transfer

The premise behind the hierarchical transfer hypothesis, as it applies to policy search, is
that policies are hierarchically composed of shared components. Our Bayesian Policy
Search (BPS) algorithm learns these components in simple tasks and recombines them
into a joint policy in more difficult tasks. In some cases, tasks that are impossible to
tackle with no prior knowledge become trivial if the necessary component set is learned
from simpler tasks.

We pursue this basic idea in the context of a real time strategy game called Wargus.
The tactical conflicts we consider include groups of heterogeneous units fighting to de-
stroy one another. An example Wargus map is shown in Figure 5(a). Units controlled
by the agent include a ballista, a knight, and several archers. Each unit has a set of phys-
ical characteristics including armor, speed, location, and so on. These characteristics
naturally predispose units to particular roles in confrontations. For instance, due to its
long range the ballista is useful for destroying structures, while units close to key pieces
(such as the opposing ballista) may be best employed targeting those pieces. Therefore,
we view a policy for Wargus conflicts as a composition of roles (components) and a
means of assigning roles to units (combining components). In practice, the agent does
not know the number of roles, the type of roles, or the correct method of assigning roles
to units. Therefore, the goal of our lifelong learning agents will be to learn (or be taught
by example) a collection of roles useful for a variety of confrontations and to adapt its
method of assigning units to roles as is appropriate for novel tasks.

Our approach to the role discovery and assignment problem is to define a hierar-
chical prior distribution for the set of individual agent roles, and then to search this
structure using stochastic simulation algorithms adapted to the policy search problem.
We first define a set of policy components in the form of a parametric class of poli-
cies, then define a hierarchical Bayesian prior in the form of a modified DP model, and
finally, we define a means of searching the policy space for solutions.

It is assumed that each unit in the game acts independently of the others given their
assigned roles. The distribution of the joint action for a set of agents, conditioned on the
assigned roles, is the product of the individual action choices, P(A|s) =

∏
u P(au|s,θcu),

255

Wilson Fern Tadepalli

where A is the joint action, cu is a role index for unit u, and each θcu represents the
vector of role parameters assigned to unit u.

The hierarchical prior distribution for the role parameters, which describes a joint
policy for all agents, is shown in Figure 5(b). The prior illustrates how roles are com-
bined and associated with units in the game. There are N tasks. Each task is composed
of U units. Each unit is assigned a vector of role parameters θcu indexed by cu. The vari-
able ξu represents a set of trajectories, a sequence of state-action observations, made by
agent u when executing its policy. Assignment of units to roles depends on unit-specific
features fu and a vector of role assignment parameters φ. The vector of assignment pa-
rameters φ represent a strategy for assigning the collection of units to roles. An instance
of the role assignment strategy is associated with each of the N tasks. The set of avail-
able roles θcu is shared across all of the N tasks. Taken together, the set of parameters,
Ψ = (θ,c,φ,α), represents a joint policy for all observed tasks.

For purposes of searching the joint policy space we build on the work by Hoffman
et al. (2007). We define an artificial probability distribution,

q(Ψ) ∝ U(Ψ)P(Ψ) = P(Ψ)

∫
R(ξ)P(ξ|Ψ)dξ,

proportional to the prior distribution and a utility function. For purposes of applying this
idea to the policy search problem the utility function is defined to be the expected return
for a policy executed in an episodic environment, V(Ψ) = E(

∑T
t=1 R(st,at)|Ψ). This

formulation allows us to adapt advanced methods of stochastic simulation, developed
for estimation of probability distributions, to the problem of policy search. Essentially,
the prior distribution acts as a bias. It guides the search to regions of the policy space
believed to have a high return. The utility function plays a similar role. Samples drawn
from q(Ψ), will tend to focus around regions of the policy space with high utility.

Given N previously observed tasks, we take the following strategy. We fix the
set of previously identified roles and use this role set as prior knowledge in the new
task. Discovery of roles is a difficult process. Therefore, role reuse in the new task
can dramatically improve learning speed. Within a new task we search for strategies
that recombine these existing roles and propose new roles to overcome novel obstacles.
Algorithm 2 shown in Figure 2 is designed to implement this strategy by sampling
role-based policies given the informed prior.

The algorithm has four basic parts. We assume that trajectories of optimal policies
are available for the first N tasks. If no prior task is available the trajectory set will
be empty. Trajectories are stored to be used during inference. This brings us to the
main body of the sampling procedure, which generates samples from the artificial dis-
tribution q(Ψ). On line 5, after initializing the state of the Markov chain, the new role
assignments are sampled. Each agent is placed into one of the existing components,
or (using the mechanics of the DP) a new component generated from G0. Next, line 6
updates the role parameters using Hybrid Markov Chain Monte-Carlo (Andrieu et al.
(2003)). The key to this portion of the algorithm is the use of gradient information to
guide the simulation toward roles which yield high expected return. Next, we perform
a simple Metropolis-Hastings update for the vector of assignment parameters. Finally,

256

Transfer Learning in Sequential Decision Problems

the role-based policy with highest predicted utility is used to generate a new set of tra-
jectories. The concrete implementation of each sampling procedure can be found in
Wilson et al. (2010), which includes details of the model-free method of estimating the
utility.

Experimental Results. Our algorithm is agnostic about the process generating tra-
jectories. Trajectories may be produced by an expert, or automatically generated by
the learning agent. Figure 6 illustrates the results of transfer from a simple map, when
given examples of expert play in the simple map, to a more complex map. An expert
demonstrates 40 episodes of play in the simple map. The expert controls 6 friendly
units. Given the expertly generated trajectories, roles and an assignment strategy are
learned using the BPS algorithm. The agent attempts to transfer these learned roles to
a more difficult Wargus map where it will control 10 friendly units (see Figure 5(a)).
We compare the transfer performance, BPS:Expert, to three baselines. The first two
baselines (BPS Independent and BPS Single) represent the BPS algorithm with an en-
forced role structure. In the Independent case, all units are forcibly assigned to their
own role. In the Single case, all units share the same role. In principle, BPS with the
independent role structure can learn the correct policy and this fixed role structure may
be beneficial when roles are not shared. Similarly, if a single role will suffice, then
BPS run with all agents assigned to a single policy will be ideal. Independent and Sin-
gle baselines cannot make use of the role structure, and therefore they cannot benefit
from transfer. Instead, they must learn their policies from scratch. Finally, we compare
our performance to OLPOMDP where units independently learn a policy (Baxter et al.
(2001)). Results are shown in Figure 6. The BPS algorithm benefits substantially from
identifying and transferring the expert roles.

Experts are not always available. Unfortunately, learning in our test map is more
difficult when examples of expert play are not provided. On the test map used above,
which represents a large multi-agent system, it was difficult to learn a good policy using
BPS without prior knowledge. To overcome this problem without resorting to expert
help we first allow BPS to learn a useful role structure in a simpler map (by observation
of its own behavior). Subsequently, we use the learned prior distribution in the larger
10 unit map. The results are shown in Figure 7, BPS:BPS Map 1. The roles learned
in the simpler problem make learning the harder task tractable. By comparison, BPS
without the prior knowledge takes much longer to identify a policy.

5. Conclusion

This work focuses on a hierarchical Bayesian framework for transfer in sequential de-
cision making tasks. We describe means of transferring two basic kinds of knowledge.
The HMBT algorithm learns a hierarchical structure representing classes of MDPs. The
HMBT algorithm transfers knowledge of domain models to new tasks by estimating a
hierarchical generative model of domain model classes. We illustrated the effective-
ness of learning the MDP class hierarchy in a simple colored maze domain. Results
show that transferring the class structure can dramatically improve the quality of ex-
ploration in new tasks. Furthermore, the special properties of the HMBT algorithm

257

Wilson Fern Tadepalli

Algorithm 2 Bayesian Policy Search

1: Initialize parameters of the role-based policy: Ψ0

2: Initialize the sets of observed trajectories: ξ = ∅
3: Generate n trajectories from the domain using Ψ0.
4: ξ← ξ∪ {ξi}i=1..n

5: S = ∅
6: for t = 1 : T do

7: //Generate a sequence of samples from the artificial distribution.
8: Ψt← S ample(Û(Ψt−1)P(Ψt−1))
9: Record the samples:

10: S ← S ∪ (Ψt)
11: end for

12: Set Ψ0 = argmax(Ψt)∈S U(Ψt) //Select the role-based policy maximizing the ex-
pected return.

13: Return to Line 2.

prevent transfer of incorrect knowledge. The BPS algorithm learns a hierarchical prior
for multi-agent policies. It assumes that policies for each domain are composed of mul-
tiple roles, and the roles are assigned to units in the game via a hierarchical strategy.
Our empirical results show that tactical conflicts in Wargus exemplify this hierarchical
structure. Distinct roles can be discovered and transferred across tasks. To facilitate this
transfer, the BPS algorithm can learn roles from expert examples as well as observing
its own play in simple tasks. By learning in simple task instances first the algorithm
can tackle increasingly sophisticated problems.

References

Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan. An in-
troduction to MCMC for machine learning. Machine Learning, 50(1):5–43, January
2003. doi: 10.1023/A:1020281327116.

Jonathan Baxter, Peter L. Bartlett, and Lex Weaver. Experiments with infinite-horizon,
policy-gradient estimation. Journal of Artificial Intelligence Research, 15(1):351–
381, 2001. ISSN 1076-9757.

Mathew Hoffman, Arnaud Doucet, Nando de Freitas, and Ajay Jasra. Bayesian policy
learning with trans-dimensional MCMC. NIPS, 2007.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement
learning: a hierarchical bayesian approach. In ICML, pages 1015–1022, 2007.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. Bayesian role discovery for multi-
agent reinforcement learning. In AAAI, 2010.

258

Transfer Learning in Sequential Decision Problems

(a)

(b)

Figure 1: (a) (top) Single task Bayesian RL vs. (bottom) Hierarchical Model-Based
Transfer. The number N and parameters of the induced distributions are
learned from data. (b) The corresponding Infinite Mixture Model (Parameter
set Ψ). The task prior is represented by G0, task class distributions have
parameters θ, classes are indexed by c, Mi represents the ith MDP model
parameters, the tuples (s,a,r, s′,a′) are the observed transition and reward
data, and α is the Dirichlet Process concentration parameter.

259

Wilson Fern Tadepalli

Figure 2: The colored map domain. Tile squares are randomly colored. Each color has
a cost. When the agent lands on a square it receives a penalty proportional to
the cost of the occupied square and the costs of adjacent squares. The agent’s
goal is to traverse the least cost path from the top left to the bottom right.

Figure 3: Learning curves for the fixed goal location problem. Performance is evalu-
ated after 0, 4, 8, and 16 tasks have been solved.

260

Transfer Learning in Sequential Decision Problems

Figure 4: Average cost of finding the hidden goal location in the first episode. Perfor-
mance is a function of experience in previous tasks.

261

264

Datasets of the Unsupervised and Transfer Learning

Challenge

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Report prepared by Isabelle Guyon with information from the data donors listed below:

Handwriting recognition (AVICENNA) – Reza Farrahi Moghaddam, Mathias Adan-
kon, Kostyantyn Filonenko, Robert Wisnovsky, and Mohamed Chériet (Ecole de
technologie supérieure de Montréal, Quebec) contributed the dataset of Arabic
manuscripts.

Human action recognition (HARRY) – Ivan Laptev and Barbara Caputo collected
and made publicly available the KTH human action recognition datasets. Marcin
Marszałek, Ivan Laptev and Cordelia Schmid collected and made publicly avail-
able the Hollywood 2 dataset of human actions and scenes.

Object recognition (RITA) – Antonio Torralba, Rob Fergus, and William T. Free-
man, collected and made available publicly the 80 million tiny image dataset.
Vinod Nair and Geoffrey Hinton collected and made available publicly the CI-
FAR datasets. See the techreport Learning Multiple Layers of Features from Tiny
Images, by Alex Krizhevsky, 2009, for details.

Ecology (SYLVESTER) – Jock A. Blackard, Denis J. Dean, and Charles W. Anderson
of the US Forest Service, USA, collected and made available the (Forest cover
type) dataset.

Text processing (TERRY) – David Lewis formatted and made publicly available the
RCV1-v2 Text Categorization Test Collection derived from REUTER news clips.

The toy example (ULE) is the MNIST handwritten digit database made available by
Yann LeCun and Corinna Costes.

1. Data formats

All the data sets are in the same format; xxx should be replaced by one of:

devel: development data

valid: evaluation data used as validation set

final: final evaluation data

265

Table 1: Datasets of the unsupervised and transfer learning challenge.

Dataset Domain
Feat.
num.

Sparsity
(%)

Development
num.

Transfer
num.

Validation
num.

Final
Eval.
num.

Data
(text)

Data
(Matlab)

AVICENNA
Arabic
manuscripts

120 0.00 150205 50000 4096 4096
16
MB

14 MB

HARRY
Human
action
recognition

5000 98.12 69652 20000 4096 4096
13
MB

15 MB

RITA
Object
recognition

7200 1.19 111808 24000 4096 4096
1026
MB

762 MB

SYLVESTER Ecology 100 0.00 572820 100000 4096 4096
81
MB

69 MB

TERRY
Text
recognition

47236 99.84 217034 40000 4096 4096
73
MB

56 MB

ULE
(toy data)

Handwritten
digits

784 80.85 26808 10000 4096 4096 7 MB 13 MB

The participants have access only to the files outlined in red:

dataname.param: Parameters and statistics about the data

dataname xxx.data: Unlabeled data (a matrix of space delimited numbers, patterns in
lines, features in columns).

dataname xxx.mat: The same data matrix in Matlab format in a matrix called X xxx.

dataname transfer.label: Target values provided for transfer learning only. Multiple
labels (1 per column), label values are -1, 0, or 1 (for negative class, unknown,
positive class).

dataname valid.label: Target values, not provided to participants.

dataname final.label: Target values, not provided to participants.

dataname xxx.dataid: Identity of the samples (lines of the data matrix).

dataname xxx.labelid: Identity of the labels (variables that are target values, i.e.,
columns of the label matrix.)

dataname.classid: strings representing the names of the classes.

The participants will use the following formats results:

dataname valid.prepro: Preprocessed data send during the development phase.

dataname final.prepro: Preprocessed data for the final submission.

266

Datasets of the Unsupervised and Transfer Learning Challenge

2. Metrics

The data representations are assessed automatically by the evaluation platform. To each
evaluation set (validation set or final evaluation set) the organizers have assigned several
binary classification tasks unknown to the participants. The platform will use the data
representations provided by the participants to train a linear classifier (code provided in
Appendix) to solve these tasks.

To that end, the evaluation data (validation set or final evaluation set) are partitioned
randomly into a training set and a test set. The parameters of the linear classifier are
adjusted using the training set. Then, predictions are made on test data using the trained
model. The Area Under the ROC curve (AUC) is computed to assess the performance
of the linear classifier. The results are averaged over all tasks and over several random
splits into a training set and a complementary test set.

The number of training examples is varied and the AUC is plotted against the num-
ber of training examples in a log scale (to emphasize the results on small numbers of
training examples). The area under the learning curve (ALC) is used as scoring metric
to synthesize the results.

The participants are ranked by ALC for each individual dataset. The participants
having submitted a complete experiment (results on all 5 datasets of the challenge)
enter the final ranking. The winner is determined by the best average rank over all
datasets for the results of their last complete experiment.

2.1. Global Score: The Area under the Learning Curve (ALC)

The prediction performance is evaluated according to the Area under the Learning
Curve (ALC). A learning curve plots the Area Under the ROC curve (AUC) aver-
aged over all the binary classification tasks and all evaluation data splits. The AUC is
the area of the curve that plots the sensitivity (error rate of the “positive class”) vs. the
specificity (error rate of the “negative” class).

We consider two baseline learning curves:

1. The ideal learning curve, obtained when perfect predictions are made (AUC=1).
It goes up vertically then follows AUC=1 horizontally. It has the maximum area
“Amax”.

2. The “lazy” learning curve, obtained by making random predictions (expected
value of AUC: 0.5). It follows a straight horizontal line. We call its area “Arand”.

To obtain our ranking score displayed in Mylab and on the Leaderboard, we normalize
the ALC as follows:

global score = (ALC−Arand)/(Amax−Arand)

For simplicity, we call ALC the normalized ALC or global score.
We show in Figure 3 examples of learning curves for the toy example ULE, obtained

using the sample code. Note that we interpolate linearly between points. The global
score depends on how we scale the x-axis. We use a log2 scaling for all datasets.

267

3. A – ULE

This dataset is not part of the challenge. It is given as an example, for illustration

purpose, together with ALL the labels.

3.1. Topic

The task of ULE is handwritten digit recognition.

3.2. Sources

3.2.1. Original owners

The data set was constructed from the MNIST data that is made available by Yann Le-
Cun of the NEC Research Institute at http://yann.lecun.com/exdb/mnist/.

The digits have been size-normalized and centered in a fixed-size image of dimen-
sion 28×28. We show examples of digits in Figure 1.

Figure 1: Examples of digits from the MNIST database.

268

Datasets of the Unsupervised and Transfer Learning Challenge

Table 2: Number of examples in the original data

Digit 0 1 2 3 4 5 6 7 8 9 Total

Training 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949 60000

Test 980 1135 1032 1010 982 892 958 1028 974 1009 10000

Total 6903 7877 6990 7141 6824 6313 6876 7293 6825 6958 70000

3.2.2. Donor of database

This version of the database was prepared for the “unsupervised and transfer learning
challenge” by Isabelle Guyon, 955 Creston Road, Berkeley, CA 94708, USA
(isabelle@clopinet.com).

3.2.3. Date prepared for the challenge

November 2010.

3.3. Past usage

Many methods have been tried on the MNIST database, in its original data split (60,000
training examples, 10,000 test examples, 10 classes.) Table 3 is an abbreviated list from
http://yann.lecun.com/exdb/mnist/:

This dataset was used in the NIPS 2003 Feature Selection Challenge under the
name GISETTE and in the WCCI 2006 Performance Prediction Challenge and the
IJCNN 2007 Agnostic Learning vs. Prior Knowledge Challenge under the name GINA.

References

Gradient-based learning applied to document recognition. Y. LeCun, L. Bottou,
Y. Bengio, and P. Haffner. In Proceedings of the IEEE, 86(11):2278–2324, Nov-
ember 1998.

Result Analysis of the NIPS 2003 Feature Selection Challenge. Isabelle Guyon,
Asa Ben Hur, Steve Gunn, Gideon Dror, Advances in Neural Information Pro-
cessing Systems 17, MIT Press, 2004.

Agnostic Learning vs. Prior Knowledge Challenge. Isabelle Guyon, Amir Saffari,
Gideon Dror, and Gavin Cawley. In Proceedings IJCNN 2007, Orlando, Florida,
August 2007.

Analysis of the IJCNN 2007 Agnostic Learning vs. Prior Knowledge Challenge.

Isabelle Guyon, Amir Saffari, Gideon Dror, and Gavin Cawley, Neural Network
special anniversary issue, in press. [Earlier draft]

269

Table 3: Previous results for MNIST (ULE)

METHOD
TEST ERROR RATE

(%)

linear classifier (1-layer NN) 12.0

linear classifier (1-layer NN) [deskewing] 8.4

pairwise linear classifier 7.6

K-nearest-neighbors, Euclidean 5.0

K-nearest-neighbors, Euclidean, deskewed 2.4

40 PCA + quadratic classifier 3.3

1000 RBF + linear classifier 3.6

K-NN, Tangent Distance, 16x16 1.1

SVM deg 4 polynomial 1.1

Reduced Set SVM deg 5 polynomial 1.0

Virtual SVM deg 9 poly [distortions] 0.8

2-layer NN, 300 hidden units 4.7

2-layer NN, 300 HU, [distortions] 3.6

2-layer NN, 300 HU, [deskewing] 1.6

2-layer NN, 1000 hidden units 4.5

2-layer NN, 1000 HU, [distortions] 3.8

3-layer NN, 300+100 hidden units 3.05

3-layer NN, 300+100 HU [distortions] 2.5

3-layer NN, 500+150 hidden units 2.95

3-layer NN, 500+150 HU [distortions] 2.45

LeNet-1 [with 16x16 input] 1.7

LeNet-4 1.1

LeNet-4 with K-NN instead of last layer 1.1

LeNet-4 with local learning instead of ll 1.1

LeNet-5, [no distortions] 0.95

LeNet-5, [huge distortions] 0.85

LeNet-5, [distortions] 0.8

Boosted LeNet-4, [distortions] 0.7

K-NN, shape context matching 0.67

270

Datasets of the Unsupervised and Transfer Learning Challenge

Hand on Pattern Recognition, challenges in data representation, model selection,

and performance prediction. Book in preparation. Isabelle Guyon, Gavin Caw-
ley, Gideon Dror, and Amir Saffari Editors.

3.4. Experimental design

We used the raw data:

• The feature names are the (i, j) matrix coordinates of the pixels (in a 28× 28
matrix.)

• The data have gray level values between 0 and 255.

• The validation set and the final test set have approximately even numbers of ex-
amples for each class.

3.5. Number of examples and class distribution

Table 4: Data statistics for ULE

Dataset Domain
Feat.

num.

Sparsity

(%)

Development

num.

Transfer

num.

Validation

num.

Final

Eval.

num.

ULE Handwriting 784 80.85 26808 10000 4096 4096

All variables are numeric (no categorical variable). There are no missing values.
The target variables are categorical. Here is class label composition of the data subsets:

Validation set: X[4096, 784] Y[4096, 1]

One: 1370

Three: 1372

Seven: 1354

Final set: X[4096, 784] Y[4096, 1]

Zero: 1376

Two: 1373

Six: 1347

Development set: X[26808, 784] Y[26808, 1]

Zero: 2047

One: 2556

Two: 2089

271

Three: 2198

Four: 3426

Five: 3179

Six: 2081

Seven: 2314

Eight: 3470

Nine: 3448

Transfer labels (10000 labels):

Four: 2562

Five: 2301

Eight: 2564

Nine: 2573

3.6. Type of input variables and variable statistics

The variables in raw data are pixels. We also produced baseline results using as vari-
ables Gaussian RBF values with 20 cluster centers generated by the Kmeans clustering
algorithm. The algorithm was run on the validation set and the final evaluation set sep-
arately. The development set and the transfer labels were not used. The cluster centers
are shown in Figure 2.

3.7. Baseline results

We used a linear classifier making independence assumptions between variables, simi-
lar to Naı̈ve Bayes, to generate baseline learning curves from raw data and preprocessed
data. The normalized ALC (score used in the challenge) are shown in Figures 3 and 4
and summarized in Table 5.

Table 5: Baseline results (normalized ALC for 64 training examples).

ULE Valid Final

Raw 0.7905 0.7169

Preprocessed 0.8416 0.3873

4. B – AVICENNA

4.1. Topic

The AVICENNA dataset provides a feature representation of Arabic Historical Manu-
scripts.

272

Datasets of the Unsupervised and Transfer Learning Challenge

(a) Validation set cluster centers

(b) Final evaluation set cluster centers

Figure 2: Clusters obtained by Kmeans clustering

273

(a)

(b)

Figure 3: Baseline results on raw ULE data. Top: validation set. Bottom: final evalua-
tion set.

274

Datasets of the Unsupervised and Transfer Learning Challenge

(a)

(b)

Figure 4: Baseline results on preprocessed ULE data. Top: validation set. Bottom:
final evaluation set.

275

4.2. Sources

4.2.1. Original owners

The dataset is prepared on manuscript images provided by The Institute of Islamic
Studies (IIS), McGill.

Manuscript author: Abu al-Hasan Ali ibn Abi Ali ibn Muhammad al-Amidi (d. 1243
or 1233)

Manuscript title: Kitab Kashf al-tamwihat fi sharh al-Tanbīhāt (Commentary on Ibn
Sina’s al-Isharat wa-al-tanbihat)

Brief description: Among the works of Avicenna, his al-Isharat wa-al-tanbihat re-
ceived the attention of the later scholars more than others. The reception of
this work is particularly intensive and widespread in the period between the late
twelfth century to the first half of the fourteenth century, when more than a dozen
comprehensive commentaries on this work were composed. These commentaries
were one of the main ways of approaching, understanding and developing Avi-
cenna’s philosophy and therefore any study of Post-Avicennian philosophy needs
to pay specific attention to this commentary tradition. Kashf al-tamwihat fi sharh

al-Tanbihat by Abu al-Hasan Ali ibn Abi Ali ibn Muhammad al-Amidi (d. 1243
or 1233), one of the early commentaries written on al-Isharat wa-al-tanbihat, is
an unpublished commentary which still await scholars’ attention.

4.2.2. Donors of the database

Reza Farrahi Moghaddam, Mathias Adankon, Kostyantyn Filonenko, Robert Wisnovsky,
and Mohamed Cheriet.

Contact:

Mohamed Cheriet
Synchromedia Laboratory
ETS, Montréal, (QC) Canada H3C 1K3
mohamed.cheriet@etsmtl.ca

Tel: +1(514)396-8972
Fax: +1(514)396-8595

4.2.3. Date received:

December 2010

4.3. Past usage:

Part of the data was used in the active learning challenge (http://clopinet.com/
al).

276

Datasets of the Unsupervised and Transfer Learning Challenge

4.4. Experimental design

The features were extracted following the procedure described in the JMLR W&CP
paper: IBN SINA: A database for handwritten Arabic manuscripts understanding re-
search, by Reza Farrahi Moghaddam, Mathias Adankon, Kostyantyn Filonenko, Robert
Wisnovsky, and Mohamed Chériet. The original data includes 92 numeric features. We
added 28 distracters then rotated the feature space with a random rotation matrix. Fi-
nally, the features were quantized and rescaled between 0 and 999.

4.5. Data statistics

Table 6: Data statistics for AVICENNA.

Dataset Domain
Feat.

num.

Sparsity

(%)

Development

num.

Transfer

num.

Validation

num.

Final

Eval.

num.

AVICENNA
Arabic
manuscripts

120 0 150205 50000 4096 4096

Table 7: Original feature statistics

Name Type Min Max Num val

Aspect ratio continuous 0 999 395

Horizontal frequency ordinal 1 13 13

Vertical CM ratio continuous 0 999 539

Singular points continuous 0 238 51

Height ratio continuous 0 999 163

Hole feature binary 0 1 2

End points continuous 0 72 43

Dot feature binary 0 1 2

BP hole 1 binary 0 1 2

BP EP 1 binary 0 1 2

BP BP 1 binary 0 1 2

BP hole 2 binary 0 1 2

BP EP 2 binary 0 1 2

BP BP 2 binary 0 1 2

BP hole 3 binary 0 1 2

BP EP 3 binary 0 1 2

BP BP 3 binary 0 1 2

BP hole 4 binary 0 1 2

BP EP 4 binary 0 1 2

Continued overleaf

277

Continued from previous page

Name Type Min Max Num val

BP BP 4 binary 0 1 2

BP hole 5 binary 0 1 2

BP EP 5 binary 0 1 2

BP BP 5 binary 0 1 2

BP hole 6 binary 0 1 2

BP EP 6 binary 0 1 2

BP BP 6 binary 0 1 2

EP BP 1 binary 0 1 2

EP EP 1 binary 0 1 2

EP VCM 1 ordinal 0 2 3

EP BP 2 binary 0 1 2

EP EP 2 binary 0 1 2

EP VCM 2 ordinal 0 2 3

EP BP 3 binary 0 1 2

EP EP 3 binary 0 1 2

EP VCM 3 ordinal 0 2 3

EP BP 4 binary 0 1 2

EP EP 4 binary 0 1 2

EP VCM 4 ordinal 0 2 3

EP BP 5 binary 0 1 2

EP EP 5 binary 0 1 2

EP VCM 5 ordinal 0 2 3

EP BP 6 binary 0 1 2

EP EP 6 binary 0 1 2

EP VCM 6 ordinal 0 2 3

BP dot UP 1 binary 0 1 2

BP dot DOWN 1 binary 0 1 2

BP dot UP 2 binary 0 1 2

BP dot DOWN 2 binary 0 1 2

BP dot UP 3 binary 0 1 2

BP dot DOWN 3 binary 0 1 2

BP dot UP 4 binary 0 1 2

BP dot DOWN 4 binary 0 1 2

BP dot UP 5 binary 0 1 2

BP dot DOWN 5 binary 0 1 2

BP dot UP 6 binary 0 1 2

BP dot DOWN 6 binary 0 1 2

EP dot 1 binary 0 1 2

EP dot 2 binary 0 1 2

Continued overleaf

278

Datasets of the Unsupervised and Transfer Learning Challenge

Continued from previous page

Name Type Min Max Num val

EP dot 3 binary 0 1 2

EP dot 4 binary 0 1 2

EP dot 5 binary 0 1 2

EP dot 6 binary 0 1 2

Dot dot 1 binary 0 1 2

Dot dot 2 binary 0 1 2

Dot dot 3 binary 0 1 2

Dot dot 4 binary 0 1 2

Dot dot 5 binary 0 1 2

Dot dot 6 binary 0 1 2

EP S Shape 1 ordinal 0 2 3

EP clock 1 ordinal 0 3 4

EP UP BP 1 binary 0 1 2

EP DOWN BP 1 binary 0 1 2

EP S Shape 2 ordinal 0 2 3

EP clock 2 ordinal 0 3 4

EP UP BP 2 binary 0 1 2

EP DOWN BP 2 binary 0 1 2

EP S Shape 3 ordinal 0 2 3

EP clock 3 ordinal 0 3 4

EP UP BP 3 binary 0 1 2

EP DOWN BP 3 binary 0 1 2

EP S Shape 4 ordinal 0 2 3

EP clock 4 ordinal 0 3 4

EP UP BP 4 binary 0 1 2

EP DOWN BP 4 binary 0 1 2

EP S Shape 5 ordinal 0 2 3

EP clock 5 ordinal 0 3 4

EP UP BP 5 binary 0 1 2

EP DOWN BP 5 binary 0 1 2

EP S Shape 6 ordinal 0 2 3

EP clock 6 ordinal 0 3 4

EP UP BP 6 binary 0 1 2

EP DOWN BP 6 binary 0 1 2

There are no missing values. The data were split as follows:

Validation set: X[4096, 120] Y[4096, 5]

EU: 1113

HU: 875

279

bL: 1105

jL: 837

tL: 1110

Final set: X[4096, 120] Y[4096, 5]

dL: 966

hL: 1188

kL: 896

qL: 982

sL: 863

Development set: X[150205, 120] Y[150205, 52]

AU: 7

BU: 2

CU: 1

DU: 773

EU: 4712

FU: 2

HU: 506

IU: 67

JU: 2

KU: 552

LU: 8

NU: 7

QU: 182

RU: 4

SU: 777

TU: 372

VU: 3

WU: 2

XU: 161

YU: 6

aL: 27219

bL: 3462

280

Datasets of the Unsupervised and Transfer Learning Challenge

cL: 567

dL: 2204

eL: 7

fL: 4225

hL: 6969

iL: 35

jL: 483

kL: 2722

lL: 16345

mL: 9475

nL: 8276

qL: 2270

rL: 4582

sL: 360

tL: 3217

uL: 14

vL: 9750

wL: 468

xL: 557

yL: 9201

zL: 416

Transfer labels (50000 labels):

aL: 25610

lL: 15407

rL: 4301

vL: 9152

yL: 8687

4.6. Baseline results

We show first the ridge regression performances obtained by separating one class vs.
the rest, training and testing on a balanced subset of examples.

281

Class 50 -- xL = 619 patterns -- AUC=0.9411

Class 36 -- jL = 1350 patterns -- AUC=0.9168

Class 19 -- SU = 958 patterns -- AUC=0.9135

Class 49 -- wL = 534 patterns -- AUC=0.9134

Class 30 -- dL = 3477 patterns -- AUC=0.9080

Class 20 -- TU = 470 patterns -- AUC=0.9078

Class 4 -- DU = 849 patterns -- AUC=0.9045

Class 45 -- sL = 1274 patterns -- AUC=0.8987

Class 52 -- zL = 537 patterns -- AUC=0.8961

Class 37 -- kL = 3734 patterns -- AUC=0.8861

Class 48 -- vL = 10828 patterns -- AUC=0.8766

Class 34 -- hL = 8677 patterns -- AUC=0.8709

Class 17 -- QU = 194 patterns -- AUC=0.8668

Class 11 -- KU = 597 patterns -- AUC=0.8584

Class 8 -- HU = 1450 patterns -- AUC=0.8555

Class 28 -- bL = 4858 patterns -- AUC=0.8543

Class 5 -- EU = 6103 patterns -- AUC=0.8491

Class 29 -- cL = 677 patterns -- AUC=0.8472

Class 46 -- tL = 4672 patterns -- AUC=0.8434

Class 27 -- aL = 29217 patterns -- AUC=0.8399

Class 43 -- qL = 3437 patterns -- AUC=0.8384

Class 51 -- yL = 10939 patterns -- AUC=0.8342

Class 24 -- XU = 180 patterns -- AUC=0.8270

Class 44 -- rL = 5080 patterns -- AUC=0.8221

Class 40 -- nL = 9209 patterns -- AUC=0.8172

Class 38 -- lL = 18869 patterns -- AUC=0.8138

Class 39 -- mL = 10833 patterns -- AUC=0.7895

Class 32 -- fL = 4709 patterns -- AUC=0.7771

Class 1 -- AU = 10 patterns -- AUC=0.5000

Class 2 -- BU = 2 patterns -- AUC=0.5000

Class 3 -- CU = 1 patterns -- AUC=0.5000

Class 6 -- FU = 3 patterns -- AUC=0.5000

Class 7 -- GU = 0 patterns -- AUC=0.5000

Class 10 -- JU = 2 patterns -- AUC=0.5000

Class 12 -- LU = 8 patterns -- AUC=0.5000

Class 13 -- MU = 1 patterns -- AUC=0.5000

Class 14 -- NU = 8 patterns -- AUC=0.5000

Class 15 -- OU = 0 patterns -- AUC=0.5000

Class 16 -- PU = 0 patterns -- AUC=0.5000

Class 18 -- RU = 6 patterns -- AUC=0.5000

Class 21 -- UU = 0 patterns -- AUC=0.5000

Class 22 -- VU = 5 patterns -- AUC=0.5000

Class 23 -- WU = 2 patterns -- AUC=0.5000

282

Datasets of the Unsupervised and Transfer Learning Challenge

Class 25 -- YU = 8 patterns -- AUC=0.5000

Class 26 -- ZU = 0 patterns -- AUC=0.5000

Class 31 -- eL = 7 patterns -- AUC=0.5000

Class 33 -- gL = 0 patterns -- AUC=0.5000

Class 35 -- iL = 41 patterns -- AUC=0.5000

Class 41 -- oL = 0 patterns -- AUC=0.5000

Class 42 -- pL = 0 patterns -- AUC=0.5000

Class 47 -- uL = 16 patterns -- AUC=0.5000

Class 9 -- IU = 79 patterns -- AUC=0.0385

The performances of ridge regression are rather good on the classes selected for
validation and final testing, when training and testing on a balanced subset of examples
(half of the examples ending up in the training set and half in the test set):

Validation set:

Class 4 -- DU = 837 patterns -- AUC=0.8802

Class 2 -- BU = 875 patterns -- AUC=0.8193

Class 3 -- CU = 1105 patterns -- AUC=0.8172

Class 5 -- EU = 1110 patterns -- AUC=0.7938

Class 1 -- AU = 1113 patterns -- AUC=0.7470

Final evaluation set:

Class 1 -- AU = 966 patterns -- AUC=0.9348

Class 3 -- CU = 896 patterns -- AUC=0.8910

Class 2 -- BU = 1188 patterns -- AUC=0.8663

Class 5 -- EU = 863 patterns -- AUC=0.8336

Class 4 -- DU = 982 patterns -- AUC=0.7712

However, when we make learning curves, the classes are not well balanced and the
number of training examples is small, so the performances are not as good. We show
results on raw data in Figure 5. The baseline results obtained by preprocessing with
K-means clustering are even worse. Note that we verified that rotating the space and
quantizing does not harm performance. The baseline results indicate that this dataset is
much harder than ULE.

Table 8: Baseline results (normalized ALC for 64 training examples).

AVICENNA Valid Final

Raw 0.1034 0.1501

Preprocessed 0.0856 0.0973

283

(a)

(b)

Figure 5: Baseline results on raw data (top valid, bottom final).

284

Datasets of the Unsupervised and Transfer Learning Challenge

5. C – HARRY

5.1. Topic

The task of HARRY (Human Action Recognition) is action recognition in movies.

Figure 6: Action Recognition in Movies

5.2. Sources

5.2.1. Original owners

Ivan Laptev and Barbara Caputo collected and made publicly available the KTH hu-
man action recognition datasets. Marcin Marszałek, Ivan Laptev and Cordelia Schmid
collected and made publicly available the Hollywood 2 dataset of human actions and
scenes.

We are grateful to Graham Taylor for providing us with the data in preprocessed
STIP feature format and for providing Matlab code to read the format and create a
bag-of-STIP-features representation.

5.2.2. Donor of database

This version of the database was prepared for the “unsupervised and transfer learning
challenge” by Isabelle Guyon, 955 Creston Road, Berkeley, CA 94708, USA
(isabelle@clopinet.com).

5.2.3. Date prepared for the challenge:

November–December 2010.

5.3. Past Usage

The original Hollywood-2 dataset contains 12 classes of human actions and 10 classes
of scenes distributed over 3669 video clips and approximately 20.1 hours of video in
total. The dataset intends to provide a comprehensive benchmark for human action
recognition in realistic and challenging settings. The dataset is composed of video clips
extracted from 69 movies, it contains approximately 150 samples per action class and
130 samples per scene class in training and test subsets. A part of this dataset was

285

originally used in the paper “Actions in Context”, Marszałek et al. in Proc. CVPR’09.
Hollywood-2 is an extension of the earlier Hollywood dataset.

The feature representation called STIP on which we based the preprocessing have
been successfully used for action recognition in the paper “Learning Realistic Human
Actions from Movies”, Ivan Laptev, Marcin Marszałek, Cordelia Schmid and Benjamin
Rozenfeld; in Proc. CVPR’08. See also the on-line paper description http://www.
irisa.fr/vista/actions/.

The results on classifying KTH actions reported by the authors are listed in Table 9.

Table 9: Results on classifying KTH actions reported by authors

Method
Schuldt et al.

[icpr04]
Niebles et al.

[bmvc06]
Wong et al.

[iccv07]
ours

Accuracy 71.7% 81.5% 86.7% 91.8%

And those from Hollywood movie actions are listed in Table 10.

Table 10: Hollywood movie actions

Clean Automatic Chance

AnswerPhone 32.1% 16.4% 10.6%
GetOutCar 41.5% 16.4% 6.0%
HandShake 32.3% 9.9% 8.8%
HugPerson 40.6% 26.8% 10.1%
Kiss 53.3% 45.1% 23.5%
SitDown 38.6% 24.8% 13.8%
SitUp 18.2% 10.4% 4.6%
StandUp 50.5% 33.6% 22.6%

The Automatic training set was constructed using automatic action annotation based
on movie scripts and contains over 60% correct action labels. The Clean training set
was obtained by manually correcting the Automatic set.

5.4. Experimental Design

The data were preprocessed into STIP features using the code of Ivan Laptev: http:
//www.irisa.fr/vista/Equipe/People/Laptev/download/stip-1.

0-winlinux.zip.
The STIP features are described in:

“On Space-Time Interest Points” (2005), I. Laptev; in International Journal of Com-

puter Vision, vol 64, number 2/3, pp.107–123.

286

Datasets of the Unsupervised and Transfer Learning Challenge

This yielded both HOG and HOF features for every video frame (in the original
format, there are 6 ints followed by 1 float confidence value followed by 162 float
HOG/HOF features). The code does not implement scale selection, Instead interest
points are detected at multiple spatial and temporal scales. The implemented descrip-
tors HOG (Histograms of Oriented Gradients) and HOF (Histograms of Optical Flow)
are computed for 3D video patches in the neighborhood of detected STIPs.

The final representation is a “bag of STIP features”. The vectors of HOG/HOF
features were clustered into 5000 clusters (we used the KTH data for clustering), using
on on-line version of the kmeans algorithm. Each video frame was then assigned to
its closest cluster center. We obtained a sparse representation of 5000 features, each
feature representing the frequency of presence of a given STIP feature cluster center in
a video clip.

To create a large dataset of video examples, the original videos were cut in smaller
clips:

Each Hollywood2 movie clip was further split into 40 subsequences and each KTH
movie clip was further split into 4 subsequences. Not normalization for sequence length
was performed.

5.5. Data statistics

Table 11: Data statistics for HARRY

Dataset Domain
Feat.
num.

Sparsity
(%)

Development
num.

Transfer
num.

Validation
num

Final
eval.
num.

HARRY
Human Action
Recognition

5000 98.12 69652 20000 4096 4096

All variables are numeric (no categorical variable). There are no missing values.
The target variables are categorical. The patterns and categories selected for the valida-
tion and final evaluation sets are all from the KTH dataset. Here is class label compo-
sition of the data subsets:

Validation set: X[4096, 5000] Y[4096, 3]

boxing: 1370

handclapping: 1377

jogging: 1349

Final set: X[4096, 5000] Y[4096, 3]

handwaving: 1360

running: 1369

287

walking: 1367

Development set: X[69652, 5000] Y[69652, 18]

boxing: 218

handclapping: 207

handwaving: 232

jogging: 251

running: 231

walking: 233

AnswerPhone: 5200

DriveCar: 7480

Eat: 2920

FightPerson: 4960

GetOutCar: 4320

HandShake: 3080

HugPerson: 5200

Kiss: 8680

Run: 11040

SitDown: 8480

SitUp: 2440

StandUp: 11120

Transfer labels (20000 labels):

DriveCar: 5831

Eat: 2213

FightPerson: 3847

Run: 8547

5.6. Baseline results

The data were preprocessed with kmeans clustering as described in Section 3.

6. D – RITA

6.1. Topic

The task of RITA (Recognition of Images of Tiny Area) is object recognition.

288

Datasets of the Unsupervised and Transfer Learning Challenge

Table 12: Baseline results (normalized ALC for 64 training examples).

HARRY Valid Final

Raw 0.6264 0.6017

Preprocessed 0.2230 0.2292

(a)

(b)

Figure 7: Baseline results on raw data (top valid, bottom final).

289

Figure 8: Recognition of Images of Tiny Area

6.2. Sources

6.2.1. Original owners

Antonio Torralba, Rob Fergus, and William T. Freeman, collected and made available
publicly the 80 million tiny image dataset. Vinod Nair and Geoffrey Hinton collected
and made available publicly the CIFAR datasets.

6.2.2. Donor of database

This version of the database was prepared for the “unsupervised and transfer learning
challenge” by Isabelle Guyon, 955 Creston Road, Berkeley, CA 94708, USA
(isabelle@clopinet.com).

6.2.3. Date prepared for the challenge:

December 2010.

6.3. Past usage

Learning Multiple Layers of Features from Tiny Images, by Alex Krizhevsky, Mas-
ter thesis, Univ. Toronto, 2009.

Semi-Supervised Learning in Gigantic Image Collections, Rob Fergus, Yair Weiss
and Antonio Torralba, Advances in Neural Information Processing Systems (NIPS).

See also many other citations of CIFAR-10 and CIFAR-100 on Google.

290

Datasets of the Unsupervised and Transfer Learning Challenge

6.4. Experimental design

We merged the CIFAR-10 and the CIFAR-100 datasets. The CIFAR-10 dataset consists
of 60000 32×32 colour images in 10 classes, with 6000 images per class. The original
categories are:

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

The CIFAR-100 dataset is similar to the CIFAR-10, except that it has 100 classes
containing 600 images each. The 100 classes in the CIFAR-100 are grouped into 20
superclasses. Each image comes with a “fine” label (the class to which it belongs) and
a “coarse” label (the superclass to which it belongs).

Table 13 lists the classes in the CIFAR-100.
The raw data came as 32×32 tiny images coded with 8-bit RGB colors (i.e. 3×32

features with 256 possible values). We converted RGB to HSV and quantized the results
as 8-bit integers. This yielded 30× 30× 3 = 900× 3 features. We then preprocessed
the gray level image to extract edges. This yielded 30× 30 features (1 border pixel
was removed). We then cut the images into patches of 10× 10 pixels and ran kmeans
clustering (an on-line version) to create 144 cluster centers. We used these cluster
centers as a dictionary to create features corresponding to the presence of one the 144
shapes at one of 25 positions on a grid. This created another 144×25 = 3600 features.

6.5. Data statistics

All variables are numeric (no categorical variable). There are no missing values. The
target variables are categorical. All the categories of the validation and final evaluation
sets are from the CIFAR-10 dataset. Here is class label composition of the data subsets:

Validation set: X[4096, 7200] Y[4096, 3]

automobile: 1330

291

Table 13: Classes in the CIFAR-100

Superclass Classes

fish aquarium fish, flatfish, ray, shark, trout
flowers orchids, poppies, roses, sunflowers, tulips
food containers bottles, bowls, cans, cups, plates
fruit and vegetables apples, mushrooms, oranges, pears, sweet pep-

pers
household electrical devices clock, computer keyboard, lamp, telephone,

television
household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cockroach
large carnivores bear, leopard, lion, tiger, wolf
large man-made outdoor things bridge, castle, house, road, skyscraper
large natural outdoor scenes cloud, forest, mountain, plain, sea
large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo
medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm
people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle
small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow
vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Table 14: Data statistics for RITA

Dataset Domain
Feat.
num.

Sparsity
(%)

Development
num.

Transfer
num.

Validation
num

Final eval.
num.

RITA Object recognition 7200 1.19 111808 24000 4096 4096

292

Datasets of the Unsupervised and Transfer Learning Challenge

Figure 9: 144 cluster centers computed from patches of line images.

Figure 10: Example of tiny image.

293

(a) (b)

(c) (d)

Figure 11: Image represented by Hue, Saturation, Value, and Edges (3600 features).
We computed another 3600 features from the edge image using the matched
filters computed by clustering.

294

Datasets of the Unsupervised and Transfer Learning Challenge

horse: 1377

truck: 1389

Final set: X[4096, 7200] Y[4096, 3]

airplane: 1384

frog: 1370

ship: 1342

Development set: X[111808, 7200] Y[111808, 110]

airplane: 4616

automobile: 4670

bird: 6000

cat: 6000

deer: 6000

dog: 6000

frog: 4630

horse: 4623

ship: 4658

truck: 4611

fruit and vegetables.apple: 600

fish.aquarium fish: 600

people.baby: 600

large carnivores.bear: 600

aquatic mammals.beaver: 600

household furniture.bed: 600

insects.bee: 600

insects.beetle: 600

vehicles 1.bicycle: 600

food containers.bottle: 600

food containers.bowl: 600

people.boy: 600

large man-made outdoor things.bridge: 600

vehicles 1.bus: 600

insects.butterfly: 600

295

large omnivores and herbivores.camel: 600

food containers.can: 600

large man-made outdoor things.castle: 600

insects.caterpillar: 600

large omnivores and herbivores.cattle: 600

household furniture.chair: 600

large omnivores and herbivores.chimpanzee: 600

household electrical devices.clock: 600

large natural outdoor scenes.cloud: 600

insects.cockroach: 600

household furniture.couch: 600

non-insect invertebrates.crab: 600

reptiles.crocodile: 600

food containers.cup: 600

reptiles.dinosaur: 600

aquatic mammals.dolphin: 600

large omnivores and herbivores.elephant: 600

fish.flatfish: 600

large natural outdoor scenes.forest: 600

medium mammals.fox: 600

people.girl: 600

small mammals.hamster: 600

large man-made outdoor things.house: 600

large omnivores and herbivores.kangaroo: 600

household electrical devices.keyboard: 600

household electrical devices.lamp: 600

vehicles 2.lawn mower: 600

large carnivores.leopard: 600

large carnivores.lion: 600

reptiles.lizard: 600

non-insect invertebrates.lobster: 600

people.man: 600

trees.maple tree: 600

vehicles 1.motorcycle: 600

296

Datasets of the Unsupervised and Transfer Learning Challenge

large natural outdoor scenes.mountain: 600

small mammals.mouse: 600

fruit and vegetables.mushroom: 600

trees.oak tree: 600

fruit and vegetables.orange: 600

flowers.orchid: 600

aquatic mammals.otter: 600

trees.palm tree: 600

fruit and vegetables.pear: 600

vehicles 1.pickup truck: 600

trees.pine tree: 600

large natural outdoor scenes.plain: 600

food containers.plate: 600

flowers.poppy: 600

medium mammals.porcupine: 600

medium mammals.possum: 600

small mammals.rabbit: 600

medium mammals.raccoon: 600

fish.ray: 600

large man-made outdoor things.road: 600

vehicles 2.rocket: 600

flowers.rose: 600

large natural outdoor scenes.sea: 600

aquatic mammals.seal: 600

fish.shark: 600

small mammals.shrew: 600

medium mammals.skunk: 600

large man-made outdoor things.skyscraper: 600

non-insect invertebrates.snail: 600

reptiles.snake: 600

non-insect invertebrates.spider: 600

small mammals.squirrel: 600

vehicles 2.streetcar: 600

flowers.sunflower: 600

297

fruit and vegetables.sweet pepper: 600

household furniture.table: 600

vehicles 2.tank: 600

household electrical devices.telephone: 600

household electrical devices.television: 600

large carnivores.tiger: 600

vehicles 2.tractor: 600

vehicles 1.train: 600

fish.trout: 600

flowers.tulip: 600

reptiles.turtle: 600

household furniture.wardrobe: 600

aquatic mammals.whale: 600

trees.willow tree: 600

large carnivores.wolf: 600

people.woman: 600

non-insect invertebrates.worm: 600

Transfer labels (24000 labels):

bird: 6000

cat: 6000

deer: 6000

dog: 6000

6.6. Baseline results

The data were preprocessed with kmeans clustering as described in Section 3.

Table 15: Baseline results (normalized ALC for 64 training examples).

RITA Valid Final

Raw 0.2504 0.4133

Preprocessed 0.2417 0.3413

298

Datasets of the Unsupervised and Transfer Learning Challenge

(a)

(b)

Figure 12: Baseline results on preprocessed data (top valid, bottom final).

299

7. E – SYLVESTER

7.1. Topic

The task of SYLVESTER is to classify forest cover types. The task was carved out of
data from the US Forest Service (USFS). The data include 7 labels corresponding to
forest cover types. We used 2 for transfer learning (training), 2 for validation and 3 for
testing.

7.2. Sources

7.2.1. Original owners

Remote Sensing and GIS Program
Department of Forest Sciences
College of Natural Resources
Colorado State University
Fort Collins, CO 80523

(contact Jock A. Blackard, jblackard/wo_ftcol@fs.fed.us
or Dr. Denis J. Dean, denis@cnr.colostate.edu)
Jock A. Blackard
USDA Forest Service 3825 E. Mulberry
Fort Collins, CO 80524 USA
jblackard/wo_ftcol@fs.fed.us

Dr. Denis J. Dean
Associate Professor
Department of Forest Sciences
Colorado State University
Fort Collins, CO 80523 USA
denis@cnr.colostate.edu

Dr. Charles W. Anderson
Associate Professor
Department of Computer Science
Colorado State University
Fort Collins, CO 80523 USA
anderson@cs.colostate.edu

Acknowledgements, Copyright Information, and Availability Reuse of this data-
base is unlimited with retention of copyright notice for Jock A. Blackard and Colorado
State University.

300

Datasets of the Unsupervised and Transfer Learning Challenge

7.2.2. Donor of database

This version of the database was prepared for the “unsupervised and transfer learning
challenge” by Isabelle Guyon, 955 Creston Road, Berkeley, CA 94708, USA
(isabelle@clopinet.com).

7.2.3. Date received (original data):

August 28, 1998, UCI Machine Learning Repository, under the name Forest Cover
Type.

7.2.4. Date prepared for the challenge:

September–November 2010.

7.3. Past usage

Blackard, Jock A. 1998. “Comparison of Neural Networks and Discriminant Analysis
in Predicting Forest Cover Types.” Ph.D. dissertation. Department of Forest Sciences.
Colorado State University. Fort Collins, Colorado.

Classification performance with first 11,340 records used for training data, next
3,780 records used for validation data, and last 565,892 records used for testing data
subset: – 70% backpropagation – 58% Linear Discriminant Analysis.

The subtask SYLVA prepared for the “performance prediction challenge” and the
“agnostic learning vs. prior knowledge” (ALvsPK) challenge is a 2-class classifica-
tion problem (Ponderosa pine vs. others). The best results were obtained with Logit-
boost by Roman Lutz who obtained 0.4% error in the PK track and 0.6% error in the
AL track. See http://clopinet.com/isabelle/Projects/agnostic/

Results.html. The data were also used in the “active learning challenge” under
the name “SYLVA” during the development phase and “F” (for FOREST) during the
final test phase. The best entrants (Intel team) obtained a 0.8 area under the learn-
ing curve, see http://www.causality.inf.ethz.ch/activelearning.
php?page=results.

7.4. Experimental design

The original data comprises a total of 581012 instances (observations) grouped in 7
classes (forest cover types) and having 54 attributes (features) corresponding to 12
measures (10 quantitative variables, 4 binary wilderness areas and 40 binary soil type
variables). The actual forest cover type for a given observation (30×30 meter cell) was
determined from US Forest Service (USFS) Region 2 Resource Information System
(RIS) data. Independent variables were derived from data originally obtained from US
Geological Survey (USGS) and USFS data. Data is in raw form (not scaled) and con-
tains binary (0 or 1) columns of data for qualitative independent variables (wilderness
areas and soil types).

301

7.4.1. Variable Information

Given in Table 16 are the variable name, variable type, the measurement unit and a brief
description. The forest cover type is the classification problem. The order of this listing
corresponds to the order of numerals along the rows of the database.

Table 16: Variable Information for SYLVESTER

Name Data Type Measurement Description

Elevation quantitative meters Elevation in
meters

Aspect quantitative azimuth Aspect in
degrees azimuth

Slope quantitative degrees Slope in degrees
Horizontal Distance To Hydrology quantitative meters Horz Dist to

nearest surface
water features

Vertical Distance To Hydrology quantitative meters Vert Dist to
nearest surface
water features

Horizontal Distance To Roadways quantitative meters Horz Dist to
nearest roadway

Hillshade 9am quantitative 0 to 255 index Hillshade index
at 9am, summer
solstice

Hillshade Noon quantitative 0 to 255 index Hillshade index
at noon, summer
soltice

Hillshade 3pm quantitative 0 to 255 index Hillshade index
at 3pm, summer
solstice

Horizontal Distance To Fire Points quantitative meters Horz Dist to
nearest wildfire
ignition points

Wilderness Area (4 binary
columns)
qualitative

0 (absence) or
1 (presence)

Wilderness area
designation

Soil Type (40 binary
columns)
qualitative

0 (absence) or
1 (presence)

Soil Type
designation

Cover Type (7 types)
integer

1 to 7 Forest Cover
Type designation

302

Datasets of the Unsupervised and Transfer Learning Challenge

7.4.2. Code Designations

Wilderness Areas:

1 – Rawah Wilderness Area

2 – Neota Wilderness Area

3 – Comanche Peak Wilderness Area

4 – Cache la Poudre Wilderness Area

Soil Types:

1 to 40 : based on the USFS Ecological Landtype Units for this study area.

Forest Cover Types:

1 – Spruce/Fir

2 – Lodgepole Pine

3 – Ponderosa Pine

4 – Cottonwood/Willow

5 – Aspen

6 – Douglas-fir

7 – Krummholz

7.4.3. Class Distribution

Number of records of Spruce-Fir: 211840
Number of records of Lodgepole Pine: 283301
Number of records of Ponderosa Pine: 35754
Number of records of Cottonwood/Willow: 2747
Number of records of Aspen: 9493
Number of records of Douglas-fir: 17367
Number of records of Krummholz: 20510
Total records: 581012

7.4.4. Data preprocessing and data split

We mixed mixed the classes to get approximately the same error rate in baseline results
on the validation set and the final evaluation set.

We used the original data encoding from the data donors, transformed by an invert-
ible linear transform (an isometry). To make it even harder to go back to the original
data, non-informative features (distractors) were added, corresponding to randomly per-
muted column values of the original features, before applying the isometry. We then
randomized the order of the features and patterns. We quantized the values between 0
and 999.

303

7.5. Number of examples and class distribution

Table 17: Statistics on the SYLVESTER data

Dataset Domain
Feat.
type

Feat.
num.

Sparsity
(%)

Label
Development
num.

Transfer
num.

Validation
num

Final
eval.
num.

SYLVESTER Ecology Numeric 100 0 Binary 572820 10000 4096 4096

There are no missing values. Here is class label composition of the data subsets:

Validation set: X[4096, 100] Y[4096, 1]

Ponderosa Pine: 2044

Aspen: 2052

Final set: X[4096, 100] Y[4096, 1]

Spruce/Fir: 1319

Douglas-fir: 1404

Krummholz: 1373

Development set: X[572820, 100] Y[572820, 1]

Spruce/Fir: 210521

Lodgepole Pine: 283301

Ponderosa Pine: 33710

Cottonwood/Willow: 2747

Aspen: 7441

Douglas-fir: 15963

Krummholz: 19137

Transfer labels (10000 labels):

Lodgepole Pine: 9891

Cottonwood/Willow: 109

7.6. Type of input variables and variable statistics

100 numeric variables transformed via a random isometry from the raw input variables
to which 46 distractors were added. The distractors were obtained by picking real
variables and randomizing the order of the values. The final variables were quantized
between 0 and 999.

304

Datasets of the Unsupervised and Transfer Learning Challenge

7.7. Baseline results

We show results using our baseline classifier shown in appendix. The prepreprocessing
in kmeans clustering (20 clusters).

Table 18: Baseline results (normalized ALC for 64 training examples).

SYLVESTER Valid Final

Raw 0.2167 0.3095

Preprocessed 0.1670 0.2362

(a)

(b)

Figure 13: Baseline results on raw data (top valid, bottom final).

305

8. F – TERRY

8.1. Topic

The task of TERRY is the Text Recognition dataset.

8.2. Sources

8.2.1. Original owners

The data were donated by Reuters and downloaded from: Lewis, D. D. RCV1-v2/
LYRL2004: The LYRL2004 Distribution of the RCV1-v2 Text Categorization Test
Collection (12-Apr-2004 Version). http://www.jmlr.org/papers/volume5/
lewis04a/lyrl2004_rcv1v2_README.htm.

8.2.2. Donor of database

This version of the database was prepared for the “unsupervised and transfer learning
challenge” by Isabelle Guyon, 955 Creston Road, Berkeley, CA 94708, USA
(isabelle@clopinet.com).

8.2.3. Date prepared for the challenge:

November–December 2010.

8.3. Past usage

Lewis, D. D.; Yang, Y.; Rose, T.; and Li, F. RCV1: A New Benchmark Collection
for Text Categorization Research. Journal of Machine Learning Research, 5:361-397,
2004. http://www.jmlr.org/papers/volume5/lewis04a/lewis04a.

pdf.

8.4. Experimental design

We used a subset of the 800,000 documents of the RCV1-v2 data collection, formatted
in a bag-of-words representation. The representation uses 47,236 unique stemmed to-
kens. The representation was obtained from on-line appendix B.13. The list of stems
was found in on-line appendix B14. We used as target values the topic categories (on-
line appendices 3 and 8). We considered all levels of the hierarchy to select the most
promising categories.

The features were obfuscated by making a non-linear transformation of the values
then quantizing them between 0 and 999. Further, the raws and lines of the data matrix
were permuted.

8.5. Data statistics

All variables are numeric (no categorical variable). There are no missing values. The
target variables are categorical. The data are very sparse, so they were stored in a sparse
matrix. Here is class label composition of the data subsets:

306

Datasets of the Unsupervised and Transfer Learning Challenge

Table 19: Data statistics for TERRY

Dataset Domain
Feat.
num.

Sparsity
(%)

Development
num.

Transfer
num.

Validation
num

Final eval.
num.

TERRY
Text
recognition

47236 99.84 217034 40000 4096 4096

Validation set: X[4096, 47236] Y[4096, 5]

ENERGY MARKETS: 808

EUROPEAN COMMUNITY: 886

PRIVATISATIONS: 817

MANAGEMENT: 863

ENVIRONMENT AND NATURAL WORLD: 826

Final set: X[4096, 47236] Y[4096, 5]

SPORTS: 797

CREDIT RATINGS: 804

DISASTERS AND ACCIDENTS: 829

ELECTIONS: 856

LABOUR ISSUES: 829

Development set: X[217034, 47236] Y[217034, 103]

STRATEGY/PLANS: 6944

LEGAL/JUDICIAL: 2898

REGULATION/POLICY: 10279

SHARE LISTINGS: 2166

PERFORMANCE: 42290

ACCOUNTS/EARNINGS: 21832

ANNUAL RESULTS: 2243

COMMENT/FORECASTS: 21315

INSOLVENCY/LIQUIDITY: 494

FUNDING/CAPITAL: 11885

SHARE CAPITAL: 5378

BONDS/DEBT ISSUES: 3147

LOANS/CREDITS: 705

307

CREDIT RATINGS: 1453

OWNERSHIP CHANGES: 13853

MERGERS/ACQUISITIONS: 11739

ASSET TRANSFERS: 1312

PRIVATISATIONS: 1370

PRODUCTION/SERVICES: 7749

NEW PRODUCTS/SERVICES: 1967

RESEARCH/DEVELOPMENT: 751

CAPACITY/FACILITIES: 8895

MARKETS/MARKETING: 11832

DOMESTIC MARKETS: 1199

EXTERNAL MARKETS: 1999

MARKET SHARE: 282

ADVERTISING/PROMOTION: 513

CONTRACTS/ORDERS: 4360

DEFENCE CONTRACTS: 339

MONOPOLIES/COMPETITION: 1264

MANAGEMENT: 2245

MANAGEMENT MOVES: 2044

LABOUR: 2971

CORPORATE/INDUSTRIAL: 105241

ECONOMIC PERFORMANCE: 2462

MONETARY/ECONOMIC: 7044

MONEY SUPPLY: 632

INFLATION/PRICES: 1924

CONSUMER PRICES: 1642

WHOLESALE PRICES: 288

CONSUMER FINANCE: 615

PERSONAL INCOME: 84

CONSUMER CREDIT: 63

RETAIL SALES: 365

GOVERNMENT FINANCE: 12008

EXPENDITURE/REVENUE: 4066

GOVERNMENT BORROWING: 8052

308

Datasets of the Unsupervised and Transfer Learning Challenge

OUTPUT/CAPACITY: 679

INDUSTRIAL PRODUCTION: 482

CAPACITY UTILIZATION: 13

INVENTORIES: 30

EMPLOYMENT/LABOUR: 4087

UNEMPLOYMENT: 484

TRADE/RESERVES: 6412

BALANCE OF PAYMENTS: 933

MERCHANDISE TRADE: 3994

RESERVES: 546

HOUSING STARTS: 104

LEADING INDICATORS: 1556

ECONOMICS: 33239

EUROPEAN COMMUNITY: 5554

EC INTERNAL MARKET: 945

EC CORPORATE POLICY: 559

EC AGRICULTURE POLICY: 620

EC MONETARY/ECONOMIC: 2219

EC INSTITUTIONS: 561

EC ENVIRONMENT ISSUES: 50

EC COMPETITION/SUBSIDY: 524

EC EXTERNAL RELATIONS: 1142

EC GENERAL: 18

GOVERNMENT/SOCIAL: 63881

CRIME, LAW ENFORCEMENT: 8380

DEFENCE: 2506

INTERNATIONAL RELATIONS: 11105

DISASTERS AND ACCIDENTS: 1488

ARTS, CULTURE, ENTERTAINMENT: 1078

ENVIRONMENT AND NATURAL WORLD: 790

FASHION: 76

HEALTH: 1744

LABOUR ISSUES: 4161

OBITUARIES: 184

309

HUMAN INTEREST: 667

DOMESTIC POLITICS: 15654

BIOGRAPHIES, PERSONALITIES, PEOPLE: 1668

RELIGION: 804

SCIENCE AND TECHNOLOGY: 638

SPORTS: 8671

TRAVEL AND TOURISM: 223

WAR, CIVIL WAR: 9323

ELECTIONS: 3539

WEATHER: 821

WELFARE, SOCIAL SERVICES: 484

EQUITY MARKETS: 12424

BOND MARKETS: 6179

MONEY MARKETS: 13574

INTERBANK MARKETS: 7279

FOREX MARKETS: 6599

COMMODITY MARKETS: 21557

SOFT COMMODITIES: 12155

METALS TRADING: 3092

ENERGY MARKETS: 5162

MARKETS: 51279

Transfer labels (40000 labels):

DOMESTIC POLITICS: 12865

MONEY MARKETS: 11322

REGULATION/POLICY: 8508

GOVERNMENT FINANCE: 9900

8.6. Baseline results

The data were preprocessed with kmeans clustering as described in Section 3.
We see in Table 20 and Figure 14 that the performances in preprocessed data in the

final evaluation set are not good. This is another example of preprocessing overfiting:
we used the clusters found with the validation set to preprocess the test set.

310

Datasets of the Unsupervised and Transfer Learning Challenge

Table 20: Baseline results (normalized ALC for 64 training examples).

TERRY Valid Final

Raw 0.6969 0.7550

Preprocessed 0.6602 0.3440

(a)

(b)

Figure 14: Baseline results on preprocessed data (top valid, bottom final).

311

Appendix

Code for the linear classifier

function [data, model]=train(model, data)

%[data, model]=train(model, data)

% Simple linear classifier with Hebbian-style learning.

% Inputs:

% model -- A hebbian learning object.

% data -- A data object.

% Returns:

% model -- The trained model.

% data -- A new data structure containing the results.

% Usually works best with standardized data.

% Standardization is not performed here for computational

% reasons (we put it outside the CV loop).

% Isabelle Guyon -- isabelle@clopinet.com -- November 2010

if model.verbosity>0

fprintf(’==> Training Hebbian classifier ... ’);

end

Posidx=find(data.Y>0);

Negidx=find(data.Y<0);

if pd_check(data)

% Kernelized version

model.W=zeros(1, length(data.Y));

model.W(Posidx)=1/(length(Posidx)+eps);

model.W(Negidx)=-1/(length(Negidx)+eps);

else

n=size(data.X, 2);

Mu1=zeros(1, n); Mu2=zeros(1, n);

if ˜isempty(Posidx)

Mu1=mean(data.X(Posidx,:), 1);

end

if ˜isempty(Negidx)

Mu2=mean(data.X(Negidx,:), 1);

end

312

Datasets of the Unsupervised and Transfer Learning Challenge

model.W=Mu1-Mu2;

B=(Mu1+Mu2)/2;

model.b0=-model.W*B’;

end

% Test the model

if model.test_on_training_data

data=test(model, data);

end

if model.verbosity>0, fprintf(’done\n’); end

313

314

