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Foreword

The topic of causality has been subject to a lengthy academic debate in Western sci-
ence and philosophy, as it forms the linchpin of systematic scientific explanations of
nature and the basis of rational economic policy. The former dates back to Aristotle’s
momentous separation of inductive and deductive reasoning – as the inductive reason-
ing has lacked tools (statistics) to support its conclusions on a formal, objective basis,
it has long taken a backseat to the rigor of logical deductive reasoning. Despite the
20th century rise to prominence of statistics, initially intended to resolve causal quan-
daries in agricultural and industrial process refinement, the field of statistical causal
inference is relatively young. Although its pioneers have received wide praise (Clive
Granger receiving the Nobel Prize and Judea Pearl receiving the ACM Turing Award)
the methods they have developed are not yet widely known and are still subject to re-
finement. Although one of the least controversial necessary criterion of establishing a
cause-effect is temporal precedence, this type of inference does not require time infor-
mation – rather, it aims to establish possible causal relations among observations on
other (logical) grounds based on conditional independence testing. The work of Clive
Granger, built upon the 20th century development of time series modeling in engi-
neering and economics, with some input from physiology, leads to a framework which
admittedly does not allow us to identify causality unequivocally.

At the time of the Neural Information Processing Systems (NIPS 2009) Mini-
Symposium on Time Series Causality (upon which this volume is based), there had
been scant interaction among the Machine Learning researchers who undertake the an-
nual pilgrimage to NIPS and the economists, engineers and neuro-physiologists who
not only require causal inference methods, but also help develop them. Following the
highly successful 2008 NIPS Causality Workshop (organized by Isabelle Guyon and
featuring, among others, Judea Pearl), it was decided to follow-up with a symposium
the following year aiming precisely to present related work by non- ’machine learn-
ers’ to this community . The symposium presented current state-of-the-art and helped
suggest future means of cross-disciplinary collaboration, while also featuring a tribute
to the work of the late Clive Granger by his former friend and colleague Hal White.
This work therefore presents an interdisciplinary exposition of both methodological
challenges and recent innovations.

The chapter of White and Chalak presents a detailed formal exposition of causal
inference in econometrics and, very importantly, provides the long awaited link be-
tween the time-series causality work of Clive Granger (based on relative information
of the present/past states of a time series pair) and the Pearl-type inference based on
conditional information (focused on triads or three-way dependence among variables),
as well as a practical exposition of a testing procedure that expands the classical errors
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of type I and II in traditional statistics (causality is directional and therefore is not a
simply a question of accepting or rejecting the null hypothesis).

In the chapter of Popescu, we attempted to introduce a re-formulation of Gran-
ger causality int terms of algorithmic information theory and also to formulate causal
hypothesis testing subject to three (rather than two) error types. Building upon prior
work in electro-physiology, notably the Phase Slope Index, PSI, introduced by Guido
Nolte, which is robust to sub-sampling time interactions among variables, i.e. alias-
ing, we attempted to express a conditional Grange Causality test in auto-regressive
terms familiar to engineers and economists analogously to the Fourier domain familiar
to electro-physiology and physics in which PSI has hitherto been expressed. Finally,
we attempted to extend PSI and AR-based modeling to three-way interactions among
variables subject to aliasing effects while presenting comparative numerical results of a
simulated electro-physiology problem subject to the aforementioned inference errors.

The chapter of Roerbroeck and collaborators presents the particular causal infer-
ence challenges of a wide-ranging recording technique in brain science, namely func-
tional magnetic resonance imaging (fMRI), which affords a unique opportunity to non-
invasively record intact whole brain activity, but which is hampered by relatively weak
time-information accuracy relative to a high spatial dimensionality of the recording,
due to both the relatively slow physiological oxygenation process it records and the
measurement process itself. Granger causality and statistical pre-processing techniques
for meaningful inference are presented as well as directions for future research.

The chapter of Moneta and collaborators presents an exciting mix of traditional
econometrics and machine-learning techniques in which the dynamic dependence
among time-series variables is auto-regressively modeled such that Pearl-type causal
inference may be performed on the presumably uncorrelated residual vector, using in-
dependent component analysis and/or kernel-based density estimates for the conditional
independence test.

As the overall aim of this volume is to present state-of-the-art research in time-
series causality to the Machine Learning community as well as unify methodological
interests in the various communities that require such inference, it was important to
provide some relevant sample datasets upon which novel methods may be tested. The
chapter of Guyon and collaborators introduces these datasets and the repository and
pre-processing and analysis software which is available on the Causality Workbench
web-site to aid future work. The datasets come from a wide-ranging set of sources
(manufacturing, marketing, physiology among them) and can be expanded with other
datasets provided by users, therefore allowing for novel method development and test-
ing as well as targeted course-work.

Florin C. Popescu 05/28/12
Fraunhofer Institute FIRST
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Abstract

The Causality Workbench project is an environment to test causal discovery algo-
rithms. Via a web portal (http://clopinet.com/causality), it provides a
number of resources, including a repository of datasets, models, and software pack-
ages, and a virtual laboratory allowing users to benchmark causal discovery algo-
rithms by performing virtual experiments to study artificial causal systems. We reg-
ularly organize competitions. In this paper, we describe what the platform offers for
the analysis of causality in time series analysis.

Keywords: Causality, Benchmark, Challenge, Competition, Time Series Prediction.

1. Introduction

Uncovering cause-effect relationships is central in many aspects of everyday life in both
highly industrialized and developing countries: what affects our health, the economy,
climate changes, world conflicts, and which actions have beneficial effects? Estab-
lishing causality is critical to guiding policy decisions in areas including medicine and
pharmacology, epidemiology, climatology, agriculture, economy, sociology, law en-
forcement, and manufacturing.

One important goal of causal modeling is to predict the consequences of given ac-

tions, also called interventions, manipulations or experiments. This is fundamentally
different from the classical machine learning, statistics, or data mining setting, which
focuses on making predictions from observations. Observations imply no manipula-
tion on the system under study whereas actions introduce a disruption in the natural
functioning of the system. In the medical domain, this is the distinction made between
“diagnosis” and “prognosis” (prediction from observations of diseases or disease evolu-
tion) and “treatment” (intervention). For instance, smoking and coughing might be both
predictive of respiratory disease and helpful for diagnosis purposes. However, if smok-
ing is a cause and coughing a consequence, acting on the cause (smoking) can change
your health status, but not acting on the symptom or consequence (coughing). Thus it

c© 2011 I. Guyon, A. Statnikov & C. Aliferis.
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is extremely important to distinguish between causes and consequences to predict the
result of actions like predicting the effect of forbidding smoking in public places.

The need for assisting policy making while reducing the cost of experimentation
and the availability of massive amounts of “observational” data prompted the prolif-
eration of proposed computational causal discovery techniques (Glymour and Cooper,
1999; Pearl, 2000; Spirtes et al., 2000; Neapolitan, 2003; Koller and Friedman, 2009),
but it is fair to say that to this day, they have not been widely adopted by scientists and
engineers. Part of the problem is the lack of appropriate evaluation and the demonstra-
tion of the usefulness of the methods on a range of pilot applications. To fill this need,
we started a project called the ”Causality Workbench”, which offers the possibility of
exposing the research community to challenging causal problems and disseminating
newly developed causal discovery technology. In this paper, we outline our setup and
methods and the possibilities offered by the Causality Workbench to solve problems of
causal inference in time series analysis.

2. Causality in Time Series

Causal discovery is a multi-faceted problem. The definition of causality itself has
eluded philosophers of science for centuries, even though the notion of causality is
at the core of the scientific endeavor and also a universally accepted and intuitive no-
tion of everyday life. But, the lack of broadly acceptable definitions of causality has
not prevented the development of successful and mature mathematical and algorithmic
frameworks for inducing causal relationships.

Causal relationships are frequently modeled by causal Bayesian networks or struc-
tural equation models (SEM) (Pearl, 2000; Spirtes et al., 2000; Neapolitan, 2003). In
the graphical representation of such models, an arrow between two variables A→ B

indicates the direction of a causal relationship: A causes B. A node in the graph corre-
sponding to a particular variable X, represents a “mechanism” to evaluate the value of
X, given the “parent” node variable values (immediate antecedents in the graph). For
Bayesian networks, such evaluation is carried out by a conditional probability distribu-
tion P(X|Parents(X)) while for structural equation models it is carried out by a function
of the parent variables and a noise model.

Our everyday-life concept of causality is very much linked to time dependencies
(causes precede their effects). Hence an intuitive interpretation of an arrow in a causal
network representing A causes B is that A preceded B.1 But, in reality, Bayesian
networks are a graphical representation of a factorization of conditional probabilities,
hence a pure mathematical construct. The arrows in a “regular” Bayesian network (not a
“causal Bayesian network”) do not necessarily represent either causal relationships nor
precedence, which often creates some confusion. In particular, many machine learning
problems are concerned with stationary systems or “cross-sectional studies”, which are

1. More precise semantics have been developed. Such semantics assume discrete time point or interval
time models and allow for continuous or episodic “occurrences” of the values of a variable as well
as overlapping or non-overlapping intervals (Aliferis, 1998). Such practical semantics in Bayesian
networks allow for abstracted and explicit time.
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studies where many samples are drawn at a given point in time. Thus, sometimes the
reference to time in Bayesian networks is replaced by the notion of “causal ordering”.
Causal ordering can be understood as fixing a particular time scale and considering only
causes happening at time t and effects happening at time t+ δt, where δt can be made
as small as we want. Within this framework, causal relationships may be inferred from
data including no explicit reference to time. Causal clues in the absence of temporal
information include conditional independencies between variables and loss of informa-
tion due to irreversible transformations or the corruption of signal by noise (Sun et al.,
2006; Zhang and Hyvärinen, 2009).

In seems reasonable to think that temporal information should resolve many causal
relationship ambiguities. Yet, the addition of the time dimension simplifies the problem
of inferring causal relationships only to a limited extend. For one, it reduces, but does
not eliminate, the problem of confounding: A correlated event A happening in the past
of event B cannot be a consequence of B; however it is not necessarily a cause because
a previous event C might have been a “common cause” of A and B. Secondly, it opens
the door to many subtle modeling questions, including problems arising with modeling
the dynamic systems, which may or may not be stationary. One of the charters of
our Causality Workbench project is to collect both problems of practical and academic
interest to push the envelope of research in inferring causal relationships from time
series analysis.

3. A Virtual Laboratory

Methods for learning cause-effect relationships without experimentation (learning from
observational data) are attractive because observational data is often available in abun-
dance and experimentation may be costly, unethical, impractical, or even plain impos-
sible. Still, many causal relationships cannot be ascertained without the recourse to
experimentation and the use of a mix of observational and experimental data might be
more cost effective. We implemented a Virtual Lab allowing researchers to perform
experiments on artificial systems to infer their causal structure. The design of the plat-
form is such that researchers can submit new artificial systems for others to experiment,
experimenters can place queries and get answers, the activity is logged, and registered
users have their own virtual lab space. This environment allows researchers to test
computational causal discovery algorithms and, in particular, to test whether modeling
assumptions made hold in real and simulated data.

We have released a first version http://www.causality.inf.ethz.ch/

workbench.php. We plan to attach to the virtual lab sizeable realistic simulators
such as the Spatiotemporal Epidemiological Modeler (STEM), an epidemiology sim-
ulator developed at IBM, now publicly available: http://www.eclipse.org/

stem/. The virtual lab was put to work in a recent challenge we organized on the
problem of “Active Learning” (see http://clopinet.com/al). More details on
the virtual lab are given in the appendix.
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4. A Data Repository

Part of our benchmarking effort is dedicated to collecting problems from diverse appli-
cation domains. Via the organization of competitions, we have successfully channeled
the effort or dozens of researchers to solve new problems of scientific and practical
interest and identified effective methods. However, competition without collaboration
is sterile. Recently, we have started introducing new dimensions to our effort of re-
search coordination: stimulating creativity, collaborations, and data exchange. We
are organizing regular teleconference seminars. We have created a data repository
for the Causality Workbench already populated by 15 datasets. All the resources,
which are the product of our effort, are freely available on the Internet at http:
//clopinet.com/causality. The repository already includes several time se-
ries datasets, illustrating problems of practical and academic interest (see table 1):

– Learning the structure of a fairly complex dynamic system that disobeys
equilibration-manipulation commutability, and predicting the effect of manipu-
lations that do not cause instabilities (the MIDS task) (Voortman et al., 2010);

– Learning causal relationships using time series when noise is corrupting data in a
way that classical “Granger causality” fails (the NOISE task) (Nolte et al., 2010);

– Uncovering which promotions affect most sales in a marketing database (the
PROMO task) (Pellet, 2010);

– Identifying in a manufacturing process (wafer production) faulty steps affecting
a performance metric (the SEFTI task) (Tuv, 2010);

– Modeling a biological signalling process (the SIGNET task) (Jenkins, 2010).

The donor of the dataset NOISE (Guido Nolte) received the best dataset award. The
reviewers appreciated that the task includes both real data from EEG time series and
artificial data modeling EEG. We want to encourage future data donors to move in this
direction.

5. Benchmarks and Competitions

Our effort has been gaining momentum with the organization of two challenges, which
each attracted over 50 participants. The first causality challenge we have organized
(Causation and Prediction challenge, December 15 2007 – April 30 2008) allowed re-
searchers both from the causal discovery community and the machine learning commu-
nity to try their algorithms on sizable tasks of real practical interest in medicine, phar-
macology, and sociology (see http://www.causality.inf.ethz.ch/

challenge.php). The goal was to train models exclusively on observational data,
then make predictions of a target variable on data collected after intervention on the
system under study were performed. This first challenge reached a number of goals
that we had set to ourselves: familiarizing many new researchers and practitioners with
causal discovery problems and existing tools to address them, pointing out the limita-
tions of current methods on some particular difficulties, and fostering the development
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of new algorithms. The results indicated that causal discovery from observational data
is not an impossible task, but a very hard one and pointed to the need for further re-
search and benchmarks (Guyon et al., 2008). The Causal Explorer package (Aliferis
et al., 2003), which we had made available to the participants and is downloadable as
shareware, proved to be competitive and is a good starting point for researchers new
to the field. It is a Matlab toolkit supporting “local” causal discovery algorithms, effi-
cient to discover the causal structure around a target variable, even for a large number
of variables. The algorithms are based on structure learning from tests of conditional
independence, as all the top ranking methods in this first challenge.

The first challenge (Guyon et al., 2008) explored an important problem in causal
modeling, but is only one of many possible problem statements. The second chal-
lenge (Guyon et al., 2010) called “competition pot-luck” aimed at enlarging the scope of
causal discovery algorithm evaluation by inviting members of the community to submit
their own problems and/or solve problems proposed by others. The challenge started
September 15, 2008 and ended November 20, 2008, see http://www.causality.
inf.ethz.ch/pot-luck.php. One task proposed by a participant drew a lot of
attention: the cause-effect pair task. The problem was to try to determine in pairs of
variables (of known causal relationships), which one was the cause of the other. This
problem is hard for a lot of algorithms, which rely on the result of conditional indepen-
dence tests of three or more variables. Yet the winners of the challenge succeeded in
unraveling 8/8 correct causal directions (Zhang and Hyvärinen, 2009).

Our planned challenge ExpDeCo (Experimental Design in Causal Discovery) will
benchmark methods of experimental design in application to causal modeling. The goal
will be to identify effective methods to unravel causal models, requiring a minimum of
experimentation, using the Virtual Lab. A budget of virtual cash will be allocated to
participants to “buy” the right to observe or manipulate certain variables, manipula-
tions being more expensive that observations. The participants will have to spend their
budget optimally to make the best possible predictions on test data. This setup lends
itself to incorporating problems of relevance to development projects, in particular in
medicine and epidemiology where experimentation is difficult while developing new
methodology.

We are planning another challenge called CoMSICo for “Causal Models for System
Identification and Control”, which is more ambitious in nature because it will perform a
continuous evaluation of causal models rather than separating training and test phase. In
contrast with ExpDeCo in which the organizers will provide test data with prescribed
manipulations to test the ability of the participants to make predictions of the conse-
quences of actions, in CoMSICo, the participants will be in charge of making their
own plan of action (policy) to optimize an overall objective (e.g., improve the life ex-
pectancy of a population, improve the GNP, etc.) and they will be judged directly with
this objective, on an on-going basis, with no distinction between “training” and “test”
data. This challenge will also be via the Virtual Lab. The participants will be given
an initial amount of virtual cash, and, as previously, both actions and observations will
have a price. New in CoMSICo, virtual cash rewards will be given for achieving good
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intermediate performance, which the participants will be allowed to re-invest to con-
duct additional experiments and improve their plan of action (policy). The winner will
be the participant ending up with the largest amount of virtual cash.

6. Conclusion

Our program of data exchange and benchmark proposes to challenge the research com-
munity with a wide variety of problems from many domains and focuses on realistic
settings. Causal discovery is a problem of fundamental and practical interest in many
areas of science and technology and there is a need for assisting policy making in all
these areas while reducing the costs of data collection and experimentation. Hence, the
identification of efficient techniques to solve causal problems will have a widespread
impact. By choosing applications from a variety of domains and making connections
between disciplines as varied as machine learning, causal discovery, experimental de-
sign, decision making, optimization, system identification, and control, we anticipate
that there will be a lot of cross-fertilization between different domains.

Acknowledgments

This project is an activity of the Causality Workbench supported by the Pascal network
of excellence funded by the European Commission and by the U.S. National Science
Foundation under Grant N0. ECCS-0725746. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not nec-
essarily reflect the views of the National Science Foundation. We are very grateful to
all the members of the causality workbench team for their contribution and in particu-
lar to our co-founders Constantin Aliferis, Greg Cooper, André Elisseeff, Jean-Philippe
Pellet, Peter Spirtes, and Alexander Statnikov.

References

C. F. Aliferis, I. Tsamardinos, A. Statnikov, and L.E. Brown. Causal explorer: A prob-
abilistic network learning toolkit for biomedical discovery. In 2003 International

Conference on Mathematics and Engineering Techniques in Medicine and Biologi-

cal Sciences (METMBS), Las Vegas, Nevada, USA, June 23-26 2003. CSREA Press.

Constantin Aliferis. A Temporal Representation and Reasoning Model for Medical

Decision-Support Systems. PhD thesis, University of Pittsburgh, 1998.

C. Glymour and G.F. Cooper, editors. Computation, Causation, and Discovery. AAAI
Press/The MIT Press, Menlo Park, California, Cambridge, Massachusetts, London,
England, 1999.

I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes, and A. Statnikov.
Design and analysis of the causation and prediction challenge. In JMLR W&CP,

7



Guyon Statnikov Aliferis

volume 3, pages 1–33, WCCI2008 workshop on causality, Hong Kong, June 3-4
2008.

I. Guyon, D. Janzing, and B. Schölkopf. Causality: Objectives and assessment. JMLR

W&CP, 6:1–38, 2010.

Jerry Jenkins. Signet: Boolean rile determination for abscisic acid signaling. In
Causality: objectives and assessment (NIPS 2008), volume 6, pages 215–224. JMLR
W&CP, 2010.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and

Techniques. MIT Press, 2009.

R. E. Neapolitan. Learning Bayesian Networks. Prentice Hall series in Artificial Intel-
ligence. Prentice Hall, 2003.

G. Nolte, A. Ziehe, N. Krämer, F. Popescu, and K.-R. Müller. Comparison of granger
causality and phase slope index. In Causality: objectives and assessment (NIPS

2008), volume 6, pages 267–276. JMLR W&CP, 2010.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
2000.

J.-P. Pellet. Detecting simple causal effects in time series. In Causality: objectives and

assessment (NIPS 2008). JMLR W&CP volume 6, supplemental material, 2010.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. The MIT
Press, Cambridge, Massachusetts, London, England, 2000.

X. Sun, D. Janzing, and B. Schölkopf. Causal inference by choosing graphs with most
plausible Markov kernels. In Ninth International Symposium on Artificial Intelli-

gence and Mathematics, 2006.

E. Tuv. Pot-luck challenge: Tied. In Causality: objectives and assessment (NIPS 2008).
JMLR W&CP volume 6, supplemental material, 2010.

M. Voortman, D. Dash, and M. J. Druzdzel. Learning causal models that make correct
manipulation predictions. In Causality: objectives and assessment (NIPS 2008),
volume 6, pages 257–266. JMLR W&CP, 2010.

K. Zhang and A. Hyvärinen. Distinguishing causes from effects using nonlinear acyclic
causal models. In Causality: objectives and assessment (NIPS 2008), volume 6,
pages 157–164. JMLR W&CP, 2009.

8



JMLR: Workshop and Conference Proceedings 12:95–114, 2011 Causality in Time Series

Causal Search in Structural Vector Autoregressive Models

Alessio Moneta moneta@econ.mpg.de
Max Planck Institute of Economics

Jena, Germany

Nadine Chlaß nadine.chlass@uni-jena.de
Friedrich Schiller University of Jena, Germany

Doris Entner doris.entner@cs.helsinki.fi
Helsinki Institute for Information Technology, Finland

Patrik Hoyer patrk.hoyer@helsinki.fi

Helsinki Institute for Information Technology, Finland

Editors: Florin Popescu and Isabelle Guyon

Abstract

This paper reviews a class of methods to perform causal inference in the framework of
a structural vector autoregressive model. We consider three different settings. In the
first setting the underlying system is linear with normal disturbances and the structural
model is identified by exploiting the information incorporated in the partial correla-
tions of the estimated residuals. Zero partial correlations are used as input of a search
algorithm formalized via graphical causal models. In the second, semi-parametric,
setting the underlying system is linear with non-Gaussian disturbances. In this case
the structural vector autoregressive model is identified through a search procedure
based on independent component analysis. Finally, we explore the possibility of
causal search in a nonparametric setting by studying the performance of conditional
independence tests based on kernel density estimations.

Keywords: Causal inference, econometric time series, SVAR, graphical causal mod-
els, independent component analysis, conditional independence tests

1. Introduction

1.1. Causal inference in econometrics

Applied economic research is pervaded by questions about causes and effects. For
example, what is the effect of a monetary policy intervention? Is energy consumption
causing growth or the other way around? Or does causality run in both directions? Are
economic fluctuations mainly caused by monetary, productivity, or demand shocks?
Does foreign aid improve living standards in poor countries? Does firms’ expenditure
in R&D causally influence their profits? Are recent rises in oil prices in part caused by
speculation? These are seemingly heterogeneous questions, but they all require some
knowledge of the causal process by which variables came to take the values we observe.

c© 2011 A. Moneta, N. Chlaß, D. Entner & P. Hoyer.
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A traditional approach to address such questions hinges on the explicit use of a

priori economic theory. The gist of this approach is to partition a causal process in
a deterministic, and a random part and to articulate the deterministic part such as to
reflect the causal dependencies dictated by economic theory. If the formulation of the
deterministic part is accurate and reliable enough, the random part is expected to display
properties that can easily be analyzed by standard statistical tools. The touchstone
of this approach is represented by the work of Haavelmo (1944), which inspired the
research program subsequently pursued by the Cowles Commission (Koopmans, 1950;
Hood and Koopmans, 1953). Therein, the causal process is formalized by means of
a structural equation model, that is, a system of equations with endogenous variables,
exogenous variables, and error terms, first developed by Wright (1921). Its coefficients
were given a causal interpretation (Pearl, 2000).

This approach has been strongly criticized in the 1970s for being ineffective in
both policy evaluation and forecasting. Lucas (1976) pointed out that the economic
theory included in the SEM fails to take economic agents’ (rational) motivations and
expectations into consideration. Agents, according to Lucas, are able to anticipate pol-
icy intervention and act contrary to the prediction derived from the structural equation
model, since the model usually ignores such anticipations. Sims (1980) puts forth an-
other critique which runs parallel to Lucas’ one. It explicitly addresses the status of
exogeneity which the Cowles Commission approach attributes (arbitrarily, according
to Sims) to some variables such that the structural model can be identified. Sims argues
that theory is not a reliable source for deeming a variable as exogenous. More gener-
ally, the Cowles Commission approach with its strong a priori commitment to theory,
risks falling into a vicious circle: if causal information (even if only about direction)
can exclusively be derived from background theory, how do we obtain an empirically
justified theory? (Cfr. Hoover, 2006, p.75).

An alternative approach has been pursued since Wiener (1956) and Granger’s (1969)
work. It aims at inferring causal relations directly from the statistical properties of the
data relying only to a minimal extent on background knowledge. Granger (1980) pro-
poses a probabilistic concept of causality, similar to Suppes (1970). Granger defines
causality in terms of the incremental predictability (at horizon one) of a time series
variable {Yt} (given the present and past values of {Yt} and of a set {Zt} of possible rele-
vant variables) when another time series variable {Xt} (in its present and past values) is
not omitted. More formally:

{Xt} Granger-causes {Yt} if P(Yt+1|Xt,Xt−1, . . . ,Yt,Yt−1, . . . ,Zt,Zt−1, . . .) !
P(Yt+1|Yt,Yt−1, . . . ,Zt,Zt−1, . . .)

(1)

As pointed out by Florens and Mouchart (1982), testing the hypothesis of Granger
noncausality corresponds to testing conditional independence. Given lags p, {Xt} does
not Granger cause {Yt}, if

Yt+1 ⊥⊥ (Xt,Xt−1, . . . ,Xt−p) | (Yt,Yt−1, . . . ,Yt−p,Zt,Zt−1, . . . ,Zt−p) (2)
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To test Granger noncausality, researchers often specify linear vector autoregressive
(VAR) models:

Yt = A1Yt−1+ . . .+ApYt−p+ut, (3)

in which Yt is a k × 1 vector of time series variables (Y1,t, . . . ,Yk,t)
′, where ()′ is the

transpose, the A j ( j = 1, . . . , p) are k× k coefficient matrices, and ut is the k× 1 vector
of random disturbances. In this framework, testing the hypothesis that {Yi,t} does not
Granger-cause {Y j,t}, reduces to test whether the ( j, i) entries of the matrices A1, . . . ,Ap

are vanishing simultaneously. Granger noncausality tests have been extended to nonlin-
ear settings by Baek and Brock (1992), Hiemstra and Jones (1994), and Su and White
(2008), using nonparametric tests of conditional independence (more on this topic in
section 4).

The concept of Granger causality has been criticized for failing to capture ‘struc-
tural causality’ (Hoover, 2008). Suppose one finds that a variable A Granger-causes
another variable B. This does not necessarily imply that an economic mechanism ex-
ists by which A can be manipulated to affect B. The existence of such a mechanism in
turn does not necessarily imply Granger causality either (for a discussion see Hoover
2001, pp. 150-155). Indeed, the analysis of Granger causality is based on coefficients
of reduced-form models, like those incorporated in equation (3), which are unlikely to
reliably represent actual economic mechanisms. For instance, in equation (3) the simul-
taneous causal structure is not modeled in order to facilitate estimation. (However, note
that Eichler (2007) and White and Lu (2010) have recently developed and formalized
richer structural frameworks in which Granger causality can be fruitfully analyzed.)

1.2. The SVAR framework

Structural vector autoregressive (SVAR) models constitute a middle way between the
Cowles Commission approach and the Granger-causality approach. SVAR models aim
at recovering the concept of structural causality, but eschew at the same time the strong
‘apriorism’ of the Cowles Commission approach. The idea is, like in the Cowles Com-
mission approach, to articulate an unobserved structural model, formalized as a dy-
namic generative model: at each time unit the system is affected by unobserved innova-
tion terms, by which, once filtered by the model, the variables come to take the values
we observe. But, differently from the Cowles Commission approach, and similarly to
the Granger-VAR model, the data generating process is generally enough articulated
so that time series variables are not distinguished a priori between exogenous and en-
dogenous. A linear SVAR model is in principle a VAR model ‘augmented’ by the
contemporaneous structure:

Γ0Yt = Γ1Yt−1+ . . .+ΓpYt−p+εt. (4)

This is easily obtained by pre-multiplying each side of the VAR model

Yt = A1Yt−1+ . . .+ApYt−p+ut, (5)

by a matrix Γ0 so that Γi = Γ0Ai, for i = 1, . . . ,k and εt = Γ0ut. Note, however, that not
any matrix Γ0 will be suitable. The appropriate Γ0 will be that matrix corresponding
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to the ‘right’ rotation of the VAR model, that is the rotation compatible both with the
contemporaneous causal structure of the variable and the structure of the innovation
term. Let us consider a matrix B0 = I−Γ0. If the system is normalized such that the
matrix Γ0 has all the elements of the principal diagonal equal to one (which can be done
straightforwardly), the diagonal elements of B0 will be equal to zero. We can write:

Yt = B0Yt +Γ1Yt−1+ . . .+ΓpYt−p+εt (6)

from which we see that B0 (and thus Γ0) determines in which form the values of a vari-
able Yi,t will be dependent on the contemporaneous value of another variable Y j,t. The
‘right’ rotation will also be the one which makes εt a vector of authentic innovation
terms, which are expected to be independent (not only over time, but also contempora-
neously) sources or shocks.

In the literature, different methods have been proposed to identify the SVAR model
(4) on the basis of the estimation of the VAR model (5). Notice that there are more
unobserved parameters in (4), whose number amounts to k2(p+ 1), than parameters
that can be estimated from (5), which are k2 p+ k(k + 1)/2, so one has to impose at
least k(k − 1)/2 restrictions on the system. One solution to this problem is to get a
rotation of (5) such that the covariance matrix of the SVAR residuals Σε is diagonal,
using the Cholesky factorization of the estimated residuals Σu. That is, let P be the
lower-triangular Cholesky factorization of Σu (i.e. Σu = PP′), let D be a k× k diagonal
matrix with the same diagonal as P, and let Γ0 = DP−1. By pre-multiplying (5) by
Γ0, it turns out that Σε = E[Γ0utu

′
tΓ
′
0] = DD′, which is diagonal. A problem with

this method is that P changes if the ordering of the variables (Y1t, . . . ,Ykt)
′ in Yt and,

consequently, the order of residuals in Σu, changes. Since researchers who estimate a
SVAR are often exclusively interested on tracking down the effect of a structural shock
εit on the variables Y1,t, . . . ,Yk,t over time (impulse response functions), Sims (1981)
suggested investigating to what extent the impulse response functions remain robust
under changes of the order of variables.

Popular alternatives to the Cholesky identification scheme are based either on the
use of a priori, theory-based, restrictions or on the use of long-run restrictions. The
former solution consists in imposing economically plausible constraints on the con-
temporaneous interactions among variables (Blanchard and Watson, 1986; Bernanke,
1986) and has the drawback of ultimately depending on the a priori reliability of eco-
nomic theory, similarly to the Cowles Commission approach. The second solution is
based on the assumptions that certain economic shocks have long-run effect to other
variables, but do not influence in the long-run the level of other variables (see Shapiro
and Watson, 1988; Blanchard and Quah, 1989; King et al., 1991). This approach has
been criticized as not being very reliable unless strong a priori restrictions are imposed
(see Faust and Leeper, 1997).

In the rest of the paper, we first present a method, based on the graphical causal
model framework, to identify the SVAR (section 2). This method is based on condi-
tional independence tests among the estimated residuals of the VAR estimated model.
Such tests rely on the assumption that the shocks affecting the model are Gaussian.
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We then relax the Gaussianity assumption and present a method to identify the SVAR
model based on independent component analysis (section 3). Here the main assump-
tion is that shocks are non-Gaussian and independent. Finally (section 4), we explore
the possibility of extending the framework for causal inference to a nonparametric set-
ting. In section 5 we wrap up the discussion and conclude by formulating some open
questions.

2. SVAR identification via graphical causal models

2.1. Background

A data-driven approach to identify the structural VAR is based on the analysis of the
estimated residuals ût. Notice that when a basic VAR model is estimated (equation 3),
the information about contemporaneous causal dependence is incorporated exclusively
in the residuals (being not modeled among the variables). Graphical causal models,
as originally developed by Pearl (2000) and Spirtes et al. (2000), represent an efficient
method to recover, at least in part, the contemporaneous causal structure moving from
the analysis of the conditional independencies among the estimated residuals. Once the
contemporaneous causal structure is recovered, the estimation of the lagged autoregres-
sive coefficients permits us to identify the complete SVAR model.

This approach was initiated by Swanson and Granger (1997), who proposed to test
whether a particular causal order of the VAR is in accord with the data by testing all the
partial correlations of order one among error terms and checking whether some partial
correlations are vanishing. Reale and Wilson (2001), Bessler and Lee (2002), Demiralp
and Hoover (2003), and Moneta (2008) extended the approach by using the partial
correlations of the VAR residuals as input to graphical causal model search algorithms.

In graphical causal models, the structural model is represented as a causal graph (a
Directed Acyclic Graph if the presence of causal loops is excluded), in which each node
represents a random variable and each edge a causal dependence. Furthermore, a set
of assumptions or ‘rules of inference’ are formulated, which regulate the relationship
between causal and probabilistic dependencies: the causal Markov and the faithfulness

conditions (Spirtes et al., 2000). The former restricts the joint probability distribution
of modeled variables: each variable is independent of its graphical non-descendants
conditional on its graphical parents. The latter makes causal discovery possible: all of
the conditional independence relations among the modeled variables follow from the
causal Markov condition. Thus, for example, if the causal structure is represented as
Y1t → Y2t → Yt,3, it follows from the Markov condition that Y1,t ⊥⊥ Y3,t|Y2,t. If, on the
other hand, the only (conditional) independence relation among Y1,t,Y2,t,Y3,t is Y1,t ⊥⊥
Y3,t, it follows from the faithfulness condition that Y1,t→ Y3,t <— Y2,t.

Constraint-based algorithms for causal discovery, like for instance, PC, SGS, FCI
(Spirtes et al., 2000), or CCD (Richardson and Spirtes, 1999), use tests of conditional
independence to constrain the possible causal relationships among the model variables.
The first step of the algorithm typically involves the formation of a complete undirected
graph among the variables so that they are all connected by an undirected edge. In a
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second step, conditional independence relations (or d-separations, which are the graph-
ical characterization of conditional independence) are merely used to erase edges and,
in further steps, to direct edges. The output of such algorithms are not necessarily one
single graph, but a class of Markov equivalent graphs.

There is nothing neither in the Markov or faithfulness condition, nor in the
constraint-based algorithms that limits them to linear and Gaussian settings. Graph-
ical causal models do not require per se any a priori specification of the functional
dependence between variables. However, in applications of graphical models to SVAR,
conditional independence is ascertained by testing vanishing partial correlations (Swan-
son and Granger, 1997; Bessler and Lee, 2002; Demiralp and Hoover, 2003; Moneta,
2008). Since normal distribution guarantees the equivalence between zero partial cor-
relation and conditional independence, these applications deal de facto with linear and
Gaussian processes.

2.2. Testing residuals zero partial correlations

There are alternative methods to test zero partial correlations among the error terms
ût = (u1t, . . . ,ukt)

′. Swanson and Granger (1997) use the partial correlation coefficient.
That is, in order to test, for instance, ρ(uit,ukt|u jt) = 0, they use the standard t statistics
from a least square regression of the model:

uit = α ju jt +αkukt +εit, (7)

on the basis that αk = 0⇔ ρ(uit,ukt|u jt) = 0. Since Swanson and Granger (1997) impose
the partial correlation constraints looking only at the set of partial correlations of order
one (that is conditioned on only one variable), in order to run their tests they consider
regression equations with only two regressors, as in equation (7).

Bessler and Lee (2002) and Demiralp and Hoover (2003) use Fisher’s z that is
incorporated in the software TETRAD (Scheines et al., 1998):

z(ρXY.K,T ) =
1

2

√
T − |K|−3 log

(
|1+ρXY.K|
|1−ρXY.K|

,

)
(8)

where |K| equals the number of variables in K and T the sample size. If the variables
(for instance X = uit, Y = ukt, K = (u jt,uht)) are normally distributed, we have that

z(ρXY.K,T )− z(ρ̂XY.K,T ) ∼ N(0,1) (9)

(see Spirtes et al., 2000, p.94).
A different approach, which takes into account the fact that correlations are obtained

from residuals of a regression, is proposed by Moneta (2008). In this case it is useful
to write the VAR model of equation (3) in a more compact form:

Yt =Π
′Xt +ut, (10)
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where X′t = [Y′
t−1, ...,Y

′
t−p], which has dimension (1×kp) and Π′ = [A1, . . . ,Ap], which

has dimension (k× kp). In case of stable VAR process (see next subsection), the condi-
tional maximum likelihood estimate of Π for a sample of size T is given by

Π̂
′ =




T∑

t=1

YtX
′
t







T∑

t=1

XtX
′
t




−1

.

Moreover, the ith row of Π̂′ is

π̂′i =




T∑

t=1

YitX
′
t







T∑

t=1

XtX
′
t




−1

,

which coincides with the estimated coefficient vector from an OLS regression of Yit on
Xt (Hamilton 1994: 293). The maximum likelihood estimate of the matrix of variance
and covariance among the error terms Σu turns out to be Σ̂u = (1/T )

∑T
t=1 ûtû

′
t , where

ût =Yt−Π̂′Xt. Therefore, the maximum likelihood estimate of the covariance between
uit and u jt is given by the (i, j) element of Σ̂u: σ̂i j = (1/T )

∑T
t=1 ûitû jt. Denoting by σi j

the (i, j) element of Σu, let us first define the following matrix transform operators: vec,
which stacks the columns of a k× k matrix into a vector of length k2 and vech, which
vertically stacks the elements of a k× k matrix on or below the principal diagonal into
a vector of length k(k+1)/2. For example:

vec

[
σ11σ12

σ21σ22

]
=




σ11

σ21

σ12

σ22



, vech

[
σ11σ12

σ21σ22

]
=




σ11

σ21

σ22


 .

The process being stationary and the error terms Gaussian, it turns out that:

√
T [vech(Σ̂u)−vech(Σu)]

d
−→ N(0, Ω), (11)

where Ω = 2D+k (Σu ⊗ Σu)(D+k )′ , D+k ≡ (D′kDk)−1D′k, Dk is the unique (k2 × k(k +
1)/2) matrix satisfying Dkvech(Ω) = vec(Ω), and ⊗ denotes the Kronecker product (see
Hamilton 1994: 301). For example, for k = 2, we have,

√
T




σ̂11−σ11

σ̂12−σ12

σ̂22−σ22




d
−→ N







0
0
0


 ,




2σ2
11 2σ11σ12 2σ2

12
2σ11σ12 σ11σ22+σ

2
12 2σ12σ22

2σ2
12 2σ12σ22 2σ2

22







Therefore, to test the null hypothesis that ρ(uit,u jt) = 0 from the VAR estimated resid-
uals, it is possible to use the Wald statistic:

T (σ̂i j)
2

σ̂iiσ̂ j j + σ̂
2
i j

≈ χ2(1).
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The Wald statistic for testing vanishing partial correlations of any order is ob-
tained by applying the delta method, which suggests that if XT is a (r × 1) sequence

of vector-valued random-variables and if [
√

T (X1T − θ1), . . . ,
√

T (XrT − θr)]
d
−→ N(0,Σ)

and h1, . . . ,hr are r real-valued functions of θ = (θ1, . . . ,θr), hi : Rr → R, defined and
continuously differentiable in a neighborhood ω of the parameter point θ and such that
the matrix B = ||∂hi/∂θ j|| of partial derivatives is nonsingular in ω, then:

[
√

T [h1(XT )−h1(θ)], . . . ,
√

T [hr(XT )−hr(θ)]]
d
−→ N(0,BΣB′)

(see Lehmann and Casella 1998: 61).
Thus, for k = 4, suppose one wants to test corr(u1t,u3t|u2t) = 0. First, notice that

ρ(u1,u3|u2) = 0 if and only if σ22σ13−σ12σ23 = 0 (by definition of partial correlation).
One can define a function g : Rk(k+1)/2→ R, such that g(vech(Σu)) = σ22σ13 −σ12σ23.
Thus,

∇g′ = (0, −σ23, σ22, 0, σ13, −σ12, 0, 0, 0, 0).

Applying the delta method:

√
T [(σ̂22σ̂13− σ̂12σ̂23) − (σ22σ13−σ12σ23)]

d
−→ N(0,∇g′Ω∇g).

The Wald test of the null hypothesis corr(u1t,u3t|u2t) = 0 is given by:

T (σ̂22σ̂13− σ̂12σ̂23)2

∇g′Ω∇g
≈ χ2(1).

Tests for higher order correlations and for k > 4 follow analogously (see also Moneta,
2003). This testing procedure has the advantage, with respect to the alternative meth-
ods, to be straightforwardly applied to the case of cointegrated data, as will be explained
in the next subsection.

2.3. Cointegration case

A typical feature of economic time series data in which there is some form of causal
dependence is cointegration. This term denotes the phenomenon that nonstationary
processes can have linear combinations that are stationary. That is, suppose that each
component Yit of Yt = (Y1t, . . . ,Ykt)

′, which follows the VAR process

Yt = A1Yt−1+ . . .+ApYt−p+ut,

is nonstationary and integrated of order one (∼ I(1)). This means that the VAR process
Yt is not stable, i.e. det(Ik − A1z− Apzp) is equal to zero for some |z| ≤ 1 (Lütkepohl,
2006), and that each component ∆Yit of ∆Yt = (Yt −Yt−1) is stationary (I(0)), that is
it has time-invariant means, variances and covariance structure. A linear combination
between between the elements of Yt is called a cointegrating relationship if there is a
linear combination c1Y1t + . . .+ ckYkt which is stationary (I(0)).

16



Causal Search in SVAR

If it is the case that the VAR process is unstable with the presence of cointegrating
relationships, it is more appropriate (Lütkepohl, 2006; Johansen, 2006) to estimate the
following re-parametrization of the VAR model, called Vector Error Correction Model
(VECM):

∆Yt = F1∆Yt−1+ . . .+Fp−1∆Yt−p+1−GYt−p+ut, (12)

where Fi =−(Ik−A1− . . .−Ai), for i= 1, . . . , p−1 and G= Ik−A1− . . .−Ap. The (k×k)
matrix G has rank r and thus G can be written as HC with H and C′ of dimension (k×r)
and of rank r. C ≡ [c1, . . . ,cr]

′ is called the cointegrating matrix.
Let C̃,H̃, and F̃i be the maximum likelihood estimator of C, H, F according to

Johansen’s (1988, 1991) approach. Then the asymptotic distribution of Σ̃u, that is the
maximum likelihood estimator of the covariance matrix of ut, is:

√
T [vech(Σ̃u)−vech(Σu)]

d
−→ N(0, 2D+k (Σu⊗Σu)D+

′

k ), (13)

which is equivalent to equation (11) (see it again for the definition of the various op-
erators). Thus, it turns out that the asymptotic distribution of the maximum likelihood
estimator Σ̃u is the same as the OLS estimation Σ̂u for the case of stable VAR.

Thus, the application of the method described for testing residuals zero partial cor-
relations can be applied straightforwardly to cointegrated data. The model is estimated
as a VECM error correction model using Johansen’s (1988, 1991) approach, correla-
tions are tested exploiting the asymptotic distribution of Σ̃u and finally can be parame-
terized back in its VAR form of equation (3).

2.4. Summary of the search procedure

The graphical causal models approach to SVAR identification, which we suggest in
case of Gaussian and linear processes, can be summarized as follows.

Step 1 Estimate the VAR model Yt =A1Yt−1+ . . .+ApYt−p+ut with the usual speci-
fication tests about normality, zero autocorrelation of residuals, lags, and unit roots (see
Lütkepohl, 2006). If the hypothesis of nonstationarity is rejected, estimate the VAR
model via OLS (equivalent to MLE under the assumption of normality of the errors).
If unit root tests do not reject I(1) nonstationarity in the data, specify the model as
VECM testing the presence of cointegrating relationships. If tests suggest the presence
of cointegrating relationships, estimate the model as VECM. If cointegration is rejected
estimate the VAR models taking first difference.

Step 2 Run tests for zero partial correlations between the elements u1t, . . . ,ukt of ut

using the Wald statistics on the basis of the asymptotic distribution of the covariance
matrix of ut. Note that not all possible partial correlations ρ(uit,u jt|uht, . . .) need to be
tested, but only those necessary for step 3.
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Step 3 Apply a causal search algorithm to recover the causal structure among u1t, . . . ,

ukt, which is equivalent to the causal structure among Y1t, . . . ,Ykt (cfr. section 1.2 and
see Moneta 2003). In case of acyclic (no feedback loops) and causally sufficient (no
latent variables) structure, the suggested algorithm is the PC algorithm of Spirtes et al.
(2000, pp. 84-85). Moneta (2008) suggested few modifications to the PC algorithm in
order to make the orientation of edges compatible with as many conditional indepen-
dence tests as possible. This increases the computational time of the search algorithm,
but considering the fact that VAR models deal with a few number of time series vari-
ables (rarely more than six to eight; see Bernanke et al. 2005), this slowing down does
not create a serious concern in this context. Table 1 reports the modified PC algorithm.
In case of acyclic structure without causal sufficiency (i.e. possibly including latent vari-
ables), the suggested algorithm is FCI (Spirtes et al. 2000, pp. 144-145). In the case
of no latent variables and in the presence of feedback loops, the suggested algorithm
is CCD (Richardson and Spirtes, 1999). There is no algorithm in the literature which
is consistent for search when both latent variables and feedback loops may be present.
If the goal of the study is only impulse response analysis (i.e. tracing out the effects
of structural shocks ε1t, . . . ,εkt on Yt,Yt−1, . . .) and neither contemporaneous feedbacks
nor latent variables can be excluded a priori, a possible solution is to apply only steps
(A) and (B) of the PC algorithm. If the resulting set of possible causal structures (rep-
resented by an undirected graph) contains a manageable number of elements, one can
study the characteristics of the impulse response functions which are robust across all
the possible causal structures, where the presence of both feedbacks and latent variables
is allowed (Moneta, 2004).

Step 4 Calculate structural coefficients and impulse response functions. If the out-
put of Step 3 is a set of causal structures, run sensitivity analysis to investigate the
robustness of the conclusions under the different possible causal structures. Bootstrap
procedures may also be applied to determine which is the most reliable causal order
(see simulations and applications in Demiralp et al., 2008).

3. Identification via independent component analysis

The methods considered in the previous section use tests for zero partial correlation on
the VAR-residuals to obtain (partial) information about the contemporaneous structure
in an SVAR model with Gaussian shocks. In this section we show how non-Gaussian
and independent shocks can be exploited for model identification by using the statisti-
cal method of ‘Independent Component Analysis’ (ICA, see Comon (1994); Hyvärinen
et al. (2001)). The method is again based on the VAR-residuals ut which can be ob-
tained as in the Gaussian case by estimating the VAR model using for example ordinary
least squares or least absolute deviations, and can be tested for non-Gaussianity using
any normality test (such as the Shapiro-Wilk or Jarque-Bera test).

To motivate, we note that, from equations (3) and (4) (with matrix Γ0) or the
Cholesky factorization in section 1.2 (with matrix PD−1), the VAR-disturbances ut and
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Table 1: Search algorithm (adapted from the PC Algorithm of Spirtes et al. (2000:
84-85); in bold character the modifications). Under the assumption of Gaus-
sianity conditional independence is tested by zero partial correlation tests.

(A): (connect everything):
Form the complete undirected graph G on the vertex set u1t, . . . ,ukt so that each vertex
is connected to any other vertex by an undirected edge.
(B)(cut some edges):
n = 0
repeat :

repeat :
select an ordered pair of variables uht and uit that are adjacent in
G such that the number of variables adjacent to uht is equal or
greater than n+ 1. Select a set S of n variables adjacent to uht

such that uti " S . If uht ⊥⊥ uit|S delete edge uht — uit from G;

until all ordered pairs of adjacent variables uht and uit such that the
number of variables adjacent to uht is equal or greater than n+ 1 and all
sets S of n variables adjacent to uht such that uit " S have been checked to
see if uht ⊥⊥ uit|S ;
n = n+1;

until for each ordered pair of adjacent variables uht, uit, the number of adjacent
variables to uht is less than n+1;
(C)(build colliders):
for each triple of vertices uht,uit,u jt such that the pair uht,uit and the pair uit,u jt are
each adjacent in G but the pair uht,u jt is not adjacent in G, orient uht — uit — u jt as
uht −→ uit <— u jt if and only if uit does not belong to any set of variables S such that
uht ⊥⊥ u jt|S ;
(D)(direct some other edges):
repeat :

if uat −→ ubt, ubt and uct are adjacent, uat and uct are not adjacent and
ubt belongs to every set S such that uat ⊥⊥ uct|S , then orient ubt — uct as
ubt −→ uct;
if there is a directed path from uat to ubt, and an edge between uat and ubt,
then orient uat — ubt as uat −→ ubt;

until no more edges can be oriented.
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the structural shocks εt are connected by

ut = Γ
−1
0 εt = PD−1

εt (14)

with square matrices Γ0 and PD−1, respectively. Equation (14) has two important prop-
erties: First, the vectors ut and εt are of the same length, meaning that there are as
many residuals as structural shocks. Second, the residuals ut are linear mixtures of the
shocks εt, connected by the ‘mixing matrix’ Γ−1

0 . This resembles the ICA model, when
placing certain assumptions on the shocks εt.

In short, the ICA model is given by x=As, where x are the mixed components, s the
independent, non-Gaussian sources, and A a square invertible mixing matrix (meaning
that there are as many mixtures as independent components). Given samples from the
mixtures x, ICA estimates the mixing matrix A and the independent components s, by
linearly transforming x in such a way that the dependencies among the independent
components s are minimized. The solution is unique up to ordering, sign and scaling
(Comon, 1994; Hyvärinen et al., 2001).

By comparing the ICA model x = As and equation (14), we see a one-to-one cor-
respondence of the mixtures x to the residuals ut and the independent components s to
the shocks εt. Thus, to be able to apply ICA, we need to assume that the shocks are
non-Gaussian and mutually independent. We want to emphasize that no specific non-
Gaussian distribution is assumed for the shocks, but only that they cannot be Gaussian.1

For the shocks to be mutually independent their joint distribution has to factorize into
the product of the marginal distributions. In the non-Gaussian setting, this implies zero
partial correlation, but the converse is not true (as opposed to the Gaussian case where
the two statements are equivalent). Thus, for non-Gaussian distributions conditional
independence is a much stronger requirement than uncorrelatedness.

Under the assumption that the shocks εt are non-Gaussian and independent, equa-
tion (14) follows exactly the ICA-model and applying ICA to the VAR residuals ut

yields a unique solution (up to ordering, sign, and scaling) for the mixing matrix Γ−1
0

and the independent components εt (i.e. the structural shocks in our case). However,
the ambiguities of ICA make it hard to directly interpret the shocks found by ICA since
without further analysis we cannot relate the shocks directly to the measured variables.

Hence, we assume that the residuals ut follow a linear non-Gaussian acyclic model
(Shimizu et al., 2006), which means that the contemporaneous structure is represented
by a DAG (directed acyclic graph). In particular, the model is given by

ut = B0ut +εt (15)

with a matrix B0, whose diagonal elements are all zero and, if permuted according to
the causal order, is strictly lower triangular. By rewriting equation (15) we see that

Γ0 = I−B0. (16)

From this equation it follows that the matrix B0 describes the contemporaneous struc-
ture of the variables Yt in the SVAR model as shown in equation (6). Thus, if we can

1. Actually, the requirement is that at most one of the residuals can be Gaussian.
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identify the matrix Γ0, we also obtain the matrix B0 for the contemporaneous effects.
As pointed out above, the matrix Γ−1

0 (and hence Γ0) can be estimated using ICA up to
ordering, scaling, and sign. With the restriction of B0 representing an acyclic system,
we can resolve these ambiguities and are able to fully identify the model. For sim-
plicity, let us assume that the variables are arranged according to a causal ordering, so
that the matrix B0 is strictly lower triangular. From equation (16) then follows that the
matrix Γ0 is lower triangular with all ones on the diagonal. Using this information, the
ambiguities of ICA can be resolved in the following way.

The lower triangularity of B0 allows us to find the unique permutation of the rows of
Γ0, which yields all non-zero elements on the diagonal of Γ0, meaning that we replace
the matrix Γ0 with Q1Γ0 where Q1 is the uniquely determined permutation matrix.
Finding this permutation resolves the ordering-ambiguity of ICA and links the shocks
εt to the components of the residuals ut in a one-to-one manner. The sign- and scaling-
ambiguity is now easy to fix by simply dividing each row of Γ0 (the row-permuted
version from above) by the corresponding diagonal element yielding all ones on the
diagonal, as implied by Equation (16). This ensures that the connection strength of the
shock εt on the residual ut is fixed to one in our model (Equation (15)).

For the general case where B0 is not arranged in the causal order, the above ar-
guments for solving the ambiguities still apply. Furthermore, we can find the causal
order of the contemporaneous variables by performing simultaneous row- and column-
permutations on Γ0 yielding the matrix closest to lower triangular, in particular Γ̃0 =

Q2Γ0Q′2 with an appropriate permutation matrix Q2. In case non of these permutations
leads to a close to lower triangular matrix a warning is issued.

Essentially, the assumption of acyclicity allows us to uniquely connect the struc-
tural shocks εt to the components of ut and fully identify the contemporaneous struc-
ture. Details of the procedure can be found in Shimizu et al. (2006); Hyvärinen et al.
(2010). In the sense of the Cholesky factorization of the covariance matrix explained
in Section 1 (with PD−1 = Γ−1

0 ), full identifiability means that a causal order among the
contemporaneous variables can be determined.

In addition to yielding full identification, an additional benefit of using the ICA-
based procedure when shocks are non-Gaussian is that it does not rely on the faithful-
ness assumption, which was necessary in the Gaussian case.

We note that there are many ways of exploiting non-Gaussian shocks for model
identification as alternatives to directly using ICA. One such approach was introduced
by Shimizu et al. (2009). Their method relies on iteratively finding an exogenous vari-
able and regressing out their influence on the remaining variables. An exogenous vari-
able is characterized by being independent of the residuals when regressing any other
variable in the model on it. Starting from the model in equation (15), this procedure
returns a causal ordering of the variables ut and then the matrix B0 can be estimated
using the Cholesky approach.

One relatively strong assumption of the above methods is the acyclicity of the con-
temporaneous structure. In Lacerda et al. (2008) an extension was proposed where
feedback loops were allowed. In terms of the matrix B0 this means that it is not re-
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stricted to being lower triangular (in an appropriate ordering of the variables). While in
general this model is not identifiable because we cannot uniquely match the shocks to
the residuals, Lacerda et al. (2008) showed that the model is identifiable when assuming
stability of the generating model in (15) (the absolute value of the biggest eigenvalue in
B0 is smaller than one) and disjoint cycles.

Another restriction of the above model is that all relevant variables must be in-
cluded in the model (causal sufficiency). Hoyer et al. (2008b) extended the above
model by allowing for hidden variables. This leads to an overcomplete basis ICA
model, meaning that there are more independent non-Gaussian sources than observed
mixtures. While there exist methods for estimating overcomplete basis ICA models,
those methods which achieve the required accuracy do not scale well. Additionally,
the solution is again only unique up to ordering, scaling, and sign, and when including
hidden variables the ordering-ambiguity cannot be resolved and in some cases leads to
several observationally equivalent models, just as in the cyclic case above.

We note that it is also possible to combine the approach of section 2 with that de-
scribed here. That is, if some of the shocks are Gaussian or close to Gaussian, it may
be advantageous to use a combination of constraint-based search and non-Gaussianity-
based search. Such an approach was proposed in Hoyer et al. (2008a). In particular,
the proposed method does not make any assumptions on the distributions of the VAR-
residuals ut. Basically, the PC algorithm (see Section 2) is run first, followed by uti-
lization of whatever non-Gaussianity there is to further direct edges. Note that there is
no need to know in advance which shocks are non-Gaussian since finding such shocks
is part of the algorithm.

Finally, we need to point out that while the basic ICA-based approach does not
require the faithfulness assumption, the extensions discussed at the end of this section
do.

4. Nonparametric setting

4.1. Theory

Linear systems dominate VAR, SVAR, and more generally, multivariate time series
models in econometrics. However, it is not always the case that we know how a variable
X may cause another variable Y . It may be the case that we have little or no a priori

knowledge about the way how Y depends on X. In its most general form we want
to know whether X is independent of Y conditional on the set of potential graphical
parents Z, i.e.

H0 : Y ⊥⊥ X | Z, (17)

where Y,X,Z is a set of time series variables. Thereby, we do not per se require an
a priori specification of how Y possibly depends on X. However, constraint based
algorithms typically specify conditional independence in a very restrictive way. In con-
tinuous settings, they simply test for nonzero partial correlations, or in other words, for
linear (in)dependencies. Hence, these algorithms will fail whenever the data generation
process (DGP) includes nonlinear causal relations.
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In search for a more general specification of conditional independency, Chlaß and
Moneta (2010) suggest a procedure based on nonparametric density estimation. Therein,
neither the type of dependency between Y and X, nor the probability distributions of
the variables need to be specified. The procedure exploits the fact that if two random
variables are independent of a third, one obtains their joint density by the product of the
joint density of the first two, and the marginal density of the third. Hence, hypothesis
test (17) translates into:

H0 :
f (Y,X,Z)

f (XZ)
=

f (YZ)

f (Z)
. (18)

If we define h1(·) := f (Y,X,Z) f (Z), and h2(·) := f (YZ) f (XZ), we have:

H0 : h1(·) = h2(·). (19)

We estimate h1 and h2 using a kernel smoothing approach (see Wand and Jones, 1995,
ch.4). Kernel smoothing has the outstanding property that it is insensitive to autocorre-
lation phenomena and, therefore, immediately applicable to longitudinal or time series
settings (Welsh et al., 2002).

In particular, we use a so-called product kernel estimator:

ĥ1(x,y,z;b) = 1
N2bm+d

{∑n
i=1 K

(
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b

)
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(
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)
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ĥ2(x,y,z;b) = 1
N2bm+d

{∑n
i=1 K

(
Xi−x

b

)
KZ

(
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(
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)}
,

(20)

where Xi, Yi, and Zi are the ith realization of the respective time series, K denotes the
kernel function, b indicates a scalar bandwidth parameter, and Kp represents a product
kernel2.

So far, we have shown how we can estimate h1 and h2. To see whether these are
different, we require some similarity measure between both conditional densities. There
are different ways to measure the distance between a product of densities:

(i) The weighted Hellinger distance proposed by Su and White (2008):

dH =
1

n

n∑

i=1




1−

√
h2(Xi,Yi,Zi)

h1(Xi,Yi,Zi)




2

a(Xi,Yi,Zi), (21)

where a(·) is a nonnegative weighting function. Both the weighting function a(·),
and the resulting test statistic are specified in Su and White (2008).

(ii) The Euclidean distance proposed by Szekely and Rizzo (2004) in their ‘energy
test’:

dE =
1

n

n∑

i=1

n∑

j=1

||h1i −h2 j ||−
1

2n

n∑

i=1

n∑

j=1

||h1i −h1 j ||−
1

2n

n∑

i=1

n∑

j=1

||h2i −h2 j ||, (22)

2. I.e. Kp((Zi − z)/b) =
∏d

j=1 K((Z ji − z j)/b). For our simulations (see next section) we choose the

kernel: K(u) = (3− u2)φ(u)/2, with φ(u) the standard normal probability density function. We use a
“rule-of-thumb” bandwidth: b = n−1/8.5.
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where h1i = h1(Xi,Yi,Zi), h2i = h2(Xi,Yi,Zi), and || · || is the Euclidean norm.3

Given these test statistics and their distributions, we compute the type-I error, or p-value

of our test problem (19). If Z = ∅, the tests are available in R-packages energy and
cramer. The Hellinger distance is not suitable here, since one can only test for Z ! ∅.

For Z ! ∅, our test problem (19) requires higher dimensional kernel density esti-
mation. The more dimensions, i.e. the more elements in Z, the scarcer the data, and
the greater the distance between two subsequent data points. This so-called Curse of

dimensionality strongly reduces the accuracy of a nonparametric estimation (Yatchew,
1998). To circumvent this problem, we calculate the type-I errors for Z ! ∅ by a local
bootstrap procedure, as described in Su and White (2008, pp. 840-841) and Paparoditis
and Politis (2000, pp. 144-145). Local bootstrap draws repeatedly with replacement
from the sample and counts how many times the bootstrap statistic is larger than the
test statistic of the entire sample. Details on the local bootstrap procedure ca be found
in appendix A.

Now, let us see how this procedure fares in those time series settings, where other
testing procedures failed - the case of nonlinear time series.

4.2. Simulation Design

Our simulation design should allow us to see how the search procedures of 4.1 perform
in terms of size and power. To identify size properties (type-I error), H0 (19) must hold
everywhere. We call data generation processes for which H0 holds everywhere, size-

DGPs. We induce a system of time series {V1,t,V2,t,V3,t}nt=1 whereby each time series
follows an autoregressive process AR(1) with a1 = 0.5 and error term et ∼ N(0,1), for
instance, V1,t = a1V1,t−1+ eV1,t. These time series may cause each other as illustrated in
Fig. 1.

V1,t−1 V2,t−1 V3,t−1

V1,t V2,t V3,t

!
!
!
!!"# # #

Figure 1: Time series DAG.

Therein, V1,t ⊥⊥ V2,t|V1,t−1, since V1,t−1 d-separates V1,t from V2,t, while V2,t ⊥⊥ V3,s,
for any t and s. Hence, the set of variables Z, conditional on which two sets of vari-
ables X and Y are independent of each other, contains zero elements, i.e. V2,t ⊥⊥ V3,t−1,
contains one element, i.e. V1,t ⊥⊥ V2,t|V1,t−1, or contains two elements, i.e. V1,t ⊥⊥

3. An alternative Euclidean distance is proposed by Baringhaus and Franz (2004) in their Cramer test.
This distance turns out to be dE/2. The only substantial difference from the distance proposed in (ii)
lies in the method to obtain the critical values (see Baringhaus and Franz 2004).
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V2,t|V1,t−1,V3,t−1.
In our simulations, we vary two aspects. The first aspect is the functional form of

the causal dependency. To systematically vary nonlinearity and its impact, we charac-
terize the causal relation between, say, V1,t−1 and V2,t, in a polynomial form, i.e. via
V2,t = f (V1,t−1)+ e, where f =

∑p
j=0 b jV

j
1,t−1. Herein, j reflects the degree of nonlin-

earity, while b j would capture the impact nonlinearity exerts. For polynomials of any
degree, we set only bp ! 0. An additive error term e completes the specification.

The second aspect is the number of variables in Z conditional on which X and Y

can be independent. Either zero, one, but maximally two variables may form the set Z

= {Z1, . . . ,Zd} of conditioned variables; hence Z has cardinality #Z = {0,1,2}.
To identify power properties, H0 must not hold anywhere, i.e. X ⊥⊥/ Y |Z. We call

data generation processes where H0 does not hold anywhere, power-DGPs. Such DGPs
can be induced by (i) a direct path between X and Y which does not include Z, (ii) a
common cause for X and Y which is not an element of Z, or (iii) a “collider” between X

and Y belonging to Z.4 As before, we vary the functional form f of these causal paths
polynomially where again, only bp ! 0. Third, we investigate different cardinalities
#Z = {0,1,2} of set Z conditional on which X and Y become dependent.

4.3. Simulation Results

Let us start with #Z = 0, that is, H0 := X ⊥⊥ Y . Table 2 reports our simulation results for
both size and power DGPs. Rejection frequencies are reported for three different tests,
for a theoretical level of significance of 0.05, and 0.1.

Table 2: Proportion of rejection of H0 (no conditioned variables)
Energy Cramer Fisher Energy Cramer Fisher
level of significance 5% level of significance 10%

Size DGPs
S0.1 (ind. time series) 0.065 0.000 0.151 0.122 0.000 0.213

Power DGPs
P0.1 (time series linear) 0.959 0.308 0.999 0.981 0.462 1
P0.2 (time series quadratic) 0.986 0.255 0.432 0.997 0.452 0.521
P0.3 (time series cubic) 1 0.905 1 1 0.975 1
P0.3 (time series quartic) 1 0.781 0.647 1 0.901 0.709

Note: length series (n) = 100; number of iterations = 1000

Take the first line of Table 2. For size DGPs, H0 holds everywhere. A test performs
accurately if it rejects H0 in accordance with the respective theoretical significance
level. We see that the energy test rejects H0 slightly more often than it should (0.065 >
0.05;0.122 > 0.1), whereas the Cramer test does not reject H0 often enough (0.000 <
0.05,0.000 < 0.1). In comparison to the standard parametric Fisher’s z, we see that the

4. An example of collider is displayed in Figure 1: V2,t forms a collider between V1,t−1 and V2,t−1.
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latter rejects H0 much more often than it should. The energy test keeps the type-I error
most accurately. Contrary to both nonparametric tests, the parametric procedure leads
us to suspect a lot more causal relationships than there actually are, if #Z = 0.

How well do these tests perform if H0 does not hold anywhere? That is, how
accurately do they reject H0 if it is false (power-DGPs)? For linear time series, we see
that the nonparametric energy test has nearly as much power as Fisher’s z. For nonlinear
time series, the energy test clearly outperforms Fisher’s z5. As it did for size, Cramer’s
test generally underperforms in terms of power. Interestingly, its power appears to be
higher for higher degrees of nonlinearity. In summary, if one wishes to test for marginal
independence without any information on the type of a potential dependence, one would
opt for the energy test. It has a size close to the theoretical significance level, and has
power similar to a parametric specification.

Let us turn to #Z = 1, where H0 := X ⊥⊥ Y |Z, for which the results are shown in
Table 3. Starting with size DGPs, tests based on Hellinger and Euclidian distance
slightly underreject H0 whereas for the highest polynomial degree, the Hellinger test
strongly overrejects H0. The parametric Fisher’s z slightly overrejects H0 in case of
linearity, and for higher degrees, starts to underreject H0.

Table 3: Proportion of rejection of H0 (one conditioned variable)
Hellinger Euclid Fisher Hellinger Euclid Fisher
level of significance 5% level of significance 10%

Size DGPs
S1.1 (time series linear) 0.035 0.035 0.062 0.090 0.060 0.103
S1.2 (time series quadratic) 0.040 0.020 0.048 0.065 0.035 0.104
S1.3 (time series cubic) 0.010 0.010 0.050 0.020 0.015 0.093
S1.4 (time series quartic) 0.13 0 0.023 0.2 0.1 0.054

Power DGPs
P1.1 (time series linear) 0.875 0.910 0.999 0.925 0.950 1
P1.2 (time series quadratic) 0.905 0.895 0.416 0.940 0.950 0.504
P1.3 (time series cubic) 0.990 1 1 1 1 1
P1.4 (time series quartic) 0.84 0.995 0.618 0.91 0.995 0.679

Note: n = 100; number of iterations = 200; number of bootstrap iterations (I) = 200

Turning to power DGPs, Fisher’s z suffers a dramatic loss in power for those poly-
nomial degrees which depart most from linearity, i.e. quadratic, and quartic relations.
Nonparametric tests which do not require linearity have high power in absolute terms,
and nearly twice as much as compared to Fisher’s z. The power properties of the non-
parametric procedures indicate that our local bootstrap succeeds in mitigating the Curse
of dimensionality. In sum, nonparametric tests exhibit good power properties for #Z = 1
whereas Fisher’s z would fail to discover underlying quadratic or quartic relationships
in some 60%, and 40% of the cases, respectively.

5. For cubic time series, Fisher’s z performs as well as the energy test does. This may be due to the fact
that a cubic relation resembles more to a line than other polynomial specifications do.
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The results for #Z = 2 are presented in Table 4. We find that both nonparametric
tests have a size which is notably smaller than the theoretical significance level we in-
duce. Hence, both have a strong tendency to underreject H0. Turning to power DGPs,
we find that the Euclidean test still has over 90% power to correctly reject H0. For
those polynomial degrees which depart most from linearity, i.e. quadratic and quartic,
the Euclidean test has three times as much power as Fisher’s z. However, the Hellinger
test performs even worse than Fisher’s z. Here, it may be the Curse of dimensionality
which starts to show an impact.

Table 4: Proportion of rejection of H0 (two conditioned variables)
Hellinger Euclid Fisher Hellinger Euclid Fisher
level of significance 5% level of significance 10%

Size DGPs
S2.1 (time series linear) 0.006 0.020 0.050 0.033 0.046 0.102
S2.2 (time series quadratic) 0.000 0.010 0.035 0.000 0.040 0.087
S2.3 (time series cubic) 0 0.007 0.056 0 0.007 0.109
S2.4 (time series quartic) 0.006 0 0.031 0.013 0 0.067

Power DGPs
P2.1 (time series linear) 0.28 0.92 1 0.4 0.973 1
P2.2 (time series quadratic) 0.170 0.960 0.338 0.250 0.980 0.411
P2.3 (time series cubic) 0.667 1 1 0.754 1 1
P2.4 (time series quartic) 0.086 0.946 0.597 0.133 0.966 0.665

Note: n = 100; number of iterations = 150; number of bootstrap iterations (I) = 100

To sum up, we can say that both marginal independencies, and higher dimensional
conditional independencies, i.e. (#Z = 1,2) are best tested for using Euclidean tests. The
Hellinger test seems to be more affected by the Curse of dimensionality. We see that our
local bootstrap procedure mitigates the latter, but we admit that the number of variables
our nonparametric procedure can deal with is very small. Here, it might be promising to
opt for semiparametric (Chu and Glymour, 2008), rather than nonparametric procedures
which combine parametric and nonparametric approaches.

5. Conclusions

The difficulty of learning causal relations from passive, that is non-experimental, obser-
vations is one of the central challenges of econometrics. Traditional solutions involve
the distinction between structural and reduced form model. The former is meant to
formalize the unobserved data generating process, whereas the latter aims to describe a
simpler transformation of that process. The structural model is articulated hinging on
a priori economic theory. The reduced form model is formalized in such a way that it
can be estimated directly from the data. In this paper, we have presented an approach to
identify the structural model which minimizes the role of a priori economic theory and
emphasizes the need of an appropriate and rich statistical model of the data. Graphical
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causal models, independent component analysis, and tests of conditional independence
are the tools we propose for structural identification in vector autoregressive models.
We conclude with an overview of some important issues which are left open in this
domain.

1. Specification of the statistical model. Data driven procedures for SVAR identi-
fication depend upon the specification of the (reduced form) VAR model. Therefore, it
is important to make sure that the estimated VAR model is an accurate description of
the dynamics of the included variables (whereas the contemporaneous structure is in-
tentionally left out, as seen in section 1.2). The usual criterion for accuracy is to check
that the model estimates residuals conform to white noise processes (although serial
independence of residuals is not a sufficient criterion for model validation). This im-
plies stable dependencies captured by the relationships among the modeled variables,
and an unsystematic noise. It may be the case, as in many empirical applications, that
different VAR specifications pass the model checking tests equally well. For example,
a VAR with Gaussian errors and p lags may fit the data equally well as a VAR with
non-Gaussian errors and q lags and these two specifications justify two different causal
search procedures. So far, we do not know how to adjudicate among alternative and
seemingly equally accurate specifications.

2. Background knowledge and assumptions. Search algorithms are based on differ-
ent assumptions, such as, for example, causal sufficiency, acyclicity, the Causal Markov
Condition, Faithfulness, and/or the existence of independent components. Maybe,
background knowledge could justify some of these assumptions and reject others. For
example, institutional or theoretical knowledge about an economic process might in-
form us that Faithfulness is a plausible assumption in some contexts rather than in
others, or instead, that one should expect feedback loops if data are collected at certain
levels of temporal aggregation. Yet, if background information could inform us here,
this might again provoke a problem of circularity mentioned at the outset of the paper.

3. Search algorithms in nonparametric settings. We have provided some informa-
tion on which nonparametric test procedures might be more appropriate in certain cir-
cumstances. However, it is not clear which causal search algorithms are most efficient
in exploiting the nonparametric conditional independence tests proposed in Section 4.
The more variables the search algorithm needs to be informed about at the same point
of the search, the higher the number of conditioned variables, and hence, the slower, or
the more inaccurate, the test.

4. Number of shocks and number of variables. To conserve degrees of freedom,
SVARs rarely model more than six to eight time series variables (Bernanke et al., 2005,
p.388). It is an open question how the procedures for causal inference we reviewed can
be applied to large scale systems such as dynamic factor models. (Forni et al., 2000)

5. Simulations and empirical applications. Graphical causal models for identifying
SVARs, equivalent or similar to the search procedures described in section 2, have been
applied to several sets of macroeconomic data (Swanson and Granger, 1997; Bessler
and Lee, 2002; Demiralp and Hoover, 2003; Moneta, 2004; Demiralp et al., 2008;
Moneta, 2008; Hoover et al., 2009). Demiralp and Hoover (2003) present Monte Carlo

28



Causal Search in SVAR

simulations to evaluate the performance of the PC algorithm for such an identification.
There are no simulation results so far about the performance of the alternative tests
on residual partial correlations presented in section 2.2. Moneta et al. (2010) applied
an independent component analysis as described in section 3, to microeconomic US
data about firms’ expenditures on R&D and performance, as well as to macroeconomic
US data about monetary policy and its effects on the aggregate economy. Hyvärinen
et al. (2010) assess the performance of independent component analysis for identifying
SVAR models. It is yet to be established how independent component analysis applied
to SVARs fares compared to graphical causal models (based on the appropriate condi-
tional independence tests) in non-Gaussian settings. Nonparametric tests of conditional
independence, as those proposed in section 4, have been applied to test for Granger
non-causality (Su and White, 2008), but there are not yet any applications where these
test results inform a graphical causal search algorithm. Overall, there is a need for more
empirical applications of the procedures described in this paper. Such applications will
be useful to test, compare, and improve different search procedures, to suggest new
problems, and obtain new causal knowledge.

6. Appendix

6.1. Appendix 1 - Details of the bootstrap procedure from 4.1.

(1) Draw a bootstrap sampling Z∗t (for t = 1, . . . ,n) from the estimated kernel density
f̂ (z) = n−1b−d ∑n

t=1 Kp((Zt − z)/b).

(2) For t = 1, . . . ,n, given Z∗t , draw X∗t and Y∗t independently from the estimated kernel
density f̂ (x|Z∗t ) and f̂ (y|Z∗t ) respectively.

(3) Using X∗t , Y∗t , and Z∗t , compute the bootstrap statistic S ∗n using one of the dis-
tances defined above.

(4) Repeat steps (1) and (2) I times to obtain I statistics {S ∗ni}
I
i=1.

(5) The p-value is then obtained by:

p ≡
∑I

i=1 1{S ∗ni > S n}
I

,

where S n is the statistic obtained from the original data using one of the dis-
tances defined above, and 1{·} denotes an indicator function taking value one if
the expression between brackets is true and zero otherwise.
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Abstract

This review focuses on dynamic causal analysis of functional magnetic resonance
(fMRI) data to infer brain connectivity from a time series analysis and dynamical
systems perspective. Causal influence is expressed in the Wiener-Akaike-Granger-
Schweder (WAGS) tradition and dynamical systems are treated in a state space mod-
eling framework. The nature of the fMRI signal is reviewed with emphasis on the
involved neuronal, physiological and physical processes and their modeling as dy-
namical systems. In this context, two streams of development in modeling causal
brain connectivity using fMRI are discussed: time series approaches to causality in a
discrete time tradition and dynamic systems and control theory approaches in a con-
tinuous time tradition. This review closes with discussion of ongoing work and future
perspectives on the integration of the two approaches.

Keywords: fMRI, hemodynamics, state space model, Granger causality, WAGS in-
fluence

1. Introduction

Understanding how interactions between brain structures support the performance of
specific cognitive tasks or perceptual and motor processes is a prominent goal in cog-
nitive neuroscience. Neuroimaging methods, such as Electroencephalography (EEG),
Magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI)
are employed more and more to address questions of functional connectivity, inter-
region coupling and networked computation that go beyond the ‘where’ and ‘when’ of
task-related activity (Friston, 2002; Horwitz et al., 2000; McIntosh, 2004; Salmelin and
Kujala, 2006; Valdes-Sosa et al., 2005a). A network perspective onto the parallel and
distributed processing in the brain - even on the large scale accessible by neuroimaging
methods - is a promising approach to enlarge our understanding of perceptual, cognitive
and motor functions. Functional Magnetic Resonance Imaging (fMRI) in particular is
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increasingly used not only to localize structures involved in cognitive and perceptual
processes but also to study the connectivity in large-scale brain networks that support
these functions.

Generally a distinction is made between three types of brain connectivity. Anatom-

ical connectivity refers to the physical presence of an axonal projection from one brain
area to another. Identification of large axon bundles connecting remote regions in the
brain has recently become possible non-invasively in vivo by diffusion weighted Mag-
netic resonance imaging (DWMRI) and fiber tractography analysis (Johansen-Berg and
Behrens, 2009; Jones, 2010). Functional connectivity refers to the correlation structure
(or more generally: any order of statistical dependency) in the data such that brain ar-
eas can be grouped into interacting networks. Finally, effective connectivity modeling
moves beyond statistical dependency to measures of directed influence and causality
within the networks constrained by further assumptions (Friston, 1994).

Recently, effective connectivity techniques that make use of the temporal dynamics
in the fMRI signal and employ time series analysis and systems identification theory
have become popular. Within this class of techniques two separate developments have
been most used: Granger causality analysis (GCA; Goebel et al., 2003; Roebroeck
et al., 2005; Valdes-Sosa, 2004) and Dynamic Causal Modeling (DCM; Friston et al.,
2003). Despite the common goal, there seem to be differences between the two meth-
ods. Whereas GCA explicitly models temporal precedence and uses the concept of
Granger causality (or G-causality) mostly formulated in a discrete time-series analy-
sis framework, DCM employs a biophysically motivated generative model formulated
in a continuous time dynamic system framework. In this chapter we will give a gen-
eral causal time-series analysis perspective onto both developments from what we have
called the Wiener-Akaike-Granger-Schweder (WAGS) influence formalism (Valdes-
Sosa et al., in press).

Effective connectivity modeling of neuroimaging data entails the estimation of mul-
tivariate mathematical models that benefits from a state space formulation, as we will
discuss below. Statistical inference on estimated parameters that quantify the directed
influence between brain structures, either individually or in groups (model comparison)
then provides information on directed connectivity. In such models, brain structures are
defined from at least two viewpoints. From a structural viewpoint they correspond to a
set of “nodes" that comprise a graph, the purpose of causal discovery being the identi-
fication of active links in the graph. The structural model contains i) a selection of the
structures in the brain that are assumed to be of importance in the cognitive process or
task under investigation, ii) the possible interactions between those structures and iii)
the possible effects of exogenous inputs onto the network. The exogenous inputs may
be under control of the experimenter and often have the form of a simple indicator func-
tion that can represent, for instance, the presence or absence of a visual stimulus in the
subject’s view. From a dynamical viewpoint brain structures are represented by states
or variables that describe time varying neural activity within a time-series model of the
measured fMRI time-series data. The functional form of the model equations can em-
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bed assumptions on signal dynamics, temporal precedence or physiological processes
from which signals originate.

We start this review by focusing on the nature of the fMRI signal in some detail
in section 2, separating the treatment into neuronal, physiological and physical pro-
cesses. In section 3 we review two important formal concepts: causal influence in the
Wiener-Akaike-Granger-Schweder tradition and the state space modeling framework,
with some emphasis on the relations between discrete and continuous time series mod-
els. Building on this discussion, section 4 reviews time series modeling of causality in
fMRI data. The review proceeds somewhat chronologically, discussing and comparing
the two separate streams of development (GCA and DCM) that have recently begun to
be integrated. Finally, section 5 summarizes and discusses the main topics in general
dynamic state space models of brain connectivity and provides an outlook on future
developments.

2. The fMRI Signal

The fMRI signal reflects the activity within neuronal populations non-invasively with
excellent spatial resolution (millimeters down to hundreds of micrometers at high field
strength), good temporal resolution (seconds down to hundreds of milliseconds) and
whole-brain coverage of the human or animal brain (Logothetis, 2008). Although fMRI
is possible with a few different techniques, the Blood Oxygenation Level Dependent
(BOLD) contrast mechanism is employed in the great majority of cases. In short, the
BOLD fMRI signal is sensitive to changes in blood oxygenation, blood flow and blood
volume that result from oxidative glucose metabolism which, in turn, is needed to fuel
local neuronal activity (Buxton et al., 2004). This is why fMRI is usually classified as a
‘metabolic’ or ‘hemodynamic’ neuroimaging modality. Its superior spatial resolution,
in particular, distinguishes it from other functional brain imaging modalities used in
humans, such as EEG, MEG and Positron Emission Tomography (PET). Although its
temporal resolution is far superior to PET (another ‘metabolic’ neuroimaging modality)
it is still an order of magnitude below that of EEG and MEG, resulting in a relatively
sparse sampling of fast neuronal processes, as we will discuss below. The final fMRI
signal arises from a complex chain of processes that we can classify into neuronal,
physiological and physical processes (Uludag et al., 2005), each of which contain some
crucial parameters and variables and have been modeled in various ways as illustrated
in Figure 1. We will discuss each of the three classes of processes to explain the intri-
cacies involved in trying to model this causal chain of events with the ultimate goal of
estimating neuronal activity and interactions from the measured fMRI signal.

On the neuronal level, it is important to realize that fMRI reflects certain aspects
of neuronal functioning more than others. A wealth of processes are continuously in
operation at the microscopic level (i.e. in any single neuron), including maintaining
a resting potential, post-synaptic conduction and integration (spatial and temporal) of
graded excitatory and inhibitory post synaptic potentials (EPSPs and IPSPs) arriving
at the dendrites, subthreshold dynamic (possibly oscillatory) potential changes, spike
generation at the axon hillock, propagation of spikes by continuous regeneration of
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Figure 1: The neuronal, physiological and physical processes (top row) and variables
and parameters involved (middle row) in the complex causal chain of events
that leads to the formation of the fMRI signal. The bottom row lists some
mathematical models of the sub-processes that play a role in the analysis and
modeling of fMRI signals. See main text for further explanation.
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the action potential along the axon, and release of neurotransmitter substances into the
synaptic cleft at arrival of an action potential at the synaptic terminal. There are many
different types of neurons in the mammalian brain that express these processes in differ-
ent degrees and ways. In addition, there are other cells, such as glia cells, that perform
important processes, some of them possibly directly relevant to computation or signal-
ing. As explained below, the fMRI signal is sensitive to the local oxidative metabolism
in the brain. This means that, indirectly, it mainly reflects the most energy consuming
of the neuronal processes. In primates, post-synaptic processes account for the great
majority (about 75%) of the metabolic costs of neuronal signaling events (Attwell and
Iadecola, 2002). Indeed, the greater sensitivity of fMRI to post-synaptic activity, rather
than axon generation and propagation (‘spiking’), has been experimentally verified. For
instance, in a simultaneous invasive electrophysiology and fMRI measurement in the
primate, Logothetis and colleagues (Logothetis et al., 2001) found the fMRI signal to
be more correlated to the mean Local Field Potential (LFP) of the electrophysiologi-
cal signal, known to reflect post-synaptic graded potentials, than to high-frequency and
multi-unit activity, known to reflect spiking. In another study it was shown that, by
suppressing action potentials while keeping LFP responses intact by injecting a sero-
tonin agonist, the fMRI response remained intact, again suggesting that LFP is a better
predictor for fMRI activity (Rauch et al., 2008). These results confirmed earlier results
obtained on the cerebellum of rats (Thomsen et al., 2004).

Neuronal activity, dynamics and computation can be modeled at a different levels
of abstraction, including the macroscopic (whole brain areas), mesoscopic (sub-areas
to cortical columns) and microscopic level (individual neurons or groups of these).
The levels most relevant to modeling fMRI signals are at the macro- and mesoscopic
levels. Macroscopic models used to represent considerable expanses of gray matter tis-
sue or sub-cortical structures as Regions Of Interest (ROIs) prominently include single
variable deterministic (Friston et al., 2003) or stochastic (autoregressive; Penny et al.,
2005; Roebroeck et al., 2005; Valdes-Sosa et al., 2005b) exponential activity decay
models. Although the simplicity of such models entail a large degree of abstraction
in representing neuronal activity dynamics, their modest complexity is generally well
matched to the limited temporal resolution available in fMRI. Nonetheless, more com-
plex multi-state neuronal dynamics models have been investigated in the context of
fMRI signal generation. These include the 2 state variable Wilson-Cowan model (Mar-
reiros et al., 2008), with one excitatory and one inhibitory sub-population per ROI and
the 3 state variable Jansen-Rit model with a pyramidal excitatory output population
and an inhibitory and excitatory interneuron population, particularly in the modeling of
simultaneously acquired fMRI and EEG (Valdes-Sosa et al., 2009).

The physiology and physics of the fMRI signal is most easily explained by start-
ing with the physics. We will give a brief overview here and refer to more dedicated
overviews (Haacke et al., 1999; Uludag et al., 2005) for extended treatment. The hall-
mark of Magnetic Resonance (MR) spectroscopy and imaging is the use of the reso-
nance frequency of magnetized nuclei possessing a magnetic moment, mostly protons
(hydrogen nuclei, 1H), called ‘spins’. Radiofrequency antennas (RF coils) can measure
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signal from ensembles of spins that resonate in phase at the moment of measurement.
The first important physical factor in MR is the main magnetic field strength (B0),
which determines both the resonance frequency (directly proportional to field-strength)
and the baseline signal-to-noise ratio of the signal, since higher fields make a larger pro-
portion of spins in the tissue available for measurement. The most used field strengths
for fMRI research in humans range from 1,5T (Tesla) to 7T. The second important
physical factor – containing several crucial parameters – is the MR pulse-sequence that
determines the magnetization preparation of the sample and the way the signal is sub-
sequently acquired. The pulse sequence is essentially a series of radiofrequency pulses,
linear magnetic gradient pulses and signal acquisition (readout) events (Bernstein et al.,
2004; Haacke et al., 1999). An important variable in a BOLD fMRI pulse sequence is
whether it is a gradient-echo (GRE) sequence or a spin-echo (SE) sequence, which
determines the granularity of the vascular processes that are reflected in the signal, as
explained later this section. These effects are further modulated by the echo-time (time
to echo; TE) and repetition time (time to repeat; TR) that are usually set by the end-user
of the pulse sequence. Finally, an important variable within the pulse sequence is the
type of spatial encoding that is employed. Spatial encoding can primarily be achieved
with gradient pulses and it embodies the essence of ‘Imaging’ in MRI. It is only with
spatial encoding that signal can be localized to certain ‘voxels’ (volume elements) in the
tissue. A strength of fMRI as a neuroimaging technique is that an adjustable trade-off
is available to the user between spatial resolution, spatial coverage, temporal resolution
and signal-to-noise ratio (SNR) of the acquired data. For instance, although fMRI can
achieve excellent spatial resolution at good SNR and reasonable temporal resolution,
one can choose to sacrifice some spatial resolution to gain a better temporal resolution
for any given study. Note, however, that this concerns the resolution and SNR of the
data acquisition. As explained below, the physiology of fMRI can put fundamental lim-
itations on the nominal resolution and SNR that is achieved in relation to the neuronal
processes of interest.

On the physiological level, the main variables that mediate the BOLD contrast in
fMRI are cerebral blood flow (CBF), cerebral blood volume (CBV) and the cerebral
metabolic rate of oxygen (CMRO2) which all change the oxygen saturation of the blood
(as usefully quantified by the concentration of deoxygenated hemoglobin). The BOLD
contrast is made possible by the fact that oxygenation of the blood changes its mag-
netic susceptibility, which has an effect on the MR signal as measured in GRE and SE
sequences. More precisely, oxygenated and deoxygenated hemoglobin (oxy-Hb and
deoxy-Hb) have different magnetic properties, the former being diamagnetic and the
latter paramagnetic. As a consequence, deoxygenated blood creates local microscopic
magnetic field gradients, such that local spin ensembles dephase, which is reflected in a
lower MR signal. Conversely oxygenation of blood above baseline lowers the concen-
tration of deoxy-Hb, which decreases local spin dephasing and results in a higher MR
signal. This means that fMRI is directly sensitive to the relative amount of oxy- and de-
oxy Hb and to the fraction of cerebral tissue that is occupied by blood (the CBV), which
are controlled by local neurovascular coupling processes. Neurovascular processes, in
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turn, are tightly coupled to neurometabolic processes controlling the rate of oxidative
glucose metabolism (the CMRO2) that is needed to fuel neural activity.

Naively one might expect local neuronal activity to quickly increase CMRO2 and
increase the local concentration of deoxy-Hb, leading to a lowering of the MR signal.
However, this transient increase in deoxy-Hb or the initial dip in the fMRI signal is not
consistently observed and, thus, there is a debate whether this signal is robust, elusive or
simply not existent (Buxton, 2001; Ugurbil et al., 2003; Uludag, 2010). Instead, early
experiments showed that the dynamics of blood flow and blood volume, the hemody-
namics, lead to a robust BOLD signal increase. Neuronal activity is quickly followed
by a large CBF increase that serves the continued functioning of neurons by clearing
metabolic by-products (such as CO2) and supplying glucose and oxy-Hb. This CBF
response is an overcompensating response, supplying much more oxy-Hb to the local
blood system than has been metabolized. As a consequence, within 1-2 seconds, the
oxygenation of the blood increases and the MR signal increases. The increased flow
also induces a ‘ballooning’ of the blood vessels, increasing CBV, the proportion of
volume taken up by blood, further increasing the signal.

Figure 2: A: Simplified causal chain of hemodynamic events as modeled by the balloon
model. Grey arrows show how variable increases (decreases) tend to relate to
each other. The dynamic changes after a brief pulse of neuronal activity are
plotted for CBF (in red), CBV (in purple), deoxyHb (in green) and BOLD
signal (in blue). B: A more abstract representation of the hemodynamic re-
sponse function as a set of linear basis functions acting as convolution kernels
(arbitrary amplitude scaling). Solid line: canonical two-gamma HRF; Dotted
line: time derivative; Dashed line: dispersion derivative.

A mathematical characterization of the hemodynamic processes in BOLD fMRI at
1.5-3T has been given in the biophysical balloon model (Buxton et al., 2004, 1998),
schematized in Figure 2A. A simplification of the full balloon model has become im-
portant in causal models of brain connectivity (Friston et al., 2000). In this simplified
model, the dependence of fractional fMRI signal change ∆S

S , on normalized cerebral
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blood flow f , normalized cerebral blood volume v and normalized deoxyhemoglobin
content q is modeled as:

∆S

S
= V0 ·

[
k1 · (1−q)+ k2 · (1−

q

v
)+ k3 · (1− v)

]
(1)

v̇t =
1

τ0

(
ft − v1/α

t

)
(2)

q̇t =
1

τ0




ft
(
1− (1−E0)1/ ft

)

E0
−

qt

v1−1/α
t


 (3)

The term E0 is the resting oxygen extraction fraction, V0 is the resting blood volume
fraction, τ0 is the mean transit time of the venous compartment, α is the stiffness com-
ponent of the model balloon and {k1,k2,k3} are calibration parameters. The main sim-
plifications of this model with respect to a more complete balloon model (Buxton et al.,
2004) are a one-to-one coupling of flow and volume in (2), thus neglecting the actual
balloon effect, and a perfect coupling between flow and metabolism in (3). Friston
et al. (2000) augment this model with a putative relation between the a neuronal ac-
tivity variable z, a flow-inducing signal s, and the normalized cerebral blood flow f .
They propose the following relations in which neuronal activity z causes an increase in
a vasodilatory signal that is subject to autoregulatory feedback:

ṡt = zt −
1

τs
st −

1

τ f
2

( ft −1) (4)

ḟt = st (5)

Here τs is the signal decay time constant, τ f is the time-constant of the feedback au-
toregulatory mechanism1, and f is the flow normalized to baseline flow. The physio-
logical interpretation of the autoregulatory mechanism is unspecified, leaving us with
a neuronal activity variable z that is measured in units of s−2. The physiology of the
hemodynamics contained in differential equations (2) to (5), on the other hand, is more
readily interpretable, and when integrated for a brief neuronal input pulse shows the
behavior as described above (Figure 2A, upper panel). This simulation highlights a
few crucial features. First, the hemodynamic response to a brief neural activity event
is sluggish and delayed, entailing that the fMRI BOLD signal is a delayed and low-
pass filtered version of underlying neuronal activity. More than the distorting effects of
hemodynamic processes on the temporal structure of fMRI signals per se, it is the dif-

ference in hemodynamics in different parts of the brain that forms a severe confound for
dynamic brain connectivity models. Particularly, the delay imposed upon fMRI signals
with respect to the underlying neural activity is known to vary between subjects and
between different brain regions of the same subject (Aguirre et al., 1998; Saad et al.,
2001). Second, although CBF, CBV and deoxyHb changes range in the tens of per-
cents, the BOLD signal change at 1.5T or 3T is in the range of 0.5-2%. Nevertheless,

1. Note that we have reparametrized the equation here in terms of τ f
2 to make τ f a proper time constant

in units of seconds

42



Causal analysis of fMRI

the SNR of BOLD fMRI in general is very good in comparison to electrophysiological
techniques like EEG and MEG.

Although the balloon model and its variations have played an important role in
describing the transient features of the fMRI response and inferring neuronal activity,
simplified ways of representing the BOLD signal responses are very often used. Most
prominent among these is a linear finite impulse response (FIR) convolution with a
suitable kernel. The most used single convolution kernel characterizing the ‘canonical’
hemodynamic reponse is formed by a superposition of two gamma functions (Glover,
1999), the first characterizing the initial signal increase, the second the later negative
undershoot (Figure 2B, solid line):

h (t) = m1tτ1e(−l1t)− cm2tτ2e(−l2t)

mi =max
(
tτi e(−lit)

) (6)

With times-to-peak in seconds τ1 = 6, τ2 = 16, scale parameters li (typically equal to 1)
and a relative amplitude of undershoot to peak of c = 1/6.

Often, the canonical two-gamma HRF kernel is augmented with one or two ad-
ditional orthogonalized convolution kernels: a temporal derivative and a dispersion
derivative. Together the convolution kernels form a flexible basis function expansion
of possible HRF shapes, with the temporal derivative of the canonical accounting for
variation in the response delay and the dispersion derivative accounting for variations in
temporal response width (Henson et al., 2002; Liao et al., 2002). Thus, the linear basis
function representation is a more abstract characterization of the HRF (i.e. further away
from the physiology) that still captures the possible variations in responses.

It is an interesting property of hemodynamic processes that, although they are char-
acterized by a large overcompensating reaction to neuronal activity, their effects are
highly local. The locality of the hemodynamic reponse to neuronal activity limits the
actual spatial resolution of fMRI. The path blood inflow in the brain is from large arter-
ies through arterioles into capillaries where exchange with neuronal tissue takes place
at a microscopic level. Blood outflow takes place via venules into the larger veins. The
main regulators of blood flow are the arterioles that are surrounded by smooth muscle,
although arteries and capillaries are also thought to be involved in blood flow regula-
tion (Attwell et al., 2010). Different hemodynamic parameters have different spatial
resolutions. While CBV and CBF changes in all compartments but mostly venules,
oxygenation changes mostly in the venules and veins. Thus, the achievable spatial res-
olution with fMRI is limited by its specificity to the smaller arterioles and venules and
microscopic capillaries supplying the tissue, rather than the larger supplying arteries
draining veins. The larger vessels have a larger domain of supply or extraction and, as a
consequence, their signal is blurred and mislocalized with respect to active tissue. Here,
physiology and physics interact in an important way. It can be shown theoretically – by
the effects of thermal motion of spin diffusion over time and the distance of the spins
to deoxy-Hb – that the origin of the BOLD signal in SE sequences at high main field
strengths (larger than 3T) is much more specific to the microscopic vasculature than to
the larger arteries and veins. This does not hold for GRE sequences or SE sequences
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at lower field strengths. The cost of this greater specificity and higher effective spatial
resolution is that SE-BOLD has a lower intrinsic SNR than GRE-BOLD. The balloon
model equations above are specific to GRE-BOLD at 1.5T and 3T and have been ex-
tended to reflect diffusion effects for higher field strengths (Uludag et al., 2009).

In summary, fMRI is an indirect measure of neuronal and synaptic activity. The
physiological quantities directly determining signal contrast in BOLD fMRI are hemo-
dynamic quantities such as cerebral blood flow and volume and oxygen metabolism.
fMRI can achieve a excellent spatial resolution (millimeters down to hundreds of mi-
crometers at high field strength) with good temporal resolution (seconds down to hun-
dreds of milliseconds). The potential to resolve neuronal population interactions at a
high spatial resolution is what drives attempts at causal time series modeling of fMRI
data. However, the significant aspects of fMRI that pose challenges for such attempts
are i) the enormous dimensionality of the data that contains hundreds of thousands of
channels (voxels) ii) the temporal convolution of neuronal events by sluggish hemody-
namics that can differ between remote parts of the brain and iii) the relatively sparse
temporal sampling of the signal.

3. Causality and state-space models

The inference of causal influence relations from statistical analysis of observed data has
two dominant approaches. The first approach is in the tradition of Granger causality or
G-causality, which has its signature in improved predictability of one time series by an-
other. The second approach is based on graphical models and the notion of intervention
(Glymour, 2003), which has been formalized using a Bayesian probabilistic framework
termed causal calculus or do-calculus (Pearl, 2009). Interestingly, recent work has
combined of the two approaches in a third line of work, termed Dynamic Structural

Systems (White and Lu, 2010). The focus here will be on the first approach, initially
firmly rooted in econometrics and time-series analysis. We will discuss this tradition in
a very general form, acknowledging early contributions from Wiener, Akaike, Granger
and Schweder and will follow (Valdes-Sosa et al., in press) in refering to the crucial
concept as WAGS influence.

3.1. Wiener-Akaike-Granger-Schweder (WAGS) influence

The crucial premise of the WAGS statistical causal modeling tradition is that a cause
must precede and increase the predictability of its effect. In other words: a variable
X2 influences another variable X1 if the prediction of X1 improves when we use past
values of X2, given that all other relevant information (importantly: the past of X1
itself) is taken into account. This type of reasoning can be traced back at least to
Hume and is particularly popular in analyzing dynamical data measured as time se-
ries. In a formal framework it was originally proposed (in an abstract form) by Wiener
(Wiener, 1956), and then introduced into practical data analysis and popularized by
Granger (Granger, 1969). A point stressed by Granger is that increased predictability
is a necessary but not sufficient condition for a causal relation between time series.
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In fact, Granger distinguished true causal relations – only to be inferred in the pres-
ence of knowledge of the state of the whole universe – from “prima facie" causal rela-
tions that we refer to as “influence" in agreement with other authors (Commenges and
Gegout-Petit, 2009). Almost simultaneous with Grangers work, Akaike (Akaike, 1968),
and Schweder (Schweder, 1970) introduced similar concepts of influence, prompting
(Valdes-Sosa et al., in press) to coin the term WAGS influence (for Wiener-Akaike-
Granger-Schweder). This is a generalization of a proposal by placeAalen (Aalen, 1987;
Aalen and Frigessi, 2007) who was among the first to point out the connections be-
tween Granger’s and Schweder’s influence concepts. Within this framework we can
define several general types of WAGS influence, which are applicable to both Marko-
vian and non-Markovian processes, in discrete or continuous time.

For three vector time series X1 (t) ,X2 (t) ,X3 (t) we wish to know if time series X1 (t)
is influenced by time series X2 (t) conditional on X3 (t). Here X3 (t) can be considered
any set of relevant time series to be controlled for. Let X [a,b] = {X (t) , t ∈ [a,b]} denote
the history of a time series in the discrete or continuous time interval [a,b] The first
categorical distinction is based on what part of the present or future of X1 (t) can be pre-
dicted by the past or present of X2 (τ2) τ2 ≤ t. This leads to the following classification
(Florens, 2003; Florens and Fougere, 1996):

1. If X2 (τ2) : τ2 < t , can influence any future value of X1 (t) it is a global influence.

2. If X2 (τ2) : τ2 < t , can influence X1 (t) at time t it is a local influence.

3. If X2 (τ2) : τ2 = t , can influence X1 (t) it is a contemporaneous influence.

A second distinction is based on predicting the whole probability distribution (strong

influence) or only given moments (weak influence). Since the most natural formal def-
inition is one of independence, every influence type amounts to the negation of an
independence statement. The two classifications give rise to six types of independence
and corresponding influence as set out in Table 1.

To illustrate, X1 (t) is strongly, conditionally, and globally independent of X2 (t)
given X3 (t), if

P ( X1(∞, t]|X1(t,−∞],X2(t,−∞],X3(t,−∞]) = P ( X1(∞, t]|X1(t,−∞],X3(t,−∞])

That is: the probability distribution of the future values of X1 does not depend on the
past of X2, given that the influence of the past of both X1 and X3 has been taken into
account. When this condition does not hold we say X2 (t) strongly, conditionally, and

globally influences (SCGi) X1 (t) given X3 (t). Here we use a convention for inter-
vals [a,b) which indicates that the left endpoint is included but not the right and that
b precedes a. Note that the whole future of Xt is included (hence the term “global").
And the whole past of all time series is considered. This means these definitions ac-
commodate non-Markovian processes (for Markovian processes, we only consider the
previous time point). Furthermore, these definitions do not depend on an assumption
of linearity or any given functional relationship between time series. Note also that
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Table 1: Types of Influence defined by absence of the corresponding independence re-
lations. See text for acronym definitions.

Strong
(Probability Distribution)

Weak
(Expectation)

Global
(All horizons)

By absence of
strong, conditional, global

independence:
X2 (t)SCGi X1 (t)||X3 (t)

By absence of
weak, conditional, global in-
dependence:
X2 (t)WCGi X1 (t)||X3 (t)

Local
(Immediate
future)

By absence of
strong, conditional, local in-
dependence:
X2 (t)SCLi X1 (t)||X3 (t)

By absence of
weak, conditional, local in-
dependence:
X2 (t)WCLi X1 (t)||X3 (t)

Contemporaneous By absence of
strong, conditional, contem-

poraneous independence:
X2 (t)SCCi X1 (t)||X3 (t)

By absence of
weak, conditional, contem-

poraneous independence:
X2 (t)WCCi X1 (t)||X3 (t)

this definition is appropriate for point processes, discrete and continuous time series,
even for categorical (qualitative valued) time series. The only problem with this for-
mulation is that it calls on the whole probability distribution and therefore its practical
assessment requires the use of measures such as mutual information that estimate the
probability densities nonparametrically.

As an alternative, weak concepts of influence can be defined based on expectations.
Consider weak conditional local independence in discrete time, which is defined:

E [ X1 [t+∆t]|X1[t,−∞] ,X2[t,−∞],X3[t,−∞]] = E [ X1 [t+∆t]|X1[t,−∞],X3[t,−∞]]
(7)

When this condition does not hold we say X2 weakly, conditionally and locally in-

fluences (WCLi) X1 given X3. To make the implementation this definition insightful,
consider a discrete first-order vector auto-regressive (VAR) model for X = [X1X2X3]:

X [t+∆t] = AX [t]+ e [t+∆t] (8)

For this case E [ X[t+∆t]|X[t,−∞]] = AX [t], and analyzing influence reduces to find-
ing which of the autoregressive coefficients are zero. Thus, many proposed operational
tests of WAGS influence, particularly in fMRI analysis, have been formulated as tests
of discrete autoregressive coefficients, although not always of order 1. Within the same
model one can operationalize weak conditional instantaneous independence in dis-
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crete time as zero off-diagonal entries in the co-variance matrix of the innovations e[t]:

Σe = cov [X [t+∆t] |X [t,−∞]] = E
[
X [t+∆t] X′ [t+∆t] |X [t,−∞]

]

In comparison weak conditional local independence in continuous time is defined:

E [Y1[t]|Y1(t,−∞],Y2(t,−∞],Y3(t,−∞]] = E [Y1[t]|Y1(t,−∞],Y3(t,−∞]] (9)

Now consider a first-order stochastic differential equation (SDE) model for Y = [Y1Y2Y3]:

dY = BYdt+dω (10)

Then, since ω is a Wiener process with zero-mean white Gaussian noise as a derivative,
E [Y[t]|Y(t,−∞]]= BY (t)and analysing influence amounts to estimating the parameters
B of the SDE. However, if one were to observe a discretely sampled versionX[k] =
Y (k∆t) at sampling interval ∆tand model this with the discrete autoregressive model
above, this would be inadequate to estimate the SDE parameters for large ∆t, since the
exact relations between continuous and discrete system matrices are known to be:

A = eB∆t = I+
∞∑

i=1

∆ti

i! Bi

Σe =
∫ t+∆t

t
eBs∑

ω eBsds

(11)

The power series expansion of the matrix exponential in the first line shows A to be
a weighted sum of successive matrix powers Biof the continuous time system matrix.
Thus, the Awill contain contributions from direct (in B) and indirect (in i steps inBi)
causal links between the modeled areas. The contribution of the more indirect links is
progressively down-weighted with the number of causal steps from one area to another
and is smaller when the sampling interval ∆t is smaller. This makes clear that multivari-
ate discrete signal models have some undesirable properties for coarsely sampled sig-
nals (i.e. a large ∆t with respect to the system dynamics), such as fMRI data. Critically,
entirely ruling out indirect influences is not actually achieved merely by employing a
multivariate discrete model. Furthermore, estimated WAGS influence (particularly the
relative contribution of indirect links) is dependent on the employed sampling inter-
val. However, the discrete system matrix still represents the presence and direction of
influence, possibly mediated through other regions.

When the goal is to estimate WAGS influence for discrete data starting from a con-
tinuous time model, one has to model explicitly the mapping to discrete time. Mapping
continuous time predictions to discrete samples is a well known topic in engineering
and can be solved by explicit integration over discrete time steps as performed in (11)
above. Although this defines the mapping from continuous to discrete parameters, it
does not solve the reverse assignment of estimating continuous model parameters from
discrete data. Doing so requires a solution to the aliasing problem (Mccrorie, 2003) in
continuous stochastic system identification by setting sufficient conditions on the ma-
trix logarithm function to make Babove identifiable (uniquely defined) in terms of A.
Interesting in this regard is a line of work initiated by Bergstrom (Bergstrom, 1966,
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1984) and Phillips (Phillips, 1973, 1974) studying the estimation of continuous time
Autoregressive models (McCrorie, 2002), and continuous time Autoregressive Moving
Average Models (Chambers and Thornton, 2009) from discrete data. This work rests
on the observation that the lag zero covariance matrix Σewill show contemporaneous
covariance even if the continuous covariance matrix Σω is diagonal. In other words,
the discrete noise becomes correlated over the discrete time-series because the random
fluctuations are aggregated over time. Rather than considering this a disadvantage, this
approach tries to use both lag information (the AR part) and zero-lag covariance infor-
mation to identify the underlying continuous linear model.

Notwithstanding the desirability of a continuous time model for consistent infer-
ence on WAGS influence, there are a few invariances of discrete VAR models, or more
generally discrete Vector Autoregressive Moving Average (VARMA) models that allow
their carefully qualified usage in estimating causal influence. The VAR formulation of
WAGS influence has the property of invariance under invertible linear filtering. More
precisely, a general measure of influence remains unchanged if channels are each pre-
multiplied with different invertible lag operators (Geweke, 1982). However, in practice
the order of the estimated VAR model would need to be sufficient to accommodate
these operators. Beyond invertible linear filtering, a VARMA formulation has further
invariances. Solo (2006) showed that causality in a VARMA model is preserved under
sampling and additive noise. More precisely, if both local and contemporaneous influ-
ence is considered (as defined above) the VARMA measure is preserved under sampling
and under the addition of independent but colored noise to the different channels. Fi-
nally, Amendola et al. (2010) shows the class of VARMA models to be closed under
aggregation operations, which include both sampling and time-window averaging.

3.2. State-space models

A general state-space model for a continuous vector time-series y (t)can be formulated
with the set of equations:

ẋ (t) = f (x (t) ,v (t) ,Θ)+ω (t)
y (t) = g (x (t) ,v (t) ,Θ)+ε (t)

(12)

This expresses the observed time-series y (t)as a function of the state variables x (t),
which are possibly hidden (i.e. unobserved) and observed exogenous inputs v (t), which
are possibly under control. All parameters in the model are grouped into Θ. Note
that some generality is sacrificed from the start since f and gdo not depend on t (The
model is autonomous and generates stationary processes) or on ω (t) or ε (t), that is:
noise enters only additively. The first set of equations, the transition equations or state

equations, describe the evolution of the dynamic system over time in terms of stochastic
differential equations (SDEs, though technically only when ω (t) = Σẇ (t) with w (t) a
Wiener process), capturing relations among the hidden state variables x (t) themselves
and the influence of exogenous inputs v (t). The second set of equations, the observation

equations or measurement equations, describe how the measurement variables y (t) are
obtained from the instantaneous values of the hidden state variables x (t) and the inputs
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v (t). In fMRI experiments the exogenous inputs v (t) mostly reflect experimental control
and often have the form of a simple indicator function that can represent, for instance,
the presence or absence of a visual stimulus. The vector-functions f and g can generally
be non-linear.

The state-space formalism allows representation of a very large class of stochastic
processes. Specifically, it allows representation of both so-called ‘black-box’ models,
in which parameters are treated as means to adjust the fit to the data without reflecting
physically meaningful quantities, and ‘grey-box’ models, in which the adjustable pa-
rameters do have a physical or physiological (in the case of the brain) interpretation. A
prominent example of a black-box model in econometric time-series analysis and sys-
tems identification is the (discrete) Vector Autoregressive Moving Average model with
exogenous inputs (VARMAX model) defined as (Ljung, 1999; Reinsel, 1997):

F (B)yt =G (B)vt +L (B)et⇔∑p
i=0 Fiyt−i =

∑s
j=0 G jvt− j+

∑q
k=0 Lket−k

(13)

Here, the backshift operator B is defined, for any ηt as Biηt = ηt−i and F, G and L

are polynomials in the backshift operator, such that e.g. F (B) =
∑p

i=0 FiB
i and p, s

and q are the dynamic orders of the VARMAX(p,s,q) model. The minimal constraints
on (13) to make it identifiable are F0 = L0 = I, which yields the standard VARMAX
representation. The VARMAX model and its various reductions (by use of only one
or two of the polynomials, e.g. VAR, VARX or VARMA models) have played a large
role in time-series prediction and WAGS influence modeling. Thus, in the context of
state space models it is important to consider that the VARMAX model form can be
equivalently formulated in a discrete linear state space form:

xk+1 = Axk +Bvk +Kek

yk = Cxk +Dvk + ek
(14)

In turn the discrete linear state space form can be explicitly accommodated by the con-

tinuous general state-space framework in (12) when we define:

f (x (t) ,v (t) ,Θ) # Fx (t)+Gv (t)
g (x (t) ,v (t) ,Θ) # Hx (t)+Dv (t)

ω (t) = K̃ε (t)

Θ =
{
F,G,H,D, K̃,Σe

} (15)

Again, the exact relations between the discrete and continuous state space parameter
matrices can be derived analytically by explicit integration over time (Ljung, 1999).
And, as discussed above, wherever discrete data is used to model continuous influence
relations the problems of temporal aggregation and aliasing have to be taken into ac-
count.

Although analytic solutions for the discretely sampled continuous linear systems
exist, the discretization of the nonlinear stochastic model (12) does not have a unique
global solution. However, physiological models of neuronal population dynamics and
hemodynamics are formulated in continuous time and are mostly nonlinear while fMRI
data is inherently discrete with low sampling frequencies. Therefore, it is the discretiza-
tion of the nonlinear dynamical stochastic models that is especially relevant to causal
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analysis of fMRI data. A local linearization approach was proposed by (Ozaki, 1992)
as bridge between discrete time series models and nonlinear continuous dynamical sys-
tems model. Considering the nonlinear state equation without exogenous input:

ẋ (t) = f (x (t))+ω (t) . (16)

The essential assumption in local linearization (LL) of this nonlinear system is to con-
sider the Jacobian matrix J (l,m)= ∂ fl(X)

∂Xm
as constant over the time period [t+∆t, t]. This

Jacobian plays the same role as the autoregressive matrix in the linear systems above.
Integration over this interval gives the solution:

xk+1 = xk + J−1(eJ∆t − I) f (xk)+ ek+1 (17)

where I is the identity matrix. Note integration should not be computed this way since
it is numerically unstable, especially when the Jacobian is poorly conditioned. A list
of robust and fast procedures is reviewed in (Valdes-Sosa et al., 2009). This solution is
locally linear but crucially it changes with the state at the beginning of each integration
interval; this is how it accommodates nonlinearity (i.e., a state-dependent autoregres-
sion matrix). As above, the discretized noise shows instantaneous correlations due to
the aggregation of ongoing dynamics within the span of a sampling period. Once again,
this highlights the underlying mechanism for problems with temporal sub-sampling and
aggregation for some discrete time models of WAGS influence.

4. Dynamic causality in fMRI connectivity analysis

Two streams of developments have recently emerged that make use of the temporal dy-
namics in the fMRI signal to analyse directed influence (effective connectivity): Gran-
ger causality analysis (GCA; Goebel et al., 2003; Roebroeck et al., 2005; Valdes-Sosa,
2004) in the tradition of time series analysis and WAGS influence on the one hand,
and Dynamic Causal Modeling (DCM; Friston et al., 2003) in the tradition of system
control on the other hand. As we will discuss in the final section, these approaches
have recently started developing into an integrated single direction. However, initially
each was focused on separate issues that pose challenges for the estimation of causal
influence from fMRI data. Whereas DCM is formulated as an explicit grey box state
space model to account for the temporal convolution of neuronal events by sluggish
hemodynamics, GCA analysis has been mostly aimed at solving the problem of region
selection in the enormous dimensionality of fMRI data.

4.1. Hemodynamic deconvolution in a state space approach

While having a long history in engineering, state space modeling was only introduced
recently for the inference of neural states from neuroimaging signals. The earliest at-
tempts targeted estimating hidden neuronal population dynamics from scalp-level EEG
data (Hernandez et al., 1996; Valdes-Sosa et al., 1999). This work first advanced the
idea that state space models and appropriate filtering algorithms are an important tool to
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estimate the trajectories of hidden neuronal processes from observed neuroimaging data
if one can formulate an accurate model of the processes leading from neuronal activity
to data records. A few years later, this idea was robustly transferred to fMRI data in the
form of DCM (Friston et al., 2003). DCM combines three ideas about causal influence
analysis in fMRI data (or neuroimaging data in general), which can be understood in
terms of the discussion of the fMRI signal and state space models above (Daunizeau
et al., 2009a).

First, neuronal interactions are best modeled at the level of unobserved (latent)
signals, instead of at the level of observed BOLD signals. This requires a state space
model with a dynamic model of neuronal population dynamics and interactions. The
original model that was formulated for the dynamics of neuronal states x = {x1, . . . , xN}
is a bilinear ODE model:

ẋ = Ax+
∑

v jB
jx+Cv (18)

That is, the noiseless neuronal dynamics are characterized by a linear term (with entries
in A representing intrinsic coupling between populations), an exogenous term (with C

representing driving influence of experimental variables) and a bilinear term (with B j

representing the modulatory influence of experimental variables on coupling between
populations). More recent work has extended this model, e.g. by adding a quadratic
term (Stephan et al., 2008), stochastic dynamics (Daunizeau et al., 2009b) or multiple
state variables per region (Marreiros et al., 2008).

Second, the latent neuronal dynamics are related to observed data by a generative
(forward) model that accounts for the temporal convolution of neuronal events by slow
and variably delayed hemodynamics. This generative forward model in DCM for fMRI
is exactly the (simplified) balloon model set out in section 2. Thus, for every selected
region a single state variable represents the neuronal or synaptic activity of a local pop-
ulation of neurons and (in DCM for BOLD fMRI) four or five more represent hemo-
dynamic quantities such as capillary blood volume, blood flow and deoxy-hemoglobin
content. All state variables (and the equations governing their dynamics) that serve
the mapping of neuronal activity to the fMRI measurements (including the observation
equation) can be called the observation model. Most of the physiologically motivated
generative model in DCM for fMRI is therefore concerned with an observation model
encapsulating hemodynamics. The parameters in this model are estimated conjointly
with the parameters quantifying neuronal connectivity. Thus, the forward biophysical
model of hemodynamics is ‘inverted’ in the estimation procedure to achieve a deconvo-
lution of fMRI time series and obtain estimates of the underlying neuronal states. DCM
has also been applied to EEG/MEG, in which case the observation model encapsulates
the lead-field matrix from neuronal sources to EEG electrodes or MEG sensors (Kiebel
et al., 2009).

Third, the approach to estimating the hidden state trajectories (i.e. filtering and
smoothing) and parameter values in DCM is cast in a Bayesian framework. In short,
Bayes’ theorem is used to combine priors p(Θ|M)and likelihood p (y|Θ,M)into the
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marginal likelihood or evidence:

p (y|M) =

∫
p (y|Θ,M) p (Θ|M)dΘ (19)

Here, the model M is understood to define the priors on all parameters and the like-
lihood through the generative models for neuronal dynamics and hemodynamics. A
posterior for the parameters p (Θ|y,M) can be obtained as the distribution over param-
eters which maximizes the evidence (19). Since this optimization problem has no ana-
lytic solution and is intractable with numerical sampling schemes for complex models,
such as DCM, approximations must be used. The inference approach for DCM relies
on variational Bayes methods (Beal, 2003) that optimize an approximation density q(Θ)
to the posterior. The approximation density is taken to have a Gaussian form, which is
often referred to as the “Laplace approximation” (Friston et al., 2007). In addition to
the approximate posterior on the parameters, the variational inference will also result
into a lower bound on the evidence, sometimes referred to as the “free energy”. This
lower bound (or other approximations to the evidence, such as the Akaike Informa-
tion Criterion or the Bayesian Information Criterion) are used for model comparison
(Penny et al., 2004). Importantly, these quantities explicitly balance goodness-of-it
against model complexity as a means of avoiding overfitting.

An important limiting aspect of DCM for fMRI is that the models M that are com-
pared also (implicitly) contain an anatomical model or structural model that contains i)
a selection of the ROIs in the brain that are assumed to be of importance in the cognitive
process or task under investigation, ii) the possible interactions between those structures
and iii) the possible effects of exogenous inputs onto the network. In other words, each
model M specifies the nodes and edges in a directed (possibly cyclic) structural graph
model. Since the anatomical model also determines the selected part y of the total
dataset (all voxels) one cannot use the evidence to compare different anatomical mod-
els. This is because the evidence of different anatomical models is defined over different
data. Applications of DCM to date invariably use very simple anatomical models (typ-
ically employing 3-6 ROIs) in combination with its complex parameter-rich dynamical
model discussed above. The clear danger with overly simple anatomical models is that
of spurious influence: an erroneous influence found between two selected regions that
in reality is due to interactions with additional regions which have been ignored. Pro-
totypical examples of spurious influence, of relevance in brain connectivity, are those
between unconnected structures A and B that receive common input from, or are inter-
vened by, an unmodeled region C.

4.2. Exploratory approaches for model selection

Early applications of WAGS influence to fMRI data were aimed at counteracting the
problems with overly restrictive anatomical models by employing more permissive
anatomical models in combination with a simple dynamical model (Goebel et al., 2003;
Roebroeck et al., 2005; Valdes-Sosa, 2004). These applications reflect the observation
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that estimation of mathematical models from time-series data generally has two im-
portant aspects: model selection and model identification (Ljung, 1999). In the model

selection stage a class of models is chosen by the researcher that is deemed suitable
for the problem at hand. In the model identification stage the parameters in the chosen
model class are estimated from the observed data record. In practice, model selection
and identification often occur in a somewhat interactive fashion where, for instance,
model selection can be informed by the fit of different models to the data achieved in
an identification step. The important point is that model selection involves a mixture
of choices and assumptions on the part of the researcher and the information gained
from the data-record itself. These considerations indicate that an important distinction
must be made between exploratory and confirmatory approaches, especially in struc-
tural model selection procedures for brain connectivity. Exploratory techniques use
information in the data to investigate the relative applicability of many models. As
such, they have the potential to detect ‘missing’ regions in structural models. Confir-
matory approaches, such as DCM, test hypotheses about connectivity within a set of
models assumed to be applicable. Sources of common input or intervening causes are
taken into account in a multivariate confirmatory model, but only if the employed struc-
tural model allows it (i.e. if the common input or intervening node is incorporated in
the model).

The technique of Granger Causality Mapping (GCM) was developed to explore
all regions in the brain that interact with a single selected reference region using au-
toregressive modeling of fMRI time-series (Roebroeck et al., 2005). By employing a
simple bivariate model containing the reference region and, in turn, every other voxel in
the brain, the sources and targets of influence for the reference region can be mapped.
It was shown that such an ‘exploratory’ mapping approach can form an important tool
in structural model selection. Although a bivariate model does not discern direct from
indirect influences, the mapping approach locates potential sources of common input
and areas that could act as intervening network nodes. In addition, by settling for
a bivariate model one trivially avoids the conflation of direct and indirect influences
that can arise in discrete AR model due to temporal aggregation, as discussed above.
Other applications of autoregressive modeling to fMRI data have considered full mul-
tivariate models on large sets of selected brain regions, illustrating the possibility to
estimate high-dimensional dynamical models. For instance, Valdes-Sosa (2004) and
Valdes-Sosa et al. (2005b) applied these models to parcellations of the entire cortex in
conjunction with sparse regression approaches that enforce an implicit structural model
selection within the set of parcels. In another more recent example (Deshpande et al.,
2008) a full multivariate model was estimated over 25 ROIs (that were found to be ac-
tivated in the investigated task) together with an explicit reduction procedure to prune
regions from the full model as a structural model selection procedure. Additional vari-
ants of VAR model based causal inference that has been applied to fMRI include time
varying influence (Havlicek et al., 2010), blockwise (or ‘cluster-wise’) influence from
one group of variables to another (Barrett et al., 2010; Sato et al., 2010) and frequency-
decomposed influence (Sato et al., 2009).
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The initial developments in autoregressive modeling of fMRI data led to a number
of interesting applications studying human mental states and cognitive processes, such
as gestural communication (Schippers et al., 2010), top-down control of visual spatial
attention (Bressler et al., 2008), switching between executive control and default-mode
networks (Sridharan et al., 2008), fatigue (Deshpande et al., 2009) and the resting state
(Uddin et al., 2009). Nonetheless, the lack of AR models to account for the varying
hemodynamics convolving the signals of interest and aggregation of dynamics between
time samples has prompted a set of validation studies evaluating the conditions under
which discrete AR models can provide reliable connectivity estimates. In (Roebroeck
et al., 2005) simulations were performed to validate the use of bivariate AR models in
the face of hemodynamic convolution and sampling. They showed that under these con-
ditions (even without variability in hemodynamics) AR estimates for a unidirectional
influence are biased towards inferring bidirectional causality, a well known problem
when dealing with aggregated time series (Wei, 1990). They then went on to show that
instead unbiased non-parametric inference for bivariate AR models can be based on a
difference of influence terms (X→ Y −Y → X). In addition, they posited that inference
on such influence estimates should always include experimental modulation of influ-
ence, in order to rule out hemodynamic variation as an underlying reason for spurious
causality. In Deshpande et al. (2010) the authors simulated fMRI data by manipulating
the causal influence and neuronal delays between local field potentials (LFPs) acquired
from the macaque cortex and varying the hemodynamic delays of a convolving hemo-
dynamic response function and the signal-to-noise ratio (SNR) and the sampling period
of the final simulated fMRI data. They found that in multivariate (4 dimensional) sim-
ulations with hemodynamic and neuronal delays drawn from a uniform random distri-
bution correct network detection from fMRI was well above chance and was up to 90%
under conditions of fast sampling and low measurement noise. Other studies confirmed
the observation that techniques with intermediate temporal resolution, such as fMRI,
can yield good estimates of the causal connections based on AR models (Stevenson
and Kording, 2010), even in the face of variable hemodynamics (Ryali et al., 2010).
However, another recent simulation study, investigating a host of connectivity meth-
ods concluded low detection performance of directed influence by AR models under
general conditions (Smith et al., 2010).

4.3. Toward integrated models

David et al. (2008) aimed at direct comparison of autoregressive modeling and DCM
for fMRI time series and explicitly pointed at deconvolution of variable hemodynam-
ics for causality inferences. The authors created a controlled animal experiment where
gold standard validation of neuronal connectivity estimation was provided by intracra-
nial EEG (iEEG) measurements. As discussed extensively in Friston (2009b) and Roe-
broeck et al. (2009a) such a validation experiment can provide important information
on best practices in fMRI based brain connectivity modeling that, however, need to be
carefully discussed and weighed. In David et al.’s study, simultaneous fMRI, EEG, and
iEEG were measured in 6 rats during epileptic episodes in which spike-and-wave dis-
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charges (SWDs) spread through the brain. fMRI was used to map the hemodynamic
response throughout the brain to seizure activity, where ictal and interictal states were
quantified by the simultaneously recorded EEG. Three structures were selected by the
authors as the crucial nodes in the network that generates and sustains seizure activ-
ity and further analysed with i) DCM, ii) simple AR modeling of the fMRI signal and
iii) AR modeling applied to neuronal state-variable estimates obtained with a hemo-
dynamic deconvolution step. By applying G-causality analysis to deconvolved fMRI
time-series, the stochastic dynamics of the linear state-space model are augmented with
the complex biophysically motivated observation model in DCM. This step is crucial
if the goal is to compare the dynamic connectivity models and draw conclusions on
the relative merits of linear stochastic models (explicitly estimating WAGS influence)
and bilinear deterministic models. The results showed both AR analysis after decon-
volution and DCM analysis to be in accordance with the gold-standard iEEG analyses,
identifying the most pertinent influence relations undisturbed by variations in HRF la-
tencies. In contrast, the final result of simple AR modeling of the fMRI signal showed
less correspondence with the gold standard, due to the confounding effects of different
hemodynamic latencies which are not accounted for in the model.

Two important lessons can be drawn from David et al.’s study and the ensuing
discussions (Bressler and Seth, 2010; Daunizeau et al., 2009a; David, 2009; Friston,
2009b,a; Roebroeck et al., 2009a,b). First, it confirms again the distorting effects of
hemodynamic processes on the temporal structure of fMRI signals and, more impor-
tantly, that the difference in hemodynamics in different parts of the brain can form a
confound for dynamic brain connectivity models (Roebroeck et al., 2005). Second,
state-space models that embody observation models that connect latent neuronal dy-
namics to observed fMRI signals have a potential to identify causal influence unbiased
by this confound. As a consequence, substantial recent methodological work has aimed
at combining different models of latent neuronal dynamics with a form of a hemody-
namic observation model in order to provide an inversion or filtering algorithm for esti-
mation of parameters and hidden state trajectories. Following the original formulation
of DCM that provides a bilinear ODE form for the hidden neuronal dynamics, attempts
have been made at explicit integration of hemodynamics convolution with stochastic
dynamic models that are interpretable in the framework of WAGS influence.

For instance in (Ryali et al., 2010), following earlier work (Penny et al., 2005;
Smith et al., 2009), a discrete state space model with a bi-linear vector autoregressive
model to quantify dynamic neuronal state evolution and both intrinsic and modulatory
interactions is proposed:

xk = Axk−1+
∑

j=1 v
j
k
B jxk−1+Cv

j
k
+εk

xm
k
=

[
xm

k
, xm

k−1, · · · , x
m
k−L+1

]

ym
k
= βmΦxm

k
+ em

k

(20)

Here, we index exogenous inputs with j and ROIs with min superscripts. The en-
tries in the autoregressive matrix A, exogenous influence matrix C and bi-linear ma-
trices B jhave the same interpretation as in deterministic DCM. The relation between
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observed BOLD-fMRI data yand latent neuronal sources x is modeled by a temporal
embedding of into xmfor each region or ROI m. This allows convolution with a flexible
basis function expansion of possible HRF shapes to be represented by a simple matrix
multiplication βmΦxm

k
in the observation equation. Here Φ contains the temporal basis

functions in Figure 2B and βm the basis function parameters to be estimated. By esti-
mating basis function parameters individually per region, variations in the HRF shape
between region can be accounted for and the confounding effects of these on WAGS
influence estimate can be avoided. Ryali et al. found that robust estimates of parame-
ters Θ =

{
A,B j,C,βm,Σε,Σe

}
and states xk can be obtained from a variational Bayesian

approach. In their simulations, they show that a state-space model with interactions
modeled at the latent level can compensate well for the effects of HRF variability, even
when relative HRF delays are opposed to delayed interactions. Note, however, that sub-
sampling of the BOLD signal is not explicitly characterized in their state-space model.

A few interesting variations on this discrete state-space modeling have recently
been proposed. For instance in (Smith et al., 2009) a switching linear systems model
for latent neuronal state evolution, rather than a bi-linear model was used. This model
represents experimental modulation of connections as a random variable, to be learned
from the data. This variable switches between different linear system instantiations
that each characterize connectivity in a single experimental condition. Such a scheme
has the important advantage that an n-fold cross validation approach can be used to
obtain a measure of absolute model-evidence (rather than relative between a selected
set of models). Specifically, one could learn parameters for each context-specific linear
system with knowledge of the timing of changing experimental conditions in a training
data set. Then the classification accuracy of experimental condition periods in a test
data set based on connectivity will provide a absolute model-fit measure, controlled for
model complexity, which can be used to validate overall usefulness of the fitted model.
In particular, this can point to important brain regions missing from the model incase
of poor classification accuracy.

Another related line of developments instead has involved generalizing the ODE
models in DCM for fMRI to stochastic dynamic models formulated in continuous time
(Daunizeau et al., 2009b; Friston et al., 2008). An early exponent of this approach used
local linearization in a (generalized) Kalman filter to estimate states and parameters in
a non-linear SDE models of hemodynamics (Riera et al., 2004). Interestingly, the in-
clusion of stochastics in the state equations makes inference on coupling parameters of
such models usefully interpretable in the framework of WAGS influence. This hints at
the ongoing convergence, in modeling of brain connectivity, of time series approaches
to causality in a discrete time tradition and dynamic systems and control theory ap-
proaches in a continuous time tradition.

5. Discussion and Outlook

The modeling of an enormously complex biological system such as the brain has many
challenges. The abstractions and choices to be made in useful models of brain con-
nectivity are therefore unlikely to be accommodated by one single ‘master’ model that
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does better than all other models on all counts. Nonetheless, the ongoing development
efforts towards improved approaches are continually extending and generalizing the
contexts in which dynamic time series models can be applied. It is clear that state space
modeling and inference on WAGS influence are fundamental concepts within this en-
deavor. We end here with some considerations of dynamic brain connectivity models
that summarize some important points and anticipate future developments.

We have emphasized that WAGS influence models of brain connectivity have largely
been aimed at data driven exploratory analysis, whereas biophysically motivated state
space models are mostly used for hypothesis-led confirmatory analysis. This is es-
pecially relevant in the interaction between model selection and model identification.
Exploratory techniques use information in the data to investigate the relative applica-
bility of many models. As such, they have the potential to detect ‘missing’ regions in
anatomical models. Confirmatory approaches test hypotheses about connectivity within
a set of models assumed to be applicable.

As mentioned above, the WAGS influence approach to statistical analysis of causal
influence that we focused on here is complemented by the interventional approach
rooted in the theory of graphical models and causal calculus. Graphical causal mod-
els have been recently applied to brain connectivity analysis of fMRI data (Ramsey
et al., 2009). Recent work combining the two approaches (White and Lu, 2010) possi-
bly leads the way to a combined causal treatment of brain imaging data incorporating
dynamic models and interventions. Such a combination could enable incorporation of
direct manipulation of brain activity by (for example) transcranial magnetic stimulation
(Pascual-Leone et al., 2000; Paus, 1999; Walsh and Cowey, 2000) into the current state
space modeling framework.

Causal models of brain connectivity are increasingly inspired by biophysical the-
ories. For fMRI this is primarily applicable in modeling the complex chain of events
separating neuronal population activity from the BOLD signal. Inversion of such a
model (in state space form) by a suitable filtering algorithm amounts to a model-based
deconvolution of the fMRI signal resulting in an estimate of latent neuronal population
activity. If the biophysical model is appropriately formulated to be identifiable (possi-
bly including priors on relevant parameters), it can take variation in the hemodynamics
between brain regions into account that can otherwise confound time series causality
analyses of fMRI signals. Although models of hemodynamics for causal fMRI anal-
ysis have reached a reasonable level of complexity, the models of neuronal dynamics
used to date have remained simple, comprising one or two state variables for an entire
cortical region or subcortical structure. Realistic dynamic models of neuronal activity
have a long history and have reached a high level of sophistication (Deco et al., 2008;
Markram, 2006). It remains an open issue to what degree complex realistic equation
systems can be embedded in analysis of fMRI – or in fact: any brain imaging modality
– and result in identifiable models of neuronal connectivity and computation.

Two recent developments create opportunities to increase complexity and realism
of neuronal dynamics models and move the level of modeling from the macroscopic
(whole brain areas) towards the mesoscopic level comprising sub-populations of areas
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and cortical columns. First, the fusion of multiple imaging modalities, possibly simul-
taneously recorded, has received a great deal of attention. Particularly, several attempts
to model-driven fusion of simultaneousy recorded fMRI and EEG data, by inverting a
separate observation model for each modality while using the same underlying neuronal
model, have been reported (Deneux and Faugeras, 2010; Riera et al., 2007; Valdes-Sosa
et al., 2009). This approach holds great potential to fruitfully combine the superior spa-
tial resolution of fMRI with the superior temporal resolution of EEG. In (Valdes-Sosa
et al., 2009) anatomical connectivity information obtained from diffusion tensor imag-
ing and fiber tractography is also incorporated. Second, advances in MRI technology,
particularly increases of main field strength to 7T (and beyond) and advances in parallel
imaging (de Zwart et al., 2006; Heidemann et al., 2006; Pruessmann, 2004; Wiesinger
et al., 2006), greatly increase the level spatial detail that are accessible with fMRI. For
instance, fMRI at 7T with sufficient spatial resolution to resolve orientation columns in
human visual cortex has been reported (Yacoub et al., 2008).

The development of state space models for causal analysis of fMRI data has moved
from discrete to continuous and from deterministic to stochastic models. Continuous
models with stochastic dynamics have desirable properties, chief among them a ro-
bust inference on causal influence interpretable in the WAGS framework, as discussed
above. However, dealing with continuous stochastic models leads to technical issues
such as the properties and interpretation of Wiener processes and Ito calculus (Friston,
2008). A number of inversion or filtering methods for continuous stochastic models
have been recently proposed, particularly for the goal of causal analysis of brain imag-
ing data, including the local linearization and innovations approach (Hernandez et al.,
1996; Riera et al., 2004), dynamic expectation maximization (Friston et al., 2008) and
generalized filtering (Friston et al., 2010). The ongoing development of these filtering
methods, their validation and their scalability towards large numbers of state variables
will be a topic of continuing research.
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Abstract

A widely agreed upon definition of time series causality inference, established in the
seminal 1969 article of Clive Granger (1969), is based on the relative ability of the his-
tory of one time series to predict the current state of another, conditional on all other
past information. While the Granger Causality (GC) principle remains uncontested,
its literal application is challenged by practical and physical limitations of the process
of discretely sampling continuous dynamic systems. Advances in methodology for
time-series causality subsequently evolved mainly in econometrics and brain imag-
ing: while each domain has specific data and noise characteristics the basic aims and
challenges are similar. Dynamic interactions may occur at higher temporal or spatial
resolution than our ability to measure them, which leads to the potentially false infer-
ence of causation where only correlation is present. Causality assignment can be seen
as the principled partition of spectral coherence among interacting signals using both
auto-regressive (AR) modelling and spectral decomposition. While both approaches
are theoretically equivalent, interchangeably describing linear dynamic processes, the
purely spectral approach currently differs in its somewhat higher ability to accurately
deal with mixed additive noise.

Two new methods are introduced 1) a purely auto-regressive method named Causal
Structural Information is introduced which unlike current AR-based methods is ro-
bust to mixed additive noise and 2) a novel means of calculating multivariate spectra
for unevenly sampled data based on cardinal trigonometric functions is incorporated
into the recently introduced phase slope index (PSI) spectral causal inference method
(Nolte et al., 2008). In addition to these, PSI, partial coherence-based PSI and existing
AR-based causality measures were tested on a specially constructed data-set simulat-
ing possible confounding effects of mixed noise and another additionally testing the
influence of common, background driving signals. Tabulated statistics are provided,
in which true causality influence is subjected to an acceptable level of false inference
probability. The new methods as well as PSI are shown to allow reliable inference
for signals as short as 100 points and to be robust to additive colored mixed noise and
to the influence commonly coupled driving signals, as well as provide for a useful
measure of strength of causal influence.

Keywords: Causality, spectral decomposition, cross-correlation, auto regressive mod-
els.
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1. Introduction

Causality is the sine qua non of scientific inference methodology, allowing us, among
other things to advocate effective policy, diagnose and cure disease and explain brain
function. While it has recently attracted much interest within Machine Learning, it
bears reminding that a lot of this recent effort has been directed toward static data rather
than time series. The ‘classical’ statisticians of the early 20th century, such as Fisher,
Gosset and Karl Pearson, aimed at a rational and general recipe for causal inference and
discovery (Gigerenzer et al., 1990) but the tools they developed applied to simple types
of inference which required the pres-selection, through consensus or by design, of a
handful of candidate causes (or ‘treatments’) and a handful of subsequently occurring
candidate effects. Numerical experiments yielded tables which were intended to serve
as a technician’s almanac (Pearson, 1930; Fisher, 1925), and are today an essential part
of the vocabulary of scientific discourse, although tables have been replaced by precise
formulae and specialized software. These methods rely on removing possible causal
links at a certain ‘significance level’, on the basic premise that a twin experiment on
data of similar size generated by a hypothetical non-causal mechanism would yield a
result of similar strength only with a known (small) probability. While it may have
been hoped that a generalization of the statistical test of difference among population
means (e.g. the t-test) to the case of time series causal structure may be possible using
a similar almanac or recipe book approach, in reality causality has proven to be a much
more contentious - and difficult - issue.

Time series theory and analysis immediately followed the development of classical
statistics (Yule, 1926; Wold, 1938) and was spurred thereafter by exigence (a severe
economic boom/bust cycle, an intense high-tech global conflict) as well as opportu-
nity (the post-war advent of a machine able to perform large linear algebra calcula-
tions). From a wide historical perspective, Fisher’s ‘almanac’ has rendered the indus-
trial age more orderly and understandable. It can be argued, however, that the ‘scientific
method’, at least in its accounting/statistical aspects, has not kept up with the explosive
growth of data tabulated in history, geology, neuroscience, medicine, population dy-
namics, economics, finance and other fields in which causal structure is at best partially
known and understood, but is needed in order to cure or to advocate policy. While it
may have been hoped that the advent of the computer might give rise to an automatic
inference machine able to ‘sort out’ the ever-expanding data sphere, the potential of a
computer of any conceivable power to condense the world to predictable patterns has
long been proven to be shockingly limited by mathematicians such as Turing (Turing,
1936) and Kolmogorov (Kolmogorov and Shiryayev, 1992) - even before the ENIAC
was built. The basic problem reduces itself to the curse of dimensionality: being forced
to choose among combinations of members of a large set of hypotheses (Lanterman,
2001). Scientists as a whole took a more positive outlook, in line with post-war boom
optimism, and focused on accessible automatic inference problems. One of these was
scientists was Norbert Wiener, who, besides founding the field of cybernetics (the pre-
cursor of ML), introduced some of the basic tools of modern time-series analysis, a line
of research he began during wartime and focused on feedback control in ballistics. The
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time-series causality definition of Granger (1969) owes inspiration to earlier discus-
sion of causality by Wiener (1956). Granger’s approach blended spectral analysis with
vector auto-regression, which had long been basic tools of economics (Wold, 1938;
Koopmans, 1950), and appeared nearly at the same time as similar work by Akaike
(1968) and Gersch and Goddard (1970).

It is useful to highlight the differences in methodological principle and in moti-
vation for static vs. time series data causality inference, starting with the former as
it comprises a large part of the pertinent corpus in Machine Learning and in data min-
ing. Static causal inference is important in the sense that any classification or regression
presumes some kind of causality, for the resulting relation to be useful in identifying el-
ements or features of the data which ‘cause’ or predict target labels or variables and are
to be selected at the exclusion of other confounding ‘features’. In learning and general-
ization of static data, sample ordering is either uninformative or unknown. Yet order is
implicitly relevant to learning both in the sense that some calculation occurs in the phys-
ical world in some finite number of steps which transform independent inputs (stimuli)
to dependent output (responses), and in the sense that generalization should occur on
expected future stimuli. To ably generalize from a limited set of samples implies mak-
ing accurate causal inference. With this priority in mind prior NIPS workshops have
concentrated on feature selection and on graphical model-type causal inference (Guyon
and Elisseeff, 2003; Guyon et al., 2008, 2010) inspired by the work of Pearl (2000) and
Spirtes et al. (2000). The basic technique or underlying principle of this type of infer-
ence is vanishing partial correlation or the inference of static conditional independence
among 3 or more random variables. While it may seem limiting that no unambiguous,
generally applicable causality assignment procedure exists among single pairs of ran-
dom variables, for large ensembles the ambiguity may be partially resolved. Statistical
tests exist which assign, with a controlled probability of false inference, random vari-
able X1 as dependent on X2 given no other information, but as independent on X2 given
X3, a conceptual framework proposed for time-series causality soon after Granger’s
1969 paper using partial coherence rather than static correlation (Gersch and Goddard,
1970). Applied to an ensemble of observations X1..XN , efficient polynomial time al-
gorithms have been devised which combine information about pairs, triples and other
sub-ensembles of random variables into a complete dependency graph including, but
not limited to, a directed acyclical graph (DAG). Such inference algorithms operate
in a nearly deductive manner but are not guaranteed to have unique, optimal solution.
Underlying predictive models upon which this type of inference can operate includes
linear regression (or structural equation modeling) (Richardson and Spirtes, 1999; Lac-
erda et al., 2008; Pearl, 2000) and Markov chain probabilistic models (Scheines et al.,
1998; Spirtes et al., 2000). Importantly, a previously unclear conceptual link between
the notions of time series causality and static causal inference has been formally de-
scribed: see White and Lu (2010) in this volume.

Likewise, algorithmic and functional relation constraints, or at least likelihoods
thereof, have been proposed as to assign causality for co-observed random variable
pairs (i.e. simply by analyzing the scatter plot of X1 vs. X2) (Hoyer et al., 2009). In
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general terms, if we are presented a scatter plot X1 vs. X2 which looks like a noisy
sine wave, we may reasonably infer that X2 causes X1, since a given value of X2 ‘de-
termines’ X1 and not vice versa. We may even make some mild assumptions about the
noise process which superimposes on a functional relation ( X2 = X1 + additive noise
which is independent of X1) and by this means turn our intuition into a proper asym-

metric statistic, i.e. a controlled probability that X1 does not determine X2, an approach
that has proven remarkably successful in some cases where the presence of a causal
relation was known but the direction was not (Hoyer et al., 2009). The challenge here
is that, unlike in traditional statistics, there is not simply the case of the null hypoth-
esis and its converse, but one of 4 mutually exclusive cases. A) X1 is independent of
X2 B) X1 causes X2 C) X2 causes X1 and D) X1 and X2 are observations of dependent
and non-causally related random variables (bidirectional information flow or feedback).
The appearance of a symmetric bijection (with additive noise) between X1 and X2 does
not mean absence of causal relation, as asymmetry in the apparent relations is merely a
clue and not a determinant of causality. Inference over static data is not without ambi-
guities without additional assumptions and requires observations of interacting triples
(or more) of variables as to allow somewhat reliable descriptions of causal relations or
lack thereof (see Guyon et al. (2010) for a more comprehensive overview). Statisti-
cal evaluation requires estimation of relative likelihood of various candidate models or
causal structures, including a null hypothesis of non-causality. In the case of complex
multidimensional data theoretical derivation of such probabilities is quite difficult, since
it is hard to analytically describe the class of dynamic systems we may be expected to
encounter. Instead, common ML practice consists in running toy experiments in which
the ‘ground truth’ (in our case, causal structure) is only known to those who run the
experiment, while other scientists aim to test their discovery algorithms on such data,
and methodological validity (including error rate) of any candidate method rests on its
ability to predict responses to a set of ‘stimuli’ (test data samples) available only to
the scientists organizing the challenge. This is the underlying paradigm of the Causal-
ity Workbench (Guyon, 2011). In time series causality, we fortunately have far more
information at our disposal relevant to causality than in the static case. Any type of
reasonable interpretation of causality implies a physical mechanism which accepts a
modifiable input and performs some operations in some finite time which then produce
an output and includes a source of randomness which gives it a stochastic nature, be it
inherent to the mechanism itself or in the observation process. Intuitively, the structure
or connectivity among input-output blocks that govern a data generating process are re-
lated to causality no matter (within limits) what the exact input-output relationships are:
this is what we mean by structural causality. However, not all structures of data gen-
erating processes are obviously causal, nor is it self evident how structure corresponds
to Granger (non) causality (GC), as shown in further detail by White and Lu (2010).
Granger causality is a measure of relative predictive information among variables and
not evidence of a direct physical mechanism linking the two processes: no amount of
analysis can exclude a latent unobserved cause. Strictly speaking the GC statistic is
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not a measure of causal relation: it is the possible non-rejection of a null hypothesis of
time-ordered independence.

Although time information helps solve many of the ambiguities of static data sev-
eral problems, and despite the large body of literature on time-series modeling, several
problems in time-series causality remain vexing. Knowledge of the structure of the
overall multivariate data generating process is an indispensable aid to inferring causal
relationships: but how to infer the structure using weak a priori assumptions is an open
research question. Sections 3, 4 and 5 will address this issue. Even in the simplest case
(the bivariate case) the observation process can introduce errors in time-series causal
inference by means of co-variate observation noise (Nolte et al., 2010). The bivari-
ate dataset NOISE in the Causality Workbench addresses this case, and is extended in
this study to the evaluation datasets PAIRS and TRIPLES. Two new methods are intro-
duced: an autoregressive method named Causal Structural Information (Section 7) and
a method for estimating spectral coherence in the case of unevenly sampled data (Sec-
tion 8.1). A principled comparison of different methods as well as their performance in
terms of type I, II and III errors is necessary, which addresses both the presence/absence
of causal interaction and directionality. In discussing causal influence in real-world pro-
cesses, we may reasonably expect that not inferring a potentially weak causal link may
be acceptable but positing one where none is missing may be problematic. Sections 2,
6, 7 and 8 address robustness of bivariate causal inference, introducing a pair of novel
methods and evaluating them along with existing ones. Another common source of
argument in discussions of causal structure is the case of false inference by neglecting
to condition the proposed causal information on other background variables which may
explain the proposed effect equally well. While the description of a general deductive
method of causal connectivity in multivariate time series is beyond the scope of this
article, Section 9 evaluates numerical and statistical performance in the tri-variate case,
using methods such as CSI and partial coherence based PSI which can apply to bivariate
interactions conditioned by an arbitrary number of background variables.

2. Causality statistic

Causality inference is subject to a wider class of errors than classical statistics, which
tests independence among variables. A general hypothesis evaluation framework can
be:

Null Hypothesis = No causal interaction H0 = A ⊥C B |C

Hypothesis 1a = A drives B Ha = A→ B |C

Hypothesis 1b = B drives A Hb = B→ A |C

Type I error prob. α = P
(
Ĥa or Ĥb| H0

)
(1)

Type II error prob. β = P
(
Ĥ0| Ha or Hb

)
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Type III error prob. γ = P
(

Ĥa |Hb or Ĥb |Ha

)

The notation Ĥ means that our statistical estimate of the estimated likelihood of H

exceeds the threshold needed for our decision to confirm it. This formulation carries
some caveats the justification for which is pragmatic and will be expounded upon in
later sections. The main one is the use of the term ‘drives’ in place of ‘causes’. The
null hypothesis can be viewed as equivalent to strong Granger non-causality (as it will
be argued is necessary), but it does not mean that the signals A and B are indepen-
dent: they may well be correlated to one another. Furthermore, we cannot realistically
aim at statistically supporting strict Granger causality, i.e. strictly one-sided causal
interaction, since asymmetry in bidirectional interaction may be more likely in real-
world observations and is equally meaningful. By ‘driving’ we mean instead that the
history of one time series element A is more useful to predicting the current state of
B than vice-versa, and not that the history of B is irrelevant to predicting A. In the
latter case we would specify ‘G-causes’ instead of ‘drives’ and for H0 we would em-
ploy non-parametric independence tests of Granger non causality (GNC) which have
already been developed as in Su and White (2008) and Moneta et al. (2010). Note that
the definition in (1) is different from that recently proposed in White and Lu (2010),
which goes further than GNC testing to make the point that structural causality infer-
ence must also involve a further conditional independence test: Conditional Exogeneity
(CE). In simple terms, CE tests whether the innovations process of the potential effect
is conditionally independent of the cause (or, by practical consequence, whether the
innovations processes are uncorrelated). White and Lu argue that if both GNC and CE
fail we ought not make any decision regarding causality, and combine the power of
both tests in a principled manner such that the probability of false causal inference, or
non-decision, is controlled. The difference in this study is that the concurrent failure
of GNC and CE is precisely the difficult situation requiring additional focus and it will
be argued that methods that can cope with this situation can also perform well for the
case of CE, although they require stronger assumptions. In effect, it is assumed that
real-world signals feature a high degree of non-causal correlation, due to aliasing ef-
fects as described in the following section, and that strong evidence to the contrary is
required, i.e. that non-decision is equivalent to inference of non-causality. The precise
meaning of ’driving’ will also be made explicit in the description of Causal Structural
Information, which is implicitly a proposed definition of H0. Also different in Defini-
tion (1) than in White and Lu is the accounting of potential error in causal direction

assignment under a framework which forces the practitioner to make such a choice if
GNC is rejected.

One of the difficulties of causality inference methodology is that it is difficult to as-
certain what true causality in the real world (‘ground truth’) is for a sufficiently compre-
hensive class of problems (such that we can reliably gage error probabilities): hence the
need for extensive simulation. A clear means of validating a causal hypothesis would
be intervention Pearl (2000), i.e. modification of the presumed cause, but in instances
such as historic and geological data this is not feasible. The basic approach will be to
assume a non-informative probability distribution of the degree degree of mixing, or
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non-causal dynamic interactions, as well as over individual spectra and compile infer-
ence error probabilities over a wide class of coupled dynamic systems. In constructing a
‘robust causality’ statistic there is more than simply null-hypothesis rejection and accu-
rate directionality to consider, however. In scientific practice we are not only interested
to know that A and B are causally related or not, but which is the main driver in case of
bidirectional coupling, and among a time series vector A, B, C, D... it is important to
determine which of these factors are the main causes of the target variable, say A. The
relative effect size and relative causal influence strength, lest the analysis be misused
(Ziliak and McCloskey, 2008). The rhetorical and scientific value of effect size in no
way devalues the underlying principle of robust statistics and controlled inference error
probabilities used to quantify it.

3. Auto-regression and aliasing

A simple multivariate time series model is the multivariate auto-regressive model (ab-
breviated as MVAR or VAR). It assumes that the data generating process (DGP) that
created the observations is a linear dynamic model and, as such, it contains poles only
i.e. the numerator of the transfer function between innovations process and observa-
tion is a scalar. The more complex auto-regressive moving average model (ARMA)
includes zeros as well. Despite the rather stringent assumptions of VAR, a time-series
extension of ordinary least squares linear regression, it has been hugely successful in
applications from neuroscience to engineering to sociology and economics. Its familiar
VAR (or VARX) formulation is:

yi =

K∑

k=1

Akyi−k +Bu+wi (2)

Where {yi,d=1..D} is a real valued vector of dimension D. Notice the absence of a
subscript in the exogenous input term u. This is because a general treatment of exoge-
nous inputs requires a lagged sum, i.e.

∑K
k=1 Bkui−k. Since exogenous inputs are not

explicitly addressed in the following derivations the general linear operator placeholder
Bu is used instead and can be re-substituted for subsequent use.

Granger non-causality for this system, expressed in terms of conditional indepen-
dence, would place a relation among elements of y subject to knowledge of u. If D = 2
, for all i

y1,i ⊥ y2,i−1..i−K | y1,i−1..i−K (3)

If the above is true, we would say that y2 does not finite-order G cause y1. If the
world was made exclusively of linear VARs, it would not be terribly difficult to devise a
reliable statistic for G causality. We would, given a sequence of N data points, identify
the maximum-likelihood parameters A and B via ordinary least squares (OLS) linear
regression after having, via some model selection criterion, determined the order K.
Furthermore we would choose another criterion (e.g. test and p-value) which tells us
whether any particular coefficient is likely to be statistically indistinguishable from 0,
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which would correspond to a vanishing partial correlation. If all A’s are lower triangular
G non-causality is satisfied (in one direction but not the converse). It is however very
rare that the physical mechanism we are observing is indeed the embodiment of a VAR,
and therefore even in the case in which G non-causality can be safely rejected, it is
not likely that the best VAR approximation of the data observed is strictly lower/upper
triangular. The necessity of a distinction between strict causality, which has a struc-
tural interpretation, and a causality statistic, which does not measure independence in
the sense of Granger-non causality, but rather relative degree of dependence in both
directions among two signals (driving) is most evident in this case. If the VAR in ques-
tion had very small (and statistically observable) upper triangular elements would a
discussion of causality of the observed time series be rendered moot?

One of the most common physical mechanisms which is incompatible with VAR
is aliasing, i.e. dynamics which are faster than the (shortest) sampling interval. The
standard interpretation of aliasing is the false representation of frequency components
of a signal due to sub-Nyquist frequency sampling: in the multivariate time-series case
this can also lead to spurious correlations in the observed innovations process (Phillips,
1973). Consider a continuous bivariate VAR of order 1 with Gaussian innovations in
which the sampling frequency is several orders of magnitude smaller than the Nyquist
frequency. In this case we would observe a covariate time independent Gaussian pro-
cess since for all practical purposes the information travels ‘instantaneously’. In eco-
nomics, this effect could be due to social interactions or market reactions to news which
happen faster than the sampling interval (be it daily, hourly or monthly). In fMRI anal-
ysis sub- sampling interval brain dynamics are observed over a relatively slow time
convolution process of hemodynamic response of neural activity (for a detailed ex-
position of causality inference in fMRI see Roebroeck et al. (2011) in this volume).
Although ‘aliasing’ normally refers to temporal aliasing, the same process can occur
spatially. In neuroscience and in economics the observed variables are summations
(dimensionality reductions) of a far larger set of interacting agents, be they individuals
or neurons. In electroencephalography (EEG) the propagation of electrical potential
from cortical axons arrives via multiple pathways to the same recording location on
the scalp: the summation of micrometer scale electric potentials on the scalp at cen-
timeter scale. Once again there are spurious observable correlations: this is known as
the mixing problem. Such effects can be modeled, albeit with significant information
loss, by the same DGP class which is a superset of VAR and known in econometrics as
SVAR (structural vector auto-regression, the time series equivalent of structural equa-
tion modeling (SEM), often used in static causality inference (Pearl, 2000)). Another
basic problem in dynamic system identification is that we not only discard much in-
formation from the world in sampling it, but that our observations are susceptible to
additive noise, and that the randomness we see in the data is not entirely the random-
ness of the mechanism we intend to study. One of the most problematic of additive
noise models is mixed colored noise, in which there are structured correlations both in
time and across elements of the time-series, but not in any causal way: there is only a
linear transformation of colored noise, sometimes called mixing, due to spatial aliasing.
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Mixing may occur due to temporal aliasing in sampling a coupled continuous-variable
VAR system. In EEG analysis mixed colored noise models the background electrical
activity of the brain. In other domains such as economics, one can imagine the influ-
ence of unpredictable events such as natural cataclysms or macroenomic cycles which
are not white noise and which are reflect nearly ‘instantaneously’ but to varying degree
in all our measurements. In this case, since each additive noise component is colored (it
has temporal auto- correlation), its past helps predict its current value. Since the obser-
vation is a linear mixture of noise components, all current observations are correlated,
and the past of any component can help predict the current state of any other. In this
case, the strict definition of Granger causality would not make practical sense, since
this cross-predictability is not meaningful.

It should be noted on this point that the literature contains (sometimes inconsistent)
sub-classifications of Granger Causality, such as weak and strong Granger causality.
One definition which is particularly pertinent to this work is that given in Caines (1976)
and Solo (2006) and is that strong Granger causality allows instantaneous dependence
and that weak Granger causality does not (i.e. it is strictly time ordered). We are aiming
in this work at strong Granger causality inference, i.e. one which is robust to aliasing
effects such as colored noise. While we should account for instantaneous interactions,
we do not have to assign causal interpretations to them, since they are symmetric (the
cross-correlation of independent mixed signals is symmetric).

4. Auto-regression, learning and Granger Causality

Learning is the process of discovering predictable patterns in the real world, where a
‘pattern’ is described by an algorithm or an automaton. Besides the object of learning,
i.e. the algorithm which we infer and which maps stimuli to responses, we need to con-
sider the algorithm which performs the learning process and outputs the former. The
third algorithm we should consider is the algorithm embodied in the real world, which
we do not know, which generates the data we observe, and which we hope to be able to
recover, or at least approximate. How can we formally describe it? A Data Generating
Process (DGP) can be a machine or automaton: an algorithm that performs every op-
eration deterministically in a finite number of steps, but which contains an oracle that
generates perfectly random numbers. It is sufficient that this oracle generate 1’s and
0’s only: all other computable probability distributions can be calculated from it. A
DGP contains rational valued parameters (rational as to comply with finite computabil-
ity), in this case the integer K and all elements of the matrices A. Last but not least
a DGP specification may limit the set of admissible parameter values and probability
distributions of the oracle-generated values. The set of all possible outputs of a DGP
corresponds to the set of all probability distributions generated by it over all admissible
parameter values, which we shall call the DGP class.

Definition 1 Let i ∈ N and let sa, sw, pw be finite length prefix-free binary strings.

Furthermore let y and u be rational valued matrices of size N × i and M × i, and t be

rational valued vector with distinct elements, of length i. Let a also be a finite rational
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valued vector. A Data Generating Process is a quintuple {sa,pw,Ta,Tw} where Ta, Tw

are finite time Turing machines which perform the following operations: Given an input

of the incompressible string pw the machine Tw calculates a rational valued matrix w.

The machine Ta when given matrices y, a, u, t, w and a positive rational ∆t outputs a

vector yi+1 which is assigned for future operations to the time ti+1 = max(t)+∆t

The definition is somewhat unusual in terms of the definition of stochastic systems
as embodiments of Turing machines, but it is quite standard in terms of defining an
innovations term w, a probability distribution thereof pw, a state y, a generating func-
tion pa with parameters a and an exogenous input u. The motivation for using the
terminology of algorithmic information theory is to analyse causality assignment as a
computational problem. For reasons of finite description and computability our vari-
ables are rational, rather than real valued. Notice that there is no real restriction on
how the time series is to be generated, recursively or otherwise. The initial condition
in case of recursion is implicit, and time is specified as distinct and increasing but oth-
erwise arbitrarily distributed - it does not necessarily grow in constant increments (it
is asynchronous). The slight paradox about describing stochastic dynamical systems
in algorithmic terms is the necessity of postulating a random number generator (an or-
acle) which in some ways is our main tool for abstracting the complexity of the real
world, but yet is a physical impossibility (since such an oracle would require infinite
computational time see Li and Vitanyi (1997) for overview). Also, the Turing machines
we consider have finite memory and are time restricted (they implement a predefined
maximum number of operations before yielding a default output). Otherwise the rules
of algebra (since they perform algebraic operations) apply normally. The cover of a
DGP can be defined as:

Definition 2 The cover of a Data Generating Process (DGP) class is the cover of the

set of all outputs y that a DGP calculates for each member of the set of admissible

parameters a,u,t,w and for each initial condition y1. Two DGPs are stochastically

equivalent if the cover of the set of their possible outputs (for fixed parameters) is the

same.

Let us now attempt to define a Granger Causality statistic in algorithmic terms.
Allowing for the notation j..k = { j− 1, j− 2..,k+ 1,k} if j > k and in reverse order if
j < k

1

i

i∑

j=1

K(y1, j | y1, j−1..1,u j−1..1)−K(y1, j | y2, j−1..1,y1, j−1..1,u j−1..1) (4)

This differs from Equation (3) in two elemental ways: it is not a statement of inde-
pendence but a number (statistic), namely the average difference (rate) of conditional
(or prefix) Kolmogorov complexity of each point in the presumed effect vector when
given both vector histories or just one, and given the exogenous input history. It is a
generalized conditional entropy rate, and may be reasonably be normalized as such:
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F K
2→1|u =

1

i

i∑

j=1

(
1−

K(y1, j | y2, j−1..1,y1, j−1..1,u j−1..1)

K(y1, j | y1, j−1..1,u j−1..1)

)
(5)

which is a fraction ranging from 0 - meaning no influence of y1 by y2 - to 1, corre-
sponding to complete determination of y1 by y2 and can be transformed into a statistic
comparing different data sets and processes, and which gives probabilities of spurious
results. Another difference with Equation (3) is that we do not refer to finite-order G
causality but simply G causality (in the general case we do not know the maximum lag
order but must infer it). For a more in depth look at DGPs, structure and G-causality,
see White and Lu (2010). The larger the value F K

2→1|u, the more likely that y2 G-causes
y1. The definition is one of conditional information and it is one of an averaged process
rather than a single instance (time point). However, Kolmogorov complexity is incom-
putable, and as such Granger (non) causality must also be, in general, incomputable.
A detailed look at this issue is beyond the scope of this article, but in essence, we can
never test all possible models that could tell us wether the history of a time series helps
or does not help predict (compress) another, and the set of finite running time Turing
machines is not enumerable. We’ve partially circumvented the halting problem since
we’ve specified finite-state, finite-operation machines as the basis of DGPs but have
not specified a search procedure over all DGPs that enumerates them. Even if we limit
ourselves to DGPs which are MVAR, the necessary computational time to calculate the
description length (instead of K(.)) is NP-complete, i.e. it requires an enumeration of
all possible parameters of a DGP class, barring any special properties thereof: finding
the optimal model order requires such a search (keep in mind VAR estimation is convex
only once we know the model order and AR structure).

In practice, we should limit the class of DGPs we consider within out statistic to one
which allows the possibility of polynomial time computation. Let us take Equation (2),
and further make the common assumption that the input vector w is an i.i.d. normally
distributed sequence independent along dimension d, we’ve specified the linear VAR
Gaussian DGP class (which we shall shorten as VAR class). This DGP class, again, has
proven remarkably useful in cases where nothing else except the time series vector y is
known. Re-writing (2):

yi =

K∑

k=1

Akyi−k +D wi−1 ,Dii > 0,Di j = 0 (6)

The matrixD is a positive diagonal matrix containing the scaling, or effective stan-
dard deviations of the innovation terms. The standard deviation of each element of the
innovations term w is assumed hereafter to be equal to 1.

5. Equivalence of auto-regressive data generation processes.

In econometrics the following formulation is familiar (SVAR):
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yi =

K∑

k=0

Akyi−k +Bu+Dwi (7)

The difference between this and Equation (6) is the presence of a 0-lag matrix A0

which, for easy tractability has zero diagonal entries and is sometimes present on the
LHS. This 0-lag matrix is meant to model the sub-sampling interval dynamic interac-
tions among observations, which appear instantaneous, see Moneta et al. (2011) in this
volume. Let us call this form zero lag SVAR. In electric- and magneto- encephalography
(EEG/MEG) we often encounter the following form:

xi =

K∑

k=1

µAkxi−k +µ Bu+Dwi,

yi =Cxi (8)

Where C represents the observation matrix, or mixing matrix and is determined
by the conductivity/permeability of tissue, and accounts for the superposition of the
electromagnetic fields created by neural activity, which happens at nearly the speed of
light and therefore appears instantaneous. Let us call this mixed output SVAR. Finally,
in certain engineering applications we may see structured disturbances:

yi =

K∑

k=1

θAkyi−k +θ Bu+Dwwi (9)

Which we shall call covariate innovations SVAR (Dw is a general nonsingular ma-
trix unlike D which is diagonal). Another final SVAR form to consider would be one
in which the 0-lag matrix

!
A0 is strictly upper triangular (upper triangular zero lag

SVAR):

yi =! A0yi+

K∑

k=1

Akyi−k +! Bu+Dwi (10)

Finally, we may consider a upper or lower triangular co-variate innovations SVAR:

yi =

K∑

k=0

Akyi−k +Bu+
!

Dwi (11)

Where
!
D is upper/lower triangular. The SVAR forms (6)-(10) may look different,

and in fact each of them may uniquely represent physical processes and allow for direct
interpretation of parameters. From a statistical point of view, however, all four SVAR
DGPs introduced above are equivalent since they have identical cover.

Lemma 3 The Gaussian covariate innovations SVAR DGP has the same cover as the

Gaussian mixed output SVAR DGP. Each of these sets has a redundancy of 2N N! for
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instances in which the matrices Dw is the product of and unitary and diagonal matri-

ces, the matrix C is a unitary matrix and the matrix A0 is a permutation of an upper

triangular matrix.

Proof Staring with the definition of covariate innovations SVAR in Equation (9) we
use the variable transformation y = Dwx and obtain the mixed-output form (trivial).
The set of Guassian random variables is closed under scalar multiplication (and hence
sign change) and addition. This means that the variance if the innovations term in
Equation (9) can be written as:

Σw = DT
wDw = DT

wUT UDw

Where U is a unitary (orthogonal, unit 2-norm) matrix. Since all innovations term
elements are zero mean, the covariance matrix is the sole descriptor of the Gaussian
innovations term. This in turn means that any other matrix D

′
w = DT

wUT substituted into
the DGP described in Equation (9) amounts to a stochastically equivalent DGP. The
matrix D

′
w can belong to a number of general sets of matrices, one of which is the set of

nonsingular upper triangular matrices (the transformation is achievable through the QR
decomposition of Σw). Another such set is lower triangular matrix set. Both are subsets
of the set of matrices sometimes named ‘psychologically upper triangular’, meaning a
permutation of an upper triangular matrix.

If we constrain Dw to be of the form Dw = UD, i.e. such that (by polar decom-
position) it is the product of a unitary and a diagonal positive definite matrix, the only
stochastically equivalent transformations of Dw are a symmetry preserving permuta-
tion of its rows/columns and a sign change in one of the columns (this is a property of
orthogonal matrices such as U). There are N! such permutations and 2N possible sign
changes. For the general case, in which the input u has no special properties, there are
no other redundancies in the SVAR model (since changing any parameter in A and B

will otherwise change the output). Without loss of generality then, we can write the
transformation from covariate innovations to mixed output SVAR form as:

yi =

K∑

k=1

θAkyi−k +θ Bu+UDwwi

xi =

K∑

k=1

UT (θAk)Uxi−k +UT (θB)u+Dwwi

yi = UT xi

Since the transformation U is one to one and invertible, and since this transforma-
tion is what allows a (restricted) a covariate noise SVAR to map, one to one, onto a
mixed output SVAR, the cardinality of both covers is the same.

Now consider the zero-lag SVAR form:
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yi =

K∑

k=0

Akyi−k +Bu+Dwi

D−1 (1−A0)yi =

K∑

k=1

D−1Akyi−k +D−1Bu+w

Taking the singular value decomposition of the (nonsingular) matrix coefficient on the
LHS:

U0S VT
0 yi =

K∑

k=1

D−1Akyi−k +D−1Bu+wi

VT
0 yi = S −1UT

0

K∑

k=1

D−1Akyi−k +S −1UT
0D
−1Bu+S −1UT

0 wi

Using the coordinate transformation z = VT
0 y. The unitary transformation UT

0 can be
ignored due closure properties of the Gaussian. This leaves us with the mixed-output
form:

zi =

K∑

k=1

S −1UT
0D
−1AkV0zi−k +S −1UT

0D
−1Bu+S −1w

′

i

y = V0z

So far we’ve shown that for every zero-lag SVAR there is at least one mixed-output
VAR. Let us for a moment consider the covariate noise SVAR (after pre-multiplication)

D−1
w yi =

K∑

k=1

D−1
w θAkyi−k +D−1

w θBu+wi

We can easily then write it in terms of zero lag:

yi =
(
I−D−1

w

)
yi+

K∑

k=1

D−1
w θAkyi−k +D−1

w θBu+wi

However, the entries of I−D−1
w are not zero (as required by definition). This can be

done by scaling by the diagonal:

diag(D−1
w )yi = (diag(D−1

w )−D−1
w )yi+

K∑

k=1

D−1
w θAkyi−k +D−1

w θBu+wi

D0 " diag(D−1
w )
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yi = (I−D−1
0 D−1

w )yi+

K∑

k=1

D−1
0 D−1

w θAkyi−k +D−1
0 D−1

w θBu+D−1
0 wi

A0 = (I−D−1
0 D−1

w )

D−1
w = diag(D−1

w )(I−A0)

While the following constant relation preserves DGP equivalence:

(DT
wDw)−1 = Σ−1

w =D
−1
w D

−T
w =D0(I−A0)(I−A0)TD0

A0 = (I−D−1
0 D−1

w )T (I−D−1
0 D−1

w )

The zero lag matrix is a function of D−1
w , the inverse of which is an eigenvalue

problem. However, as long as the covariance matrix or its inverse is constant, the DGP
is unchanged and this allows N(N − 1)/2 degrees of freedom. Let us consider only
mixed input systems for which the innovations terms are of unit variance. There is no
real loss of generality since a simple row-division by each element ofD0 normalized the
covariate noise form (to be regained by scaling the output). In this case the equivalence
constraint on is one of in which:

(I−! A0)T (I−! A0) = (I−A0)T (I−A0)

If (I −A0) is full rank, a strictly upper triangular matrix !A0 may be found that is
equivalent (this would be the Cholesky decomposition of the inverse covariance ma-
trix in reverse order). As DW is equivalent to a unitary transformation UDW this will
include permutations and orthogonal rotations. Any permutation of DW will imply a
corresponding permutation of A0, which (along with rotations) has 2N N! solutions.

The non-uniqueness of SVAR and the problematic interpretation of AR coefficients
with respect to variable permutation is a known problem Sims (1981), as is the fact
that modeling zero-lag matrices is equivalent to covariance estimation for the Gaussian
case in the other lag coefficients are zero. In fact, statistically vanishing elements of
the covariance matrix are used in Structural Equation Modeling and are given causality
interpretations Pearl (2000). It is not clear how robust such inferences are with respect
to equivalent permutations. The point of the lemma above is to illustrate the ambiguity
of interpretation if the structure of (sparse or full) AR systems in the case of covariate
innovations, zero-lag, or mixed output, which are equivalent to each other. In the case of
SVAR, one approach is to perform standard AR followed by a Cholesky decomposition
of the covariance of the residuals and then pre-multiplying. In Popescu (2008), the
upper triangular SVAR estimation is done directly by singular value decomposition
after regression and the innovations covariance estimated from the zero-lag matrix.
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Figure 1: SVAR causality and equivalence. Structural VAR equivalence and causal-
ity. A) direct structural Granger causality (both directions shown). z stands
for the delay operator. B) equivalent covariate innovations (left) and mixed
output systems. Neither representation shows dynamic interaction C) sparse,
one sided covariate innovations DAG is non sparse in the mixed output case
(and vice-versa). D) upper triangular structure of the zero-lag matrix is not
informative in the 2 variable Gaussian case, and is equivalent to a full mixed
output system.
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Granger, in his 1969 paper, suggests that ‘instantaneous’ (i.e. covariate) effects be
ignored and only the temporal structure be used. Whether or not we accept instanta-
neous causality depends on prior knowledge: in the case of EEG, the mixing matrix
cannot have any physical ‘causal’ explanation even if it is sparse. Without additional
a priori assumptions, either we infer causality on unseen and presumably interacting
hidden variables (mixed output form, the case of EEG/MEG) or we assume a a non-
causal mixed innovations input. Note also that the zero-lag system appears to be causal
but can be written in a form which suggest the opposite difference causal influence
(hence it is sometimes termed ‘spurious causality’). In short, since instantaneous inter-
action in the Gaussian case cannot be resolved causally purely in terms of prediction
and conditional information (as intended by Wiener and Granger), it is proposed that
such interactions be accounted for but not given causal interpretation (as in ‘strong’
Granger non-causality) .

There are at least four distinct overall approaches to dealing with aliasing effects
in time series causality. 1) is to make prior assumptions about covariance matrices and
limit inference to domain relevant and interpretable posteriors, as in Bernanke et al.
(2005) in economics and Valdes-Sosa et al. (2005) in neuroscience. 2) to allow for
unconstrained graphical causal model type inference among covariate innovations, by
either assuming Gaussianity or non-Gaussianity, the latter allowing for stronger causal
inferences (see Moneta et al. (2011) in this volume). One possible drawback of this
approach is that DAG-type inference, at least in the Gaussian case in which there is
so-called ’Markov equivalence’ among candidate graphs, is non-unique. 3) a physi-
cally interpretable mixed output or co-variate innovations is assumed and the inferred
sparsity structure (or the intersection thereof over the nonzero lag coefficient matrices)
as the connection graph. Popescu (2008) implemented such an approach by using the
minimum description length principle to provide a universal prior over rational-valued
coefficients, and was able to recover structure in the majority of simulated co-variate
innovations processes of arbitrary sparsity. This approach is computationally laborious,
as it is NP and non-convex, and moreover a system that is sparse in one form (covari-
ate innovations or mixed-ouput) is not necessarily sparse in another equivalent SVAR
form. Moreover completely dense SVAR systems may be non-causal (in the strong
GC sense). 4) Causality is not interpreted as a binary value, but rather direction of
interaction is determined as a continuous valued statistic, and one which is theoreti-
cally robust to covariate innovations or mixtures. This is the principle of the recently
introduced phase slope index (PSI), which belongs to a class of methods based on spec-
tral decomposition and partition of coherency. Although auto-regressive, spectral and
impulse response convolution are theoretically equivalent representation of linear dy-
namics, they do differ numerically and spectral representations afford direct access to
phase estimates which are crucial to the interpretation of lead and lag as it relates to
causal influence. These methods are reviewed in the next section.
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6. Spectral methods and phase estimation

Cross- and auto spectral densities of a time series, assuming zero-mean or de-trended
values, are defined as:

ρLi j(τ) = E
(
yi(t)y j(t−τ)

)

S i j (ω) = F (ρLi j(τ)) (12)

Note that continuous, linear, raw correlation values are used in the above definition
as well as the continuous Fourier transform. Bivariate coherency is defined as:

Ci j(ω) =
S i j (ω)

√
S ii(ω)S j j(ω)

(13)

Which consists of a complex numerator and a real-valued denominator. The coher-
ence is the squared magnitude of the coherency:

ci j(ω) =Ci j(ω)∗Ci j(ω) (14)

Besides various histogram and discrete (fast) Fourier transform methods available
for the computation of coherence, AR methods may be also used, since they are also
linear transforms, the Fourier transform of the delay operator being simply zk = e− j2πωτS

where τS is the sampling time and k = ωτS . Plugging this into Equation (9) we obtain:

X( jω) =




K∑

k=1

Ake− j2πωτS k


X( jω)+BU( jω)+D

Y( jω) =CX( jω) (15)

Y( jω) =C


I−

K∑

k=1

Ake− j2πωτS k




−1

(BU( jω)+DW( jω)) (16)

In terms of a SVAR therefore (as opposed to VAR) the mixing matrix C does not
affect stability, nor the dynamic response (i.e. the poles). The transfer functions from
ith innovations to jth output are entries of the following matrix of functions:

H( jω) =C


I−

K∑

k=1

Ake− j2πωτS k




−1

D (17)

The spectral matrix is simply (having already assumed independent unit Gaussian
noise):

S ( jω) = H( jω)∗H( jω) (18)

The coherency as the coherence following definitions above. The partial coherence
considers the pair (i, j) of signals conditioned on all other signals, the (ordered) set of
which we denote (i, j):
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S i, j|(i, j)( jω) = S (i, j),(i, j)+S (i, j),(i, j)S
−1
(i, j),(i, j)

S (i, j),(i, j) (19)

Where the subscripts refer to row/column subsets of the matrix S ( jω). The partial
spectrum, substituted into Equation (13) gives us partial coherency Ci, j|(i, j)( jω) and
correspondingly, partial coherence ci, j|(i, j)( jω) . These functions are symmetric and
therefore cannot indicate direction of interaction in the pair (i, j). Several alternatives
have been proposed to account for this limitation. Kaminski and Blinowska (1991);
Blinowska et al. (2004) proposed the following normalization of H( jω) which attempts
to measure the relative magnitude of the transfer function from any innovations process
to any output (which is equivalent to measuring the normalized strength of Granger
causality) and is called the directed transfer function (DTF):

γi j( jω) =
Hi j( jω)

√∑
k |Hik( jω)|2

γ2
i j( jω) =

∣∣∣Hi j( jω)
∣∣∣2

∑
k |Hik( jω)|2

(20)

A similar measure is called directed coherence Baccalá et al. (Feb 1991), later elab-
orated into a method complimentary to DTF, called partial directed coherence (PDC)
Baccalá and Sameshima (2001); Sameshima and Baccalá (1999), based on the inverse
of H:

πi j( jω) =
H−1

i j ( jω)
√∑

k

∣∣∣H−1
ik

( jω)
∣∣∣2

The objective of these coherency-like measures is to place a measure of directional-
ity on the otherwise information-symmetric coherency. While SVAR is not generally
used as a basis of the autoregressive means of spectral and coherence estimation, or of
DTF/PDC is is done so in this paper for completeness (otherwise it is assumed C = I).
Granger’s 1969 paper did consider a mixing matrix (indirectly, by adding non-diagonal
terms to the zero-lag matrix), and suggested ignoring the role of that part of coherency
which depends on mixing terms as non-informative ‘instantaneous causality’. Note
that the ambiguity of the role and identifiability of the full zero lag matrix, as described
herein, was fully known at the time and was one of the justifications given for separating
sub-sampling time dynamics. Another measure of directionality, proposed by Schreiber
(2000) is a Shannon-entropy interpretation of Granger Causality, and therefore will be
referred to as GC herein. The Shannon entropy, and conditional Shannon entropy of a
random process is related to its spectrum. The conditional entropy formulation of Gran-
ger Causality for AR models in the multivariate case is (where (i) denotes, as above, all
other elements of the vector except i ):

HGC
j→i|u =H(yi,t+1|y:,t:t−K ,u:,t:t−K)−H(yi,t+1|y( j),t:t−K ,u:,t:t−K)
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HGC
j→i|u = logDi− logD( j)

i (21)

The Shannon entropy of a Gaussian random variable is the logarithm of its standard
deviation plus a constant. Notice than in this paper the definition of Granger Causality
is slightly different than the literature in that it relates to the innovations process of a
mixed output SVAR system of closest rotation and not a regular MVAR. The second

termD( j)
i is formed by computing a reduced SVAR system which omits the jth variable.

Recently Barrett et al. have proposed an extension of GC, based on prior work by
Geweke (1982) from interaction among pairs of variables to groups of variables, termed
multivariate Granger Causality (MVGC) Barrett et al. (2010). The above definition is
straightforwardly extensible to the group case, where I ad J are subsets of 1..D, since
total entropy of independent variables is the sum of individual entropies.

HGC
J→I|u =

∑

i∈I

(
logDi− logD(J)

i

)
(22)

The Granger entropy can be calculated directly from the transfer function, using the
Shannon-Hartley theorem:

HGCH
j→i = −

∑

ω

∆ω ln


1−

∣∣∣Hi j(ω)
∣∣∣2

S ii(ω)


 (23)

Finally Nolte (Nolte et al., 2008) introduced a method called Phase Slope Index
which evaluates bilateral causal interaction and is robust to mixing effects (i.e. zero
lag, observation or innovations covariance matrices that depart from MVAR):

PS Ii j→i = Im



∑

ω

C∗i j(ω) Ci j(ω+dω)


 (24)

PSI, as a method is based on the observation that pure mixing (that is to say, all
effects stochastically equivalent to output mixing as outlined above) does not affect
the imaginary part of the coherency Ci j just as (equivalently) it does not affect the
antisymmetric part of the auto-correlation of a signal. It does not place a measure the
phase relationship per se, but rather the slope of the coherency phase weighted by the
magnitude of the coherency.

7. Causal Structural Information

Currently, Granger causality estimation based on linear VAR modeling has been shown
to be susceptible to mixed noise, in the presence of which it may produce false causality
assignment Nolte et al. (2010). In order to allow for accurate causality assignment in
the presence of instantaneous interaction and aliasing the Causal Structural Information
(CSI) method and statistic for causality assignment is introduced below.

Consider the SVAR lower triangular form in (10) for a set of observations y. The
information transfer from i to j may be obtained by first defining the index re-orderings:
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i j∗ " {i, j, i j}

i∗ " {i, i j}

This means that we reorder the (identified) mixed-innovations system by placing
the target time series first and the driver series second, followed by all the rest. The
same ordering, minus the driver is also useful. We define CSI as

CS I( j→ i|i j) " log(
!i j∗D11)− log(!i∗D11) (25)

CS I(i, j|i j) "CS I( j→ i|i j)−CS I(i→ j|i j) (26)

Where the D is upper-triangular form in each instance. This Granger Causality for-
mulation requires the identification of 3 different SVAR models, one for the entire time
series vector, and one each for all elements except i and all elements except j. Via
Cholesky decomposition, the logarithm of the top vertex of the triangle is proportional
to the entropy rate (conditional information) of the innovations process for the target
series given all other (past and present) information including the innovations process.
While this definition is clearly an interpretation of the core idea of Granger causality,
it is, like DTF and PDC, not an independence statistic but a measure of (causal) in-
formation flow among elements of a time-series vector. Note the anti-symmetry (by
definition) of this information measure CS I(i, j|i j) = −CS I( j, i|i j) . Note also that
CS I( j→ i|i j) and CS I(i→ j|i j) may very conceivably have the same sign: the vari-
ous triangular forms used to derive this measure are purely for calculation purposes,
and do not carry intrinsic meaning. As a matter of fact other re-orderings and SVAR
forms may be employed for convenient calculation as well. In order to improve the ex-
planatory power of the CSI statistic the following normalization is proposed, mirroring
that defined in Equation (5) :

F CS I

j→i|i j
"

CS I(i, j|i j)

log(!i∗D11)+ log(! j∗D11)+ ζ
(27)

This normalization effectively measures the ratio of causal to non-causal information,
where ζ is a constant which depends on the number of dimensions and quantization
width and is necessary to transform continuous entropy to discrete entropy.

8. Estimation of multivariate spectra and causality assignment

In Section 6 and a series of causality assignment methods based on spectral decompo-
sition of a multivariate signal were described. In this section spectral decomposition
itself will be discussed, and a novel means of doing so for unevenly sampled data will
be introduced and evaluated along with the other methods for a bivariate benchmark
data set.
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8.1. The cardinal transform of the autocorrelation

Currently there are few commonly used methods for cross- power spectrum estimation
(i.e. multivariate spectral power estimation) as opposed to univariate power spectrum
estimation, and these methods average over repeated, or shifting, time windows and
therefore require a lot of data points. Furthermore all commonly used multivariate spec-
tral power estimation methods rely on synchronous, evenly spaced sampling, despite
the fact that much of available data is unevenly sampled, has missing values, and can
be composed of relatively short sequences. Therefore a novel method is presented be-
low for multivariate spectral power estimation which can be estimated on asynchronous
data.

Returning to the definition of coherency as the Fourier transform of the auto-
correlation, which are both continuous transforms, we may extend the conceptual means
of its estimation in the discrete sense as a regression problem (as a discrete Fourier
transform, DFT) in the evenly sampled case as:

Ωn "
n

2τ0(N −1)
, n = −4N/25 . . .4N/25 (28)

Ĉi j(ω)| ω=Ω = ai j,n+ jbi j,n (29)

ρ ji(−kτ) = ρi j(kτ) = E(xi(t)x j(t+ kτ)) (30)

ρi j(kτ0) #
1

N − k

∑

q=1:N−k

xi(q)x j(q+ k) (31)

{
ai j,bi j

}
= argmin

N/2∑

k=−N/2

(
ρi j(kτ0)−ai j,ncos(2πΩnτ0k)−bi j,n sin(2πΩnτ0k)

)2
(32)

where τ0 is the sampling interval. Note that for an odd number of points the regres-
sion above is actually a well determined set of equations, corresponding to the 2-sided
DFT. Note also that by replacing the expectation with the geometric mean, the above
equation can also be written (with a slight change in weighting at individual lags) as:

{
ai j,bi j

}
= argmin

∑

p,q∈1..N

(
xi,px j,q−ai j,n cos(2πΩk(ti,p− t j,q))−bi j,n sin(2πΩn(ti,p− t j,q))

)2

(33)
The above equation holds even for time series sampled at unequal (but overlapping)

times (xi, ti) and (x j, t j) as long as the frequency basis definition is adjusted (for example
τ0 = 1). It represents a discrete, finite approximation of the continuous, infinite auto-
regression function of an infinitely long random process. It is a regression on the outer
product of the vectors xi and x j. Since autocorrelations for finite memory systems tend
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to fall off to zero with increasing lag magnitude, a novel coherency estimate is proposed
based on the cardinal sine and cosine functions, which also decay, as a compact basis:

Ĉi j(ω) = ai j,n

∑
C(Ωn)+ jbi j,nS(Ωn) (34)

{
ai j,bi j

}
= argmin

∑

p,q∈1..N

(
xi,px j,q−ai j,ncosc(2πΩk(ti,p− t j,q))−bi j,nsinc(2πΩn(ti,p− t j,q))

)2
(35)

Where the sine cardinal is defined as sinc(x) = sin(πx)/x, and its Fourier transform
is S( jω) = 1, | jω| < 1 and S( jω) = 0 otherwise. Also the Fourier transform of the cosine
cardinal can be written as C( jω) = jω S ( jω). Although in principle we could choose
any complete basis as a means of Fourier transform estimation, the cardinal transform
preserves the odd-even function structure of the standard trigonometric pair. Computa-
tionally this means that for autocorrelations, which are real valued and even, only sinc

needs to be calculated and used, while for cross-correlation both functions are needed.
As linear mixtures of independent signals only have symmetric cross-correlations, any
nonzero values of the cosc coefficients would indicate the presence of dynamic interac-
tion. Note that the Fast Fourier Transform earns its moniker thanks to the orthogonality
of sin and cos which allows us to avoid a matrix inversion. However their orthogonality
holds true only for infinite support, and slight correlations are found for finite windows -
in practice this effect requires further computation (windowing) to counteract. The car-
dinal basis is not orthogonal, requires full regression and may have demanding memory
requirements. For moderate size data this not problematic and implementation details
will be discussed elsewhere.

8.2. Robustness evaluation based on the NOISE dataset

A dataset named NOISE, intended as a benchmark for the bivariate case, has been
introduced in the preceding NIPS workshop on causality Nolte et al. (2010) and can
be found online at www.causality.inf.ethz.ch/repository.php, along
with the code that generated the data. It was awarded best dataset prize in the previous
NIPS causality workshop and challenge Guyon et al. (2010). For further discussion of
Causality Workbench and current dataset usage see Guyon (2011). NOISE is created
by the summation of the output of a strictly causal VAR DGP and a non-causal SVAR
DGP which consists of mixed colored noise:

yC,i =

K∑

k=1

[
a11 a12

0 a22

]

C,k

yC,i−k +wC,i (36)

xN,i =

K∑

k=1

[
a11 0
0 a22

]

N,k

xN,i−k +wN,i
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yN,i = BxN,i (37)

y = (1− |β|)yN + |β|yC
‖yN‖F
‖yC‖F

(38)

The two sub-systems are pictured graphically as systems A and B in Figure 1.
If β < 0 the AR matrices that create yC are transposed (meaning that y1C causes y2C

instead of the opposite). The coefficient β is represented in Nolte et al. (2010) by ’γ
’ where β = sgn(γ)(1− |γ |). All coefficients are generated as independent Gaussian
random variables of unit variance, and unstable systems are discarded. While both
the causal and noise generating systems have the same order, note that the system that
would generate the sum thereof requires an infinite order SVAR DGP to generate (it
is not stochastically equivalent to any SVAR DGP but instead is a SVARMA DGP,
having both poles and zeros). Nevertheless it is an interesting benchmark since the exact
parameters are not fully recoverable via the commonly used VAR modeling procedure
and because the causality interpretation is fairly clear: the sum of a strictly causal DGP
and a stochastic noncausal DGP should retain the causality of the former.

In this study, the same DGPs were used as in NOISE but as one of the current
aims is to study the influence of sample size on the reliability of causality assignment,
signals of 100, 500, 1000 and 5000 points were generated (as opposed to the original
6000). This is the dataset referred to as PAIRS below, which only differs in numbers
of samples per time series. For each evaluation 500 time series were simulated, with
the order for each system of being uniformly distributed from 1 to 10. The following
methods were evaluated:

• PSI (Ψ) using Welch’s method, and segment and epoch lengths being equal and
set to

⌈√
N
⌉

and otherwise is the same as Nolte et al. (2010).

• Directed transfer function DTF. estimation using an automatic model order se-
lection criterion (BIC, Bayesian Information Criterion) using a maximum model
order of 20. DTF has been shown to be equivalent to GC for linear AR models
(Kaminski et al., 2001) and therefore GC itself is not shown . The covariance
matrix of the residuals is also included in the estimate of the transfer function.
The same holds for all methods described below.

• Partial directed coherence PDC. As described in the previous section, it is simi-
lar to DTF except it operates on the signal-to-innovations (i.e. inverse) transfer
function.

• Causal Structural Information. As a described above this is based on the triangu-
lar innovations equivalent to the estimated SVAR (of which there are 2 possible
forms in the bivariate case) and which takes into account instantaneous interac-
tion / innovations process covariance.
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All methods were statistically evaluated for robustness and generality by perform-
ing a 5-fold jackknife, which gave both a mean and standard deviation estimate for each
method and each simulation. All statistics reported below are mean normalized by stan-
dard deviation (from jackknife). For all methods the final output could be -1, 0, or 1,
corresponding to causality assignment 1→2, no assignment, and causality 2→ 1.A true
positive (TP) was the rate of correct causality assignment, while a false positive (FP)
was the rate of incorrect causality assignment (type III error), such that TP+FP+NA=1,
where NA stands for rate of no assignment (or neutral assignment). The TP and FP
rates are be co-modulated by increasing/decreasing the threshold of the absolute value
of the mean/std statistic, under which no causality assignment is made:

S T AT = rawS T AT/std(rawS T AT ), rawSTAT=PSI, DTF, PDC ..

c = sign (S T AT ) if S T AT > TRES H, 0 otherwise

In Table 1 we see results of overall accuracy and controlled True Positive rate for
the non-mixed colored noise case (meaning the matrix B above is diagonal). In Table 1
and Table 2 methods are ordered according to the mean TP rate over time series length
(highest on top).

Table 1: Unmixed colored noise PAIRS

Max. Accuracy TP , FP < 0.10

100 500 1000 5000 100 500 1000 5000

Ψ 0.62 0.73 0.83 0.88 0.25 0.56 0.75 0.85

DTF 0.58 0.79 0.82 0.88 0.18 0.58 0.72 0.86

CSI 0.62 0.72 0.79 0.89 0.23 0.53 0.66 0.88

ΨC 0.57 0.68 0.81 0.88 0.19 0.29 0.70 0.87

PDC 0.64 0.67 0.75 0.78 0.23 0.33 0.48 0.57

In Table 2 we can see results for a PAIRS, in which the noise mixing matrix B is
not strictly diagonal.

Table 2: Mixed colored noise PAIRS

Max. Accuracy TP , FP< 0.10

N=100 500 1000 5000 N=100 500 1000 5000

ΨC 0.64 0.74 0.81 0.83 0.31 0.49 0.64 0.73

Ψ 0.66 0.76 0.78 0.81 0.25 0.59 0.61 0.71

CSI 0.63 0.77 0.79 0.80 0.27 0.62 0.59 0.66

PDC 0.64 0.71 0.69 0.66 0.24 0.30 0.29 0.24

DTF 0.55 0.61 0.66 0.66 0.11 0.10 0.09 0.12
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(a) Unmixed colored noise

(b) Mixed colored noise

Figure 2: PSI vs. DTF Scatter plots of β vs. STAT (to the left of each panel), TP vs.
FP curves for different time series lengths (100, 500,1000 and 500) (right).
a) colored unmixed additive noise. b) colored mixed additive noise. DTF
is equivalent to Granger Causality for linear systems. All STAT values are
jackknife mean normalized by standard deviation.
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(a) Unmixed colored noise

(b) Mixed colored noise

Figure 3: PSI vs. CSI Scatter plots of β vs. STAT (to the left of each panel), TP vs. FP
curves for different time series lengths (right). a) unmixed additive noise. b)
mixed additive noise
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As we can see in both Figure 2 and Table 1, all methods are almost equally robust
to unmixed colored additive noise (except PDC). However, while addition of mixed

colored noise induces a mild gap in maximum accuracy, it creates a large gap in terms
of TP/FP rates. Note the dramatic drop-off of the TP rate of VAR/SVAR based methods
PDC and DTF. Figure 3 shows this most clearly, by a wide scatter of STAT outputs
for DTF around β = 0 that is to say with no actual causality in the time series and a
corresponding fall-off of TP vs. FP rates. Note also that PSI methods still allow a fairly
reasonable TP rate determination at low FP rates of 10% even at 100 points per time-
series, while the CSI method was also robust to the addition of colored mixed noise,
not showing any significant difference with respect to PSI except a higher FP rate for
longer time series (N=5000). The advantage of PSIcardinal was near PSI in overall
accuracy. In conclusion, DTF (or weak Granger causality) and PDC are not robust with
respect to additive mixed colored noise, although they perform similarly to PSI and CSI
for independent colored noise.1

9. Conditional causality assignment

In multivariate time series analysis we are often concerned with inference of causal
relationship among more than 2 variables, in which the role of a potential common
cause must be accounted for, analogously to vanishing partial correlation in the static
data case. For this reason the PAIRS data set was extended into a set called TRIPLES
in which the degree of common driver influence versus direct coupling was controlled.

In effect, the TRIPLES DGP is similar to PAIRS, in that additive noise is mixed
colored noise (in 3 dimensions) but in this case another variable x3 may drive the pair
x1, x2 independently of each other, also with random coefficients (but either one set to
1/10 of the other randomly). That is to say, the signal is itself a mixture of one where
there is a direct one sided causal link among x1, x2 as in PAIRS and one where they are
actually independent but commonly driven, according to a parameter χ which at 0 is
commonly driven and at 1 is causal.

β < 0 yC,i =

K∑

k=1




a11 a12 0
0 a22 0
0 0 a33



C,k

yC,i−k +wC,i

1. Correlation and rank correlation analysis was performed (for N=5000) to shed light on the rea-
son for the discrepancy between PSI and CSI. The linear correlation between rawSTAT and STAT
was .87 and .89 for PSI and CSI. No influence of model order K of the simulated system was
seen in the error of either PSI or CSI, where error is estimated as the difference in rank of
rankerr(S T AT ) = |rank(β)− rank(S T AT )|. There were however significant correlations between
rank(|β|) and rankerr(S T AT ), -.13 for PSI and -.27 for CSI. Note that as expected, standard Gran-
ger causality (GC) performed the same as DTF (TP=0.116 for FP<.10). Using Akaike’s Information
Criterion (AIC) instead of BIC for VAR model order estimation did not significantly affect AR-based
STAT values.
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Figure 4: Diagram of TRIPLES dataset with common driver
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β > 0 yC,i =

K∑

k=1




a11 0 0
a12 a22 0
0 0 a33



C,k

yC,i−k +wC,i (39)

xN,i =

K∑

k=1




a11 0 0
0 a22 0
0 0 a22




N,k

xN,i−k +wN,i

yN,i = BxN,i (40)

xD,i =

K∑

k=1




a11 0 a13

0 a22 a23

0 0 a22




D,k

xD,i−k +wD,i

yMC = (1− |β|)yN + |β|yC
‖yN‖F
‖yC‖F

(41)

yDC = (1−χ )yMC +χ yD
‖yMC‖F
‖yD‖F

(42)

The Table 3, similar to the tables in the preceding section, shows results for all
usual methods, except for PSIpartial which is PSI calculated on the partial coherence
as defined above and calculated from Welch (cross-spectral) estimators in the case of
mixed noise and a common driver.

Table 3: TRIPLES: Commonly driven, additive mixed colored noise

Max. Accuracy TP , FP< 0.10

100 500 1000 5000 100 500 1000 5000

Ψp 0.53 0.61 0.71 0.75 0.12 0.31 0.49 0.56

Ψ 0.54 0.60 0.70 0.72 0.10 0.25 0.40 0.52

CSI 0.51 0.60 0.69 0.76 0.09 0.27 0.38 0.45

PDC 0.55 0.54 0.60 0.58 0.13 0.12 0.16 0.13

DTF 0.51 0.56 0.59 0.61 0.12 0.09 0.09 0.11

Notice that the TP rates are lower for all methods with respect to Table 2 which
represents the mixed noise situation without any common driver.

10. Discussion

In a recent talk, Emanuel Parzen (Parzen, 2004) proposed, both in hindsight and for
future consideration, that aim of statistics consist in an ‘answer machine’, i.e. a more
intelligent, automatic and comprehensive version of Fisher’s almanac, which currently
consists in a plenitude of chapters and sections related to different types of hypotheses
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and assumption sets meant to model, insofar as possible, the ever expanding variety of
data available. These categories and sub-categories are not always distinct, and further-
more there are competing general approaches to the same problems (e.g. Bayesian vs.
frequentist). Is an ‘answer machine’ realistic in terms of time-series causality, prerequi-
sites for which are found throughout this almanac, and which has developed in parallel
in different disciplines?

This work began by discussing Granger causality in abstract terms, pointing out the
implausibility of finding a general method of causal discovery, since that depends on
the general learning and time-series prediction problem, which are incomputable. How-
ever, if any consistent patterns that can be found mapping the history of one time series
variable to the current state of another (using non-parametric tests), there is sufficient
evidence of causal interaction and the null hypothesis is rejected. Such a determination
still does not address direction of interaction and relative strength of causal influence,
which may require a complete model of the DGP. This study - like many others - relied
on the rather strong assumption of stationary linear Gaussian DGPs but otherwise made
weak assumptions on model order, sampling and observation noise. Are there, instead,
more general assumptions we can use? The following is a list of competing approaches
in increasing order of (subjectively judged) strength of underlying assumption(s):

• Non-parametric tests of conditional probability for Granger non-causality rejec-
tion. These directly compare the probability distributions P(y1, j | y1, j−1..1,u j−1..1)
P(y1, j | y1, j−1..1,u j−1..1) to detect a possible statistically significant difference. Pro-
posed approaches (see chapter in this volume by (Moneta et al., 2011) for a
detailed overview and tabulated robustness comparison) include product kernel
density with kernel smoothing (Chlaß and Moneta, 2010), made robust by boot-
strapping and with density distances such as the Hellinger (Su and White, 2008),
Euclidean (Szekely and Rizzo, 2004), or completely nonparametric difference
tests such Cramer-Von Mises or Kolmogorov-Smirnov. A potential pitfall of
nonparametric approaches is their loss of power for higher dimensionality of the
space over which the probabilities are estimated - aka the curse of dimensionality
(Yatchew, 1998). This can occur if the lag order K needed to be considered is
high, if the system memory is long, or the number of other variables over which
GC must be conditioned (u j−1..1 ) is high. In the case of mixed noise, strong
GC estimation would require accounting for all observed variables (which in
neuroscience can number in the hundreds). While non-parametric non-causality
rejection is a very useful tool (and could be valid even if the lag considered in
analysis is much smaller than the true lag K), in practice we would require robust
estimated of causal direction and relative strength of different factors, which im-
plies a complete accounting of all relevant factors. As was already discussed, in
many cases Granger non-causality is likely to be rejected in both directions: it is
useful to find the dominant one.

• General parametric or semi-parametric (black-box) predictive modeling subject
to GC interpretation which can provide directionality, factor analysis and inter-
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pretation of information flow. A large body of literature exists on neural network
time series modeling (in this context see White (2006) ), complemented in recent
years by support vector regression and Bayesian processes. The major concern
with black-box predictive approaches is model validation: does the fact that a
given model features a high cross-validation score automatically imply the im-
plausibility of another predictive model with equal CV-score that would lead to
different conclusions about causal structure? A reasonable compromise between
nonlinearity and DGP class restriction can be seen in (Chu and Glymour, 2008)
and Ryali et al. (2010), in which the VAR model is augmented by additive non-
linear functions of the regressed variable and exogenous input. Robustness to
noise, sample size influence and accuracy of effect strength and direction deter-
mination are open questions.

• Linear dynamic models which incorporate (and often require) non-Gaussianity
in the innovations process such as ICA and TDSEP (Ziehe and Mueller, 1998).
See Moneta et al. (2011) in this volume for a description of causality inference
using ICA and causal modeling of innovation processes (i.e. independent compo-
nents). Robustness under permutation is necessary for a principled accounting of
dynamic interaction and partition of innovations process entropy. Note that many
ICA variants assume that at most one of the innovations processes is Gaussian,
a strong assumption which requires a posteriori checks. To be elucidated is the
robustness to filtering and additive noise.

• Non-stationary Gaussian linear models. In neuroscience non-stationarity is im-
portant (the brain may change state abruptly, respond to stimuli, have transient
pathological episodes etc). Furthermore accounting for non-stochastic exoge-
nous inputs needs further consideration. Encouragingly, the current study shows
that even in the presence of complex confounders such as common driving signals
and co-variate noise, segments as small as 100 points can yield accurate causal-
ity estimation, such that changes in longer time series can be adaptively tracked.
Note that in establishing statistical significance we must take into account signal
bandwidth: up-sampling the same process would arbitrarily increase the number
of samples but not the information contained in the signal. See Appendix A for a
proposal on non-parametric bandwidth estimation.

• Linear Gaussian dynamic models: in this work we have considered SVAR but
not wider classes of linear DGPs such as VARMA and heteroskedastic (GARCH)
models. In comparing PSI and CSI note that overall accuracy of directionality
assignment was virtually identical, but PSI correlated slightly better with effect
size. While CSI made slightly more errors at low strengths of ‘causality’, PSI
made slightly more errors at high strengths. Nevertheless, PSI was most robust
to (colored, mixed) noise and hidden driving/conditioning signal (tabulated sig-
nificance results are provided in Appendix A). Jackknifed, normalized estimates
can help establish causality at low strength levels, although a large raw PSI statis-
tic value may also suffice. A potential problem with the jackknife (or bootstrap)
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procedure is the strong stationarity assumption which allows segmentation and
rearrangement of the data.

Although AR modeling was commonly used to model interaction in time series
and served as a basis for (linear) Granger causality modeling (Blinowska et al., 2004;
Baccalá and Sameshima, 2001), robustness to mixed noise remained a problem, which
the spectral method PSI was meant to resolve (Nolte et al., 2008). While ‘phase’, if
structured, already implies prediction, precedence and mutual information among time
series elements, it was not clear how SVAR methods would reconcile with PSI per-
formance, until now. This prompted the introduction in this article of the causal AR
method (CSI) which takes into account ‘instantaneous’ causality . A prior study had
shown that strong Granger causality is preserved under addition of colored noise, as
opposed to weak (i.e. strictly time ordered) causality Solo (2006). This is consistent
with the results obtained herein. The CSI method, measuring strong Granger Causality,
was in fact robust with respect to a type of noise not studied in (Solo, 2006), which is
mixed colored noise; other VAR based methods and (weak) Granger causality measures
were not. While and SVAR DGP observed under additive colored noise is a VARMA
process (the case of the PAIRS and TRIPLES datasets), SVAR modeling did not result
in a severe loss of accuracy. AR processes of longer lags can approximate VARMA
processes by using higher orders and more parameters, even if doing so increases ex-
posure to over-fit and may have resulted in a small number of outliers. Future work
must be undertaken to ascertain what robustness and specificity advantages result from
VARMA modeling, and if it is worth doing so considering the increased computational
overload. One of the common ‘defects’ of real-life data are missing/outlier samples,
or uneven sampling in time, or that the time stamps of two time series to be compared
are unrelated though overlapping: it is for these case that the method PSIcardinal was
developed and shown to be practically equal in numerical performance to the Welch
estimate-based PSI method (though it is slower computationally). Both PSI estimates
were robust to common driver influence even when not based on partial but direct co-
herency because it is the asymmetry in influence of the driver on phase that is measured
rather than its overall strength. While 2-way interaction with conditioning was consid-
ered, future work must organize multivariate signals using directed graphs, as in DAG-
type static causal inference. Although only 1 conditioning signal was analysed in this
paper, the methods apply to higher numbers of background variables. Directed Transfer
Function and Partial Directed Coherence did not perform as well under additive colored
noise, but their formulation does address a theoretically important question, namely the
partition of strength of influence among various candidate causes of an observation;
CSI also proposes an index for this important purpose. Whether the assumptions about
stationarity or any other data properties discussed are warranted may be checked by
performing appropriate a posteriori tests. If these tests justify prior assumptions and
a correspondingly significant causal effect is observed, we can assign statistical con-
fidence intervals to the causality structure of the system under study. The ‘almanac’
chapter on time series causality is rich and new alternatives are emerging. For the en-
tire corpus of time-series causality statistics to become an ‘answer machine’, however,
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it is suggested that a principled bottom-up investigation be undertaken, beginning with
the simple SVAR form studied in this paper and all proposed criteria be quantified:
type I, II and III errors, accurate determination of causality strength and direction and
robustness in the presence of conditioning variables and colored mixed noise.
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Appendix A. Statistical significance tables for Type I and Type III errors

In order to assist practitioners in evaluating the statistical significance of bivariate
causality testing, tables were prepared for type I and type III error probabilities as de-
fined in (1) for different values of the base statistic. Below tables are provided for both
the jacknifed statistic Ψ/std(Ψ) and for the raw statistic Ψ, which is needed in case the
number of points is too low to allow a jackknife/cross-validation/bootstrap or compu-
tational speed is at a premium. The spectral evaluation method is Welch’s method as
described in Section 6. There were 2000 simulations for each condition. The tables in
this Appendix differ in one important aspect with respect to those in the main text. In
order to avoid non-informative comparison of datasets which are, for example, analyses
of the same physical process sampled at different sampling rates, the number of points
is scaled by the ‘effective’ number of points which is essentially the number of samples
relative to a simple estimate of the observed signal bandwidth:

N∗ = NτS /B̂W

B̂W =
‖X‖F
‖∆X/∆T‖F

The values marked with an asterisk have values of both α and γ which are less than
5%. Note also that Ψ is non-dimensional index.
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Table 4: α vs. Ψ/std(Ψ)

N∗ → 50 100 200 500 750 1000 1500 2000 5000

0.125 0.82 0.83 0.86 0.87 0.88 0.90 0.89 0.89 0.89

0.25 0.67 0.69 0.73 0.77 0.76 0.78 0.78 0.78 0.77

0.5 0.41 0.44 0.50 0.54 0.55 0.56 0.56 0.59 0.57

0.75 0.26 0.26 0.32 0.36 0.36 0.37 0.38 0.40 0.39

1 0.15 0.15 0.20 0.23 0.23 0.25 0.25 0.26 0.26

1.25 0.09 0.09 0.11 0.13 0.14 0.16 0.14 0.15 0.16

1.5 0.06 0.05 0.06 0.07 0.08 0.09 0.08 0.10 0.10

1.75 0.04 0.03 0.04 0.05 0.05 * 0.05 * 0.04 * 0.06 0.06

2 0.03 0.02 0.03 0.02 * 0.02 * 0.03 * 0.02 * 0.03 * 0.03 *

2.5 0.01 0.01 0.01 0.01 * 0.01 * 0.01 * 0.00 * 0.01 * 0.01 *

3 0.01 0.00 0.00 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

4 0.00 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

8 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

16 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

Table 5: γ vs. Ψ/std(Ψ)

N∗ → 50 100 200 500 750 1000 1500 2000 5000

0.125 0.46 0.41 0.35 0.26 0.23 0.21 0.19 0.18 0.16

0.25 0.46 0.39 0.33 0.24 0.21 0.19 0.18 0.16 0.14

0.5 0.44 0.36 0.29 0.21 0.18 0.15 0.14 0.13 0.12

0.75 0.43 0.35 0.28 0.17 0.14 0.12 0.11 0.10 0.09

1 0.43 0.31 0.23 0.13 0.12 0.09 0.08 0.07 0.06

1.25 0.42 0.31 0.20 0.09 0.08 0.06 0.05 0.05 0.04

1.5 0.40 0.26 0.20 0.06 0.05 0.04 0.04 0.04 0.02

1.75 0.42 0.26 0.16 0.05 0.04 * 0.02 * 0.02 * 0.03 0.01

2 0.41 0.23 0.11 0.03 * 0.03 * 0.02 * 0.02 * 0.02 * 0.01 *

2.5 0.41 0.20 0.06 0.02 * 0.02 * 0.01 * 0.01 * 0.01 * 0.01 *

3 0.33 0.09 0.06 0.03 * 0.01 * 0.00 * 0.00 * 0.00 * 0.00 *

4 0.33 0.00 * 0.00 * 0.02 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

8 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

16 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *
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Table 6: α vs. Ψ

N∗ → 50 100 200 500 750 1000 1500 2000 5000

0.125 0.25 0.22 0.25 0.24 0.24 0.24 0.21 0.21 0.15

0.25 0.09 0.09 0.09 0.09 0.10 0.09 0.09 0.08 0.05 *

0.5 0.02 * 0.01 * 0.01 * 0.02 * 0.02 * 0.02 * 0.01 * 0.01 * 0.01 *

0.75 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

1 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

Table 7: γ vs. Ψ

N∗ → 50 100 200 500 750 1000 1500 2000 5000

0.125 0.21 0.17 0.14 0.10 0.08 0.07 0.06 0.05 0.03

0.25 0.11 0.08 0.06 0.04 0.03 0.03 0.02 0.02 0.01 *

0.5 0.03 * 0.01 * 0.01 * 0.01 * 0.01 * 0.00 * 0.00 * 0.01 * 0.00 *

0.75 0.02 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

1 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

106



JMLR: Workshop and Conference Proceedings 12:1–29

Linking Granger Causality and the Pearl Causal Model with

Settable Systems

Halbert White hwhite@ucsd.edu
Department of Economics

University of California, San Diego

La Jolla, CA 92093

Karim Chalak chalak@bc.edu
Department of Economics

Boston College

140 Commonwealth Avenue

Chestnut Hill, MA 02467

Xun Lu xunlu@ust.hk

Department of Economics

Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong

Editors: Florin Popescu and Isabelle Guyon

Abstract

The causal notions embodied in the concept of Granger causality have been argued
to belong to a different category than those of Judea Pearl’s Causal Model, and so
far their relation has remained obscure. Here, we demonstrate that these concepts
are in fact closely linked by showing how each relates to straightforward notions of
direct causality embodied in settable systems, an extension and refinement of the Pearl
Causal Model designed to accommodate optimization, equilibrium, and learning. We
then provide straightforward practical methods to test for direct causality using tests
for Granger causality.

Keywords: Causal Models, Conditional Exogeneity, Conditional Independence,
Granger Non-causality

1. Introduction

The causal notions embodied in the concept of Granger causality (“G−causality") (e.g.,
Granger, C.W.J., 1969; Granger, C.W.J. and P. Newbold, 1986) are probabilistic, re-
lating to the ability of one time series to predict another, conditional on a given infor-
mation set. On the other hand, the causal notions of the Pearl Causal Model (“PCM")
(e.g., Pearl, J., 2000) involve specific notions of interventions and of functional rather
than probabilistic dependence. The relation between these causal concepts has so far
remained obscure. For his part, Granger, C.W.J. (1969) acknowledged that G−causality
was not “true" causality, whatever that might be, but that it seemed likely to be an im-
portant part of the full story. On the other hand, Pearl, J. (2000, p. 39) states that

c© H. White, K. Chalak & X. Lu.
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“econometric concepts such as ‘Granger causality’ (Granger, C.W.J., 1969) and ‘strong
exogeneity’ (Engle, R., D. Hendry, and J.-F. Richard, 1983) will be classified as statis-
tical rather than causal." In practice, especially in economics, numerous studies have
used G−causality either explicitly or implicitly to draw structural or policy conclusions,
but without any firm foundation.

Recently, White, H. and X. Lu (2010a, “WL”) have provided conditions under
which G−causality is equivalent to a form of direct causality arising naturally in dy-
namic structural systems, defined in the context of settable systems. The settable sys-
tems framework, introduced by White, H. and K. Chalak (2009, “WC”), extends and
refines the PCM to accommodate optimization, equilibrium, and learning. In this pa-
per, we explore the relations between direct structural causality in the settable sys-
tems framework and notions of direct causality in the PCM for both recursive and
non-recursive systems. The close correspondence between these concepts in the re-
cursive systems relevant to G−causality then enables us to show that there is in fact a
close linkage between G−causality and PCM notions of direct causality. This enables
us to provide straightforward practical methods to test for direct causality using tests
for Granger causality.

In a related paper, Eichler, M. and V. Didelez (2009) also study the relation between
G−causality and interventional notions of causality. They give conditions under which
Granger non-causality implies that an intervention has no effect. In particular, Eich-
ler, M. and V. Didelez (2009) use graphical representations as in Eichler, M. (2007)
of given G−causality relations satisfying the “global Granger causal Markov prop-
erty" to provide graphical conditions for the identification of effects of interventions
in “stable" systems. Here, we pursue a different route for studying the interrelations
between G−causality and interventional notions of causality. Specifically, we see that
G−causality and certain settable systems notions of direct causality based on functional
dependence are equivalent under a conditional form of exogeneity. Our conditions are
alternative to “stability" and the “global Granger causal Markov property," although
particular aspects of our conditions have a similar flavor.

As a referee notes, the present work also provides a rigorous complement, in dis-
crete time, to work by other authors in this volume (for example Roebroeck, A., Seth,
A.K., and Valdes-Sosa, P., 2011) on combining structural and dynamic concepts of
causality.

The plan of the paper is as follows. In Section 2, we briefly review the PCM. In Sec-
tion 3, we motivate settable systems by discussing certain limitations of the PCM using
a series of examples involving optimization, equilibrium, and learning. We then specify
a formal version of settable systems that readily accommodates the challenges to causal
discourse presented by the examples of Section 3. In Section 4, we define direct struc-
tural causality for settable systems and relate this to corresponding notions in the PCM.
The close correspondence between these concepts in recursive systems establishes the
first step in linking G−causality and the PCM. In Section 5, we discuss how the results
of WL complete the chain by linking direct structural causality and G−causality. This
also involves a conditional form of exogeneity. Section 6 constructs convenient practi-
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cal tests for structural causality based on proposals of WL, using tests for G−causality
and conditional exogeneity. Section 7 contains a summary and concluding remarks.

2. Pearl’s Causal Model

Pearl’s definition of a causal model (Pearl, J., 2000, def. 7.1.1, p. 203) provides a formal
statement of elements supporting causal reasoning. The PCM is a triple M := (u,v, f ),
where u := {u1, . . . ,um} contains “background" variables determined outside the model,
v := {v1, . . . ,vn} contains “endogenous" variables determined within the model, and f :=
{ f1, . . . , fn} contains “structural" functions specifying how each endogenous variable is
determined by the other variables of the model, so that vi = fi(v(i),u), i = 1, . . . ,n. Here,
v(i) is the vector containing every element of v but vi. The integers m and n are finite.
The elements of u and v are system “units."

Finally, the PCM requires that for each u, f yields a unique fixed point. Thus, there
must be a unique collection g := {g1, . . . ,gn} such that for each u,

vi = gi(u) = fi(g(i)(u),u), i = 1, . . . ,n. (1)

The unique fixed point requirement is crucial to the PCM, as this is necessary for
defining the potential response function (Pearl, J., 2000, def. 7.1.4). This provides the
foundation for discourse about causal relations between endogenous variables; without
the potential response function, causal discourse is not possible in the PCM. A variant
of the PCM (Halpern, J., 2000) does not require a fixed point, but if any exist, there may
be multiple collections of functions g yielding a fixed point. We call this a Generalized
Pearl Causal Model (GPCM). As GPCMs also do not possess an analog of the potential
response function in the absence of a unique fixed point, causal discourse in the GPCM
is similarly restricted.

In presenting the PCM, we have adapted Pearl’s notation somewhat to facilitate
subsequent discussion, but all essential elements are present and complete.

Pearl, J. (2000) gives numerous examples for which the PCM is ideally suited for
supporting causal discourse. As a simple game-theoretic example, consider a market
in which there are exactly two firms producing similar but not identical products (e.g.,
Coke and Pepsi in the cola soft-drink market). Price determination in this market is a
two-player game known as “Bertrand duopoly."

In deciding its price, each firm maximizes its profit, taking into account the pre-
vailing cost and demand conditions it faces, as well as the price of its rival. A simple
system representing price determination in this market is

p1 = a1+b1 p2

p2 = a2+b2 p1.

Here, p1 and p2 represent the prices chosen by firms 1 and 2 respectively, and a1, b1,

a2, and b2 embody the prevailing cost and demand conditions.
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We see that this maps directly to the PCM with n = 2, endogenous variables v =

(p1, p2), background variables u = (a1,b1,a2,b2), and structural functions

f1(v2,u) = a1+b1 p2

f2(v1,u) = a2+b2 p1.

These functions are the Bertrand "best response" or "reaction" functions.
Further, provided b1b2 ! 1, this system has a unique fixed point,

p1 = g1(u) = (a1+b1a2)/(1−b1b2)

p2 = g2(u) = (a2+b2a1)/(1−b1b2).

This fixed point represents the Nash equilibrium for this two-player game.
Clearly, the PCM applies perfectly, supporting causal discourse for this Bertrand

duopoly game. Specifically, we see that p1 causes p2 and vice-versa, and that the effect
of p2 on p1 is b1, whereas that of p1 on p2 is b2.

In fact, the PCM applies directly to a wide variety of games, provided that the game
has a unique equilibrium. But there are many important cases where there may be no
equilibrium or multiple equilibria. This limits the applicability of the PCM. We explore
examples of this below, as well as other features of the PCM that limit its applicability.

3. Settable Systems

3.1. Why Settable Systems?

WC motivate the development of the settable system (SS) framework as an extension of
the PCM that accommodates optimization, equilibrium, and learning, which are central
features of the explanatory structures of interest in economics. But these features are
of interest more broadly, especially in machine learning, as optimization corresponds
to any intelligent or rational behavior, whether artificial or natural; equilibrium (e.g.,
Nash equilibrium) or transitions toward equilibrium characterize stable interactions be-
tween multiple interacting systems; and learning corresponds to adaptation and evolu-
tion within and between interacting systems. Given the prevalence of these features in
natural and artificial systems, it is clearly desirable to provide means for explicit and
rigorous causal discourse relating to systems with these features.

To see why an extension of the PCM is needed to handle optimization, equilibrium,
and learning, we consider a series of examples that highlight certain limiting features
of the PCM: (i) in the absence of a unique fixed point, causal discourse is undefined;
(ii) background variables play no causal role; (iii) the role of attributes is restricted;
and (iv) only a finite rather than a countable number of units is permitted. WC discuss
further relevant aspects of the PCM, but these suffice for present purposes.

Example 3.1 (Equilibria in Game Theory) Our first example concerns general
two-player games, extending the discussion that we began above in considering Bertrand
duopoly.
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Let two players i = 1,2 have strategy sets S i and utility functions ui, such that πi =

ui(z1,z2) gives player i’s payoff when player 1 plays z1 ∈ S 1 and player 2 plays z2 ∈ S 2.

Each player solves the optimization problem

max
zi∈S i

ui(z1,z2).

The solution to this problem, when it exists, is player i’s best response, denoted

yi = re
i (z(i);a),

where re
i is player i’s best response function (the superscript “e" stands for “elementary,"

conforming to notation formally introduced below); z(i) denotes the strategy played by
the player other than i; and a := (S 1,u1,S 2,u2) denotes given attributes defining the
game. For simplicity here, we focus on “pure strategy" games; see Gibbons, R. (1992)
for an accessible introduction to game theory.

Different configurations for a correspond to different games. For example, one of
the most widely known games is prisoner’s dilemma, where two suspects in a crime are
separated and offered a deal: if one confesses and the other does not, the confessor is
released and the other goes to jail. If both confess, both receive a mild punishment. If
neither confesses, both are released. The strategies are whether to confess or not. Each
player’s utility is determined by both players’ strategies and the punishment structure.

Another well known game is hide and seek. Here, player 1 wins by matching player
2’s strategy and player 2 wins by mismatching player 1’s strategy. A familiar example
is a penalty kick in soccer: the goalie wins by matching the direction (right or left) of
the kicker’s kick; the kicker wins by mismatching the direction of the goalie’s lunge.
The same structure applies to baseball (hitter vs. pitcher) or troop deployment in battle
(aggressor vs. defender).

A third famous game is battle of the sexes. In this game, Ralph and Alice are trying
to decide how to spend their weekly night out. Alice prefers the opera, and Ralph
prefers boxing; but both would rather be together than apart.

Now consider whether the PCM permits causal discourse in these games, e.g., about
the effect of one player’s action on that of the other. We begin by mapping the elements
of the game to the elements of the PCM. First, we see that a corresponds to PCM back-
ground variables u, as these are specified outside the system. The variables determined
within the system, i.e., the PCM endogenous variables are z := (z1,z2) corresponding to
v, provided that (for now) we drop the distinction between yi and zi. Finally, we see that
the best response functions re

i correspond to the PCM structural functions fi.

To determine whether the PCM permits causal discourse in these games, we can
check whether there is a unique fixed point for the best responses. In prisoner’s dilemma,
there is indeed a unique fixed point (both confess), provided the punishments are suit-
ably chosen. The PCM therefore applies to this game to support causal discourse. But
there is no fixed point for hide and seek, so the PCM cannot support causal discourse
there. On the other hand, there are two fixed points for battle of the sexes: both Ralph
and Alice choose opera or both choose boxing. The PCM does not support causal dis-
course there either. Nor does the GPCM apply to the latter games, because even though
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it does not require a unique fixed point, the potential response functions required for
causal discourse are not defined.

The importance of game theory generally in describing the outcomes of interactions
of goal-seeking agents and the fact that the unique fixed point requirement prohibits the
PCM from supporting causal discourse in important cases strongly motivates formu-
lating a causal framework that drops this requirement. As we discuss below, the SS
framework does not require a unique fixed point, and it applies readily to games gener-
ally. Moreover, recognizing and enforcing the distinction between yi (i’s best response
strategy) and zi (an arbitrary setting of i’s strategy) turns out to be an important compo-
nent to eliminating this requirement.

Another noteworthy aspect of this example is that a is a fixed list of elements that
define the game. Although elements of a may differ across players, they do not vary for
a given player. This distinction should be kept in mind when referring to the elements
of a as background “variables."

Example 3.2 (Optimization in Consumer Demand) The neoclassical theory of
consumer demand posits that consumers determine their optimal goods consumption by
maximizing utility subject to a budget constraint (see, e.g., Varian, H., 2009). Suppose
for simplicity that there are just two goods, say beer and pizza. Then a typical consumer
solves the problem

max
z1,z2

U(z1,z2) s.t. m = z1+ pz2,

where z1 and z2 represent quantities consumed of goods 1 (beer) and 2 (pizza) respec-
tively and U is the utility function that embodies the consumer’s preferences for the
two goods. For simplicity, let the price of a beer be $1, and let p represent the price of
pizza; m represents funds available for expenditure, “income" for short1. The budget
constraint m = z1+ pz2 ensures that total expenditure on beer and pizza does not exceed
income (no borrowing) and also that total expenditure on beer and pizza is not less than
m. (As long as utility is increasing in consumption of the goods, it is never optimal to
expend less than the funds available.)

Solving the consumer’s demand problem leads to the optimal consumer demands
for beer and pizza, y1 and y2. It is easy to show that these can be represented as

y1 = ra
1(p,m;a) and y2 = ra

2(p,m;a),

where ra
1 and ra

2 are known as the consumer’s market demand functions for beer and
pizza. The “a" superscript stands for “agent," corresponding to notation formally intro-
duced below. The attributes a include the consumer’s utility function U (preferences)
and the admissible values for z1, z2, p, and m, e.g., R+ := [0,∞).

Now consider how this problem maps to the PCM. First, we see that a and (p,m)
correspond to the background variables u, as these are not determined within the sys-
tem. Next, we see that y := (y1,y2) corresponds to PCM endogenous variables v. Finally,

1. Since a beer costs a dollar, it is the “numeraire," implying that income is measured in units of beer.
This is a convenient convention ensuring that we only need to keep track of the price ratio between
pizza and beer, p, rather than their two separate prices.
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we see that the consumer demand functions ra
i correspond to the PCM structural func-

tions fi. Also, because the demand for beer, y1, does not enter the demand function
for pizza, ra

2, and vice versa, there is a unique fixed point for this system of equations.
Thus, the PCM supports causal discourse in this system.

Nevertheless, this system is one where, in the PCM, the causal discourse natural
to economists is unavailable. Specifically, economists find it natural to refer to “price
effects" and “income effects" on demand, implicitly or explicitly viewing price p and
income m as causal drivers of demand. For example, the pizza demand price effect
is (∂/∂p)ra

2(p,m;a). This represents how much optimal pizza consumption (demand)
will change as a result of a small (marginal) increase in the price of pizza. Similarly,
the pizza demand income effect is (∂/∂m)ra

2(p,m;a), representing how much optimal
pizza consumption will change as a result of a small increase in income. But in the
PCM, causal discourse is reserved only for endogenous variables y1 and y2. The fact
that background variables p and m do not have causal status prohibits speaking about
their effects.

Observe that the “endogenous" status of y and “exogenous" status of p and m is
determined in SS by utility maximization, the “governing principle" here. In contrast,
there is no formal mechanism in the PCM that permits making these distinctions. Al-
though causal discourse in the PCM can be rescued for such systems by “endogenizing"
p and m, that is, by positing additional structure that explains the genesis of p and m

in terms of further background variables, this is unduly cumbersome. It is much more
natural simply to permit p and m to have causal status from the outset, so that price and
income effects are immediately meaningful, without having to specify their determin-
ing processes. The SS framework embodies this direct approach. Those familiar with
theories of price and income determination will appreciate the considerable complica-
tions avoided in this way. The same simplifications occur with respect to the primitive
variables appearing in any responses determined by optimizing behavior.

Also noteworthy here is the important distinction between a, which represents fixed
attributes of the system, and p and m, which are true variables that can each take a range
of different possible values. As WC (p.1774) note, restricting the role of attributes
by “lumping together" attributes and structurally exogenous variables as background
objects without causal status creates difficulties for causal discourse in the PCM:

[this] misses the opportunity to make an important distinction between
invariant aspects of the system units on the one hand and counterfactual
variation admissible for the system unit values on the other. Among other
things, assigning attributes to u interferes with assigning natural causal
roles to structurally exogenous variables.

By distinguishing between attributes and structurally exogenous variables, settable sys-
tems permit causal status for variables determined outside a given system, such as when
price and income drive consumer demand.

Example 3.3 (Learning in Structural Vector Autoregressions) Structural vec-
tor autoregressions (VARs) are widely used to analyze time-series data. For example,
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consider the structural VAR

y1,t = a11y1,t−1+a12y2,t−1+u1,t

y2,t = a21y1,t−1+a22y2,t−1+u2,t, t = 1,2, . . . ,

where y1,0 and y2,0 are given scalars, a := (a11,a12,a21,a22)′ is a given real “coefficient"
vector, and {ut := (u1,t,u2,t) : t = 1,2, . . .} is a given sequence. This system describes the
evolution of {yt := (y1,t,y2,t) : t = 1,2, . . .} through time.

Now consider how this maps to the PCM. We see that y0 := (y1,0,y2,0), {ut}, and a

correspond to the PCM background variables u, as these are not determined within the
system. Further, we see that the sequence {yt} corresponds to the endogenous variables
v, and that the PCM structural functions fi correspond to

r1,t(y
t−1,ut;a) = a11y1,t−1+a12y2,t−1+u1,t

r2,t(y
t−1,ut;a) = a21y1,t−1+a22y2,t−1+u2,t, t = 1,2, . . . ,

where yt−1 := (y0, . . . ,yt−1) and ut := (u1, . . . ,ut) represent finite “histories" of the indi-
cated variables. We also see that this system is recursive, and therefore has a unique
fixed point.

The challenge to the PCM here is that it permits only a finite rather than a countable
number of units: both the number of background variables (m) and endogenous vari-
ables (n) must be finite in the PCM, whereas the structural VAR requires a countable
infinity of background and endogenous variables. In contrast, settable systems per-
mit (but do not require) a countable infinity of units, readily accommodating structural
VARs.

In line with our previous discussion, settable systems distinguish between system
attributes a (a fixed vector) and structurally exogenous causal variables y0 and {ut}. The
difference in the roles of y0 and {ut} on the one hand and a on the other are particularly
clear in this example. In the PCM, these are lumped together as background variables
devoid of causal status. Since a is fixed, its lack of causal status is appropriate; indeed,
a represents effects here2, not causes. But the lack of causal status is problematic for
the variables y0 and {ut}; for example, this prohibits discussing the effects of structural
“shocks" ut.

Observe that the structural VAR represents u1,t as a causal driver of y1,t, as is stan-
dard. Nevertheless, settable systems do not admit “instantaneous" causation, so even
though u1,t has the same time index as y1,t, i.e. t, we adopt the convention that u1,t is
realized prior to y1,t. That is, there must be some positive time interval δ > 0, no matter
how small, separating these realizations. For example, δ can represent the amount of
time it takes to compute y1,t once all its determinants are in place. Strictly speaking,
then, we could write u1,t−δ in place of u1,t, but for notational convenience, we leave
this implicit. We refer to this as “contemporaneous" causation to distinguish it from
instantaneous causation.

2. For example, (∂/∂y1,t−1)r1,t(y
t−1,et;a) = a11 can be interpreted as the marginal effect of y1,t−1 on y1,t.
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A common focus of interest when applying structural VARs is to learn the coef-
ficient vector a. In applications, it is typically assumed that the realizations {yt} are
observed, whereas {ut} is unobserved. The least squares estimator for a sample of size
T , say âT , is commonly used to learn (estimate) a in such cases. This estimator is a
straightforward function of yT , say âT = ra,T (yT ). If {ut} is generated as a realization
of a sequence of mean zero finite variance independent identically distributed (IID)
random variables, then âT generally converges to a with probability one as T → ∞,
implying that a can be fully learned in the limit. Viewing âT as causally determined by
yT , we see that we require a countable number of units to treat this learning problem.

As these examples demonstrate, the PCM exhibits a number of features that limit
its applicability to systems involving optimization, equilibrium, and learning. These
limitations motivate a variety of features of settable systems, extending the PCM in
ways that permit straightforward treatment of such systems. We now turn to a more
complete description of the SS framework.

3.2. Formal Settable Systems

We now provide a formal description of settable systems that readily accommodates
causal discourse in the foregoing examples and that also suffices to establish the desired
linkage between Granger causality and causal notions in the PCM. The material that
follows is adapted from Chalak, K. and H. White (2010). For additional details, see
WC.

A stochastic settable system is a mathematical framework in which a countable
number of units i, i = 1, . . . ,n, interact under uncertainty. Here, n ∈ N̄+ := N+ ∪ {∞},
where N+ denotes the positive integers. When n = ∞, we interpret i = 1, . . . ,n as i =

1,2, . . .. Units have attributes ai ∈ A; these are fixed for each unit, but may vary across
units. Each unit also has associated random variables, defined on a measurable space
(Ω,F ). It is convenient to define a principal spaceΩ0 and letΩ := ×n

i=0Ωi, with eachΩi

a copy of Ω0. Often, Ω0 = R is convenient. A probability measure Pa on (Ω,F ) assigns
probabilities to events involving random variables. As the notation suggests, Pa can
depend on the attribute vector a := (a1, . . . ,an) ∈ A := ×n

i=1A.

The random variables associated with unit i define a settable variable Xi for that
unit. A settable variable Xi has a dual aspect. It can be set to a random variable
denoted by Zi (the setting), where Zi :Ωi→ Si. Si denotes the admissible setting values

for Zi, a multi-element subset of R. Alternatively, the settable variable can be free

to respond to settings of other settable variables. In the latter case, it is denoted by
the response Yi : Ω → Si. The response Yi of a settable variable Xi to the settings
of other settable variables is determined by a response function, ri. For example, ri

can be determined by optimization, determining the response for unit i that is best in
some sense, given the settings of other settable variables. The dual role of a settable
variable Xi : {0,1}×Ω → Si, distinguishing responses Xi(0,ω) := Yi(ω) and settings
Xi(1,ω) := Zi(ωi), ω ∈Ω, permits formalizing the directional nature of causal relations,
whereby settings of some variables (causes) determine responses of others.
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The principal unit i = 0 also plays a key role. We let the principal setting Z0 and
principal response Y0 of the principal settable variable X0 be such that Z0 : Ω0→ Ω0

is the identity map, Z0(ω0) := ω0, and we define Y0(ω) := Z0(ω0). The setting Z0 of
the principal settable variable may directly influence all other responses in the system,
whereas its response Y0 is unaffected by other settings. Thus, X0 supports introducing
an aspect of “pure randomness” to responses of settable variables.

3.2.1. Elementary Settable Systems

In elementary settable systems, Yi is determined (actually or potentially) by the settings
of all other system variables, denoted Z(i). Thus, in elementary settable systems, Yi =

ri(Z(i);a). The settings Z(i) take values in S(i) ⊆ Ω0 × j!i S j. We have that S(i) is a strict
subset of Ω0 × j!i S j if there are joint restrictions on the admissible settings values, for
example, when certain elements of S(i) represent probabilities that sum to one.

We now give a formal definition of elementary settable systems.

Definition 3.1 (Elementary Settable System) Let A be a set and let attributes a ∈A

be given. Let n ∈ N̄+ be given, and let (Ω,F ,Pa) be a complete probability space such

that Ω := ×n
i=0Ωi, with each Ωi a copy of the principal space Ω0, containing at least

two elements.

Let the principal setting Z0 : Ω0→ Ω0 be the identity mapping. For i = 1,2, . . . ,n,
let Si be a multi-element Borel-measurable subset of R and let settings Zi :Ωi→ Si be

surjective measurable functions. Let Z(i) be the vector including every setting except Zi

and taking values in S(i) ⊆Ω0× j!iS j, S(i) !∅. Let response functions ri( · ;a) : S(i)→ Si

be measurable functions and define responses Yi(ω) := ri(Z(i)(ω);a). Define settable

variables Xi : {0,1}×Ω→ Si as

Xi(0,ω) := Yi(ω) and Xi(1,ω) := Zi(ωi), ω ∈Ω.

Define Y0 and X0 by Y0(ω) := X0(0,ω) := X0(1,ω) := Z0(ω0), ω ∈Ω.
Put X := {X0,X1, . . .}. The triple S := {(A,a), (Ω,F ,Pa),X} is an elementary set-

table system.

An elementary settable system thus comprises an attribute component, (A,a), a
stochastic component, (Ω,F ,Pa), and a structural or causal component X, consisting
of settable variables whose properties are crucially determined by response functions
r := {ri}. It is formally correct to write Xa instead of X; we write X for simplicity.

Note the absence of any fixed point requirement, the distinct roles played by fixed
attributes a and setting variables Zi (including principal settings Z0), and the countable
number of units allowed.

Example 3.1 is covered by this definition. There, n= 2.Attributes a := (S 1,u1,S 2,u2)
belong to a suitably chosen set A. Here, Si = S i. We take zi = Zi(ωi), ωi ∈ Ωi and
yi = Yi(ω) = re

i (Z(i)(ω);a) = re
i (z(i);a), i = 1,2. The “e" superscript in re

i emphasizes that
the response function is for an elementary settable system. In the example games, the
responses yi only depend on settings (z1,z2). In more elaborate games, dependence on
z0 = ω0 can accommodate random responses.
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3.2.2. Partitioned Settable Systems

In elementary settable systems, each single response Yi can freely respond to settings
of all other system variables. We now consider systems where several settable variables
jointly respond to settings of the remaining settable variables, as when responses repre-
sent the solution to a joint optimization problem. For this, partitioned settable systems
group jointly responding variables into blocks. In elementary settable systems, every
unit i forms a block by itself. We now define general partitioned settable systems.

Definition 3.2 (Partitioned Settable System) Let (A,a), (Ω,F ,Pa), X0, n, and Si, i =

1, . . . ,n, be as in Definition 3.1. Let Π= {Πb} be a partition of {1, . . . ,n}, with cardinality

B ∈ N̄+ (B := #Π).
For i = 1,2, . . . ,n, let ZΠi be settings and let ZΠ(b) be the vector containing Z0 and

ZΠi , i "Πb, and taking values in SΠ(b) ⊆Ω0×i"Πb Si, S
Π
(b) !∅, b = 1, . . . ,B. For b = 1, . . . ,B

and i ∈ Πb, suppose there exist measurable functions rΠi ( · ;a) : SΠ(b)→ Si, specific to Π

such that responses YΠi (ω) are jointly determined as

YΠi := rΠi (ZΠ(b);a).

Define the settable variables XΠi : {0,1}×Ω→ Si as

XΠi (0,ω) := YΠi (ω) and XΠi (1,ω) := ZΠi (ωi) ω ∈Ω.

Put XΠ := {X0,XΠ1 ,X
Π
2 . . .}. The triple S := {(A,a), (Ω,F ), (Π,XΠ)} is a partitioned

settable system.

The settings ZΠ(b) may be partition-specific; this is especially relevant when the ad-

missible set SΠ(b) imposes restrictions on the admissible values of ZΠ(b). Crucially, re-
sponse functions and responses are partition-specific. In Definition 3.2, the joint re-
sponse function rΠ[b] := (rΠi , i ∈ Πb) specifies how the settings ZΠ(b) outside of block Πb

determine the joint response YΠ[b] := (YΠi , i ∈Πb), i.e., YΠ[b] = rΠ[b](Z
Π
(b);a). For convenience

below, we let Π0 = {0} represent the block corresponding to X0.
Example 3.2 makes use of partitioning. Here, we have n = 4 settable variables with

B = 2 blocks. Let settable variables 1 and 2 correspond to beer and pizza consumption,
respectively, and let settable variables 3 and 4 correspond to price and income. The
agent partition groups together all variables under the control of a given agent. Let the
consumer be agent 2, so Π2 = {1,2}. Let the rest of the economy, determining price and
income, be agent 1, so Π1 = {3,4}. The agent partition is Πa = {Π1,Π2}. Then for block
2,

y1 = Ya
1 (ω) = ra

1(Z0(ω0),Za
3(ω3),Za

4(ω4);a) = ra
1(p,m;a)

y2 = Ya
2 (ω) = ra

2(Z0(ω0),Za
3(ω3),Za

4(ω4);a) = ra
2(p,m;a)

represents the joint demand for beer and pizza (belonging to block 2) as a function of
settings of price and income (belonging to block 1). This joint demand is unique under
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mild conditions. Observe that z0 = Z0(ω0) formally appears as an allowed argument
of ra

i after the second equality, but when the consumer’s optimization problem has a
unique solution, there is no need for a random component to demand. We thus suppress
this argument in writing ra

i (p,m;a), i = 1,2. Nevertheless, when the solution to the
consumer’s optimization problem is not unique, a random component can act to ensure
a unique consumer demand. We do not pursue this here; WC provide related discussion.

We write the block 1 responses for the price and income settable variables as

y3 = Ya
3 (ω) = ra

3(Z0(ω0),Za
1(ω1),Za

2(ω2);a) = ra
3(z0;a)

y4 = Ya
4 (ω) = ra

4(Z0(ω0),Za
1(ω1),Za

2(ω2);a) = ra
4(z0;a).

In this example, price and income are not determined by the individual consumer’s
demands, so although Za

1(ω1) and Za
2(ω2) formally appear as allowed arguments of ra

i

after the second equality, we suppress these in writing ra
i (z0;a), i = 3,4. Here, price

and income responses (belonging to block 1) are determined solely by block 0 settings
z0 = Z0(ω0) = ω0. This permits price and income responses to be randomly distributed,
under the control of Pa.

It is especially instructive to consider the elementary partition for this example,
Πe = {{1}, {2}, {3}, {4}}, so that Πi = {i}, i = 1, . . . ,4. The elementary partition specifies
how each system variable freely responds to settings of all other system variables. In
particular, it is easy to verify that when consumption of pizza is set to a given level,
the consumer’s optimal response is to spend whatever income is left on beer, and vice
versa. Thus,

y1 = re
1(Z0(ω0),Ze

2(ω2),Ze
3(ω3),Ze

4(ω4);a) = re
1(z2, p,m;a) = m− pz2

y2 = re
2(Z0(ω0),Ze

1(ω2),Ze
3(ω3),Ze

4(ω4);a) = re
2(z1, p,m;a) = (m− z1)/p.

Replacing (y1,y2) with (z1,z2), we see that this system does not have a unique fixed
point, as any (z1,z2) such that m = z1+ pz2 satisfies both

z1 = m− pz2 and z2 = (m− z1)/p.

Causal discourse in the PCM is ruled out by the lack of a fixed point. Nevertheless,
the settable systems framework supports the natural economic causal discourse here
about effects of prices, income, and, e.g., pizza consumption on beer demand. Further,
in settable systems, the governing principle of optimization (embedded in a) ensures
that the response functions for both the agent partition and the elementary partition are
mutually consistent.

3.2.3. Recursive and Canonical Settable Systems

The link between Granger causality and the causal notions of the PCM emerges from a
particular class of recursive partitioned settable systems that we call canonical settable
systems, where the system evolves naturally without intervention. This corresponds to
what are also called “idle regimes" in the literature (Pearl, J., 2000; Eichler, M. and V.
Didelez, 2009; Dawid, 2010).
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To define recursive settable systems, for b ≥ 0 define Π[0:b] := Π0∪ . . .∪Πb−1∪Πb.

Definition 3.3 (Recursive Partitioned Settable System) Let S be a partitioned set-

table system. For b = 0,1, . . . ,B, let ZΠ[0:b] denote the vector containing the settings ZΠi
for i ∈ Π[0:b] and taking values in S[0:b] ⊆ Ω0×i∈Π[1:b] Si, S[0:b] ! ∅. For b = 1, . . . ,B and

i ∈ Πb, suppose that rΠ := {rΠi } is such that the responses YΠi = X
Π
i (1, ·) are determined

as

YΠi := rΠi (ZΠ[0:b−1];a).

Then we say that Π is a recursive partition, that rΠ is recursive, and that S :=
{(A,a), (Ω,F ), (Π,XΠ)} is a recursive partitioned settable system or simply that S is

recursive.

Example 3.2 is a recursive settable system, as the responses of block 1 depend on
the settings of block 0, and the responses of block 2 depend on the settings of block 1.

Canonical settable systems are recursive settable systems in which the settings for
a given block equal the responses for that block, i.e.,

ZΠ[b] = YΠ[b] := rΠ[b](Z
Π
[0:b−1];a), b = 1, . . . ,B.

Without loss of generality, we can represent canonical responses and settings solely as
a function of ω0, so that

ZΠ[b](ω0) = YΠ[b](ω0) := rΠ[b](Z
Π
[0:b−1](ω0);a), b = 1, . . . ,B.

The canonical representation drops the distinction between settings and responses; we
write

YΠ[b] = rΠ[b](Y
Π
[0:b−1];a), b = 1, . . . ,B.

It is easy to see that the structural VAR of Example 3.3 corresponds to the canoni-
cal representation of a canonical settable system. The canonical responses y0 and {ut}
belong to the first block, and canonical responses yt = (y1,t,y2,t) belong to block t+ 1,
t = 1,2, . . . Example 3.3 implements the time partition, where joint responses for a given
time period depend on previous settings.

4. Causality in Settable Systems and in the PCM

In this section we examine the relations between concepts of direct causality in settable
systems and in the PCM, specifically the PCM notions of direct cause and controlled
direct effect (Pearl, J. (2000, p. 222); Pearl, J. (2001, definition 1)). The close corre-
spondence between these notions for the recursive systems relevant to Granger causality
enables us to take the first step in linking Granger causality and causal notions in the
PCM. Section 5 completes the chain by linking direct structural causality and Granger
causality.
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4.1. Direct Structural Causality in Settable Systems

Direct structural causality is defined for both recursive and non-recursive partitioned
settable systems. For notational simplicity in what follows, we may drop the explicit
partition superscript Π when the specific partition is clearly understood. Thus, we may
write Y, Z, and X in place of the more explicit YΠ, ZΠ, and XΠ when there is no possi-
bility of confusion.

Let X j belong to block b ( j ∈ Πb). Heuristically, we say that a settable variable
Xi, outside of block b, directly causes X j in S when the response for X j differs for
different settings of Xi, while holding all other variables outside of block b to the same
setting values. There are two main ingredients to this notion. The first ingredient is an
admissible intervention. To define this, let z∗(b);i denote the vector otherwise identical
to z(b), but replacing elements zi with z∗i . An admissible intervention z(b) → z∗(b);i :=
(z(b),z

∗
(b);i) is a pair of distinct elements of S(b). The second ingredient is the behavior of

the response under this intervention.
We formalize this notion of direct causality as follows.

Definition 4.1 (Direct Causality) Let S be a partitioned settable system. For given

positive integer b, let j ∈ Πb. (i) For given i " Πb, Xi directly causes X j in S if there

exists an admissible intervention z(b)→ z∗(b);i such that

r j(z
∗
(b);i;a)− r j(z(b);a) ! 0,

and we write Xi
D
⇒S X j. Otherwise, we say Xi does not directly cause X j in S and

write Xi
D
"S X j. (ii) For i, j ∈ Πb,Xi

D
"S X j.

We emphasize that although we follow the literature in referring to “interventions,”
with their mechanistic or manipulative connotations, the formal concept only involves
the properties of a response function on its domain.

By definition, variables within the same block do not directly cause each other. In

particular Xi
D
"S Xi. Also, Definition 4.1 permits mutual causality, so that Xi

D
⇒S X j

and X j
D
⇒S Xi without contradiction for i and j in different blocks. Nevertheless, in

recursive systems, mutual causality is ruled out: if Xi
D
⇒S X j then X j

D
"S Xi.

We call the response value difference in Definition 4.1 the direct effect of Xi on X j

in S of the specified intervention. Chalak, K. and H. White (2010) also study various
notions of indirect and total causality.

These notions of direct cause and direct effect are well defined regardless of whether
or not the system possesses a unique fixed point. Further, all settable variables, includ-
ing X0, can act as causes and have effects. On the other hand, attributes a, being fixed,
do not play a causal role. These definitions apply regardless of whether there is a fi-
nite or countable number of units. It is readily verified that this definition rigorously
supports causal discourse in each of the examples of Section 3.

As we discuss next, in the recursive systems relevant for G−causality, these con-
cepts correspond closely to notions of direct cause and “controlled” direct effect in
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Pearl, J. (2000, 2001). To distinguish the settable system direct causality concept
from Pearl’s notion and later from Granger causality, we follow WL and refer to di-
rect causality in settable systems as direct structural causality.

4.2. Direct Causes and Effects in the PCM

Pearl, J. (2000, p. 222), drawing on Galles, D. and J. Pearl (1997), gives a succinct
statement of the notion of direct cause, coherent with the PCM as specified in Section
2:

X is a direct cause of Y if there exist two values x and x′ of X and a value
u of U such that Yxr(u) ! Yx′r(u), where r is some realization of V\{X,Y}.

To make this statement fully meaningful requires applying Pearl’s (2000) definitions
7.1.2 (Submodel) and 7.1.4 (Potential Response) to arrive at the potential response,

Yxr(u). For brevity, we do not reproduce Pearl’s definitions here. Instead, it suffices
to map Yxr(u) and its elements to their settable system counterparts. Specifically, u

corresponds to (a,z0); x corresponds to zi; r corresponds to the elements of z(b) other
than z0 and zi, say z(b)(i,0); and, provided it exists, Yxr(u) corresponds to r j(z(b);a).

The caveat about the existence of Yxr(u) is significant, as Yxr(u) is not defined in
the absence of a unique fixed point for the system. Further, even with a unique fixed
point, the potential response Yxr(u) must also uniquely solve a set of equations denoted
Fx (see Pearl, J., 2000, eq. (7.1)) for a submodel, and there is no general guarantee of
such a solution. Fortunately, however, this caveat matters only for non-recursive PCMs.
In the recursive case relevant for G−causality, the potential response is generally well
defined.

Making a final identification between x′ and z∗i , and given the existence of potential
responses Yx′r(u) and Yxr(u), we see that Yx′r(u) ! Yxr(u) corresponds to the settable
systems requirement r j(z

∗
(b);i;a)− r j(z(b);a) ! 0.

Pearl, J. (2001, definition 1) gives a formal statement of the notion stated above,
saying that if for given u and some r, x, and x′ we have Yxr(u) ! Yx′r(u) then X has a

controlled direct effect on Y in model M and situation U = u. In definition 2, Pearl,
J. (2001) labels Yx′r(u)−Yxr(u) the controlled direct effect, corresponding to the direct
structural effect r j(z

∗
(b);i;a)− r j(z(b);a) defined for settable systems.

Thus, although there are important differences, especially in non-recursive systems,
the settable systems and PCM notions of direct causality and direct effects closely cor-
respond in recursive systems. These differences are sufficiently modest that the results
of WL linking direct structural causality to Granger causality, discussed next, also serve
to closely link the PCM notion of direct cause to that of Granger causality.

5. G−Causality and Direct Structural Causality

In this section we examine the relation between direct structural causality and Granger
causality, drawing on results of WL. See WL for additional discussion and proofs of all
formal results given here and in Section 6.
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5.1. Granger Causality

Granger, C.W.J. (1969) defined G−causality in terms of conditional expectations. Gran-
ger, C.W.J. and P. Newbold (1986) gave a definition using conditional distributions. We
work with the latter, as this is what relates generally to structural causality. In what fol-
lows, we adapt Granger and Newbold’s notation, but otherwise preserve the conceptual
content.

For any sequence of random vectors {Yt, t = 0,1, . . .}, let Yt := (Y0, . . . ,Yt) denote
its “t−history," and let σ(Yt) denote the sigma-field (“information set") generated by
Yt. Let {Qt,S t,Yt} be a sequence of random vectors. Granger, C.W.J. and P. Newbold
(1986) say that Qt−1 does not G-cause Yt+k with respect to σ(Qt−1,S t−1,Yt−1) if for all
t = 0,1, . . . ,

Ft+k( · | Qt−1,S t−1,Yt−1) = Ft+k( · | S t−1,Yt−1), k = 0,1, . . . , (2)

where Ft+k( · | Qt−1,S t−1,Yt−1) denotes the conditional distribution function of Yt+k

given Qt−1,S t−1,Yt−1, and Ft+k( · | S t−1,Yt−1) denotes that of Yt+k given S t−1,Yt−1.
Here, we focus only on the k = 0 case, as this is what relates generally to structural
causality.

As Florens, J.P. and M. Mouchart (1982) and Florens, J.P. and D. Fougère (1996)
note, G non-causality is a form of conditional independence. Following Dawid (1979),
we write X ⊥ Y | Z when X and Y are independent given Z. Translating (2) gives the
following version of the classical definition of Granger causality:

Definition 5.1 (Granger Causality) Let {Qt,S t,Yt} be a sequence of random vectors.

Suppose that

Yt ⊥ Qt−1 | Yt−1,S t−1 t = 1,2, . . . . (3)

Then Q does not G−cause Y with respect to S .Otherwise, Q G−causes Y with respect

to S .

As it stands, this definition has no necessary structural content, as Qt, S t, and Yt can be
any random variables whatsoever. This definition relates solely to the ability of Qt−1 to
help in predicting Yt given Yt−1 and S t−1.

In practice, researchers do not test classical G−causality, as this involves data his-
tories of arbitrary length. Instead, researchers test a version of G−causality involving
only a finite number of lags of Yt, Qt, and S t. This does not test classical G−causality,
but rather a related property, finite-order G−causality, that is neither necessary nor suf-
ficient for classical G−causality.

Because of its predominant practical relevance, we focus here on finite-order rather
than classical G−causality. (See WL for discussion of classical G−causality.) To define
the finite-order concept, we define the finite histories Yt−1 := (Yt−1, . . . ,Yt−1) and Qt :=
(Qt−k, . . . ,Qt).

Definition 5.2 (Finite-Order Granger Causality) Let {Qt,S t,Yt} be a sequence of

random variables, and let k ≥ 0 and 1 ≥ 1 be given finite integers. Suppose that

Yt ⊥ Qt | Yt−1,S t, t = 1,2, . . . .
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Then we say Q does not finite-order G−cause Y with respect to S . Otherwise, we say

Q finite-order G−causes Y with respect to S .

We call max(k,1−1) the “order" of the finite-order G non-causality.
Observe that Qt replaces Qt−1 in the classical definition, that Yt−1 replaces Yt−1, and

that S t replaces S t−1. Thus, in addition to dropping all but a finite number of lags in Qt−1

and Yt−1, this version includes Qt. As WL discuss, however, the appearance of Qt need
not involve instantaneous causation. It suffices that realizations of Qt precede those
of Yt, as in the case of contemporaneous causation discussed above. The replacement
of S t−1 with S t entails first viewing S t as representing a finite history, and second the
recognition that since S t plays purely a conditioning role, there need be no restriction
whatever on its timing. We thus call S t “covariates." As WL discuss, the covariates
can even include leads relative to time t. When covariate leads appear, we call this the
“retrospective" case.

In what follows, when we refer to G−causality, it will be understood that we are
referring to finite-order G−causality, as just defined. We will always refer to the concept
of Definition 5.1 as classical G−causality to avoid confusion.

5.2. A Dynamic Structural System

We now specify a canonical settable system that will enable us to examine the rela-
tion between G−causality and direct structural causality. As described above, in such
systems “predecessors" structurally determine “successors," but not vice versa. In par-
ticular, future variables cannot precede present or past variables, enforcing the causal
direction of time. We write Y⇐ X to denote that Y succeeds X (X precedes Y ). When Y

and X have identical time indexes, Y ⇐ X rules out instantaneous causation but allows
contemporaneous causation.

We now specify a version of the causal data generating structures analyzed by WL
and White, H. and P. Kennedy (2009). We let N denote the integers {0,1, . . .} and define
N̄ :=N∪ {∞}. For given 1,m,∈N, 1 ≥ 1, we let Yt−1 := (Yt−1, . . . ,Yt−1) as above; we also
define Zt := (Zt−m, . . . ,Zt). For simplicity, we keep attributes implicit in what follows.

Assumption A.1 Let {Ut,Wt,Yt,Zt; t = 0,1, . . .} be a stochastic process on (Ω,F ,P),
a complete probability space, with Ut,Wt,Yt, and Zt taking values in Rku ,Rkw ,Rky , and
Rkz respectively, where ku ∈ N̄ and kw,ky,kz ∈ N, with ky > 0. Further, suppose that
Yt ⇐ (Yt−1,Ut,Wt,Zt), where, for an unknown measurable ky × 1 function qt, and for
given 1,m,∈ N,1 ≥ 1, {Yt} is structurally generated as

Yt = qt(Yt−1,Zt,Ut), t = 1,2, . . . , (4)

such that, with Yt := (Y ′1,t,Y
′
2,t)
′ and Ut := (U′1,t,U

′
2,t)
′,

Y1,t = q1,t(Yt−1,Zt,U1,t) Y2,t = q2,t(Yt−1,Zt,U2,t).

Such structures are well suited to representing the structural evolution of time-series
data in economic, biological, or other systems. Because Yt is a vector, this covers the
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case of panel data, where one has a cross-section of time-series observations, as in fMRI
or EEG data sets. For practical relevance, we explicitly impose the Markov assumption
that Yt is determined by only a finite number of its own lags and those of Zt and Ut.WL
discuss the general case.

Throughout, we suppose that realizations of Wt,Yt, and Zt are observed, whereas
realizations of Ut are not. Because Ut,Wt, or Zt may have dimension zero, their pres-
ence is optional. Usually, however, some or all will be present. Since there may be a
countable infinity of unobservables, there is no loss of generality in specifying that Yt

depends only on Ut rather than on a finite history of lags of Ut.

This structure is general: the structural relations may be nonlinear and non-
monotonic in their arguments and non-separable between observables and unobserv-
ables. This system may generate stationary processes, non-stationary processes, or
both. Assumption A.1 is therefore a general structural VAR; Example 3.3 is a special
case.

The vector Yt represents responses of interest. Consistent with a main application
of G−causality, our interest here attaches to the effects on Y1,t of the lags of Y2,t. We
thus call Y2,t−1 and its further lags “causes of interest." Note that A.1 specifies that Y1,t

and Y2,t each have their own unobserved drivers, U1,t and U2,t, as is standard.
The vectors Ut and Zt contain causal drivers of Yt whose effects are not of primary

interest; we thus call Ut and Zt “ancillary causes." The vector Wt may contain responses
to Ut. Observe that Wt does not appear in the argument list for qt, so it explicitly
does not directly determine Yt. Note also that Yt ⇐ (Yt−1,Ut,Wt,Zt) ensures that Wt is
not determined by Yt or its lags. A useful convention is that Wt ⇐ (Wt−1,Ut,Zt), so
that Wt does not drive unobservables. If a structure does not have this property, then
suitable substitutions can usually yield a derived structure satisfying this convention.
Nevertheless, we do not require this, so Wt may also contain drivers of unobservable
causes of Yt.

For concreteness, we now specialize the settable systems definition of direct struc-
tural causality (Definition 4.1) to the specific system given in A.1. For this, let ys,t−1 be
the sub-vector of yt−1 with elements indexed by the non-empty set s ⊆ {1, . . . ,ky}× {t−
1, . . . , t−1}, and let y(s),t−1 be the sub-vector of yt−1 with elements of s excluded.

Definition 5.3 (Direct Structural Causality) Given A.1, for given t > 0, j ∈ {1, . . . ,ky},
and s, suppose that for all admissible values of y(s),t−1, zt, and ut, the function ys,t−1→
q j,t(yt−1, zt,ut) is constant in ys,t−1. Then we say Ys,t−1 does not directly structurally

cause Y j,t and write Ys,t−1
D
"S Y j,t. Otherwise, we say Ys,t−1 directly structurally

causes Y j,t and write Ys,t−1
D
⇒S Y j,t.

We can similarly define direct causality or non-causality of Zs,t or Us,t for Y j,t, but

we leave this implicit. We write, e.g., Ys,t−1
D
⇒S Yt when Ys,t−1

D
⇒S Y j,t for some

j ∈ {1, . . . ,ky}.
Building on work of White, H. (2006a) and White, H. and K. Chalak (2009), WL

discuss how certain exogeneity restrictions permit identification of expected causal ef-
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fects in dynamic structures. Our next result shows that a specific form of exogeneity
enables us to link direct structural causality and finite order G−causality. To state this
exogeneity condition, we write Y1,t−1 := (Y1,t−1, . . . ,Y1,t−1), Y2,t−1 := (Y2,t−1, . . . ,Y2,t−1),
and, for given τ1,τ2 ≥ 0, Xt := (Xt−τ1 , . . . ,Xt+τ2 ), where Xt := (W′t ,Z

′
t )
′.

Assumption A.2 For 1 and m as in A.1 and for τ1 ≥ m,τ2 ≥ 0, suppose that Y2,t−1 ⊥
U1,t | (Y1,t−1,Xt), t = 1, . . . ,T −τ2.

The classical strict exogeneity condition specifies that (Yt−1,Zt) ⊥ U1,t, which implies
Y2,t−1 ⊥ U1,t | (Y1,t−1,Zt). (Here, Wt can be omitted.) Assumption A.2 is a weaker
requirement, as it may hold when strict exogeneity fails. Because of the conditioning
involved, we call this conditional exogeneity. Chalak, K. and H. White (2010) discuss
structural restrictions for canonical settable systems that deliver conditional exogeneity.
Below, we also discuss practical tests for this assumption.

Because of the finite numbers of lags involved in A.2, this is a finite-order con-
ditional exogeneity assumption. For convenience and because no confusion will arise
here, we simply refer to this as “conditional exogeneity."

Assumption A.2 ensures that expected direct effects of Y2,t−1 on Y1,t are identified.
As WL note, it suffices for A.2 that Ut−1 ⊥U1,t | (Y0,Z

t−1,Xt) and Y2,t−1 ⊥ (Y0,Z
t−τ1−1) |

(Y1,t−1,Xt). Imposing Ut−1 ⊥ U1,t | (Y0,Z
t−1,Xt) is the analog of requiring that serial

correlation is absent when lagged dependent variables are present. Imposing Y2,t−1 ⊥
(Y0,Z

t−τ1−1) | (Y1,t−1,Xt) ensures that ignoring Y0 and omitting distant lags of Zt from
Xt doesn’t matter.

Our first result linking direct structural causality and G−causality shows that, given
A.1 and A.2 and with proper choice of Qt and S t, G−causality implies direct structural
causality.

Proposition 5.4 Let A.1 and A.2 hold. If Y2,t−1
D
"S Y1,t, t = 1,2, . . ., then Y2 does not

finite order G−cause Y1 with respect to X, i.e.,

Y1,t ⊥ Y2,t−1 | Y1,t−1,Xt, t = 1, . . . ,T − τ2.

In stating G non-causality, we make the explicit identifications Qt = Y2,t−1 and S t = Xt.

This result leads one to ask whether the converse relation also holds: does direct
structural causality imply G−causality? Strictly speaking, the answer is no. WL discuss
several examples. The main issue is that with suitably chosen causal and probabilistic
relationships, Y2,t−1 can cause Y1,t, but Y2,t−1 and Y1,t can be independent, conditionally
or unconditionally, i.e. Granger non-causal.

As WL further discuss, however, these examples are exceptional, in the sense that
mild perturbations to their structure destroy the Granger non-causality. WL introduce a
refinement of the notion of direct structural causality that accommodates these special
cases and that does yield a converse result, permitting a characterization of structural
and Granger causality. Let supp(Y1,t) denote the support of Y1,t, i.e., the smallest set
containing Y1,t with probability 1, and let F1,t(· | Y1,t−1,Xt) denote the conditional dis-
tribution function of U1,t given Y1,t−1,Xt.WL introduce the following definition:
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Definition 5.5 Suppose A.1 holds and that for given τ1 ≥ m,τ2 ≥ 0 and for each y ∈
supp(Y1,t) there exists a σ(Y1,t−1,Xt)−measurable version of the random variable

∫
1{q1,t(Yt−1,Zt,u1,t) < y} dF1,t(u1,t | Y1,t−1,Xt).

Then Y2,t−1
D
"S(Y1,t−1,Xt) Y1,t (direct non-causality−σ(Y1,t−1,Xt) a.s.). If not, Y2,t−1

D
⇒S(Y1,t−1,Xt) Y1,t.

For simplicity, we refer to this as direct non-causality a.s. The requirement that the
integral in this definition is σ(Y1,t−1,Xt)−measurable means that the integral does not
depend on Y2,t−1, despite its appearance inside the integral as an argument of q1,t. For
this, it suffices that Y2,t−1 does not directly cause Y1,t; but it is also possible that q1,t

and the conditional distribution of U1,t given Y1,t−1,Xt are in just the right relation to
hide the structural causality. Without the ability to manipulate this distribution, the
structural causality will not be detectable. One possible avenue to manipulating this
distribution is to modify the choice of Xt, as there are often multiple choices for Xt

that can satisfy A.2 (see White, H. and X. Lu, 2010b). For brevity and because hidden
structural causality is an exceptional circumstance, we leave aside further discussion of
this possibility here. The key fact to bear in mind is that the causal concept of Definition
5.5 distinguishes between those direct causal relations that are empirically detectable
and those that are not, for a given set of covariates Xt.

We now give a structural characterization of G−causality for structural VARs:

Theorem 5.6 Let A.1 and A.2 hold. Then Y2,t−1
D
"S(Y1,t−1,Xt) Y1,t, t = 1, . . . ,T− τ2, if

and only if

Y1,t ⊥ Y2,t−1 | Y1,t−1,Xt, t = 1, . . . ,T − τ2,

i.e., Y2 does not finite-order G−cause Y1 with respect to X.

Thus, given conditional exogeneity of Y2,t−1, G non-causality implies direct non-

causality a.s. and vice-versa, justifying tests of direct non-causality a.s. in structural
VARs using tests for G−causality.

This result completes the desired linkage between G−causality and direct causality
in the PCM. Because direct causality in the recursive PCM corresponds essentially
to direct structural causality in canonical settable systems, and because the latter is
essentially equivalent to G−causality, as just shown, direct causality in the PCM is
essentially equivalent to G−causality, provided A.1 and A.2 hold.

5.3. The Central Role of Conditional Exogeneity

To relate direct structural causality to G−causality, we maintain A.2, a specific condi-
tional exogeneity assumption. Can this assumption be eliminated or weakened? We
show that the answer is no: A.2 is in a precise sense a necessary condition. We also
give a result supporting tests for conditional exogeneity.
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First, we specify the sense in which conditional exogeneity is necessary for the
equivalence of G−causality and direct structural causality.

Proposition 5.7 Given A.1, suppose that Y2,t−1
D
"S Y1,t, t = 1,2, . . . . If A.2 does not

hold, then for each t there exists q1,t such that Y1,t ⊥ Y2,t−1 | Y1,t−1,Xt does not hold.

That is, if conditional exogeneity does not hold, then there are always structures that
generate data exhibiting G−causality, despite the absence of direct structural causality.
Because q1,t is unknown, this worst case scenario can never be discounted. Further, as
WL show, the class of worst case structures includes precisely those usually assumed
in applications, namely separable structures (e.g., Y1,t = q1,t(Y1,t−1,Zt)+U1,t), as well
as the more general class of invertible structures. Thus, in the cases typically assumed
in the literature, the failure of conditional exogeneity guarantees G−causality in the
absence of structural causality. We state this formally as a corollary.

Corollary 5.8 Given A.1 with Y2,t−1
D
"S Y1,t, t = 1,2, . . . , suppose that q1,t is invertible

in the sense that Y1,t = q1,t(Y1,t−1,Zt,U1,t) implies the existence of ξ1,t such that U1,t =

ξ1,t(Y1,t−1,Zt,Y1,t), t = 1,2, . . . . If A.2 fails, then Y1,t ⊥ Y2,t−1 | Y1,t−1,Xt fails, t = 1,2, . . ..

Together with Theorem 5.6, this establishes that in the absence of direct causality and
for the class of invertible structures predominant in applications, conditional exogeneity

is necessary and sufficient for G non-causality.
Tests of conditional exogeneity for the general separable case follow from:

Proposition 5.9 Given A.1, suppose that E(Y1,t) <∞ and that

q1,t(Yt−1,Zt,U1,t) = ζt(Yt−1,Zt)+υt(Y1,t−1,Zt,U1,t),

where ζt and υt are unknown measurable functions. Let εt := Y1,t −E(Y1,t|Yt−1,Xt). If
A.2 holds, then

εt = υt(Y1,t−1,Zt,U1,t)−E(υt(Y1,t−1,Zt,U1,t) | Y1,t−1,Xt)

E(εt|Yt−1,Xt) = E(εt|Y1,t−1,Xt) = 0 and

Y2,t−1 ⊥ εt | Y1,t−1,Xt. (5)

Tests based on this result detect the failure of A.2, given separability. Such tests are
feasible because even though the regression error εt is unobserved, it can be consistently
estimated, say as ε̂t := Y1,t − Ê(Y1,t|Yt−1,Xt), where Ê(Y1,t|Yt−1,Xt) is a parametric or
nonparametric estimator of E(Y1,t|Yt−1,Xt). These estimated errors can then be used to
test (5). If we reject (5), then we must reject A.2. We discuss a practical procedure in
the next section. WL provide additional discussion.

WL also discuss dropping the separability assumption. For brevity, we maintain
separability here. Observe that under the null of direct non-causality, q1,t is necessarily
separable, as then ζt is the zero function.
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6. Testing Direct Structural Causality

Here, we discuss methods for testing direct structural causality. First, we discuss a gen-
eral approach that combines tests of G non-causality (GN) and conditional exogeneity
(CE). Then we describe straightforward practical methods for implementing the general
approach.

6.1. Combining Tests for GN and CE

Theorem 5.6 implies that if we test and reject GN, then we must reject either direct
structural non-causality (SN) or CE, or both. If CE is maintained, then we can directly
test SN by testing GN; otherwise, a direct test is not available.

Similarly, under the traditional separability assumption, Corollary 5.8 implies that
if we test and reject CE, then we must reject either SN or GN (or both). If GN is
maintained, then we can directly test SN by testing CE; otherwise, a direct test is not
available.

When neither CE nor GN is maintained, no direct test of SN is possible. Neverthe-
less, we can test structural causality indirectly by combining the results of the GN and
CE tests to isolate the source of any rejections. WL propose the following indirect test:

(1) Reject SN if either:

(i) the CE test fails to reject and the GN test rejects; or

(ii) the CE test rejects and the GN test fails to reject.

If these rejection conditions do not hold, however, we cannot just decide to “accept"
(i.e., fail to reject) SN. As WL explain in detail, difficulties arise when CE and GN both
fail, as failing to reject SN here runs the risk of Type II error, whereas rejecting SN runs
the risk of Type I error. We resolve this dilemma by specifying the further rules:

(2) Fail to reject SN if the CE and GN tests both fail to reject;

(3) Make no decision as to SN if the CE and GN tests both reject.

In the latter case, we conclude only that CE and GN both fail, thereby obstructing struc-
tural inference. This sends a clear signal that the researcher needs to revisit the model
specification, with particular attention to specifying covariates sufficient to ensure con-
ditional exogeneity.

Because of the structure of this indirect test, it is not enough simply to consider its
level and power. We must also account for the possibility of making no decision. For
this, define

p : = P[ wrongly make a decision ]

= P[ fail to reject CE or GN | CE is false and GN is false ]

q : = P[ wrongly make no decision ]

= P[ reject CE and GN | CE is true or GN is true ].
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These are the analogs of the probabilities of Type I and Type II errors for the “no
decision" action. We would like these probabilities to be small. Next, we consider

α∗ : = P[ reject SN or make no decision | CE is true and GN is true ]

π∗ : = P[ reject SN | exactly one of CE and GN is true ].

These quantities correspond to notions of level and power, but with the sample space
restricted to the subset on which CE is true or GN is true, that is, the space where a
decision can be made. Thus, α∗ differs from the standard notion of level, but it does
capture the probability of taking an incorrect action when SN (the null) holds in the
restricted sample space, i.e., when CE and GN are both true. Similarly, π∗ captures the
probability of taking the correct action when SN does not hold in the restricted sample
space. We would like the “restricted level" α∗ to be small and the “restricted power" π∗

to be close to one.
WL provide useful bounds on the asymptotic properties (T →∞) of the sample-size

T values of the probabilities defined above, pT , qT , α
∗
T , and π∗T :

Proposition 6.1 Suppose that for T = 1,2, . . . the significance levels of the CE and GN

tests are α1T and α2T , respectively, and that α1T → α1 < .5 and α2T → α2 < .5. Suppose

the powers of the CE and GN tests are π1T and π2T , respectively, and that π1T → 1 and

π2T → 1. Then

pT → 0, limsupqT ≤max{α1,α2},
|α1−α2| ≤ liminfα∗T ≤ limsupα∗T ≤ α1+α2+min{α1,α2}, and

min {1−α1,1−α2} ≤ liminf π∗T ≤ limsupπ∗T ≤max {1−α1,1−α2} .

When π1T → 1 and π2T → 1, one can also typically ensure α1 = 0 and α2 = 0 by suitable
choice of an increasing sequence of critical values. In this case, qT → 0, α∗T → 0, and
π∗T → 1. Because GN and CE tests will not be consistent against every possible alterna-
tive, weaker asymptotic bounds on the level and power of the indirect test hold for these
cases by Proposition 8.1 of WL. Thus, whenever possible, one should carefully design
GN and CE tests to have power against particularly important or plausible alternatives.
See WL for further discussion.

6.2. Practical Tests for GN and CE

To test GN and CE, we require tests for conditional independence. Nonparametric
tests for conditional independence consistent against arbitrary alternatives are readily
available (e.g. Linton, O. and P. Gozalo, 1997; Fernandes, M. and R. G. Flores, 2001;
Delgado, M. A. and W. Gonzalez-Manteiga, 2001; Su, L. and H. White, 2007a,b, 2008;
Song, K., 2009; Huang, M. and H. White, 2009). In principle, one can apply any of
these to consistently test GN and CE.

But nonparametric tests are often not practical, due to the typically modest num-
ber of time-series observations available relative to the number of relevant observable
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variables. In practice, researchers typically use parametric methods. These are conve-
nient, but they may lack power against important alternatives. To provide convenient
procedures for testing GN and CE with power against a wider range of alternatives,
WL propose augmenting standard tests with neural network terms, motivated by the
“QuickNet" procedures introduced by White, H (2006b) or the extreme learning ma-
chine (ELM) methods of Huang, G.B., Q.Y. Zhu, and C.K. Siew (2006). We now pro-
vide explicit practical methods for testing GN and CE for a leading class of structures
obeying A.1.

6.2.1. Testing Granger Non-Causality

Standard tests for finite-order G−causality (e.g., Stock, J. and M. Watson, 2007, p. 547)
typically assume a linear regression, such as3

E(Y1,t|Yt−1,Xt) = α0+Y′1,t−1ρ0+Y′2,t−1β0+X′tβ1.

For simplicity, we let Y1,t be a scalar here. The extension to the case of vector Y1,t is
completely straightforward. Under the null of GN, i.e., Y1,t ⊥ Y2,t−1 | Y1,t−1,Xt,we have
β0 = 0. The standard procedure therefore tests β0 = 0 in the regression equation

Y1,t = α0+Y′1,t−1ρ0+Y′2,t−1β0+X′tβ1+εt. (GN Test Regression 1)

If we reject β0 = 0, then we also reject GN. But if we don’t reject β0 = 0, care is needed,
as not all failures of GN will be indicated by β0 ! 0.

Observe that when CE holds and if GN Test Regression 1 is correctly specified, i.e.,
the conditional expectation E(Y1,t|Yt−1,Xt) is indeed linear in the conditioning vari-
ables, then β0 represents precisely the direct structural effect of Y2,t−1 on Y1,t. Thus,
GN Test Regression 1 may not only permit a test of GN, but it may also provide a
consistent estimate of the direct structural effect of interest.

To mitigate specification error and gain power against a wider range of alterna-
tives, WL propose augmenting GN Test Regression 1 with neural network terms, as in
White’s (2006b, p. 476) QuickNet procedure. This involves testing β0 = 0 in

Y1,t = α0+Y′1,t−1ρ0+Y′2,t−1β0+X′tβ1+

r∑

j=1

ψ(Y′1,t−1γ1, j+X′tγ j)β j+1+εt.

(GN Test Regression 2)

Here, the activation function ψ is a generically comprehensively revealing (GCR) func-
tion (see Stinchcombe, M. and H. White, 1998). For example, ψ can be the logistic cdf
ψ(z) = 1/(1+ exp(−z)) or a ridgelet function, e.g., ψ(z) = (−z5 + 10z3 − 15z)exp(−.5z2)
(see, for example, Candès, E. (1999)). The integer r lies between 1 and r̄, the maximum
number of hidden units. We randomly choose (γ0 j,γ j) as in White, H (2006b, p. 477).

3. For notational convenience, we understand that all regressors have been recast as vectors containing
the referenced elements.
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Parallel to our comment above about estimating direct structural effects of interest,
we note that given A.1, A.2, and some further mild regularity conditions, such effects
can be identified and estimated from a neural network regression of the form

Y1,t = α0+Y′1,t−1ρ0+Y′2,t−1β0+X′tβ1

+

r∑

j=1

ψ(Y′1,t−1γ1, j+Y′2,t−1γ2, j+X′tγ3, j)β j+1+εt.

Observe that this regression includes Y2,t−1 inside the hidden units. With r chosen suf-
ficiently large, this permits the regression to achieve a sufficiently close approximation
to E(Y1,t|Yt−1,Xt) and its derivatives (see Hornik, K. M. Stinchcombe, and H. White,
1990; Gallant, A.R. and H. White, 1992) that regression misspecification is not such an
issue. In this case, the derivative of the estimated regression with respect to Y2,t−1 well
approximates

(∂/∂y2)E(Y1,t | Y1,t−1,Y2,t−1 = y2,Xt)

= E[ (∂/∂y2)q1,t(Y1,t−1, y2,Zt,U1,t) | Y1,t−1,Xt].

This quantity is the covariate conditioned expected marginal direct effect of Y2,t−1 on

Y1,t.

Although it is possible to base a test for GN on these estimated effects, we do not
propose this here, as the required analysis is much more involved than that associated
with GN Test Regression 2.

Finally, to gain additional power WL propose tests using transformations of Y1,t,

Y1,t−1, and Y2,t−1, as Y1,t ⊥ Y2,t−1 | Y1,t−1,Xt implies f (Y1,t) ⊥ g(Y2,t−1) | Y1,t−1,Xt for
all measurable f and g. One then tests β1,0 = 0 in

ψ1(Y1,t) = α1,0+ψ2(Y1,t−1)′ρ1,0+ψ3(Y2,t−1)′β1,0+X′tβ1,1

+

r∑

j=1

ψ(Y′1,t−1γ1,1, j+X′tγ1, j)β1, j+1+ηt. (GN Test Regression 3)

We take ψ1 and the elements of the vector ψ3 to be GCR, e.g., ridgelets or the logistic
cdf. The choices of γ,r, and ψ are as described above. Here, ψ2 can be the identity
(ψ2(Y1,t−1) = Y1,t−1), its elements can coincide with ψ1, or it can be a different GCR
function.

6.2.2. Testing Conditional Exogeneity

Testing conditional exogeneity requires testing A.2, i.e., Y2,t−1 ⊥ U1,t | Y1,t−1,Xt. Since
U1,t is unobservable, we cannot test this directly. But with separability (which holds
under the null of direct structural non-causality), Proposition 5.9 shows that Y2,t−1 ⊥
U1,t | Y1,t−1,Xt implies Y2,t−1 ⊥ εt | Y1,t−1,Xt, where εt := Y1,t − E(Y1,t|Yt−1,Xt). With
correct specification of E(Y1,t|Yt−1,Xt) in either GN Test Regression 1 or 2 (or some
other appropriate regression), we can estimate εt and use these estimates to test Y2,t−1 ⊥
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εt | Y1,t−1,Xt. If we reject this, then we also must reject CE. We describe the procedure
in detail below.

As WL discuss, such a procedure is not “watertight," as this method may miss cer-
tain alternatives to CE. But, as it turns out, there is no completely infallible method. By
offering the opportunity of falsification, this method provides crucial insurance against
being naively misled into inappropriate causal inferences. See WL for further discus-
sion.

The first step in constructing a practical test for CE is to compute estimates of εt,

say ε̂t. This can be done in the obvious way by taking ε̂t to be the estimated residuals
from a suitable regression. For concreteness, suppose this is either GN Test Regression
1 or 2.

The next step is to use ε̂t to test Y2,t−1 ⊥ εt | Y1,t−1,Xt. WL recommend doing this
by estimating the following analog of GN Test Regression 3:

ψ1(ε̂t) = α2,0+ψ2(Y1,t−1)′ρ2,0+ψ3(Y2,t−1)′β2,0+X′tβ2,1

+

r∑

j=1

ψ(Y′1,t−1γ2,1, j+X′tγ2, j)β2, j+1+ηt. (CE Test Regression)

Note that the right-hand-side regressors are identical to those of GN Test Regression 3;
we just replace the dependent variable ψ1(Y1,t) for GN with ψ1(ε̂t) for CE. Nevertheless,
the transformations ψ1, ψ2, and ψ3 here may differ from those of GN Test Regression
3. To keep the notation simple, we leave these possible differences implicit. To test CE
using this regression, we test the null hypothesis β2,0 = 0 : if we reject β2,0 = 0, then we
reject CE.

As WL explain, the fact that ε̂t is obtained from a “first-stage" estimation (GN) in-
volving potentially the same regressors as those appearing in the CE regression means
that choosing ψ1(ε̂t) = ε̂t can easily lead to a test with no power. For CE, WL thus rec-
ommend choosing ψ1 to be GCR. Alternatively, non-GCR choices may be informative,
such as

ψ1(ε̂t) = |ε̂t|, ψ1(ε̂t) = ε̂t(λ−1{ε̂t < 0}), λ ∈ (0,1), or ψ1(ε̂t) = ε̂
2
t .

Significantly, the asymptotic sampling distributions needed to test β2,0 = 0 will gen-
erally be impacted by the first-stage estimation. Handling this properly is straightfor-
ward, but somewhat involved. To describe a practical method, we denote the first-stage
(GN) estimator as θ̂1,T := (α̂1,T , ρ̂1,T , β̂

′
1,0,T , β̂

′
1,1,T , . . . , β̂1,r+1,T )′, computed from GN Test

Regression 1 (r = 0) or 2 (r > 0). Let the second stage (CE) regression estimator be θ̂2,T ;
this contains the estimated coefficients for Y2,t−1, say β̂2,0,T ,which carry the information
about CE. Under mild conditions, a central limit theorem ensures that

√
T (θ̂T − θ0)

d
→ N(0,C0),

where θ̂T := (θ̂′1,T , θ̂
′
2,T )′, θ0 := plim(θ̂T ), convergence in distribution as T →∞ is de-

noted
d
→, and N(0,C0) denotes the multivariate normal distribution with mean zero and
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covariance matrix C0 := A−1
0 B0A−1′

0 , where

A0 :=

[
A011 0

A021 A022

]

is a two-stage analog of the log-likelihood Hessian and B0 is an analog of the informa-
tion matrix. See White, H. (1994, pp. 103–108) for specifics.4 This fact can then be use
to construct a well behaved test for β2,0 = 0.

Constructing this test is especially straightforward when the regression errors of the
GN and CE regressions, εt and ηt, are suitable martingale differences. Then B0 has the
form

B0 :=

[
E[Zt εt ε

′
tZ′t ] E[Zt εt η

′
tZ′t ]

E[Zt ηt ε
′
tZ′t ] E[Zt ηt η

′
tZ′t ]

]
,

where the CE regressors Zt are measurable-σ(Xt), Xt := (vec[Yt−1]′,vec[Xt]
′)′, εt :=

Y1,t − E(Y1,t | Xt), and ηt := ψ1(εt) − E[ψ1(εt) | Xt]. For this, it suffices that U1,t ⊥
(Yt−1−1,Xt−τ1−1) | Xt, as WL show. This memory condition is often plausible, as it
says that the more distant history (Yt−1−1,Xt−τ1−1) is not predictive for U1,t, given the
more recent history Xt of (Yt−1,Xt+τ2 ). Note that separability is not needed here.

The details of C0 can be involved, especially with choices like ψ1(ε̂t) = |ε̂t|. But this
is a standard m−estimation setting, so we can avoid explicit estimation of C0: suitable
bootstrap methods deliver valid critical values, even without the martingale difference
property (see, e.g., Gonçalves, S. and H. White, 2004; Kiefer, N. and T. Vogelsang,
2002, 2005; Politis, D. N., 2009).

An especially appealing method is the weighted bootstrap (Ma, S. and M. Kosorok,
2005), which works under general conditions, given the martingale difference property.
To implement this, for i = 1, . . . ,n generate sequences {Wt,i, t = 1, . . . ,T } of IID positive
scalar weights with E(Wt,i) = 1 and σ2

W := var(Wt,i) = 1. For example, take Wt,i ∼
χ2

1/
√

2+ (1−1/
√

2), where χ2
1 is chi-squared with one degree of freedom. The weights

should be independent of the sample data and of each other. Then compute estimators
θ̂T,i by weighted least squares applied to the GN and CE regressions using (the same)
weights {Wt,i, t = 1, . . . ,T }. By Ma, S. and M. Kosorok (2005, theorem 2), the random
variables √

T (θ̂T,i− θ̂T ), i = 1, . . . ,n

can then be used to form valid asymptotic critical values for testing hypotheses about
θ0.

To test CE, we test β2,0 = 0. This is a restriction of the form S2 θ0 = 0, where S2 is the
selection matrix that selects the elements β2,0 from θ0. Thus, to conduct an asymptotic
level α test, we can first compute the test statistic, say

TT := T θ̂′T S
′
2S2 θ̂T = T β̂′2,0,T β̂2,0,T .

4. The regularity conditions include plausible memory and moment requirements, together with certain
smoothness and other technical conditions.
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We then reject CE if TT > ĉT,n,1−α, where, with n chosen sufficiently large, ĉT,n,1−α is
the 1−α percentile of the weighted bootstrap statistics

TT,i := T (θ̂T,i− θ̂T )′S′2S2 (θ̂T,i− θ̂T ) = T (β̂2,0,T,i− β̂2,0,T )′ (β̂2,0,T,i− β̂2,0,T ), i = 1, . . . ,n.

This procedure is asymptotically valid, even though TT is based on the “unstuden-
tized" statistic S2 θ̂T = β̂2,0,T . Alternatively, one can construct a studentized statistic

T ∗T := T θ̂′T S
′
2 [S2 ĈT,nS

′
2]−1
S2 θ̂T ,

where ĈT,n is an asymptotic covariance estimator constructed from
√

T (θ̂T,i − θ̂T ), i =
1, . . . ,n. The test rejects CE if T ∗T > c1−α, where c1−α is the 1−α percentile of the chi-
squared distribution with dim(β0,2) degrees of freedom. This method is more involved
but may have better control over the level of the test. WL provide further discussion
and methods.

Because the given asymptotic distribution is joint for θ̂1,T and θ̂2,T , the same meth-
ods conveniently apply to testing GN, i.e., β1,0 = S1 θ0 = 0, where S1 selects β1,0 from
θ0. In this way, GN and CE test statistics can be constructed at the same time.

WL discuss three examples, illustrating tests for direct structural non-causality
based on tests of Granger non-causality and conditional exogeneity. A matlab mod-
ule, testsn, implementing the methods described here is available at http://ihome.
ust.hk/~xunlu/code.htm.

7. Summary and Concluding Remarks

In this paper, we explore the relations between direct structural causality in the set-
table systems framework and direct causality in the PCM for both recursive and non-
recursive systems. The close correspondence between these concepts in recursive sys-
tems and the equivalence between direct structural causality and G−causality estab-
lished by WL enable us to show the close linkage between G−causality and PCM no-
tions of direct causality. We apply WL’s results to provide straightforward practical
methods for testing direct causality using tests for Granger causality and conditional
exogeneity.

The methods and results described here draw largely from work of WC and WL.
These papers contain much additional relevant discussion and detail. WC provide fur-
ther examples contrasting settable systems and the PCM. Chalak, K. and H. White
(2010) build on WC, examining not only direct causality in settable systems, but also
notions of indirect causality, which in turn yield implications for conditional indepen-
dence relations, such as those embodied in conditional exogeneity, which plays a key
role here. WL treat not only the structural VAR case analyzed here, but also the “time-
series natural experiment" case, where causal effects of variables Dt, absorbed here into
Zt, are explicitly analyzed. The sequence {Dt} represents external stimuli, not driven by
{Yt}, whose effects on {Yt} are of interest. For example, {Dt} could represent passively
observed visual or auditory stimuli, and {Yt} could represent measured neural activ-
ity. Interest may attach to which stimuli directly or indirectly affect which neurons or
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groups of neurons. WL also examine the structural content of classical Granger causal-
ity and a variety of related alternative versions that emerge naturally from different
versions of Assumption A.1.
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